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Abstract

We consider local minimizers u: Rn ⊃ Ω → RN of variational integrals I[u] :=∫
Ω F (∇u) dx, where F is of anisotropic (p, q)-growth with exponents 1 < p ≤ q < ∞.

If F is in a certain sense decomposable, we show that the dimensionless restriction
q ≤ 2p+2 together with the local boundedness of u implies local integrability of ∇u
for all exponents t ≤ p+2. More precisely, the initial exponents for the integrability
of the partial derivatives can be increased by two, at least locally. If n = 2, then we
use these facts to prove C1,α-regularity of u for any exponents 2 ≤ p ≤ q.

In this note we discuss the higher integrability properties of the gradient of local mini-
mizers u: Rn ⊃ Ω → RN of variational integrals

I[u, Ω] =

∫

Ω

F (∇u) dx , (1)

where Ω denotes an open set in Rn and where F : RnN → [0,∞) satisfies the anisotropic
growth condition

a|Z|p − b ≤ F (Z) ≤ A|Z|q + B , Z ∈ RnN , (2)

with constants a, A > 0, b, B ≥ 0 and with exponents 1 < p ≤ q < ∞. Due to the growth
condition (2) it is natural to call a function u from the Sobolev-space W 1

p,loc(Ω;RN) (see
[Ad] for a definition of these spaces) a local minimizer of (1) if and only if I[u, Ω′] < ∞
and I[u, Ω′] ≤ I[v, Ω′] for all Ω′ b Ω and any v ∈ W 1

p,loc(Ω;RN) s.t. spt(u − v) ⊂ Ω′. In
the isotropic case (i.e. (2) holds with p = q) the local higher integrability of ∇u for a local
minimizer u is a nowadays classical result which follows from Gehring’s lemma as it is
outlined for example in Giaquinta’s monograph [Gi1], where it is also summarized how to
get better results for the isotropic scalar case. If the anisotropic scalar case is considered,
then – roughly speaking – under mild smoothness assumptions on F local minimizers are
locally Lipschitz provided that p and q are not too far apart, we refer to [Ma1], [FS], [Ch],
[BFZ2] for a detailled overview and further references.

Our note is addressed to the local higher integrability of the gradient in the anisotropic
vector case. Here we first like to mention results of Marcellini ([Ma2]) formulated for
integrands depending on the modulus of the gradient, whereas the question of higher in-
tergability for more general densities has been successfully attacked by Esposito, Leonetti
and Mingione ([ELM1]). To explain their contribution let us assume that F is of class C2

satisfying the ellipticity condition

λ(1 + |Z|2) p−2
2 |Y |2 ≤ D2F (Z)(Y, Y ) ≤ Λ(1 + |Z|2) q−2

2 |Y |2 (3)

for all Y , Z ∈ RnN with constants λ, Λ > 0. Note that in [ELM1] actually the case
of degenerate ellipticity is considered. Note also that obviously (3) implies (2). Now,
assuming (3) they show

∇u ∈ Lq
loc(Ω;RnN) (4)
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for any local I-minimizer u provided that in addition

q < p + 2 min{1, p/n} (5)

is true. A typical example for which (3) holds (with p = 2 and q ≥ 2) is the density

Fq(∇u) := |∇u|2 + (1 + |∂nu|2)
q
2 ,

and we get the higher integrability (4) if according to (5) q < 2 + 4/n which means that
the range for admissible exponents q becomes smaller if the dimension increases. On the
other hand, Fq is of the special form

F (Z) = G(|Z1|, . . . , |Zn|) , Z = (Z1, . . . , Zn) , Zα ∈ RN , (6)

for a suitable function G increasing w.r.t. each of its arguments. The structure (6) guar-
antees the convex hull property or a maximum principle (see, e.g. [DLM], [BF1]) which
means that global minimizers for boundary data in L∞(Ω;RN) are bounded functions.
From this point of view it makes sense to study locally bounded local minimizers of inte-
grals (1) with F satisfying (3) and (6) having the hope that (4) or at least “some” higher
integrability up to an exponent s > p not depending on n can now be obtained under a
dimensionless condition relating p and q. This idea was worked out by Choe ([Ch]) for
the scalar case and also assuming even stronger than (6) that F (∇u) = F (|∇u|) with the
result that q < p + 1 implies (4) (and this gives C1,α). Later we proved in [BF1] that (3),
(6) together with u ∈ L∞loc(Ω;RN) implies (4) provided that q < max{p(n+2)/n, p+2/3}.
Thus q < p + 2/3 gives (4), and in [Bi], Theorem 5.12, (see also [BF2]) this bound was
improved ending up with

q < p + 2 (7)

as a sufficient condition for (4) under the hypotheses (3), (6) and u ∈ L∞loc(Ω;RN). At
this stage we like to mention that (7) also occurs in [ELM2], where it is shown that
under conditions similar to (3) and (6) the global minimizer u for a boundary datum in
L∞(Ω;RN) satisfies

