Universität des Saarlandes

Fachrichtung 6.1 - Mathematik

Preprint Nr. 159

Partial Regularity For Higher Order Variational
Problems Under Anisotropic Growth Conditions
Darya Apushkinskaya and Martin Fuchs

Saarbrücken 2005

Partial Regularity For Higher Order Variational Problems Under Anisotropic Growth Conditions

Darya Apushkinskaya
Saarland University
Dep. of Mathematics
P.O. Box 151150
D-66041 Saarbrücken
Germany
darya@math.uni-sb.de

Martin Fuchs
Saarland University
Dep. of Mathematics
P.O. Box 151150

D-66041 Saarbrücken
Germany
fuchs@math.uni-sb.de

Edited by
FR 6.1 - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany

Fax: $\quad+496813024443$
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Keywords: variational problems of higher order, nonstandard growth, regularity of minimizers

Abstract

We prove a partial regularity result for local minimizers $u: \mathbb{R}^{n} \supset \Omega \rightarrow \mathbb{R}^{M}$ of the variational integral $J(u, \Omega)=\int_{\Omega} f\left(\nabla^{k} u\right) d x$, where k is any integer and f is a strictly convex integrand of anisotropic (p, q)-growth with exponents satisfying the condition $q<p\left(1+\frac{2}{n}\right)$. This is some extension of the regularity theorem obtained in [BF2] for the case $n=2$.

1 Introduction

In this note we study the regularity properties of local minimizers $u: \Omega \rightarrow \mathbb{R}^{M}$ of higher order variational integrals of the form

$$
J(w, \Omega)=\int_{\Omega} f\left(\nabla^{k} w\right) d x
$$

where Ω is a domain in $\mathbb{R}^{n}, n \geq 2$, and $k \geq 2$ denotes a given integer. The symbol $\nabla^{k} w$ stands for the tensor of all k^{th} order (weak) partial derivatives of the function w, i.e. $\nabla^{k} w=\left(D^{\alpha} w^{i}\right)_{|\alpha|=k, 1 \leq i \leq M, \alpha \in \mathbb{N}_{o}^{n}}$. Our main assumption concerns the energy density f : we consider $f \geq 0$ of class C^{2} satisfying with given exponents $1<p \leq q<\infty$ and with positive constants λ, Λ the anisotropic ellipticity condition

$$
\begin{equation*}
\lambda\left(1+|\sigma|^{2}\right)^{\frac{p-2}{2}}|\tau|^{2} \leq D^{2} f(\sigma)(\tau, \tau) \leq \Lambda\left(1+|\sigma|^{2}\right)^{\frac{q-2}{2}}|\tau|^{2} \tag{1.1}
\end{equation*}
$$

being valid for all tensors σ and τ. Note that the left-hand side of (1.1) implies the strict convexity of f, moreover, it is easy to see that

$$
\begin{equation*}
a|\tau|^{p}-b \leq f(\tau) \leq A|\tau|^{q}+B \tag{1.2}
\end{equation*}
$$

is true with constants $a, A>0, b, B \geq 0$.
According to (1.2) the appropriate space for local minimizers is the energy class consisting of all Sobolev functions $u \in W_{p, \text { loc }}^{k}\left(\Omega ; \mathbb{R}^{M}\right)$ such that $J\left(u, \Omega^{\prime}\right)<\infty$ for any subdomain
$\Omega^{\prime} \subset \subset \Omega$, and we say that a function u with these properties is a local J-minimizer if and only if

$$
J\left(u, \Omega^{\prime}\right) \leq J\left(v, \Omega^{\prime}\right)
$$

for any $v \in W_{p, \text { loc }}^{k}\left(\Omega ; \mathbb{R}^{M}\right)$ such that $\operatorname{spt}(u-v) \subset \subset \Omega^{\prime}$, where as above Ω^{\prime} is an arbitrary subdomain of Ω with compact closure in Ω. For a definition of the Sobolev classes $W_{p}^{k}, W_{p, \text { loc }}^{k}$, etc., we refer the reader to the book of Adams [Ad]. Now we can state our main result:

THEOREM 1.1. Let u denote a local J-minimizer where f satisfies (1.1). Suppose further that

$$
\begin{equation*}
q<p\left(1+\frac{2}{n}\right) \tag{1.3}
\end{equation*}
$$

is true. Then there is an open subset Ω_{0} of Ω such that $\Omega-\Omega$ 。 is of Lebesgue measure zero and $u \in C_{\mathrm{loc}}^{k, \nu}\left(\Omega_{0} ; \mathbb{R}^{M}\right)$ for any exponent $0<\nu<1$.
REMARK 1.1. i) In the twodimensional case, i.e. $n=2$, the partial regularity result of Theorem 1.1 can be improved to everywhere regularity which means that actually we have $\Omega_{0}=\Omega$. This is outlined in the recent paper [BF2].
ii) The anisotropic first order case, i.e. we have $k=1$ and f satisfies conditions similar to (1.1), is well investigated: without being complete we mention the papers of Acerbi and Fusco [AF], of Esposito, Leonetti and Mingione [ELM1,2,3] and the results obtained by the second author in collaboration with Bildhauer, see e.g. [BF1]. Further references are contained in the monograph [Bi]. Clearly the list above addresses the case of vectorvalued functions. The anisotropic scalar situation for first order problems has been discussed before mainly by Marcellini, compare e.g. [Ma1,2,3], with the major result that conditions of the form (1.3) are in fact sufficient for excluding the occurrence of singular points.
iii) If $n \geq 3$ together with $k \geq 2$, then partial $C^{k, \nu}$-regularity of minimizers of the variational integral $\int_{\Omega} f\left(\nabla^{k} u\right) d x$ has been studied in the paper [Kr1] of Kronz. Here the main feature however is the quasiconvexity assumption imposed on f, i.e. the right-hand side of (1.1) is required to hold with $q=p$ and the first inequality in (1.1) is replaced by the hypothesis of uniform strict quasiconvexity with exponent $p \geq 2$. A related result concerning quasimonotone nonlinear systems of higher order with p-growth $(p \geq 2)$ is established in [Kr2]. Of course the theorems of Kronz imply our regularity result if we consider (1.1) in the isotropic case $p=q$ together with $p \geq 2$.
For completeness we also like to mention the work of Duzaar, Gastel and Grotowski [DGG] dealing with partial regularity of certain higher order nonlinear elliptic systems and improving earlier results of Giaquinta and Modica established in [GM2].
iv) If the non-autonomous case $I(w, \Omega):=\int_{\Omega} F\left(x, \nabla^{k} w\right) d x$ is considered with integrand $F(x, \sigma)$ satisfying (1.1) uniformly w.r.t. σ, and if in addition we require

$$
\left|D_{x} D_{\sigma} F(x, \sigma)\right| \leq c_{1}\left(1+|\sigma|^{2}\right)^{\frac{q-1}{2}}
$$

then Theorem 1.1 remains valid, provided (1.3) is replaced by the stronger condition $q<$ $p(1+1 / n)$ and if for example we assume that $F(x, \sigma)$ is given by $F(x, \sigma)=g(x,|\sigma|)$ for a suitable function g. The details are left to the reader, we refer to [ELM3] and [BF3].

The proof of Theorem 1.1 is organized in two steps. First we introduce a suitable regularization of our variational problem following the lines of [BF2] which leads us to uniform higher integrability and higher weak differentiability results for the solutions of the approximate problems which then extend to our local minimizer. In a second step we combine this initial regularity with a blow-up procedure which will give partial regularity as stated in Theorem 1.1. From now on and just for notational simplicity we will assume that $k=2$ together with $M=1$. Moreover, we let $n \geq 3$ for obvious reasons. If necessary, we pass to subsequences without explicit indications, and we use the same symbol to denote various constants with different numerical values.

