Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 173

Samuel multiplicity and Fredholm theory

Jörg Eschmeier

Saarbrücken 2006

Samuel multiplicity and Fredholm theory

Jörg Eschmeier

Saarland University Department of Mathematics Postfach 15 11 50 D-66041 Saarbrücken Germany eschmei@math.uni-sb.de

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/

Samuel multiplicity and Fredholm theory

Jörg Eschmeier

Abstract. In this note we prove that, for a given Fredholm tuple $T = (T_1, \ldots, T_n)$ of commuting bounded operators on a complex Banach space X, the limits $c_p(T) = \lim_{k\to\infty} \dim H^p(T^k, X)/k^n$ exist and calculate the generic dimension of the cohomology groups $H^p(z - T, X)$ of the Koszul complex of T near z = 0. To deduce this result we show that the above limits coincide with the Samuel multiplicities of the stalks of the cohomology sheaves $H^p(z - T, \mathcal{O}_{\mathbb{C}^n}^X)$ of the associated complex of analytic sheaves at z = 0.

0 Introduction

Let $T = (T_1, \ldots, T_n) \in L(X)^n$ be a commuting tuple of bounded linear operators on a complex Banach space X. A fundamental principle of multivariable operator theory is that all basic spectral properties of T should be understood as properties of its Koszul complex. The Koszul complex $K^{\bullet}(z - T, X)$ is a finite complex of Banach spaces with coboundary maps

$$K^p(z-T,X) \to K^{p+1}(z-T,X), \quad xs_I \mapsto \sum_{j=1}^n (z_j - T_j)x \ s_j \wedge s_I$$

that depend analytically on the parameter $z \in \mathbb{C}^n$. The commuting tuple T is said to be invertible if the Koszul complex $K^{\bullet}(T, X)$ is exact. The joint spectrum $\sigma(T)$ of T consists of all points $z \in \mathbb{C}^n$ for which the tuple $z - T = (z_1 - T_1, \ldots, z_n - T_n)$ is not invertible. It was a breakthrough [12] when J.L.Taylor introduced this notion of joint spectrum and showed that it carries an analytic functional calculus, that is, there exists a continuous algebra homomorphism

$$\mathcal{O}(\sigma(T)) \to L(X), \ f \mapsto f(T)$$

extending the natural $\mathcal{O}(\mathbb{C}^n)$ -module structure of X given by T.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A13; Secondary 47A53, 13D40, 32C35.

The commuting tuple T is said to be Fredholm if all cohomology groups $H^p(T, X)$ (p = 0, ..., n) of its Koszul complex $K^{\bullet}(T, X)$ are finite dimensional. The Fredholm index of T is defined as the Euler characteristic

$$\operatorname{ind}(T) = \sum_{p=0}^{n} (-1)^{p} \dim H^{p}(T, X)$$

of its Koszul complex. The essential spectrum $\sigma_e(T)$ of T consists of all points $z \in \mathbb{C}^n$ for which z - T is not Fredholm. The observation that T is Fredholm if and only if all cohomology sheaves of the associated complex $K^{\bullet}(z - T, \mathcal{O}_{\mathbb{C}^n}^X)$ of Banach-free analytic sheaves are coherent near $0 \in \mathbb{C}^n$ allows the application of methods from complex analytic geometry to multivariable Fredholm theory. For instance, the Fredholm spectrum $\sigma(T) \cap \rho_e(T)$ is an analytic subset of the essential resolvent set $\rho_e(T) = \mathbb{C}^n \setminus \sigma_e(T)$, since it is the support of the coherent sheaf $\bigoplus_{p=0}^n H^p(z-T, \mathcal{O}_{\rho_e(T)}^X)$. The discontinuity points of the functions

$$\rho_e(T) \to \mathbb{C}, \ z \mapsto \dim H^p(z - T, X) \quad (p = 0, \dots, n)$$

form proper analytic subsets of $\rho_e(T)$. Suppose that T is Fredholm. Then the stalks of the cohomology sheaves $\mathcal{H}^p = H^p(z - T, \mathcal{O}^X_{\rho_e(T)})$ at $0 \in \mathbb{C}^n$ are finitely generated modules over the Noetherian local ring \mathcal{O}_0 of all convergent power series at 0. Hence there are polynomials $q_{an,p} \in \mathbb{Q}[x]$, the Hilbert-Samuel polynomials of \mathcal{H}^p_0 , with $\deg(q_{an,p}) \leq n$ such that

$$\dim(\mathcal{H}^p_0/\mathfrak{m}^k\mathcal{H}^p_0) = q_{an,p}(k)$$

for sufficiently large natural numbers k and such that the limits

$$c_{an,p}(T) = n! \lim_{k \to \infty} \dim(\mathcal{H}_0^p/\mathfrak{m}^k \mathcal{H}_0^p)/k^n \qquad (p = 0, \dots, n)$$

exist and define natural numbers, the Samuel multiplicities of \mathcal{H}_0^p . Here \mathfrak{m} denotes the maximal ideal of the local ring \mathcal{O}_0 .

