Universität des Saarlandes

Fachrichtung 6.1 - Mathematik

Preprint Nr. 173

Samuel multiplicity and Fredholm theory

Jörg Eschmeier

Saarbrücken 2006

Samuel multiplicity and Fredholm theory

Jörg Eschmeier
Saarland University
Department of Mathematics
Postfach 151150
D-66041 Saarbrücken
Germany
eschmei@math.uni-sb.de

Edited by
FR 6.1 - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany

Fax: $\quad+496813024443$
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Samuel multiplicity and Fredholm theory

Jörg Eschmeier

Abstract

In this note we prove that, for a given Fredholm tuple $T=\left(T_{1}, \ldots, T_{n}\right)$ of commuting bounded operators on a complex Banach space X, the limits $c_{p}(T)=$ $\lim _{k \rightarrow \infty} \operatorname{dim} H^{p}\left(T^{k}, X\right) / k^{n}$ exist and calculate the generic dimension of the cohomology groups $H^{p}(z-T, X)$ of the Koszul complex of T near $z=0$. To deduce this result we show that the above limits coincide with the Samuel multiplicities of the stalks of the cohomology sheaves $H^{p}\left(z-T, \mathcal{O}_{\mathbb{C}^{n}}^{X}\right)$ of the associated complex of analytic sheaves at $z=0$.

0 Introduction

Let $T=\left(T_{1}, \ldots, T_{n}\right) \in L(X)^{n}$ be a commuting tuple of bounded linear operators on a complex Banach space X. A fundamental principle of multivariable operator theory is that all basic spectral properties of T should be understood as properties of its Koszul complex. The Koszul complex $K^{\bullet}(z-T, X)$ is a finite complex of Banach spaces with coboundary maps

$$
K^{p}(z-T, X) \rightarrow K^{p+1}(z-T, X), \quad x s_{I} \mapsto \sum_{j=1}^{n}\left(z_{j}-T_{j}\right) x s_{j} \wedge s_{I}
$$

that depend analytically on the parameter $z \in \mathbb{C}^{n}$. The commuting tuple T is said to be invertible if the Koszul complex $K^{\bullet}(T, X)$ is exact. The joint spectrum $\sigma(T)$ of T consists of all points $z \in \mathbb{C}^{n}$ for which the tuple $z-T=\left(z_{1}-T_{1}, \ldots, z_{n}-T_{n}\right)$ is not invertible. It was a breakthrough [12] when J.L.Taylor introduced this notion of joint spectrum and showed that it carries an analytic functional calculus, that is, there exists a continuous algebra homomorphism

$$
\mathcal{O}(\sigma(T)) \rightarrow L(X), f \mapsto f(T)
$$

extending the natural $\mathcal{O}\left(\mathbb{C}^{n}\right)$-module structure of X given by T.

[^0]The commuting tuple T is said to be Fredholm if all cohomology groups $H^{p}(T, X)(p=0, \ldots, n)$ of its Koszul complex $K^{\bullet}(T, X)$ are finite dimensional. The Fredholm index of T is defined as the Euler characteristic

$$
\operatorname{ind}(T)=\sum_{p=0}^{n}(-1)^{p} \operatorname{dim} H^{p}(T, X)
$$

of its Koszul complex. The essential spectrum $\sigma_{e}(T)$ of T consists of all points $z \in \mathbb{C}^{n}$ for which $z-T$ is not Fredholm. The observation that T is Fredholm if and only if all cohomology sheaves of the associated complex $K^{\bullet}\left(z-T, \mathcal{O}_{\mathbb{C}^{n}}^{X}\right)$ of Banach-free analytic sheaves are coherent near $0 \in \mathbb{C}^{n}$ allows the application of methods from complex analytic geometry to multivariable Fredholm theory. For instance, the Fredholm spectrum $\sigma(T) \cap \rho_{e}(T)$ is an analytic subset of the essential resolvent set $\rho_{e}(T)=\mathbb{C}^{n} \backslash \sigma_{e}(T)$, since it is the support of the coherent sheaf $\oplus_{p=0}^{n} H^{p}\left(z-T, \mathcal{O}_{\rho_{e}(T)}^{X}\right)$. The discontinuity points of the functions

$$
\rho_{e}(T) \rightarrow \mathbb{C}, z \mapsto \operatorname{dim} H^{p}(z-T, X) \quad(p=0, \ldots, n)
$$

form proper analytic subsets of $\rho_{e}(T)$. Suppose that T is Fredholm. Then the stalks of the cohomology sheaves $\mathcal{H}^{p}=H^{p}\left(z-T, \mathcal{O}_{\rho_{e}(T)}^{X}\right)$ at $0 \in \mathbb{C}^{n}$ are finitely generated modules over the Noetherian local ring \mathcal{O}_{0} of all convergent power series at 0 . Hence there are polynomials $q_{a n, p} \in \mathbb{Q}[x]$, the HilbertSamuel polynomials of \mathcal{H}_{0}^{p}, with $\operatorname{deg}\left(q_{a n, p}\right) \leq n$ such that

$$
\operatorname{dim}\left(\mathcal{H}_{0}^{p} / \mathfrak{m}^{k} \mathcal{H}_{0}^{p}\right)=q_{a n, p}(k)
$$

for sufficiently large natural numbers k and such that the limits

$$
c_{a n, p}(T)=n!\lim _{k \rightarrow \infty} \operatorname{dim}\left(\mathcal{H}_{0}^{p} / \mathfrak{m}^{k} \mathcal{H}_{0}^{p}\right) / k^{n} \quad(p=0, \ldots, n)
$$

exist and define natural numbers, the Samuel multiplicities of \mathcal{H}_{0}^{p}. Here \mathfrak{m} denotes the maximal ideal of the local ring \mathcal{O}_{0}.