2 Approximation and initial regularity

Let the assumptions of Theorem 1.1 hold and consider a local J-minimizer u. We proceed as in [BF2] by fixing two open domains $\Omega_{1} \subset \subset \Omega_{2} \subset \subset \Omega$. Then we consider the mollification \bar{u}_{m} of u with radius $1 / m, m \in \mathbb{N}$, and let $u_{m} \in \bar{u}_{m}+\stackrel{\circ}{W}_{q}^{2}\left(\Omega_{2}\right)$ denote the unique solution of the problem
$J_{m}\left(w, \Omega_{2}\right):=J\left(w, \Omega_{2}\right)+\rho_{m} \int_{\Omega_{2}}\left(1+\left|\nabla^{2} w\right|^{2}\right)^{q / 2} d x \longrightarrow \min$ in $\bar{u}_{m}+\stackrel{\circ}{W}_{q}^{2}\left(\Omega_{2}\right)$,
where we have set $\rho_{m}:=\left\|\bar{u}_{m}-u\right\|_{W_{p}^{2}\left(\Omega_{2}\right)}\left[\int_{\Omega_{2}}\left(1+\left|\nabla^{2} \bar{u}_{m}\right|^{2}\right)^{q / 2} d x\right]^{-1}$.
It is easy to see that (compare [BF2])

$$
\begin{aligned}
& u_{m} \rightharpoondown u \text { in } W_{p}^{2}\left(\Omega_{2}\right), J\left(u_{m}, \Omega_{2}\right) \rightarrow J\left(u, \Omega_{2}\right), \\
& J_{m}\left(u_{m}, \Omega_{2}\right) \rightarrow J\left(u, \Omega_{2}\right)
\end{aligned}
$$

as $m \rightarrow \infty$. Next we use the Euler equation

$$
\begin{equation*}
\int_{\Omega} D f_{m}\left(\nabla^{2} u_{m}\right): \nabla^{2} \varphi d x=0, \varphi \in \stackrel{\circ}{W}_{q}^{2}\left(\Omega_{2}\right) \tag{2.1}
\end{equation*}
$$

$f_{m}:=\rho_{m}\left(1+|\cdot|^{2}\right)^{q / 2}+f$, with the choice $\partial_{i}\left(\eta^{6} \partial_{i} u_{m}\right), i=1, \ldots, n, \eta \in C_{\circ}^{\infty}\left(\Omega_{2}\right), 0 \leq$ $\eta \leq 1, \eta=1$ on Ω_{1}, and get (from now on summation w.r.t. i) with the help of the Cauchy-Schwarz inequality for the bilinear form $D^{2} f_{m}\left(\nabla^{2} u_{m}\right)$

$$
\begin{align*}
& \int_{\Omega_{2}} \eta^{6} D^{2} f_{m}\left(\nabla^{2} u_{m}\right)\left(\partial_{i} \nabla^{2} u_{m}, \partial_{i} \nabla^{2} u_{m}\right) d x \\
& \leq \tag{2.2}\\
& \quad c\left\{\left(\left\|\nabla^{2} \eta\right\|_{\infty}^{2}+\|\nabla \eta\|_{\infty}^{4}\right) \int_{\mathrm{spt} \nabla \eta}\left|D^{2} f_{m}\left(\nabla^{2} u_{m}\right)\right|\left|\nabla u_{m}\right|^{2} d x\right. \\
& \left.\quad+\|\nabla \eta\|_{\infty}^{2} \int_{\mathrm{spt} \nabla \eta}\left|D^{2} f_{m}\left(\nabla^{2} u_{m}\right)\right|\left|\nabla^{2} u_{m}\right|^{2} d x\right\}
\end{align*}
$$

where c denotes a finite constant independent of m. Of course this calculation has to be justified with the help of the difference quotient technique using $\varphi=\Delta_{-h}\left(\eta^{6} \Delta_{h} u_{m}\right)$ in (2.1), $\Delta_{h} u_{m}(x):=\frac{1}{h}\left[u_{m}\left(x+h e_{i}\right)-u_{m}(x)\right]$. In case that $q \geq 2$, the reader can follow the
steps in [BF2] leading from (2.6) to (2.13) where (2.12) has to be adjusted for dimensions $n \geq 3$. If $q<2$, then we refer to [BF1] or [Bi], p. 55-57.

Inequality (2.2) implies local uniform higher integrability of the sequence $\left\{\nabla^{2} u_{m}\right\}$: let $\chi:=\frac{n}{n-2}$ and $s:=\frac{p}{2} \chi$. For concentric balls $B_{r} \subset \subset B_{R} \subset \subset \Omega_{2}$ and $\eta \in C_{\circ}^{\infty}\left(B_{R}\right), 0 \leq \eta \leq$ $1, \eta=1$ on $B_{r},\left|\nabla^{\ell} \eta\right| \leq c /(R-r)^{\ell}, \ell=1,2$, we have by Sobolev's inequality

$$
\begin{gathered}
\int_{B_{r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{s} d x \leq \int_{B_{R}}\left(\eta^{3}\left[1+\left|\nabla^{2} u_{m}\right|^{2}\right]^{s \frac{n-2}{2 n}}\right)^{2 \chi} d x \\
=\int_{B_{R}}\left(\eta^{3} h_{m}\right)^{2 \chi} d x \leq c\left(\int_{B_{R}}\left|\nabla\left(\eta^{3} h_{m}\right)\right|^{2} d x\right)^{\frac{n}{n-2}} .
\end{gathered}
$$

Here $h_{m}:=\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{p / 4}$ is known to be of class $W_{2, \text { loc }}^{1}\left(\Omega_{2}\right)$ on account of (2.2), and with Young's inequality we deduce

$$
\begin{gather*}
\int_{B_{r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{s} d x \leq c\left[\int_{B_{R}} \eta^{6}\left|\nabla h_{m}\right|^{2} d x\right. \tag{2.3}\\
\left.\quad+\int_{B_{R}}\left|\nabla \eta^{3}\right|^{2} h_{m}^{2} d x\right]^{\chi}=: c\left[T_{1}+T_{2}\right]^{\chi} .
\end{gather*}
$$

From (1.1) and (2.2) we get $\left(T_{R, r}:=B_{R}-B_{r}\right)$

$$
\begin{aligned}
T_{1} & \leq c(r, R) \int_{T_{R, r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{\frac{q-2}{2}}\left[\left|\nabla^{2} u_{m}\right|^{2}+\left|\nabla u_{m}\right|^{2}\right] d x \\
& \leq c(r, R)\left[\int_{T_{R, r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{\frac{q}{2}} d x+\int_{T_{R, r}}\left|\nabla u_{m}\right|^{q} d x\right]
\end{aligned}
$$

moreover

$$
T_{2} \leq c(r, R) \int_{T_{R, r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{p / 2} d x .
$$

Inserting these estimates into (2.3) we find that

$$
\begin{align*}
& \int_{B_{r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{s} d x \tag{2.4}\\
& \quad \leq c(r, R)\left[\int_{T_{R, r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{q / 2} d x+\int_{T_{R, r}}\left|\nabla u_{m}\right|^{q} d x\right]^{\chi}
\end{align*}
$$

for a constant $c(r, R)=c(R-r)^{-\beta}$ with suitable exponent $\beta>0$. Fix $\Theta \in(0,1)$ such that

$$
\frac{1}{q}=\frac{\Theta}{p}+\frac{1-\Theta}{2 s}
$$

(note: $2 s=p \chi>q$ on account of $q<p\left(1+\frac{2}{n}\right)$). Then the interpolation inequality implies

$$
\left\|\nabla^{2} u_{m}\right\|_{q} \leq\left\|\nabla^{2} u_{m}\right\|_{p}^{\Theta} \quad\left\|\nabla^{2} u_{m}\right\|_{2 s}^{1-\Theta}
$$

where the norms are taken over $T_{R, r}$, and we get:

$$
\begin{equation*}
\int_{T_{R, r}}\left|\nabla^{2} u_{m}\right|^{q} d x \leq\left(\int_{B_{R}}\left|\nabla^{2} u_{m}\right|^{p} d x\right)^{\Theta q / p}\left(\int_{T_{R, r}}\left|\nabla^{2} u_{m}\right|^{2 s} d x\right)^{(1-\Theta) \frac{q}{2 s}} . \tag{2.5}
\end{equation*}
$$