On the other hand, if T is Fredholm, then the spaces $M_k(T) = \sum_{|\alpha|=k} T^{\alpha} X$ are finite codimensional in X and the direct sum $\bigoplus_{k\geq 0} M_k(T)/M_{k+1}(T)$ becomes in a natural way a finitely generated graded $\mathbb{C}[z]$ -module. By a classical result of Hilbert, there is a polynomial $q \in \mathbb{Q}[x]$ of degree at most n such that

$$\dim \left(X/M_k(T) \right) = q(k)$$

for large values of k and such that the limit

$$c(T) = n! \lim_{k \to \infty} \dim (X/M_k(T))/k^n$$

exists and defines a natural number, the algebraic Samuel multiplicity of T.

In a paper [1] of Douglas and Yan from 1993 the algebraic Hilbert-Samuel polynomial q and its analytic counterpart $q_{an,n}$ were studied and it was suggested that their *n*th order coefficients and degrees should have a natural meaning in operator theory.

In recent papers of Xiang Fang [6] and the author [3] it was shown that $c(T) = c_{an,n}(T)$ and that this number calculates the generic dimension of the last cohomology groups $H^n(z - T, X)$ of the Koszul complex $K^{\bullet}(z - T, X)$ near z = 0. More precisely, for every connected open neighbourhood U of 0, the number c(T) coincides with the constant value of the function $\dim H^n(z-T, X)$ outside of its discontinuity set. Moreover, it was suggested that the functions

$$h_p(k) = \dim H^p(T^k, X) \qquad (k \in \mathbb{N})$$

with $T^k = (T_1^k, \ldots, T_n^k)$ should be the algebraic analogues of the *p*th order analytic Hilbert-Samuel polynomials $q_{an,p}$.

In this paper we show that indeed, for p = 0, ..., n, the limit formula

$$c_{an,p}(T) = \lim_{k \to \infty} \dim H^p(T^k, X) / k^n$$

holds and that $c_{an,p}(T)$ is the generic dimension of $H^p(z-T,X)$ near z=0. It follows that

$$\operatorname{ind}(T) = \sum_{p=0}^{n} (-1)^{p} c_{an,p}(T).$$

As a first step, we show in Section 1 that, for every natural number k, there are canonical vector space isomorphisms

$$H^p(T^k, X) \cong H^p\left(z - T, \mathcal{O}_0^X / (z^k) \mathcal{O}_0^X\right)$$

for p = 0, ..., n. In Section 2 we use results on analytically parametrized complexes of Banach spaces and methods from commutative algebra to deduce that

$$c_{an,p}(T) = \lim_{k \to \infty} \dim H^p \left(z - T, \mathcal{O}_0^X / (z^k) \mathcal{O}_0^X \right) / k^n$$

for p = 0, ..., n. Using the fact (cf. [6]) that the leading coefficient of the Samuel multiplicity of the stalk of a coherent sheaf at a given point z calculates its rank near z, we find that the above limits represent the generic dimension of $H^p(z - T, X)$ for z near 0.

1 Analytic functional calculus

To compute the cohomology groups $H^p(T^k, X)$ of the powers T^k of a Fredholm tuple $T \in L(X)^n$ we apply a construction which was used in [4] (Theorem 10.3.13) to prove an analytic index formula for the Fredholm index.

Let $T \in L(X)^n$ be a commuting tuple of bounded linear Theorem 1.1 operators on a complex Banach space X. Suppose that $0 \in \sigma(T) \setminus \sigma_e(T)$. Let $f \in \mathcal{O}(U)^n$ be an n-tuple of analytic functions defined on an open neighbourhood U of $\sigma(T)$ such that $f^{-1}(\{0\}) = \{0\}$ and such that

 $H^{p}(f, \mathcal{O}(V)) = \{0\}$ (p = 0, ..., n - 1)

for some Stein open neighbourhood $V \subset U$ of $0 \in \mathbb{C}^n$. Then there are vector space isomorphisms

$$H^p(f(T), X) \cong H^p(z - T, H^n(f, \mathcal{O}(V, X)))$$

for p = 0, ..., n.

Proof. We follow closely the lines of the proof of Theorem 10.3.13 in [4]. In particular, we use the notations established there.

Choose a Stein open cover $\mathfrak{A} = (U_i)_{i \in \mathbb{N}}$ of U with $U_0 = V$ and $0 \notin U_i$ for i > 0. We denote by $\mathcal{C}^{\bullet}(\mathfrak{A})$ the alternating Čech complex with coefficients in \mathcal{O}_U relative to the open cover \mathfrak{A} . Let us regard $\mathcal{O}(V)$ as the trivial complex with $\mathcal{O}(V)$ as the space in degree 0 and zero elsewhere. The kernel K^{\bullet} of the canonical epimorphism $r: \mathcal{C}^{\bullet}(\mathfrak{A}) \to \mathcal{O}(V)$ becomes a complex of Fréchet $\mathcal{O}(U)$ -modules. We denote by

$$0 \to K_1 \to K_2 \to K_3 \to 0$$

the induced short exact sequence of double complexes _ _ _ /

$$K_{1} = K^{\bullet} \otimes_{\mathcal{O}(U)} K^{\bullet} (z - T, \mathcal{O}(U, X)),$$

$$K_{2} = \mathcal{C}^{\bullet}(\mathfrak{A}) \hat{\otimes}_{\mathcal{O}(U)} K^{\bullet} (z - T, \mathcal{O}(U, X)),$$

$$K_{3} = \mathcal{O}(V) \hat{\otimes}_{\mathcal{O}(U)} K^{\bullet} (z - T, \mathcal{O}(U, X)) = K^{\bullet} (z - T, \mathcal{O}(V, X)).$$

