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Samuel multiplicity and Fredholm theory

Jörg Eschmeier

Abstract. In this note we prove that, for a given Fredholm tuple T = (T1, . . . , Tn)

of commuting bounded operators on a complex Banach space X, the limits cp(T ) =

limk→∞ dim Hp(T k, X)/kn exist and calculate the generic dimension of the cohomology

groups Hp(z − T, X) of the Koszul complex of T near z = 0. To deduce this result

we show that the above limits coincide with the Samuel multiplicities of the stalks of the

cohomology sheaves Hp(z−T,OX
Cn) of the associated complex of analytic sheaves at z = 0.

0 Introduction

Let T = (T1, . . . , Tn) ∈ L(X)n be a commuting tuple of bounded linear
operators on a complex Banach space X. A fundamental principle of mul-
tivariable operator theory is that all basic spectral properties of T should
be understood as properties of its Koszul complex. The Koszul complex
K•(z − T,X) is a finite complex of Banach spaces with coboundary maps

Kp(z − T,X) → Kp+1(z − T,X), xsI 7→
n

∑

j=1

(zj − Tj)x sj ∧ sI

that depend analytically on the parameter z ∈ Cn. The commuting tuple
T is said to be invertible if the Koszul complex K•(T,X) is exact. The
joint spectrum σ(T ) of T consists of all points z ∈ Cn for which the tuple
z − T = (z1 − T1, . . . , zn − Tn) is not invertible. It was a breakthrough [12]
when J.L.Taylor introduced this notion of joint spectrum and showed that
it carries an analytic functional calculus, that is, there exists a continuous
algebra homomorphism

O(σ(T )) → L(X), f 7→ f(T )

extending the natural O(Cn)-module structure of X given by T .

2000 Mathematics Subject Classification. Primary 47A13; Secondary 47A53, 13D40,
32C35.
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The commuting tuple T is said to be Fredholm if all cohomology groups
Hp(T,X) (p = 0, . . . , n) of its Koszul complex K•(T,X) are finite dimen-
sional. The Fredholm index of T is defined as the Euler characteristic

ind(T ) =

n
∑

p=0

(−1)p dim Hp(T,X)

of its Koszul complex. The essential spectrum σe(T ) of T consists of all
points z ∈ Cn for which z − T is not Fredholm. The observation that T is
Fredholm if and only if all cohomology sheaves of the associated complex
K•(z − T,OX

Cn) of Banach-free analytic sheaves are coherent near 0 ∈ Cn

allows the application of methods from complex analytic geometry to multi-
variable Fredholm theory. For instance, the Fredholm spectrum σ(T )∩ρe(T )
is an analytic subset of the essential resolvent set ρe(T ) = Cn\σe(T ), since it
is the support of the coherent sheaf ⊕n

p=0H
p(z−T,OX

ρe(T )). The discontinuity
points of the functions

ρe(T ) → C, z 7→ dim Hp(z − T,X) (p = 0, . . . , n)

form proper analytic subsets of ρe(T ). Suppose that T is Fredholm. Then
the stalks of the cohomology sheaves Hp = Hp(z − T,OX

ρe(T )) at 0 ∈ Cn are
finitely generated modules over the Noetherian local ring O0 of all convergent
power series at 0. Hence there are polynomials qan,p ∈ Q[x], the Hilbert-
Samuel polynomials of Hp

0, with deg(qan,p) ≤ n such that

dim(Hp
0/m

kHp
0) = qan,p(k)

for sufficiently large natural numbers k and such that the limits

can,p(T ) = n! lim
k→∞

dim(Hp
0/m

kHp
0)/k

n (p = 0, . . . , n)

exist and define natural numbers, the Samuel multiplicities of Hp
0. Here m

denotes the maximal ideal of the local ring O0.

