
Effective Searching of RDF
Knowledge Bases

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Shady Elbassuoni

Max-Planck-Institut für Informatik

Saarbrücken

21.02.2012

ii

Dekan der
Naturwissenschaftlich-Technischen
Fakultät I Prof. Dr.-Ing. Holger Herrmanns

Vorsitzender der Prüfungskommission Prof. Dr. Jens Dittrich
Berichterstatter Prof. Dr.-Ing. Gerhard Weikum
Berichterstatter Prof. Dr. Maya Ramanath
Berichterstatter Prof. Dr.-Ing. Wolfgang Nejdl

Beisitzer Dr.-Ing. Ralf Schenkel
Tag des Promotionskollquiums 06.02.2012

iv

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefer-
tigt habe.

Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte
sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlich-
er Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, den 21.02.2012

(Shady Elbassuoni)

vi

To my mum, Alia Hanem Abdel-Ghaffar

viii

Acknowledgment
I would like to express my deepest gratitude to my advisor, Prof. Dr.-Ing. Ger-
hard Weikum. I moved to Saarbrücken six years ago without much prior knowl-
edge about information retrieval. After attending an IR class taught by Gerhard,
I instantly fell in love with this amazing field of science. Since then, Gerhard has
been always a scientific reference I relied on to tackle many of the problems I
faced throughout the course of my studies. I would like to warmly thank him
for being extremely patient with me, supportive, and more importantly for his
immense scientific contributions in most of the work I have done throughout
the thesis, which would not have been at all possible without his excellent and
friendly guidance. I would like to also thank Prof. Dr.-Ing. Wolfgang Nejdl for
reviewing the thesis.

I am indebted to my co-advisor Dr. Maya Ramanath. Maya has initiated many
of the ideas that we carried out in this thesis and was involved in most of the
details of the work. I particularly thank her for always being ambitious and de-
termined, especially when it comes to submission deadlines. I would like to also
thank my colleagues whom I worked with on many of the publications that I
published throughout the course of my thesis. These include Julia Luxenburger,
with whom I first learnt how to do proper research. Even though the output
of our work together was not included in this thesis, I am still very proud of it
and I believe it gave me a first-hand experience on how to carry out scientific
research. I am also thankful to Gjergji Kasneci, Nicoleta Preda, Ralf Schenkel,
Steffen Metzger, and Katja Hose, who also was very generous to help me trans-
late the abstract and summary of this thesis into German. I would like to also
thank both Roi Blanco and Hugo Zaragoza for their guidance and support dur-
ing my internship at Yahoo! Research, Barcelona.

I am very thankful to the International Max-Planck Research School and Mi-
crosoft Research Lab, Cambridge for financially supporting my studies. Finally,
I truly thank all my friends in MPI and Saarbrücken (particularly my office mate
Dimitar), with whom I had stimulating discussions and with whom I made great
memories that would last forever. I also thank my BAConfidential friends (es-
pecially Nazlu) who were always there for me through the good times and the
bad times. Last but not least, I would like to thank my family and in particular
my dad and my brother Khaled who supported me both morally and financially.
Hanging in there these past six years could not have been possible without them.

x

Abstract

RDF data has become a vital source of information for many applications. In
this thesis, we present a set of models and algorithms to effectively search large
RDF knowledge bases. These knowledge bases contain a large set of subject-
predicate-object (SPO) triples where subjects and objects are entities and predi-
cates express relationships between them. Searching such knowledge bases can
be done using the W3C-endorsed SPARQL language or by similarly designed
triple-pattern search. However, the exact-match semantics of triple-pattern search
might fall short of satisfying the users needs by returning too many or too few
results. Thus, IR-style searching and ranking techniques are crucial.

This thesis develops models and algorithms to enhance triple-pattern search.
We propose a keyword extension to triple-pattern search that allows users to
augment triple-pattern queries with keyword conditions. To improve the recall
of triple-pattern search, we present a framework to automatically reformulate
triple-pattern queries in such a way that the intention of the original user query
is preserved while returning a sufficient number of ranked results. For efficient
query processing, we present a set of top-k query processing algorithms and for
ease of use, we develop methods for plain keyword search over RDF knowledge
bases. Finally, we propose a set of techniques to diversify query results and we
present several methods to allow users to interactively explore RDF knowledge
bases to find additional contextual information about their query results.

xi

Abstract

xii

Kurzfassung

Eine Vielzahl aktueller Anwendungen basiert auf RDF-Daten als essentieller In-
formationsquelle. Daher sind Modelle und Algorithmen zur effizienten Suche
in RDF-Wissensdatenbanken ein entscheidender Aspekt, der über Erfolg und
Nichterfolg entscheidet. Derartige Datenbanken bestehen aus einer großen Menge
von Subjekt-Prädikat-Objekt-Tripeln (SPO-Tripeln), wobei Subjekt und Objekt
Entitäten darstellen und Prädikate Beziehungen zwischen diesen Entitäten beschreiben.
Suchanfragen werden in der Regel durch Verwendung des W3C Anfragestandards
SPARQL oder ähnlich strukturierte Anfragesprachen formuliert und basieren
auf Tripel-Patterns. Werden nur exakte Treffer in die Ergebnismenge übernommen,
wird das Informationsbedürfnis des Nutzers häufig nicht befriedigt, wenn zu
wenige oder zu viele Ergebnisse ausgegeben werden. Techniken, die ihren Ur-
sprung im Information-Retrieval haben, sowie ein geeignetes Ranking können
diesem Problem entgegenwirken.

Diese Dissertation stellt daher Modelle und Algorithmen zur Verbesserung
der Suche basierend auf Tripel-Patterns vor. Die im Rahmen der Dissertation er-
arbeitete Strategie zur Lösung der oben geschilderten Problematik basiert auf
der Idee, die Tripel-Patterns einer Anfrage durch Schlüsselwörter zu erweit-
ern. Um den Recall dieser Suchvariante zu verbessern, wird ein Framework
vorgestellt, welches die vom Nutzer übergebenen Anfragen automatisch in einer
Weise umformuliert, dass die Intention der ursprünglichen Nutzeranfrage er-
halten bleibt und eine ausreichende Anzahl an sortierten Ergebnissen ausgegeben
wird. Um derartige Anfragen effizient bearbeiten zu können, werden Top-k Al-
gorithmen und Methoden zur Schlüsselwortsuche auf RDF-Datenbanken vorgestellt.
Schließlich werden einige Methoden zur Diversifikation der Anfrageergebnisse
präsentiert sowie einige Ansätze vorgestellt, die es Benutzern erlauben, RDF-
Datenbanken interaktiv zu explorieren und so zusätzliche Kontextinformatio-
nen zu den Anfrageergebnissen zu erhalten.

xiii

Kurzfassung

xiv

Summary

The Semantic-Web data model RDF (Resource Description Framework) has gained
popularity in many domains as a representation format for heterogeneous struc-
tured data on the Web. In addition, the growing popularity of knowledge-
sharing communities such as Wikipedia and the advances in automatic information-
extraction have contributed to the presence of large general-purpose RDF knowl-
edge bases.

RDF knowledge bases consist of subject-property-object (SPO) triples, where
subjects and objects are generally entities and predicates represent relationships
between entities. RDF knowledge bases are rich information sources that can
be leveraged to quickly and precisely find answers to advanced informational
queries. This is typically done by means of expressive triple-pattern queries,
such as the queries written in the W3C-endorsed SPARQL language. However,
in order to truly utilize such new information-retrieval framework and to deploy
it on a Web scale, many challenging research problems must be addressed. This
thesis presents solutions to key aspects of these problems as follows.

• Data Incompleteness: While large RDF knowledge bases contain a vast
amount of information in the form of SPO triples, the majority of informa-
tion on the Web is available in the form of free text. Thus, combining RDF
with text can increase the scope of such knowledge bases making them
very rich sources of information. In this thesis, we show how to augment
traditional RDF knowledge bases with text to extend their scope of cover-
age, and we propose an extension to triple-pattern search that allows users
to augment triple-pattern queries with keywords to allow them to express
a wider range of information needs.

• Result Ranking: Large RDF knowledge bases may contain noisy or in-
correct information and thus queries may produce many results of highly
varying quality. It is thus highly desirable to present users with a ranked

xv

Summary

list of results rather than just a set of unranked matches. Moreover, when
keywords are expressed in a triple-pattern query, result ranking is crucial
to ensure that query results that are relevant to the keyword conditions are
ranked on top. To address this, we develop a ranking model based on sta-
tistical language models for ranking the results to triple-pattern queries.
Our ranking model is general enough and handles both cases of triple-
pattern queries only and keyword-augmented triple-pattern queries.

• Approximate Matching: Even though triple-pattern queries are highly ex-
pressive, especially when augmented with keywords, they are also very re-
strictive since they deploy Boolean matching (i.e., a result is either a match
to a query or not). By allowing approximate matching for queries with
very few or no results, the recall of such queries can be highly improved.
To do this, we develop a framework for automatic query reformulation
that generates a set of reformulated queries that are close in spirit to a
given triple-pattern query. Moreover, we extend our ranking model for
triple-pattern queries and show how it can be used to merge and rank the
results of the original query and all its reformulations.

• Efficient Query Processing: Triple-pattern search over RDF knowledge
bases involves pattern matching. This becomes in particular very expen-
sive when keyword conditions are allowed and when automatic query re-
formulation is supported. Moreover, result ranking adds an additional
level of complexity. Incremental retrieval and ranking of results is thus
needed to improve the response time of such queries. We develop a frame-
work for efficient top-k triple-pattern query processing that also handles
the cases of keyword-augmented triple-pattern queries and automatic query
reformulation.

• Keyword Search: Triple-pattern search, even when augmented with key-
words, is still best targeted for expert users or programming APIs. Casual
users are accustomed to keyword search which is the paradigm to search
for information on the Web. To increase the usability of RDF knowledge
bases, we propose a framework for plain keyword search over RDF knowl-
edge bases, where result ranking is again based on statistical language
models.

xvi

• Result Diversity: While ranking ensures that the most relevant results are
ranked on top, it is often the case that the top results tend to be homo-
geneous, making it difficult for users interested in less popular aspects to
find relevant results. Thus, result diversity can play a big role in ensur-
ing that the users get a broad view of the different aspects of the results
matching their queries, and ensures that, on average, almost all users can
find relevant results to their queries in the top ranks. We provide a notion
of diversity for results to queries over RDF knowledge bases and develop a
general framework that can be used to provide diverse top-k query results.

• Knowledge Exploration: While the results to queries over RDF knowl-
edge bases provide very concise answers to users’ information needs, it
is often the case that users like to explore the knowledge base in order to
learn more about a certain topic or subject. It is thus necessary to provide
tools to interactively explore RDF knowledge bases. We present two sys-
tems to allow users to explore RDF knowledge bases and to combine the
information there with information retrieved from external sources. The
first system is a document retrieval system that retrieves a list of ranked
documents given a set of RDF triples. The second system is an entity-
summarization system that constructs a comprehensive timeline summa-
rization for a given entity of interest.

xvii

Summary

xviii

Zusammenfassung

Als Semantic-Web-Datenmodell hat das Resource-Description-Framework (RDF)
in vielen Bereichen zur Darstellung heterogen strukturierter Daten im Web an
Bedeutung gewonnen. Darüber hinaus haben die Popularität von Systemen wie
Wikipedia sowie Fortschritte im Bereich der automatischen Informationsextrak-
tion zur Entstehung von großen RDF-Wissensdatenbanken beigetragen.

RDF-Wissensdatenbanken bestehen aus Subjekt-Prädikat-Objekt-Tripeln, wobei
Subjekt und Objekt Entitäten darstellen und Prädikate Beziehungen zwischen
Entitäten repräsentieren. Diese Datenbanken sind reichhaltige Informationsquellen,
die zur schnellen und präzisen Beantwortung von Informationsbedürfnissen
verwendet werden können. Zur Formulierung eines Informationsbedürfnisses
werden typischerweise Anfragesprachen basierend auf Tripel-Patterns, zum Beispiel
die vom W3C unterstützte Anfragesprache SPARQL, verwendet. Effektives und
effizientes Information Retrieval für RDF-Daten und dessen Skalierbarkeit auf
Web-Dimensionen beinhaltet herausfordernde Forschungsproblem. Diese Dis-
sertation präsentiert Lösungen zu den Kernaspekten der folgenden Problem-
bereiche.

• Datenunvollständigkeit: Während RDF-Datenbanken Informationen in
Form von SPO-Tripeln bereitstellen, ist ein Großteil der im Web verfügbaren
Daten nur als Freitext auf Webseiten enthalten. Daher kann die Kombina-
tion von RDF und Freitext die Reichhaltigkeit von Wissensdatenbanken
erheblich erweitern. Diese Arbeit zeigt eine lösung. Es wird eine Er-
weiterung der Suche basierend auf Tripeln vorgestellt, die es Nutzern ermöglicht,
Anfragen um Schlüsselwörter zu erweitern und somit eine größere Band-
breite von Informationsbedürfnissen zu befriedigen.

• Ergebnisranking: Große RDF-Wissensdatenbanken enthalten verfälschte
oder fehlerhafte Informationen und liefern Anfrageergebnisse mit stark

xix

Zusammenfassung

schwankender Qualität. Daher ist es generell von Vorteil, Anfrageergeb-
nisse in Form von sortierten Ranglisten anstelle unsortierter Mengen zu
präsentieren. Sind zu einer Anfrage basierend auf Tripeln Schlüsselwörter
definiert worden, so ist das Ranking besonders wichtig, um garantieren zu
können, dass bezüglich der Schlüsselwörter relevante Anfrageergebnisse
an den Anfang der Ergebnisliste gestellt werden. Zu diesem Zweck stellt
diese Dissertation einen Ansatz auf Basis statistischer ”Language-Models”
vor, welcher nicht nur auf reine Tripel-Pattern-basierte Anfragen anwend-
bar ist, sondern auch auf deren Erweiterung mit Schlüsselwörtern.

• Approximative Treffer: Obwohl Tripel-Pattern-Anfragen sehr ausdrucksstark
sind, insbesondere wenn sie durch Schlüsselwörter ergänzt werden, sind
sie andererseits durch die Boolesche Auswertung der Bedingungen auch
sehr restriktiv. Besonders bei Anfragen, die im nicht-approximativen Fall
zu sehr wenigen Ergebnissen führen, kann der Recall durch die Anwen-
dung eines approximativen Ansatzes deutlich gesteigert werden. Um dieses
Ziel zu erreichen, wird ein Framework vorgestellt, welches eine Tripel-
Pattern-Anfrage automatisch umformuliert und eine Menge von ähnlichen
Anfragen generiert. Zusätzlich wird ein Ranking-Model entwickelt, welches
auf die Vereinigung der Ergebnisse der Originalanfrage und der gener-
ierten Varianten angewand wird.

• Effiziente Anfrageverarbeitung: Eine Teilaufgabe der Suche basierend auf
Tripel-Patterns in einer RDF-Wissensdatenbank ist das Pattern-Matching,
welches insbesondere im Zusammenhang mit Schlüsselwortanfragen und
dem automatischen Umschreiben sehr teuer werden kann. Durch das Rank-
ing wird das Verfahren zusätzlich komplexer. Um die Antwortzeit den-
noch gering halten zu können, werden inkrementelle Retrieval- und Rank-
ingverfahren benötigt. Diese Dissertation stellt Top-k Algorithmen vor,
welche die effiziente Bearbeitung von Tripel-Pattern-Anfragen mit Schlüsselwörtern
und die automatische Generierung von Alternativen unterstützen.

• Suche mit Schlüsselwörtern: Tripel-Pattern-Anfragen sind in der Regel
nur für Experten geeignet. Nicht-Experten sind eher mit der Schlüsselwortsuche
vertraut. Um die in RDF-Datenbanken enthalten Informationen auch für
solche Nutzer zugänglich zu machen, wird ein Framework vorgestellt,

xx

welches eine schlüsselwortbasierte Suche in RDF-Wissensdatenbanken unter
Verwendung von statistischen ”Language-Models” zum Ranking der Ergeb-
nisse ermöglicht.

• Diversifikation von Ergebnissen: Während das Ranking sicherstellt, dass
die relevantesten Ergebnisse an den Anfang der sortierten Ergebnisliste
gestellt werden, sind die besten Ergebnisse oftmals sehr homogen und er-
schweren die Suche für Nutzer, die an weniger populären Aspekten in-
teressiert sind. Das Prinzip des Ergebnisdiversifikation stellt sicher, dass
das Ranking eine gewisse Vielfalt an Ergebnissen liefert und gibt Nutzern
einen besseren Gesamtüberblick. Zu diesem Zweck wird in dieser Disser-
tation ein Framework vorgestellt, welches dieses Prinzip anwendet, um
diversifizierte Top-k-Anfrageergebnisse zu ermitteln.

• Exploration von Wissensdatenbanken: Auch wenn die Bearbeitung von
Anfragen in RDF-Wissensdatenbanken sehr präzise Ergebnisse liefert, bevorzu-
gen Nutzer gelegentlich das Explorieren von Daten, um mehr über ein
bestimmtes Thema zu erfahren. Es ist daher notwendig, Tools zur inter-
aktiven Exploration von RDF-Datenbanken zur Verfügung zu stellen. In
dieser Dissertation werden zwei Systeme vorgestellt, welche die explo-
rative Suche unterstützen sowie Informationen externer Quellen berücksichtigen
können. Das erste System ist ein Dokumenten-Retrieval-System, welches
eine Rangliste von Dokumenten zu einer gegebenen Menge von RDF-Tripeln
ermittelt. Das zweite System ist ein Entitäten-Visualisierung-System und
fasst Entitäten unter Berücksichtigung zeitlicher Aspekte zusammen.

xxi

Zusammenfassung

xxii

Contents

Abstract xi

Kurzfassung xiii

Summary xv

Zusammenfassung xix

1. Introduction 1
1.1. Structured Data on the Web . 1
1.2. RDF Knowledge Bases . 2
1.3. Searching RDF Knowledge Bases 4
1.4. Research Challenges . 5
1.5. Contributions . 8
1.6. Thesis Outline . 9

2. RDF Knowledge Bases 11
2.1. Resource Description Framework 11
2.2. RDF Knowledge Bases . 14
2.3. Text-Augmented RDF Knowledge Bases 15
2.4. RDF Data on the Web . 16
2.5. Summary . 18

3. Triple-Pattern Search 19
3.1. Query Framework . 19

3.1.1. Triple-Pattern Queries . 19
3.1.2. Keyword-Augmented Triple-Pattern Queries 21
3.1.3. Query Results . 23

3.2. Ranking Model . 26

xxiii

Contents

3.2.1. Ranking Criteria . 27
3.2.2. Language-Model-Based Ranking for Information Retrieval 29

Query Likelihood Model . 30
Kullback-Leibler Divergence Model 32

3.2.3. Language-Model-Based Ranking for Triple-Pattern Search 33
Query Language Model . 33
Result Language Model . 40
Result Ranking . 41

3.2.4. Query Relaxation . 44
Generating Relaxed Queries 44
Extending the Ranking Model 45

3.3. Related Work . 47
3.3.1. Keyword Queries on Unstructured Data 47
3.3.2. Structured Queries on Structured Data 47
3.3.3. Keyword Queries on Structured Data 48
3.3.4. Keyword-Augmented Structured Queries on Structured Data 49

3.4. Experimental Evaluation . 50
3.4.1. Setup . 50
3.4.2. Evaluation Queries . 50
3.4.3. Competitors . 51
3.4.4. Metrics . 55
3.4.5. Results . 56

3.5. Summary . 59

4. Query Reformulation for Triple-Pattern Search 61
4.1. Types of Query Reformulations . 61
4.2. Query Reformulation Framework 63

4.2.1. Resource Representation Model 63
Entity Representation . 64
Relation Representation . 67
Representing Resources Using Multiple Information Sources 70

4.2.2. Substitution Lists . 70
Similarity between Resources 70
Substitution Lists Construction 71
Adding Variables to Substitution Lists 71

xxiv

Contents

Pruning the Substitution Lists 73
4.2.3. Generating Reformulated Queries 73

Query Reformulation Algorithm 74
4.2.4. Executing Reformulated Queries 80

Incremental Execution. 80
4.3. Related Work . 82
4.4. Experimental Evaluation . 83

4.4.1. Setup . 83
4.4.2. Quality of Substitution Lists 85
4.4.3. Quality of Query Reformulations 86
4.4.4. Quality of Query Results 87

4.5. Summary . 91

5. Top-k Triple-Pattern Query Processing 93
5.1. Query Processing for Triple-Pattern Search 94

5.1.1. Triple-Pattern Queries . 94
5.1.2. Keyword-Augmented Triple-Pattern Queries 95
5.1.3. Query Reformulation . 95

5.2. Top-k Query Processing Framework 98
5.2.1. Triple-Pattern Queries . 99
5.2.2. Keyword-Augmented Triple-Pattern Queries 102
5.2.3. Query Reformulation . 108

Incremental Processing of Reformulated Queries 109
Batch Processing of Reformulated Queries 109

5.3. Data Store and Indices . 117
5.3.1. Instantiation Lists for Triple Patterns. 118
5.3.2. Instantiation Lists for Keyword-Augmented Triple Patterns 121

5.4. Related Work . 123
5.5. Experimental Evaluation . 125

5.5.1. Datasets . 125
5.5.2. Experiment 1 . 126

Query Benchmark . 126
Compared Approaches . 126
Results . 128

5.5.3. Experiment 2 . 130

xxv

Contents

Query Benchmark . 131
Compared Approaches . 131
Incremental Processing Results 133
Batch Processing Results . 134

5.5.4. Discussion and Possible Extensions 136
5.6. Summary . 137

6. Keyword Search 139
6.1. Query Framework . 139
6.2. Retrieval Algorithm . 143
6.3. Ranking Model . 146
6.4. Related Work . 150
6.5. Experimental Evaluation . 152

6.5.1. Setup . 152
6.5.2. Retrieval Models . 153
6.5.3. Relevance Assessments and Metrics 156
6.5.4. Evaluation Results . 157

6.6. Summary . 160

7. Result Diversity 163
7.1. Result Diversity for Queries over RDF Knowledge Bases 163
7.2. Maximal Marginal Relevance . 166

7.2.1. Resource-based Diversity 169
7.2.2. Knowledge-Base-based Diversity 169
7.2.3. Text-based diversity . 171

7.3. Related Work . 172
7.4. Evaluation . 174
7.5. Summary . 178

8. Knowledge Exploration 181
8.1. ROXXI: Reviving Witness Documents to Explore Extracted Infor-

mation . 181
8.1.1. Knowledge Exploration with ROXXI 182
8.1.2. System Architecture . 184

Data Manager . 184
Query Engine . 185

xxvi

Contents

User Interface . 187
8.2. CATE: Context-Aware Timeline for Entity Illustration 188

8.2.1. Knowledge Exploration with CATE 189
8.2.2. System Architecture . 190
8.2.3. Information extraction . 193
8.2.4. Assigning Entities to Contexts 194
8.2.5. Ranking Model . 195
8.2.6. Extracting Events . 197

8.3. Summary . 198

9. Conclusion 199

Bibliography 201

A. Negative Kullback-Leibler Divergence 213

B. Evaluation Queries for Triple-Pattern Search 217

C. Evaluation Queries for Query Reformulation 221

D. Evaluation Queries for Keyword Search 227

List of Figures 231

List of Tables 233

xxvii

Contents

xxviii

Chapter 1.

Introduction

1.1. Structured Data on the Web

While the World-Wide-Web is best known as a large repository of hyperlinked
documents, it also contains a significant amount of structured data. The prime
example of such data is the Deep Web, referring to data stored in databases that
are typically served by querying HTML forms. This includes a vast amount of
data such as the data provided by online retailers, news portals, and even social
networks like Facebook and Twitter. Annotated data produced by social-tagging
communities are yet another example of structured data on the Web. In addition,
the increasing popularity of knowledge-sharing communities such as Wikipedia
and the recent success in automatically extracting structured-information from
semi-structured as well as natural-language Web sources have resulted in a strong
leap in the amount of structured data available on the Web.

Exploiting structured data on the Web to improve search quality has been
a constant goal of Web-Search engines. For instance, there are current trends
to present search results in an entity-centric manner and in some cases to pro-
vide users with concise answers to their queries as opposed to a mere list of
ranked documents. Utilizing structured data is also evident in general-purpose
semantic-search services on the Web, such as WolframAlpha1, Google Squared2

and EntityCube3, as well as in domain-specific Web portals such as news, stocks,
government, health and medical portals and so on.

1http://www.wolframalpha.com/
2http://www.google.com/squared
3http://entitycube.research.microsoft.com/

1

Chapter 1. Introduction

Structured data on the Web is largely heterogeneous and exists in several for-
mats. Such data shares many similarities with the kind of data traditionally
managed by database systems but also reflects some unusual characteristics of
its own; for example, there is no definite schema or a centralized data design
as there is in a traditional database; and, unlike traditional databases that focus
on a single domain, Web data covers a wide range of data types. Existing data-
management systems do not address these challenges and assume their data is
modeled within a well-defined domain, and are thus non-suitable to store and
manage the wealth of heterogeneous structured data on the Web.

1.2. RDF Knowledge Bases

To overcome the aforementioned issue of data representation and management,
many solutions have been proposed. In recent years, the Semantic-Web data
model RDF (Resource Description Framework) has gained popularity in many
domains as a representation format for heterogeneous Web-style structured data.
For instance, RDF is now heavily used in many applications on scientific data
such as biological networks like the Universal Protein Resource4, social Web2.0
applications [8], large-scale knowledge bases such as DBpedia [4] or YAGO [78],
and more generally, as a light-weight representation for the “Web of data” [6].

RDF data consists of a set of subject-predicate-object (SPO) triples, where sub-
jects and objects are generally entities and predicates represent relationships be-
tween entities. For example, the triple

Woody Allen directed Annie Hall

is a triple with subject Woody Allen, object Annie Hall and predicate directed.
In RDF, subjects, predicates and objects are either URIs (Uniform Resource Iden-
tifiers), literals or blank nodes [71]. However, for the sake of simplicity, URI
references will be mentioned here using the URI suffix only. We explain this in
more details in Chapter 2.

An RDF knowledge base is a collection of RDF triples, such as the one shown
above. Today, there are many RDF knowledge bases; some contain more than
a billion triples about various entity types such as people, companies, books,

4http://www.uniprot.org/

2

1.2. RDF Knowledge Bases

Subject (S) Predicate (P) Object (O)
Woody Allen actedIn Annie Hall

Woody Allen directed Annie Hall

Woody Allen hasWonPrize Academy Award for Best Director

Paul Simon actedIn Annie Hall

Diane Keaton actedIn Annie Hall

Diane Keaton hasWonPrize Academy Award for Best Actress

Mel Gibson directed Braveheart

Mel Gibson actedIn Braveheart

Mel Gibson produced Braveheart

Mel Gibson hasWonPrize Academy Award for Best Director

Clint Eastwood actedIn Million Dollar Baby

Clint Eastwood directed Million Dollar Baby

Clint Eastwood hasWonPrize Academy Award for Best Director

Morgan Freeman actedIn Million Dollar Baby

Morgan Freeman hasWonPrize Academy Award for Best Actor

George Clooney directed Leatherheads

George Clooney actedIn Leatherheads

George Clooney wasNominatedFor Academy Award for Best Director

Roman Polanski actedIn The Tenant

Roman Polanski directed The Tenant

Roman Polanski hasWonPrize Golden Globe Award for Best Director

Table 1.1.: An excerpt from an RDF knowledge base about movies

scientific publications, films, music, television and radio programs, genes, pro-
teins, drugs and clinical trials, online communities, statistical and scientific data,
and reviews.

Table 1.1 shows an excerpt from an RDF knowledge base about movies. De-
spite the repetitive structure in some parts of the data, there is often a high di-
versity of predicate names across the entire knowledge base. Thus, a flexible
means of searching and exploring schema-less data such as RDF data is needed.

3

Chapter 1. Introduction

1.3. Searching RDF Knowledge Bases

Searching RDF knowledge bases is typically done using triple-pattern queries,
such as the queries written in the W3C-endorsed SPARQL language. A triple-
pattern query consists of conjunctions of elementary SPO search conditions, the
so-called triple patterns. Triple-pattern queries offer the equivalent of SQL select-
project-join queries, but in contrast to SQL, allow wildcards in place of predicate
names. For example, to find a list of directors who have won an Academy Award
and movies they directed and in which they also acted, the following triple-
pattern query can be issued:

?d hasWonPrize Academy Award for Best Director

?d directed ?m

?d actedIn ?m

The above query is composed of a conjunction of three triple patterns. Each
triple pattern is a triple where one or more of its SPO components are variables.
In the example query, the first pattern has a variable subject denoted by ?d. Sim-
ilarly, the second and third patterns have the same variable subject ?d and a
variable object denoted by ?m. Using the same variable in different triple pat-
terns denotes a join condition. The results to such a query would then be tuples
consisting of three triples, where the variable ?d is bound to a director, ?m is
bound to a movie and ?a is bound to an actor in the same movie. Table 1.2
shows all results retrieved when running the example query against the RDF
knowledge base shown in Table 1.1.

RDF knowledge bases equipped with triple-pattern search provide a very
powerful tool for knowledge discovery. Unlike traditional Web search where
queries are typically few keywords and there is no explicit means of defining
semantic relations between keywords, triple-pattern queries allow users to ex-
plicitly express semantic relations between entities. Moreover, while results in
a traditional Web search are typically a list of ranked documents, the result of
a triple-pattern query is a list of tuples consisting of one or more triples. These
tuples provide concise answers to the user’s information need as opposed to a
list of documents, where information extraction has then to be deployed, at least
cognitively, in order to extract the necessary answers. In addition, these tuples
can conceptually have different sources and the information they contain may
not be necessarily existing in one single document.

4

1.4. Research Challenges

R1 Woody Allen hasWonPrize Academy Award for Best Director

Woody Allen directed Annie Hall

Woody Allen actedIn Annie Hall

R2 Mel Gibson hasWonPrize Academy Award for Best Director

Mel Gibson directed Braveheart

Mel Gibson actedIn Braveheart

R3 Clint Eastwood hasWonPrize Academy Award for Best Director

Clint Eastwood directed Million Dollar Baby

Clint Eastwood actedIn Million Dollar Baby

Table 1.2.: Results for the example query ”directors who have won an Academy
Award and movies they directed and in which they also acted”

1.4. Research Challenges

In order to fully utilize RDF Knowledge bases, there are still major challenges to
be addressed which we highlight next.

Data Incompleteness. While large RDF knowledge bases contain a vast amount
of information in the form of SPO triples that are either obtained from structured
data sources, or via automatic information extraction from semi-structured and
textual sources, the majority of information on the Web is available in the form
of free text. Thus, augmenting RDF knowledge bases with text can increase the
scope of such knowledge bases making them very rich sources of information.
For example, the set of RDF triples in Table 1.1 represents information about
movies, directors, actors and awards. While this covers a wide range of interest-
ing information, there is still information that cannot be easily captured in terms
of RDF triples. For example movie plots, taglines, users’ comments and so on.
Such information naturally appears as free text and by omitting them altogether,
we lose a lot of valuable information.

Flexible Querying. Even though triple-pattern queries are highly expressive,
they are also very restrictive since they deploy Boolean matching (i.e., a result
is either a match to a query or not). It is thus crucial to equip triple-pattern

5

Chapter 1. Introduction

search with flexible querying capabilities and to support approximate match-
ing to allow a more effective searching of RDF knowledge bases. For example,
consider our example query asking for directors who have won an Academy
Award and movies they directed and in which they also acted. Directors who
have been nominated for an Academy Award or have won a Golden Globe, and
movies they directed and in which they also acted, are all potentially relevant
results to the original information need. Similarly, directors or even actors who
have won any award and movies they directed and in which they also acted are
again somehow relevant to the given query. Thus, allowing approximate matches
can improve the recall of such advanced queries, especially for queries with in-
sufficient number of exact matches.

In addition, assume that the user is interested in finding movies that have
something to do with, say, boxing or movies that were directed by controver-
sial directors. Unless there exists explicit entities corresponding to ”boxing” and
”controversy”, and explicit relationships linking these entities to movies and di-
rectors, there is noway such queries can be expressed. However, if RDF knowl-
edge bases were extended with text, and keyword conditions were allowed, this
can go a long way in addressing a wider range of information needs such as the
ones just mentioned.

Finally, triple-pattern search, even when augmented with keywords, is still
best targeted for expert users or programming APIs. Average users are accus-
tomed to keyword search which is the paradigm to search for information on
the Web. It is thus beneficial to consider sacrificing the expressiveness of triple-
pattern queries, and also support plain keyword search over RDF knowledge
bases. While we sacrifice query expressiveness, searching RDF knowledge bases
with keywords still gains from the conciseness of RDF data combining informa-
tion from different sources; information that does not necessarily exist in one
particular source and thus could not be retrieved by traditional search engines.

Result Ranking. Large RDF knowledge bases may contain noisy or incorrect
information and thus queries may produce many results of highly varying qual-
ity, in particular when keyword conditions are allowed or approximate match-
ing is deployed. It is thus highly desirable to present users with a ranked list
of results rather than a mere a list of unranked matches. For example, when
asking for directors who have won an Academy Award and movies they di-

6

1.4. Research Challenges

rected and in which they also acted, it is essential to provide exact matches first,
followed by any approximate matches. Also, if we add keyword conditions to
such a query, say finding those movies that have something to do with ”box-
ing”, ranking of results should take into consideration how relevant they are to
the keyword conditions. Finally, with keyword search in place, we add an addi-
tional level of ambiguity that is not present in the case of triple-pattern search,
and in that case result ranking is again very crucial.

Efficient Query Processing. Triple-pattern search over RDF knowledge bases
involves pattern matching. This becomes in particular very expensive when
keyword conditions are allowed and when approximate matching is supported.
Moreover, result ranking adds another level of complexity since all matches for
a given query should be identified, ranked based on some scoring function and
then returned to the user in the order of their scores. Incremental retrieval and
ranking of results is thus needed to improve the response time of such queries.

Result Diversity. While ranking ensures that the most relevant results are
ranked on top, it is often the case that the top results tend to be homogeneous,
making it difficult for users interested in less popular aspects to find relevant
results. For example, considering our example query, we do not want to have
movies by the same director dominating the top results, or movies of the same
genre, or in case query reformulation is allowed, people that have won the same
award. Thus, result diversity can play a big role in ensuring that the users get a
broad view of the different aspects of the results matching their queries, and en-
sures that, on average, almost all users can find relevant results to their queries
in the top ranks.

Knowledge Exploration. As mentioned earlier, results to queries over RDF
knowledge bases are typically tuples of triples joined together. While this is a
very concise representation of answers to users’ information needs, it is often
the case that users like to explore the knowledge base in order to learn more
about a certain topic or subject. It is thus necessary to provide users with tools
that allow them to interactively explore an RDF knowledge base.

7

Chapter 1. Introduction

1.5. Contributions

In this thesis, we present a number of novel models and algorithms to effectively
search RDF knowledge bases. Our models address the issues pointed out in the
previous section. In particular, our contributions can be summarized as follows.

1. Adding Text and Result Ranking: We show how to augment traditional
RDF knowledge bases with text to extend their scope of coverage, and we
propose an extension to triple-pattern search that enables expressing key-
word conditions in combination with triple patterns. We also develop a
ranking model based on statistical language models for ranking the re-
sults to triple-pattern queries, possibly augmented with keywords. Our
framework for triple-pattern search over RDF knowledge bases was pub-
lished in the proceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM 2009) [23], the proceedings of the first In-
ternational Workshop on Keyword Search on Structured Data (KEYS 2009)
[25] which was co-located with the 2009 ACM SIGMOD/PODS Confer-
ence, and as a journal article in the IEEE Data Engineering Bulletin, Vol. 33
No. 1, March 2010 [24].

2. Automatic Query Reformulation: We present a framework for query re-
formulation that automatically reformulates triple-pattern queries in such
a way that the original query intention is preserved. This has the advan-
tage of improving the recall of such queries without unduly sacrificing
precision. Our query reformulation framework was published in the pro-
ceedings of the 8th Extended Semantic Web Conference (ESWC 2011) [26].

3. Top-k Query Processing: To be able to efficiently process triple-pattern
queries over large RDF knowledge bases, we develop a framework for ef-
ficient top-k query processing based on the family of top-k rank-join al-
gorithms for traditional databases [43, 28]. Our top-k query processing
framework also handles the cases of keyword-augmented triple-pattern
queries and automatic query reformulation.

4. Keyword Search: To increase the usability of RDF knowledge bases, and to
allow casual users to be able to search such knowledge bases, we propose

8

1.6. Thesis Outline

a framework for plain keyword search over RDF knowledge bases. Anal-
ogous to triple-pattern search, our framework also retrieves a set of tuples
matching the user query, rather than entities or documents. We provide
result ranking as well, which is again based on statistical language mod-
els. Our framework for keyword search over RDF knowledge bases was
published in the proceedings of the 20th ACM Conference on Information
and Knowledge Management (CIKM 2011) [21].

5. Result Diversity: Diversifying the search results in order to ensure that
the top-k results would cover different aspects of the searched space is
a very important component. We define a notion of result diversity in
an RDF setting and develop a general technique based on the Maximal-
Marginal-Relevance[10] in order to provide diverse results to queries over
RDF knowledge bases.

6. Knowledge Exploration: We propose two different systems to explore
RDF knowledge base, in order to learn more about query results, an entity
or a set of RDF triples. The first system is a document retrieval system that
can be used to retrieve a set of documents that contain the information en-
coded in a given set of RDF triples. Our document retrieval approach was
published in the proceedings of the 36th International Conference on Very
Large Data Bases (VLDB 2010) [22] and the proceedings of the 20th Con-
ference on Information and Knowledge Management (CIKM 2011) [59].
The second system is an entity summarization tool that combines struc-
tured information from RDF knowledge bases with semi-structured and
unstructured information from external sources and displays such com-
bined information in an interactive timeline fashion. Our entity summa-
rization approach was published in the proceedings of the 20th Interna-
tional World Wide Web Conference(WWW 2011) [83].

1.6. Thesis Outline

We give an overview on RDF knowledge bases and show how we can augment
them with text in Chapter 2. We present our ranking model for triple-pattern
search in Chapter 3. Chapter 4 describes our framework for automatic query-

9

Chapter 1. Introduction

reformulation. Our top-k query processing techniques are described in Chapter
5. We describe our framework for keyword search over RDF knowledge bases
in Chapter 6 and our result diversity approach is covered in Chapter 7. Finally,
we describe our knowledge exploration tools in Chapter 8 and summarize our
findings and highlight future research directions in Chapter 9.

10

Chapter 2.

RDF Knowledge Bases

RDF has become a common standard for representing structured data on the
Web. In this chapter, we give an overview on RDF, and we formally define RDF
knowledge bases. We then show how we can extend RDF knowledge bases
with text, in order to expand their scope. Finally, we give a short overview on
the current state of RDF data on the Web.

2.1. Resource Description Framework

RDF is a standard model endorsed by the W3C Consortium to represent infor-
mation on the Web [71]. It was originally designed to represent metadata about
Web resources, such as the author, title, date of creation, etc. However, RDF is
not restricted to ”Web resources” only, and today it is used to represent various
information about many different types of resources including people, organi-
zations, products, books, movies and so on.

Using RDF, information about the described resources can be represented in
a common standard format so that this information can be easily exchanged
among different applications without a loss of meaning. In RDF, there are three
types of identifiers that can be used to describe information: URIs, literals and
blank nodes. We explain each one separately.

URIs. A URI (Uniform Resource Identifier) is a string of characters used to
identify a resource on the Internet. In RDF terminology, a URI is a unique iden-
tifier used to identify a single resource. For example, the director Woody Allen
can be identified using the URI

11

Chapter 2. RDF Knowledge Bases

http://en.wikipedia.org/wiki/Woody_Allen

Note that there might exist more than one URI to identify the same resource. For
example, Woody Allen can also be identified using the URI

http://www.imdb.com/name/nm0000095/

Also note that URIs in RDF do not necessarily correspond to a Web address or
URL. For example, the URI

http://www.knowledgebase.com/Woody_Allen

which does not physically exist in the Internet, can also be used to identify the
director Woody Allen.

To simplify reference to resources, RDF is equipped with namespaces. A
namespace is an abbreviation for the prefix of a URI. For example, the names-
pace w can be used to abbreviate the URI prefix

http://en.wikipedia.org/wiki/

In such case, Woody Allen can be identified by the identifier w:Woody Allen

which is a shorthand for

http://en.wikipedia.org/wiki/Woody_Allen

For the sake of readability, we will omit the namespaces when referring to a
resource and we assume that given a URI suffix, the full URI can be uniquely
resolved.

Literals. A literal is a string representation of a certain value. For example, the
string "09.03.1981" is a string representation of the 9th day of March of the
year 1981. RDF consists of two types of literals: plain literals and typed literals.
Plain literals have a lexical form and optionally a language tag whereas typed
literals have a lexical form and a data type that describes the type of the value
they represent. For example, the literal "09.03.1981" has type date, and the
literal "9" has type Integer, and so on.

Blank Nodes. A blank node represents a resource whose URI is not known or
is irrelevant. The resource represented by a blank node is also called an anony-
mous resource.

12

http://en.wikipedia.org/wiki/Woody_Allen
http://www.imdb.com/name/nm0000095/
http://www.knowledgebase.com/Woody_Allen
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/Woody_Allen

2.1. Resource Description Framework

SPO Triples. Given these three types of identifiers, URIs, literals and blank
nodes, RDF can be used to encode all sorts of information on the Web. In RDF,
information is represented in the form of statements. An RDF statement is a
triple consisting of three fields: a subject, a predicate and an object. These triples
are typically referred to as SPO triples.

Definition 2.1 : Triple
Let U be the infinite set of all possible URIs, L be the infinite set of all possible literals
and B be the infinite set of all possible blank nodes. Furthermore, assume that the sets
U, L and B are pairwise disjoint. An SPO triple t = (s, p, o) is a 3−tuple such that
s ∈ U ∪ B, p ∈ U and o ∈ U ∪ L ∪ B.

In other words, an SPO triple consists of three components:

• the subject, which is an RDF URI or a blank node,

• the predicate, which is an RDF URI, and

• the object, which is an RDF URI, a literal or a blank node.

An SPO triple is conventionally written in the order subject, predicate, object.
The predicate is also known as the property of the triple.

RDF uses SPO triples to represent information about resources. For example,
assume we want to represent the information that Woody Allen is the director
of the movie Annie Hall. This information can be expressed using the following
SPO triple:

Woody Allen directed Annie Hall

where the subject Woody Allen is the URI of the director Woody Allen, the object
Annie Hall is the URI of the movie Annie Hall and the predicate directed is
the URI of the relation ”is the director of”.

As mentioned earlier, subjects and objects are not restricted to URIs. For in-
stance, the information that Woody Allen’s first name is ”Woody” and last name
is ”Allen” can be expressed using the following two SPO triples:

Woody Allen hasFirstName "Woody"

Woody Allen hasLastName "Allen"

where the URIs hasFirstName and URIs hasLastName reference the properties
”first name” and ”last name” respectively, and "Woody" and "Allen" are two
plain literals.

13

Chapter 2. RDF Knowledge Bases

Subject (S) Predicate (P) Object (O)
Woody Allen directed Match Point

Woody Allen directed Hollywood Ending

Woody Allen actedIn Hollywood Ending

Woody Allen hasWonPrize Academy Award

Woody Allen hasWonPrize BAFTA Award

Scarlett Johansson actedIn Match Point

Tea Leoni actedIn Hollywood Ending

Match Point type English Movie

Hollywood Ending type English Movie

Vicky Cristina Barcelona type English Movie

Table 2.1.: A small RDF knowledge base

Figure 2.1.: An RDF graph corresponding to the knowledge base in Table 2.1

2.2. RDF Knowledge Bases

Definition 2.2 : RDF Knowledge Base
An RDF knowledge base KB is a finite set of SPO triples.

14

2.3. Text-Augmented RDF Knowledge Bases

Table 2.1 represents an example RDF knowledge base. RDF knowledge bases
can also be viewed as graphs which are often referred to as RDF graphs. An edge
in an RDF graph is an SPO triple with the subject and object corresponding to
vertices and the predicate corresponding to the label of the edge.

Definition 2.3 : RDF Graph
Given an RDF knowledge base KB, let S be the set of all subjects in KB,O be the set of all
objects in KB, and P be the set of all predicates in KB. The RDF graph G corresponding
to KB is a tuple (V, LABS, E) where

1. V is a finite set of vertices such that V = S ∪O,

2. LABS is a finite set of edge labels such that LABS = P, and

3. E is a finite set of edges (v1, l, v2) such that v1, v2 ∈ V and l ∈ LABS.

Figure 2.1 shows the RDF graph corresponding to the example knowledge base
in Table 2.1. Assuming that subjects and objects are entities, and predicates are
relationships, RDF graphs are in this case equivalent to the more classical Entity-
Relationship graphs.

2.3. Text-Augmented RDF Knowledge Bases

While RDF provides a very general framework to represent precise information
about resources, many information is better suited as text and cannot be rep-
resented in the form SPO triples. For example, consider the plot of the movie
Annie Hall:

Romantic adventures of neurotic New York comedian Alvy Singer and his
equally neurotic girlfriend Annie Hall. The film traces the course of their rela-
tionship from their first meeting, and serves as an interesting historical docu-
ment about love in the 1970s.

Such text snippet contains interesting information about the movie Annie Hall,
and including it in our example knowledge base can enhance its knowledge cov-
erage. However, a text snippet cannot be represented in the form of SPO triples.
A plot is naturally a sequence of keywords describing a movie; it is neither a
literal nor a resource that can be uniquely identified using a URI.

15

Chapter 2. RDF Knowledge Bases

As another example, assume we want to represent the information that the
movie reviewer Alain Malek has given the movie Annie Hall the following
review:

Woody Allen never created a more enjoyable film. Annie Hall is as innovative
and clever as any movie has ever been. What makes Annie Hall such a great
film is Allen’s carefree screenplay and direction, in which he breaks all of the
rules, giving the viewer the sense that anything can happen. Allen makes us
characters into his story by talking to the camera, telling us jokes, and sharing
his opinions with us.

The fact that Alain has reviewed Annie Hall can be easily represented in RDF
using the following SPO triple:

Alain Malek reviewed Annie Hall

However, representing the review itself in RDF is not possible since the review
is again merely a text snippet that cannot be represented in the form of SPO
triples.

Thus, it is crucial to empower RDF knowledge bases with means for represent-
ing textual information that cannot be represented in the form of SPO triples. To
this end, we associate with each triple t a text snippet TEXT(t) which is a simple
bag-of-words.

Definition 2.4 : Text-Augmented RDF Knowledge Base
A text-augmented RDF knowledge base KB is an RDF knowledge base such that each
SPO triple t ∈ KB is associated with a, possibly empty, text snippet TEXT(t).

2.4. RDF Data on the Web

The number of RDF datasets available on the Web is constantly increasing. The
W3C Semantic Web Education and Outreach group’s Linking Open Data project
[56] is considered the biggest effort in inter-connecting and publishing such
datasets on the Web. This has resulted in what is now known as Linked Open
Data Cloud which is shown in Figure 2.2. As of August, 2011 , the Linked Open
Data Cloud consists of 256 datasets with over 30 billion triples and over 400 mil-
lion links between them [57].

16

2.4. RDF Data on the Web

Figure 2.2.: The Linking Open Data Cloud Diagram

As Figure 2.2 shows, certain datasets serve as linking hubs in the Linked Open
Data Cloud . Examples of such cenetral datasets are DBpedia [4] and YAGO
[78] which both consist of RDF triples extracted from infoboxes and categories
in Wikipedia. DBpedia has focused on recall by gathering all infobox attribute
name-value pairs, at the risk of incorporating noise or inconsistent triples. DB-
pedia currently consists of 1 billion RDF triples, out of which 385 million were
extracted from the English edition of Wikipedia and roughly 665 million were
extracted from editions in other languages and links to external datasets.

YAGO, on the other hand, pursued the philosophy of high - near-human-
quality - precision by employing database style consistency checking on triple
candidates. YAGO primarily gathers its knowledge by rule-based information
extraction on the infoboxes and category system of Wikipedia, and reconciles
the resulting triples with the taxonomical class system of WordNet [61]. The
resulting knowledge base contains more than 2 million entities and 20 million
RDF triples, with at least 95 percent accuracy. YAGO has been incorporated into

17

Chapter 2. RDF Knowledge Bases

DBpedia as well as other datasets. In addition to harvesting semistructured data
and structured databases, there has been efforts to expand YAGO with triples ex-
tracted from natural-language text such as the information extraction tool SOFIE
[79].

Another example of a heavily-linked dataset in the Linked Open Data Cloud is
Geonames [31]. Geonames provides RDF descriptions of millions of geographi-
cal locations worldwide. Geonames was recently integrated with a new edition
of YAGO known as YAGO2 [38] which contains around 10 million entities and
more than 460 million RDF triples about them.

