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Abstract

We study the nonlinear power growth variational problem

Jα[w] :=

∫

Ω

[ 1

α
|∇w|α − fw

]

dx → min

and establish directly computable estimates for the deviation from exact solutions.
In the case of superquadratic growth, these estimates are given in terms of the
energy norm, in the subquadratic case we pass to estimates for the solution of
the dual variational problem. Various boundary conditions are included in our
considerations.

1 Introduction

A quantitative analysis of solutions of boundary-value problems associated with PDE’s is
inevitably connected with their approximative solutions that can be obtained by various
numerical methods. The latters usually construct a sequence of approximate solutions
defined by solving finite-dimensional problems that arise if the original equation is pro-
jected on a certain finite-dimensional subspace. If such a projection and the subsequent
numerical procedure are correctly performed, then the respective approximate solution
can be used to analyse the quantitative behavior of the desired exact one.

However, such an analysis merely is consistent if the difference between the exact and
the approximative solutions is explicitely estimated.

In the last decades, many efforts were focused on the methods able to estimate the qual-
ity of approximate solutions. Numerical analysts applying finite element methods have
developed several approaches to the a posteriori error indication (see, e.g., [AiOd], [BaRe],
[BaRa], [Ve]) that are usually based on the Galerkin orthogonality of an approximate so-
lution considered and the particular features of the discretization applied. Typically, such
estimates are used to answer the question how to use the information contained in an ap-
proximative solution computed on a subspace Vk in order to construct another subspace
Vk+1 of higher dimensionality such that the extra degrees of freedom can be stated in
subdomains with maximal error.

However, the problem in question can be stated more generally. Namely, we also need
computable estimates of the difference between exact solutions and their approximations
that are valid for the whole energy class of comparison functions and provide guaranteed
upper bounds of such differences. Clearly, such estimates should be derived by purely
functional methods using approximatively the same techniques as used in the classical
PDE theory for establishing existence and regularity properties. Such type of estimates
(called functional type a posteriori estimates or deviation estimates) have been obtained
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for some classes of linear and nonlinear boundary-value problems (see, e.g., [Re1], [Re2]
and the references quoted therein).

In the present paper, we derive deviation estimates for a class of power growth varia-
tional problems and justify their properties.

Let Ω ⊂ R
n denote a bounded Lipschitz domain. We start our considerations by fixing

some given Dirichlet boundary data u0: Ω → R of class V := W 1
α(Ω), 1 < α. We then are

interested in the minimization problem

Jα[w] :=

∫

Ω

[ 1

α
|∇w|α − fw

]

dx → min (P)

among all comparison functions w of class u0 + V0, where

V0 :=
◦

Wα
1(Ω) , u0 + V0 := {w ∈ V : w = w0 + u0, w0 ∈ V0} .

Moreover, f is assumed to be of class Lα∗

(Ω), with the number α∗ = α/(α − 1) being
conjugate to α. Here and in the following, we refer to the standard notion of Sobolev and
Lebesgue spaces as introduced, for instance, in [Ad]. The direct method of the calculus
of variations and the convexity of Jα immediately give the existence of a unique solution
u ∈ u0 + V0 and we have the Euler equation for smooth solutions

div
(

|∇u|α−2∇u
)

+ f = 0 in Ω

together with its weak form (see, e.g., [LaUr])
∫

Ω

(

|∇u|α−2∇u · ∇w − fw
)

dx = 0 for any w ∈ V0 . (1.1)

The dual variational problem associated to the original problem (P) is the maximizing
problem

Iα∗[y∗] → max in Y ∗ := Lα∗

(Ω; Rn) , (P∗)

where

Iα∗[y∗] :=







∫

Ω

[

∇u0 · y
∗ −

1

α∗
|y∗|α

∗

− fu0

]

dx if y∗ ∈ Q∗
f ,

−∞ if y∗ /∈ Q∗
f ,

and where

Q∗
f :=

{

y∗ ∈ Y ∗ :

∫

Ω

y∗ · ∇w dx =

∫

Ω

fw dx for all w ∈ V0

}

.

Some earlier a posteriori estimates for variational problems based on duality were con-
sidered in [Mi], [MoMy], [GaGrZa]). However, they were related with the necessity to
approximate the set Q∗

f (or a similar set) exactly what technically is a very complicated
task. In our approach exposed further, this difficulty is avoided.

