Universität des Saarlandes

Fachrichtung 6.1 - Mathematik

Preprint Nr. 195

Partial regularity for local minimizers of splitting-type variational integrals

Michael Bildhauer and Martin Fuchs

Saarbrücken 2007

Partial regularity for local minimizers of splitting-type variational integrals

Michael Bildhauer
Saarland University
Department of Mathematics
Postfach 151150
D-66041 Saarbrücken
Germany
bibi@math.uni-sb.de

Martin Fuchs
Saarland University
Department of Mathematics
Postfach 151150
D-66041 Saarbrücken
Germany
fuchs@math.uni-sb.de

Edited by
FR 6.1 - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany

Fax: $\quad+496813024443$
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

We consider local minimizers $u: \mathbb{R}^{n} \supset \Omega \rightarrow \mathbb{R}^{N}$ of anisotropic variational integrals of (p, q)-growth with exponents $2 \leq p \leq q \leq \min \left\{2+p, p \frac{n}{n-2}\right\}$. If the integrand is of splitting-type, then partial C^{1}-regularity of u is established.

1 Introduction

In this paper we prove a partial regularity result for vector-valued functions $u: \mathbb{R}^{n} \supset \Omega \rightarrow$ \mathbb{R}^{N} defined on an open subset Ω of $\mathbb{R}^{n}, n \geq 3$, which locally minimize a strictly convex variational integral

$$
\begin{equation*}
I[u, \Omega]=\int_{\Omega} F(\nabla u) \mathrm{d} x \tag{1.1}
\end{equation*}
$$

with energy density $F: \mathbb{R}^{n N} \rightarrow[0, \infty)$ being of anisotropic (p, q)-growth, i.e. we have the following estimate giving an upper and a lower bound for the growth of F

$$
\begin{equation*}
a|Z|^{p}-b \leq F(Z) \leq A|Z|^{q}+B \quad \forall Z \in \mathbb{R}^{n N} \tag{1.2}
\end{equation*}
$$

with exponents $1<p \leq q<\infty$ and with constants $a, A>0, b, B \geq 0$. In accordance with (1.2) we say that a function u from the local Sobolev-class $W_{p, \text { loc }}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ (see [Ad] for a definition of these spaces) is a local minimizer of the functional I from (1.1) if and only if $I\left[u, \Omega^{\prime}\right]<\infty$ and $I\left[u, \Omega^{\prime}\right] \leq I\left[v, \Omega^{\prime}\right]$ hold for all $v \in W_{p, \text { loc }}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ s.t. $\operatorname{spt}(u-v) \subset \Omega^{\prime}$, where Ω^{\prime} is any subdomain of Ω with compact closure in Ω. For the investigation of the partial regularity properties of such local minima one has to replace (1.2) by a stronger condition, for example one can consider F of class C^{2} satisfying the anisotropic ellipticity estimate

$$
\begin{equation*}
\lambda\left(1+|Z|^{2}\right)^{\frac{p-2}{2}}|Y|^{2} \leq D^{2} F(Z)(Y, Y) \leq \Lambda\left(1+|Z|^{2}\right)^{\frac{q-2}{2}}|Y|^{2} \tag{1.3}
\end{equation*}
$$

valid for all $Y, Z \in \mathbb{R}^{n N}, \lambda, \Lambda$ denoting positive constants. Clearly (1.3) implies estimate (1.2), moreover, it follows from the first inequality in (1.3) that F is a strictly convex function. Assuming the validity of (1.2) together with the first inequality in (1.3) Passarelli Di Napoli and Siepe [PS] proved for a local minimizer u the existence of an open subset Ω_{0} with full Lebesgue-measure such that u is of class $C^{1, \alpha}\left(\Omega_{0} ; \mathbb{R}^{N}\right)$ for any $0<\alpha<1$, provided we have $2 \leq p \leq q<\min \left\{p+1, \frac{n p}{n-1}\right\}$, whereas in [BF1] the authors established this result by working with hypothesis (1.3) and the weaker bound $1<p \leq q<p \frac{n+2}{n}$ imposed on the exponents. We also mention the paper [AF] of Acerbi and Fusco where partial regularity is shown for a special class of integrands. We refer to [BF2] for a detailed discussion of examples, where the methods of Acerbi and Fusco lead to better results in comparison to the exponent bounds stated above.

[^0]A particular situation occurs if in addition to (1.3) the integrand F is of special structure in the sense that $\left(Z=\left(Z_{1}, \ldots, Z_{n}\right) \in \mathbb{R}^{n N}\right)$

$$
\begin{equation*}
F(Z)=G\left(\left|Z_{1}\right|,\left|Z_{2}\right|, \ldots,\left|Z_{n}\right|\right) \tag{1.4}
\end{equation*}
$$

for a function G which is increasing w.r.t. each argument. In fact, condition (1.4) implies the validity of a maximum-principle (see [DLM] or [BF2]), and therefore it makes sense to discuss local minimizers from the space $L_{\text {loc }}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ with the result (see [Bi], p.145, Corollary 5.6) that partial regularity holds if we require the inequality $1<p \leq q<\min \left\{p+2, p \frac{n}{n-2}\right\}$ for the admissible range of anisotropy. We wish to emphasize that in a similar setting Esposito, Leonetti and Mingione [ELM] showed higher integrability results for local minima u from the space $L_{\text {loc }}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$.

The main purpose of the present paper is to prove partial regularity for a class of integrands to which the previous results do not directly apply, since (1.3) is violated, but for which the lack of ellipticity is compensated by an additional property which means that they are in a sense decomposable into elliptic parts of different growth rates. For example, let us look at the density

$$
F_{p, q}(\nabla u)=\left(1+|\tilde{\nabla} u|^{2}\right)^{p / 2}+\left(1+\left|\partial_{n} u\right|^{2}\right)^{q / 2}
$$

with exponents $2 \leq p \leq q$. Here we have abbreviated $\tilde{\nabla} u:=\left(\partial_{1} u, \ldots, \partial_{n-1} u\right)$. Note that $F_{p, q}$ is of the same type as the examples studied by Giaquinta [Gi1] and later on by Hong [Ho]. Obviously $F_{p, q}$ does not satisfy (1.3), we just have the inequality

$$
c|Y|^{2} \leq D^{2} F_{p, q}(Z)(Y, Y) \leq C\left(1+|Z|^{2}\right)^{\frac{q-2}{2}}|Y|^{2}
$$

so that according to [Bi], Corollary 5.6, partial regularity of a local minimizer $u \in$ $L_{\text {loc }}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ holds in the 3D-case if $q<4$. In order to improve this result in a more general setting we also assume that our density F is of splitting-type which means that we can write

$$
\begin{equation*}
F(Z)=f(\tilde{Z})+g\left(Z_{n}\right), \tag{1.5}
\end{equation*}
$$

$Z=\left(Z_{1}, \ldots, Z_{n}\right), \tilde{Z}=\left(Z_{1}, \ldots, Z_{n-1}\right), Z_{1}, \ldots, Z_{n} \in \mathbb{R}^{N}$, w ith C^{2}-functions $f: \mathbb{R}^{(n-1) N} \rightarrow$ $[0, \infty), g: \mathbb{R}^{N} \rightarrow[0, \infty)$ satisfying for all $Y, Z \in \mathbb{R}^{n N}$

$$
\begin{gather*}
\lambda\left(1+|\tilde{Z}|^{2}\right)^{\frac{p-2}{2}}|\tilde{Y}|^{2} \leq D^{2} f(\tilde{Z})(\tilde{Y}, \tilde{Y}) \leq \Lambda\left(1+|\tilde{Z}|^{2}\right)^{\frac{p-2}{2}}|\tilde{Y}|^{2}, \\
\lambda\left(1+\left|Z_{n}\right|^{2}\right)^{\frac{q-2}{2}}\left|Y_{n}\right|^{2} \leq D^{2} g\left(Z_{n}\right)\left(Y_{n}, Y_{n}\right) \leq \Lambda\left(1+\left|Z_{n}\right|^{2}\right)^{\frac{q-2}{2}}\left|Y_{n}\right|^{2} . \tag{1.6}
\end{gather*}
$$

