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Unitary extensions of Hilbert A(D)-modules split

Michael Didas and Jörg Eschmeier

Let D ⊂ C
n be a relatively compact strictly pseudo-

convex open set or a bounded symmetric and circled
domain, and let S denote the Shilov boundary of D.
Given Hilbert A(D)-modules H,J and K, we prove
that if the A(D)-module structure on H or K extends
to a Hilbert C(S)-module structure, then each short
exact sequence 0 → H → J → K → 0 splits in the
category of Hilbert A(D)-modules.

In their book [5] from 1989, Douglas and Paulsen presented a first systematic
study of Hilbert modules over function algebras. One of the main obstacles
in using standard methods from homological algebra in this setting is that
Hilbert module categories may not have enough projective and injective ob-
jects. At the early stage of the theory it was not even clear whether there
is any function algebra A allowing projective Hilbert modules other than
A = C(X) in which case every Hilbert module is projective (see Problem 4.6
in [5]). In 1994 Carlson, Clark, Foias and Williams succeeded to show that
Hilbert modules with a unitary module action are projective objects in the
category of all Hilbert modules over the disc algebra A(D). In other words,
a sequence of Hilbert A(D)-modules

0 −−−→ H −−−→ J −−−→ K −−−→ 0

splits under the condition that K extends to a Hilbert C(∂D)-module. Im-
posing an additional weak∗ continuity assumption on the module action, Guo
[6] was able to prove a multi-variable analogue of this result in the category of
the so-called normal Hilbert A(B)-modules (see Section 1 below for a precise
definition of normality) over the open Euclidean unit ball B in Cn, n ≥ 1. It
is the aim of this work to show that the normality condition in Guo’s result
can be dropped from the hypotheses. The idea is to use a decomposition
theorem for A(B)-functional calculi in order to separate each short exact se-
quence of Hilbert A(B)-modules into a discrete and a continuous part. The
continuous part, consisting of normal Hilbert modules, can be treated by the
methods of Guo. On the discrete part, the module action is given by the
multiplication with complex scalars and therefore it splits trivially. Along
the way we replace (as indicated by Guo in [6]) the unit ball B by an arbi-
trary strictly pseudoconvex set D ⊂ Cn. Finally we show that B may also be
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replaced by a bounded symmetric and circled domain D, using the fact that
each such domain D is contained in a suitably chosen Euclidean ball B in
such a way that the Shilov boundary of D is contained in the corresponding
sphere ∂B.

1 Notations and preliminaries

Let H be a separable Hilbert space and A a unital Banach algebra. Recall
that a representation of A (or an A-functional calculus) Φ : A → L(H) is
a norm continuous unital algebra homomorphism from A to the C∗-algebra
L(H) of all bounded linear operators on H. The Hilbert space H is said to
be a Hilbert A-module if it is an A-module (in the algebraic sense) with the
additional property that the module multiplication A × H → H is norm-
continuous. By assigning with each representation Φ : A → L(H) a module
multiplication via the formula

A × H → H, (f, x) 7→ f · x = Φ(f)x (f ∈ A, x ∈ H)

one obtains a one-to-one correspondence between the representations of A
and the Hilbert A-module structures on H. A module homomorphism L ∈
HomA(H, K) between two Hilbert A-modules H and K is a continuous linear
map L : H → K satisfying L(f · x) = f · L(x) for all f ∈ A and x ∈ H. The
category of all Hilbert A-modules with the corresponding homomorphisms
will be abbreviated by H (A) in the sequel.

We say that a Hilbert A-module H is contractive (isometric) if the under-
lying representation Φ is a contraction (an isometry, respectively), while H
is cramped if there exists a contractive Hilbert A-module K which is similar

to H in the sense that there is a bijective module homomorphism (simi-

larity) L : H → K. The cramped category C (A) consists of all cramped
Hilbert A-modules as objects and all (not necessarily contractive) A-module
homomorphisms between any two such objects as morphisms.

Let A be a dual algebra, that is, a Banach algebra which carries a natural
weak∗ topology as the dual space of a Banach space such that the multipli-
cation on A is separately weak∗ continuous. A Hilbert A-module H is called
normal if, for each x ∈ H, the mapping A → H, f 7→ f · x is weak∗-weak
continuous. In the case that A has a separable predual it is not hard show
that this is equivalent to the underlying representation Φ : A → L(H) be-
ing weak∗ continuous (where the weak∗ topology on L(H) is induced by the
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trace duality). Again the normal Hilbert A-modules together with the set of
(ordinary) A-module homomorphisms form a category, called N (A).

