Universität des Saarlandes

Fachrichtung 6.1 - Mathematik

Preprint Nr. 167

Beurling-type representation of invariant subspaces in reproducing kernel Hilbert spaces

Christoph Barbian

Saarbrücken 2006

Beurling-type representation of invariant subspaces in reproducing kernel Hilbert spaces

Christoph Barbian

Saarland University
Department of Mathematics
Postfach 151150
D-66041 Saarbrücken
Germany
cb@math.uni-sb.de

Edited by
FR 6.1 - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany

Fax: $\quad+496813024443$
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

By Beurling's theorem, the orthogonal projection onto an invariant subspace M of the Hardy space $H^{2}(\mathbb{D})$ on the complex unit disk can be represented as $P_{M}=M_{\phi} M_{\phi}^{*}$ where ϕ is a suitable multiplier of $H^{2}(\mathbb{D})$. This concept can be carried over to arbitrary Nevanlinna-Pick spaces but fails in more general settings. This paper introduces the notion of Beurling decomposability of subspaces. An invariant subspace M of a reproducing kernel space will be called Beurling decomposable if there exist (operator-valued) multipliers ϕ_{1}, ϕ_{2} such that $P_{M}=M_{\phi_{1}} M_{\phi_{1}}^{*}-$ $M_{\phi_{2}} M_{\phi_{2}}^{*}$ and $M=\operatorname{ran} M_{\phi_{1}}$. We characterize the finite-codimensional and the finite-rank Beurling-decomposable subspaces by means of the core function and the core operator. As an application, we show that in many analytic Hilbert modules \mathcal{H}, every finite-codimensional submodule M can be written as $M=\sum_{i=1}^{r} p_{i} \mathcal{H}$ with suitable polynomials p_{i}.

1 Introduction

In many areas of analysis, reproducing kernel spaces and their multipliers play an important role. Probably the best understood reproducing kernel spaces are the Hardy space $H^{2}(\mathbb{D})$ and the Bergman space $L_{a}^{2}(\mathbb{D})$ on the open unit disk in \mathbb{C}. The unilateral shift on $H^{2}(\mathbb{D})$, that is, the multiplication by the independent variable z, is one of the few operators whose lattice of invariant subspaces is completely known. By Beurling's theorem, a subspace M of $H^{2}(\mathbb{D})$ is invariant under M_{z} exactly if it is of the form $\phi \cdot H^{2}(\mathbb{D})$ for some inner function ϕ, or equivalently, if the orthogonal projection on M can be represented as $P_{M}=M_{\phi} M_{\phi}^{*}$ with some function $\phi \in H^{\infty}(\mathbb{D})$. When passing to the Bergman space, the situation becomes more complicated, and only weaker formulations of Beurling's theorem remain valid([1]). As it turned out in recent years, the reason for the failure of Beurling's theorem in the Bergman space is that, contrary to the Hardy space, the Bergman space is not a Nevanlinna-Pick space. Recall that a reproducing kernel space \mathcal{H} with reproducing kernel K is said to be a Nevanlinna-Pick space if $1-\frac{1}{K}$ is a positive definite function. It is well known that Nevanlinna-Pick spaces are essentially the only spaces for which the Nevanlinna-Pick interpolation problem can be solved ([19]). A possible formulation of Beurling's theorem for Nevanlinna-Pick spaces, as stated in [11] and [15], reads as follows:

Theorem. Suppose that \mathcal{H} is a Nevanlinna-Pick space over an arbitrary set D and that M is an invariant subspace of \mathcal{H} (that is, M is closed and $\gamma \cdot M \subset M$ holds for all multipliers γ). Then there exist a Hilbert space \mathcal{D} and a multiplier $\phi: D \rightarrow L(\mathcal{D}, \mathbb{C})$ such that $P_{M}=M_{\phi} M_{\phi}^{*}$.

One easily checks that the existence of such a multiplier ϕ implies and, in fact, is equivalent to the positive definiteness of the so called core function $G_{M}=\frac{K_{M}}{K}$, where K_{M} is the reproducing kernel of the reproducing kernel space M. The core function appeared in [16], [17] as a function-theoretic tool in the study of invariant subspaces. With these notations, the above theorem can be restated in the following way:

Theorem. Suppose that \mathcal{H} is a Nevanlinna-Pick space over an arbitrary set D. Then, for every invariant subspace M of \mathcal{H}, the core function $G_{M}=\frac{K_{M}}{K}$ is positive definite.

Suppose that \mathcal{H} is a reproducing kernel space with kernel K such that there exists a distinguished point $z_{0} \in D$ with $K\left(\cdot, z_{0}\right)=\mathbf{1}$ and such that $\|\mathbf{1}\|=1$. Then the core function of the invariant subspace $M=\left\{f \in \mathcal{H} ; f\left(z_{0}\right)=0\right\}$ is $1-\frac{1}{K}$. Thus Nevanlinna-Pick spaces are basically the only reproducing kernel spaces admitting a Beurling-type theorem of the above form. Motivated by this observation, we introduce the notion of Beurling-decomposable subspaces. To be able to use the concept of the core function, we require that the kernel of the underlying reproducing kernel space $\mathcal{H} \subset \mathbb{C}^{D}$ has no zeroes. Furthermore we shall always assume that \mathcal{H} contains the constant functions and that the functions $K(\cdot, w)$ are multipliers of \mathcal{H} for all $w \in D$. Finally, we suppose that the inverse kernel admits a representation of the form

$$
\frac{1}{K(z, w)}=\beta(z) \beta(w)^{*}(1)-\gamma(z) \gamma(w)^{*}(1)
$$

with suitable multipliers $\beta \in \mathcal{M}(\mathcal{H} \otimes \mathcal{B}, \mathcal{H})$ and $\gamma \in \mathcal{M}(\mathcal{H} \otimes \mathcal{C}, \mathcal{H})$. We shall see that Nevanlinna-Pick spaces as well as the standard reproducing kernel spaces on bounded symmetric domains fulfill these conditions. A closed subspace M of a reproducing kernel space \mathcal{H} will be called Beurling decomposable if the orthogonal projection on M admits a representation $P_{M}=M_{\phi_{1}} M_{\phi_{1}}^{*}-M_{\phi_{2}} M_{\phi_{2}}^{*}$ with multipliers $\phi_{i}: D \rightarrow L\left(\mathcal{D}_{i}, \mathbb{C}\right)$ such that $M=\operatorname{ran} M_{\phi_{1}}$. Obviously, any such subspace is invariant. The first main result of this paper (Theorem 3.3) gives a characterization of the Beurlingdecomposable subspaces by means of the core function.

Theorem. A closed subspace M of \mathcal{H} is Beurling decomposable if and only if its core function can be written as

$$
G_{M}(z, w)=\phi_{1}(z) \phi_{1}(w)^{*}(1)-\phi_{2}(z) \phi_{2}(w)^{*}(1)
$$

with multipliers $\phi_{i} \in \mathcal{M}\left(\mathcal{H} \otimes \mathcal{D}_{i}, \mathcal{H}\right)$.

Since multipliers of \mathcal{H} are necessarily bounded functions, the core function of a Beurling-decomposable subspace must be bounded as well. Furthermore, we shall see in Section 3 that every Beurling-decomposable subspace contains non-trivial multipliers. Examples in [17] and [20] show that even in very familiar spaces not all invariant subspaces are Beurling decomposable. The concept of subordinate kernels, as introduced in [8], turns out to be a powerful tool in the study of Beurling decomposability. In particular, we shall see that there always exists a unique operator $\Delta_{M} \in L(\mathcal{H})$ such that

$$
G_{M}(z, w)=\left\langle\Delta_{M} K(\cdot, w), K(\cdot, z)\right\rangle
$$

holds for all $z, w \in D$. Following [16], this operator will be called the core operator of M. The core operator allows us to use more operator-theoretic methods in the study of Beurling-decomposable subspaces. At the end of Section 3 (Propositions 3.5 and 3.6), we solve the problem of Beurling decomposability for finite-codimensional spaces and spaces whose core operator has finite rank.
In Section 4, we turn our attention to the class of analytic Hilbert modules as introduced in [10]. Under suitable conditions which are satisfied, for instance, by the standard reproducing kernel spaces on bounded symmetric domains, we shall prove that all finite-codimensional invariant subspaces are Beurling decomposable. As an application we compute the right essential spectrum of the commuting tuple $M_{\mathbf{z}}=\left(M_{\mathbf{z}_{1}}, \ldots, M_{\mathbf{z}_{d}}\right)$ consisting of the multiplication operators with the coordinate functions on analytic Hilbert modules of this type. In these spaces, the finite-codimensional invariant spaces turn out to be exactly the subspaces M of the form $M=\sum_{i=1}^{r} p_{i} \cdot \mathcal{H}$, where p_{1}, \ldots, p_{r} are polynomials with common zero set contained in D. In particular, we obtain a solution of Gleason's problem for a large class of spaces.

2 Preliminaries

A Hilbert space \mathcal{H} of complex-valued functions on an arbitrary set D is called a reproducing kernel space if all evaluation functionals

$$
\delta_{w}: \mathcal{H} \rightarrow \mathbb{C}, f \mapsto f(w) \quad(w \in D)
$$

are continuous. In this case there exists a unique function (the reproducing kernel of $\mathcal{H}) K: D \times D \rightarrow \mathbb{C}$ such that $K(\cdot, w)$ belongs to \mathcal{H} for all $w \in D$ and satisfies

$$
\langle f, K(\cdot, w)\rangle=f(w) \quad(f \in \mathcal{H})
$$

It is easy to see that K is a positive definite function in the sense that, for all finite sequences z_{1}, \ldots, z_{n} in D, the matrices $\left(K\left(z_{i}, z_{j}\right)\right)_{i, j}$ are positive semidefinite.
It is a well-known fact (see [5] for more information) that, for every positive definite function F, one can construct a unique reproducing kernel space $\mathcal{F} \subset \mathbb{C}^{D}$ whose reproducing kernel is given by F. We call \mathcal{F} the reproducing kernel space associated to F.
We shall write $F \leq G$ to indicate that $G-F$ is positive definite. In this way we obtain a partial ordering on the set of all positive definite functions on D. Suppose that $F_{1}, F_{2}: D \times D \rightarrow \mathbb{C}$ are positive definite functions. Then F_{1} and F_{2} are said to be disjoint if the only positive definite function F which satisfies $F \leq F_{1}$ and $F \leq F_{2}$ is $F=0$. It can be shown (see [21] for details) that F_{1} and F_{2} are disjoint if and only if the associated reproducing kernel spaces \mathcal{F}_{1} and \mathcal{F}_{2} have trivial intersection, that is, $\mathcal{F}_{1} \cap \mathcal{F}_{2}=\{0\}$.
The following lemma provides a useful tool to decide whether or not a given function $f: D \rightarrow \mathbb{C}$ belongs to a given reproducing kernel space.

