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Abstract

In this article, we present a technique for region-based pose track-
ing that uses a surface model of the object to be tracked and at least
one calibrated camera view. The proposed algorithm can follow the
movement of rigid objects or kinematic chains without explicitly com-
puting contours in the image. The aim to match the model surface
to the contour of the object seen in the image is achieved by optimiz-
ing an energy with respect to the pose parameters. We explain how
kinematic chains can be included, and how using knowledge from the
previous frame can help to track objects that move with a high speed
or accelerate strongly. We present experimental results for complex
scenes observed with one, two, or four cameras.
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1 Introduction

This article deals with 2-D-3-D pose tracking, which is the task to pursuit
the 3-D position and orientation of a known 3-D object model from a 2-D
image data stream [1]. Pose tracking is important in several applications,
e.g. self localization and object grasping in robotics, or camera calibration.
Although more than 25 years have passed since the initial work of Lowe
[2], pose tracking is still a challenging problem. This is particularly true
in scenes with cluttered backgrounds, partial occlusions, noise, or changing
illumination.

A problem similar to pose tracking is pose estimation. The difference is that
there is usually no initial pose given in pose estimation, but only a single pose
must be estimated. In this article, we will concentrate on pose tracking and
not on pose estimation. Thus, the problem to find the necessary approximate
model pose for the first frame is not discussed.

A lot of different approaches for pose tracking have been considered [3]. A
common idea is to use feature matching for tracking. Such features range
from points [4] over lines [5] to more complex features such as vertices, t-
junctions, cusps, three-tangent junctions, limb and edge injections, and cur-
vature L-junctions [6]. Drummond and Cipolla used edge-detection to achieve
real-time tracking of articulated objects with an iterative algorithm [7]. In
[8], Pressigout and Marchand combined two tracking algorithms that use
edges and texture information, respectively, to achieve improved results.

In [9], Agarwal and Triggs describe learning-based methods that use regres-
sion for human pose tracking. Other learning-based approaches have been
introduced by Taycher et al. [10], in which an undirected conditional ran-
dom field is used, and by Sminchisescu et al. [11], in which generative models
and recognition methods are combined. Moreover, methods that use neural
networks [12| have been introduced.

Another possible approach to pose tracking is to match a surface model of
the tracked object to the object region seen in the images. In doing so, the
computation of this region yields a typical segmentation problem. Since the
segmentation results have to fit to the model to be tracked, it makes sense to
use prior knowledge about the shape of the region to be segmented, either by
incorporating 2-D [13] or full 3-D information [14]. It has been suggested to
optimize a coupled formulation of both problems and to solve simultaneously
for both the contour and the pose parameters via iterative approaches in level
sets [14] or graph cuts [15]. Although the coupled estimation of contours and
pose parameters is beneficial compared to the uncoupled case, segmentation
results are not always accurate, as shown in Figure 1.

The basic idea to our region based pose tracking algorithm has been in-



Figure 1: Examples for problems that can occur in variational segmentation
algorithms: Left: A part of the segmentation is concave although the object
to be tracked is convex, and an undesired split up into several connected
components. Right: The handle is not accurately segmented due to over-
smoothing. Furthermore, holes generated in the segmentation are not always
correct. From [16].

troduced in a recent conference paper [16]. For the algorithm explained in
this article, we utilize the statistical representation of regions described in
[14]. We also use the point based pose estimation algorithm from that ar-
ticle. However, instead of separately estimating 2-D segmentation and 3-D
pose parameters we directly estimate 3-D pose parameters by minimizing the
projection error in the respective 2-D images. Thus, the segmentations ob-
tained with our algorithm are by construction consistent with the 3-D pose.
Since we only need to estimate a small number of pose parameters instead
of an infinite-dimensional level set function, the runtime of the algorithm
significantly decreases compared to the algorithm described in [14]. As a
consequence, the proposed algorithm achieves nearly real-time performance
for some scenes.

In addition to a more detailed description of the algorithm, the present pa-
per extends [16] in several ways without loosing the advantages explained
before. For example, the algorithm is extended from rigid objects to kine-
matic chains. Furthermore, it can now handle much faster accelerations due
to the fact that we reuse knowledge from the previous frame.

