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To appear in Positivity

NEW VERSION OF THE DANIELL-STONE-RIESZ

REPRESENTATION THEOREM

HEINZ KÖNIG

Abstract. The traditional representation theorems after Daniell-Stone
and Riesz were in a kind of separate existence until Pollard-Topsøe 1975
and Topsøe 1976 were the first to put them under common roofs. In the
same spirit the present article wants to obtain a unified representation
theorem in the context of the author’s work in measure and integration.
It is an inner theorem like the previous ones. The basis is the recent
comprehensive inner Daniell-Stone theorem, so that in particular there
are no a priori assumptions on the additive behaviour of the data.

Dedicated to the Memory of Helmut H. Schaefer

1. Introduction

The present article wants to put an adequate unified result on top of
the collection of representation theorems of Daniell-Stone and Riesz type
obtained in the context of the author’s work in measure and integration
described in [12][15]. We shall concentrate on the inner development which
turned out to be more profound than the outer one. We recall that its basic
concepts are the inner • premeasures ϑ : S → [0,∞[ on a lattice S with
∅ ∈ S in a nonvoid set X and their inner • extensions (• = ⋆στ with
⋆ = finite, σ = sequential, τ = nonsequential), and that its basic devices
are the inner • envelopes ϑ• : P(X) → [0,∞] of the isotone set functions
ϑ : S → [0,∞[ with ϑ(∅) = 0. We shall often make free use of the concepts
and results set up so far.

The basis is the inner Daniell-Stone representation procedure in [12] sec-
tion 7. It assumed a function system E ⊂ [0,∞[X with 0 ∈ E and an isotone
functional I : E → [0,∞[ with I(0) = 0, for the most part such that E is
positive-homogeneous and a lattice under the pointwise max and min oper-
ations ∨∧ which is Stonean: f ∈ E ⇒ f ∧t, (f−t)+ ∈ E for 0 < t < ∞. But
we emphasize that there are no a priori assumptions relative to the additive

behaviour of E and I. Then

Inn(E) := { [f ≧ t] : f ∈ E and 0 < t < ∞}

is a lattice in X with ∅ ∈ Inn(E). On Inn(E) one defines the inner sources

of I to be the isotone set functions ϕ : Inn(E) → [0,∞[ with ϕ(∅) = 0
which represent I via the Choquet integral : I(f) =

∫

−fdϕ for all f ∈ E.
The inner sources fulfil I⋆(χ.) ≦ ϕ ≦ I⋆(χ.) on Inn(E), with the usual
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crude envelopes I⋆ and I⋆ of I. For • = στ one defines I to be an inner •
preintegral iff there exist inner sources of I which are inner • premeasures.
The subsequent inner • representation theorem [12] 7.6 characterized these
inner • preintegrals and presented their basic properties. It is in terms of
the inner • envelopes I• of I and their satellites. We recall that I Stonean

means that I(f) = I(f ∧ t) + I((f − t)+) for all f ∈ E and 0 < t < ∞.

1.1 Inner • Representation Theorem. Assume that E ⊂ [0,∞[X

with 0 ∈ E is a positive-homogeneous Stonean lattice and I : E → [0,∞[
with I(0) = 0 isotone. Then for • = στ one has the equivalences

I is an inner • preintegral

⇐⇒ I is supermodular and Stonean and downward • continuous; and

I(v) ≦ I(u) + I•(v − u) for all u ≦ v in E

⇐⇒ I is supermodular and Stonean and downward • continuous at 0; and

I(v) ≦ I(u) + Iv
•
(v − u) for all u ≦ v in E.

In this case there is a unique inner source of I which is an inner • premea-

sure, and it is in fact ϕ = I⋆(χ.)|Inn(E). This ϕ fulfils I•(f) =
∫

−fdϕ• for

all f ∈ [0,∞]X . Moreover the members of E• are measurable C(ϕ•).

In the sequel we want to expand the above Daniell-Stone representation
theorem so that it comprises the Riesz representation theorem in its recent
comprehensive versions. For this purpose we assume besides E and I an
additional lattice S with ∅ ∈ S in X. The aim is to characterize those
isotone functionals I : E → [0,∞[ with I(0) = 0 for which there exist inner
• premeasures ϑ : S → [0,∞[ (or rather a unique one) which represent I:
I(f) =

∫

−fdϑ• for all f ∈ E, a formulation which makes sense for arbitrary
S. In this context it is quite clear that one cannot expect substantial re-
sults without adequate connections between the two lattices Inn(E) and S.
Justified by previous particular situations and by success, we shall impose
the relations

(•) S ⊂ (Inn(E))• and Inn(E) ⊂ S⊤S•,

with ⊤ the transporter; in the terms of [12] section 4 this means that S and
Inn(E)⊥ := {[f < t] : f ∈ E and 0 < t < ∞} form a • complemental couple.
Besides we need a simple formulation which expresses that the functional I

is concentrated on S. There are three related candidates, which we present
with some obvious implications.