It is well known (see Chapter 5.1 in [4]) that

.

$$H^p(\text{Tot } (K_2)) \cong \begin{cases} 0 & ; p \neq n \\ X & ; p = n \end{cases}$$

as topological $\mathcal{O}(U)$ -modules. One obtains induced short exact sequences

$$0 \to \text{Tot} (K_1) \to \text{Tot} (K_2) \to \text{Tot} (K_3) \to 0$$

between the corresponding total complexes and between double complexes

$$0 \to \tilde{K}_1 \to \tilde{K}_2 \to \tilde{K}_3 \to 0,$$

where $\tilde{K}_i = \text{Tot}(K_i) \hat{\otimes}_{\mathcal{O}(U)} K^{\bullet}(f, \mathcal{O}(U))$ for i = 1, 2, 3. Up to the sign, the columns of the double complex \tilde{K}_1 are direct sums of complexes of the form $K^{\bullet}(f, \mathcal{O}(W, X))$, where W is a Stein open subset of $U \setminus \{0\} =$ $U \setminus f^{-1}(\{0\})$. Hence, as the total complex of a double complex with exact columns, the complex Tot (\tilde{K}_1) is exact. Therefore the cochain map $r : \text{Tot}(\tilde{K}_2) \to \text{Tot}(\tilde{K}_3)$ is a quasi-isomorphism. Standard double complex arguments (Lemma A 2.6 in [4]) show that there are vector space isomorphisms

$$H^p(f(T), X) \cong H^p(f, H^n(\text{Tot } (K_2)))$$
$$\cong H^{p+n}(\text{Tot } (\tilde{K}_2)) \cong H^{p+n}(\text{Tot } (\tilde{K}_3)).$$

To complete the proof, observe that the double complex \tilde{K}_3 has the form

$$K^{\bullet}(z - T, \mathcal{O}(V, X)) \hat{\otimes}_{\mathcal{O}(U)} K^{\bullet}(f, \mathcal{O}(U))$$
$$\cong K^{\bullet}(z - T, \mathcal{O}(V, X)) \hat{\otimes}_{\mathcal{O}(V)} K^{\bullet}(f, \mathcal{O}(V)).$$

Since by hypothesis all columns of the double complex \tilde{K}_3 are exact in degree $p \neq n$, the same double complex result used above (Lemma A 2.6 in [4]) yields vector space isomorphisms

$$H^{p+n}(\operatorname{Tot}(\widetilde{K}_3)) \cong H^p(z-T, H^n(f, \mathcal{O}(V, X)))$$

and thus completes the proof.

Let V be a Stein open neighbourhood of $0 \in \mathbb{C}^n$. Using the well-known fact that, for k = 1, ..., n, a function $f \in \mathcal{O}(V)$ belongs to $\sum_{\nu=1}^k z_{\nu} \mathcal{O}(V)$ if and only if f vanishes on the set $\{z \in V; z_1 = ... = z_k = 0\}$, one easily obtains that $(z_1, ..., z_n)$ is an $\mathcal{O}(V)$ -regular sequence, that is, z_i is a non-zero divisor on $\mathcal{O}(V)/(z_1\mathcal{O}(V) + ... + z_{i-1}\mathcal{O}(V))$ for i = 1, ..., n.

Let $k = (k_1, \ldots, k_n)$ be an *n*-tuple of positive integers. Then the sequence $z^k = (z_1^{k_1}, \ldots, z_n^{k_n})$ remains $\mathcal{O}(V)$ -regular (Theorem 5.3 in [10]). It follows that (Proposition IV.2 in [11])

$$H^p(z^k, \mathcal{O}(V)) = \{0\}$$
 $(p = 0, ..., n - 1).$

For an arbitrary $\mathcal{O}(\mathbb{C}^n)$ -module M, we shall denote by

$$(z^k)M = \sum_{\nu=1}^n z_\nu^{k_\nu} M$$

the $\mathcal{O}(\mathbb{C}^n)$ -submodule determined by the ideal $(z^k) \subset \mathcal{O}(\mathbb{C}^n)$. If $f \in \mathcal{O}_0^X$ is the germ of an analytic Banach-space valued function defined near z = 0, then we shall write

$$f_{\alpha} = (\partial^{\alpha} f)(0)/\alpha! \qquad (\alpha \in \mathbb{N}^n)$$

for the Taylor coefficients of f at 0. To simplify the notation we use the abbreviation

$$I_k = \{ \alpha \in \mathbb{N}^n; \ \alpha_{\nu} < k_{\nu} \text{ for } \nu = 1, \dots, n \}.$$

In the particular case where V is an open polydisc or ball with centre $0 \in \mathbb{C}^n$, one can easily compute the *n*-th cohomology groups of the Koszul complex $K^{\bullet}(z^k, \mathcal{O}(V, X))$.