Our paper is organized as follows: In the following section, we briefly review
the basics of pose estimation from 2-D-3-D point correspondences. After
that, our basic approach is described in Section 3, followed by several of
extensions of the basic algorithm in Section 4. Experimental results are
presented in Section 5. Section 6 concludes with a summary.



2 Pose Estimation from 2-D—3-D Point Corre-
spondences

In order to understand the region-based pose tracking approach explained in
Section 3, it is helpful to understand the point-based pose tracking approach
introduced in [14]. Thus, we will explain this approach after introducing the
necessary mathematical concepts.

2.1 Rigid Motion and Twists

An isomorphism that preserves orientation as well as distances is called rigid
motion. Such isomorphisms are of interest to us, since a rigid body can only
perform a rigid motion. Using a translation vector ¢ € R® and a rotation
matrix R € SO(3) with SO(3) := {R € R¥>® : det(R) = 1}, any rigid
body motion in 3-D can be represented as m(z) := Rz +t. When using
homogeneous coordinates, it is also possible to write m as a 4 X 4 matrix M:

m((xla T2, x3)T) :M(xl, T2, T3, 1)T

R3ys  l3x1
= < Ors 1 ) T . (1)
The set containing all matrices of this form is the so-called Lie group SE(3).
To every Lie group there is an associated Lie algebra, whose underlying vector
space is the tangent space of the Lie group evaluated at the origin. The Lie
algebras associated with SO(3) and SE(3) are so(3) := {A € R¥3|AT =
—A}, and se(3) := {(v,w)|v € R®,w € s0(3)}, respectively. The elements of
se(3) are called twists. Elements of a Lie group can be converted to elements
of the corresponding Lie algebra, and vice versa. In particular, a rigid motion
can be written as a twist. Since a rigid motion given as element of SE(3) has
twelve parameters while a twist has six, it makes sense to prefer estimating
twists instead of rigid motions. Of course, a rigid motion has always six
degrees of freedom independent of its representation.
Since elements of so(3) and se(3) can be written either as vectors w =
(w1, wa,w3), & = (w1, ws, ws, V1, V9, V3) Or as matrices

0 —Wws3 Wa
w=| wg 0 —w € so(3) , (2)
—Wo w1 0
2 w v
(20 € se(3), ®)



Figure 2: Identifiers used in the proof that the distance between a point x
and a Pliicker line L = (n,m) is given by ||z x n —m]|.

we distinguish these two ways of representing elements by a hat sign. Thus,
the matrix £ and the vector é are always two different representations of the
same element. Note that a twist £ can be converted to an element of the Lie
group M € SE(3) by the exponential function exp(€) = M. Computing the
exponential of a matrix is often difficult and time consuming. However, the
exponential of twists can be computed efficiently with the Rodriguez formula.

More details can be found in [17].

2.2 Pliucker forms

As explained before we use lines passing through image points and through
the optical center of a camera. Such 3-D lines can be represented in different
ways. Here, we will use the Pliicker form [18] to represent lines.

A line in Pliicker form L = (n,m) is given by a normalized vector n (pointing
in the direction of the line) and a momentum m := z’ x n for a point 2’ on
the line.

The distance of a point = to a line L = (n,m) given in Pliicker form can
easily be computed as ||z x n — m||. To understand this, we write z as sum
of 2/, a vector x1 = An parallel to n and a vector z, perpendicular to n, i.e.
x =1’ + x1 + x2 (see Figure 2). Then, we have

|z x n—ml| = ||(z' + An + z2) X n—m)||
=z’ xn4+An X n+xe X n—ml| (4)
—— —_——
=m =0 =9
= [l2]| -
This equation also shows that z € L is equivalent to ||z x n — m|| = 0.

By repeating this calculation with zo = 0 and without taking the absolute
values, we see that the momentum is independent of the choice of 2’ € L.



2.3 Pose Estimation with 2-D—3-D Point Correspondences

Let (g,x) be a 2-D-3-D point correspondence, i.e. let z € R* be a point
in homogeneous coordinates on the 3-D silhouette of the object model and
q € R? its position in an image. Furthermore, let L = (n,m) be the Pliicker
line through ¢ and the respective camera origin. In [14], such point corre-
spondences are obtained using segmentation followed by a matching step.
The details are omitted here since we will use a completely different method
to obtain point correspondences, as will be explained in Section 3.