Before applying (2.5) to the first integral on the r.h.s. of (2.4) we discuss the second one: we have (for any $0<\varepsilon<1$)

$$
\begin{equation*}
\int_{T_{R, r}}\left|\nabla u_{m}\right|^{q} d x \leq \varepsilon \int_{T_{R, r}}\left|\nabla^{2} u_{m}\right|^{q} d x+c(\varepsilon, R, r) \int_{T_{R, r}}\left|u_{m}\right|^{q} d x \tag{2.6}
\end{equation*}
$$

which follows for example from [Mo], Theorem 3.6.9. For the ε-term on the r.h.s. of (2.6) we may use (2.5). By construction we know that sup $\left\|u_{m}\right\|_{W_{p}^{2}\left(\Omega_{2}\right)}<\infty$. If $p \geq n$, then the sequence $\left\{u_{m}\right\}$ is uniformly bounded in any space $W_{t}^{1}\left(\Omega_{2}\right), t<\infty$, thus we clearly have the boundedness of $\int_{\Omega_{2}}\left|u_{m}\right|^{q} d x$. So let us assume that $p<n$. Then

$$
\sup _{m}\left\|u_{m}\right\|_{W_{t}^{1}\left(\Omega_{2}\right)}<\infty
$$

for $t \leq \frac{n p}{n-p}=: \bar{p}$. In case $\bar{p} \geq n$ we are done. If $\bar{p}<n$, then we obtain

$$
\sup _{m}\left\|u_{m}\right\|_{L^{t}\left(\Omega_{2}\right)}<\infty
$$

for $t \leq \frac{n \bar{p}}{n-\bar{p}}=\frac{n p}{n-2 p}$. Obviously $q \leq \frac{n p}{n-2 p}$ which is a consequence of (1.3) since $p\left(1+\frac{2}{n}\right) \leq$ $\frac{n p}{n-2 p}$. Altogether we have shown that

$$
\begin{equation*}
\int_{T_{R, r}}\left|u_{m}\right|^{q} d x \leq \bar{c} \tag{2.7}
\end{equation*}
$$

for a constant \bar{c} depending also on Ω_{2} and $\sup \left\|u_{m}\right\|_{W_{p}^{2}\left(\Omega_{2}\right)}$. Returning to (2.4), inserting (2.6) combined with (2.7) and applying (2.5) ${ }^{m}$ we have shown that

$$
\begin{align*}
& \int_{B_{r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{s} d x \leq \tag{2.8}\\
& \quad c(R-r)^{-\beta}\left[\left(\int_{\Omega_{2}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{\frac{p}{2}} d x\right)^{\Theta q \chi / p}\left(\int_{T_{R, r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{s} d x\right)^{(1-\Theta) \frac{q \chi}{2 s}}+\bar{c}\right] .
\end{align*}
$$

Now, from (1.3) it follows that $(1-\Theta) \frac{q \chi}{2 s}<1$, and we may therefore apply Young's inequality on the r.h.s. of (2.8) with the result

$$
\begin{align*}
& \int_{B_{r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{s} d x \leq \tag{2.9}\\
& \quad \int_{T_{R, r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{s} d x+c(R-r)^{-\beta_{1}}\left[\left(\int_{\Omega_{2}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{\frac{p}{2}} d x\right)^{\beta_{2}}+\bar{c}\right]
\end{align*}
$$

β_{1}, β_{2} denoting positive exponents. Adding $\int_{B_{r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{s} d x$ on both sides of (2.9) this inequality turns into

$$
\begin{equation*}
\int_{B_{r}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{s} d x \leq \frac{1}{2} \int_{B_{R}}\left(1+\left|\nabla^{2} u_{m}\right|^{2}\right)^{s} d x+K(R-r)^{-\beta_{1}} \tag{2.10}
\end{equation*}
$$

where the constant K on the r.h.s. of (2.9) also depends on $\sup _{m} \int_{\Omega_{2}}\left|\nabla^{2} u_{m}\right|^{p} d x$. If we use [Gi], Lemma 5.1, p. 81, inequality (2.10) implies the following

LEMMA 2.1. Under the hypothesis of Theorem 1.1 and with the notation introduced before we have that $\left\{u_{m}\right\}$ is uniformly bounded in the space $W_{2 s, \text { loc }}^{2}\left(\Omega_{2}\right), s:=\frac{p}{2} \frac{n}{n-2}$. In particular we have that u belongs to $W_{q, \text { loc }}^{2}\left(\Omega_{2}\right)$. Moreover, the functions $h_{m}=(1+$ $\left.\left|\nabla^{2} u_{m}\right|^{2}\right)^{p / 4}$ are uniformly bounded in $W_{2, \mathrm{loc}}^{1}\left(\Omega_{2}\right)$.
Note that the last statement follows from (2.2) together with $\sup _{m}\left\|u_{m}\right\|_{W_{q, \text { loc }}^{2}\left(\Omega_{2}\right)}<\infty$. We return to (2.1) and choose $\varphi=\partial_{i}\left(\eta^{6} \partial_{i}\left[u_{m}-P_{m}\right]\right)$ where $\eta \in{ }^{m} C_{\circ}^{\infty}\left(\Omega_{2}\right), 0 \leq \eta \leq 1$, and P_{m} denotes a polynomial function of degree ≤ 2. Similar to (2.2) we get (using difference quotients)

$$
\begin{aligned}
& \int_{\Omega_{2}} \eta^{6} D^{2} f_{m}\left(\nabla^{2} u_{m}\right)\left(\partial_{i} \nabla^{2} u_{m}, \partial_{i} \nabla^{2} u_{m}\right) d x \\
& \leq-\int_{\mathrm{spt} \nabla \eta} D^{2} f_{m}\left(\nabla^{2} u_{m}\right)\left(\partial_{i} \nabla^{2} u_{m}, \nabla^{2} \eta^{6} \partial_{i}\left[u_{m}-P_{m}\right]\right. \\
& \left.\quad+2 \nabla \eta^{6} \odot \nabla \partial_{i}\left(u_{m}-P_{m}\right)\right) d x
\end{aligned}
$$

where the sum is taken w.r.t. $i=1, \ldots, n$. We apply the Cauchy-Schwarz inequality to the bilinear form $D^{2} f_{m}\left(\nabla^{2} u_{m}\right)$ with the result

$$
\begin{align*}
& \int_{\Omega_{2}} \eta^{6} D^{2} f_{m}\left(\nabla^{2} u_{m}\right)\left(\partial_{i} \nabla^{2} u_{m}, \partial_{i} \nabla^{2} u_{m}\right) d x \\
& \quad \leq c\left\{\left(\left\|\nabla^{2} \eta\right\|_{\infty}^{2}+\|\nabla \eta\|_{\infty}^{4}\right) \int_{\mathrm{spt} \nabla \eta}\left|D^{2} f_{m}\left(\nabla^{2} u_{m}\right)\right|\left|\nabla\left(u_{m}-P_{m}\right)\right|^{2} d x\right. \tag{2.11}\\
& \left.\quad+\|\nabla \eta\|_{\infty}^{2} \int_{\mathrm{spt} \nabla \eta}\left|D^{2} f_{m}\left(\nabla^{2} u_{m}\right)\right|\left|\nabla^{2}\left(u_{m}-P_{m}\right)\right|^{2} d x\right\}
\end{align*}
$$

in particular $\int_{\Omega_{2}} \eta^{6}\left|\nabla h_{m}\right|^{2} d x$ is bounded by the right-hand side of (2.11). We claim
LEMMA 2.2. Let $h:=\left(1+\left|\nabla^{2} u\right|^{2}\right)^{p / 4}$ Then the following statements hold:

$$
\begin{array}{ll}
\text { i) } & h \in W_{2, \mathrm{loc}}^{1}\left(\Omega_{2}\right) ; \\
\text { ii) } & h_{m} \rightharpoondown h \text { in } W_{2, \mathrm{loc}}^{1}\left(\Omega_{2}\right) ; \\
\text { iii) } & \nabla^{\ell} u_{m} \longrightarrow \nabla^{\ell} u \text { a.e. on } \Omega_{2}, \ell \leq 2 .
\end{array}
$$

