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Abstract

Besides other things we prove that if u ∈ L∞
loc(Ω; RM ), Ω ⊂ R

n, locally minimizes
the energy ∫

Ω

[
a(|∇̃u|) + b(|∂nu|)

]
dx,

∇̃ := (∂1, . . . , ∂n−1), with N -functions a ≤ b having the ∆2-property, then
|∂nu|2b(|∂nu|) ∈ L1

loc(Ω). Moreover, the condition

b(t) ≤ const t2a(t2) (∗)

for all large values of t implies |∇̃u|2a(|∇̃u|) ∈ L1
loc(Ω). If n = 2, then these results

can be improved up to |∇u| ∈ Ls
loc(Ω) for all s < ∞ without the hypothesis (∗). If

n ≥ 3 together with M = 1, then higher integrability for any exponent holds under
more restrictive assumptions than (∗).

1 Introduction

As a first step towards the question of (partial) regularity of weak local minimizers u:
R

n ⊃ Ω → R
M of the variational integral

I[u, Ω] =

∫

Ω

F (∇u) dx

we want to analyze the local higher integrability properties of ∇u concentrating on the
so-called anisotropic case. The most prominent example leading to anisotropic energies is
given by integrands F of anisotropic (p, q)-growth with exponents 1 < p ≤ q < ∞, which
by definition satisfy an estimate of the form

m1

[
|Z|p − 1

]
≤ F (Z) ≤ m2

[
|Z|q + 1

]
, Z ∈ R

nM , (1.1)

m1, m2 denoting positive constants. As it was discovered by Giaquinta [Gi] (and later
re-investigated by Hong [Ho]) one can not expect any regularity of local minimizers, if p
and q are too far apart, and this even concerns the scalar situation, i.e. the case M = 1.
Observing that (1.1) follows from the anisotropic convexity condition

λ(1 + |Z|2) p−2
2 |Y |2 ≤ D2F (Z)(Y, Y ) ≤ Λ(1 + |Z|2) q−2

2 |Y |2, (1.2)

Y , Z ∈ R
nM , Marcellini [Ma1] and Fusco and Sbordone [FS] showed: if M = 1 and if (1.2)

or some weaker variant hold, then the gradient of a local minimizer is locally bounded
provided

q ≤ c(n)p (1.3)

AMS Subject Classification: 49 N 60
Keywords: decomposable variational integrals, local minimizers, higher integrability, anisotropic prob-
lems, nonstandard growth conditions
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for a constant c(n) → ∞ as n → ∞, whereas, e.g., for n = 2 (1.3) can be dropped. If we
pass to the vector case, then there are strong regularity results due to Marcellini [Ma3]
and Marcellini and Papi [MP] for integrands of the special form F = F (|Z|), whereas
Esposito, Leonetti and Mingione [ELM1] studied more general densities F and proved

∇u ∈ Lq
loc(Ω; RnM) (1.4)

working with a relaxed version of (1.2) and assuming

q < p + 2 min{1, p/n}, (1.5)

so that as in (1.3) the range of anisotropy becomes smaller as n → ∞, if (1.5) is imposed.

An intermediate situation occurs if in addition to (1.2) F is of the form
F (|∂1u|, . . . , |∂nu|). Then – by the maximum principle proved in [DLM] – it makes sense
to consider local minima of class L∞

loc(Ω; RM), and in [ELM2] it is shown that now the
dimensionless condition

q < p + 2 (1.6)

implies

∇u ∈ Lr
loc(Ω; RnM) for all r <

np

n − p + q − 2
. (1.7)

However note that for large n (1.7) is a weaker result than (1.4), i.e. (1.7) does not
give (1.4). The local integrability property (1.4) under the hypothesis (1.6) together
with u ∈ L∞

loc(Ω; RM) has been proved in [Bi], Theorem 5.12. for integrands of the form
F (∇u) = F (|∂1u|, . . . , |∂nu|), and it is further shown that this requirement concerning
F even can be dropped if M = 1. For completeness we like to mention an earlier
contribution of Choe [Ch] concerning bounded local minima in the scalar case but re-
placing (1.6) by the stronger condition q < p+1 and imposing the structure F = F (|∇u|).

If we continue our discussion of local minima u from the space L∞
loc(Ω; RM), then the re-

sults described above can be improved by adjusting the class of integrands F to anisotropic
power growth which means that for example we have an additive decomposition of the
integrand F in the sense that (∇̃u := (∂1u, . . . , ∂n−1u))

F (∇u) = f(∇̃u) + g(∂nu) (1.8)

where f is of p-growth and g is of q-growth with p ≤ q, and where in case M > 1 we
require in addition that

f(∇̃u) = f1(|∂1u|, . . . , |∂n−1u|) , g(∂nu) = g1(|∂nu|) .

Then we proved in [BF2] and [BFZ]:

• |∂nu| ∈ Lq+2
loc (Ω);

• q ≤ 2p + 2 ⇒ |∇̃u| ∈ Lp+2
loc (Ω);
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• M = 1 or n = 2 ⇒ |∇u| ∈ Lt
loc(Ω) for all t < ∞.

Moreover, we used these higher integrability results to obtain (partial) interior C1,α-
regularity (see also [BF3]) in the general vector case n ≥ 3 together with M ≥ 2.

Inspired by Marcellini’s paper [Ma2] we are now going to analyze the integrability
properties of ∇u for local minimizers u ∈ L∞

loc(Ω; RM) if F is of splitting-type (1.8) with
f and g generated by N -functions a, b: [0,∞) → [0,∞). Let us suppose for simplicity of
the exposition that

F (∇u) = a(|∇̃u|) + b(|∂nu|)
with N -functions a ≤ b having the ∆2-property (see Section 2 for details). Then we have
(compare Theorem 2.1 – 2.3):

• b(|∂nu|)|∂nu|2 ∈ L1
loc(Ω);

• b(t) ≤ ct2a(t2) for large t ⇒ a(|∇̃u|)|∇̃u|2 ∈ L1
loc(Ω);

• n = 2 and we have at least quadratic growth ⇒ |∇u| ∈ Ls
loc for all s < ∞,

where now “b(t) ≤ ct2a(t2)” replaces “q ≤ 2p + 2”.

If the case M = 1 is considered, then – apart from the particular choice a(t) = t2 –
we did not succeed to obtain the local integrability of ∇u for any exponent without a
condition relating a and b. In fact, this is not surprising since N -functions are allowed
to differ essentially from power-growth behaviour. A more detailed explanation will be
given in Section 6.

We think that our results are even new in the isotropic case a = b: if we assume

F (∇u) = a(|∇̃u|) + a(|∂nu|)

together with M = 1, then we get that |∇u| ∈ Lt
loc(Ω) for any t < ∞, and this

cannot be deduced from Marcellini’s work [Ma2] since his contributions just cover the
case F (∇u) = a(|∇u|) but allowing N -functions a being more general than the ones
considered here.

Our paper is organized as follows: in Section 2 we fix our notation and state our results
precisely, Section 3 contains the general vector case, in Section 4 we study the case Ω ⊂ R

2,
and in Section 5 we investigate the scalar situation. A list of examples together with a
discussion of our hypotheses can be found in Section 6. Finally, some technical details
concerning N -functions are summarized in an appendix.
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2 Notation and results

Suppose that we are given N -functions a, b: [0,∞) → [0,∞) of class C2 which according
to [Ad] means that for h := a, h := b it holds

h is strictly increasing and convex satisfying lim
t↓0

h(t)

t
= 0 , lim

t→∞

h(t)

t
= ∞ . (H1)

Our second hypothesis reads as: there exist ε̄ > 0 and h̄ > 0 such that for all t ≥ 0

ε̄
h′(t)

t
≤ h′′(t) ≤ h̄

h′(t)

t
. (H2)

A discussion of (H2) and several examples of functions h satisfying (H1) and (H2) are
given in Section 6, here we just collect some elementary consequences of our hypotheses.

Remark 2.1. a) Hypothesis (H1) implies

h(0) = 0 = h′(0) , h′(t) > 0 for all t > 0 ,

where the strict positive sign of h′ follows from the convexity and the strict mono-
tonicity of h. Note that h′′(0) = limt→0 h′(t)/t, and therefore (H2) means for t = 0
that

ε̄h′′(0) ≤ h′′(0) ≤ h̄h′′(0) ,

hence ε̄ ≤ 1 ≤ h̄ in case h′′(0) 6= 0.

b) The l.h.s. inequality of (H2) gives with p := 1 + ε̄

h(t) ≥ ctp .