Let X be any one of the Hilbert A-module categories defined above. Two
short exact sequences

E : 0 → H
α
→ J

β
→ K → 0 and E ′ : 0 → H

α′

→ J ′ β′

→ K → 0

in X are called equivalent if there exists a map θ ∈ HomA(J, J ′) making the
diagram

E : 0 −−−→ H
α

−−−→ J
β

−−−→ K −−−→ 0
∥

∥

∥





y
θ

∥

∥

∥

E ′ : 0 −−−→ H
α′

−−−→ J ′ β′

−−−→ K −−−→ 0

commutative. The first cohomology group is defined by

Ext1
X

(K, H) =
{

[E], E : 0 → H
α
→ J

β
→ K → 0 exact sequence in X

}

where [E] stands for the corresponding equivalence class of the short exact
sequence E. The zero element of Ext1

X (K, H) is the equivalence class of the
split extension

0 −−−→ H
ι

−−−→ H ⊕ K
π

−−−→ K −−−→ 0

where ι(h) = h ⊕ 0 and π(h ⊕ k) = k for h ∈ H, k ∈ K.

In the three cases X = H (A), C (A) or N (A) one can show that Ext1
X

(·, ·)
is a bi-functor from the category X to the category of A-modules (cp. [2],
[3], [6]).

A simple description of Ext1
X

(K, H) is known for X = H (A) or X =
N (A). To point this out let, with the notations from above, the sequence E
be exact. Then J possesses a decomposition as orthogonal direct sum

J = α(H) ⊕ α(H)⊥ ∼= H ⊕ K

of Hilbert spaces, but since in contrast to the image α(H) of an A-module
map the orthogonal complement α(H)⊥ may not be invariant under the mod-
ule multiplication of J , the above decomposition is in general not a sum of
Hilbert A-modules. Identifying J ∼= H ⊕ K as Hilbert spaces, the module
multiplication on J can be represented as

f ·

(

h

k

)

=

(

f · h + σ(f, k)

f · k

)

(f ∈ A, h ∈ H, k ∈ K),
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where σ : A×K → H is easily seen to be a continuous bilinear map satisfying
the so-called cocycle identity

f · σ(g, k) = σ(fg, k) − σ(f, g · k) (f, g ∈ A, k ∈ K).

Such a map σ : A × K → H is called a 1-cocycle. Note that the 1-cocycles
arising in this way in the category X = N (A) are also normal, which means
that σ(·, k) : A → H is weak∗-weak continuous for each k ∈ K. We write

CH (A)(K, H) and CN (A)(K, H)

for the vector space of all 1-cocycles (normal 1-cocycles, respectively). Given
any bounded linear operator T ∈ L(K, H) we obtain a 1-cocycle σT (even
being normal in the case X = N (A)) by setting

σT : A × K → H, (f, k) 7→ f · T (k) − T (f · k).

Writing B(K, H) = {σT : T ∈ L(K, H)} for the vector space of all these
so-called 1-coboundaries we are ready to state the announced description of
the first cohomology group. For a proof of the following result, compare
Theorem 2.2.2 in [2] and Proposition 2.3 in [6].

1.1 Proposition. In the categories X = H (A) and X = N (A), the
assignment

Ext1
X

(K, H) → CX (K, H)/B(K, H), [E] 7→ [σ],

where σ is the 1-cocycle induced by E in the way pointed out above, is a
bijection. 2

For further reference we remark that if there are similarities H
R
→ H ′ and

K
S
→ K ′, then Ext1

X
(K, H) and Ext1

X
(K ′, H ′) are isomorphic. To prove this

quickly in the situation of the preceding proposition, we define a map

γ : CX (K, H) → CX (K ′, H ′), σ 7→ σ′,

where σ′(f, k′) = Rσ(f, S−1k′) for f ∈ A and k′ ∈ K ′. It is easy to check
that γ is well-defined and bijective (γ−1 has the same structure), and maps
BX (K, H) onto BX (K ′, H ′) since σ′

T = σRTS−1 . Hence the induced map
between the quotient spaces is the desired isomorphism.