If P is a polynomial function of degree ≤ 2, then

$$
\begin{align*}
& \int_{\Omega_{2}} \eta^{6}|\nabla h|^{2} d x \\
& \leq c\left\{\left(\left\|\nabla^{2} \eta\right\|_{\infty}^{2}+\|\nabla \eta\|_{\infty}^{4}\right) \int_{\mathrm{spt} \nabla \eta}\left|D^{2} f\left(\nabla^{2} u\right)\right||\nabla(u-P)|^{2} d x\right. \tag{2.12}\\
& \left.\quad+\|\nabla \eta\|_{\infty}^{2} \int_{\mathrm{spt} \nabla \eta}\left|D^{2} f\left(\nabla^{2} u\right)\right|\left|\nabla^{2}(u-P)\right|^{2} d x\right\}
\end{align*}
$$

is true for any $\eta \in C_{\circ}^{\infty}\left(\Omega_{2}\right), 0 \leq \eta \leq 1$.
Proof: From Lemma 2.1 we deduce that there exists a function $\hat{h} \in W_{2, \text { loc }}^{1}\left(\Omega_{2}\right)$ such that $h_{m} \rightharpoondown \hat{h}$ in $W_{2, \text { loc }}^{1}\left(\Omega_{2}\right)$ and almost everywhere. Suppose that we already have iii). Then i), ii) are trivial. Moreover, if we choose $P_{m} \equiv P$ in (2.11), Fatou's lemma implies that

$$
\int_{\Omega_{2}} \eta^{6}|\nabla h|^{2} d x \leq \liminf _{m \rightarrow \infty} \int_{\Omega_{2}} \eta^{6}\left|\nabla h_{m}\right|^{2} d x
$$

and we may control the quantities $\int_{\Omega_{2}} \eta^{6}\left|\nabla h_{m}\right|^{2} d x$ with the help of (2.11) in terms of the integrals $\int_{\text {spt } \nabla \eta}\left|D^{2} f_{m}\left(\nabla^{2} u_{m}\right)\right|\left|\nabla^{2} u_{m}-\nabla^{2} P\right|^{2} d x=: \int_{\text {spt } \nabla \eta} \Phi_{m} d x$ and $\int_{\text {spt } \nabla \eta}\left|D^{2} f_{m}\left(\nabla^{2} u_{m}\right)\right|\left|\nabla u_{m}-\nabla P\right|^{2} d x=: \int_{\text {spt } \nabla \eta} \Psi_{m} d x$. By Lemma 2.1 the integrand Φ_{m} is uniformly bounded in $L^{1+\varepsilon}(\operatorname{spt} \nabla \eta)$ for some $\varepsilon>0$, thus $\Phi_{m} \rightharpoondown: \Phi$ in $L^{1+\varepsilon}(\operatorname{spt} \nabla \eta)$ and therefore $\int_{\text {spt } \nabla \eta} \Phi_{m} d x \rightarrow \int_{\text {spt }} \Phi d x$. But with the pointwise convergence iii) we see that $\Phi=\left|D^{2} f\left(\nabla^{2} u\right)\right|\left|\nabla^{2} u-\nabla^{2} P\right|$. Obviously a similar argument applies to $\int_{\text {spt } \nabla \eta} \Psi_{m} d x$ which proves (2.12), and it remains to show iii) just for $\ell=2$, the other cases are obvious. To this purpose we recall that in fact we have shown that u is in the space $W_{q, \text { loc }}^{2}(\Omega)$ (due to the arbitrariness of Ω_{2}) and that by definition u_{m} is of class $\bar{u}_{m}+\stackrel{\circ}{W}_{q}^{2}\left(\Omega_{2}\right)$. Therefore the following calculations are justified: we have

$$
\begin{align*}
& \int_{\Omega_{2}}\left(f\left(\nabla^{2} u_{m}\right)-f\left(\nabla^{2} u\right)\right) d x= \\
& \int_{\Omega_{2}} D f\left(\nabla^{2} u\right):\left(\nabla^{2} u_{m}-\nabla^{2} u\right) d x+ \tag{2.13}\\
& \int_{\Omega_{2}} \int_{0}^{1} D^{2} f\left(\nabla^{2} u+t\left[\nabla^{2} u_{m}-\nabla^{2} u\right]\right)\left(\nabla^{2} u_{m}-\nabla^{2} u, \nabla^{2} u_{m}-\nabla^{2} u\right)(1-t) d t d x .
\end{align*}
$$

Note that $\left\|u-\bar{u}_{m}\right\|_{W_{q}^{2}(\tilde{\Omega})} \longrightarrow 0$ for all $\tilde{\Omega} \subset \subset \Omega$, moreover the Euler equation for u implies

$$
\int_{\Omega_{2}} D f\left(\nabla^{2} u\right):\left(\nabla^{2} u_{m}-\nabla^{2} u\right) d x=\int_{\Omega_{2}} D f\left(\nabla^{2} u\right):\left(\nabla^{2} \bar{u}_{m}-\nabla^{2} u\right) d x
$$

thus the first term on the r.h.s. of (2.13) vanishes as $m \rightarrow \infty$. The same is true for the l.h.s. of (2.13) as it was remarked at the beginning of this section. This implies
$\lim _{m \rightarrow \infty} \int_{\Omega_{2}} \int_{0}^{1} D^{2} f\left(\nabla^{2} u+t\left[\nabla^{2} u_{m}-\nabla^{2} u\right]\right)\left(\nabla^{2} u_{m}-\nabla^{2} u, \nabla^{2} u_{m}-\nabla^{2} u\right) d t d x=0$ and in the case $p \geq 2$ the claim follows from (1.1). Suppose now that $p<2$. Then again by (1.1)

$$
\begin{aligned}
& \int_{0}^{1} \ldots d t \geq \lambda \int_{0}^{1}\left(1+\left|\nabla^{2} u+t\left(\nabla^{2} u_{m}-\nabla^{2} u\right)\right|^{2}\right)^{\frac{p-2}{2}}\left|\nabla^{2} u_{m}-\nabla^{2} u\right|^{2}(1-t) d t \\
& \geq c\left(1+\left[\left|\nabla^{2} u\right|+\left|\nabla^{2} u_{m}\right|\right]^{2}\right)^{\frac{p-2}{2}}\left|\nabla^{2} u_{m}-\nabla^{2} u\right|^{2} .
\end{aligned}
$$

For almost all $x \in \Omega_{2}$ we have

$$
h_{m}(x) \rightarrow \hat{h}(x)<\infty,
$$

therefore $\lim _{m \rightarrow \infty}\left|\nabla^{2} u_{m}(x)\right|$ exists and is finite for almost all $x \in \Omega_{2}$ (by the definition of h_{m}). If we consider such points $x \in \Omega_{2}$ and observe that by the above estimate

$$
\left(1+\left[\left|\nabla^{2} u\right|+\left|\nabla^{2} u_{m}\right|\right]^{2}\right)^{\frac{p-2}{2}}\left|\nabla^{2} u_{m}-\nabla^{2} u\right|^{2} \longrightarrow 0 \quad \text { a.e., }
$$

then it is immendiate that $\left|\nabla^{2} u_{m}-\nabla^{2} u\right|^{2} \longrightarrow 0$ a.e., and the claim follows.

