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Abstract

For weak solutions of the two-phase obstacle problem

∆u = λ+χ{u>0} − λ−χ{u<0} in B+
1 , λ± > 0, λ+ + λ− > 0,

satisfying the non-zero Dirichlet condition on the flat part of ∂B+
1 , we

obtain the optimal regularity, i.e., we show that u is a W 2∞-function.

1 Introduction

We consider a weak solution of the obstacle-problem-like equation

∆u = λ+χ{u>0} − λ−χ{u<0} in B+
1 := {x : |x| < 1, x1 > 0}, (1)

satisfying the boundary condition

u = ϕ on Π1 := {x : |x| 6 1, x1 = 0}, (2)

where ∆ is the Laplacian, λ+ and λ− are non-negative constants such that
λ++λ− > 0, and χE is the characteristic function of the set E. The Dirichlet
data ϕ is supposed to satisfy the following conditions:

ϕ is a W 3
∞ − function, (3)

∃ L > 0 such that |D′ϕ(x)| 6 L|ϕ(x)|2/3 ∀x ∈ Π1. (4)

Observe that if the boundary data ϕ is non-negative (non-positive) then the
solution u is so too, and we arrive at the classical one-phase obstacle problem.
It is well-known (see [Je]) that the solution of the one-phase obstacle problem
with C2,α boundary data is a W 2

∞-function up to the boundary, and this
regularity is optimal.
The L∞-estimates of the second derivatives D2u near Π1 for solutions of the
two-phase problem (1)-(2) are of main interest of this paper. Now we can
state our main result.

Theorem. Let u be a solution of the problem (1)-(2), with a function ϕ
satisfying the assumptions (3) and (4). Suppose also that sup

B+
1

|u| 6 M .

Then for any δ ∈ (0, 1) there exists a positive constant C completely defined
by n, M , λ±, δ, L, and by the norm of ϕ in the Sobolev space W 3

∞(Π1) such
that

ess sup
B+

1−δ

|D2u| 6 C.
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Throughout this article we use the following notation:
x = (x1, x

′) = (x1, x2, . . . , xn) are points in Rn, n > 2, with the Euclidean
norm |x|.
χE denotes the characteristic function of the set E ⊂ Rn;
∂E stands for the boundary of the set E;
‖ · ‖p,E denotes the norm in Lp(E).
v+ = max{v, 0};
Br(x

0) denotes the open ball in Rn with center x0 and radius r;
B+

r (x0) = {x ∈ Br(x
0) : x1 > 0}; Br = Br(0); B+

r = Br ∩ {x1 > 0}.
Π = {(x, t) ∈ Rn+1 : x1 = 0}; Πr = Π ∩Br.
Di denotes the differential operator with respect to xi; Du = (D1u,D′u) =
(D1u, D2u, . . . , Dnu) is the gradient of the function u; Dν stands for the
operator of differentiation along the direction ν ∈ Rn, i.e., |ν| = 1 and

Dνu =
n∑

i=1

νiDiu;

D2 = D(D) denotes the Hessian.
We adopt the convention that the index τ runs from 2 to n. We also adopt
the convention regarding summation with respect to repeated indices.
We use letters N , L, and C (with or without indices) to denote various
constants. To indicate that, say, C depends on some parameters, we list
them in the parentheses: C(. . . ). We will write C(ϕ) to indicate that C is
defined by the Sobolev-norms of ϕ.
For a C1-function u defined in B+

1 , we introduce the following sets:
Ω±(u) = {x ∈ B+

1 : ±u(x) > 0};
Λ(u) = {x ∈ B+

1 : u(x) = |Du(x)| = 0};
Γ(u) = ∂{x ∈ B+

1 : u(x) 6= 0}∩B+
1 is the free boundary. We emphasize that

in the two-phase case we do not have the property that the gradient vanishes
on the free boundary, as it was in the classical one-phase case; this causes
difficulties.
Γ0(u) = Γ(u) ∩ Λ(u); Γ∗(u) = Γ(u) \ Γ0(u). We observe that Γ∗(u) is C1,α-
surface for any α < 1.
From now on we suppose that sup

B+
1

|u| 6 M . Together with the assumptions
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(3) it provides for any δ ∈ (0, 1) the following estimates for u:

‖D2u‖q,B+
1−δ

6 N1(q,M, δ, ϕ), ∀q < ∞, (5)

sup
B+

1−δ

|Du| 6 N2(M, δ, ϕ), (6)

|Du(x)−Du(y)|
|x− y|α 6 N3(α, M, δ, ϕ), ∀α ∈ (0, 1). (7)

Observe that the constants N1 −N3 depend on W 2
∞-norm of ϕ.