1.2 Remark. For E ⊂ [0,∞[X with 0 ∈ E (without further assumptions)
and I : E → [0,∞[ isotone with I(0) = 0, and a lattice S with ∅ ∈ S in X,
consider the properties

[↓] for any f ∈ E and ε > 0 there exists S ∈ S such that all u ∈ E

with u ≦ f and u|S = 0 fulfil I(u) ≦ ε,
[↑] for any f ∈ E and ε > 0 there exists S ∈ S such that all u ∈ E

with u ≦ f and u|S = f |S fulfil I(f) ≦ I(u) + ε,
[l] for any f ∈ E and ε > 0 there exists S ∈ S such that all u, v ∈ E

with u ≦ v ≦ f and u|S = v|S fulfil I(v) ≦ I(u) + ε.

Then [l] ⇒ [↓] and [l] ⇒ [↑]. Moreover [↓] ⇒ [l] and [↑] ⇒ [l] whenever
u ≦ v in E implies that v − u ∈ E and I(v − u) = I(v) − I(u).

After this we can formulate the present main theorem.
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1.3 Theorem. Assume that E ⊂ [0,∞[X with 0 ∈ E is a positive-homoge-

neous Stonean lattice, that S with ∅ ∈ S is a lattice in X, and that Inn(E)
and S fulfil (•) for some • = στ . Let I : E → [0,∞[ with I(0) = 0 be

isotone. Then one has the equivalences

There exists an inner • premeasure ϑ : S → [0,∞[ such that

I(f) =
∫

−fdϑ• for all f ∈ E

⇐⇒ I is an inner • preintegral and fulfils [↑]
⇐⇒ I is an inner • preintegral and fulfils [l].

In this case there is a unique such ϑ, and it is in fact ϑ = I⋆(χ.)|S. Moreover

ϑ and the inner • premeasure ϕ = I⋆(χ.)|Inn(E) from 1.1 fulfil ϑ• = ϕ•.

It follows that the maximal inner • extension Θ = ϑ•|C(ϑ•) of ϑ and the
maximal inner • extension Φ = ϕ•|C(ϕ•) of ϕ are identical, with the identical
domain C(ϑ•) = C(ϕ•). Hence after the final assertion of 1.1 the members of
E and even of E• are measurable C(ϑ•). Thus the representation of I in 1.3
means that the functions f ∈ E are integrable Θ and fulfil I(f) =

∫

fdΘ.

The above main theorem has several important specializations which will
be treated in section 3. Then section 4 will be devoted to the comparison
with the respective results in the earlier literature (where the author apol-
ogizes in advance for possible omissions). But first of all we turn to the
proof.

2. Proof of the Main Theorem

We assume as before that E ⊂ [0,∞[X with 0 ∈ E is a positive-homogene-
ous Stonean lattice, that S is a lattice with ∅ ∈ S in X, and that Inn(E)
and S fulfil (•) for some • = στ .

2.1 Proposition. Let I : E → [0,∞[ be isotone with I(0) = 0. Then one

has the equivalence

There exists an inner • premeasure ϑ : S → [0,∞[ such that

I(f) =
∫

−fdϑ• for all f ∈ E

⇐⇒ I is an inner • preintegral, and its ϕ = I⋆(χ.)|Inn(E) satisfies

[•] ϕ• is inner regular S• (note that S• ⊂ (Inn(E))•).

In this case there is a unique such ϑ, and it is in fact ϑ = I⋆(χ.)|S. Moreover

ϑ• = ϕ•.

The proof will be based on the lemma [14] 1.6 which follows.

2.2 Lemma. Let ϕ : S → [0,∞[ be an inner • premeasure on the lattice

S with ∅ ∈ S in X. Assume that R is a lattice in X with ∅ ∈ R ⊂ S⊤S•
such that ϕ•|R < ∞ and that ϕ• is inner regular R•. Then ϑ := ϕ•|R is an

inner • premeasure and fulfils ϑ• = ϕ•.

Proof of 2.1. ⇐) We invoke 2.2 for ϕ : Inn(E) → [0,∞[ and S. The
assumptions are fulfilled in view of (•) and [•]. It follows that ϑ := ϕ•|S
is an inner • premeasure and ϑ• = ϕ•. For f ∈ E hence I(f) =

∫

−fdϕ =
∫

−fdϕ• =
∫

−fdϑ•.

⇒) We invoke 2.2 for ϑ : S → [0,∞[ and Inn(E). The assumptions are

fulfilled in view of (•), and since I(f) =
→∞
∫

0←

ϑ•([f ≧ t])dt < ∞ and hence

ϑ•([f ≧ t]) < ∞ for f ∈ E and 0 < t < ∞. It follows that ϕ := ϑ•|Inn(E)
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is an inner • premeasure and ϕ• = ϑ•. For f ∈ E hence I(f) =
∫

−fdϑ• =
∫

−fdϕ• =
∫

−fdϕ. Thus I is an inner • preintegral, and ϕ• = ϑ• implies (•).
Moreover the uniqueness of ϑ is clear.