3 Blow-up and partial regularity

In this section we give a proof of Theorem 1.1 where for technical simplicity we restrict ourselves to the case that $p \geq 2$. The necessary adjustments concerning exponents $p \in$ $(1,2)$ can be found in [CFM], [BF1] or [Bi]. So let the hypothesis of Theorem 1.1 hold. Then we have the following excess-decay lemma which is the key to partial regularity.

LEMMA 3.1. Given a positive number L, define the constant $C^{*}(L)$ according to (3.11) below and let $C_{*}:=C_{*}(L):=2 C^{*}(L)$. Then, for any $\tau \in(0,1 / 2)$ there exists $\varepsilon=\varepsilon(\tau, L)$ such that the validity of

$$
\begin{equation*}
\left|\left(\nabla^{2} u\right)_{x, r}\right| \leq L \text { and } E(x, r) \leq \varepsilon(L, \tau) \tag{3.1}
\end{equation*}
$$

for some ball $B_{r}(x) \subset \subset \Omega$ implies the estimate

$$
\begin{equation*}
E(x, \tau r) \leq \tau^{2} C_{*}(L) E(x, r) \tag{3.2}
\end{equation*}
$$

Here we have set

$$
E(x, \rho):=f_{B_{\rho}(x)}\left|\nabla^{2} u-\left(\nabla^{2} u\right)_{x, \rho}\right|^{2} d y+\int_{B_{\rho}(x)}\left|\nabla^{2} u-\left(\nabla^{2} u\right)_{x, \rho}\right|^{q} d y
$$

for balls $B_{\rho}(x)$ compactly contained in Ω, and $f_{B_{\rho}(x)} g d y$ or $(g)_{x, \rho}$ denote the mean value of a function g w.r.t. $B_{\rho}(x)$. Let us recall that we consider the case $p \geq 2$, thus $q>2$. If $p<2$ is allowed, then $q<2$ is possible but the statement of Lemma 3.1 (and thereby partial regularity) remains true if the excess function E then is defined according to [CFM].

REMARK 3.1. i) It is well known how to iterate the result of Lemma 3.1 leading to the result that the set of points $x_{\circ} \in \Omega$ such that

$$
\underset{r \backslash 0}{\limsup }\left|\left(\nabla^{2} u\right)_{x_{0}, r}\right|<\infty
$$

together with $\lim \inf _{r \backslash 0} E\left(x_{\circ}, r\right)=0$ is an open set (of full Lebesgue-measure) on which the local minimizer u is of class $C^{2, \nu}$ for any $0<\nu<1$. We refer the reader to Giaquinta's text book [Gia] and mention the papers [GiuMi] of Giusti and Miranda, [Ev] of Evans or the contribution [FH] of Fusco and Hutchinson.
ii) We will give an indirect proof of Lemma 3.1 using the blow-up technique following more or less the ideas of Evans and Gariepy outlined in [Ev] and $[E G]$.

Proof of Lemma 3.1:

To argue by contradiction we assume that for $L>0$ fixed and for some $\tau \in(0,1 / 2)$ there exists a sequence of balls $B_{r_{m}}\left(x_{m}\right) \subset \subset \Omega$ such that

$$
\begin{align*}
\left|\left(\nabla^{2} u\right)_{x_{m}, r_{m}}\right| & \leq L, E\left(x_{m}, r_{m}\right)=: \lambda_{m}^{2} \underset{m \rightarrow \infty}{\longrightarrow} 0 \tag{3.3}\\
E\left(x_{m}, \tau r_{m}\right) & >C_{*} \tau^{2} \lambda_{m}^{2} . \tag{3.4}
\end{align*}
$$

Now a sequence of rescaled functions is introduced by letting

$$
\begin{aligned}
a_{m}:= & (u)_{x_{m}, r_{m}}, A_{m}:=(\nabla u)_{x_{m}, r_{m}}, \Theta_{m}:=\left(\nabla^{2} u\right)_{x_{m}, r_{m}}, \\
\hat{u}_{m}(z):= & \frac{1}{\lambda_{m} r_{m}^{2}}\left[u_{m}\left(x_{m}+r_{m} z\right)-a_{m}-r_{m} A_{m} z\right. \\
& \left.-\frac{1}{2} r_{m}^{2} \Theta_{m}(z, z)+\frac{1}{2} r_{m}^{2} f_{B_{1}} \Theta_{m}(\tilde{z}, \tilde{z}) d \tilde{z}\right],|z|<1 .
\end{aligned}
$$

Direct calculations show that

$$
\begin{aligned}
\nabla \hat{u}_{m}(z) & =\frac{1}{\lambda_{m} r_{m}}\left[\nabla u\left(x_{m}+r_{m} z\right)-A_{m}-\frac{1}{2} r_{m} \nabla\left(\Theta_{m}^{\alpha \beta} z_{\alpha} z_{\beta}\right)\right], \\
\nabla^{2} \hat{u}_{m}(z) & =\frac{1}{\lambda_{m}}\left[\nabla^{2} u\left(x_{m}+r_{m} z\right)-\Theta_{m}\right],
\end{aligned}
$$

moreover, the quantities $\left(\hat{u}_{m}\right)_{0,1},\left(\nabla \hat{u}_{m}\right)_{0,1},\left(\nabla^{2} \hat{u}_{m}\right)_{0,1}$ vanish for all m. From our assumptions (3.3) we get

$$
\begin{equation*}
f_{B_{1}}\left|\nabla^{2} \hat{u}_{m}\right|^{2} d z+\lambda_{m}^{q-2} f_{B_{1}}\left|\nabla^{2} \hat{u}_{m}\right|^{q} d z=\lambda_{m}^{-2} E\left(x_{m}, r_{m}\right)=1, \tag{3.5}
\end{equation*}
$$

and after passing to subsequences which are not relabeled we find (using Poincaré's inequality for deriving (3.7) from (3.5))

$$
\begin{equation*}
\Theta_{m} \longrightarrow: \Theta, \tag{3.6}
\end{equation*}
$$

$$
\begin{align*}
\hat{u}_{m} & \rightharpoondown \hat{u} \text { in } W_{2}^{2}\left(B_{1}\right) \tag{3.7}\\
\lambda_{m} \nabla^{2} \hat{u}_{m} & \longrightarrow 0 \text { in } L^{2}\left(B_{1}\right) \text { and a.e., } \tag{3.8}\\
\lambda_{m}^{1-2 / q} \nabla^{2} \hat{u}_{m} & \rightharpoondown 0 \text { in } L^{q}\left(B_{1}\right) . \tag{3.9}
\end{align*}
$$

After these preparations we claim that the limit function \hat{u} satisfies

$$
\begin{equation*}
\int_{B_{1}} D^{2} f(\Theta)\left(\nabla^{2} \hat{u}, \nabla^{2} \varphi\right) d z=0 \quad \forall \varphi \in C_{\circ}^{\infty}\left(B_{1}\right) . \tag{3.10}
\end{equation*}
$$

To prove (3.10) we proceed exactly as in [Ev] (see also [BF1] and [Bi], Proposition 3.33) taking into account (3.6), (3.7) and (3.9).
Moreover, the application of Poincaré's inequality in combination with estimate (3.2) from [GiaMo1] and Lemma 7 of [Kr1] (see also [Ca1,2]) give the existence of a constant C^{*}, only depending on n, L, p, q, λ and Λ, such that

$$
\begin{equation*}
f_{B_{\tau}}\left|\nabla^{2} \hat{u}-\left(\nabla^{2} \hat{u}\right)_{\tau}\right|^{2} d z \leq C^{*} \tau^{2} \tag{3.11}
\end{equation*}
$$

