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Abstract

Dilation and erosion are the fundamental operations in morpholog-
ical image processing. Algorithms that exploit the formulation of these
processes in terms of partial differential equations offer advantages for
non-digitally scalable structuring elements and allow sub-pixel accu-
racy. However, the widely-used schemes from the literature suffer from
significant blurring at discontinuities. We address this problem by de-
veloping a novel, flux corrected transport (FCT) type algorithm for
morphological dilation / erosion with a flat disc. It uses the viscosity
form of an upwind scheme in order to quantify the undesired diffu-
sive effects. In a subsequent corrector step we compensate for these
artifacts by means of a stabilised inverse diffusion process that re-
quires a specific nonlinear multidimensional formulation. We prove a
discrete maximum–minimum principle in this multidimensional frame-
work. Our experiments show that the method gives a very sharp reso-
lution of moving fronts, and it approximates rotation invariance very
well.

Key Words: morphological dilation, morphological erosion, finite difference
methods, flux corrected transport

AMS Classification: 35L60, 65M06, 65M12, 68U10

1 Introduction

Mathematical morphology is concerned with image analysis of shapes. It is
one of the oldest and most successful areas of digital image processing; see
e.g. the textbooks [10, 15, 21, 27, 28, 29, 34] and the proceedings volumes
[14, 16, 20, 24, 30, 31, 36] for an overview. Its fundamental operations are
called dilation and erosion. For some greyscale image f : IR2 → IR and a
so-called structuring element B ⊂ IR2, dilation and erosion are defined by

dilation: (f ⊕ B) (x) := sup {f(x−z), z∈B}, (1)

erosion: (f 	 B) (x) := inf {f(x+z), z∈B}. (2)

They form the basis of many other morphological processes such as openings,
closings, top hats and morphological derivative operators.
While dilation and erosion are frequently implemented by algebraic set opera-
tions, for convex structuring elements there is also an alternative formulation
in terms of partial differential equations (PDEs) [1, 2, 7, 37]. Let us consider
a convex structuring element tB with a scaling parameter t>0. Then, it can
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be shown that the calculation of u(x, t) = f ⊕ tB and u(x, t) = f 	 tB is
equivalent to solving the PDEs

∂tu(x, t) = sup
z∈B

〈z,∇u(x, t)〉, (3)

∂tu(x, t) = inf
z∈B

〈z,∇u(x, t)〉, (4)

with f as initial condition [1, 26], respectively. Here, ∇ = (∂x, ∂y)
> denotes

the spatial nabla operator, and 〈·, ·〉 is the Euclidean inner product. By choos-
ing, e.g., a disc

B :=
{
z ∈ IR2, ‖z‖2 ≤ 1

}
,

one obtains

dilation: ∂tu = ‖∇u‖2, (5)

erosion: ∂tu = −‖∇u‖2. (6)

The solution at “time” t is the dilation (resp. erosion) of f with a disc of
radius t and center 0 as structuring element.
The dilation/erosion PDEs (5)–(6) belong to the class of so-called hyperbolic
PDEs, see e.g. [11, 12] to learn more about partial differential equations. Hy-
perbolic processes decribe evolutions that propagate information with finite
speed, similar as wave propagation. They may create shocks even if the ini-
tial data are smooth, and they require specific numerical schemes that take
into account the propagation direction and handle shock-like discontinuities
in a graceful manner [19]. Since many hyperbolic PDEs arise in computa-
tional fluid dynamics, it is natural to derive numerical methods for the di-
lation/erosion equations from techniques for hyperbolic conservation laws.
In particular, finite difference methods such as the Osher–Sethian schemes
[22, 23, 32] and the Rouy–Tourin method [25, 38] are widely-used in this
context.
PDE-based algorithms for dilation/erosion offer two advantages over classical
set-theoretic schemes [2, 8, 26]: first of all, they give excellent results for non-
digitally scalable structuring elements whose shapes cannot be represented
correctly on a discrete grid, for instance discs or ellipses. Secondly, the time
t plays the role of a continuous scale parameter. Therefore, the size of a
structuring element does not need to be multiples of the pixel size, and it is
possible to get results with sub-pixel accuracy.
On the other hand, the main disadvantage of typical PDE-based algorithms
for mathematical morphology consists of the fact that dissipative effects such
as blurring of discontinuities occur. Apart from an investigation on the use-
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fulness of high-order ENO1 schemes [33, 35], we are not aware of attempts
in the literature to deal with these undesired numerical diffusion artifacts in
PDE schemes for mathematical morphology.
It is the goal of the present paper to address this problem. For the develop-
ment of our algorithm, we focus on the dilation process (5) since the erosion
process can be treated analogously. We develop a new variant of the flux
corrected transport (FCT) technique of Boris and Book [3, 4, 5, 17, 40] in-
troduced in the context of fluid flow simulation. Our FCT scheme is used for
approximating one- and two-dimensional morphological processes in an ac-
curate and rotationally invariant fashion. The aim of this paper is especially
to give a detailed derivation and a sound mathematical basis for the 1-D and
2-D algorithms.