On the other hand, if T is Fredholm, then the spaces $M_{k}(T)=\sum_{|\alpha|=k} T^{\alpha} X$ are finite codimensional in X and the direct sum $\oplus_{k \geq 0} M_{k}(T) / M_{k+1}(T)$ becomes in a natural way a finitely generated graded $\mathbb{C}[z]$-module. By a classical result of Hilbert, there is a polynomial $q \in \mathbb{Q}[x]$ of degree at most n such that

$$
\operatorname{dim}\left(X / M_{k}(T)\right)=q(k)
$$

for large values of k and such that the limit

$$
c(T)=n!\lim _{k \rightarrow \infty} \operatorname{dim}\left(X / M_{k}(T)\right) / k^{n}
$$

exists and defines a natural number, the algebraic Samuel multiplicity of T.

In a paper [1] of Douglas and Yan from 1993 the algebraic Hilbert-Samuel polynomial q and its analytic counterpart $q_{a n, n}$ were studied and it was suggested that their nth order coefficients and degrees should have a natural meaning in operator theory.

In recent papers of Xiang Fang [6] and the author [3] it was shown that $c(T)=c_{a n, n}(T)$ and that this number calculates the generic dimension of the last cohomology groups $H^{n}(z-T, X)$ of the Koszul complex $K^{\bullet}(z-T, X)$ near $z=0$. More precisely, for every connected open neighbourhood U of 0 , the number $c(T)$ coincides with the constant value of the function $\operatorname{dim} H^{n}(z-T, X)$ outside of its discontinuity set. Moreover, it was suggested that the functions

$$
h_{p}(k)=\operatorname{dim} H^{p}\left(T^{k}, X\right) \quad(k \in \mathbb{N})
$$

with $T^{k}=\left(T_{1}^{k}, \ldots, T_{n}^{k}\right)$ should be the algebraic analogues of the p th order analytic Hilbert-Samuel polynomials $q_{a n, p}$.
In this paper we show that indeed, for $p=0, \ldots, n$, the limit formula

$$
c_{a n, p}(T)=\lim _{k \rightarrow \infty} \operatorname{dim} H^{p}\left(T^{k}, X\right) / k^{n}
$$

holds and that $c_{a n, p}(T)$ is the generic dimension of $H^{p}(z-T, X)$ near $z=0$. It follows that

$$
\operatorname{ind}(T)=\sum_{p=0}^{n}(-1)^{p} c_{a n, p}(T)
$$

As a first step, we show in Section 1 that, for every natural number k, there are canonical vector space isomorphisms

$$
H^{p}\left(T^{k}, X\right) \cong H^{p}\left(z-T, \mathcal{O}_{0}^{X} /\left(z^{k}\right) \mathcal{O}_{0}^{X}\right)
$$

for $p=0, \ldots, n$. In Section 2 we use results on analytically parametrized complexes of Banach spaces and methods from commutative algebra to deduce that

$$
c_{a n, p}(T)=\lim _{k \rightarrow \infty} \operatorname{dim} H^{p}\left(z-T, \mathcal{O}_{0}^{X} /\left(z^{k}\right) \mathcal{O}_{0}^{X}\right) / k^{n}
$$

for $p=0, \ldots, n$. Using the fact (cf. [6]) that the leading coefficient of the Samuel multiplicity of the stalk of a coherent sheaf at a given point z calculates its rank near z, we find that the above limits represent the generic dimension of $H^{p}(z-T, X)$ for z near 0 .

1 Analytic functional calculus

To compute the cohomology groups $H^{p}\left(T^{k}, X\right)$ of the powers T^{k} of a Fredholm tuple $T \in L(X)^{n}$ we apply a construction which was used in [4] (Theorem 10.3.13) to prove an analytic index formula for the Fredholm index.

Theorem 1.1 Let $T \in L(X)^{n}$ be a commuting tuple of bounded linear operators on a complex Banach space X. Suppose that $0 \in \sigma(T) \backslash \sigma_{e}(T)$. Let $f \in \mathcal{O}(U)^{n}$ be an n-tuple of analytic functions defined on an open neighbourhood U of $\sigma(T)$ such that $f^{-1}(\{0\})=\{0\}$ and such that

$$
H^{p}(f, \mathcal{O}(V))=\{0\} \quad(p=0, \ldots, n-1)
$$

for some Stein open neighbourhood $V \subset U$ of $0 \in \mathbb{C}^{n}$. Then there are vector space isomorphisms

$$
H^{p}(f(T), X) \cong H^{p}\left(z-T, H^{n}(f, \mathcal{O}(V, X))\right)
$$

for $p=0, \ldots, n$.

Proof. We follow closely the lines of the proof of Theorem 10.3.13 in [4]. In particular, we use the notations established there.

Choose a Stein open cover $\mathfrak{A}=\left(U_{i}\right)_{i \in \mathbb{N}}$ of U with $U_{0}=V$ and $0 \notin U_{i}$ for $i>0$. We denote by $\mathcal{C} \bullet(\mathfrak{A})$ the alternating Cech complex with coefficients in \mathcal{O}_{U} relative to the open cover \mathfrak{A}. Let us regard $\mathcal{O}(V)$ as the trivial complex with $\mathcal{O}(V)$ as the space in degree 0 and zero elsewhere. The kernel K^{\bullet} of the canonical epimorphism $r: \mathcal{C}^{\bullet}(\mathfrak{A}) \rightarrow \mathcal{O}(V)$ becomes a complex of Fréchet $\mathcal{O}(U)$-modules. We denote by

$$
0 \rightarrow K_{1} \rightarrow K_{2} \rightarrow K_{3} \rightarrow 0
$$

the induced short exact sequence of double complexes

$$
\begin{aligned}
K_{1} & =K^{\bullet} \hat{\otimes}_{\mathcal{O}(U)} K^{\bullet}(z-T, \mathcal{O}(U, X)) \\
K_{2} & =\mathcal{C}^{\bullet}(\mathfrak{A}) \hat{\otimes}_{\mathcal{O}(U)} K^{\bullet}(z-T, \mathcal{O}(U, X)) \\
K_{3} & =\mathcal{O}(V) \hat{\otimes}_{\mathcal{O}(U)} K^{\bullet}(z-T, \mathcal{O}(U, X))=K^{\bullet}(z-T, \mathcal{O}(V, X))
\end{aligned}
$$