∇u ∈ Lr
loc(Ω;RnN) for all r <

pn

n− p + q − 2
,

which for large n is weaker that (4).

The main purpose of our note is to prove for the vector-case local higher integrability
of the gradient of local minimizers up to a certain degree being independent of n under a
dimensionless condition on p and q for a class of integrands for which (3) does not hold
but which are in some sense decomposable into elliptic parts of different growth rates. As
a typical example let us consider the density

Fp,q(∇u) = (1 + |∇̃u|2) p
2 + (1 + |∂nu|2)

q
2

with exponents 2 ≤ p ≤ q < ∞. Here we have set

∇̃u := (∂1u, . . . , ∂n−1u) ∈ R(n−1)N .
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Obviously Fp,q does not satisfy (3), we just have the inequality

c|Z|2 ≤ D2Fp,q(X)(Z, Z) ≤ C(1 + |X|2) q−2
2 |Z|2

so that according to (7) we need the bound q < 4 in order to apply Theorem 5.12 of [Bi].
However, Fp,q falls in the category of integrands studied in [BFZ2], and from Theorem
1.1 of this reference we get ∇̃u ∈ Lp+1

loc (Ω;R(n−1)N), ∂nu ∈ Lq+1
loc (Ω;RN) for a locally

bounded minimizer u of
∫
Ω

Fp,q(∇u) dx provided q ≤ 2p. Here we are going to improve
this result under the following assumptions on the data: assume that F : RnN → [0,∞)
is of splitting-type (or decomposable) which means that

F (Z1, . . . , Zn) = f(Z̃) + g(Zn) , (8)

Z = (Z̃, Zn), Z̃ = (Z1, . . . , Zn−1) ∈ R(n−1)N , Zn ∈ RN , with C2-functions f : R(n−1)N →
[0,∞), g: RN → [0,∞) for which

λ(1 + |X̃|2) p−2
2 |Z̃|2 ≤ D2f(X̃)(Z̃, Z̃) ≤ Λ(1 + |X̃|2) p−2

2 |Z̃|2 ,

λ(1 + |Xn|2)
q−2
2 |Zn|2 ≤ D2g(Xn)(Zn, Zn) ≤ Λ(1 + |Xn|2) q−2

2 |Zn|2

}
(9)

holds with constants λ, Λ > 0 and exponents 1 < p ≤ q for all matrices X, Z ∈ RnN . In
order to have a maximum principle we further require (X = (X1, . . . , Xn) ∈ RnN)

f(X1, . . . , Xn−1) = f̂(|X1|, . . . , |Xn−1|) , g(Xn) = ĝ(|Xn|) , (10)

with ĝ increasing and f̂ increasing w.r.t. each argument. Note that (8)–(10) exactly
correspond to the hypotheses imposed on the density in [BFZ2]. Let us now state our
main result.

THEOREM 1. Suppose that F satisfies (8)–(10) with exponents 1 < p ≤ q and let
u ∈ W 1

p,loc(Ω;RN) denote a local I-minimizer such that u ∈ L∞loc(Ω;RN).

a) Then we have that ∂nu ∈ Lt
loc(Ω;RN) for all t ≤ q + 2.

b) If in addition q ≤ 2p + 2, then ∇̃u ∈ Ls
loc(Ω;R(n−1)N) for all s ≤ p + 2.

c) If Ω denotes a domain in R2 and if 2 ≤ p, then ∇u is in the space Lt
loc(Ω;R2N) for

any t < ∞. This can be improved to u ∈ C1,µ(Ω;RN) for any µ < 1.