It remains to prove that ϑ = I⋆(χ.)|S. We invoke [11] 3.2.Inn), in the old
notations Inn(E) = ≧ (E) and t(E) := {A ⊂ X : χA ∈ E}, to obtain

(Inn(E))• = Inn(E•) = t(E•) = {A ⊂ X : χA ∈ E•},

so that A ∈ S ⊂ (Inn(E))• implies that χA ∈ E•. It follows that

ϑ(A) = ϑ•(A) = ϕ•(A) = I•(χA) = I⋆(χA),

with the last two equalities from the inner • representation theorem 1.1
combined with [12] 5.10.6.Inn). �

2.3 Proposition. Let I : E → [0,∞[ be an inner • preintegral and

ϕ = I⋆(χ.)|Inn(E). Then [•] from 2.1 is equivalent to both [↑] and [l].

The two propositions 2.1 and 2.3 combine to furnish the main theorem
1.3. We also note an obvious consequence of 2.3 which confirms the relation
of 1.3 with 1.1.

2.4 Addendum to 1.3. Let I be an inner • preintegral. Then in case

S = Inn(E) the conditions [↓][↑][l] are fulfilled.

Proof of 2.3. [l] ⇒ [↑] is obvious. Thus we have to prove [↑] ⇒ [•] and
[•] ⇒ [l].

Proof of [↑] ⇒ [•]. To be shown is that ϕ• is inner regular S• ⊂ (Inn(E))•
on (Inn(E))•. Thus fix A ∈ (Inn(E))• = Inn(E•) = t(E•) and hence with
χA ∈ E•, as in the proof of 2.1, and ε > 0. i) Take an f ∈ E with χA ≦ f ,
and pass to f ∧ 1 in order to achieve χA ≦ f ≦ 1. From [↑] we obtain an
S ∈ S such that all u ∈ E with u ≦ f and u|S = f |S fulfil I(f) ≦ I(u) + ε.

ii) Now let v ∈ E with v ≧ χS. Then f ∧ v ∈ E with f ∧ v ≦ f and
f ∧ v|S = f |S, so that I(f) ≦ I(f ∧ v) + ε. Thus I(f ∨ v) ≦ I(v) + ε since
I is modular [13] 1.4(M). Here we have on the left f ∨ v ∈ E with

I(f ∨v) =

∫

−(f ∨v)dϕ =

∫

−(f ∨v)dϕ• ≧

∫

−χA∪Sdϕ• = ϕ•(A∪S) = Φ(A∪S)

for Φ = ϕ•|C(ϕ•), since A,S ∈ (Inn(E))• ⊂ C(ϕ•). It follows that

Φ(A ∪ S) ≦ inf{I(v) : v ∈ E with v ≧ χS} + ε = I⋆(χS) + ε = I•(χS) + ε,

since S ∈ S ⊂ (Inn(E))• = Inn(E•) = t(E•) so that χS ∈ E• as above,
and hence I⋆(χS) = I•(χS) from 1.1 and [12] 5.10.6.Inn). Thus we obtain
Φ(A∪ S) ≦ ϕ•(S) + ε = Φ(S) + ε and hence Φ(A) ≦ Φ(A∩ S) + ε, since all
terms are < ∞, or ϕ•(A) ≦ ϕ•(A ∩ S) + ε. Now A ∈ (Inn(E))• ⊂ S⊤S•
and S ∈ S furnish A ∩ S ∈ S•, and the assertion follows.

Proof of [•] ⇒ [l]. i) Fix f ∈ E, so that

I(f) =

∫

−fdϕ =

→∞
∫

0←

ϕ([f ≧ t])dt < ∞,
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and ε > 0, and then 0 < a < b < ∞ such that
a
∫

0←

ϕ([f ≧ t])dt ≦
ε

4
and

→∞
∫

b

ϕ([f ≧ t])dt ≦
ε

4
.

From [•] applied to [f ≧ a] ∈ Inn(E) we obtain D ∈ S• with

D ⊂ [f ≧ a] and ϕ([f ≧ a]) ≦ ϕ•(D) +
ε

2(b − a)
.

Then fix S ∈ S with S ⊃ D.

ii) Now let u, v ∈ E with u ≦ v ≦ f and u|S = v|S, so that in particular
u|D = v|D. From [v ≧ t] ⊂ [f ≧ t] for 0 < t < ∞ we obtain

I(v) =

∫

− vdϕ =

→∞
∫

0←

ϕ([v ≧ t])dt ≦

b
∫

a

ϕ([v ≧ t])dt +
ε

2
.

For t ≧ a we have [v ≧ t] ⊂ [u ≧ t] ∪
(

[f ≧ a] \ D
)

, and since all these sets
are in (Inn(E))• ⊂ C(ϕ•) it follows that

ϕ([v ≧ t]) ≦ ϕ([u ≧ t]) +
ε

2(b − a)
,

b
∫

a

ϕ([v ≧ t])dt ≦

b
∫

a

ϕ([u ≧ t])dt +
ε

2
.

These inequalities combine to furnish I(v) ≦
b
∫

a

ϕ([u ≧ t])dt + ε ≦ I(u) + ε.