Condition (1.4) is replaced by

$$
\begin{equation*}
f\left(X_{1}, \ldots, X_{n-1}\right)=\hat{f}\left(\left|X_{1}\right|, \ldots,\left|X_{n-1}\right|\right), \quad g\left(X_{n}\right)=\hat{g}\left(\left|X_{n}\right|\right) \tag{1.7}
\end{equation*}
$$

with \hat{g} increasing and \hat{f} increasing w.r.t. each argument. Note that (1.7) implies the maximum-principle, moreover, (1.6) and (1.7) occur in the paper [BF3] as sufficient hypotheses for the higher integrability of the gradient of locally bounded local minima provided that $q \leq 2 p+2$. Now we can state our main result:

THEOREM 1.1. Suppose that F satisfies (1.5)-(1.7) with exponents $2 \leq p \leq q$, and let $u \in W_{p, \text { loc }}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ denote a local minimizer of the energy defined in (1.1). Assume further that $u \in L_{\mathrm{loc}}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ and that

$$
\begin{aligned}
& (H 1) \quad q \leq p+2, \\
& (H 2) \quad q \leq p \frac{n}{n-2}
\end{aligned}
$$

are valid. Then there is an open subset Ω_{0} of Ω such that $\left|\Omega-\Omega_{0}\right|=0(|\cdot|=$ Lebesguemeasure) and $u \in C^{1, \alpha}\left(\Omega_{0} ; \mathbb{R}^{N}\right)$ for all $\alpha \in(0,1)$.

REMARK 1.1. Our theorem extends [Bi], Corollary 5.6, to the case of splitting functionals allowing even equality in the conditions imposed on the exponents.

REMARK 1.2. As discussed in [BF3] our results are not limited to the specific decomposition (1.5), for example, we can consider the case

$$
F(Z)=\sum_{i=1}^{n}\left(1+\left|Z_{i}\right|^{2}\right)^{p_{i} / 2}
$$

with exponents $p_{i} \geq 2$. Then we define $p:=\min \left\{p_{i}\right\}, q:=\max \left\{p_{i}\right\}$ and require the validity of $(H 1),(H 2)$ for these choices. In the same spirit we can replace (1.5)-(1.7) by (1.4) together with the ellipticity condition

$$
\lambda\left[\left(1+|\tilde{X}|^{2}\right)^{\frac{p-2}{2}}|\tilde{Z}|^{2}+\left(1+\left|X_{n}\right|^{2}\right)^{\frac{q-2}{2}}\left|Z_{n}\right|^{2}\right] \leq D^{2} F(X)(Z, Z) \leq \Lambda[\ldots] .
$$

REMARK 1.3. The structural condition (1.7) just enters through the fact that we need the uniform boundedness of the solutions of some approximate problems. For $p>n$ it can be dropped by Sobolev's embedding theorem.

REMARK 1.4. If $n=2$ or if $N=1$, then we can prove $\Omega_{0}=\Omega$ even without (H1) and (H2), we refer to [BF3] and [BFZ].

REMARK 1.5. W.r.t. the results of [BF3] it would be desirable to remove (H2) from Theorem 1.1 and to replace (H1) by the weaker bound $q \leq 2 p+2$. But this is still open.

Our paper is organized as follows: in Section 2 we collect some preliminary material based on the work [BF3]. The proof of Theorem 1.1 using a blow-up argument is presented in Section 3.

2 Preliminary results

Let the assumptions of Theorem 1.1 hold but with the exception that $(H 1,2)$ are replaced by the weaker bound

$$
\text { (H3) } \quad q \leq 2 p+2 .
$$

Proceeding as in [BF3] we fix a ball $B:=B_{R}\left(x_{0}\right)$ with compact closure in Ω and consider an exponent $\tilde{q}>q$.

For $\varepsilon>0$ let $(u)_{\varepsilon}$ denote the mollification of u and define

$$
\delta:=\delta(\varepsilon):=1 /\left(1+\varepsilon^{-1}+\left\|(\nabla u)_{\varepsilon}\right\|_{L^{\tilde{q}}(B)}^{2 \tilde{q}}\right) .
$$

Moreover, with

$$
F_{\delta}(Z):=\delta\left(1+|Z|^{2}\right)^{\tilde{q} / 2}+F(Z), \quad Z \in \mathbb{R}^{n N}
$$

we define $u_{\delta} \in W_{\tilde{q}}^{1}\left(B ; \mathbb{R}^{N}\right)$ as the unique solution of the problem $I_{\delta}[w, B]:=$ $\int_{B} F_{\delta}(\nabla w) \mathrm{d} x \rightarrow \min$ in $(u)_{\varepsilon}+\stackrel{\circ}{W}_{\tilde{q}}^{1}\left(B ; \mathbb{R}^{N}\right)$. The following properties of this approximation can be found in [BF2], [BF3]:

LEMMA 2.1. a) We have as $\varepsilon \rightarrow 0$:
$u_{\delta} \rightharpoondown u$ in $W_{p}^{1}\left(B ; \mathbb{R}^{N}\right) ; \delta \int_{B}\left(1+\left|\nabla u_{\delta}\right|^{2}\right)^{\tilde{q} / 2} \mathrm{~d} x \rightarrow 0 ; \int_{B} F\left(\nabla u_{\delta}\right) \mathrm{d} x \rightarrow \int_{B} F(\nabla u) \mathrm{d} x$.
b) $\left\|u_{\delta}\right\|_{L^{\infty}(B)}$ is bounded independent of ε.
c) ∇u_{δ} is in the space $L_{\text {loc }}^{\infty} \cap W_{2, \text { loc }}^{1}\left(B ; \mathbb{R}^{n N}\right)$.

REMARK 2.1. a) We have to regularize with some exponent $\tilde{q}>q$ in order to deduce c) of Lemma 2.1 from the work [GM] of Giaquinta and Modica.
b) Part b) of Lemma 2.1 is the only place where the structural condition (1.7) enters. Any condition implying b) of the lemma could replace (1.7).

In [BF3] we proved:
LEMMA 2.2. a) (Caccioppoli-type inequality) For any $\eta \in C_{0}^{\infty}(B)$ and any $\gamma \in$ $\{1, \ldots, n\}$ we have

$$
\int_{B} \eta^{2} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\partial_{\gamma} \nabla u_{\delta}, \partial_{\gamma} \nabla u_{\delta}\right) \mathrm{d} x \leq c \int_{B} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\nabla \eta \otimes \partial_{\gamma} u_{\delta}, \nabla \eta \otimes \partial_{\gamma} u_{\delta}\right) \mathrm{d} x
$$

b) For any radius $\rho<R$ it holds

$$
\int_{B_{\rho}\left(x_{0}\right)}\left|\tilde{\nabla} u_{\delta}\right|^{p+2} \mathrm{~d} x+\int_{B_{\rho}\left(x_{0}\right)}\left|\partial_{n} u_{\delta}\right|^{q+2} \mathrm{~d} x \leq c(\rho)<\infty .
$$

In a) and b) the constants are uniform in ε.
Now we will make use of Lemma 2.2 to derive the following aulixiary result
LEMMA 2.3. Let $\tilde{\Psi}:=\left(1+|\tilde{\nabla} u|^{2}\right)^{p / 4}$ and $\Psi^{(n)}:=\left(1+\left|\partial_{n} u\right|^{2}\right)^{q / 4}$. Then we have $\tilde{\Psi}$, $\Psi^{(n)} \in W_{2, \mathrm{loc}}^{1}(\Omega)$, moreover, u belongs to the space $W_{2, \mathrm{loc}}^{2}\left(\Omega ; \mathbb{R}^{N}\right)$.