Lemma 1.2 Let X be a Banach space and let $V \subset \mathbb{C}^n$ be an open polydisc or ball with centre $0 \in \mathbb{C}^n$. Then, for every tuple $k = (k_1, \ldots, k_n)$ of positive integers, we have

$$(z^k)\mathcal{O}(V,X) = \{f \in \mathcal{O}(V,X); f_\alpha = 0 \text{ for all } \alpha \in I_k\}.$$

Proof. Obviously, the left-hand side is contained in the set on the right. Conversely, if f belongs to the set on the right, then we obtain the decomposition

$$f(z) = \sum_{\nu=1}^{n} z_{\nu}^{k_{\nu}} \sum_{\alpha \in A_{\nu}} f_{\alpha} z^{\alpha - k_{\nu} e_{\nu}},$$

where $A_{\nu} \subset \mathbb{N}^n$ consists of all multiindices α with $\alpha_i < k_i$ for $i < \nu$ and $\alpha_{\nu} \geq k_{\nu}$.

For an index tuple k as above, define

$$\mathcal{V}_k = \{ p \in \mathbb{C}[z]; \ p_\alpha = 0 \text{ for all } \alpha \in \mathbb{N}^n \setminus I_k \}.$$

Then, in the setting of the preceding lemma, we obtain obvious vector space isomorphisms

$$H^n(z^k, \mathcal{O}(V, X)) \cong H^n(z^k, \mathcal{O}_0^X) \cong \mathcal{V}_k \otimes X.$$

The proof of our main result will be based on the following particular case of Theorem 1.1.

Corollary 1.3 Let $T \in L(X)^n$ be a commuting tuple of bounded operators on a complex Banach space X such that $0 \in \sigma(T) \setminus \sigma_e(T)$. Then, for every open ball or polydisc $V \subset \mathbb{C}^n$ with centre $0 \in \mathbb{C}^n$ and all families $k = (k_1, \ldots, k_n)$ of positive integers k_i , there are vector space isomorphisms

$$H^p(T^k, X) \cong H^p\left(z - T, H^n(z^k, \mathcal{O}(V, X))\right) \cong H^p\left(z - T, \mathcal{O}_0^X/(z^k)\mathcal{O}_0^X\right)$$

for p = 0, ..., n.

2 Fredholm complexes

Let $\Omega \subset \mathbb{C}^n$ be an open neighbourhood of $0 \in \mathbb{C}^n$ and let $M^{\bullet} = (M^p, d^p)_{p=0}^n$ be a finite analytically parametrized complex of Banach spaces M^p on Ω such that dim $H^p(d^{\bullet}(0), M^{\bullet}) < \infty$ for $p = 0, \ldots, n$. It is well known (see Proposition 9.4.5 and Remark 9.4.6 in [4]) that there exist an analytically parametrized complex $L^{\bullet} = (L^p, u^p)_{p=0}^n$ of finite-dimensional vector spaces L^p on a possibly smaller open neighbourhood U of $0 \in \mathbb{C}^n$ and a family $h = (h^p)_{p=0}^n$ of holomorphic mappings

$$h^p \in \mathcal{O}(U, L(L^p, M^p))$$

such that, for each point $z \in U$, the resulting maps

$$L^{\bullet} \stackrel{h^{\bullet}(z)}{\longrightarrow} M^{\bullet}$$

are quasi-isomorphisms. Equivalently, the mapping cone $C^{\bullet} = (C^p, \alpha^p)_{p=0}^n$ of h, that is, the complex with spaces $C^p = M^p \oplus L^{p+1}$ and coboundaries $\alpha^p(z): C^p \to C^{p+1}$ given by

$$\alpha^{p}(z)(x,y) = (d^{p}(z)x + (-1)^{p+1}h^{p+1}(z)y, u^{p+1}(z)y)$$

is pointwise exact on U.

As before, for a given Banach space E, let us denote by \mathcal{O}_z^E the stalk of germs of all analytic E-valued functions defined near z. Let \mathfrak{m} be the maximal ideal in the Noetherian local ring \mathcal{O}_0 of all scalar-valued convergent power series at z = 0, and let (z^k) be the ideal in \mathcal{O}_0 generated by the finite system $(z_1^{k_1}, \ldots, z_n^{k_n})$ for $k \in \mathbb{N}^n$ arbitrary. The original complex $(\mathcal{O}_0^{M^{\bullet}}, d^{\bullet})$ is quasiisomorphic to the complex

$$\mathcal{L}^{\bullet}: 0 \longrightarrow \mathcal{O}_{0}^{L^{0}} \xrightarrow{u^{0}} \mathcal{O}_{0}^{L^{1}} \xrightarrow{u^{1}} \dots \xrightarrow{u^{n-2}} \mathcal{O}_{0}^{L^{n-1}} \xrightarrow{u^{n-1}} \mathcal{O}_{0}^{L^{n}} \longrightarrow 0$$

of finitely generated \mathcal{O}_0 -modules. More precisely, the family $h = (h^p)_{p=0}^n$ induces isomorphisms of cohomology

$$H^p(u^{\bullet}, \mathcal{L}^{\bullet}) \xrightarrow{\sim} H^p(d^{\bullet}, \mathcal{O}_0^{M^{\bullet}})$$

for p = 0, ..., n. Using an exactness result for analytically parametrized complexes, we can improve this observation.