By standard results of the convex analysis (see, for instance, [ET]) it is well known that
the problem (P∗) is uniquely solvable and if the solution is denoted by p∗, then we have

infu0+V0
P = Jα[u] = Iα∗[p∗] = supY ∗ P∗ , (1.2)

p∗ = |∇u|α−2∇u a.e. in Ω , (1.3)

∇u = |p∗|α
∗−2p∗ a.e. in Ω . (1.4)
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Now let us first consider the case α ≥ 2 and suppose that v ∈ u0 + V0 is a certain given
function viewed as an approximation of u. Note that we do not assume that v possesses
some specific features coming from the method of its derivation (e.g. Galerkin orthog-
onality or particular approximation properties). Then our aim is to obtain explicitely
computable upper bounds of the type

‖∇(u − v)‖α,Ω ≤ M(v, f, α, Ω) , (1.5)

which has to fullfil the natural property

M(vk, f, α, Ω) → 0 whenever vk → u in V . (1.6)

If an estimate of this kind is valid for any function from the energy space, then it presents
an computable measure for the deviation from the exact solution. Note that one should
carefully try to avoid any “over-estmation” in order to get an estimate, which can be
used for a reliable verification of approximative solutions obtained by various numerical
methods.

In our analysis the right-hand side M of (1.5) splits into two parts with a clear physical
interpretation. The first part can be viewed as a penalty for a possible violation of the
duality relations (1.3) and (1.4), the second one penalizes the error in the equilibriumm
equation.

The case 1 < α < 2 essentially differs from the above considerations. Here it is not
possible (without a priori estimates for the exact solution) to find a natural upper bound
for the norm ‖∇(v−u)‖α,Ω that makes it fully controllable as it is in the case α ≥ 2. This
is due to a “lack of uniform convexity at ∞”. To overcome this difficulty we pass to the
dual variational problem with “good” convexity properties and establish corresponding
(computable) estimates for the quantity

‖p∗ − y∗‖α∗,Ω ,

where y∗ is any function in Y ∗ with α∗-summable divergence.

Our paper is organized as follows: in Section 2 we give a precise formulation and a
proof of our results in the case α ≥ 2, the case 1 < α < 2 is discussed in Section 3.
In Section 4 and in Section 5 we show that with some minor changes the case of mixed
Dirichlet-Neumann boundary data and the case of pure Neumann boundary data can be
handled as well. In the last section we collect some auxiliary results which are needed for
the proofs of our main Theorems 2.1 and 3.1.

2 Estimates for the deviation in the case α ≥ 2

In this section, we are going to establish

THEOREM 2.1 Fix α ≥ 2. With the Notation from above we have for any v ∈ u0 +V0,
for any y∗ ∈ Y ∗ with α∗-summable divergence and for any β > 0

‖∇(v − u)‖α
α,Ω ≤ α2α−1

[

M1[∇v, y∗, β] + M2[y
∗, β]

]

, (2.1)
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where

M1[∇v, y∗, β] = Dα[∇v, y∗] +
βα

α
‖|y∗|α

∗−2y∗ −∇v‖α
α,Ω ,

M2[y
∗, β] = Cα∗

α (Ω)
[ 1

α∗βα∗
+ 22−α∗

(3 − α∗)
]

‖f + div y∗‖α∗

α∗,Ω .

The functional Dα: Y × Y ∗ → R
+
0 ,

Dα[y, y∗] :=

∫

Ω

[ 1

α
|y|α +

1

α∗
|y∗|α

∗

− y · y∗

]

dx ,

is the compound functional and Cα(Ω) is the constant in Poincaré’s inequality.

REMARK 2.1 i) It is not difficult to observe that the right-hand side of (2.1) van-
ishes if and only if we have almost everywhere in Ω

|y∗|α
∗−2y∗ = ∇v , (2.2)

and

div y∗ + f = 0 . (2.3)

ii) Since the solution of the problem (P) is unique, the relations (2.2) and (2.3) mean
that in such a case we have v = u and y∗ = p∗.

iii) The compound functional can be thought of being a certain measure of the error in
the duality relations (1.3) and (1.4) since this nonnegative functional vanishes if
and only if

y = |y∗|α
∗−2y∗ and y∗ = |y|α−2y .

The second term in M1 of course measures the same quantity. M2[y
∗, β] is a penalty

for the error in the equilibrium equation.

iv) In fact, instead of estimating the Lα-norm of ∇(v − u) in (2.1), the sharp estimate
is given in terms of the compound functional (compare formula (2.7) given below)

Dα[∇v, p∗] = Jα[v] − Jα[u] = Jα[v] − Iα∗ [p∗]

=

∫

Ω

[ 1

α
|∇v|α +

1

α∗
|p∗|α

∗

−∇v · p∗
]

dx .

If w ∈ V and y∗
w = |∇w|α−2∇w, then just in the case α = 2 the (semi-) metric

d2[v, w] := D2[∇v, y∗
w]

coincides with the energy norm because

D2[∇v, y∗
w] =

1

2
‖∇(v − w)‖2

2,Ω .

In the nonlinear case α 6= 2 even the symmetry is lost and distances have to be
measured w.r.t. the minimizer u:

dα[v] := Dα[∇v, p∗] .
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Note that dα[v] = 0 if and only if we have a.e. on Ω

∇v = |p∗|α
∗−2p∗ = ∇u .

