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Abstract

We consider local minimizers u : Rn ⊃ Ω → RN of anisotropic variational
integrals of (p, q)-growth with exponents 2 ≤ p ≤ q ≤ min{2 + p, p n

n−2}. If the
integrand is of splitting-type, then partial C1-regularity of u is established.

1 Introduction

In this paper we prove a partial regularity result for vector-valued functions u: Rn ⊃ Ω →
RN defined on an open subset Ω of Rn, n ≥ 3, which locally minimize a strictly convex
variational integral

I[u, Ω] =

∫

Ω

F (∇u) dx (1.1)

with energy density F : RnN → [0,∞) being of anisotropic (p, q)-growth, i.e. we have the
following estimate giving an upper and a lower bound for the growth of F

a|Z|p − b ≤ F (Z) ≤ A|Z|q + B ∀Z ∈ RnN (1.2)

with exponents 1 < p ≤ q < ∞ and with constants a, A > 0, b, B ≥ 0. In accordance
with (1.2) we say that a function u from the local Sobolev-class W 1

p,loc(Ω;RN) (see [Ad] for
a definition of these spaces) is a local minimizer of the functional I from (1.1) if and only
if I[u, Ω′] < ∞ and I[u, Ω′] ≤ I[v, Ω′] hold for all v ∈ W 1

p,loc(Ω;RN) s.t. spt(u − v) ⊂ Ω′,
where Ω′ is any subdomain of Ω with compact closure in Ω. For the investigation of the
partial regularity properties of such local minima one has to replace (1.2) by a stronger
condition, for example one can consider F of class C2 satisfying the anisotropic ellipticity
estimate

λ(1 + |Z|2) p−2
2 |Y |2 ≤ D2F (Z)(Y, Y ) ≤ Λ(1 + |Z|2) q−2

2 |Y |2 (1.3)

valid for all Y , Z ∈ RnN , λ, Λ denoting positive constants. Clearly (1.3) implies estimate
(1.2), moreover, it follows from the first inequality in (1.3) that F is a strictly convex
function. Assuming the validity of (1.2) together with the first inequality in (1.3)
Passarelli Di Napoli and Siepe [PS] proved for a local minimizer u the existence of an
open subset Ω0 with full Lebesgue-measure such that u is of class C1,α(Ω0;RN) for any
0 < α < 1, provided we have 2 ≤ p ≤ q < min{p + 1, np

n−1
}, whereas in [BF1] the

authors established this result by working with hypothesis (1.3) and the weaker bound
1 < p ≤ q < pn+2

n
imposed on the exponents. We also mention the paper [AF] of Acerbi

and Fusco where partial regularity is shown for a special class of integrands. We refer to
[BF2] for a detailed discussion of examples, where the methods of Acerbi and Fusco lead
to better results in comparison to the exponent bounds stated above.

AMS Subject Classification: 49 N 60
Keywords: anisotropic energies, vector-valued problems, local minimizers, splitting functionals, partial
regularity
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A particular situation occurs if in addition to (1.3) the integrand F is of special structure
in the sense that (Z = (Z1, . . . , Zn) ∈ RnN)

F (Z) = G(|Z1|, |Z2|, . . . , |Zn|) (1.4)

for a function G which is increasing w.r.t. each argument. In fact, condition (1.4)
implies the validity of a maximum-principle (see [DLM] or [BF2]), and therefore it
makes sense to discuss local minimizers from the space L∞loc(Ω;RN) with the result
(see [Bi], p.145, Corollary 5.6) that partial regularity holds if we require the inequality
1 < p ≤ q < min{p + 2, p n

n−2
} for the admissible range of anisotropy. We wish to

emphasize that in a similar setting Esposito, Leonetti and Mingione [ELM] showed higher
integrability results for local minima u from the space L∞loc(Ω;RN).

The main purpose of the present paper is to prove partial regularity for a class of
integrands to which the previous results do not directly apply, since (1.3) is violated, but
for which the lack of ellipticity is compensated by an additional property which means
that they are in a sense decomposable into elliptic parts of different growth rates. For
example, let us look at the density

Fp,q(∇u) = (1 + |∇̃u|2)p/2 + (1 + |∂nu|2)q/2

with exponents 2 ≤ p ≤ q. Here we have abbreviated ∇̃u := (∂1u, . . . , ∂n−1u). Note that
Fp,q is of the same type as the examples studied by Giaquinta [Gi1] and later on by Hong
[Ho]. Obviously Fp,q does not satisfy (1.3), we just have the inequality

c|Y |2 ≤ D2Fp,q(Z)(Y, Y ) ≤ C(1 + |Z|2) q−2
2 |Y |2 ,

so that according to [Bi], Corollary 5.6, partial regularity of a local minimizer u ∈
L∞loc(Ω;RN) holds in the 3D-case if q < 4. In order to improve this result in a more
general setting we also assume that our density F is of splitting-type which means that
we can write