REMARK 1. a) In particular, the assumption q ≤ p + 2 implies ∇u ∈ Lq
loc(Ω;RnN).

b) It will become clear from the proof that the assumption p ≤ q concerning the growth
rates of f and g is just an inessential hypothesis. If p > q, then the local minimizer
u has to be taken from the space W 1

q,loc(Ω;RN), and we get ∇̃u ∈ Lp+2
loc (Ω;R(n−1)N)

without further condition on p and q, whereas p ≤ 2q+2 implies ∂nu ∈ Lq+2
loc (Ω;RN).

In particular, in the 2-D case, we arrive at ∇u ∈ Lt
loc(Ω;R2N) and we have u ∈

C1,µ(Ω;RN) for arbitrary choices of q and p ≥ 2. In the same spirit we like to
remark that our result is not limited to the specific decomposition (8). With minor
modifications in the proof we can discuss, for instance, the integrand

F (Z) :=
n∑

i=1

(1 + |Zi|2)
pi
2

with the result that ∂iu ∈ Lpi+2
loc provided that max{pi} ≤ 2 min{pi}+ 2.
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c) In the non-splitting case, the assumption q < p+2 is in some sense natural to obtain
higher integrability of the gradient of a bounded solution (compare [Bi] Remark 5.5,
ii)). We do not know if the hypothesis q ≤ 2p+2 also leads to ∇u ∈ Lt

loc(Ω;RnN) for
all t ≤ p + 2 in case that u is a locally bounded local I-minimizer but with integrand
F just satisfying (3) and (6).

REMARK 2. a) The structural condition (10) just enters through the fact that we
need the uniform boundedness of the solutions of some approximate problems.

b) Even if N = 1, the counterexamples of Giaquinta ([Gi2]) and Hong ([Ho]) show that
the local boundedness of the function u cannot be dropped from the set of assumptions
of Theorem 1. If we take n = 6 in Giaquinta’s example, for which p = 2 and q = 4,
then it is easy to show that the singular minimizer u0 constructed there satisfies

∫

|x|<1

|∂nu0|t dx < ∞

if and only if t < 5: the integrability of ∂nu0 does not hold for exponents up to 6
which would be the case for locally bounded minimizers of Giaquinta’s energy.

c) Let us mention that for p > n the structural conditions (6) and (10), respectively,
can be dropped by Sobolev’s embedding theorem. By the maximum principle this is
also possible in the scalar case.

REMARK 3. a) Again with minor modifications the proof of Theorem 1, a) and b)
given below extends to the case when (9) is replaced by its degenerate variant (at least
if p ≥ 2). For a degenerate version of Theorem 1, c) we again need the assumption
q ≤ 2p + 2.

b) Moreover, it is not hard to prove Theorem 1 for the non-autonomous situation which
means that now we have a splitting integrand F = F (x, Z) depending also on x ∈
Ω and where DxDZF satisfies a natural growth condition. Due to the splitting
structure a Lavrentiev phenomenon in the approximation process presented below
can be excluded (see, e.g. [BF3], Section 6) which enables us to continue to work
with the regularized problems introduced in the beginning of the proof of Theorem 1.

c) Going through the proof of Theorem 1 one easily checks that the explicit additive
structure of F formulated in (8) is not really needed. In fact, if we require in place
of (9) the ellipticity condition similar to the one used in [CDLL]

λ
[
(1 + |X̃|2) p−2

2 |Z̃|2 + (1 + |Xn|2)
q−2
2 |Zn|2

]

≤ D2F (X)(Z, Z) ≤ Λ
[
(1 + |X̃|2) p−2

2 |Z̃|2 + (1 + |Xn|2)
q−2
2 |Zn|2

]
, (11)

drop (8) and replace (10) by (6), then we still have the results of Theorem 1. Note
that in [CDLL] the local higher integrability is studied for the case p = 2 together
with q < (2n− 4)/(n− 4) → 2 as n →∞.

d) Up to now we concentrated on the anisotropic case. Let us finally mention, that
even in the isotropic case p = q Theorem 1 gives a result which we could not trace
in the literature.
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Proof of Theorem 1. From now on assume that F satisfies (8)–(10) with exponents
1 < p ≤ q < ∞ and that u is a locally bounded local I-minimizer. For ε > 0 let (u)ε

denote the mollification of u with small radius ε > 0 and consider a ball B := BR(x0)
with compact closure in Ω. We fix an exponent q̃ > max{2, q} and let

δ := δ(ε) :=
1

1 + ε−1 + ‖(∇u)ε‖2q̃
Lq̃(B)

,

moreover, with Fδ(Z) := δ(1 + |Z|2)q̃/2 + F (Z), Z ∈ RnN , we define uδ ∈ W 1
q̃ (Ω;RN) as

the unique solution of the problem

Iδ[w, B] :=

∫

B

Fδ(∇w) dx → min in (u)ε+
◦

W
1
q̃(B;RN) .