It is well known (see Chapter 5.1 in [4]) that

$$
H^{p}\left(\operatorname{Tot}\left(K_{2}\right)\right) \cong\left\{\begin{array}{cc}
0 & ; \quad p \neq n \\
X & ; \quad p=n
\end{array}\right.
$$

as topological $\mathcal{O}(U)$-modules. One obtains induced short exact sequences

$$
0 \rightarrow \operatorname{Tot}\left(K_{1}\right) \rightarrow \operatorname{Tot}\left(K_{2}\right) \rightarrow \operatorname{Tot}\left(K_{3}\right) \rightarrow 0
$$

between the corresponding total complexes and between double complexes

$$
0 \rightarrow \tilde{K}_{1} \rightarrow \tilde{K}_{2} \rightarrow \tilde{K}_{3} \rightarrow 0
$$

where $\tilde{K}_{i}=\operatorname{Tot}\left(K_{i}\right) \hat{\otimes}_{\mathcal{O}(U)} K^{\bullet}(f, \mathcal{O}(U))$ for $i=1,2,3$. Up to the sign, the columns of the double complex \tilde{K}_{1} are direct sums of complexes of the form $K^{\bullet}(f, \mathcal{O}(W, X))$, where W is a Stein open subset of $U \backslash\{0\}=$ $U \backslash f^{-1}(\{0\})$. Hence, as the total complex of a double complex with exact columns, the complex $\operatorname{Tot}\left(\tilde{K}_{1}\right)$ is exact. Therefore the cochain map $r: \operatorname{Tot}\left(\tilde{K}_{2}\right) \rightarrow \operatorname{Tot}\left(\tilde{K}_{3}\right)$ is a quasi-isomorphism. Standard double complex arguments (Lemma A 2.6 in [4]) show that there are vector space isomorphisms

$$
\begin{aligned}
H^{p}(f(T), X) & \cong H^{p}\left(f, H^{n}\left(\operatorname{Tot}\left(K_{2}\right)\right)\right) \\
& \cong H^{p+n}\left(\operatorname{Tot}\left(\tilde{K}_{2}\right)\right) \cong H^{p+n}\left(\operatorname{Tot}\left(\tilde{K}_{3}\right)\right)
\end{aligned}
$$

To complete the proof, observe that the double complex \tilde{K}_{3} has the form

$$
\begin{aligned}
& K^{\bullet}(z-T, \mathcal{O}(V, X)) \hat{\otimes}_{\mathcal{O}(U)} K^{\bullet}(f, \mathcal{O}(U)) \\
\cong & K^{\bullet}(z-T, \mathcal{O}(V, X)) \hat{\otimes}_{\mathcal{O}(V)} K^{\bullet}(f, \mathcal{O}(V))
\end{aligned}
$$

Since by hypothesis all columns of the double complex \tilde{K}_{3} are exact in degree $p \neq n$, the same double complex result used above (Lemma A 2.6 in [4]) yields vector space isomorphisms

$$
H^{p+n}\left(\operatorname{Tot}\left(\tilde{K}_{3}\right)\right) \cong H^{p}\left(z-T, H^{n}(f, \mathcal{O}(V, X))\right)
$$

and thus completes the proof.

Let V be a Stein open neighbourhood of $0 \in \mathbb{C}^{n}$. Using the well-known fact that, for $k=1, \ldots, n$, a function $f \in \mathcal{O}(V)$ belongs to $\sum_{\nu=1}^{k} z_{\nu} \mathcal{O}(V)$ if and only if f vanishes on the set $\left\{z \in V ; z_{1}=\ldots=z_{k}=0\right\}$, one easily obtains that $\left(z_{1}, \ldots, z_{n}\right)$ is an $\mathcal{O}(V)$-regular sequence, that is, z_{i} is a non-zero divisor on $\mathcal{O}(V) /\left(z_{1} \mathcal{O}(V)+\ldots+z_{i-1} \mathcal{O}(V)\right)$ for $i=1, \ldots, n$.

Let $k=\left(k_{1}, \ldots, k_{n}\right)$ be an n-tuple of positive integers. Then the sequence $z^{k}=\left(z_{1}^{k_{1}}, \ldots, z_{n}^{k_{n}}\right)$ remains $\mathcal{O}(V)$-regular (Theorem 5.3 in [10]). It follows that (Proposition IV. 2 in [11])

$$
H^{p}\left(z^{k}, \mathcal{O}(V)\right)=\{0\} \quad(p=0, \ldots, n-1)
$$

For an arbitrary $\mathcal{O}\left(\mathbb{C}^{n}\right)$-module M, we shall denote by

$$
\left(z^{k}\right) M=\sum_{\nu=1}^{n} z_{\nu}^{k_{\nu}} M
$$

the $\mathcal{O}\left(\mathbb{C}^{n}\right)$-submodule determined by the ideal $\left(z^{k}\right) \subset \mathcal{O}\left(\mathbb{C}^{n}\right)$. If $f \in \mathcal{O}_{0}^{X}$ is the germ of an analytic Banach-space valued function defined near $z=0$, then we shall write

$$
f_{\alpha}=\left(\partial^{\alpha} f\right)(0) / \alpha!\quad\left(\alpha \in \mathbb{N}^{n}\right)
$$

for the Taylor coefficients of f at 0 . To simplify the notation we use the abbreviation

$$
I_{k}=\left\{\alpha \in \mathbb{N}^{n} ; \alpha_{\nu}<k_{\nu} \text { for } \nu=1, \ldots, n\right\} .
$$

In the particular case where V is an open polydisc or ball with centre $0 \in \mathbb{C}^{n}$, one can easily compute the n-th cohomology groups of the Koszul complex $K^{\bullet}\left(z^{k}, \mathcal{O}(V, X)\right)$.