F (Z) = f(Z̃) + g(Zn) , (1.5)

Z = (Z1, . . . , Zn), Z̃ = (Z1, . . . , Zn−1), Z1, . . . , Zn ∈ RN , w ith C2-functions f : R(n−1)N →
[0,∞), g : RN → [0,∞) satisfying for all Y , Z ∈ RnN

λ(1 + |Z̃|2) p−2
2 |Ỹ |2 ≤ D2f(Z̃)(Ỹ , Ỹ ) ≤ Λ(1 + |Z̃|2) p−2

2 |Ỹ |2 ,

λ(1 + |Zn|2) q−2
2 |Yn|2 ≤ D2g(Zn)(Yn, Yn) ≤ Λ(1 + |Zn|2) q−2

2 |Yn|2 . (1.6)

Condition (1.4) is replaced by

f(X1, . . . , Xn−1) = f̂(|X1|, . . . , |Xn−1|), g(Xn) = ĝ(|Xn|) (1.7)

with ĝ increasing and f̂ increasing w.r.t. each argument. Note that (1.7) implies the
maximum-principle, moreover, (1.6) and (1.7) occur in the paper [BF3] as sufficient hy-
potheses for the higher integrability of the gradient of locally bounded local minima
provided that q ≤ 2p + 2. Now we can state our main result:
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THEOREM 1.1. Suppose that F satisfies (1.5)-(1.7) with exponents 2 ≤ p ≤ q, and let
u ∈ W 1

p,loc(Ω;RN) denote a local minimizer of the energy defined in (1.1). Assume further
that u ∈ L∞loc(Ω;RN) and that

(H1) q ≤ p + 2 ,

(H2) q ≤ p
n

n− 2

are valid. Then there is an open subset Ω0 of Ω such that |Ω− Ω0| = 0 (| · | = Lebesgue-
measure) and u ∈ C1,α(Ω0;RN) for all α ∈ (0, 1).

REMARK 1.1. Our theorem extends [Bi], Corollary 5.6, to the case of splitting func-
tionals allowing even equality in the conditions imposed on the exponents.

REMARK 1.2. As discussed in [BF3] our results are not limited to the specific decom-
position (1.5), for example, we can consider the case

F (Z) =
n∑

i=1

(1 + |Zi|2)pi/2

with exponents pi ≥ 2. Then we define p := min{pi}, q := max{pi} and require the
validity of (H1), (H2) for these choices. In the same spirit we can replace (1.5)–(1.7) by
(1.4) together with the ellipticity condition

λ[(1 + |X̃|2) p−2
2 |Z̃|2 + (1 + |Xn|2)

q−2
2 |Zn|2] ≤ D2F (X)(Z, Z) ≤ Λ[. . .] .

REMARK 1.3. The structural condition (1.7) just enters through the fact that we need
the uniform boundedness of the solutions of some approximate problems. For p > n it can
be dropped by Sobolev’s embedding theorem.

REMARK 1.4. If n = 2 or if N = 1, then we can prove Ω0 = Ω even without (H1) and
(H2), we refer to [BF3] and [BFZ].

REMARK 1.5. W.r.t. the results of [BF3] it would be desirable to remove (H2) from
Theorem 1.1 and to replace (H1) by the weaker bound q ≤ 2p + 2. But this is still open.

Our paper is organized as follows: in Section 2 we collect some preliminary material
based on the work [BF3]. The proof of Theorem 1.1 using a blow-up argument is presented
in Section 3.

2 Preliminary results

Let the assumptions of Theorem 1.1 hold but with the exception that (H1, 2) are replaced
by the weaker bound

(H3) q ≤ 2p + 2 .

Proceeding as in [BF3] we fix a ball B := BR(x0) with compact closure in Ω and consider
an exponent q̃ > q.
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For ε > 0 let (u)ε denote the mollification of u and define

δ := δ(ε) := 1
/
(1 + ε−1 + ‖(∇u)ε‖2q̃

Lq̃(B)
) .

