Universität des Saarlandes

Fachrichtung 6.1 - Mathematik

Preprint Nr. 163

On the Hilbert-Samuel multiplicity of Fredholm tuples

Jörg Eschmeier

Saarbrücken 2005

On the Hilbert-Samuel multiplicity of Fredholm tuples

Jörg Eschmeier

Saarland University
Department of Mathematics
Postfach 151150
D-66041 Saarbrücken
Germany
eschmei@math.uni-sb.de

Edited by
FR 6.1 - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany

Fax: $\quad+496813024443$
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

On the Hilbert-Samuel multiplicity of Fredholm tuples

Jörg Eschmeier ${ }^{1}$

Abstract

For commuting tuples $R \in L(Z)^{n}$ of Banach-space operators that arise as quotients of lower semi-Fredholm systems $T \in L(X)^{n}$ with constant cohomology dimension $\operatorname{dim} H^{n}(z-T, X)$ near the origin $0 \in \mathbb{C}^{n}$, we show that the Hilbert-Samuel multiplicity of R calculates the rank of the cohomology sheaf $\mathcal{H}^{n}\left(z-R, \mathcal{O}_{\mathbb{C}^{n}}^{Z}\right)$ at $z=0$.

0 . Introduction

Let $T \in L(X)^{n}$ be a commuting tuple of bounded linear operators on a complex Banach space X, and let $K^{\bullet}(T, X)$ be the Koszul complex of T. The tuple T is said to be lower semi-Fredholm if the last cohomology group $H^{n}(T, X)=X / \sum_{i=1}^{n} T_{i} X$ of its Koszul complex is finite dimensional. In this case all the spaces $M_{k}(T)=\sum_{|\alpha|=k} T^{\alpha} X \quad(k \in \mathbb{N})$ are finite codimensional, and the direct sum $\oplus_{k \geq 0} M_{k}(T) / M_{k+1}(T)$ can be turned into a graded finitely generated $\mathbb{C}[z]$-module. It is a fundamental result of commutative algebra that to any such module there is a polynomial $p \in \mathbb{Q}[x]$ of degree $\leq n$, the Hilbert-Samuel polynomial, with $\operatorname{dim} X / M_{k}(T)=p(k)$ for large k and such that the leading coefficient multiplied with n ! is a natural number, the so-called Hilbert-Samuel multiplicity.

On the other hand, for a given lower semi-Fredholm tuple $T \in L(X)^{n}$, there is an open neighbourhood U of $0 \in \mathbb{C}^{n}$ such that $\operatorname{dim} H^{n}(z-T, X)<\infty$ for all $z \in U$ and such that the last cohomology sheaf $\mathcal{H}=\mathcal{H}^{n}\left(z-T, \mathcal{O}_{U}^{X}\right)$ of the induced complex $K^{\bullet}\left(z-T, \mathcal{O}_{U}^{X}\right)$ of \mathcal{O}_{U}-modules is isomorphic to a quotient of a free module \mathcal{O}_{U}^{N} on U. In particular, the stalk \mathcal{H}_{0} is a noetherian module over the local ring \mathcal{O}_{0} of all convergent power series at $z=0$ and hence possesses a Hilbert-Samuel polynomial $p_{a n} \in \mathbb{Q}[x]$ such that $\operatorname{dim} \mathcal{H}_{0} / \mathfrak{m}^{k} \mathcal{H}_{0}=p_{\text {an }}(k)$ for large k. Here \mathfrak{m} is the maximal ideal of \mathcal{O}_{0}.

Both versions of the Hilbert-Samuel polynomial and their leading coefficients were introduced by Douglas and Yan in [3]. In a series of papers Xiang Fang studied the properties of the Hilbert-Samuel multiplicity

$$
c(T)=n!\lim _{k \rightarrow \infty} \frac{\operatorname{dim} X / M_{k}(T)}{k^{n}}
$$

[^0]and its relations to other invariants in operator theory. In [6] a complete description of the relation between Fredholm index and the Hilbert-Samuel multiplicity for single operators is given, while [8] contains a variety of results showing the close connection between Hilbert-Samuel multiplicity and the Fredholm index in multivariable operator theory, including the observation that, for row contractions with finite defect, the Hilbert-Samuel multiplicity coincides with Arveson's curvature invariant [1].

In this note we extend a method originating in [7] to show that, for a suitable class of lower semi-Fredholm tuples $R \in L(Z)^{n}$ on a Banach space Z, the Hilbert-Samuel multiplicity coincides with the rank of the cohomology sheaf $\mathcal{H}=\mathcal{H}^{n}\left(z-R, \mathcal{O}_{U}^{Z}\right)$ at $z=0$, or equivalently, that there are an open neighbourhood U of 0 and a proper analytic subset $S \subset U$ such that

$$
c(R)=\min _{z \in U} \operatorname{dim} H^{n}(z-R, Z)=\operatorname{dim} H^{n}(w-R, Z)
$$

for $w \in U \backslash S$. Furthermore, the restriction of \mathcal{H} to $U \backslash S$ is a locally free analytic sheaf of rank $c(R)$. These results are shown to hold for tuples $R \in L(Z)^{n}$ arising as quotients of lower semi-Fredholm tuples $T \in L(X)^{n}$ which are regular in the sense that the cohomology groups $H^{n}(z-T, X)$ have constant dimension near 0 . Hence, in this setting, we prove that the Hilbert-Samuel multiplicity calculates the stabilized dimension of $H^{n}(z-R, Z)$ at $z=0$, and give a natural explanation of results previously known in more particular situations.