�

3. Specializations of the Main Theorem

We start with the specializations of 1.1 and 1.3 under the two most im-
portant assumptions on the additive behaviour of E and I.

3.1 First Specialization of 1.1. Assume that E ⊂ [0,∞[X with 0 ∈ E

is a Stonean lattice cone and I : E → [0,∞[ is isotone and additive. Then

for • = στ one has the equivalence

I is an inner • preintegral

⇐⇒ I is downward • continuous at 0 and fulfils

I(v) ≦ I(u) + Iv
•
(v − u) for all u ≦ v in E.

In this case there is a unique inner source of I which is an inner • premea-

sure, and it is in fact ϕ = I⋆(χ.)|Inn(E).

3.2 Second Specialization of 1.1. Assume that E ⊂ [0,∞[X with

0 ∈ E is a Stonean lattice cone and fulfils v−u ∈ E for all u ≦ v in E, and

that I : E → [0,∞[ is additive (and hence isotone). Then for • = στ one

has the equivalence

I is an inner • preintegral

⇐⇒ I is downward • continuous at 0.

In this case there is a unique inner source of I which is an inner • premea-

sure, and it is in fact ϕ = I⋆(χ.)|Inn(E).
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In fact, the first specialization is obvious, while the second one is contained
in [12] 7.8.

We recall from [10] 14.6-7 that a lattice cone E ⊂ [0,∞[X with 0 ∈ E

fulfils the additional assumption v − u ∈ E for all u ≦ v in E iff E = F+ :=
{ f ∈ F : f ≧ 0} for some lattice subspace F ⊂ R

X . In this case there is a
unique such F , and it is in fact F = E − E. Moreover E is Stonean iff F

is Stonean, which for a lattice subspace means that f ∈ F ⇒ f ∧ t ∈ F for
0 < t < ∞.

3.3 First Specialization of 1.3. Assume that E ⊂ [0,∞[X with 0 ∈ E

is a Stonean lattice cone, that S with ∅ ∈ S is a lattice in X, and that (•)
for some • = στ . Let I : E → [0,∞[ be isotone and additive. Then one has

the equivalences

There exists an inner • premeasure ϑ : S → [0,∞[ such that

I(f) =
∫

−fdϑ• for all f ∈ E

⇐⇒ I is downward • continuous at 0 and fulfils

I(v) ≦ I(u) + Iv
• (v − u) for all u ≦ v in E and [↑]

⇐⇒ I is downward • continuous at 0 and fulfils

I(v) ≦ I(u) + Iv
• (v − u) for all u ≦ v in E and [l].

In this case there is a unique such ϑ, and it is in fact ϑ = I⋆(χ.)|S.

3.4 Second Specialization of 1.3. Assume that E ⊂ [0,∞[X with

0 ∈ E is a Stonean lattice cone and fulfils v − u ∈ E for all u ≦ v in E,

that S with ∅ ∈ S is a lattice in X, and that (•) for some • = στ . Let

I : E → [0,∞[ be additive (and hence isotone). Then one has the equivalence

There exists an inner • premeasure ϑ : S → [0,∞[ such that

I(f) =
∫

−fdϑ• for all f ∈ E

⇐⇒ I is downward • continuous at 0 and fulfils the equivalent [↓][↑][l].

In this case there is a unique such ϑ, and it is in fact ϑ = I⋆(χ.)|S.

In fact, both specializations are immediate consequences of the respective
previous ones combined with 1.3.

For an important addendum we next insert simple abstract versions of the
USC (:=upper semicontinuous) and Dini theorems and a subsequent lemma.
We recall for • = στ that a nonvoid set system M in X is defined to be •
compact iff each T ⊂ M with ∅ ∈ T• fulfils ∅ ∈ T⋆. Moreover we put

Inn(M) := {f ∈ [0,∞]X : [f ≧ t] ∈ M for all 0 < t < ∞}.

3.5 Abstract USC Theorem. Let f : X → [−∞,∞[ be 6≡ −∞ such

that for some real c < sup f the set system M(c) := {[f ≧ t] : c < t < ∞}
is τ compact. Then there exists x ∈ X such that f(x) = sup f (so that in
particular f is bounded above).

Proof. Assume that for all x ∈ X one has f(x) < sup f , and fix an F (x) >

f(x) with c < F (x) < sup f . Then the set system {[f ≧ F (x)] : x ∈ X} ⊂
M(c) has ∩

x∈X
[f ≧ F (x)] = ∅, and hence there exist u(1), · · · , u(r) ∈ X

such that
r
∩

l=1
[f ≧ F (u(l))] = ∅ or X =

r
∪

l=1
[f < F (u(l))]. Thus all x ∈ X

fulfil f(x) < max(F (u(1)), · · · , F (u(r))) =: s < sup f , which produces the
contradiction sup f ≦ s < sup f . �
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3.6 Abstract Dini Theorem. Let S with ∅ ∈ S be a lattice in X and

τ compact. Assume that the nonvoid M ⊂ Inn(S⊤Sτ ) is downward directed

with pointwise infimum = 0. Then

inf
f∈M

sup(f |S) = 0 for all nonvoid S ∈ S.