Moreover, with
Fδ(Z) := δ(1 + |Z|2)q̃/2 + F (Z), Z ∈ RnN ,

we define uδ ∈ W 1
q̃ (B;RN) as the unique solution of the problem Iδ[w,B] :=

∫
B

Fδ(∇w) dx → min in (u)ε+
◦

W 1
q̃(B;RN). The following properties of this approxi-

mation can be found in [BF2], [BF3]:

LEMMA 2.1. a) We have as ε → 0:
uδ ⇁ u in W 1

p (B;RN); δ
∫

B
(1 + |∇uδ|2)q̃/2 dx → 0;

∫
B

F (∇uδ) dx → ∫
B

F (∇u) dx.

b) ‖uδ‖L∞(B) is bounded independent of ε.

c) ∇uδ is in the space L∞loc ∩W 1
2,loc(B;RnN).

REMARK 2.1. a) We have to regularize with some exponent q̃ > q in order to deduce
c) of Lemma 2.1 from the work [GM] of Giaquinta and Modica.

b) Part b) of Lemma 2.1 is the only place where the structural condition (1.7) enters.
Any condition implying b) of the lemma could replace (1.7).

In [BF3] we proved:

LEMMA 2.2. a) (Caccioppoli-type inequality) For any η ∈ C∞
0 (B) and any γ ∈

{1, . . . , n} we have

∫

B

η2D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ) dx ≤ c

∫

B

D2Fδ(∇uδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ) dx.

b) For any radius ρ < R it holds

∫

Bρ(x0)

|∇̃uδ|p+2 dx +

∫

Bρ(x0)

|∂nuδ|q+2 dx ≤ c(ρ) < ∞ .

In a) and b) the constants are uniform in ε.

Now we will make use of Lemma 2.2 to derive the following aulixiary result

LEMMA 2.3. Let Ψ̃ := (1 + |∇̃u|2)p/4 and Ψ(n) := (1 + |∂nu|2)q/4. Then we have Ψ̃,
Ψ(n) ∈ W 1

2,loc(Ω), moreover, u belongs to the space W 2
2,loc(Ω;RN).
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Proof. From Lemma 2.2 a) we get using the estimates (1.6) for D2f , D2g (no summation
w.r.t. γ = 1, . . ., n)

δ

∫

B

η2(1 + |∇uδ|2)
q̃−2
2 |∂γ∇uδ|2 dx

+

∫

B

η2(1 + |∇̃uδ|2)
p−2
2 |∂γ∇̃uδ|2 dx +

∫

B

η2(1 + |∂nuδ|2)
q−2
2 |∂γ∂nuδ|2 dx

≤ c

[
δ

∫

B

|∇η|2(1 + |∇uδ|2)
q̃−2
2 |∂γuδ|2 dx +

∫

B

|∇η|2(1 + |∇̃uδ|2)
p−2
2 |∂γuδ|2 dx

+

∫

B

|∇η|2(1 + |∂nuδ|2)
q−2
2 |∂γuδ|2 dx

]
,

η denoting a test function with support in B. With an obvious meaning of Ψ̃δ and Ψ
(n)
δ

the inequality from above gives
∫

B

[
|∇2uδ|2 + |∇Ψ̃δ|2 + |∇Ψ

(n)
δ |2

]
η2 dx

≤ c

[
δ

∫

B

|∇η|2(1 + |∇uδ|2)q̃/2 dx +

∫

B

|∇η|2(1 + |∇̃uδ|2)p/2 dx

+

∫

B

|∇η|2(1 + |∂nuδ|2)q/2 dx +

∫

B

|∇η|2(1 + |∇̃uδ|2)
p−2
2 |∂nuδ|2 dx

+

∫

B

|∇η|2(1 + |∂nuδ|2)
q−2
2 |∇̃uδ|2 dx

]
=: c

5∑
i=1

Ti . (2.1)

From Lemma 2.1 a) we deduce that T1, T2, T3 can be bounded independent of ε. Let us
look at T4 : if p = 2, then we are done. Otherwise we use Young’s inequality and get

(1 + |∇̃uδ|2)
p−2
2 |∂nuδ|2 ≤ c

{
(1 + |∇̃uδ|2)

p
2 + |∂nuδ|

p
2

}
,

hence T4 is also bounded independent of ε. For discussing T5 we can also assume that
q > 2. Then

(1 + |∂nuδ|2)
q−2
2 |∇̃uδ|2 ≤ c

{
(1 + |∂nuδ|2)

q+2
2 + |∇̃uδ|2

q+2
4

}
,

and the uniform boundedness of T5 is a consequence of Lemma 2.2 b) and our hypothesis
(H3). Returning to (2.1) it is shown that