Related Work. The general idea behind the FCT technique is to compute in
a first step the evolution with a scheme that may incorporate much numerical
diffusion. Afterwards, this diffusion is annihilated in a proper fashion by ap-
plying a stabilised inverse diffusion step, sometimes also named antidiffusion.
In conventional FCT methods, see especially [5], the amount of antidiffusion
which is to be applied is basically determined by means of the so-called modi-
fied equation of the diffusive basis methods, see for instance [13, 19] for details
concerning this notion. In some newer works mainly concerned with finite el-
ement schemes, antidiffusive fluxes are computed by algebraic properties of
the entries of corresponding stiffness matrices, see e.g. [18] and the references
therein. We employ a different approach motivated by the theory of numeri-
cal methods for conservation laws, compare e.g. [13]: we construct our FCT
scheme considering the viscosity form of the underlying method. By the use
of this form we can effectively eliminate the influence of the numerical vis-
cosity due to the spatial derivative. It turns out that our scheme provides a
much sharper resolution in comparison with the second-order high-resolution
scheme of Osher and Sethian [23]. Let us note that in contrast to the clas-
sical works of Boris, Book and their collaborators, we derive the essential
information for our algorithms on the discrete basis, while compared to the
approach of Kuzmin and Turek [18] our proceeding is technically relatively
simple.
Furthermore, both mentioned FCT approaches rely on an underlying addi-
tive splitting of the backward diffusion into fluxes between computational
nodes: especially in the multidimensional case, the mentioned works proceed
along the considerations of Zalesak [39]. In contrast, our genuinely multidi-

1ENO means essentially non-oscillatory. By adapting the stencil for derivative appro-
ximations to the local smoothness of the solution, ENO schemes obtain both high-order
accuracy in smooth regions and sharp shock transitions.
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mensional approach yielding directly the desired rotational invariance uses
the dimensional dependent nonlinear form of the numerical viscosity. This
proceeding is to our knowledge not explored up to now within the literature.
However, its usefulness and simplicity is immediately evident in the image
processing context presented here.
The algorithm we develop in our paper is close in spirit to a recent confe-
rence contribution by us, where we developed a FCT approach for three one-
dimensional model equations for numerical conservation laws [6]. However,
it should be noted that the dilation/erosion PDEs were are investigating in
our present paper cannot be written in conservation form, and that we do
not restrict ourselves to the 1-D case.

Organisation of the Paper. Our paper is organised as follows. In the next
section we review some existing numerical schemes for PDE-based mathe-
matical morphology. In Section 3 we introduce our novel FCT scheme for
the dilation process in the 1-D case, where we describe the upwind scheme
as predictor, and introduce an inverse diffusion algorithm as corrector. We
illustrate its behaviour by an experiment and establish stability results in
terms of a maximum principle. Section 4 extends these investigations to the
2-D case. The paper is concluded with a summary in Section 5.

2 Existing Algorithms

As already meantioned, prominent PDE-based algorithms for the dilation
equation are the and the first- and second-order methods of Osher and
Sethian [22, 23, 32], and the first-order scheme of Rouy and Tourin [25, 38].
For the dilation equation

∂tu = ‖∇u‖2 =
(
(∂xu)2 + (∂yu)2

)1/2
(7)

the Rouy–Tourin scheme is given by

Un+1
i,j = Un

i,j + λ
( (

max (0, Un
i+1,j−Un

i,j, Un
i−1,j−Un

i,j)
)2

+
(
max (0, Un

i,j+1−Un
i,j, Un

i,j−1−Un
i,j)

)2
)1/2

, (8)

and the first-order Osher–Sethian upwind scheme can be written as

Un+1
i,j = Un

i,j + λ
( (

max (0, Un
i+1,j − Un

i,j)
)2

+
(
max (0, Un

i−1,j − Un
i,j)

)2

+
(
max (0, Un

i,j+1 − Un
i,j)

)2
+

(
max (0, Un

i,j−1 − Un
i,j)

)2
)1/2

. (9)
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Thereby, we use as in the following the notation U for discrete data in contrast
to the analytical solution u, and we denote the ratio of mesh sizes ∆t and ∆x
in t and x direction by λ = ∆t/∆x. We assume that ∆x = ∆y. The upper
index k in Uk

l,m denotes as usual the temporal level k∆t while, analogously,
the lower indices l and m specify the spatial mesh point (l∆x, m∆y).
As indicated, the mentioned work of Osher and Sethian does not only deal
with first-order upwinding, it also allows high-order approximations in the
style of high-resolution slope-limiting TVD schemes for conservation laws:
for the integration of fluxes accross cell boundaries, the discrete derivatives
of grey values are corrected by a contribution taking into account the lo-
cal discrete second order derivatives. We refrain from displaying the more
complicated formulae here.
We test the mentioned approaches with a scenario that is sensitive to failures
in the rotational invariance of a method, namely the dilation of a disc. Figure
1(a) shows the initial value of the dilation process. The circle is supposed to
grow in a uniform fashion while the circular shape is preserved. In Figure
1(b) we see the initial image evolved by the Rouy–Tourin algorithm yield-
ing a rotationally invariant, but somewhat blurred solution. In Figures 1(c)
and (d), we illustrate the behaviour of the first-order Osher-Sethian upwind
scheme and the second-order scheme, respectively, using for time integra-
tion as proposed in [23] the method of Heun. While both methods seem to
appromimate rotational invariance well, we also see that the Osher-Sethian
approach with higher-order resolution does not yield a substantial increase
in accuracy. Only within the details one observes a slightly better preser-
vation of the circular shape while the circular front is a bit less smeared.
This example demonstrates the need for alternative schemes with a better
shock-capturing behaviour.