Lemma 2.1. Let $\mathcal{H} \subset \mathbb{C}^{D}$ denote a reproducing kernel space with reproducing kernel K. For a function $f: D \rightarrow \mathbb{C}$, the following assertions are equivalent:
(i) f belongs to \mathcal{H}.
(ii) There exists a real number $c \geq 0$ such that the function

$$
D \times D \rightarrow \mathbb{C}, \quad(z, w) \mapsto c^{2} K(z, w)-f(z) \overline{f(w)}
$$

is positive definite.
In this case, $\|f\|$ is the minimum of all constants c satisfying (ii).
A proof of this well-known result can be found in [9].
A Kolmogorov factorization of a positive definite function F is a pair (\mathcal{D}, d) consisting of a Hilbert space \mathcal{D} and a function $d: D \rightarrow L(\mathcal{D}, \mathbb{C})$ such that

$$
\mathcal{D}=\bigvee\left\{d(w)^{*}(1) ; w \in D\right\}
$$

and $F(z, w)=d(z) d(w)^{*}(1)$ holds for all $z, w \in D$. Obviously, the reproducing kernel space \mathcal{F} associated to F and the mapping $d: D \rightarrow L(\mathcal{F}, \mathbb{C}), z \mapsto$ δ_{z}, define a possible Kolmogorov factorization of F.
If \mathcal{E} is a Hilbert space and \mathcal{H} is a reproducing kernel space with kernel K, then $\mathcal{H}_{\mathcal{E}}$ will denote the Hilbert space of all functions $f: D \rightarrow \mathcal{E}$ such that for every $x \in \mathcal{E}$ the function

$$
f_{x}: D \rightarrow \mathbb{C}, f_{x}(z)=\langle f(z), x\rangle
$$

belongs to \mathcal{H} and such that

$$
\|f\|^{2}=\sum_{i}\left\|f_{e_{i}}\right\|^{2}<\infty
$$

for some (equivalently every) orthonormal basis $\left(e_{i}\right)_{i}$ of \mathcal{E}. One easily verifies that the above norm $\|\cdot\|$ on $\mathcal{H}_{\mathcal{E}}$ does not depend on the choice of the orthonormal basis. The space $\mathcal{H}_{\mathcal{E}}$ can also be thought of as the reproducing kernel space with operator-valued kernel $K \cdot 1_{\mathcal{E}}$. We refer to [9] for further treatment of vector-valued reproducing kernel spaces. It is quite standard to show that there exists a unique isometric isomorphism

$$
U: \mathcal{H} \otimes \mathcal{E} \rightarrow \mathcal{H}_{\mathcal{E}} \quad \text { with } \quad U(f \otimes x)=f \cdot x \quad(f \in \mathcal{H}, x \in \mathcal{E})
$$

between the Hilbertian tensor product $\mathcal{H} \otimes \mathcal{E}$ and $\mathcal{H}_{\mathcal{E}}$. In the sequel, we will use this identification without further mentioning.
Assume now that \mathcal{H} is a reproducing kernel space with kernel K and that $\mathcal{E}, \mathcal{E}_{*}$ are arbitrary Hilbert spaces. In this setting, a function $\phi: D \rightarrow L\left(\mathcal{E}, \mathcal{E}_{*}\right)$ is called an $L\left(\mathcal{E}, \mathcal{E}_{*}\right)$-valued multiplier of \mathcal{H} if, for every function $f \in \mathcal{H} \otimes \mathcal{E}$, the pointwise product $\phi \cdot f$ belongs to $\mathcal{H} \otimes \mathcal{E}_{*}$. The collection of all such multipliers will be denoted by $\mathcal{M}\left(\mathcal{H} \otimes \mathcal{E}, \mathcal{H} \otimes \mathcal{E}_{*}\right)$. A standard application of the closed graph theorem shows that each $\phi \in \mathcal{M}\left(\mathcal{H} \otimes \mathcal{E}, \mathcal{H} \otimes \mathcal{E}_{*}\right)$ defines a bounded linear operator

$$
M_{\phi}: \mathcal{H} \otimes \mathcal{E} \rightarrow \mathcal{H} \otimes \mathcal{E}_{*}, f \mapsto \phi \cdot f
$$

Obviously, the operator norm of $L\left(\mathcal{H} \otimes \mathcal{E}, \mathcal{H} \otimes \mathcal{E}_{*}\right)$ induces a norm on the space $\mathcal{M}\left(\mathcal{H} \otimes \mathcal{E}, \mathcal{H} \otimes \mathcal{E}_{*}\right)$ which is called the multiplier norm and turns $M(\mathcal{H} \otimes \mathcal{E}, \mathcal{H} \otimes$ \mathcal{E}_{*}) into a Banach space. It is a well-known fact that the functions $K(\cdot, w)$ $(w \in D)$ are eigenfunctions for the adjoints of multiplication operators. More generally, if ϕ belongs to $\mathcal{M}\left(\mathcal{H} \otimes \mathcal{E}, \mathcal{H} \otimes \mathcal{E}_{*}\right)$, then the equality

$$
M_{\phi}^{*}(K(\cdot, w) x)=K(\cdot, w)\left(\phi(w)^{*} x\right)
$$

holds for all $x \in \mathcal{E}_{*}$ and $w \in D$. For a multiplier $\phi \in \mathcal{M}(\mathcal{H} \otimes \mathcal{E}, \mathcal{H})$, we obtain the formula

$$
\left(M_{\phi} M_{\phi}^{*} K(\cdot, w)\right)(z)=\phi(z) \phi(w)^{*}(1) K(z, w) \quad(z, w \in D)
$$

which will be intensively used in this paper.
Lemma 2.2. Let \mathcal{H} be a reproducing kernel space with kernel K and let $\mathcal{E}, \mathcal{E}_{*}$ be arbitrary Hilbert spaces. For a function $\phi: D \rightarrow L\left(\mathcal{E}, \mathcal{E}_{*}\right)$, the following are equivalent:
(i) ϕ belongs to $\mathcal{M}\left(\mathcal{H} \otimes \mathcal{E}, \mathcal{H} \otimes \mathcal{E}_{*}\right)$.
(ii) There exists a real number $c \geq 0$ such that

$$
D \times D \rightarrow L\left(\mathcal{E}_{*}\right),(z, w) \mapsto K(z, w)\left(c^{2}-\phi(z) \phi(w)^{*}\right)
$$

is an operator-valued positive definite function.
In this case $\left\|M_{\phi}\right\|$ is the minimum of all constants c satisfying (ii).
Analogously to the scalar definition, a function $F: X \times X \rightarrow L(\mathcal{D})$ is called positive definite if, for all finite sequences z_{1}, \ldots, z_{n}, the matrix $\left(F\left(z_{i}, z_{j}\right)\right)_{i, j}$ is a positive operator on \mathcal{D}^{n}. A more general form of this result treating the case of arbitrary vector-valued reproducing kernel spaces and their multipliers can be found in [9].
Next we recall the concept of subordinate kernels which was introduced in [5] and refined in [8]. In this context, a kernel simply is a complex-valued function on $D \times D$. A kernel is called positive, if it is a positive definite function. A kernel L is said to be hermitian if $L(z, w)=\overline{L(w, z)}$ holds for all $z, w \in D$.

Definition 2.3. Let $K: D \times D \rightarrow \mathbb{C}$ denote a positive kernel and let \mathcal{H} be the associated reproducing kernel space. A kernel $L: D \times D \rightarrow \mathbb{C}$ is said to be subordinate to $K(L \prec K)$ if there exists a (necessarily unique) operator $T \in L(\mathcal{H})$ such that

$$
L(z, w)=\langle T K(\cdot, w), K(\cdot, z)\rangle \quad(z, w \in D)
$$

In this case, T is called the representing operator for L. We write $S(K)$ for the set of all kernels that are subordinate to K.

Note that a subordinate kernel is hermitian (positive) if and only if its representing operator is selfadjoint (positive). Furthermore, every hermitian kernel in $S(K)$ can be written as a difference of two positive kernels in $S(K)$, and $S(K)$ is the linear span of its positive kernels. To prove this, observe that the analogous statements are true in $L(\mathcal{H})$.
If $L \prec K$ is a positive kernel, one may ask for the relation between the associated reproducing kernel spaces. The following lemma answers this question.

Lemma 2.4. Let $K, L: D \times D \rightarrow \mathbb{C}$ denote positive kernels and let \mathcal{H}, \mathcal{L} be the associated reproducing kernel spaces. Then the following are equivalent:
(i) L is subordinate to K.
(ii) There exists a real number $c \geq 0$ such that $c K-L$ is a positive kernel.
(iii) \mathcal{L} is continuously embedded in \mathcal{H}.
(iv) \mathcal{L} is a linear subspace of \mathcal{H}.

If in this case, $T \in L(\mathcal{H})$ is the the (positive) representing operator of L, then $\mathcal{L}=\operatorname{ran} T^{\frac{1}{2}}$.

Proof. For the sake of completeness, we include a proof of this well-known fact. Suppose that L is subordinate to K with representing operator T. Then we can choose $c \geq 0$ such that $c 1_{\mathcal{H}}-T$ is a positive operator. Consequently, $c K-L$ is a positive kernel. Now fix a function $f \in \mathcal{L}$ with $\|f\|_{\mathcal{L}}=1$. By Lemma 2.1, the kernel

$$
c K(z, w)-f(z) \overline{f(w)}=(c K(z, w)-L(z, w))+(L(z, w)-f(z) \overline{f(w)})
$$

is positive, and another application of Lemma 2.1 yields that f belongs to \mathcal{H} with $\|f\|_{\mathcal{H}} \leq \sqrt{c}$. Therefore, \mathcal{L} is contained in \mathcal{H} and the inclusion mapping has norm at most \sqrt{c}. If \mathcal{L} is contained in \mathcal{H} and the inclusion mapping $i: \mathcal{L} \rightarrow \mathcal{H}$ is bounded, then it is easy to verify that

$$
i^{*} K(\cdot, w)=L(\cdot, w)
$$

holds for all $w \in D$ and therefore L is subordinate to K and is represented by the operator $i i^{*} \in L(\mathcal{H})$. This settles the equivalence of $(i)-(i i i)$. A simple application of the closed graph theorem furnishes the equivalence of (iii) and (iv).