In fact we have
d

dt
ln(h′(t)) ≥ ε̄

d

dt
ln(t)

which implies that the function ln(h′(t)) − ε̄ ln(t) is increasing, thus (t ≥ 1)

h′(t) ≥ h′(1)tε̄

and the claim follows by integrating this inequality.

c) According to Lemma A.1, a), it follows from (H1) and the r.h.s. of inequality (H2)
that h fullfils a global ∆2-condition, i.e.

h(2t) ≤ µh(t) for all t ≥ 0 (∆2)

for a suitable constant µ > 0. In particular, by Lemma A.2 there exists an exponent
q such that for large t

h(t) ≤ ctq .

This is also a direct consequence of the r.h.s. of (H2) with the choice q = 1 + h̄.
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d) Conversely, if h satisfies (H1) and has the ∆2-property, then the r.h.s. of inequality
(H2) holds under the additional assumption that h′′ is increasing (see Lemma A.1,
b)) which is equivalent to the convexity of h′. At the same time convexity of h′

implies
0 = h′(0) ≥ h′(t) + h′′(t)(−t) ,

and this inequality shows that the l.h.s. inequality of (H2) is always satisfied under
the extra assumption that h′ is convex. Thus, if h ∈ C3([0,∞)) is any N-function
with the ∆2-property and h(3) ≥ 0, then we have (H2).

e) Letting H(Z) := h(|Z|), Z ∈ R
k, we have by elementary calculations

min
{

h′′(|Z|), h′(|Z|)
|Z|

}

|Y |2 ≤ D2H(Z)(Y, Y ) ≤ max
{

h′′(|Z|), h′(|Z|)
|Z|

}

|Y |2 ,

and (H2) gives for all Y , Z ∈ R
k

i) λ
h′(|Z|)
|Z| |Y |2 ≤ D2H(Z)(Y, Y ) ≤ Λ

h′(Z)

|Z| |Y |2.
In particular we observe that the function H is strictly convex.

ii) |D2H(Z)| ≤ c(1 + |Z|2) q−2
2 .

Here ii) is a consequence of i) and the growth of h, see Remark 3.1 for details.

Now given n ≥ 2, M ≥ 1 we write

Z = (Z1, . . . , Zn) = (Z̃, Zn) , Z̃ := (Z1, . . . , Zn−1) , Zi ∈ R
M , i = 1, . . . , n ,

for an arbitrary matrix Z ∈ R
nM . If Ω is an open set and if u: Ω → R

M is a (weakly)
differentiable function, then the Jacobian matrix ∇u = (∂1u, . . . , ∂nu) is decomposed as
∇u = (∇̃u, ∂nu) with ∇̃u := (∂1u, . . . , ∂n−1u). To our N -functions a and b we associate
the functions A: R

(n−1)M → [0,∞), B: R
M → [0,∞),

A(Z̃) := a(|Z̃|) , B(Zn) := b(|Zn|) , Z ∈ R
nM ,

and define the strictly convex energy density

F (Z) := A(Z̃) + B(Zn) , Z ∈ R
nM . (2.1)

Recalling Remark 2.1, c), we have the upper bound

F (Z) ≤ C
[
|Z|q + 1

]
for all Z ∈ R

nM . (2.2)

Let us finally assume
a(t) ≤ b(t) (2.3)

for large values of t.
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Introducing the variational integral

I[u, Ω] :=

∫

Ω

F (∇u) dx (2.4)

it is reasonable to call a function u from the space W 1
1,loc(Ω; RM) (compare [Ad] for a

definition of Sobolev and related spaces) a local minimizer of the functional from (2.4)
if and only if I[u, Ω′] < ∞ and I[u, Ω′] ≤ I[v, Ω′] for all subdomains Ω′ with compact
closure in Ω and all v ∈ W 1

1,loc(Ω; RM) s.t. spt (u − v) ⊂ Ω′.

Let us now state our results:

Theorem 2.1. (general vector case) Suppose that a, b satisfy (H1) and (H2). Consider
a local minimizer u ∈ W 1

1,loc(Ω; RM ) of the energy (2.4) with F defined in (2.1). Suppose
further that u is locally bounded. Then we have:

a) b(|∂nu|)|∂nu|2 is in the space L1
loc(Ω).

b) Let us further assume that we have

b(t) ≤ ct2a(t2) for large t ≥ 0 and a constant c > 0 . (2.5)

Then we obtain a(|∇̃u|)|∇̃u|2 ∈ L1
loc(Ω).

c) If a = b, then a(|∇u|)|∇u|2 ∈ L1
loc(Ω).

Remark 2.2. a) The restriction to the particular variational integral
∫

Ω

[
a(|∇̃u|) + b(|∂nu|)

]
dx

is just for the simplicity of the exposition. Of course we can consider more general
integrals of splitting type, e.g.

∫

Ω

[
f(∇̃u) + g(∂nu)

]
dx ,

provided the growth and convexity properties of f and g can be described in terms
of N-functions a, b in an obvious way. Moreover, in this more general case we
must have f(∇̃u) = f(|∂1u|, . . . , |∂n−1u|), g(∂nu) = g(|∂nu|) in order to apply the
maximum-principle of [DLM]during the proof. Other extensions of Theorem 2.1
concern alternative decompositions of ∇u: if for example ∇u is formed by the two
submatrices (∇u)1, (∇u)2 or if we replace ∇̃u by ∇u and ∂nu by some part ∇̂u of
∇u, then we have corresponding results for locally bounded local minimizers of

∫

Ω

[
a(|(∇u)1|) + b(|(∇u)2|)

]
dx

and of ∫

Ω

[
a(|∇u|) + b(|∇̂u|)

]
dx .
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b) Theorem 2.1 corresponds to Theorem 1, a), b), in [BF2], where the anisotropic
(p, q)-case is considered and where (2.5) reads as q ≤ 2p + 2.

Theorem 2.2. (2D vector case) Consider a domain Ω ⊂ R
2. Suppose that a, b satisfy

(H1), (H2) and in addition: there exists h0 > 0 such that

h′(t)

t
≥ h0 on [0,∞) . (2.6)

Moreover, let (2.3) hold. Then, if u ∈ W 1
1,loc(Ω; RM) denotes an arbitrary local minimizer

of the energy from (2.4), we have |∇u| ∈ Lt
loc(Ω) for any finite t.

Remark 2.3. a) We have the same comments as in Remark 2.2, a).

b) If should be emphasized that (2.5) is not required if n = 2.

c) (2.6) implies that F is of superquadratic growth, i.e.

c
[
|Z|2 − 1

]
≤ F (Z) for all Z ∈ R

nM ,

in particular we have u ∈ W 1
2,loc(Ω; RM) for the local minimizer in Theorem 2.2.

Theorem 2.3. (scalar case) Let M = 1 and suppose that the functions a, b satisfy (H1),
(H2) and (2.3). Consider a local minimizer u from the class W 1

1,loc ∩ L∞
loc(Ω).

a) If (2.5) holds, then we have

b(|∂nu|)|∂nu|r ∈ L1
loc(Ω) for all r < 6 ,

a(|∇̃u|)|∇̃u|r ∈ L1
loc(Ω) for all r < 4 .

b) For the particular case a(t) = t2 it follows |∇u| ∈ Lr
loc(Ω) for all r < ∞ and this is

true without (2.5).

c) If (2.5) is replaced by the stronger assumption

b(t) ≤ const t2a(t) for large t , (2.7)

then we have |∇u| ∈ Lr
loc(Ω) for all r < ∞, so that local higher integrability for any

finite exponent holds in the “isotropic” case a = b.