3 The One-Dimensional FCT Algorithm

We start our one-dimensional investigations in this section with a review of
the essential properties of an upwind scheme for a general hyperbolic first-
order PDE. Afterwards, we derive its specific structure for the case of a
dilation equation and identify it with the Rouy–Tourin scheme. This scheme
serves as first step in our FCT algorithm. In a second step we construct
a suitable inverse diffusion step in order to compensate for the numerical
viscosity that has been introduced by the upwind scheme. Finally we prove
a discrete maximum principle for the FCT scheme.
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Figure 1: (a) Top left: Initial image, 128 × 128 pixels. (b) Top right:
Image dilated by the Rouy–Tourin scheme (∆x = ∆y = 1, ∆t = 0.5, 30
iterations). (c) Bottom left: Dilated by the first-order upwind scheme (same
parameters). (d) Bottom right: Dilated by a second-order Osher–Sethian
scheme (same parameters).

3.1 The General Upwind Scheme in 1-D

The underlying method for our new FCT technique is the classical up-
wind scheme. For a general one-dimensional hyperbolic first-order PDE ut +
(f(u))x = 0 with f ′(.) ≥ 0 it can be written as

Un+1
j = Un

j − λ
(

f
(
Un

j

)
− f

(
Un

j−1

))

(10)
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with the notations from the previous section. If f ′(.) < 0 the upwind scheme
is given by

Un+1
j = Un

j − λ
(

f
(
Un

j+1

)
− f

(
Un

j

))

. (11)

The upwind scheme has a number of favourable stability properties. They
can be summarised as follows:

Proposition 3.1 (Stability Properties of the Upwind Scheme)
Under the usual CFL stability condition2, the upwind scheme is a local ex-
tremum diminishing (LED) scheme. It does not introduce new extrema during
a computation, i.e., it diminishes also the number of extrema (NED proper-
ty). Moreover, the upwind scheme satisfies a discrete maximum–minimum
principle.

The proofs of the validity of the mentioned properties are simple, see for
instance [6, 13] in the context of numerical schemes for conservation laws.

While the upwind scheme can also be shown to approximate the entropy
solution3 of the underlying PDE, it has a severe disadvantage: it suffers from
undesirable blurring effects aka numerical viscosity. To quantify these viscous
artifacts we write the scheme (10) in its viscosity form, i.e.,

Un+1
j = Un

j − λ

2

(

f
(
Un

j+1

)
− f

(
Un

j−1

))

(12)

+
Qn

j+1/2

2

(
Un

j+1 − Un
j

)
−

Qn
j−1/2

2

(
Un

j − Un
j−1

)
. (13)

The basic idea behind this decomposition is to consider the part (12) of the
method as a second-order approximation in space (and first order in time)
of the underlying process, while part (13) is (in leading order) the discrete
counterpart of the numerical diffusion incorporated in the scheme introduced
by the spatial approximation.
One easily verifies that (10) and (12)–(13) can be made identical by choosing
viscosity coefficients Qn

j+1/2 and Qn
j−1/2 that satisfy

Qn
j+1/2 = λ

fn
j+1 − fn

j

Un
j+1 − Un

j

and Qn
j−1/2 = λ

fn
j − fn

j−1

Un
j − Un

j−1

(14)

2The Courant–Friedrichs–Lewy (CFL) condition is the fundamental stability criterion
for numerical schemes for hyperbolic PDEs. It requires that the numerical domain of
dependence is included in the analytical domain of dependence of the PDE [9, 19]. For
the case of the uwind schemes (10) and (11) introduced above, the CFL condition reads
∆t max

∣
∣f ′

(
Un

j

)∣
∣, where the maximum is computed over the set

{
Un

j

}
of all given data.

3An entropy solution is a specific generalised solution, since classical, differentiable
solutions are inappropriate to admit discontinuities that are characteristic for hyperbolic
conservation laws.
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for Un
k+1 6= Un

k , k ∈ {j, j − 1}, and f l
i := f

(
U l

i

)
. By the prerequisite f ′(.) ≥

0 necessary to apply an upwinding in the fashion (10), it is ensured that
the viscosities Qn

j±1/2 are nonnegative. The resulting numerical diffusion is
responsible for undesirable blurring effects that are observed with this first-
order method. Exactly the terms corresponding to (13), (14) will be negated
in a suitable way during a subsquent, stabilised inverse diffusion step of the
FCT routine.
Let us note that, although the viscosities Qn

j±1/2 in (14) are nonlinear for
general f , we will see that in the case of dilation and erosion processes they
are in fact simply constants determined by the chosen space-time mesh. Non-
linear effects arise due to the required invariance under rotations as will be
discussed in the section on the 2-D model.