Now we formulate an important tool used to prove Main Theorem. This
is the celebrated monotonicity formula due to H.W.Alt, L.A.Caffarelli, and
A.Friedman (see [ACF]).

Lemma 1. Let x0 be a point in Rn, and let h1 and h2 be non-negative,
sub-harmonic, continuous functions in the unit ball B1(x

0), satisfying

h1(x
0) = h2(x

0) = 0, h1(x) · h2(x) = 0 in B1(x
0).

Then the functional

Φ(r, x0, h1, h2) :=
1

r4

∫

Br(x0)

|Dh1|2
|x− x0|n−2

dx

∫

Br(x0)

|Dh2|2
|x− x0|n−2

dx

is monotone increasing in r, 0 < r < 1.

2 Estimates of the tangential gradient near

the boundary

Lemma 2. Let u be a solution of Equation (1), and let e be a direction in
Rn. Then for x ∈ B+

1 we have

(i) ∆(Deu(x)) = (λ+ + λ−)
Deu(x)

|Du(x)|H
n−1bΓ∗(u),

(ii) ∆|u(x)| = λ+χΩ+(u) + λ−χΩ−(u) + 2|Du(x)|Hn−1bΓ∗(u),

whereHn−1 is the (n−1)-dimensional Hausdorff measure of the surface Γ∗(u).

Proof. For a proof of part (i) we refer the reader to (the proof of) Lemma 2 in
[U1]. Part (ii) follows from direct computation. Indeed, for any test-function
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η ∈ C∞
0 (Ω) the value of the distribution ∆|u| on η equals

〈∆|u|, η〉 :=

∫

Ω+(u)∪Ω−(u)

|u|∆ηdx =

∫

Ω+(u)

u∆ηdx−
∫

Ω−(u)

u∆ηdx

=

∫

Ω+(u)

(∆u)ηdx−
∫

Ω−(u)

(∆u)ηdx + 2

∫

Γ∗(u)

(Dγu)ηdx,

where γ = γ(x) is the unit normal to Γ∗(u) chosen outward w.r.t. the set

Ω−(u), i.e., γ(x) = Du(x)
|Du(x)| . Application Eq. (1) to the right-hand side of the

above identity finishes the proof. ¤

Lemma 3. Let the assumptions of Theorem hold. Then for arbitrary small
δ > 0 there exists constant Nδ such that

|Dτu(x)−Dτϕ(x′)| 6 Nδx1, for x ∈ B+
1−δ, τ = 2, . . . , n. (8)

The constant Nδ is completely defined by δ, n, M , L, λ± and by the norm of
ϕ in the Sobolev space W 3

∞(Π1).

Proof. We fix δ ∈ (0, 1/2) and τ ∈ N, 2 6 τ 6 n.
Consider in the cylinder Qδ = {x ∈ Rn : 0 < x1 <

√
δ, |x′| < 1 − δ}, the

auxiliary functions

v±(x) = ±(Dτu(x)−Dτϕ(x′)) + |u(x)| − |ϕ(x′)|,

and the barrier function

w(x) = N4

(
x1√
δ
− x2

1

2δ

)
+ N5

(
(|x′| − 1 + 2δ))+

)2

with positive constants N4 and N5 which will be chosen later.
It is easy to see that the inequalities

v±(x) 6 w(x) in Qδ (9)

together with (6) imply the desired estimate (8). Therefore, it remains only
to verify (9).
To prove (9), first we observe that v±(x) 6 w(x) for all x ∈ Λ(u) ∩ Qδ.
Indeed, for a point y ∈ Λ(u) ∩ Qδ elementary computation combining with

4



the inequality (7) for α = 1/2, give

|ϕ(y′)| 6
y1∫

0

|D1u(t, y′)|dt =

y1∫

0

|D1u(y1, y
′)−D1u(t, y′)|dt

6 N3

y1∫

0

(y1 − t)1/2dt 6 N3y
3/2
1 . (10)

Taking into account the assumption (4) and the inequality (10) we arrive at

v±(y) 6 |Dτϕ(y)| 6 LN
2/3
3 y1 6 w(y) ∀y ∈ Λ(u) ∩Qδ,

if N1 is chosen so that N1 > 2
√

δLN
2/3
3 .