Now let $T \in L(\mathcal{H})$ denote the (positive) representing operator for L. The identity

$$
\langle L(\cdot, w), L(\cdot, z)\rangle_{\mathcal{L}}=L(z, w)=\left\langle T^{\frac{1}{2}} K(\cdot, w), T^{\frac{1}{2}} K(\cdot, z)\right\rangle_{\mathcal{H}}
$$

valid for all $z, w \in D$ implies that there exists a unitary operator

$$
\alpha: \mathcal{L} \rightarrow \overline{\operatorname{ran} T^{\frac{1}{2}}} \text { with } \alpha L(\cdot, w)=T^{\frac{1}{2}} K(\cdot, w)
$$

The calculation

$$
\begin{aligned}
\left\langle T^{\frac{1}{2}} \alpha L(\cdot, w), K(\cdot, z)\right\rangle & =\langle T K(\cdot, w), K(\cdot, z)\rangle \\
& =L(z, w) \\
& =\langle i L(\cdot, w), K(\cdot, z)\rangle \quad(z, w \in D)
\end{aligned}
$$

proves that $i=T^{\frac{1}{2}} \alpha$. Finally, the observation

$$
i(\mathcal{L})=T^{\frac{1}{2}} \alpha(\mathcal{L})=T^{\frac{1}{2}}\left(\overline{\left(\operatorname{ran} T^{\frac{1}{2}}\right.}\right)=\operatorname{ran} T^{\frac{1}{2}}
$$

completes the proof.

Throughout the rest of this section, we will examine those positive kernels which can be factorized by multipliers.

Lemma 2.5. Let $K: D \times D \rightarrow \mathbb{C}$ be a positive kernel and let \mathcal{H} be the associated reproducing kernel space. For a positive kernel $G: X \times X \rightarrow \mathbb{C}$, the following assertions are equivalent:
(i) $G \cdot K \in S(K)$.
(ii) $G \cdot L \in S(K)$ for all $L \in S(K)$.
(iii) There exists a Hilbert space \mathcal{D} and a multiplier $\phi \in \mathcal{M}(\mathcal{H} \otimes \mathcal{D}, \mathcal{H})$ such that $G(z, w)=\phi(z) \phi(w)^{*}(1)$ holds for all $z, w \in D$.
If in this case, \mathcal{G} denotes the reproducing kernel space associated to G, then \mathcal{G} is contained in $\mathcal{M}(\mathcal{H})$. Furthermore, the set of all positive kernels G satisfying the equivalent conditions above, is closed under pointwise addition and multiplication.

Proof. By choosing a Kolmogorov decomposition (\mathcal{D}, ϕ) of G and using Lemma 2.4, the equivalence of (i) and (iii) becomes a reformulation of Lemma 2.2. Now suppose that (i) holds. Since every kernel $S(K)$ can be written as a linear combination of positive kernels in $S(K)$, it suffices to show that $G \cdot L \in S(K)$ holds for all positive $L \in S(K)$. To this end, let c, c^{\prime} be positive constants such that $c K-G \cdot K$ and $c^{\prime} K-L$ are positive. Then

$$
c c^{\prime} K-G \cdot L=c^{\prime}(c K-G \cdot K)+G \cdot\left(c^{\prime} K-L\right)
$$

is positive definite as sum and product of positive definite functions. Hence $G \cdot L$ belongs to $S(K)$. The implication (ii) to (i) is obvious.
We are now going to prove the inclusion $\mathcal{G} \subset \mathcal{M}(\mathcal{H})$. Choose a positive number c such that $c K-G \cdot K$ is positive and let ϕ be a function in \mathcal{G} with $\|\phi\|_{\mathcal{G}}=1$. Since by Lemma 2.1, the kernel

$$
\begin{aligned}
& K(z, w)(c-\phi(z) \overline{\phi(w)}) \\
& \quad=(c K(z, w)-K(z, w) G(z, w))+K(z, w)(G(z, w)-\phi(z) \overline{\phi(w)})
\end{aligned}
$$

is positive, Lemma 2.2 ensures that ϕ is a multiplier of \mathcal{H}.
To prove the final assertion, fix two positive kernels G_{1}, G_{2} satisfying (i). Obviously $\left(G_{1}+G_{2}\right) \cdot K=G_{1} \cdot K+G_{2} \cdot K$ belongs to $S(K)$, since $S(K)$ is a linear space. Now choose positive constants c_{i} such that $c_{i} K-G_{i} \cdot K$ are positive. Then

$$
c_{1} c_{2} K-G_{1} \cdot G_{2} \cdot K=c_{1}\left(c_{2} K-G_{2} \cdot K\right)+G_{2} \cdot\left(c_{1} K-G_{1} \cdot K\right)
$$

is positive as well. Hence $\left(G_{1} \cdot G_{2}\right) \cdot K \in S(K)$.

3 Beurling decomposition of subspaces

Throughout this section, let $\mathcal{H} \subset \mathbb{C}^{D}$ be a reproducing kernel space with reproducing kernel K such that K has no zeroes and such that \mathcal{H} contains the constant functions. Furthermore, we suppose that the inverse kernel admits a representation of the form

$$
\begin{equation*}
\frac{1}{K(z, w)}=\beta(z) \beta(w)^{*}(1)-\gamma(z) \gamma(w)^{*}(1) \quad(z, w \in D) \tag{3.1}
\end{equation*}
$$

with multipliers $\beta \in \mathcal{M}(\mathcal{H} \otimes \mathcal{B}, \mathcal{H})$ and $\gamma \in \mathcal{M}(\mathcal{H} \otimes \mathcal{C}, \mathcal{H})$, where \mathcal{B}, \mathcal{C} are appropriate Hilbert spaces. Since the functions $\beta(\cdot) \beta(w)^{*}(1)$ and $\gamma(\cdot) \gamma(w)^{*}(1)$ are complex-valued multipliers, the functions $\frac{1}{K(\cdot, w)}$ belong to $\mathcal{M}(\mathcal{H})$ for all $w \in D$. In addition, we require that also the functions $K(\cdot, w)$ are multipliers. We will now discuss three classes of spaces which fulfill these requirements.

Example 1.

(a) Suppose that K is a Nevanlinna-Pick kernel. This means by definition that K has no zeroes and that the kernel $1-\frac{1}{K}$ is positive definite. Therefore the kernel $K-\mathbf{1}=K \cdot\left(1-\frac{1}{K}\right)$ is positive as well and, by Lemma 2.1, \mathcal{H} contains the constant function 1. Choose a Kolmogorov decomposition (\mathcal{C}, γ) of $1-\frac{1}{K}$. Since the kernel

$$
X \times X \rightarrow L(\mathbb{C}),(z, w) \mapsto K(z, w)\left(1-\gamma(z) \gamma(w)^{*}(1)\right)=1
$$

is positive, Lemma 2.2 implies that γ is a multiplier with multiplier norm less or equal to 1. Since $\|\gamma(w)\|^{2}=1-\frac{1}{K(w, w)}<1$ holds for all $w \in D$, we conclude that for $w \in D$, the function

$$
\phi_{w}: D \rightarrow \mathbb{C}, \phi_{w}(z)=\gamma(z) \gamma(w)^{*}(1)
$$

belongs to $\mathcal{M}(\mathcal{H})$ with multiplier norm strictly less than 1 . Therefore the series $\sum_{n=0}^{\infty} \phi_{w}^{n}$ converges in $\mathcal{M}(\mathcal{H})$. On the other hand, the series converges pointwise to $K(\cdot, w)$. Consequently, the functions $K(\cdot, w)$ are multipliers for all w.

A simple argument shows that the class of kernels we consider is closed under pointwise multiplication. Hence products of Nevanlinna-Pick kernels belong to this class as well.
(b) Assume that D is a bounded domain in \mathbb{C}^{d} and that K is sesquianalytic on $D \times D$, or equivalently, that \mathcal{H} consists of holomorphic functions on D. Let us suppose further that the coordinate functions $\left.\mathbf{z}_{i}(1 \leq i \leq d)\right)$ are
multipliers on \mathcal{H} such that the Taylor spectrum of the commuting tuple $M_{\mathbf{z}}=\left(M_{\mathbf{z}_{1}}, \ldots, M_{\mathbf{z}_{d}}\right) \in L(\mathcal{H})^{d}$ is contained in \bar{D}. Finally, we suppose that $\frac{1}{K}$ is defined and sesquianalytic on an open neighbourhood of $\bar{D} \times \bar{D}$. In [8] (proof of Theorem 3.3) it is shown that every sesquianalytic kernel on a domain is subordinate to the reproducing kernel of some weighted Bergman space. Since we can find a domain $U \supset \bar{D}$ such that $\frac{1}{K}$ is sesquianalytic on $U \times U$, the hermitian kernel $\frac{1}{K}$ can be written as a difference of two positive definite sesquianalytic kernels defined on $U \times U$. To prove this, choose an appropriate decomposition of the representing operator of $\frac{1}{K}$. Taking Kolmogorov decompositions of these positive kernels, we obtain functions β and γ which satisfy the identity (3.1) and, in addition, are analytic on U. The assumption on the spectrum of $M_{\mathbf{z}}$ guarantees that every operator-valued function which is analytic on a neighbourhood of \bar{D}, belongs to $\mathcal{M}(\mathcal{H})$ (see for example [3] for a proof). Thus, the functions β, γ are in fact multipliers of \mathcal{H}. Therefore a decomposition of the form (3.1) automatically exists in this situation.
(c) We now focus on reproducing kernel spaces over bounded symmetric domains in \mathbb{C}^{d}. To this end, we fix a Cartain domain in \mathbb{C}^{d} of rank r and characteristic multiplicities a, b. Let us denote by h the Jordan triple determinant of D and let $\mathcal{H}=\mathcal{H}_{\nu}$ be the reproducing kernel space associated to the kernel

$$
K(z, w)=K_{\nu}(z, w)=h(z, \bar{w})^{-\nu}
$$

where ν is in the Wallach set of D. It is well known that K has no zeroes and \mathcal{H} contains the constant functions. It is shown in [13] that, under the additional hypothesis that $\nu \geq \frac{r-1}{2} a+1$, the inverse kernel admits a representation of the form (3.1). For ν in the continuous Wallach set (this means $\left.\nu>\frac{r-1}{2} a\right)$, the functions $K(\cdot, w)$ are multipliers for all $w \in D$. In fact, it is proved in [4] that the Taylor spectrum of the tuple $M_{\mathbf{z}}$ is \bar{D}. Therefore, by the same argument as in the previous example, it suffices to show that $K(\cdot, w)$ is analytic on an open neighbourhood of \bar{D}. To see this, fix $w \in D$ and choose a real number $0<\rho<1$ such that $\frac{w}{\rho} \in D$. By homogeneous expansion, it can easily be checked that K satisfies the equation $K(z, w)=K\left(\rho z, \frac{w}{\rho}\right)$ for all $z \in D$. Obviously the right-hand side defines an analytic extension of $K(\cdot, w)$ on the set $\frac{1}{\rho} D$ which is an open neighbourhood of \bar{D}.