Formally the whole space V can be equipped with the (semi-) metric (“with origin
u”)

dα[v, w] := dα[v] + dα[w] .

In particular cases dα[v] can explicitely estimated w.r.t. some kind of “weighted
norms”, for instance if α = 3, then we have

d3[v] ≥
1

3

∫

Ω

(|∇v| + 2|∇u|)|∇(v − u)|2 dx .

v) For the special case α = α∗ = 2 we have

M1[∇v, y∗, β] =
1

2
(1 + β2)‖y∗ −∇v‖2

2,Ω ,

M2[y
∗, β] = C2(Ω)

[

1 +
1

2β2
‖f + div y∗‖2

2,Ω

]

,

where C(Ω) is the constant in Friedrich’s inequality.

vi) It is easy to check that for a pair of sequences vk → u in V and y∗
k → p∗ in Y ∗ the

right-hand side of (2.1) tends to zero.

Proof of Theorem 2.1. In the case α ≥ 2 we have uniform convexity by the following
inequality (see [So]), extensions of such inequalities to spaces of tensor-valued functions
can be found in [MoMy]:

∫

Ω

[
∣

∣

∣

y1 + y2

2

∣

∣

∣

α

+
∣

∣

∣

y1 − y2

2

∣

∣

∣

α]

dx ≤
1

2
‖y1‖

α
α,Ω +

1

2
‖y2‖

α
α,Ω for all y1, y2 ∈ Y . (2.4)

In fact, we have from (2.4) for any v ∈ u0 + V0

Jα[v] + Jα[u] − 2Jα

[u + v

2

]

=
1

α

∫

Ω

[

|∇v|α + |∇u|α − 2
[ |∇u + ∇v|

2

]α]

dx

≥
2

α

∫

Ω

[1

2
|∇v|α +

1

2
|∇u|α −

[ |∇u + ∇v|

2

]α]

dx

≥
2

α

∫

Ω

∣

∣

∣

∇(v − u)

2

∣

∣

∣

α

dx

=
1

α2α−1
‖∇(v − u)‖α

α,Ω .

On the other hand, from the minimality of u, i.e. from Jα[u] ≤ Jα[(u + v)/2], we obtain

Jα[v] + Jα[u] − 2Jα

[u + v

2

]

≤ Jα[v] − Jα[u] .

Therefore we arrive at the estimate

‖∇(v − u)‖α
α,Ω ≤ α2α−1

[

Jα[v] − Jα[u]
]

. (2.5)
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Using the inf-sup relation (1.2), the inequality (2.5) turns into

‖∇(v − u)‖α
α,Ω ≤ α2α−1

[

Jα[v] − Iα∗ [p∗]
]

≤ α2α−1

[

Jα[v] − Iα∗ [q∗]
]

(2.6)

being valid for any v ∈ u0 + V0 and for any q∗ ∈ Q∗
f . Moreover we have

Jα[v] − Iα∗ [q∗] =

∫

Ω

[ 1

α
|∇v|α +

1

α∗
|q∗|α

∗

−∇u0 · q
∗ − f(v − u0)

]

dx

and since q∗ ∈ Q∗
f and (v − u0) ∈ V0 we also have

∫

Ω

f(v − u0) dx =

∫

Ω

q∗ · ∇(v − u0) dx .

As a result, it is found that

Jα[v] − Iα∗[q∗] =

∫

Ω

[ 1

α
|∇v|α +

1

α∗
|q∗|α

∗

−∇v · q∗
]

dx . (2.7)

With the compound functional, (2.6) combined with (2.7) gives

‖∇(v − u)‖α
α,Ω ≤ α2α−1Dα[∇v, q∗] for any v ∈ u0 + V0 , q∗ ∈ Q∗

f . (2.8)

REMARK 2.2 i) The estimate (2.8) shows that for any v ∈ u0 +V0 the upper bound
of the deviation is defined by the value

α2α−1 inf
q∗∈Q∗

f

Dα[∇v, q∗] .

ii) In particular, if v = u, then we set q∗ = p∗ and observe that both sides of (2.8) are
equal to zero.

iii) It is also true that the deviation majorant given in (2.8) has the property (1.6) (see
also Remark 2.1, iv)). Indeed, if {vk} is a sequence converging to u in V , then

inf
q∗∈Q∗

f

Dα[∇vk, q
∗] ≤ Dα[∇vk, p

∗] → 0 .

iv) Practically the approximation can be computed by selecting a finite dimensional space
Vh ⊂ {u0 + V0} and finding the quantity

min
vh∈Vh

Dα[∇vh, q
∗] .