To be precise, we have

$$
f_{B_{\tau}}\left|\nabla^{2} \hat{u}-\left(\nabla^{2} \hat{u}\right)_{\tau}\right|^{2} d z \leq c \tau^{2} f_{B_{\tau}}\left|\nabla^{3} \hat{u}\right|^{2} d z \leq c \tau^{2} f_{B_{1 / 2}}\left|\nabla^{3} \hat{u}\right|^{2} d z
$$

which follows from [GiaMo1], (3.2), applied to the function $v:=\partial_{\gamma} \hat{u}, \gamma=1, \ldots, n$. Moreover

$$
f_{B_{1 / 2}}\left|\nabla^{3} \hat{u}\right|^{2} d z \leq c \sup _{B_{1 / 2}}\left|\nabla^{3} \hat{u}\right|^{2} \leq c f_{B_{1}}\left|\nabla^{2} \hat{u}\right|^{2} d z \leq \liminf _{m \rightarrow \infty} c f_{B_{1}}\left|\nabla^{2} \hat{u}_{m}\right|^{2} d z \leq c,
$$

where we used (3.5), (3.7) and [Kr1], Lemma 7. This proves (3.11) for a suitable constant C^{*}. Clearly (3.11) is in contradiction to (3.4), if we can improve the convergences stated in (3.8) and (3.9) to the strong convergences

$$
\begin{align*}
\nabla^{2} \hat{u}_{m} & \longrightarrow \nabla^{2} \hat{u} \quad \text { in } \quad L_{\mathrm{loc}}^{2}\left(B_{1}\right), \tag{3.12}\\
\lambda_{m}^{1-2 / q} \nabla^{2} \hat{u}_{m} & \longrightarrow 0 \text { in } L_{\mathrm{loc}}^{q}\left(B_{1}\right) . \tag{3.13}
\end{align*}
$$

To verify (3.12) and (3.13) we want to show first for any $0<\rho<1$ the identity

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{B_{\rho}}\left(1+\left|\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}+\lambda_{m} \nabla^{2} w_{m}\right|^{2}\right)^{\frac{p-2}{2}}\left|\nabla^{2} w_{m}\right|^{2} d z=0 \tag{3.14}
\end{equation*}
$$

where $w_{m}:=\hat{u}_{m}-\hat{u}$. Following the basic ideas given in [EG] (see also [BF1] or [Bi],

Proposition 3.34) we observe that for all $\varphi \in C_{\circ}^{\infty}\left(B_{1}\right), 0 \leq \varphi \leq 1$,

$$
\begin{align*}
& \lambda_{m}^{-2} \int_{B_{1}} \varphi\left[f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}_{m}\right)-f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}\right)\right] d z \\
& \quad-\lambda_{m}^{-1} \int_{B_{1}} \varphi D f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}\right): \nabla^{2} w_{m} d z \tag{3.15}\\
& =\int_{B_{1}} \int_{0}^{1} \varphi D^{2} f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}+s \lambda_{m} \nabla^{2} w_{m}\right)\left(\nabla^{2} w_{m}, \nabla^{2} w_{m}\right)(1-s) d s d z
\end{align*}
$$

Obviously (3.14) will follow from the ellipticity of $D^{2} f$, if we can show that the left-hand side of (3.15) tends to zero as $m \rightarrow \infty$. Using the minimality of u as well as the convexity of f we can estimate

$$
\begin{aligned}
& \text { l.h.s. of }(3.15) \leq \lambda_{m}^{-2} \int_{B_{1}} f\left(\Theta_{m}+\lambda_{m} \nabla^{2}\left[\hat{u}_{m}+\varphi\left(\hat{u}-\hat{u}_{m}\right)\right]\right) d z \\
& \quad-\quad \lambda_{m}^{-2} \int_{B_{1}} f\left(\Theta_{m}+\lambda_{m}\left[(1-\varphi) \nabla^{2} \hat{u}_{m}+\varphi \nabla^{2} \hat{u}\right]\right) d z \\
& -\quad \lambda_{m}^{-1} \int_{B_{1}} \varphi D f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}\right): \nabla^{2} w_{m} d z \\
& =: \quad I_{1}-I_{2}-I_{3}
\end{aligned}
$$

Setting
$X_{m}:=\Theta_{m}+\lambda_{m}\left[(1-\varphi) \nabla^{2} \hat{u}_{m}+\varphi \nabla^{2} \hat{u}\right], Z_{m}:=2 \nabla \varphi \otimes \nabla\left(\hat{u}-\hat{u}_{m}\right)+\nabla^{2} \varphi\left(\hat{u}-\hat{u}_{m}\right)$ we obtain

$$
\begin{aligned}
I_{1}-I_{2}= & \lambda_{m}^{-1} \int_{B_{1}} D f\left(X_{m}\right): Z_{m} d z \\
& +\int_{B_{1}} \int_{0}^{1} D^{2} f\left(X_{m}+s \lambda_{m} Z_{m}\right)\left(Z_{m}, Z_{m}\right)(1-s) d s d z \\
\leq & \lambda_{m}^{-1} \int_{B_{1}} D f\left(X_{m}\right): Z_{m} d z \\
& +c \int_{B_{1}}\left(1+\left\{\left|\Theta_{m}\right|+\lambda_{m}\left|\nabla^{2} \hat{u}_{m}\right|+\lambda_{m}\left|\nabla^{2} \hat{u}\right|+\lambda_{m}\left|Z_{m}\right|\right\}^{2}\right)^{\frac{q-2}{2}}\left|Z_{m}\right|^{2} d z
\end{aligned}
$$

With the notation $\epsilon(m) \rightarrow 0$ as $m \rightarrow \infty$ we get on account of (3.7) that the last integral
can be estimated from above by

$$
c \int_{B_{1}} \lambda_{m}^{q-2}\left|\nabla \hat{u}_{m}\right|^{q-2}\left|Z_{m}\right|^{2} d z+c \int_{B_{1}} \lambda_{m}^{q-2}\left|Z_{m}\right|^{q} d z+\epsilon(m)
$$

Furthermore,

$$
\begin{aligned}
J_{1}:= & c \int_{B_{1}} \lambda_{m}^{q-2}\left|\nabla \hat{u}_{m}\right|^{q-2}\left|Z_{m}\right|^{2} d z \\
\leq & c \int_{\operatorname{spt} \varphi} \lambda_{m}^{q-2}\left|\nabla^{2} \hat{u}_{m}\right|^{q-2}\left\{\left|\nabla \hat{u}-\nabla \hat{u}_{m}\right|+\left|\hat{u}-\hat{u}_{m}\right|\right\}^{2} d z \\
\leq & c\left\{\int_{\operatorname{spt} \varphi} \lambda_{m}^{q-2}\left|\nabla^{2} \hat{u}_{m}\right|^{q} d z\right\}^{1-2 / q}\left\{\lambda_{m}^{q-2} \int_{\operatorname{spt} \varphi}\left|\nabla \hat{u}-\nabla \hat{u}_{m}\right|^{q} d z\right. \\
& \left.+\lambda_{m}^{q-2} \int_{\operatorname{spt} \varphi}\left|\hat{u}-\hat{u}_{m}\right|^{q} d z\right\}^{2 / q} \\
\leq & c\left\{\lambda_{m}^{q-2} \int_{\operatorname{spt} \varphi}\left|\nabla \hat{u}-\nabla \hat{u}_{m}\right|^{q} d z+\lambda_{m}^{q-2} \int_{\operatorname{spt} \varphi}\left|\hat{u}-\hat{u}_{m}\right|^{q} d z\right\}^{2 / q},
\end{aligned}
$$

where the last inequality follows from (3.9). We also note that due to (3.9) $\lambda_{m}^{1-2 / q} \nabla^{k} \hat{u}_{m \rightarrow \infty} 0$ in $L^{q}\left(B_{1}\right)$ for $k=0,1$. This immediately implies

$$
J_{1} \leq \epsilon(m) \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty .
$$