Following [16] we define the core function and the core operator of a closed subspace of \mathcal{H}. But first, we indicate that, by (3.1) and Lemma 2.5, the space $S(K)$ is closed under pointwise multiplication by the inverse kernel $\frac{1}{K}$. Hence,
for any $L \in S(K)$, the kernel $\frac{L}{K}$ has a (necessarily unique) representing operator in $L(\mathcal{H})$.
Definition 3.1. Let M be a closed subspace of \mathcal{H} and let K_{M} denote the kernel

$$
K_{M}: D \times D \rightarrow \mathbb{C}, K_{M}(z, w)=\left\langle P_{M} K(\cdot, w), K(\cdot, z)\right\rangle .
$$

Then $G_{M}=\frac{K_{M}}{K} \in S(K)$ is called the core function of M. The core operator $\Delta_{M} \in L(\mathcal{H})$ of M is by definition the representing operator of G_{M}. The rank of M is defined to be the rank of Δ_{M}, that is,

$$
\operatorname{rank} M=\operatorname{rank} \Delta_{M}=\operatorname{dim} \operatorname{ran} \Delta_{M} .
$$

Note that the kernel K_{M} is in fact the reproducing kernel of M considered as a reproducing kernel space. Obviously G_{M} is a hermitian kernel and therefore Δ_{M} is a selfadjoint operator. It can easily be verified that the diagonal evaluation $G_{M}(z, z)$ coincides with the Berezin transform of P_{M} as defined in [6], [7].
In many cases, the core operator can be expressed in a very concrete form.

Example 2.

(a) Suppose that D is an open set in \mathbb{C}^{d} and that $\frac{1}{K}$ is a polynomial in z and \bar{w},

$$
\frac{1}{K}(z, w)=\sum_{\alpha, \beta} c_{\alpha, \beta} z^{\alpha} \bar{w}^{\beta}
$$

Assume further that the coordinate functions $\mathbf{z}_{i}(1 \leq i \leq d)$ are multipliers of \mathcal{H}. Let $M_{\mathbf{z}}$ denote the commuting tuple ($M_{\mathbf{z}_{1}}, \ldots, M_{\mathbf{z}_{d}}$). Then

$$
\Delta_{M}=\sum_{\alpha, \beta} c_{\alpha, \beta} M_{\mathbf{z}}^{\alpha} P_{M} M_{\mathbf{z}}^{* \beta}
$$

is the core operator of a given subspace M of \mathcal{H}.
It is clear that $G_{M}+G_{M^{\perp}}=\mathbf{1}$ holds for every closed subspace M of \mathcal{H}. Let $P_{\mathbb{C}}$ denote the orthogonal projection onto the one-dimensional subspace of all constant functions in \mathcal{H}. Then the constant kernel $\mathbf{1}$ is represented by $\|\mathbf{1}\|^{2} P_{\mathbb{C}}$. Hence $\Delta_{M}+\Delta_{M^{\perp}}=\|\mathbf{1}\|^{2} P_{\mathbb{C}}$.
This observation and the above formula for Δ_{M} show that the finite dimension of M or M^{\perp} implies that both Δ_{M} and $\Delta_{M^{\perp}}$ have finite rank.
(b) Suppose that D is a bounded symmetric domain in \mathbb{C}^{d} and adopt the notations of Example 1. In view of the Faraut-Koranyi formula

$$
\frac{1}{K(z, w)}=\sum_{\mathbf{m}}(-\nu)_{\mathbf{m}} K_{\mathbf{m}}(z, w) \quad(z, w \in D)
$$

(see [14] for details), we show that

$$
\Delta_{M}=\sum_{\mathbf{m}}(-\nu)_{\mathbf{m}} K_{\mathbf{m}}\left(L_{M_{\mathbf{z}}}, R_{M_{\mathbf{z}}^{*}}\right)\left(P_{M}\right)
$$

(at least if $\nu \geq \frac{r-1}{2} a+1$). In the above expression, $L_{M_{\mathbf{z}}}$ and $R_{M_{z}^{*}}$ denote the tuples of left and right multiplications with the operators $M_{\mathbf{z}_{i}}$ and $M_{z_{i}}^{*}$, respectively. Since the kernels K_{m} are polynomials in z and \bar{w}, the terms of the series are well defined. Moreover, K_{m} is positive definite and hence

$$
0 \leq K_{\mathbf{m}}\left(L_{M_{\mathbf{z}}}, R_{M_{\mathbf{z}}^{*}}\right)\left(P_{M}\right) \leq K_{\mathbf{m}}\left(L_{M_{\mathbf{z}}}, R_{M_{\mathbf{z}}^{*}}\right)\left(1_{\mathcal{H}}\right) .
$$

The convergence of the series above now follows directly by a result in [13], where it is shown that the series

$$
\sum_{\mathbf{m}}\left|(-\nu)_{\mathbf{m}}\right|\left\|K_{\mathbf{m}}\left(L_{M_{\mathbf{z}}}, R_{M_{\mathbf{z}}^{*}}\right)\left(1_{\mathcal{H}}\right)\right\|
$$

converges (for $\nu \geq \frac{r-1}{2} a+1$).
We now turn to the study of invariant subspaces. A closed subspace M of \mathcal{H} will be called K-invariant ($\frac{1}{K}$-invariant) if it is invariant under multiplication by all functions $K(\cdot, w)\left(\frac{1}{K(\cdot, w)}\right.$, respectively). As usual, M is said to be invariant if $\phi \cdot M \subset M$ for all $\phi \in \mathcal{M}(\mathcal{H})$.

Definition 3.2. A closed subspace M of \mathcal{H} is called Beurling decomposable if there exist Hilbert spaces $\mathcal{E}_{1}, \mathcal{E}_{2}$ and multipliers $\phi_{1} \in \mathcal{M}\left(\mathcal{H} \otimes \mathcal{E}_{1}, \mathcal{H}\right), \phi_{2} \in$ $\mathcal{M}\left(\mathcal{H} \otimes \mathcal{E}_{2}, \mathcal{H}\right)$ such that

$$
P_{M}=M_{\phi_{1}} M_{\phi_{1}}^{*}-M_{\phi_{2}} M_{\phi_{2}}^{*} \quad \text { and } \quad \text { ran } M_{\phi_{1}}=M
$$

In this case, the pair $\left(\phi_{1}, \phi_{2}\right)$ is called a Beurling decomposition of M.
Let M be a Beurling-decomposable subspace of \mathcal{H}. It is obvious that M is invariant. A simple calculation shows that the equality $P_{M}=M_{\phi_{1}} M_{\phi_{1}}^{*}-M_{\phi_{2}} M_{\phi_{2}}^{*}$ holds if and only if

$$
G_{M}(z, w)=\phi_{1}(z) \phi_{1}(w)^{*}(1)-\phi_{2}(z) \phi_{2}(w)^{*}(1)
$$

for all $z, w \in D$. Thus G_{M} can be written as the difference of two positive kernels G_{1}, G_{2} which satisfy $K \cdot G_{i} \prec K$ for $i=1,2$. As we shall see in the following theorem, the existence of such a decomposition is basically sufficient for the Beurling decomposability of M.

But first let us observe that unfortunately not all invariant subspaces are Beurling decomposable. Since the reproducing kernel K_{M} of a Beurling-decomposable subspace M can be expressed as

$$
\begin{aligned}
K_{M}(z, w) & =\left\langle P_{M} K(\cdot, w), K(\cdot, z)\right\rangle \\
& =\left(\phi_{1}(z) \phi_{1}(w)^{*}(1)-\phi_{2}(z) \phi_{2}(w)^{*}(1)\right) K(z, w) \quad(z, w \in D)
\end{aligned}
$$

and all functions $K(\cdot, w)$ are supposed to be multipliers, the functions $K_{M}(\cdot, w)$ define multipliers as well. Hence the set $M \cap \mathcal{M}(\mathcal{H})$ is dense in M.
An example given by Rudin ([20], Theorem 4.1.1) shows that there exists an invariant subspace of the Hardy space $H^{2}\left(\mathbb{D}^{2}\right)$ over the bidisk which does not contain any nonzero multiplier $\phi \in \mathcal{M}\left(H^{2}\left(\mathbb{D}^{2}\right)\right)=H^{\infty}\left(\mathbb{D}^{2}\right)$. Therefore we cannot expect all invariant subspaces to be Beurling decomposable.
However, all invariant subspaces M of the Hardy space $H^{2}(\mathbb{D})$ on the open unit disk are Beurling decomposable. By Beurling's theorem there exists an inner function ϕ on \mathbb{D} such that $P_{M}=M_{\phi} M_{\phi}^{*}$. This result can be generalized (in a weaker form) to arbitrary Nevanlinna-Pick spaces. It was shown by several authors ([11] or [15]) that in Nevanlinna-Pick spaces the projection onto an invariant subspace M can always be represented as $P_{M}=M_{\phi} M_{\phi}^{*}$ with a multiplier $\phi \in \mathcal{M}(\mathcal{H} \otimes \mathcal{E}, \mathcal{H})$, where \mathcal{E} is a suitable Hilbert space. In particular, M_{ϕ} is a partial isometry and $\operatorname{ran} M_{\phi}=M$ holds. Consequently, in Nevanlinna-Pick spaces, all invariant subspaces are Beurling decomposable.

Theorem 3.3. Let M be a closed subspace of \mathcal{H} which is K-invariant and $\frac{1}{K}$-invariant. Then M is Beurling decomposable if and only if there exist positive kernels G_{1}, G_{2} on D such that
(i) $G_{M}=G_{1}-G_{2}$
(ii) $K \cdot G_{i} \prec K$ for $i=1,2$.

Furthermore, G_{1} and G_{2} can always be chosen disjoint. If G_{1}, G_{2} are disjoint, then any pair of Kolmogorov factorizations

$$
\phi_{1}: D \rightarrow L\left(\mathcal{E}_{1}, \mathbb{C}\right) \quad, \quad \phi_{2}: D \rightarrow L\left(\mathcal{E}_{2}, \mathbb{C}\right)
$$

of G_{1} and G_{2} defines a Beurling decomposition of M.
Proof. Suppose that M is Beurling decomposable. Then the above discussion proves the existence of positive kernels G_{1}, G_{2} satisfying conditions (i) and (ii).