2.5. Summary

There are many RDF data and knowledge bases on the Web today. In RDF,
data is represented in the form of SPO triples consisting of three fields: subject,
predicate and object. While RDF is a general framework that can be used to
represent a wide range of information, some information is better suited as text,
and cannot be naturally represented in the form of SPO triples. It is thus crucial
to enable RDF knowledge bases to represent and store free text in combination
with structured RDF data. We refer to these knowledge bases that combine RDF
data with text as text-augmented RDF knowledge bases.

18

Chapter 3.

Triple-Pattern Search

RDF knowledge bases consisting of SPO triples are typically searched using
structured query-languages such as SPARQL [76], or similarly designed triple-
pattern-based search. In this chapter, we formally define triple-pattern search,
and we show how we can augment triple-pattern queries with keywords in or-
der to search text-augmented RDF knowledge bases. Moreover, we present a
novel ranking model for results to triple-pattern queries, possibly augmented
with keywords. In order to improve the recall of such queries, we also present
a relaxation paradigm, that relaxes triple-pattern queries in order to retrieve ad-
ditional potentially-relevant results.

3.1. Query Framework

3.1.1. Triple-Pattern Queries

The most prominent way to search RDF knowledge bases such as the one shown
in Table 3.1 is using structured triple-pattern queries. A triple-pattern query con-
sists of a set of triple patterns, where a triple pattern is an SPO triple with one or
more variables. We first define what a variable is, and then define triple patterns,
and triple-pattern queries. We then show few examples of triple-pattern queries.

Definition 3.1 : Variable
Given an RDF knowledge base KB, let U be the infinite set of all URIs, L be the infinite
set of all literals, and B be the infinite set of all blank nodes. The set of variables VAR is
an infinite set of labels such that VAR∩U = φ, VAR∩L = φ and VAR∩B = φ. That
is, VAR is pairwise disjoint from U, L and B.

19

Chapter 3. Triple-Pattern Search

Subject (S) Property (P) Object (O)
Woody Allen actedIn Annie Hall

Woody Allen directed Annie Hall

Woody Allen hasWonPrize Academy Award for Best Director

Paul Simon actedIn Annie Hall

Diane Keaton actedIn Annie Hall

Diane Keaton hasWonPrize Academy Award for Best Actress

Mel Gibson directed Braveheart

Mel Gibson actedIn Braveheart

Mel Gibson produced Braveheart

Mel Gibson hasWonPrize Academy Award for Best Director

Jules Dassin actedIn Rififi

Jules Dassin directed Rififi

Jules Dassin hasWonPrize Academy Award for Best Director

Morgan Freeman actedIn Rififi

Morgan Freeman hasWonPrize Academy Award for Best Actor

George Clooney directed Leatherheads

George Clooney actedIn Leatherheads

George Clooney wasNominatedFor Academy Award for Best Director

Roman Polanski actedIn The Tenant

Roman Polanski directed The Tenant

Roman Polanski hasWonPrize Golden Globe Award for Best Director

Table 3.1.: An excerpt from an RDF knowledge base about movies

We denote a variable var ∈ VAR by a single letter preceded by a question mark.
For example, the label ?x denotes a variable.

Definition 3.2 : Triple Pattern
A triple pattern q = (s, p, o) is an SPO triple such that s ∈ VAR ∪ U ∪ B and p ∈
VAR ∪U and o ∈ VAR ∪U ∪ L ∪ B.

That is, a triple pattern q is an SPO triple such that one or more of its SPO com-
ponents are variables. For example, the triple

Woody Allen directed ?m

20

3.1. Query Framework

is a triple pattern whose object is the variable ?m. Similarly, the triple

?x ?y Academy Award for Best Director

is a triple pattern whose subject is the variable ?x and whose predicate is the
variable ?y. A triple pattern is the basic unit of triple-pattern queries, with which
many information needs can be addressed.

Definition 3.3 : Triple-Pattern Query
A triple-pattern query Q = (q1, q2, ..., qn) is a tuple of n triples qi such that each qi is
a triple pattern.

For example, to find directors that have won the Academy Award for Best Di-
rector, movies they directed and in which they also acted, the following query
consisting of three triple patterns can be issued:

?d hasWonPrize Academy Award for Best Director

?d directed ?m

?d actedIn ?m

We write each triple pattern in a separate line. Using the same variable in more
than one triple pattern denotes a join condition that is used to combine different
triples to form query results.

3.1.2. Keyword-Augmented Triple-Pattern Queries

It is often the case that certain information needs cannot be completely expressed
in terms of triple patterns. In such cases, it would be beneficial to allow keyword
conditions to be expressed in combination with structured triple patterns. This
can be done by the so-called keyword-augmented triple patterns which we define
next.

Definition 3.4 : Keyword-Augmented Triple Pattern
A keyword-augmented triple pattern is a triple pattern q augmented with a set of key-
wordsW = {w1, w2, .., wk} where wi is a single keyword.

For example, the following triple pattern

Woody Allen directed ?m complicated relationships

21

Chapter 3. Triple-Pattern Search

is a triple pattern augmented with two keywords complicated and relationships.
As another example, consider the keyword-augmented triple pattern:

?x ?y Academy Award for Best Director controversy scandal

This triple pattern is again augmented with two keywords: controversy and scan-

dal.
Triple patterns and keyword-augmented triple patterns can be combined to-

gether to form keyword-augmented triple-pattern queries.

Definition 3.5 : Keyword-Augmented Triple-Pattern Query
A keyword-augmented triple-pattern query Q = (q1, q2, ..., qn) is a tuple of n triples
qi such that each qi is a triple pattern, and such that one or more triple pattern qi is a
keyword-augmented pattern.

For example, to find controversial or scandalous directors who have won the
Academy Award for Best Director, and movies they directed and in which they
also acted, the following query consisting of three triple patterns can be issued:

?d hasWonPrize Academy Award for Best Director controversy scandal

?d directed ?m

?d actedIn ?m

We write each triple pattern in a separate line. The first triple pattern in the
above query is augmented with the keywords controversy and scandal. Note that
such information need cannot be served using triple patterns only (i.e., without
keywords).

The keywords specified in a keyword-augmented query serve as additional
filters or conditions that the query results must satisfy. Keyword augmentation
is a powerful machinery that can be used to enhance the functionality of the
Boolean-match triple-pattern queries. For example, in addition to associating
a triple pattern with a set of disjunctive keywords as in our previous exam-
ples, we can allow users to associate the triple patterns with phrases, where the
whole phrase must be matched. In addition, we can enable the usage of logical
operators (negation, AND and OR operators) among keywords or phrases. For
example, the following keyword-augmented query:

?d hasWonPrize Academy Award for Best Director USA AND UK

?d directed ?m

?d actedIn ?m ”major role”

22

3.1. Query Framework

?d hasWonPrize Academy Award for Best Director

Woody Allen hasWonPrize Academy Award for Best Director

Mel Gibson hasWonPrize Academy Award for Best Director

Jules Dassin hasWonPrize Academy Award for Best Director

Table 3.2.: Triples from the knowledge base in Table 3.1 instantiating an example
triple pattern

asks for directors that have won the Academy Award for Best Director and have
something to do with both the USA and the UK, and movies in which they also
played a ”major role”.

3.1.3. Query Results

Results to triple-pattern queries are tuples of triples instantiating the query triple
patterns and satisfying the query join conditions which are denoted by using
the same variable in more than one triple pattern. We first explain what a triple-
pattern instantiation is and then show how this can be used to retrieve results to
queries consisting of more than one triple pattern.

Definition 3.6 :Mapping
A mapping µ is a partial function VAR→ U∪ L∪B. The domain of µ, dom(µ), is the
subset of VAR where µ is defined.

Definition 3.7 : Compatible Mappings
Two mappings, µ1 and µ2 are said to be compatible if ∀var ∈ dom(µ1)∩dom(µ2), µ1(var) =

µ2(var).

Note that two mappings with disjoint domains are always compatible, and that
the empty mapping (i.e., the mapping with empty domain) is compatible with
any other mapping.

Definition 3.8 : Pattern Instantiation
Let q be a triple pattern, and let VAR(q) be the set of variables occurring in q. A triple
t ∈ KB is said to instantiate triple pattern q in knowledge base KB if there exists a

23

Chapter 3. Triple-Pattern Search

mapping µ such that dom(µ) = VAR(q) and triple t is obtained by substituting each
var ∈ VAR(q) with µ(var).

For example, consider the triple pattern

?d hasWonPrize Academy Award for Best Director

and consider the mapping µ such that µ(?d) = Woody Allen. Substituting ?d

with Woody Allen results in the following triple

Woody Allen hasWonPrize Academy Award for Best Director

which is an instantiation of the above triple pattern in the knowledge base shown
in Table 3.1. Table 3.2 shows the set of all instantiations of the above triple pat-
tern from the knowledge base shown in Table 3.1.

Definition 3.9 : Query Result
Given a triple pattern query Q = (q1, q2, ..., qn) where qi is a triple pattern, possibly
augmented with keywords, a result is defined as a tuple T = (t1, t2, ..., tn) consisting of
n triples ti such that there exist mappings µ1, µ2, ..., µn which are all pairwise compati-
ble and ti instantiates qi by substituting each var ∈ VAR(qi) with µi(var).

For example, consider the following query consisting of three triple patterns

?d hasWonPrize Academy Award for Best Director

?d directed ?m

?d actedIn ?m

Table 3.3 shows the results to such query when run against the knowledge base
in Table 3.1. All results are tuples consisting of three triples where the first triple
is an instantiation of the first query triple-pattern, the second triple is an instan-
tiation of the second query triple-pattern and the third triple is an instantiation
of the third query triple-pattern. Moreover, each result tuple satisfies the join
conditions specified in the query which requires that the subject of all the three
triples be the same and the objects of the second and third triples be the same.

Results to keyword-augmented queries are defined in a similar way. They are
also tuples of triples instantiating the query triple patterns and satisfying the
join conditions specified in the query. In addition, the triples must also satisfy
any keyword conditions specified in the triple pattern they instantiate . Recall

24

3.1. Query Framework

Q ?d hasWonPrize Academy Award for Best Director

?d directed ?m

?d actedIn ?m

R1 Woody Allen hasWonPrize Academy Award for Best Director

Woody Allen directed Annie Hall

Woody Allen actedIn Annie Hall

R2 Mel Gibson hasWonPrize Academy Award for Best Director

Mel Gibson directed Braveheart

Mel Gibson actedIn Braveheart

R3 Jules Dassin hasWonPrize Academy Award for Best Director

Jules Dassin directed Rififi

Jules Dassin actedIn Rififi

Table 3.3.: Results of an example query as tuples of triples

that each triple in a keyword-augmented knowledge base is associated with a
text snippet which is constructed from any contextual text present in the sources
the triples were extracted from. Now, given a keyword-augmented query, the
results are tuples of triples that instantiate the query triple patterns and in addi-
tion, whose text snippets satisfy the keyword conditions specified in the query.

For example, consider the following keyword-augmented query asking for
scandalous directors that have won the Academy Award for Best Director, and
movies they directed and in which they also acted:

?d hasWonPrize Academy Award for Best Director scandal controversy

?d directed ?m

?d actedIn ?m ”major role”

One possible result to such query is the tuple:

Mel Gibson hasWonPrize Academy Award for Best Director

Mel Gibson directed Braveheart

Mel Gibson actedIn Braveheart

provided that the text snippet of the first triple contains the keyword scandal or
controversy and the text snippet of the third triple contains the phrase ”major role”.

25

Chapter 3. Triple-Pattern Search

Figure 3.1.: A query as a graph (above) and one result (below) as a subgraph of
the RDF graph

In graph terminology, a triple-pattern query can be viewed as a graph whose
vertices v ∈ U ∪ L ∪ B ∪ VAR and whose edge labels e ∈ U ∪ VAR. Similarly, a
query result can be viewed as a subgraph of the RDF knowledge graph queried,
that is isomorphic to the query graph when query variables are mapped to URIs
or literals that appear in the RDF graph. Figure 3.1 shows an example query and
one of its result as graphs.

Next, we motivate why result ranking is crucial, and we present a novel rank-
ing model for triple-pattern queries, possibly augmented with keywords.

3.2. Ranking Model

While results to triple-pattern queries are concise tuples of triples, it is often the
case that there are too many results for a given query. In such cases, users of-
ten prefer seeing a ranked list of results rather than a set of unranked answers
to their queries. For example, consider the information need of finding direc-
tors that have won the Academy Award for Best Director, and movies they di-
rected and in which they also acted. Such information need can be precisely
expressed using a set of triple patterns. Table 3.3 shows the triple-pattern query

26

3.2. Ranking Model

corresponding to such information need, and the results to such query from our
example knowledge base.

For instance, the first result in Table 3.3 states that Woody Allen has won the
Academy Award for Best Director and that he directed and acted in the movie
Annie Hall. Similarly, the second result in Table 3.3 is about Mel Gibson and his
movie Braveheart, and the third result is about Jules Dassin and his movie Ri-
fifi. Even though all three results are considered as valid results to our example
query, they might vary in their relevance to the underlying information need in
various ways, and we discuss some of them next. Note that this query would
yield much more results when run against a large movie knowledge base, and
in such case the need for result ranking is even more obvious.

3.2.1. Ranking Criteria

Informativeness. Query results differ in how informative they are to the user
that issued the query. For example, the user might be interested in finding new
information that she does not already know. On the other extreme, the user
might have a certain preference in movies or directors. Between these two ex-
tremes, one can assume there is no prior knowledge about the users issuing the
queries. In such case, the system must try to infer what is the most likely rank-
ing that would yield the best user satisfaction on average. For example, for the
query about directors that have won the Academy Award for Best Director, and
movies they directed and in which they also acted, we could assume that, in
general, users are interested in in popular or well known movies and directors,
and thus results about well-known people or movies should precede those about
less-known ones in the ranking.

The informativeness of results becomes particularly evident in the case of
keyword-augmented queries. For example, consider the following query asking
for controversial or scandalous directors that have won the Academy Award for
Best Director and movies they directed and in which they also acted:

?d hasWonPrize Academy Award for Best Director controversy scandal

?d directed ?m

?d actedIn ?m

The results to such query are the same as the ones shown in Table 3.3. The
ranking of such results must take into consideration how well they match the

27

Chapter 3. Triple-Pattern Search

keyword conditions in the above keyword-augmented triple-pattern query. Re-
call that we assume that each triple is associated with a text snippet. Taking
into consideration how well the text snippet of the triple matches the keyword
conditions in the corresponding triple pattern is crucial to better serve the infor-
mation need represented by the keyword-augmented query. For our example
query, the results about the director Mel Gibson should thus be ranked on top.

Balancing all these factors is a challenging task, and thus it is very important
to develop a ranking model that is general enough to easily accommodate such
factors or a subset of them, which highly depends on the available information
to the system as well as the assumptions made about the users’ goals.

To capture informativeness, we rely on the so-called witness counts of the triples.
The witness count of a triple indicates the number of sources the triple was ex-
tracted from. In case the triples were extracted from one source, say a Deep-Web
source, the witness counts can be estimated from another corpus, such as the
Web for instance. The witness count of a triple is an estimate of the importance
of the triple. In addition, for each keyword present in a triple text snippet, a
witness count of the triple-keyword pair is also stored, which is the number of
sources from which the triple was extracted and which in addition contain the
keyword.

Definition 3.10 : Witness Count
∀ t ∈ KB, the witness count c(t) is the number of sources from which the triple t was
extracted. In addition, ∀ w ∈ TEXT(t), the witness count c(t;w) is the number of
sources from which the triple t was extracted and which contain the keyword w.

Confidence. RDF knowledge bases are very precise information sources that
involve minimal ambiguity on the representation level. However, they often
involve inaccuracies. Recall that most such knowledge bases are automatically
constructed using information extraction techniques from Deep-Web or text sources.
This information-extraction procedure often involves errors, and results in some
inaccuracies in the data. For example, consider the following text snippet

At the 2006 Academy Awards, Clooney was nominated for an Academy Award
for Best Director for Good Night, and Good Luck, as well as best supporting
Actor for Syriana, which he won.

28

3.2. Ranking Model

Assume that a triple stating that George Clooney has won the Academy Award
for Best Director has been extracted from such a snippet. This triple is wrong
since Clooney was only nominated for an Academy Award for Best Director and
he won the award for Best Supporting Actor for his role in the movie Syriana.

Even when the accuracy of the triple extraction is guaranteed, the quality
of the source from which such triple was extracted can be a measure of how
well the triple holds. For example, triples extracted from the online encyclope-
dia Wikipedia are more likely to be true than those extracted from exotic blogs
or random Web pages, which are more likely to contain more noisy facts. To
this end, each triple in our knowledge base can be associated with a confidence
value, reflecting the accuracy of the employed extraction method (e.g., regular-
expression matching vs. natural-language parsing vs. statistical learners) and
the authenticity and authority of the data sources.

Finally, combining informativeness and confidence, is a key factor for the suc-
cess of any ranking approach for results to queries over RDF knowledge bases.
To combine these two measures, we can scale down the witness count of a triple
based on its confidence, by multiplying the witness count with the confidence
value for instance.

We next present a novel ranking model based on statistical language models
[36, 52] that can be used to rank the results of triple-pattern queries, whether
augmented with keywords or not. Our ranking model takes into considera-
tion both the informativeness of the triples and their confidence, and is general
enough to accommodate any additional factors that might be domain or ap-
plication specific. Before we present our model, we give a short overview on
language-model-based ranking for information retrieval.

3.2.2. Language-Model-Based Ranking for Information
Retrieval

There have been many information retrieval models proposed over the years.
Among the most effective ones are the vector-space model with heuristic tf-idf
weighting and the popular BM25 (Okapi) retrieval function [72]. In 1998, a new
class of probabilistic models emerged. These new models are based on statistical
language models which have been successfully used in related areas such as
speech recognition and machine translation.

29

Chapter 3. Triple-Pattern Search

The term language model refers to a probability distribution over words. Many
studies have shown that using statistical language models does not only lead to
superior empirical performance, but also facilitates parameter tuning and opens
up possibilities for modeling non-traditional retrieval problems. Since then, Sta-
tistical language models have been successfully applied to many advanced in-
formation retrieval problems such as cross-lingual retrieval [53], expert finding
[29], XML retrieval [49] and many others. In general, statistical language models
provide a principled way of modeling various kinds of retrieval problems.

There are two major classes of approaches that rely on language models to
rank query results. The first class uses the so-called query likelihood to rank re-
sults, whereas the second class relies on the Kullback-Leibler divergence between
a query language model and a result language model for ranking. We briefly
explain each model next.

Query Likelihood Model

The use of language models for information retrieval was first introduced by
Ponte and Croft in 1998 [69] in what is known as the query likelihood approach.
In the query likelihood approach, we assume there exists a language model for
each document which is a probability distribution over a set of terms V . The
query is then assumed to be a sample of terms drawn from one of these language
models. A documentsD can thus be ranked based on the query likelihood which
is defined as follows.

Definition 3.11 : Query Likelihood
Given a queryQ, the query likelihood of documentD is the probability of generating the
query Q given the language model of document D which is denoted by P(Q|D).

We thus set the score of document D with respect to query Q as the query like-
lihood of document D as follows:

s(Q,D) = P(Q|D) (3.1)

Intuitively, if the query likelihood of document D is high, the query terms must
have high probabilities in the document language model, which further means
that the query terms occur frequently in document D.

30

3.2. Ranking Model

In order to use such a model to score documents, we must solve two problems:
(1) how to define the language model of a documentD? and (2) how to estimate
the parameters of the language model based on the document?. While Ponte
and Croft defined the document language model as a multivariate Bernoulli dis-
tribution [69], it is more common to define the document language model as a
multinomial distribution over a set of terms V , which is commonly referred to as
a unigram language model [35, 60, 75]. A unigram language model M defined
over a set of terms V would have exactly |V | parameters P(wi|M) where P(wi|M)

is the probability of termwi ∈ V in the language modelM and Σ|V |
i=1P(wi|M) = 1.

Under the multinomial assumption, given a query Q = {q1, q2, .., qm}, the
query likelihood of document D is equal to:

P(Q|D) =

m∏
i=1

P(qi|D) (3.2)

Our ranking problem now boils down to estimating the parameters of the lan-
guage model of documentD (i.e., P(wi|D) for every termwi ∈ V). In order to do
so, we assume that the document is a sample of its language model and estimate
the probability P(wi|D) using a maximum-likelihood estimator as follows:

P(wi|D) =
c(wi;D)

|D|
(3.3)

where c(wi;D) is the frequency of termwi inD and |D| is the length of document
D (i.e., the total frequencies of all terms in D).

Using the above equation, the query likelihood of document D can be com-
puted. However, one problem with this maximum-likelihood estimator is that
terms that do not appear in document D would get a zero probability, making
all documents that do not contain all terms in the query Q have zero likelihood
p(Q|D). This is clearly undesirable. More importantly, since a document is a
very small sample for our model, the maximum-likelihood estimate is gener-
ally not accurate (what is known as overfitting). So it is important to smooth
the maximum-likelihood estimator so that we do not assign zero probabilities to
terms that do not appear in the document and thus improve the accuracy of the
estimated language model in general.

One way to do so is interpolating the maximum-likelihood estimate with a
background language model estimated using the entire collection:

P(wi|D) = α
c(wi;D)

|D|
+ (1− α)P(wi|C) (3.4)

31

Chapter 3. Triple-Pattern Search

where p(wi|C) is a collection (background) language model estimated based on
word counts in the entire collection and α ∈ [0, 1] is a smoothing parameter.

Kullback-Leibler Divergence Model

Rather than estimating the probability of generating the query from the docu-
ment language model (as in the query likelihood model), both the query and the
document can be viewed as samples from two different language models and
the similarity between these two language models can be employed for ranking.
In 2001, Lafferty and Zhai [52] introduce a risk minimization framework for in-
formation retrieval. One incarnation of their framework is to compute the score
of a document with respect to a query by the Kullback-Leibler (KL) divergence
between their respective language models which is defined as follows.

Definition 3.12 : Kullback-Leibler Divergence
Given two probability distributions Q and D which are defined over the set of terms V ,
the Kullback-Leibler divergence between the two, denoted by KL(Q||D), is computed as
follows:

KL(Q||D) =
∑
w∈V

P(w|Q)log
P(w|Q)

P(w|D)
(3.5)

The KL divergence is an asymmetric, information-theoretic measure of how dif-
ferent two probability distributions are. We thus set the score of document D
with respect to Q as follows:

S(Q,D) = KL(Q||D) (3.6)

The documents are then ranked in ascending order of their scores. Again, the
ranking problem here boils down to estimating the parameters of the language
models of the query and the document (i.e., P(w|Q) and P(w|D) for each term
w ∈ V). The probabilities P(w|Q) and P(w|D) can be estimated using a maximum-
likelihood estimator as described in Equation 3.3, where we assume that the
query language model and the document language model are both multinomial
distributions over the set of terms V . Furthermore, we can also smooth the doc-
ument language using a background language model as described in Equation
3.11. In such case, it can be easily shown that the ranking achieved using the KL
divergence framework is equivalent to that achieved using the query likelihood

32

3.2. Ranking Model

model. However, in contrast to the query likelihood model, the KL divergence
approach has the advantage that there is an explicit query language model that is
estimated using the query. This enables us to extend this query language model
to incorporate additional information such as relevance feedback for instance.

3.2.3. Language-Model-Based Ranking for Triple-Pattern
Search

Our ranking model for triple-pattern queries is based on the Kullback-Leibler
divergence framework and assumes there exists a language model for the query
Q and a language model for each query result R. The results are ranked in in-
creasing order of the KL divergence between the query language model and the
result language model. The KL divergence between the two gives a measure of
relevance of Rwith respect to Q.

We make two distinctions in our setting as compared to traditional keyword
queries on documents. First, there is no notion of a document in our setting.
Instead, we have a large knowledge base of triples from which results are con-
structed at query time as tuples of triples that instantiate the query triple pat-
terns and satisfy the query join and keyword conditions.

Second, queries are made up of triple patterns, while results are made up
of triples. A probability distribution over triple patterns is incomparable to a
probability distribution over triples. We need to overcome this vocabulary gap in
order to compare the query and result language models.

Query Language Model

Our ranking model assumes there exist three types of query-related language
models: 1) an overall query language model, 2) a triple-pattern language model
and 3) a triple-pattern-keyword pair language model. We define each one of
these language models next, and then show how the parameters of these three
types of language models can be estimated.

Definition 3.13 : Query Language Model
The language model of a query Q = (q1, q2, ..., qn), where qi is a triple pattern, is a

probability distribution over all tuples of n triples of the form T = (t1, ..., tn) where
ti ∈ KB is a triple. The language model of queryQ consists of |KB|n parameters P(T |Q)

33

Chapter 3. Triple-Pattern Search

where |KB| is the total number of triples in the knowledge base KB. The parameter
P(T |Q) denotes the probability of tuple T in the query language model.

Definition 3.14 : Triple-Pattern Language Model
The language model of a triple pattern q is a probability distribution over all triples
t ∈ KB. The language model of triple pattern q consists of |KB| parameters P(t|q)
where |KB| is the total number of triples in the knowledge base KB. The parameter
P(t|q) denotes the probability of triple t in the language model of triple pattern q.

Definition 3.15 : Triple-Pattern-Keyword Language Model
The language model of a triple pattern q and a keyword w is a probability distribution

over all triples t ∈ KB. The language model of triple pattern q and keyword w consists
of |KB| parameters P(t|q,w) where |KB| is the total number of triples in the knowledge
base KB. The parameter P(t|q,w) denotes the probability of triple t in the language
model of triple-pattern q and keyword w.

Estimating the Language Models. Given a query Q = (q1, ..., qn) where qi
is a triple pattern, the probability P(T |Q) of tuple T = (t1, t2, ..., tn) in the query
language model is estimated as follows (assuming independence between the
triples):

P(T |Q) =

n∏
i=1

P(ti|qi) (3.7)

where P(ti|qi) is the probability of triple ti in the language model of triple pat-
tern qi. The probability P(ti|qi) can be estimated in two ways, depending on
whether qi is augmented with keywords or not.

In case q is not augmented with any keywords, the probability P(ti|q) can
be estimated as follows. Let q̂i denote the set of instantiations of qi(i.e., the
set of triples that instantiate triple pattern qi in the knowledge base KB). The
probability P(ti|qi) is set to:

P(ti|qi) =

c(ti)∑
t∈q̂i c(t)

if ti ∈ q̂i

0 otherwise
(3.8)

where c(t) is the witness count of triple t.

34

3.2. Ranking Model

In case qi is augmented with keywords w1, w2, ..., wm, the probability P(ti|qi)
is estimated as follows (assuming independence between the keywordsw1, w2, .., wm):

P(ti|qi) =

m∏
j=1

P(ti|qi, wj) (3.9)

where P(ti|qi, wj) is the probability of triple ti in the language model of triple-
pattern qi and keyword wj which in turn can be estimated as follows. Let q̂i
denote the set of instantiations of qi. The probability P(ti|qi, wj) is set to:

P(ti|qi, wj) =

c(ti;wj)∑
t∈q̂i c(t;wj)

if ti ∈ q̂i

0 otherwise
(3.10)

where c(t;w) is the witness count for the triple-keyword pair (t,w).

Note that using Equation 3.9, the probability of a triple ti in the language
model of triple pattern qi is estimated as the product of the probabilities of the
triple ti in the language models of the triple pattern qi and keywordsw1, w2, ..., wj
(a language model corresponding to each (qi, wj) pair). These probabilities are
estimated according to Equation 3.10. This would mean that P(ti|qi) would be
zero if c(ti;wj) is zero for any keyword wj. To interpret keywords as disjunctive,
we need to smooth the language model of the triple pattern qi and keyword wj
which can be done as follows. Given a triple pattern qi and a keyword wj, the
smoothed probability of triple t in the language model of triple-pattern qi and
keyword wj is set to:

P(ti|qi, wj) =

{
α

c(ti;wj)∑
t∈q̂i

c(t;wj)
+ (1− α) c(ti)∑

t∈q̂i
c(t)

if ti ∈ q̂i
0 otherwise

(3.11)

where c(t;w) is the witness count of the triple-keyword pair (t,w), c(t) is the
witness count of triple t and α is a smoothing parameter. The above linear in-
terpolation smoothing of the probability of a triple t in the language model of
a triple pattern q and keyword w ensures that all triples that instantiate triple
pattern qwould have non-zero probabilities even if they are not associated with
any of the keywords specified in the triple pattern. This is in contrast to triples
that do not instantiate the triple pattern q which would all have zero probabili-
ties.

35

Chapter 3. Triple-Pattern Search

Query Language Model Properties . Our estimation method for the query
language model relies on the witness count c(t) of a triple t and the witness
count c(t;w) of a triple t and keyword w as can be seen in Equation 3.8 and
Equation 3.10. These witness counts can be seen as term frequencies (tf in IR
jargon) for triples. The higher such values are, the higher the probability of a
triple t in the corresponding language model. The witness counts are normal-
ized using the sum of witness counts of all triples that instantiate a triple pattern
(denominators in Equation 3.8 and Equation 3.10). These normalizations act as
a weighting component that demotes triple patterns that have many instanti-
ations or triple patterns whose instantiations’ sum of witness counts are very
high (i.e., the bigger the sum of witness counts of the instantiations of a triple
pattern is, the smaller the probability of a triple t that instantiates this pattern
is). This might be seen as a counter part to the inverse-document frequency (idf)
in traditional IR. While this does not make a difference for the case of triple pat-
terns only since triple patterns in a query are assumed to be conjunctive and thus
every result tuple must contain triples that instantiates all the triple patterns in
the query, the weighting is in particular very appealing for the case of keyword-
augmented triple patterns which are considered to be disjunctive. This means
that a result tuple that matches a highly weighted keyword would have a high
probability in the query language model as we show in the following examples.

Query Language Model Examples. Consider running the following query
Q = (q1, q2) with two triple patterns asking for Australian actors and their
movies against a small knowledge base about movies:

q1 : ?a bornIn Australia

q2 : ?a actedIn ?m

Table 3.4 shows the list of triples that instantiate triple pattern q1 and their
witness counts. Similarly, Table 3.5 shows the list of triples that instantiate triple
pattern q2 and their witness counts.

Consider the tuple T = (t1, t6) which is composed of the following two triples

t1 : Mel Gibson bornIn Australia

t6 : Mel Gibson actedIn Braveheart

36

3.2. Ranking Model

Triple t c(t)
t1 Mel Gibson bornIn Australia 40
t2 Nicole Kidman bornIn Australia 30
t3 Heath Ledger bornIn Australia 20
t4 Russel Crow bornIn Australia 10

Σc(t) 100

Table 3.4.: The instantiation list of triple pattern q1 : ?a bornIn Australia

Triple t c(t)
t5 Tom Hanks actedIn Forest Gump 70
t6 Mel Gibson actedIn Braveheart 40
t7 Nicole Kidman actedIn The Others 20
t8 George Clooney actedIn Syriana 10
t9 Julia Roberts actedIn Pretty Woman 30
t10 Heath Ledger actedIn Brokeback Mountain 10
t11 Russel Crow actedIn Gladiator 20

Σc(t) 200

Table 3.5.: The instantiation list of triple pattern q2 : ?a actedIn ?m

The probability P(T |Q) of tuple T in the language model of queryQ is computed
according to Equation 3.7 as follows:

P(T |Q) = P(t1|q1).P(t6|q2)

In turn, P(t1|q1) and P(t6|q2) are computed according to Equation 3.8 as fol-
lows:

P(t1|q1) =
c(t1)

Σt∈q̂1c(t)
=
40

100
= 0.4

and
P(t6|q2) =

c(t6)

Σt∈q̂2c(t)
=
40

200
= 0.2

Thus, even though the witness count of triple t6 is the same as that of triple
t1, the probability of t6 in the language model of triple pattern q2 is smaller than
that of triple t1 in the language model of triple pattern q1. This is due to the

37

Chapter 3. Triple-Pattern Search

Triple t c(t; dead)

t5 Tom Hanks actedIn Forest Gump 2
t6 Mel Gibson actedIn Braveheart 5
t7 Nicole Kidman actedIn The Others 10
t8 George Clooney actedIn Syriana 3
t9 Julia Roberts actedIn Pretty Woman 0
t10 Heath Ledger actedIn Brokeback Mountain 0
t11 Russel Crow actedIn Gladiator 0

Σc(t; dead) 20

Table 3.6.: The instantiation list of triple pattern q2 : ?a actedIn ?m with the
count of witnesses containing the keyword dead

fact that the sum of witness counts for triples that instantiate pattern q2 is bigger
than sum of witness counts for triples that instantiate pattern q1. This in turn
means that triples that instantiate triple pattern q1 (which might be viewed as
more exotic) would be given a higher weight than those that instantiate triple
pattern q2.

Finally, the probability of our result tuple T = (t1, t6) in the language model
of query Q is equal to:

P(T |Q) = 0.4 ∗ 0.2 = 0.08

For keyword-augmented queries, the query language model can be estimated
in a similar way. For example, Consider augmenting our example query with
the keywords dead people to find Australian actors that acted in movies that have
something to do with dead people:

q1 : ?a bornIn Australia

q2 : ?a actedIn ?m dead people

Table 3.6 shows the list of triples that instantiate triple pattern q2 and for each
such triple, the count of witnesses that contain the keyword dead. Similarly, Table
3.7 shows the list of triples that instantiate triple pattern q2 and the count of
witnesses of such triples that contain the keyword people.

Consider the tuple T = (t1, t6) which is composed of the following two triples

38

3.2. Ranking Model

Triple t c(t; people)

t5 Tom Hanks actedIn Forest Gump 30
t6 Mel Gibson actedIn Braveheart 10
t7 Nicole Kidman actedIn The Others 8
t8 George Clooney actedIn Syriana 18
t9 Julia Roberts actedIn Pretty Woman 14
t10 Heath Ledger actedIn Brokeback Mountain 10
t11 Russel Crow actedIn Gladiator 10

Σc(t; people) 100

Table 3.7.: The instantiation list of triple pattern q2 : ?a actedIn ?m with the
count of witnesses containing the keyword people

t1 : Mel Gibson bornIn Australia

t6 : Mel Gibson actedIn Braveheart

The probability P(T |Q) of tuple T in the language model of queryQ is computed
according to Equation 3.7 as follows:

P(T |Q) = P(t1|q1).P(t6|q2)

As explained before, P(t1|q1) is computed according to Equation 3.8 as fol-
lows:

P(t1|q1) =
c(t1)

Σt∈q̂1c(t)
=
40

100
= 0.4

Since q2 is augmented with two keywords dead and people, P(t6|q2) is computed
according to Equation 3.9 as follows:

P(t6|q2) = P(t6|q2, dead).P(t6|q2, people)

P(t6|q2, dead) is computed according to Equation 3.10 (omitting smoothing for
simplicity) as follows:

P(t6|q2, dead) =
c(t6; dead)

Σt∈q̂2c(t; dead)
=
5

20
= 0.25

Similarly, P(t6|q2, people) is computed according to Equation 3.10 as follows:

P(t6|q2, people) =
c(t6; people)

Σt∈q̂2c(t; people)
=
10

100
= 0.1

39

Chapter 3. Triple-Pattern Search

That is, even though the count of witnesses for triple t6 that contain the key-
word people is twice as much as those that contain the keyword dead, the proba-
bility P(t6|q2, people) is smaller than P(t6|q2, dead). This is again due the fact that
the sum of witness counts for triples that instantiate pattern q2 and contain the
keyword people is bigger than the sum of witness counts for triples that instan-
tiate pattern q2 and contain keyword dead. This in turn means that triples that
instantiate triple pattern q2 and whose text snippets contain the keyword dead

(which might be viewed as less frequent in the knowledge base) would be given
a higher weight than those whose text snippets contain the keyword people.

Finally, the probability of triple t6 in the language model of triple pattern q2
would be equal to:

P(t6|q2) = 0.1 ∗ 0.25 = 0.025

and the probability of the whole tuple T = (t1, t2) in the language model of
query Q can thus be computed as follows:

P(T |Q) = 0.4 ∗ 0.025 = 0.01

Result Language Model

Similar to the case of queries, we assume there exists a language model for each
query result which is defined as follows.

Definition 3.16 : Result Language Model
Given a query Q = (q1, q2, ..., qn), the language model of a result R is a probability

distribution over all tuples of n triples of the form T = (t1, ..., tn) where ti is a triple.
The language model of result R consists of |KB|n parameters P(T |R) where |KB| is the
total number of triples in the knowledge base KB. The parameter P(T |R) denotes the
probability of tuple T in the result language model.

Estimating the Result Language Model. The probability P(T |R) of a tuple T
in the language model of result R is estimated as follows:

P(T |R) =
c(T, R)

|R|
(3.12)

where c(T |R) is the number of times tuple T occurs in result R and |R| is the
length of result R (i.e., total number of occurrence of all tuples in R). Now, recall

40

3.2. Ranking Model

that given a query Q = (q1, q2, ..., qn) with n triple patterns qi, a result R is
a tuple TR = (t1, t2, ..., tn) consisting of n triples ti such that ti instantiates the
triple pattern qi and the triples in TR satisfy the query join conditions denoted
by using the same variable in more than one triple pattern.

That is, each result Rwould contain only a single tuple TR. Thus, the probabil-
ity P(T |R) of tuple T in the language model of result R would be 1 if T = TR and
0 otherwise. To avoid this overfitting in the estimation of the tuple probabilities
in the result language model, we utilize smoothing as follows:

P(T |R) = β
c(T, R)

|R|
+ (1− β)P(T |C) (3.13)

where P(T |C) is the probability of tuple T in the collection (background) lan-
guage model and the parameter β is a smoothing parameter. The probability
P(T |C) of tuple T in the collection language model could be estimated in various
ways. For example, we could assume a uniform distribution over all tuples of n
triples, in which case the probability P(T |C) would be the same for every tuple.
We could also assume independence between the triples constituting the tuple
T as follows:

P(T |C) =

n∏
i=1

P(ti|C) (3.14)

P(ti|C) can then be estimated using the witness count of the triple t with re-
spect to the whole knowledge base as follows:

P(ti|C) =
c(ti)∑
t∈KB c(t)

(3.15)

where c(t) is the witness count of triple t.

Result Ranking

Given a query Q = (q1, q2, ..., qn) and a result R consisting of a tuple TR, we set
the score of the result with respect to the query as the KL divergence between
the language model of query Q and the language model of result R. The KL
divergence was defined in Subsection 3.2.2. The KL divergence between the
query and a result language model is computed as follows:

S(Q,R) = KL(Q||R) =

|KB|n∑
i=1

P(Ti|Q)log
P(Ti|Q)

P(Ti|R)
(3.16)

41

Chapter 3. Triple-Pattern Search

Rank ?a bornIn Australia S(Q,R)

?a actedIn ?m

1 Mel Gibson bornIn Australia 0.08
Mel Gibson actedIn Braveheart

2 Nicole Kidman bornIn Australia 0.03
Nicole Kidman actedIn The Others

3 Heath Ledger bornIn Australia 0.01
Heath Ledger actedIn Brokeback Mountain

4 Russel Crow bornIn Australia 0.01
Russel Crow actedIn Gladiator

Table 3.8.: The ranked list of results for an example query

The results are then returned to the user in ascending order of their scores. The
above computation involves a summation over all tuples of n triples, which are
the terms the query and result language models are defined on. In Appendix A,
we show that:

S(Q,R) ∝ −P(TR|Q)log(1+
β

(1− β)P(TR|C)
) (3.17)

where TR is the tuple constituting result R. Furthermore, if we assume that the
background language model is uniform over all tuples, we have:

S(Q,R) ∝ −P(TR|Q) (3.18)

That is, we can now rank the query results in descending order of the proba-
bilities of their tuples in the query language model P(TR|Q) as we show in the
following examples.

Result Ranking Examples. Consider the following queryQ = (q1, q2) with 2
triple patterns asking for Australian actors and their movies:

q1 : ?a bornIn Australia

q2 : ?a actedIn ?m

Table 3.4 shows the list of triples that instantiate triple pattern q1 and their wit-
ness counts. Similarly, Table 3.5 shows the list of triples that instantiate triple

42

3.2. Ranking Model

Rank ?a bornIn Australia S(Q,R)

?a actedIn ?m dead people

1 Nicole Kidman bornIn Australia 0.012
Nicole Kidman actedIn The Others

2 Mel Gibson bornIn Australia 0.01
Mel Gibson actedIn Braveheart

3 Heath Ledger bornIn Australia 0
Heath Ledger actedIn Brokeback Mountain

4 Russel Crow bornIn Australia 0
Russel Crow actedIn Gladiator

Table 3.9.: The ranked list of results for an example query

pattern q2 and their witness counts. Table 3.8 shows all results which consist
of tuples of 2 triples instantiating patterns q1 and q2 and satisfying the query
join condition (i.e., the subject of the first triple is the same as that of the second
triple). Next to each result R we show the score of each result S(Q,R) which is
computed as the probability of the result tuple in the query language model.

As another example, consider the keyword-augmented query to find Aus-
tralian actors that acted in movies that have something to do with dead people:

q1 : ?a bornIn Australia

q2 : ?a actedIn ?m dead people

Table 3.6 shows the list of triples that instantiate triple pattern q2 and for each
such triple, the count of witnesses that contain the keyword dead. Similarly, Table
3.7 shows the list of triples that instantiate triple pattern q2 and the count of
witnesses of such triples that contain the keyword people. Table 3.9 shows all
results which consist of tuples of 2 triples instantiating patterns q1 and q2 and
satisfying the query join conditions. Next to each result R we show the score of
each result S(Q,R) which is computed as the probability of the result tuple in
the query language model (without smoothing).

43

Chapter 3. Triple-Pattern Search

3.2.4. Query Relaxation

Even though triple-pattern queries allow users to search RDF knowledge bases
in a very precise manner, they often lack flexibility on the result retrieval side.
Recall that a query result is a tuple of triples that instantiate the query triple pat-
terns. This instantiation is assumed to be exact. Allowing approximate pattern-
instantiation can improve the recall of such queries and can alleviate the prob-
lem of ”too few results”. For example, consider the following query consisting
of 2 triple patterns

?d hasWonPrize Academy Award for Best Director

?d directed ?m

The above query asks for directors that have won the Academy Award for
Best Director, and movies they directed. Directors that were nominated for an
Academy Award for Best Director or directors that have won a Golden-Globe
Award for Best Director and movies they directed are all potentially-relevant re-
sults to the original query. To retrieve such results, relaxed versions of the given
query can be issued, in addition to the original query, and their results can be
combined with the original query results before returning them to the user that
issued the query. For example, the following relaxed query

?d hasWonPrize ?x

?d directed ?m

asks for directors or actors who have won any award, and movies they directed
and in which they also acted. The above query is a relaxed version of the original
example query, where the object of the first triple pattern is replaced with the
variable ?x.

We start by explaining how, given a triple-pattern query, a set of relaxed
queries can be generated. We then explain how our ranking model is extended
to handle query relaxation in order to provide a ranked list of exact and approx-
imate query results.

Generating Relaxed Queries

A relaxed query is generated by relaxing one or more triple pattern. In turn, a
triple pattern is relaxed by replacing one or more of the constants (i.e., a URI or
a literal) specified in the triple pattern with a variable.

44

3.2. Ranking Model

?d hasWonPrize Academy Award for Best Director

?d directed ?m

?d hasWonPrize ?x

?d directed ?m

?d ?x Academy Award for Best Director

?d directed ?m

?d ?x ?y

?d directed ?m

?d hasWonPrize Academy Award for Best Director

?d ?x ?m

?d hasWonPrize ?x

?d ?y ?m

?d ?x Academy Award for Best Director

?d ?y ?m

?d ?x ?y

?d ?z ?m

Table 3.10.: Relaxed queries for a two triple-pattern query

Definition 3.17 : Relaxed Query
Given a triple-pattern queryQ = (q1, q2, ..., qn) where qi is a triple pattern, letVAR(Q)

be the set of variables that appear in Q. Let VARi ⊂ VAR be a set of infinite variables
corresponding to triple pattern qi such that VAR1, VAR2, ..., VARn are all pairwise dis-
joint and ∀ 1 ≤ i ≤ n,VARi ∩ VAR(Q) = φ. Let CONST(qi) be the set of constants
specified in triple pattern qi. Let r(qi) be the set of relaxed triple patterns obtained by
replacing one or more constants consti ∈ CONST(qi) with a variable vari ∈ VARi.
The set of all relaxed queries R(Q) is then: {r(q1)∪{q1}×r(q2)∪{q2}×...×r(qn)∪{qn}}.

Table 3.10 shows all possible relaxed queries for an example query.

Extending the Ranking Model

Our ranking model is extended to handle query relaxation as follows. Given
a query Q = (q1, q2, .., qn) where qi is a triple pattern, we rank the results to
the query Q and all its relaxations using the ranking model described in Sub-

45

Chapter 3. Triple-Pattern Search

section 3.2.3. A result R is ranked by computing the KL divergence between the
query language model and the result language model. While the estimation of
the result language model follows the exact same procedure described in Sub-
section 3.2.3, the estimation of the query language model is slightly different
when query relaxation is allowed. We describe next how to estimate the query
language model when relaxations are allowed.

Estimating the Query Language Model with Relaxations. Given a query
Q = (q1, q2, ..., qn) where qi is a triple pattern, we estimate the probability of
a tuple in the language model of query Q as follows (assuming independence
between the triples):

P(T |Q) =

n∏
i=1

P(ti|qi) (3.19)

Now, assume that triple pattern qi has the set of relaxations r(qi) = {q1i , q
2
i , ..., q

mi

i }

where qji is a relaxed triple pattern obtained by replacing one or more constants
in qi with a variable. The probability P(ti|qi) is then estimated as a weighted
sum of the followingm+ 1 probabilities:

P(ti|qi) = λ0P(ti|q
0
i) + λ1P(ti|q

1
i) ++ λmi

P(ti|q
mi

i) (3.20)

where q0i is the original triple pattern qi (i.e., without any relaxations). The prob-
ability P(ti|q

j
i) is the probability of triple ti in the language model of triple pat-

tern qji which is estimated according to Equation 3.8 in case qji is a simple triple
pattern (i.e., not augmented with any keywords) and according to Equation 3.9
in case qji is keyword augmented. The parameters λj weigh the contribution
of each triple pattern (whether the original or its relaxations) and Σmi

j=0λj = 1. In
general, the λjs are set based on the ”closeness” of the relaxed pattern to the orig-
inal one. We thus set the λs based on the number of relaxations in the pattern
(i.e., constants replaced with variables). This means that the larger the number
of relaxations is, the lower the weight is. This implies that the original triple
pattern gets the highest weight, and relaxed patterns with the same number of
relaxations get equal weight.

46

3.3. Related Work

3.3. Related Work

Our work on ranking the results to triple-pattern queries on RDF knowledge
bases is closely related to work on IR over structured data in general. Based
on the types of data and queries handled, we classify prior work on ranking as
follows: i) keyword queries on unstructured data (documents), ii) structured
queries on structured data, iii) keyword queries on structured data, and iv)
keyword-augmented structured queries on structured data.

3.3.1. Keyword Queries on Unstructured Data

The main technique that we use from the standard IR literature is that of lan-
guage models and KL-divergence for result ranking [52]. An overview on lan-
guage models for IR was given in Subsection 3.2.2. In recent years, keyword
querying has been carried over to the extended setting of entity search and rank-
ing, also referred to as expert finding [68, 73]. Here, results are named enti-
ties (e.g., companies, products, publications, authors), but the queries are still
keyword-based. In most of these approaches, entities are assumed to be em-
bedded in textual form in Web pages and other traditional kinds of documents.
For the approaches that treat entities as first-class citizens [66], see Subsection
3.3.3 below. Extended forms of language models and PageRank-inspired spec-
tral analyses are used to rank the entities that qualify for a keyword query. The
key difference to our setting is that our corpus is a single redundancy-free RDF
knowledge base instead of a set of documents, our queries consist of triple pat-
terns rather than keywords and the output is a ranked list of tuples of triples
instead of documents. We have described how to adapt language modeling
techniques for this new setting.

3.3.2. Structured Queries on Structured Data

Ranking for structured queries has been investigated, for restricted forms of SQL
queries. Ranking models have been developed for selection-join queries, us-
ing either tf-idf based models [16] or probabilistic-IR models [11] that leverage
attribute-value statistics in both the database and the workload. It is thus not
possible to use these models for schema-less and redundancy-free RDF data.

47

Chapter 3. Triple-Pattern Search

The closest work to ours is the ranking model in the NAGA system [48].
NAGA introduced a query language similar to SPARQL triple patterns and used
a (simpler) LM for computing a notion of informativeness. But NAGA can rank
only exact matches to a given query; so the ranking is helpful only for the too-
many-answers case but not for the too-few-answers problem. In contrast, our
triple-pattern search framework goes beyond this limited setting by support-
ing query relaxation and introducing the new notion of keyword-augmented
queries.

3.3.3. Keyword Queries on Structured Data

The work on keyword search over structured data can be classified into two
classes. The first class aims at mapping the keyword query into one or more
structured query [82, 58]. In this chapter, we assumed that structured triple-
pattern queries were given and we were interested in ranking the results to such
queries. Inferring a structured query from a given keyword query is a different
problem.