Analogous arguments applied to

$$
J_{2}:=c \int_{B_{1}} \lambda_{m}^{q-2}\left|Z_{m}\right|^{q} d z
$$

guarantee that

$$
J_{2} \leq \epsilon(m) \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty .
$$

Thus, we arrive at

$$
\begin{align*}
& \text { 1.h.s. of }(3.15) \leq \epsilon(m)+\lambda_{m}^{-1}\left[\int_{B_{1}} D f\left(X_{m}\right): Z_{m} d z\right. \tag{3.16}\\
& \left.\quad-\int_{B_{1}} D f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}\right): \nabla^{2} w_{m} \varphi d z\right]
\end{align*}
$$

Next we are going to discuss the last two integrals in (3.16). Since

$$
\nabla^{2}\left(\varphi w_{m}\right)=\nabla^{2} w_{m} \varphi-Z_{m},
$$

we have that

$$
\begin{aligned}
& {[\ldots]=\int_{B_{1}}\left(D f\left(X_{m}\right)-D f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}\right)\right): Z_{m} d z} \\
& \quad-\int_{B_{1}} D f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}\right): \nabla^{2}\left(\varphi w_{m}\right) d z=: I_{4}-I_{5} .
\end{aligned}
$$

From (1.1) and from the requirement that $0 \leq \varphi \leq 1$ we obtain by recalling the definition of Z_{m}

$$
\begin{aligned}
I_{4}= & \int_{B_{1}}\left(D f\left(\Theta_{m}+\lambda_{m}\left[(1-\varphi) \nabla^{2} \hat{u}_{m}+\varphi \nabla^{2} \hat{u}\right]\right)-D f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}\right)\right): Z_{m} d z \\
= & \int_{B_{1}} \int_{0}^{1} \frac{d}{d s} D f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}+s \lambda_{m}(1-\varphi) \nabla^{2}\left(\hat{u}_{m}-\hat{u}\right)\right) d s: Z_{m} d z \\
= & \lambda_{m} \int_{B_{1}} \int_{0}^{1} D^{2} f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}+s \lambda_{m}(1-\varphi) \nabla^{2} w_{m}\right)\left(\nabla^{2} w_{m}, Z_{m}\right)(1-\varphi) d s d z \\
\leq & \lambda_{m} c \int_{B_{1}}\left(1+\left(\left|\Theta_{m}\right|+\lambda_{m}\left|\nabla^{2} \hat{u}\right|+\lambda_{m}\left|\nabla^{2} w_{m}\right|\right)^{2}\right)^{\frac{q-2}{2}} \\
& \cdot\left|\nabla^{2} w_{m}\right|\left[|\nabla \varphi|\left|\nabla w_{m}\right|+\left|\nabla^{2} \varphi\right|\left|w_{m}\right|\right] d z
\end{aligned}
$$

and similar to the previous discussion of J_{1} we get

$$
\lambda_{m}^{-1} I_{4} \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty
$$

Finally, we observe that

$$
\begin{aligned}
& \lambda_{m}^{-1} I_{5}=\lambda_{m}^{-1} \int_{B_{1}}\left(D f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}\right)-D f\left(\Theta_{m}\right)\right): \nabla^{2}\left(\varphi w_{m}\right) d z \\
& \quad=\lambda_{m}^{-1} \int_{B_{1}} \int_{0}^{1} D^{2} f\left(\Theta_{m}+s \lambda_{m} \nabla^{2} \hat{u}\right)\left(\lambda_{m} \nabla^{2} \hat{u}, \nabla^{2}\left(\varphi w_{m}\right)\right) d s d z
\end{aligned}
$$

and, consequently, $\lambda_{m}^{-1} I_{5}$ vanishes after passing to the limit $m \rightarrow \infty$ on account of the weak convergence (3.7). Summarizing these results we have shown that $\lim _{m \rightarrow \infty}$ (l.h.s. of $(3.15))=0$.
Therefore, identity (3.14) is proved, and (3.12) immediately follows from (3.14) since we
assume that $p \geq 2$. To proceed further, i.e. to prove the strong convergence stated in (3.13), we introduce the auxiliary functions

$$
\Psi_{m}(z):=\lambda_{m}^{-1}\left[\left(1+\left|\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}_{m}(z)\right|^{2}\right)^{p / 4}-\left(1+\left|\Theta_{m}\right|^{2}\right)^{p / 4}\right] .
$$

For any $\rho<1$ Lemma 2.2 implies

$$
\begin{aligned}
& \int_{B_{\rho}}\left|\nabla \Psi_{m}\right|^{2} d z=\lambda_{m}^{-2} r_{m}^{2-n} \int_{B_{\rho r_{m}\left(x_{m}\right)}}|\nabla h|^{2} d x \\
& \quad \leq c(\rho) \lambda_{m}^{-2} r_{m}^{2-n} \int_{B_{r_{m}\left(x_{m}\right)}}\left|D^{2} f\left(\nabla^{2} u\right)\right| \cdot\left\{r_{m}^{-2}\left|\nabla^{2}(u-P)\right|^{2}+r_{m}^{-4}|\nabla(u-P)|^{2}\right\} d x
\end{aligned}
$$

For the last estimate we used inequality (2.12), h being defined in Lemma 2.2 and P representing a polynomial function of degree ≤ 2. If we choose

$$
P(x):=A_{m} x+\frac{1}{2} \Theta_{m}\left(x-x_{m}, x-x_{m}\right) \quad \text { for } \quad x \in B_{r_{m}}\left(x_{m}\right)
$$

we get

$$
\begin{aligned}
& \nabla(u(x)-P(x))=\lambda_{m} r_{m} \nabla \hat{u}_{m}\left(\frac{x-x_{m}}{r_{m}}\right), \\
& \nabla^{2}(u(x)-P(x))=\lambda_{m} \nabla^{2} \hat{u}_{m}\left(\frac{x-x_{m}}{r_{m}}\right) .
\end{aligned}
$$

So, taking into account (3.7) and (3.9) we obtain for any $\rho<1$ the inequality

$$
\begin{align*}
& \int_{B_{1}}\left|\nabla \Psi_{m}\right|^{2} d z \leq c(\rho) \int_{B_{1}}\left|D^{2} f\left(\Theta_{m}+\lambda_{m} \nabla^{2} \hat{u}_{m}\right)\right| \cdot\left\{\left|\nabla^{2} \hat{u}_{m}\right|^{2}+\left|\nabla \hat{u}_{m}\right|^{2}\right\} d z \tag{3.17}\\
& \quad \leq c(\rho)<\infty
\end{align*}
$$

In addition, one can write

$$
\begin{align*}
& \left|\Psi_{m}\right| \leq c \int_{0}^{1}\left|\nabla^{2} \hat{u}_{m}\right|\left(1+\left|\Theta_{m}+s \lambda_{m} \nabla^{2} \hat{u}_{m}\right|^{2}\right)^{\frac{p-2}{4}} d s \tag{3.18}\\
& \quad \leq c\left\{\left|\nabla^{2} \hat{u}_{m}\right|+\lambda_{m}^{\frac{p-2}{2}}\left|\nabla^{2} \hat{u}_{m}\right|^{p / 2}+1\right\} .
\end{align*}
$$

It follows from (3.14) that

$$
\int_{B_{\rho}} \lambda_{m}^{p-2}\left|\nabla^{2} \hat{u}_{m}\right|^{p} d x \leq c(\rho)<\infty .
$$