3.2 The FCT Scheme for 1-D Dilation

We now derive the 1-D algorithm for dilation. The corresponding scheme for
erosion can be constructed and discussed analogously.

3.2.1 The Formulation of the 1-D Upwind Basis Scheme

Let us define abbreviate notions for the one-sided discrete differences

∆Uk
j+1/2 := Uk

j+1 − Uk
j (15)

and for the centered discrete differences

∆Uk
j := Uk

j+1 − Uk
j−1. (16)

In order to clarify the basic idea, let us point out explicitly, that a proper
scheme describing the dilation process (5) satisfies the following

Principle 3.1 (Discrete Evolution Principle of the Dilation Process)
In order to reflect the properties of the analytical dilation operator, the fol-
lowing properties need to be satisfied on the discrete level:

• In regions of (strictly) monotone data, the flow is directed from lower
to higher grey values.

• Local minima are increased, while local maxima are maintained.

For the development of our 1-D algorithm, it is useful to fix the attention to
a particular spatial index j and to consider a diversion of cases with respect
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to the data situations one may encounter.

Case I : ∆Un
j−1/2 ≥ 0 and ∆Un

j+1/2 > 0.

For this case, the upwind scheme and its viscosity form read

Un+1
j = Un

j + λ
(
Un

j+1 − Un
j

)

= Un
j +

λ

2

(
Un

j+1 − Un
j−1

)

︸ ︷︷ ︸

(a)

+
λ

2

(
Un

j+1 − Un
j

)
− λ

2

(
Un

j − Un
j−1

)

︸ ︷︷ ︸

(b)

. (17)

As indicated, (17)(a) is a second-order accurate approximation of ∆t |ux|,
while (17)(b) implies Qn

j±1/2 = λ in the investigated case.

Case II : ∆Un
j−1/2 < 0 and ∆Un

j+1/2 ≤ 0.

Here the upwind scheme and its viscosity form read

Un+1
j = Un

j + λ
(
Un

j−1 − Un
j

)

= Un
j +

λ

2

(
Un

j−1 − Un
j+1

)
+

λ

2

(
Un

j+1 − Un
j

)
− λ

2

(
Un

j − Un
j−1

)
, (18)

revealing the same structure as in (17), but the approximation of ∆t |ux| is
different here.

Case III : ∆Un
j−1/2 < 0 and ∆Un

j+1/2 ≥ 0.

The investigated case especially incorporates the situation

∆Un
j−1/2 < 0 and ∆Un

j+1/2 > 0,

i.e., a local minimum is located at the index j. Analogously to the proceeding
within the Rouy–Tourin algorithm [25, 38], we choose the direction of the
dilation flow according to the largest gradient, i.e.,

Un+1
j

= Un
j + λ max

(
Un

j+1 − Un
j , Un

j−1 − Un
j

)

︸ ︷︷ ︸

:=∆̃Un
j

=

{

Un
j + λ

2
∆Un

j + λ
2
∆Un

j+1/2 − λ
2
∆Un

j−1/2 if ∆̃Un
j = Un

j+1 − Un
j ,

Un
j − λ

2
∆Un

j + λ
2
∆Un

j+1/2 − λ
2
∆Un

j−1/2 if ∆̃Un
j = Un

j−1 − Un
j .

(19)

Note that this choice is not simply a matter of discrete modeling, it is also
perfectly reasonable since

±λ

2
∆Un

j =
λ

2

(
Un

j±1 − Un
j∓1

)
≈ ∆t |ux| for ∆̃Un

j = Un
j±1 − Un

j
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is also a second-order accurate approximation of the dilation process at a
local minimum of the data.

Case IV : ∆Un
j−1/2 ≥ 0 and ∆Un

j+1/2 ≤ 0.

Here, according to the formulated Principle 3.1, we set

Un+1
j := Un

j . (20)

Summary of Cases I to IV : Having finished the consideration of all
possible cases, we can formulate the upwind scheme as follows:

Un+1
j =







Un
j for ∆Un

j−1/2 ≥ 0, ∆Un
j+1/2 ≤ 0,

Un
j + λ

2

∣
∣∆Un

j

∣
∣ + λ

2
∆Un

j+1/2 − λ
2
∆Un

j−1/2, else.
(21)

The scheme (21) is, because of its treatment of local minima, identical with
the 1-D version of the already mentioned Rouy–Tourin method, which is
derived in a completely different fashion for the 2-D case. Thereby, for the
1-D case, the CFL stability condition reads ∆t ≤ ∆x.
By the form (21) we have gained that we can identify the incorporated nu-
merical viscosity arising by our approximation of the spatial derivative. Ne-
glecting the influence of the first-order temporal approximation, we refer to
the viscosity identified in the above fashion as the numerical viscosity of our
scheme.

In order to illuminate the properties of the method (21), we apply it without
further modification at a simple 1-D test problem depicted in Figure 2. We
clearly observe the desired dilation process, however, the numerical solution
is fairly blurry.
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Figure 2: Oscillatory initial data and its dilation computed using the de-
scribed first-order upwind scheme (21) (∆x = 1, ∆t = 0.2, 30 iterations).