In order to prove the opposite direction, let us first point out that we may assume G_{1}, G_{2} to be disjoint. In fact, one can show that the set

$$
\left\{G: D \times D \rightarrow \mathbb{C} ; 0 \leq G \leq G_{1}, G_{2}\right\}
$$

is inductively ordered (see [2] or [21] for details). Let $G_{\max }$ be a maximal element in this set and write

$$
G_{1}^{\prime}=G_{1}-G_{\max } \quad \text { and } \quad G_{2}^{\prime}=G_{2}-G_{\max }
$$

By construction, $G_{1}^{\prime}, G_{2}^{\prime}$ are disjoint positive kernels which satisfy condition (i). As

$$
K \cdot G_{i}^{\prime} \prec K \cdot G_{i} \prec K \quad(i=1,2),
$$

condition (ii) holds as well.
Thus let us suppose that G_{1} and G_{2} are disjoint. Choose functions

$$
\phi_{1}: D \rightarrow L\left(\mathcal{E}_{1}, \mathbb{C}\right) \quad, \quad \phi_{2}: D \rightarrow L\left(\mathcal{E}_{2}, \mathbb{C}\right)
$$

such that

$$
G_{1}(z, w)=\phi_{1}(z) \phi_{1}(w)^{*}(1) \quad \text { and } \quad G_{2}(z, w)=\phi_{2}(z) \phi_{2}(w)^{*}(1)
$$

holds for all $z, w \in D$. Condition (ii) guarantees that ϕ_{1}, ϕ_{2} are in fact multipliers. It follows that

$$
\begin{aligned}
\left\langle\left(M_{\phi_{1}} M_{\phi_{1}}^{*}-M_{\phi_{2}} M_{\phi_{2}}^{*}\right) K(\cdot, w), K(\cdot, z)\right\rangle & =\left(G_{1}(z, w)-G_{2}(z, w)\right) K(z, w) \\
& =K_{M}(z, w) \\
& =\left\langle P_{M} K(\cdot, w), K(\cdot, z)\right\rangle \quad(z, w \in D),
\end{aligned}
$$

and therefore

$$
M_{\phi_{1}} M_{\phi_{1}}^{*}-M_{\phi_{2}} M_{\phi_{2}}^{*}=P_{M} .
$$

It remains to show that ran $M_{\phi_{1}}=M$. To this end, we note that G_{1}, G_{2} belong to $S(K)$ by Lemma 2.5 since the constant kernel 1 belongs to $S(K)$. Let $\Delta_{1}, \Delta_{2} \in L(\mathcal{H})$ denote the (positive) representing operators for G_{1}, G_{2}. Since G_{1}, G_{2} are disjoint, the associated reproducing kernel spaces \mathcal{G}_{1} and \mathcal{G}_{2} have trivial intersection. By Lemma 2.4 we obtain that

$$
\operatorname{ran} \Delta_{1}^{\frac{1}{2}} \cap \operatorname{ran} \Delta_{2}^{\frac{1}{2}}=\{0\}
$$

and hence that

$$
\operatorname{ran} \Delta_{1} \cap \operatorname{ran} \Delta_{2}=\{0\} .
$$

Now it is an elementary exercise to verify that the ranges of Δ_{1}, Δ_{2} must necessarily be contained in the closure of the range of $\Delta_{M}=\Delta_{1}-\Delta_{2}$. Since all the functions

$$
\Delta_{M} K(\cdot, w)=G_{M}(\cdot, w)=\frac{1}{K(\cdot, w)} \cdot K_{M}(\cdot, w) \quad(w \in D)
$$

are contained in M, it follows that ran $\Delta_{M} \subset M$ and hence that

$$
\operatorname{ran} \Delta_{1} \subset \overline{\operatorname{ran} \Delta_{M}} \subset M
$$

Therefore the functions $G_{1}(\cdot, w)=\Delta_{1} K(\cdot, w)$ are contained in M as well for all $w \in D$. Using the K-invariance of M, we see that

$$
M_{\phi_{1}} M_{\phi_{1}}^{*} K(\cdot, w)=G_{1}(\cdot, w) K(\cdot, w) \in M
$$

for every $w \in D$. Thus ran $M_{\phi_{1}} \subset M$.
The opposite inclusion is easier to prove. First, it is elementary to show and well known that for Hilbert spaces H_{1}, H_{2}, H and operators $A_{1} \in L\left(H_{1}, H\right)$, $A_{2} \in L\left(H_{2}, H\right)$ with $A_{1} A_{1}^{*} \geq A_{2} A_{2}^{*}$, there exists a contraction $C \in L\left(H_{1}, H_{2}\right)$ with $C A_{1}^{*}=A_{2}^{*}$. In view of

$$
A_{1} A_{1}^{*}-A_{2} A_{2}^{*}=A_{1}\left(1_{G_{1}}-C^{*} C\right) A_{1}^{*}
$$

it is obvious that ran $A_{1} A_{1}^{*}-A_{2} A_{2}^{*} \subset \operatorname{ran} A_{1}$. To prove that $M \subset \operatorname{ran} M_{\phi_{1}}$, it suffices to apply this remark with $A_{1}=M_{\phi_{1}}$ and $A_{2}=M_{\phi_{2}}$.

Corollary 3.4. For every $\lambda \in D$, the invariant subspace

$$
M_{\lambda}=\{f \in \mathcal{H} ; f(\lambda)=0\}=\{K(\cdot, \lambda)\}^{\perp}
$$

is Beurling decomposable.
Proof. An easy calculation shows that

$$
\begin{aligned}
& G_{M_{\lambda}}(z, w)=1-\frac{K(z, \lambda) \overline{K(w, \lambda)}}{K(\lambda, \lambda) K(z, w)} \\
& \quad=\left(1+\frac{K(z, \lambda) \overline{K(w, \lambda)}}{K(\lambda, \lambda)} \gamma(z) \gamma(w)^{*}(1)\right)-\left(\frac{K(z, \lambda) \overline{K(w, \lambda)}}{K(\lambda, \lambda)} \beta(z) \beta(w)^{*}(1)\right)
\end{aligned}
$$

holds for all $z, w \in D$. Since the function $K(\cdot, \lambda)$ is a multiplier of \mathcal{H}, this furnishes the desired decomposition of $G_{M_{\lambda}}$.

The spaces M_{λ} considered above have codimension one and form, in some sense, the simplest type of invariant subspaces of \mathcal{H}. Now is natural to examine arbitrary subspaces of finite codimension.

Proposition 3.5. If $M \subset \mathcal{H}$ is a finite-codimensional subspace of \mathcal{H} which is K-invariant and $\frac{1}{K}$-invariant, then the following assertions are equivalent:
(i) $M^{\perp} \subset \mathcal{M}(\mathcal{H})$.
(ii) M is Beurling decomposable.

Proof. Let M be Beurling decomposable. By the remarks following Definition 3.2, $K_{M}(\cdot, w)$ is a multiplier for every $w \in D$. As the functions $K(\cdot, w)$ are supposed to belong to $\mathcal{M}(\mathcal{H})$, the functions

$$
K_{M^{\perp}}(\cdot, w)=K(\cdot, w)-K_{M}(\cdot, w) \quad(w \in D)
$$

define multipliers as well. Thus M^{\perp}, being the linear span of the $K_{M^{\perp}}(\cdot, w)$, is a subset of $\mathcal{M}(\mathcal{H})$.
Suppose conversely that $M^{\perp} \subset \mathcal{M}(\mathcal{H})$. Choose an orthonormal basis $\left(u_{i}\right)_{i=1}^{m}$ of M^{\perp}, and note that

$$
K_{M^{\perp}}(z, w)=\left\langle P_{M^{\perp}} K(\cdot, w), K(\cdot, z)\right\rangle=\sum_{i=1}^{m} u_{i}(z) \overline{u_{i}(w)} \quad(z, w \in D) .
$$

As the functions u_{i} are all multipliers, Lemma 2.5 yields $K \cdot K_{M^{\perp}} \in S(K)$. We define $B(z, w)=\beta(z) \beta(w)^{*}(1)$ and $C(z, w)=\gamma(z) \gamma(w)^{*}(1)$. As B and C are positive kernels with $K \cdot B, K \cdot C \in S(K)$, an application of Lemma 2.5 proves that the decomposition

$$
G_{M}=1-\frac{K_{M^{\perp}}}{K}=\left(1+K_{M^{\perp}} \cdot C\right)-\left(K_{M^{\perp}} \cdot B\right) .
$$

fulfills the hypotheses of Theorem 3.3.
Later we will see that in many cases of practical interest, condition (i) of the above proposition is automatically fulfilled for all finite-codimensional invariant subspaces.
We conclude this section by giving a characterization of Beurling decomposability of finite-rank subspaces. Let M be a Beurling-decomposable subspace. From Definition 3.2, it is immediately clear that all functions $G_{M}(\cdot, w)=$ $\Delta_{M} K(\cdot, w)(w \in D)$ belong to $\mathcal{M}(\mathcal{H})$. Moreover, the range of the core operator Δ_{M} consists of multipliers. In order to prove this, we choose G_{1}, G_{2} as in Theorem 3.3 and operators $\Delta_{1}, \Delta_{2} \in L(\mathcal{H})$ representing G_{1}, G_{2}. Let $\mathcal{G}_{1}, \mathcal{G}_{2}$ denote the associated kernel spaces and note that, by Lemma 2.5 and 2.4,

$$
\operatorname{ran} \Delta_{i} \subset \operatorname{ran} \Delta_{i}^{\frac{1}{2}}=\mathcal{G}_{i} \subset \mathcal{M}(\mathcal{H}) \quad(i=1,2)
$$

Hence

$$
\operatorname{ran} \Delta_{M} \subset \operatorname{ran} \Delta_{1}+\operatorname{ran} \Delta_{2} \subset \mathcal{M}(\mathcal{H})
$$

For finite-rank invariant subspaces M, the condition $\operatorname{ran} \Delta_{M} \subset \mathcal{M}(\mathcal{H})$ is also sufficient for the Beurling decomposability of M.