Lemma 1.2 Let X be a Banach space and let $V \subset \mathbb{C}^{n}$ be an open polydisc or ball with centre $0 \in \mathbb{C}^{n}$. Then, for every tuple $k=\left(k_{1}, \ldots, k_{n}\right)$ of positive integers, we have

$$
\left(z^{k}\right) \mathcal{O}(V, X)=\left\{f \in \mathcal{O}(V, X) ; f_{\alpha}=0 \text { for all } \alpha \in I_{k}\right\}
$$

Proof. Obviously, the left-hand side is contained in the set on the right. Conversely, if f belongs to the set on the right, then we obtain the decomposition

$$
f(z)=\sum_{\nu=1}^{n} z_{\nu}^{k_{\nu}} \sum_{\alpha \in A_{\nu}} f_{\alpha} z^{\alpha-k_{\nu} e_{\nu}}
$$

where $A_{\nu} \subset \mathbb{N}^{n}$ consists of all multiindices α with $\alpha_{i}<k_{i}$ for $i<\nu$ and $\alpha_{\nu} \geq k_{\nu}$.

For an index tuple k as above, define

$$
\mathcal{V}_{k}=\left\{p \in \mathbb{C}[z] ; p_{\alpha}=0 \text { for all } \alpha \in \mathbb{N}^{n} \backslash I_{k}\right\}
$$

Then, in the setting of the preceding lemma, we obtain obvious vector space isomorphisms

$$
H^{n}\left(z^{k}, \mathcal{O}(V, X)\right) \cong H^{n}\left(z^{k}, \mathcal{O}_{0}^{X}\right) \cong \mathcal{V}_{k} \otimes X
$$

The proof of our main result will be based on the following particular case of Theorem 1.1.

Corollary 1.3 Let $T \in L(X)^{n}$ be a commuting tuple of bounded operators on a complex Banach space X such that $0 \in \sigma(T) \backslash \sigma_{e}(T)$. Then, for every open ball or polydisc $V \subset \mathbb{C}^{n}$ with centre $0 \in \mathbb{C}^{n}$ and all families $k=$ $\left(k_{1}, \ldots, k_{n}\right)$ of positive integers k_{i}, there are vector space isomorphisms

$$
H^{p}\left(T^{k}, X\right) \cong H^{p}\left(z-T, H^{n}\left(z^{k}, \mathcal{O}(V, X)\right)\right) \cong H^{p}\left(z-T, \mathcal{O}_{0}^{X} /\left(z^{k}\right) \mathcal{O}_{0}^{X}\right)
$$

for $p=0, \ldots, n$.

2 Fredholm complexes

Let $\Omega \subset \mathbb{C}^{n}$ be an open neighbourhood of $0 \in \mathbb{C}^{n}$ and let $M^{\bullet}=\left(M^{p}, d^{p}\right)_{p=0}^{n}$ be a finite analytically parametrized complex of Banach spaces M^{p} on Ω such that $\operatorname{dim} H^{p}\left(d^{\bullet}(0), M^{\bullet}\right)<\infty$ for $p=0, \ldots, n$. It is well known (see Proposition 9.4.5 and Remark 9.4.6 in [4]) that there exist an analytically parametrized complex $L^{\bullet}=\left(L^{p}, u^{p}\right)_{p=0}^{n}$ of finite-dimensional vector spaces L^{p} on a possibly smaller open neighbourhood U of $0 \in \mathbb{C}^{n}$ and a family $h=\left(h^{p}\right)_{p=0}^{n}$ of holomorphic mappings

$$
h^{p} \in \mathcal{O}\left(U, L\left(L^{p}, M^{p}\right)\right)
$$

such that, for each point $z \in U$, the resulting maps

$$
L^{\bullet} \xrightarrow{h^{\bullet}(z)} M^{\bullet}
$$

are quasi-isomorphisms. Equivalently, the mapping cone $C^{\bullet}=\left(C^{p}, \alpha^{p}\right)_{p=0}^{n}$ of h, that is, the complex with spaces $C^{p}=M^{p} \oplus L^{p+1}$ and coboundaries $\alpha^{p}(z): C^{p} \rightarrow C^{p+1}$ given by

$$
\alpha^{p}(z)(x, y)=\left(d^{p}(z) x+(-1)^{p+1} h^{p+1}(z) y, u^{p+1}(z) y\right)
$$

is pointwise exact on U.
As before, for a given Banach space E, let us denote by \mathcal{O}_{z}^{E} the stalk of germs of all analytic E-valued functions defined near z. Let \mathfrak{m} be the maximal ideal in the Noetherian local ring \mathcal{O}_{0} of all scalar-valued convergent power series at $z=0$, and let $\left(z^{k}\right)$ be the ideal in \mathcal{O}_{0} generated by the finite system $\left(z_{1}^{k_{1}}, \ldots, z_{n}^{k_{n}}\right)$ for $k \in \mathbb{N}^{n}$ arbitrary. The original complex $\left(\mathcal{O}_{0}^{M^{\bullet}}, d^{\bullet}\right)$ is quasiisomorphic to the complex

$$
\mathcal{L}^{\bullet}: 0 \longrightarrow \mathcal{O}_{0}^{L^{0}} \xrightarrow{u^{0}} \mathcal{O}_{0}^{L^{1}} \xrightarrow{u^{1}} \ldots \xrightarrow{u^{n-2}} \mathcal{O}_{0}^{L^{n-1}} \xrightarrow{u^{n-1}} \mathcal{O}_{0}^{L^{n}} \longrightarrow 0
$$

of finitely generated \mathcal{O}_{0}-modules. More precisely, the family $h=\left(h^{p}\right)_{p=0}^{n}$ induces isomorphisms of cohomology

$$
H^{p}\left(u^{\bullet}, \mathcal{L}^{\bullet}\right) \xrightarrow{\sim} H^{p}\left(d^{\bullet}, \mathcal{O}_{0}^{M^{\bullet}}\right)
$$

for $p=0, \ldots, n$. Using an exactness result for analytically parametrized complexes, we can improve this observation.