1. Main results

Let $T=\left(T_{1}, \ldots, T_{n}\right) \in L(X)^{n}$ be a commuting tuple of continuous linear operators on a complex Banach space X. The Koszul complex of T

$$
K^{\bullet}(T, X): 0 \rightarrow \Lambda^{0} X \xrightarrow{T} \Lambda^{1} X \xrightarrow{T} \ldots \xrightarrow{T} \Lambda^{n} X \rightarrow 0
$$

is a finite complex of bounded operators between Banach spaces (see $\S 2.2$ in [4]). The vector spaces

$$
H^{p}(T, X)=\operatorname{Ker}\left(\Lambda^{p} X \xrightarrow{T} \Lambda^{p+1} X\right) / \operatorname{Im}\left(\Lambda^{p-1} X \rightarrow \Lambda^{p} X\right) \quad(p=0, \ldots, n)
$$

are called the cohomology groups of $K^{\bullet}(T, X)$.
Let us suppose that the space

$$
H^{n}(T, X) \cong X / \sum_{i=1}^{n} T_{i} X
$$

is finite dimensional. Fix a basis $\left(\left[x_{1}\right], \ldots,\left[x_{N}\right]\right)$ of this space. Then the spaces $M_{k}=$ $\sum_{|\alpha|=k} T^{\alpha} X(k \in \mathbb{N})$ form a decreasing sequence of finite-codimensional subspaces of X such that

$$
M_{k+1}=\sum_{j=1}^{n} T_{j} M_{k} \quad(k \in \mathbb{N})
$$

On the algebraic direct sum $\bar{X}=\bigoplus_{k=0}^{\infty}\left(M_{k} / M_{k+1}\right)$ we define a commuting tuple $\bar{T}=$ $\left(\bar{T}_{1}, \ldots, \bar{T}_{n}\right)$ of linear maps $\bar{T}_{j}: \bar{X} \xrightarrow{k=0} \bar{X}$ by

$$
\bar{T}_{j}\left(\left(x_{k}+M_{k+1}\right)_{k \in \mathbb{N}}\right)=\left(T_{j} x_{k-1}+M_{k+1}\right)_{k \in \mathbb{N}} .
$$

It is elementary to check that the induced module structure

$$
\mathbb{C}[z] \times \bar{X} \rightarrow \bar{X}, \quad(p, x) \mapsto p(\bar{T}) x
$$

turns \bar{X} into a finitely generated graded $\mathbb{C}[z]$-module. More precisely, let $\mathcal{V}_{k}=\{p \in$ $\mathbb{C}[z] ; \operatorname{deg}(p) \leq k\}$. Then one can show that

$$
\bigoplus_{j=0}^{k-1} M_{j} / M_{j+1}=\mathrm{LH}\left(\left\{p(\bar{T})\left(x_{i}+M_{1}\right) ; p \in \mathcal{V}_{k-1} \text { and } i=1, \ldots, N\right\}\right)
$$

for all $k \geq 1$. In particular, one obtains the estimates

$$
\operatorname{dim}\left(X / M_{k}\right) \leq N \operatorname{dim} \mathcal{V}_{k-1}=N \frac{k(k+1) \cdot \ldots \cdot(k+n-1)}{n!}
$$

for all $k \geq 0$. Using a theorem going back to Hilbert (Theorem 1.11 in [5]) we conclude that there is a polynomial $p \in \mathbb{Q}[x]$ with $\operatorname{deg}(p) \leq n$ such that

$$
\operatorname{dim}\left(X / M_{k}\right)=p(k)
$$

for all sufficiently large natural numbers k. Furthermore, in this case the limit

$$
c(T)=n!\lim _{k \rightarrow \infty} \operatorname{dim}\left(X / M_{k}\right) / k^{n}
$$

exists and defines a natural number $c(T) \in\{0,1,2, \ldots, N\}$. We call p the Hilbert-Samuel polynomial and $c(T)$ the Hilbert-Samuel multiplicity of T.

The condition that $H^{n}(T, X)$ is finite dimensional implies that the spaces $H^{n}(z-T, X) \cong$ $X / \sum_{i=1}^{n}\left(z_{i}-T_{i}\right) X$ are finite dimensional for all points z in a suitable open neighbourhood U of 0 in \mathbb{C}^{n} (Section 2.6 in [4]). For a Banach space E, we denote by \mathcal{O}_{U}^{E} the analytic sheaf of all germs of analytic E-valued functions on U. The boundary maps in the Koszul complexes $K^{\bullet}(z-T, X)$ depend analytically on z and induce a corresponding sequence

$$
K^{\bullet}\left(z-T, \mathcal{O}_{U}^{X}\right): 0 \longrightarrow \mathcal{O}_{U}^{\Lambda^{1} X} \xrightarrow{z-T} \ldots \xrightarrow{z-T} O_{U}^{\Lambda^{n} X} \longrightarrow 0
$$

of analytic sheaves on U. Let us denote by

$$
\mathcal{F}=\mathcal{F}_{T}=\mathcal{H}^{n}\left(z-T, \mathcal{O}_{U}^{X}\right) \cong \mathcal{O}_{U}^{X} /(z-T) \mathcal{O}_{U}^{X^{n}}
$$