The second class of work on keyword search over structured data tries to di-
rectly retrieve structured results for a given keyword query. The work on key-
word search over XML data for instance falls into this category. XKSearch [88]
returns a set of nodes that contain the query keywords either in their labels or
in the labels of their descendant nodes and have no descendant node that also
contains all keywords. Similarly, XRank [34] returns the set of elements that
contain at least one occurrence of all the query keywords, after excluding the
occurrences of the keywords in sub-elements that already contain all the query
keywords. However, all these techniques assume a tree-structure and thus can
not be directly applied to graph-structured data such as RDF data.

Also, closely related to our work is the language-modeling approach for key-
word search over XML data proposed in [49]. Their ranking is based on the
hierarchal language models proposed in [67]. However, the setting of XML data
is quite different from that of RDF since in XML the retrieval unit is an XML
document (or a subtree). In an RDF setting, we are interested in ranking tuples
of triples that match the user’s query. These tuples are not present in advance
and are computed on the fly during retrieval time, and thus most of the prior
work on XML IR would not apply.

48

3.3. Related Work

Keyword search over graphs which returns a ranked list of Steiner trees [41,
46, 39, 32] (the exception is [55] which returns graphs) deals with the latter prob-
lem of having a predefined retrieval unit. However, the result ranking in each of
the above is based on the structure of the results [41, 47] (usually based on aggre-
gating the number or weights of nodes and edges), or on a combination of these
properties with content-based measures such as tf-idf [14, 39, 55] or language
models [66].

For instance, the BANKS system [41] enables keyword search on graph databases.
Given a keyword query, an answer is a subgraph connecting some set of nodes
that ”cover” the keywords (i.e., match the query keywords). The relevance of an
answer is determined based on a combination of edge weights and node weights
in the answer graph. The importance of an edge depends upon the type of the
edge, i.e., its relationship. Node weights on the other hand represent the static
authority or importance of nodes and are set as a function of the in-degree of
the node. We adopt the BANKS system to the RDF setting in the experiments
section, and compare it to our model.

A closely related work that combines structure and content for ranking is the
language-model-based ranking model in [66] for ranking objects (resources in
an RDF setting). The model assumes that each resource is associated with a set
of records extracted from Web sources. In turn, each record is associated with
a “document”. The relevance of each such “document” (and correspondingly,
the resource associated with it) to a keyword query is estimated using language
models. This model however assumes that the retrieval unit is resources only,
while our ranking model goes beyond this to treat triples in a holistic manner by
taking into account the relationships between the resources. In addition, it as-
sumes the presence of a document associated with each Web Object or resource,
something that we lack in the case of RDF data in general.

3.3.4. Keyword-Augmented Structured Queries on Structured
Data

XML IR like XPath Full-Text search falls into this category [37, 2]. XPath forms
the tree-structured part of the query, while keyword conditions can be specified
at each branch of the tree-pattern query. An important difference between XML
IR and our setting is that in the former, it is possible to have results of differ-

49

Chapter 3. Triple-Pattern Search

ent sizes, while in our case, the results are all of fixed structure. And so, the
structure-based aspects are not as relevant to our setting as the content-based
ones. The content-based ranking is again based either on tf-idf scores [2] or lan-
guage models [37].

3.4. Experimental Evaluation

3.4.1. Setup

To evaluate the effectiveness of our ranking model, we conducted a compre-
hensive user study over two datasets using the Amazon Mechanical Turk ser-
vice1. The first dataset was derived from a subset of the Internet Movie Database
(IMDB) and the second dataset was derived from the LibaryThing community,
which is an online catalog and forum about books. The data from both sources
was automatically parsed and converted into RDF triples. In addition, each
triple was also augmented with keywords derived from the data source it was
extracted from. In particular, for the IMDB dataset, all the terms in the plots, tag-
lines and keywords fields were extracted, stemmed and stored with each triple.
For the LibraryThing dataset, since we did not have enough textual information
about the entities present, we retrieved the books’ Amazon descriptions and the
authors’ Wikipedia pages and used them as sources of keywords for the triples.
An overview of the datasets is given in Table 3.11.

3.4.2. Evaluation Queries

We used 2 different sets of evaluation queries. The first set consisted of simple
triple-pattern queries that ranged from single-pattern queries to multi-pattern
graph queries. We constructed 16 queries for the IMDB dataset and 8 queries
for the LibraryThing dataset. The second set consisted of keyword-augmented
queries. Again, we constructed 16 queries for the IMDB dataset and 8 queries
for the LibraryThing dataset. The queries were triple-pattern queries associated
with one or more keywords. Moreover, for each evaluation query, we generated
relaxed queries by replacing one or more SPO components in one or more triple
patterns with variables. A subset of the evaluation queries used for the IMDB

1http://aws.amazon.com/mturk/

50

3.4. Experimental Evaluation

#entities Some Entity Types #triples Some Relationship Types
IMDB Dataset

59,000 movie, actor 600,000 actedIn, directed
director, producer hasWonPrize, isMarriedTo
country , language produced, hasGenre

LibraryThing Dataset
48,000 book, author 700,000 wrote, friendOf

user, tag hasTag, type

Table 3.11.: Overview of the datasets

dataset is shown in Table 3.12 and in Table 3.13 for the LibraryThing dataset.
Appendix B shows the complete list of evaluation queries used in our study.

3.4.3. Competitors

We compared our approach against a number of competitors that represent state-
of-the-art methods in ranking over structured data. For our approach, we used
the ranking model described in Subsection 3.2.3. Since all triples in our two
datasets were extracted using the same technique (parsing of semistructured
data), we assumed the confidence of all triples to be the same, and we thus
restrict our ranking criteria to the informativeness of the triples only. We com-
puted the informativeness of a triple using its witness count. Since each triple is
present only once in both data sources, we had to estimate the witness count for
the triples. In order to do so, we relied on the Web corpus. We issued queries to
a major search engine, with the subject and object of the triple as keywords, and
set the witness count to the number of hits returned by the search engine.

We compared our model against the work done on web object retrieval (WOR)
in [66] since they use language models in order to rank results. This covers
a class of competitors that deal with term-frequency based ranking of results
to keyword queries on structured data. Second, we compared to the class of
rankers that utilize graph properties to rank results to keyword queries over
structured data by adapting the Steiner weight scoring as used in BANKS [46].
Finally, we compared to the closest work to ours, the language-model-based

51

Chapter 3. Triple-Pattern Search

?m1 producedIn Australia

?m1 hasWonPrize Academy Award

?m hasGenre Thriller

?d directed ?m

?a1 isMarriedTo ?a2

?a1 actedIn ?m

?a2 actedIn ?m

?d hasWonPrize Academy Award for Best Director

?d directed ?m

?a actedIn ?m

?a hasWonPrize Academy Award for Best Actor

?m1 hasGenre Family

?m1 hasProductionYear 1995

?a actedIn ?m1

?m2 hasGenre Comedy

?a actedIn ?m2

?x hasWonPrize Academy Award for Best Actor

?y hasWonPrize Academy Award for Best Actress

?x actedIn ?m love

?y actedIn ?m relationship

?x hasProductionYear 2001

?x hasGenre Romance paris

?x directed ?y true story

?x hasWonPrize ?z

?x hasGenre Comedy wedding

?a actedIn ?m spielberg

?a hasWonPrize ?x

Table 3.12.: A subset of the evaluation queries for the IMDB dataset

ranking in NAGA [48]. We next describe how we adapted each competitor to
rank the results of triple-pattern queries, possibly augmented with keywords,
and how we handle query relaxation whenever applicable.

52

3.4. Experimental Evaluation

?x wrote ?y

?x wrote ?y

?y hasTag Series

?x wrote ?y

?y hasTag Fiction

?x wrote ?z

?z hasTag Non-fiction

?x wrote ?y

?y hasTag 20th Century

?y hasTag Classic

?x wrote ?y

?y type Mystery & Thrillers

?x wrote ?y civil war

?x type Novelists

?y hasTag Movie

?x wrote ?y revolution

?y hasTag Read

?y hasTag Classic

?x wrote ?y

?y hasTag Magic

?y type Fiction award

?x wrote ?y pulitzer

?y hasTag Classic

?x wrote ?y wizard

?y hasTag Sequel

Table 3.13.: A subset of the evaluation queries for the LibraryThing dataset

WOR. The Web Object Retrieval model proposed by Nie et al. [66] is a language-
model-based approach for ranking objects, or resources in an RDF setting. The
model assumes that each resource is associated with a set of records extracted
from Web sources. In turn, each record is associated with a “document”. The rel-
evance of each such “document” (and correspondingly, the resource associated
with it) to a keyword query is estimated using language models.

53

Chapter 3. Triple-Pattern Search

We adapted the WOR model to work in our setting as follows. First, we con-
verted our evaluation queries into terms. We then treated triples as records and
for a given resource X, we created a language model for X using all its triples
{t1, t2, ..., tn} (i.e., all triples in which X is either a subject or an object). Given a
keyword query Q = {q1, q2, ..., qm}, we then ranked the resources according to
their probability of generating the query which is computed as follows:

P(Q|X) =

m∏
i=1

n∑
j=1

1

n
P(qi|Dj) (3.21)

where P(qi|Dj) is the probability of generating the term qi from the language
model of triple tj which was estimated from the documentDj using a maximum-
likelihood estimator.

BANKS. The BANKS system enables keyword search on graph databases. Given
a keyword query, an answer is a subgraph connecting some set of nodes that
”cover” the keywords (i.e., match the query keywords). The relevance of an an-
swer is determined based on a combination of edge weights and node weights
in the answer graph. The importance of an edge depends upon the type of the
edge, i.e., its relationship. Node weights on the other hand represent the static
authority or importance of nodes and are set as a function of the in-degree of the
node.

This directly applies to our setting. Given a triple-pattern query, whether
keyword-augmented or not, we retrieved all the results of the query and all its
relaxations. Recall that each query result is a tuple of triples, which can also be
viewed as a subgraph of the RDF knowledge graph searched. We then ranked
the subgraphs based on a combination of edge weights and node weights as
proposed in their model. That is, the score of a subgraph G = {t1, t2, ..., tn} with
nodes N = {n1, n2, ..., nk} is defined as follows:

score(G) = λ

n∑
i=1

score(ti) + (1− λ)

k∑
i=1

1

k
score(ni) (3.22)

where score(ti) is the score of triple or edge ti which was set as the witness
count of t. The score(ni) on the other hand is the score of node ni which was set
to the in-degree of the node ni. We used log scaling for both scores as advised in

54

3.4. Experimental Evaluation

[41]. Finally, the parameter λ controls the influence of both scores, and was set
based on training queries.

NAGA. In NAGA, the results are ranked based on their likelihood of generat-
ing the query triple patterns. This probability was estimated using 3 different
measures: 1) confidence of the result, 2) compactness of the result and 3) infor-
mativeness of the result. The first component does not play a role in our setting,
since all triples in our datasets were extracted using the same method, and thus
all have the same confidence values. Compactness does not play a role in the
ranking either, since all result are of the same size which is determined by the
number of triple patterns in the query. Thus, the only component that affects the
ranking is the informativeness component which we computed using the wit-
ness counts. The major difference between our ranking method and that of the
NAGA system is that we have explicit query and result language models which
makes our model more general and easier to extend. Moreover, NAGA does not
support keyword-augmented queries or query relaxation.

3.4.4. Metrics

For the user study, we pooled the top-10 ranked results obtained from each tech-
nique (including ours) and presented them to the evaluators in random order.
Each result was evaluated by 7 anonymous users on the Amazon Mechani-
cal Turk service. The evaluators were required to indicate whether the result
was “highly relevant”, “relevant”, “somewhat relevant”, “undecidable”, “irrel-
evant” or “wrong”. To measure the ranking quality of each technique, we used
the Discounted Cumulative Gain (DCG) [45], which is a measure that takes into
consideration the rank of relevant documents and allows the incorporation of
different relevance levels. DCG is defined as follows

DCG(i) =

{
G(1) if i = 1
DCG(i− 1) +G(i)/log(i) otherwise

where i is the rank of the result within the result set, and G(i) is the relevance
level of the result. We set G(i) to a value between 0 and 5 depending on the
evaluator’s assessment. For each result, we averaged the ratings given by all
evaluators and used this as the relevance level for the result. Dividing the ob-

55

Chapter 3. Triple-Pattern Search

Simple queries with relaxation
Dataset OWN WOR BANKS NAGA
IMDB 0.880 0.751 0.777 0.798

LT 0.876 0.787 0.721 0.869

Keyword-augmented queries with relaxation
Dataset OWN WOR BANKS NAGA
IMDB 0.884 0.722 0.782 0.776

LT 0.853 0.835 0.690 0.782

Table 3.14.: Avg. NDCG for all evaluation queries

tained DCG by the DCG of the ideal ranking we obtained a Normalized DCG
(NDCG) which accounts for the variance in performance among queries.

3.4.5. Results

The results of our user evaluation are shown in Table 3.14. The reported NDCG
values were averaged over all evaluation queries. In the case of simple triple-
pattern queries, our ranking model outperforms all competitors for both datasets.
In particular, for the IMDB dataset, we achieved more than 17% significant gain
in NDCG over WOR with a one-tailed paired t-test p-value of 0.047, and more
than 13% over BANKS with a p-value of 0.004. Similarily, for the Librarything
dataset, we achieved more than 11% gain in NDCG over WOR with a p-value of
0.078 and more than 21% over BANKS with a p-value of 0.013.

The effectiveness of our ranking model is especially visible in the case of
keyword-augmented queries. Our ranking approach again outperforms all com-
petitors for both datasets. For example, for the IMDB dataset, We achieved a
gain of more than 22% over WOR with a p-value of 0.020 and 13% over BANKS
with a p-value of 0.002.

Analysis. We outperformed WOR since it supports only entity ranking, and
thus does not take into consideration the relations between the results. It also
supports keyword queries only, and the ranking is based on term-frequencies.
This is in contrast to our approach that treats the triples holistically rather than as

56

3.4. Experimental Evaluation

a set of terms. This indicates that when the objective is to rank tuples of triples,
it is better to treat triples holistically, rather than as a combination of entities.

For BANKS, we adapted their technique to our setting, but their ranking still
depended on the weights of the edges and nodes in the results. Even weighting
edges using our witness counts proved to be insufficient to deliver better quality
results.

Our closest competitor in terms of setting and technique is NAGA. Even though,
NAGA returns a ranked list of result tuples to triple-pattern queries, it supports
neither keyword-augmentation nor query relaxation. Thus, while many simple
queries had similar result lists, when testing our technique as a whole with re-
laxation, NAGA’s techniques failed to give effective results. Similarly, the lack
of explicit support for keywords in NAGA resulted in less effective ranking for
keyword-augmented queries.

Examples. In Table 3.15 we show some example evaluation queries over the
IMDB dataset. For each query, the top-3 results returned by our own approach,
as well as the 3 other competitors are given. We just show the variable mappings
(i.e., the substitutions of the variables in the queries). Next to each result, we
also show the average relevance value given by the evaluators (column titled
Rel.). Recall that each result was given a relevance value between 0 and 5, with
5 corresponding to highly relevant results.

For query Q1 asking for thriller movies, the top-3 results returned by our
approach (OWN) are all well-known movies, as compared to both WOR and
BANKS. The results returned by BANKS are not even thriller movies. This is
due to the fact that even though BANKS ranking can be adapted to approxi-
mate matches, the way approximate and exact matching are later aggregated
only depends on the static properties of the result graphs (i.e., edges and nodes
weights).

The top-3 results returned by NAGA are the same as the ones returned by our
approach since both methods rely on witness counts to estimate ranking proba-
bilities. The superiority of our method over NAGA is more clear in the case of
keyword-augmented queries and in the case where there are not enough exact
matches to the given query. For example, query Q2 (augmented with keywords
“true story”) asks for movies based on a “true story” and directed by an award
winning director. Our top-3 results are all movies based on a true story, which

57

Chapter 3. Triple-Pattern Search

Q1 A thriller movie and its director
Rank OWN Rel. WOR Rel.
1 Batman Begins, Christo-

pher Nolan
4 Deadly Intruder,

John McCauley
3.43

2 Murder!, Alfred Hitchcock 4 Robotix, Wally Burr 3
3 Spider-Man 3, Sam Raimi 3.71 Like Minds, Gregory J. Read 2.71

Rank BANKS Rel. NAGA Rel.
1 -30-, Jack Webb 2.86 Batman Begins, Christo-

pher Nolan
4

2 Kill!, Kihachi Okamoto 2.57 Murder!, Alfred Hitchcock 4
3 If...., Lindsay Anderson 2 Spider-Man 3, Sam Raimi 3.71

Q2 An award winning director who directed a movie that is based on a [true story]
Rank OWN Rel. WOR Rel.
1 Martin Scorsese, Good fellas 3.14 Joel Lamangan, Baban-

gon Ako’t Dudurugin Kita
0

2 Steven Spielberg,
Schindler’s List

3.43 Tracy Seretean, Big Mama 3.14

3 Peter Jackson, Heav-
enly Creatures

3.29 Ben Burtt,
The American Gangster

2.71

Rank BANKS Rel. NAGA Rel.
1 Baz Luhrmann, Australia 3.29 Clint Eastwood , Mil-

lion Dollar Baby
2.86

2 Woody Allen,
Vicky Cristina Barcelona

3.57 Eddie Murphy, Harlem Nights 2.71

3 Christopher Nolan, Bat-
man Begins

2.14 Robert Altman, Health 3

Q3 An academy awarded movie produced in Australia
Rank OWN Rel. BANKS Rel.
1 Secrets of the Heart,

Academy Award, Australia
3.71 Chiranjeevi, Padma Bhushan,

India
1.57

2 Before Sunset,
Academy Award, USA

2.57 Three Seasons, Indepen-
dent Spirit Award, UK

1.43

3 Innerspace, Academy Award,
USA

1.86 Charlie Chaplin,
Academy Honorary Award,
India

2

Table 3.15.: Examples of IMDB queries and top-ranked results
58

3.5. Summary

is not the case in any of the other 3 result lists returned by the competitors.
QueryQ3 illustrates the benefit of query relaxation. The query asks for movies

produced in Australia and that won an academy award. In our dataset, there is
only one exact match to this query, namely, “Secrets of the Heart”. We only
show the top results for the two approaches that support query relaxation: our
own approach and BANKS. We also show the award the movie won and the
production country, which are variable mappings for the relaxed queries. Recall
that a query is relaxed by replacing one of the constants (i.e., either Australia
or Academy Award by a variable). Our method ranks the exact match at the
top, while approximate matches which includes movies which have won an
Academy Award, but were produced in another country, or movies produced in
Australia but have won other awards are ranked lower. This is in contrast to the
list returned by BANKS.

3.5. Summary

In this chapter, we have shown how to concisely search RDF knowledge bases
using triple-pattern queries. We have also shown how we can extend the expres-
siveness of such queries by allowing keyword conditions in combination with
structured triple patterns. To improve the recall of triple-pattern queries, we
proposed a query relaxation paradigm that automatically relaxes one or more
triple patterns in a given triple-pattern query. We presented a general model to
rank the results of triple-pattern queries, whether keyword-augmented or not.
Our model is based on statistical language models and seamlessly handles query
relaxation. We have shown the superiority of our ranking model as compared
to the-state-of-the-art ranking models for queries over structured data through
a comprehensive user study.

59

Chapter 3. Triple-Pattern Search

60

Chapter 4.

Query Reformulation for
Triple-Pattern Search

Query reformulation is the process of modifying a search query to address the
same information need intended by the modified query. Both users and search
engines perform query reformulation to improve the search quality. In this chap-
ter, we study the problem of automatic query reformulation for triple-pattern
search. That is, given a triple-pattern query, we try to generate reformulations
of the given query in order to retrieve more search results without unduly sac-
rificing precision. This can be seen as the counterpart to query expansion in
traditional IR.

4.1. Types of Query Reformulations

Searching RDF knowledge bases is usually done by means of triple-pattern queries.
Recall that a triple-pattern query consists of triple patterns where a triple pattern
is a triple with at least one variable. For example, consider the following query
which consists of four triple patterns, and asks for drama movies that have won
an Academy Award and were directed by directors born in Canada:

?m hasGenre Drama

?m hasWonPrize Academy Award

?d directed ?m

?d wasBornIn Canada

Also recall that we associate with each triple in our knowledge base a text
snippet, which contains any contextual text from the sources the triples were

61

Chapter 4. Query Reformulation for Triple-Pattern Search

extracted from. This way, we can also specify keyword conditions in a keyword-
augmented triple-pattern query. For example, the second triple pattern in the
above query can be augmented with the keywords car accident as follows:

?m hasGenre Drama car accident

?m hasWonPrize Academy Award

?d directed ?m

?d wasBornIn Canada

Given a query with n triple patterns, the result of the query is the set of all
tuples of n triples that instantiate the query triple patterns and satisfy the query
join and keyword conditions. For example, one result for both example queries
is the 4-tuple (i.e., tuple of four triples):

Crash hasGenre Drama

Crash hasWonPrize Academy Award

Paul Haggis directed Crash

Paul Haggis wasBornIn Canada

Due to their specificity, the above example queries would return very few
results even on large movie collections. However, if the system were able to au-
tomatically reformulate the query, say replacing the predicate hasWonPrize in
the second triple pattern with wasNominatedFor, the system would potentially
return a larger number of results.

We present a comprehensive query reformulation framework, where the query
reformulations can be derived from the RDF knowledge base the queries are is-
sued against as well as from external ontological and textual sources. Our frame-
work is based on statistical language models and provides a principled basis for
generating query reformulations. Moreover, we develop a model to holistically
merge and rank the results of the original query and all its reformulations. Au-
tomatic reformulation of queries in a robust way so that they would not suffer
from topic drifts (e.g., overly broad generalizations) is a difficult problem [5].

Our query reformulation framework consists of the following three types of
reformulations:

• Resources specified in triple patterns, whether as subjects, predicates or
objects, can be reformulated by substituting them with related resources.
For example, Academy Award can be replaced by Golden Globe or BAFTA Award.

62

4.2. Query Reformulation Framework

• Resources in triple patterns can be substituted by variables. For example,
Drama can be replaced by ?x to cover arbitrary genres or directed can
be replaced by ?y to retrieve movies with Canadian actors or producers
instead of Canadian directors.

• Triple patterns from the entire query can be entirely removed. For exam-
ple, the triple pattern

?d bornIn Canada

can be entirely removed from the query, thus increasing the number of
movies returned.

4.2. Query Reformulation Framework

Given a query Q = (q1, q2, ..., qn) where qi is a triple pattern, a reformulated
query is generated by reformulating one or more of its triple patterns or by
entirely removing one or more triple patterns. In turn, a triple pattern qi is
reformulated by substituting one or more resources (i.e., entities or relations)
specified in the triple pattern with similar resources or with variables.

In order to do so, we associate with each resource in our knowledge base
KB a list of candidate substitutions. The substitution list of a resource consists of
other resources from the knowledge base ordered by their similarity to the given
resource. In order to do this, we need to compute the similarity between two
given resources X and Y. We first provide a representation model for resources.
We then show how, using this representation model, the similarity between two
resources can be computed and how the substitution lists for the resources in
our knowledge base are constructed. Finally, we explain how these lists can be
used to reformulate triple-pattern queries, possibly augmented with keywords.

4.2.1. Resource Representation Model

For each resource in the knowledge base, we assume there exists a language
model. To construct the resources’ language models, there are at least three differ-
ent sources of information which we can leverage. First, we have the knowledge
base itself – this is also the primary source of information in our case since we

63

Chapter 4. Query Reformulation for Triple-Pattern Search

are processing our queries on the knowledge base. Second, we can make use of
the textual snippets of the triples or any other external textual sources associated
with the triples (for example, the sources from which the triples were extracted).
Third, we can also utilize external ontologies in order to find semantic descrip-
tions of resources.

We first focus on utilizing the knowledge base as the source of information
used to represent a resource and then show how our representation model can
be easily extended to incorporate other information sources.

Before we describe our language model construction procedure for resources,
we make the distinction between two types of resources: entities and relations.
We make this distinction since both types of resources are inherently different.
Entities typically appear as subjects or objects of RDF triples in the knowledge
base whereas relations are predicates that express binary relationships between
the subjects and objects of the triples.

Entity Representation

Vocabulary. To represent entities in our model, we use two types of bags (mul-
tisets) of terms: unigram bags and bigram bags which are defined next.

Definition 4.1 : Unigram Bag
The unigram bag U(X) of entity X is the bag: {s|t = (s, p, o) ∈ KB∧ o = X} ∪ {o|t =

(s, p, o) ∈ KB∧ s = X}.

That is, the unigram bag of entity X is the union of the bag of subjects of all
triples in the knowledge with object X and the bag of objects of all the triples in
the knowledge base with subject X.

Definition 4.2 : Bigram Bag
The bigram bag B(X) of entity X is the bag: {(s, p)|t = (s, p, o) ∈ KB ∧ o = X} ∪
{(p, o)|t = (s, p, o) ∈ KB∧ s = X}.

That is, the bigram bag of entity X is the union of the bag of subject-predicate
pairs of all triples in the knowledge base with objectX and the bag of all predicate-
object pairs of all triples in the knowledge base with subject X.

For example, let the set of all triples whose subject or object is the entity
Woody Allen be:

64

4.2. Query Reformulation Framework

Woody Allen directed Manhattan

Woody Allen directed Match Point

Woody Allen actedIn Scoop

Woody Allen type American Director

Federico Fellini influences Woody Allen

The unigram bag of the entity Woody Allen would then be: {Manhattan,
Match Point, Scoop, American Director, Federico Fellini}. The bigram
bag of the entity Woody Allen would be: {(directed, Manhattan), (directed,
Match Point), (actedIn, Scoop), (type, American Director), (Federico Fellini,
influences)}.

Note that the bigrams usually occur exactly once per entity, but it is still im-
portant to use them for entity representation. We illustrate this via an exam-
ple. Let the bigram bag of a given entity contain the bigram (hasWonPrize,
Academy Award). This is different from the bigram bag containing the bigram
(nominatedFor, Academy Award). This distinction cannot be made if only uni-
grams are considered.

Now, we are ready to explain how we construct language models for all enti-
ties in our knowledge base.

Entity Language Models. We assume there exists three types of language
models for each entity in our knowledge base: a unigram language model, a
bigram language model and an overall entity language model. The three types
of language models are defined next.

Definition 4.3 : Unigram Language Model
Let U(KB) be the union of all the unigram bags of all the entities in the knowledge base
KB. The unigram language model of an entity X is a probability distribution over all
the terms w ∈ U(KB). The unigram language model of resource X has nU parame-
ters PU(w|X) where nU is the number of distinct terms in U(KB) and PU(w|X) is the
probability of the term w in the unigram language model of entity X.

The parameters of the unigram language model of entity X are estimated from
U(X) using a maximum-likelihood estimator which is smoothed by interpolat-
ing with a background (collection) language model estimated from U(KB) as

65

Chapter 4. Query Reformulation for Triple-Pattern Search

follows:
PU(w|X) = α

c(w,U(X))

|U(X)|
+ (1− α)

c(w,U(KB))

|U(KB)|
(4.1)

where c(w,U(X)) and c(w,U(KB)) are the frequencies of occurrences of w in
U(X) andU(KB) respectively, |U(X)| and |U(KB)| are the lengths of the bagsU(X)
andU(KB) respectively (i.e., total frequencies of all unigrams inU(X) andU(KB)
respectively) and α ∈ [0, 1] is a smoothing parameter.

Definition 4.4 : Bigram Language Model
Let B(KB) be the union of all the bigram bags of all the entities in the knowledge base
KB. The bigram language model of an entity X is a probability distribution over all
the terms w ∈ B(KB). The bigram language model of resource X has nB parameters
PB(w|X) which is the probability of the term w in the bigram language model of entity
X.

The parameters of the bigram language model is estimated in an analogous
manner to the unigram language model as follows:

PB(w|X) = α
c(w,B(X))

|B(X)|
+ (1− α)

c(w,B(KB))

|B(KB)|
(4.2)

where c(w,B(X)) and c(w,B(KB)) are the frequencies of occurrences of w in
B(X) and B(KB) respectively, |B(X)| and |B(KB)| are the lengths of the bags B(X)
and B(KB) respectively (i.e., total frequencies of all bigrams in B(X) and B(KB)
respectively) and α ∈ [0, 1] is a smoothing parameter.

Finally, the overall entity language model is defined as follows.

Definition 4.5 : Entity Language Model
The language model of an entity X is a probability distribution over all the terms w ∈
U(KB)∪B(KB). The language model of entity X has nU+nB parameters P(w|X) which
is the probability of the term w in the language model of the entity X.

The probability P(w|X) of a term w in the language model of entity X is esti-
mated as a weighted sum of the following two probabilities:

P(w|X) = µPU(w|X) + (1− µ)PB(w|X) (4.3)

where PU(w|X) is the probability of term w in the unigram language model of X
which is zero ifw /∈ U(KB). Similarly, PB(w|X) is the probability of termw in the
bigram language model of X which is zero if w /∈ B(KB). Finally, the parameter
µweights the two probabilities and should be learnt using training data.

66

4.2. Query Reformulation Framework

Relation Representation

Vocabulary. To represent relations in our model, we use three types of bags
of terms: subject bags, object bags and bigram bags which are defined next. Note
that unlike entities, we make a distinction between subjects and objects since
relations are directional.

Definition 4.6 : Subject Bag
The subject bag S(X) of relation X is the bag: {s|t = (s, p, o) ∈ KB∧ p = X}.

That is, the subject bag of relation X is the bag of subjects of all triples with
predicate X.

Definition 4.7 : Object Bag
The object bag O(X) of relation X is the bag: {o|t = (s, p, o) ∈ KB∧ p = X}.

That is, the object bag of relation X is the bag of objects of all triples with predi-
cate X.

Definition 4.8 : Bigram Bag
The bigram bag B(X) of relation X is the bag: {(s, o)|t = (s, p, o) ∈ KB∧ p = X}.

That is, the bigram bag of relation X is the bag of subject-object pairs of all triples
with predicate X.

For example, let the set of all triples whose predicate is the relation directed

be:

James Cameron directed Aliens

Woody Allen directed Manhattan

Woody Allen directed Match Point

Sam Mendes directed American Beauty

The subject bag of the relation directedwould be: {James Cameron, Woody Allen,
Woody Allen, Sam Mendes}. The object bag of the relation directed would be:
{Aliens, Manhattan, Match Point, American Beauty}. Finally, the bigram bag
of the relation directed would be: {(James Cameron, Aliens) , (Woody Allen,
Manhattan), (Woody Allen, Match Point), (Sam Mendes, American Beauty)}.

Now, we are ready to explain how we construct language models for all rela-
tions in our knowledge base.

67

Chapter 4. Query Reformulation for Triple-Pattern Search

Relation Language Models. We assume there exists four types of language
models for each relation in our knowledge base: a subject language model, an
object language model, a bigram language model and an overall relation lan-
guage model. The four types of language models are defined next.

Definition 4.9 : Subject Language Model
Let S(KB) be the union of all the subject bags of all the relations in the knowledge base
KB. The subject language model of relation X is a probability distribution over all the
termsw ∈ S(KB). The subject language model of relation X has nS parameters PS(w|X)
where nS is the number of distinct terms in S(KB) and PS(w|X) is the probability of term
w in the subject language model of relation X.

The parameters of the subject language model of relation X are estimated from
S(X) using a maximum-likelihood estimator that is smoothed by interpolating
with a background (collection) language model estimated from S(KB) as fol-
lows:

PS(w|X) = α
c(w, S(X))

|S(X)|
+ (1− α)

c(w, S(KB))

|S(KB)|
(4.4)

where c(w, S(X)) and c(w, S(KB)) are the frequencies of occurrences ofw in S(X)
and S(KB) respectively, |S(X)| and |S(KB)| are the lengths of the bags S(X) and
S(KB) respectively (i.e., total frequencies of all unigrams in S(X) and S(KB) re-
spectively) and α ∈ [0, 1] is a smoothing parameter.

Definition 4.10 : Object Language Model
Let O(KB) be the union of all the object bags of all the relations in the knowledge base
KB. The object language model of relation X is a probability distribution over all the
termsw ∈ O(KB). The object language model of relation X has nO parameters PO(w|X)
where nO is the number of distinct terms in O(KB) and PO(w|X) is the probability of
term w in the object language model of relation X.

The parameters of the object language model of relation X are also estimated
from O(X) using a maximum-likelihood estimator after smoothing with a back-
ground language model estimated from O(KB) as follows:

PO(w|X) = α
c(w,O(X))

|O(X)|
+ (1− α)

c(w,O(KB))

|O(KB)|
(4.5)

where c(w,O(X)) and c(w,O(KB)) are the frequencies of occurrences of w in
O(X) and O(KB) respectively, |O(X)| and |O(KB)| are the lengths of the bags

68

4.2. Query Reformulation Framework

O(X) and O(KB) respectively (i.e., total frequencies of all unigrams in O(X) and
O(KB) respectively) and α ∈ [0, 1] is a smoothing parameter.

Definition 4.11 : Bigram Language Model
Let B(KB) be the union of all the bigram bags of all the relations in the knowledge base
KB. The bigram language model of relation X is a probability distribution over all the
termsw ∈ B(KB). The bigram language model of relationX hasnB parameters PB(w|X)
where nB is the number of distinct terms in B(KB) and PB(w|X) is the probability of
term w in the bigram language model of relation X.

Analogous to the estimation procedure for the subject and object language
models, the parameters of the bigram language model are estimated as follows:

PB(w|X) = α
c(w,B(X))

|B(X)|
+ (1− α)

c(w,B(KB))

|B(KB)|
(4.6)

where c(w,B(X)) and c(w,B(KB)) are the frequencies of occurrences of w in
B(X) and B(KB) respectively, |B(X)| and |B(KB)| are the lengths of the bags B(X)
and B(KB) respectively (i.e., total frequencies of all bigrams in B(X) and B(KB)
respectively) and α ∈ [0, 1] is a smoothing parameter.

Finally, for each relation X, we assume there exists an overall language model
which is defined as follows.

Definition 4.12 : Relation Language Model
The language model of a relation X is a probability distribution over the terms w ∈
S(KB) ∪ O(KB) ∪ B(KB). The language model of the relation X has nS + nO + nB

parameters P(w|X) which is the probability of the term w in the language model of the
relation X.

The probability P(w|X) of term w in the language model of relation X is esti-
mated as a weighted sum of the following three probabilities:

P(w|X) = µSPS(w|X) + µOPO(w|X) + (1− µS − µO)PB(w|X) (4.7)

where PS(w|X) is the probability of term w in the subject language model of re-
lation X which is zero if w /∈ S(KB), PO(w|X) is the probability of term w in the
object language model of relation X which is zero if w /∈ O(KB) and PB(w|X) is
the probability of term w in the bigram language model of relation X which is
zero if w /∈ B(KB). Finally, the parameters µS and µO weight the three probabili-
ties and should be learnt using training data.

69

Chapter 4. Query Reformulation for Triple-Pattern Search

Representing Resources Using Multiple Information Sources

The core of our technique lies in constructing a language model for each re-
source X, whether an entity or a relation. That is, given an information source,
it is sufficient to describe: i) the vocabulary the language models are defined
over and ii) how the language models are estimated. We have described above
these two steps when the information source is the RDF knowledge base. It is
easy to extend the same method for other sources. For example, we could make
use of the text snippets the triples are associated with. Then the vocabulary of
the language models will be the set of all keywords in all the text snippets in
the knowledge base and the language models can be estimated from the text
snippets of the triples using maximum-likelihood estimators.

Once individual language models have been estimated for a resource from
each information source, a straight-forward method to combine them into a sin-
gle language model is to use a mixture model of all the language models. The
parameters of the mixture model can be set based on the importance of each
source. Note that this method does not preclude having different subsets of
sources for different resources.

4.2.2. Substitution Lists

We have explained how to construct a language model for each resource X,
whether an entity or a relation. Now, we associate each resource X in our knowl-
edge with a list of candidate substitutions which is defined as follows.

Definition 4.13 : Substitution List
Given a resource X, a substitution list L consists of a set of resources Y which are ordered
by their similarity to the given resource.

We first explain how to compute the similarity between two given resources
X and Y and then explain how we construct the substitution lists.

Similarity between Resources

The similarity between two resources X and Y is computed as the distance be-
tween their language models. Specifically, we use the square-root of the Jensen-
Shannon divergence (JS divergence) between the language models of the two

70

4.2. Query Reformulation Framework

resources X and Y, which is a metric, to measure the distance between the two
resources. The JS divergence is defined as follows.

Definition 4.14 : Jensen-Shannon Divergence
The Jensen-Shannon divergence between two probability distributions P and Q, is a
symmetric measure of the distance between two probability distributions.

Given two probability distributions P andQ, the JS divergence between them is
computed as follows:

JS(P||Q) = KL(P||M) + KL(Q||M) (4.8)

where KL(R||S) is the Kullback-Leibler divergence (KL divergence) between two
probability distributions R and S, which is computed as follows:

KL(R||S) = ΣwR(w) log
R(w)

S(w)
(4.9)

and
M =

1

2
(P +Q) (4.10)

We use the square root of the JS divergence since it is a metric between 0 and
1, and thus it can be used to measure the similarity between two resources.

Substitution Lists Construction

We have so far shown how to represent a resource and how to measure the sim-
ilarity between two resources. To recap, for each resource X in the knowledge
base KB, we construct a language model. The similarity between two resources
X and Y is then computed as the distance between the language models of the
two resources. Specifically, we use the square-root of the Jensen-Shannon diver-
gence (JS divergence) between the two language models. Now, a substitution
list for a resource X is a simply a ranked list of other resources, ranked based
on the square-root of the JS divergence between their language models and the
language model of resource X.

Adding Variables to Substitution Lists

Recall that a triple-pattern query can be reformulated by replacing one of the
resources that appear in it with a variable. We interpret replacing a resource

71

Chapter 4. Query Reformulation for Triple-Pattern Search

Academy Award for Best Actor Thriller

BAFTA Award for Best Actor Crime

Golden Globe Award for Best Actor Drama Horror

var Action

Golden Globe Award for Best Actor Musical or Comedy Mystery

New York Film Critics Circle Award for Best Actor var

directed bornIn

actedIn livesIn

created originatesFrom

produced var

var diedIn

type isCitizenOf

Table 4.1.: Example resources and their top-5 substitutions

with a variable as being equivalent to replacing that resource with any other
resource in the knowledge base.

To handle variable substitutions, we interpret replacing a resource X with a
variable as replacing X with any other resource in the knowledge base. To carry
this out, we construct a special language model for all other resources in the
knowledge base which is a mixture model of all the language models of all the
resources in the knowledge base other than X. The similarity between the re-
source X and a variable is then computed using the square-root of the JS diver-
gence between the language model of the resource X and the special language
model corresponding to all other resources in the knowledge base. Using this
technique, a variable is now simply another entry in the substitution list of re-
source X, .

Table 4.1 shows example resources from an RDF knowledge base about movies.
For each resource, it shows the top-5 substitutions from the resource substitution
list. The entry var represents the variable substitution. As previously explained,
a variable substitution indicates that there were no other specific substitutions
which had a higher similarity to the given resource.

72

4.2. Query Reformulation Framework

Pruning the Substitution Lists

Maintaining a substitution list for every resource in the knowledge base can be
very impractical when these lists are long. Recall that for a given resource, its
substitution list contains all other resources in the knowledge base and their
similarities to the given resource. These lists can thus be extremely long in large
knowledge bases. Pruning such lists is thus crucial to avoid storage bottleneck,
as these lists need to be maintained somewhere in the knowledge base. Pruning
can also be beneficial for efficient query processing since our query reformula-
tion algorithm described next scans such lists to generate reformulated queries,
which would then be evaluated. Pruning can limit the number of such reformu-
lated queries to a reasonable number.

The most basic way to prune substitution lists is to use a pruning threshold.
That is, reduce the list and cut off its tail whenever the similarity score between
the substitution and the resource the list belongs to becomes less than a prede-
fined threshold. In our framework, we use the score of the variable substitution
as the threshold value after which we prune the lists. More precisely, any sub-
stitution ranked below the variable substitution is pruned and removed from
the substitution list. As an example, consider the substitution list for the rela-
tion directed shown in Table 4.1. This substitution list can be pruned after the
fourth entry. This seems to be very intuitive since substitutions beyond the vari-
able substitution can be seen as very dissimilar from the given resource, that
they may as well be ignored and represented by the variable substitution.

4.2.3. Generating Reformulated Queries

Our query reformulation framework associates with each resource, whether an
entity or a relation, a substitution list consisting of substitution candidates and
their similarities to the resource the list belongs to. Recall that a substitution
candidate is either a resource or a variable. The similarity between a resource X
and a substitution Y, is measured as the square root of the JS divergence between
the language models of the two resources X and Y. We now show how, given a
triple-pattern query (possibly augmented with keywords), we can generate a set
of reformulated queries using the substitution lists of resources. A reformulated
query is defined as follows.

73

Chapter 4. Query Reformulation for Triple-Pattern Search

Definition 4.15 : Reformulated Query
Given a queryQ = (q1, q2, ..., qn) where qi is a triple pattern, let VAR(Q) be the set of
variables that appear inQ. Let VARi ⊂ VAR be a set of infinite variables corresponding
to triple pattern qi such that VAR1, VAR2, ..., VARn are all pairwise disjoint and ∀ 1 ≤
i ≤ n,VARi ∩ VAR(Q) = φ. Let RES(qi) be the set of resources that appear in triple
pattern qi. Let r(qi) be the set of reformulated triple patterns obtained by replacing one
or more resources Xi ∈ RES(qi) with another resource Yi ∈ KB or replacing a resource
Xi ∈ RES(qi) with a variable vari ∈ VARi. The set of all reformulated queries R(Q) is
then: {r(q1) ∪ {q1}× r(q2) ∪ {q2}× ...× r(qn) ∪ {qn}}.

We now present a general algorithm that can be used to reformulate both
triple patterns, and overall queries using the substitution lists of the resources.

Query Reformulation Algorithm

Algorithm 1 can be used to reformulate both triple patterns and overall queries.
We consider the case of triple patterns first. Let the triple pattern we want to re-
formulate be q with subject s, predicate p and object o. Let Ls, Lp and Lo be
the substitution lists of s, p and o respectively, where Ls = φ if s is a vari-
able, Lp = φ if p is a variable and Lo = φ if o is a variable. The substitution
list of a resource X contains substitutions Y ordered in ascending order of the
square root of the JS divergence between the resource X and the substitution Y
which we denote by δ(X, Y). Note that δ(X,X) = 0 and we further assume that
δ(var, var) = 0 where var is any variable. To reformulate the triple pattern q,
we call REFORMULATE(s, p, o, Ls, Lp, Lo). Algorithm 1 starts at the first position
of all the substitution lists Ls, Lp and Lo and scans them iteratively generating a
set of new reformulated triple patterns q ′ = (s ′, p ′, o ′) where s ′ = s or s ′ is one
of the substitutions seen so far from list Ls, and similarly for p ′ and o ′. The algo-
rithm uses a priority queue to maintain the list of reformulations generated so
far and at the end of each iteration, it removes the reformulated triple pattern q ′

with the minimum score δ(q, q ′) from the priority queue and adds it to the list
of reformulations L. The score of a reformulated triple pattern q ′ is computed as
follows:

δ(q, q ′) = δ(s, s ′) + δ(p, p ′) + δ(o, o ′) (4.11)

The score δ(q, q ′) represents how close the reformulated triple pattern q ′ is to
the original triple pattern q. The algorithm terminates when all substitution

74

4.2. Query Reformulation Framework

Algorithm 1 REFORMULATE(x1, x2, ..., xn, L1, L2, .., Ln)
1: for (1 ≤ i ≤ n) do
2: Seeni ← {xi}

3: currenti ← 1

4: end for
5: allocate a list of reformulations L
6: L.insert((x1, x2, ..., xn))

7: allocate priority queue Queue
8: while (current1 ≤ |L1| OR current2 ≤ |L2| OR OR currentn ≤ |Ln|) do
9: for (1 ≤ i ≤ n) do

10: if (Li 6= null AND currenti ≤ |Li|) then
11: Seeni ← Seeni ∪ {Li(currenti)}

12: end if
13: end for
14: for ((y1, y2, ..., yn) ∈ Seen1 × Seen2 × ...× Seenn) do
15: δ((x1, x2, ..., xn), (y1, y2, ..., yn)) = Σ

n
i=1δ(xi, yi)

16: if ((y1, y2, ..., yn) /∈ L AND (y1, y2, ..., yn) /∈ Queue) then
17: Queue.insert((y1, y2, ..., yn))
18: end if
19: end for
20: (y1, y2, ..., yn)← Queue.head()
21: L.insert((y1, y2, ..., yn))

22: for (1 ≤ i ≤ n) do
23: if (Li 6= null AND yi = Li(currenti)) then
24: currenti ← currenti + 1

25: end if
26: end for
27: end while
28: while (Queue is not empty) do
29: (y1, y2, ..., yn)← Queue.head()
30: L.insert((Y1, Y2, ..., Yn))

31: end while
32: return L

75

Chapter 4. Query Reformulation for Triple-Pattern Search

directed hasGenre Thriller

actedIn: 0.413 type: 0.497 Crime: 0.466

created: 0.418 var: 0.525 Horror: 0.468

produced: 0.438 Action: 0.477

var: 0.472 Mystery: 0.495

var: 0.503

Table 4.2.: Substitution lists for three resources and the score of each substitution

lists have been completely scanned and all possible triple pattern reformulations
have been generated (i.e., the priority queue is also empty). After the algorithm
terminates, the list Lwill contain all the reformulations of triple pattern q sorted
in ascending order of their scores as computed according to Equation 4.11.

For example, consider the query asking for thriller movies and their directors
which can be expressed using the following 2 triple-pattern query:

?d directed ?m

?m hasGenre Thriller

The above query consists of the following three resources: directed, hasGenre
and Thriller. Table 4.2 shows the pruned substitution lists L1, L2 and L3 for
the three resources directed, hasGenre and Thriller, respectively. For each
resource, the substitution list contains a ranked list of substitutions, which are
pruned after the variable substitution var and the substitution score δ which is
the square root of the JS divergence between the language model of the resource
and the substitution. Table 4.3 shows the reformulated triple patterns gener-
ated using our triple pattern reformulation algorithm and their scores which are
computed according to Equation 4.11. The substitutions in each reformulated
pattern are underlined.

Algorithm 1 can also be used to generate reformulated queries. Given a query
Q = (q1, q2, ..., qn), we first reformulate each triple pattern by executing Algo-
rithm 1. Let the output of executing Algorithm 1 for triple pattern qi be Li. Li
would then contain a list of reformulated triple patterns q0i , q

1
i , .., q

mi

i where q0i
is the original triple pattern qi and the list is sorted based on the reformulations
scores δ(qi, q

j
i). We then call REFORMULATE(q1, q2, ..., qn, L1, L2, ..., Ln) and the

76

4.2. Query Reformulation Framework

?d directed ?m δ ?m hasGenre Thriller δ

?d actedIn ?m 0.413 ?m hasGenre Crime 0.466

?d created ?m 0.418 ?m hasGenre Horror 0.468

?d produced ?m 0.438 ?m hasGenre Action 0.477

?d ?x ?m 0.472 ?m hasGenre Mystery 0.495

?m type Thriller 0.497

?m hasGenre ?y 0.503

?m ?y Thriller 0.525

?m type Crime 0.963

?m type Horror 0.965

?m type Action 0.974

?m ?y Crime 0.991

?m type Mystery 0.992

?m ?y Horror 0.993

?m type ?y 1.000

?m ?y Action 1.002

?m ?y Mystery 1.020

?m ?y ?z 1.028

Table 4.3.: Reformulated triple patterns and their scores

output L would be the list of all reformulated queries Qj = (qj1, q
j
2, ..., q

j
n) of the

queryQ sorted in ascending order of their scores δ(Q,Q ′) which is computed as
follows:

δ(Q,Qj) = Σni=1δ(qi, q
j
i) (4.12)

Table 4.4 shows the top-10 reformulated queries for our example query gener-
ated by running Algorithm 1. We write both triple patterns in one line separated
by a semicolon and next to each reformulated query, the score of the reformu-
lation δ. Note that our algorithm can be used to retrieve only the top-k closest
reformulations (of a triple pattern and/or a query).