∫

Bρ

[
|∇2uδ|2 + |∇Ψ̃δ|2 + |∇Ψ

(n)
δ |2

]
dx ≤ c(ρ) (2.2)

for any ball Bρ = Bρ(x0), ρ < R. This implies u ∈ W 2
2,loc(Ω;RN) and for a subsequence

∇uδ → ∇u in L2
loc(B;RnN) and a.e. on B . (2.3)
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At the same time (2.2) gives

Ψ̃δ ⇁: ν̃, Ψ
(n)
δ ⇁: ν(n) in W 1

2,loc(B) ,

Ψ̃δ → ν̃, Ψ
(n)
δ → ν(n) a.e. on B ,

but with the pointwise convergence stated in (2.3) we must have ν̃ = Ψ̃, ν(n) = Ψ(n)

which proves Lemma 2.3. ¤

For later purposes we observe that Lemma 2.2 a) implies (summation w.r.t. γ = 1, . . . ,
n)
∫

B

η2
[
|∇2uδ|2+|∇Ψ̃δ|2+|∇Ψ

(n)
δ |2

]
dx ≤ c

∫

B

D2Fδ(∇uδ)(∇η⊗∂γuδ,∇η⊗∂γuδ) dx , (2.4)

and by lower semicontinuity it holds
∫

B

η2
[
|∇2u|2 + |∇Ψ̃|2 + |∇Ψ(n)|2

]
dx ≤ lim inf

ε→0

[
l.h.s. of (2.4)

]
. (2.5)

We have (F (q̃)(Z) := (1 + |Z|2)q̃/2)

r.h.s. of (2.4) = c
[ ∫

B

δD2F (q̃)(∇uδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ) dx

+

∫

B

D2F (∇uδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ) dx
]
,

and by Lemma 2.1 the first integral on the r.h.s. vanishes as ε → 0, whereas (2.3) implies

ωδ := D2F (∇uδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ) → ω := D2F (∇u)(∇η ⊗ ∂γu,∇η ⊗ ∂γu)

a.e. as ε → 0. Note that on account of the integrability properties of ∇̃u, ∂nu we know
that

∫
B

ω dx < ∞. We therefore get from (2.4), (2.5) together with the considerations
from above the limit inequality

∫

B

η2
[
|∇2u|2 + |∇Ψ̃|2 + |∇Ψ(n)|2

]
dx ≤ c

∫

B

D2F (∇u)(∇η ⊗ ∂γu,∇η ⊗ ∂γu) dx (2.6)

(again summation w.r.t. γ), provided we can show
∫

B
ωs

δ dx ≤ const < ∞ for some
exponent s > 1, since then ωδ ⇁: ω′ weakly in Ls(B), hence

∫
B

ωδ dx → ∫
B

ω′ dx, but
ω = ω′ on account of ωδ → ω a.e. By the structure of D2F we have

ωδ ≤ c|∇η|2
[
(1 + |∇̃uδ|2)p/2 + (1 + |∂nuδ|2)q/2

+(1 + |∇̃u|2) p−2
2 |∂nuδ|2 + (1 + |∂nuδ|2)

q−2
2 |∇̃uδ|2

]

=: c|∇η|2
4∑

i=1

Si ,
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and from the uniform local integrability of |∂nuδ|q+2 and |∇̃uδ|p+2 it follows that
∫

B

(
|∇η|2[S1 + S2 + S3]

)s

dx ≤ const < ∞

for exponents s > 1 close to 1 provided we replace (H3) by the stronger condition

(H3)′ q < 2p + 2 :

let us look for example at S4 assuming w.l.o.g. that q > 2. Then

(1 + |∂nuδ|2)s q−2
2 |∇̃uδ|2s ≤ c

[
(1 + |∂nuδ|2)

q+2
2 + |∇̃uδ|2st

]
,

where

t :=
( q + 2

s(q − 2)

)′
=

(q + 2)/s(q − 2)
q+2

s(q−2)
− 1

=
q + 2

q + 2− s(q − 2)
.

Obviously t = t(s) → q+2
4

as s ↓ 1, hence 2st → q+2
2

as s ↓ 1, and since q < 2p + 2, it
follows 2st ≤ p + 2 at least for exponents s very close to 1. This proves inequality (2.6).

¤

In a similar way still assuming (H3)′ we obtain the following variant of (2.6) valid for
arbitrary matrices Q = (Q1, . . . , Qn) ∈ RnN and for all η ∈ C∞

0 (B):
∫

B

η2
[
|∇2u|2+|∇Ψ̃|2+|∇Ψ(n)|2

]
dx ≤ c

∫

B

D2F (∇u)
(
∇η⊗[∂γu−Qγ],∇η⊗[∂γu−Qγ]

)
dx .