Remark 2.4. a) The results of Theorem 2.3 extend to the cases described in Remark
2.1, a).

b) If we compare Theorem 2.3 with the anisotropic power-growth case studied in [BFZ],
then in the present setting of N-functions we have as expected much weaker results:
we need condition (2.5) to gain some higher integrability of ∂nu and ∇̃u, whereas the
local higher integrability of ∇u for any finite exponent can only be achieved under
stronger assumptions or by specifying a or b. For instance, if a(t) = t2, then we do
not need additional hypotheses for b.

c) The reader should note that (2.7) is a (weaker) variant of (1.6) formulated in terms
of N-functions which means that with Theorem 2.3, c) we have an extension of
Theorem 5.12 from [Bi] to the class of splitting functionals being in addition not
necessarily of power growth.
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3 Proof of Theorem 2.1

We proceed as in [BF2] by fixing a ball B := BR(x0) ⋐ Ω. For small ε > 0 let (u)ε denote
the mollification of u. By Remark 2.1, c), we have with q = 1 + h̄, h̄ being defined in
(H2),

b(t) ≤ c(tq + 1) for all t ≥ 0 . (3.1)

Fixing q̃ > max{2, q}, we let

δ := δ(ε) :=
[

1 + ε−1 + ‖∇(u)ε‖2q̃
Lq̃(B)

]−1

,

and define
Fδ(Z) = δ(1 + |Z|2) q̃

2 + F (Z) , Z ∈ R
nM .

We further consider the unique solution uδ of

Iδ[w, B] :=

∫

B

Fδ(∇w) dx → min in
◦

W
1
q̃(B; RM) + (u)ε .

Lemma 3.1. a) We have as ε → 0: uδ ⇁ u in W 1
p (B; RM), where p = 1 + ε̄ with ε̄

from (H2);

δ

∫

B

(1 + |∇uδ|2)
q̃

2 dx → 0 ;

∫

B

F (∇uδ) dx →
∫

B

F (∇u) dx .

b) ‖uδ‖L∞(B) is bounded independent of ε.

c) ∇uδ is in the space L∞
loc ∩ W 1

2,loc(B; RnM).

Proof of Lemma 3.1. a) is standard, compare, e.g., [BF1]. b) follows from the maximum
principle of [DLM], for c) we can quote [GM] and [Ca]. �

Remark 3.1. (3.1) combined with [Da], Lemma 2.2, p. 156, gives

|b(t + ε) − b(t)| ≤ c
(
1 + |t + ε|q−1 + |t|q−1

)
|ε| ,

hence
0 ≤ b′(t) ≤ c(1 + tq−1) for t ≥ 0 .

Applying Remark 2.1, e), i), to B and the vectors τ ∈ R
M , |τ | ≥ 1, σ ∈ R

M we therefore
get

D2B(τ)(σ, σ) ≤ c
b′(|τ |)
|τ | |σ|2

≤ c|τ |−1(1 + |τ |q−1)|σ|2

≤ c(1 + |τ |2) q−2
2 |σ|2 ,
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and for |τ | ≤ 1 the bound

D2B(τ)(σ, σ) ≤ c(1 + |τ |2) q−2
2 |σ|2

follows from Remark 2.1, e), i) and the l.h.s. of (H2). Analogous calculations using (2.3)
imply

D2A(τ)(σ, σ) ≤ c(1 + |τ |2) q−2
2 |σ|2

now for all τ , σ ∈ R
(n−1)M , so that by (2.1)

D2F (Z)(Y, Y ) ≤ c(1 + |Z|2) q−2
2 |Y |2 for all Z, Y ∈ R

nM .

Since we have chosen q̃ > q, we see from this inequality that the arguments of [GM]
actually can be applied.

Lemma 3.2. (Caccioppoli-type inequality) For any η ∈ C∞
0 (B) and any γ ∈ {1, . . . , n}

we have
∫

B

η2D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ) dx ≤ c

∫

B

D2Fδ(∇uδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ) dx . (3.2)

(No summation w.r.t. γ, ⊗ denotes the tensor product and c is independent of ε and η.)

Proof of Lemma 3.2. Compare, e.g. [BF1], proof of Lemma 3.1. Inequality (3.2) follows
from this reference by applying the Cauchy-Schwarz inequality to the bilinear form
D2Fδ(∇uδ).

We let
Γδ := 1 + |∇uδ|2 , Γ̃δ := 1 + |∇̃uδ|2 , Γn,δ := 1 + |∂nuδ|2

and consider η ∈ C∞
0 (B), 0 ≤ η ≤ 1, η ≡ 1 on Br(x0), |∇η| ≤ c/(R − r), where r < R.

For any k ∈ N we have using integration by parts as well as the bound for uδ

∫

B

η2kb(|∂nuδ|)|∂nuδ|2 dx = −
∫

B

uδ · ∂n

[
η2kb(|∂nuδ|)∂nuδ

]
dx

≤ c

[
∫

B

η2k|∂n∂nuδ|b(|∂nuδ|) dx

+

∫

B

η2k−1|∇η|b(|∂nuδ|)|∂nuδ| dx

+

∫

B

η2kb′(|∂nuδ|)|∂n∂nuδ||∂nuδ| dx

]

=: c[T1 + T2 + T3] , c = c(n, N, k, ‖u‖L∞(B)) . (3.3)

We discuss the terms Ti: from Young’s inequality we get

T2 ≤ τ

∫

B

η2k|∂nuδ|2b(|∂nuδ|) dx + c(τ)

∫

B

η2k−2|∇η|2b(|∂nuδ|) dx

9



for any τ > 0, and the first term on the r.h.s. can be absorbed into the l.h.s. of (3.3) for
small τ , whereas the second integral is bounded by a local constant on account of Lemma
3.1. This together with (3.3) shows

∫

B

η2kb(|∂nuδ|)Γn,δ dx ≤ c

[

cloc +

∫

B

η2kb(|∂nuδ|) dx

︸ ︷︷ ︸

≤cloc

+T1 + T3

]

. (3.4)

Here cloc denotes a local constant depending in particular on R and r but being indepen-
dent of ε. Again with Young’s inequality we get

T1 ≤ τ

∫

B

η2kb(|∂nuδ|)Γn,δ dx + c(τ)

∫

B

η2kb(|∂nuδ|)|∂n∂nuδ|2Γ−1
n,δ dx .

Observing

b(|∂nuδ|) =

∫ 1

0

d

dt
b(t|∂nuδ|) dt = |∂nuδ|

∫ 1

0

b′(t|∂nuδ|) dt ≤ |∂nuδ|b′(|∂nuδ|)

(note: b′ is increasing) we find

T1 ≤ τ

∫

B

η2kb(|∂nuδ|)Γn,δ dx + c(τ)

∫

B

η2k b′(|∂nuδ|)
|∂nuδ|

|∂n∂nuδ|2 dx.

Now we use Remark 2.1, e), i), for B to estimate

∫

B

η2k b′(|∂nuδ|)
|∂nuδ|

|∂n∂nuδ|2 dx ≤
∫

B

η2kD2B(∂nuδ)(∂n∂nuδ, ∂n∂nuδ) dx

and get for τ ≪ 1 from (3.4)

∫

B

η2kb(|∂nuδ|)Γn,δ dx ≤ c

[

cloc +

∫

B

η2kD2B(∂nuδ)(∂n∂nuδ, ∂n∂nuδ) dx + T3

]

. (3.5)

Finally we observe (using Young’s inequality)

T3 ≤ τ

∫

B

η2kb′(|∂nuδ|)|∂nuδ|3 dx + c(τ)

∫

B

η2k b′(|∂nuδ|)
|∂nuδ|

|∂n∂nuδ|2 dx ,

where the second term on the r.h.s. has already been estimated before (3.5). For discussing
the first term we claim

b′(t)t ≤ cb(t) for all t ≥ 0 . (3.6)

In fact we have

b(2t) =

∫ 2

0

d

ds
b(st) ds = t

∫ 2

0

b′(st) ds ≥ t

∫ 2

1

b′(st) ds ≥ tb′(t)

10



by the monotonicity of b′. If we use the ∆2-property for b, then we get (3.6), and this
inequality implies

τ

∫

B

η2kb′(|∂nuδ|)|∂nuδ|3 dx ≤ cτ

∫

B

η2kb(|∂nuδ|)Γn,δ dx ,

so that we can absorb this term. Summing up it is shown that

∫

B

η2kb(|∂nuδ|)Γn,δ dx ≤ c

[

cloc +

∫

B

η2kD2B(∂nuδ)(∂n∂nuδ, ∂n∂nuδ) dx

]

. (3.7)

By the Caccioppoli inequality (3.2) we have
∫

B

η2kD2B(∂nuδ)(∂n∂nuδ, ∂n∂nuδ) dx

≤
∫

B

η2kD2Fδ(∇uδ)(∂n∇uδ, ∂n∇uδ) dx

≤ c

∫

B

D2Fδ(∇uδ)(∇η ⊗ ∂nuδ,∇η ⊗ ∂nuδ)η
2k−2 dx

≤ c

[
∫

B

δΓ
q̃
2

δ |∇η|2η2k−2 dx

+

∫

B

D2A(∇̃uδ)(∇η ⊗ ∂nuδ,∇η ⊗ ∂nuδ)η
2k−2 dx

+

∫

B

D2B(∂nuδ)(∇η ⊗ ∂nuδ,∇η ⊗ ∂nuδ)η
2k−2 dx

]

=: c[S1 + S2 + S3] ,

and Lemma 3.1 implies
S1 → 0 as ε → 0 .