v) Approximations of the dual problem are often obtained by means of approximations
of the problem (P), which is an unconstrained minimization problem and, therefore,
much simpler from the technical point of view. Then one may try to find a suitable
candidate q∗ in (2.8) with the help of the duality relation q∗ = |∇v|α−2∇v. However,
in general q∗ then does not satisfy the condition div q∗ + f = 0: it is an essential
drawback of the estimate (2.8) that it requires the function q∗ to be in the set Q∗

f

which is defined by a differential relation. In practice, finding such functions leads
to serious difficulties.
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In order to avoid the drawback mentioned above, we take an arbitrary function y∗ ∈ Y ∗

which will be a substitute for q∗ ∈ Q∗
f . We estimate

Jα[v] − Iα∗[q∗] = Dα[∇v, y∗] +

∫

Ω

[ 1

α∗
|q∗|α

∗

−
1

α∗
|y∗|α

∗

+ ∇v · (y∗ − q∗)
]

dx .

By the convexity of | · |α
∗

we have

1

α∗
|q∗|α

∗

−
1

α∗
|y∗|α

∗

≤ |q∗|α
∗−2q∗ · (q∗ − y∗) ,

hence we have established

Jα[v] − Iα∗ [q∗] ≤ Dα[∇v, y∗] +

∫

Ω

(

|y∗|α
∗−2y∗ −∇v

)

· (q∗ − y∗) dx

+

∫

Ω

(

|q∗|α
∗−2q∗ − |y∗|α

∗−2y∗
)

· (q∗ − y∗) dx . (2.9)

In order to find an upper bound for the right-hand side of (2.9) we claim that

∫

Ω

[ q∗

|q∗|2−α∗
−

y∗

|y∗|2−α∗

]

· (q∗ − y∗) dx ≤ 22−α∗

(3 − α∗)

∫

Ω

|q∗ − y∗|α
∗

dx . (2.10)

In fact (2.10) is an immediate consequence of Corollary 6.1. Here we note that the claim
is trivial if either q∗ = 0 or y∗ = 0. With (2.9) and (2.10) we arrive at the estimate

Jα[v] − Iα∗[q∗] ≤ Dα[∇v, y∗] + ‖|y∗|α
∗−2y∗ −∇v‖α,Ω‖q

∗ − y∗‖α∗,Ω

+22−α∗

(3 − α∗)‖q∗ − y∗‖α∗

α∗,Ω . (2.11)

Keeping (2.11) in mind, we now need to select a proper function q∗ in order to estimate
the norm ‖q∗ − y∗‖α∗

α∗,Ω. To do so, let us assume that div y∗ is of class Lα∗

(Ω). Then we
choose q∗ ∈ Q∗

f as the projection of y∗ on Q∗
f , i.e.

‖q∗ − y∗‖α∗,Ω = inf
q̃∗∈Q∗

f

‖q̃∗ − y∗‖α∗,Ω .

Here we note that

inf
q̃∗∈Q∗

f

1

α∗
‖q̃∗ − y∗‖α∗

α∗,Ω = − sup
η∗∈Q∗

f̃

[

−
1

α∗
‖η∗‖α∗

α∗,Ω

]

, (2.12)

where

Q∗

f̃
:=

{

η∗ ∈ Y ∗ :

∫

Ω

η∗ · ∇w dx =

∫

Ω

f̃w dx for all w ∈ V0

}

and where f̃ := f + div y∗. The problem on the right-hand side of (2.12) is similar to the
problem (P∗) and, as a consequence, the duality relation

sup
η∗∈Q∗

f̃

[

−
1

α∗
‖η∗‖α∗

α∗,Ω

]

= inf
w∈V0

∫

Ω

[

1

α
|∇w|α − f̃w

]

dx (2.13)
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holds (the only formal difference to (1.2) is that on the right-hand side we minimize
w.r.t. V0, i.e. no terms involving boundary data appear on the left-hand side). We have

∫

Ω

[ 1

α
|∇w|α − f̃w

]

dx ≥
1

α
‖∇w‖α

α,Ω − ‖f̃‖α∗,Ω‖w‖α,Ω

and on V0 by Poincaré’s inequality

‖w‖α,Ω ≤ Cα(Ω)‖∇w‖α,Ω .