Let us now turn to some general results on Hilbert modules over algebras
of continuous and bounded measurable functions. Let C(K) denote the C∗-
algebra of all complex-valued continuous functions on a compact set K ⊂ Cn,
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and let M+(K) be the set of all finite positive regular Borel measures on
K. The structure theory of Hilbert C(K)-modules seems to be completely
understood and can be found in detail in [5]. For our purposes, we only need
a few basic results of the theory. The first one says that, as far as Ext1-
groups are concerned, we can restrict ourselves to contractive C(K)-modules
(see Theorem 1.9 in [5]):

1.2 Proposition. Each Hilbert C(K)-module is similar to a contractive
Hilbert C(K)-module. 2

By the definition of a contractive Hilbert C(K)-module, the underlying rep-
resentation Φ : C(K) → L(H) is contractive and hence a ∗-homomorphism.
This implies that the tuple Z = (Φ(z1), . . . , Φ(zn)) ∈ L(H)n of module mul-
tiplication with the coordinate functions is a commuting tuple of normal
operators with Taylor spectrum σ(Z) ⊂ K. If ν ∈ M+(K) denotes a scalar-
valued spectral measure for Z, then Φ possesses an extension to an isometric
and weak∗-continuous functional calculus Ψ : L∞(ν) → L(H). In the lan-
guage of modules, this fact reads as follows.

1.3 Proposition. Every contractive Hilbert C(K)-module extends to a nor-
mal and isometric Hilbert L∞(ν)-module for a suitably chosen measure ν ∈
M+(K). 2

In our context K will be the boundary ∂D of a relatively compact strictly
pseudoconvex open set D ⊂ Cn in the sense that there exist an open neigh-
borhood U of ∂D and a strictly plurisubharmonic C2-function ρ : U → R

such that D ∩ U = {z ∈ U : ρ(z) < 0}. Note that the boundary ∂D is
not assumed to be smooth. The objects we are interested in are Hilbert
A(D)-modules, where A(D) denotes the algebra of all continuous functions
f : D̄ → C that are holomorphic on D. The supremum norm on D̄ turns
A(D) into a Banach algebra. By the maximum modulus principle, the re-
striction to boundary values yields an isometric embedding A(D) ↪→ C(∂D),
hence each Hilbert C(∂D)-module induces a Hilbert A(D)-module in a nat-
ural way.

2 Decomposition of Hilbert A(D)-modules

Our first aim is to establish an orthogonal decomposition of a given Hilbert
A(D)-module into a discrete and a continuous part where the latter one has
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a nice extension property. To be more specific, a Hilbert A(D)-module H
will be called ζ-atomic for some ζ ∈ ∂D if

f · x = f(ζ)x (f ∈ A(D))

holds for each x ∈ H, while we call H continuous if it does not contain
any ζ-atomic A(D)-submodule at all. An orthogonal direct sum of atomic
A(D)-modules is called discrete. If H is a ζ-atomic A(D)-module for some
ζ ∈ ∂D and α ∈ HomA(D)(H, K) is a homomorphism, then, given x ∈ H and
f ∈ A(D), we have f ·α(x) = α(f ·x) = α(f(ζ)x) = f(ζ)α(x). Hence images
of ζ-atomic A(D)-modules are again ζ-atomic.

Before we give a precise formulation of the announced decomposition result
we have to provide the measure theoretical framework the proof is based on.
Given an arbitrary regular complex Borel measure µ ∈ M(D̄), we define the
dual algebra H∞(µ) to be the weak∗ closure of the image of the contraction
A(D) → L∞(µ), f 7→ [f ]. We say that µ is a Henkin measure if the latter
map extends to a weak∗ continuous contraction

rµ : H∞(D) → H∞(µ),

where H∞(D) stands for the dual algebra of all bounded holomorphic func-
tions on D. Recall that the dual algebra structure on H∞(D) is inherited
from the inclusion H∞(D) ⊂ L∞(λ), λ denoting the Lebesgue measure of
Cn restricted to D. The set of all Henkin measures on D̄ will be denoted
by HM(D̄). We say that µ is a faithful Henkin measure if the induced map
rµ is an isomorphism of dual algebras (i.e. a weak∗ continuous isometric
isomorphism). If the boundary ∂D is smooth, then the surface measure is a
faithful Henkin measure. The fact that faithful Henkin measures supported
by ∂D do also exist in the case of non-smooth boundary can be shown by
using operator theoretical methods from dilation theory (see [4], Proposition
5.2.1).