Proof. Fix a nonvoid S ∈ S and ε > 0, and then for each u ∈ S a
function fu ∈ M with fu(u) < ε. We have [fu ≧ ε] ∈ S⊤Sτ and hence
[fu ≧ ε] ∩ S ∈ Sτ , and it follows that ∩

u∈S
[fu ≧ ε] ∩ S = ∅. Since Sτ is τ

compact there exist u(1), · · · , u(r) ∈ S such that
r
∩

l=1
[fu(l) ≧ ε] ∩ S = ∅ or

S ⊂
r
∪

l=1
[fu(l) < ε]. Since M is downward directed there exists f ∈ M with

f ≦ fu(1), · · · , fu(r). Thus S ⊂ [f < ε] and hence sup(f |S) ≦ ε. �

3.7 Lemma. Assume that E ⊂ [0,∞[X with 0 ∈ E is a positive-homogene-

ous lattice, and that S with ∅ ∈ S is a lattice in X and τ compact. Moreover

assume that Inn(E) and S fulfil the weakened form of (τ) which instead of

the first part requires that S be upward enclosable Inn(E). Let I : E → [0,∞[
with I(0) = 0 be isotone and positive-homogeneous, and assume that [l] is

fulfilled. Then I is downward τ continuous at 0.

Proof. 0) Each f ∈ E is bounded above on each S ∈ S. In fact, for
0 < t < ∞ we have [f ≧ t] ∈ S⊤Sτ from the second part of (τ) and hence
[f ≧ t] ∩ S = [f |S ≧ t] ∈ Sτ . Thus 3.5 applied to f |S and c = 0 furnishes
sup(f |S) < ∞.

1) Now let the nonvoid M ⊂ E be downward directed with pointwise
infimum = 0. To be shown is inf

f∈M
I(f) = 0. We fix f ∈ M and ε > 0,

and from [l] then S ∈ S such that all u, v ∈ E with u ≦ v ≦ f and
u|S = v|S fulfil I(v) ≦ I(u)+ ε. At last from the assumption fix h ∈ E with
S ⊂ [h ≧ 1], that is h|S ≧ 1.

2) For v ∈ M with v ≦ f we have sup(v|S) < ∞ from 0) and hence
u :=

(

sup(v|S)h
)

∧ v ∈ E with u ≦ v and u|S = v|S, so that I(v) ≦

I(u) + ε ≦ sup(v|S)I(h) + ε. Therefore

inf
v∈M

I(v) = inf{I(v) : v ∈ M with v ≦ f}

≦ inf{sup(v|S) : v ∈ M with v ≦ f}I(h) + ε = inf
v∈M

sup(v|S)I(h) + ε.

Thus 3.6 applied to M ⊂ E ⊂ Inn(S⊤Sτ ) furnishes inf
v∈M

I(v) ≦ ε and hence

the assertion. �

3.8 Addendum to 3.3 and 3.4 (• = τ). If I fulfils [l] and S is τ

compact then I is downward τ continuous at 0.

In fact, one verifies as usual that I is positive-homogeneous. Then the as-
sertion follows from 3.7. For convenience we include the explicit formulation
of the resultant consequences of 3.3 and 3.4.

3.9 Consequence of 3.3. Assume that E ⊂ [0,∞[X with 0 ∈ E is a

Stonean lattice cone, that S with ∅ ∈ S is a lattice in X and τ compact,

and assume that (τ) is fulfilled. Let I : E → [0,∞[ be isotone and additive.

Then one has the equivalence
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There exists an inner τ premeasure ϑ : S → [0,∞[ such that

I(f) =
∫

−fdϑτ for all f ∈ E

⇐⇒ I fulfils I(v) ≦ I(u) + Iv
τ (v − u) for all u ≦ v in E and [l].

In this case there is a unique such ϑ, and it is in fact ϑ = I⋆(χ.)|S.

3.10 Consequence of 3.4. Assume that E ⊂ [0,∞[X with 0 ∈ E is a

Stonean lattice cone and fulfils v − u ∈ E for all u ≦ v in E, that S with

∅ ∈ S is a lattice in X and τ compact, and assume that (τ) is fulfilled. Let

I : E → [0,∞[ be additive (and hence isotone). Then one has the equivalence

There exists an inner τ premeasure ϑ : S → [0,∞[ such that

I(f) =
∫

−fdϑτ for all f ∈ E

⇐⇒ I fulfils the equivalent [↓][↑][l].

In this case there is a unique such ϑ, and it is in fact ϑ = I⋆(χ.)|S.

We conclude the treatment of the abstract situation with one more point
in case • = τ , before we turn to the topological situation. The point is to
describe the first condition in (τ) as a kind of separation which E performs
on S. We note that the second condition in (τ) will find a natural fulfilment
in the topological situation.

3.11 Lemma. Assume that E ⊂ [0,∞[X with 0 ∈ E is a positive-

homogeneous lattice, and that S with ∅ ∈ S is a lattice in X.