On the other hand, if T is Fredholm, then the spaces Mk(T ) =
∑

|α|=k TαX
are finite codimensional in X and the direct sum ⊕k≥0Mk(T )/Mk+1(T ) be-
comes in a natural way a finitely generated graded C[z]-module. By a clas-
sical result of Hilbert, there is a polynomial q ∈ Q[x] of degree at most n
such that

dim
(

X/Mk(T )
)

= q(k)

for large values of k and such that the limit

c(T ) = n! lim
k→∞

dim
(

X/Mk(T )
)

/kn

exists and defines a natural number, the algebraic Samuel multiplicity of T .
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In a paper [1] of Douglas and Yan from 1993 the algebraic Hilbert-Samuel
polynomial q and its analytic counterpart qan,n were studied and it was
suggested that their nth order coefficients and degrees should have a natural
meaning in operator theory.

In recent papers of Xiang Fang [6] and the author [3] it was shown that
c(T ) = can,n(T ) and that this number calculates the generic dimension of the
last cohomology groups Hn(z − T,X) of the Koszul complex K•(z − T,X)
near z = 0. More precisely, for every connected open neighbourhood U
of 0, the number c(T ) coincides with the constant value of the function
dim Hn(z−T,X) outside of its discontinuity set. Moreover, it was suggested
that the functions

hp(k) = dim Hp(T k,X) (k ∈ N)

with T k = (T k
1 , . . . , T k

n ) should be the algebraic analogues of the pth order
analytic Hilbert-Samuel polynomials qan,p.

In this paper we show that indeed, for p = 0, . . . , n, the limit formula

can,p(T ) = lim
k→∞

dim Hp(T k,X)/kn

holds and that can,p(T ) is the generic dimension of Hp(z−T,X) near z = 0.
It follows that

ind(T ) =

n
∑

p=0

(−1)pcan,p(T ).

As a first step, we show in Section 1 that, for every natural number k, there
are canonical vector space isomorphisms

Hp(T k,X) ∼= Hp
(

z − T,OX
0 /(zk)OX

0

)

for p = 0, . . . , n. In Section 2 we use results on analytically parametrized
complexes of Banach spaces and methods from commutative algebra to de-
duce that

can,p(T ) = lim
k→∞

dim Hp
(

z − T,OX
0 /(zk)OX

0

)

/kn

for p = 0, . . . , n. Using the fact (cf. [6]) that the leading coefficient of the
Samuel multiplicity of the stalk of a coherent sheaf at a given point z cal-
culates its rank near z, we find that the above limits represent the generic
dimension of Hp(z − T,X) for z near 0.
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1 Analytic functional calculus

To compute the cohomology groups Hp(T k,X) of the powers T k of a Fred-
holm tuple T ∈ L(X)n we apply a construction which was used in [4] (The-
orem 10.3.13) to prove an analytic index formula for the Fredholm index.

Theorem 1.1 Let T ∈ L(X)n be a commuting tuple of bounded linear

operators on a complex Banach space X. Suppose that 0 ∈ σ(T ) \ σe(T ).
Let f ∈ O(U)n be an n-tuple of analytic functions defined on an open neigh-

bourhood U of σ(T ) such that f−1({0}) = {0} and such that

Hp
(

f,O(V )
)

= {0} (p = 0, . . . , n − 1)

for some Stein open neighbourhood V ⊂ U of 0 ∈ Cn. Then there are vector

space isomorphisms

Hp
(

f(T ),X
)

∼= Hp
(

z − T,Hn(f,O(V,X))
)

for p = 0, . . . , n.

Proof. We follow closely the lines of the proof of Theorem 10.3.13 in [4].
In particular, we use the notations established there.

Choose a Stein open cover A = (Ui)i∈N of U with U0 = V and 0 6∈ Ui for
i > 0. We denote by C•(A) the alternating C̆ech complex with coefficients in
OU relative to the open cover A. Let us regard O(V ) as the trivial complex
with O(V ) as the space in degree 0 and zero elsewhere. The kernel K• of
the canonical epimorphism r : C•(A) → O(V ) becomes a complex of Fréchet
O(U)-modules. We denote by

0 → K1 → K2 → K3 → 0

the induced short exact sequence of double complexes

K1 = K•⊗̂O(U)K
•
(

z − T,O(U,X)
)

,

K2 = C•(A)⊗̂O(U)K
•
(

z − T,O(U,X)
)

,

K3 = O(V )⊗̂O(U)K
•
(

z − T,O(U,X)
)

= K•
(

z − T,O(V,X)
)

.