(2.7)

3 Proof of Theorem 1.1

We will apply a blow-up argument. To this purpose let us assume that the hypotheses of
Theorem 1.1 are valid and define for balls Br(x) b Ω the excess function

E(x, r) :=

∫
−

Br(x)

|∇u− (∇u)x,r|2 dy +

∫
−

Br(x)

|∇u− (∇u)x,r|q dy ,

where (·)x,r and
∫−

Br(x)
. . . dy denote the mean value of a function w.r.t. to Br(x). Note

that (H1) together with the higher integrability of ∇̃u implies that E(x, r) is well-defined.
The claim of Theorem 1.1 then is a consequence of the following

LEMMA 3.1. Fix L > 0 and a subdomain Ω′ b Ω. Then there is a constant C∗(L) such
that for every τ ∈ (0, 1/4) one can find a number ε = ε(L, τ) with the following property:
if Br(x) b Ω′ and if

|(∇u)x,r| ≤ L , E(x, r) ≤ ε , (3.1)

then
E(x, τr) ≤ C∗(L)τ 2E(x, r) . (3.2)
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The proof of Lemma 3.1 originates in the works of Giusti and Miranda [GiuMi] and
Evans [Ev], where it is also outlined how to deduce the desired partial regularity result
from Lemma 3.1. A sketch of this routine procedure is also given in [Bi], Lemma 3.40.
We divide the proof of Lemma 3.1 into several steps.

Step 1. Scaling Let us suppose that the claim of Lemma 3.1 is wrong. Assume further
that a number L > 0 is fixed, the corresponding constant C∗(L) will be chosen in Step 2.
Then, for some τ > 0, there is a sequence of balls Brm(xm) b Ω′ such that (compare (3.1)
and (3.2))

|(∇u)xm,rm| ≤ L, E(xm, rm) =: λ2
m → 0, as m →∞ , (3.3)

E(xm, τrm) > C∗τ 2λ2
m . (3.4)

With am := (u)xm,rm , Am := (∇u)xm,rm we let

um(z) :=
1

λmrm

[
u(xm + rmz)− am − rmAmz

]
, z ∈ B1 := B1(0)

and obtain from (3.3)

|Am| ≤ L ,

∫
−

B1

|∇um|2 dz + λq−2
m

∫
−

B1

|∇um|q dz = 1 , (3.5)

whereas (3.4) implies
∫
−

Bτ

|∇um − (∇um)0,τ |2 dz + λq−2
m

∫
−

Bτ

|∇um − (∇um)0,τ |q dz > C∗τ 2 . (3.6)

Using (3.5) and passing to subsequences we find

Am →: A , um ⇁: u in W 1
2 (B1;RN) , (u)0,1 = 0 , (∇u)0,1 = 0 , (3.7)

λm∇um → 0 in L2(B1;RnN) and a.e. on B1 , (3.8)

λ1−2/q
m ∇̃um ⇁ 0 in Lq(B1;R(n−1)N) , (3.9)

λ1−2/q
m ∂num ⇁ 0 in Lq(B1;RN) . (3.10)

Note that (3.5) first implies that the left-hand sides of (3.8)–(3.10) must have (weak)
limits but these limits are equal to zero on account of ∇um ⇁ ∇u in L2(B1;RnN). Note
also that for (3.9) and (3.10) we clearly require q > 2.

Step 2. Limit equation We claim the validity of
∫

B1

D2F (A)(∇u,∇ϕ) dz = 0 ∀ϕ ∈ C∞
0 (B1;RN) . (3.11)

In fact, the local minimality of u implies after scaling the equation
∫

B1

DF (Am + λm∇um) : ∇ϕ dz = 0 ,
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hence ∫

B1

1

λm

[
DF (Am + λm∇um)−DF (Am)

]
: ∇ϕ dz = 0

or equivalently
∫

B1

∫ 1

0

D2F (Am + s λm∇um)(∇um,∇ϕ) ds dz = 0 .