Proposition 3.6. Let M be a closed subspace of \mathcal{H} which is K-invariant and $\frac{1}{K}$-invariant. Suppose that M has finite rank. Then M is Beurling decomposable if and only if ran $\Delta_{M} \subset \mathcal{M}(\mathcal{H})$. In this case, for every decomposition $G_{M}=G_{1}-G_{2}$ with disjoint positive kernels $G_{1}, G_{2} \in S(K)$, it follows that $K \cdot G_{i} \prec K$ for $i=1,2$. In particular, there exist multipliers $\phi_{1}, \ldots, \phi_{s}, \psi_{1}, \ldots, \psi_{t} \in \operatorname{ran} \Delta_{M}(s+t=\operatorname{rank} M)$ such that

$$
P_{M}=\sum_{i=1}^{s} M_{\phi_{i}} M_{\phi_{i}}^{*}-\sum_{j=1}^{t} M_{\psi_{j}} M_{\psi_{j}}^{*}
$$

and

$$
M=\sum_{i=1}^{s} \phi_{i} \mathcal{H}
$$

Proof. Suppose that the inclusion $\operatorname{ran} \Delta_{M} \subset \mathcal{M}(\mathcal{H})$ holds. Fix an arbitrary decomposition $G_{M}=G_{1}-G_{2}$ with disjoint positive kernels $G_{1}, G_{2} \in S(K)$. Let $\Delta_{M}=\Delta_{1}-\Delta_{2}$ denote the corresponding decomposition of Δ_{M}. As seen in the proof of Theorem 3.3, the disjointness of G_{1}, G_{2} and the finite rank of Δ_{M} imply that ran $\Delta_{1} \cap \operatorname{ran} \Delta_{2}=\{0\}$ and ran $\Delta_{M}=\operatorname{ran} \Delta_{1}+\operatorname{ran} \Delta_{2}$. Since in particular ran $\Delta_{i} \subset \mathcal{M}(\mathcal{H})$, there exist multipliers $\phi_{1}, \ldots, \phi_{s}$ and $\psi_{1}, \ldots, \psi_{t}(s+t=\operatorname{rank} M)$ with

$$
\Delta_{1}=\sum_{i=1}^{s} \phi_{i} \otimes \phi_{i} \quad \text { and } \quad \Delta_{2}=\sum_{j=1}^{t} \psi_{j} \otimes \psi_{j}
$$

Since

$$
G_{1}(z, w)=\left\langle\Delta_{1} K(\cdot, w), K(\cdot, z)\right\rangle=\sum_{i=1}^{s} \phi_{i}(z) \overline{\phi_{i}(w)}
$$

and analogously $G_{2}(z, w)=\sum_{j=1}^{t} \psi_{j}(z) \overline{\psi_{j}(w)}$, an application of Lemma 2.5 shows that $K \cdot G_{i} \in S(K)$ for $i=1,2$. Hence G_{1} and G_{2} are disjoint kernels satisfying the hypotheses of Theorem 3.3. But then the Beurling decomposability of M and all remaining assertions follow directly from Theorem 3.3.

4 Application to analytic Hilbert modules

Throughout this section, we fix a bounded open set $D \subset \mathbb{C}^{d}$ and suppose that $\mathcal{H} \subset \mathcal{O}(D)$ is an analytic Hilbert module in the sense of [10] having some additional properties which allow us to apply the results of the preceding section. To be more precise, we shall suppose that
(A) \mathcal{H} contains the constant functions;
(B) \mathcal{H} is a $\mathbb{C}[z]$-module, or equivalently, the coordinate functions $\mathbf{z}_{i}(1 \leq i \leq$ d) are multipliers of \mathcal{H};
(C) the polynomials are dense in \mathcal{H};
(D) there are no points $z \in \mathbb{C} \backslash D$ for which the mapping

$$
\mathbb{C}[z] \rightarrow \mathbb{C}, p \mapsto p(z)
$$

extends to a continuous linear form on all of \mathcal{H}. In the language of [10] this means that the set of virtual points of \mathcal{H} coincides with D.

In [10] a reproducing kernel space $\mathcal{H} \subset \mathcal{O}(D)$ satisfying the above conditions is called an ananalytic Hilbert module. To be able to apply the results of Section 3 we require in addition that:
(E) the reproducing kernel K of \mathcal{H} has no zeroes and the inverse kernel $\frac{1}{K}$ admits a representation of the form

$$
\frac{1}{K(z, w)}=\beta(z) \beta(w)^{*}(1)-\gamma(z) \gamma(w)^{*}(1) \quad(z, w \in D)
$$

with multipliers

$$
\beta \in \mathcal{M}(\mathcal{H} \otimes \mathcal{B}, \mathcal{H}) \quad \text { and } \quad \gamma \in \mathcal{M}(\mathcal{H} \otimes \mathcal{C}, \mathcal{H})
$$

such that the functions

$$
\beta(\cdot) \beta(w)^{*}(1) \quad \text { and } \quad \gamma(\cdot) \gamma(w)^{*}(1)
$$

belong to $\mathcal{O}(\bar{D})$ for every $w \in D$;
(F) the Taylor spectrum $\sigma\left(M_{\mathbf{z}}\right)$ of the tuple $M_{\mathbf{z}}=\left(M_{\mathbf{z}_{1}}, \ldots, M_{\mathbf{z}_{d}}\right) \in L(\mathcal{H})^{d}$ is contained in \bar{D};
(G) for all $z \in D$, there exist open neighbourhoods $U \subset D$ of z and V of \bar{D} such that $K_{\mid U \times D}$ admits a sesquianalytic extension on $U \times V$.

Although these conditions seem to be rather technical, they are general enough to cover in particular the standard reproducing kernel spaces on bounded symmetric domains.
Example 3.
(a) Suppose that D is a bounded symmetric domain with rank r and characteristic multiplicities a, b and that ν is in the continuous Wallach set of D, that is, $\nu>\frac{r-1}{2} a$. It is well known that the reproducing spaces \mathcal{H}_{ν} contain the polynomials as a dense subset. By a recent result of Arazy and Zhang ([4]) the coordinate functions are multipliers of \mathcal{H}_{ν}. For the special case that \mathcal{H}_{ν} is the Bergman space on D, it is shown in [18] that there are no virtual points outside D. But it is easy to see that the given proof remains valid for all $\nu>\frac{r-1}{2} a$. According to [4], the Taylor spectrum of $M_{\mathbf{z}}$ is \bar{D}. To show that condition (G) is fulfilled, we fix $z \in D$ and a positive number $0<\rho<1$ such that $\frac{z}{\rho} \in D$. If $K_{\nu}: D \times D \rightarrow \mathbb{C}$ denotes the reproducing kernel of \mathcal{H}_{ν}, then the function

$$
\rho D \times \frac{1}{\rho} D \rightarrow \mathbb{C}, \quad(\zeta, \omega) \mapsto K_{\nu}\left(\frac{\zeta}{\rho}, \rho \omega\right)
$$

is a sesquianalytic extension of $K_{\nu \mid \rho D \times D}$. This can be seen by use of the Faraut-Koranyi expansion

$$
K_{\nu}(z, w)=\sum_{\mathbf{m}}(\nu)_{\mathbf{m}} K_{\mathbf{m}}(z, w) \quad(z, w \in D)
$$

where the sum ranges over all signatures \mathbf{m} of length r, the numbers $(\nu)_{\mathbf{m}}$ are the generalized Pochhammer symbols and the functions K_{m} are the reproducing kernels of the homogeneous spaces \mathcal{P}_{m} of the Peter-Weyl decomposition $\mathcal{H}_{\nu}=\bigoplus_{\mathbf{m}} \mathcal{P}_{\mathbf{m}}$. Turning towards condition (E), we have to require that $\nu \geq \frac{r-1}{2} a+1$. For these parameters ν, it was shown in [13] that the decomposition

$$
\begin{aligned}
\frac{1}{K_{\nu}}= & \sum_{(-\nu)_{\mathbf{m}}<0}\left|(-\nu)_{\mathbf{m}}\right|\left(K_{\mathbf{m}}(e, e)-K_{\mathbf{m}}\right) \\
& -\sum_{(-\nu)_{\mathbf{m}}>0}\left|(-\nu)_{\mathbf{m}}\right|\left(K_{\mathbf{m}}(e, e)-K_{\mathbf{m}}\right),
\end{aligned}
$$

yields the existence of multipliers β, γ satisfying

$$
\frac{1}{K_{\nu}(z, w)}=\beta(z) \beta(w)^{*}(1)-\gamma(z) \gamma(w)^{*}(1) \quad(z, w \in D)
$$

Using the defining homogeneous expansions for β and γ, we obtain by similar arguments that $\beta(\cdot) \beta(w)^{*}(1)$ and $\gamma(\cdot) \gamma(w)^{*}(1)$ belong to $\mathcal{O}(\bar{D})$.
(b) If the inverse kernel $\frac{1}{K}$ happens to be a polynomial in z and \bar{w}, then condition (E) is automatically satisfied. It is an easy exercise to show
that in this case there exist polynomials p_{1}, \ldots, p_{m} and q_{1}, \ldots, q_{n} such that

$$
\frac{1}{K(z, w)}=\sum_{i=1}^{m} p_{i}(z) \overline{p_{i}(w)}-\sum_{j=1}^{n} q_{j}(z) \overline{q_{j}(w)}=B(z, w)-C(z, w)
$$

for all $z, w \in \mathbb{C}^{d}$. Since polynomials are supposed to be multipliers of \mathcal{H}, this decomposition has all required properties.

We collect some consequences of our hypotheses. As mentioned before, every function $\phi \in \mathcal{O}(\bar{D})$ automatically is a multiplier of \mathcal{H} and the equality $M_{\phi}=\phi\left(M_{\mathbf{z}}\right)$ holds, where the right-hand side is formed with the help of Taylor's functional calculus. Since this fact is of central importance for the following, we indicate a proof (see [3] for details). First note that because of condition (F), the commuting tuple $M_{\mathbf{z}}$ admits an $\mathcal{O}(U)$-calculus for every open neighbourhood U of \bar{D}. Since for every $z \in D$, the function $K(\cdot, z)$ is an eigenvector of the operators $M_{z_{i}}^{*}$ with eigenvalue $\overline{z_{i}}$, it follows by basic properties of the analytic functional calculus that $K(\cdot, z)$ also is an eigenvector of $\phi\left(M_{\mathbf{z}}\right)^{*}$ to the eigenvalue $\overline{\phi(z)}$. Now for every $f \in \mathcal{H}$, we obtain

$$
\phi\left(M_{\mathbf{z}}\right) f(z)=\left\langle f, \phi\left(M_{\mathbf{z}}\right)^{*} K(\cdot, z)\right\rangle=\phi(z)\langle f, K(\cdot, z)\rangle=\phi(z) f(z) \quad(z \in D)
$$

Hence ϕ is a multiplier and $\phi\left(M_{\mathbf{z}}\right)=M_{\phi}$.
When dealing with analytic Hilbert modules, there is a natural notion of submodules. A linear subspace M of \mathcal{H} is called a submodule of \mathcal{H} if it is closed in \mathcal{H} and a submodule of \mathcal{H} as a $\mathbb{C}[z]$-module (in other words, a common invariant subspace of the tuple $M_{\mathbf{z}}$). Of course, this concept differs from the definition of invariant subspaces as given before. Obviously, every invariant subspace is a submodule, but the converse is not true.
However, because of condition (F) every finite-codimensional submodule M of \mathcal{H} automatically is an $\mathcal{O}(\bar{D})$-submodule of \mathcal{H} and hence K-invariant by condition (G) and $\frac{1}{K}$-invariant by condition (E). To see this, first note that by Theorem 2.2.5 in [10], the canonical mapping

$$
\mathbb{C}[z] /(M \cap \mathbb{C}[z]) \rightarrow \mathcal{H} / M, \quad[p] \mapsto[p]
$$

is an isomorphism of (finite dimensional) linear spaces and the inclusion

$$
\sigma_{p}\left(M_{\mathbf{z}}, \mathbb{C}[z] /(M \cap \mathbb{C}[z])\right) \subset D
$$

holds. Therefore we have

$$
\sigma\left(M_{\mathbf{z}}, \mathcal{H} / M\right)=\sigma\left(M_{\mathbf{z}}, \mathbb{C}[z] /(M \cap \mathbb{C}[z])\right)=\sigma_{p}\left(M_{\mathbf{z}}, \mathbb{C}[z] /(M \cap \mathbb{C}[z])\right) \subset D
$$

and, by Lemma 2.2.3 in [12], we obtain

$$
\sigma\left(M_{\mathbf{z} \mid M}\right) \subset \sigma\left(M_{\mathbf{z}}\right) \cup \sigma\left(M_{\mathbf{z}}, \mathcal{H} / M\right)=\bar{D}=\sigma\left(M_{\mathbf{z}}\right)
$$

It is a well-known property of the analytic functional calculus (see Lemma 2.5 .8 in [12]) that in this case M is invariant for $\phi\left(M_{\mathbf{z}}\right)$, whenever ϕ is analytic on an open neighbourhood of $\sigma\left(M_{\mathbf{z}}\right)$.
Finally we point out that in many cases all submodules of \mathcal{H} are $\mathcal{O}(\bar{D})$ submodules. For example, this follows by the continuity of the functional calculus and the Oka-Weil Theorem whenever \bar{D} is polynomially convex.
Before we proceed, we need to formulate the concept of "higher order kernels".