10



3.2.2 The 1-D FCT Step

Now we turn to the FCT methodology. For this, we use in the following the
data notions:

• U
n+1/2
j for the data obtained by the upwind scheme starting from Un

j ,

• Un+1
j for the data obtained after the inverse diffusion step.

When applying an inverse diffusion algorithm, it is evident that one has to
incorporate a means of stabilisation. We would like to mention the

Principle 3.2 (of Boris and Book [3]) No antidiffusive flux transfer of
mass can push the density value at any grid point beyond the density value
at neighboring points.

The traditional FCT scheme realises this principle by computing antidiffusive
fluxes g̃j±1/2, so that

Un+1
j = U

n+1/2
j − g̃j+1/2 + g̃j−1/2 (22)

follows. Thereby, Boris and Book use

g̃j+1/2 := minmod
(

∆U
n+1/2
j−1/2 , ηj+1/2∆U

n+1/2
j+1/2 , ∆U

n+1/2
j+3/2

)

, (23)

minmod(a, b, c) := sign (b) max
(

0, min(sign (b)a, |b|, sign (b)c)
)

, (24)

where ηj+1/2 is obtained by an analysis of the modified equation, i.e., it is
determined on the differential level; see especially [5].
In 1-D, our proceeding is similar. However, we negate as indicated the diffu-
sion computed by the discrete viscosity form introduced before.
Thus, we realize Principle 3.2 ensuring the stability of the backward diffusion
step by introducing stabilised inverse diffusion terms of type

gj+1/2 := minmod

(

∆U
n+1/2
j−1/2 ,

λ

2
∆U

n+1/2
j+1/2 , ∆U

n+1/2
j+3/2

)

(25)

leading here, i.e., in 1-D, to the correction formula

Un+1
j = U

n+1/2
j − gj+1/2 + gj−1/2. (26)

We can apply our FCT algorithm incorporating (i) the evolution step per-
formed by the method (21) and (ii) the correction step (26) again at our 1-D
test case. For the same computational parameters as before, we see in Fig-
ure 3 the initial data together with the solutions obtained using the upwind
scheme and the new FCT scheme. Note the significantly sharper resolution
obtained using the latter method while the location of fronts is captured
correctly due to the properties of the underlying upwind scheme.
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Figure 3: Oscillatory initial data together with the dilation process computed
using (continuous line) the developed upwind scheme, and (dotted line) the
new FCT scheme (∆x = 1, ∆t = 0.2, 30 iterations).

3.2.3 Stability of the 1-D FCT scheme

In the context of morphological dilation processes, useful stability notions
are a global discrete maximum principle as well as a local discrete extremum
principle. We do not deal explicitly with minima since these are treated by
the construction of the method in the usual fashion, increasing them. We
proceed with the

Proposition 3.2 (Local Extremum Principle)
Let

sign
(

∆U
n+1/2
k+1/2

)

= sign
(

∆U
n+1/2
k−1/2

)

6= 0 (27)

hold. Then the FCT scheme defined by

Un+1
j = U

n+1/2
j − gj+1/2 + gj−1/2 (28)

using g from (25) satisfies locally a discrete maximum–minimum principle:

Un+1
j ≥ min

(
Un

j−2, Un
j−1, Un

j , Un
j+1, Un

j+2

)
(29)

and
Un+1

j ≤ max
(
Un

j−2, Un
j−1, Un

j , Un
j+1, Un

j+2

)
. (30)

Proof. Since the upwind basic scheme satisfies a discrete maximum–minimum
principle, is is sufficient to show the validity of

Un+1
k ∈ conv

(

U
n+1/2
k−1 , U

n+1/2
k , U

n+1/2
k+1

)
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where conv denotes the convex hull.
The crucial observation is, that for the assumption (27) the flux contributions

−gj+1/2 and + gj−1/2

defined by (25) have opposite sign, i.e., even if, for instance, in the case

U
n+1/2
j > U

n+1/2
j−1 , we have within the estimation

U
n+1/2
j −gj+1/2 ≥ U

n+1/2
j −∆U

n+1/2
j−1/2 = U

n+1/2
j −

(

U
n+1/2
j − U

n+1/2
j−1

)

= U
n+1/2
j−1

in the worst case the validity of the exact equality

U
n+1/2
j − gj+1/2 = U

n+1/2
j−1 .

In any case, the contribution due to +gj−1/2 pushes the resulting value back

into the interior of the convex hull of the values U
n+1/2
j , U

n+1/2
j−1 :

Un+1
j = U

n+1/2
j − gj+1/2 + gj−1/2

worst case
= U

n+1/2
j−1 + gj−1/2

︸ ︷︷ ︸

≥0
︸ ︷︷ ︸

∈conv
“

U
n+1/2

j−1
, U

n+1/2

j

”

≤ U
n+1/2
j−1 +

λ

2

(

U
n+1/2
j − U

n+1/2
j−1

)

=

(

1 − λ

2

)

U
n+1/2
j−1 +

λ

2
U

n+1/2
j ,

imposing the stability condition λ ≤ 2 which is satisfied for the upwind
scheme anyway. The other possible cases can be treated analogously, con-
cluding the proof.