its last cohomology sheaf. Let $\left(\left[x_{1}\right], \ldots,\left[x_{r}\right]\right)$ be a basis of $H^{n}(T, X)$. After shrinking U one may suppose that there is an epimorphism

$$
\mathcal{O}_{U}^{r} \xrightarrow{h} \mathcal{F}
$$

of analytic sheaves (see the proof of Proposition 9.4.5 in [4]). It follows that the stalk \mathcal{F}_{0} of \mathcal{F} at $z=0$ is a noetherian module over the local ring \mathcal{O}_{0} of all convergent power series at $z=0$. Let \mathfrak{m} be the maximal ideal of \mathcal{O}_{0}. It is well known that there is a polynomial $p_{\text {an }} \in \mathbb{Q}[x]$ with $\operatorname{deg}(p) \leq n$ such that

$$
\operatorname{dim}_{\mathbb{C}}\left(\mathcal{F}_{0} / \mathfrak{m}^{k} \mathcal{F}_{0}\right)=p_{a n}(k)
$$

for all sufficiently large natural numbers k. Again the limit

$$
c_{a n}(T)=n!\lim _{k \rightarrow \infty} \operatorname{dim}\left(\mathcal{F}_{0} / \mathfrak{m}^{k} \mathcal{F}_{0}\right) / k^{n}
$$

exists and defines a natural number $c_{a n}(T) \in\{0,1,2, \ldots\}$. We call $p_{a n}$ the analytic Hilbert-Samuel polynomial and $c_{a n}(T)$ the analytic Hilbert-Samuel multiplicity of T.

The relationship between the invariants $p, c(T)$ and their analytic counterparts $p_{a n}$, $c_{a n}(T)$ was studied before by Douglas and Yan [3], although in a slightly different language. We recall the main results.

Define $M=\{p \in \mathbb{C}[z] ; p(0)=0\}$. Regard X as a $\mathbb{C}[z]$-module via

$$
\mathbb{C}[z] \times X \rightarrow X, \quad(p, x) \mapsto p(T) x .
$$

It is elementary to check that $M^{k} X=\sum_{|\alpha|=k} T^{\alpha} X$ and that the map

$$
\varphi: X \rightarrow \mathcal{F}_{0}, \quad x \mapsto x+(z-T) \mathcal{O}_{0}^{X^{n}}
$$

is a morphism of $\mathbb{C}[z]$-modules such that $\varphi\left(M^{k} X\right) \subset \mathfrak{m}^{k} \mathcal{F}_{0}$ for all $k \geq 0$. One can show (cf. Proposition 5 in [3]) that the induced maps

$$
\varphi_{k}: X / M^{k} X \rightarrow \mathcal{F}_{0} / \mathfrak{m}^{k} \mathcal{F}_{0}, \quad x+M^{k} X \mapsto \varphi(x)+\mathfrak{m}^{k} \mathcal{F}_{0}
$$

are onto for all $k \geq 0$.

Proposition 1 (Douglas-Yan) Let $T \in L(X)^{n}$ be a commuting tuple such that $\operatorname{dim} H^{n}(T, X)<\infty$. Let p and $p_{a n}$ be the Hilbert-Samuel polynomial and analytic HilbertSamuel polynomial of T, respectively. Then

$$
p_{a n}(k) \leq p(k)
$$

for all sufficiently large natural numbers k. In particular, the inequality $c_{a n}(T) \leq c(T)$ holds.

Let $Z=X / Y$ be the quotient of X modulo a closed invariant subspace Y of T. We denote by $S=T \mid Y$ and $R=T / Y$ the restriction of T to Y and the quotient tuple of T modulo Y, respectively. The short exact sequences

$$
0 \rightarrow K^{\bullet}(z-S, Y) \rightarrow K^{\bullet}(z-T, X) \rightarrow K^{\bullet}(z-R, Z) \rightarrow 0
$$

$\left(z \in \mathbb{C}^{n}\right)$ of Koszul complexes induce long exact sequences of cohomology

$$
\begin{array}{rlll}
0 \longrightarrow & H^{0}(z-S, Y) & \xrightarrow{j} H^{0}(z-T, X) & \xrightarrow{q} \\
\xrightarrow{d_{z}} & H^{0}(z-R, Z) \\
& H^{1}(z-S, Y) \xrightarrow{j} & \ldots & \ldots \\
& \ldots & \ldots \\
\xrightarrow{d_{z}} & H^{n}(z-S, Y) \xrightarrow{j} & H^{n}(z-T, X) \xrightarrow{q} & H^{n}(z-R, Z) \longrightarrow 0,
\end{array}
$$

where j and q are the linear maps induced by the inclusion $Y \hookrightarrow X$ and the quotient map $X \rightarrow Z$ and the maps d_{z} are the connecting homomorphisms (cf. [5]).

Our aim is to study the relation between the Hilbert-Samuel multiplicities of T and R. We shall clarify this relation under the additional hypothesis that there is an open neighbourhood U of $0 \in \mathbb{C}^{n}$ such that all the spaces

$$
H^{n}(z-T, X) \cong X / \sum_{i=1}^{n}\left(z_{i}-T_{i}\right) X
$$

have the same finite dimension $N \geq 1$. It is well known that the set S of all discontinuity points of the function

$$
U \rightarrow \mathbb{N}, \quad z \mapsto \operatorname{dim} H^{n}(z-R, Z)
$$

is a nowhere dense analytic subset of U (Satz 1.5 in [10]) and that there is a natural number $r \in\{0, \ldots, N\}$ with

$$
\operatorname{dim} H^{n}(z-R, Z)=r<\operatorname{dim} H^{n}(w-R, Z)
$$

for $z \in U \backslash S$ and $w \in S$.
It is the main aim of this note to prove the following result.