Combining the last estimate with (3.17) and (3.18) we can conclude that the sequence Ψ_{m} is bounded in $W_{2, \mathrm{loc}}^{1}\left(B_{1}\right)$. Now we proceed as follows: consider a number $M \gg 1$ and let

$$
U_{m}:=\left\{z \in B_{\rho}: \lambda_{m}\left|\nabla^{2} \hat{u}_{m}\right| \leq M\right\} .
$$

Then

$$
\begin{align*}
\int_{U_{m}} & \lambda_{m}^{q-2}\left|\nabla^{2} \hat{u}_{m}\right|^{q} d z \leq c\left\{\int_{U_{m}} \lambda_{m}^{q-2}\left|\nabla^{2} w_{m}\right|^{q} d z+\int_{U_{m}} \lambda_{m}^{q-2}\left|\nabla^{2} \hat{u}\right|^{q} d z\right\} \\
\leq & c\left\{\int_{U_{m}} \lambda_{m}^{q-2}\left(\left|\nabla^{2} \hat{u}_{m}\right|^{q-2}+\left|\nabla^{2} \hat{u}\right|^{q-2}\right)\right. \\
& \left.\cdot\left|\nabla^{2} w_{m}\right|^{2} d z+\int_{U_{m}} \lambda_{m}^{q-2}\left|\nabla^{2} \hat{u}\right|^{q} d z\right\} \tag{3.19}\\
\leq & c\left\{\int_{B_{\rho}}\left(M^{q-2}+\left|\nabla^{2} \hat{u}\right|^{q-2}\right)\left|\nabla^{2} w_{m}\right|^{2} d z+\int_{B_{\rho}} \lambda_{m}^{q-2}\left|\nabla^{2} \hat{u}\right|^{q} d z\right\} \\
& \rightarrow 0 \text { as } m \rightarrow \infty
\end{align*}
$$

on account of $\nabla^{2} w_{m} \rightarrow 0$ in $L^{2}\left(B_{\rho}\right)$ and $\nabla^{2} \hat{u} \in L^{\infty}\left(B_{\rho}\right)$. On the other hand, if we choose M sufficiently large, then on $B_{\rho}-U_{m}$ we get

$$
\Psi_{m}(z) \geq c \lambda_{m}^{-1+p / 2}\left|\nabla^{2} \hat{u}_{m}\right|^{p / 2}
$$

and, consequently

$$
\left|\nabla^{2} \hat{u}_{m}\right|^{q} \lambda_{m}^{q-2} \leq c \lambda_{m}^{2^{q}-2} \Psi_{m}^{\frac{2 q}{p}}
$$

Since (1.3) guarantees $\frac{2 q}{p}<\frac{2 n}{n-2}$ and since Ψ_{m} is uniformly bounded in $W_{2, \text { loc }}^{1}\left(B_{1}\right)$, we can conclude

$$
\begin{equation*}
\int_{B_{\rho}-U_{m}} \lambda_{m}^{q-2}\left|\nabla^{2} \hat{u}_{m}\right|^{q} d z \rightarrow 0 \text { as } m \rightarrow \infty \text { for any } \rho<1 \tag{3.20}
\end{equation*}
$$

It only remains to note that obviously the results (3.19) and (3.20) provide (3.13), which completes the proof.

References

[AF] Acerbi, E., Fusco, N., Partial regularity under anisotropic (p, q) growth conditions. J. Diff. Equ. 107, no. 1 (1994), 46-67.
[Ad] Adams, R.A., Sobolev spaces. Academic Press, New York-San FranciscoLondon, 1975.
[Bi] Bildhauer, M., Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg-New York, 2003.
[BF1] Bildhauer, M., Fuchs, M., Partial regularity for variational integrals with (s, μ, q)-growth. Calc. Var. 13 (2001), 537-560.
[BF2] Bildhauer, M., Fuchs, M., Higher order variational problems on two-dimensional domains. to appear in Ann. Acad. Sci. Fenn. Math.
[BF3] Bildhauer, M., Fuchs, M., $C^{1, \alpha}$-solutions to non-autonomous anisotropic variational problems. Calc. Var. 24 (2005), 309-340.
[Ca1] Campanato, S., Equazioni ellitichi del secundo ordine e spazi $\mathcal{L}^{2, \lambda}$. Ann. Mat. Pura Appl. 69 (1965), 321-381.
[Ca2] Campanato, S., Alcune osservazioni relative alle soluzioni di equazioni ellitiche di ordine $2 m$, in: Atti Convegno Equaz. Der. Parz., Bologna 1967, pp. 17-25.
[CFM] Carozza, M., Fusco, N., Mingione, G., Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura e Appl. 4 (1998), 141-164.
[DGG] Duzaar, F., Gastel, A., Grotowski, J.F., Optimal partial regularity for nonlinear elliptic systems of higher order. J. Math. Sci. Univ. Tokyo 8 (2001), 463-499.
[ELM1] Esposito, L., Leonetti, F., Mingione, G., Regularity results for minimizers of irregular integrals with (p,q)-growth. Forum Math. 14 (2002), 245-272.
[ELM2] Esposito, L., Leonetti, F., Mingione, G., Regularity for minimizers of functionals with p-q growth. Nonlinear Diff. Equ. Appl. 6 (1999), 133-148.
[ELM3] Esposito, L., Leonetti, F., Mingione, G., Sharp regularity for functionals with (p, q) growth. J. Diff. Equ. 204 (2004), 5-55.
[Ev] Evans, L.C., Quasiconvexity and partial regularity in the calculus of variations. Arch. Rat. Mech. Anal. 95 (1986), 227-252.
[EG] Evans, L.C., Gariepy, R.F., Blow-up, compactness and partial regularity in the calculus of variations. Ind. Univ. Math. J. 36 no. 2 (1987), 361-371.
[FH] Fusco, N., Hutchinson, J., $C^{1, \alpha}$-partial regularity of functions minimizing quasiconvex integrals. Manus. Math. 54 (1985), 121-143.
[Gi] Giaquinta, M., Multiple integrals in the calculus of variations and non-linear elliptic systems. Ann. of Math. Studies 105, Princeton UP, Princeton 1983.
[GiaMo1] Giaquinta, M., Modica, G., Regularity results for some classes of higher order nonlinear elliptic systems. J. Reine Angew. Math. 311 (1979), 145-169.
[GiaMo2] Giaquinta, M., Modica, G., Almost everywhere regularity results for solutions of nonlinear elliptic systems. Manus.Math. 28 (1979), 109-158.
[GiuMi] Giusti, E., Miranda, M., Sulla regolarità delle soluzioni deboli di una classe di sistemi ellitici quasi-lineari. Arch. Rat. Mech. Anal. 31 (1968), 173-184.
[Kr1] Kronz, M., Partial regularity results for minimizers of quasiconvex functionals of higher order. Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no.1, 81-112.
[Kr2] Kronz, M., Quasimonotone systems of higher order. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat.(8) 6 (2003), no.2, 459-480.
[Ma1] Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Rat. Mech. Anal. 105 (1989), 267284.
[Ma2] Marcellini, P., Regularity and existence of solutions of elliptic equations with (p, q) growth conditions. J. Diff. Equ. 90 (1991), 1-30.
[Ma3] Marcellini, P., Regularity for elliptic equations with general growth conditions. J. Diff. Equ. 105 (1993), 296-333.
[Mo] Morrey, C.B., Multiple integrals in the calculus of variations. Grundlehren der math. Wiss. in Einzeldarstellungen 130, Springer, Berlin-Heidelberg-New York 1966.

Darya Apushkinskaya
Universität des Saarlandes
Fachbereich 6.1 Mathematik
Postfach 151150
D-66041 Saarbrücken
Germany
e-mail: darya@math.uni-sb.de

Martin Fuchs
Universität des Saarlandes
Fachbereich 6.1 Mathematik
Postfach 151150
D-66041 Saarbrücken
Germany
e-mail: fuchs@math.uni-sb.de