Lemma 2.1 Let $k = (k_1, \ldots, k_n)$ be a family of positive integers. Then the cochain map $h = (h^p)_{p=0}^n$ induces isomorphisms of cohomology

$$H^p(u^{\bullet}, \mathcal{L}^{\bullet}/(z^k)\mathcal{L}^{\bullet}) \xrightarrow{\sim} H^p(d^{\bullet}, \mathcal{O}_0^{M^{\bullet}}/(z^k)\mathcal{O}_0^{M^{\bullet}})$$

for p = 0, ..., n.

Proof. Since the mapping cone of the cochain map

$$L^{\bullet}/(z^k)\mathcal{L}^{\bullet} \stackrel{h}{\longrightarrow} \mathcal{O}_0^{M^{\bullet}}/(z^k)\mathcal{O}_0^M$$

can be identified with the complex $\mathcal{O}_0^{C^{\bullet}}/(z^k)\mathcal{O}_0^{C^{\bullet}}$, it suffices to show that the latter complex is exact. But we know that $(C^{\bullet}, \alpha^{\bullet}(0))$ is an exact complex of Banach spaces. Then by Lemma 2.1.5 in [4] there is a real number $r_0 > 0$ such that, for each open polydisc $V = P_r(0)$ with centre 0 and radius $0 < r < r_0$, the complex $(\mathcal{O}(V, C^{\bullet}), \alpha^{\bullet})$ is exact. More precisely, choose r_0 small enough, as in the proof of Lemma 2.1.5 from [4]. Consider $r \in \mathcal{O}(V, C^p)$ and $g = \sum_{\alpha \in \mathbb{N}^n} g_{\alpha} z^{\alpha} \in (z^k) \mathcal{O}(V, C^{p+1})$ with

$$g = \alpha^p r.$$

Then $g_{\alpha} = 0$ for all $\alpha \in I_k$, and it is easily checked that the inductive construction from the proof of Lemma 2.1.5 in [4] can be used to define a family of coefficients $(f_{\alpha})_{|\alpha|=j}$ $(j \in \mathbb{N})$ in C^p such that the power series $f = \sum_{\alpha \in \mathbb{N}^n} f_{\alpha} z^{\alpha}$ defines a solution of the equation $\alpha^p f = g$ in $\mathcal{O}(V, C^p)$ with $f_{\alpha} = 0$ for every $\alpha \in I_k$. Since $\alpha^p(r-f) = 0$, it follows that

$$r \in (z^k)\mathcal{O}(V, C^p) + \alpha^{p-1}\mathcal{O}(V, C^{p-1}).$$

Thus we have proved the exactness of the complex

$$\left(\mathcal{O}(V, C^{\bullet})/(z^k)\mathcal{O}(V, C^{\bullet}), \alpha^{\bullet}\right)$$

on each open polydisc $V = P_r(0)$ with sufficiently small r > 0. Hence $\mathcal{O}_0^{C^{\bullet}}/(z^k)\mathcal{O}_0^{C^{\bullet}}$ is exact, and the proof is complete. \Box

Let us define submodules

$$\mathcal{N}^p = \operatorname{Ker} u^p \subset \mathcal{L}^p, \quad \mathcal{Z}^p = \operatorname{Im} u^{p-1} \subset \mathcal{L}^p.$$

The short exact sequences

$$0 \longrightarrow (z^k) \mathcal{L}^{\bullet} \longrightarrow \mathcal{L}^{\bullet} \longrightarrow \mathcal{L}^{\bullet} / (z^k) \mathcal{L}^{\bullet} \longrightarrow 0$$

induce long exact cohomology sequences

$$0 \longrightarrow H^{0}((z^{k})\mathcal{L}^{\bullet})) \xrightarrow{j_{0,k}} H^{0}(\mathcal{L}^{\bullet}) \xrightarrow{q_{0,k}} H^{0}(\mathcal{L}^{\bullet}/(z^{k})\mathcal{L}^{\bullet})$$
$$\longrightarrow H^{1}((z^{k})\mathcal{L}^{\bullet}) \xrightarrow{j_{1,k}} \dots \dots$$
$$\dots$$
$$\dots$$
$$\dots$$
$$H^{n}((z^{k})\mathcal{L}^{\bullet}) \xrightarrow{j_{n,k}} H^{n}(\mathcal{L}^{\bullet}) \xrightarrow{q_{n,k}} H^{n}(\mathcal{L}^{\bullet}/(z^{k})\mathcal{L}^{\bullet}) \longrightarrow 0.$$

Since the spaces $H^p(\mathcal{L}^{\bullet})$ are finitely generated modules over the local ring \mathcal{O}_0 , the Samuel multiplicities of $H^p(\mathcal{L}^{\bullet})$ is well defined and can be calculated by using the limit formula of Lech [9] (Theorem 2)

$$c_p = \lim_{\min k \to \infty} \dim \left(H^p(\mathcal{L}^{\bullet}) / (z^k) H^p(\mathcal{L}^{\bullet}) \right) / k_1 \dots k_n \qquad (p = 0, \dots, n).$$

To apply the results of Section 1 we need a different variant of this limit formula.