In order to track the object, we need to find a twist £ that maps the points

A

exp(&)x; as close as possible to the corresponding Pliicker lines L;:

arg mEin XZ: '

where the function -3,; : R* — R3 removes the last entry, which is 1. This
results in a system of equations that is hard to solve due to the exponential
function. However, since the twist £ corresponds to the pose change it is
rather “small”. Thus, we can linearize the exponential function by the first
order Taylor expansion

(exv() ., x| 5)

3x1

|M>

k ~
!zI—i—f (6)

x>

exp(§) = )

with an identity matrix /I without introducing a large error. Then, we get

I ‘) z; X Ty — My
argmgm % ‘ (exp (f) x )3><1 ng—m
~ i I+ A) Z) X n; —m;
argmgn EZ H(( &) g ST

By evaluating the cross product, we get three linear equations of rank two
for each correspondence (g;, ;). Thus, three correspondences are sufficient to
obtain a unique solution of the six parameters in the twist. However, there
are typically several hundred point correspondences. Thus, one obtains a
least squares problem, which can be solved efficiently with standard methods,
e.g. the Householder algorithm [19]. In order to further minimize the error
introduced by the Taylor expansion, we iterate this minimization process.

2

(7)

2

(8)




3 Region-based Model Fitting

Previous approaches incorporating point based pose estimation [14] usually
try to match a contour obtained by segmentation to the projected model
surface. Since segmentation and matching can be time consuming and in-
accurate, our idea is to avoid both the explicit contour computation as well
as the matching step. Instead, we try to find pose parameters such that all
images are optimally partitioned into an object and a background region by
the projected surface model. To simplify the description, we will explain
the algorithm for a sequence created with a single camera. The extension to
multiple views is straightforward, though.

3.1 Energy Model

To find the set of pose parameters that splits the image domain €2 into a
background and a foreground region, we minimize the energy function

E(§) = - fQ (P(§;Q) log p1 9)
+(1 = P(&,q)) logps)dg ,

where the function P(&,¢q) € (R® x Q +— {0,1}) is 1 if and only if the surface
of the 3-D model with pose & projects to the point ¢ in the image plane.
The functions p; and py are two probability density functions (abbreviated
as “pdf” from now on) that model the different feature distributions. Such
pdfs also occur in variational segmentation methods [14], where a functional
similar to this function is sought to be minimized. However, while in varia-
tional segmentation algorithms, the partitioning is represented by a contour,
i.e. a function, we only have six parameters that must be optimized. This
simplifies the estimation considerably. For instance, the length constraint
present in variational segmentation methods can be omitted here.

In order to model the image features by pdfs, we have to decide which features
should be modeled. For the experiments presented later, we used the color in
CIELAB color space (for color images) or the image intensity (for grayscale
images). Additionally, the texture feature space proposed in [20] was used
for objects with a complex appearance.

Since the two pdfs p; and p, are unknown, we must assume an underlying
model to estimate them. We track objects with a uniform appearance with
a non-parametric Parzen model and objects with a nonuniform appearance
with a local Gaussian distribution [14]. However, since there is not enough
data available to accurately estimate a multi-dimensional pdf, we consider
the separate feature channels to be independent. Then, the total probability
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Figure 3: Upper left corner: Contour of an initial pose guess. Upper
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estimation. Green lines: Pdfs after pose estimation. Thick lines: Pdfs for
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Figure 4: From left to right: (a) Input image. The puncher is to be tracked.
(b) Projection of the model in an inaccurate pose onto the image (magnified).
The two marked points are the points referenced to in Section 3.2 (c¢) The 2-D
contour of the projection (magnified). The arrows show into which directions
these points should move in our algorithm. From [16].

density function is the product of the single channel densities. As soon as the
estimated pose changes, and thus the induced partitioning, p; and p, must
be recomputed.