Proof. From Lemma 2.2 a) we get using the estimates (1.6) for $D^{2} f, D^{2} g$ (no summation w.r.t. $\gamma=1, \ldots, n)$

$$
\begin{aligned}
& \delta \int_{B} \eta^{2}\left(1+\left|\nabla u_{\delta}\right|^{2}\right)^{\frac{\tilde{q}-2}{2}}\left|\partial_{\gamma} \nabla u_{\delta}\right|^{2} \mathrm{~d} x \\
& \quad+\int_{B} \eta^{2}\left(1+\left|\tilde{\nabla} u_{\delta}\right|^{2}\right)^{\frac{p-2}{2}}\left|\partial_{\gamma} \tilde{\nabla} u_{\delta}\right|^{2} \mathrm{~d} x+\int_{B} \eta^{2}\left(1+\left|\partial_{n} u_{\delta}\right|^{2}\right)^{\frac{q-2}{2}}\left|\partial_{\gamma} \partial_{n} u_{\delta}\right|^{2} \mathrm{~d} x \\
& \quad \leq c\left[\delta \int_{B}|\nabla \eta|^{2}\left(1+\left|\nabla u_{\delta}\right|^{2}\right)^{\frac{\tilde{q}-2}{2}}\left|\partial_{\gamma} u_{\delta}\right|^{2} \mathrm{~d} x+\int_{B}|\nabla \eta|^{2}\left(1+\left|\tilde{\nabla} u_{\delta}\right|^{2}\right)^{\frac{p-2}{2}}\left|\partial_{\gamma} u_{\delta}\right|^{2} \mathrm{~d} x\right. \\
& \left.\quad+\int_{B}|\nabla \eta|^{2}\left(1+\left|\partial_{n} u_{\delta}\right|^{2}\right)^{\frac{q-2}{2}}\left|\partial_{\gamma} u_{\delta}\right|^{2} \mathrm{~d} x\right]
\end{aligned}
$$

η denoting a test function with support in B. With an obvious meaning of $\tilde{\Psi}_{\delta}$ and $\Psi_{\delta}^{(n)}$ the inequality from above gives

$$
\begin{align*}
& \int_{B}\left[\left|\nabla^{2} u_{\delta}\right|^{2}+\left|\nabla \tilde{\Psi}_{\delta}\right|^{2}+\left|\nabla \Psi_{\delta}^{(n)}\right|^{2}\right] \eta^{2} \mathrm{~d} x \\
& \leq c\left[\delta \int_{B}|\nabla \eta|^{2}\left(1+\left|\nabla u_{\delta}\right|^{2}\right)^{\tilde{q} / 2} \mathrm{~d} x+\int_{B}|\nabla \eta|^{2}\left(1+\left|\tilde{\nabla} u_{\delta}\right|^{2}\right)^{p / 2} \mathrm{~d} x\right. \\
&+\int_{B}|\nabla \eta|^{2}\left(1+\left|\partial_{n} u_{\delta}\right|^{2}\right)^{q / 2} \mathrm{~d} x+\int_{B}|\nabla \eta|^{2}\left(1+\left|\tilde{\nabla} u_{\delta}\right|^{2}\right)^{\frac{p-2}{2}}\left|\partial_{n} u_{\delta}\right|^{2} \mathrm{~d} x \\
&\left.+\int_{B}|\nabla \eta|^{2}\left(1+\left|\partial_{n} u_{\delta}\right|^{2}\right)^{\frac{q-2}{2}}\left|\tilde{\nabla} u_{\delta}\right|^{2} \mathrm{~d} x\right]=: c \sum_{i=1}^{5} T_{i} . \tag{2.1}
\end{align*}
$$

From Lemma 2.1 a) we deduce that T_{1}, T_{2}, T_{3} can be bounded independent of ε. Let us look at T_{4} : if $p=2$, then we are done. Otherwise we use Young's inequality and get

$$
\left(1+\left|\tilde{\nabla} u_{\delta}\right|^{2}\right)^{\frac{p-2}{2}}\left|\partial_{n} u_{\delta}\right|^{2} \leq c\left\{\left(1+\left|\tilde{\nabla} u_{\delta}\right|^{2}\right)^{\frac{p}{2}}+\left|\partial_{n} u_{\delta}\right|^{\frac{p}{2}}\right\},
$$

hence T_{4} is also bounded independent of ε. For discussing T_{5} we can also assume that $q>2$. Then

$$
\left(1+\left|\partial_{n} u_{\delta}\right|^{2}\right)^{\frac{q-2}{2}}\left|\tilde{\nabla} u_{\delta}\right|^{2} \leq c\left\{\left(1+\left|\partial_{n} u_{\delta}\right|^{2}\right)^{\frac{q+2}{2}}+\left|\tilde{\nabla} u_{\delta}\right|^{2^{\frac{q+2}{4}}}\right\},
$$

and the uniform boundedness of T_{5} is a consequence of Lemma 2.2 b) and our hypothesis (H3). Returning to (2.1) it is shown that

$$
\begin{equation*}
\int_{B_{\rho}}\left[\left|\nabla^{2} u_{\delta}\right|^{2}+\left|\nabla \tilde{\Psi}_{\delta}\right|^{2}+\left|\nabla \Psi_{\delta}^{(n)}\right|^{2}\right] \mathrm{d} x \leq c(\rho) \tag{2.2}
\end{equation*}
$$

for any ball $B_{\rho}=B_{\rho}\left(x_{0}\right), \rho<R$. This implies $u \in W_{2, \text { loc }}^{2}\left(\Omega ; \mathbb{R}^{N}\right)$ and for a subsequence

$$
\begin{equation*}
\nabla u_{\delta} \rightarrow \nabla u \text { in } L_{\mathrm{loc}}^{2}\left(B ; \mathbb{R}^{n N}\right) \text { and a.e. on } B \tag{2.3}
\end{equation*}
$$

At the same time (2.2) gives

$$
\begin{array}{lll}
\tilde{\Psi}_{\delta} \rightharpoondown: \tilde{\nu}, & \Psi_{\delta}^{(n)} \rightharpoondown: \nu^{(n)} & \text { in } W_{2, \text { loc }}^{1}(B), \\
\tilde{\Psi}_{\delta} \rightarrow \tilde{\nu}, & \Psi_{\delta}^{(n)} \rightarrow \nu^{(n)} & \text { a.e. on } B
\end{array}
$$

but with the pointwise convergence stated in (2.3) we must have $\tilde{\nu}=\tilde{\Psi}, \nu^{(n)}=\Psi^{(n)}$ which proves Lemma 2.3.

For later purposes we observe that Lemma 2.2 a) implies (summation w.r.t. $\gamma=1, \ldots$, n)

$$
\begin{equation*}
\int_{B} \eta^{2}\left[\left|\nabla^{2} u_{\delta}\right|^{2}+\left|\nabla \tilde{\Psi}_{\delta}\right|^{2}+\left|\nabla \Psi_{\delta}^{(n)}\right|^{2}\right] \mathrm{d} x \leq c \int_{B} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\nabla \eta \otimes \partial_{\gamma} u_{\delta}, \nabla \eta \otimes \partial_{\gamma} u_{\delta}\right) \mathrm{d} x \tag{2.4}
\end{equation*}
$$

and by lower semicontinuity it holds

$$
\begin{equation*}
\int_{B} \eta^{2}\left[\left|\nabla^{2} u\right|^{2}+|\nabla \tilde{\Psi}|^{2}+\left|\nabla \Psi^{(n)}\right|^{2}\right] \mathrm{d} x \leq \liminf _{\varepsilon \rightarrow 0}[\text { l.h.s. of }(2.4)] \tag{2.5}
\end{equation*}
$$