It is well known (see Chapter 5.1 in [4]) that

Hp
(

Tot (K2)
)

∼=

{

0 ; p 6= n
X ; p = n
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as topological O(U)-modules. One obtains induced short exact sequences

0 → Tot (K1) → Tot (K2) → Tot (K3) → 0

between the corresponding total complexes and between double complexes

0 → K̃1 → K̃2 → K̃3 → 0,

where K̃i = Tot (Ki)⊗̂O(U)K
•
(

f,O(U)
)

for i = 1, 2, 3. Up to the sign,

the columns of the double complex K̃1 are direct sums of complexes of
the form K•

(

f,O(W,X)
)

, where W is a Stein open subset of U \ {0} =
U \ f−1({0}). Hence, as the total complex of a double complex with ex-
act columns, the complex Tot (K̃1) is exact. Therefore the cochain map
r : Tot (K̃2) → Tot (K̃3) is a quasi-isomorphism. Standard double complex
arguments (Lemma A 2.6 in [4]) show that there are vector space isomor-
phisms

Hp
(

f(T ),X
)

∼= Hp
(

f,Hn(Tot (K2))
)

∼= Hp+n
(

Tot (K̃2)
)

∼= Hp+n
(

Tot (K̃3)
)

.

To complete the proof, observe that the double complex K̃3 has the form

K•
(

z − T,O(V,X)
)

⊗̂O(U)K
•
(

f,O(U)
)

∼= K•
(

z − T,O(V,X)
)

⊗̂O(V )K
•
(

f,O(V )
)

.

Since by hypothesis all columns of the double complex K̃3 are exact in degree
p 6= n, the same double complex result used above (Lemma A 2.6 in [4])
yields vector space isomorphisms

Hp+n
(

Tot (K̃3)
)

∼= Hp
(

z − T,Hn(f,O(V,X))
)

and thus completes the proof. 2

Let V be a Stein open neighbourhood of 0 ∈ Cn. Using the well-known fact
that, for k = 1, . . . , n, a function f ∈ O(V ) belongs to

∑k
ν=1 zνO(V ) if and

only if f vanishes on the set {z ∈ V ; z1 = . . . = zk = 0}, one easily obtains
that (z1, . . . , zn) is an O(V )-regular sequence, that is, zi is a non-zero divisor
on O(V )/

(

z1O(V ) + . . . + zi−1O(V )
)

for i = 1, . . . , n.

Let k = (k1, . . . , kn) be an n-tuple of positive integers. Then the sequence
zk = (zk1

1 , . . . , zkn
n ) remains O(V )-regular (Theorem 5.3 in [10]). It follows

that (Proposition IV.2 in [11])

Hp
(

zk,O(V )
)

= {0} (p = 0, . . . , n − 1).
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For an arbitrary O(Cn)-module M , we shall denote by

(zk)M =
n

∑

ν=1

zkν
ν M

the O(Cn)-submodule determined by the ideal (zk) ⊂ O(Cn). If f ∈ OX
0 is

the germ of an analytic Banach-space valued function defined near z = 0,
then we shall write

fα = (∂αf)(0)/α! (α ∈ Nn)

for the Taylor coefficients of f at 0. To simplify the notation we use the
abbreviation

Ik = {α ∈ Nn; αν < kν for ν = 1, . . . , n}.

In the particular case where V is an open polydisc or ball with centre 0 ∈ Cn,
one can easily compute the n-th cohomology groups of the Koszul complex
K•

(

zk,O(V,X)
)

.