Theorem 2 Let $R \in L(Z)^{n}$ be the quotient of a commuting tuple $T \in L(X)^{n}$ such that

$$
\operatorname{dim} H^{n}(z-T, X) \equiv \text { const. }<\infty
$$

near zero. Then there is nowhere dense analytic subset $S \subset U$ of an open neighbourhood U of $0 \in \mathbb{C}^{n}$ with the property that

$$
c(R)=\operatorname{dim} H^{n}(z-R, Z) \quad \text { for } z \in U \backslash S
$$

To prove this result we need some preparations. Let U be a connected open neighbourhood of $0 \in \mathbb{C}^{n}$ such that

$$
\operatorname{dim} H^{n}(z-T, X)=N \quad(z \in U)
$$

Choose a direct complement D of $\sum_{i=1}^{n} T_{i} X$ in X. Since the analytically parametrized complex

$$
T(z): X^{n} \oplus D \rightarrow X, \quad\left(\left(x_{i}\right), y\right) \mapsto \sum_{i=1}^{n}\left(z_{i}-T_{i}\right) x_{i}+y
$$

is onto at $z=0$, we can achieve (by shrinking U) that the induced map

$$
\mathcal{O}\left(U, X^{n} \oplus D\right) \rightarrow \mathcal{O}(U, X)
$$

is onto again (Lemma 2.1.5 in [4]). By comparing dimensions we see that the surjective linear maps

$$
D \rightarrow H^{n}(z-T, X), \quad y \mapsto[y]
$$

are vector-space isomorphisms for all $z \in U$. Hence, for each $x \in X$ and each $z \in U$, there is a unique vector $x(z) \in D$ with

$$
x-x(z) \in \sum_{i=1}^{n}\left(z_{i}-T_{i}\right) X
$$

Since $x(z)$ depends analytically on z, we obtain a linear map

$$
\rho: X \rightarrow \mathcal{O}(U, D), \quad(\rho x)(z)=x(z)
$$

The relation

$$
T_{j} x-z_{j} x(z) \in\left(T_{j}-z_{j}\right) x(z)+\sum_{i=1}^{n}\left(z_{i}-T_{i}\right) X
$$

valid for $x \in X, z \in U$ and $j=1, \ldots, n$, shows that

$$
\rho(p(T) x)=p \rho(x) \quad(x \in X, p \in \mathbb{C}[z]) .
$$

By Lemma 2.1.5 in [4], the morphism

$$
\mathcal{O}_{U}^{X^{n} \oplus D} \xrightarrow{T(\cdot)} \mathcal{O}_{U}^{X}
$$

of analytic sheaves remains onto. Therefore the map

$$
\mathcal{O}_{U}^{D} \rightarrow \mathcal{F}, \quad f_{\lambda} \mapsto f_{\lambda}+(z-T) \mathcal{O}_{\lambda}^{X^{n}}
$$

defines an isomorphism of analytic sheaves.
Let as before $S \subset U$ be a nowhere dense analytic subset such that

$$
\operatorname{dim} H^{n}(z-R, Z)=r
$$

for all $z \in U \backslash S$. The above arguments applied to R instead of T show that the sheaf \mathcal{F}_{R} is locally free of rank r on $U \backslash S$. We call r the rank of the sheaf \mathcal{F}_{R} on U and write $\operatorname{rank}\left(\mathcal{F}_{R}\right)=r$.

Lemma 3 Let $T \in L(X)^{n}$ be a commuting tuple such that there is an open neighbourhood U of 0 in \mathbb{C}^{n} with $\operatorname{dim} H^{n}(z-T, X)=N$ for $z \in U$. Then we have $c(T)=c_{a n}(T)=N$.

Proof. Denote by $\mathcal{F}=\mathcal{H}^{n}\left(z-T, \mathcal{O}_{U}^{X}\right)$ the n-th cohomology sheaf of the complex $K^{\bullet}\left(z-T, \mathcal{O}_{U}^{X}\right)$. As seen above, there is an isomorphism $\psi: \mathcal{O}_{0}^{N} \longrightarrow \mathcal{F}_{0}$ of \mathcal{O}_{0}-modules. This map induces isomorphisms of \mathcal{O}_{0}-modules

$$
\psi_{k}: \mathcal{O}_{0}^{N} / \mathfrak{m}^{k} \mathcal{O}_{0}^{N} \longrightarrow \mathcal{F}_{0} / \mathfrak{m}^{k} \mathcal{F}_{0} \quad(k \geq 0)
$$

Because of $\mathfrak{m}^{k} \mathcal{O}_{0}^{N}=\left(\mathfrak{m}^{k} \mathcal{O}_{0}\right)^{N}=\left(\mathfrak{m}^{k}\right)^{N}$ we obtain induced isomorphisms of \mathcal{O}_{0}-modules

$$
\mathcal{F}_{0} / \mathfrak{m}^{k} \mathcal{F}_{0} \cong \mathcal{O}_{0}^{N} /\left(\mathfrak{m}^{k}\right)^{N} \cong\left(\mathcal{O}_{0} / \mathfrak{m}^{k}\right)^{N}
$$

Using the canonical vector-space isomorphisms $\mathcal{O}_{0} / \mathfrak{m}^{k} \cong \mathcal{V}_{k-1}$, we find that

$$
\operatorname{dim}_{\mathbb{C}}\left(\mathcal{F}_{0} / \mathfrak{m}^{k} \mathcal{F}_{0}\right)=\operatorname{dim}\left(\mathcal{V}_{k-1}^{N}\right)=N \frac{k(k+1) \cdot \ldots \cdot(k+n-1)}{n!}
$$

for all $k \geq 0$. But then $N=c_{a n}(T) \leq c(T) \leq N$, and the assertion follows.