Thus we arrive at∫

B1

D2F (Am)(∇um,∇ϕ) dz

= −
∫

B1

∫ 1

0

[
D2F (Am + s λm∇um)−D2F (Am)

]
(∇um,∇ϕ) ds dz . (3.12)

By (3.7) the l.h.s. of (3.12) converges towards the l.h.s. of (3.11). We discuss the r.h.s. of
(3.12): given ε > 0, we can find δ = δ(ε) such that

∫

A

|∇ϕ|2 dz ≤ ε , (3.13)

whenever A is a measurable subset of B1 such that Ln(A) ≤ δ. (3.8) implies the existence
of a set S ⊂ B1 with the properties Ln(B1 − S) ≤ δ(ε) and

λm∇um ⇒ 0 on S . (3.14)

(3.7) together with (3.14) then shows

∣∣∣
∫

S

∫ 1

0

[
D2F (Am + s λm∇um)−D2F (Am)

]
(∇um,∇ϕ) ds dz

∣∣∣

≤ sup
S×[0,1]

∣∣∣[. . .]
∣∣∣
( ∫

B1

|∇um|2 dz
)1/2( ∫

B1

|∇ϕ|2 dz
)1/2

→ 0 as m →∞ .

On the other hand we observe

T :=

∣∣∣∣∣
∫

B1−S

∫ 1

0

[. . .](∇um,∇ϕ) ds dz

∣∣∣∣∣

≤ c

∫

B1−S

∫ 1

0

[(
1 + |Am + s λm∇um|2

) q−2
2

+ 1
]
|∇um||∇ϕ| ds dz

≤ c

∫

B1−S

[
|∇um||∇ϕ|+ λq−2|∇um|q−1|∇ϕ|

]
dz

≤ c

[(∫

B1

|∇um|2 dz

)1/2(∫

B1−S

|∇ϕ|2 dz

)1/2

+

( ∫

B1

λ
q

q−1
(q−2)

m |∇um|q dz

)1−1/q(∫

B1

|∇ϕ|q dz

)1/q]
≤ . . .

9



. . .
≤

(3.13) c

[
√

ε

( ∫

B1

|∇um|2 dz

)1/2

+

(∫

B1

λ
q

q−1
(q−2)

m |∇um|q dz

)1−1/q(∫

B1

|∇ϕ|q dz

)1/q]

and the λm-term vanishes on account of (3.9). This gives

lim sup
m→∞

T ≤ c
√

ε .

Altogether it is shown that

lim sup
m→∞

|r.h.s. of (3.12)| ≤ c
√

ε ,

and since ε is arbitrary, the limit equation (3.11) follows. Since (3.11) is an elliptic system
with constant coefficients and ellipticity constants just depending on L (and p, q) we have
according to [Gi2] the Campanato-estimate

∫
−

Bτ

|∇u− (∇u)0,τ |2 dz ≤ C∗τ 2

∫
−

B1

|∇u− (∇u)0,1|2 dz (3.15)

with C∗ = C∗(L). Note that (∇u)0,1 = 0, moreover,
∫−

B1
|∇um|2 dz ≤ 1 (recall (3.5))

implies
∫−

B1
|∇u|2 dz ≤ 1, hence (3.15) gives

∫
−

Bτ

|∇u− (∇u)0,τ |2 dz ≤ C∗τ 2 . (3.16)

So if we let C∗ := 2C∗, then (3.16) is in contradiction to (3.6) provided we can show in
addition to (3.7), (3.9) and (3.10) that

∇um → ∇u in L2
loc(B1;RnN) , (3.17)

λ1−2/q
m ∇̃um → 0 in Lq

loc(B1;R(n−1)N) , (3.18)

λ1−2/q
m ∂num → 0 in Lq

loc(B1;RN) (3.19)

are valid.

Step 3. Proof of (3.17)–(3.19) Let

Ψ̃m(z) := λ−1
m

[(
1 + |Ãm + λm∇̃um|2

) p
4 −

(
1 + |Ãm|2

) p
4
]
,

Ψ(n)
m (z) := λ−1

m

[(
1 + |A(n)

m + λm∂num|2
) q

4 −
(
1 + |A(n)

m |2
) q

4
]

for z ∈ B1. We have

∇2um(z) = rmλ−1
m ∇2u(xm + rmz) ,

∇Ψ̃m(z) = rmλ−1
m ∇Ψ̃(xm + rmz) ,

∇Ψ(n)
m (z) = rmλ−1

m ∇Ψ(n)(xm + rmz) ,

10



and if we choose η ∈ C∞
0 (B1) we deduce from (2.7) (by letting Q := Am) the inequality

∫

B1

η2
[
|∇2um|2 + |∇Ψ̃m|2 + |∇Ψ(n)

m |2
]
dz

≤ c

∫

B1

D2F (λm∇um + Am)(∇η ⊗ ∂γum,∇η ⊗ ∂γum) dz . (3.20)