As an example, consider Figure 3. The image shown is this figure shows the
contour of the pose estimated by our prediction step (see below). Here, pdfs
are generated using the Parzen model for each feature channel and for the
inside and outside region of the projected model. Then, our algorithm tries
to find a pose which separates these pdfs. The three figures show these pdfs
generated from the initial pose guess shown (red lines) and at the end of
the pose estimation step (green lines) for the three channels used (i.e. the
luminance and the two color channels in the CIELAB color system) for the
interior (thick lines) and exterior (thin lines) of the puncher shown. All pdfs
have been smoothed with a box filter with width 11. It can be seen that the
initial pose contains parts of the cyan mouse pad, which has values around
(51, -15, -5) in CIELAB color space, and of the orange measuring tape, whose
channels are approximately (55,40,55). This is also clearly visible in the pdfs
(thick red lines). After pose tracking, the projected pose extends almost
entirely over the white puncher in the image. As a consequence, the peak in
the luminance around 53 — as well as those in the color channels around 35
and 50, respectively — have disappeared (thick green lines). Also note that
the difference between the pdfs after pose tracking (green lines) is greater
than before pose tracking (red lines). The difference between the pdfs for
the outside regions before and after pose tracking is very small because only
a small part of the outside area has changed.



For each frame:

Extrapolate new pose from previous poses and compute image features
— Project 3D object model onto image plane
— Generate prob. density functions for inside/outside the proj. model (Section 3.1)
— Adapt 2D-3D point correspondences (q;,X; ) to (q; ,X;) (Section 3.2)
— Construct projection rays from (q; ,X;) (Section 2.2)
— Generate and solve system of equations to get a new pose (Section 2.3)

Figure 5: Steps done by the proposed pose tracking algorithm.

3.2 Minimization

In order to minimize (9), we assume the function P to be differentiable and
compute the gradient of

VE(E) = - /Q (VP(¢,q) logp: — VP(E, q) log ps)dg
- /Q (VP(¢, 4)(logp: — logpa)) dg - (10)

Thus, the energy function (9) is minimized by moving each point on the
contour of the projected model to the direction indicated by the gradient
V P. This movement is transfered to corresponding 3-D points on the surface
model by using the framework from Section 2. Thus, the gradient vectors
created in this way are reprojected back to the 3-D space in order to estimate
the movement. Therefore, we estimate the rigid body motion necessary to
change the 2-D silhouette such that different features are separated more
clearly.

More precisely, we create 2-D—3-D point correspondences (g;, z;) by project-
ing silhouette points x;, using the current pose &, to the image plane where
they yield ¢;. If the pdf for the inside region evaluated at g;, i.e. pi(g),
is exceeds the corresponding function value for the outside region (p2(g;)),
we suppose that ¢; belongs to the object region. Thus, ¢; will be moved in
outward normal direction to a new point ¢;. On the other side, points where
p1(¢i) < p2(¢;) holds will be shifted into the opposite direction. We use Sobel
operators [21] to approximate the normal direction VP.

Although the gradient (10) suggest that the shift vector should have a length
of [ := || log p1 —log ps||, we noticed that setting [ to a fixed value often yields
better results. We believe that this is the case because the changes induced
when using | = ||logp; — log ps|| are much smaller when the pose is already
close to optimal. This explains why either the induced pose change is too
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small, in which case the iteration steps are stopped because the algorithm
assumes that it converged, or the correct changes induced are overruled by
erroneous changes due to noise or model inaccuracies. More advanced meth-
ods for choosing [ have been tested, but results were usually worse according
to our experiments.

In order to better understand how these force vectors are computed, consider
Figure 4. In Figure 4b, one can see the surface model corresponding to the
puncher which has been projected in an inaccurate pose onto the input image
(Figure 4a). Figure 4c depicts the boundary between the interior and exterior
of the projected model. Since most of the interior is white, the white point
marked by the circle on the right side of the image fits to the statistical model
of the object region better than to that of the background. Thus, it is shifted
away from the object, i.e. to the right. The other marked point, which is
cyan, better fits the pdf of the background and is thus shifted towards the
interior of the object, and thus also approximately to the right.

If the estimated pose is close to the optimal one, the pose changes induced
by the force vectors will mutually cancel out. Thus, the process is iterated
until the average pose change after up to three iterations is smaller than a
threshold. The optimal threshold depends on the sequence and the parameter
[. It is not adapted during one sequence at the moment.