2.1 Proposition. For each relatively compact strictly pseudoconvex open
set D ⊂ Cn there exists a faithful Henkin probability measure σ ∈ HM(D̄)
satisfying σ(D) = 0. 2

A band of measures is a closed subspace B ⊂ M(D̄) such that each measure
ν ∈ M(D̄) with ν � µ for some µ ∈ B also belongs to B. By the Theorem of
Henkin (see Theorem 2.2.2 in [4]), HM(D̄) is a band of measures. Collecting
all the measures that are singular to each measure in HM(D̄), we obtain the
band S(D̄) which allows a decomposition M(D̄) = S(D̄)⊕1 HM(D̄) defined

6



in the obvious way. The dual space of a band B can be identified with the
von Neumann algebra

L∞(B) =
{

(fµ) ∈
∏

µ∈B

L∞(µ) : fν = fµ (µ − a.e.) ∀µ, ν ∈ B with µ � ν
}

,

carrying the norm ‖f‖ = supµ∈B ‖fµ‖∞,µ (f = (fµ) ∈ L∞(B)). Given a
band B ⊂ M(D̄) we define a dual subalgebra of L∞(B) by

H∞(B) = A(D)
(w∗,L∞(B))

.

Using the fact that there are faithful Henkin measures in HM(D̄) it is ele-
mentary to check that the map

r : H∞(D) → H∞(HM(D̄)), f 7→ (rµ(f))µ

is a dual algebra isomorphism. As carried out in the proof of Lemma 2.2.9
in [4], the identification

H∞(M(D̄)) = L∞(S(D̄)) ⊕∞ H∞(HM(D̄))

arises by dualizing the identity M(D̄) = S(D̄)⊕1HM(D̄). A detailed discus-
sion of these aspects of measure theory and the underlying function theory
on strictly pseudoconvex sets can be found, for instance, in Section 2 of [4].

Finally, we call an arbitrary regular complex Borel measure µ ∈ M(D̄) con-

tinuous, if one-point sets have µ-measure zero. Note that there is an at most
countable set Aµ ⊂ D̄ such that µ({a}) > 0 for each a ∈ Aµ. The elements
of Aµ are called atoms of µ. Defining µa and µc to be the trivial exten-
sions of µ|Aµ and µ|D̄ \Aµ to measures in M(D̄) we obtain a decomposition
µ = µa +µc of µ into a purely atomic part µa and a continuous part µc being
clearly singular to each other.

2.2 Theorem. Let H be a Hilbert A(D)-module.

(a) There exists a unique countable subset AH ⊂ ∂D and a family Hζ
d of

non-zero ζ-atomic Hilbert A(D)-modules (ζ ∈ AH) as well as a contin-
uous Hilbert A(D)-module Hc such that H is similar to the orthogonal
direct sum

H ∼=
⊕

ζ∈∂D

Hζ
d ⊕ Hc (where Hζ

d = 0 for ζ 6∈ AH)

This representation is unique up to similarity.
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(b) There exists a continuous measure µH ∈ M+(∂D) with the property
that the A(D)-module structure of Hc can be extended to a normal
H∞(µH)-module structure.

(c) If M ⊂ H is any A(D)-submodule of H extending to a normal H∞(µ)-
module for some continuous measure µ ∈ M+(∂D), then M ⊂ Hc via
the identification of part (a).

Proof. Let Φ : A(D) → L(H) be the underlying representation of the
A(D)-module structure on H, and let i : C1(H) → L(H)′ be the canonical
embedding of the trace class C1(H) into its second dual. The composition

Φ̂ : A(D)′′
Φ′′

−→ L(H)′′
i′

−→ L(H)

is easily seen to be a weak∗ continuous linear extension of Φ. General duality
theory yields the identification

A(D)′′ = A(D)
(w∗,L∞(M(D̄))

= H∞(M(D̄))

where the dual algebra on the right possesses the decomposition

H∞(M(D̄)) = L∞(S(D̄)) ⊕∞ H∞(HM(D̄)).

Thus Φ extends to a weak∗ continuous representation (multiplicativity follows
by a density argument)

Φ̂ : L∞(S(D̄)) ⊕ H∞(HM(D̄)) → L(H)

which induces a (not necessarily orthogonal) direct sum decomposition

H = Hs + Ha, Hs ∩ Ha = 0 where Hs = Φ̂(1 ⊕ 0)H, Ha = Φ̂(0 ⊕ 1)H.