¿From Remark 2.1, e), i), and from (3.6) we get

S3 ≤ c

∫

B

|∇η|2η2k−2 b′(|∂nuδ|)
|∂nuδ|

|∂nuδ|2 dx

≤ c

∫

B

η2k−2|∇η|2b(|∂nuδ|) dx ≤ cloc .

Again by Remark 2.1, e), i), we see

S2 ≤ c

∫

B

|∇η|2η2k−2a′(|∇̃uδ|)
|∇̃uδ|

|∂nuδ|2 dx ,

and in order to proceed further let

N (t) := b(
√

t)t , t ≥ 0 .

11



Since

N ′(t) = b(
√

t) +
1

2
b′(

√
t)
√

t ,

N ′′(t) =
1

2
√

t
b′(

√
t) +

1

4
√

t
b′(

√
t) +

1

4
b′′(t) ,

we see that N is a N -function (with the ∆2-property). For τ > 0 let Nτ(t) := τN (t) and
define

ρ := η2k−2|∇η|2a′(|∇̃uδ|)
|∇̃uδ|

|∂nuδ|2 .

On the set B ∩ [|∇̃uδ| ≤ 1] we estimate (using (H2))

ρ ≤ cη2k−2|∇η|2a′′(|∇̃uδ|)|∂nuδ|2 ≤ cη2k−2|∇η|2|∂nuδ|2 ≤ clocη
2k−2Γn,δ ,

i.e. ∫

B∩[|∇̃uδ|≤1]

ρ dx ≤ cloc

∫

B

η2k−2Γn,δ dx ,

whereas (by Young’s inequality for N -functions)
∫

B∩[|∇̃uδ|≥1]

ρ dx ≤
∫

B∩[|∇̃uδ|≥1]

Nτ(η
2k−2|∂nuδ|2) dx

+

∫

B∩[|∇̃uδ|≥1]

N ∗
τ

(

|∇η|2a′(|∇̃uδ|)
|∇̃uδ|

)

dx

= τ

∫

B∩[|∇̃uδ|≥1]

η2k−2|∂nuδ|2b(ηk−1|∂nuδ|) dx

+

∫

B∩[|∇̃uδ|≥1]

N ∗
τ

(

|∇η|2a′(|∇̃uδ|)
|∇̃uδ|

)

dx

=: τU1 + U2 .

Since b is convex with b(0) = 0, we have

b(ηk−1|∂nuδ|) ≤ ηk−1b(|∂nuδ|) ,

which means that for k large and τ small the term τU1 can be absorbed in the l.h.s. of
(3.7). By definition the conjugate function N ∗

τ satisfies

N ∗
τ (t) = sup

s≥0
[st − τb(

√
s)s] = sup

s≥0
[t − τb(

√
s)]s = sup

s≤[b−1(t/τ)]2
[t − τb(

√
s)]s

≤
[
b−1(t/τ)

]2
sup[t − τb(

√
s)]

≤ t
[
b−1(t/τ)

]2
.

Applying (3.6) to the function a we see

∫

B∩[|∇̃uδ|≥1]

N ∗
τ

(

|∇η|2a′(|∇̃uδ|)
|∇̃uδ|

)

dx ≤
∫

B∩[|∇̃uδ|≥1]

N ∗
τ (|∇η|2|∇̃uδ|−2a(|∇̃uδ|)) dx ,
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and by the convexity of N ∗
τ we have on the set of integration

N ∗
τ (|∇η|2|∇̃uδ|−2a(|∇̃uδ|)) ≤ |∇̃uδ|−2N ∗

τ (|∇η|2a(|∇̃uδ|)) ,

whereas the ∆2-property of N ∗
τ can be used to control the last term through the quantity

c(τ, η)|∇̃uδ|−2N ∗
τ (τa(|∇̃uδ|)) .

Now we can apply the upper bound for N ∗
τ to get

∫

B∩[|∇̃uδ|≥1]

N ∗
τ

(

|∇η|2a′(|∇̃uδ|)
|∇̃uδ|

)

dx

≤ c(τ, η)

∫

B∩[|∇̃uδ|≥1]

|∇̃uδ|−2a(|∇̃uδ|)
[
b−1(a(|∇̃uδ|))

]2
dx

≤ c(τ, η)

∫

B∩[|∇̃uδ|≥1]

a(|∇̃uδ|) dx ≤ cloc ,

where we have used the inequality (2.3). Thus it is shown that

∫

B

η2kb(|∂nuδ|)Γn,δ dx ≤ cloc

[

1 +

∫

B

η2k−2Γn,δ dx

]

,

and for k > 3 and τ sufficiently small Young’s inequality gives

∫

B

η2kb(|∂nuδ|)Γn,δ dx ≤ cloc

[

1 + τ

∫

B

η2kΓ
3
2
n,δ dx + c(τ)

]

≤ cloc

[

c(τ) +

∫

B∩[|∂un|≤K]

η2kΓ
3
2
n,δ dx + τ

∫

B∩[|∂un|>K]

η2kΓ
3
2
n,δ dx

]

,

where K is chosen such that b(t) ≥ (1 + t2)1/2 for t ≥ K, i.e. the last integral can be
absorbed into the l.h.s. and the other integral trivially is bounded. Altogether we end up
with ∫

B

η2kb(|∂nuδ|)Γn,δ dx ≤ cloc , (3.8)

and this proves Theorem 2.1, a), by passing to the limit ε → 0 and recalling Lemma 3.1.

For proving part b) we keep our notation and get analogous to (3.7)

∫

B

η2ka(|∇̃uδ|)Γ̃δ dx ≤ c

[

cloc +

∫

B

η2kD2A(∇̃uδ)(∂γ∇̃uδ, ∂γ∇̃uδ) dx

]

, (3.9)

where here and in what follows we always take the sum w.r.t. γ = 1, . . . , n − 1. In fact,
(3.9) is established along the same lines as (3.7) by performing an integration by parts on
the r.h.s. of the following equation

∫

B

η2ka(|∇̃uδ|)|∇̃uδ|2 dx =

∫

B

∂γuδ · [η2ka(|∇̃uδ|)∂γuδ] dx

13



using the uniform boundedness of uδ.
Inequality (3.2) gives

∫

B

η2kD2A(∇̃uδ)(∂γ∇̃uδ, ∂γ∇̃uδ) dx

≤
∫

B

η2kD2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ) dx

≤ c

[

δ

∫

B

η2k−2|∇η|2Γ
q̃

2
δ dx +

∫

B

η2k−2D2A(∇̃uδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ) dx

+

∫

B

η2k−2D2B(∂nuδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ dx

]

,

and if we use Remark 2.1, e), i), for A and B together with

δ

∫

B

η2k−2|∇η|2Γ
q̃

2
δ dx → 0 as δ → 0 ,

we see
∫

B

η2kD2A(∇̃uδ)(∂γ∇̃uδ, ∂γ∇̃uδ) dx

≤ c

[

cloc +

∫

B

η2k−2|∇η|2a′(|∇̃uδ|)
|∇̃uδ|

|∇̃uδ|2 +

∫

B

η2k−2|∇η|2 b′(|∂nuδ|)
|∂nuδ|

|∇̃uδ|2 dx

]

=: c[cloc + W1 + W2] . (3.10)