Lemma 2.1 Let $k=\left(k_{1} \ldots, k_{n}\right)$ be a family of positive integers. Then the cochain map $h=\left(h^{p}\right)_{p=0}^{n}$ induces isomorphisms of cohomology

$$
H^{p}\left(u^{\bullet}, \mathcal{L}^{\bullet} /\left(z^{k}\right) \mathcal{L}^{\bullet}\right) \xrightarrow{\sim} H^{p}\left(d^{\bullet}, \mathcal{O}_{0}^{M^{\bullet}} /\left(z^{k}\right) \mathcal{O}_{0}^{M^{\bullet}}\right)
$$

for $p=0, \ldots, n$.
Proof. Since the mapping cone of the cochain map

$$
L^{\bullet} /\left(z^{k}\right) \mathcal{L}^{\bullet} \xrightarrow{h} \mathcal{O}_{0}^{M^{\bullet}} /\left(z^{k}\right) \mathcal{O}_{0}^{M^{\bullet}}
$$

can be identified with the complex $\mathcal{O}_{0}^{C \bullet} /\left(z^{k}\right) \mathcal{O}_{0}^{C \bullet}$, it suffices to show that the latter complex is exact. But we know that $\left(C^{\bullet}, \alpha^{\bullet}(0)\right)$ is an exact complex of Banach spaces. Then by Lemma 2.1.5 in [4] there is a real number $r_{0}>0$ such that, for each open polydisc $V=P_{r}(0)$ with centre 0 and radius $0<$ $r<r_{0}$, the complex $\left(\mathcal{O}\left(V, C^{\bullet}\right), \alpha^{\bullet}\right)$ is exact. More precisely, choose r_{0} small enough, as in the proof of Lemma 2.1.5 from [4]. Consider $r \in \mathcal{O}\left(V, C^{p}\right)$ and $g=\sum_{\alpha \in \mathbb{N}^{n}} g_{\alpha} z^{\alpha} \in\left(z^{k}\right) \mathcal{O}\left(V, C^{p+1}\right)$ with

$$
g=\alpha^{p} r .
$$

Then $g_{\alpha}=0$ for all $\alpha \in I_{k}$, and it is easily checked that the inductive construction from the proof of Lemma 2.1.5 in [4] can be used to define a family of coefficients $\left(f_{\alpha}\right)_{|\alpha|=j}(j \in \mathbb{N})$ in C^{p} such that the power series $f=\sum_{\alpha \in \mathbb{N}^{n}} f_{\alpha} z^{\alpha}$ defines a solution of the equation $\alpha^{p} f=g$ in $\mathcal{O}\left(V, C^{p}\right)$ with $f_{\alpha}=0$ for every $\alpha \in I_{k}$. Since $\alpha^{p}(r-f)=0$, it follows that

$$
r \in\left(z^{k}\right) \mathcal{O}\left(V, C^{p}\right)+\alpha^{p-1} \mathcal{O}\left(V, C^{p-1}\right)
$$

Thus we have proved the exactness of the complex

$$
\left(\mathcal{O}\left(V, C^{\bullet}\right) /\left(z^{k}\right) \mathcal{O}\left(V, C^{\bullet}\right), \alpha^{\bullet}\right)
$$

on each open polydisc $V=P_{r}(0)$ with sufficiently small $r>0$. Hence $\mathcal{O}_{0}^{C^{\bullet}} /\left(z^{k}\right) \mathcal{O}_{0}^{C}{ }^{\bullet}$ is exact, and the proof is complete.

Let us define submodules

$$
\mathcal{N}^{p}=\operatorname{Ker} u^{p} \subset \mathcal{L}^{p}, \quad \mathcal{Z}^{p}=\operatorname{Im} u^{p-1} \subset \mathcal{L}^{p} .
$$

The short exact sequences

$$
0 \longrightarrow\left(z^{k}\right) \mathcal{L}^{\bullet} \longrightarrow \mathcal{L}^{\bullet} \longrightarrow \mathcal{L}^{\bullet} /\left(z^{k}\right) \mathcal{L}^{\bullet} \longrightarrow 0
$$

induce long exact cohomology sequences

$$
\begin{array}{rlll}
0 \longrightarrow & \left.H^{0}\left(\left(z^{k}\right) \mathcal{L}^{\bullet}\right)\right) & \xrightarrow{j_{0, k}} & H^{0}\left(\mathcal{L}^{\bullet}\right) \\
\longrightarrow & H^{1}\left(\left(z^{k}\right) \mathcal{L}^{\bullet}\right) & \xrightarrow{q_{0, k}} & H^{0}\left(\mathcal{L}^{\bullet} /\left(z^{k}\right) \mathcal{L}^{\bullet}\right) \\
& \ldots & \ldots \\
& \ldots & \ldots
\end{array}
$$

Since the spaces $H^{p}\left(\mathcal{L}^{\bullet}\right)$ are finitely generated modules over the local ring \mathcal{O}_{0}, the Samuel multiplicities of $H^{p}\left(\mathcal{L}^{\bullet}\right)$ is well defined and can be calculated by using the limit formula of Lech [9] (Theorem 2)

$$
c_{p}=\lim _{\min k \rightarrow \infty} \operatorname{dim}\left(H^{p}\left(\mathcal{L}^{\bullet}\right) /\left(z^{k}\right) H^{p}\left(\mathcal{L}^{\bullet}\right)\right) / k_{1} \ldots k_{n} \quad(p=0, \ldots, n) .
$$

To apply the results of Section 1 we need a different variant of this limit formula.