Removing Triple Patterns. Recall that one type of reformulation our frame-
work supports is removing one or more triple patterns specified in a query. We
only remove triple patterns that contain only variables. Using our reformulation

77

Chapter 4. Query Reformulation for Triple-Pattern Search

?d directed ?m; ?m hasGenre Thriller δ

?d actedIn ?m; ?m hasGenre Thriller 0.413

?d created ?m; ?m hasGenre Thriller 0.418

?d produced ?m; ?m hasGenre Thriller 0.438

?d directed ?m; ?m hasGenre Crime 0.466

?d directed ?m; ?m hasGenre Horror 0.468

?d ?x ?m; ?m hasGenre Thriller 0.472

?d directed ?m; ?m hasGenre Action 0.477

?d directed ?m; ?m hasGenre Mystery 0.495

?d directed ?m; ?m type Thriller 0.497

?d directed ?m; ?m hasGenre ?x 0.503

Table 4.4.: Top-10 reformulated queries for a given example query and their
scores

algorithm described above, some of the reformulated queries generated would
contain triple patterns consisting of only variables. In such cases, we consider
removing such triple patterns provided that they do not result in a disconnected
set of triple patterns. For example, consider the query asking for comedy movies
with British actors:

?m hasGenre Comedy

?a actedIn ?m

?a bornIn UK

and consider the following reformulated query:

?m hasGenre Comedy

?a ?x ?m

?a bornIn UK

Even though the second triple pattern contains only variables, retaining this pat-
tern in the query is still crucial – it states that ?a is related some how to the movie
?m. Removing this triple pattern from the query would result in a disconnected
query, that asks for comedy movies and actors born in the UK.

Now, consider the following reformulation of the same query:

78

4.2. Query Reformulation Framework

?m hasGenre Comedy

?a actedIn ?m

?a ?x ?y

We can safely remove the third triple pattern in which case the reformulated
query would still be meaningful – find comedy movies and their actors.

Reformulating Keywords. Our query reformulation framework reformulates
queries by replacing resources specified in a triple-pattern query, whether key-
word augmented or not, with similar resources, variables or removing triple
patterns altogether. We did not provide techniques to reformulate the keywords
specified in a keyword-augmented triple-pattern query. There is a wealth of
techniques on query expansion for keyword queries and all these methods can
be easily incorporated or made use of in our framework. For example, each
keyword in our knowledge base can be associated with a set of related key-
words [17] such as conflict for war or new york city for manhattan, etc. Now, we can
extend our query reformulation algorithm to generate reformulated queries so
that in addition to substituting resources in the query, the keywords specified in
the query are also expanded. Note that query expansion for keyword queries
does not necessarily mean adding keywords to the query only, but in principle,
means modifying the query in one way or the other, say by removing keywords
or substituting keywords with similar ones.

As an example, consider the following query consisting of a single keyword-
augmented triple pattern:

?m hasGenre Drama manhattan wedding

We can now generate a set of reformulated queries by substituting the re-
sources hasGenre and Drama with similar ones or variables, or expanding the
keywords manhattan wedding. For example, one such reformulated query can be:

?m hasGenre ?x new york city wedding

The above query is a reformulation of our example query where the resource
Comedy was substituted by the variable ?x and the keyword manhattan was ex-
panded to new york city.

79

Chapter 4. Query Reformulation for Triple-Pattern Search

4.2.4. Executing Reformulated Queries

The reformulated queries generated by our reformulation algorithm can be pre-
sented to the user as query suggestions or they can be executed and their results
merged and ranked in one way or the other. We present two different modes
of execution : an incremental mode and a batch mode. Both execution modes
make use of the ranking model described in Chapter 3 to rank the results of
triple-pattern queries.

Incremental Execution.

Let L = {Q0, Q1, ..., Qk} be the list of query reformulations obtained using our
reformulation algorithm described in the previous subsection, where Q0 is the
original query. In the incremental execution mode, we execute the queriesQj ∈ L
in order of their scores δ(Q0, Qj) which are defined according to Equation 4.12.
That is, we start by executing the original query Q0, retrieve all its results and
rank them according to the ranking model described in Chapter 3. Next, we
execute query Q1, retrieve all its results and rank them according to the same
ranking model, and so on. The final result list would be the set of all unique
results of all queriesQ0, Q1, ..., Qk such that the results of queryQj are all ranked
above the results of query Q(j+1) and the results of each query Qj are ranked
based on the ranking model described in Chapter 3.

Batch Execution. In batch execution mode, we execute the original query
and all its reformulations and merge their results into one unified results set
eliminating duplicates. We then rank the unified result set using the ranking
model described in Chapter 3. Our ranking model assumes there exists a lan-
guage model for the query which is defined as follows. Given a query Q =

(q1, q2, .., qn) where qi is a triple pattern, the language model of query Q is a
probability distribution over all tuples of n triples of the form T = (t1, t2, ..., tn)

where ti is a triple. The probability P(T |Q) of a tuple T in the query language
model is then estimated as follows (assuming independence between the triples):

P(T |Q) =

n∏
i=1

P(ti|qi) (4.13)

80

4.2. Query Reformulation Framework

Now, assume that triple pattern qi has the list of reformulations {q0i , q
1
i , ..., q

mi

i }

where qji is a reformulated triple pattern obtained by our reformulation algo-
rithm (q0i is the original triple pattern). The probability P(ti|qi) is then estimated
as a weighted sum of the followingmi + 1 probabilities:

P(ti|qi) = λ0P(ti|q
0
i) + λ1P(ti|q

1
i) ++ λmi

P(ti|q
mi

i) (4.14)

where P(ti|q
j
i) is the probability of triple ti in the language model of triple pat-

tern qji which was estimated as described in Chapter 3. The parameters λj weigh
the contribution of each triple pattern and we set it as a function of the score of
the reformulation δ(qi, q

j
i) as follows:

λj =
1− δ(qi, q

j
i)

Σmi

j=0(1− δ(qi, q
j
i))

(4.15)

Recall that the smaller δ(qi, q
j
i) is, the closer qji is to the original triple pattern

qi. Also recall that δ(qi, q0i) is equal to 0. This weighting scheme basically gives
higher weights to triples that instantiate reformulated patterns which are closer
to the original triple pattern q. However, triples instantiating a lower-ranked
reformulated triple pattern with sufficiently high scores can have higher proba-
bilities than ones that instantiate a higher-ranked triple patterns.

Once the language model of the triple pattern qi has been estimated, we use
it to compute the probability of a tuple in the query language model. Finally,
to rank the overall results of the original query and all its reformulations, we
assume there exists a language model for each result (the way we estimate the
result language models was explained in Chapter 3). The results are then ranked
in ascending order based on the KL divergence between the query language
model and the result language models.

Note that both the incremental and the batch modes are only two ways in
which we can execute the reformulated queries and present their results to the
user. Additional modes can include a mixture of both modes for instance, or
any other variations. Our result ranking model described in Chapter 3 is general
enough and can support any number of such fine-grained execution modes with
minimal changes.

81

Chapter 4. Query Reformulation for Triple-Pattern Search

4.3. Related Work

In this chapter we presented a framework for reformulating triple-pattern queries,
possibly augmented with keywords. Our framework reformulates queries by
substituting resources that appear in a given query, whether entities or relations,
with similar ones or with variables. Measuring the similarity between resources
is somewhat related to both record linkage [65], and ontology matching [77].
But a key difference is that we are only interested in finding candidate resources
which are close in spirit to a given resource, and not trying to solve the resource
disambiguation problem.

Query reformulation in general has been studied in other contexts such as key-
word queries [17] (more generally called query expansion), XML [3, 54], SQL
[11, 92]. Our setting of RDF and triple patterns is different in being schema-
less (as opposed to relational data) and graph-structured (as opposed to XML
which is mainly tree-structured and supports navigational predicates). For RDF
triple-pattern queries, query reformulation has been addressed to some extent
in [92, 42, 20, 40, 23]. With the exception of [20, 42], the types of reformulations
considered in previous work are limited. For example, [92] considers substitut-
ing relations only, while [40, 23] consider both entity and relation substitutions.
The work in [23], in particular, considers a very limited form of reformulation –
relaxing queries by replacing entities or relations specified in the triple patterns
with variables. Our approach, on the other hand, considers a comprehensive set
of reformulations and in contrast to most other previous approaches, weights
the reformulated queries in terms of the quality of reformulation (i.e., how close
the reformulated queries are to the original query), rather than the number of
substitutions that resulted in the reformulated queries.

In addition, our framework stands out in the way reformulated queries are
generated and executed. While [20, 42, 40] make use of rule-based rewriting,
the approach in [92] and our own approach make use of the data itself to gener-
ate query reformulations. Note that rule-based rewriting requires human input,
while our approach is completely automatic. Also note that our framework is
the only approach that merges the results of the original query and its reformu-
lations in a holistic manner. This allows us to rank results based on both the
relevance of the results, as well as the closeness of the reformulated query to the
original query.

82

4.4. Experimental Evaluation

#entities Example entity types #triples Example relations
LibraryThing Dataset

48,000 book, author 700,000 wrote, hasFriend
user, tag hasTag, type

IMDB Dataset
59,000 movie, actor 600,000 actedIn, directed

director, producer, won, isMarriedTo,
country , language produced, hasGenre

Table 4.5.: Overview of the datasets

4.4. Experimental Evaluation

We evaluated our query reformulation framework using three experiments. The
first one evaluated the quality of the individual resource substitutions and the
second one evaluated the quality of the reformulated queries overall. The third
experiment evaluated the quality of the final query results obtained from the
original query and its reformulations.

4.4.1. Setup

All experiments were conducted over two datasets using the Amazon Mechan-
ical Turk service1. The first dataset was derived from the LibaryThing commu-
nity, which is an online catalog and forum about books. The second dataset was
derived from a subset of the Internet Movie Database (IMDB). The data from
both sources was automatically parsed and converted into RDF triples. In ad-
dition, each triple was also augmented with keywords derived from the data
source it was extracted from. In particular, for the IMDB dataset, all the terms
in the plots, tag-lines and keywords fields were extracted, stemmed and stored
with each triple. For the LibraryThing dataset, since we did not have enough
textual information about the entities present, we retrieved the books’ Amazon
descriptions and the authors’ Wikipedia pages and used them as textual context
for the triples. Table 4.5 gives an overview of the datasets.

1http://aws.amazon.com/mturk/

83

Chapter 4. Query Reformulation for Triple-Pattern Search

LibraryThing Dataset

?b type Nonfiction

?b hasTag Greek

?w type Historian

?w wrote ?b

?b hasTag Memoir

?w wrote ?b

?b hasTag Non-fiction

?b hasTag Pulitzer

?w wrote ?b nobel prize

?b hasTag British Literature

?w wrote ?b civil war

?b hasTag Film

IMDB Dataset

?m hasGenre Comedy

?m hasWonPrize Academy Award

?a hasWonPrize Academy Award for Best Actor

?a originatesFrom New York

?m1 hasGenre Mystery

?m1 hasPredecessor ?m2

?d1 directed ?m1

?d2 directed ?m2

?d directed ?m true story

?d hasWonPrize Academy Award for Best Director

?a actedIn ?m school friends

?a type singer

Table 4.6.: Subset of the evaluation queries

We constructed 40 evaluation queries for each dataset and converted them
into triple-pattern queries. In addition, we constructed 15 keyword-augmented
queries for each dataset, where one or more triple-patterns were augmented
with one or more keywords. Some example queries are shown in Table 4.6. The
complete set of evaluation queries used is listed in Appendix C.

84

4.4. Experimental Evaluation

LibraryThing IMDB

Egypt Non-fiction France Titanic (1997)

Ancient Egypt Politics Italy Atlantic (1929)

Mummies American History Switzerland The Abyss

Egyptian Sociology Spain Titanic (1953)

Cairo Essays West Germany Top Gun

Egyptology History Germany Britannic

Table 4.7.: Example resources and their top-5 substitutions

4.4.2. Quality of Substitution Lists

To evaluate the quality of individual resource substitutions (i.e., how close sub-
stitutions in a resource substitution list are to the resource), we extracted all
unique resources, whether entities or relations, occurring in all evaluation queries.
The total numbers of entities and relations are given in Table 4.8. For each re-
source, the top-5 substitutions were retrieved, excluding the variable substitu-
tion. Recall that a resource substitution list contains a variable substitution entry,
representing substituting the resource with a variable. Also recall that each sub-
stitution is associated with a score representing how close the substitution is to
the resource it is supposed to substitute. The score of a substitution is measured
as the square root of the Jensen-Shannon divergence between the language mod-
els of the resource and the substitution. Table 4.7 shows some example resources
and their top-5 substitutions excluding the variable substitution.

We presented the resource and each substitution to six evaluators and asked
them to assess how closely related the two are on a 3-point scale: 2 correspond-
ing to ”closely related”, 1 corresponding to ”related” and 0 corresponding to
”unrelated”. Table 4.8 shows the results obtained for resource substitutions. For
a given resource, the average rating for each substitution was first computed
and then this rating was averaged over the top-5 substitutions for that resource.
The second row shows the average rating over all individual resource substitu-
tions. The third row shows the Pearson correlation between the average rating
and the scores of the substitutions. We achieved a strong negative correlation
between the score of the substitutions and the average ratings which shows that

85

Chapter 4. Query Reformulation for Triple-Pattern Search

Metric Entities Relations Queries
(0-2) (0-2) (0-3)

1 No. of items 87 15 80

2 Avg. rating 1.228 0.863 1.89

3 Correlation -0.251 -0.431 -0.119

4 Avg. rating for top substitution 1.323 1.058 1.94

5 Avg. rating above variable 1.295 1.292 -

6 Avg. rating below variable 1.007 0.781 -

Table 4.8.: Quality of individual substitutions and query reformulations

the smaller the score of the substitution is, the higher the rating it was assigned
by the evaluators. The fourth row shows the average rating for the top substitu-
tion.

The fifth and sixth rows in Table 4.8 show the average rating for substitutions
that ranked above and below the variable substitution, respectively. Recall that
for each resource, a possible entry in the resource substitution list is a variable as
described in Section 4.2. For those substitutions that were ranked above a vari-
able (i.e., whose JS divergence is less than that of a variable), the average rating
was more than 1.29 for both entities and relations, indicating how close these
substitutions are to the original entity or relation. For those substitutions that
were ranked below a variable, the average rating was less than 1.1 for entities
and 0.8 for relations. This shows that our pruning strategy for substitution lists,
where the lists are pruned after the variable substitution, is indeed effective.

4.4.3. Quality of Query Reformulations

To evaluate the quality of reformulated queries overall, we generated the top-5
reformulated queries for each evaluation query. The reformulated queries were
ranked in ascending order of their scores, which were computed according to
Equation 4.12. We asked six evaluators to assess how close a reformulated query
is to the original one on a 4-point scale: 3 corresponding to ”very-close”, 2 to
”close”, 1 to ”not so close” and 0 corresponding to ”unrelated”.

Table 4.8 also shows the results obtained for query reformulations. For a given

86

4.4. Experimental Evaluation

LibraryThing Dataset
Batch Mode Incremental Mode Baseline Approach

NDCG 0.868 0.920 0.799

Avg. Rating 2.062 2.192 1.827

IMDB Dataset
Batch Mode Incremental Mode Baseline Approach

NDCG 0.880 0.900 0.838

Avg. Rating 1.874 1.928 1.792

Table 4.9.: Quality of results for simple triple-pattern queries

query, the average rating for each reformulated query was first computed and
then this rating was averaged over the top-5 reformulated queries. Again, the
second row shows the average rating over all reformulated queries for a given
query. The third row shows the Pearson correlation between the average rating
and the scores of the reformulated queries. Similar to the case of individual
substitutions, we achieved a strong negative correlation between the scores of
the reformulated queries and the average ratings which shows that the smaller
the score of the reformulated query is, the higher the rating it was assigned
by the evaluators. The fourth row shows the average rating for the top-scored
reformulated query.

4.4.4. Quality of Query Results

We compared our reformulation framework, with its two execution modes, in-
cremental and batch (see Subsection 4.2.4), against a baseline approach outlined
in Chapter 3. The latter generates a set of reformulated queries by relaxing one
or more triple patterns in a given query. A triple pattern is relaxed by replacing
one or more resources (whether an entity or a relation) in the pattern with vari-
ables, and the weights of the relaxed triple patterns are set based on the number
of resources replaced by variables. The relaxed queries are then executed in
batch mode. We used the same ranking model described in Chapter 3 to rank
the results with respect to a query Q for all three techniques.

We pooled the top-10 results from all three approaches and presented them to

87

Chapter 4. Query Reformulation for Triple-Pattern Search

LibraryThing Dataset
Batch Mode Incremental Mode Baseline Approach

NDCG 0.757 0.640 0.566

Avg. Rating 1.985 1.349 0.969

IMDB Dataset
Batch Mode Incremental Mode Baseline Approach

NDCG 0.841 0.755 0.623

Avg. Rating 1.602 1.464 0.922

Table 4.10.: Quality of results for keyword-augmented queries

six evaluators in no particular order. The evaluators were required to assess the
results on a 4-point scale: 3 corresponding to ”highly relevant”, 2 corresponding
to ”relevant”, 1 corresponding to ”somewhat relevant”, and 0 corresponding to
”irrelevant”. To measure the ranking quality of each technique, we used the
Discounted Cumulative Gain (DCG) [45], which is defined as follows

DCG(i) =

{
G(1) if i = 1
DCG(i− 1) +G(i)/log(i) otherwise

and we setG(i) to a value between 0 and 3 depending on the evaluator’s assess-
ment. For each result, we averaged the ratings given by all evaluators and used
this as the relevance level for the result. Dividing the obtained DCG by the DCG
of the ideal ranking we obtained a Normalized DCG (NDCG) which accounts for
the variance in performance among queries.

For simple triple-pattern queries (Table 4.9), the batch-execution mode of our
approach had over 8% improvement in NDCG over the baseline for Library-
Thing and over 5% for IMDB. The incremental-execution mode of our approach
had improvements over 15% for LibraryThing and 7% for IMDB. For the keyword-
augmented queries (Table 4.10), the improvement is much more evident. The
batch-execution mode of our approach outperformed the baseline one with over
33% gain in NDCG for LibraryThing and 21% for IMDB. The incremental-execution
mode of our approach had improvements in NDCG of over 13% for Library-
Thing and over 8% for IMDB.

Note that in the case of keyword-augmented queries, the batch-execution mode
of our approach was preferred by evaluators over the incremental one because

88

4.4. Experimental Evaluation

Rank Result Rating
Q ?b type Science Fiction

?b hasTag Film

Batch Mode
1 Star Trek Insurrection type Science Fiction 2.50

Star Trek Insurrection hasTag Film

2 Blade type Science Fiction 2.83
Blade hasTag Movies

3 Star Wars type Science Fiction 2.00
Star Wars hasTag Made Into Movie

Incremental Mode
1 Star Trek Insurrection type Science Fiction 2.50

Star Trek Insurrection hasTag Film

2 The Last Unicorn type Science Fiction 2.50
The Last Unicorn hasTag Movie/tv

3 The Mists of Avalon type Science Fiction 2.17
The Mists of Avalon hasTag Movie/tv

Baseline Approach
1 Star Trek Insurrection type Science Fiction 2.50

Star Trek Insurrection hasTag Film

2 Helter Skelter type History 0.83
Helter Skelter hasTag Film

3 Fear & Loathing in Vegas type History 1.83
Fear & Loathing in Vegas hasTag Film

Table 4.11.: Top-ranked results for an example triple-pattern query

the keywords play a key role in determining the relevance of a result. Since
the batch-execution mode does not enforce a strict ordering of the results of the
reformulated-queries, it allows results which better match the keyword context
(while matching a lower-ranked reformulated query) to be ranked higher.

In Table 4.11 we show an example query and the top-3 results returned by each
of the three techniques. Next to each result, we show the average rating given by
the evaluators. The resource substitutions are underlined. The example query

89

Chapter 4. Query Reformulation for Triple-Pattern Search

Rank Result Rating
Q ?w wrote ?b civil war

?b hasTag Film

Batch Mode
1 Margaret Mitchell wrote Gone with the Wind 2.57

Gone with the Wind hasTag Made into a Movie

2 Ernest Hemingway wrote For Whom the Bell Tolls 2.64
For Whom the Bell Tolls hasTag Made into Movie/tv

3 Charles Frazier wrote Cold Mountain 2.83
Cold Mountain hasTag Made into Movie

Incremental Mode
1 Ernest Hemingway wrote For Whom the Bell Tolls 2.64

For Whom the Bell Tolls hasTag Made into Movie/tv

2 Aldous Huxley wrote Brave New World 2.12
Brave New World hasTag Made Into Movie/tv

3 George Orwell wrote Nineteen Eighty-four 1.78
Nineteen Eighty-four hasTag Made Into Movie/tv

Baseline Approach
1 J Michael Straczynski wrote Civil War 1.78

Civil War hasTag American

2 Ernest Hemingway wrote For Whom the Bell Tolls 2.36
For Whom the Bell Tolls hasTag Europe

3 Ernest Hemingway wrote A Farewell to Arms 2.00
A Farewell to Arms hasTag World War One

Table 4.12.: Top-ranked results for an example keyword-augmented query

in Table 4.11 asks for science fiction books that have tag Film. There is only
one one such result which is ranked as the top result by all three approaches.
Since the batch-execution mode of our approach ranks the whole set of query
results, it allows for more diversity in terms of substitutions. And so, the batch-
execution mode of our approach returns the more famous and iconic movies,
Blade and Star Wars as the top results compared to The Last Unicorn and
The Mists Of Avalon returned by the incremental mode.

90

4.5. Summary

The query in Table 4.12 shows an example of a keyword-augmented query
which asks for books with the tag Film about a civil war. The top-3 results re-
turned by the batch-execution mode of our approach are all books that were
turned into movies. In addition, all of them are about civil wars. The results
returned by the incremental mode of our approach were also books that were
turned into movies, however only one of them is about a civil war (the first).
For the baseline approach, where the tag Film in the second triple pattern was
substituted by a variable, the results returned are all books about civil wars, or
wars in general, however none of them had a tag related to films.

4.5. Summary

In this chapter we presented a comprehensive query reformulation framework
for triple-pattern queries. Our framework reformulates a given query by substi-
tuting one or more resources that appears in the query with a similar resource, a
variable or removes one or more triple patterns completely. In order to do so, our
framework associates with each resource in the knowledge base a substitution
list consisting of other resources from the same knowledge base. Each substitu-
tion has a score that represents how close the substitution is to the resource it is
supposed to substitute.

To construct the substitution lists we construct a language model for each
resource in the knowledge base. The resource language models can be esti-
mated using multiple information sources including the knowledge base itself.
The similarity between resources is measured as the square root of the Jensen-
Shannon divergence between the language models of the resources. The square
root of the Jensen-Shannon divergence is a metric that can be summed to com-
pute an overall score for the reformulated queries.

In the substitution lists of resources, an entry for the variable substitution (i.e.,
substituting the resource the list belongs to with a variable) is maintained. Fur-
thermore, the substitution lists can be pruned after the variable substitution for
efficient storage and query processing.

Our query framework generates reformulated queries by utilizing the sub-
stitution lists. We presented an algorithm to produce a ranked list of such re-
formulated queries, where the reformulated queries are ranked based on their

91

Chapter 4. Query Reformulation for Triple-Pattern Search

scores, which is computed as a sum of the scores of the individual substitutions
that result in the reformulated query. Finally, we explained how reformulated
queries can be executed along side the original query, and how their results can
be merged with the original query results in order to improve the latter’s recall.
We have backed our framework with experimental evaluation that shows the
effectiveness of our approach of query reformulation for triple-pattern queries.

92

Chapter 5.

Top-k Triple-Pattern Query
Processing

Triple-pattern search, where the queries consist of a set of triple patterns possi-
bly augmented with keywords, and the results are ranked using some relevance-
based criteria is a very effective way to search RDF knowledge bases. In addi-
tion, empowering triple-pattern search with automatic query reformulation can
highly improve the quality of the search results. However, query processing
for triple-pattern search involves joining large sets of triples and then ranking
the resulting tuples. This process of rank-then-join can be very inefficient when
the number of result tuples is large. Moreover, processing of keyword condi-
tions alongside triple patterns and performing automatic query reformulation
impose additional challenges for efficient query processing.

In this chapter, we develop a set of query processing algorithms to efficiently
process triple-pattern queries and their reformulations to retrieve the top-k high-
est scored results, where the results are scored based on the ranking model de-
scribed in Chapter 3. Our algorithms are based on the top-k rank-join algorithm
introduced by Ilyas et al. [43] as well as the basic Fagin’s threshold algorithm
[28]. We start by giving an overview of our query processing framework in Sec-
tion 5.1. We then discuss why a top-k query-processing approach is needed and
explain our top-k query-processing framework in Section 5.2. In Section 5.3, we
explain the data storage and indexing scheme that our top-k query-processing
framework operates on. Finally, we evaluate our framework in Section 5.5.

93

Chapter 5. Top-k Triple-Pattern Query Processing

5.1. Query Processing for Triple-Pattern Search

Our query processing framework handles three types of query processing tasks:
triple-pattern queries, keyword-augmented triple-pattern queries, and query re-
formulation. We explain each task separately in the following.

5.1.1. Triple-Pattern Queries

To search an RDF knowledge base, triple-pattern queries are expressed. For ex-
ample, to find thriller movies and their directors, the following query consisting
of two triple patterns can be issued:

?d directed ?m

?m hasGenre Thriller

Given a query with n triple patterns, the results of the query is the set of all
tuples of n triples that instantiate the query triple patterns and satisfy the query
join conditions denoted by using the same variable in more than one triple pat-
tern. To find such tuples, we need to first retrieve an instantiation list Li for each
triple pattern qi specified in the query which contains all the triples from the
knowledge base that instantiate triple pattern qi. For instance, the instantiation
list of the first triple pattern in our example query would consist of all triples
with predicate directed. Once we have an instantiation list Li for each triple
pattern qi, we need to join them based on the join conditions specified in the
query using some joining strategy. For our example query, a valid result would
be a tuple of two triples T = (t1, t2), such that the first triple t1 ∈ L1, the second
triple t2 ∈ L2 and the object of t1 is the same as the subject of t2. One example
result for our example query above is the 2-tuple (i.e., tuple of two triples):

Quentin Tarantino directed Pulp Fiction

Pulp Fiction hasGenre Thriller

Moreover, we would like to also provide a ranked list of query results rather
than a set of unranked matches. This means that after joining all the triples
from the different instantiation lists, we must rank the joined tuples using some
ranking strategy. For example, the result tuples can be ranked using our ranking
model for triple-pattern queries described in Chapter 3.

94

5.1. Query Processing for Triple-Pattern Search

5.1.2. Keyword-Augmented Triple-Pattern Queries

In addition to triple-pattern queries, our framework also processes keyword-
augmented triple-pattern queries. A keyword augmented triple-pattern query
is a triple-pattern query where one or more of the triple patterns are augmented
with one or more keywords. For example, the following keyword-augmented
query can be issued to retrieve thriller movies about serial killers and their di-
rectors:

?d directed ?m

?m hasGenre Thriller serial killer

To be able to process keyword-augmented triple-pattern queries, we augment
each triple in our knowledge base with a text snippet, which contains any con-
textual text from the sources the triples were extracted from. This way, we
can also process the keywords specified in a keyword-augmented triple-pattern
query. The results of a keyword-augmented query consisting of n triple patterns
is the set of all tuples of n triples that instantiate the query triple patterns, satisfy
the query join conditions and whose text snippets match the keywords specified
in the query. To find such tuples, we need to retrieve an instantiation list Li for
each triple pattern qi specified in the query which contains all the triples from
the knowledge base that instantiate triple pattern qi and whose text snippets
match the keywords specified in qi, if any exists. Once we have an instantiation
list Li for each triple pattern qi, we need to join them based on the join condi-
tions specified in the query using some joining strategy. For example, one result
for our example query above is the 2-tuple:

Alfred Hitchcock directed Psycho

Psycho hasGenre Thriller

Once we have generated all possible joined tuples for a given query, we need
to also rank them according to some ranking strategy such as the ranking model
from Chapter 3.

5.1.3. Query Reformulation

Similar to query expansion in traditional IR, triple-pattern queries can be au-
tomatically reformulated to improve their recall. In Chapter 4, we presented

95

Chapter 5. Top-k Triple-Pattern Query Processing

directed hasGenre Thriller

actedIn: 0.413 var: 0.525 Action: 0.477

created: 0.418 var: 0.503

produced: 0.438

var: 0.472

Table 5.1.: Substitution lists for three resources and the score of each substitution

?d directed ?m δ ?m hasGenre Thriller δ

?d actedIn ?m 0.413 ?m hasGenre Action 0.477

?d created ?m 0.418 ?m hasGenre ?y 0.503

?d produced ?m 0.438 ?m ?y Thriller 0.525

?d ?x ?m 0.472 ?m ?y Action 1.002

?m ?y ?z 1.028

Table 5.2.: Reformulated triple patterns and their scores

a framework for query reformulation that reformulates a given triple-pattern
query by reformulating one or more of its triple patterns. A triple pattern is in
turn reformulated by replacing one or more resources (whether entities or re-
lations) that appear in the triple pattern with similar resources or variables. In
order to do so, we associate with each resource X in the knowledge base a sub-
stitution list which consists of a list of resources ordered on some score. More
precisely, let the substitution list of resource X be L(X). A resource Y ∈ L(X)
would be associated with a score δ(Y, X) which measures how close resources X
and Y are according to some distance metric. Moreover, L(X) would also contain
an entry for the variable substitution (i.e., replacing Xwith a variable) which we
denote by var, and this would also be associated with a score δ(var, X). The way
we construct these substitution lists has been discussed in Chapter 4.

For example, consider the triple-pattern query:

?d directed ?m

?m hasGenre Thriller

Table 5.1 shows the substitution lists for the three resources that appear in
the example query: directed, hasGenre and Thriller and their scores. Using

96

5.1. Query Processing for Triple-Pattern Search

?d directed ?m; ?m hasGenre Thriller δ

?d actedIn ?m; ?m hasGenre Thriller 0.413

?d created ?m; ?m hasGenre Thriller 0.418

?d produced ?m; ?m hasGenre Thriller 0.438

?d ?x ?m; ?m hasGenre Thriller 0.472

?d directed ?m; ?m hasGenre Action 0.477

?d directed ?m; ?m hasGenre ?x 0.503

?d directed ?m; ?m ?y Thriller 0.525

?d actedIn ?m; ?m hasGenre Action 0.879

?d created ?m; ?m hasGenre Action 0.884

?d produced ?m; ?m hasGenre Action 0.915

Table 5.3.: Top-10 reformulated queries for a given example query and their
scores

these substitution lists, a list of reformulated triple patterns for each of the triple
patterns in the example query can be constructed. Furthermore, the reformula-
tions in each of these lists are associated with scores that represent how close the
reformulations are to the triple pattern the list belongs to. The score of a refor-
mulated triple pattern is computed as the sum of the scores of the substitutions
that resulted in the reformulated triple pattern. Table 5.2 shows the set of refor-
mulated triple patterns for each triple pattern in our example query and their
scores δ.

Using the reformulation lists of individual triple patterns, a list of reformu-
lated queries can be generated. Again, each such reformulated query is asso-
ciated with a score which measures how close the reformulated query is to the
original query, and the score of a reformulated query is computed as the sum of
the scores of its triple patterns. Table 5.3 shows the top-10 reformulated queries
for our example query.

Now, to process a query and all its reformulations, we must do the following.
Let Q = (q1, q2, ..., qn) be the given query where qi is a triple pattern. Further-
more, let {q1i , q

2
i , ..., q

mi

i } be all the reformulations of triple pattern qi. For each
triple pattern qi, we must:

1. Retrieve the instantiation list Li of qi

97

Chapter 5. Top-k Triple-Pattern Query Processing

2. Retrieve the instantiation list Lji for each reformulated triple pattern qji

where 1 ≤ j ≤ mi

3. Merge all instantiation lists Li and L1i , L
2
i ,, Lmi

i

Once we have retrieved a merged list of triples for each triple pattern qi, we
need to join them based on the join conditions specified in the query to produce
joined result tuples which are then ranked using some ranking strategy such as
the one explained in Chapter 4.

5.2. Top-k Query Processing Framework

In the previous section, we presented our basic query-processing framework. As
we explained, given a triple-pattern queryQ = (q1, q2, ..., qn) where qi is a triple
pattern, we must retrieve n instantiation lists Li, join them based on the query
join conditions and then rank the resulting tuples of joined triples. Moreover,
in case automatic query reformulation is supported, we need to first merge the
instantiation lists of each triple pattern and its reformulations, then join them
with the merged lists of the other triple patterns to produce a set of joined tuples
that are then ranked to produce the final results.

For large RDF knowledge bases, these instantiation lists might be very long,
and the approach of joining all the triples and then ranking the resulting tuples
might be too expensive especially when we are just interested in retrieving the
top-k highest ranked results for a given query, where k is typically a small value
(10, 20 or 100). In such case, it will be very beneficial to develop a top-k process-
ing approach that retrieves only some triples for each triple pattern, which are
hopefully few, and then joins these fewer triples together to directly produce a
ranked list consisting of the top-k highest scored tuples of joined triples.

In this section, we present a set of algorithms that take as an input a triple-
pattern query, possibly augmented with keywords, and retrieves the top-k high-
est scored results for the query. We start with the easiest case, which is the
case of a triple-pattern query. We then explain how we can process a keyword-
augmented triple-pattern query and finally we explain how we handle query
reformulation.

98

5.2. Top-k Query Processing Framework

5.2.1. Triple-Pattern Queries

Basic Setting. To process a triple pattern query Q = (q1, q2,, qn) where qi
is a triple pattern, our framework makes the following assumptions:

1. For each triple pattern qi, there exists an instantiation list Li which contains
all the triples instantiating triple pattern qi sorted in descending order of
their scores S(ti, qi)

2. The score of a result tuple T = (t1, t2,, tn) where ti ∈ Li is computed as
follows:

S(T,Q) =

n∏
i=1

S(ti, qi) (5.1)

The way we compute the instantiation lists and the way we set the scores will
be discussed in Section 5.3.

Algorithm. Our top-k query processing algorithm for triple-pattern queries
(Algorithm 2) is based on the rank-join algorithm introduced by Ilyas et al. [43].
Algorithm 2 takes as an input a triple-pattern query Q = (q1, q2, ..., qn) where
qi is a triple pattern and the number of desired results k. The algorithm reports
the top-k highest scored tuples of joined triples where the score of a tuple is
computed according to Equation 5.1.

Algorithm 2 maintains two basic data structures: a list L that contains the
top-k highest-scored tuples and a hashmap seeni for each triple pattern qi. seeni
contains the triples ti retrieved for each triple pattern qi from its instantiation list
Li and their scores S(ti, qi). All data structures are assumed to be initially empty.
Algorithm 2 also keeps track of two scores for each triple pattern qi: first(qi)
and last(qi). first(qi) is the maximum score of any triple ti ∈ Li (i.e., the score
of the first triple in Li) and last(qi) is the score of the last triple retrieved from
Li. last(qi) is initially set to first(qi) and is then decremented as more triples
are retrieved from Li.

Algorithm 2 starts by determining the next triple pattern qi to process. We
explain how this can be done later in this subsection. Once a triple pattern qi
has been picked, Algorithm 2 utilizes the method qi.next() which iterates over
the triples in the instantiation list Li from top to down and each time the method
is called, it removes the triple ti from the top of the list Li and stores it, along

99

Chapter 5. Top-k Triple-Pattern Query Processing

Algorithm 2 RANKJOIN(q1, q2, ...qn, k)
1: L← φ

2: for (1 ≤ i ≤ n) do
3: seeni ← φ

4: first(qi)← max
ti∈Li

S(ti, qi)

5: last(qi)← first(qi)

6: end for
7: while (all triple patterns have not been completely processed) do
8: determine next triple pattern qi to process
9: (ti, S(ti, qi))← qi.next()

10: seeni.insert((ti, S(ti, qi))

11: last(qi)← S(ti, qi)

12: candidates← join {{ti}, seen1, seen2, ..., seenn} \ {seeni}

13: for all (T = (t1, t2, ..., tn) ∈ candidates) do
14: S(T,Q)←∏n

i=1 seeni.get(ti)

15: end for
16: L← list of k tuples generated so far with highest scores
17: mink ← min

T∈L
S(T,Q)

18: τ← max
1≤i≤n

last(qi)

∏n
k=1 first(qk)

first(qi)
19: if (mink ≥ τ) then
20: break
21: end if
22: end while
23: return L

with its score S(ti, qi) in the hashmap seeni. The algorithm then generates a set
of candidate result tuples by joining ti with triples present in the other n − 1

hashmaps. The algorithm computes the score of each generated tuple as the
product of the scores of its triples as described in Equation 5.1 and stores in list
L the top-k highest-scored tuples generated so far. The algorithm halts when
the minimum score of the tuples in L is less than the threshold value τ which is
computed as the maximum of the following n values:

100

5.2. Top-k Query Processing Framework

last(q1).first(q2).first(q3)......first(qn),
first(q1).last(q2).first(q3)......first(qn),
first(q1).first(q2).last(q3)......first(qn),
...,

first(q1).first(q2).first(q3)......last(qn)

The threshold value is the maximum score any candidate result tuple not yet
generated can acquire. If all tuples in the top-k list have higher scores than
τ, then we are sure that the top-k list have the highest-scored result tuples for
the query Q. Otherwise, Algorithm 2 determines the next triple pattern qi to
process, retrieves the next triple from Li by calling the method qi.next() and
repeats the same procedure described above until our halting condition is met
or all the triples for all the query triple patterns have been retrieved.

The Processing Order of Triple Patterns. In each iteration of Algorithm 2,
the algorithm must determine the next triple pattern qi to process and then re-
trieves its next triple from Li. This can be done in various ways, for instance
in a round robin fashion, or by picking the triple pattern qi that would result
in reducing the threshold value which can be done by checking the following n
values:

last(q1).first(q2).first(q3)......first(qn),
first(q1).last(q2).first(q3)......first(qn),
first(q1).first(q2).last(q3)......first(qn),
...,

first(q1).first(q2).first(q3)......last(qn)

and greedily picking the next triple pattern qi such that:

i = argmax
1≤j≤n

last(qj)

∏n
k=1 first(qk)

first(qj)

Recall that the maximized value is the threshold value and by picking triple
pattern qi this way and retrieving its next triple from Li, we are trying to reduce
the threshold value, which would then result in our algorithm halting as early
as possible.

Theorem 5.1 : Algorithm 2 correctly reports the top-k highest-scored query results.

101

Chapter 5. Top-k Triple-Pattern Query Processing

Proof: For simplicity, we assume the query Q consists of only two triple pat-
terns q1 and q2. The proof can be easily extended (with a more complex notation)
to cover the general case where the query consists of n triple patterns.

Assume that the algorithm halts and reports the list L as the top-k results.
Furthermore, assume that the tuple T = (t1, t2) ∈ L. We thus have S(T) ≥ τ, i.e.,

S(t1, q1).S(t2, q2) ≥ max(first(q1).last(q2), last(q1).first(q2)) (5.2)

Now assume that there exists a result tuple T ′ = (t ′1, t
′
2) not yet generated by the

algorithm such that S(T ′, Q) > S(T,Q). This implies that S(T ′, Q) > τ, i.e.,

S(t ′1, q1).S(t
′
2, q2) > max(first(q1).last(q2), last(q1).first(q2)) (5.3)

which in turn implies that

S(t ′1, q1).S(t
′
2, q2) > first(q1).last(q2) (5.4)

and
S(t ′1, q1).S(t

′
2, q2) > last(q1).first(q2) (5.5)

Since, for each triple pattern, the triples are fetched in descending order of
their scores, we have first(q1) ≥ S(t ′1, q1) which implies that S(t ′2, q2) > last(q2).
Otherwise Inequality 5.4 would not hold because of the monotonicity of multi-
plication. Therefore, t ′2 must have been fetched for triple pattern q2 before we
halted.

Using an analogous argument, we have first(q2) ≥ S(t ′2, q2) which implies
that S(t ′1, q1) > last(q1). Otherwise Inequality 5.5 would not hold because of
the monotonicity of multiplication. Therefore, t ′1 must have been fetched for triple
pattern q1 before we halted.

Since triples t ′1 and t ′2 have been both fetched before we halted, the tuple T ′ =
(t ′1, t

′
2) must have been generated and must have been in the top-k list L since it

has a higher score than T ∈ L which contradicts our assumption. Thus, when
Algorithm 2 halts, it is guaranteed that the top-k list L would contain the top-k
highest-scored result tuples for the given query.

5.2.2. Keyword-Augmented Triple-Pattern Queries

The case of keyword-augmented queries is more complicated. Assume query
Q = (q1, q2, ..., qn) is a keyword-augmented triple-pattern query such that triple

102

5.2. Top-k Query Processing Framework

pattern qi is augmented with keywords w1, w2, ..., wk. To be able to utilize Al-
gorithm 2, we must have a list Li that contains all triples ti instantiating triple
pattern qi sorted in descending order of their score S(ti, qi). Since qi is aug-
mented with keywords w1, w2, ..., wk, it is natural to expect that the scores of
the triples instantiating qi depend on the keywords somehow. Otherwise, the
keywords would not play any role in the ranking of the results. Indeed, in the
ranking model of Chapter 3, we computed the score S(ti, qi) of a triple ti with
respect to triple pattern qi as a combination overm scores as follows:

S(ti, qi) =

k∏
j=1

S(ti, qi, wj)

where S(ti, qi, wj) is the score of triple ti with respect to triple pattern qi and
keyword wj.

Assuming that there exists a list for each triple pattern qi that contains all the
triples ti instantiating qi sorted on their combined scores S(ti, qi) is too imprac-
tical due to the curse of dimensionality. That is, one need to construct one such
list for every possible combination of keywords. Assuming that we havem key-
words in our vocabulary that keyword expressions are drawn from, we would
need to construct 2m instantiation lists for each triple pattern.

To overcome this curse of dimensionality, we utilize a second algorithm (Algo-
rithm 3) that processes a keyword-augmented triple pattern separately and re-
turns the triples ti instantiating triple pattern qi in order of their combined scores
S(ti, qi). This algorithm is combined with Algorithm 2 as follows. Each time
Algorithm 2 invokes the method qi.next() where qi is augmented with key-
words w1, w2, ..., wk, the method qi.next(w1, w2, ..., wk) is called. The method
qi.next(w1, w2, ..., wk) would then return the next triple ti with the highest com-
bined score not yet retrieved for triple pattern qi along with its combined score
S(ti, qi). The rest of Algorithm 2 behaves in the same way as we explained in
the case of triple-pattern queries only.

This pipelined approach we have taken to process keyword-augmented triple
patterns nicely encapsulates the details of processing keyword-augmented triple
patterns and provides a level of parallelism where the more expensive keyword-
augmented triple patterns can be processed in parallel with other triple patterns.
We next explain our algorithm for processing keyword-augmented triple pat-
terns (i.e., method qi.next(w1, w2, ..., wk)).

103

Chapter 5. Top-k Triple-Pattern Query Processing

Basic Setting. To process a keyword-augmented triple pattern where qi is
augmented with keywords w1, w2, ..., wk, our framework makes the following
assumptions:

1. For each triple pattern qi and each keywordwj, there exists an instantiation
list Lij which contains all the triples instantiating triple pattern qi sorted in
descending order of their scores S(ti, qi, wj)

2. The combined score of a triple ti instantiating triple pattern qi is computed
as follows:

S(ti, qi) =

k∏
j=1

S(ti, qi, wj) (5.6)

The way we construct the instantiation lists and the way we set the scores will
be discussed in Section 5.3.

Algorithm. Algorithm 3 uses two main data structures: a priority queueQueue
and a set of hashmaps seenj for each keyword wj. seenj stores the set of triples
ti retrieved for each keyword wj from list Lij. All data structures are assumed
to be empty before Algorithm 3 is invoked for the first time. Algorithm 3 also
maintains k values last(wj) which is the score of the last triple triple ti retrieved
for keyword wj from list Lij. last(wj) is initially set to the score of the first triple
ti in list Lij.

In each iteration of Algorithm 3, we determine the next keyword wj to be
processed. We will explain how we do this later in this subsection. Once a
keyword wj is picked, Algorithm 3 retrieves the next triple ti from the list Lij
and its score S(ti, qi, wj). We then compute the best score this triple can achieve
as follows:

B(ti, qi) =
∏

j∈keywords(ti)

S(ti, qi, wj).
∏

j /∈keywords(ti)

last(wj)

where keywords(ti) is the set of indices of the keywords that ti has been re-
trieved for so far (initially empty for every triple). The score B(ti, qi) is an upper
bound for the combined score of triple ti provided that the lists Lij are sorted in
descending order of the scores of the triples. The triple ti is then inserted into
our priority queue Queue along with its best score B(ti, qi).Finally, each time a

104

5.2. Top-k Query Processing Framework

Algorithm 3 next(w1, w2, ..., wk)
1: if (FIRST TIME) then
2: Queue← φ

3: for (1 ≤ j ≤ k) do
4: seenj ← φ

5: last(wj)← max
ti∈Lij

S(ti, qi, wj)

6: end for
7: end if
8: if (Queue is not empty) then
9: (ti, B(ti, qi))← Queue.head()

10: if |keywords(ti)| = k then
11: (ti, S(ti, qi))← Queue.remove()

12: return (ti, S(ti, qi))

13: end if
14: end if
15: while (all keywords have not been completely processed) do
16: determine next wj to process
17: (ti, S(ti, qi, wj))← qi.next(wj)

18: Queue.insert(ti, 0)

19: keywords(ti)← Keywords(ti) ∪ {j}

20: seen(wj).insert(ti, S(ti, qi, wj))

21: last(wj)← S(ti, qi, wj)

22: for all (t ∈ Queue) do
23: B(t, qi)←∏j∈keywords(t) seenj.get(t).

∏
j /∈keywords(t) last(wj)

24: Queue.updateScore(t, B(t, qi))

25: end for
26: (ti, B(ti, qi))← Queue.head()

27: if |keywords(ti)| = k then
28: break
29: end if
30: end while
31: if (Queue) is not empty then
32: (ti, S(qi, ti))← Queue.remove()

33: return (ti, S(qi, ti)

34: end if

105

Chapter 5. Top-k Triple-Pattern Query Processing

triple ti is retrieved from a list Lij, last(wj) either stays the same or decreases.
We thus need to update the best scores of all the triples in the queue accordingly.

The main loop in Algorithm 3 is broken when the triple at the head of the
queue (i.e., with the highest best score) has been retrieved for all keywords (i.e.,
|keywords(ti)| = k). In this case, we return the triple ti at the head of the queue
since this triple would be the next highest-scored triple instantiating triple pat-
tern qi and moreover, its best score B(ti, qi) would be its true combined score as
computed according to Equation 5.6. Note that while we can ensure that a triple
ti is the one with the highest combined score for a triple pattern qi and keywords
w1, w2, ..., wk by keeping a lower bound on the score a triple can acquire, this is
not sufficient since these triples would then be joined with other triples instan-
tiating other triple patterns using Algorithm 2 which would not correctly report
the top-k result tuples unless we assume that the method qi.next() retrieves the
triples in order of their scores, and that each retrieved triple is associated with
its true combined score S(ti, qi).

The next time Algorithm 3 is invoked (by calling method qi.next() from Al-
gorithm 2), Algorithm 3 checks the triple at the head of the queue (if the queue is
not empty) and if its true combined score has been computed, it returns it as the
next triple along with its score. Otherwise, the procedure we described above is
repeated.

Processing Order of Keywords. In each iteration of Algorithm 3, the algo-
rithm must determine the next keyword wj to process and then retrieves the
next triple from list Lij. This can be done in various ways, for instance in a
round robin fashion, or by picking the keyword wj with the maximum last(wj)

which would result in reducing the best scores of all triples in the queue that
have not been retrieved for this keyword, or deploying any other heuristics that
would result in the algorithm returning the next triple as fast as possible.

Theorem 5.2 : Given a triple pattern qi and keywords w1, w2, ..., wk, Algorithm 3
correctly returns the triple with the highest combined score instantiating triple pattern
qi and its true combined score.

Proof: Assume that Algorithm 3 returns triple ti as the next highest-scored
triple instantiating triple pattern qi. This means that : 1) its best score is indeed
the true combined score of the triple because our algorithm would only return

106

5.2. Top-k Query Processing Framework

a triple if it has been seen for all keywords (i.e., |keywords(ti)| = k) and 2) ti
was at the head of the queue, which means that the score of the triple S(ti, qi) =∏k

j=1 S(ti, qi, wj) would be higher than all the best scores of all other triples in
the queue. Let one such triple be t ′i. We thus have:

k∏
j=1

S(ti, qi, wj) ≥
∏

j∈keywords(t ′i)

S(t ′i, qi, wj).
∏

j /∈keywords(t ′i)

last(wj) (5.7)

where last(wj) is the score of the last triple retrieved for keyword wj. Further-
more, since invoking the method qi.next(wj) would return the triples ti in order
of their scores S(ti, qi, wj), we have:∏

j /∈keywords(t ′i)

last(wj) ≥
∏

j /∈keywords(t ′i)

S(t ′i, qi, wj) (5.8)

From Inequality 5.7 and Inequality 5.8, we can conclude that:
k∏
j=1

S(ti, qi, wj) ≥
k∏
j=1

S(t ′i, qi, wj) (5.9)

which implies that the true combined score of ti must be greater than the true
combined score of any triple t ′i in the queue.