We have $\left(F^{(\tilde{q})}(Z):=\left(1+|Z|^{2}\right)^{\tilde{q} / 2}\right)$

$$
\begin{aligned}
& \text { r.h.s. of }(2.4)=c\left[\int_{B} \delta D^{2} F^{(\tilde{q})}\left(\nabla u_{\delta}\right)\left(\nabla \eta \otimes \partial_{\gamma} u_{\delta}, \nabla \eta \otimes \partial_{\gamma} u_{\delta}\right) \mathrm{d} x\right. \\
&\left.+\int_{B} D^{2} F\left(\nabla u_{\delta}\right)\left(\nabla \eta \otimes \partial_{\gamma} u_{\delta}, \nabla \eta \otimes \partial_{\gamma} u_{\delta}\right) \mathrm{d} x\right]
\end{aligned}
$$

and by Lemma 2.1 the first integral on the r.h.s. vanishes as $\varepsilon \rightarrow 0$, whereas (2.3) implies

$$
\omega_{\delta}:=D^{2} F\left(\nabla u_{\delta}\right)\left(\nabla \eta \otimes \partial_{\gamma} u_{\delta}, \nabla \eta \otimes \partial_{\gamma} u_{\delta}\right) \rightarrow \omega:=D^{2} F(\nabla u)\left(\nabla \eta \otimes \partial_{\gamma} u, \nabla \eta \otimes \partial_{\gamma} u\right)
$$

a.e. as $\varepsilon \rightarrow 0$. Note that on account of the integrability properties of $\tilde{\nabla} u, \partial_{n} u$ we know that $\int_{B} \omega \mathrm{~d} x<\infty$. We therefore get from (2.4), (2.5) together with the considerations from above the limit inequality

$$
\begin{equation*}
\int_{B} \eta^{2}\left[\left|\nabla^{2} u\right|^{2}+|\nabla \tilde{\Psi}|^{2}+\left|\nabla \Psi^{(n)}\right|^{2}\right] \mathrm{d} x \leq c \int_{B} D^{2} F(\nabla u)\left(\nabla \eta \otimes \partial_{\gamma} u, \nabla \eta \otimes \partial_{\gamma} u\right) \mathrm{d} x \tag{2.6}
\end{equation*}
$$

(again summation w.r.t. γ), provided we can show $\int_{B} \omega_{\delta}^{s} \mathrm{~d} x \leq$ const $<\infty$ for some exponent $s>1$, since then $\omega_{\delta} \rightarrow: \omega^{\prime}$ weakly in $L^{s}(B)$, hence $\int_{B} \omega_{\delta} \mathrm{d} x \rightarrow \int_{B} \omega^{\prime} \mathrm{d} x$, but $\omega=\omega^{\prime}$ on account of $\omega_{\delta} \rightarrow \omega$ a.e. By the structure of $D^{2} F$ we have

$$
\begin{aligned}
\omega_{\delta} \leq & c|\nabla \eta|^{2}\left[\left(1+\left|\tilde{\nabla} u_{\delta}\right|^{2}\right)^{p / 2}+\left(1+\left|\partial_{n} u_{\delta}\right|^{2}\right)^{q / 2}\right. \\
& \left.+\left(1+|\tilde{\nabla} u|^{2}\right)^{\frac{p-2}{2}}\left|\partial_{n} u_{\delta}\right|^{2}+\left(1+\left|\partial_{n} u_{\delta}\right|^{2}\right)^{\frac{q-2}{2}}\left|\tilde{\nabla} u_{\delta}\right|^{2}\right] \\
= & c|\nabla \eta|^{2} \sum_{i=1}^{4} S_{i},
\end{aligned}
$$

and from the uniform local integrability of $\left|\partial_{n} u_{\delta}\right|^{q+2}$ and $\left|\tilde{\nabla} u_{\delta}\right|^{p+2}$ it follows that

$$
\int_{B}\left(|\nabla \eta|^{2}\left[S_{1}+S_{2}+S_{3}\right]\right)^{s} \mathrm{~d} x \leq \text { const }<\infty
$$

for exponents $s>1$ close to 1 provided we replace (H3) by the stronger condition

$$
(H 3)^{\prime} \quad q<2 p+2:
$$

let us look for example at S_{4} assuming w.l.o.g. that $q>2$. Then

$$
\left(1+\left|\partial_{n} u_{\delta}\right|^{2}\right)^{\frac{s^{\frac{q-2}{2}}}{2}}\left|\tilde{\nabla} u_{\delta}\right|^{2 s} \leq c\left[\left(1+\left|\partial_{n} u_{\delta}\right|^{2}\right)^{\frac{q+2}{2}}+\left|\tilde{\nabla} u_{\delta}\right|^{2 s t}\right],
$$

where

$$
t:=\left(\frac{q+2}{s(q-2)}\right)^{\prime}=\frac{(q+2) / s(q-2)}{\frac{q+2}{s(q-2)}-1}=\frac{q+2}{q+2-s(q-2)} .
$$

Obviously $t=t(s) \rightarrow \frac{q+2}{4}$ as $s \downarrow 1$, hence $2 s t \rightarrow \frac{q+2}{2}$ as $s \downarrow 1$, and since $q<2 p+2$, it follows $2 s t \leq p+2$ at least for exponents s very close to 1 . This proves inequality (2.6).

In a similar way still assuming $(H 3)^{\prime}$ we obtain the following variant of (2.6) valid for arbitrary matrices $Q=\left(Q^{1}, \ldots, Q^{n}\right) \in \mathbb{R}^{n N}$ and for all $\eta \in C_{0}^{\infty}(B)$:

$$
\begin{equation*}
\int_{B} \eta^{2}\left[\left|\nabla^{2} u\right|^{2}+|\nabla \tilde{\Psi}|^{2}+\left|\nabla \Psi^{(n)}\right|^{2}\right] \mathrm{d} x \leq c \int_{B} D^{2} F(\nabla u)\left(\nabla \eta \otimes\left[\partial_{\gamma} u-Q^{\gamma}\right], \nabla \eta \otimes\left[\partial_{\gamma} u-Q^{\gamma}\right]\right) \mathrm{d} x . \tag{2.7}
\end{equation*}
$$

3 Proof of Theorem 1.1

We will apply a blow-up argument. To this purpose let us assume that the hypotheses of Theorem 1.1 are valid and define for balls $B_{r}(x) \Subset \Omega$ the excess function

$$
E(x, r):=f_{B_{r}(x)}\left|\nabla u-(\nabla u)_{x, r}\right|^{2} \mathrm{~d} y+f_{B_{r}(x)}\left|\nabla u-(\nabla u)_{x, r}\right|^{q} \mathrm{~d} y,
$$

where $(\cdot)_{x, r}$ and $f_{B_{r}(x)} \ldots \mathrm{d} y$ denote the mean value of a function w.r.t. to $B_{r}(x)$. Note that (H1) together with the higher integrability of $\tilde{\nabla} u$ implies that $E(x, r)$ is well-defined. The claim of Theorem 1.1 then is a consequence of the following

LEMMA 3.1. Fix $L>0$ and a subdomain $\Omega^{\prime} \Subset \Omega$. Then there is a constant $C_{*}(L)$ such that for every $\tau \in(0,1 / 4)$ one can find a number $\varepsilon=\varepsilon(L, \tau)$ with the following property: if $B_{r}(x) \Subset \Omega^{\prime}$ and if

$$
\begin{equation*}
\left|(\nabla u)_{x, r}\right| \leq L, \quad E(x, r) \leq \varepsilon, \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
E(x, \tau r) \leq C_{*}(L) \tau^{2} E(x, r) \tag{3.2}
\end{equation*}
$$

The proof of Lemma 3.1 originates in the works of Giusti and Miranda [GiuMi] and Evans [Ev], where it is also outlined how to deduce the desired partial regularity result from Lemma 3.1. A sketch of this routine procedure is also given in [Bi], Lemma 3.40. We divide the proof of Lemma 3.1 into several steps.