Now we consider the sets D± := Qδ ∩ {x : v±(x) > w(x)}. According to the
above arguments D± have no intersections with Λ(u). If we show that D± are
empty then the proof of (9) is complete. Suppose, towards a contradiction,
that at least one of the sets D± is non-empty.
It is obvious that an appropriate choice of the constants N4 and N5 guarantees
the inequality

v± 6 w on ∂Qδ. (11)

We emphasize also that the assumption (3) provides the estimate
sup
Qδ

∆(Dτϕ) 6 N6, whereas the assumptions (3) and (4) guarantee sup
Qδ

∆|ϕ| 6
N7, where the constants N6 and N7 are defined by the W 3

∞-norm and W 2
∞-

norm of ϕ, respectively.
Next, the direct computation in combination with the above estimates for
∆(Dτϕ) and ∆|ϕ|, and the equalities from Lemma 2 yield

∆(v± − w)
∣∣
D± > −N6 −N7 +

N4

δ
− 2nN5 + σ±Hn−1bΓ∗(u) ∩D±,

where the measure densities σ± are defined by the formula

σ±(x) = 2|Du(x)| ± λ
Dτu(x)

|Du(x)| , λ := λ+ + λ−.

We claim that σ± > 0 on Γ∗(u) ∩ D±, respectively. Indeed, it is suffices to
show that for x ∈ Γ∗(u) ∩D± we have

2|Du(x)|2 + λ

(
±Dτϕ(x′) + |ϕ(x′)|+ N4

2
√

δ
x1

)
> 0. (12)
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Suppose that
2|D1u(x)|2 < λ|Dτϕ(x′)|; (13)

otherwise (12) is proved. Arguing in the same way as in deriving (10) we get
the estimate

|ϕ(x′)| 6
x1∫

0

|D1u(t, x′)|dt 6
x1∫

0

|D1u(x1, x
′)−D1u(t, x′)|dt + |D1u(x)|x1

6 N3(x1)
3/2 + |D1u(x)|x1. (14)

If N3(x1)
3/2 < |D1u(x)|x1 then the inequalities (4),(13) and (14) imply

|ϕ(x′)| 6 2|D1u(x)|x1 < 2
√

λ|Dτϕ(x′)|x1 6 2
√

λL|ϕ(x′)|1/3 x1,

and, consequently, |Dτϕ(x′)| 6 L|ϕ(x′)|2/3 6 2L
√

λLx1. From here, increas-
ing N4 if it is necessary, we arrive at (12).
In the other case, i.e., if |D1u(x)|x1 6 N3(x1)

3/2, the inequalities (4) and (14)
guarantee that

|Dτϕ(x′)| 6 L|ϕ(x′)|2/3 6 (2N3)
2/3Lx1.

Again, increasing N4 if it is necessary, we arrive at (12).
Now we are able to conclude that

∆(v± − w)
∣∣
D± > −N6 −N7 +

N4

δ
− 2nN5 > 0, (15)

provided by the choice of N4 large enough.
Thanks to (11) and (15) we can apply the comparison principle to the func-
tions v± and w on the sets D±, respectively, and deduce the inequalities

v±(x) 6 w(x) in D± = Qδ ∩ {x : v±(x) > w(x)},
which give the desired contradiction with our assumption that D± 6= ∅ and
complete the proof. ¤

3 Boundary estimates of the second deriva-

tives

Lemma 4. Let the assumptions of Theorem hold, let an arbitrary δ ∈ (0, 1)
be fixed, and let x0 be an arbitrary point in B+

1−δ. Then

1

R2

∫

BR(x0)

|D2u(x)|
|x− x0|n−2

dx 6 Cδ, (16)
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where R is defined by the formula

R :=

{
δ/2, if x0

1 > δ/2

x0
1/2, otherwise,

(17)

and Cδ depends on the same arguments as the constant Nδ/2 from Lemma 3.

Proof. First of all, we observe that it is enough to show that

1

R2

∫

BR(x0)

|D(Dτu)|2
|x− x0|n−2

dx 6 Cδ, (18)

for any tangential direction τ , since we can find the derivative D1D1u from
Eq.(1).
Each of the derivatives Dτu, τ = 2, . . . , n, satisfies the integral identity

∫

B+
1

D(Dτu(x))Dη(x)dx =

∫

B+
1

fDτη(x)dx, ∀η ∈
◦

W 1
2 (B+

1 ), (19)

where f := λ+χ{u>0} − λ−χ{u<0}. Suppose now that we are given a point
x0 ∈ B+

1−δ with some δ ∈ (0, 1) and x0
1 6 δ/2.