We recall the following facts about this approximation:

LEMMA 1. a) We have as ε → 0: uδ ⇁ u in W 1
p (B;RN);

δ

∫

B

(1 + |∇uδ|2)
q̃
2 dx → 0 ;

∫

B

F (∇uδ) dx →
∫

B

F (∇u) dx .

b) ‖uδ‖L∞(B) is bounded independent of ε.

c) ∇uδ is in the space L∞loc ∩W 1
2,loc(B;RnN).

Proof of Lemma 1. For a) and b) we refer to [BF1], Lemma 2.1, c) follows from [GM]
and from [Ca].

REMARK 4. a) We have to regularize with exponent q̃ > max{2, q} in order to
ensure the initial regularity of uδ stated in c) of Lemma 1 which is essential for our
calculations.

b) Part b) of Lemma 1 is the only place where we make use of (10). Any other condition
giving b) of the lemma could replace (10). Clearly (10) is superfluous in the scalar
case or if p > n.

LEMMA 2. (Caccioppoli-type inequality) For any η ∈ C∞
0 (B) and any γ ∈ {1, . . . , n}

we have
∫

B

η2D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ) dx ≤ c

∫

B

D2Fδ(∇uδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ) dx . (12)

(No summation w.r.t. γ, ⊗ denotes the tensor product and c is independent of ε and η.)

Proof of Lemma 2. Compare, e.g. [BF1], proof of Lemma 3.1. Inequality (12) fol-
lows from this reference by applying the Cauchy-Schwarz inequality to the bilinear form
D2Fδ(∇uδ).

In what follows we let

Γδ := 1 + |∇uδ|2 , Γ̃δ := 1 + |∇̃uδ|2 , Γn,δ := 1 + |∂nuδ|2

and consider η ∈ C∞
0 (B), 0 ≤ η ≤ 1, such that η = 1 on Br := Br(x0) for some r < R and

|∇η| ≤ c/(R− r), where here and in the sequel c always is a finite positive constant being
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independent of ε, R and r. W.l.o.g. we may assume that R < 1. For the proof of part
a) of Theorem 1 we proceed similar to [Bi], Theorem 5.12, noting that all the integrals
below are well-defined by Lemma 1, c). We have for fixed k ∈ N (to be specified later)

∫

B

η2k|∂nuδ|2Γ
q
2
n,δ dx =

∫

B

∂nuδ ·
[
η2k∂nuδΓ

q
2
n,δ

]
dx

= −
∫

B

uδ · ∂n

[
η2k∂nuδΓ

q
2
n,δ

]
dx

≤ c

[∫

B

η2k|∂n∂nuδ|Γ
q
2
n,δ dx +

∫

B

η2k−1|∇η|Γ
q+1
2

n,δ dx
]

=: c[I1 + I2] , (13)

where Lemma 1, b) has been applied. For the l.h.s. of (13) we use the lower bound
∫

B

η2k|∂nuδ|2Γ
q
2
n,δ dx ≥

∫

B∩[|∂nuδ|≥1]

η2k|∂nuδ|2Γ
q
2
n,δ dx

≥ c

∫

B∩[|∂nuδ|≥1]

η2kΓ
q+2
2

n,δ dx

≥ c

∫

B

η2kΓ
q+2
2

n,δ dx− c̃ ,

thus (13) implies ∫

B

η2kΓ
q+2
2

n,δ dx ≤ c[1 + I1 + I2] . (14)

We apply Young’s inequality to the integral I2, where τ ∈ (0, 1) is arbitrary:

I2 =

∫

B

η2k−1Γ
q+2
4

n,δ |∇η|Γ
q
4
n,δ dx

≤ τ

∫

B

η2kΓ
q+2
2

n,δ dx + c(τ)(R− r)−2

∫

B

η2k−2Γ
q
2
n,δ dx ,

and for τ small enough the first term on the r.h.s. can be absorbed on the l.h.s. of (14),
whereas by Lemma 1, a), we have

∫

B

Γ
q
2
n,δ dx ≤ c

[
1 +

∫

B

F (∇u) dx

]
,

at least for ε sufficiently small. This implies with a local constant cloc (depending in
particular on r and R but being independent of ε)