Now, let’s consider the case when the triple t ′ was not in the queue. Since,
∀ 1 ≤ j ≤ k, we have:

S(ti, qi, wj) ≥ last(wj) (5.10)

as the method qi.next(wj) returns the triples in order of their scores S(ti, qi, wj)
and ti must have been seen for all keywords. Given this and the monotonicity
of the multiplication, we have:

k∏
j=1

S(ti, qi, wj) ≥
k∏
j=1

last(wj) (5.11)

Similarly, ∀ 1 ≤ j ≤ k, we have:

last(wj) ≥ S(t ′i, qi, wj) (5.12)

as the method qi.next(wj) returns the triples in order of their scores S(ti, qi, wj)
and t ′i is not in the queue which means it has not been retrieved for any of the
keywords. Given this and the monotonicity of the multiplication, we have:

k∏
j=1

last(wj) ≥
k∏
j=1

S(t ′i, qi, wj) (5.13)

107

Chapter 5. Top-k Triple-Pattern Query Processing

?d directed ?m; ?m hasGenre Thriller δ

?d actedIn ?m; ?m hasGenre Thriller 0.413

?d created ?m; ?m hasGenre Thriller 0.418

?d produced ?m; ?m hasGenre Thriller 0.438

?d ?x ?m; ?m hasGenre Thriller 0.472

?d directed ?m; ?m hasGenre Action 0.477

?d directed ?m; ?m hasGenre ?x 0.503

?d directed ?m; ?m ?y Thriller 0.525

?d actedIn ?m; ?m hasGenre Action 0.879

?d created ?m; ?m hasGenre Action 0.884

?d produced ?m; ?m hasGenre Action 0.915

Table 5.4.: Top-10 reformulated queries for a given example query and their
scores

From Inequality 5.11 and Inequality 5.13, we have:

k∏
j=1

S(ti, qi, wj) ≥
k∏
j=1

S(t ′i, qi, wj) (5.14)

That is, the true combined score of ti is higher than that of any other triple not
yet in the queue.

From all the above, we conclude that Algorithm 3 indeed returns the triple
ti instantiating triple pattern qi with the highest combined score and its score
S(ti, qi) is the true combined score as computed according to Equation 5.6.

5.2.3. Query Reformulation

In Subsection 5.2.3, we explained how given a triple pattern query, we can gener-
ate a set of reformulated queries that are close in intention to the given query. In
our query framework, each such reformulated query is associated with a score
δ that measures how close the reformulation is to the original query. Table 5.4
shows an example query and its top-10 reformulations which were generated
using the techniques presented in Chapter 4.

We now explain how we handle query reformulation within our top-k query
processing framework. We consider two possible modes of operation. The first,

108

5.2. Top-k Query Processing Framework

which we refer to as the incremental mode, processes the queries incrementally,
whereas the second mode, which is referred to as the batch mode, processes all
queries together. We explain each mode in more details next.

Incremental Processing of Reformulated Queries

Assume that query Q has the set of reformulated queries {Q1, Q2, ..., Qm} and
that each reformulated query Qj is associated with a score δ(Q,Qj) which rep-
resents how close the reformulated query Qj is to the original query Q. To re-
trieve the top-k highest-scored results of query Q and all its reformulations, we
do the following. Let the total number of results of query Q be |Q| and fur-
thermore, let the total number of results of each reformulated query Qj be |Qj|.
We start by retrieving the k highest-scored results of query Q using the algo-
rithms we described in the previous two subsections . If |Q| < k, we retrieve
the k − |Q| highest-scored results of the reformulated query Qj with the highest
score δ(Q,Qj) such that each result retrieved for query Qj has not been already
retrieved for queryQ. If |Q|+|Qj| < k, we retrieve the k−|Q|−|Qj| highest-scored
results of the next highest-scored reformulated query, without counting dupli-
cates until we finally retrieve k results or all the results of all the reformulated
queries have been completely retrieved.

Batch Processing of Reformulated Queries

The other alternative to retrieve the top-k highest-scored results for a given
query and all its reformulations works as follows. Given a queryQ = {q1, q2, ..., qn}

where qi is a triple pattern, let {q0i , q
1
i , q

2
i , ..., q

mi

i } be the set of reformulations of
the triple pattern qi where q0i is the original triple pattern qi. We can directly
utilize Algorithm 2 to retrieve the result tuples for query Q if we assume there
exists one list Li for each triple pattern qi and all its reformulations that contains
all the triples ti instantiating qi or any of its reformulations sorted in descending
order of their scores S(ti, qi). Given that a triple ti might match more than one
triple pattern qji, we must combine the individual scores S(ti, q

j
i) somehow in

order to compute the overall combined score of a triple ti. Again, this might be
impractical as the number of such reformulations can be arbitrarily large which
means we might have very long lists. Moreover, in case qi is keyword aug-
mented, then all of its reformulations will also be augmented with the same

109

Chapter 5. Top-k Triple-Pattern Query Processing

keywords, and thus in order to keep a single list of triples for a triple pattern
and its reformulations, one would need to keep a list for every possible combi-
nation of keywords that can be asked, which , as we pointed out in the previous
subsection, is exponentially many.

Thus, we need to adapt a similar approach to the one we used to process a
keyword-augmented triple pattern. That is, we need to process a triple pattern
qi and all its reformulations separately and retrieve triples ti in order of their
combined scores S(ti, qi). In order to do this, we use Algorithm 4 which is com-
bined with Algorithm 2 as follows. Each time Algorithm 2 invokes the method
qi.next(), Algorithm 4 would be called which returns a triple ti and its com-
bined score S(ti, qi) to the calling method qi.next(). The rest of Algorithm 2
behaves in the same way as we explained before.

Again, this pipelined approach we have taken to process reformulated triple
patterns nicely encapsulates the details of the processing of reformulated triple
patterns. In addition, it provides a level of parallelism where all the triple pat-
terns (and their reformulations) can be processed in parallel. Before we explain
how our algorithm for processing a triple pattern and all its reformulations
works, we explain our basic setting and how we combine the individual scores
of the triples to produce the overall combined score of a triple.

Basic Setting. Given a triple pattern qi and all its reformulations q0i , q
1
i ,, q

mi

i ,
our framework makes the following assumptions:

1. For every triple pattern qji, there exists an instantiation list Lji which con-
tains all the triples ti instantiating triple pattern pattern qji ordered in de-
scending order of their scores S(ti, q

j
i)

2. Each triple pattern qji is associated with a weight λj

3. The combined score of triple ti instantiating triple pattern qi or any of its
reformulations is computed as follows:

S(ti, qi) = λ0S(ti, q
0
i) + λ1S(ti, q

1
i) ++ λmi

S(ti, q
mi

i) (5.15)

The way we construct the instantiation lists and the way we set the weights of
the triple patterns and the scores of the triples will be explained in Section 5.3.

110

5.2. Top-k Query Processing Framework

Equation 5.15 computes the score of a triple ti instantiating any of the triple
patterns q0i , q

1
i , ..., q

mi

i as a weighted sum over all the triple patterns. Note that
the score S(ti, q

j
i) would be zero if triple ti does not instantiate pattern qji. A triple

ti would instantiate one particular triple pattern in the set {q0i , q
1
i , ..., q

mi

i } and all
relaxed versions of that triple pattern. A relaxed version of a triple pattern qji
is a triple pattern where one or more resources specified in qji are replaced by
variables. For example, consider the triple

Quentin Tarantino directed Pulp Fiction

The above triple instantiates the following two triple patterns only (the first
triple pattern in our example query and one of its reformulations):

?m directed ?m

?d ?x ?m

Similarly, the triple

Pulp Fiction hasGenre Thriller

instantiates the following 4 triple patterns (the second triple pattern in our ex-
ample query and 3 of its reformulations):

?m hasGenre Thriller

?m hasGenre ?y

?m ?y Thriller

?m ?y ?z

Using the above observation, we can group the reformulated triple patterns in
the reformulation set of a given triple pattern into subsets of triple patterns that
can be instantiated by the same triple, which we call compatible triple patterns.

Definition 5.1 : Compatible Triple Patterns
Given two triple patterns q = (s, p, o) and q ′ = (s ′, p ′, o ′), let VAR be the set of all
variables. q and q ′ are said to be compatible iff:

• s = s ′ or s ∈ VAR or s ′ ∈ VAR,

• p = p ′ or p ∈ VAR or p ′ ∈ VAR, and

• o = o ′ or o ∈ VAR or o ′ ∈ VAR.

111

Chapter 5. Top-k Triple-Pattern Query Processing

Figure 5.1.: The reformulation graph for the triple pattern ?d directed ?m and
all its reformulations (see Table 5.2)

Given a set of triple patterns, representing a triple pattern and its reformula-
tions, this set can be divided into subsets of compatible triple patterns as follows.
We represent each triple pattern as a vertex in a graph, which we refer to as the
reformulation graph. An edge is then added between two vertices (i.e., two triple
patterns) if the two triple patterns are compatible.

Definition 5.2 : Reformulation Graph
Given a set of triple patterns {q0i , q

1
i , ..., q

mi

i }, the reformulation graph is a graph with
(mi + 1) vertices V , where vj ∈ V is a vertex representing triple pattern qji, and a set
of edges E = {(vj, vk)|q

j
i, q

k
i are compatible}.

Figures 5.1 and 5.2 show the reformulation graphs for the two triple patterns
in our example query and their reformulations. To retrieve the sets of compatible
triple patterns, we enumerate all maximal cliques in the reformulation graph (i.e.,
complete subgraphs where every triple pattern is compatible with every other
triple pattern in the subgraph).

Algorithm 4 which we use to process a triple pattern and all its reformulations
makes use of compatible triple patterns in order to efficiently retrieve triples
ti instantiating the triple pattern or any of its reformulations in order of their
combined scores S(ti, qi) which are computed according to Equation 5.15.

Algorithm. Algorithm 4 takes a set of triple patterns {q0i , q
1
i , ..., q

mi

i }, a set of
corresponding weights {λ0, λ1,, λmi

} and a partitioning C over the triple pat-
terns where each partition Ck ∈ C contains a subset of the given triple patterns

112

5.2. Top-k Query Processing Framework

Figure 5.2.: The reformulation graph for the triple pattern ?m hasGenre

Thriller and all its reformulations (see Table 5.2)

that are compatible with each other (i.e., a maximal clique in the reformula-
tion graph). The partitioning C will be used to compute the threshold value
the algorithm uses in order to ensure that it retrieves the triple with the highest
combined score.

Algorithm 4 uses two main data structures: a priority queue Queue and a set
of hashmaps seenj for each triple pattern qji. seenj stores the set of triples ti
retrieved for each triple pattern qji from list Lji and their scores S(ti, q

j
i). All data

structures are assumed to be empty before Algorithm 4 is invoked for the first
time. Algorithm 4 also maintainsmi+ 1 values last(qji) which is the score of the
last triple triple ti retrieved from list Lji. last(q

j
i) is initially set to the score of the

first triple ti in list Lji.

Algorithm 4 iterates over the triple patterns and in each iteration it picks one
triple pattern qji to process, calls the method qji.next() and retrieves the next
triple for this triple pattern. The algorithm then checks ti against all the triple
patterns {q0i , q

1
i , ..., q

mi

i } and sets patterns(ti) to the subset of triple patterns ti
instantiates. Recall that a triple t might instantiate more than one triple pattern
qji. This case happens when one of the patterns qji was generated by replacing
a resource in qi with a variable. Once a triple ti is retrieved, the algorithm adds

113

Chapter 5. Top-k Triple-Pattern Query Processing

Algorithm 4 next(q0i , q
1
i , ..., q

mi

i λ0, λ1, ..., λmi
, C)

1: if (FIRST TIME) then
2: Queue← φ

3: for (0 ≤ j ≤ mi) do
4: seenj ← φ, last(qji)← max

ti∈Lji
S(ti, q

j
i)

5: end for
6: end if
7: if (Queue is not empty) then
8: (ti, B(ti, qi))← Queue.head()

9: if (inst(ti) = patterns(ti) AND B(ti, qi) ≥ τ) then
10: (ti, S(ti, qi))← Queue.remove()

11: return (ti, S(ti, qi))

12: end if
13: end if
14: while (all triple patterns qji have not been completely processed) do
15: determine next triple pattern qji to process
16: (ti, S(ti, q

j))← qji.next()

17: Queue.insert(ti, 0)

18: inst(ti)← inst(ti) ∪ {qji}

19: seenj.insert(ti, s(ti, q
j
i))

20: last(qji)← s(ti, q
j
i)

21: for (t ∈ Queue) do
22: B(t, qi)← Σ

q
j
i∈inst(t)

λjseenj.get(t) + Σqji∈patterns(t)\inst(t)
λjlast(q

j
i)

23: Queue.updateScore(t, B(t, qi))

24: end for
25: if (Queue is not empty) then
26: τ← max

Ck∈C
Σ
q
j
i∈Ck

λjlast(q
j
i)

27: (ti, B(ti, qi))← Queue.head()

28: if (inst(ti) = patterns(ti) AND B(ti, qi) ≥ τ) then
29: break loop
30: end if
31: end if
32: end while
33: if (Queue is not empty) then
34: (ti, S(qi, ti))← Queue.head()

35: return (ti, S(qi, ti)

36: end if

114

5.2. Top-k Query Processing Framework

the just retrieved triple to the priority queueQueue and updates the best scores
of all candidate triples t in the queue as follows:

B(t, qi) = Σqji∈inst(t)
λjS(t, q

j
i) + Σqji∈patterns(t)\inst(t)

λjlast(q
j
i)

where inst(t) is the set of triple patterns that triple t has been retrieved for so far,
patterns(t) is the set of all patterns t instantiates, S(t, qji) is the score of triple t
with respect to qji and last(qji) is the score of the last triple retrieved for triple
pattern qji.

Once the best scores of all candidate triples have been updated, the algorithm
checks the triple t at the head of the queue, and if the true combined score of
the triple has been computed (i.e., inst(t) = patterns(t)) and its best score is
greater than the threshold value τ, it returns the triple as the next triple with the
highest score S(t, qi). The threshold value τ is the best score any triple that has
not been retrieved for any of the triple patterns can acquire. The threshold value
is computed as follows:

τ = max
Ck∈C

Σ
q
j
i∈Ck

λjlast(q
j
i)

where C is the set of all maximal cliques in the reformulation graph and Ck is
one such clique, and last(qji) is the score of the last triple retrieved for triple
pattern qji ∈ Ck.

Processing Order of Reformulations. In each iteration of Algorithm 4, the
algorithm must determine the next triple pattern qji to process and then retrieves
the next triple from list Lji. This can be done in various ways, for instance in a
round robin fashion, or by picking the pattern qji with the maximum last(qji)

which would result in reducing the best scores of all triples in the queue that
have not been retrieved for this triple pattern, or deploying any other heuristics
that would result in the algorithm returning the next triple as fast as possible.

Processing Keyword-Augmented Triple Patterns. In case qi is augmented
with keywords w1, w2, ..., wk, we would need to also combine Algorithm 3 with
Algorithm 4. This can be done very easily using our pipelined architecture. We
would just need to modify the call of method qji.next() in Algorithm 4 and call
method qji.next(w1, w2, ..., wk) which would then invoke Algorithm 3 to retrieve

115

Chapter 5. Top-k Triple-Pattern Query Processing

all the triples ti instantiating triple pattern qji in order of their combined scores
S(ti, q

j
i) which are computed according to Equation 5.6 given in the previous

subsection.

Theorem 5.3 : Given a triple pattern qi and a set of its reformulations {q0i , q1i , ..., q
mi

i },
Algorithm 4 correctly returns the triple with the highest true combined score.

Proof: Assume that Algorithm 4 returns triple ti as the next highest-scored
triple instantiating triple pattern qi. This means that inst(ti) = patterns(ti),
i.e., ti has been retrieved for all the patterns it instantiates. The score B(ti, qi) of
triple ti would then be equal to:

B(ti, qi) = Σqji∈patterns(ti)
λjS(ti, q

j
i)

which is equivalent to:

B(ti, qi) = Σ
mi

j=1λjS(ti, q
j
i)

where S(ti, q
j
i) = 0 if qji /∈ patterns(ti). Thus, the best score of triple ti would

then be the true combined score of triple ti.

In addition, since ti was returned as the next triple, it must have been at the
head of the queue which in turn means that the score S(ti, qi) would be higher
than the best scores of all other triples in the queue. Let one such triple be t ′i and
let its current best score stored in the queue be B(t ′i, qi). We thus have:

S(ti, qi) ≥ B(t ′i, qi) (5.16)

We now consider three distinct cases. If t ′i has been retrieved for all patterns it
instantiates, its best score B(t ′i, qi) would then be its true combined score S(t ′i, qi)
which implies that ti indeed has a higher true combined score than t ′i.

If t ′i has been retrieved for a subset of the patterns it should instantiate, then
its best score is computed as follows:

B(t ′i, qi) = Σqji∈inst(t ′i)
λjS(t

′
i, q

j
i) + Σqji∈patterns(ti)\inst(t ′i)

λjlast(q
j
i)

Since we retrieve the triples for each triple pattern qji in order of their scores,
this implies that ∀ qji ∈ patterns(t ′i) \ inst(t ′i) the following inequality holds:

last(qji) ≥ S(t
′
i, q

j
i) (5.17)

116

5.3. Data Store and Indices

Otherwise triple t ′i must have been already retrieved for triple pattern qji or
S(t ′i, q

j
i) = 0 if t ′i does not instantiate pattern qji. This implies that:

B(t ′i, qi) ≥ Σ
mi

j=1λjS(t
′
i, q

j
i) (5.18)

From Inequality 5.16 and Inequality 5.18, we conclude that the true combined
score of the triple ti, which is at the head of the queue must be greater than the
true combined score of triple t ′i.

Now, let’s consider the case where the triple t ′i was not in the queue. The score
of ti must be greater than or equal to the threshold value τ. That is,

S(ti, qi) ≥ argmax
Ck∈C

Σ
q
j
i∈Ck

λjlast(q
j
i) (5.19)

Since ∀ 1 ≤ j ≤ mi we have:

last(qji) ≥ S(t
′
i, q

j
i) (5.20)

where S(t ′i, q
j
i) is the score of t ′i with respect to triple pattern qji which is zero in

case t ′i does not instantiate qji, and since any triple t ′i not yet seen at all, and thus
not in the queue, would instantiate at most one of the sets Ck ∈ C, we have:

argmax
Ck∈C

Σ
q
j
i∈Ck

λjlast(q
j
i) ≥ Σ

mi

j=1λjS(t
′
i, q

j
i) (5.21)

From Inequality 5.19 and Inequality 5.21, it is evident that S(ti, qi) ≥ S(t ′i, qi)
which implies that the true combined score of ti must be greater than that of any
t ′i not in the queue.

From all the above, we conclude that Algorithm 4 indeed returns the next
triple ti instantiating triple pattern qi with the highest true combined score which
is computed according to Equation 5.15.

5.3. Data Store and Indices

We use a relational database as a storage medium for our RDF knowledge base.
Our database consists of two tables: TRIPLES and TEXT. The first table stores all
the triples in the knowledge base and their witness counts and has the following
schema:

TRIPLES(SUBJECT, PREDICATE, OBJECT, WITNESSES).

117

Chapter 5. Top-k Triple-Pattern Query Processing

where WITNESSES is the witness count of the triple. The witness count is an
estimate of the number of Web sources that contains the information encoded
by the corresponding RDF triple. The witness counts are used by our ranking
model to compute the scores of the triples.

In the second table, we store the keywords in the text snippets of the triples.
The second table has the following schema:

TEXT(SUBJECT, PREDICATE, OBJECT, KEYWORD, WITNESSES)

where WITNESSES is an estimate of the number of Web sources that contains the
information encoded by the corresponding triple and which in addition contain
the associated keyword. The witness counts are used by our ranking model to
compute the scores of the triples.

We now explain how our algorithms described in Section 5.2 can use these ta-
bles in order to efficiently retrieve all the necessary information they need to oper-
ate. We start with the case of simple triple patterns (i.e., without any keywords)
and then consider the case of keyword-augmented triple patterns afterwards.

5.3.1. Instantiation Lists for Triple Patterns.

Algorithms 2 and 4 described in the previous section assume there exists an
instantiation list Li for every triple pattern qi. Li contains all the triples ti instan-
tiating pattern qi in descending order of their scores S(ti, qi) which is computed
as follows:

S(ti, qi) =
c(ti)

Σt∈Lic(t)
(5.22)

where c(ti) is the witness count of triple ti.
Moreover, Algorithms 2 and 4 keep track of two values in order to compute

score bounds: first(qi) which is set to the maximum score of all the triples ti ∈ Li
and last(qi) which is initialized to the maximum score of all the triples ti ∈ Li.

Thus, given a triple pattern qi, we must do the following three tasks:

1. Compute the sum of witness counts of all triples ti instantiating qi

2. Compute the maximum score of all triple triples ti instantiating qi

3. Retrieve all the triples ti instantiating triple pattern qi ordered on theirs
scores S(ti, qi) which are computed according to Equation 5.22

118

5.3. Data Store and Indices

We now explain how to carry out all these three tasks efficiently using our data
store. We start with the third task and then follow with the first two tasks.

Efficient Retrieval of Triples. Given a triple pattern qi, we can retrieve all the
triples instantiating it by issuing a simple SQL select statement. For example, let
qi be:

?m hasGenre Thriller

The following select statement can be issued to retrieve all the triples instantiat-
ing this triple pattern ordered on their witness counts:

SELECT SUBJECT, PREDICATE, OBJECT, WITNESSES FROM TRIPLES
WHERE PREDICATE = ’hasGenre’ AND OBJECT = ’Thriller’
ORDER BY WITNESSES DESC

The ResultSet of the above SQL statement would then be the instantiation list of
triple pattern qi and each time the method qi.next() is invoked from Algorithm
2 or 4, the next triple from the ResultSet corresponding to triple pattern qi would
be retrieved and its score would be computed by normalizing its witness count
by the total witness count of all the triples in the ResultSet.

In order to be able to efficiently process SQL statements like the one above,
we make use of the following observation. Given a triple pattern q = (s, p, o)

with subject s, predicate p and object o, there are three different possibilities: 1)
all three components are variables, 2) two of the three components are variables,
or 3) one of the three components is a variable.

In case all three components of the triple pattern q = (s, p, o) are variables,
all the triples in table TRIPLES would instantiate this pattern. We thus create an
index INDEX000 over all the fields in table TRIPLES where the triples are sorted
in descending order based on their witness counts WITNESSES.

In case two of the three components of the triple pattern q = (s, p, o) are
variables, there are three distinct cases: 1) s and p are variables, in which case
all the triples with object o would instantiate the triple pattern, 2) p and o are
variables, in which case all the triples with subject s would instantiate the triple
pattern or 3) s and o are variables, in which case all the triples with predicate p
would instantiate the triple pattern.

119

Chapter 5. Top-k Triple-Pattern Query Processing

We thus create three indices over all the fields in table TRIPLES where in the
first index INDEX100 the triples are sorted based on their subjects and then de-
scendingly on their witness counts. In the second index INDEX010, the triples
are sorted based on their predicates and then descendingly on their witness
counts. In the third index INDEX001 the triples are sorted based on their ob-
jects and then descendingly on their witness counts. Using indices INDEX100,
INDEX010 and INDEX001, we can quickly retrieve the set of triples with a given
subject, predicate or object,respectively, where the triples are sorted descending
order of their witness counts.

Finally, in case one of the three components of the triple pattern q = (s, p, o)

is a variable, there are again three distinct cases: 1) s is a variable, in which case
all the triples with predicate p and object o would instantiate the triple pattern,
2) p is variable, in which case all the triples with subject s and object o would
instantiate the triple pattern or 3) o is variable, in which case all the triples with
subject s and predicate pwould instantiate the triple pattern.

We thus create three indices over all the fields in table TRIPLES where in the
first index INDEX110 the triples are sorted based on their subjects, then on their
predicates and then descendingly on their witness counts. In the second index
INDEX011, the triples are sorted based on their predicates, then on their objects
and then descendingly on their witness counts. In the third index INDEX101
the triples are sorted based on their subjects, then on their objects and then de-
scendingly on their witness counts. Using indices INDEX110, INDEX011 and
INDEX101, we can quickly retrieve the set of triples with a given subject and
a given predicate, a given predicate and a given object, or a given subject and
a given object,respectively, where the triples are sorted descendingly based on
their witness counts.

Efficient Computation of Sum of Witness Counts and Maximum Scores.
To compute the sum of witness counts of all the triples instantiating a triple
pattern qi, we can issue an aggregation SQL statements. For example, let qi be:

?m hasGenre Thriller

The following aggregation statement can be issued to retrieve the sum of witness
counts of all the triples instantiating this triple pattern:

120

5.3. Data Store and Indices

SELECT SUM(WITNESSES) FROM TRIPLES
WHERE PREDICATE = ’hasGenre’ AND OBJECT = ’Thriller’

Similarly, to compute the maximum score of all triples instantiating a triple
pattern, an aggregation SQL statement over the table TRIPLES can be issued. For
example, the following SQL statement can be issued to compute the maximum
witness count of all the triples instantiating our example triple pattern qi:

SELECT MAX(WITNESSES) FROM TRIPLES
WHERE PREDICATE = ’hasGenre’ AND OBJECT = ’Thriller’

The maximum score would then be the result of the above statement divided by
the result of the previous one. To be able to efficiently process SQL statements
like the ones above, we make use of a set of materialized views. In particular,
we create 7 materialized views that account for all the possible triple patterns
that our triples can instantiate. In these 7 materialized views, we store the sum
of witness counts of all the triples that instantiate each possible triple pattern
and the maximum witness count of all triples instantiating each possible triple
pattern.

5.3.2. Instantiation Lists for Keyword-Augmented Triple
Patterns

Algorithm 3 described in Section 5.2 assumes there exists an instantiation list Lij
for every triple pattern qi and keyword wj. Lij contains the triples instantiating
pattern qi and whose text snippets contain the keyword wj and the triples ti are
sorted in descending order of their scores S(ti, qi, wj) which are computed as
follows:

S(ti, qi, wj) =
c(ti;wj)

Σt∈Lijc(t;wj)
(5.23)

c(ti;wj) is the number of witnesses of triple ti that contain the keyword wj.

Moreover, Algorithms 3 keeps track of the value last(wj) which is initialized
to the maximum score of all the triples ti ∈ Lij.

Thus, given a triple pattern qi, we must do the following three tasks:

1. Compute the sum of witness counts of all triples ti instantiating qi and
whose text snippets contain the keyword wj

121

Chapter 5. Top-k Triple-Pattern Query Processing

2. Compute the maximum score of all triples ti instantiating qi and whose
text snippets contain the keyword wj

3. Retrieve all triples ti instantiating triple pattern qi and whose text snip-
pets contain the keyword wj ordered on theirs scores S(ti, qi, wj) which
are computed according to Equation 5.23

We now explain how to carry out all three tasks efficiently using our data store.
We start with the third task and then follow with the first two tasks.

Efficient Retrieval of Triples. Given a triple pattern qi and a keyword wj, we
can retrieve all the triples instantiating qi and whose text snippets contain the
keyword wj by issuing a simple SQL select statement. For example, let wj be
killer and let qi be:

?m hasGenre Thriller

The following select statement can be issued to retrieve all the triples instantiat-
ing this triple pattern and whose text snippets contain the keyword killer ordered
on their witness counts:

SELECT SUBJECT, PREDICATE, OBJECT, WITNESSES FROM TEXT
WHERE PREDICATE = ’hasGenre’ AND OBJECT = ’Thriller’ AND
KEYWORD=’killer’
ORDER BY WITNESSES DESC

The ResultSet of the above SQL statement would then be the instantiation list
Lij and each time the method qi.next(wj) is invoked from Algorithm 3, the next
triple from the ResultSet would be retrieved and its score would be computed
by normalizing its witness count by the total witness count of all the triples in
the ResultSet.

In order to be able to efficiently process SQL statements like the one above,
we make use of a set of indices as we did in the case of triple-patterns only. In
particular, we create 7 indices that account for the 7 possible triple patterns that
a triple can instantiate. For example, we create an index INDEX1000 over all the
fields in table TEXT where the triples are sorted first on the keywords and then
descendingly based on their witness counts WITNESSES. We also create three
indices over all the fields in table TEXT where in the first index INDEX1100

122

5.4. Related Work

the triples are sorted based on the keywords, then on their subjects and then
descendingly on their witness counts. The rest of the indices are analogous to
the case of the triple patterns only.

Efficient Computation of Sum of Witness Counts and Maximum Scores.
To compute the sum of witness counts of all the triples in an instantiation list Lij
corresponding to a triple pattern qi and a keywordwj, we can issue an aggrega-
tion SQL statements. For example, let wj be killer and let qi be:

?m hasGenre Thriller

The following aggregation statement can be issued to retrieve the total witness
counts of all the triples ti ∈ Lij

SELECT SUM(WITNESSES) FROM TEXT
WHERE PREDICATE = ’hasGenre’ AND OBJECT = ’Thriller’ AND
KEYWORD=’killer’

Similarly, to compute the maximum score of all the triples in the instantiation
list Lij, a similar aggregation SQL statement over the table TEXT can be issued.
To be able to efficiently process such aggregation SQL statements, we make use
of a set of materialized views. In particular, we create 7 materialized views that
account for all the possible triple patterns. In each one of these materialized
views, there is a row for a triple pattern, a keyword and the sum and the max-
imum of the witness counts of all the triples that instantiate the pattern and
whose text snippets contain the keyword.

5.4. Related Work

There is a wealth of work on top-k query processing. A survey of top-k process-
ing techniques is throughly given in [44]. We just pinpoint here the most rele-
vant approaches and contrast them to our setting. Our problem of processing
triple-pattern queries and retrieving the top-k highest-ranked results is closely
related to the problem of top-k processing of selection queries. For selection
queries, the goal is to apply a scoring function on multiple attributes of the same
relation to select tuples ranked on their combined scores. The problem is tack-
led in different contexts. In middleware environments, Fagin [27] and Fagin et

123

Chapter 5. Top-k Triple-Pattern Query Processing

al. [28] introduce the first efficient set of algorithms to answer ranking queries.
Database objects withm attributes are viewed asm separate lists, and each sup-
ports sorted and, possibly, random access to object scores. The TA algorithm [28]
assumes the availability of random access to object scores in any list besides the
sorted access to each list. The NRA algorithm [28] assumes only sorted access
is available to individual lists. The family of Fagin’s top-k algorithms are be-
lieved to be the essence of top-k processing in the context of document retrieval.
However, such family of algorithms is not applicable to our setting, where we
process triple-pattern queries that involve joining multiple lists of triples based
on join conditions specified in the query.

The more general problem of the top-k rank-join is addressed in [64]. The
authors introduce the J∗ algorithm to join multiple ranked inputs to produce a
global rank. J∗ maps the rank-join problem to a search problem in the Carte-
sian space of the ranked inputs. J∗ uses a version of the A∗ search algorithm
to guide the navigation in this space to produce the ranked results. Although
J∗ shares the same goal of joining multiple lists, and can be directly adopted to
the setting of triple-pattern queries over RDF data, it needs vast changes to be
able to handle our advanced setting of keyword-augmented triple-patterns, and
automatic query reformulations. Moreover, Ilyas et al. [43] have compared their
top-k rank-join algorithm to the J∗ algorithm and have shown significant en-
hancements in the overall performance. We adopt the top-k rank-join algorithm
from [43] and extend it to handle keyword-augmented triple-pattern queries,
and automatic query reformulation.

Another closely related work is TopX [81], which is a top-k retrieval engine
for text and semistructured data. It terminates query execution as soon as it
can safely determine the top-k ranked results according to a monotonic score
aggregation function with respect to a multidimensional query. It efficiently
supports vague search on both content- and structure-oriented query conditions
for dynamic query relaxation with controllable influence on the result ranking.
However, TopX deals mainly with selection queries and is not directly applicable
to the case of triple-pattern queries where a top-k rank-join must be performed.

124

5.5. Experimental Evaluation

#entities Example entity types #triples Example relations
LibraryThing Dataset

48,000 book, author 700,000 wrote, hasFriend
user, tag hasTag, type

IMDB Dataset
59,000 movie, actor 600,000 actedIn, directed

director, producer, hasWonPrize, isMarriedTo,
country , language produced, hasGenre

Table 5.5.: Overview of the datasets

5.5. Experimental Evaluation

In this section, we evaluate the performance of our top-k query-processing frame-
work. We conducted two experiments. The first was used to test the perfor-
mance of our algorithms for triple-pattern queries without any query reformu-
lation. The second set of experiments was used to evaluate the performance of
our framework when automatic query reformulation was performed. All exper-
iments were conducted on a Dual-Xeon-3GHz machine with 4GB of RAM, out
of which up to 1GB were used for the experiments. We used an Oracle database
running on the same machine as the storage backend for our knowledge base.

5.5.1. Datasets

All experiments were conducted over two datasets. The first dataset was de-
rived from the LibaryThing community. The second dataset was derived from a
subset of the Internet Movie Database (IMDB). The data from both sources was
automatically parsed and converted into RDF triples. In addition, each triple
was also augmented with keywords derived from the data source it was ex-
tracted from. In particular, for the IMDB dataset, all the terms in the plots, tag-
lines and keywords fields were extracted, stemmed and stored with each triple.
For the LibraryThing dataset, since we did not have enough textual information
about the entities present, we retrieved the books’ Amazon descriptions and the
authors’ Wikipedia pages and used them as textual context for the triples. Table
5.5 gives an overview of the datasets.

125

Chapter 5. Top-k Triple-Pattern Query Processing

5.5.2. Experiment 1

In the first experiment, we focused on evaluating the performance of our query-
processing framework for the case of a single triple-pattern query only, i.e., with-
out taking into consideration query reformulation.

Query Benchmark

We used 2 different sets of evaluation queries. The first set consisted of simple
triple-pattern queries that ranged from single-pattern queries to multi-pattern
graph queries. We constructed 16 queries for the IMDB dataset and 8 queries
for the LibraryThing dataset. Using this set we evaluated the performance of
Algorithm 2 alone.

The second set consisted of keyword-augmented queries. Again, we con-
structed 16 queries for the IMDB dataset and 8 queries for the LibraryThing dataset.
The queries were triple-pattern queries associated with one or more keywords.
This set of evaluation queries was used to evaluate the performance of Algo-
rithm 3.

Since we did not consider query reformulation here, all the queries in our
benchmark were designed so that they would have a sufficiently large number
of results (i.e., more than 100) so that retrieving the top-k highest-ranked results
would make sense. Some example evaluation queries for both datasets is shown
in Table 5.6. Appendix B shows the complete list of evaluation queries used in
our first experiment.

Compared Approaches

Baseline Approach. The baseline approach works as follows. Given a triple-
pattern queryQ = (q1, q2, .., qn), it retrieves the instantiation lists for each triple
pattern qi. It then utilizes an in-memory hash-join operator to join the instantia-
tion lists of the different triple patterns, and retrieves result tuples satisfying the
query join conditions. Finally, the scores of the result tuples are computed ac-
cording to our scoring function, and the results are ranked descendingly based
on their scores.

126

5.5. Experimental Evaluation

IMDB
?m hasGenre Thriller

?d directed ?m

?a1 isMarriedTo ?a2

?a1 actedIn ?m

?a2 actedIn ?m

?d hasWonPrize Academy Award for Best Director

?d directed ?m

?a actedIn ?m

?a hasWonPrize Academy Award for Best Actor

?x hasWonPrize Academy Award for Best Actor

?y hasWonPrize Academy Award for Best Actress

?x actedIn ?m love

?y actedIn ?m relationship

?x directed ?y true story

?x hasWonPrize ?z

LibraryThing
?x wrote ?y

?y hasTag Series

?x wrote ?y

?y hasTag Fiction

?x wrote ?z

?z hasTag Non-fiction

?x wrote ?y

?y type Mystery & Thrillers

?x wrote ?y civil war

?x type Novelists

?y hasTag Movie

?x wrote ?y

?y hasTag Magic

?y type Fiction award

Table 5.6.: A subset of the evaluation queries

127

Chapter 5. Top-k Triple-Pattern Query Processing

IMDB
Top-k

Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 1.381 1.611 1.616 1.635 1.668

#SA 32000 39243 39306 39558 39858

Baseline
Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 91.101 91.101 91.101 91.101 91.101

#SA 93970 93970 93970 93970 93970

LibraryThing
Top-k

Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 1.172 1.213 1.239 1.312 1.668

#SA 9277 9296 9325 9461 10905

Baseline
Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 8.517 8.517 8.517 8.517 8.517

#SA 26911 26911 26911 26911 26911

Table 5.7.: Results for triple-pattern queries with no keywords and no
reformulation

Top-k Approach. The top-k approach utilizes our top-k processing algorithms
(Algorithm 2 and Algorithm 3) where the order in which we process the triple
patterns and keywords is guided by the scores of the triples last retrieved as we
explained in Section 5.2.

Results

The results of our first experiment are shown in Table 5.7 for simple triple-
pattern queries that do not involve any keywords. We computed the runtime
taken by each approach to report the top-k highest-ranked results of each query
(varying k from 5 to 100). We then averaged the total runtime overall evalu-
ation queries, and reported this average in Table 5.7. Similarly, we computed

128

5.5. Experimental Evaluation

Metric k = 5 k = 10 k = 20 k = 50 k = 100

IMDB
Top-k

Runtime (in secs) 45.787 45.891 46.179 46.194 46.225

#SA 31751 34269 37872 37911 37964

Baseline
Runtime (in secs) 79.627 79.627 79.627 79.627 79.627

#SA 83681 83681 83681 83681 83681

LibraryThing
Top-k

Runtime (in secs) 1.981 2.214 2.320 2.534 2.638

#SA 6609 6922 8155 10565 11914

Baseline
Runtime (in secs) 7.224 7.224 7.224 7.224 7.224

#SA 24747 24747 24747 24747 24747

Table 5.8.: Results for keyword-augmented triple-pattern queries with no
reformulation

the total number of triples accessed in order to report the top-k results which
we denote by (#SA) (i.e., sorted accesses) and averaged this overall evaluation
queries. Note that the baseline approach would need to retrieve all the triples
for each triple pattern in each query, join the triples together and then rank the
result tuples obtained from joining the triples retrieved for each triple pattern,
and thus it takes the same time to report the top-k results independent of how
small or big k is.

As can be seen from Table 5.7, Algorithm 2 substantially improves over the
baseline approach in terms of both the response time to queries, as well as the
total number of sorted accesses needed to report the top-k results. In particular,
our top-k algorithm shows superior performance for the IMDB dataset by orders
of magnitude since much more triples were accessed by the baseline approach
in order to retrieve the result tuples for the evaluation queries. This indeed
proves that for large datasets, where queries involve joining and ranking a large
number of triples, top-k processing is crucially needed.

129

Chapter 5. Top-k Triple-Pattern Query Processing

In Table 5.8, we show the results for the case of keyword-augmented triple-
pattern queries. Again, we show the average runtimes and the number of triples
accessed by each approach, averaged overall keyword-augmented evaluation
queries. Our top-k processing framework with its pipelined architecture for
processing keyword-augmented triple patterns shows high improvements over
the baseline approach in terms of both runtimes and sorted accesses. However,
the improvements are not as high as in the case of simple triple-patterns with
no keywords. We believe that this is due to the pipelined architecture where
keyword-augmented triple patterns are processed separately using Algorithm
3 which fetches the triples for a keyword-augmented triple pattern and feeds
them into the main rank-join algorithm to join them with the triples retrieved
for other triple patterns. In the next subsection, we propose few modifications
to our top-k processing framework that should overcome this additional over-
head endured by the pipelined architecture.

5.5.3. Experiment 2

The second experiment was designed to test the effect that automatic query re-
formulation has on the performance of query processing. We tested the two
approaches to process a query and its reformulations that we presented in Sub-
section 5.2.3. The first, which we coin the incremental processing approach, pro-
cesses the original query first using our top-k query-processing framework. In
case k is greater than the total number of results of the original query, the incre-
mental processing approach proceeds by processing the closest reformulation to
the original query and appending the results of the reformulated query to the
retrieved results of the original query. In case the number of results retrieved
so far is still less than k, the incremental processing approach processes the next
closest reformulation and so on until k results have been retrieved or all the
reformulations have been processed.

The second approach, which we refer to as the batch processing approach, con-
siders all the queries together, and retrieves the result tuples in order of their
scores with respect to the original query and all its reformulations. The batch
processing approach utilizes Algorithm 4 in order to retrieve the triples instanti-
ating a given triple pattern or any of its relaxations in order of their scores which
are computed as we described in Subsection 5.2.3.

130

5.5. Experimental Evaluation

Query Benchmark

We did not use the same set of evaluation queries from the first experiment since
our first query benchmark consisted of queries that have a large number of re-
sults (i.e., greater than 100) and thus our top-k processing approaches when
k ≤ 100 would not consider any query reformulations. We thus constructed
a new query benchmark where most of the queries have very few results (typ-
ically less than 10) and thus we ensured that our top-k processing approach
would have to consider reformulated queries in order to retrieve the top-k high-
est scored results.

Similar to the first experiment, we used 2 different sets of evaluation queries.
The first set consisted of simple triple-pattern queries that ranged from single-
pattern queries to multi-pattern graph queries.We constructed 40 queries for
each dataset. The second set consisted of keyword-augmented queries. We con-
structed 15 queries for each dataset. The queries were triple-pattern queries
associated with one or more keywords. A subset of the evaluation queries used
for both datasets is shown in Table 5.9. Appendix C shows the complete list of
evaluation queries used in our second experiment.

Compared Approaches

Baseline Approach. The baseline approach works as follows. Given a triple-
pattern query Q = (q1, q2, .., qn), it retrieves for each triple pattern qi an instan-
tiation list consisting of all the triples instantiating pattern qi or any of its refor-
mulations. It then utilizes an in-memory hash-join operator to join the instantia-
tion lists of the different triple patterns, and retrieves result tuples satisfying the
query join conditions. Finally, the scores of the result tuples are computed ac-
cording to our scoring function, and the results are ranked descendingly based
on their scores.

Top-k Approach. The top-k approach works exactly as in the case of no query
reformulation. In case we are utilizing the batch processing approach, Algo-
rithm 4 picks the triple pattern to process next based on the scores of the triples
last retrieved.

131

Chapter 5. Top-k Triple-Pattern Query Processing

IMDB
?m hasGenre Comedy

?m hasWonPrize Academy Award

?a hasWonPrize Academy Award for Best Actor

?a originatesFrom New York

?m1 hasGenre Mystery

?m1 hasPredecessor ?m2

?d1 directed ?m1

?d2 directed ?m2

?d directed ?m true story

?d hasWonPrize Academy Award for Best Director

?a actedIn ?m school friends

?a type singer

LibraryThing
?b type Nonfiction

?b hasTag Greek

?w type Historian

?w wrote ?b

?b hasTag Memoir

?w wrote ?b

?b hasTag Non-fiction

?b hasTag Pulitzer

?w wrote ?b nobel prize

?b hasTag British Literature

?w wrote ?b civil war

?b hasTag Film

Table 5.9.: Subset of the evaluation queries

132

5.5. Experimental Evaluation

IMDB
Top-k

Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 1.589 2.597 3.396 7.394 10.812

#SA 15108 16492 18460 22661 25163

Baseline
Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 76.982 126.963 164.157 352.854 472.152

#SA 33736 34503 39038 49334 51970

LibraryThing
Top-k

Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 0.733 1.034 2.027 3.048 4.005

#SA 8205 8277 10550 13897 15992

Baseline
Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 9.202 12.919 21.178 46.000 56.693

#SA 19735 21027 25884 32723 35753

Table 5.10.: Results for triple-pattern queries with no keywords and with incre-
mental processing of reformulated queries

Incremental Processing Results

Table 5.10 shows the average runtimes and number of triples accessed for simple-
triple pattern queries and with incremental processing of query reformulations.
We again show superior performance when using our top-k framework as com-
pared to the baseline approach, with gains in the orders of magnitudes, for both
datasets. Note that in the case of incremental processing of reformulated queries,
the runtime of the baseline approach also increases as the number of required re-
sults (k) increases. This is due to the fact that as k increases, more queries would
be processed, and thus more triples would be retrieved, joined and ranked.

Similar to the case of simple triple-patterns, our top-k framework clearly out-
performs the baseline approach for the case of keyword-augmented queries with

133

Chapter 5. Top-k Triple-Pattern Query Processing

IMDB
Top-k

Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 39.579 39.585 39.701 57.109 62.449

#SA 15835 15854 15981 21200 24526

Baseline
Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 65.140 65.140 66. 767 66.771 80.739

#SA 65998 65999 63427 63431 67595

LibraryThing
Top-k

Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 13.721 13.905 21.793 38.716 51.949

#SA 4777 6239 10218 11611 13012

Baseline
Metric k = 5 k = 10 k = 20 k = 50 k = 100

Runtime (in secs) 5.883 5.883 6.340 118.609 121.624

#SA 23133 23133 23234 42658 46264

Table 5.11.: Results for keyword-augmented triple-pattern queries with incre-
mental processing of reformulated queries

incremental processing of reformulations. Similar to the case when we did not
consider query reformulation at all, the gains in performance for the top-k ap-
proach over the baseline approach are smaller, and we again credit this to the
pipelined approach we have opted for to process keyword-augmented triple
patterns.

Batch Processing Results

In Table 5.12, we show the average runtimes and the average number of triples
accessed for our simple triple-pattern evaluation queries. However, we de-
ployed a batch processing of query reformulation in this case. Recall that in
the batch processing approach, each triple pattern and all its reformulations are

134

5.5. Experimental Evaluation

Metric k = 5 k = 10 k = 20 k = 50 k = 100

IMDB
Top-k

Runtime (in secs) 67.905 68.059 68.318 68.682 68.833

#SA 29206 30986 33062 36509 38561

Baseline
Runtime (in secs) 121.293 121.293 121.293 121.293 121.293

#SA 77720 77720 77720 77720 77720

LibraryThing
Top-k

Runtime (in secs) 69.752 69.881 70.005 70.013 70.460

#SA 15335 15677 15858 15867 15913
Baseline

Runtime (in secs) 171.650 171.650 171.650 171.650 171.650

#SA 30579 30579 30579 30579 30579

Table 5.12.: Results for triple-pattern queries with no keywords and with batch
processing of reformulated queries

processed together in batch mode using Algorithm 4. This is achieved by utiliz-
ing a pipelined architecture, where each triple pattern and all its reformulations
are handled separately using Algorithm 4 that retrieves the triples in order of
their combined scores. The triples retrieved for each triple pattern (and its refor-
mulations) are then fed into the main rank-join algorithm (Algorithm 2), which
performs a top-k rank-join and reports the result tuples in order of their overall
combined scores.

We again show high improvements in terms of both runtime, and number of
triples that must be accessed.

Finally, in Table 5.13, we show the results of our complete top-k processing
framework, with keywords and batch processing of reformulated queries. We
again show vast improvements over the baseline approach in terms of both run-
time and the number of triples that must be accessed before the top-k results are
reported.

135

Chapter 5. Top-k Triple-Pattern Query Processing

Metric k = 5 k = 10 k = 20 k = 50 k = 100

IMDB
Top-k

Runtime (in secs) 52.182 52.314 52.634 72.774 74.586

#SA 21459 22707 24195 32135 34129

Baseline
Runtime (in secs) 256.826 256.826 256.826 256.826 256.826

#SA 135613 135613 135613 135613 135613

LibraryThing
Top-k

Runtime (in secs) 33.666 33.818 41.341 45.882 46.095

#SA 6437 7917 11954 14617 16264

Baseline
Runtime (in secs) 115.701 115.701 115.701 115.701 115.701

#SA 49883 49883 49883 49883 49883

Table 5.13.: Results for keyword-augmented triple-pattern queries with batch
processing of reformulated queries

5.5.4. Discussion and Possible Extensions

In our top-k processing framework, we opted for a pipelined approach to handle
keyword-augmented triple patterns, and triple-pattern reformulations. While
this nicely encapsulates the way we process the keyword-augmented triple pat-
terns, and the reformulated triple patterns, it introduces additional overhead as
we would need to retrieve the triples instantiating a keyword-augmented triple-
pattern in order of their true scores before joining them with the other triple pat-
terns in our main rank-join algorithm. One way to overcome this is to allow
Algorithm 3 and Algorithm 4 to periodically report their best candidates along
with their score bounds, and to modify Algorithm 2 to make use of these bounds
in order to compute the top-k joined result tuples.

Another possible modification to our algorithms that we believe could im-
prove their performance is to consider different scheduling strategies for pro-
cessing the different triple patterns in a given query. That is, in addition to the

136

5.6. Summary

score-guided strategy of picking the next triple pattern to process, this can be
combined with a heuristic that retrieves more triples from triple patterns that
are not associated with any keywords. By doing so, we reduce the number of
expensive calls to Algorithm 3.

All the algorithms we presented make the assumption that only sorted ac-
cesses are allowed. If we relax this condition and allow for random accesses,
this might prove beneficial in enhancing the performance of our algorithms,
since the encapsulated top-k processing algorithms would then report triples
much earlier than in the case of sorted accesses only.

Finally, we could also modify our top-k processing framework and instead of
using a pipelined architecture, we could fold each keyword-augmented triple
pattern and create a replica of the triple pattern for each keyword. We could
then holistically process all these folded triple patterns together in a top-k fash-
ion. Similarly, for query reformulation, we can retrieve for each triple pattern,
all its reformulations, and then process all such triple patterns with other triple
patterns in the query, and all their reformulations. While this might prove ben-
eficial in improving the performance of our top-k algorithms, it might be less
appealing from a design point of view. In particular, it endures vast complexi-
ties in the algorithms that are used to compute the top-k results, especially for
the case when we have both keyword-augmented triple patterns and query re-
formulation.