Lemma 1.2 Let X be a Banach space and let V ⊂ Cn be an open polydisc

or ball with centre 0 ∈ Cn. Then, for every tuple k = (k1, . . . , kn) of positive

integers, we have

(zk)O(V,X) = {f ∈ O(V,X); fα = 0 for all α ∈ Ik}.

Proof. Obviously, the left-hand side is contained in the set on the right.
Conversely, if f belongs to the set on the right, then we obtain the decom-
position

f(z) =

n
∑

ν=1

zkν
ν

∑

α∈Aν

fαzα−kνeν ,

where Aν ⊂ Nn consists of all multiindices α with αi < ki for i < ν and
αν ≥ kν . 2

For an index tuple k as above, define

Vk = {p ∈ C[z]; pα = 0 for all α ∈ Nn \ Ik}.

Then, in the setting of the preceding lemma, we obtain obvious vector space
isomorphisms

Hn
(

zk,O(V,X)
)

∼= Hn(zk,OX
0 ) ∼= Vk ⊗ X.

The proof of our main result will be based on the following particular case
of Theorem 1.1.
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Corollary 1.3 Let T ∈ L(X)n be a commuting tuple of bounded operators

on a complex Banach space X such that 0 ∈ σ(T ) \ σe(T ). Then, for every

open ball or polydisc V ⊂ Cn with centre 0 ∈ Cn and all families k =
(k1, . . . , kn) of positive integers ki, there are vector space isomorphisms

Hp(T k,X) ∼= Hp
(

z − T,Hn(zk,O(V,X))
)

∼= Hp
(

z − T,OX
0 /(zk)OX

0

)

for p = 0, . . . , n.

2 Fredholm complexes

Let Ω ⊂ Cn be an open neighbourhood of 0 ∈ Cn and let M• = (Mp, dp)np=0

be a finite analytically parametrized complex of Banach spaces Mp on Ω
such that dimHp

(

d•(0),M•
)

< ∞ for p = 0, . . . , n. It is well known (see
Proposition 9.4.5 and Remark 9.4.6 in [4]) that there exist an analytically
parametrized complex L• = (Lp, up)np=0 of finite-dimensional vector spaces
Lp on a possibly smaller open neighbourhood U of 0 ∈ Cn and a family
h = (hp)np=0 of holomorphic mappings

hp ∈ O
(

U,L(Lp,Mp)
)

such that, for each point z ∈ U , the resulting maps

L• h•(z)
−→ M•

are quasi-isomorphisms. Equivalently, the mapping cone C• = (Cp, αp)np=0

of h, that is, the complex with spaces Cp = Mp ⊕ Lp+1 and coboundaries
αp(z) : Cp → Cp+1 given by

αp(z)(x, y) = (dp(z)x + (−1)p+1hp+1(z)y, up+1(z)y)

is pointwise exact on U.

As before, for a given Banach space E, let us denote by OE
z the stalk of germs

of all analytic E-valued functions defined near z. Let m be the maximal ideal
in the Noetherian local ring O0 of all scalar-valued convergent power series
at z = 0, and let (zk) be the ideal in O0 generated by the finite system
(zk1

1 , . . . , zkn
n ) for k ∈ Nn arbitrary. The original complex (OM•

0 , d•) is quasi-
isomorphic to the complex

L• : 0 −→ OL0

0
u0

−→ OL1

0
u1

−→ . . .
un−2

−→ OLn−1

0
un−1

−→ OLn

0 −→ 0

of finitely generated O0-modules. More precisely, the family h = (hp)np=0

induces isomorphisms of cohomology

Hp(u•,L•)
∼
−→ Hp(d•,OM•

0 )
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for p = 0, . . . , n. Using an exactness result for analytically parametrized
complexes, we can improve this observation.

Lemma 2.1 Let k = (k1. . . . , kn) be a family of positive integers. Then

the cochain map h = (hp)np=0 induces isomorphisms of cohomology

Hp
(

u•,L•/(zk)L•
) ∼
−→ Hp

(

d•,OM•

0 /(zk)OM•

0

)

for p = 0, . . . , n.