Theorem 2.2 In the above setting, we obtain the representations

$$
c_{p}=\lim _{\min k \rightarrow \infty} \operatorname{dim} H^{p}\left(\mathcal{L}^{\bullet} /\left(z^{k}\right) \mathcal{L}^{\bullet}\right) / k_{1} \ldots k_{n}
$$

for $p=0, \ldots, n$.
Proof. Fix a number $p \in\{0, \ldots, n\}$. Define

$$
c_{p, k}=\operatorname{dim} H^{p}\left(\mathcal{L}^{\bullet}\right) /\left(z^{k}\right) H^{p}\left(\mathcal{L}^{\bullet}\right), \quad b_{p, k}=\operatorname{dim} H^{p}\left(\mathcal{L}^{\bullet} /\left(z^{k}\right) \mathcal{L}^{\bullet}\right)
$$

for $k \in \mathbb{N}^{n}$. Note that Ker $j_{p, k}=\left(z^{k}\right) \mathcal{L}^{p} \cap \mathcal{Z}^{p} /\left(z^{k}\right) \mathcal{Z}^{p}$ and that

$$
\left(z^{k}\right) H^{p}\left(\mathcal{L}^{\bullet}\right) \subset \operatorname{Im} j_{p, k}
$$

for all $k \in \mathbb{N}^{n}$. Elementary linear algebra shows that

$$
\begin{aligned}
c_{p, k} & =\operatorname{dim} H^{p}\left(\mathcal{L}^{\bullet}\right) / \operatorname{Im} j_{p, k}+\operatorname{dim} \operatorname{Im} j_{p, k} /\left(z^{k}\right) H^{p}\left(\mathcal{L}^{\bullet}\right) \\
& =b_{p, k}-\operatorname{dim} \operatorname{Ker} j_{p+1, k}+\operatorname{dim} \operatorname{Im} j_{p, k} /\left(z^{k}\right) H^{p}\left(\mathcal{L}^{\bullet}\right)
\end{aligned}
$$

for all $k \in \mathbb{N}^{n}$. Using the short exact sequences

$$
0 \longrightarrow \frac{\mathcal{Z}^{p}}{\left(z^{k}\right) \mathcal{L}^{p} \cap \mathcal{Z}^{p}} \longrightarrow \frac{\mathcal{L}^{p}}{\left(z^{k}\right) \mathcal{L}^{p}} \longrightarrow \frac{\left(\mathcal{L}^{p} / \mathcal{Z}^{p}\right)}{\left(z^{k}\right)\left(\mathcal{L}^{p} / \mathcal{Z}^{p}\right)} \longrightarrow 0
$$

and the additivity of the Samuel multiplicity for finitely generated modules over the Noetherian local ring \mathcal{O}_{0} ([11], Proposition II.10), we obtain that both limits

$$
\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} \mathcal{Z}^{p} /\left(z^{k}\right) \mathcal{L}^{p} \cap \mathcal{Z}^{p}}{k_{1} \ldots k_{n}}=\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} \mathcal{Z}^{p} /\left(z^{k}\right) \mathcal{Z}^{p}}{k_{1} \ldots k_{n}}
$$

calculate the Samuel multiplicity of the $\mathcal{O}_{0^{-}}$module \mathcal{Z}^{p}. Thus we find that

$$
\lim _{\min k \rightarrow \infty} \operatorname{dim} \operatorname{Ker} j_{p, k} / k_{1} \ldots k_{n}=0
$$

Since $\operatorname{Im} j_{p, k}=\left(\mathcal{Z}^{p}+\left(z^{k}\right) \mathcal{L}^{p} \cap \mathcal{N}^{p}\right) / \mathcal{Z}^{p}$, there are canonical short exact sequences

$$
0 \longrightarrow \frac{\mathcal{Z}^{p}}{\left(z^{k}\right) \mathcal{L}^{p} \cap \mathcal{Z}^{p}} \longrightarrow \frac{\mathcal{N}^{p}}{\left(z^{k}\right) \mathcal{L}^{p} \cap \mathcal{N}^{p}} \longrightarrow \frac{H^{p}\left(\mathcal{L}^{\bullet}\right)}{\operatorname{Im} j_{p, k}} \longrightarrow 0
$$

Using the additivity of the Samuel multiplicity a second time, we conclude that

$$
\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim}\left(H^{p}\left(\mathcal{L}^{\bullet}\right) / \operatorname{Im} j_{p, k}\right)}{k_{1} \ldots k_{n}}=c_{p}
$$

This observation completes the proof.

In the particular case $p=n$, Theorem 2.2 can be improved. Indeed it is elementary to check that in this case even the equality $\operatorname{Im} j_{n, k}=\left(z^{k}\right) H^{n}\left(\mathcal{L}^{\bullet}\right)$ holds. Hence we obtain that

$$
\operatorname{dim} H^{n}\left(\mathcal{L}^{\bullet}\right) /\left(z^{k}\right) H^{n}\left(\mathcal{L}^{\bullet}\right)=\operatorname{dim} H^{n}\left(\mathcal{L}^{\bullet} /\left(z^{k}\right) \mathcal{L}^{\bullet}\right)
$$