5.6. Summary

In this chapter, we presented a set of algorithms to efficiently process triple-
pattern queries, possibly augmented with keywords, and with automatic query
reformulation in place. Our framework is based on a pipelined architecture that
encapsulates the problem of retrieving triples instantiating keyword-augmented
patterns in order of their combined scores. We also use encapsulation to retrieve
triples instantiating a triple pattern and any of its reformulations in order of
their combined scores. We have shown through experimental evaluation that
our top-k processing approach outperforms a naive baseline approach that first
joins all the triples instantiating the triple patterns in the query (and their refor-
mulations) to retrieve the result tuples for the overall query, and then sorts the

137

Chapter 5. Top-k Triple-Pattern Query Processing

result tuples based on their combined scores. We also presented a set of pos-
sible extensions to our framework that we believe can prove very beneficial in
enhancing the performance of our framework even further.

138

Chapter 6.

Keyword Search

Searching RDF knowledge bases using the expressive triple-pattern queries is
a very powerful tool that allows users to find very concise answers to their in-
formation needs. However, triple-pattern search is more tailored for advanced
users or search APIs. The casual users are accustomed to keyword search which
has become the paradigm to perform IR tasks on the Web. In order to increase
the usability of RDF data, it is crucial to allow users to search RDF knowledge
bases using keyword queries. In this chapter, we present a retrieval model for
keyword queries over RDF knowledge bases. Our model retrieves tuples of
RDF triples that match the query keywords, and ranks them based on statistical
language-models.

6.1. Query Framework

Our knowledge base consists of a set of SPO triples such as the ones shown
in Table 6.1. To be able to process keyword queries, we associate with each
triple ti a document which we refer to as Di. Di contains a textual representa-
tion of the information encoded in ti. In the simplest case, Di would contain a
set of representative keywords for the subject, predicate and object of the triple.
These representative keywords can be generated using an external dictionary,
or by utilizing the textual extraction-patterns in case the triples were extracted
using some IE technique from free-text [79]. Moreover, in case there is any ad-
ditional textual information associated with the triple ti, such as any contextual
text present in the sources from which the triple was extracted [23], we can also
extract all the keywords there and add them to Di.

139

Chapter 6. Keyword Search

Subject (S) Property (P) Object (O)

Traffic hasWonPrize Academy Award

Innerspace hasWonPrize Academy Award

Innerspace hasGenre Comedy

Joe Dante directed Innerspace

Toy Story hasWonPrize Academy Award

Road Trip hasGenre Comedy

Toy Story hasGenre Comedy

Tom Hanks actedIn Toy Story

Diner hasWonPrize Academy Award

Diner type Comedy films

Steve Guttenberg actedIn Diner

The Pink Panther type Criminal comedy films

The Pink Panther hasWonPrize Academy Award

Police Academy type Comedy films

Steve Guttenberg actedIn Police Academy

The Darwin Awards type Comedy films

Table 6.1.: An example RDF knowledge base about movies

Definition 6.1 : Triple Document
The document Di of triple ti is a bag of words such that c(w;Di) is the frequency of
occurrence of term w in Di.

For example, the triple

Innerspace hasWonPrize Academy Award

would be associated with the following document:

innerspace won prize academy award 1988 oscar best visual effects

In this chapter, we present a retrieval model that takes as an input a key-
word query and retrieves a set of tuples consisting of triples matching the given
query. More precisely, for each query keyword, our model retrieves all triples
whose documents match this keyword. Once we have for each keyword a list of
matching triples, we join them based on their subjects and objects to retrieve tu-
ples with one or more connected triples. However, we only construct tuples that

140

6.1. Query Framework

Innerspace hasGenre Comedy

Road Trip hasGenre Comedy

Toy Story hasGenre Comedy

Diner type Comedy films

The Pink Panther type Criminal comedy films

Police Academy type Comedy films

The Darwin Awards type Comedy films

Table 6.2.: The List of matching triples for the keyword comedy

contain triples from different lists, corresponding to matches to different (sets of)
keywords. The intuition behind this is that we assume that the user has a precise
information need in mind that can be precisely represented using a set of triple
patterns. However, since the user cannot express her information need using
triple patterns, she represents each triple pattern using a set of keywords. With-
out any knowledge about which keywords map to which triple pattern, we need
to consider all extremes: from all keywords representing a single triple pattern
up to each single keyword representing an individual triple pattern. Thus, the
results to the user information need would be tuples with one or more triples up
to the number of keywords in the user query.

Definition 6.2 : Query Result
Given a keyword query Q = {q1, q2, ..., qm}, where qi is a keyword, a result is defined
as a tuple T = (t1, t2, ..., tn) where ti is a triple such that

1. ∀ ti, Q ∩Di 6= φ,

2. ∀ ti, tj, Q ∩Di 6= Q ∩Dj and

3. ∀ ti ∈ T,∃ tj such that subject(ti) = subject(tj), subject(ti) = object(tj),
object(ti) = subject(tj) or object(ti) = object(tj).

For example, consider the information need of finding comedies that have
won the Academy Award. Furthermore assume that the user expressed this in-
formation need using the keyword query comedy academy award. Tables 6.2, 6.3
and 6.4 show the list of matching triples for each query keyword. The results

141

Chapter 6. Keyword Search

Traffic hasWonPrize Academy Award

Innerspace hasWonPrize Academy Award

Toy Story hasWonPrize Academy Award

Diner hasWonPrize Academy Award

The Pink Panther hasWonPrize Academy Award

Police Academy type Comedy films

Table 6.3.: The list of matching triples for the keyword academy

Traffic hasWonPrize Academy Award

Innerspace hasWonPrize Academy Award

Toy Story hasWonPrize Academy Award

Diner hasWonPrize Academy Award

The Pink Panther hasWonPrize Academy Award

The Darwin Awards type Comedy films

Table 6.4.: The list of matching triples for the keyword award

for such a query would then be single triples matching one or more query key-
words, tuples of two triples matching at least two query keywords and so on.
Table 6.5 shows all the tuples retrieved for the example query from our example
RDF knowledge base in Table 6.1. The second column shows the set of matched
keywords by each triple in the corresponding tuple.

Note that all the tuples retrieved are unique and maximal. That is, each tuple is
not a subset of any other tuple retrieved. Also note that the tuples contain only
triples that match at least one query keyword. This can be extended to retrieve
tuples that contain triples that do not match any query keywords by exploring
the underlying RDF knowledge base and retrieving Steiner trees [41, 46, 39, 32]
or other graph-structured components [55]. This is similar in spirit to query
expansion in traditional IR.

Since keyword queries introduce additional ambiguity that is not present in
the case of triple-pattern queries, result ranking becomes very crucial. For in-
stance, the tuples in Table 6.5 differ in their size (i.e., how many triples they con-
tain) as well as how many keywords they match. In addition, they also differ

142

6.2. Retrieval Algorithm

Tuple Keywords
Traffic hasWonPrize Academy Award academy award

Innerspace hasGenre Comedy comedy

Innerspace hasWonPrize Academy Award academy award

Toy Story hasGenre Comedy comedy

Toy Story hasWonPrize Academy Award academy award

Road Trip hasGenre Comedy comedy

Diner type Comedy films comedy

Diner hasWonPrize Academy Award academy award

The Pink Panther type Criminal comedy films comedy

The Pink Panther hasWonPrize Academy Award academy award

Police Academy type Comedy films academy comedy

The Darwin Awards type Comedy films award comedy

Table 6.5.: All tuples retrieved for the query comedy academy award

in their semantics. For instance, consider the last tuple in Table 6.5. It states the
fact that the movies Police Academy and The Darwin Awards are both comedy
movies. The rest of the tuples in Table 6.5 describe movies that have genre com-
edy and have won the Academy Award. Recall our earlier observation that the
user keyword query is a representation of an implicit structured triple-pattern
query. Thus, in order to provide an effective ranking, the system must infer what
is the most likely structured query the user has in mind and then must rank the
tuples based on how well they match this implicit structured query. Our rank-
ing model, described in Section 6.3, does this by combining the structure and
the contents of the triples in the ranking function. Before we explain the details
of our ranking model, we first provide the algorithm we use to retrieve a set of
result tuples given a keyword query.

6.2. Retrieval Algorithm

As mentioned in the previous section, the results to a given keyword query are
the set of tuples consisting of joined triples matching the query keywords. All

143

Chapter 6. Keyword Search

the result tuples should satisfy the following two properties:

1. They should be unique and maximal. That is, each result tuple should not
be a subset of any other result tuple.

2. They should contain triples matching different sets of keywords. That is,
no triples in the same tuple would match the exact same set of keywords. If
two triples match the same set of keywords, they are parts of two different
possible results to the user query, and should be considered as parts of two
separate tuples.

Our retrieval algorithm starts by retrieving the lists of all triples matching the
query keywords. That is, given a query q = {q1, q2, ..., qm} where qi is a single
keyword, we retrieve m lists {L1, L2, ..., Lm} where Li is the list of all triples that
match the keyword qi (see Table 6.2, Table 6.3 and Table 6.4). We then join the
triples from these lists to retrieve result tuples that satisfy the aforementioned
properties as follows. Let the set of all unique triples in all the lists be E. This
set E can be viewed as a disconnected graph which we refer to as the query graph
. Recall that each triple can be viewed as an edge where its subject and object
are nodes. Analogously, a result tuple can be viewed as a subgraph of the query
graph. Throughout this section, we will be interchangeably using the terms edge
and triple to denote a triple, and the terms tuple and subgraph to denote a result
tuple.

We adapt the backtracking algorithm for network-motif detection in [86] to
retrieve subgraphs representing result tuples from the query graph. The mod-
ified algorithm utilizes adjacency lists for edges. Given an edge ti from list Li,
its adjacency list A(ti) would contain all neighbor edges tj from all other lists
Lj. Two edges are considered neighbors if they share a common node. That is,
given an edge ti = (si, pi, oi), an edge tj = (sj, pj, oj) would be a neighbor of ti if
si = sj, si = oj, oi = sj or oi = oj. In order to retrieve only unique subgraphs, we
associate with each edge ti an id and we only add a neighbor to the adjacency
list of ti if its id is greater than that of ti. Also, to ensure that we do not consider
joining triples that match the same set of keywords, we only add a neighbor tj
to the adjacency list A(ti) of triple ti if and only if ti /∈ Lj and tj /∈ Li. Finally, we
loop over all edges and generate all unique subgraphs using the two algorithms
Algorithm 5 and Algorithm 6.

144

6.2. Retrieval Algorithm

Algorithm 5 RETRIEVESUBGRAPHS(E)
1: for each edge t ∈ E do
2: EXTENDSUBGRAPH({t}, A(t))
3: end for

Algorithm 6 EXTENDSUBGRAPH(G, X)
1: while X 6= φ do
2: Remove an arbitrary chosen edge t from X

3: if (L({t}) * L(G) and L(G) * L({t})) then
4: X ′ ← X ∪ {t ′ ∈ NEIGHBORS(t, G)}
5: EXTENDSUBGRAPH(G ∪ {t}, X ′)
6: end if
7: end while
8: if (MAXIMAL(G)) then
9: print G

10: return
11: end if

Algorithm 5 loops over all the edges in the query graph and for each edge t,
it extracts its neighbors from its adjacency list A(t). Algorithm 6 takes as an in-
put a subgraph and a list of neighbors and recursively tries to add edges to this
subgraph. The condition in line 3 of Algorithm 6 ensures that only edges that
belong to at least one different list other than the lists the edges of the current
subgraph G belong to are considered. This ensures that we construct only sub-
graphs whose edges match different sets of keywords. The function L(G) returns
the set of lists the edges of subgraph G belong to. Once an edge is added to the
current subgraph, we also add its neighbors that are not neighbors of edges in
G to the current list of neighbors and continue. The functionNEIGHBORS(t, G)
retrieves all neighbors of an edge t that are not neighbors to edges in G. Fi-
nally, in order to ensure that we retrieve only maximal subgraphs, the algorithm
checks if the current subgraph is a subset of another retrieved subgraph before
returning it. Each subgraph retrieved by our algorithm represents a result tuple
of the given keyword query.

The running time of our retrieval algorithm depends on the number of query
keywords m as well as the size of the lists L1, L2, .., Lm. In the worst case, we

145

Chapter 6. Keyword Search

would need to consider joining each triple from one list with all triples from all
other lists. That is, we assume that each triple in one list is a neighbor to all
triples from all other lists. In this case, the running time of our algorithm would
beO(|L1|.|L2|.....|Lm|). Given that |Li| is at most nwhere n is the number of triples
in the whole knowledge base, the running time of our algorithm isO(nm) in the
worst case.

However, in practice, our algorithm runs much faster. First, our algorithm
depends on the sizes of the lists Li which are typically much less than n unless
the query keywords occur in the documents of all the triples in our knowledge
base. Moreover, it is very likely that each triple would need to be joined with
only a small subset of triples from the other lists (i.e., each triple would have
a small number of neighbors). These two properties make the runtime of our
algorithm much smaller than the worst case bound in practice.

6.3. Ranking Model

In the previous section, we explained how a set of tuples of joined triples match-
ing a given keyword query can be retrieved. We now explain how we rank
these tuples. Our ranking model is based on statistical language-models [69]
and works as follows. We assume there exists a language model for every triple
in our knowledge base which is defined as follows.

Definition 6.3 : Triple Language Model
The language model of triple ti is a probability distribution over the set V of all terms
that appear in all the documents of all the triples in the knowledge base. The language
model of triple ti has |V | parameters P(w|ti) which is the probability of term w in the
language model of triple ti.

Furthermore, we assume that there exists a language model for any tuple of
triples which is defined as follows.

Definition 6.4 :Tuple Language Model
The language model of tuple T = (t1, t2, ..., tn) is a probability distribution over the set
V of all terms that appear in all the documents of all the triples in the knowledge base.
The language model of tuple T has |V | parameters P(w|T) which is the probability of
term w in the language model of tuple T .

146

6.3. Ranking Model

Now, given a query Q = {q1, q2, ..., qm} where qi is a single term and a tuple
T = {t1, t2, ..., tn} where tj is a triple, we rank the tuple T based on the query like-
lihood of tuple T . Assuming independence between the query terms, the query
likelihood of tuple T is computed as follows:

P(Q|T) =

m∏
i=1

P(qi|T) (6.1)

where P(qi|T) is the probability of the term qi in the language model of tuple T .

Estimating the Language Models. The probability P(qi|T) of term qi in the
language model of tuple T is computed as a weighted sum of the following n
probabilities:

P(qi|T) =

n∑
j=1

1

n
P(qi|tj) (6.2)

That is, the probability of a term qi in the tuple language model is the average
of its probability in the language models of the triples constituting the tuple.
Note that more than one triple in the tuple T can match the same keyword qi and
thus averaging over all the triples is a natural choice. The language model of a
triple tj can then be directly estimated using the document of the triple. Recall
from Section 6.1 that each triple tj is associated with a document Dj which is
composed of all the terms associated with the triple. However, this approach
completely ignores the structure of the triples and treats every triple as a bag-
of-words. For instance, consider the query comedy academy award to find comedies
that have won the Academy Award. Now, consider the tuple T1

Innerspace hasGenre Comedy

Innerspace hasWonPrize Academy Award

and the tuple T2

The Darwin Awards type Comedy films

Police Academy type Comedy films

Given that the intended information need of the query is to find comedies that
have won the Academy Award, we should rank the tuple T1 higher.

In our ranking model, we try to take into consideration the structure of the
triples as an additional evidence of how well they match the structured-information

147

Chapter 6. Keyword Search

need intended by the keyword query. This is motivated by our earlier remark
that we built our retrieval model on: a user keyword query is a representation
of an implicit structured triple-pattern query. Considering our example query
comedy academy award, the term comedy most likely refers to the triple pattern

?x hasGenre Comedy

given the fact that the term comedy appears more often in the documents of triples
with predicate hasGenre and object Comedy. Similarly, the terms academy and
award would likely refer to the pattern

?x hasWonPrize Academy Award

Thus, it would be desirable to assign higher probability mass to triples that in-
stantiate these patterns (i.e., triples with predicate hasGenre for the keyword
comedy and hasWonPrize for the keywords academy and award).

To this end, we set the probability of a term qi in the language model of triple
tj, which we denoted by P(qi|tj) in Equation 6.2, to P(qi|Dj, rj). That is, the
probability of a term in a triple’s language model does not only depend on the
document of the triple tj, but also on its predicate which we denote by rj. This is
very intuitive given the fact that predicates are typically the most representative
aspect of the semantic of the triples. Applying Bayes’ rule, we have:

P(qi|Dj, rj) =
P(qi|Dj)P(rj|qi, Dj)

P(rj|Dj)
(6.3)

Furthermore, we set P(rj|qi, Dj) as a linear combination of the following two
components [74, 51, 50]:

P(rj|qi, Dj) = βP(rj|qi) + (1− β)P(rj|Dj) (6.4)

The first component in Equation 6.4 is the probability that the predicate rj is
intended by the term qi whereas the second component is the probability that
the predicate of triple tj is rj. The latter can be set to the extraction accuracy of
triple tj. Since this value is not generally present in RDF knowledge bases, we
assume that we are always fully confident in the extraction quality of any triple,
and set P(rj|Dj) to 1. The parameter β is a weighting parameter that controls the
effect of each component on the ranking and can be set using training queries.

148

6.3. Ranking Model

Substituting Equation 6.4 in Equation 6.3 and simplifying, we have:

P(qi|Dj, rj) = βP(qi|Dj)P(rj|qi) + (1− β)P(qi|Dj) (6.5)

where P(qi|Dj) is the probability of generating the term qi from the documentDj

which can be estimated using a maximum-likelihood estimator after smoothing
with a background (collection) probability as follows:

P(qi|Dj) = α
c(qi;Dj)

|Dj|
+ (1− α)

c(qi;Col)

|Col|
(6.6)

where c(w;Dj) is the frequency of term w in document Dj, |Dj| is the length of
document Dj (i.e., the sum of the term frequencies of all terms in Dj), Col is
the whole collection constructed by concatenating all the documents of all the
triples in the knowledge base, c(w;Col) is the frequency of term w in the whole
collection and |Col| is the length of the whole collection.

Finally, the parameter α is a smoothing parameter and is set according to
Dirichlet prior smoothing as follows:

α =
|Dj|

|Dj|+ µ
(6.7)

where µ is the average document length in the whole collection.
The only remaining component to estimate in Equation 6.5 is the probability

that the predicate rj is intended by the query term qi. In order to estimate this
probability, we first construct a document Rj for each predicate rj in the knowl-
edge base concatenating the documents of all the triples with such predicate.
For instance, given the predicate hasGenre, we construct a document which is a
concatenation of all the documents of all triples with predicate hasGenre. Once
we have constructed a document Rj for each predicate rj, we set the probability
that predicate rj is intended by term qi (i.e., P(rj|qi) in Equation 6.5) to P(Rj|qi)
(i.e., the probability of relevance of the document Rj to the term qi). Applying
Bayes’ rule, the probability P(Rj|qi) can be estimated as follows:

P(Rj|qi) =
P(qi|Rj)P(Rj)

P(qi)
=

P(qi|Rj)P(Rj)∑
k P(qi|Rk)P(Rk)

(6.8)

where P(w|Rj) is the probability of generating the term w given the document
Rj which is estimated using a maximum-likelihood estimator as in Equation 6.6
and P(Rj) is the prior probability of the document Rj being relevant to any term,

149

Chapter 6. Keyword Search

which we set uniformly. For example, using the above technique, the probability
P(hasGenre|comedy) would be higher than P(actedIn|comedy) given the fact
that the keyword comedy appears much more often in the documents of triples
that have predicate hasGenre than those that have predicate actedIn.

To summarize, our ranking model weights the probability of a query term
in the triple language model by the probability of the triple’s predicate being
intended by the query term. This seems to be very intuitive given that the dis-
tribution of terms in the knowledge base over all predicates gives clues on what
are the most-likely predicates intended by the user keyword query.

6.4. Related Work

The work on keyword search over structured data can be classified into two
classes. The first class aims at mapping the keyword query into one or more
structured queries. For instance, the authors in [82] assume that the user keyword-
query is an implicit representation of a structured triple-pattern query. They try
to infer such triple-pattern query using the RDF knowledge base and retrieve the
top-k most relevant triple-pattern queries. They then provide the user with the
retrieved queries and let her choose the most appropriate triple-pattern query
to be evaluated. Their approach involves user interaction, and in addition suf-
fers from a loss-of-information phenomenon since typically k is set to a small
number. One way to overcome the problem of engaging the user in the infer-
ence process is to directly evaluate the top-k inferred queries. Again this has the
problem of information loss and in addition is typically inefficient since each
one of these queries would have to be evaluated.

The work on query inference from a user’s natural language question in [58] is
also closely related. It utilizes natural-language processing tools and try to parse
a user’s question in order to infer the most-likely triple-pattern query. Their
technique however relies heavily on the quality of the parsing process and it
also suffers from the information-loss problem highlighted above.

The second class of work on keyword search over structured data overcomes
the aforementioned issues by directly retrieving the results of the keyword query.
The work on keyword search over XML data for instance falls into this category.
XKSearch [88] returns a set of nodes that contain the query keywords either in

150

6.4. Related Work

their labels or in the labels of their descendant nodes and have no descendant
node that also contains all keywords. Similarly, XRank [34] returns the set of
elements that contain at least one occurrence of all the query keywords, after
excluding the occurrences of the keywords in sub-elements that already contain
all the query keywords. However, all these techniques assume a tree-structure
and thus can not be directly applied to graph-structured data such as RDF data.

Also, closely related to our work is the language-modeling approach for key-
word search over XML data proposed in [49]. The authors assume that a key-
word query has an implicit mapping of each keyword into XML element(s).
Their ranking is based on the hierarchal language models proposed in [67] and
they utilize the distribution of terms in the elements of the XML collection to
weight the different components of the language models. However, the setting
of XML data is quite different from that of RDF since in XML the retrieval unit
is an XML document (or a subtree). In an RDF setting, we are interested in rank-
ing tuples of triples that match the user’s query. These tuples are not present in
advance and are computed on the fly during retrieval time, and thus most of the
prior work on XML IR would not apply.

Keyword search over graphs which returns a ranked list of Steiner trees [41,
46, 39, 32] (the exception is [55] which returns graphs) deals with the latter prob-
lem of constructing the results at query time as opposed to having an indexed
set of results that needs to be matched and ranked at query time. However, the
result ranking in each of the above is based on the structure of the results [41, 47]
(usually based on aggregating the number or weights of nodes and edges), or
on a combination of these properties with content-based measures such as tf-idf
[14, 39, 55] or language models [66].

For instance, the BANKS system [41] enables keyword search on graph databases.
Given a keyword query, an answer is a subgraph connecting some set of nodes
that ”cover” the keywords (i.e., match the query keywords). The relevance of an
answer is determined based on a combination of edge weights and node weights
in the answer graph. The importance of an edge depends upon the type of the
edge, i.e., its relationship. Node weights on the other hand represent the static
authority or importance of nodes and are set as a function of the in-degree of the
node. However, BANKS completely ignores the content during ranking, and
thus does not make use of the content of the triples as an additional evidence of
relevance to the query.

151

Chapter 6. Keyword Search

A closely related work that combines structure and content for ranking is the
language-model-based ranking model in [66] for ranking objects (resources in
an RDF setting). The model assumes that each resource is associated with a set
of records extracted from Web sources. In turn, each record is associated with
a “document”. The relevance of each such “document” (and correspondingly,
the resource associated with it) to a keyword query is estimated using language
models. This model however assumes that the retrieval unit is resources only,
while our ranking model goes beyond this to treat triples in a holistic manner by
taking into account the relationships between the resources. In addition, it as-
sumes the presence of a document associated with each Web Object or resource,
something that we lack in the case of RDF data in general.

The Semantic Search Challenge provided a benchmark for keyword queries
over RDF data, however the judgments were made over resources built by as-
sembling all the triples that shared the same subject. The best performing ap-
proach [7] ranked the resources using a combination of the BM25F scoring func-
tion and additional hand-crafted information about some predicates, properties
and sites. In contrast, we retrieve the set of tuples that match the query key-
words and rank them. We believe that retrieving tuples of triples rather than
just resources provide more concise answers to the user information need.

6.5. Experimental Evaluation

6.5.1. Setup

We evaluated our retrieval model using a comprehensive user-study over two
RDF datasets. The first dataset was derived from the LibaryThing community,
which is an online catalog about books. The second dataset was derived from the
Internet Movie Database (IMDB). The data from both sources was automatically
parsed and converted into RDF triples.

Recall that our retrieval model assumes that each triple ti is associated with
a document Di. The documents were constructed by using keywords derived
from the subjects and objects of the triples, and representative words for the
predicates. For example, the predicate isMarriedTo was represented using the
terms {marry, wife, husband, spouse, etc}. This was done manually since we did
not have that many predicates in our datasets, but for bigger datasets, the rep-

152

6.5. Experimental Evaluation

#entities Example entity types #triples Example relations #unique terms
LibraryThing Dataset

48,000 book, author 700,000 wrote, hasFriend, 21,821
user, tag hasTag, type

IMDB Dataset
59,000 movie, actor 600,000 actedIn, directed, 80,584

director, producer, won, isMarriedTo,
country , language produced, hasGenre

Table 6.6.: Overview of the datasets

resentations of predicates can be generated automatically using an external dic-
tionary, or by utilizing the textual extraction-patterns in case the triples were
extracted using some IE technique from free-text [79]. Once each triple was asso-
ciated with a set of keywords, we stemmed all the keywords using the Stanford
stemmer, removed stop words and created an inverted index over the triples.
Table 6.6 gives an overview of the datasets.

To evaluate our approach, we used a subset of the query benchmark in [23].
The benchmark there contains a set of structured triple-pattern queries, possi-
bly augmented with keywords, along with their descriptions. We extracted 30
queries from there, 15 for each dataset and represented each query using a set
of keywords. We opted for 30 queries only since we pooled 50 results per each
query, and gathered relevance assessment for each result using at least 4 differ-
ent human judges. Overall, we had about 15,000 unique relevance assessments
for the 30 queries. All the evaluation queries are listed in Appendix D. A subset
of the evaluation queries used is shown in Table 6.7. We used these queries to
compare the performance of four retrieval models, which we describe in detail
next.

6.5.2. Retrieval Models

We compared our ranking model, which we refer to as the Structured LM ap-
proach, to three competitors: 1) a baseline language-modeling approach (Base-
line LM), 2) the Web Object Retrieval Model (WOR) [66] and 3) the BANKS

153

Chapter 6. Keyword Search

Information need Query
LibraryThing

Historians who wrote memoir books historian memoir
book

The author of a classic fantasy funny book classic fantasy funny
author

Authors of non-fiction books that won the Pulitzer
prize

author non-fiction
pulitzer

A crime fiction that has was tagged as favorite by the
users

crime fiction favorite

Children’s writers who wrote books about were-
wolves

children writer were-
wolves

IMDB
Movies with genre Musical that were produced in
Italy

musical italy

Actors from New York City that have won the
Academy Award for Best Actor

new york academy
award best actor

Movies with genre War in which Anthony Quinn
acted

anthony quinn war

Movies with genre Comedy that have won the
Academy Award

comedy academy
award

Movies that Mel Gibson directed mel gibson director

Table 6.7.: A subset of the evaluation queries

system [41]. We chose these 3 competitors since they represent the family of
approaches applicable to our setting, namely: keyword search over structured
data. The rest of the approaches sketched in Section 6.4 do not directly apply to
our setting and thus were omitted from our evaluation.

Structured LM Approach. The Structured LM approach ranks a set of tuples
of triples retrieved using the retrieval algorithm in Section 6.2. It takes into con-
sideration the structure of the triples which is represented by the predicates of

154

6.5. Experimental Evaluation

the triples as described in Section 6.3. The Structured LM approach weights the
probability of a query term in the language model of each triple by the prob-
ability of the triple’s predicate being intended by the query term. This model
involves the single parameter βwhich must be learnt (see Equation 6.5), and we
explain how to do this in Subsection 6.5.4.

Baseline LM Approach. Similar to the Structured LM approach, the Baseline
LM approach also ranks a set of tuples of triples that are retrieved using the re-
trieval algorithm described in Section 6.2. It also uses the query likelihood of the
tuples to rank them. However, this approach completely ignores the structure of
the triples and treats all the triples as bags-of-words. The Baseline LM approach
is a special case of our Structured LM approach and can be achieved by setting
the value of the parameter β in Equation 6.5 to 0.

Web Object Retrieval. The Web Object Retrieval model proposed by Nie et
al. [66] is a language-model-based approach for ranking objects, or resources in
an RDF setting. The model assumes that each resource is associated with a set
of records extracted from Web sources. In turn, each record is associated with
a “document”. The relevance of each such “document” (and correspondingly,
the resource associated with it) to a keyword query is estimated using language
models.

We adapted the WOR model to work on RDF data as follows. We treated
triples as records and for a given resource X, we created a language model for
X using all its triples {t1, t2, ..., tn}. Given a keyword query Q = {q1, q2, ..., qm},
we then ranked the resources according to their probabilities of generating the
query which is computed as follows:

P(Q|X) =

m∏
i=1

n∑
j=1

1

n
P(qi|Dj) (6.9)

where P(qi|Dj) is the probability of generating the term qi given triple tj’s docu-
ment which was estimated using a maximum-likelihood estimator as described
in Equation 6.6 in Section 6.3.

BANKS. The BANKS system enables keyword search on graph databases. Given
a keyword query, an answer is a subgraph connecting some set of nodes that

155

Chapter 6. Keyword Search

”cover” the keywords (i.e., match the query keywords). The relevance of an an-
swer is determined based on a combination of edge weights and node weights
in the answer graph. The importance of an edge depends upon the type of the
edge, i.e., its relationship. Node weights on the other hand represent the static
authority or importance of nodes and are set as a function of the in-degrees of
the nodes.

This directly applies to our setting. Given a keyword query, we retrieved
all subgraphs that matched the query using the technique described in [41].
We then ranked the subgraphs based on a combination of edge weights and
node weights as proposed in their model. That is, the score of a subgraph
G = {t1, t2, ..., tn} with nodes N = {n1, n2, ..., nk} is defined as follows:

score(G) = λ

n∑
i=1

score(ti) + (1− λ)

k∑
i=1

1

k
score(ni) (6.10)

where score(ti) is the score of triple or edge ti which is computed using the
probability that the predicate of t is intended by any of the query keywords as
is done in the Structured LM approach. Note that in case a triple matches more
than one keyword, it will be counted as many times as the number of keywords
it matches. The score(ni) on the other hand is the score of node ni which is set
to the in-degree of the node ni. We used log scaling for both scores as advised
in [41]. Finally, the parameter λ controls the influence of both scores, and we
explain how it is set when we discuss the evaluation results in Subsection 6.5.4.

6.5.3. Relevance Assessments and Metrics

For each evaluation query, we retrieved the top-50 results retrieved using each
one of the four models described above. We then pooled all the results together
and presented the set of all unique results from the pool to 13 human judges
in no particular order, along with the query description. The judges were all
computer-scientists in two different research institutes. For the case of results
retrieved using WOR, we presented the resource label as a result and provided
the judges with a link to the Wikipedia article for that resource (in case there was
one) in order to help them decide whether a result is relevant or not. For the rest
of the results, we just presented the result tuples for judgment.

156

6.5. Experimental Evaluation

We asked the judges to assess the results on a 4-point scale: 3 correspond-
ing to results that completely match the information need as given by the query
description, 2 corresponding to results that do not completely match the infor-
mation need but are still highly related to it, 1 corresponding to results that do
not really match the information need of the query, but the results still make
sense and add valuable information to the user and finally 0 corresponding to
trivial, or nonsense results. Each result was evaluated by four different judges.
The levels of agreement between the judges as measured by the Kappa coeffi-
cient were 0.449 for the LibraryThing dataset and 0.542 for the IMDB dataset.
We also computed the agreement for relevant and irrelevant results only (i.e.,
assuming that levels 3,2,1 are relevant and 0 is irrelevant). We obtained a Kappa
coefficient of 0.397 for LibraryThing and 0.671 for IMDB which are in line with
the numbers reported for standard TREC evaluation campaigns. For instance,
the TREC legal track for 2006 reports a Kappa value of 0.49 on 40 queries, the
opinion detection task in 2009 reports a Kappa value of 0.34, and the TREC 2004
Novelty track reports a value of 0.54 for sentence relevance.

To compare the 4 retrieval models, we used the Discounted Cumulative Gain
(DCG) [45], which is is defined as follows:

DCG(i) =

{
G(1) if i = 1
DCG(i− 1) +G(i)/log(i) otherwise

where i is the rank of the result within the result set, and G(i) is the relevance
level of the result. We set G(i) to a value between 0 and 3 depending on the
judge’s assessment. For each result, we averaged the ratings given by all judges
and used this as the relevance level for the result. Dividing the obtained DCG by
the DCG of the ideal ranking we obtained a Normalized DCG (NDCG). We report
the NDCG values at rank positions or levels 20, 10 and 5.

6.5.4. Evaluation Results

We conducted three experiments: an overall evaluation using all evaluation
queries, a training experiment to set the parameters of the models that involve
ones, and a cross-validation to predict how well our parameter-learning ap-
proach would generalize.

157

Chapter 6. Keyword Search

Model NDCG @20 NDCG @10 NDCG @5
Structured 0.764 0.817 0.840
BANKS 0.637 0.647 0.639

WOR 0.576 0.596 0.621

Baseline 0.397 0.368 0.351

Table 6.8.: Average NDCG values for both datasets

Model NDCG @20 NDCG @10 NDCG @5
LibraryThing

Structured 0.861 0.880 0.889
BANKS 0.762 0.734 0.710

WOR 0.621 0.624 0.623

Baseline 0.395 0.361 0.333

IMDB
Structured 0.667 0.754 0.791
BANKS 0.513 0.560 0.569

WOR 0.530 0.567 0.618

Baseline 0.399 0.376 0.370

Table 6.9.: Average NDCG values with parameter learning

Overall Evaluation. In the first experiment, we report the average NDCG val-
ues over all 30 evaluation queries at levels 20, 10 and 5 using all four different
models in Table 6.8. The values for the Structured LM approach and the BANKS
system reported in the table are the ones achieved when the models parameters
were set to their optimum value (i.e., β = 0.9 for the Structured LM approach
and λ = 1 for BANKS).

As can be seen from Table 6.8, the Structured LM approach significantly out-
performs (p − value < 0.05 with a one-tailed t-test) all other methods in terms
of NDCG values at all levels. In the next experiment, we explain how to set the
models’ parameters using training queries.

158

6.5. Experimental Evaluation

Training Results. In the second experiment, we used one dataset for training
and the other for testing. That is, the 15 queries for the IMDB dataset were
used as a training set to learn the optimal parameter setting for the Structured
LM approach and BANKS. The 15 queries for LibraryThing were then used to
test the performance of the different methods. We repeated the same procedure
using the LibraryThing queries for training and the IMDB queries for testing.
The learning procedure was as follows. For the Structured LM approach, we
computed the average NDCG at level 50 over the 15 training queries, setting
the parameter β to a value between 0 and 1. We achieved the highest average
NDCG@50 for both datasets when β was set to 0.9. For BANKS, we did the
same thing using the same set of training queries and setting the parameter λ to
a value between 0 and 1, and we achieved the highest average NDCG at level
50 when λ was set to 1. Table 6.9 shows the average NDCG values over the test
queries at levels 20, 10 and 5.

Similar to the first experiment, the Structured LM approach significantly out-
performs (p−value < 0.05with a one-tailed t-test) all other methods in terms of
NDCG values at all levels for both datasets. In order to test how well our train-
ing strategy generalizes, we performed a cross-validation experiment which we
report next.

Cross-Validation Results. The third experiment was a cross-validation ex-
periment to show how well the parameter learning procedure we described
above generalizes over unseen datasets. We performed a leave-one-out cross
validation, where 14 out of the 15 queries for each dataset were used as a train-
ing set to determine the the value of the parameter β, and then the left-out query
was used for testing. We repeated the same process such that each evaluation
query is used for validation once, and we averaged the NDCGs over all the vali-
dation queries. For BANKS, we also performed a cross-validation to validate the
learning of its parameter λ, and again averaged the NDCGs over all the queries.
For the IMDB dataset, the results were identical to those reported in Table 6.9 for
all approaches, and for the LibraryThing dataset, the results were also the same
as in the training experiment, except for a slight change in the case of the Struc-
tured LM approach (with NDCG values of 0.814, 0.833 and 0.841 at levels 20,10
and 5, respectively). That is, similar to the results of the first two experiments,
the Structured LM approach outperforms all other methods for both datasets.

159

Chapter 6. Keyword Search

Qualitative Results. In Table 6.10, we show the results to the query anthony

quinn war over the IMDB dataset. The top-4 results returned by the four ap-
proaches are given and next to each result, the average relevance value given by
the human judges is shown (Column Rel.). Recall that each result was given a
relevance value between 0 and 3.

The results returned by the Structured LM approach were all about war movies
that Anthony Quinn played a role in. On the other hand, the results returned by
BANKS were also movies of genre War, but Anthony Quinn had nothing to do
with neither the first nor the fourth movie. This happens because BANKS just
relies on edge and node weights to rank the results, without taking into consid-
eration the query keywords. Even when we set the edge weights to represent
how well their predicates match the query keywords, BANKS would still favor
certain types of edges , as in the case with our example where any subgraphs
with an edge of type hasGenre were ranked higher.

The WOR on the other hand takes into consideration the query keywords,
however it has the drawback of requiring additional result representation strat-
egy. Just looking at the resource labels, it is hard to judge whether or not the
resources are relevant to the query unless the user already knows the resources.
For instance, the first result is a war movie directed by Anthony Quinn. On the
other hand, the approaches that retrieve tuples of triples make use of the triples
as a whole and provide the user with a means of interpreting the results.

Finally, the first result returned by the Baseline LM approach states that An-
thony Quinn and Warly Ceriani are both actors. Note that the stemming tool
we used stemmed the word Warly into war, and thus such tuple was retrieved
as a result. Since the Baseline LM approach does not take into consideration the
structure of the triples and how well they match the implicit structured query
intended by the keyword one, such results as the tuple just mentioned can have
high ranking as compared to their rank by the Structured LM approach.

6.6. Summary

RDF knowledge bases can be effectively searched using structured triple-pattern-
based query languages, such as SPARQL. While such structured queries are very
expressive and can represent advanced information needs very precisely, they

160

6.6. Summary

are tailored for Search APIs rather than casual users. Users prefer searching
using keyword queries. In this Chapter, we presented a retrieval model for key-
word queries over RDF data. Our model retrieves tuples of triples matching the
query keywords using a backtrack-searching algorithm. In addition, we rank
the result tuples based on how well they match the given keyword query where
the ranking is based on a novel structure-aware language-modeling approach.
We have shown through a comprehensive user-study that our retrieval model
outperforms well-known techniques for keyword search over structured data.

161

Chapter 6. Keyword Search

Q anthony quinn war
Rank Structured Rel.
1 Back to Bataan hasGenre War 3

Anthony Quinn actedIn Back to Bataan

2 Anthony Quinn actedIn Lion of the Desert 3
Lion of the Desert hasGenre War

3 The 25th Hour type World War II films 3
Anthony Quinn actedIn The 25th Hour

4 Anthony Quinn actedIn The Guns of Navarone 3
The Guns of Navarone type World War II films

Rank BANKS Rel.
1 We Dive at Dawn hasGenre War 1

Anthony Asquith directed We Dive at Dawn

2 Back to Bataan hasGenre War 3
Anthony Quinn actedIn Back to Bataan

3 Anthony Quinn actedIn Lion of the Desert 3
Lion of the Desert hasGenre War

4 Ice-Cold in Alex hasGenre War 1
Anthony Quayle actedIn Ice-Cold in Alex

Rank WOR Rel.
1 The Buccaneer 2

2 The 25th Hour 3

3 The Guns of Navarone 3

4 The Secret of Santa Vittoria 3

Rank Baseline Rel.
1 Warly Ceriani type actor 0

Anthony Quinn type actor

2 Anthony Quinn directed The Buccaneer 2.25
The Buccaneer type Napoleonic Wars films

3 Back to Bataan hasGenre War 3
Anthony Quinn actedIn Back to Bataan

4 Anthony Quinn actedIn Lion of the Desert 3
Lion of the Desert hasGenre War

Table 6.10.: The top-ranked results for the query anthony quinn war

162

Chapter 7.

Result Diversity

Diversifying the top-k ranked search results has been identified as an important
aspect of any successful information retrieval system. Result diversity can play
a big role in ensuring that the users get a broad view of the different aspects of
the results matching their queries, and aims to ensure that, even if the query is
ambiguous and the user’s information need is not fully clear, the user can find
at least one relevant query result in the top ranks. For queries over RDF knowl-
edge bases, the notion of diversity is much less clear and largely unexplored.
In this chapter, we address this problem, and define a notion of diversity in an
RDF setting. We propose techniques to diversify the results of queries over RDF
knowledge bases in order to cover all possible aspects of the query and ensure
that the top-k ranked results are as diverse as possible.

7.1. Result Diversity for Queries over RDF

Knowledge Bases

The results of queries over RDF knowledge bases tend to be homogeneous, mak-
ing it difficult for users interested in less popular aspects to find relevant re-
sults. For example, when asking for movies directed by directors who won an
Academy Award, it is preferable to represent the user with a list of movies that
were directed by different directors, have different genres and so on. If we solely
rely on a ranking model that takes into consideration only how relevant the re-
sults are to the query, it is possible that the top-k highest-ranked results would
be dominated by a certain type of movies, for instance directed by the same
director or with the same genre, etc.

163

Chapter 7. Result Diversity

R 1 James Cameron hasWonPrize Academy Award for Best Director

James Cameron directed Titanic

R 2 James Cameron hasWonPrize Academy Award for Best Director

James Cameron directed Avatar

R 3 Steven Spielberg hasWonPrize Academy Award for Best Director

Steven Spielberg directed Schindler’s List

R 4 Steven Spielberg hasWonPrize Academy Award for Best Director

Steven Spielberg directed Munich

R 5 Woody Allen hasWonPrize Academy Award for Best Director

Woody Allen directed Annie Hall

R 6 Woody Allen hasWonPrize Academy Award for Best Director

Woody Allen directed Mighty Aphrodite

R 7 Woody Allen hasWonPrize Academy Award for Best Director

Woody Allen directed Vicky Christina Barcelona

R 8 Sam Mendes hasWonPrize Academy Award for Best Director

Sam Mendes directed American Beauty

R 9 Clint Eastwood hasWonPrize Academy Award for Best Director

Clint Eastwood directed Million Dollar Baby

R 10 Clint Eastwood hasWonPrize Academy Award for Best Director

Clint Eastwood directed Mystic River

Table 7.1.: Results as tuples of triples for the example query ”directors who have
won an Academy Award and their movies”

Table 7.1 shows the top-10 results retrieved for our example query using some
popularity-based criteria. The result set is dominated by well-known directors
such as James Cameron and Steven Spielberg who each have more than one
movie listed. In order to increase the diversity of the top-10 results, we should
present more directors that have won the Academy Award and one of their
movies rather than showing many movies by the same director. Moreover, we
could also make sure that the top ranked results involve movies with different
genres, different types of directors, etc. Finally, we could also present movies
that differ in their plots, keywords, user’s comments and ratings, etc.

164

7.1. Result Diversity for Queries over RDF Knowledge Bases

To achieve the above goals, we need to utilize a diversity-aware ranking model
that trades off the relevance of the top-k highest-ranked results and their diver-
sity. A diversity-aware ranking model should ideally try to produce an ordering
or a permutation of the query results such that the top-k results are most relevant
to the query and at the same time as diverse from each other as possible. This
can be cast into an optimization problem where the objective is to produce an
ordering that would maximize both the relevance of the top-k results and their
diversity. The objective function for such an optimization problem is very hard
to both quantify and solve and thus most diversity approaches [33] try to solve
a simpler closely-related problem known as the top-k set selection problem. The
top-k set selection problem can be formulated as follows.

Definition 7.1 : Top-k Set Selection
Let Q be a query and U be its result set. Furthermore, let REL be a function that
measures the relevance of a subset of results S ⊆ U with respect to Q and let DIV be
a function that measures the diversity of a subset of results S ⊆ U. Finally, let f be a
function that combines both relevance and diversity. The top-k set selection problem can
be solved by finding:

S∗ = argmax
S⊆U

f(Q, S, REL,DIV)

such that |S∗| = k

The objective function f(Q, S, REL,DIV) is clearly underspecified and in order
to the solve this optimization problem, one must clearly specify both the rele-
vance function REL and diversity functionDIV and how to combine them. Gol-
lapudi and Sharma [33] proposed a set of axioms to guide the choice of the ob-
jective function f(Q, S, REL,DIV) and they showed that for most natural choices
of the relevance and diversity functions, and the combination strategies between
them, the above optimization problem is NP-hard. For instance, one such choice
of the objective function is the following:

f(Q, S, REL,DIV) = (k− 1)
∑
R∈S

rel(R,Q) + 2λ
∑
R,R ′∈S

d(S, S ′) (7.1)

where rel(R,Q) is a (positive) score that indicates how relevant result R is with
respect to query Q (the higher this score is, the more relevant R is to Q) and
d(R, R ′) is a discriminative and symmetric distance measure between two results
R and R ′, and λ is a scaling parameter.

165

Chapter 7. Result Diversity

The above objective function clearly trades off both relevance of results in the
top-k set with their diversity (as measured by their average distance). Solving
such objective function is again NP-hard, however there exists known approx-
imation algorithms to solve the problem that mostly rely on greedy heuristics
[33].

In the next section, we follow the same approach to obtain a top-k set of rel-
evant and diverse results for queries over RDF knowledge bases. In particular,
we optimize the above bi-criteria objective function using a greedy algorithm
that uses the Maximal Marginal Relevance (MMR) [10] to select the top-k set. The
advantage of an MMR-based algorithm is that it does not only select the top-k
set but also sorts it according to the marginal relevance of the results. In addition,
we can easily adapt the Maximal Marginal Relevance to the language-modeling
result-ranking framework that we assumed for all result-ranking approaches we
developed throughout this thesis

7.2. Maximal Marginal Relevance

Carbonell and Goldstein introduced the Maximal Marginal Relevance (MMR)
method [10] which they use to re-rank a set of pre-retrieved documents U given
a query Q. In order to do so, they combine relevance and diversity using a
linear interpolation which they refer to as the marginal relevance and then they
re-rank the documents incrementally by picking the next document that is not
yet selected that has the maximal marginal relevance with respect to the query
and the already selected documents.

We now show how we can adapt this diversity-aware ranking model to our
setting. Throughout this thesis, we assumed the results to queries, whether
triple-pattern queries or keyword queries, to be tuples of triples relevant to the
query. For example, Table 7.1 shows the top-10 results for the query ”direc-
tors who have won the Academy Award and their movies” as tuples of joined
triples where the results are ranked based on some popularity measure. We
start by defining the marginal relevance in this setting and then provide an al-
gorithm that can be used to re-rank a set of results for a given query based on
the marginal relevance that trades off both the results’ relevance and their diver-
gence from higher-ranked results.

166

7.2. Maximal Marginal Relevance

Definition 7.2 : Marginal Relevance
Given a queryQ, a set of tuples of triples U and a subset S ⊂ U, the marginal relevance
of a tuple T ∈ U \ S is equal to: MR(T,Q, S) = λrel(T,Q) + (1 − λ)min

T ′∈S
div(T, T ′)

where rel(T,Q) is a measure of how relevant T is to Q, div(T, T ′) is a measure of how
divergent T is from T ′ and λ is a controlling parameter.

The idea behind the marginal relevance metric is very intuitive. Given a query
Q and a set of already selected tuples S, the marginal relevance of a tuple T is
a measure of how much do we gain in terms of both relevance and diversity
by adding the tuple T to the selected set S. Recall, that our objective is to find
a set S ⊆ U that is most relevant to the query and most diverse. To measure
how much the result tuple T would contribute to the relevance aspect of S, it is
straight forward and we can use the tuple’s relevance to Q. On the other hand,
to measure how much tuple T would contribute to the diversity of S, it is more
involved. The most natural thing to do is to compare T with all the tuples T ′ ∈ S
and compute a similarity (or rather dissimilarity) between T and every other
tuple T ′ and then aggregate these similarities over all the tuples in S. We do
exactly this by assuming there is a divergence function that can measure how
tuple T diverges from any other tuple T ′ (i.e., how different T is from T ′) and
then we use the minimum of the divergences of T from all the tuples T ′ ∈ S
as a measure of the overall contribution of tuple T to the diversity of set S if
it were to be added to it. Note that using the minimum is very intuitive as it
relies on the closest or most similar tuple T ′ ∈ S as an estimate of how adding
T to S would affect its diversity. Thus, by maximizing this minimum over a
set of tuples T /∈ S, we can find the tuple that when added to S would render
it most diverse as compared to any other tuple. Alternatively, we can also use
the average divergence between T and all tuples T ′ ∈ S as a measure of the
contribution of tuple T to the diversity of set S.