Lemma 4.1. For every multiindex $\alpha \in \mathbb{N}_{0}^{d}$ and every $w \in D$, there exists a unique function $K_{w}^{(\alpha)} \in \mathcal{O}(\bar{D})$ satisfying

$$
D^{\alpha} f(w)=\left\langle f, K_{w}^{(\alpha)}\right\rangle
$$

for all $f \in \mathcal{H}$. If $\left(\left(w_{1}, \alpha_{1}\right), \ldots,\left(w_{m}, \alpha_{m}\right)\right)$ are pairwise different, then the functions $K_{w_{1}}^{\left(\alpha_{1}\right)}, \ldots, K_{w_{m}}^{\left(\alpha_{m}\right)}$ are linearly independent in \mathcal{H}.

Proof. Since the inclusion mapping $\mathcal{H} \hookrightarrow \mathcal{O}(D)$ is continuous, the higher order point evaluation

$$
\delta_{w}^{(\alpha)}: \mathcal{H} \rightarrow \mathbb{C}, f \mapsto D^{\alpha} f(w)
$$

defines a continuous linear functional for every $\alpha \in \mathbb{N}_{0}^{d}$ and $w \in D$. Hence $K_{w}^{(\alpha)}=\delta_{w}^{(\alpha)^{*}}(1)$ is the unique function in \mathcal{H} with

$$
D^{\alpha} f(w)=\left\langle f, K_{w}^{(\alpha)}\right\rangle
$$

for all functions $f \in \mathcal{H}$. Let us observe that

$$
K_{w}^{(\alpha)}(z)=\left\langle\delta_{w}^{(\alpha)^{*}}(1), K(\cdot, z)\right\rangle=\left\langle 1, \delta_{w}^{(\alpha)} K(\cdot, z)\right\rangle=\overline{\left(D^{\alpha} K(\cdot, z)\right)(w)}
$$

for all $z, w \in D$ and $\alpha \in \mathbb{N}_{0}^{d}$.
It remains to show that the functions $K_{w}^{(\alpha)}$ belong to $\mathcal{O}(\bar{D})$. By assumption (G), there exist open neighbourhoods V of \bar{D} and $U \subset D$ of w such that $K_{\mid U \times D}$ extends to a sesquianalytic function $H: U \times V \rightarrow \mathbb{C}$. But then

$$
h: \tilde{V} \rightarrow \mathcal{O}(U), z \mapsto H(\cdot, \bar{z})
$$

defined on the set $\tilde{V}=\{\bar{z} ; z \in V\}$, is analytic as a function with values in the Fréchet space $\mathcal{O}(U)$. Since continuous linear maps preserve analyticity, it follows that the function

$$
V \rightarrow \mathbb{C}, z \mapsto \overline{\left(D^{\alpha} H(\cdot, z)\right)(w)}
$$

is analytic again and, as seen above, extends the function $K_{w}^{(\alpha)}$.
To see that the functions $K_{w_{i}}^{\left(\alpha_{i}\right)}(1 \leq i \leq m)$ are linearly independent, choose polynomials p_{1}, \ldots, p_{m} such that

$$
D^{\alpha_{i}} p_{j}\left(w_{i}\right)=\left\{\begin{array}{ll}
1 & \text { if } \quad i=j \\
0 & \text { else }
\end{array} .\right.
$$

The observation that

$$
\overline{c_{j}}=\sum_{i=1}^{m} \overline{c_{i}} D^{\alpha_{i}} p_{j}\left(w_{i}\right)=\left\langle p_{j}, \sum_{i=1}^{m} c_{i} K_{w_{i}}^{\left(\alpha_{i}\right)}\right\rangle \quad(1 \leq j \leq m)
$$

holds for any choice of complex numbers c_{1}, \ldots, c_{m}, completes the proof.

The following definitions are, up to a slight reformulation, taken from [10]. Let $w \in D$ be arbitrary. For a polynomial $p=\sum_{\alpha} c_{\alpha} z^{\alpha} \in \mathbb{C}[z]$ set

$$
K_{w}^{(p)}=\sum_{\alpha} \overline{c_{\alpha}} K_{w}^{(\alpha)} .
$$

Then

$$
\left\langle f, K_{w}^{(p)}\right\rangle=\sum_{\alpha} c_{\alpha} D^{\alpha} f(w)
$$

for $f \in \mathcal{H}$, and the mapping

$$
\gamma_{w}: \mathbb{C}[z] \rightarrow \mathcal{H}, p \mapsto K_{w}^{(p)}
$$

is antilinear and one-to-one by the preceding lemma.
Let M be a submodule of \mathcal{H}. Then

$$
M_{w}=\gamma_{w}^{-1}\left(M^{\perp}\right) \subset \mathbb{C}[z]
$$

is a linear subspace and the enveloping space of M defined by

$$
M_{w}^{e}=\left(\gamma_{w}\left(M_{w}\right)\right)^{\perp} \subset \mathcal{H}
$$

is a submodule containing M. We refer to [10] for more details.
For an arbitrary subspace N of \mathcal{H}, we denote by $Z(N)$ the zero variety of N, that is,

$$
Z(N)=\{z \in D ; f(z)=0 \text { for all } f \in N\} .
$$

Now consider a finite-codimensional submodule M of \mathcal{H}. Then the zero sets of the enveloping spaces M_{w}^{e} have a very simple structure. More precisely, we observe that

$$
Z\left(M_{w}^{e}\right)=\left\{\begin{array}{cl}
\{w\} & \text { if } \quad w \in Z(M) \\
\emptyset & \text { else }
\end{array}\right.
$$

holds for all $w \in D$. To prove this, we suppose first that $z \in Z\left(M_{w}^{e}\right)$. Then the function $K(\cdot, z)$ is contained in $\overline{\gamma_{w}\left(M_{w}\right)}=\gamma_{w}\left(M_{w}\right)$ since M_{w} has finite dimension by hypothesis. Therefore $K(\cdot, z)$ is a linear combination of the elements $K_{w}^{(\alpha)}$ and hence $z=w$. This proves the inclusion $Z\left(M_{w}^{e}\right) \subset\{w\}$. For obvious reasons, we have $Z\left(M_{w}^{e}\right) \subset Z(M)$. So it remains to show that $w \in Z\left(M_{w}^{e}\right)$ whenever $w \in Z(M)$. But $w \in Z(M)$ is equivalent to $1 \in M_{w}$ which implies $K(\cdot, w) \in \gamma_{w}\left(M_{w}\right)$. Hence $w \in Z\left(M_{w}^{e}\right)$.
The following result completely describes the finite-codimensional submodules of \mathcal{H} by means of the enveloping spaces M_{w}^{e} and appears as Corollary 2.2.6 in [10] .

Lemma 4.2. Suppose M is a finite-codimensional submodule of \mathcal{H}. Then we have

1. $Z(M)$ is a finite subset of D.
2. $M=\bigcap_{w \in Z(M)} M_{w}^{e}$.
3. $\operatorname{dim} M^{\perp}=\sum_{w \in Z(M)} \operatorname{dim} M_{w}$.

We are now ready to conclude that, for every finite-codimensional submodule of M, the orthogonal complement of M consists of multipliers.

Proposition 4.3. Assume that M is a finite-codimensional submodule of \mathcal{H}. Then the inclusions $M^{\perp} \subset \mathcal{O}(\bar{D}) \subset \mathcal{M}(\mathcal{H})$ hold.

Proof. Assume first that $Z(M)=\{w\}$ for some $w \in D$. By Lemma 4.2, we obtain $M=M_{w}^{e}=\left(\gamma_{w}\left(M_{w}\right)\right)^{\perp}$, and therefore $M^{\perp}=\gamma_{w}\left(M_{w}\right)$. Since every $K_{w}^{(p)}$ belongs to $\mathcal{O}(\bar{D})$ by Lemma 4.1, it follows that ran $\gamma_{w} \subset \mathcal{O}(\bar{D})$, If $Z(M)$ is arbitrary, then for every $w \in Z(M)$, the subspace M_{w}^{e} is a finitecodimensional submodule with $Z\left(M_{w}^{e}\right)=\{w\}$, and thus $\left(M_{w}^{e}\right)^{\perp} \subset \mathcal{O}(\bar{D})$. Another application of Lemma 4.2 yields

$$
M^{\perp}=\sum_{w \in Z(M)}\left(M_{w}^{e}\right)^{\perp} \subset \mathcal{O}(\bar{D}) .
$$

The main result of this section can now be stated.
Theorem 4.4. Suppose that M is a finite-codimensional submodule of \mathcal{H}. Then M is Beurling decomposable. If in addition M has finite rank, then there exist multipliers $\phi_{1}, \ldots, \phi_{s}$ and $\psi_{1}, \ldots, \psi_{t}(s+t=\operatorname{rank} M)$ such that

$$
P_{M}=\sum_{i=1}^{s} M_{\phi_{i}} M_{\phi_{i}}^{*}-\sum_{j=1}^{t} M_{\psi_{j}} M_{\psi_{j}}^{*}
$$

and

$$
M=\sum_{i=1}^{s} \phi_{i} \cdot \mathcal{H}
$$

The functions $\phi_{1}, \ldots, \phi_{s}$ and $\psi_{1}, \ldots, \psi_{t}$ can be chosen in $\mathcal{O}(\bar{D})$.
Proof. By Propositions 4.3 and 3.5, the space M is Beurling decomposable. Suppose, in addition, that M has finite rank. Since, by condition (E), the functions

$$
\beta(\cdot) \beta(w)^{*}(1) \quad \text { and } \quad \gamma(\cdot) \gamma(w)^{*}(1)
$$

belong to $\mathcal{O}(\bar{D})$, it follows that $G_{M}(\cdot, w) \in \mathcal{O}(\bar{D})$ for $w \in D$ as well. To see this, recall that, by the proof of Proposition 3.5, the core function can be written as

$$
G_{M}(z, w)=\left(1+\gamma(z) \gamma(w)^{*}(1) K_{M^{\perp}}(z, w)\right)-\left(\beta(z) \beta(w)^{*}(1) K_{M^{\perp}}(z, w)\right) .
$$

Therefore ran Δ_{M}, being the linear span of the functions $G_{M}(\cdot, w)$, is contained in $\mathcal{O}(\bar{D})$. By Proposition 3.6, there are multipliers $\phi_{1}, \ldots, \phi_{s}$ and $\psi_{1}, \ldots, \psi_{t}$ in ran Δ_{M} allowing the claimed representations of P_{M} and M.