∫

B

η2kΓ
q+2
2

n,δ dx ≤ c[1 + cloc + I1] . (15)

We discuss I1: by Young’s inequality we get

I1 =

∫

B

ηk|∂n∂nu|Γ
q−2
4

n,δ ηkΓ
q+2
4

n,δ dx

≤ τ

∫

B

η2kΓ
q+2
2

n,δ dx + c(τ)

∫

B

η2k|∂n∂nu|2Γ
q−2
2

n,δ dx

=: τJ1 + c(τ)J2 ,
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i.e. by absorbing terms for τ sufficiently small we arrive at
∫

B

η2kΓ
q+2
2

n,δ dx ≤ c[1 + cloc + J2] . (16)

For J2 we observe (recall (12) and Lemma 1, a))

J2 ≤ c

∫

B

η2kD2Fδ(∇uδ)(∂n∇uδ, ∂n∇uδ) dx

≤ c

[
δ

∫

B

η2k−2|∇η|2Γ
q̃
2
δ dx +

∫

B

η2k−2|∇η|2Γ
q
2
n,δ dx +

∫

B

η2k−2|∇η|2Γn,δΓ̃
p−2
2

δ dx

]

≤ cloc + c

∫

B

η2k−2|∇η|2Γn,δΓ̃
p−2
2

δ dx

and
∫

B

η2k−2|∇η|2Γn,δΓ̃
p−2
2

δ dx ≤ c

[∫

B

|∇η|2Γ̃
p
2
δ dx +

∫

B

|∇η|2Γ
p
2
n,δ dx

]

≤ cloc ,

provided p ≥ 2. If 1 < p < 2, then we estimate
∫

B

|∇η|2η2k−2Γn,δΓ̃
p−2
2

δ dx ≤
∫

B

|∇η|2η2k−2Γn,δ dx ≤ τ

∫

B

η(2k−2) q+2
2 Γ

q+2
2

n,δ dx + cloc(τ)

and for k sufficiently large (together with τ ¿ 1) we can absorb the first integral on the
l.h.s. of (16). Thus we derive in both cases from (16)

∫

B

η2kΓ
q+2
2

n,δ dx ≤ cloc (17)

and (17) means ∂nuδ ∈ Lq+2
loc (B;RN) uniformly w.r.t. δ = δ(ε), i.e. part a) of Theorem 1

follows with the help of Lemma 1 by passing to the limit ε → 0.

In order to prove part b) we consider η as before and again fix k ∈ N to be specified
later. In what follows we always take the sum w.r.t. γ = 1, . . . , n − 1. In place of (13)
we now have∫

B

η2k|∇̃uδ|2Γ̃
p
2
δ dx = −

∫

B

uδ · ∂γ

[
η2k∂γuδΓ̃

p
2
δ

]
dx

≤ c

[∫

B

η2k|∇̃2uδ|Γ̃
p
2
δ dx +

∫

B

η2k−1|∇η|Γ̃
p+1
2

δ dx

]

=: c[I ′1 + I ′2] (18)

with an obvious meaning of ∇̃2. In (18) we use the estimate (once more applying Young’s
inequality)

I ′2 =

∫

B

η2k−1Γ̃
p+2
4

δ Γ̃
p
4
δ |∇η| dx

≤ τ

∫

B

η2kΓ̃
p+2
2

δ dx + c(τ)

∫

B

|∇η|2Γ̃
p
2
δ dx

7



and as above we arrive at the counterpart to (15)
∫

B

η2kΓ̃
p+2
2

δ dx ≤ c[1 + cloc + I ′1] . (19)

I ′1 is handled via

I ′1 =

∫

B

η2kΓ̃
p−2
4

δ |∇̃2uδ|Γ̃
p+2
4

δ dx

≤ τ

∫

B

η2kΓ̃
p+2
2

δ dx + c(τ)

∫

B

η2kΓ̃
p−2
2

δ |∇̃2uδ|2 dx

=: τJ ′1 + c(τ)J ′2 ,

and again with the same arguments as above we obtain from (19) (compare (16))
∫

B

η2kΓ̃
p+2
2

δ dx ≤ c[1 + cloc + J ′2] . (20)