1) We have S ⊂ (Inn(E))τ ⇐⇒ for each S ∈ S there exists an f ∈ E

with f |S ≧ 1, and furthermore for any S ∈ S and u ∈ S′ := X \S an f ∈ E

with f |S ≧ 1 > f(u).

2) We have S ⊂ (Inn(E))τ =⇒ for any S ∈ S and v ∈ S there exists an

f ∈ E with f(v) > 0, and furthermore for any S ∈ S and v ∈ S and u ∈ S′

an f ∈ E with f(v) > f(u). We have ⇐= if in addition the lattice S is τ

compact and the outer counterpart

Out(E) := { [f > t] : f ∈ E and 0 < t < ∞}

of Inn(E) fulfils (Out(E))⊥ := { [f ≦ t] : f ∈ E and 0 < t < ∞} ⊂ S⊤Sτ .

Proof. 1) and the implication ⇒ in 2) are obvious, thus to be shown is
⇐ in 2). Fix S ∈ S. In case S = ∅ we have S = ∅ = [0 ≧ 1] ∈ Inn(E)
since 0 ∈ E. In case S = X take fv ∈ E with fv(v) > 1 for each v ∈ X.
Then [fv ≦ 1] ∈ (Out(E))⊥ ⊂ S⊤Sτ which in the present case is = Sτ .
Now ∩

v∈X
[fv ≦ 1] = ∅, and hence there exist v(1), · · · , v(r) ∈ X with

r
∩

l=1
[fv(l) ≦ 1] = ∅ or X =

r
∪

l=1
[fv(l) > 1]. Thus f := fv(1) ∨ · · · ∨ fv(r) ∈ E

fulfils f > 1, so that S = X = [f ≧ 1] ∈ Inn(E).

It remains the case S 6= ∅,X. For fixed u ∈ S′ take fu
v ∈ E with

fu
v (v) > 1 > fu

v (u) for each v ∈ S. Then [fu
v ≦ 1] ∈ (Out(E))⊥ ⊂ S⊤Sτ

and hence [fu
v ≦ 1] ∩ S ∈ Sτ . Now ∩

v∈S
[fu

v ≦ 1] ∩ S = ∅, so that there

exist v(1), · · · , v(r) ∈ S with
r
∩

l=1
[fu

v(l) ≦ 1] ∩ S = ∅ or S ⊂
r
∪

l=1
[fu

v(l) > 1].

Thus fu := fu
v(1) ∨ · · · ∨ fu

v(r) ∈ E fulfils fu|S > 1 > fu(u). It follows that

S = ∩
u∈S′

[fu ≧ 1] ∈ (Inn(E))τ . �

In the remainder of the section we approach the Riesz representation
theorem. We assume that X is a Hausdorff topological space and that
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S = Comp(X) consists of its compact subsets. We specialize the above
representation theorems 3.9 and 3.10. We recall that an f : X → [−∞,∞[
is called USC (:=upper semicontinuous) iff [f ≧ t] ⊂ X is closed for all
t ∈ R.

3.12 Specialization of 3.9. Let E ⊂ USC(X, [0,∞[) with 0 ∈ E be a

Stonean lattice cone. Assume that for each compact S ⊂ X there exists an

f ∈ E with f |S ≧ 1, and furthermore for any compact S ⊂ X and u ∈ S′

an f ∈ E with f |S ≧ 1 > f(u). Let I : E → [0,∞[ be isotone and additive.

Then one has the equivalence

There exists a Radon premeasure ϑ : Comp(X) → [0,∞[ such that

I(f) =
∫

−fdϑτ for all f ∈ E

⇐⇒ I fulfils I(v) ≦ I(u) + Iv
τ (v − u) for all u ≦ v in E and [l].

In this case there is a unique such ϑ, and it is in fact ϑ = I⋆(χ.)|S.

Proof. In (τ) the first condition results from 3.11.1), and the second one
from E ∈ USC(X, [0,∞[). �

3.13 Specialization of 3.10. Let E ⊂ C(X, [0,∞[) with 0 ∈ E be a

Stonean lattice cone which fulfils v−u ∈ E for all u ≦ v in E. Assume that

for each v ∈ X there exists an f ∈ E with f(v) > 0, and furthermore for

any v 6= u in X an f ∈ E with f(v) 6= f(u). Let I : E → [0,∞[ be additive

(and hence isotone). Then one has the equivalence

There exists a Radon premeasure ϑ : Comp(X) → [0,∞[ such that

I(f) =
∫

−fdϑτ for all f ∈ E

⇐⇒ I fulfils the equivalent [↓][↑][l].

In this case there is a unique such ϑ, and it is in fact ϑ = I⋆(χ.)|S.