Suppose now that η = 1 on Bρ, spt η ⊂ Br for some r ∈ (ρ, 1) and 0 ≤ η ≤ 1. From
(3.20) we then obtain

∫

Bρ

[
|∇2um|2 + |∇Ψ̃m|2 + |∇Ψ(n)

m |2
]
dz ≤ c(ρ) < ∞ (3.21)

with c(ρ) being independent of m provided the r.h.s. of (3.20) can be bounded in an
appropriate way: according to the structure of D2F we have

∣∣∣D2F (λm∇um + Am)
∣∣∣ ≤ c

(
1 + λq−2

m |∇um|q−2
)

,

hence

|r.h.s. of (3.20)| ≤ c(r − ρ)−2
[ ∫

Br

|∇um|2 dz + λq−2
m

∫

Br

|∇um|q dz
]
,

and if we use (3.5), inequality (3.21) follows, and the local strong convergence (3.17) is
immediate.

To prove (3.19) we fix ρ ∈ (0, 1), a number M À 1 and let Um := Um(M,ρ) :=
Bρ ∩ [λm|∂num| ≤ M ]. Then we get from (3.17) and the smoothness of u

∫

Um

λq−2
m |∂num|q dz ≤ c

[
λq−2

m

∫

Um

|∂num − ∂nu|q dz + λq−2
m

∫

Um

|∂nu|q dz

]

≤ c

[
λq−2

m

∫

Um

(
|∂num|q−2 + |∂nu|q−2

)
|∂num − ∂nu|2 dz

+λq−2
m

∫

Um

|∂nu|q dz

]
→ 0

as m →∞. On the other hand, for M large enough and for z ∈ Bρ − Um it holds

|Ψ(n)
m (z)| ≥ cλ−1

m λ
q
2
m|∂num(z)| q2 ,

i.e.
λq−2

m |∂num(z)|q ≤ cΨ(n)
m (z)2 .

Thus (3.21) gives by Sobolev’s embedding theorem
∫

Bρ−Um

λq−2
m |∂num|q dz ≤ c

∫

Bρ−Um

Ψ(n)
m (z)2 dz

≤ c
( ∫

Bρ

|Ψ(n)
m (z)| 2n

n−2 dz
)1− 2

n |Bρ − Um|2/n → 0

11



as m → ∞, since |Bρ − Um| → 0 on account of (3.8), and we have established (3.19).
Note that our calculation used the fact that actually

‖Ψ(n)
m ‖W 1

2 (Bρ) ≤ c(ρ)

for all ρ < 1. The bound for ‖Ψ(n)
m ‖L2(Bρ) follows from the definition of Ψ

(n)
m together with

(3.5).

Up to now we have not used our assumption (H2). This hypothesis is needed for the
proof of (3.18): let Ũm := Bρ ∩ [λm|∇̃um| ≤ M ]. Then as above we get

∫

Ũm

λq−2
m |∇̃um|q dz → 0

as m →∞. On the set Bρ − Ũm we estimate

|Ψ̃m(z)| ≥ cλ−1
m λ

p
2
m|∇̃um(z)| p2 ,

i.e.

λq−2
m |∇̃um(z)|q ≤ cλ

2 q
p
−2

m |Ψ̃m(z)|2 q
p .

If q = p, then we combine (3.21) with Sobolev’s inequality (note that also ‖Ψ̃m‖L2(Bρ) ≤
c(ρ) ∀ρ < 1) to see

∫

Bρ−Ũm

λq−2
m |∇̃um(z)|q dz ≤ c

∫

Bρ−Ũm

|Ψ̃m(z)|2 dz

≤ c
( ∫

Bρ−Ũm

|Ψ̃m|2
n

n−2 dz
)1− 2

n |Bρ − Ũm|2/n → 0

as m →∞ (recall (3.8)). If q > p, then λ
2 q

p
−2

m → 0, and the claim (3.18) follows provided
that 2 q

p
≤ 2 n

n−2
which is a consequence of (H2).

In order to complete our proof we have to show that
∫

Bρ

|Ψ̃m|2 dz ≤ c(ρ) ∀ρ < 1 (3.22)

which by the definition of Ψ̃m will follow from
∫

Bρ

λp−2
m |∇̃um|2 dz ≤ c(ρ) . (3.23)

Let η ∈ C∞
0 (B1). Then we have that

∫

B1

DF (A + λm∇um) : ∇(η2[um − u]) dz = 0 ,

12



i.e.