Now we apply Lemma 2 and Lemma 1, a), with the result

J ′2 ≤ c

∫

B

η2kD2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ) dx

≤ c

[
δ

∫

B

η2k−2|∇η|2Γ
q̃
2
δ dx +

∫

B

η2k−2|∇η|2Γ̃
p
2
δ dx +

∫

B

|∇η|2η2k−2Γ̃δΓ
q−2
2

n,δ dx

]

≤ cloc + c

∫

B

|∇η|2η2k−2Γ̃δΓ
q−2
2

n,δ dx (21)

and for discussing the remaining integral we observe that for any τ > 0
∫

B

η2k−2Γ̃δΓ
q−2
2

n,δ |∇η|2 dx ≤ τ

∫

B

Γ̃
p+2
2

δ η(2k−2) p+2
2 dx + c(τ)

∫

B

|∇η|2 p+2
p Γ

q−2
2

p+2
p

n,δ dx .

If q ≥ 2, by (17) the second item on the r.h.s. of the above inequality is bounded by a
local constant on account of

q − 2

2

p + 2

p
≤ q + 2

2

which follows from our assumption q ≤ 2p + 2. If q < 2, then the boundedness of this
item is immediate.

Therefore, the claim of part b) of Theorem 1 follows from (21) by choosing k in such a
way that (2k−2)(p+2)/2 ≥ 2k, and by finally absorbing the τ -term into the l.h.s. of (20).

For proving part c) of Theorem 1 we keep the notation introduced above. Inequality
(12) implies (compare the calculations after (16))

∫

B

η2D2Fδ(∇uδ)(∂2∇uδ, ∂2∇uδ) dx

≤ c

∫

B

D2Fδ(∇uδ)(∂2uδ ⊗∇η, ∂2uδ ⊗∇η) dx

≤ c‖∇η‖2
∞

[
δ

∫

B

Γ
q̃
2
δ dx +

∫

B

Γ̃
p−2
2

δ Γ2,δ +

∫

B

Γ
q
2
2,δ dx

]
,
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and since ∫

B

Γ̃
p−2
2

δ Γ2,δ dx ≤ c

[∫

B

Γ̃
p
2
δ dx +

∫

B

Γ
p
2
2,δ dx

]

we have with a suitable local constant (recalling 2 ≤ p)

∫

B

η2λ|∇∂2uδ|2 dx =

∫

B

η2λ
(|∂1∂2uδ|2 + |∂2∂2uδ|2

)
dx

≤
∫

B

η2D2f(∂1uδ)(∂1∂2uδ, ∂1∂2uδ) dx

+

∫

B

η2D2g(∂2uδ)(∂2∂2uδ, ∂2∂2uδ) dx

≤
∫

B

η2D2Fδ(∇uδ)(∂2∇uδ, ∂2∇uδ) dx ≤ cloc (22)

and we have shown with (22)

∂2uδ ∈ W 1
2,loc(B) uniformly in ε ,

thus we get from Sobolev’s embedding theorem

∂2uδ ∈ Lt
loc(B;RN) for all t < ∞ and uniformly in ε . (23)

With (23) we return to the last step in the proof of b) observing that

∫

B

|∇η|2 p+2
p Γ

q−2
2

p+2
p

2,δ dx

stays bounded without the requirement q ≤ 2p + 2, thus we get ∂1uδ ∈ Lp+2
loc (B;RN)

uniformly in ε just under the hypothesis that 2 ≤ p ≤ q. Now we agree to take the sum
w.r.t. γ = 1, 2. Then inequality (12) can be rewritten as

∫

B

η2H2
δ dx ≤ c

∫

B

D2Fδ(∇uδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ) dx , (24)

where

H2
δ := δD2F0(∇uδ)(∂γ∇uδ, ∂γ∇uδ)

+D2f(∂1uδ)(∂γ∂1uδ, ∂γ∂1uδ)

+D2g(∂2uδ)(∂γ∂2uδ, ∂γ∂2uδ) ,

and where
F0(Z) := (1 + |Z|2) q̃

2 , Z ∈ R2N .