Using (3.6) for a we deduce

W1 ≤ c

∫

B

η2k−2|∇η|2a(|∇̃uδ|) dx ≤ cloc . (3.11)

For discussing W2 we consider the N -functions

M(t) := ta(
√

t) , Mτ (t) := τM(t)

with small τ > 0 and observe first (recalling (H2))

∫

B∩[|∂nuδ|≤1]

η2k−2|∇η|2 b′(|∂nuδ|)
|∂nuδ|

|∇̃uδ|2 dx

≤ c

∫

B∩[|∂nuδ|≤1]

η2k−2|∇η|2b′′(|∂nuδ|2)|∇̃uδ|2 dx

≤ cloc max
0≤t≤1

b′′(t)

∫

B∩[|∂nuδ|≤1]

η2k−2Γ̃δ dx
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whereas
∫

B∩[|∂nuδ|≥1]

η2k−2|∇η|2 b′(|∂nuδ|)
|∂nuδ|

|∇̃uδ|2 dx

≤
∫

B∩[|∂nuδ|≥1]

Mτ (η
2k−2|∇̃uδ|2) dx +

∫

B∩[|∂nuδ|≥1]

M∗
τ

(

|∇η|2 b′(|∂nuδ|)
|∂nuδ|

)

dx

≤ τ

∫

B

η2k−2|∇̃uδ|2 a(ηk−1|∇̃uδ|)
︸ ︷︷ ︸

≤ηk−1a(|∇̃uδ|)

dx +

∫

B∩[|∂nuδ|≥1]

M∗
τ

(

|∇η|2 b′(|∂nuδ|)
|∂nuδ|

)

dx ,

and for τ ≪ 1 and k ∈ N large enough we can put the τ -term to the l.h.s. of (3.9). In the
same way as before for N ∗

τ we find

M∗
τ (t) ≤ t

[
a−1(t/τ)

]2
,

and using the ∆2-property of M∗
τ we have for t ≥ 1 by (3.6)

M∗
τ

(

|∇η|2 b′(t)

t

)

≤ c(η)M∗
τ

(b′(t)

t

)

≤ c(η)M∗
τ(t

−2b(t)) ≤ c(τ, η)M∗
τ(τb(t)t−2)

≤ c(τ, η)t−2b(t)
[
a−1(t−2b(t))

]2
.

Thus
∫

B∩[|∂nuδ|≥1]

M∗
τ

(

|∇η|2 b′(|∂nuδ|)
|∂nuδ|

)

dx

≤ c(τ, η)

∫

spt η∩[|∂nuδ|≥1]

|∂nuδ|−2b(|∂nuδ|)
[
a−1(|∂nuδ|−2b(|∂nuδ|))

]2
dx ,

and we can apply (3.8) provided

[
a−1(|∂nuδ|−2b(|∂nuδ|))

]2 ≤ c|∂nuδ|4 ,

but this follows from assumption (2.5) (w.l.o.g. assuming the validity of (2.5) for t ≥ 1),
i.e. we can handle W2 in an appropriate way. By combining the above estimates with
(3.8), (3.10) and (3.11) and returning to (3.9) it is proved by repeating the calculations
before (3.8) that ∫

B

η2ka(|∇̃uδ|)Γ̃δ dx ≤ cloc , (3.12)

and b)of Theorem 2.1 follows. The last part is immediate.

4 Proof of Theorem 2.2

We first give a slight modification of the approximation from Section 3: we now start from
a local minimizer u ∈ W 1

2,loc(Ω; RM) (recall Remark 2.3, c)) being a priori unbounded.
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Then we select a disc B′ such that B ⋐ B′ ⋐ Ω and such that u|∂B′ ∈ W 1
2 (∂B′; RM) ⊂

C0(∂B′; RM) which is possible by [Mo], Theorem 3.6.1, c). The maximum principle of
[DLM] gives u ∈ L∞(B′; RM), thus (u)ε ∈ L∞(B; RM) uniformly and again by quoting
[DLM] we deduce

‖uδ‖L∞(B) ≤ const < ∞ .

We proceed as in [BF2] by first showing

∂2uδ ∈ W 1
2,loc(B; RM) (4.1)

uniformly w.r.t. ε. We have by Remark 2.1, e), i), and by (3.2) with γ = 2 and for
η ∈ C∞

0 (B)

∫

B

η2D2Fδ(∇uδ)(∂2∇uδ, ∂2∇uδ) dx

≤ c

∫

B

D2Fδ(∇uδ)(∇η ⊗ ∂2uδ,∇η ⊗ ∂2uδ) dx

≤ c

[
∫

B

|∇η|2Γ
q̃

2
δ dx +

∫

B

|∇η|2 b′(|∂2uδ|)
|∂2uδ|

|∂2uδ|2 dx +

∫

B

|∇η|2a′(|∂1uδ|)
|∂1uδ|

|∂2uδ|2 dx

]

.

The first term on the r.h.s. goes to zero as ε → 0, the third one corresponds to the quantity
S2 introduced in the previous section, and as demonstrated in Section 3 (compare the
discussion of

∫

B
ρ dx) we can control

∫

B

|∇η|2a′(|∂1uδ|)
|∂1uδ|

|∂2uδ|2 dx

in terms of local constants and the quantity

∫

spt η

b(|∂2uδ|)|∂2uδ|2 dx .

But this term is bounded by cloc on account of (3.8). The second term on the r.h.s. cor-
responds to S3 in Section 3, and in Section 3 we showed S3 ≤ cloc. Therefore we get

∫

B

η2D2Fδ(∇uδ)(∂2∇uδ, ∂2∇uδ) dx ≤ cloc

without using (2.5). Combining (2.6) and Remark 2.1, e), i), we deduce from this inequal-
ity that ∫

B

η2|∂2∇uδ|2 dx ≤ cloc ,

and (4.1) follows. Sobolev’s embedding theorem then implies

∂2uδ ∈ Ls
loc(B; RM) (4.2)
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for all s < ∞ uniformly w.r.t. ε.

In a second step we want to prove (3.12), i.e.

a(|∂1uδ|)|∂1uδ|2 ∈ L1
loc(B) (4.3)

uniformly in ε without (2.5). This can be achieved starting from (3.9) by bounding the
integral W2 defined in (3.10) in a different way: to this purpose we recall Remark 2.1, c),
hence we can estimate for t ≥ 1 (once more by (3.6))

M∗
τ

(

|∇η|2 b′(t)

t

)

≤ c(η)M∗
τ

(b′(t)

t

)

≤ c(η)M∗
τ(t

−2b(t)) ≤ c(η)M∗
τ(t

q−2)

≤ c(η, τ)M∗
τ(t

q−2τ) ≤ c(η, τ)tq−2
[
a−1(tq−2)

]2
.

Recalling a′(0) = 0 and using a′′(t) ≥ a0 > 0 we get that a(t) ≥ ct2, i.e. a−1(t) ≤ c
√

t,
and in conclusion

M∗
τ

(

|∇η|2 b′(t)

t

)

≤ c(η, τ)t2q−4 .

This shows
∫

B∩[|∂2uδ|≥1]

M∗
τ

(

|∇η|2 b′(|∂2uδ|)
|∂2uδ|

)

dx ≤ c(η, τ)

∫

spt η

Γq−2
2,δ dx ,

and to the latter integral we can apply (4.2), hence we get (4.3).

Let
Hδ := D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)

1
2 ,

where here in what follows the sum is taken w.r.t. γ = 1, 2. Remark 2.1, e), i), together
with (2.6) applied to a and b gives

c
[
∂γ∂1uδ · ∂γ∂1uδ + ∂γ∂2uδ · ∂γ∂2uδ

]
≤ H2

δ ,

i.e.
|∇2uδ|2 ≤ cH2

δ .