Because of the properties of the minmod function, the core of the proof also
works without the assumption (27). Thus we can give directly the desired

Corollary 3.1 (Global Maximum Principle)
The investigated scheme satisfies globally a discrete maximum principle.

As indicated, the erosion process can be investigated analogously, yielding a
global discrete minimum principle and a local discrete extremum principle.
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4 The Two-Dimensional FCT Algorithm

Let us now extend the one-dimensional analysis of the preceding section to
the two-dimensional case. Also here, we only discuss the dilation process in
detail.

4.1 The General Upwind Scheme in 2-D

The basis of the 2-D algorithm is a straightforward extension of the 1-D
scheme. Since the underlying PDE reads as

∂tu = ‖∇u‖2 =

√

|∂xu|2 + |∂yu|2, (31)

which, notably, incorporates an additive splitting of the terms constituted
solely on ux and uy, respectively, we can simply employ the corresponding
1 -D upwind expressions to obtain the basic 2 -D upwind scheme for dilation
processes with a disc.
In order to define this scheme, let us give the abbreviations

dUn
i :=

λ

2

∣
∣Un

i+1,j − Un
i−1,j

∣
∣ +

λ

2

(
Un

i+1,j − Un
ij

)
− λ

2

(
Un

ij − Un
i−1,j

)
, (32)

dUn
j :=

λ

2

∣
∣Un

i,j+1 − Un
i,j−1

∣
∣ +

λ

2

(
Un

i,j+1 − Un
ij

)
− λ

2

(
Un

ij − Un
i,j−1

)
, (33)

∆Uk
i,j+1/2 := Un

i,j+1 − Uk
ij and ∆Uk

i+1/2,j := Un
i+1,j − Uk

ij. (34)

Then the scheme reads

Un+1
ij =







Un
ij for ∆Un

i−1/2,j , ∆Un
i,j−1/2 ≥ 0 and ∆Un

i+1/2,j , ∆Un
i,j+1/2 ≤ 0,

Un
ij +

√
(

dUn
i

)2

+
(

dUn
j

)2

, else.

(35)
For the scheme (35) again Proposition 3.1 holds, ensuring reasonable proper-
ties of the method.
As in the 1-D case, one can apply the method (35) without further mo-
dification, compare Figure 1. However, as already indicated, any numerical
solution is fairly blurred at the edges incorporated in an image. Note, that the
rotational invariance of the scheme (35) is obvious due to the consideration
of the 2 -norm.
For the application of a FCT strategy, it is crucial to observe that there is
no general way to extract the discrete viscosity terms out of the square root
in (35). This is exactly the reason why we have to go a different way which

14



distinguishes our scheme from other FCT schemes in the multidimensional
setting. Note also, that we can now understand that our proceeding in the
1-D case has the character of the treatment of a special case: in 1-D, the
∂yu-type terms in (35) can be omitted, so that finally – after taking

√

(·)2 –
the discrete viscosity terms can be separated directly in an additive fashion
from the second-order discretisation of |∂xu|.

4.2 The FCT formulation

We proceed in treating the non-maximum case of (35), i.e.,

Un+1
ij = Un

ij +

√
(

dUn
i

)2

+
(

dUn
j

)2

, (36)

in order to derive our 2-D FCT scheme for dilation.
Essential for the definition of our FCT procedure is to split a viscous part
from a second-order part. Thus, we add zero in (36) obtaining

Un+1
ij = Un

ij +

√

(dUn
i )2 +

(
dUn

j

)2

+

√
(

λ

2

∣
∣Un

i+1,j − Un
i−1,j

∣
∣

)2

+

(
λ

2

∣
∣Un

i,j+1 − Un
i,j−1

∣
∣

)2

−

√
(

λ

2

∣
∣Un

i+1,j − Un
i−1,j

∣
∣

)2

+

(
λ

2

∣
∣Un

i,j+1 − Un
i,j−1

∣
∣

)2

. (37)

Consequently, we now identify the viscous part as

−

√
(

λ

2

∣
∣Un

i+1,j − Un
i−1,j

∣
∣

)2

+

(
λ

2

∣
∣Un

i,j+1 − Un
i,j−1

∣
∣

)2

+

√

(dUn
i )2 +

(
dUn

j

)2
,

while

Un+1
ij = Un

ij +

√
(

λ

2

∣
∣Un

i+1,j − Un
i−1,j

∣
∣

)2

+

(
λ

2

∣
∣Un

i,j+1 − Un
i,j−1

∣
∣

)2

defines the separated (spatial) second-order part.
Note that the viscous part is now nonlinear and it cannot be split up addi-
tively further into viscous fluxes due to the dimensional influence. For the
FCT procedure, it must be handled as one block.
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Analogously to (32), (33), we now introduce the abbreviations

gi+1/2,j := minmod

(

∆U
n+1/2
i−1/2,j ,

λ

2
∆U

n+1/2
i+1/2,j , ∆U

n+1/2
i+3/2,j

)