for all $k \in \mathbb{N}^{n}$.
Let us specialize our results to the case where $M^{\bullet}=\left(M^{p}, d^{p}\right)_{p=0}^{n}$ is the Koszul complex $K^{\bullet}(z-T, X)$ of a Fredholm tuple $T \in L(X)^{n}$ of commuting bounded operators on a complex Banach space X. We begin by choosing an analytically parametrized complex $L^{\bullet}=\left(L^{p}, u^{p}\right)_{p=0}^{n}$ of finitedimensional vector spaces on an open neighbourhood U of $0 \in \mathbb{C}^{n}$ which is quasi-isomorphic to $K^{\bullet}(z-T, X)$ in the sense explained above. Then the cohomology sheaves

$$
\mathcal{H}^{p}=H^{p}\left(z-T, \mathcal{O}_{U}^{X}\right) \cong H^{p}\left(u^{\bullet}, \mathcal{O}_{U}^{L^{\bullet}}\right) \quad(p=0, \ldots, n)
$$

of the associated complexes of \mathcal{O}_{U}-modules are coherent analytic sheaves on U. As an application of Theorem 2.2 and Corollary 1.3 we show that the Samuel multiplicities c_{p} of the stalks \mathcal{H}_{0}^{p} can be expressed in terms of the cohomology groups $H^{p}\left(T^{k}, X\right)$ of the powers T^{k} of the given Fredholm tuple T.

Corollary 2.3 For a Fredholm tuple $T \in L(X)^{n}$ of commuting bounded operators on a complex Banach space X, the Samuel multiplicities c_{p} of the stalks of the cohomology sheaves $\mathcal{H}^{p}=H^{p}\left(z-T, \mathcal{O}_{\mathbb{C}^{n}}^{X}\right)$ at $z=0$ can be calculated as

$$
c_{p}=\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(T^{k}, X\right)}{k_{1} \ldots k_{n}} .
$$

Proof. By combining Theorem 2.2 and Corollary 1.3, and by using the cohomology isomorphisms explained in the sections leading to Theorem 2.2, we obtain the following chain of equalities

$$
\begin{aligned}
c_{p} & =\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(z-T, \mathcal{O}_{0}^{X}\right) /\left(z^{k}\right) H^{p}\left(z-T, \mathcal{O}_{0}^{X}\right)}{k_{1} \ldots k_{n}} \\
& =\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(\mathcal{L}^{\bullet}\right) /\left(z^{k}\right) H^{p}\left(\mathcal{L}^{\bullet}\right)}{k_{1} \ldots k_{n}} \\
& =\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(\mathcal{L}^{\bullet} /\left(z^{k}\right) \mathcal{L}^{\bullet}\right)}{k_{1} \ldots k_{n}} \\
& =\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(z-T, \mathcal{O}_{0}^{X} /\left(z^{k}\right) \mathcal{O}_{0}^{X}\right)}{k_{1} \ldots k_{n}} \\
& =\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(T^{k}, X\right)}{k_{1} \ldots k_{n}}
\end{aligned}
$$

The second equality follows from the fact that the isomorphisms $H^{p}\left(\mathcal{L}^{\bullet}\right) \rightarrow$ $H^{p}\left(z-T, \mathcal{O}_{0}^{X}\right)$, explained above, and their inverses are isomorphisms of $\mathcal{O}_{0^{-}}$ modules.

To bring our results in a more concrete and applicable form, we look for a different interpretation of the Samuel multiplicities c_{p} of the cohomology sheaves $\mathcal{H}^{p}\left(z-T, \mathcal{O}^{X}\right)$ at $z=0$.

Let $V \subset \mathbb{C}^{n}$ be a connected open neighbourhood of $0 \in \mathbb{C}^{n}$, and let \mathcal{F} be a coherent analytic sheaf on V. The set S of all points $z \in V$ for which \mathcal{F} is not locally free at z is a proper analytic subset of V, and the complement of S in V is connected ([7], Theorem 4.4). By definition the $\operatorname{rank} \mathrm{rk}_{V}(\mathcal{F})$ of the coherent sheaf \mathcal{F} on V is the constant value of $\operatorname{rk}_{z}(\mathcal{F})$ for $z \in V \backslash S$. This number is independent of the choice of V and is usually referred to as the $\operatorname{rank} \operatorname{rk}_{0}(\mathcal{F})$ of \mathcal{F} at $z=0$. By shrinking V, if necessary, one can achieve in addition that \mathcal{F} has a finite resolution

$$
0 \rightarrow \mathcal{O}_{V}^{p r} \rightarrow \mathcal{O}_{V}^{p r_{1}} \rightarrow \ldots \rightarrow \mathcal{O}_{V}^{p_{1}} \rightarrow \mathcal{F} \rightarrow 0
$$

by free \mathcal{O}_{V}-modules ([8], Theorem VI.F.5). Since the Samuel multiplicity for finitely generated modules over the Noetherian local ring \mathcal{O}_{0} is additive
([11], Proposition II.10) and since the Samuel multiplicity of a free $\mathcal{O}_{V^{-}}$ module coincides with its rank, it follows that

$$
c\left(\mathcal{F}_{z}\right)=\sum_{i=1}^{r}(-1)^{i} c\left(\mathcal{O}_{V}^{p_{i}}\right)=\sum_{i=1}^{r}(-1)^{i} p_{i}=\operatorname{rk}_{0}(\mathcal{F})
$$

for $z \in V$.

Theorem 2.4 Let $T \in L(X)^{n}$ be a Fredholm tuple of commuting bounded Banach-space operators and let $U \subset \rho_{e}(T)$ be a connected open neighbourhood of $0 \in \mathbb{C}^{n}$. Then there is a proper analytic subset $S \subset U$ such that

$$
\operatorname{dim} H^{p}(z-T, X)=\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(T^{k}, X\right)}{k_{1} \ldots k_{n}}=\inf _{k} \frac{\operatorname{dim} H^{p}\left(T^{k}, X\right)}{k_{1} \ldots k_{n}}
$$

for $p=0, \ldots, n$ and $z \in U \backslash S$.