Before changing frames in an image sequence, we predict the object’s pose
in the new frame by linearly extrapolating the results from the previous two
frames. This also eases the possible problem introduced by linearizing the
exponential function. However, even if the initial pose estimated for a frame
is quite bad, the algorithm still has good chances to find the correct pose, as
we will show in the experimental section. Figure 5 shows an overview of the
algorithm.

4 Extensions

Now, we will introduce extensions that enable the algorithm to track more
complex object models in more complicated scenes, e.g. in case of erratic
object movements.

4.1 Reusing old probability densities

The extrapolated pose used as initial guess for a new frame is often inaccu-
rate. Therefore, the pdfs based on this pose might differ strongly from the
pdfs corresponding to the correct object position in the image. This can lead

11
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Table 1: Overview of the experiments presented.

Name Views Color Size Iterations RTime PTime Frames Texture pdfs reused  Angles Prior Figure
Tea box 2 yes 384288 12.0 4.74s 4.28s 395 yes no 0 no 6,7
Tea box fast 2 yes 384%x288 3.59 1.09s 0.57s 395 yes no 0 no -
Giraffe 1 yes 384x288 280 6.94s 6.63s 84 yes yes 0 no 8
Teapot 2 yes 376 %284 3.56 1.03s 0.47s 347 no yes 0 no 9
Puncher 1 yes 376x284 481 1.37s 1.15s 171 no yes 0 no 10
Cart 4 no 500x380 17.1 4.24s 3.68s 464 no yes 21 yes 11
Flip 4 no 500x380 59.7 19.8s 18.7s 260 no yes 21 yes 12

In this table, several pieces of information are given for each image sequence used: the number of views (Views), if
the images where color images (Color), the size of each image (Size), the average number of iterations necessary
(Iterations), the average amount of real time required per tracked frame (RTime), the average amount of processor
time required per tracked frame (PTime), the number of frames tracked (Frames), if information from the textures
space proposed in [20] was used (Texture), if probability density functions from the last frame were used (pdfs
reused), the number of joint angles in the object model (Angles), if prior information was available (Prior) and the
figure(s) in this article in which results are shown (Figure). All times are from computations on an Intel Pentium 4

with 3.2 GHz.



Figure 6: Results where a tea box was tracked with our algorithm. In each
block, the computed pose (blue) and the contour (yellow) are shown for both
views used for pose tracking. The scene contains partial occlusions (frame
97, top left), the tea box is turned upside down (frame 230, top right), there
are specular reflections (frame 269, bottom left) and the box is turned around
different axes simultaneously (frame 277, bottom right). From [16].

to a slower convergence rate or even to an unpleasant local optimum far from
the sought solution.

One way to deal with this problem is to replace the simple extrapolation
step by a more sophisticated method. For example, a 2-D pose tracking or
an optical flow algorithm can be incorporated to improve the initial pose
guess in a new frame |22].

Instead of using such a complicated and possibly time consuming approach,
we propose another idea to diminish the problem of inaccurate pdfs at the
beginning of new frames, namely to reuse pdfs from the previous frame for
the first iterations in a new frame. Although it is possible to use the old pdfs
only for a certain amount of iterations, the best results are often achieved
when the old pdfs are used for all computations in the frame. In that case,

13



new probability density functions are only computed after the estimation of
the object position is completed, i.e. once per frame. Since this requires
significantly fewer pdf computations, it also leads to a speedup of the algo-
rithm.

One question arises when evaluating pdfs from the previous frame: In which
position in the old image should the pdfs be evaluated? Since evaluating the
pdfs is only necessary at the 2-D position of point correspondences (g, x) in
the proposed algorithm, the old pdfs can be evaluated either: a) at ¢, or b)
at the 2-D position to which x had been projected in the previous frame.
Note that this question only arises when using a local model [14]. Further
note that the second alternative is not possible in pose tracking algorithms
that use segmentation, since there is no real 3-D information incorporated
into the segmentation step.

Both methods have advantages and disadvantages: Method (b) could lead
to improved results because using the old point positions to evaluate the
pdfs guarantees that the pdf of the object is evaluated at the right point
on the object model. However, the pdf for the background might be better
when using method (a), which also requires less time and less memory. In
practise, however, both methods yield very similar results and the additional
computational costs of method (a) are negligible.