, (38)

gi,j+1/2 := minmod

(

∆U
n+1/2
i,j−1/2,

λ

2
∆U

n+1/2
i,j+1/2, ∆U

n+1/2
i,j+3/2

)

. (39)

Following then consequently the FCT strategy, we define

Q
n+1/2
h :=

√
(

λ

2

∣
∣
∣U

n+1/2
i+1,j − U

n+1/2
i−1,j

∣
∣
∣

)2

+

(
λ

2

∣
∣
∣U

n+1/2
i,j+1 − U

n+1/2
i,j−1

∣
∣
∣

)2

,(40)

Q
n+1/2
l :=

√
(

δU
n+1/2
i

)2

+
(

δU
n+1/2
j

)2

, (41)

where the stabilised backward diffusive fluxes are incorporated by

δU
n+1/2
i :=

λ

2

∣
∣
∣U

n+1/2
i+1,j − U

n+1/2
i−1,j

∣
∣
∣ + gi+1/2,j − gi−1/2,j , (42)

δU
n+1/2
j :=

λ

2

∣
∣
∣U

n+1/2
i,j+1 − U

n+1/2
i,j−1

∣
∣
∣ + gi,j+1/2 − gi,j−1/2, (43)

and we correct the 2-D viscous basis scheme (35) by

Un+1
ij = U

n+1/2
ij + Q

n+1/2
h − Q

n+1/2
l (44)

using a notation analogously to the one in the preceeding section.
We test our new FCT dilation scheme by considering again the dilation of a
disc; see Figure 4 for a comparison with the first-order upwind scheme. We
see that a significantly sharper resolution of the evolving circle boundaries is
obtained.
In a second experiment, we consider the real-world test image from Figure
5. Also in this case the FCT dilation algorithm gives the desired sharp reso-
lution.

4.3 Stability in 2-D

We now investigate the crucial stability properties of the method, meaning
the validity of a local extremum principle and a global discrete maximum
principle, respectively. As indicated, the major difficulty in the 2-D case is
imposed by the nonlinearities due to the dimensional influence in (40)-(43).

Theorem 4.1 (Local Extremum Principle) The described FCT dilation
scheme (44) satisfies locally a discrete maximum–minimum principle.
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Figure 4: (a) Left: Dilation of Figure 1(a), computed by the first-order up-
wind scheme (∆x = ∆y = 1, ∆t = 0.5, 30 iterations). (b) Right: Computed
by our new FCT scheme (same parameters).

Figure 5: (a) Left: Initial image, 256 × 256 pixels. (b) Right: Dilation
computed by our new FCT scheme (∆x = ∆y = 1, ∆t = 0.5, 30 iterations).

Proof. It is useful to introduce the abbreviations

αi :=
λ

2

∣
∣
∣U

n+1/2
i+1,j − U

n+1/2
i−1,j

∣
∣
∣ , αj :=

λ

2

∣
∣
∣U

n+1/2
i,j+1 − U

n+1/2
i,j−1

∣
∣
∣ , (45)

βi := gi+1/2,j − gi−1/2,j, βj := gi,j+1/2 − gi,j−1/2, (46)
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for defining the vectors

~α := (αi, αj)
T and ~β := (βi, βj)

T . (47)

Using (45)-(47), we can rewrite Q
n+1/2
h and Q

n+1/2
l from (40) and (41) as:

Q
n+1/2
h = ‖~α‖2, Q

n+1/2
l = ‖~α + ~β‖2, (48)

and the updated formula (44) reads

Un+1
ij = U

n+1/2
ij + ‖~α‖2 − ‖~α + ~β‖2. (49)

Concerning a further analysis of (49), let us point out that we have on the
one hand

‖~α‖2 − ‖~α + ~β‖2 = ‖~α + ~β − ~β‖2 − ‖~α + ~β‖2

≤ ‖~α + ~β‖2 + ‖~β‖2 − ‖~α + ~β‖2

= ‖~β‖2, (50)

while we can also easily deduce

‖~α‖2 − ‖~α + ~β‖2 ≥ ‖~α‖2 −
(

‖~α‖2 + ‖~β‖2

)

= −‖~β‖2. (51)

Assembling (50) and (51), we obtain

∣
∣‖~α‖2 − ‖~α + ~β‖2

∣
∣ ≤ ‖~β‖2. (52)

For convenience, let us for the moment assume that

sign
(

∆U
n+1/2
i+1/2,j

)

= sign
(

∆U
n+1/2
i−1/2,j

)

6= 0, (53)

sign
(

∆U
n+1/2
i,j+1/2

)

= sign
(

∆U
n+1/2
i,j−1/2

)

6= 0 (54)

hold. Furthermore, let us consider local data maxima

U
n+1/2
i+1,j > U

n+1/2
ij > U

n+1/2
i−1,j and U

n+1/2
i,j+1 > U

n+1/2
ij > U

n+1/2
i,j−1 . (55)

By the construction of the flux function g, see (38) and (39), we can transfer

directly the argument of the proof of Lemma 3.2 in order to see that ‖~β‖2 is
limited by

λ

2

√
(

U
n+1/2
i+1,j − U

n+1/2
ij

)2

+
(

U
n+1/2
i,j+1 − U

n+1/2
ij

)2

. (56)
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Taking the maximum out of the differences ∆U
n+1/2
i+1/2,j and ∆U

n+1/2
i,j+1/2 occuring

in (56), it follows that the antidiffusive flux contributions can be estimated
via

λ

2

√
2 max

(

U
n+1/2
i+1,j − U

n+1/2
ij , U

n+1/2
i,j+1 − U

n+1/2
ij

)

, (57)

i.e., we obtain the validity of a local discrete maximum principle under the
condition

λ

2

√
2 ≤ 1 ⇔ λ ≤

√
2

which is satisfied anyway by the CFL condition of the upwind scheme which
reads in 2-D as λ ≤ 1/

√
2.