Proof. Since the mapping cone of the cochain map

L•/(zk)L• h
−→ OM•

0 /(zk)OM•

0

can be identified with the complex OC•

0 /(zk)OC•

0 , it suffices to show that the
latter complex is exact. But we know that (C•, α•(0)) is an exact complex
of Banach spaces. Then by Lemma 2.1.5 in [4] there is a real number r0 > 0
such that, for each open polydisc V = Pr(0) with centre 0 and radius 0 <
r < r0, the complex (O(V,C•), α•) is exact. More precisely, choose r0 small
enough, as in the proof of Lemma 2.1.5 from [4]. Consider r ∈ O(V,Cp) and
g =

∑

α∈Nn gαzα ∈ (zk)O(V,Cp+1) with

g = αpr.

Then gα = 0 for all α ∈ Ik, and it is easily checked that the inductive
construction from the proof of Lemma 2.1.5 in [4] can be used to define
a family of coefficients (fα)|α|=j (j ∈ N) in Cp such that the power series
f =

∑

α∈Nn fαzα defines a solution of the equation αpf = g in O(V,Cp)
with fα = 0 for every α ∈ Ik. Since αp(r − f) = 0, it follows that

r ∈ (zk)O(V,Cp) + αp−1O(V,Cp−1).

Thus we have proved the exactness of the complex

(

O(V,C•)/(zk)O(V,C•), α•
)

on each open polydisc V = Pr(0) with sufficiently small r > 0. Hence
OC•

0 /(zk)OC•

0 is exact, and the proof is complete. 2

Let us define submodules

N p = Ker up ⊂ Lp, Zp = Im up−1 ⊂ Lp.

The short exact sequences

0 −→ (zk)L• −→ L• −→ L•/(zk)L• −→ 0

8



induce long exact cohomology sequences

0 −→ H0
(

(zk)L•
)

)
j0,k
−→ H0(L•)

q0,k
−→ H0

(

L•/(zk)L•
)

−→ H1
(

(zk)L•
) j1,k

−→ . . . . . .

. . . . . . . . .

−→ Hn
(

(zk)L•
) jn,k

−→ Hn(L•)
qn,k
−→ Hn

(

L•/(zk)L•
)

−→ 0.

Since the spaces Hp(L•) are finitely generated modules over the local ring
O0, the Samuel multiplicities of Hp(L•) is well defined and can be calculated
by using the limit formula of Lech [9] (Theorem 2)

cp = lim
min k→∞

dim
(

Hp(L•)/(zk)Hp(L•)
)

/k1 . . . kn (p = 0, . . . , n).

To apply the results of Section 1 we need a different variant of this limit
formula.

Theorem 2.2 In the above setting, we obtain the representations

cp = lim
mink→∞

dim Hp
(

L•/(zk)L•
)

/k1 . . . kn

for p = 0, . . . , n.

Proof. Fix a number p ∈ {0, . . . , n}. Define

cp,k = dim Hp(L•)/(zk)Hp(L•), bp,k = dim Hp
(

L•/(zk)L•
)

for k ∈ Nn . Note that Ker jp,k = (zk)Lp ∩ Zp/(zk)Zp and that

(zk)Hp(L•) ⊂ Im jp,k

for all k ∈ Nn. Elementary linear algebra shows that

cp,k = dim Hp(L•)/Im jp,k + dim Im jp,k/(z
k)Hp(L•)

= bp,k − dim Ker jp+1,k + dim Im jp,k/(z
k)Hp(L•)

for all k ∈ Nn. Using the short exact sequences

0 −→
Zp

(zk)Lp ∩ Zp
−→

Lp

(zk)Lp
−→

(Lp/Zp)

