Universität des Saarlandes

Fachrichtung 6.1 - Mathematik

Preprint Nr. 202

Variational integrals of splitting-type: higher integrability under general growth conditions

Michael Bildhauer and Martin Fuchs

Saarbrücken 2007

Variational integrals of splitting-type: higher integrability under general growth conditions

Michael Bildhauer
Saarland University
Department of Mathematics
P.O. Box 151150
D-66041 Saarbrücken Germany
bibi@math.uni-sb.de

Martin Fuchs
Saarland University
Department of Mathematics
P.O. Box 151150
D-66041 Saarbrücken
Germany
fuchs@math.uni-sb.de

Edited by
FR 6.1 - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany

Fax: $\quad+496813024443$
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

Besides other things we prove that if $u \in L_{\text {loc }}^{\infty}\left(\Omega ; \mathbb{R}^{M}\right), \Omega \subset \mathbb{R}^{n}$, locally minimizes the energy $$
\int_{\Omega}\left[a(|\tilde{\nabla} u|)+b\left(\left|\partial_{n} u\right|\right)\right] \mathrm{d} x
$$ $\tilde{\nabla}:=\left(\partial_{1}, \ldots, \partial_{n-1}\right)$, with N-functions $a \leq b$ having the Δ_{2}-property, then $\left|\partial_{n} u\right|^{2} b\left(\left|\partial_{n} u\right|\right) \in L_{l o c}^{1}(\Omega)$. Moreover, the condition $$
\begin{equation*} b(t) \leq \text { const } t^{2} a\left(t^{2}\right) \tag{*} \end{equation*}
$$ for all large values of t implies $|\tilde{\nabla} u|^{2} a(|\tilde{\nabla} u|) \in L_{l o c}^{1}(\Omega)$. If $n=2$, then these results can be improved up to $|\nabla u| \in L_{l o c}^{s}(\Omega)$ for all $s<\infty$ without the hypothesis (*). If $n \geq 3$ together with $M=1$, then higher integrability for any exponent holds under more restrictive assumptions than $(*)$.

1 Introduction

As a first step towards the question of (partial) regularity of weak local minimizers u : $\mathbb{R}^{n} \supset \Omega \rightarrow \mathbb{R}^{M}$ of the variational integral

$$
I[u, \Omega]=\int_{\Omega} F(\nabla u) \mathrm{d} x
$$

we want to analyze the local higher integrability properties of ∇u concentrating on the so-called anisotropic case. The most prominent example leading to anisotropic energies is given by integrands F of anisotropic (p, q)-growth with exponents $1<p \leq q<\infty$, which by definition satisfy an estimate of the form

$$
\begin{equation*}
m_{1}\left[|Z|^{p}-1\right] \leq F(Z) \leq m_{2}\left[|Z|^{q}+1\right], \quad Z \in \mathbb{R}^{n M} \tag{1.1}
\end{equation*}
$$

m_{1}, m_{2} denoting positive constants. As it was discovered by Giaquinta [Gi] (and later re-investigated by Hong [Ho]) one can not expect any regularity of local minimizers, if p and q are too far apart, and this even concerns the scalar situation, i.e. the case $M=1$. Observing that (1.1) follows from the anisotropic convexity condition

$$
\begin{equation*}
\lambda\left(1+|Z|^{2}\right)^{\frac{p-2}{2}}|Y|^{2} \leq D^{2} F(Z)(Y, Y) \leq \Lambda\left(1+|Z|^{2}\right)^{\frac{q-2}{2}}|Y|^{2} \tag{1.2}
\end{equation*}
$$