¿From (3.2) it follows
∫

B

ηH2
δ dx ≤ c

∫

B

D2Fδ(∇uδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ) dx

≤ c

[
∫

B

|∇η|2Γ
q̃

2
δ dx +

∫

B

a′(|∂1uδ|)|∂1uδ||∇η|2 dx

+

∫

B

b′(|∂2uδ|)|∂2uδ||∇η|2 dx +

∫

B

a′(|∂1uδ|)
|∂1uδ|

|∂2uδ|2|∇η|2 dx

+

∫

B

b′(|∂2uδ|)
|∂2uδ|

|∂1uδ|2|∇η|2 dx

]

,
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and the first three integrals on the r.h.s. are bounded by a local constant: for the first
one we use Lemma 3.1, the second and the third one are bounded by (3.6) applied to a
and b combined with Lemma 3.1. The fourth one occurs as an upper bound for S2 and
the calculations from Section 3 show

∫

B

a′(|∂1uδ|)
|∂1uδ|

|∂2uδ|2|∇η|2 dx ≤ cloc

on account of (3.8). The fifth integral corresponds to W2 from Section 3 and has already
been discussed after (4.3), where it was outlined how the calculations of Section 3 can be
modified to give (recall (4.2))

∫

B

b′(|∂2uδ|)
|∂2uδ|

|∂1uδ|2|∇η|2 dx ≤ c

[

cloc +

∫

spt η

Γq−2
2,δ dx

]

≤ cloc .

Altogether it follows
Hδ ∈ L2

loc(B)

uniformly in ε > 0, hence ∇uδ ∈ W 1
2,loc(B; R2M) uniformly, and Sobolev’s embedding

theorem implies the uniform local higher integrability of ∇uδ for any finite exponent.
The proof of Theorem 2.2 is complete.

5 Proof of Theorem 2.3

In the scalar case we choose a different way of regularization avoiding the introduction of
an extra power-growth energy. Proceeding as in [BFZ] we first fix a ball B := BR(x0) ⋐ Ω
and consider the mollification (u)ε of our local minimizer u ∈ L∞

loc(Ω). Let uε denote the
unique Lipschitz function minimizing I[·, B] among all Lipschitz maps w: B → R for
boundary values (u)ε, i.e. uε is the Hilbert-Haar solution (see, e.g., [MM], Theorem 4,
p. 162). For the next auxiliary results we refer to [BFZ].

Lemma 5.1. a) Passing to the limit ε → 0 we have (p := 1 + ε̄)

uε ⇁ u in W 1
p (B) ,

∫

B

F (∇uε) dx →
∫

B

F (∇u) dx .

b) ‖uε‖L∞(B) is bounded independent of ε.

Lemma 5.2. The functions uε are of class C1,α(B) ∩ W 2
2,loc(B) for any α < 1.

Lemma 5.3. (Variants of Caccioppoli’s inequality) For any numbers α, β ≥ 0 and for
all η ∈ C∞

0 (B) s.t. 0 ≤ η ≤ 1 we have
∫

B

D2F (∇uε)(∂n∇uε, ∂n∇uε)Γ
α
2
n,εη

2 dx

≤ c(α)

∫

Ω

D2F (∇uε)(∇η,∇η)Γ
α
2
n,ε|∂nuε|2 dx , (5.1)
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and
∫

B

D2F (∇uε)(∂γ∇uε, ∂γ∇uε)Γ̃
β
2
ε η2 dx

≤ c(β)

∫

B

D2F (∇uε)(∇η,∇η)Γ̃
β

2
ε |∇̃uε|2 dx . (5.2)

In (5.2) (and in what follows) we always take the sum w.r.t. γ from 1 to n − 1. c(α),
c(β) denote positive constants independent of ε, and we have set: Γn,ε = 1 + (∂nuε)

2,
Γ̃ε = 1 + |∇̃uε|2, ∇̃ := (∂1, . . . , ∂n−1).

We fix some α ≥ 0 and a function η ∈ C∞
0 (B) such that 0 ≤ η ≤ 1. Writing

∫

B

η2b(|∂nuε|)Γ
α+2

2
n,ε dx

=

∫

B

η2b(|∂nuε|)Γ
α
2
n,ε dx +

∫

B

η2b(|∂nuε|)Γ
α
2
n,ε∂nuε∂nuε dx

and performing an integration by parts in the second integral on the r.h.s., i.e.
∫

B

η2b(|∂nuε|)Γ
α
2
n,ε∂nuε∂nuε dx

= −
∫

B

uε∂n

[
∂nuεη

2b(|∂nuε|)Γ
α
2
n,ε

]
dx ,

analogous calculations as carried out in Section 3 together with Lemma 5.1, b), lead to
the result (compare (3.7))

∫

B

η2b(|∂nuε|)Γ
α+2

2
n,ε dx (5.3)

≤ c

[
∫

B

(η2 + |∇η|2)b(|∂nuε|)Γ
α
2
n,ε dx +

∫

B

η2D2B(∂nuε)(∂n∂nuε, ∂n∂nuε)Γ
α
2
n,ε dx

]

,

whereas for any β ≥ 0 we obtain (see (3.9))
∫

B

η2a(|∇̃uε|)Γ̃
β+2
2

ε dx (5.4)

≤ c

[
∫

B

(η2 + |∇η|2)a(|∇̃uε|)Γ̃
β

2
ε dx +

∫

B

η2D2A(∇̃uε)(∂γ∇̃uε, ∂γ∇̃uε)Γ̃
β

2
ε dx

]

.

On the r.h.s. of (5.3) and (5.4), respectively, we apply (5.1) and (5.2) in order to get
∫

B

η2D2B(∂nuε)(∂n∂nuε, ∂n∂nuε)Γ
α
2
n,ε dx ≤ c(α)

∫

B

D2F (∇uε)(∇η,∇η)Γ
α
2
n,ε|∂nuε|2 dx ,

as well as
∫

B

η2D2A(∇̃uε)(∂γ∇̃uε, ∂γ∇̃uε)Γ̃
β

2
ε dx ≤ c(β)

∫

B

D2F (∇uε)(∇η,∇η)Γ̃
β

2
ε |∇̃uε|2 dx .
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Inserting these inequalities in (5.3), (5.4) and using Remark 2.1, e), i), to obtain an upper
bound for D2F (∇uε)(∇η,∇η) we find

∫

B

η2b(|∂nuε|)Γ
α+2

2
n,ε

≤ c(α)

[
∫

B

(η2 + |∇η|2)b(|∂nuε|)Γ
α
2
n,ε +

∫

B

|∇η|2 b′(|∂nuε|)
|∂nuε|

Γ
α
2
n,ε|∂nuε|2 dx

+

∫

B

|∇η|2a′(|∇̃uε|)
|∇̃uε|

Γ
α+2

2
n,ε dx

]

.

Recalling (3.6) we have

b′(|∂nuε|)
|∂nuε|

Γ
α
2
n,ε|∂nuε|2 ≤ cb(|∂nuε|)Γ

α
2
n,ε ,

hence
∫

B

η2b(|∂nuε|)Γ
α+2

2
n,ε dx

≤ c(α)

[
∫

B

(η2 + |∇η|2)b(|∂nuε|)Γ
α
2
n,ε dx +

∫

B

|∇η|2a′(|∇̃uε|)
|∇̃uε|

Γ
α+2

2
n,ε dx

]

, (5.5)

and in the same way
∫

B

η2a(|∇̃uε|)Γ̃
β+2
2

ε dx

≤ c(β)

[
∫

B

(η2 + |∇η|2)a(|∇̃uε|)Γ̃
β

2
ε dx +

∫

B

|∇η|2 b′(|∂nuε|)
|∂nuε|

Γ̃
β+2

2
ε dx

]

. (5.6)

The next calculations can be made precise easily along the lines of Section 3 by replacing
η2 in (5.5) and (5.6) by η2k for k ∈ N large enough and by using Young’s inequality with
an additional factor τ in order to absorb terms in the l.h.s.’s. In what follows the domain
of integration always is the support of a “hidden testfunction”. If we reduce (5.5) and
(5.6) to the core, then we have

∫

b(|∂nuε|)|∂nuε|α+2 dx

≤ c(α)

[
∫

b(|∂nuε|)|∂nuε|α dx +

∫
a′(|∇̃uε|)
|∇̃uε|

|∂nuε|α+2 dx

]

, (5.7)

and
∫

a(|∇̃uε|)|∇̃uε|β+2 dx

≤ c(β)

[
∫

a(|∇̃uε|)|∇̃uε|β dx +

∫
b′(|∂nuε|)
|∂nuε|

|∇̃uε|β+2 dx

]

. (5.8)
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We discuss the r.h.s. of (5.7): since

b(|∂nuε|)|∂nuε|α = b(|∂nuε|)
α

α+2 |∂nuε|αb(|∂nuε|)
2

2+α

≤
[
b(|∂nuε|)

α
α+2 |∂nuε|α

]α+2
α + b(|∂nuε|) ,

the first integral on the r.h.s. of (5.7) can be absorbed in the l.h.s. (“use τ”) producing
on the r.h.s. a term being bounded by a local constant. Let

K(t) := tb
(
t

1
α+2

)
, t ≥ 0 .