For $z \in U$, define

$$
\delta_{z}: X \rightarrow D, \quad x \mapsto x(z)
$$

and

$$
Y_{z}=\{y(z) ; y \in Y\} .
$$

Using the explicit definition of the connecting homomorphisms d_{z} occurring in the long exact cohomology sequences explained before Theorem 2 one easily checks that the sequences

$$
H^{n-1}(z-R, Z) \xrightarrow{d_{z}} H^{n}(z-S, Y) \xrightarrow{\widehat{\delta_{z}}} Y_{z} \longrightarrow 0
$$

are exact for $z \in U$. Using this sequence together with the above long exact cohomology sequence we find that

$$
\operatorname{dim} H^{n}(z-R, Z)=N-\operatorname{dim} Y_{z}
$$

for $z \in U$.

Hence the minimal dimension of $H^{n}(z-R, Z)$ on U corresponds to the maximal dimension of Y_{z} on U. The last number admits an algebraic representation (cf. Lemma 4 in [7]). To formulate the relevant result, let us denote by

$$
T_{k}: \mathcal{O}(U, D) \rightarrow \mathcal{O}(U, D), \quad f \mapsto \sum_{|\alpha| \leq k} \frac{f^{(\alpha)}(0)}{\alpha!} z^{\alpha}
$$

the linear maps that associate with each analytic function on U its k-th Taylor polynomial.

Lemma 4 Let $U \subset \mathbb{C}^{n}$ be an open neighbourhood of 0 and let D be a finite-dimensional vector space. Given $a \mathbb{C}[z]$-submodule $M \subset \mathcal{O}(U, D)$, define $M_{z}=\{f(z) ; f \in M\}$ for $z \in U$. Then there is a nowhere dense analytic subset $S \subset U$ such that

$$
\operatorname{dim} M_{z}=\max _{w \in U} \operatorname{dim} M_{w}=n!\lim _{k \rightarrow \infty} \frac{\operatorname{dim} T_{k}(M)}{k^{n}}
$$

for all $z \in U \backslash S$.

Proof. It is elementary to check that the proof given in [7] (see Lemma 4) for submodules of Hilbert modules remains valid. For completeness sake, we indicate the main steps.

Fix a basis $\left(e_{1}, \ldots, e_{N}\right)$ of D. Define $m=\max _{w \in U} \operatorname{dim} M_{w}$ and choose $h_{1}, \ldots, h_{m} \in M$ such that $h_{1}\left(z_{0}\right), \ldots, h_{m}\left(z_{0}\right)$ are linearly independent vectors in D for some point $z_{0} \in U$. Each function h_{j} has a representation of the form

$$
h_{j}(z)=\sum_{i=1}^{N} h_{j}^{i}(z) e_{i} \quad(z \in U)
$$

with uniquely determined analytic functions $h_{j}^{i} \in \mathcal{O}(U)$. After permuting the given basis of D we may suppose that the analytic matrix-valued function

$$
\Theta: U \rightarrow \mathbb{C}^{m, m}, \quad \Theta(\lambda)=\left(h_{j}^{i}(\lambda)\right)_{1 \leq i, j \leq m}
$$

is invertible at z_{0}. Define $c=\operatorname{ord}_{0}(\operatorname{det}(\Theta))$. Basic linear algebra allows us to choose an analytic function $A=\left(A_{i j}\right): U \rightarrow \mathbb{C}^{m, m}$ with

$$
\Theta(z) A(z)=A(z) \Theta(z)=\operatorname{det}(\Theta(z)) I_{m} \quad(z \in U)
$$

For each $k \in \mathbb{N}$, the analytic functions

$$
\Theta_{i j}^{k}=\left[\Theta\left(A-\left(T_{k} A_{i j}\right)\right)\right]_{i, j}=\sum_{\mu=1}^{m} h_{\mu}^{i}\left(A_{\mu j}-T_{k} A_{\mu j}\right)
$$

have order at least $k+1$ at $z=0$.
Set $D_{0}=\operatorname{LH}\left\{e_{1}, \ldots, e_{m}\right\}$. Let $Q_{0}: D \rightarrow D_{0}$ be the projection onto D_{0} with $Q_{0} e_{i}=0$ for $i=m+1, \ldots, N$. Denote by

$$
Q=1 \otimes Q_{0}: \mathcal{O}(U, D) \rightarrow \mathcal{O}\left(U, D_{0}\right)
$$

the induced projection on $\mathcal{O}(U, D)$. For each function $P=\left(P_{i j}\right): U \rightarrow \mathbb{C}^{m, m}$ with polynomial entries $P_{i j} \in \mathbb{C}[z]$, we have