Remarks

(a) Let us note that, by construction, the proof of Theorem 4.1 can easily
be extended to higher dimensions.

(b) By our derivation of the algorithm and by the proof of Theorem 4.1,
it is clear that the crucial restriction imposed on the time step size is
due to the CFL condition for the upwind scheme, and not due to the
antidiffusion step.

(c) The above procedure can easily be employed analogously for the erosion
process; see Figure 6 for computations using the resulting 2-D FCT
erosion scheme. Thus, for both dilation and erosion we obtain a discrete
maximum–minimum principle as well as a global extremum principle,
respectively.

5 Summary and Conclusions

We have presented a novel FCT type algorithm for morphological dilation
and erosion processes with a disc as structuring element. It features the de-
sirable properties of rotational invariance and sharp resolution. Moreover,
the algorithm can easily be extended to a higher-dimensional setting while
retaining these qualities. Technically, we have employed an unconventional
nonlinear genuinely multidimensional formulation of antidiffusive fluxes in or-
der to achieve these goals. The resolution of the new method outperforms the
Rouy-Tourin and Osher-Sethian schemes that are frequently used in PDE-
based mathematical morphology. Compared to other FCT approaches the
scheme is competitive, while we rely on the discretisation of the underlying
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Figure 6: (a) Left: Eroded disc using Figure 1 (a) as initial image and our
FCT scheme with ∆x = ∆y = 1, ∆t = 0.5, and 30 iterations. (b) Right:
Erosion process with our FCT scheme applied to the Figure 5 (a) as initial
image, here with ∆x = ∆y = 1, ∆t = 0.5, and 10 iterations.

PDE. Our work has addressed the main shortcoming of PDE-based morpho-
logical algorithms and makes their resolution at shock fronts comparable to
set-based morphological schemes.
In our ongoing research we study extensions of this FCT appoach to mor-
phological PDEs with other non-digitally scalable structuring elements such
as ellipses.
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Appendix

For the convenience of the interested reader, we give a brief compilation of
the 2-D dilation/erosion algorithms.

The Dilation Algorithm

(I) Predictor step with Upwind scheme.
Compute Un+1/2 from Un according to (35) with ∆t ≤ 1/

√
2.

(II) Corrector step with stabilised inverse diffusion scheme.
Compute Uk+1 from Uk+1/2 by (44), thereby assembling the ingredi-
ents (38), (39), (42), (43) within (40) and (41).
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The Erosion Algorithm

(I) Predictor step with Upwind scheme, using instead of (35) but by the
same stability condition as for the dilation scheme:

Un+1
ij =







Un
ij for ∆Un

i−1/2,j , ∆Un
i,j−1/2 ≤ 0

and ∆Un
i+1/2,j , ∆Un

i,j+1/2 ≥ 0,

Un
ij −

√
(

dUn
i

)2

+
(

dUn
j

)2

, else,

where

dUn
i :=

λ

2

∣
∣Un

i+1,j − Un
i−1,j

∣
∣ − λ

2

(
Un

i+1,j − Un
ij

)
+

λ

2

(
Un

ij − Un
i−1,j

)
,

dUn
j :=

λ

2

∣
∣Un

i,j+1 − Un
i,j−1

∣
∣ − λ

2

(
Un

i,j+1 − Un
ij

)
+

λ

2

(
Un

ij − Un
i,j−1

)
.

(II) Corrector step with stabilised inverse diffusion scheme.
Compute Uk+1 from Uk+1/2 by (44), using the definitions

Q
n+1/2
h := −

√
(

λ

2

∣
∣
∣U

n+1/2
i+1,j − U

n+1/2
i−1,j

∣
∣
∣

)2

+

(
λ

2

∣
∣
∣U

n+1/2
i,j+1 − U

n+1/2
i,j−1

∣
∣
∣

)2

,

Q
n+1/2
l := −

√
(

δU
n+1/2
i

)2

+
(

δU
n+1/2
j

)2

,

with

δU
n+1/2
i :=

λ

2

∣
∣
∣U

n+1/2
i+1,j − U

n+1/2
i−1,j

∣
∣
∣ − gi+1/2,j + gi−1/2,j ,

δU
n+1/2
j :=

λ

2

∣
∣
∣U

n+1/2
i,j+1 − U

n+1/2
i,j−1

∣
∣
∣ − gi,j+1/2 + gi,j−1/2.
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