Theorem 2.2 In the above setting, we obtain the representations

$$c_p = \lim_{\min k \to \infty} \dim H^p \left(\mathcal{L}^{\bullet} / (z^k) \mathcal{L}^{\bullet} \right) / k_1 \dots k_n$$

for p = 0, ..., n.

Proof. Fix a number $p \in \{0, \ldots, n\}$. Define

$$c_{p,k} = \dim H^p(\mathcal{L}^{\bullet})/(z^k)H^p(\mathcal{L}^{\bullet}), \quad b_{p,k} = \dim H^p(\mathcal{L}^{\bullet}/(z^k)\mathcal{L}^{\bullet})$$

for $k\in\mathbb{N}^n$. Note that Ker $j_{p,k}=(z^k)\mathcal{L}^p\cap\mathcal{Z}^p/(z^k)\mathcal{Z}^p$ and that

$$(z^k)H^p(\mathcal{L}^{\bullet}) \subset \operatorname{Im} j_{p,k}$$

for all $k \in \mathbb{N}^n$. Elementary linear algebra shows that

$$c_{p,k} = \dim H^p(\mathcal{L}^{\bullet}) / \operatorname{Im} j_{p,k} + \dim \operatorname{Im} j_{p,k} / (z^k) H^p(\mathcal{L}^{\bullet})$$
$$= b_{p,k} - \dim \operatorname{Ker} j_{p+1,k} + \dim \operatorname{Im} j_{p,k} / (z^k) H^p(\mathcal{L}^{\bullet})$$

for all $k \in \mathbb{N}^n$. Using the short exact sequences

$$0 \longrightarrow \frac{\mathcal{Z}^p}{(z^k)\mathcal{L}^p \cap \mathcal{Z}^p} \longrightarrow \frac{\mathcal{L}^p}{(z^k)\mathcal{L}^p} \longrightarrow \frac{(\mathcal{L}^p/\mathcal{Z}^p)}{(z^k)(\mathcal{L}^p/\mathcal{Z}^p)} \longrightarrow 0$$

and the additivity of the Samuel multiplicity for finitely generated modules over the Noetherian local ring \mathcal{O}_0 ([11], Proposition II.10), we obtain that both limits

$$\lim_{\min k \to \infty} \frac{\dim \mathcal{Z}^p/(z^k)\mathcal{L}^p \cap \mathcal{Z}^p}{k_1 \dots k_n} = \lim_{\min k \to \infty} \frac{\dim \mathcal{Z}^p/(z^k)\mathcal{Z}^p}{k_1 \dots k_n}$$

calculate the Samuel multiplicity of the \mathcal{O}_0 - module \mathcal{Z}^p . Thus we find that

$$\lim_{\min k \to \infty} \dim \operatorname{Ker} \, j_{p,k}/k_1 \dots k_n = 0$$

Since Im $j_{p,k} = (\mathcal{Z}^p + (z^k)\mathcal{L}^p \cap \mathcal{N}^p)/\mathcal{Z}^p$, there are canonical short exact sequences

$$0 \longrightarrow \frac{\mathcal{Z}^p}{(z^k)\mathcal{L}^p \cap \mathcal{Z}^p} \longrightarrow \frac{\mathcal{N}^p}{(z^k)\mathcal{L}^p \cap \mathcal{N}^p} \longrightarrow \frac{H^p(\mathcal{L}^{\bullet})}{\operatorname{Im} j_{p,k}} \longrightarrow 0$$

Using the additivity of the Samuel multiplicity a second time, we conclude that

$$\lim_{\min k \to \infty} \frac{\dim(H^p(\mathcal{L}^{\bullet})/\operatorname{Im} j_{p,k})}{k_1 \dots k_n} = c_p.$$

This observation completes the proof.

In the particular case p = n, Theorem 2.2 can be improved. Indeed it is elementary to check that in this case even the equality $\text{Im } j_{n,k} = (z^k)H^n(\mathcal{L}^{\bullet})$ holds. Hence we obtain that

$$\dim H^n(\mathcal{L}^{\bullet})/(z^k)H^n(\mathcal{L}^{\bullet}) = \dim H^n(\mathcal{L}^{\bullet}/(z^k)\mathcal{L}^{\bullet})$$

for all $k \in \mathbb{N}^n$.