Now let σ ∈ M+(D̄) be a faithful Henkin measure with σ(D) = 0. Then the
restriction of Φ̂ to the H∞-part induces a weak∗ continuous representation

Ψa : H∞(σ)
r−1
σ−→ H∞(D)

r
−→ H∞(HM(D̄))

Φ̂(0⊕·)
−→ L(Ha),

while the L∞-part L∞(S(D̄)) → L(Hs), f 7→ Φ̂(f ⊕ 0)|Hs is a bounded
homomorphism from a unital commutative C∗-algebra to L(H) and thus is
similar to a contractive representation

Ψ̂s : L∞(S(D̄)) → L(Hs), Ψ̂s(f) = S ◦ Φ̂(f ⊕ 0)|Hs ◦ S−1
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with an invertible bounded linear map S : Hs → Hs. Since Ψ̂s maps or-
thogonal projections onto orthogonal projections it is a ∗-homomorphism.
Exactly as in [4], Lemma 3.2.4, it can be shown that there exists a measure
ν ∈ S(D̄) such that the tuple (Ψ̂s(z1), · · · , Ψ̂s(zn)) is a commuting tuple
of normal operators on Hs possessing an isometric and weak∗ continuous
functional calculus

Ψs : L∞(ν) → L(Hs).

The exterior orthogonal direct sum K = Hs ⊕ Ha equipped with the norm

‖(xs, xa)‖
2 = ‖xs‖

2 + ‖xa‖
2 (xs ∈ Hs, xa ∈ Ha)

is a Hilbert space which is similar to H as can be seen from the estimate
‖x‖2 ≤ ‖xs‖

2 +‖xa‖
2 +2‖xs‖‖xa‖ ≤ 2(‖xs‖

2 +‖xa‖
2) (x = xs +xa ∈ H) and

the open mapping theorem. If K = Hs ⊕Ha is turned into a normal Hilbert
L∞(ν) ⊕ H∞(σ)-module via the representation

Ψ : L∞(ν) ⊕ H∞(σ) → L(K), f ⊕ g 7→ Ψs(f) ⊕ Ψa(g),

then, by construction, the map S ⊕ 1Ha
: H = Hs + Ha → K is a similarity

of the underlying A(D)-modules. Thus to prove the theorem, we are allowed
to assume that H = K.

Let ζ ∈ ∂D. Since one-point sets have σ-measure zero (see Lemma 2.2.3 in
[4]), the equivalence class χζ ∈ L∞(ν)⊕H∞(σ) of the characteristic function
of {ζ} is non-trivial if and only if {ζ} is an atom of ν. In this case, the
multiplication operator Pζ = Mχζ

∈ L(H), being clearly an A(D)-module
homomorphism, is also an orthogonal projection. Since, for x ∈ PζH, we
have

f · x = fχζ · x = f(ζ)x (f ∈ A(D)),

the A(D)-submodule Hζ
d = PζH ⊂ H is ζ-atomic. Clearly, χζ1 · χζ2 = 0

implies that Hζ1
d ⊥Hζ2

d whenever ζ1 6= ζ2.

In order to isolate the discrete part of H, we we declare AH to be the set of
all one-point atoms of ν and define the discrete and continuous part of ν as
νd = ν|AH and νc = ν|D̄ \ AH , trivially extended to measures on D̄. (Note
that AH is countable, since ν is finite.) Since the measures νd, νc and σ are
pairwise singular to each other, we have the inclusion

L∞(νd) ⊕ H∞(νc + σ) ⊂ L∞(ν) ⊕ H∞(σ).

By restriction of the module multiplication, we therefore obtain a normal and
contractive L∞(νd) ⊕ H∞(µH)-module structure on H with the continuous
measure µH = νc + σ.
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Let χAH
∈ L∞(νd) ⊕ H∞(µH) be the equivalence class of the characteristic

function of the set AH . Then the module multiplication Pd = MχAH
is the

orthogonal projection from H onto the discrete part Hd = ⊕λ∈AH
Hζ

d . Since
Pc = 1−Pd = M1−χAH

is a module homomorphism as well, the set Hc = PcH
is an A(D)-submodule of H for which

H =
⊕

ζ∈AH

Hζ
d ⊕ Hc

holds. To see that the A(D)-submodule Hc defined in this way is continuous,
let x ∈ H be an arbitrary vector satisfying

f · x = f(ζ)x (f ∈ A(D)) for some ζ ∈ ∂D.

We fix a peaking function f ∈ A(D) with f(ζ) = 1 and |f | < 1 on D̄ \ {ζ}.
Since the sequence of powers (f k)k≥1 converges pointwise to the characteristic
function of {ζ}, we deduce that

x = f k · x = f k · Pdx ⊕ f k · Pcx
k→∞
−→ χ{ζ}Pdx ⊕ 0 = Pdx.