Summing up it is shown that

∫

Ω

[ 1

α
|∇w|α − f̃w

]

dx ≥ inf
t≥0

[ 1

α
tα − ‖f̃‖α∗,ΩCα(Ω)t

]

,

whose right-hand side attains the lower bound at

t0 =
[

‖f̃‖α,ΩCα(Ω)
]

1

α−1

,

and inserting this we arrive at

∫

Ω

[ 1

α
|∇w|α − f̃w

]

dx ≥ −
1

α∗

[

‖f̃‖α∗,ΩCα(Ω)
]α∗

. (2.14)

By (2.12), (2.13) and (2.14) we conclude that

inf
q̃∗∈Q∗

f

1

α∗
‖q̃∗ − y∗‖α∗

α∗,Ω ≤
1

α∗
Cα∗

α (Ω)‖f + div y∗‖α∗

α∗,Ω

inf
q̃∗∈Q∗

f

1

α∗
‖q̃∗ − y∗‖α∗

α∗,Ω ≤
1

α∗
Cα∗

α (Ω)‖f + div y∗‖α∗

α∗,Ω

and, therefore,
‖q∗ − y∗‖α∗,Ω ≤ Cα(Ω)‖f + div y∗‖α∗,Ω . (2.15)

Combining (2.6), (2.11) and (2.15) we obtain the required estimate

‖∇(v − u)‖α
α,Ω ≤ α2α−1

[

Dα[∇v, y∗] + Cα(Ω)‖|y∗|α
∗−2y∗ −∇v‖α,Ω‖f + div y∗‖α∗,Ω

+22−α∗

(3 − α∗)Cα∗

α (Ω)‖f + div y∗‖α∗

α∗,Ω

]

, (2.16)

where y∗ is an arbitrary function in Y ∗ with α∗-summable divergence. Finally (2.16)
together with Young’s inequality (a, b ∈ R

n, β > 0)

ab ≤
βα

α
|a|α +

1

α∗βα∗
|b|α

∗

gives the theorem. �

8



3 Estimates for the deviation in the case α < 2

The counterpart of Theorem 2.1 in the case α < 2 reads as

THEOREM 3.1 Fix α < 2, i.e. we have α∗ > 2. If α∗ ∈ (2, 3) or if α∗ ≥ 4, then let
κ = (α∗ − 2)/2, otherwise let κ = α∗ − 2. With the notation from above we have for any
v ∈ u0 + V0, for any y∗ ∈ Y ∗ with α∗-summable divergence and for any β > 0

‖p∗ − y∗‖α∗

α∗,Ω ≤ M1[∇v, y∗, β] + M2[y
∗, β] , (3.1)

where

M1[∇v, y∗, β] = α∗4α∗−1

[

Dα[∇v, y∗] +
β

2
‖|y∗|α

∗−2y∗ −∇v‖2
α,Ω

]

,

M2[y
∗, β] = α∗4α∗−1

[ 1

2β
+ κ(‖y∗‖α,Ω + e)α∗−2 + (κ + 1)‖y∗‖α∗−2

α∗,Ω + κ‖y∗‖α∗−3

α∗,Ω e
]

e2

+2α∗−1eα∗

.

Here the compound functional Dα is given as above and e is chosen such that for the
orthogonal projection q∗ of y∗ on the set Q∗

f we have (compare (2.15)

‖q∗ − y∗‖α∗,Ω ≤ Cα(Ω)‖f + div y∗‖α∗,Ω =: e .

REMARK 3.1 i) We recall Remark 2.1

ii) Since y∗ is a given function, the value e is directly computable and can be used in
the upper bound of ‖p∗ − y∗‖.

Proof of Theorem 3.1. Passing to the dual problem (P∗) we consider the uniformly convex
functional

[

− Iα∗

]

[y∗] =

∫

Ω

[

−∇u0y
∗ +

1

α∗
|y∗|α

∗

+ fu0

]

dx .

Similar to the last section we have for all q∗ ∈ Q∗
f (p∗ ∈ Q∗

f denoting the dual solution)

[

− Iα∗

]

[q∗] +
[

− Iα∗

]

[p∗] − 2
[

− Iα∗

]

[p∗ + q∗

2

]

=
1

α∗

∫

Ω

[

|q∗|α
∗

+ |p∗|α
∗

− 2
[ |q∗ + p∗|

2

]α∗]

dx

=
1

α∗2α∗−1
‖q∗ − p∗‖α∗

α∗,Ω ,

where we made use of (2.4) with α replaced by α∗. Instead of (2.5) we then get

‖q∗ − p∗‖α∗

α∗,Ω ≤ α∗2α∗−1

[

Iα∗[p∗] − Iα∗ [q∗]
]

for all q∗ ∈ Q∗
f . (3.2)

In (3.2) we estimate

Iα∗[p∗] = Jα[u] ≤ Jα[v] for all v ∈ u0 + V0

and as above one arrives at

‖p∗ − q∗‖α∗

α∗,Ω ≤ α∗2α∗−1Dα[∇v, q∗] for all v ∈ u0 + V0 . (3.3)

9



REMARK 3.2 i) With (3.3) the desirable upper bound for the deviation from p∗ in
the dual energy norm is found.

ii) We recall Remark 2.2.