4.2 Kinematic chains

Another extension enables the algorithm to handle kinematic chains. Kine-
matic chains are the name for a system of rigid bodies which are connected
by joints [23]. Since every joint angle is an additional parameter that must
be estimated, pose tracking becomes far more challenging this way. Incorpo-
rating kinematic chains, the function P — and thus the energy function (9)
— not only depend on the twist & but also on the joint angles in the chain.
However, there is no further change in the energy function. Thus the force
vectors are still computed in the same way as before. In fact, the only change
necessary to include kinematic chains into the algorithm is in how the po-
sition of the transformed 3-D model points — and thus the projected model
points — are computed. Note that a joint angle can be modelled by a twist
of the form #¢ with unknown € € R and known & (the rotation axis is a part
of the model representation, and there is no translation). Thus, the equation
of a point z; on a jth joint has to satisfy

~

(exp(é) exp(ﬁlfl) .- -exp(9j§j)xi>3Xl Xn;—m; =0 (11)

14



in order to lie on the Pliicker line L = (n;, m;). After all exponential functions
are linearized in the same way as in Section 2.3, one such constraint results
in three linear equations in the six pose parameters and the joint angles.

A possible problem when using kinematic chains is that there might be no
2-D silhouette points for a rigid body in the chain, either because it is com-
pletely surrounded by other parts of the object (e.g. a small hand in front
of a big torso, seen from the front) or because it is occluded. In this case,
the angle of the corresponding joint cannot be estimated from the system
of equations because there is no information about it encoded in the sys-
tem. This problem can be solved by including prior knowledge on the angles
to which the angle configuration is drawn. We refer to [24] for further de-
tails. Examples for kinematic chains that have been tracked using such prior
knowledge are shown in the next section.

5 Experiments

In this section, tracking results from very different scenes obtained with the
proposed algorithm are presented.

In Figure 6, a tea box is to be tracked in a stereo sequence. In the first
160 frames of the sequence, the tea box is static but partially occluded by
a wooden beam between the tea box and one or both cameras. Afterwards,
the tea box is picked up and rotated. The frames 260 to 285 are especially
challenging since the tea box is rotated around two axis simultaneously while
specular highlights and reflections are visible on different parts of the tea box.
The best results are achieved by setting [ to 2.0 and choosing a threshold of
0.1mm for translational and 0.001 for the rotational parts of the twist.
Using this set of parameters and a C++ implementation, about 28.75 min-
utes of processor time are necessary to track the whole sequence on an Intel
Pentium 4 with 3.2GHz. On average, 12 frames were tracked every minute.
Most of this time (86%) was used for preprocessing (loading images, comput-
ing texture features, etc.) while only about a seventh part of the time was
used for the actual pose tracking, for which an average of 12.03 iterations is
needed. The two parameters (i.e. the threshold and [) have been chosen in
such a way that the best results are obtained. As we will explain later in this
section, faster but less accurate results are possible.

Figure 7 shows the time required per frame by our implementation for this
scene. It can be observed that our algorithm is faster in “simple” situations,
e.g. when nothing moves. Furthermore, we also show the changes in the
translation and rotation parameters for the first 160 frames in this figure.
With a standard deviation of 1.79 degrees and 0.83mm, our results are also

15
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Figure 7: Left: Time needed for preprocessing (straight green line) and the
total time used per frame (spiky red line) for the stereo image sequence shown
in Figure 6. It can be seen that preprocessing requires most of the time. Fur-
thermore, it is clearly visible that more time is needed in difficult situations.
Middle: Changes of the three translation parameters in millimeters for the
frames of the sequence in which the box is static and only occlusions occur.
Right: Changes of the three Euler angles for the same frames, in degrees.
Although there are some errors, the results are usually quite good. From
[16].

quite good in this static part of the sequence.

Figure 8 shows three frames of a monocular sequence with a wooden toy gi-
raffe. Since only one view is available, and since the appearance of the wooden
giraffe is rather complicated, tracking is quite hard in this sequence. Still,
the projection of the estimated model fits the object in the image well. For
this sequence, as well as for all experiments described from now on, we used
the probability density functions from the previous frame (cf. Section 4.1).
The results shown in Figure 8 are the only results presented in which the
old pdfs have not been used for all computations of the next frame. Instead,
new probability density functions are computed after 500 iterations.