Hence x ∈ Hζ
d and therefore Hc is continuous. To finish the proof of part

(a) we have to consider uniqueness. For this purpose, let α be a simi-
larity between two A(D)-modules with the structure under consideration
⊕λ∈AH

Hζ
d ⊕Hc

α
−→ ⊕λ∈AK

Kζ
d ⊕Kc. The remark preceding the theorem guar-

antees that α(Hζ
d) ⊂ Kζ

d and α−1(Kζ
d) ⊂ Hζ

d . Hence AH = AK, α(Hζ
d) = Kζ

d

for each ζ ∈ AH and consequently α(Hc) = Kc.

To prove part (b) it suffices to observe that the normal H∞(µH)-module
structure on Hc is inherited from the L∞(νd)⊕H∞(µH)-module structure on
H described above.

Towards a proof of the assertion (c) suppose that M is an A(D)-submodule
of H extending to a normal H∞(µ)-module with a continuous measure µ. An
arbitrary x ∈ M can be decomposed as x = Pdx⊕Pcx. If Pdx 6= 0, then there
exists at least one ζ ∈ AH such that χζ ·x = χζ ·Pdx 6= 0. Choosing a peaking

function f ∈ A(D) for ζ we deduce that, on the one hand, f k·Pdx
k
→ χζ ·x 6= 0

(by normality), and on the other hand f k ·Pdx = f k ·x− f k ·Pcx
k
→ 0 by the

continuity of the module structures of M and Hc. From this contradiction it
follows that PdM = 0 and hence M ⊂ Hc, as desired. 2

If in the situation of the above theorem H is a Hilbert C(∂D)-module, then,
modulo similarity, it extends to a normal and isometric Hilbert L∞(η)-module
K for some η ∈ M+(∂D) by Proposition 1.2 and 1.3. Writing η = ν + ω
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with ν ∈ S(D̄) and ω ∈ HM(D̄), we may replace the map Ψ occuring in the
above proof by the functional calculus

Ψ : L∞(ν) ⊕ L∞(ω) → L(K)

induced by the normal and isometric L∞(η)-module K. Along this way, we
obtain the following completion of the above theorem:

2.3 Remark. If H is a Hilbert C(∂D)-module, then the module Hc occuring
in the decomposition of H in the above theorem can be chosen in such a way
that it extends to a normal isometric L∞(µH)-module for some continuous
measure µH ∈ M+(∂D).

In the next section, the following simple observation will be applied to ob-
tain a decomposition of short exact sequences of Hilbert A(D)-modules into
atomic and continuous parts.

2.4 Lemma. Given a homomorphism
⊕

ζ∈∂D Hζ
d ⊕ Hc

α
−−−→

⊕

ζ∈∂D Kζ
d ⊕ Kc

between Hilbert A(D)-modules as described in part (a) of the preceding
theorem we have

α(Hζ
d) ⊂ Kζ

d and α(Hc) ⊂ Hc.

Proof. The first assertion follows from the remarks preceding the cited
theorem. To verify the second one observe that the range α(Hc) inherits a
normal H∞(µH)-module structure from Hc. Thus part (c) of the preceding
theorem guarantees that α(Hc) ⊂ Kc. 2

3 Projectivity of Hilbert C(∂D)-modules

Applying the decomposition theorem established in the last section we are
now able to prove the announced vanishing result for Ext1. As a main tool we
use the existence of abstact inner functions relative to an arbitrary continuous
measure µ ∈ M+(∂D) which has been settled by Aleksandrov [1].

3.1 Theorem. If H is a Hilbert C(∂D)-module, then

Ext1
H (A(D))(K, H) = 0 and Ext1

H (A(D))(H, K) = 0

for every Hilbert A(D)-module K.
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Proof. Step (1): The reduction to the continuous case.