$$
\sum_{i=1}^{m}[\Theta P]_{i j} e_{i}=Q\left(\sum_{\mu=1}^{m} P_{\mu j} h_{\mu}\right) \in Q M
$$

for $j=1, \ldots, m$.
Fix $k \in \mathbb{N}$ and a polynomial $p \in \mathbb{C}[z]$. For $j=1, \ldots, m$, the function $T_{k}\left(p \operatorname{det}(\Theta) e_{j}\right)$ is obtained by applying the linear map T_{k} coefficientwise to the matrix

$$
p \operatorname{det}(\Theta) I_{m}-p\left(\Theta_{\mu \nu}^{k}\right)_{\mu, \nu}=\Theta p\left(T_{k} A_{\mu \nu}\right)_{\mu, \nu}
$$

then multiplying the i-th coefficient of the j-th column of this matrix with e_{i} and adding up over all $i=1, \ldots, m$. It follows that

$$
T_{k}\left(p \operatorname{det}(\Theta) e_{j}\right) \in T_{k}(Q M) \quad(p \in \mathbb{C}[z], j=1, \ldots, m)
$$

Let $\mathcal{V}_{i}=\{p \in \mathbb{C}[z] ; \operatorname{deg}(p) \leq i\}$ for $i \in \mathbb{N}$. For $k \geq c$ and $j=1, \ldots, m$, the linear maps

$$
\mathcal{V}_{k-c} \rightarrow T_{k}(Q M), \quad p \mapsto T_{k}\left(p \operatorname{det}(\Theta) e_{j}\right)
$$

are obviously injective and therefore

$$
\begin{aligned}
\operatorname{dim} T_{k}(M) & \geq \operatorname{dim} Q T_{k}(M)=\operatorname{dim} T_{k}(Q M) \\
& \geq m \operatorname{dim} \mathcal{V}_{k-c}=\frac{m(k-c+1) \cdot \ldots \cdot(k-c+n)}{n!}
\end{aligned}
$$

We conclude that

$$
m \leq n!\liminf _{n \rightarrow \infty} \frac{\operatorname{dim} T_{k}(M)}{k^{n}}
$$

Let us turn to the proof of the opposite inequality. Since the right-hand side of the last inequality can be estimated from above against $n!\lim _{k \rightarrow \infty}\left(N \operatorname{dim} \mathcal{V}_{k}\right) / k^{n}=N$, we may suppose that $m<N$. Let $f=\sum_{i=1}^{N} f^{i} e_{i} \in M$ be arbitrary. The maximality of m implies that the vectors $h_{1}(z), \ldots, h_{m}(z), f(z) \in D$ are linearly dependent for each $z \in U$. Hence the determinant of the matrix

$$
\left(\begin{array}{cccc}
h_{1}^{1} & \ldots & h_{m}^{1} & f^{1} \\
\ldots & \ldots & \ldots & \ldots \\
h_{1}^{m} & \ldots & h_{m}^{m} & f^{m} \\
h_{1}^{i} & \ldots & h_{m}^{i} & f^{i}
\end{array}\right)
$$

is identically zero for every fixed $i=m+1, \ldots, N$. Expanding this determinant according to the last column, we find that

$$
g_{1} f^{1}+\ldots+g_{m} f^{m}+g_{i} f^{i} \equiv 0
$$

with suitable functions $g_{1}, \ldots, g_{m} \in \mathcal{O}(U)$ and $g_{i}=\operatorname{det}(\Theta)$.
Fix $k \in \mathbb{N}$. Let $g=T_{k}(f)$ with $f=\sum_{i=1}^{N} f^{i} e_{i}$ be as above, but assume in addition that $Q g=0$. Then

$$
g=\sum_{i=1}^{N} T_{k}\left(f^{i}\right) e_{i}=\sum_{i=m+1}^{N} T_{k}\left(f^{i}\right) e_{i}
$$

and for $i=m+1, \ldots, N$, we obtain the relations

$$
T_{k}\left(g_{i} f^{i}\right)=-T_{k}\left(g_{1} f^{1}+\ldots+g_{m} f^{m}\right)=0
$$

It follows that $\operatorname{ord}\left(f^{i}\right) \geq k-c+1$ for $i=m+1, \ldots, N$ and that

$$
g=\left(T_{k}-T_{k-c}\right) \sum_{i=m+1}^{N} f^{i} e_{i} \in(I-Q)\left(T_{k}-T_{k-c}\right) \mathcal{O}(U, D)
$$

The above arguments show that

$$
\operatorname{dim}\left(T_{k}(I-Q) M\right) \leq \operatorname{rank}(I-Q)\left(T_{k}-T_{k-c}\right)=(N-m)\left[\binom{n+k}{n}-\binom{n+k-c}{n}\right]
$$

Since the right-hand side is a polynomial of degree at most $(n-1)$ in k, we conclude that

$$
\begin{aligned}
& n!\quad \limsup _{k \rightarrow \infty} \frac{\operatorname{dim} T_{k}(M)}{k^{n}} \leq n!\limsup _{k \rightarrow \infty} \frac{\operatorname{dim} Q T_{k}(M)}{k^{n}} \\
& \quad \leq n!\lim _{k \rightarrow \infty} \frac{T_{k} \mathcal{O}\left(U, D_{0}\right)}{k^{n}}=m .
\end{aligned}
$$

The significance of the maximal dimension of the spaces M_{z}, usually referred to as the fibre dimension of M, was recognized before in the context of analytic functional Hilbert spaces by Gleason, Richter and Sundberg [9].
Let us return to the operator-theoretic situation described before Lemma 3. With the notation fixed there, the subspace

$$
M=\rho Y \subset \mathcal{O}(U, D)
$$

is a $\mathbb{C}[z]$-submodule. Applying Lemma 4 to this submodule we obtain the next result.