As an application, we compute the right essential spectrum $\sigma_{r e}\left(M_{\mathbf{z}}\right)$ of the commuting tuple $M_{\mathbf{z}}$. Recall that the right essential spectrum of a commuting tuple $T \in L(H)^{d}$ is the set of all $\lambda \in \mathbb{C}^{d}$ for which the last cohomology group in the Koszul complex of $\lambda-T$ has infinite dimension. Equivalently, $\lambda \in \mathbb{C}^{d}$ is not in the right essential spectrum of T exactly if the row operator $\left(T_{1}, \ldots, T_{d}\right) \in L\left(H^{d}, H\right)$ has finite-codimensional range.

Proposition 4.5. Suppose that the inverse kernel is a polynomial in z, \bar{w}. Then $\sigma_{r e}\left(M_{\mathbf{z}}\right)=\partial D$.

Proof. First of all, observe that $\sigma_{r e}\left(M_{\mathbf{z}}\right) \subset \sigma\left(M_{\mathbf{z}}\right) \subset \bar{D}$. We are now going to prove that

$$
\sigma_{r e}\left(M_{\mathbf{z}}\right) \cap D=\emptyset .
$$

To this end, fix $\lambda \in D$ and let M_{λ} be the finite-codimensional submodule

$$
M_{\lambda}=\{f \in \mathcal{H} ; f(\lambda)=0\}=\{K(\cdot, \lambda)\}^{\perp} .
$$

By Example 2, the submodule M_{λ} has finite rank, and Theorem 4.4 shows that there exist multipliers $\phi_{1}, \ldots, \phi_{s} \in \mathcal{O}(\bar{D})$, such that

$$
M_{\lambda}=\sum_{i=1}^{s} \phi_{i} \cdot \mathcal{H}
$$

The row operator $\left(M_{\phi_{1}}, \ldots, M_{\phi_{s}}\right) \in L\left(\mathcal{H}^{s}, \mathcal{H}\right)$ consequently has finite-codimensional range. This means that 0 is not in the right essential spectrum of the commuting tuple

$$
M_{\phi}=\left(M_{\phi_{1}}, \ldots, M_{\phi_{s}}\right) \in L(\mathcal{H})^{s} .
$$

By the spectral mapping theorem for the right essential spectrum (Corollary 2.6.9 in [12]), we have

$$
\sigma_{r e}\left(M_{\phi}\right)=\phi\left(\sigma_{r e}\left(M_{\mathbf{z}}\right)\right) .
$$

Since $\phi(\lambda)=0$, it follows that $\lambda \notin \sigma_{r e}\left(M_{\mathbf{z}}\right)$. This proves that $\sigma_{r e}\left(M_{\mathbf{z}}\right) \subset \partial D$. Suppose conversely that λ is in the boundary of D. Then λ is not a virtual point of \mathcal{H}. As observed in [10], this is equivalent to the fact that the maximal ideal of $\mathbb{C}[z]$ at λ is dense in \mathcal{H}, in other words

$$
\overline{\sum_{i=1}^{d}\left(\lambda_{i}-M_{\mathbf{z}_{i}}\right) \mathcal{H}}=\overline{\sum_{i=1}^{d}\left(\lambda_{i}-M_{\mathbf{z}_{i}}\right) \mathbb{C}[z]}=\mathcal{H}
$$

Assume now that $\lambda \notin \sigma_{r e}\left(M_{\mathbf{z}}\right)$. Then the space

$$
\sum_{i=1}^{d}\left(\lambda_{i}-M_{\mathbf{z}_{i}}\right) \mathcal{H} \subset \mathcal{H}
$$

is closed and therefore equals \mathcal{H}. Since the surjectivity spectrum is closed, there exists some $r>0$ such that

$$
\sum_{i=1}^{d}\left(\mu_{i}-M_{\mathbf{z}_{i}}\right) \mathcal{H}=\mathcal{H}
$$

holds for all $\mu \in \mathbb{C}^{d}$ with $|\mu-\lambda|<r$. Hence there would have to be a point $\mu \in D$ with $\mathbf{1} \in \sum_{i=1}^{d}\left(\mu_{i}-M_{\mathbf{z}_{i}}\right) \mathcal{H}$. This contradiction completes the proof.

We are now able to give the following supplement to the Ahern-Clark type result stated in [10] as Theorem 2.2.3.

Corollary 4.6. Suppose that $\frac{1}{K}$ is a polynomial in z and \bar{w}. Then the finitecodimensional submodules of \mathcal{H} are exactly the closed subspaces M of the form $M=\sum_{i=1}^{r} p_{i} \cdot \mathcal{H}$ where $r \in \mathbb{N}$ and $p=\left(p_{1}, \ldots, p_{r}\right)$ is a tuple of polynomials with $Z(p) \subset D$.

Proof. Suppose that M is a finite-codimensional submodule of \mathcal{H}. By Theorem 2.2.3 in [10], the intersection $M \cap \mathbb{C}[z]$ is a finite-codimensional ideal in $\mathbb{C}[z]$ with $Z(I) \subset D$ and $M=\bar{I}$. Now we choose a generating set $p=\left(p_{1}, \ldots, p_{r}\right)$ of I and claim that $M=\sum_{i=1}^{r} p_{i} \cdot \mathcal{H}$. Since

$$
M=\bar{I}=\overline{\sum_{i=1}^{r} p_{i} \cdot \mathbb{C}[z]}=\overline{\sum_{i=1}^{r} p_{i} \cdot \mathcal{H}}
$$

it suffices to show that the row operator $\left(M_{p_{1}}, \ldots, M_{p_{r}}\right) \in L\left(\mathcal{H}^{r}, \mathcal{H}\right)$ has closed range. But this is obvious, because $Z(p)=Z(I) \subset D$ and $\sigma_{r e}\left(M_{\mathbf{z}}\right)=$ ∂D, and hence

$$
0 \notin \sigma_{r e}\left(M_{p_{1}}, \ldots, M_{p_{r}}\right)=p\left(\sigma_{r e}\left(M_{\mathbf{z}}\right)\right) .
$$

The proof shows that the polynomials p_{1}, \ldots, p_{r} can be chosen as a generating set of the Ideal $M \cap \mathbb{C}[z]$. If in particular $d=1$, then we can achieve that $r=1$.
Note also that, under the same hypotheses, Gleason's problem can be solved in \mathcal{H}. Recall that Gleason's problem is, for a given function $f \in \mathcal{H}$ and $\lambda \in D$, to find functions $g_{1}, \ldots, g_{d} \in \mathcal{H}$ satisfying

$$
f(z)-f(\lambda)=\sum_{i=1}^{d}\left(z_{i}-\lambda_{i}\right) g_{i}(z) \quad(z \in D) .
$$

To solve Gleason's problem, it is therefore sufficient to apply Corollary 4.6 to the submodule $M_{\lambda}=\{h \in \mathcal{H} ; h(\lambda)=0\}$.

References

[1] A. Aleman, S. Richter and C. Sundberg, Beurling's theorem for the Bergman space, Acta Math. 177 (1996), 275-310
[2] D. Alpay, Some remarks on reproducing kernel Krein spaces, Rocky Mt. J. Math. 21 (1991), 1189-1205
[3] C. Ambrozie and J.Eschmeier, A commutant lifting theorem on analytic polyhedra, Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publications 67 (2005), 83-108
[4] J. Arazy and G. Zhang, Homogeneous multiplication operators on bounded symmetric domains, J.Funct. Anal. 202 (2003), 44-66
[5] N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68 (1950), 337-404
[6] F.A. Berezin, Covariant and contravariant symbols of operators, Math. USSR Izv. 6 (1972), 1117-1151
[7] F.A. Berezin, Quantization, Math. USSR Izv. 8 (1974), 1109-1163
[8] F. Beatrous Jr. and J. Burbea, Positive Definiteness and its Applications to Interpolation Problems for Holomorphic Functions, Trans. Am. Math. Soc. 284 (1984), 247-270
[9] J. Burbea and P. Masani, Banach and Hilbert spaces of vector-valued functions. Their general theory and applications to holomorphy, Research Notes in Mathematics 90, Boston-London-Melbourne, Pitman Advanced Publishing Program (1984)
[10] X. Chen and K. Guo, Analytic Hilbert Modules, Chapman \& Hall/CRC (2003)
[11] S. McCullough and T.T. Trent, Invariant Subspaces and NevanlinnaPick Kernels, J. Funct. Anal. 178 (2000), 226-249
[12] J. Eschmeier and M. Putinar, Spectral decompositions and analytic sheaves, London Mathematical Society Monographs, Clarendon Press, Oxford (1996)
[13] M. Englis, Some Problems in Operator Theory on Bounded Symmetric Domains, Act. Appl. Math. 81 (2004), 51-71
[14] J. Faraut and A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 64-89
[15] D. Greene, S. Richter and C. Sundberg, The structure of inner multipiers on spaces with complete Nevanlinna Pick kernels, J. Funct. Anal. 194 (2002), 311-331
[16] K. Guo, Defect operators, defect functions and defect indices for analytic submodules, J. Funct. Anal. 213 (2000), 380-411
[17] K. Guo and R. Yang, The core function of submodules over the bidisk, Indiana Univ. Math. J. 53 (2004), 205-222
[18] K. Guo and D. Zheng, Invariant subspaces, quasi-invariant subspaces, and Hankel operators, J. Funct. Anal. 187 (2001), 308-342
[19] P. Quiggin, For which reproducing kernel Hilbert spaces is Pick's theorem true?, Integral Equations Oper. Theory 16 (1993), 244-266
[20] W. Rudin, Function theory in polydiscs, Mathematics Lecture Notes Series. New York Amsterdam, W.A. Benjamin, Inc.(1969)
[21] L. Schwartz, Sous-espaces d'espaces vectoriels topologiques et noyaux associés. (Noyaux reproduisants.), J. Anal. Math 13 (1964), 115-256