Now, in order to eliminate the constraint q∗ ∈ Q∗
f , let y∗ be a function in Y ∗. Then

‖p∗ − y∗‖α∗

α∗,Ω ≤ 2α∗−1
[

‖p∗ − q∗‖α∗

α∗,Ω + ‖y∗ − q∗‖α∗

α∗,Ω

]

yields using (3.3)

‖p∗ − y∗‖α∗

α∗,Ω ≤ α∗4α∗−1Dα[∇v, q∗] + 2α∗−1‖y∗ − q∗‖α∗

α∗,Ω . (3.4)

Exactly as before (recall (2.9)) we have

Dα[∇v, q∗] ≤ Dα[∇v, y∗] +

∫

Ω

(

|y∗|α
∗−2y∗ −∇v

)

· (q∗ − y∗) dx

+

∫

Ω

(

|q∗|α
∗−2q∗ − |y∗|α

∗−2y∗
)

· (q∗ − y∗) dx (3.5)

and, as a substitude for (2.10) we claim that

∫

Ω

[

|q∗|α
∗−2q∗ − |y∗|α

∗−2y∗
]

(q∗ − y∗) dx

≤

[

κ
[

‖y∗‖α∗,Ω + ‖q∗ − y∗‖α∗,Ω

]α∗−2
+ (κ + 1)‖y∗‖α∗−2

α∗,Ω

+κ‖y∗‖α∗−3

α∗,Ω ‖q∗ − y∗‖α∗,Ω

]

‖q∗ − y∗‖2
α∗,Ω . (3.6)

In order to verify (3.6), Corollary 6.2 is used with the result (again the claim is trivial if
either q∗ = 0 or y∗ = 0)

∫

Ω

[

|q∗|α
∗−2q∗ − |y∗|α

∗−2y∗
]

(q∗ − y∗) dx ≤ I1 + I2 + I3 ,

where

I1 = κ

∫

Ω

|q∗|α
∗−2|q∗ − y∗|2 dx ,

I2 = κ

∫

Ω

|q∗||y∗|α
∗−3|q∗ − y∗|2 dx ,

I3 =

∫

Ω

|y∗|α
∗−2|q∗ − y∗|2 dx .

Hölder’s inequality implies

I1 ≤ κ‖q∗‖α∗−2

α∗,Ω ‖q∗ − y∗‖2
α∗,Ω ,

I3 ≤ ‖y∗‖α∗−2

α∗,Ω ‖q∗ − y∗‖2
α∗,Ω . (3.7)
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Here, discussing I1 we additionally use the fact, that α∗ ≥ 2, i.e. | · |α
∗−2 is an increasing

function, thus we have

‖q∗‖α∗−2

α∗,Ω ≤
[

‖y∗‖α∗,Ω + ‖q∗ − y∗‖α∗,Ω

]α∗−2

and, as a consequence,

I1 ≤ κ
[

‖y∗‖α∗,Ω + ‖q∗ − y∗‖α∗,Ω

]α∗−2

‖q∗ − y∗‖2
α∗,Ω . (3.8)

Finally, I2 is estimated with the help of

∫

Ω

|q∗||y∗|α
∗−3|q∗ − y∗|2 dx

≤

∫

Ω

|y∗|α
∗−3|q∗ − y∗|3 dx +

∫

Ω

|y∗|α
∗−2|q∗ − y∗|2 dx

≤

[

∫

Ω

|y∗|α
∗

dx

]
α∗

−3

α∗

[

∫

Ω

|q∗ − y∗|α
∗

dx

]
3

α∗

+ ‖y∗‖α∗−2

α∗,Ω ‖y∗ − q∗‖2
α∗,Ω

= ‖y∗‖α∗−3

α∗,Ω ‖y∗ − q∗‖3
α∗,Ω + ‖y∗‖α∗−2

α∗,Ω ‖y∗ − q∗‖2
α∗,Ω (3.9)

and the claim (3.6) follows from (3.7), (3.8) and (3.9).

Next we choose q∗ according to the statement of Theorem 3.1 such that (3.5) and (3.6)
imply

Dα[∇v, q∗] ≤ Dα[∇v, y∗] + ‖|y∗|α
∗−2y∗ −∇v‖α,Ωe + κ(‖y∗‖α∗,Ω + e)α∗−2e2

+(κ + 1)‖y∗‖α∗−2

α∗,Ω e2 + κ‖y∗‖α∗−3

α∗,Ω e3 .

This, together with (3.4) and Young’s inequality completes the proof of Theorem 3.1.
�

4 Mixed Dirichlet-Neumann boundary conditions

In this section we like to point out, that the above results remain (up to minor changes)
valid, if we consider boundary conditions of mixed Dirichlet and Neumann type. We just
consider the case α ≥ 2, the case α < 2 is left to the reader.

Suppose now that ∂Ω = Γ1 ∪ Γ2 where Γ1 and Γ2 are nonintersecting measurable sets
and where Hn−1(Γ1) > 0. Suppose further that F ∈ Lα∗

(Γ2) and that

V0 :=
{

w ∈ W 1
α(Ω) : w = 0 on Γ1

}

.