Corollary 5 With the notation explained above, there is a nowhere dense analytic subset $S \subset U$ of a connected open neighbourhood U of $0 \in \mathbb{C}^{n}$ such that

$$
\operatorname{dim} H^{n}(z-R, Z)=\min _{w \in U} H^{n}(w-R, Z)=N-n!\lim _{k \rightarrow \infty} \frac{\operatorname{dim} T_{k}(\rho Y)}{k^{n}}
$$

for all $z \in U \backslash S$.

Our next aim is to relate the limit occurring in Corollary 5 to the Hilbert-Samuel multiplicity of R. For a commuting tuple $T \in L(X)^{n}$, we use the notation $M_{k}(T)=\sum_{|\alpha|=k} T^{\alpha} X$ $(k \in \mathbb{N})$.

Lemma 6 Let $Y \in \operatorname{Lat}(T)$ be a closed invariant subspace of a commuting tuple $T \in$ $L(X)^{n}$, let $Z=X / Y$ and let $R=T / Y \in L(Z)^{n}$ be the induced quotient tuple. Suppose that

$$
\operatorname{dim} H^{n}(T, X)<\infty
$$

Then the Hilbert-Samuel multiplicities of T and R satisfy

$$
c(R)=c(T)-n!\lim _{k \rightarrow \infty} \frac{\operatorname{dim}\left[\left(Y+M_{k}(T)\right) / M_{k}(T)\right]}{k^{n}} .
$$

Proof. It suffices to observe that the inclusion map $j: Y \rightarrow X$ and the quotient map $q: X \rightarrow Z$ induce short exact sequences

$$
0 \longrightarrow \frac{Y+M_{k}(T)}{M_{k}(T)} \xrightarrow{j} X / M_{k}(T) \xrightarrow{q} Z / M_{k}(R) \longrightarrow 0 .
$$

Using the fact that the alternating sum of the dimensions of the three spaces forming this sequence is zero, one deduces the assertion.

Let us return to the case where $\operatorname{dim} H^{n}(z-T, X)=N$ near $z=0 \in \mathbb{C}^{n}$. By Lemma 3 we know that $c(T)=N$. With the notation fixed before Lemma 4 we obtain that

$$
\rho\left(M_{k}(T)\right) \subset\left\{f \in \mathcal{O}(U, D) ; \operatorname{ord}_{0}(f) \geq k\right\}
$$

Hence the maps $T_{k-1} \circ \rho$ induce surjective linear maps

$$
\tau_{k}:\left(Y+M_{k}(T)\right) / M_{k}(T) \rightarrow T^{k-1}(\rho Y)
$$

It follows that the limit occurring in Lemma 6 is at most larger than the corresponding limit in Corollary 5. We complete the proof of Theorem 2 by showing that both limits actually coincide.

Corollary 7 Let $Y \in \operatorname{Lat}(T)$ be a closed invariant subspace of a commuting tuple $T \in L(X)^{n}$, let $Z=X / Y$ and let $R=T / Y \in L(Z)^{n}$ be the induced quotient tuple. Suppose that in some connected open neighbourhood U of $0 \in \mathbb{C}^{n}$

$$
\operatorname{dim} H^{n}(z-T, X)=N \quad(z \in U)
$$

Then there is a nowhere dense analytic subset $S \subset U$ such that

$$
c(R)=\min _{w \in U} \operatorname{dim} H^{n}(w-R, Z)=\operatorname{dim} H^{n}(z-R, Z)
$$

for $z \in U \backslash S$.

Proof. Let $\mathcal{F}=\mathcal{H}^{n}\left(z-T, \mathcal{O}_{U}^{X}\right)$ be the n-th cohomology sheaf of the Koszul complex $K^{\bullet}\left(z-T, \mathcal{O}_{U}^{X}\right)$. Fix a direct complement D of $\sum_{i=1}^{n} T_{i} X$ in X. As seen before, after shrinking U, we may suppose that the map

$$
\mathcal{O}_{U}^{D} \rightarrow \mathcal{F}, \quad f_{\lambda} \mapsto f_{\lambda}+(z-T) \mathcal{O}_{\lambda}^{X^{n}}
$$

is an isomorphism of analytic sheaves. The composition

$$
X \xrightarrow{\rho} \mathcal{O}(U, D) \cong \mathcal{F}(U) \xrightarrow{\delta_{0}} \mathcal{F}_{0}
$$

where the last map is the point evaluation $\delta_{0}(\gamma)=\gamma(0)$, is precisely the map

$$
\varphi: X \rightarrow \mathcal{F}_{0}, \quad \varphi(x)=x+(z-T) \mathcal{O}_{0}^{X^{n}}
$$

that we defined in the section leading to Proposition 1. The cited result from [3] implies that the compositions

$$
\varphi_{k}: X / M^{k} X \xrightarrow{[\rho]} \mathcal{O}(U, D) / M^{k} \mathcal{O}(U, D) \longrightarrow \mathcal{F}(U) / M^{k} \mathcal{F}(U) \longrightarrow \mathcal{F}_{0} / \mathfrak{m}^{k} \mathcal{F}_{0}
$$