Proof. In (τ) the first condition results from 3.11.2). In fact, if for some
v 6= u one has an f ∈ E with f(v) < f(u) then one can obtain an F ∈ E

with F (v) > F (u) as follows: From the assumption there exists h ∈ E such
that h(v) = f(u) and h ≦ f(u), and then F := h− h∧ f ∈ E is as required.
The second condition in (τ) is clear. �

4. Comparison with the earlier Literature

We start with the Daniell-Stone representation theorem 1.1. The tradi-
tional Daniell-Stone theorem [10] 14.1 was of rather limited use, above all in
view of its lack of regularity, and at times appeared to be bound for obliv-
ion. But then the road to the present inner • representation theorem 1.1
opened in Pollard-Topsøe [16], who in theorem 4 obtained the substance of
the second specialization 3.2, and in Topsøe [20], who for the first time con-
sidered an arbitrary Stonean lattice cone E ⊂ [0,∞[X with 0 ∈ E as in the
present first specialization 3.1. However, these papers did not yet possess
the inner • envelopes for • = στ , but had to work with the traditional crude
⋆ envelopes instead. Thus in [20] theorem 3 the tightness requirement on
I appeared as I(v) ≦ I(u) + I⋆(v − u) for all u ≦ v in E. But in contrast
to the tightness condition in 3.1 this one need not be true when I is an
inner • preintegral, as shown in the later example [10] 15.11. Therefore [20]
theorem 3 does not offer an equivalent, but a sufficient condition for the
desired representation. The inner (and outer) • formations for • = στ then
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appeared as the main novelties in the author’s book [10], and the full first
specialization 3.1 was in [10] 15.9. After this the final step to the present 1.1
(and its outer counterpart) was done in [11]. The basis was the elaboration
of a fundamental idea of Choquet on additive functionals in [11] section 1
and in [13].

We turn to the present main theorem 1.3, and compare Pollard-Topsøe
[16] theorem 3 with the second specialization 3.4 and Topsøe [20] theorem
1 with the first specialization 3.3. In the assumptions there are several de-
viations which prevent a direct comparison: In place of the present initial
condition (•) one requires the first part as a separation condition of differ-
ent kind which involves I, and the second part as Inn(E) ⊂ S⊤S in [20]
and as (Out(E))⊥ ⊂ S⊤S in [16]. In the final equivalence conditions the
requirement that I be downward • continuous at 0 takes the form that the
resultant set function ϑ = I⋆(χ.)|S be downward • continuous at ∅, a form
called into question at once in [16], plus sup

n∈N

I(f ∧ n) = I(f) for all f ∈ E.

Also both theorems require [↓]. Above all the tightness requirement on I in
[20] theorem 1 is in terms of I⋆ as before, but a bit weaker. As before both
theorems do not offer equivalent, but sufficient conditions for the desired
representations, though [16] theorem 3 has an equivalent condition in the
special case S = S•.

After this the version [10] 15.15 is of course more in the present terms.
But in the condition Inn(E) ⊂ S⊤S and in the assertion it replaces S•
with S, and the condition that I be an inner • preintegral becomes part of
the initial assumption. Thus the theorem once more offers a sufficient , but
not an equivalent condition for the desired representation. Therefore both
1.3 and its specializations 3.3 and 3.4 appear in the present paper for the
first time.

In this connection we recall the book of Anger-Portenier [1] and their
related article [2]. For the comparison we refer to the bibliographical notes
[10] 15.14 and 16.13. The concrete comparison is complicated because of
fundamental differences in the basic concepts (in particular we note their
ubiquitous notions of regular functionals and of essential integration). As
far as the author knows the work in question has not been pursued.

The next point are the consequences 3.9 of 3.3 and 3.10 of 3.4, and their
specializations 3.12 and 3.13. As far as the author can see the relevant
earlier contributions are all within 3.12 and 3.13.

Our unique earlier source relative to the USC situation of 3.12 is Topsøe
[20]. In its last sentence the author pointed to the USC case as an important
aim for application. But he did not present an explicit treatment, and later
in his 1982 lecture [21] section 2 remarked that he had not been satisfied
with the respective results. The full consequence 3.12 then appeared in [10]
16.11, while [12] 7.11 was content with the simpler particular case of the
USC functions with compact support.

In the C(X, [0,∞[) situation the present specialization 3.13 appears to be
more comprehensive than the previous results known to the author. The
closest to 3.13 is Berg-Christensen-Ressel [4] theorem 2.2 pp.35/36, which
amounts to the restriction E ⊂ CB(X, [0,∞[) := the bounded functions
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in C(X, [0,∞[). The same result is in Topsøe [21] with X assumed to be
completely regular. There are of course several particular representation
theorems in the familiar textbooks: The classical versions for E := the
functions of compact support in C(X, [0,∞[) and for E := the functions
in C(X, [0,∞[) which vanish at infinity are of course restricted to locally

compact spaces X. For the versions with E = CB(X, [0,∞[) and E =
C(X, [0,∞[) we refer to Bourbaki [5] Chap.IX section 5, Behrends [3] Chap.V
section 3 and for example Elstrodt [6] Chap.VIII section 2. All these sources
assume X to be completely regular. However, the present 3.13 shows that it
suffices to require that E ⊂ C(X, [0,∞[) contains the constants and separates

the points of X. An example of a Hausdorff topological space X which is
not completely regular but in which C(X, [0,∞[) separates the points is the
so-called deleted Tychonov corkscrew in Steen-Seebach [17] example 91.