Step 1. Scaling Let us suppose that the claim of Lemma 3.1 is wrong. Assume further that a number $L>0$ is fixed, the corresponding constant $C_{*}(L)$ will be chosen in Step 2. Then, for some $\tau>0$, there is a sequence of balls $B_{r_{m}}\left(x_{m}\right) \Subset \Omega^{\prime}$ such that (compare (3.1) and (3.2))

$$
\begin{align*}
& \left|(\nabla u)_{x_{m}, r_{m}}\right| \leq L, E\left(x_{m}, r_{m}\right)=: \lambda_{m}^{2} \rightarrow 0, \quad \text { as } m \rightarrow \infty, \tag{3.3}\\
& E\left(x_{m}, \tau r_{m}\right)>C_{*} \tau^{2} \lambda_{m}^{2} \tag{3.4}
\end{align*}
$$

With $a_{m}:=(u)_{x_{m}, r_{m}}, A_{m}:=(\nabla u)_{x_{m}, r_{m}}$ we let

$$
u_{m}(z):=\frac{1}{\lambda_{m} r_{m}}\left[u\left(x_{m}+r_{m} z\right)-a_{m}-r_{m} A_{m} z\right], \quad z \in B_{1}:=B_{1}(0)
$$

and obtain from (3.3)

$$
\begin{equation*}
\left|A_{m}\right| \leq L, \quad f_{B_{1}}\left|\nabla u_{m}\right|^{2} \mathrm{~d} z+\lambda_{m}^{q-2} f_{B_{1}}\left|\nabla u_{m}\right|^{q} \mathrm{~d} z=1 \tag{3.5}
\end{equation*}
$$

whereas (3.4) implies

$$
\begin{equation*}
f_{B_{\tau}}\left|\nabla u_{m}-\left(\nabla u_{m}\right)_{0, \tau}\right|^{2} \mathrm{~d} z+\lambda_{m}^{q-2} f_{B_{\tau}}\left|\nabla u_{m}-\left(\nabla u_{m}\right)_{0, \tau}\right|^{q} \mathrm{~d} z>C_{*} \tau^{2} . \tag{3.6}
\end{equation*}
$$

Using (3.5) and passing to subsequences we find

$$
\begin{align*}
& A_{m} \rightarrow: A, \quad u_{m} \rightharpoondown: \bar{u} \quad \text { in } W_{2}^{1}\left(B_{1} ; \mathbb{R}^{N}\right), \quad(\bar{u})_{0,1}=0, \quad(\nabla \bar{u})_{0,1}=0, \tag{3.7}\\
& \lambda_{m} \nabla u_{m} \rightarrow 0 \quad \text { in } L^{2}\left(B_{1} ; \mathbb{R}^{n N}\right) \text { and a.e. on } B_{1}, \tag{3.8}\\
& \lambda_{m}^{1-2 / q} \tilde{\nabla} u_{m} \rightharpoondown 0 \text { in } L^{q}\left(B_{1} ; \mathbb{R}^{(n-1) N}\right), \tag{3.9}\\
& \lambda_{m}^{1-2 / q} \partial_{n} u_{m} \rightharpoondown 0 \text { in } L^{q}\left(B_{1} ; \mathbb{R}^{N}\right) . \tag{3.10}
\end{align*}
$$

Note that (3.5) first implies that the left-hand sides of (3.8)-(3.10) must have (weak) limits but these limits are equal to zero on account of $\nabla u_{m} \rightharpoondown \nabla \bar{u}$ in $L^{2}\left(B_{1} ; \mathbb{R}^{n N}\right)$. Note also that for (3.9) and (3.10) we clearly require $q>2$.

Step 2. Limit equation We claim the validity of

$$
\begin{equation*}
\int_{B_{1}} D^{2} F(A)(\nabla \bar{u}, \nabla \varphi) \mathrm{d} z=0 \quad \forall \varphi \in C_{0}^{\infty}\left(B_{1} ; \mathbb{R}^{N}\right) \tag{3.11}
\end{equation*}
$$

In fact, the local minimality of u implies after scaling the equation

$$
\int_{B_{1}} D F\left(A_{m}+\lambda_{m} \nabla u_{m}\right): \nabla \varphi \mathrm{d} z=0
$$

hence

$$
\int_{B_{1}} \frac{1}{\lambda_{m}}\left[D F\left(A_{m}+\lambda_{m} \nabla u_{m}\right)-D F\left(A_{m}\right)\right]: \nabla \varphi \mathrm{d} z=0
$$

or equivalently

$$
\int_{B_{1}} \int_{0}^{1} D^{2} F\left(A_{m}+s \lambda_{m} \nabla u_{m}\right)\left(\nabla u_{m}, \nabla \varphi\right) \mathrm{d} s \mathrm{~d} z=0
$$

Thus we arrive at

$$
\begin{align*}
& \int_{B_{1}} D^{2} F\left(A_{m}\right)\left(\nabla u_{m}, \nabla \varphi\right) \mathrm{d} z \\
& \quad=-\int_{B_{1}} \int_{0}^{1}\left[D^{2} F\left(A_{m}+s \lambda_{m} \nabla u_{m}\right)-D^{2} F\left(A_{m}\right)\right]\left(\nabla u_{m}, \nabla \varphi\right) \mathrm{d} s \mathrm{~d} z \tag{3.12}
\end{align*}
$$

By (3.7) the l.h.s. of (3.12) converges towards the l.h.s. of (3.11). We discuss the r.h.s. of (3.12): given $\varepsilon>0$, we can find $\delta=\delta(\varepsilon)$ such that

$$
\begin{equation*}
\int_{A}|\nabla \varphi|^{2} \mathrm{~d} z \leq \varepsilon \tag{3.13}
\end{equation*}
$$

whenever A is a measurable subset of B_{1} such that $\mathcal{L}^{n}(A) \leq \delta$. (3.8) implies the existence of a set $S \subset B_{1}$ with the properties $\mathcal{L}^{n}\left(B_{1}-S\right) \leq \delta(\varepsilon)$ and

$$
\begin{equation*}
\lambda_{m} \nabla u_{m} \rightrightarrows 0 \text { on } S \tag{3.14}
\end{equation*}
$$

(3.7) together with (3.14) then shows

$$
\begin{aligned}
& \left|\int_{S} \int_{0}^{1}\left[D^{2} F\left(A_{m}+s \lambda_{m} \nabla u_{m}\right)-D^{2} F\left(A_{m}\right)\right]\left(\nabla u_{m}, \nabla \varphi\right) \mathrm{d} s \mathrm{~d} z\right| \\
& \quad \leq \sup _{S \times[0,1]}|[\ldots]|\left(\int_{B_{1}}\left|\nabla u_{m}\right|^{2} \mathrm{~d} z\right)^{1 / 2}\left(\int_{B_{1}}|\nabla \varphi|^{2} \mathrm{~d} z\right)^{1 / 2} \\
& \quad \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
$$

On the other hand we observe

$$
\begin{aligned}
T: & \left|\int_{B_{1}-S} \int_{0}^{1}[\ldots]\left(\nabla u_{m}, \nabla \varphi\right) \mathrm{d} s \mathrm{~d} z\right| \\
\leq & c \int_{B_{1}-S} \int_{0}^{1}\left[\left(1+\left|A_{m}+s \lambda_{m} \nabla u_{m}\right|^{2}\right)^{\frac{q-2}{2}}+1\right]\left|\nabla u_{m}\right||\nabla \varphi| \mathrm{d} s \mathrm{~d} z \\
\leq & c \int_{B_{1}-S}\left[\left|\nabla u_{m}\right||\nabla \varphi|+\lambda^{q-2}\left|\nabla u_{m}\right|^{q-1}|\nabla \varphi|\right] \mathrm{d} z \\
\leq & c\left[\left(\int_{B_{1}}\left|\nabla u_{m}\right|^{2} \mathrm{~d} z\right)^{1 / 2}\left(\int_{B_{1}-S}|\nabla \varphi|^{2} \mathrm{~d} z\right)^{1 / 2}\right. \\
& \left.+\left(\int_{B_{1}} \lambda_{m}^{\frac{q}{q-1}(q-2)}\left|\nabla u_{m}\right|^{q} \mathrm{~d} z\right)^{1-1 / q}\left(\int_{B_{1}}|\nabla \varphi|^{q} \mathrm{~d} z\right)^{1 / q}\right] \leq \ldots
\end{aligned}
$$

$$
\begin{aligned}
\ldots(3.13) & c\left[\sqrt{\varepsilon}\left(\int_{B_{1}}\left|\nabla u_{m}\right|^{2} \mathrm{~d} z\right)^{1 / 2}\right. \\
& \left.+\left(\int_{B_{1}} \lambda_{m}^{\frac{q}{q-1}(q-2)}\left|\nabla u_{m}\right|^{q} \mathrm{~d} z\right)^{1-1 / q}\left(\int_{B_{1}}|\nabla \varphi|^{q} \mathrm{~d} z\right)^{1 / q}\right]
\end{aligned}
$$