In this case we set η = ζ2G(Dτu−Dτϕ), where ζ ∈ C∞
0 (B2R(x0)) is a cut-off

function such that ζ = 1 on BR(x0) and

|Dζ| 6 N8(n)

R
, |D2ζ| 6 N8(n)

R2
,

while G is defined by the formula G(x) = min{|x − x0|2−n, β2−n} for some
small β. Plugging η into (19) we obtain

∫

B+
1

|D(Dτu)|2ζ2Gdx =−
∫

B+
1

fDτ (Dτϕ)ζ2Gdx +

∫

B+
1

f(Dτu−Dτϕ)Dτ (ζ
2G)dx

−
∫

B+
1

(Dτu−Dτϕ)D(Dτu)D(ζ2G)dx

+

∫

B+
1

[fDτ (Dτu) + D(Dτϕ)D(Dτu)] ζ2Gdx

=: I1 + I2 + I3 + I4.
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Our next objective is to estimate these four integrals. For I1 from (3) it
follows that

I1 6 sup
B2R(x0)

|f | sup
B2R(x0)

|Dτ (Dτϕ)|
∫

B2R(x0)

ζ2Gdx 6 N9(n, λ±, ϕ)R2.

Observe that due to Lemma 3 we have |Dτu − Dτϕ| 6 2Nδ/2R in B2R(x0).
Hence

I2 6 sup
B2R(x0)

|f | sup
B2R(x0)

|Dτu−Dτϕ|
∫

B2R(x0)

Dτ (ζ
2G)dx 6 N10(n,M, δ, λ±, ϕ)R2.

Further, we transform I3 into I3 ±
∫

B+
1

(Dτu−Dτϕ)D(Dτϕ)D(ζ2G)dx, apply

integration by parts, and take into account Lemma 3. As a result we get

I3 =

∫

B2R(x0)\Bβ(x0)

1

2
(Dτu−Dτϕ)2∆(ζ2G)dx +

n− 2

βn−1

∫

∂Bβ(x0)

1

2
(Dτu−Dτϕ)2dx

−
∫

B+
1

(Dτu−Dτϕ)D(Dτϕ)D(ζ2G)dx 6 N11(n)N2
δ/2R

2 + N12(n, ϕ)Nδ/2R
2.

Finally, using |fDτ (Dτu)+D(Dτϕ)D(Dτu)| 6 1
2
|D(Dτu)|2+|f |2+|D(Dτϕ)|2,

we obtain

I4 6 1

2

∫

B+
1

|D(Dτu)|2ζ2Gdx + N13(n, λ±, ϕ)R2.

Thus, collecting all inequalities, we arrive at

∫

B+
1

|D(Dτu)|2ζ2G̃dx 6 N14(n,M, δ, λ±, ϕ)R2.

Letting β → 0 we obtain (18) and, consequently, (16).

Turning to the case x0
1 > δ/2 we note that similar to (16) estimate

4

δ2

∫

Bδ/2(x0)

|D2u(x)|2
|x− x0|n−2

dx 6 Cδ

follows easily from the Hölder inequality and (5). ¤
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Proof of Theorem. Let δ ∈ (0, 1) be fixed, let x0 ∈ Ω+(u) ∪ Ω−(u) with

|x0| < 1− δ, let ν = Du(x0)
|Du(x0)| , and let a direction e ∈ Rn be orthogonal to ν.

Since Deu(x0) = 0, it follows that

C(n)|D(Deu)(x0)|4 6 lim
r→0

Φ(r, x0, (Deu)+, (Deu)−).

On the other hand, according to Lemma 1, we have the inequality

Φ(r, x0, (Deu)+, (Deu)−) 6 Φ(R, x0, (Deu)+, (Deu)−),

where R is defined by formula (17). Application of Lemma 4 enable us to
estimate the right-hand side of the last relation by the constant C2

δ . This
means that we obtained the estimate of all the derivatives D(Deu)(x0) with
e ⊥ ν. It is evident that the derivative DνDνu(x0) can be now estimated
from Eq. (1).
Since the Lebesgue measure of Γ(u) is zero (see [W]), it remains only to note
that the obtained estimate of the second derivatives at the point x0 does not
depend on dist(x0, Γ(u)), as well as on x0

1. This finishes the proof. ¤
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