Let us specialize our results to the case where $M^{\bullet} = (M^p, d^p)_{p=0}^n$ is the Koszul complex $K^{\bullet}(z - T, X)$ of a Fredholm tuple $T \in L(X)^n$ of commuting bounded operators on a complex Banach space X. We begin by choosing an analytically parametrized complex $L^{\bullet} = (L^p, u^p)_{p=0}^n$ of finite-dimensional vector spaces on an open neighbourhood U of $0 \in \mathbb{C}^n$ which is quasi-isomorphic to $K^{\bullet}(z - T, X)$ in the sense explained above. Then the cohomology sheaves

$$\mathcal{H}^p = H^p(z - T, \mathcal{O}_U^X) \cong H^p(u^{\bullet}, \mathcal{O}_U^{L^{\bullet}}) \qquad (p = 0, \dots, n)$$

of the associated complexes of \mathcal{O}_U -modules are coherent analytic sheaves on U. As an application of Theorem 2.2 and Corollary 1.3 we show that the Samuel multiplicities c_p of the stalks \mathcal{H}_0^p can be expressed in terms of the cohomology groups $H^p(T^k, X)$ of the powers T^k of the given Fredholm tuple T.

Corollary 2.3 For a Fredholm tuple $T \in L(X)^n$ of commuting bounded operators on a complex Banach space X, the Samuel multiplicities c_p of the stalks of the cohomology sheaves $\mathcal{H}^p = H^p(z - T, \mathcal{O}_{\mathbb{C}^n}^X)$ at z = 0 can be calculated as

$$c_p = \lim_{\min k \to \infty} \frac{\dim H^p(T^k, X)}{k_1 \dots k_n}$$

Proof. By combining Theorem 2.2 and Corollary 1.3, and by using the cohomology isomorphisms explained in the sections leading to Theorem 2.2, we obtain the following chain of equalities

$$c_p = \lim_{\min k \to \infty} \frac{\dim H^p(z-T,\mathcal{O}_0^X)/(z^k)H^p(z-T,\mathcal{O}_0^X)}{k_1...k_n}$$
$$= \lim_{\min k \to \infty} \frac{\dim H^p(\mathcal{L}^{\bullet})/(z^k)H^p(\mathcal{L}^{\bullet})}{k_1...k_n}$$
$$= \lim_{\min k \to \infty} \frac{\dim H^p(\mathcal{L}^{\bullet}/(z^k)\mathcal{L}^{\bullet})}{k_1...k_n}$$
$$= \lim_{\min k \to \infty} \frac{\dim H^p(z-T,\mathcal{O}_0^X/(z^k)\mathcal{O}_0^X)}{k_1...k_n}$$
$$= \lim_{\min k \to \infty} \frac{\dim H^p(T^k, X)}{k_1...k_n}$$

The second equality follows from the fact that the isomorphisms $H^p(\mathcal{L}^{\bullet}) \rightarrow H^p(z-T, \mathcal{O}_0^X)$, explained above, and their inverses are isomorphisms of \mathcal{O}_0 -modules.

To bring our results in a more concrete and applicable form, we look for a different interpretation of the Samuel multiplicities c_p of the cohomology sheaves $\mathcal{H}^p(z-T, \mathcal{O}^X)$ at z = 0.

Let $V \subset \mathbb{C}^n$ be a connected open neighbourhood of $0 \in \mathbb{C}^n$, and let \mathcal{F} be a coherent analytic sheaf on V. The set S of all points $z \in V$ for which \mathcal{F} is not locally free at z is a proper analytic subset of V, and the complement of S in V is connected ([7], Theorem 4.4). By definition the rank $\operatorname{rk}_V(\mathcal{F})$ of the coherent sheaf \mathcal{F} on V is the constant value of $\operatorname{rk}_z(\mathcal{F})$ for $z \in V \setminus S$. This number is independent of the choice of V and is usually referred to as the rank $\operatorname{rk}_0(\mathcal{F})$ of \mathcal{F} at z = 0. By shrinking V, if necessary, one can achieve in addition that \mathcal{F} has a finite resolution

$$0 \to \mathcal{O}_V^{pr} \to \mathcal{O}_V^{pr_1} \to \ldots \to \mathcal{O}_V^{p_1} \to \mathcal{F} \to 0$$

by free \mathcal{O}_V -modules ([8], Theorem VI.F.5). Since the Samuel multiplicity for finitely generated modules over the Noetherian local ring \mathcal{O}_0 is additive ([11], Proposition II.10) and since the Samuel multiplicity of a free \mathcal{O}_{V} module coincides with its rank, it follows that

$$c(\mathcal{F}_z) = \sum_{i=1}^r (-1)^i c(\mathcal{O}_V^{p_i}) = \sum_{i=1}^r (-1)^i p_i = \mathrm{rk}_0(\mathcal{F})$$

for $z \in V$.

Theorem 2.4 Let $T \in L(X)^n$ be a Fredholm tuple of commuting bounded Banach-space operators and let $U \subset \rho_e(T)$ be a connected open neighbourhood of $0 \in \mathbb{C}^n$. Then there is a proper analytic subset $S \subset U$ such that

$$\dim H^p(z-T,X) = \lim_{\min k \to \infty} \frac{\dim H^p(T^k,X)}{k_1 \dots k_n} = \inf_k \frac{\dim H^p(T^k,X)}{k_1 \dots k_n}$$

for $p = 0, \ldots, n$ and $z \in U \setminus S$.