It is easy to check that K is an N -function, and we have an estimate for the conjugate
function:

K∗(s) = sup
t≥0

[ts − K(t)] = sup
t≥0

[
s − b

(
t

1
α+2

)]
t = sup

t≤
[
b−1(s)

]α+2

[
s − b

(
t

1
α+2

)]
t

≤ s
[
b−1(s)

]α+2
.

This gives for the second term on the r.h.s. of (5.7)

∫
a′(|∇̃uε|)
|∇̃uε|

|∂nuε|α+2 dx ≤
∫

K(|∂nuε|α+2) dx +

∫

K∗
(a′(|∇̃uε|)

|∇̃uε|
)

dx ,

and using (3.6) and (∆2) we find

∫

K∗
(a′(|∇̃uε|)

|∇̃uε|
)

dx ≤ c

∫

K∗
(
a(|∇̃uε|)|∇̃uε|−2

)
dx

≤ c

∫

a(|∇̃uε|)|∇̃uε|−2
[
b−1

(
a(|∇̃uε|)|∇̃uε|−2

)]α+2
dx .

We therefore deduce from (5.7)

∫

b(|∂nuε|)|∂nuε|α+2 dx

≤ c(α)

[
∫

a(|∇̃uε|)|∇̃uε|−2
[
b−1

(
a(|∇̃uε|)|∇̃uε|−2

)]α+2
dx + . . .

]

, (5.9)

and in an analogous way (5.8) implies

∫

a(|∇̃uε|)|∇̃uε|β+2 dx

≤ c(β)

[
∫

b(|∂nuε|)|∂nuε|−2
[
a−1

(
b(|∂nuε|)|∂nuε|−2

)]β+2
dx + . . .

]

, (5.10)
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where “. . . ” represent terms being bounded by local constants. Let

m(α) :=

∫

b(|∂nuε|)|∂nuε|α+2 dx ,

M(α) :=

∫

a(|∇̃uε|)|∇̃uε|−2
[
b−1

(
a(|∇̃uε|)|∇̃uε|−2

)]α+2
dx ,

n(β) :=

∫

a(|∇̃uε|)|∇̃uε|β+2 dx ,

N(β) :=

∫

b(|∂nuε|)|∂nuε|−2
[
a−1

(
b(|∂nuε|)|∂nuε|−2

)]β+2
dx .

(5.9) and (5.10) then turn into the inequalities

m(α) ≤ c(α)[M(α) + . . . ] (5.9α)

and
n(β) ≤ c(β)[N(β) + . . . ] . (5.10β)

Suppose for the moment that a(t) = t2. Then M(α) ≤ c(α) for any α ≥ 0, so that by
(5.9α) the same is true for m(α), and this implies

|∂nuε| ∈ Lr
loc(B)

for any finite r uniformly in ε.

This together with Remark 2.1, c), gives N(β) ≤ c(β) for any β ≥ 0, and (5.10β) shows
n(β) ≤ c(β) for all β, i.e.

|∇̃uε| ∈ Lr
loc(B) ,

again for any finite r uniformly in ε.

We return to the general case and claim the existence of α0 > 0 s.t.

M(α0) ≤ c0 . (5.11)

Clearly (5.11) will follow if we have for large enough t the estimate

t−2
[
b−1

(
a(t)t−2

)]α0+2 ≤ c .

By the ∆2-property this inequality will hold if we can prove

a(t) ≤ ct2b
(
t

2
2+α0

)
, t ≫ 1 . (5.12)

Let us discuss the validity of (5.12): from

b(2s) ≤ µb(s) for all s ≥ 0
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we get according to Lemma A.3

b(λs) ≤
[

1 + µ1+ ln(λ)
ln(2)

]

b(s) .

Letting λ = tα0/(2+α0), s = t2/(2+α0) for some α0 being specified later this inequality gives
for t ≫ 1

b(t) ≤ c
[
1 + tγ0

]
b
(

t
2

2+α0

)

≤ ctγ0b
(

t
2

2+α0

)

,

γ0 :=
α0

2 + α0

ln(µ)

ln(2)
.

In particular we see

b(t) ≤ ct2b
(

t
2

2+α0

)

(5.13)

as long as γ0 ≤ 2. So if we define α0 through the equation

α0

2 + α0

ln(µ)

ln(2)
= 2 , (5.14)

then (5.13) together with a(t) ≤ b(t) guarantees (5.12) and hence (5.11).

(5.11) and (5.9α0) show that m(α0) ≤ c0, and by the definition of N(β) we will get

N(β0) ≤ c0 (5.15)

provided that β0 is chosen in such a way that for large t

t−2
[
a−1

(
b(t)t−2

)]β0+2 ≤ ctα0+2 .

This inequality in turn follows from

b(t) ≤ ct2a
(

t
4+α0
2+β0

)

and by (2.5) we may take β0 = α0/2 to get the above estimate leading to (5.15). Next we
claim

M(αl) + N(βl) ≤ cl (5.16l)

for suitable sequences αl, βl, cl. For l = 0 this is true by (5.11) and (5.15) and the choices
of α0, β0. Suppose now that l ≥ 1 and that (5.16l−1) is valid. From N(βl−1) ≤ cl−1 we
deduce quoting (5.10βl−1

) that
n(βl−1) ≤ cl−1

and this together with the definition of M shows

M(αl) ≤ cl , (5.17)
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provided we have for large t

t−2
[
b−1

(
a(t)t−2

)]αl+2 ≤ ctβl−1+2

or (which is the same)

a(t) ≤ ct2b
(

t
4+βl−1
2+αl

)

. (5.18)

Clearly (5.18) is satisfied for the choice

αl = 2 + βl−1 , (5.19)

and (5.19) implies (5.17). Now, (5.17) and (5.9αl
) give m(αl) ≤ cl, and

N(βl) ≤ cl (5.20)

will follow if we require (see the definition of N)

t−2
[
a−1

(
t−2b(t)

)]βl+2 ≤ ctαl+2

for t ≫ 1, i.e.

b(t) ≤ ct2a
(

t
4+αl
2+βl

)

, (5.21)

and we may take

βl =
1

2
αl

on account of (2.5). In conclusion, by (5.17) and (5.20) we have established (5.16l), and
(5.16l) holds for all l if we define α0 according to (5.14) and (recall (5.19)) take

αl = 2 + βl−1 , βl =
1

2
αl .

This gives the recursion

αl = 2 +
1

2
αl−1 ,

hence αl → 4 and βl → 2 as l → ∞, and we have shown (recall that (5.9αl
) and (5.10βl

)
together with (5.16l) give m(αl) + n(βl) ≤ cl)

b(|∂nuε|)|∂nuε|ρ ∈ L1
loc(B) , ρ < 6 ,

a(|∇̃uε|)|∇̃uε|ρ ∈ L1
loc(B) , ρ < 4 ,

uniformly w.r.t. ε. In the particular case a = b or if b(t) ≤ ct2a(t) is assumed we may
choose βl = 2 + αl in (5.21) replacing the requirement βl = αl/2, and at the same time
we may keep the choice of α0 and the relation αl = 2 + βl−1. This implies

αl = 4 + αl−1 , α0 > 0 ,

hence αl → ∞ and βl → ∞ so that for a = b or b(t) ≤ ct2a(t) we arrive at

|∇uε| ∈ Ls
loc(B) for all s < ∞

uniformly in ε.
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6 Examples

We start with a rather standard example of a N -function h being very close to the power
growth case. Here h is of nearly s-growth provided that

cts−ε ≤ h(t) ≤ Cts+ε

for all t ≫ 1, for positive constants c, C and for any ε > 0.

Example 6.1. a) For s ≥ 2 the function

h(t) =
[
(1 + t2)

s
2 − 1

]
ln(1 + t) , t ≥ 0 ,

satisfies (H1), (H2) and (2.6).

b) If s > 1, then
h(t) = ts ln(1 + t) , t ≥ 0 ,

fulfills (H1) and (H2).