Since similarities do not change the Ext1-group, we may replace H and K
by their decompositions

H ′ =
⊕

λ∈∂D

Hζ
d ⊕ Hc and K ′ =

⊕

λ∈∂D

Kζ
d ⊕ Kc

established in Theorem 2.2 and the subsequent remark. Let E : 0 → H ′ α
→

J
β
→ K ′ → 0 be an exact sequence of Hilbert A(D)-module maps and let

θ : J → J ′ = ⊕λ∈∂DJζ
d ⊕ Jc be the similarity identifying J with its canonical

decomposition. Since the diagram

E : 0 −−−→ H ′ α
−−−→ J

β
−−−→ K ′ −−−→ 0

∥

∥

∥
θ





y

∥

∥

∥

E ′ : 0 −−−→ H ′ α′

−−−→ J ′ β′

−−−→ K ′ −−−→ 0

where α′ = θ ◦ α and β ′ = β ◦ θ−1 commutes, we do not change the Ext1-
equivalence class if we replace E by E ′. Applying Lemma 2.4 we can de-
compose the sequence E ′ into a direct sum of the induced exact sequences
between the atomic components of the underlying modules

Eζ
d : 0 −−−→ Hζ

d

α′

−−−→ J ζ
d

β′

−−−→ Kζ
d −−−→ 0

for ζ ∈ ∂D and a sequence between the continuous parts

Ec : 0 −−−→ Hc
α′

−−−→ Jc
β′

−−−→ Kc −−−→ 0.

Note that, since the module action on J ζ
d is ζ-atomic, each direct sum de-

composition of J ζ
d in the category of Hilbert spaces is also a direct sum in the

A(D)-module sense. Therefore, the sequences Eζ
d (ζ ∈ ∂D) split. To finish

the proof of the theorem, it suffices to check that Ec splits.

Let µH, µJ , µK ∈ M+(∂D) denote continuous measures allowing a normal
extension of the module structure on H, K, J in the sense of Theorem 2.2
and Remark 2.3. The sum µ = µH +µJ +µK ∈ M+(∂D) remains continuous,
and via the canonical maps

L∞(µ) → L∞(µH), H∞(µ) → H∞(µJ), H∞(µ) → H∞(µK),

we can reagrd the sequence Ec as a short exact sequence of normal H∞(µ)-
modules whose first term H extends to an isometric normal L∞(µ)-module.

12



To finish the proof of the theorem we prove that each such sequence splits.
This will be done in the next step.

Step (2): The continuous case.

Let µ ∈ M+(∂D) be a continuous measure, K a normal Hilbert H∞(µ)-
module and H a normal and isometric Hilbert L∞(µ)-module. We use an
idea of Guo (see [6], Theorem 3.2) to prove that Ext1

N (H∞(µ)))(K, H) = 0.
According to the identification

Ext1
N (H∞(µ))(K, H) → CN (H∞(µ))(K, H)/B(K, H), [E] 7→ [σ],

described in Section 1 we have to show that, for each normal 1-cocycle
σ ∈ CN (H∞(µ))(K, H), there exists a bounded linear operator T ∈ L(K, H)
satisfying σ = σT .

To do this, we consider the multiplicative semigroup

I = {θ ∈ H∞(µ) : |θ| = 1 in L∞(µ)}

of all µ-inner functions on ∂D and choose an invariant mean m : `∞(I) → C,
i.e. a linear form m ∈ `∞(I)′ with ‖m‖ = m(1) = 1 and

m(f) = m(fω) (f ∈ `∞(I), ω ∈ I) where fω(θ) = f(ω · θ) (θ ∈ I).

Via the dual pairing

〈A, B〉 = tr(AB) (A ∈ C1(H, K), B ∈ L(K, H))

we identify L(K, H) with the dual space of the nuclear operators C1(H, K).
Given f ∈ L∞(µ) and g ∈ H∞(µ) we denote the corresponding multiplication
operators by MH

f : H → H and MK
g : K → K, respectively.

Now, fix a normal 1-cocycle σ : H∞(µ) × K → H. Since the linear form

C1(H, K) → C, A 7→ mθ

(

〈A, Mθ̄ ◦ σ(θ, ·)〉
)

is continuous it has a unique representation of the form 〈·, T 〉 with an operator
T ∈ L(K, H). We claim that σ = σT . Towards this end, let θ0 ∈ I and
C ∈ C1(H, K) be arbitrary elements. Then we have

〈A, MH
θ0

T − TMK
θ0
〉 = 〈AMH

θ0
− MK

θ0
A, T 〉

= mθ

(

〈AMH
θ0

− MK
θ0

A, MH
θ̄

◦ σ(θ, ·)〉
)

= mθ

(

〈A, MH
θ̄θ0

◦ σ(θ, ·) − MH
θ̄ ◦ σ(θ, ·) ◦ MK

θ0
〉
)

13



Applying the cocycle identity σ(θ, MK
θ0

(·)) = σ(θθ0, ·) − MH
θ ◦ σ(θ0, ·) to the

composition on the right, we can write the above as

. . . = mθ

(

〈A, MH
θ̄θ0

◦ σ(θ, ·)〉
)

− mθ

(

〈A, MH
θ̄ ◦ σ(θθ0, ·)〉

)

+mθ

(

〈A, MH
θ̄θ

◦ σ(θ0, ·)〉
)

.