and the λ_{m}-term vanishes on account of (3.9). This gives

$$
\limsup _{m \rightarrow \infty} T \leq c \sqrt{\varepsilon}
$$

Altogether it is shown that

$$
\limsup _{m \rightarrow \infty} \mid \text { r.h.s. of }(3.12) \mid \leq c \sqrt{\varepsilon},
$$

and since ε is arbitrary, the limit equation (3.11) follows. Since (3.11) is an elliptic system with constant coefficients and ellipticity constants just depending on L (and p, q) we have according to [Gi2] the Campanato-estimate

$$
\begin{equation*}
f_{B_{\tau}}\left|\nabla \bar{u}-(\nabla \bar{u})_{0, \tau}\right|^{2} \mathrm{~d} z \leq C^{*} \tau^{2} f_{B_{1}}\left|\nabla \bar{u}-(\nabla u)_{0,1}\right|^{2} \mathrm{~d} z \tag{3.15}
\end{equation*}
$$

with $C^{*}=C^{*}(L)$. Note that $(\nabla u)_{0,1}=0$, moreover, $f_{B_{1}}\left|\nabla u_{m}\right|^{2} \mathrm{~d} z \leq 1$ (recall (3.5)) implies $f_{B_{1}}|\nabla \bar{u}|^{2} \mathrm{~d} z \leq 1$, hence (3.15) gives

$$
\begin{equation*}
f_{B_{\tau}}\left|\nabla \bar{u}-(\nabla \bar{u})_{0, \tau}\right|^{2} \mathrm{~d} z \leq C^{*} \tau^{2} \tag{3.16}
\end{equation*}
$$

So if we let $C_{*}:=2 C^{*}$, then (3.16) is in contradiction to (3.6) provided we can show in addition to (3.7), (3.9) and (3.10) that

$$
\begin{align*}
\nabla u_{m} \rightarrow \nabla \bar{u} & \text { in } L_{\mathrm{loc}}^{2}\left(B_{1} ; \mathbb{R}^{n N}\right), \tag{3.17}\\
\lambda_{m}^{1-2 / q} \tilde{\nabla} u_{m} \rightarrow 0 & \text { in } L_{\mathrm{loc}}^{q}\left(B_{1} ; \mathbb{R}^{(n-1) N}\right), \tag{3.18}\\
\lambda_{m}^{1-2 / q} \partial_{n} u_{m} \rightarrow 0 & \text { in } L_{\mathrm{loc}}^{q}\left(B_{1} ; \mathbb{R}^{N}\right) \tag{3.19}
\end{align*}
$$

are valid.
Step 3. Proof of (3.17)-(3.19) Let

$$
\begin{aligned}
\tilde{\Psi}_{m}(z) & :=\lambda_{m}^{-1}\left[\left(1+\left|\tilde{A}_{m}+\lambda_{m} \tilde{\nabla} u_{m}\right|^{2}\right)^{\frac{p}{4}}-\left(1+\left|\tilde{A}_{m}\right|^{2}\right)^{\frac{p}{4}}\right], \\
\Psi_{m}^{(n)}(z) & :=\lambda_{m}^{-1}\left[\left(1+\left|A_{m}^{(n)}+\lambda_{m} \partial_{n} u_{m}\right|^{2}\right)^{\frac{q}{4}}-\left(1+\left|A_{m}^{(n)}\right|^{2}\right)^{\frac{q}{4}}\right]
\end{aligned}
$$

for $z \in B_{1}$. We have

$$
\begin{aligned}
\nabla^{2} u_{m}(z) & =r_{m} \lambda_{m}^{-1} \nabla^{2} u\left(x_{m}+r_{m} z\right) \\
\nabla \tilde{\Psi}_{m}(z) & =r_{m} \lambda_{m}^{-1} \nabla \tilde{\Psi}\left(x_{m}+r_{m} z\right) \\
\nabla \Psi_{m}^{(n)}(z) & =r_{m} \lambda_{m}^{-1} \nabla \Psi^{(n)}\left(x_{m}+r_{m} z\right)
\end{aligned}
$$

and if we choose $\eta \in C_{0}^{\infty}\left(B_{1}\right)$ we deduce from (2.7) (by letting $Q:=A_{m}$) the inequality

$$
\begin{align*}
& \int_{B_{1}} \eta^{2}\left[\left|\nabla^{2} u_{m}\right|^{2}+\left|\nabla \tilde{\Psi}_{m}\right|^{2}+\left|\nabla \Psi_{m}^{(n)}\right|^{2}\right] \mathrm{d} z \\
& \quad \leq c \int_{B_{1}} D^{2} F\left(\lambda_{m} \nabla u_{m}+A_{m}\right)\left(\nabla \eta \otimes \partial_{\gamma} u_{m}, \nabla \eta \otimes \partial_{\gamma} u_{m}\right) \mathrm{d} z \tag{3.20}
\end{align*}
$$

Suppose now that $\eta=1$ on B_{ρ}, spt $\eta \subset B_{r}$ for some $r \in(\rho, 1)$ and $0 \leq \eta \leq 1$. From (3.20) we then obtain

$$
\begin{equation*}
\int_{B_{\rho}}\left[\left|\nabla^{2} u_{m}\right|^{2}+\left|\nabla \tilde{\Psi}_{m}\right|^{2}+\left|\nabla \Psi_{m}^{(n)}\right|^{2}\right] \mathrm{d} z \leq c(\rho)<\infty \tag{3.21}
\end{equation*}
$$

with $c(\rho)$ being independent of m provided the r.h.s. of (3.20) can be bounded in an appropriate way: according to the structure of $D^{2} F$ we have

$$
\left|D^{2} F\left(\lambda_{m} \nabla u_{m}+A_{m}\right)\right| \leq c\left(1+\lambda_{m}^{q-2}\left|\nabla u_{m}\right|^{q-2}\right),
$$

hence

$$
\mid \text { r.h.s. of }(3.20) \mid \leq c(r-\rho)^{-2}\left[\int_{B_{r}}\left|\nabla u_{m}\right|^{2} \mathrm{~d} z+\lambda_{m}^{q-2} \int_{B_{r}}\left|\nabla u_{m}\right|^{q} \mathrm{~d} z\right]
$$

and if we use (3.5), inequality (3.21) follows, and the local strong convergence (3.17) is immediate.

To prove (3.19) we fix $\rho \in(0,1)$, a number $M \gg 1$ and let $U_{m}:=U_{m}(M, \rho):=$ $B_{\rho} \cap\left[\lambda_{m}\left|\partial_{n} u_{m}\right| \leq M\right]$. Then we get from (3.17) and the smoothness of \bar{u}

$$
\begin{aligned}
\int_{U_{m}} \lambda_{m}^{q-2}\left|\partial_{n} u_{m}\right|^{q} \mathrm{~d} z \leq & c\left[\lambda_{m}^{q-2} \int_{U_{m}}\left|\partial_{n} u_{m}-\partial_{n} \bar{u}\right|^{q} \mathrm{~d} z+\lambda_{m}^{q-2} \int_{U_{m}}\left|\partial_{n} \bar{u}\right|^{q} \mathrm{~d} z\right] \\
\leq & c\left[\lambda_{m}^{q-2} \int_{U_{m}}\left(\left|\partial_{n} u_{m}\right|^{q-2}+\left|\partial_{n} \bar{u}\right|^{q-2}\right)\left|\partial_{n} u_{m}-\partial_{n} \bar{u}\right|^{2} \mathrm{~d} z\right. \\
& \left.+\lambda_{m}^{q-2} \int_{U_{m}}\left|\partial_{n} \bar{u}\right|^{q} \mathrm{~d} z\right] \rightarrow 0
\end{aligned}
$$

as $m \rightarrow \infty$. On the other hand, for M large enough and for $z \in B_{\rho}-U_{m}$ it holds

$$
\left|\Psi_{m}^{(n)}(z)\right| \geq c \lambda_{m}^{-1} \lambda_{m}^{\frac{q}{2}}\left|\partial_{n} u_{m}(z)\right|^{\frac{q}{2}}
$$

i.e.

$$
\lambda_{m}^{q-2}\left|\partial_{n} u_{m}(z)\right|^{q} \leq c \Psi_{m}^{(n)}(z)^{2}
$$