Proof. Since $U \subset \rho_e(T)$, the arguments preceding Lemma 2.1 imply that the cohomology sheaves

$$\mathcal{H}^p = H^p(z - T, \mathcal{O}_U^H) \cong H^p(u^{\bullet}, \mathcal{O}_U^{L^{\bullet}}) \qquad (p = 0, \dots, n)$$

are coherent analytic sheaves on U. By Proposition 9.4.5 in [4], there are proper analytic subsets $S_p \subset U$ such that the functions

$$z \mapsto \dim H^p(z - T, X) \qquad (p = 0, \dots, n)$$

have constant values d_p on $U \setminus S_p$ and such that

dim
$$H^p(z - T, X) > d_p$$
 $(p = 0, ..., n, z \in S_p).$

As shown in the proof of Proposition 10.3.3 from [4], the number d_p is the rank of the coherent sheaf \mathcal{H}^p on U. Using Corollary 2.3 and the subsequent remarks, we obtain that

$$d_p = \operatorname{rk}_0(\mathcal{H}^p) = c(\mathcal{H}^p_0) = \lim_{\min k \to \infty} \frac{\dim H^p(T^k, X)}{k_1 \dots k_n}$$

•

Let $k = (k_1, \ldots, k_n)$ be a family of positive integers. Using the fact that the function dim $H^p(w - T^k, X)$ is upper-semicontinuous in w ([4], Proposition 9.4.5), we can choose a real number r > 0 such that

$$\dim H^p(w - T^k, X) \le \dim H^p(T^k, X)$$

for all w with ||w|| < r and every p = 0, ..., n. After shrinking r we may suppose that $\{z \in \mathbb{C}^n; z^k = w\} \subset U$ for ||w|| < r. Fix a point $w \in (\mathbb{C}^n \setminus \{0\})^n$ with ||w|| < r. Then the proof of Theorem 10.3.13 in [4] shows that

$$\dim H^p(T^k, X) \ge \dim H^p(w - T^k, X)$$
$$= \sum_{z^k = w} \dim H^p(z - T, X) \ge k_1 \dots k_n d_p.$$

This observation completes the proof of Theorem 2.4.

By Theorem 2.4 the numbers

$$c_p(T) = \lim_{\min k \to \infty} \frac{\dim H^p(T^k, X)}{k_1 \dots k_n} \qquad (p = 0, \dots, n)$$

calculate the stabilized dimensions of the *p*th order cohomology groups of the Koszul complexes $K^{\bullet}(z - T, X)$ of a Fredholm tuple $T \in L(X)^n$.

Corollary 2.5 Let $T \in L(X)^n$ be a Fredholm tuple on a Banach space X. Then for any family of non-negative integers s_1, \ldots, s_n , we obtain that

$$c_p(T^s) = s_1 \cdot s_2 \cdot \ldots \cdot s_n \ c_p(T) \qquad (p = 0, \ldots, n).$$

Proof. If $s_i = 0$ for some index $i \in \{1, ..., n\}$, then $c_p(T^s) = 0$ and the assertion holds. If $s_1, ..., s_n \ge 1$, then the observation that

$$c_p(T^s) = \lim_{k \to \infty} \frac{\dim H^p(T^{k,s},X)}{k^n}$$
$$= s_1 \dots s_n \lim_{k \to \infty} \frac{\dim H^p(T^{ks},X)}{s_1 \dots s_n k^n} = s_1 \dots s_n c_p(T)$$

completes the proof.

References

- R. Douglas and K. Yan, Hilbert-Samuel polynomials for Hilbert modules, Indiana Univ. Math. J. 42 (1993), 811-820.
- [2] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate texts in Mathematics 150, Springer-Verlag, New York, 1995.
- [3] J. Eschmeier, Samuel multiplicity for several commuting operators, Preprint 2006.

- [4] J. Eschmeier and M. Putinar, Spectral decompositions and analytic sheaves, London Mathematical Society Monographs, New Series, 10, Clarendon Press, Oxford, 1996.
- [5] X. Fang, The Fredholm index of a pair of commuting operators, to appear in Vol. 16 (2006), GAFA.
- [6] X. Fang, The Fredholm index of a pair of commuting operators, II, Preprint 2006.
- [7] H. Grauert and R. Remmert, Coherent analytic sheaves, Springer-Verlag, Berlin, 1984.
- [8] R.C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.
- [9] C. Lech, On the associativity formula for multiplicities, Ark. Mat. 3 (1957), 301-314.
- [10] D.G. Northcott, Finite free resolutions, Cambridge Tracts in Math. 71, Cambridge University Press, Cambridge, 1976.
- [11] J.-P. Serre, Local algebra, Springer-Verlag, Berlin, 2000.
- [12] J.L. Taylor, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-48.

Jörg Eschmeier Fachrichtung Mathematik Universität des Saarlandes Postfach 15 11 50 D-66041 Saarbrücken, Germany e-mail: eschmei@math.uni-sb.de