Then the variational problem under consideration is given by

Jα[w] :=

∫

Ω

[ 1

α
|∇w|α − fw

]

dx −

∫

Γ2

Fw dHn−1 → min (P)
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among all comparison functions w of class u0 + V0, i.e. in the case of a smooth solution u
we now have

div
(

|∇u|α−2∇u
)

+ f = 0 in Ω ,
u = u0 on Γ1 ,

|∇u|α−2∇u · ν = F on Γ2 ,

where ν denotes the outward unit normal to Γ2. The weak formulation of the Euler
equation reads as

∫

Ω

(

|∇u|α−2∇u · ∇w − fw
)

dx −

∫

Γ2

Fw dHn−1 = 0 for any w ∈ V0 .

The dual maximizing problem

Iα∗ [y∗] → max in Y ∗ (P∗)

is defined through the modified functional

Iα∗[y∗] :=







∫

Ω

[

∇u0 · y
∗ −

1

α∗
|y∗|α

∗

− fu0

]

dx −

∫

Γ2

Fu0 dHn−1 if y∗ ∈ Q∗
f,F ,

−∞ if y∗ /∈ Q∗
f,F ,

where

Q∗
f,F :=

{

y∗ ∈ Y ∗ :

∫

Ω

y∗ · ∇w dx =

∫

Ω

fw dx +

∫

Γ2

Fw dHn−1 for all w ∈ V0

}

.

For any v ∈ u0 + V0 and for any q∗ ∈ Q∗
f,F one obtains exactly as above

Jα[v] − Iα∗[q∗] =

∫

Ω

[ 1

α
|∇v|α +

1

α∗
|q∗|α

∗

−∇u0 · q
∗ − f(v − u0)

]

dx

−

∫

Γ2

F (v − u0) dHn−1

and the definition of Q∗
f,F gives

∫

Γ2

F (v − u0) dHn−1 +

∫

Ω

f(v − u0) dx =

∫

Ω

q∗ · ∇(v − u0) dx ,

thus we have reproduced (2.7) for any v ∈ u0 + V0 and for any q∗ ∈ Q∗
f,F .

In order to consider the orthogonal projection q∗ of y∗ ∈ Y ∗ on Q∗
f,F , we assume in the

following that y∗ · ν is of class Lα∗

(Γ2). Then the counterpart of (2.12) is

inf
q̃∗∈Q∗

f,F

1

α∗
‖q̃∗ − y∗‖α∗

α∗,Ω = − sup
η∗∈Q∗

f̃,F̃

[

−
1

α∗
‖η∗‖α∗

α∗,Ω

]

,

where

Q∗

f̃ ,F̃
:=

{

η∗ ∈ Y ∗ :

∫

Ω

η∗ · ∇w dx =

∫

Ω

f̃w dx +

∫

Γ2

F̃w dHn−1 for all w ∈ V0

}

,
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where f̃ := f + div y∗ and where F̃ = F − y∗ · ν. Using

‖w‖α,Ω + ‖w‖α,Γ2
≤ Cα(Ω, Γ2)‖w‖α,Ω

(for the generalized Poincaré type inequality we refer to [Mo], Theorem 3.6.4) we obtain

inf
q̃∗∈Q∗

f,F

1

α∗
‖q̃∗ − y∗‖α∗

α∗,Ω ≤
1

α∗
Cα∗

α (Ω)
(

‖f + div y∗‖α∗

α∗,Ω + ‖y∗ · ν − F‖α∗

α∗,Γ2

)

and Theorem 2.1 holds in the case of mixed Dirichlet-Neumann boundary conditions with
M2 replaced by

M2[y
∗, β] = Cα∗

α (Ω, Γ2)
[ 1

α∗βα∗
+ 22−α∗

(3 − α∗)
]

(

‖f + div y∗‖α∗

α∗,Ω + ‖y∗ · ν − F‖α∗

α∗,Γ2

)

and where we additionally assume that y∗ · ν ∈ Lα∗

(Γ2).

5 Pure Neumann boundary conditions

The case of pure Neumann boundary conditions is easily discussed with the arguments of
the last section. We have Γ1 = ∅ and Γ2 = ∂Ω. Now V0 is the set of functions w ∈ W 1

α(Ω)
such that

∫

−

Ω

w dx = 0 .

With these slight changes, the formulation of the problem formally is the same as in the
last section, we just mention that here

Iα∗[y∗] :=







∫

Ω

−
1

α∗
|y∗|α

∗

dx if y∗ ∈ Q∗
f,F ,

−∞ if y∗ /∈ Q∗
f,F ,

and that Q∗
f,F is defined as before (w.r.t. the new space V0). The following arguments of

the last section remain unchanged if we formally let u0 = 0 and if we refer to the Poincaré
type inequality as given in Theorem 3.6.5 of [Mo].