0 =

∫

B1

1

λm

[
DF (λm∇um + Am)−DF (Am + λm∇u)

]
: ∇(η2[um − u]) dz

+

∫

B1

1

λm

[
DF (Am + λm∇u)−DF (Am)

]
: ∇

(
η2[um − u]

)
dz

=: T 1
m + T 2

m .

Observing

1

λm

[
DF (Am + λm∇u)−DF (Am)

]
=

∫ 1

0

D2F (Am + s λm∇u)(∇u, ·)
→ D2f(A)(∇u, ·)

uniformly on spt η and recalling (3.17) we get

lim
m→∞

T 2
m = 0 . (3.24)

(3.24) implies lim
m→∞

T 1
m = 0 or equivalently

0 = lim
m→∞

[ ∫

B1

∫ 1

0

D2F
(
Am + λm∇u + sλm(∇um −∇u)

)

(∇um −∇u,∇um −∇u)η2 ds dz

+

∫

B1

∫ 1

0

D2F (. . .)(∇um −∇u,∇η ⊗ (um − u)) 2η ds dz

]
. (3.25)

If we apply the Cauchy-Schwarz and Young’s inequality in the second integral of (3.25)
we see that for any ε > 0

[. . .] ≥ (1− ε)

∫

B1

∫ 1

0

D2F (. . .)(∇um −∇u,∇um −∇u)η2 ds dz

−c(ε)

∫

B1

∫ 1

0

D2F (. . .)(∇η ⊗ (um − u),∇η ⊗ (um − u)) ds dz ,

therefore (3.25) will give

0 = lim
m→∞

∫

B1

∫ 1

0

D2F (. . .)(∇um −∇u,∇um −∇u)η2 ds dz (3.26)

as soon as we can show

0 = lim
m→∞

∫

B1

∫ 1

0

D2F (. . .)
(
∇η ⊗ (um − u),∇η ⊗ (um − u)

)
ds dz . (3.27)
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Note that (3.26) combined with the structure of D2F will justify (3.23) and hence (3.22).
Thus it remains to show (3.27). We have

|D2F (. . .)| ≤ c
(
1 + | . . . |2

) q−2
2 ≤ c

(
1 + λq−2

m |∇um|q−2
)

and therefore

∣∣∣
∫

B1

∫ 1

0

D2F (. . .)
(
∇η ⊗ (um − u),∇η ⊗ (um − u)

)
ds dz

∣∣∣

≤ c‖∇η‖2
L∞(B1)

∫

spt η

[
|um − u|2 + λq−2

m |∇um|q−2|um − u|2
]
dz

which leads to the discussion of
∫

spt η

λq−2
m |∇um|q−2|um − u|2 dz =: ξm .

Hölders’s inequality gives

ξm ≤
( ∫

B1

λq−2
m |∇um|q dz

)1−2/q( ∫

spt η

λq−2
m |um − u|q dz

)2/q

,

the first integral being bounded by (3.5). If q = 2, then the second integral vanishes as
m →∞. If q > 2, then the same is true if we can show that

vm := λ1−2/q
m um → 0 in Lq(B1;RN) . (3.28)

To this purpose we observe that (vm)0,1 = 0 so that (3.5) in combination with Poincaré’s
inequality implies supm ‖vm‖W 1

q (B1) < ∞, hence vm ⇁: v in W 1
q (B1;RN) and vm → v in

Lq(B1;RN). (3.9) and (3.10) give ∇v = 0, and since (v)0,1 = 0, we must have (3.28). Note

that with (3.26) we actually have shown that (3.23) can be replaced by λ
1−2/p
m ∇̃um → 0

in Lp
loc(B1;R(n−1)N). Altogether the proof of Theorem 1.1 is complete. ¤

REMARK 3.1. In order to prove Theorem 1.1 under less restrictive assumptions con-
cerning p and q we could try to replace the excess function E(x, r) by the more natural
one

Ẽ(x, r) :=

∫
−

Br(x)

|∇u− (∇u)x,r|2 dy +

∫
−

Br(x)

|∇̃u− (∇̃u)x,r|p dy

+

∫
−

Br(x)

|∂nu− (∂nu)x,r|q dy .

But in this new setting we could not verify estimate (3.21) with the help of (3.20) since it is
not obvious how to bound the right-hand side of (3.20) using the equation

∫−
B1
|∇um|2 dz+

λp−2
m

∫−
B1
|∇̃um|p dz + λq−2

m

∫−
B1
|∂num|q dz = 1 which now replaces (3.5).
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