(zk)(Lp/Zp)
−→ 0

9



and the additivity of the Samuel multiplicity for finitely generated modules
over the Noetherian local ring O0 ([11], Proposition II.10), we obtain that
both limits

lim
mink→∞

dimZp/(zk)Lp ∩ Zp

k1 . . . kn
= lim

mink→∞

dimZp/(zk)Zp

k1 . . . kn

calculate the Samuel multiplicity of the O0- module Zp. Thus we find that

lim
mink→∞

dim Ker jp,k/k1 . . . kn = 0

Since Im jp,k =
(

Zp + (zk)Lp ∩ N p
)

/Zp, there are canonical short exact
sequences

0 −→
Zp

(zk)Lp ∩ Zp
−→

N p

(zk)Lp ∩ N p
−→

Hp(L•)

Im jp,k
−→ 0.

Using the additivity of the Samuel multiplicity a second time, we conclude
that

lim
mink→∞

dim(Hp(L•)/Im jp,k)

k1 . . . kn
= cp.

This observation completes the proof. 2

In the particular case p = n, Theorem 2.2 can be improved. Indeed it is
elementary to check that in this case even the equality Im jn,k = (zk)Hn(L•)
holds. Hence we obtain that

dim Hn(L•)/(zk)Hn(L•) = dim Hn
(

L•/(zk)L•
)

for all k ∈ Nn.

Let us specialize our results to the case where M• = (Mp, dp)np=0 is the
Koszul complex K•(z − T,X) of a Fredholm tuple T ∈ L(X)n of com-
muting bounded operators on a complex Banach space X. We begin by
choosing an analytically parametrized complex L• = (Lp, up)np=0 of finite-
dimensional vector spaces on an open neighbourhood U of 0 ∈ Cn which is
quasi-isomorphic to K•(z − T,X) in the sense explained above. Then the
cohomology sheaves

Hp = Hp(z − T,OX
U ) ∼= Hp(u•,OL•

U ) (p = 0, . . . , n)

of the associated complexes of OU -modules are coherent analytic sheaves on
U . As an application of Theorem 2.2 and Corollary 1.3 we show that the
Samuel multiplicities cp of the stalks Hp

0 can be expressed in terms of the co-
homology groups Hp(T k,X) of the powers T k of the given Fredholm tuple T .

10



Corollary 2.3 For a Fredholm tuple T ∈ L(X)n of commuting bounded

operators on a complex Banach space X, the Samuel multiplicities cp of the

stalks of the cohomology sheaves Hp = Hp(z − T,OX
Cn) at z = 0 can be

calculated as

cp = lim
mink→∞

dim Hp(T k,X)

k1 . . . kn
.

Proof. By combining Theorem 2.2 and Corollary 1.3, and by using the
cohomology isomorphisms explained in the sections leading to Theorem 2.2,
we obtain the following chain of equalities

cp = lim
mink→∞

dim Hp(z−T,OX
0

)/(zk)Hp(z−T,OX
0

)
k1...kn

= lim
mink→∞

dim Hp(L•)/(zk)Hp(L•)
k1...kn

= lim
mink→∞

dim Hp(L•/(zk)L•)
k1...kn

= lim
mink→∞

dim Hp(z−T,OX
0

/(zk)OX
0

)
k1...kn

= lim
mink→∞

dim Hp(T k,X)
k1...kn

The second equality follows from the fact that the isomorphisms Hp(L•) →
Hp(z−T,OX

0 ), explained above, and their inverses are isomorphisms of O0-
modules. 2

To bring our results in a more concrete and applicable form, we look for
a different interpretation of the Samuel multiplicities cp of the cohomology
sheaves Hp(z − T,OX) at z = 0.