Thus (3.21) gives by Sobolev's embedding theorem

$$
\begin{aligned}
\int_{B_{\rho}-U_{m}} \lambda_{m}^{q-2}\left|\partial_{n} u_{m}\right|^{q} \mathrm{~d} z & \leq c \int_{B_{\rho}-U_{m}} \Psi_{m}^{(n)}(z)^{2} \mathrm{~d} z \\
& \leq c\left(\int_{B_{\rho}}\left|\Psi_{m}^{(n)}(z)\right|^{\frac{2 n}{n-2}} \mathrm{~d} z\right)^{1-\frac{2}{n}}\left|B_{\rho}-U_{m}\right|^{2 / n} \rightarrow 0
\end{aligned}
$$

as $m \rightarrow \infty$, since $\left|B_{\rho}-U_{m}\right| \rightarrow 0$ on account of (3.8), and we have established (3.19). Note that our calculation used the fact that actually

$$
\left\|\Psi_{m}^{(n)}\right\|_{W_{2}^{1}\left(B_{\rho}\right)} \leq c(\rho)
$$

for all $\rho<1$. The bound for $\left\|\Psi_{m}^{(n)}\right\|_{L^{2}\left(B_{\rho}\right)}$ follows from the definition of $\Psi_{m}^{(n)}$ together with (3.5).

Up to now we have not used our assumption (H2). This hypothesis is needed for the proof of (3.18): let $\tilde{U}_{m}:=B_{\rho} \cap\left[\lambda_{m}\left|\tilde{\nabla} u_{m}\right| \leq M\right]$. Then as above we get

$$
\int_{\tilde{U}_{m}} \lambda_{m}^{q-2}\left|\tilde{\nabla} u_{m}\right|^{q} \mathrm{~d} z \rightarrow 0
$$

as $m \rightarrow \infty$. On the set $B_{\rho}-\tilde{U}_{m}$ we estimate

$$
\left|\tilde{\Psi}_{m}(z)\right| \geq c \lambda_{m}^{-1} \lambda_{m}^{\frac{p}{2}}\left|\tilde{\nabla} u_{m}(z)\right|^{\frac{p}{2}}
$$

i.e.

$$
\lambda_{m}^{q-2}\left|\tilde{\nabla} u_{m}(z)\right|^{q} \leq c \lambda_{m}^{2 \frac{q}{p}-2}\left|\tilde{\Psi}_{m}(z)\right|^{2 \frac{q}{p}} .
$$

If $q=p$, then we combine (3.21) with Sobolev's inequality (note that also $\left\|\tilde{\Psi}_{m}\right\|_{L^{2}\left(B_{\rho}\right)} \leq$ $c(\rho) \forall \rho<1)$ to see

$$
\begin{aligned}
\int_{B_{\rho}-\tilde{U}_{m}} \lambda_{m}^{q-2}\left|\tilde{\nabla} u_{m}(z)\right|^{q} \mathrm{~d} z & \leq c \int_{B_{\rho}-\tilde{U}_{m}}\left|\tilde{\Psi}_{m}(z)\right|^{2} \mathrm{~d} z \\
& \leq c\left(\int_{B_{\rho}-\tilde{U}_{m}}\left|\tilde{\Psi}_{m}\right|^{2 \frac{n}{n-2}} \mathrm{~d} z\right)^{1-\frac{2}{n}}\left|B_{\rho}-\tilde{U}_{m}\right|^{2 / n} \rightarrow 0
\end{aligned}
$$

as $m \rightarrow \infty$ (recall (3.8)). If $q>p$, then $\lambda_{m}^{2 \frac{q}{p}-2} \rightarrow 0$, and the claim (3.18) follows provided that $2 \frac{q}{p} \leq 2 \frac{n}{n-2}$ which is a consequence of (H2).

In order to complete our proof we have to show that

$$
\begin{equation*}
\int_{B_{\rho}}\left|\tilde{\Psi}_{m}\right|^{2} \mathrm{~d} z \leq c(\rho) \quad \forall \rho<1 \tag{3.22}
\end{equation*}
$$

which by the definition of $\tilde{\Psi}_{m}$ will follow from

$$
\begin{equation*}
\int_{B_{\rho}} \lambda_{m}^{p-2}\left|\tilde{\nabla} u_{m}\right|^{2} \mathrm{~d} z \leq c(\rho) \tag{3.23}
\end{equation*}
$$

Let $\eta \in C_{0}^{\infty}\left(B_{1}\right)$. Then we have that

$$
\int_{B_{1}} D F\left(A+\lambda_{m} \nabla u_{m}\right): \nabla\left(\eta^{2}\left[u_{m}-\bar{u}\right]\right) \mathrm{d} z=0
$$

i.e.

$$
\begin{aligned}
0= & \int_{B_{1}} \frac{1}{\lambda_{m}}\left[D F\left(\lambda_{m} \nabla u_{m}+A_{m}\right)-D F\left(A_{m}+\lambda_{m} \nabla \bar{u}\right)\right]: \nabla\left(\eta^{2}\left[u_{m}-\bar{u}\right]\right) \mathrm{d} z \\
& +\int_{B_{1}} \frac{1}{\lambda_{m}}\left[D F\left(A_{m}+\lambda_{m} \nabla \bar{u}\right)-D F\left(A_{m}\right)\right]: \nabla\left(\eta^{2}\left[u_{m}-\bar{u}\right]\right) \mathrm{d} z \\
= & T_{m}^{1}+T_{m}^{2} .
\end{aligned}
$$

Observing

$$
\begin{aligned}
\frac{1}{\lambda_{m}}\left[D F\left(A_{m}+\lambda_{m} \nabla \bar{u}\right)-D F\left(A_{m}\right)\right] & =\int_{0}^{1} D^{2} F\left(A_{m}+s \lambda_{m} \nabla \bar{u}\right)(\nabla \bar{u}, \cdot) \\
& \rightarrow D^{2} f(A)(\nabla \bar{u}, \cdot)
\end{aligned}
$$

uniformly on $\operatorname{spt} \eta$ and recalling (3.17) we get

$$
\begin{equation*}
\lim _{m \rightarrow \infty} T_{m}^{2}=0 \tag{3.24}
\end{equation*}
$$

(3.24) implies $\lim _{m \rightarrow \infty} T_{m}^{1}=0$ or equivalently

$$
\begin{align*}
0= & \lim _{m \rightarrow \infty}\left[\int_{B_{1}} \int_{0}^{1} D^{2} F\left(A_{m}+\lambda_{m} \nabla \bar{u}+s \lambda_{m}\left(\nabla u_{m}-\nabla \bar{u}\right)\right)\right. \\
& \quad\left(\nabla u_{m}-\nabla \bar{u}, \nabla u_{m}-\nabla \bar{u}\right) \eta^{2} \mathrm{~d} s \mathrm{~d} z \\
& \left.+\int_{B_{1}} \int_{0}^{1} D^{2} F(\ldots)\left(\nabla u_{m}-\nabla \bar{u}, \nabla \eta \otimes\left(u_{m}-\bar{u}\right)\right) 2 \eta \mathrm{~d} s \mathrm{~d} z\right] . \tag{3.25}
\end{align*}
$$

If we apply the Cauchy-Schwarz and Young's inequality in the second integral of (3.25) we see that for any $\varepsilon>0$

$$
\begin{aligned}
{[\ldots] \geq } & (1-\varepsilon) \int_{B_{1}} \int_{0}^{1} D^{2} F(\ldots)\left(\nabla u_{m}-\nabla \bar{u}, \nabla u_{m}-\nabla \bar{u}\right) \eta^{2} \mathrm{~d} s \mathrm{~d} z \\
& -c(\varepsilon) \int_{B_{1}} \int_{0}^{1} D^{2} F(\ldots)\left(\nabla \eta \otimes\left(u_{m}-\bar{u}\right), \nabla \eta \otimes\left(u_{m}-\bar{u}\right)\right) \mathrm{d} s \mathrm{~d} z
\end{aligned}
$$

therefore (3.25) will give

$$
\begin{equation*}
0=\lim _{m \rightarrow \infty} \int_{B_{1}} \int_{0}^{1} D^{2} F(\ldots)\left(\nabla u_{m}-\nabla \bar{u}, \nabla u_{m}-\nabla \bar{u}\right) \eta^{2} \mathrm{~d} s \mathrm{~d} z \tag{3.26}
\end{equation*}
$$

as soon as we can show

$$
\begin{equation*}
0=\lim _{m \rightarrow \infty} \int_{B_{1}} \int_{0}^{1} D^{2} F(\ldots)\left(\nabla \eta \otimes\left(u_{m}-\bar{u}\right), \nabla \eta \otimes\left(u_{m}-\bar{u}\right)\right) \mathrm{d} s \mathrm{~d} z \tag{3.27}
\end{equation*}
$$