are onto for all $k \geq 0$. Let p and $p_{a n}$ be the Hilbert-Samuel polynomial and analytic Hilbert-Samuel polynomial of T, respectively. As an application of Lemma 3 we obtain that $q=p-p_{a n}$ is a polynomial with $\operatorname{deg}(q) \leq n-1$. By construction

$$
\operatorname{dim} \operatorname{Ker} \varphi_{k}=\operatorname{dim}\left(X / M^{k} X\right)-\operatorname{dim}\left(\mathcal{F}_{0} / \mathfrak{m}^{k} \mathcal{F}_{0}\right)=q(k)
$$

for sufficiently large k. Since τ_{k} acts as the composition

$$
\left(Y+M_{k}(T)\right) / M_{k}(T) \xrightarrow{[\rho]} \mathcal{O}(U, D) / M^{k} \mathcal{O}(U, D) \xrightarrow{\hat{T}_{k-1}} \mathcal{O}(U, D),
$$

where the map \hat{T}_{k-1} defined by $\hat{T}_{k-1}([f])=T_{k-1}(f)$ is injective, we conclude that

$$
\operatorname{dim} \operatorname{Ker} \tau_{k} \leq \operatorname{dim} \operatorname{Ker} \varphi_{k} \quad(k \in \mathbb{N})
$$

The observation that

$$
\operatorname{dim}\left[\left(Y+M_{k}(T)\right) / M_{k}(T)\right]-\operatorname{dim} T_{k-1}(\rho Y)=\operatorname{dim}\left(\operatorname{Ker} \tau_{k}\right) \leq q(k)
$$

for all sufficiently large k, completes the proof.

The question whether $c(R)=c_{a n}(R)$ in the setting of Corollary 7 remains open here, at least in the Banach-space case. In the case of Hilbert spaces the cohomology sheaf $\mathcal{H}=\mathcal{H}^{n}\left(z-R, \mathcal{O}_{U}^{Z}\right)$ is known to be coherent [11]. Then standard results from analytic geometry (Theorem 7.4 in [2]) imply that the map

$$
U \rightarrow \mathbb{N}, \quad z \mapsto c_{a n}(z-R)=n!\lim _{k \rightarrow \infty} \frac{\operatorname{dim}\left(\mathcal{H}_{z} / \mathfrak{m}_{z}^{k} \mathcal{H}_{z}\right)}{k^{n}}
$$

is upper semicontinuous. Since

$$
c_{a n}(z-R)=\min _{w \in U} \operatorname{dim} H^{n}(w-R, Z)=c(R) \quad(z \in U \backslash S)
$$

for a proper analytic subset $S \subset U$, it follows that $c_{a n}(R) \geq c(R)$. Since the reverse inequality always holds, we have equality. The sheaf \mathcal{H} is also known to be coherent, when the tuple R is Fredholm, that is, when $\operatorname{dim} H^{p}(R, Z)<\infty$ for $p=0, \ldots, n$. Hence also in this case we obtain equality $c(R)=c_{a n}(R)$ in the setting of Corollary 7 .

A second natural question is whether the assertion of Theorem 2 remains true, when we replace the hypothesis that R is a quotient of a tuple $T \in L(X)^{n}$ for which $\operatorname{dim} H^{n}(z-T, X)$ is constant for z near 0 simply by the condition that $\operatorname{dim} H^{n}(R, Z)<\infty$.

References

[1] W. Arveson, The curvature invariant of a Hilbert module over $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$, J. Reine Angew. Math. 522 (2000), 173-236.
[2] E. Bierstone and P. Milman, Relations among analytic functions I, Ann. Inst. Fourier 37 (1987), 187-239.
[3] R. Douglas and K. Yan, Hilbert-Samuel polynomials for Hilbert modules, Indiana Univ. Math. J. 42 (1993), 811-820.
[4] J. Eschmeier and M. Putinar, Spectral decompositions and analytic sheaves, London Mathematical Society Monographs, New Series, 10, Clarendon Press, Oxford, 1996.
[5] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate texts in Mathematics 150, Springer-Verlag, New York, 1995.
[6] X. Fang, Samuel multiplicity and the structure of semi-Fredholm operators, Adv. Math. 186 (2004), 411-437.
[7] X. Fang, The Fredholm index of quotient Hilbert modules, Math. Res. Lett. 12 (2005), 911-920.
[8] X. Fang, The Fredholm index of a pair of commuting operators, Preprint.
[9] J. Gleason, S. Richter, and C. Sundberg, On the index of invariant subspaces in spaces of analytic functions in several complex variables, Crelles Journal, to appear.
[10] W. Kaballo, Holomorphe Semi-Fredholmfunktionen ohne komplementierte Bilder, Math. Nachr. 91 (1979), 327-335.
[11] A. Markoe, Analytic families of differential complexes, J. Funct. Anal. 9 (1972), 181-188.

Jörg Eschmeier
Fachrichtung Mathematik
Universität des Saarlandes
Postfach 151150
D-66041 Saarbrücken
Germany
e-mail: eschmei@math.uni-sb.de

[^0]: ${ }^{1} 2000$ Mathematics Subject Classification. Primary 47A15; Secondary 47A13, 32C35.