Let V ⊂ Cn be a connected open neighbourhood of 0 ∈ Cn, and let F be a
coherent analytic sheaf on V . The set S of all points z ∈ V for which F is
not locally free at z is a proper analytic subset of V , and the complement
of S in V is connected ([7], Theorem 4.4). By definition the rank rkV (F)
of the coherent sheaf F on V is the constant value of rkz(F) for z ∈ V \ S.
This number is independent of the choice of V and is usually referred to as
the rank rk0(F) of F at z = 0. By shrinking V , if necessary, one can achieve
in addition that F has a finite resolution

0 → Opr
V → Opr1

V → . . . → Op1

V → F → 0

by free OV -modules ([8], Theorem VI.F.5). Since the Samuel multiplicity
for finitely generated modules over the Noetherian local ring O0 is additive
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([11], Proposition II.10) and since the Samuel multiplicity of a free OV -
module coincides with its rank, it follows that

c(Fz) =
r

∑

i=1

(−1)ic(Opi

V ) =
r

∑

i=1

(−1)ipi = rk0(F)

for z ∈ V .

Theorem 2.4 Let T ∈ L(X)n be a Fredholm tuple of commuting bounded

Banach-space operators and let U ⊂ ρe(T ) be a connected open neighbour-

hood of 0 ∈ Cn. Then there is a proper analytic subset S ⊂ U such that

dim Hp(z − T,X) = lim
mink→∞

dimHp(T k,X)

k1 . . . kn
= inf

k

dim Hp(T k,X)

k1 . . . kn

for p = 0, . . . , n and z ∈ U \ S.

Proof. Since U ⊂ ρe(T ), the arguments preceding Lemma 2.1 imply that
the cohomology sheaves

Hp = Hp(z − T,OH
U ) ∼= Hp(u•,OL•

U ) (p = 0, . . . , n)

are coherent analytic sheaves on U . By Proposition 9.4.5 in [4], there are
proper analytic subsets Sp ⊂ U such that the functions

z 7→ dim Hp(z − T,X) (p = 0, . . . , n)

have constant values dp on U \ Sp and such that

dim Hp(z − T,X) > dp (p = 0, . . . , n, z ∈ Sp).

As shown in the proof of Proposition 10.3.3 from [4], the number dp is the
rank of the coherent sheaf Hp on U . Using Corollary 2.3 and the subsequent
remarks, we obtain that

dp = rk0(H
p) = c(Hp

0) = lim
mink→∞

dim Hp(T k,X)

k1 . . . kn
.

Let k = (k1, . . . , kn) be a family of positive integers. Using the fact that the
function dimHp(w − T k,X) is upper-semicontinuous in w ([4], Proposition
9.4.5), we can choose a real number r > 0 such that

dim Hp(w − T k,X) ≤ dim Hp(T k,X)
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for all w with ‖w‖ < r and every p = 0, . . . , n. After shrinking r we may
suppose that {z ∈ Cn; zk = w} ⊂ U for ‖w‖ < r. Fix a point w ∈ (Cn\{0})n

with ‖w‖ < r. Then the proof of Theorem 10.3.13 in [4] shows that

dimHp(T k,X) ≥ dimHp(w − T k,X)

=
∑

zk=w dim Hp(z − T,X) ≥ k1 . . . kn dp.

This observation completes the proof of Theorem 2.4. 2

By Theorem 2.4 the numbers

cp(T ) = lim
min k→∞

dim Hp(T k,X)

k1 . . . kn
(p = 0, . . . , n)

calculate the stabilized dimensions of the pth order cohomology groups of
the Koszul complexes K•(z − T,X) of a Fredholm tuple T ∈ L(X)n.

Corollary 2.5 Let T ∈ L(X)n be a Fredholm tuple on a Banach space

X. Then for any family of non-negative integers s1, . . . , sn, we obtain that

cp(T
s) = s1 · s2 · . . . · sn cp(T ) (p = 0, . . . , n).

Proof. If si = 0 for some index i ∈ {1, . . . , n}, then cp(T
s) = 0 and the

assertion holds. If s1, . . . , sn ≥ 1, then the observation that

cp(T
s) = lim

k→∞

dim Hp(T k,s,X)
kn

= s1 . . . sn lim
k→∞

dimHp(T ks,X)
s1...snkn = s1 . . . sn cp(T )

completes the proof. 2
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