Note that (3.26) combined with the structure of $D^{2} F$ will justify (3.23) and hence (3.22). Thus it remains to show (3.27). We have

$$
\left|D^{2} F(\ldots)\right| \leq c\left(1+|\ldots|^{2}\right)^{\frac{q-2}{2}} \leq c\left(1+\lambda_{m}^{q-2}\left|\nabla u_{m}\right|^{q-2}\right)
$$

and therefore

$$
\begin{aligned}
& \left|\int_{B_{1}} \int_{0}^{1} D^{2} F(\ldots)\left(\nabla \eta \otimes\left(u_{m}-\bar{u}\right), \nabla \eta \otimes\left(u_{m}-\bar{u}\right)\right) \mathrm{d} s \mathrm{~d} z\right| \\
& \quad \leq c\|\nabla \eta\|_{L^{\infty}\left(B_{1}\right)}^{2} \int_{\operatorname{spt} \eta}\left[\left|u_{m}-\bar{u}\right|^{2}+\lambda_{m}^{q-2}\left|\nabla u_{m}\right|^{q-2}\left|u_{m}-\bar{u}\right|^{2}\right] \mathrm{d} z
\end{aligned}
$$

which leads to the discussion of

$$
\int_{\operatorname{spt} \eta} \lambda_{m}^{q-2}\left|\nabla u_{m}\right|^{q-2}\left|u_{m}-\bar{u}\right|^{2} \mathrm{~d} z=: \xi_{m}
$$

Hölders's inequality gives

$$
\xi_{m} \leq\left(\int_{B_{1}} \lambda_{m}^{q-2}\left|\nabla u_{m}\right|^{q} \mathrm{~d} z\right)^{1-2 / q}\left(\int_{\mathrm{spt} \eta} \lambda_{m}^{q-2}\left|u_{m}-\bar{u}\right|^{q} \mathrm{~d} z\right)^{2 / q}
$$

the first integral being bounded by (3.5). If $q=2$, then the second integral vanishes as $m \rightarrow \infty$. If $q>2$, then the same is true if we can show that

$$
\begin{equation*}
v_{m}:=\lambda_{m}^{1-2 / q} u_{m} \rightarrow 0 \quad \text { in } L^{q}\left(B_{1} ; \mathbb{R}^{N}\right) \tag{3.28}
\end{equation*}
$$

To this purpose we observe that $\left(v_{m}\right)_{0,1}=0$ so that (3.5) in combination with Poincaré's inequality implies $\sup _{m}\left\|v_{m}\right\|_{W_{q}^{1}\left(B_{1}\right)}<\infty$, hence $v_{m} \rightarrow: \bar{v}$ in $W_{q}^{1}\left(B_{1} ; \mathbb{R}^{N}\right)$ and $v_{m} \rightarrow \bar{v}$ in $L^{q}\left(B_{1} ; \mathbb{R}^{N}\right)$. (3.9) and (3.10) give $\nabla \bar{v}=0$, and since $(\bar{v})_{0,1}=0$, we must have (3.28). Note that with (3.26) we actually have shown that (3.23) can be replaced by $\lambda_{m}^{1-2 / p} \tilde{\nabla} u_{m} \rightarrow 0$ in $L_{\mathrm{loc}}^{p}\left(B_{1} ; \mathbb{R}^{(n-1) N}\right)$. Altogether the proof of Theorem 1.1 is complete.

REMARK 3.1. In order to prove Theorem 1.1 under less restrictive assumptions concerning p and q we could try to replace the excess function $E(x, r)$ by the more natural one

$$
\begin{aligned}
\tilde{E}(x, r):= & f_{B_{r}(x)}\left|\nabla u-(\nabla u)_{x, r}\right|^{2} \mathrm{~d} y+f_{B_{r}(x)}\left|\tilde{\nabla} u-(\tilde{\nabla} u)_{x, r}\right|^{p} \mathrm{~d} y \\
& +f_{B_{r}(x)}\left|\partial_{n} u-\left(\partial_{n} u\right)_{x, r}\right|^{q} \mathrm{~d} y .
\end{aligned}
$$

But in this new setting we could not verify estimate (3.21) with the help of (3.20) since it is not obvious how to bound the right-hand side of (3.20) using the equation $f_{B_{1}}\left|\nabla u_{m}\right|^{2} \mathrm{~d} z+$ $\lambda_{m}^{p-2} f_{B_{1}}\left|\tilde{\nabla} u_{m}\right|^{p} \mathrm{~d} z+\lambda_{m}^{q-2} f_{B_{1}}\left|\partial_{n} u_{m}\right|^{q} \mathrm{~d} z=1$ which now replaces (3.5).

References

[Ad] Adams, R. A., Sobolev spaces. Academic Press, New York-San Francisco-London 1975.
[AF] Acerbi, E., Fusco, N., Partial regularity under anisotropic (p, q) growth conditions. J. Diff. Equ. 107, no. 1 (1994), 46-67.
[Bi] Bildhauer, M., Convex variational problems: linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg-New York, 2003.
[BF1] Bildhauer, M., Fuchs, M., Partial regularity for variational integrals with (s, μ, q)-growth. Calc. Var. 13 (2001), 537-560.
[BF2] Bildhauer, M., Fuchs, M., Partial regularity for a class of anisotropic variational integrals with convex hull property. Asymp. Analysis 32 (2002), 293-315.
[BF3] Bildhauer, M., Fuchs, M., Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals. to appear in Manus. Math.
[BFZ] Bildhauer, M., Fuchs, M., Zhong, X., A regularity theory for scalar local minimizers of splitting type variational integrals. to appear in Ann. S.N.S. Pisa.
[DLM] D'Ottavio, A., Leonetti, F., Musciano, C., Maximum principle for vector valued mappings minimizing variational integrals. Atti Sem. Mat. Fis. Uni. Modena XLVI (1998), 677-683.
[Ev] Evans, L.C., Quasiconvexity and partial regularity in the calculus of variations. Arch. Rat. Mech. Anal. 95 (1986), 227-252.
[ELM] Esposito, L., Leonetti, F., Mingione, G., Regularity for minimizers of functionals with p-q growth. Nonlinear Diff. Equ. Appl. (6) (1999), 133-148.
[Gi1] Giaquinta, M., Growth conditions and regularity, a counterexample. Manus. Math. 59 (1987), 245-248.
[Gi2] Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Studies 105, Princeton University Press, Princeton 1983.
[GM] Giaquinta, M., Modica, G., Remarks on the regularity of the minimizers of certain degenerate functionals. Manus. Math. 57 (1986), 55-99.
[GiuMi] Giusti, E., Miranda, M., Sulla regolarità delle soluzioni deboli di una classe di sistemi ellitici quasi-lineari. Arch. Rat. Mech. Anal. 31 (1968), 173-184.
[Ho] Hong, M.C., Some remarks on the minimizers of variational integrals with non standard growth conditions. Boll. U.M.I. (7) 6-A (1992), 91-101.
[PS] Passarelli Di Napoli, A., Siepe, F., A regularity result for a class of anisotropic systems. Rend. Ist. Mat. Univ. Trieste 28, no. 1-2 (1996), 13-31.

[^0]: AMS Subject Classification: 49 N 60
 Keywords: anisotropic energies, vector-valued problems, local minimizers, splitting functionals, partial regularity