Proof. \quad Since $U \subset \rho_{e}(T)$, the arguments preceding Lemma 2.1 imply that the cohomology sheaves

$$
\mathcal{H}^{p}=H^{p}\left(z-T, \mathcal{O}_{U}^{H}\right) \cong H^{p}\left(u^{\bullet}, \mathcal{O}_{U}^{L^{\bullet}}\right) \quad(p=0, \ldots, n)
$$

are coherent analytic sheaves on U. By Proposition 9.4.5 in [4], there are proper analytic subsets $S_{p} \subset U$ such that the functions

$$
z \mapsto \operatorname{dim} H^{p}(z-T, X) \quad(p=0, \ldots, n)
$$

have constant values d_{p} on $U \backslash S_{p}$ and such that

$$
\operatorname{dim} H^{p}(z-T, X)>d_{p} \quad\left(p=0, \ldots, n, z \in S_{p}\right)
$$

As shown in the proof of Proposition 10.3.3 from [4], the number d_{p} is the rank of the coherent sheaf \mathcal{H}^{p} on U. Using Corollary 2.3 and the subsequent remarks, we obtain that

$$
d_{p}=\mathrm{rk}_{0}\left(\mathcal{H}^{p}\right)=c\left(\mathcal{H}_{0}^{p}\right)=\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(T^{k}, X\right)}{k_{1} \ldots k_{n}}
$$

Let $k=\left(k_{1}, \ldots, k_{n}\right)$ be a family of positive integers. Using the fact that the function $\operatorname{dim} H^{p}\left(w-T^{k}, X\right)$ is upper-semicontinuous in w ([4], Proposition 9.4.5), we can choose a real number $r>0$ such that

$$
\operatorname{dim} H^{p}\left(w-T^{k}, X\right) \leq \operatorname{dim} H^{p}\left(T^{k}, X\right)
$$

for all w with $\|w\|<r$ and every $p=0, \ldots, n$. After shrinking r we may suppose that $\left\{z \in \mathbb{C}^{n} ; z^{k}=w\right\} \subset U$ for $\|w\|<r$. Fix a point $w \in\left(\mathbb{C}^{n} \backslash\{0\}\right)^{n}$ with $\|w\|<r$. Then the proof of Theorem 10.3 .13 in [4] shows that

$$
\begin{aligned}
\operatorname{dim} H^{p}\left(T^{k}, X\right) & \geq \operatorname{dim} H^{p}\left(w-T^{k}, X\right) \\
& =\sum_{z^{k}=w} \operatorname{dim} H^{p}(z-T, X) \geq k_{1} \ldots k_{n} d_{p}
\end{aligned}
$$

This observation completes the proof of Theorem 2.4.

By Theorem 2.4 the numbers

$$
c_{p}(T)=\lim _{\min k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(T^{k}, X\right)}{k_{1} \ldots k_{n}} \quad(p=0, \ldots, n)
$$

calculate the stabilized dimensions of the p th order cohomology groups of the Koszul complexes $K^{\bullet}(z-T, X)$ of a Fredholm tuple $T \in L(X)^{n}$.

Corollary 2.5 Let $T \in L(X)^{n}$ be a Fredholm tuple on a Banach space X. Then for any family of non-negative integers s_{1}, \ldots, s_{n}, we obtain that

$$
c_{p}\left(T^{s}\right)=s_{1} \cdot s_{2} \cdot \ldots \cdot s_{n} c_{p}(T) \quad(p=0, \ldots, n)
$$

Proof. If $s_{i}=0$ for some index $i \in\{1, \ldots, n\}$, then $c_{p}\left(T^{s}\right)=0$ and the assertion holds. If $s_{1}, \ldots, s_{n} \geq 1$, then the observation that

$$
\begin{aligned}
c_{p}\left(T^{s}\right) & =\lim _{k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(T^{k, s}, X\right)}{k^{n}} \\
& =s_{1} \ldots s_{n} \lim _{k \rightarrow \infty} \frac{\operatorname{dim} H^{p}\left(T^{k s}, X\right)}{s_{1} \ldots s_{n} k^{n}}=s_{1} \ldots s_{n} c_{p}(T)
\end{aligned}
$$

completes the proof.

References

[1] R. Douglas and K. Yan, Hilbert-Samuel polynomials for Hilbert modules, Indiana Univ. Math. J. 42 (1993), 811-820.
[2] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate texts in Mathematics 150, Springer-Verlag, New York, 1995.
[3] J. Eschmeier, Samuel multiplicity for several commuting operators, Preprint 2006.
[4] J. Eschmeier and M. Putinar, Spectral decompositions and analytic sheaves, London Mathematical Society Monographs, New Series, 10, Clarendon Press, Oxford, 1996.
[5] X. Fang, The Fredholm index of a pair of commuting operators, to appear in Vol. 16 (2006), GAFA.
[6] X. Fang, The Fredholm index of a pair of commuting operators, II, Preprint 2006.
[7] H. Grauert and R. Remmert, Coherent analytic sheaves, SpringerVerlag, Berlin, 1984.
[8] R.C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.
[9] C. Lech, On the associativity formula for multiplicities, Ark. Mat. 3 (1957), 301-314.
[10] D.G. Northcott, Finite free resolutions, Cambridge Tracts in Math. 71, Cambridge University Press, Cambridge, 1976.
[11] J.-P. Serre, Local algebra, Springer-Verlag, Berlin, 2000.
[12] J.L. Taylor, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-48.

Jörg Eschmeier
Fachrichtung Mathematik
Universität des Saarlandes
Postfach 151150
D-66041 Saarbrücken, Germany
e-mail: eschmei@math.uni-sb.de

[^0]: 2000 Mathematics Subject Classification. Primary 47A13; Secondary 47A53, 13D40, 32 C 35.