Remark 6.1. Of course it is possible to replace ln(1 + t) by iterated variants.

Example 6.2. (compare Remark 2.1, d)) Suppose that the continuous function θ:
[0,∞) → [0,∞) is increasing and satisfies (∆2). Suppose further that θ(0) > 0 and
let

h(t) =

∫ t

0

[
∫ u

0

θ(s) ds

]

du , t ≥ 0 .

Then (H1), (H2) and (2.6) hold for the function h.

In fact, since

h′(t) =

∫ t

0

θ(s) ds , h′′(t) = θ(t) ≥ θ(0) > 0 ,

(H1) clearly holds. We observe

h′(t)

t
=

1

t

∫ t

0

θ(s) ds ≥ 1

t

∫ t

0

θ(0) ds = θ(0) ,

which gives (2.6), and at the same time

h′(t)

t
=

1

t

∫ t

0

θ(s) ds = θ(ξ) ≤ θ(t) = h′′(t) ,

where ξ denotes a suitable number in (0, t). This proves the first part of (H2). For the
second part we argue as follows: we have

h′(t)

t
=

1

t

∫ t

0

θ(s) ds ≥ 1

2
θ(t/2) ,
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i.e.

θ(t) ≤ µθ(t/2) ≤ 2

t
µh′(t)

and in conclusion

h′′(t) ≤ 2µ
h′(t)

t
.

In order to construct “explicit” examples which really “oscillate” between ε̄ + 1 and
h̄ + 1-growth and still satisfy (H1) and (H2) we need an equivalent formulation of (H2)
which clarifies the geometric structure of (H2) in terms of h′.

Suppose there exist 0 < ε̄ ≤ h̄ such that on (0,∞)

h′(t)

tε̄
increases and

h′(t)

th̄
decreases . (H2∗)

Then we have (H2) ⇔ (H2∗), where the equivalence

ε̄
h′(t)

t
≤ h′′(t) ⇔ h′(t)

tε̄
is increasing

is stated in Remark 2.1, b), and where the second equivalence is just a similar observation.

Example 6.3. Suppose that ε̄ < ε1 < h1 < h̄ and that R
+ is the disjoint union of

Intervalls, R
+ =

⋃

i Ii. Then we let

h′ = c1t
h1 on I1 , h′ = c2t

ε1 on I2 , h′ = c3t
h1 on I3 . . . ,

where the positive constants ci are chosen s.t. h′ is of class C0. Then (H2∗) is satisfied,
i.e. we have (H2). Integrating h′ we obtain a function h which satisfies depending on the
choice of the intervalls

ctε2 ≤ h(t) ≤ Cth2

with positive constants c, C and with optimal exponents ε1 ≤ ε2 < h2 ≤ h1. In this sense
the function h is far away from being of power growth.

Remark 6.2. Of course the energy density considered in Example 6.3 is not of class C2.
To overcome this difficulty let us consider the endpoint of one fixed intervall Ii of the
construction. If (·)γ denotes a local mollification around this point with radii less than
γ > 0, then we observe that the a.e. identity

ε1
h′

t
≤ h′′ ≤ h1

h′

t

implies

ε1

(h′

t

)

γ
≤ (h′′)γ ≤ h1

(h′

t

)

γ
.

Since the function h′/t is of class C0 we have for γ sufficiently small

(h′

t

)

γ
≈ h′

t
≈ (h′)γ

t
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and since h′ weakly differentiable we have in addition

(h′′)γ = ((h′)γ)
′ ,

thus (h′)γ is a smooth function satisfying

ε0
(h′)γ

t
≤ ((h′)γ)

′ ≤ h0
(h′)γ

t

with exponents ε̄ ≤ ε0 < ε1 < h1 < h0 ≤ h̄.

Example 6.4. Let us finally mention an example of a N-function which does not satisfy
(H2). Here we choose

θ(t) = cos2(t) + t sin2(t)

and integrate twice to obtain a N-function h which is not covered by our assumptions.
We leave the details to the reader.

Appendix. Elementary properties of N-functions

Consider a N -function h: [0,∞) → [0,∞) of class C2, i.e. we have assumption (H1).

Lemma A.1. a) If we know for all t ≥ 0

th′′(t) ≤ h̄h′(t) (A.1)

for a non-negative constant h̄, then h satisfies a ∆2-condition, i.e. we have (∆2) of
Section 2.

b) Conversely, if we have (∆2) and if in addition h′′ is increasing, i.e. h′ is convex,
then (A.1) holds.

Proof of Lemma A.1.
ad a). According to the non-vanishing of h′ on (0,∞) we can rewrite (A.1) in the form

h′′(t)

h′(t)
≤ h̄

t
for all t > 0

which gives
d

dt

[
ln(h′(t)) − h̄ ln(t)

]
≤ 0 on (0,∞) .

Thus the function t 7→ ln(h′(t)) − h̄ ln(t) is decreasing, in particular

ln(h′(2t)) − h̄ ln(2t) ≤ ln(h′(t)) − h̄ ln(t) ,

i.e.
ln

(

h′(2t)/h′(t)
)

≤ h̄ ln(2)
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and in conclusion
h′(2t) ≤ 2h̄h′(t) for all t > 0 . (A.2)

¿From h(0) = 0 we get using (A.2)

h(2t) =

∫ 2t

0

h′(s) ds = 2

∫ t

0

h′(2s) ds ≤ 2

∫ t

0

2h̄h′(s) ds = 2h̄+1h(t) .

Therefore we have (∆2) with µ = 2h̄+1.

ad b). We show that (∆2) for h implies a similar condition for h′: we have

h(t) =

∫ t

0

h′(s) ds ≥
∫ t

t/2

h′(s) ds ≥ t

2
h′

(
t/2

)
,

since h′ is nonnegative and increasing. This gives

th′(t) ≤ h(2t)

and in conclusion by the ∆2-property of h (s > 0)

h′(2s) ≤ 1

2s
h(4s) ≤ 1

2

1

s
µ2h(s) =

µ2

2

1

s

∫ s

0

h′(t) dt ≤ µ2

2
h′(s) . (A.3)

Next we use our additional assumption that h′′ is increasing: as usual it holds

h′(s) =

∫ s

0

h′′(t) dt ≥
∫ s

s/2

h′′(t) dt

(recall h′(0) = limt→0 h(t)/t = 0) and now we can estimate

∫ s

s/2

h′′(t) dt ≥ s

2
h′′(s/2)

with the result
th′′(t) ≤ h′(2t) .

But with (A.3) this inequality implies (A.1). �

Lemma A.2. If the ∆2-condition (∆2) holds for the function h, then we have

h(t) ≤ h(1)tµ for all t ≥ 1 . (A.4)

Proof of Lemma A.2. Similar to the last step in the proof of b) of Lemma A.1 we have

h(t) =

∫ t

0

h′(s) ds ≥
∫ t

t/2

h′(s) ds ≥ t

2
h′(t/2) ,
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i.e.
sh′(s) ≤ h(2s) .

Using (∆2) we see
sh′(s) ≤ µh(s)

so that for t > 0
h′(t)

h(t)
≤ µ

t
,

which means
d

dt

[
ln(h(t)) − µ ln(t)

]
≤ 0 .

Thus the function t 7→ ln(h(t)) − µ ln(t) is decreasing, for t ≥ 1 it follows

ln(h(t)) − µ ln(t) ≤ ln(h(1)) ,

and (A.4) is established. �

Lemma A.3. If the ∆2-condition holds for the function h, then we get

h(λs) ≤
(

1 + µ1+
ln(λ)
ln(2)

)

h(s) (A.5)

for all λ, s > 0.

Proof of Lemma A.3. If λ ≤ 1, then we just observe h(λs) ≤ h(s). Let λ > 1. Then we
select l ∈ N s.t. λ ∈ [2l−1, 2l] and get

h(λs) ≤ h(2ls) ≤ µh(2l−1s) ≤ µlh(s) .

By the choice of l we have λ ≥ 2l−1, i.e. l ≤ 1 + ln(λ)
ln(2)

, and (A.5) follows by combining
both cases. �
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