When tracking objects that are clearly separated from the background, fea-
tures from the texture space can be neglected and the local Gaussian model
can be replaced by a global one. These changes noticeably decrease the
runtime of our algorithm. For example, the teapot shown in Figure 9 has
been tracked in a stereo sequence with more than one frame per second of
processor time.

Ignoring texture information, increasing [ to 6 and lowering the threshold,
the tea box sequence shown in Figure 6 can be tracked (with slightly less
accurate results) in less than 4 minutes (= 104 frames per minute of processor
time). This indicates that real-time processing with a region-based approach
is feasible.

Figure 10 shows an example of a scene with fast movements and large acceler-
ations. Although only one view was available, the white puncher was tracked
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Figure 8: From left to right: Input image, estimated pose and extracted
contour for three frames of a color sequence with a wooden giraffe. Top:
Frame 32. Middle: Frame 64. Bottom: Frame 84. The surface model
consists of a single closed point grid. Thus, it is possible to look through the
projected pose. Note that this is irrelevant for contour-based pose estimation,
where only silhouette points are needed.

even though it moved with more than 50 pixels per frame due to the built-in
prediction of the next pose in our algorithm. Moreover, the algorithm was
able to deal with accelerations of more than 70 pixels per frame.

Tracking results for scenes in which the model was a kinematic chain are
shown in Figures 11 and 12. For these scenes, grey-scale images from four
cameras were available, as well as prior information (see Section 4.2). Apart
from smaller problems due to the fact that a human cannot be perfectly
modelled by a kinematic chain, the only parts sometimes tracked inaccurately
were the feet. This is most likely the case because the feet are white while
the rest of the object is black. Note that the ’Cart’-sequence is tracked faster
than the ’Flip’-sequence because the per-frame movement of the person is
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Figure 9: One frame of a stereo sequence in which a teapot has been tracked.
Estimated contours and poses are shown in white. Scenes as easy as this are
tracked much faster than complicated scenes.

slower there.

An overview of all experiments presented is shown in Table 1. In that table,
the first sequence (“Tea box”) corresponds to the best results we have achieved
for the tea box sequence so far. The second (“Tea box fast”) is a result for
the same sequence with parameters that result in a low runtime but are
sufficient to track the tea box over the whole sequence, as explained above.
This shows that it is possible to significantly speed up the algorithm if less
accurate results are sufficient.

Furthermore, it can be seen that more iterations are needed for monocular
sequences, or if the rigid object is extended to a kinematic chain.

6 Summary

In this paper, we have presented a region-based pose tracking algorithm that
can incorporate various statistical models for object and background region
without explicitly estimating a contour in the image. We showed that this is
advantageous, since it leads to a significant speedup compared to other region
based methods that require costly segmentation and contour matching steps.
Furthermore, results are often better than those achieved with alternating
segmentation and pose estimation steps. Moreover, we demonstrated that
this framework can be extended to kinematic chains in order to track hu-
man motion. Another presented extension was to recycle probability density
functions from previous frames. This has led to substantial speedups and
increased the robustness of the algorithm in case of fast object motions with
high accelerations. The algorithm was evaluated using scenes with changing
illuminations, partial occlusions, cluttered backgrounds, specular highlights
and several different models with and without joint angles.
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Figure 10: In the upper two rows, the input image (left), the estimated
pose (middle) and the estimated contour (right) for frame 10 and 16 of a
monocular sequence are shown. The last row shows the estimated contours
for the frames 101, 102 and 103 in black. Note the fast movement between
frame 10 and 16 and the pretty sudden turnaround in the frames 101 to
103. Also note the motion blur visible in frame 103. The blue pose shown in
the image to frame 103 is the pose estimated by our initial prediction step.
Although it is initially far away from the correct pose, our algorithm is able
to successfully track the puncher. The position of the puncher estimated by
our algorithm is indicated by the black contour.
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Figure 11: Here, tracking results of the frames 180 (left), 260 (middle) and
460 (right) of a person doing a cartwheel are presented. Only one of the four
views used for pose tracking is shown here.

Figure 12: Another sequence from four views where the person turns two
backflips. The first pair of images (left, frame 50) shows the start of the
second flip. The four images in the middle show the frames 96 and 148, and
in the images on the right (frame 190) the backflip is completed.
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