Let us consider any disc B2r(z0) b B = BR(x0) and let us suppose that η ≡ 1 on Br(z0),
0 ≤ η ≤ 1, spt η ⊂ B2r(z0), |∇η| ≤ c/r. Then the r.h.s. of (24) can be bounded by

c

r2

∫

B2r(z0)

[
δΓ

q̃
2
δ + Γ̃

p−2
2

δ |∂γuδ||∂γuδ|+ Γ
q−2
2

2,δ |∂γuδ||∂γuδ|
]
dx .
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In this expression all terms are “uncritical” with the exception of
∫

B2r(z0)

Γ
q−2
2

2,δ |∂1uδ|2 dx

but this integral can be bounded (as done after (21)) with the help of Young’s inequality

∫

B2r(z0)

Γ
q−2
2

2,δ Γ̃δ dx ≤ c

[ ∫

B2r(z0)

Γ̃
p+2
2

δ dx +

∫

B2r(z0)

Γ
p+2

p
q−2
2

2,δ dx

]
,

thus with (23) and the comments thereafter (note that for p > 2 we could just choose the
exponents p/2 and p

p−2
q−2
2

in the r.h.s. of the above inequality) it is shown that

Hδ ∈ L2
loc(B) uniform w.r.t. ε . (25)

But (25) together with (9) immediately implies ∇uδ ∈ W 1
2,loc(B;R2N) uniform w.r.t. ε,

thus
∇uδ ∈ Lt

loc(B;R2N) uniform in ε (26)

for any t < ∞, moreover, at least for a subsequence

∇uδ → ∇u a.e. on B . (27)

Now, with (26), the first part of Theorem 1, c), is established. Next we claim that (25)
is enough to follow the calculations from [BF3], proof of Theorem 1.1, to get the second
result stated in c) of Theorem 1. For the readers convenience we sketch some details.
First, with η as specified after (24), we can replace (24) by the inequality

∫

B2r(z0)

η2H2
δ dx ≤ −2

∫

B2r(z0)

ηD2Fδ(∇uδ)(∂γ∇uδ, ∂γu
∗ ⊗∇η) dx , (28)

where u∗δ(x) := u(x)− P (x) for P ∈ R2N to be fixed later. Letting

h1,δ := (1 + |∂1uδ|2)
p−2
4 ,

h2,δ := (1 + |∂2uδ|2)
q−2
4 ,

h3,δ := (1 + |∇uδ|2)
q̃−2
4

√
δ ,

hδ := (h2
1,δ + h2

2,δ + h2
3,δ)

1
2

it follows from (9) and (28)
∫

Br(z0)

H2
δ dx ≤ c

r

∫

B2r(z0)

Hδ|∇uδ − P |[h1,δ + h2,δ + h3,δ

]
dx

≤ c

r

∫

B2r(z0)

Hδhδ|∇uδ − P | dx ,

thus with s = 4/3, using Hölder’s as well as the Sobolev-Poincarè inequality we get

∫
−

Br(z0)

H2
δ dx ≤ c

[ ∫
−

B2r(z0)

(Hδhδ)
s dx

] 1
s
[ ∫

−
B2r(z0)

|∇2uδ|s dx

] 1
s

. (29)
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In (29)
∫− . . . denotes the mean value, and we have chosen P :=

∫−
B2r(z0)

∇uδ dx. Since

|∇2uδ| ≤ cHδ ≤ cHδhδ

on account of p, q ≥ 2, (29) implies

[ ∫
−

Br(z0)

H2
δ dx

] 1
2

≤ c

[ ∫
−

B2r(z0)

(hδHδ)
s dx

] 1
s

. (30)

Note that c is uniform in Br(z0) and ε if for example B2r(z0) ⊂ Bρ(x0) for some fixed
ρ < R. Letting d := 2/s, f̄ := Hs

δ , ḡ := hs
δ, h̄ := 0, then (30) reads as

[ ∫
−

Br(z0)

f̄d dx

] 1
d

≤ c

∫
−

B2r(z0)

f̄ ḡ dx , (31)

which exactly corresponds to (1.3) in [BFZ1]. (25) gives f̄ ∈ Ld
loc(B), and in order to

apply Lemma 1.2 of [BFZ1] it remains to check that

exp(βh2
δ) ∈ L1

loc(B) (32)

for arbitrary β > 0. (Of course everything is meant uniform in ε). To this purpose let

h̃1,δ := (1 + |∂1uδ|2)
p
4 ,

h̃2,δ := (1 + |∂2uδ|2)
q
4 ,

h̃3,δ := (1 + |∇uδ|2)
q̃
4

√
δ ,

h̃δ := (h̃2
1,δ + h̃2

2,δ + h̃2
3,δ)

1
2

and observe that (25) implies

h̃1,δ , h̃2,δ , h̃3,δ ∈ W 1
2,loc(B) . (33)