Using the invariance of m = mθ we may replace θ by θθ0 in the argument of
the first mθ-term. But then the first line vanishes, and since MH

θ̄θ
= 1H we

have finally shown that

〈A, MH
θ0

T − TMK
θ0
〉 = 〈A, σ(θ0, ·)〉 (A ∈ C1(H, K), θ0 ∈ I).

A result of Aleksandrov ([1], Corollary 29) guarantees that the weak∗-closure
of I contains the unit ball of A(D). Hence the above equality extends to all
θ0 ∈ A(D) and then, by continuity, to all θ0 ∈ H∞(µ). Thus we can state
that

σ(θ0, k) = θ0 · T (k) − T (θ0 · k) (θ0 ∈ H∞(µ), k ∈ K),

as desired. This proves that Ext1
H (A(D))(K, H) = 0. The second part of the

assertion can be derived from this by standard duality arguments (see e.g.
the proof of Theorem 3.2 in [6]). 2

Since in the cramped category C (A(D)) over the disc algebra any isometric
Hilbert module is projective (see Theorem 3.1 and Corollary 3.3 in [2]), it
seems natural to conjecture that each spherically isometric Hilbert A(B)-
module is projective in the cramped category C (A(B)) over the ball algebra.
However, the Hardy module H2(σ) over the unit ball B ⊂ Cn with respect
to the surface measure σ ∈ M+(∂B) is spherically isometric and, by Remark
4.3 in Guo [6], it can be shown that Ext1

N (H∞(σ))(H
2(σ), H2(σ)) 6= 0 for

n > 1. Since furthermore, by the multi-variable analogue of Corollary 4.2 in
[2], Ext1

C (A(B))(H
2(σ), H2(σ)) = Ext1

H (A(B))(H
2(σ), H2(σ)) the Hardy module

H2(σ) yields a counter-example to the above conjecture.

Finally we want to show that our main theorem possesses an analogue in the
situation that D ⊂ Cn is a bounded symmetric domain. By definition this
means that, for each z ∈ D, there exists a biholomorphic map sz : D → D
possessing z as an isolated fixed point and such that sz ◦ sz is the identity
on D. We shall further assume that D is circled at the origin, that is, 0 ∈ D
and eitD ⊂ D for all t ∈ R. It is well known that every bounded symmetric
domain is isomorphic to a circled one. By Corollary 4.6 in [7] a set D of
this type is convex. Hence D is the open unit ball in the norm given by its
Minkowski functional. The Shilov boundary S of A(D) is known to consist
precisely of those points in D̄ with maximal Euclidean distance from the
origin 0 ∈ Cn (Theorem 6.5 in [7]).
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Let us denote by r this maximal Euclidean distance and let B = Br(0) be
the open Euclidean ball of radius r at 0 in Cn. Then the inclusions

D̄ ⊂ B̄ and S ⊂ ∂B

hold. Hence via restriction every Hilbert A(D)-module H becomes a Hilbert
A(B)-module. Furthermore, if the A(D)-module structure of H extends to
a Hilbert C(S)-module structure, then the associated Hilbert A(B)-module
structure extends to the Hilbert C(∂B)-module structure defined by restric-
tion.

In this way every short exact sequence

0 → H
α

−→ J
β

−→ K → 0

of Hilbert A(D)-modules becomes a short exact sequence of Hilbert A(B)-
modules. If H is supposed to be a Hilbert C(S)-module, then the above
sequence splits as a sequence of Hilbert A(B)-modules. But, since A(B)|D̄ is
dense in A(D), it follows that every bounded A(B)-module homomorphism
acting as a right inverse for β will also be a right inverse in the category of
Hilbert A(D)-modules.

Thus the projectivity result proved above for strictly pseudoconvex domains
immediately implies a corresponding result for symmetric domains.

3.2 Corollary. Let D ⊂ Cn be a bounded symmetric and circled domain
with Shilov boundary S. If H is a Hilbert C(S)-module, then

Ext1
H (A(D))(K, H) = 0 and Ext1

H (A(D))(H, K) = 0

for every Hilbert A(D)-module K. 2
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