Given all these considerations, we set the relevance rel(T,Q) to the score of
the tuple T which we obtain using any of the ranking models we developed for
ranking results to queries over RDF data (see Chapter 3 and Chapter 6). We only
assume here that the ranking model would rank the tuples descendingly based
on their scores. In case, the ranking is based on ascending order of scores (for
instance using Kullback-Leibler divergence), the marginal relevance definition
would have to be adapted accordingly, which is straight forward to do.

167

Chapter 7. Result Diversity

To measure the divergence of two tuples div(T, T ′), a natural choice is to use
Kullback-Leibler divergence between a language model for tuple T and a lan-
guage model for tuple T ′ which we denote by KL(T ||T ′). Note that while the
Kullback-Leibler divergence is an asymmetric measure, this is actually not a prob-
lem. In fact, it is a desired property since we are interested in determining how
divergent tuple T is from a reference tuple T ′ not the other way around. We
point out that the same reasoning have been also deployed in other settings (for
instance, document retrieval in [90]).

Finally, we explain how the marginal relevance can be used to provide a
diverse-aware ranking of results given a query Q. Let U be the set of ranked
results using any regular ranking model (i.e., that depends only on relevance
without taking into consideration diversity). The algorithm to re-rank the re-
sults works as follows:

Maximal Marginal Relevance Re-Ranking Algorithm

1. Initialize our top-k set Swith the highest ranked tuple T ∈ U

2. Iterate over all the tuples T ∈ U \ S, and pick the tuple T ∗ with the maxi-
mum marginal relevanceMR(T ∗, Q, S). That is,

T ∗ = argmax
T∈U\S

[λrel(T,Q) + (1− λ)min
T ′∈S

div(T, T ′)]

3. Add T ∗ to S

4. If |S| = k or S = U return S otherwise repeat steps 2, 3 and 4

Now, the final step in our diversity-aware ranking model is to define how we
compute the divergence div(T, T ′) of a tuple T from another tuple T ′. Again, we
assume there exists a language model for each tuple and then we set div(T, T ′)
to KL(T ||T ′) where KL(T ||T ′) is the Kullback-Leibler divergence between the two
language models. We next explain a set of different approaches to construct
these language models that vary in the amount and level of diversity they pro-
vide.

168

7.2. Maximal Marginal Relevance

7.2.1. Resource-based Diversity

In this method, the goal is to diversify the different resources (i.e., entities and
relations) that appear in the result tuples. This ensures that no one resource will
dominate the result set. Consider our example query asking for directors that
have won the Academy Award and their movies. Table 7.1 shows the top-10
tuples retrieved for the query using some relevance-based criteria. The result
set is dominated by well-known directors such as James Cameron and Steven
Spielberg who each have more than one movie listed. In order to increase the
diversity of the top-10 results, we should present more directors that have won
the Academy Award for Best Director and one of their movies rather than show-
ing many movies by the same director. In order to do so, we define a language
model for each tuple as follows.

Definition 7.3 : Resource-based Language Model
The resource-based language model of tuple T is a probability distribution over all re-
sources in the knowledge base KB.

The parameters of the tuple language model are estimated using a maximum
likelihood estimator as follows:

P(w|T) = α
c(w; T)

|T |
+ (1− α)

c(w;Col)

|Col|
(7.2)

where w is a resource, Col is the set of all resources in the knowledge base,
c(w; T) and c(w; col) are the number of times resource w occurs in R and Col
respectively, and |T | and |Col| are the number of times all resources occur in T
and Col, respectively.

7.2.2. Knowledge-Base-based Diversity

In this model, we try to go one level deeper and make sure we diversify the
results not only in terms of their resources, but also take into consideration ad-
ditional knowledge about them from the underlying knowledge base. For the
earlier example query, not only do we want to diversify the results ensuring that
no one director would dominate the result set, but we also want to make sure
that the top ranked results involve movies with different production locations,
genres, different types of directors, etc.

169

Chapter 7. Result Diversity

In order to achieve this goal, we define for each resource, whether an entity or
a relationship, a language model which takes into consideration the resource’s
triples in the knowledge base in order to more accurately identify the nature of
the resource. For example, consider the resource Woody Allen. This resource
is part of triples with relationships actedIn and directed hinting that such
resource is particularly a director/actor. This gives additional evidence beyond
just the resource identifier used in the first method.

The resource language model is defined as follows.

Definition 7.4 : Resource Language Model
The language model of a resource X is a probability distribution over ungirams of re-
sources and bigrams of resource pairs.

The parameters of the language models of resources are estimated from the
knowledge base using the triples in which the resource participates. This is done
by associating each resource with a bag of unigrams and a bag of bigrams which
are then used to estimate the probabilities of the unigrams and bigrams in the
resource’s language model using a smoothed maximum-likelihood estimator.
For example, consider the resource Woody Allen, and assume that the triples in
which Woody Allen appears as either a subject or an object are

Woody Allen directed Manhattan

Woody Allen directed Match Point

Woody Allen actedIn Scoop

Woody Allen type American Director

Federico Fellini influences Woody Allen

Woody Allenwould then be associated with the unigram bag {Manhattan, Match Point,
Scoop, American Director, Federico Fellini}. Similarly, the bigram bag
of Woody Allen would be {(directed, Manhattan), (directed, Match Point),
(actedIn, Scoop), (type, American Director), (Federico Fellini, influences)}.

The method we use to estimate the parameters of the language models of the
resources from their unigram and bigram bags is described in more details in
Chapter 4.

Once we have a language model for every resource in the knowledge base,
we can use these language models to achieve an additional level of diversity.

170

7.2. Maximal Marginal Relevance

We again utilize the MMR framework we described in the previous subsection
where the language model of a result tuple T is defined as follows.

Definition 7.5 : Knowledge-Base-based Language Model
The knowledge-base-based language model of Tuple T is a mixture model of all the lan-
guage models of all the resources that appear in T .

The parameters of the knowledge-base-based language model are estimated as
follows. Let RES(T) be the set of all resources X that appear in T , and let P(w|X)
be the probability of a term w in the language model of resource X. The proba-
bility of a term w in the language model of tuple T is then estimated as follows:

P(w|T) =
1

|RES(T)|
ΣX∈RES(T)P(w|X) (7.3)

7.2.3. Text-based diversity

Recall that each triple can be associated with a text snippet. Such text snippet
can be directly utilized to provide diversity among the different results in the
top rankings using the MMR measure. We first define a language model for each
triple and then use these language models to construct the language models of
the result tuples.

Definition 7.6 : Triple Language Model
The triple language model is a probability distribution over all the terms in all the text
snippets of all the triples in the knowledge base KB.

The parameters of the triple language model is computed using a maximum-
likelihood estimator as follows:

P(w|t) = α
c(w;D(t))

|D(t)|
+ (1− α)

c(w;Col)

|Col|
(7.4)

where c(w;D(t)) is the number of times the term w occurs in D(t) (the text
snippet of triple t), Col is the whole collection composed of all text snippets
of all triples in the knowledge base KB, and |D(t)| and |Col| are the number
of occurrences of all terms in D(t) and Col, respectively. The text-based tuple
language model is then defined as follows.

171

Chapter 7. Result Diversity

Definition 7.7 : Text-based Language Model
The text-based language model of tuple T is a mixture model of the language models of
the triples that constitute the tuple T .

The parameters of the text-based tuple language model are then estimated as
follows. Let T = (t1, t2, ..., tn) where ti is a triple, the probability P(w|T) of term
w in the language model of tuple T is computed as:

P(w|T) =
1

n
Σni=1P(w|ti) (7.5)

where P(w|ti) is the probability of term w in the language model of triple ti
which is estimated according to Equation 7.4.

7.3. Related Work

Result diversity for document retrieval has gained much attention in recent
years. The work in this area deals primarily with unstructured and semi-structured
documents [1, 10, 12, 15, 33, 89]. Most of the techniques perform diversification
by optimizing a bi-criteria objective function that takes into consideration both
result relevance as well as result novelty (a measure of diversity) with respect
to other results. Gollapudi and Sharma [33] presented an axiomatic framework
for this problem and studied various objective functions that can be used to de-
fine such optimization problem. They proved that in most cases, such problem
is hard to solve and proposed several approximation algorithms to solve such
problem. Carbonell and Goldstein introduced the Maximal Marginal Relevance
(MMR) method [10] which is one approximation solution to such optimization
problem. Zhai et al. [89] studied a similar approach within the framework of
language models and derived an MMR-based loss function that can be used to
perform diversity-aware ranking. Aragwal et al. [1] assumed that query results
belong to different categories and they proposed an objective function that tries
to trade off the relevance of the results with the number of categories covered
by the selected results. In an RDF setting, where results are constructed at query
time by joining triples, we do not have an explicit notion of result categories. We
thus adopted [10] to the setting of RDF data since it directly utilizes the results to
perform diversity rather than explicitly taking the categories of the results into
consideration.

172

7.3. Related Work

Result diversity can also be achieved by clustering or classification of search
results. Both techniques group search results based on their similarities, so that
users can navigate to the right groups to retrieve the desired information. For
example, clustering and classification have been applied to image retrieval [84]
as well as database query-results [13]. Clustering is usually performed as a post
processing step. However, with the optimization approaches that use bi-criteria
objective functions, one can seamlessly integrate both result relevance and di-
versity in a controlled manner that automatically balances these two factors for
each result. That is, we could ideally have more than one result from the same
cluster ranked higher than those from other clusters if these results are much
more relevant to the query than the results from other clusters. Similarly, clas-
sification suffers from the same problem of ranking result groups rather than
the results themselves, and in addition, classes are usually pre-defined which is
something we lack in the case of searching RDF knowledge where the results
are tuples of joined triples constructed at query time.

Apart from document retrieval, there is very little work on result diversity
for queries over structured data. In [13] the authors propose to navigate SQL
results through categorization, which takes into account user preferences. They
assume there exists query logs and utilize them to identify different categories of
user’s preferences and then use these categories to classify the query results. In
[85], the authors introduce a pre-indexing approach for efficient diversification
of query results on relational databases. To do so, they ensure that the results
retrieved from a given relation are diverse in terms of their attributes. How-
ever, their work applies only to relational databases, where there is an explicit
schema, which is something we lack in RDF in general. Moreover, they do not
take into consideration the relevance of the results to the query. The work in [19]
also deals with relational databases and aims at diversifying the search results
to keyword queries. The approach taken in [19] is to identify the different in-
terpretations of the keyword query, which are inherently ambiguous, and then
classify the query results according to these different interpretations. While we
could make use of this approach for the case of keyword queries over RDF data,
it is not applicable to the case of triple-pattern queries, where the queries are in
semantically well-defined and do not involve ambiguities. It is nonetheless still
desirable to diversify the results of such queries in order to provide the users
with a broader view of the possible query results.

173

Chapter 7. Result Diversity

More recently, the work on co-reference aware Web object retrieval [18] deals
with the problem of retrieving diverse Web objects that are extracted from multi-
ple Web sources. While, their work is very close in spirit, they mainly deal with
the issue of duplicates in such collections, where many instances of the same
object can be present. Their goal is to retrieve a set of such unique objects in
response to a user keyword query. Our setting is in large very different from
their setting, since we assume that we focus on a single RDF knowledge base,
that in principal, contains no duplicate resources (i.e., Web objects). In addition,
our query results are not just a list of objects, but a set of tuples of triples, and
our goal is to diversify all the resources in such triples, including the different
relationships between pairs of resources.

7.4. Evaluation

Evaluation of non-traditional retrieval models such as the one we presented in
this chapter poses a big challenge. Most IR evaluation metrics are designed
to evaluate traditional retrieval tasks; i.e., the relevance judgments are made
independently for each result. However, in our case, we would want to judge
a set of results (say the top-k) collectively. One way to do this, is to provide
the top-k diversified results and the top-k results without diversity for a set of
benchmark queries and ask a set of human evaluators to judge which result set
they find more useful or prefer. However, this is very subjective, and might
differ from one user to the other. For instance, one user might always prefer to
see highly relevant results regardless of their diversity whereas another might
prefer to sacrifice a bit of relevance for the sake of diversity. Indeed, the optimal
trade-off between relevance and diversity is a user factor and thus very hard to
quantify [90].

An alternative evaluation mechanism is to assume that each user is interested
in finding one single result for any query in the query benchmark and then mea-
sure the percentage of user satisfaction per result set (i.e., diversified versus non-
diversified). This would require a relatively large query benchmark and in ad-
dition, a large base of human judges in order to find a significant number of
users for each query with different interpretation of the query, or different infor-
mation needs for the same query. Unfortunately, we could not do this through

174

7.4. Evaluation

the course of this thesis, but we believe that creating such an evaluation bench-
mark would be very useful in the context of evaluating diversity approaches for
results to queries over RDF data.

To overcome some of the issues mentioned above, there have been many at-
tempts in order to adapt IR evaluation metrics for the task of diversity-aware
retrieval. Most of these approaches rely on the explicit notion of aspects for
queries. That is, each query is assumed to be referring to a set of different as-
pects or subtopics (with different relevance values in some cases), and in turn
each query result can cover one or more query aspects. Traditional IR metrics
can then be modified to take into consideration these aspects while evaluating
the performance of a retrieval model. For example, Zhai et al. [89] developed
few precision and recall based measures that take into consideration the number
of aspects covered by a result set, the uniqueness of the aspects covered and the
relevance of the results to the query. Argawal et al. proposed a similar metric
based on NDCG [1] that also takes into consideration the number of aspects cov-
ered by a result set, the relevance of the aspects with respect to the query as well
as the relevance of the results to the query. Developing similar metrics in the
case of RDF search is slightly harder especially for triple-pattern queries that are
usually very clear making the process of identifying query aspects more vague
to define. This requires a thorough study over a large benchmark of queries
which is again outside the scope of this thesis.

Finally, we point out that comparing different diversity methods in the setting
of RDF search is also a very challenging problem as results are assumed to be tu-
ples of triples matching a given query. This concise representation lacks context
making it hard to judge which diversity method performs better or produces a
more useful set of diversified results. To overcome this, one must present addi-
tional contextual information with the query results to help evaluators compare
the different query results in order to finally judge which they perceive as a
more useful diversity approach. Result Representation is something we do not
consider in this thesis.

For all the above mentioned reasons, we evaluate our framework for result
diversity with its three incarnations via a set of qualitative examples. With
these examples, we highlight the merits each method might have over the other
methods, and show case why such method might be needed for certain types of
queries. We also explain the overhead involved in each of these three methods.

175

Chapter 7. Result Diversity

Undiversified Results Diversified Results
Tom Hanks actedIn Forrest Gump Tom Hanks actedIn Forrest Gump
Tom Hanks actedIn The Da Vinci Code Tom Hanks actedIn The Da Vinci Code
Tom Hanks actedIn Saving Private Ryan Tom Hanks actedIn Saving Private Ryan
Tom Hanks actedIn Sleepless in Seattle Tom Hanks hasChild Colin Hanks
Tom Hanks actedIn Philadelphia Tom Hanks isMarriedTo Rita Wilson
Tom Hanks actedIn The Terminal Tom Hanks hasWonPrize Saturn Award
Tom Hanks actedIn You’ve Got Mail Tom Hanks bornOnDate 1956-07-09
Tom Hanks actedIn Apollo 13 Tom Hanks livesIn Concord, California
Tom Hanks actedIn Toy Story Tom Hanks produced Charlie Wilson’s War
Tom Hanks actedIn Toy Story 2 Tom Hanks directed That Thing You Do!

Table 7.2.: Results for the example query ”Tom Hanks”

Resource-based Diversity Example. In Table 7.2, we show the results of an
example query to find all relevant triples about Tom Hanks. The left column is
the top-10 results without any diversification. As can be seen, all the results are
about movies that Tom Hanks acted in. While all the results are highly relevant
to Tom Hanks, they span only one aspect about him; mainly his career as an
actor. On the right column of Table 7.2, we show the top-10 diversified results,
where the results were diversified using the resource-based language models for
tuples. Clearly, the diversified result set provides many different information
about Tom Hanks, including his spouse, his children, birthdate and place of
residency, awards, that is in addition to prominent movies he acted in, and even
directed and produced.

Knowledge-base-based Diversity Example. In Table 7.3, we show the re-
sults of an example query to find all actors that have won an Academy Award
for Best Actor. Due to space limitation, we just show the URIs of the actors.
The left column is the top-10 results without any diversification. The top-10
results are all about American film actors. On the right column of Table 7.2,
we show the top-10 diversified results, where the results were diversified us-
ing the knowledge-base-based language models for tuples (Subsection 7.2.2).
The diversified result set contains a more diverse set of actors including British,

176

7.4. Evaluation

Undiversified Results Diversified Results
Dustin Hoffman Dustin Hoffman
Jamie Foxx Russell Crow
Clark Gable Nigel Hawthorne
Sean Penn Emil Jannings
Nicolas Cage Maximilian Schell
Kevin Spacey Roberto Benigni
Robert De Niro Jamie Foxx
Will Smith Leslie Howard
Jack Lemmon Peter Finch
Tom Hanks Clark Gable

Table 7.3.: Results for the example query ”actors that have won the Academy
Award for Best Actor”

German, Australian actors, and so on. The results also contain in addition to
film actors, TV actors, and a mix of modern alive actors as well classic deceased
ones. Note that the resource-based diversity approach would not be able to
achieve this level of diversity as it takes into consideration only the direct re-
sources that appear in the query results, which are all different for our example
query. The knowledge-base-based approach on the other hand, tries to make use
of the knowledge present about each resource in the whole knowledge as a more
complete representation of the resource rather than just relying on the resource
identifier. This more complete representation of resources however comes with
a price, as the knowledge-base-based diversity is more expensive than the sim-
ple resource-based one, since the language models for the resources that appear
in the results, which are typically quite big, have to be compared against each
other.

Text-based Diversity Example. In Table 7.4, we show the results of an exam-
ple query to find all movies of genre Fantasy. The left column is the top-10 results
without any diversification. The top-10 results are all fantasy movies, however
many sequels of the same movies are ranked in the top-10 results (for example,
Toy Story or Spider Man). On the right column of Table 7.4, we show the top-10

177

Chapter 7. Result Diversity

Undiversified Results Diversified Results
Shrek hasGenre Fantasy Shrek hasGenre Fantasy
Superman Returns hasGenre Fantasy Superman Returns hasGenre Fantasy
Spider-Man 3 hasGenre Fantasy Toy Story 3 hasGenre Fantasy
Toy Story 3 hasGenre Fantasy Star Wars hasGenre Fantasy
Batman Begins hasGenre Fantasy Clash of the Titans hasGenre Fantasy
Spider-Man 2 hasGenre Fantasy Kate & Leopold hasGenre Fantasy
Shrek 2 hasGenre Fantasy Bruce Almighty hasGenre Fantasy
Clash of the Titans hasGenre Fantasy Jurassic Park hasGenre Fantasy
Batman Returns hasGenre Fantasy Twilight hasGenre Fantasy
Batman Forever hasGenre Fantasy Alice in Wonderland hasGenre Fantasy

Table 7.4.: Results for the example query ”fantasy movies”

diversified results, where the results were diversified using the text-based lan-
guage models for tuples (Subsection 7.2.3). The diversified result set contains a
more diverse set of fantasy movies that include movies about outer space, ani-
mation movies, classical fairy tails as well as science fiction movies. Note that
neither the resource-based diversity approach nor the knowledge-base-based
one would be able to achieve this level of diversity as they do not take into con-
sideration the text associated with the triples which contain additional context
for the triples. Again, in comparison to the resource-based approach, the text-
based approach involves additional overheard of comparing the text snippets of
the different results, which can be in general large as compared to just the list of
resources in a given result.

7.5. Summary

In this Chapter, we presented a diversity-aware ranking model for queries over
RDF knowledge bases, whether triple-pattern queries or keyword queries. Our
model is based on optimizing a bi-criteria objective function that trades off the
relevance of results and their diversity using a Maximal Marginal Relevance
approach. To measure the diversity of a set of results, our model can use dif-

178

7.5. Summary

ferent sources of information ranging from just the resources that appear in the
results, to utilizing additional information about the resources from the knowl-
edge base or using the text associated with the triples, if any exists. Our model
can also combine these different sources of information to achieve a higher level
of diversity. We evaluated our framework using a set of qualitative examples
which motivated the need for result diversity, and highlighted the merits and
the limitations of the different sources of information that can be used to quan-
tify diversity.

179

Chapter 7. Result Diversity

180

Chapter 8.

Knowledge Exploration

By searching RDF knowledge bases, users can find precise information about
certain subjects of interest. Query results are typically a single resource, a set of
resources or tuples of joined triples. While this is a very concise representation
of answers to users’ information needs, it is often the case that users would like
to learn more about their query results. In this chapter, we present two different
tools to allow users to find additional contextual information about their query
results. The first tool, ROXXI, is a document retrieval tool that retrieves a set
of witness documents for a given set of RDF triples. The second tool, CATE, is a
context-aware entity summarization tool that retrieves information about an en-
tity of interest from an RDF knowledge base as well as unstructured data sources
and displays the retrieved information in an interactive timeline fashion.

8.1. ROXXI: Reviving Witness Documents to

Explore Extracted Information

Most large RDF knowledge bases are constructed by deploying information-
extraction techniques from structured, semi-structured as well as, to a limited
extent, unstructured information sources [78, 4, 30]. However, the-state-of-the-
art information-extraction techniques [79, 62] still cannot capture every piece of
information present in the world, which renders such knowledge bases often
incomplete.

For example, when looking for detailed information about the movie From
Dusk Till Dawn, we can query an RDF knowledge base and find the information
that Quentin Tarantino wrote, produced, and acted in this movie. However, we

181

Chapter 8. Knowledge Exploration

cannot find information such as the movie plot or tag lines which are naturally
present in the form of free text and cannot be meaningfully expressed in the
form of RDF triples. Another piece of information that we will not find in an
RDF knowledge base, even though available in the textual documents, is that
Quentin Tarantino was originally set to direct the From Dusk Till Dawn, but in
the end decided against it so that he could focus more on his tasks as actor and
screenplay writer. That is, RDF knowledge bases do not consider ”potential”
facts or explanations.

In this section, we present a system that enables knowledge exploration on top
of RDF knowledge bases. Our system combines the benefits of structured search
in RDF knowledge bases and document retrieval to better serve the user’s infor-
mation needs. In particular, our system retrieves a ranked list of witness docu-
ments for a given set of RDF triples, i.e., documents that contain the information
encoded in the given RDF triples . The information about the connections be-
tween the triples and the documents can either be collected during the knowl-
edge base construction phase or added later on.

8.1.1. Knowledge Exploration with ROXXI

To start knowledge exploration with ROXXI, a user first identifies a set of RDF
triples she is interested in, which we refer to as an RDF subgraph. Recall that
an RDF knowledge base can be viewed as a graph where each RDF triple can be
represented using an edge with the subject and object of the triple corresponding
to vertices and the predicate corresponding to the label of the edge.

ROXXI offers two ways to provide RDF subgraphs, one for users acquainted
with triple-pattern search and the other for casual users. The first allows users
to retrieve RDF subgraphs via triple-pattern queries whereas the second allows
them to search for entities in the knowledge base. A triple-pattern query and
a corresponding result for the example about Quentin Tarantino writing and
acting in the same movie are shown as step 1b in Figure 8.1. Step 1a in Figure 8.1
shows the results when performing an entity search for “Tarantino”. Once the
user clicks on either “send result to ROXXI” below a result in the triple-pattern
search interface or on a certain entity, the Exploration Page opens.

The Exploration Page offers two interconnected ways to learn more about a cer-
tain entity or RDF subgraph: a graphical Ontology Browser and the Witness List.

182

8.1. ROXXI: Reviving Witness Documents to Explore Extracted Information

Figure 8.1.: Knowledge Exploration with ROXXI

The Ontology Browser allows users to easily navigate through the RDF knowl-
edge base by selecting or deselecting triples in the underlying graph represent-
ing the knowledge base and thus defining the RDF subgraph to be explored.

The Witness List shows a ranked list of documents containing (some of) the
knowledge expressed by the chosen subgraph. In order to do so, ROXXI main-
tains a list of textual expressions for every triple in the RDF knowledge base.
These textual expressions can be generated using an information-extraction tool.
For example, the textual expression ”Quentin Tarantino was one of the produc-
ers of From Dusk Till Dawn” can be used to represent the triple

Quentin Tarantino produced From Dusk Till Dawn

Using these textual expressions, a ranked list of documents containing the in-

183

Chapter 8. Knowledge Exploration

formation encoded by the selected RDF subgraph can be retrieved. For each
retrieved document, a snippet from the document’s content is shown. The snip-
pet shows the textual expressions for some of the triples in the RDF subgraph
present in the document. Step 2 in Figure 8.1 illustrates this for the RDF sub-
graph representing the information that Quentin Tarantino wrote and acted in
From Dusk Till Dawn (see highlighted text in Witness List frame in Figure 8.1).

Furthermore, the user can explore one or more of the retrieved documents. For
each retrieved document, the textual expressions used to express the triples of
interest are highlighted inside the document using the same colors as used in the
Witness List. In addition, textual expressions corresponding to other triples (not
in the selected subgraph) are highlighted in a different color (green) as shown in
step 3 in Figure 8.1.

8.1.2. System Architecture

ROXXI’s system architecture is depicted in Figure 8.2. It consists of 3 main com-
ponents: a Data Manager, a Query Engine and a User Interface. We next describe
each component in more detail.

Data Manager

The Data Manager manages the data ROXXI operates on. This data consists of:
the RDF knowledge base (RDF KB), a document collection (DOCS) and a dic-
tionary which contains the textual expressions for the triples in the Knowledge
base. The textual expressions can be generated using an information-extraction
tool such as SOFIE [79]. Each textual expression in ROXXI is associated with
a confidence value reflecting its accuracy. For example, Table 8.1 shows a set of
textual expressions for an example triple and their confidence values. For each
textual expression, we also keep track of the set of documents it occurs in and
the start and end position of the expression in the document. This is later used
to retrieve the witnesses for a given RDF subgraph, which we annotate with the
corresponding textual expressions before presenting them to the user.

184

8.1. ROXXI: Reviving Witness Documents to Explore Extracted Information

Data

Manager

Query Engine

SPARQL

Query

Engine

User Interface

Ontology

Browser

Graph

Explorer

Witness List

Presenter

Witness

Retrieval

Engine

Dictionary

Docs Snippet

Generator

Witness

Browser

SPARQL Query

SPARQL Result

SPARQL Query

SPARQL Result

SPARQL Result

RDF Subgraph

Extended Graph

RDF Subgraph

Witnesses

Witnesses

snippets

Witness

RDF Subgraph

Textual

Expressions

Witnesses

RDF Subgraph

Extended Graph

Entity

Search

SPARQL

 Search

RDF KB

SPARQL

Frontend

Figure 8.2.: ROXXI’s System Architecture

Query Engine

The query engine consists of 4 subcomponents, which we describe separately in
the following.

Graph Explorer. The graph explorer takes an RDF subgraph as input. An
RDF subgraph can either be an entity, an RDF triple, or a set of RDF triples.
The graph explorer expands this subgraph by retrieving additional neighboring
triples from the RDF knowledge base and returns an extended graph that can be
explored by the user using the Ontology Browser.

SPARQL Query Engine. It takes a triple-pattern query as input and returns a
ranked list of tuples of joined triples matching the given query.

185

Chapter 8. Knowledge Exploration

Textual Expression r conf(r, t)

Quentin Tarantino acted in From Dusk Till Dawn 0.995
Quentin Tarantino played a role in From Dusk Till Dawn 0.992
Quentin Tarantino starred in From Dusk Till Dawn 0.782
Quentin Tarantino appeared in From Dusk Till Dawn 0.759
Tarantino acted in From Dusk Till Dawn 0.992
Tarantino played a role in From Dusk Till Dawn 0.899
Tarantino starred in From Dusk Till Dawn 0.754
Tarantino appeared in From Dusk Till Dawn 0.700
Quinton Tarantino acted in From Dusk Till Dawn 0.801
Quinton Tarantino played a role in From Dusk Till Dawn 0.754
Quinton Tarantino starred in From Dusk Till Dawn 0.544
Quinton Tarantino appeared in From Dusk Till Dawn 0.432

Table 8.1.: A set of textual expressions and their confidence values for the exam-
ple triple: Quentin Tarantino actedIn From Dusk Till Dawn

Witness Retrieval Engine. It is responsible for retrieving and ranking the wit-
ness documents for a given RDF subgraph. Our ranking model is based on
statistical language-models [69]. The documents are ranked based on the prob-
ability of being relevant to the given RDF subgraph g = {t1, t2, ..., tn}, which
we denote as P(d|g). Applying Bayes’ rule and ignoring P(g) as it is document
independent, we have:

P(d|g) ∝ P(g|d)P(d)

P(d) is a prior probability that a document d is relevant to any RDF subgraph.
This probability can be estimated in various ways, and in our case we estimate
it using the static authority of the page or pagerank [9].

The probability P(g|d) is the probability that the given RDF subgraph g =

{t1, t2, ..., tn} was generated from document d. We assume independence be-
tween the triples in g for computational tractability (in-line with most traditional
IR models). In addition, we apply smoothing with a collection background
model (Col) to avoid overfitting. Thus,

P(g|d) =

n∏
i=1

[αP(ti|d) + (1− α)P(ti|Col)]

186

8.1. ROXXI: Reviving Witness Documents to Explore Extracted Information

Since the triples do not directly appear in the documents but are present there
in the form of textual expressions, we need to first fold a triple into all its textual
expressions. This is similar in spirit to translation models [91], where the query
is expressed in one language, and the documents retrieved are in a different lan-
guage. Let the set R = {r1, r2, ..., rm} be the set of all possible textual expressions
for all the triples in our knowledge base. Furthermore, let each textual expres-
sion rj be associated with a confidence value conf(rj, ti) representing how well
expression rj expresses triple ti. The confidence conf(rj, ti) would be zero in
case expression rj does not express triple ti at all. The probabilities P(ti|d) and
P(ti|col) are then estimated as follows:

P(ti|x) = Σ
m
j=1p(ti|rj)P(rj|x)

The first component P(ti|rj) is the probability of expressing triple ti using ex-
pression rj. It is estimated using the confidence value conf(rj, ti). The second
component P(rj|x) is the probability of expression rj being generated from x

where x ∈ {d,Col}. It is estimated using a maximum-likelihood estimator as
follows:

P(rj|x) =
c(rj; x)

Σmk=1c(rk; x)

where c(r; x) denotes the frequency of expression r in x.

Snippet Generator. The snippet generator is responsible for generating a snip-
pet for each retrieved document. Similar to most state-of-the-art search engines,
we generate a query-biased snippet. The snippet contains (some of) the tex-
tual expressions that occur in the retrieved document. For snippet generation in
ROXXI, we use the simple technique of presenting the textual expressions that
highly match the user query from [87].

User Interface

The user interface contains facilities for both the casual as well as the expert user.
The expert users can utilize the SPARQL Frontend to issue triple-pattern queries
and retrieve matching tuples of triples. On the other hand, the less advanced
users can navigate directly to the exploration page described in Section 8.1.1 by
performing an entity search.

187

Chapter 8. Knowledge Exploration

The knowledge base can be browsed using the Ontology Browser which renders
a hyperbolic visualization of the graph representing the RDF knowledge base.
Our ontology browser is based on the Prefuse visualization tool 1. Furthermore,
the user can navigate through the graph as desired and select or deselect triples
to retrieve witness documents.

The Witness List Presenter displays a set of ranked documents for the selected
RDF subgraph in the Ontology Browser. Finally, the Witness Browser utilizes a
Web Browser plug-in to highlight the textual expressions for the RDF triples in
the viewed document.

8.2. CATE: Context-Aware Timeline for Entity

Illustration

In this section, we present CATE which is a system that combines structured in-
formation present in RDF knowledge bases with semi-structured and unstruc-
tured information in order to create a comprehensive summary of a given en-
tity of interest. We focus on Wikipeda as the main information source and
utilize a Wikipedia-based RDF knowledge base such as [78, 4, 30] as our RDF
knowledge base. Wikipedia has now become one of the most authoritative
information-sources on the Web. It contains millions of articles about people,
countries, historical events, research topics, inventions, etc. Typically, each ar-
ticle in Wikipedia describes an entity. Wikipedia contains also a hierarchy of
categories, where each entity belongs to a set of categories, and each category is
a sub-category of one or more categories. For example, the article about the fa-
mous German mathematician Carl Friedrich Gauss is included in the categories
1777 births, 18th-century mathematicians, German mathematicians, etc.
The categories provide a context for the entity. That is, for Gauss, we can infer
from his categories that he is German, a mathematician, lived in the 18th century,
etc.

188

8.2. CATE: Context-Aware Timeline for Entity Illustration

Figure 8.3.: Knowledge Exploration with CATE

8.2.1. Knowledge Exploration with CATE

Given an entity of interest, CATE constructs a comprehensive timeline that con-
tains all the relevant events related to the given entity. For example, the time-
line of Gauss shown in Figure 8.3 contains the information that he was born
in Braunschweig and that he studied in the University of Göttingen. In addi-
tion, it contains the event that the French revolution broke in 1789 which is a
major historical event in Europe during his lifetime. The timeline also contains
events related to the entities Legendre and Riemann, two famous mathemati-
cians whose work is closely related to that of Gauss in the fields of number the-
ory and differential geometry, respectively. All these events are retrieved from
Gauss Wikipedia page or Wikipedia pages of other entities highly relevant to
Gauss and his contexts.

In addition to the events related to the entity, CATE provides the user with
a set of relevant contexts which are used to focus the timeline on one or more
contexts of choice (as can be seen in the upper part of Figure 8.3). We define
the context as an object with three attributes, namely time, space and topic. For
example, for Gauss, these attribute are:

1http://prefuse.org

189

Chapter 8. Knowledge Exploration

Retrieval
Engine

Information
Extraction

Tool

GUI Query
YAGO
 +
 Text
 +
 Images

Wiki
dump

Web

CATE

Event-
Description
Extractor

Selected
Entities &
Contexts

Figure 8.4.: CATE’s System Architecture

• time: 18-th century, 19-th century, ...

• space: Braunschweig, Brunswick, Germany, Europe, ...

• topic: number theory, differential geometry, astronomy, ...

In order to construct an informative timeline such as the one in Figure 8.3,
we need to perform three main tasks. The first is to associate each entity with
a set of contexts. Second, given an entity (and possibly a subset of its contexts),
we need to retrieve relevant entities to such entity or its contexts. For example,
for Gauss, the relevant entities are Legendre, Riemann, French revolution, etc.
Finally, given the entity and its relevant contexts and entities, we need to extract
the related events to place them on the timeline. CATE relies on Wikipedia as
the source of information to perform all three tasks and we explain how in the
rest of this section.

8.2.2. System Architecture

As shown in Figure 8.4, CATE consists of five main components: a graphical
user-interface (GUI), a retrieval engine, an event-description extractor, a data
store, and an information-extraction tool. In a nutshell, CATE works as follows.
The information-extraction tool is used to populate our data store and uses two
sources of information: the Wikipedia corpus and its dumps, and the Web. To
interact with CATE, the user inputs the name of an entity into a text box in the

190

8.2. CATE: Context-Aware Timeline for Entity Illustration

GUI. The GUI passes the input entity to the retrieval engine which retrieves all
relevant contexts and entities from the data store. These are further sent to the
event-description extractor, which extracts all related textual descriptions of the
events. Finally, the results are sent to the GUI to be displayed to the user. We
now explain each component in more details.

GUI. The GUI consists of two main sub-components. The first sub-component
is the timeline illustrator where the events are positioned on the timeline and
illustrated with images and text snippets. The second sub-component is the
context selector (upper part of Figure 8.3) where relevant context-attributes are
shown in the form of a menu. We do not enumerate the set of relevant contexts
as many of them are overlapping. The user can use the context selector to control
the visualized information on the timeline by selecting contexts of interest based
on their attributes.

Retrieval Engine. The retrieval engine performs three types of retrieval tasks.
It retrieves the most relevant contexts given an entity (e.g., number theory and
differential geometry for Gauss). It also retrieves the most relevant enti-
ties given a certain context (e.g., the entity French revolution given the context
18th century Europe). In addition, given an entity and context, it retrieves the
most relevant entities to the given entity and context (e.g., Riemann given the
entity Gauss and the context differential geometry). We describe the rank-
ing model used by the retrieval engine in Subsection 8.2.5.

Event-Description Extractor. The event-description extractor takes as input
a Wikipedia article identifier and a query and retrieves the set of events related
to the query from the article. The query can be either an entity name, a context
name or both. The output of the event-description extractor is a set of events in
the form of an image, a text snippet and a timestamp.

Information-Extraction Tool. CATE’s extraction tool uses two sources of in-
formation: the Wikipedia dump and the Web. The Wikipedia dump is used
to extract context information as well as hyperlink and text information which
are used by both the retrieval engine and the event-description extractor. We

191

Chapter 8. Knowledge Exploration

explain our extraction algorithms in Subsection 8.2.3. The Web corpus on the
other hand is used, via a well-known Web search-engine, to extract images.

Data Store. Our data store contains three databases. The first is the YAGO
knowledge base [78], an RDF database that contains the RDF triples and the
context information. YAGO has inferred class memberships from Wikipedia cat-
egory names, and has integrated this information with the taxonomic backbone
of WordNet. We extend the YAGO knowledge base with a new class of entities,
namely the contexts.

Conceptually, a context C is an object with three types of attributes: time,
space and topic. For example, for Gauss the following RDF triples about his
contexts are stored in our RDF knowledge base:

Carl Friedrich Gauss hasContext c:18-de-math

c:18-de-math hasTime 18th-century

c:18-de-math hasSpace Germany

c:18-de-math hasTopic Mathematics

Carl Friedrich Gauss hasContext c:19-br-ph

c:19-br-ph hasTime 19th-century

c:19-br-ph hasSpace Braunschweig

c:19-br-ph hasTopic Physics

The attributes are mapped to YAGO entities. Hence, relationships between at-
tributes are implicitly present in the knowledge base. For instance, for the space
attribute we have the relationship partOf (e.g., (France, partOf, Europe)).
The relationships between contexts are characterized based on the relationships
between their attributes.

The second database in our data store is a text database. It contains three types
of indices that are used by different components in CATE. The first index is an
inverted index over the hyperlinks. In particular, for each Wikipedia article, it
stores all other articles that have outgoing links to it and the number of such
links. The second index in the text database is a traditional inverted index that
stores for each term all the articles that contains the term and the term frequency
in the articles. These two indices are used by the retrieval engine to rank enti-
ties and contexts as we describe in Subsection 8.2.5. The third index in the text
database is a full-text index that simply stores the full text of the articles. This

192

8.2. CATE: Context-Aware Timeline for Entity Illustration

is used by the event-description extractor to extract the snippets of the events as
we explain in Subsection 8.2.6. Note that YAGO keeps a mapping between the
entity and the corresponding Wikipedia article (if any exists). This is used by
CATE to connect entities to articles.

The third database in our data store is an image database. It contains an image
for each entity in YAGO.

8.2.3. Information extraction

Our extraction tool extracts three types of information: the context information,
text and hyperlink information, and images.

Context Extraction. We utilize the Wikipedia categories and their hierarchy
to extract contexts. Wikipedia category-names are usually composite names
such as 18-th century mathematicians or German mathematicians. These
composite names consisting of orthogonal attributes pose a problem especially
when constructing ontologies [78, 63]. However, looking closely, the category
names in Wikipedia usually follow patterns that combine time, space and topic
attribute-values. This observation was the basis of our 3-attributes model for
contexts.

CATE extracts context information through a two-phase algorithm. In the first
phase, it enumerates all Wikipedia categories and generates possible vocabu-
laries for each of the three attributes. The vocabularies for time and space are
extracted based on defined patterns, while those for topic are extracted using a
set of automatically-learnt patterns. In the second phase, the algorithm anno-
tates each category using the extracted vocabularies. For example, the category
18-th century mathematicians is associated with the attributes: time equals
18th-century and topic equals Mathematics.

Hyperlink and Text Extraction. The Wikipedia dump provides a table with
link information for each article. We utilize this and the full text of the articles to
create the three inverted indices in the text database we described in Subsection
8.2.2.

193

Chapter 8. Knowledge Exploration

Image Extraction. In CATE, images are extracted from the Web using a Web
search-engine. Selecting a relevant image for an entity is not so trivial as some
entity names can be ambiguous. However, since this is not the main focus of our
work, we use existing tools for resolving such cases such as [80].

8.2.4. Assigning Entities to Contexts

So far we have explained how to extract context objects and how we set their
attribute values, and in this section we explain how we associate entities with
the extracted contexts. Typically, each page in Wikipedia is annotated by users
with the most relevant categories to which it belongs. This serves as the initial
set of contexts for a given entity. However, Wikipedia categories alone offer in-
complete and imprecise information. For instance, Gauss was included in the
category German physicists which is a very broad context. By reading the
contents of Gauss’ Wikipedia page, one can realize that the majority of his con-
tributions in physics are in the area of electro-magnetism. We explain two
approaches for assigning entities to additional contexts next.

Hyperlink-Based Assignment. This approach is based on hyperlink analysis.
We assign an entity e to context C if the majority of entities that e links to, or the
majority of entities that link to e belong to C as well. For example, consider the
entity Gauss and the context electro-magnetism which is not one of Gauss’
Wikipedia categories, and hence would not be considered as one of his contexts.
However, it is very intuitive that Gauss should belong to this context if the article
of Gauss contains many links to or from other entities that belong to the context
electro-magnetism.

Attribute-Based Assignment. The hyperlink-based method would only iden-
tify contexts that are part of the Wikipedia-category hierarchy. However, we can
combine attributes from different contexts in order to generate new contexts. For
example, given that Gauss belongs to the categories 18th century mathematicians

and German mathematicians, we can generate the new context with time 18th century,
space Germany and topic Mathematics. In addition, we can utilize the categories
hierarchy and external ontologies such as WordNet and Geo-Names to gener-
ate further contexts such as a context with time 18th century, space Europe

194

8.2. CATE: Context-Aware Timeline for Entity Illustration

and topic Mathematics. That is, we use the fact that Germany is part of Eu-
rope from such ontologies to create a more general context for Gauss. Actually,
this is crucial for the inclusion of the entity French revolution in the timeline of
Gauss because it is relevant (according to the Wikipedia contributors) not only
to France but to whole Europe.

8.2.5. Ranking Model

We have three intermingling ranking problems: 1) ranking the contexts given
an entity, 2) ranking entities given a context and an entity, and 3) ranking enti-
ties given a certain context only. For all three problems, we adopt a statistical-
language-modeling approach [75], and we utilize our text database with its three
indices to estimate the parameters of our model.

Basic Setting. We use the following notation. Each context C is associated
with a set E(C) = {e1, e2, ..., en} which is the set of entities that belong to context
C. Additionally, each entity ei is associated with a document D(ei) which is the
Wikipedia article of ei. For each such document, we construct a language model
(LM) which is a probability distribution over all the entities in our knowledge
base. We denote the parameters of the LMs as P(e|D(ei)) which is the probability
of generating the entity e from document D(ei). This probability is estimated
using a maximum-likelihood estimator after employing Dirichlet smoothing as
in most common LM approaches. The maximum-likelihood estimator can be
computed in various ways and we experiment with the following two different
methods.

Estimating the LM probabilities using links. In this method, we estimate
P(e|D(ei)) using a maximum-likelihood estimator after smoothing with the col-
lection LM as follows:

P(e|D(ei)) = λ
lc(e;D(ei))

|D(ei)|
+ (1− λ)

lc(e;Col)

|Col|
(8.1)

where lc(e;D(ei)) is the number of links to e in the document D(ei) and |D(ei)|

is the length of document D(ei) (i.e., the sum of all links to entities in D(ei)).
Col refers to the whole collection of documents and lc(e;Col) and |Col| is the
total number of links to entity e and the total number of links to any entity in

195

Chapter 8. Knowledge Exploration

the whole collection respectively. Finally, the parameter λ is a smoothing param-
eter that controls the effect of smoothing and we set it as done in the Dirichlet
smoothing method.

Estimating the LM probabilities using text. In this method, we utilize the text
of the documents to estimate the probability P(e|D(ei)). Assume that the entity e
is composed ofmwords {w1, w2, ..., wm}. For example, the entity Carl Friedrich Gauss,
is composed of the words: {carl, friedrich, gauss}. We then assume indepen-
dence between the words, and compute the probability P(e|D(ei)) as follows:

P(e|D(ei)) =

m∏
j=1

P(wi|D(ei)) (8.2)

Similar to the previous model, we use a maximum-likelihood estimator smoothed
with the collection LM to estimate the probability of generating the word wj
given the document D(ei) as follows:

P(wj|D(ei)) = λ
tf(wj;D(ei))

|D(ei)|
+ (1− λ)

tf(wj;Col)

|Col|
(8.3)

where tf(wj;D(ei)) is the term frequency or the number of occurrences of the
word wj in document D(ei) and |D(ei)| is the length of the document D(ei) (i.e.,
the sum of term frequencies of all the words in D(ei)). Similarly, tf(wj;Col) is
the term frequency of wordwj in the collection Col and |Col| is the length of the
collection. Again, the parameter λ is a smoothing parameter that is set as done
in the Dirichlet smoothing method.

This method is motivated by the observation that there are many missing
links in Wikipedia. To overcome this problem, we try to directly use the text
in Wikipedia in order to estimate the parameters of the LMs. Note that hav-
ing a link to an entity in some Wikipedia page is a much stronger evidence that
this entity is relevant to that document as opposed to just being mentioned in
the text. Also note that our two estimation methods can be easily integrated
into one measure using a weighted combination for instance. Next, we explain
how the language models of the entities can be used to solve our three ranking
problems we described in the beginning of this subsection.

Ranking Contexts. Given an entity e and the set of contexts it belongs to, we
rank the contexts based on their probabilities of generating the entity e. We

196

8.2. CATE: Context-Aware Timeline for Entity Illustration

estimate this probability by constructing a language-model for each context C
as a mixture model over the documents of its entities as follows:

P(e|C) =
1

n

n∑
i=1

P(e|D(ei)) (8.4)

where P(e|D(ei)) is the probability of generating entity e given the document of
entity ei which can be estimated as described in the beginning of this subsection.

Ranking Entities Relevant to a Given Entity within a Context. The second
ranking problem we have is to retrieve the most relevant entities given an entity
e and a context C. We rank the entities based on their probability of being gener-
ated given e and Cwhich we denote by P(e ′|C, e). To compute such probability,
we construct a language model for C as a mixture model of the documents LMs
of all entities in C. However, we only strict this to documents that contain e as
well to accommodate for the conditioning over e. That is, we ignore the docu-
ments of entities that belong to C and do not contain e. To this end, let the set of
documents of entities that belong to C and contain e be {D(e1), D(e2), ..., D(el)}.
This way, the probability P(e ′|C, e) is equal to:

P(e ′|C, e) =
1

l

l∑
i=1

P(e ′|D(ei)) (8.5)

Ranking Entities within a Context. The third and final ranking problem we
deal with is ranking entities e ′ that belong to a certain contextC. This can be eas-
ily done using the probability P(e ′|C) which is computed as described in Equa-
tion 8.4.

8.2.6. Extracting Events

Our event-description extractor takes as an input a query and a Wikipedia arti-
cle, and retrieves the top-k most relevant events associated with the query from
the article. The query can be either an entity name, a context name or both.
An event is a text snippet, a timestamp and an image. The algorithm works as
follows. First, we identify from the article all snippets S that contain time ex-
pressions. This can be easily done using tools such as [70]. Next, we rank the
identified snippets based on their probability of generating the query P(Q|S) (in

197

Chapter 8. Knowledge Exploration

line with our ranking model of contexts and entities) and output the highest-
ranked k snippets.

Finally, to associate an image to the event which is used for illustration on the
timeline, we identify the main entity the event is about, and then retrieve the
image associated with that entity from our image database.

8.3. Summary

In this section, we presented two tools for knowledge exploration that utilize
RDF knowledge bases as well as additional external sources in order to provide
users with contextual information related to their information needs. The first
tool is a document retrieval tool that retrieves a set of documents given a set of
RDF triples. By doing so, it allows users to find additional contextual informa-
tion about a set of selected RDF triples; information that is not present in the
RDF knowledge base itself.

The second tool we presented in this chapter is an entity summarization tool
that combines information from an RDF knowledge base with semi-structured
and unstructured information and provides a comprehensive timeline for a given
entity of interest. We believe that it is crucial to provide users with interactive
tools that allows them to explore RDF knowledge bases, and to combine the in-
formation there with semi-structured and unstructured information present in
external data sources in order to overcome the data incompleteness issue that
most RDF knowledge bases suffer from and to provide users with a comprehen-
sive summary of the information relevant to their queries.

198

Chapter 9.