Since
|∇h̃δ| ≤ |∇h̃1,δ|+ |∇h̃2,δ|+ |∇h̃3,δ|

(33) also gives
h̃δ ∈ W 1

2,loc(B) . (34)

But (34) enables us to apply Trudinger’s inequality (see [GT], Theorem 7.15) with the
result ∫

Bρ

exp(β0h̃
2
δ) dx ≤ c(ρ) (35)

for discs Bρ, ρ < R, with β0 depending on the W 1
2 (Bρ)-norm of h̃δ. Finally we observe

that
h2

δ ≤ ch̃
2(1−2/q)
δ

and therefore
∫

Bρ

exp(βh2
δ) dx ≤

∫

Bρ

exp(cβh̃
2(1−2/q)
δ ) dx ≤

∫

Bρ

exp(β0h̃
2
δ + c(β)) dx ,
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so that (35) gives (32). Lemma 1.2 of [BFZ1] shows the existence of a positive constant
c0 with the property ∫

Bρ

H2
δ lnc0β(e + Hδ) dx ≤ c(β, ρ) (36)

for any β > 0, and as outlined in [BF3] (36) is true if Hδ is replaced by |σi,δ|, i = 1, 2,
where σ1,δ := Df(∂1uδ), σ2,δ := Dg(∂2uδ). This implies by quoting for example [KKM],
Example 5.3, the uniform continuity of σ1,δ, σ2,δ which means that ∇uδ is continuous
uniform in ε. Using (27) and Arzela’s theorem we find that u ∈ C1(B;RN), and the
final claim follows from elliptic regularity theory for systems with continuous coefficients
(applied to the equation satisfied by ∂γu, γ = 1, 2, compare [Gi1]).

REMARK 5. In the 2D-case and for p < 2, then under the more restrictive assumption
that q ≤ 2p + 2 it is possible to prove (25) starting from (24), where now the r.h.s. (24)
stays bounded on account of the requirement q ≤ 2p + 2 combined with the results of a)
and b). From (25) we directly deduce (33) so that the uniform local higher integrability
of ∂1uδ, ∂2uδ follows. Thus the first part of Theorem 1 c) is true at least for exponents
1 < p ≤ q ≤ 2p + 2.
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[Ca] Campanato, S., Hölder continuity of the solutions of some non-linear elliptic
systems. Adv. Math. 48 (1983), 16–43

[CDLL] Canale, A., D’Ottavio, A., Leonetti, F., Longobardi, M., Differentiability for
bounded minimizers of some anisotropic integrals. J. Math. Anal. Appl. 253
(2001), 640–650.

[Ch] Choe, H. J., Interior behaviour of minimizers for certain functionals with non-
standard growth. Nonlinear Analysis, Theory, Methods & Appl. 19.10 (1992),
933-945.

[DLM] D’Ottavio, A., Leonetti, F., Musciano, C., Maximum principle for vector valued
mappings minimizing variational integrals. Atti Sem. Mat. Fis. Univ. Modena
XLVI (1998), 677–683.

[ELM1] Esposito, L., Leonetti, F., Mingione, G., Higher integrability for minimizers of
integral functionals with (p, q)-growth. J. Diff. Eq. 157 (1999), 414–438.

[ELM2] Esposito, L., Leonetti, F., Mingione, G., Regularity for minimizers of functionals
with p-q growth. Nonlinear Diff. Equ. Appl. 6 (1999), 133-148.

[FS] Fusco, N., Sbordone, C., Some remarks on the regularity of minima of anisotropic
intergals. Comm. P.D.E. 18, 153–167 (1993).

[Gi1] Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear el-
liptic systems. Ann. Math. Studies 105, Princeton University Press, Princeton
1983.

[Gi2] Giaquinta, M., Growth conditions and regularity, a counterexample.
Manus. Math. 59 (1987), 245–248.

[GM] Giaquinta, M., Modica, G., Remarks on the regularity of the minimizers of certain
degenerate functionals. Manus. Math. 57 (1986), 55–99.

[GT] Gilbarg, D., Trudinger, N.S., Elliptic partial differential equations of second or-
der. Grundlehren der math. Wiss. 224, second ed., revised third print., Springer,
Berlin-Heidelberg-New York, 1998.

[Ho] Hong, M.C., Some remarks on the minimizers of variational integrals with non
standard growth conditions. Boll. U.M.I. (7) 6-A (1992), 91-101.
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