We want to add that both Berg-Christensen-Ressel [4] and Elstrodt [6]
in Chap.VIII section 2 are based on one of the initial steps Kisyński [9] and
Topsøe [18][19] of the present new development in measure and integration.

At last we turn to Fremlin [7] chapter 7 and [8] section 436, both de-
voted to representation theorems like the present Stonean lattice subspace

assertions. We consider the more delicate nonsequential case • = τ based
on the notion of quasi-Radon measures. There were no representation the-
orems like the present Stonean lattice cone assertions, because the concepts
were set up in the respective sense, so to speak in the spirit of continuous
functions rather than of USC functions, and also because Radon and quasi-
Radon measures had to be locally finite. The main result is [7] theorem 72E
= [8] theorem 436H in terms of quasi-Radon measures. We want to show
that this theorem is contained in the present second specialization 3.2 of 1.1.
However, an essential implication of the modified set-up is that Fremlin’s
theorem has no claim of uniqueness, in contrast to the present results (there
are certain uniqueness assertions in [7] 72Fb and [8] exercise 436X(l)).

4.1 Addendum to 3.2 (• = τ). Assume as before that E ⊂ [0,∞[X

with 0 ∈ E is a Stonean lattice cone and fulfils v − u ∈ E for all u ≦ v

in E, and let U be the weakest topology on X in which the members of

E are continuous. Let I : E → [0,∞[ be additive (and hence isotone)
and downward τ continuous at 0, so that ϕ := I⋆(χ.)|Inn(E) is the unique

inner source of I which is an inner τ premeasure. Then U ⊂ C(ϕτ ), and

Φ = ϕτ |C(ϕτ ) is a quasi-Radon measure for U.

Proof. For the notion of quasi-Radon measures we refer to [12] section 4.
1) Define the set system B in X to consist of the subsets

[u ≧ t], [v ≦ 0] = [v = 0], [u ≧ t] ∪ [v ≦ 0] for u, v ∈ E and 0 < t < ∞.

1.i) One notes that B is stable under finite unions, and X ∈ B. Hence Bτ is
stable under finite unions and arbitrary intersections, and X, ∅ ∈ Bτ . Thus
Bτ is the class of closed subsets Bτ = U⊥ for some topology U on X. 1.ii)
The members of E are continuous in U. It suffices to note that [f ≧ t] and
[f ≦ t] are in Bτ for all f ∈ E and t ∈ R, which are obvious verifications.
1.iii) If V is a topology on X in which the members of E are continuous
then U ⊂ V. In fact, we have B ⊂ V⊥ and hence U⊥ = Bτ ⊂ V⊥. Thus
the present U is as required in 4.1.



12 HEINZ KÖNIG

2) We claim that B ⊂ Inn(E)⊤(Inn(E))σ ⊂ Inn(E)⊤(Inn(E))τ . There-
fore

Bτ ⊂ Inn(E)⊤(Inn(E))τ or U ⊂
(

Inn(E)⊤(Inn(E))τ

)

⊥ ⊂ C(ϕτ ).

In fact, fix u, v ∈ E and 0 < t < ∞. 2.i) By definition [u ≧ t] ∈ Inn(E) ⊂
Inn(E)⊤Inn(E). 2.ii) One verifies that

[v ≦ 0] ∩ [u ≧ t] =
⋂

n∈N

[(u − nv)+ ≧ t].

Now (u − nv)+ = u ∨ (nv) − nv ∈ E, so that the second member is in
(Inn(E))σ . Thus [v ≦ 0] ∈ Inn(E)⊤(Inn(E))σ . 2.iii) From 2.i) and 2.ii) the
assertion follows.

3) The definition of quasi-Radon measures for U in [12] section 4 consists
of five properties, of which i)ii) are clear for the Φ = ϕτ |C(ϕτ ). iii) requires
that Φ|U be upward τ continuous, and thus follows from [12] 3.6.ii) combined
with 2). The combination of iv)v) requires that Φ be inner regular {S ∈
U⊥ : S ⊂ some U ∈ U with Φ(U) < ∞}. Now ϕτ and hence Φ are inner
regular (Inn(E))τ ⊂ Bτ = U⊥. For fixed S ∈ (Inn(E))τ we have S ⊂ [u ≧ t]
for some u ∈ E and 0 < t < ∞. For 0 < s < t hence S ⊂ [u ≧ t] ⊂ U :=
[u > s] ⊂ [u ≧ s] with U ∈ U and Φ(U) ≦ ϕ([u ≧ s]) < ∞. �
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[2] B.Anger and C.Portenier, Radon integrals and Riesz representation. Rend.Circ.

Mat.Palermo (2)28(1992) Suppl. 269-300.
[3] E.Behrends, Mass- und Integrationstheorie. Springer 1987.
[4] C.Berg, J.R.P.Christensen, and P.Ressel, Harmonic Analysis on Semigroups. Grad.

Texts Math. 100, Springer 1984.
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