6 Auxiliary results

Let us finally prove the auxiliary estimates used throughout this paper. We start with

PROPOSITION 6.1 i) For any fixed s ∈ (0, 1), for any fixed s ≥ 2 and for any ξ1,
ξ2 > 0 we have

∣

∣ξs
2 − ξs

1

∣

∣ ≤
s

2

[

ξs−1
1 + ξs−1

2

]

|ξ2 − ξ1| .

ii) For any fixed s ∈ [1, 2) and for any ξ1, ξ2 > 0 we have

∣

∣ξs
2 − ξs

1

∣

∣ ≤ s
[

ξs−1
1 + ξs−1

2

]

|ξ2 − ξ1| .
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Proof. Ad i). We assume w.l.o.g. that ξ1 < ξ2, we let t := s − 1 and observe that for
the range of s in this case the function ξt: R+ → R+ is a convex function, i.e. the secant
through the points (ξ1, ξ

t
1), (ξ2, ξ

t
2) lies above the graph of ξt, ξ1 ≤ ξ ≤ ξ2. This gives

∫ ξ2

ξ1

ξt dt ≤

∫ ξ2

ξ1

[

ξt
1 +

ξt
2 − ξt

1

ξ2 − ξ1

(ξ − ξ1)
]

dt

=
ξt
1 + ξt

2

2
(ξ2 − ξ1) ,

and, as a consequence,

1

t + 1
(ξt+1

2 − ξt+1
1 ) ≤

ξt
1 + ξt

2

2
(ξ2 − ξ1) ,

which is the first claim.

Ad ii). With the notation from above we now note the ξt is a concave function. This
means that the graph of ξt lies below the tangent through the point (ξ1 + ξ2)/2, ((ξ1 +
ξ2)/2)t) and one obtains for ξ1 ≤ ξ ≤ ξ2

ξt ≤
[ξ1 + ξ2

2

]t

+ t
[ξ1 + ξ2

2

]t−1[

ξ −
ξ1 + ξ2

2

]

.

Integration yields in this case

1

t + 1
(ξt+1

2 − ξt+1
1 ) ≤

[ξ1 + ξ2

2

]t

(ξ2 − ξ2) ≤ (ξt
1 + ξt

2)(ξ2 − ξ1)

and the second claim is established as well. �

The first Corollary of Proposition 6.1 is needed in the superquadratic case:

COROLLARY 6.1 Fix θ ∈ [0, 1). Then for any a, b ∈ R
n we have

T (a, b) :=
∣

∣

∣

a

|a|θ
−

b

|b|θ

∣

∣

∣
|a − b| ≤ 2θ(θ + 1)|b − a|2−θ .

Proof. Consider a, b ∈ R
n, |a|, |b| 6= 0 and suppose w.l.o.g. that |a| ≤ |b|. Then we have

T (a, b) =
∣

∣

∣

a(|b|θ − |a|θ) + |a|θ(a − b)

|a|θ|b|θ

∣

∣

∣
|b − a|

and since by Proposition 6.1, i),

∣

∣|b|θ − |a|θ
∣

∣ ≤
θ

2
(|a|θ−1 + |b|θ−1)|b − a|

we arrive at the estimate

T (a, b) ≤ |a|1−θ θ

2
(|a|θ−1 + |b|θ−1)

|b − a|2

|b|θ
+

|b − a|2

|b|θ

≤

[

θ

2

[

1 +
∣

∣

∣

b

a

∣

∣

∣

θ−1]

+ 1

]

|b − a|2

|b|θ
.
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Thus we have (recall |a| ≤ |b| and θ − 1 ∈ [−1, 0))

T (a, b) ≤ (θ + 1)
|b − a|2

|b|θ
≤ (θ + 1)

|b − a|θ

|b|θ
|b − a|2−θ

and on account of

|b − a|θ

|b|θ
≤

(|b| + |a|)θ

|b|θ
≤

[

1 +
|a|

|b|

]θ

≤ 2θ

we have proved our claim. �

In order to discuss the subquadratic situation, we need

COROLLARY 6.2 Fix s > 0 and let κ(s) = s/2 if s ∈ (0, 1) or if s ≥ 2. Otherwise let
κ(s) = s. Then for any a, b ∈ R

n we have

T (a, b) :=
∣

∣a|a|s − b|b|s
∣

∣|a − b| ≤ κ(s)|a||a − b|2
[

|a|s−1 + |b|s−1
]

+ |b|s|a − b|2 .

Proof. We just note that

∣

∣a|a|s − b|b|s
∣

∣|a − b| =
∣

∣a(|a|s − |b|s) + (a − b)|b|s
∣

∣|a − b|

and apply Proposition 6.1. �
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