Conclusion

RDF is heavily used as a data representation format in scientific communities,
social networks, news portals and other Web 2.0 domains. In this thesis, we
have tackled research problems that are related to searching large RDF knowl-
edge bases. This included supporting different search modes where queries are
either structured, semi-structured (i.e., combining structured query-units with
keywords) or plain keywords. For all these various search modes, we have
developed a set of novel result-ranking models based on statistical language-
models. In addition, we have also presented models and algorithms to support
automatic query reformulation, result diversity and efficient top-k query pro-
cessing. Finally, we have provided tools for knowledge exploration using RDF
knowledge bases. Our contributions are well suited for RDF data as supported
by the extensive experiments we conducted on real-world RDF datasets. More-
over, our models and algorithms can also be applied to a wide range of problems
that deal with structured-information retrieval in general.

The set of models and algorithms we presented in this thesis can be further
extended in various ways. For example, providing a natural-language question-
answering system on top of RDF knowledge bases is a very promising direction
of research. Even though we have presented a retrieval model to answer key-
word queries over RDF data, we believe that natural-language questions are
better suited for retrieving information from RDF knowledge bases. This is due
to the fact that natural-language questions are typically richer in context, and
can be analyzed using various tools in order to infer implicit structured queries
that can be directly answered using the RDF knowledge base the questions are
issued against.

199

Chapter 9. Conclusion

Another possible direction of research is related to search personalization.
Taking into consideration the users that search the knowledge base, their prefer-
ences as well as the context in which they search the knowledge base can further
improve the quality of search results. In addition, considering user feedback,
whether individual or collective over a community of users, has been shown to
improve the performance of most retrieval models. However, gathering user
feedback in the context of RDF search is a challenging task that needs large-
scale studies on user’s interactions with RDF knowledge bases. A slightly re-
lated problem is the problem of result presentation in the context of RDF search.
It is crucial to design comprehensive result-presentation schemes that trade off
conciseness with richness-in-context. Achieving this goal would increase the us-
ability of RDF data and would allow models that leverage user feedback to be
truly applicable.

Finally, metasearch over many RDF data sources, and even semi-structured
and unstructured data sources, is also another possible interesting area to ex-
plore. Retrieving information from various data sources might be necessary
for many information needs. Merging and ranking search results in this case
is challenging and requires combining different criteria including the quality of
the results and their relevance to the query, the authority of the data source from
which the results are retrieved, result diversity, etc.

As of today, the amount of RDF data on the Web might still be small compared
to the vast amount of information present in an unstructured form. However,
we believe that as more and more RDF data becomes available and richly inter-
connected, the old dream of having the most comprehensive encyclopedia that
can be used to precisely answer every information need will finally become a
reality.

200

Bibliography

[1] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong.
Diversifying search results. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining, WSDM ’09, pages 5–14, New
York, NY, USA, 2009. ACM.

[2] Sihem Amer-Yahia, Nick Koudas, Amélie Marian, Divesh Srivastava, and
David Toman. Structure and content scoring for XML. In Proceedings of the
31st international conference on Very large data bases, VLDB ’05, pages 361–372.
VLDB Endowment, 2005.

[3] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Shashank Pandit. FleX-
Path: flexible structure and full-text querying for XML. In Proceedings of the
2004 ACM SIGMOD international conference on Management of data, SIGMOD
’04, pages 83–94, New York, NY, USA, 2004. ACM.

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-
ganiak, and Zachary Ives. DBpedia: a nucleus for a web of open data. In
Proceedings of the 6th international The semantic web and 2nd Asian conference
on Asian semantic web conference, ISWC’07/ASWC’07, pages 722–735, Berlin,
Heidelberg, 2007. Springer-Verlag.

[5] Bodo Billerbeck and Justin Zobel. When query expansion fails. In Proceed-
ings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, SIGIR ’03, pages 387–388, New York, NY,
USA, 2003. ACM.

[6] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The
Story So Far. International Journal on Semantic Web and Information Systems
(IJSWIS), 2009.

201

Bibliography

[7] Roi Blanco, Peter Mika, and Hugo Zaragoza. Entity
Search Track submission by Yahoo! Research Barcelona.
http://km.aifb.kit.edu/ws/semsearch10/, 2010.

[8] John G. Breslin, Alexandre Passant, and Stefan Decker. The Social Semantic
Web. Springer Publishing Company, Incorporated, 1st edition, 2009.

[9] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
Web search engine. Comput. Netw. ISDN Syst., 30:107–117, April 1998.

[10] Jaime Carbonell and Jade Goldstein. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Pro-
ceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’98, pages 335–336, New York, NY,
USA, 1998. ACM.

[11] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum.
Probabilistic information retrieval approach for ranking of database query
results. ACM Trans. Database Syst., 31:1134–1168, September 2006.

[12] Harr Chen and David R. Karger. Less is more: probabilistic models for
retrieving fewer relevant documents. In Proceedings of the 29th annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’06, pages 429–436, New York, NY, USA, 2006. ACM.

[13] Zhiyuan Chen and Tao Li. Addressing diverse user preferences in SQL-
query-result navigation. In Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’07, pages 641–652, New
York, NY, USA, 2007. ACM.

[14] Tao Cheng, Xifeng Yan, and Kevin Chen-Chuan Chang. EntityRank:
searching entities directly and holistically. In Proceedings of the 33rd inter-
national conference on Very large data bases, VLDB ’07, pages 387–398. VLDB
Endowment, 2007.

[15] Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechto-
mova, Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and di-
versity in information retrieval evaluation. In Proceedings of the 31st annual

202

Bibliography

international ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’08, pages 659–666, New York, NY, USA, 2008. ACM.

[16] William W. Cohen. Integration of heterogeneous databases without com-
mon domains using queries based on textual similarity. In Proceedings of the
1998 ACM SIGMOD international conference on Management of data, SIGMOD
’98, pages 201–212, New York, NY, USA, 1998. ACM.

[17] Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines: Infor-
mation Retrieval in Practice. Addison-Wesley Publishing Company, USA, 1st
edition, 2009.

[18] Jeffrey Dalton, Roi Blanco, and Peter Mika. Coreference aware web object
retrieval. In Proceedings of the 20th ACM international conference on Informa-
tion and knowledge management, CIKM ’11, pages 211–220, New York, NY,
USA, 2011. ACM.

[19] Elena Demidova, Peter Fankhauser, Xuan Zhou, and Wolfgang Nejdl.
DivQ: diversification for keyword search over structured databases. In Pro-
ceedings of the 33rd international ACM SIGIR conference on Research and de-
velopment in information retrieval, SIGIR ’10, pages 331–338, New York, NY,
USA, 2010. ACM.

[20] Peter Dolog, Heiner Stuckenschmidt, Holger Wache, and Jörg Diederich.
Relaxing RDF queries based on user and domain preferences. J. Intell. Inf.
Syst., 33:239–260, December 2009.

[21] Shady Elbassuoni and Roi Blanco. Keyword search over RDF graphs. In
Proceedings of the 20th ACM international conference on Information and knowl-
edge management, CIKM ’11, pages 237–242, New York, NY, USA, 2011.
ACM.

[22] Shady Elbassuoni, Katja Hose, Steffen Metzger, and Ralf Schenkel. ROXXI:
Reviving witness dOcuments to eXplore eXtracted Information. Proc. VLDB
Endow., 3:1589–1592, September 2010.

[23] Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, Marcin Sydow, and Ger-
hard Weikum. Language-model-based ranking for queries on RDF-graphs.

203

Bibliography

In Proceedings of the 18th ACM conference on Information and knowledge man-
agement, CIKM ’09, pages 977–986, New York, NY, USA, 2009. ACM.

[24] Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, and Gerhard Weikum.
Searching RDF Graphs with SPARQL and Keywords. IEEE Data Eng. Bull.,
33(1):16–24, 2010.

[25] Shady Elbassuoni, Maya Ramanath, and Gerhard Weikum. Language-
model-based ranking in entity-relation graphs. In Proceedings of the First
International Workshop on Keyword Search on Structured Data, KEYS ’09, pages
43–44, New York, NY, USA, 2009. ACM.

[26] Shady Elbassuoni, Maya Ramanath, and Gerhard Weikum. Query relax-
ation for entity-relationship search. In Proceedings of the 8th extended seman-
tic web conference on The semanic web: research and applications - Volume Part
II, ESWC’11, pages 62–76, Berlin, Heidelberg, 2011. Springer-Verlag.

[27] Ronald Fagin. Combining fuzzy information from multiple systems. J.
Comput. Syst. Sci., 58:83–99, February 1999.

[28] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation al-
gorithms for middleware. In Proceedings of the twentieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, PODS ’01,
pages 102–113, New York, NY, USA, 2001. ACM.

[29] Hui Fang and ChengXiang Zhai. Probabilistic models for expert finding.
In Proceedings of the 29th European conference on IR research, ECIR’07, pages
418–430, Berlin, Heidelberg, 2007. Springer-Verlag.

[30] Freebase: A social database about things you know and love.
www.w3.org/RDF/.

[31] GeoNames. http://www.geonames.org/.

[32] Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Keyword
proximity search in complex data graphs. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, SIGMOD ’08, pages
927–940, New York, NY, USA, 2008. ACM.

204

Bibliography

[33] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result
diversification. In Proceedings of the 18th international conference on World
wide web, WWW ’09, pages 381–390, New York, NY, USA, 2009. ACM.

[34] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.
XRANK: ranked keyword search over XML documents. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of data, SIG-
MOD ’03, pages 16–27, New York, NY, USA, 2003. ACM.

[35] Djoerd Hiemstra. A Linguistically Motivated Probabilistic Model of Infor-
mation Retrieval. In Proceedings of the Second European Conference on Research
and Advanced Technology for Digital Libraries, ECDL ’98, pages 569–584, Lon-
don, UK, 1998. Springer-Verlag.

[36] Djoerd Hiemstra. Using Language Models for Information Retrieval. PhD the-
sis, University of Twente, Enschede, 2001.

[37] Djoerd Hiemstra. Statistical Language Models for Intelligent XML Re-
trieval. In Intelligent Search on XML Data, 2003.

[38] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard
Weikum. YAGO2: A Spatially and Temporally Enhanced Knowledge Base
from Wikipedia. Research Report MPI-I-2010-5-007, Max-Planck-Institut fr
Informatik, Saarbrücken, November 2010.

[39] Vagelis Hristidis, Heasoo Hwang, and Yannis Papakonstantinou.
Authority-based keyword search in databases. ACM Trans. Database
Syst., 33:1:1–1:40, March 2008.

[40] Hai Huang, Chengfei Liu, and Xiaofang Zhou. Computing Relaxed An-
swers on RDF Databases. In Proceedings of the 9th international conference on
Web Information Systems Engineering, WISE ’08, pages 163–175, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[41] Arvind Hulgeri and Charuta Nakhe. Keyword Searching and Browsing in
Databases using BANKS. In Proceedings of the 18th International Conference
on Data Engineering, ICDE ’02, pages 431–, Washington, DC, USA, 2002.
IEEE Computer Society.

205

Bibliography

[42] Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. Journal on
data semantics x. pages 31–61, 2008.

[43] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-K
join queries in relational databases. pages 754–765, 2003.

[44] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k
query processing techniques in relational database systems. ACM Comput.
Surv., 40:11:1–11:58, October 2008.

[45] Kalervo Järvelin and Jaana Kekäläinen. IR evaluation methods for retriev-
ing highly relevant documents. In Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development in information retrieval, SI-
GIR ’00, pages 41–48, New York, NY, USA, 2000. ACM.

[46] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan,
Rushi Desai, and Hrishikesh Karambelkar. Bidirectional expansion for key-
word search on graph databases. In Proceedings of the 31st international con-
ference on Very large data bases, VLDB ’05, pages 505–516. VLDB Endowment,
2005.

[47] Gjergji Kasneci, Maya Ramanath, Mauro Sozio, Fabian M. Suchanek, and
Gerhard Weikum. STAR: Steiner-Tree Approximation in Relationship
Graphs. In Proceedings of the 2009 IEEE International Conference on Data En-
gineering, pages 868–879, Washington, DC, USA, 2009. IEEE Computer So-
ciety.

[48] Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya Ramanath,
and Gerhard Weikum. NAGA: Searching and Ranking Knowledge. In Pro-
ceedings of the 2008 IEEE 24th International Conference on Data Engineering,
pages 953–962, Washington, DC, USA, 2008. IEEE Computer Society.

[49] Jinyoung Kim, Xiaobing Xue, and W. Bruce Croft. A Probabilistic Retrieval
Model for Semistructured Data. In Proceedings of the 31th European Con-
ference on IR Research on Advances in Information Retrieval, ECIR ’09, pages
228–239, Berlin, Heidelberg, 2009. Springer-Verlag.

206

Bibliography

[50] Oren Kurland and Eyal Krikon. The opposite of smoothing: a language
model approach to ranking query-specific document clusters. volume 41,
pages 367–395, USA, May 2011. AI Access Foundation.

[51] Oren Kurland and Lillian Lee. Corpus structure, language models, and
ad hoc information retrieval. In Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’04, pages 194–201, New York, NY, USA, 2004. ACM.

[52] John Lafferty and Chengxiang Zhai. Document language models, query
models, and risk minimization for information retrieval. In Proceedings of
the 24th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, SIGIR ’01, pages 111–119, New York, NY, USA,
2001. ACM.

[53] Victor Lavrenko, Martin Choquette, and W. Bruce Croft. Cross-lingual rele-
vance models. In Proceedings of the 25th annual international ACM SIGIR con-
ference on Research and development in information retrieval, SIGIR ’02, pages
175–182, New York, NY, USA, 2002. ACM.

[54] Dongwon Lee. Query Relaxation for XML Model. PhD thesis, University of
California, Los Angeles (UCLA), 2002.

[55] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu
Zhou. EASE: an effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data, SIGMOD ’08, pages
903–914, New York, NY, USA, 2008. ACM.

[56] Linking Open Data. www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/.

[57] State of the LOD Cloud. www4.wiwiss.fu-berlin.de/lodcloud/state/.

[58] Vanessa Lopez, Victoria Uren, Enrico Motta, and Michele Pasin. AquaLog:
An ontology-driven question answering system for organizational seman-
tic intranets. Web Semant., 5:72–105, June 2007.

[59] Steffen Metzger, Shady Elbassuoni, Katja Hose, and Ralf Schenkel. S3K:
seeking statement-supporting top-K witnesses. In Proceedings of the 20th

207

Bibliography

ACM international conference on Information and knowledge management,
CIKM ’11, pages 37–46, New York, NY, USA, 2011. ACM.

[60] David R. H. Miller, Tim Leek, and Richard M. Schwartz. A hidden Markov
model information retrieval system. In Proceedings of the 22nd annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’99, pages 214–221, New York, NY, USA, 1999. ACM.

[61] George A. Miller. WordNet: a lexical database for English. Commun. ACM,
38:39–41, November 1995.

[62] Ndapandula Nakashole, Martin Theobald, and Gerhard Weikum. Find
your advisor: robust knowledge gathering from the web. In Procceedings of
the 13th International Workshop on the Web and Databases, WebDB ’10, pages
6:1–6:6, New York, NY, USA, 2010. ACM.

[63] Vivi Nastase and Michael Strube. Decoding wikipedia categories for
knowledge acquisition. In Proceedings of the 23rd national conference on Arti-
ficial intelligence - Volume 2, AAAI’08, pages 1219–1224. AAAI Press, 2008.

[64] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and Jef-
frey Scott Vitter. Supporting Incremental Join Queries on Ranked Inputs. In
Proceedings of the 27th International Conference on Very Large Data Bases, VLDB
’01, pages 281–290, San Francisco, CA, USA, 2001. Morgan Kaufmann Pub-
lishers Inc.

[65] Felix Naumann and Melanie Herschel. An Introduction to Duplicate Detec-
tion. Morgan and Claypool Publishers, 2010.

[66] Zaiqing Nie, Yunxiao Ma, Shuming Shi, Ji-Rong Wen, and Wei-Ying Ma.
Web object retrieval. In Proceedings of the 16th international conference on
World Wide Web, WWW ’07, pages 81–90, New York, NY, USA, 2007. ACM.

[67] Paul Ogilvie and Jamie Callan. Hierarchical language models for XML
component retrieval. Advances in XML Information Retrieval, pages 224–237,
2005.

[68] Desislava Petkova and W. Bruce Croft. Hierarchical Language Models for
Expert Finding in Enterprise Corpora. pages 599–608, 2006.

208

Bibliography

[69] Jay M. Ponte and W. Bruce Croft. A language modeling approach to in-
formation retrieval. In Proceedings of the 21st annual international ACM SI-
GIR conference on Research and development in information retrieval, SIGIR ’98,
pages 275–281, New York, NY, USA, 1998. ACM.

[70] J. Pustejovsky, J. Castano, R. Ingria, R. Sauri, R. Gauzauskas, A. Setzer, and
G. Katz. TimeML: Robust Specification of Event and Temporal Expression
in Text. IWCS-5, Fifth International Workshop on Computational Semantics.,
2003.

[71] W3C: Resource Description Framework (RDF). www.w3.org/RDF/.

[72] Stephen E. Robertson and Stephen Walker. Some simple effective approx-
imations to the 2-Poisson model for probabilistic weighted retrieval. In
Proceedings of the 17th annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’94, pages 232–241, New York,
NY, USA, 1994. Springer-Verlag New York, Inc.

[73] Pavel Serdyukov and Djoerd Hiemstra. Modeling documents as mixtures
of persons for expert finding. In Proceedings of the IR research, 30th Euro-
pean conference on Advances in information retrieval, ECIR’08, pages 309–320,
Berlin, Heidelberg, 2008. Springer-Verlag.

[74] Luo Si, Rong Jin, Jamie Callan, and Paul Ogilvie. A language modeling
framework for resource selection and results merging. In Proceedings of
the eleventh international conference on Information and knowledge management,
CIKM ’02, pages 391–397, New York, NY, USA, 2002. ACM.

[75] Fei Song and W. Bruce Croft. A general language model for information
retrieval. In Proceedings of the eighth international conference on Information
and knowledge management, CIKM ’99, pages 316–321, New York, NY, USA,
1999. ACM.

[76] W3C: SPARQL Query Language for RDF. www.w3.org/TR/rdf-sparql-
query/.

[77] Steffen Staab and Rudi Studer. Handbook on Ontologies. Springer Publishing
Company, Incorporated, 2nd edition, 2009.

209

Bibliography

[78] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A
Large Ontology from Wikipedia and WordNet. Web Semant., 6:203–217,
September 2008.

[79] Fabian M. Suchanek, Mauro Sozio, and Gerhard Weikum. SOFIE: a self-
organizing framework for information extraction. In Proceedings of the 18th
international conference on World wide web, WWW ’09, pages 631–640, New
York, NY, USA, 2009. ACM.

[80] Bilyana Taneva, Mouna Kacimi, and Gerhard Weikum. Gathering and
ranking photos of named entities with high precision, high recall, and di-
versity. In Proceedings of the third ACM international conference on Web search
and data mining, WSDM ’10, pages 431–440, New York, NY, USA, 2010.
ACM.

[81] Martin Theobald. Efficient Top-k Query Processing for Text, Semistructured,
and Structured Data. PhD thesis, Universität des Saarlandes, May 2006.

[82] Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano. Top-k
Exploration of Query Candidates for Efficient Keyword Search on Graph-
Shaped (RDF) Data. In Proceedings of the 2009 IEEE International Confer-
ence on Data Engineering, pages 405–416, Washington, DC, USA, 2009. IEEE
Computer Society.

[83] Tran Anh Tuan, Shady Elbassuoni, Nicoleta Preda, and Gerhard Weikum.
CATE: context-aware timeline for entity illustration. In Proceedings of the
20th international conference companion on World wide web, WWW ’11, pages
269–272, New York, NY, USA, 2011. ACM.

[84] Reinier H. van Leuken, Lluis Garcia, Ximena Olivares, and Roelof van
Zwol. Visual diversification of image search results. In Proceedings of the
18th international conference on World wide web, WWW ’09, pages 341–350,
New York, NY, USA, 2009. ACM.

[85] Erik Vee, Utkarsh Srivastava, Jayavel Shanmugasundaram, Prashant Bhat,
and Sihem Amer Yahia. Efficient Computation of Diverse Query Results. In
Proceedings of the 2008 IEEE 24th International Conference on Data Engineering,
pages 228–236, Washington, DC, USA, 2008. IEEE Computer Society.

210

Bibliography

[86] Sebastian Wernicke. Efficient Detection of Network Motifs. IEEE/ACM
Trans. Comput. Biol. Bioinformatics, 3:347–359, October 2006.

[87] Ryen W. White, Ian Ruthven, and Joemon M. Jose. Finding relevant doc-
uments using top ranking sentences: an evaluation of two alternative
schemes. In Proceedings of the 25th annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’02, pages 57–64,
New York, NY, USA, 2002. ACM.

[88] Yu Xu and Yannis Papakonstantinou. Efficient keyword search for smallest
LCAs in XML databases. In Proceedings of the 2005 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’05, pages 527–538, New
York, NY, USA, 2005. ACM.

[89] Cheng Xiang Zhai, William W. Cohen, and John Lafferty. Beyond indepen-
dent relevance: methods and evaluation metrics for subtopic retrieval. In
Proceedings of the 26th annual international ACM SIGIR conference on Research
and development in informaion retrieval, SIGIR ’03, pages 10–17, New York,
NY, USA, 2003. ACM.

[90] Chengxiang Zhai. Risk Minimization and Language Modeling in Text Retrieval.
PhD thesis, Carnegie Mellon University, 2002.

[91] ChengXiang Zhai. Statistical Language Models for Information Retrieval A
Critical Review. Found. Trends Inf. Retr., 2:137–213, March 2008.

[92] Xuan Zhou, Julien Gaugaz, Wolf-Tilo Balke, and Wolfgang Nejdl. Query re-
laxation using malleable schemas. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, SIGMOD ’07, pages 545–556,
New York, NY, USA, 2007. ACM.

211

Bibliography

212

Appendix A.

Negative Kullback-Leibler
Divergence

In Chapter 3, we have developed a ranking model for triple pattern queries.
Our ranking model assumes there exists a language model for the query and
a language model for each result. Provided that the query consists of n triple
patterns, the language models of the query and each result are probability dis-
tributions over all tuples of n triples. The score of a result R with respect to a
given query Q is then set as the Kullback-Leibler (KL) divergence between the
language model of query Q and the language model of result R which is com-
puted as follows:

S(Q,R) = KL(Q||R) = Σ
|KB|n

i=1 P(Ti|Q)log
P(Ti|Q)

P(Ti|R)

where |KB| is the total number of triples in the knowledge base KB, P(Ti|Q) is
the probability of tuple Ti in the language model of query Q and P(Ti|R) is the
probability of tuple Ti in the language model of result R.

Folding the previous equation, we have:

S(Q,R) = Σ
|KB|n

i=1 P(T |Q)logP(T |Q) − Σ
|KB|n

i=1 P(Ti|Q)logP(Ti|R)

The first component in the previous equation does not depend on the result
R and thus it can be omitted since it does not affect the ranking of the results.
Hence,

S(Q,R) ∝ −Σ
|KB|n

i=1 P(Ti|Q)logP(Ti|R)

Folding the summation over all tuples T1, T2, ..., Tm (assuming thatm = |KB|n),
we have:

213

Appendix A. Negative Kullback-Leibler Divergence

S(Q,R) ∝ −[P(T1|Q)logP(T1|R)+P(T2|Q)logP(T2|Q)++P(Tm|Q)logP(Tm|R)]

The probability P(Ti|R) of tuple Ti in the language model of result R is esti-
mated using a maximum likelihood estimator after smoothing with a collection
(background) language model as follows:

P(Ti|R) = β
c(Ti;R)

|R|
+ (1− β)P(Ti|C)

where c(Ti;R) is the number of times the tuple Ti occur in R, |R| is the length of
R, P(Ti|C) is probability of Ti in the language model of the collection C and the
parameter β is a smoothing parameter.

Since R contains only one tuple, TR, the probability P(TR|R) is then equal to:
β+ (1− β)P(TR|C) and the probability of Tj 6= TR is equal to: (1− β)P(Tj|C).

This implies that:

S(Q,R) ∝ −[P(T1|Q)log((1−β)P(T1|C))+....+ P(TR|Q)log(β+(1−β)P(TR|C))+

.....+ P(Tm|Q)log((1− β)P(Tm|C))]

which is equivalent to, after adding and subtracting the term P(TR|Q)log((1 −

β)P(TR|C)),

S(Q,R) ∝ −[P(T1|Q)log((1−β)P(T1|C))+....+ P(TR|Q)log(β+(1−β)P(TR|C))−

P(TR|Q)log((1−β)P(TR|C))+ P(TR|Q)log((1−β)P(TR|C)) + ...+ P(Tm|Q)log((1−

β)P(Tm|C))]

Regrouping the terms in the above equation, we have:

S(Q,R) ∝ −[P(TR|Q)log(β + (1 − β)P(TR|C)) − P(TR|Q)log((1 − β)P(TR|C))+

Σmi=1P(Ti|Q)log((1− β))P(Ti|C)]

Since the summation Σmi=1P(Ti|Q)log((1−β))P(Ti|C) does not depend on R (i.e.,
it is the same for every result), it can be omitted. Thus,

S(Q,R) ∝ −P(TR|Q)log
β+ (1− β)P(TR|C)

(1− β)P(TR|C)

which is equivalent to:

S(Q,R) ∝ −P(TR|Q)log(1+
β

(1− β)P(TR|C)
)

Furthermore, if we assume that the collection language model is a uniform
distribution over all tuples Ti, P(TR|C) becomes a constant and thus does not
affect the score of the result Rwhich now solely relies on the probability P(TR|Q)

214

of tuple TR in the query language model. In that case, we simply set the score of
a result R to the probability of its tuple TR in the query language model:

S(Q,R) ∝ −P(TR|Q)

Now, we can rank the results in descending order of the probabilities of their
tuples in the query language model.

215

Appendix A. Negative Kullback-Leibler Divergence

216

Appendix B.

Evaluation Queries for
Triple-Pattern Search

?x directed ?y;?x actedIn ?y

?x hasGenre Action;?x hasSuccessor ?y

?a1 isMarriedTo ?a2; ?a1 actedIn ?m;?a2 actedIn ?m

?a actedIn ?m;?a hasWonPrize ?x

?d hasWonPrize Academy Award for Best Director;?d directed ?m;?a acte-
dIn ?m;?a hasWonPrize Academy Award for Best Actor

?d hasWonPrize Academy Award;?d directed ?m;?a actedIn ?m;?a hasWon-
Prize Academy Award

?m hasGenre Comedy

?m hasGenre Comedy;?a actedIn ?m;?a directed ?m

?m hasGenre Thriller;?d directed ?m

?m hasGenre Comedy;?a1 actedIn ?m;?a2 actedIn ?m

?a hasWonPrize Academy Award for Best Actress;?a actedIn ?m;?a
diedOnDate ?t

?d directed ?m;?d hasWonPrize ?x;?m hasWonPrize ?y

?m1 producedIn Australia;?m1 hasWonPrize Academy Award

?m1 hasGenre Family;?m1 hasProductionYear 1995;?a actedIn ?m1;?m2 has-
Genre Comedy;?a actedIn ?m2

?x hasGenre Comedy[wedding]

?a actedIn ?m[spielberg];?a hasWonPrize ?x

?x directed ?y[true story];?x hasWonPrize ?z

217

Appendix B. Evaluation Queries for Triple-Pattern Search

?x hasProductionYear 2001;?x hasGenre Romance[paris]

?x actedIn ?y;?x hasWonPrize ?z;?y hasWonPrize Academy Award

?x hasWonPrize ?y;?x actedIn ?m1;?x actedIn ?m2

?x hasWonPrize Academy Award for Best Actor;?y hasWonPrize
Academy Award for Best Actress;?x actedIn ?m[love];?y actedIn
?m[relationship]

?a1 isMarriedTo ?a2; ?a1 actedIn ?m[boxing];?a2 actedIn ?m

?d hasWonPrize Academy Award for Best Director;?d directed ?m[new
york];?a actedIn ?m;?a hasWonPrize Academy Award for Best Actor

?d hasWonPrize Academy Award;?d directed ?m[soldiers];?a actedIn ?m;?a
hasWonPrize Academy Award

?m hasGenre Comedy[school friends]

?m hasGenre Comedy[police];?a actedIn ?m;?a directed ?m

?m hasGenre Thriller[gang];?d directed ?m

?m hasGenre Comedy[christmas];?a1 actedIn ?m;?a2 actedIn ?m

?a hasWonPrize Academy Award for Best Actress;?a actedIn ?m[paris];?a
diedOnDate ?t

?d directed ?m[love];?d hasWonPrize ?p1;?m hasWonPrize ?p2

?m1 producedIn Australia;?m1 hasWonPrize Academy Award[romance]

?m1 hasGenre Family[wedding];?m1 hasProductionYear 1995;?a actedIn
?m1;?m2 hasGenre Comedy[serial killer];?a actedIn ?m2

Table B.1.: Evaluation queries for the IMDB dataset

?x wrote ?y; ?y type Mystery & Thrillers

?x wrote ?y;?y hasTag 20th Century;?y hasTag Classic

?x wrote ?y; ?y hasTag Fiction;?x wrote ?z;?z hasTag Non-fiction

?x wrote ?y; ?y hasTag Series

?x wrote ?y

?x wrote ?y; ?y hasTag Classic

?x wrote ?y;?y hasTag Magic;?y type Fiction

?x wrote ?y;?x wrote ?z;?x type Novelists

?x wrote ?y[teenagers]

218

?x wrote ?y[wizard]; ?y hasTag Sequel

?x wrote ?y[Spain]

?x wrote ?y[pulitzer]; ?y hasTag Classic

?x wrote ?y;?y hasTag Magic;?y type Fiction[award]

?x wrote ?y[civil war]; ?x type Novelists;?y hasTag Movie

?x wrote ?y;?x wrote ?z;?x type Novelists[nobel prize]

?x type Novelists[award];?x wrote ?z;?z type Nonfiction

Table B.2.: Evaluation queries for the LibraryThing dataset

219

Appendix B. Evaluation Queries for Triple-Pattern Search

220

Appendix C.

Evaluation Queries for Query
Reformulation

Steven Spielberg actedIn ?m

Mel Gibson directed ?m

Britney Spears actedIn ?m

Anthony Quinn actedIn ?m;?m hasGenre War

?d directed ?m; ?d actedIn ?m;?m hasWonPrize Academy Award

?m producedIn Australia;?m hasWonPrize Academy Award

?a actedIn ?m;?a bornIn London

?m hasGenre Comedy;?m hasWonPrize Academy Award

?a actedIn ?m;?m hasWonPrize Academy Award;?a hasWonPrize
Academy Award for Best Actor

?a actedIn ?m;?m hasProductionYear 1995;?a hasWonPrize
Academy Award for Best Actor

?m hasGenre War;?m producedIn France

Woody Allen directed ?m; ?m hasGenre Romance

Steven Spielberg directed ?m; ?a actedIn ?m;?a hasWonPrize
Academy Award for Best Actor

Woody Allen directed ?m;Woody Allen produced ?m; ?a actedIn ?m

Nicole Kidman actedIn ?m; ?m hasGenre Thriller

?m1 hasGenre Mystery;?m1 hasPredecessor ?m2;?d1 directed ?m1;?d2 di-
rected ?m2

?m hasGenre Musical;?m producedIn Italy

?a actedIn Saving Private Ryan

221

Appendix C. Evaluation Queries for Query Reformulation

James Cameron actedIn ?m

Ben Stiller directed ?m

Justin Timberlake actedIn ?m

Woody Allen directed ?m;?a actedIn ?m;?a hasWonPrize
Academy Award for Best Actress

?d produced ?m; ?d actedIn ?m;?m hasWonPrize Academy Award

?m producedIn USA; ?m hasWonPrize Academy Award; ?m hasGenre Ro-
mance

?a hasWonPrize Academy Award for Best Actor;?a originatesFrom
New York City

?m hasGenre Animation; ?a actedIn ?m; ?a hasWonPrize
Academy Award for Best Actor

?d directed ?m; ?m hasWonPrize Academy Award;?m hasWonPrize
Golden Globe Award; ?d hasWonPrize ?p

?a1 hasWonPrize Academy Award for Best Director;?a2 hasWonPrize
Academy Award for Best Actress; ?a1 isMarriedTo ?a2

?m hasGenre Family; ?d directed ?m; ?d hasWonPrize
Academy Award for Best Director; ?d produced ?m

Tim Burton directed ?m; ?m hasGenre Family

Martin Scorsese directed ?m; ?m hasGenre Romance

Steve Martin directed ?m; ?a actedIn ?m

Tom Cruise actedIn ?m; ?m hasGenre Drama

?m1 hasPredecessor ?m2; ?m1 producedIn UK; ?m2 producedIn USA

?a actedIn Titanic (1997 film)

?x hasGenre Comedy[wedding]

?a actedIn ?m[spielberg];?a hasWonPrize Academy Award for Best Actor

?x directed ?y[true story];?x hasWonPrize
Academy Award for Best Director

?x hasGenre Romance[paris]

?d hasWonPrize Academy Award for Best Director;?d directed
?m[soldiers]

?x actedIn ?m[school friends]; ?x type wordnet singer 110599806

?m hasGenre Thriller[police];?a actedIn ?m; ?a produced ?m

222

?m hasGenre Action[gang];?a actedIn ?m

?m hasGenre Comedy;?a actedIn ?m[christmas]

?a hasWonPrize Academy Award for Best Actress;?a actedIn ?m[paris];?a
diedOnDate ?t

?a actedIn ?m[love];?a hasWonPrize Academy Award for Best Actress

?a actedIn ?m[romance]; ?a hasWonPrize Academy Award for Best Actor

?m hasGenre Family[friends];?a actedIn ?m

?a actedIn ?m;?m hasGenre Comedy[serial killer]

James Cameron directed ?m;?a actedIn ?m;?a hasWonPrize
Academy Award for Best Actor

?a1 hasWonPrize Academy Award for Best Actor;?a2 hasWonPrize
Academy Award for Best Actress; ?a1 isMarriedTo ?a2

Tom Cruise actedIn ?m;?m hasGenre Romance

?a actedIn ?m;?m hasWonPrize Academy Award;?a hasWonPrize
Academy Award for Best Actress

?m hasGenre Musical;?m producedIn France

?d hasWonPrize Academy Award for Best Director;?d directed ?m[new
york]

Table C.1.: Evaluation queries for the IMDB dataset

?w wrote ?b;?b hasTag Classic;?b hasTag Award

?w wrote ?b;?b hasTag British;?b hasTag Award

?w wrote ?b;?b hasTag Non-fiction;?b hasTag Pulitzer

?b type Science Fiction & Fantasy; ?b hasTag Film

?w wrote ?b;?b hasTag Paris;?b hasTag Revolution

?w wrote ?b;?w type Children Writers;?b hasTag Werewolves

?b hasTag Egypt;?b hasTag Magic

?w wrote Twilight

?w wrote ?b;?b type Non-fiction;?w type Novelists

?b hasTag Booker;?b hasTag Classic

?w wrote ?b;?b hasTag Booker;?w type Children Writers

?w wrote ?b;?b hasTag Dark Fantasy;?b hasTag Classic

223

Appendix C. Evaluation Queries for Query Reformulation

?w wrote ?b;?b type Literature & Fiction;?b hasTag Award

?w wrote ?b;?b hasTag Revolution;?b type Nonfiction

?b hasTag Movie;?b hasTag Vampire

?b type Mystery & Thrillers;?b hasTag Funny

?w wrote ?b;?b hasTag Classic;?b hasTag Fantasy;?b hasTag Funny

?w wrote ?b;?b hasTag 19th Century;?b type Romance

?w wrote ?b;?b hasTag Memoir;?b hasTag Germany

?b hasTag Non-fiction;?b hasTag Jewish

?w wrote ?b;?b hasTag Women Writers;?b hasTag Award

?b hasTag French;?b hasTag Theatre

?w wrote ?b;?b hasTag Bush;?w type Historians

?w wrote ?b;?b hasTag Sexuality;?b hasTag Murder

?w wrote ?b;?b hasTag Relationships;?b hasTag Paris

?w wrote ?b;?b hasTag Middle Ages;?b hasTag British

?w wrote Buffy The Vampire Slayer

Cormac McCarthy type ?t

?w wrote ?b;?b type Mystery & Thrillers;?b hasTag Middle East

?b hasTag American Civil War;?b type Romance

?b hasTag Crime Fiction;?b hasTag Favorites

?w wrote ?b1;?b1 hasTag Philosophy;?w wrote ?b2;?b2 hasTag Theatre

?b hasTag Greek;?b type Nonfiction

?w wrote ?b;?b hasTag Film;?b hasTag Horror

?x wrote ?y[teenagers]; ?y hasTag Film

?x wrote ?y[wizard]; ?y hasTag Children

?x wrote ?y[prize]; ?y hasTag Biography

?x wrote ?y[pulitzer]; ?y hasTag Slavery

?y hasTag Magic[award]; ?y type Science Fiction & Fantasy

?x wrote ?y[revolution];?y hasTag Classic

?x wrote ?y[civil war]; ?y hasTag Film

?x wrote ?z[award];?z hasTag Non-fiction

?x wrote ?y[teenagers]; ?y hasTag Vampire

?x wrote ?y[wizard]; ?y hasTag School

?x wrote ?y[award]; ?y hasTag Jewish

224

?x wrote ?y[pulitzer]; ?y hasTag Holocaust

?x wrote ?y[friends];?y hasTag Teenage

?x wrote ?y[teenage];?y hasTag Humour

?b hasTag Civil War;?b hasTag Non-fiction;?w wrote ?b2

?b hasTag France;?w wrote ?b;?b hasTag British;?b hasTag Classic

?w wrote ?b;?b hasTag Suspense;?b hasTag New York

?w wrote ?b;?w type Historians;?b hasTag Memoir

?w wrote ?b;?w type American Science Fiction Writers;?b hasTag School;?b
hasTag Friendship

?x wrote ?y[nobel prize];?y hasTag British Literature

?b hasTag Revolution;?b type Mystery & Thrillers

Table C.2.: Evaluation Queries for the LibraryThing Dataset

225

Appendix C. Evaluation Queries for Query Reformulation

226

Appendix D.

Evaluation Queries for Keyword
Search

Information need Query
A movie in which Steven Spielberg acted spielberg actor

A movie which Mel Gibson directed mel gibson director

A movie which has genre War in which Anthony
Quinn acted

anthony quinn war

A movie with genre Comedy which has won the
Academy Award

comedy academy
award

A movie with genre War which was produced in
France

war france

A movie with genre Romance which was directed by
Woody Allen

woody allen romance

A movie with genre Musical which was produced in
Italy

musical italy

A movie with Genre Romance that was produced in
the USA and has won an Academy Award

usa romance
academy award

An actor that has won the Academy Award for Best
Actor and the actor is related to New York City

new york academy
award best actor

A movie of genre Animation and acted in by an actor
that has won an Academy Award for Best Actor

animation academy
award best actor

A movie that Tom Cruise acted in and has genre
Drama

tom cruise drama

227

Appendix D. Evaluation Queries for Keyword Search

An actor that has won the Academy Award for Best
Actor and acted in a movie that has something to do
with Spielberg

spielberg academy
award best actor

An actress that has won the Academy Award for Best
Actress and has acted in a movie that has something
to do with love

love academy award
best actress

A movie of genre Musical produced in France musical france

A director that has won the Academy Award for Best
Director and has directed a movie that has something
to do with New York

best director new
york

Table D.1.: Evaluation queries for the IMDB dataset

Information need Query
The author of a classic book that won an award author classic award

The author of a british book that won an award author british award

The author of a non-fiction book that won the Pultizer
prize

author non-fiction
pulitzer

The author of a book about Paris and revolutions paris revolution au-
thor

A children’s writer who has a wrote a book about
werewolves

childern writer were-
wolves

The author of a literature and fiction book that won an
award

author literature fic-
tion award

The author of a classic fantasy funny book classic fantasy funny
author

The author of a memoir about Germany author memoir ger-
many

A woman writer who wrote a book that won an award women writer award

The author of a book about relationships and murder author relationship
murder

The author of a british book about the Middle Ages middle ages british
author

228

A cirme fiction that has was tagged as favorite by the
users

crime fiction favorite

A biography that won a prize author biography
prize

The author of a suspense novel about new york suspense new york
author

A Historian who wrote a memoir historian memoir
book

Table D.2.: Evaluation Queries for the LibraryThing Dataset

229

Appendix D. Evaluation Queries for Keyword Search

230

List of Figures

2.1. An RDF graph corresponding to the knowledge base in Table 2.1 14
2.2. The Linking Open Data Cloud Diagram 17

3.1. A query as a graph (above) and one result (below) as a subgraph
of the RDF graph . 26

5.1. The reformulation graph for the triple pattern ?d directed ?m

and all its reformulations (see Table 5.2) 112
5.2. The reformulation graph for the triple pattern ?m hasGenre Thriller

and all its reformulations (see Table 5.2) 113

8.1. Knowledge Exploration with ROXXI 183
8.2. ROXXI’s System Architecture . 185
8.3. Knowledge Exploration with CATE 189
8.4. CATE’s System Architecture . 190

231

List of Figures

232

List of Tables

1.1. An excerpt from an RDF knowledge base about movies 3

1.2. Results for the example query ”directors who have won an Academy
Award and movies they directed and in which they also acted” . 5

2.1. A small RDF knowledge base . 14

3.1. An excerpt from an RDF knowledge base about movies 20

3.2. Triples from the knowledge base in Table 3.1 instantiating an ex-
ample triple pattern . 23

3.3. Results of an example query as tuples of triples 25

3.4. The instantiation list of triple pattern q1 : ?a bornIn Australia . 37

3.5. The instantiation list of triple pattern q2 : ?a actedIn ?m 37

3.6. The instantiation list of triple pattern q2 : ?a actedIn ?m with the
count of witnesses containing the keyword dead 38

3.7. The instantiation list of triple pattern q2 : ?a actedIn ?m with the
count of witnesses containing the keyword people 39

3.8. The ranked list of results for an example query 42

3.9. The ranked list of results for an example query 43

3.10. Relaxed queries for a two triple-pattern query 45

3.11. Overview of the datasets . 51

3.12. A subset of the evaluation queries for the IMDB dataset 52

3.13. A subset of the evaluation queries for the LibraryThing dataset . 53

3.14. Avg. NDCG for all evaluation queries 56

3.15. Examples of IMDB queries and top-ranked results 58

4.1. Example resources and their top-5 substitutions 72

4.2. Substitution lists for three resources and the score of each substi-
tution . 76

233

List of Tables

4.3. Reformulated triple patterns and their scores 77

4.4. Top-10 reformulated queries for a given example query and their
scores . 78

4.5. Overview of the datasets . 83

4.6. Subset of the evaluation queries . 84

4.7. Example resources and their top-5 substitutions 85

4.8. Quality of individual substitutions and query reformulations . . . 86

4.9. Quality of results for simple triple-pattern queries 87

4.10. Quality of results for keyword-augmented queries 88

4.11. Top-ranked results for an example triple-pattern query 89

4.12. Top-ranked results for an example keyword-augmented query . 90

5.1. Substitution lists for three resources and the score of each substi-
tution . 96

5.2. Reformulated triple patterns and their scores 96

5.3. Top-10 reformulated queries for a given example query and their
scores . 97

5.4. Top-10 reformulated queries for a given example query and their
scores . 108

5.5. Overview of the datasets . 125

5.6. A subset of the evaluation queries 127

5.7. Results for triple-pattern queries with no keywords and no refor-
mulation . 128

5.8. Results for keyword-augmented triple-pattern queries with no re-
formulation . 129

5.9. Subset of the evaluation queries . 132

5.10. Results for triple-pattern queries with no keywords and with in-
cremental processing of reformulated queries 133

5.11. Results for keyword-augmented triple-pattern queries with incre-
mental processing of reformulated queries 134

5.12. Results for triple-pattern queries with no keywords and with batch
processing of reformulated queries 135

5.13. Results for keyword-augmented triple-pattern queries with batch
processing of reformulated queries 136

234

List of Tables

6.1. An example RDF knowledge base about movies 140
6.2. The List of matching triples for the keyword comedy 141
6.3. The list of matching triples for the keyword academy 142
6.4. The list of matching triples for the keyword award 142
6.5. All tuples retrieved for the query comedy academy award 143
6.6. Overview of the datasets . 153
6.7. A subset of the evaluation queries 154
6.8. Average NDCG values for both datasets 158
6.9. Average NDCG values with parameter learning 158
6.10. The top-ranked results for the query anthony quinn war 162

7.1. Results as tuples of triples for the example query ”directors who
have won an Academy Award and their movies” 164

7.2. Results for the example query ”Tom Hanks” 176
7.3. Results for the example query ”actors that have won the Academy

Award for Best Actor” . 177
7.4. Results for the example query ”fantasy movies” 178

8.1. A set of textual expressions and their confidence values for the ex-
ample triple: Quentin Tarantino actedIn From Dusk Till Dawn 186

B.1. Evaluation queries for the IMDB dataset 218
B.2. Evaluation queries for the LibraryThing dataset 219

C.1. Evaluation queries for the IMDB dataset 223
C.2. Evaluation Queries for the LibraryThing Dataset 225

D.1. Evaluation queries for the IMDB dataset 228
D.2. Evaluation Queries for the LibraryThing Dataset 229

235

	Abstract
	Kurzfassung
	Summary
	Zusammenfassung
	Introduction
	Structured Data on the Web
	RDF Knowledge Bases
	Searching RDF Knowledge Bases
	Research Challenges
	Contributions
	Thesis Outline

	RDF Knowledge Bases
	Resource Description Framework
	RDF Knowledge Bases
	Text-Augmented RDF Knowledge Bases
	RDF Data on the Web
	Summary

	Triple-Pattern Search
	Query Framework
	Triple-Pattern Queries
	Keyword-Augmented Triple-Pattern Queries
	Query Results

	Ranking Model
	Ranking Criteria
	Language-Model-Based Ranking for Information Retrieval
	Query Likelihood Model
	Kullback-Leibler Divergence Model

	Language-Model-Based Ranking for Triple-Pattern Search
	Query Language Model
	Result Language Model
	Result Ranking

	Query Relaxation
	Generating Relaxed Queries
	Extending the Ranking Model

	Related Work
	Keyword Queries on Unstructured Data
	Structured Queries on Structured Data
	Keyword Queries on Structured Data
	Keyword-Augmented Structured Queries on Structured Data

	Experimental Evaluation
	Setup
	Evaluation Queries
	Competitors
	Metrics
	Results

	Summary

	Query Reformulation for Triple-Pattern Search
	Types of Query Reformulations
	Query Reformulation Framework
	Resource Representation Model
	Entity Representation
	Relation Representation
	Representing Resources Using Multiple Information Sources

	Substitution Lists
	Similarity between Resources
	Substitution Lists Construction
	Adding Variables to Substitution Lists
	Pruning the Substitution Lists

	Generating Reformulated Queries
	Query Reformulation Algorithm

	Executing Reformulated Queries
	Incremental Execution.

	Related Work
	Experimental Evaluation
	Setup
	Quality of Substitution Lists
	Quality of Query Reformulations
	Quality of Query Results

	Summary

	Top-k Triple-Pattern Query Processing
	Query Processing for Triple-Pattern Search
	Triple-Pattern Queries
	Keyword-Augmented Triple-Pattern Queries
	Query Reformulation

	Top-k Query Processing Framework
	Triple-Pattern Queries
	Keyword-Augmented Triple-Pattern Queries
	Query Reformulation
	Incremental Processing of Reformulated Queries
	Batch Processing of Reformulated Queries

	Data Store and Indices
	Instantiation Lists for Triple Patterns.
	Instantiation Lists for Keyword-Augmented Triple Patterns

	Related Work
	Experimental Evaluation
	Datasets
	Experiment 1
	Query Benchmark
	Compared Approaches
	Results

	Experiment 2
	Query Benchmark
	Compared Approaches
	Incremental Processing Results
	Batch Processing Results

	Discussion and Possible Extensions

	Summary

	Keyword Search
	Query Framework
	Retrieval Algorithm
	Ranking Model
	Related Work
	Experimental Evaluation
	Setup
	Retrieval Models
	Relevance Assessments and Metrics
	Evaluation Results

	Summary

	Result Diversity
	Result Diversity for Queries over RDF Knowledge Bases
	Maximal Marginal Relevance
	Resource-based Diversity
	Knowledge-Base-based Diversity
	Text-based diversity

	Related Work
	Evaluation
	Summary

	Knowledge Exploration
	ROXXI: Reviving Witness Documents to Explore Extracted Information
	Knowledge Exploration with ROXXI
	System Architecture
	Data Manager
	Query Engine
	User Interface

	CATE: Context-Aware Timeline for Entity Illustration
	Knowledge Exploration with CATE
	System Architecture
	Information extraction
	Assigning Entities to Contexts
	Ranking Model
	Extracting Events

	Summary

	Conclusion
	Bibliography
	Negative Kullback-Leibler Divergence
	Evaluation Queries for Triple-Pattern Search
	Evaluation Queries for Query Reformulation
	Evaluation Queries for Keyword Search
	List of Figures
	List of Tables