$Y, Z \in \mathbb{R}^{n M}$, Marcellini [Ma1] and Fusco and Sbordone [FS] showed: if $M=1$ and if (1.2) or some weaker variant hold, then the gradient of a local minimizer is locally bounded provided

$$
\begin{equation*}
q \leq c(n) p \tag{1.3}
\end{equation*}
$$

AMS Subject Classification: 49 N 60

Keywords: decomposable variational integrals, local minimizers, higher integrability, anisotropic problems, nonstandard growth conditions
for a constant $c(n) \rightarrow \infty$ as $n \rightarrow \infty$, whereas, e.g., for $n=2$ (1.3) can be dropped. If we pass to the vector case, then there are strong regularity results due to Marcellini [Ma3] and Marcellini and Papi [MP] for integrands of the special form $F=F(|Z|)$, whereas Esposito, Leonetti and Mingione [ELM1] studied more general densities F and proved

$$
\begin{equation*}
\nabla u \in L_{l o c}^{q}\left(\Omega ; \mathbb{R}^{n M}\right) \tag{1.4}
\end{equation*}
$$

working with a relaxed version of (1.2) and assuming

$$
\begin{equation*}
q<p+2 \min \{1, p / n\} \tag{1.5}
\end{equation*}
$$

so that as in (1.3) the range of anisotropy becomes smaller as $n \rightarrow \infty$, if (1.5) is imposed.
An intermediate situation occurs if in addition to (1.2) F is of the form $F\left(\left|\partial_{1} u\right|, \ldots,\left|\partial_{n} u\right|\right)$. Then - by the maximum principle proved in $[\mathrm{DLM}]$ - it makes sense to consider local minima of class $L_{\text {loc }}^{\infty}\left(\Omega ; \mathbb{R}^{M}\right)$, and in [ELM2] it is shown that now the dimensionless condition

$$
\begin{equation*}
q<p+2 \tag{1.6}
\end{equation*}
$$

implies

$$
\begin{equation*}
\nabla u \in L_{l o c}^{r}\left(\Omega ; \mathbb{R}^{n M}\right) \quad \text { for all } r<\frac{n p}{n-p+q-2} \tag{1.7}
\end{equation*}
$$

However note that for large n (1.7) is a weaker result than (1.4), i.e. (1.7) does not give (1.4). The local integrability property (1.4) under the hypothesis (1.6) together with $u \in L_{l o c}^{\infty}\left(\Omega ; \mathbb{R}^{M}\right)$ has been proved in [Bi], Theorem 5.12. for integrands of the form $F(\nabla u)=F\left(\left|\partial_{1} u\right|, \ldots,\left|\partial_{n} u\right|\right)$, and it is further shown that this requirement concerning F even can be dropped if $M=1$. For completeness we like to mention an earlier contribution of Choe [Ch] concerning bounded local minima in the scalar case but replacing (1.6) by the stronger condition $q<p+1$ and imposing the structure $F=F(|\nabla u|)$.

If we continue our discussion of local minima u from the space $L_{l o c}^{\infty}\left(\Omega ; \mathbb{R}^{M}\right)$, then the results described above can be improved by adjusting the class of integrands F to anisotropic power growth which means that for example we have an additive decomposition of the integrand F in the sense that $\left(\tilde{\nabla} u:=\left(\partial_{1} u, \ldots, \partial_{n-1} u\right)\right)$

$$
\begin{equation*}
F(\nabla u)=f(\tilde{\nabla} u)+g\left(\partial_{n} u\right) \tag{1.8}
\end{equation*}
$$

where f is of p-growth and g is of q-growth with $p \leq q$, and where in case $M>1$ we require in addition that

$$
f(\tilde{\nabla} u)=f_{1}\left(\left|\partial_{1} u\right|, \ldots,\left|\partial_{n-1} u\right|\right), \quad g\left(\partial_{n} u\right)=g_{1}\left(\left|\partial_{n} u\right|\right) .
$$

Then we proved in [BF2] and [BFZ]:

- $\left|\partial_{n} u\right| \in L_{l o c}^{q+2}(\Omega) ;$
- $q \leq 2 p+2 \Rightarrow|\tilde{\nabla} u| \in L_{\text {loc }}^{p+2}(\Omega)$;
- $M=1$ or $n=2 \Rightarrow|\nabla u| \in L_{\text {loc }}^{t}(\Omega)$ for all $t<\infty$.

Moreover, we used these higher integrability results to obtain (partial) interior $C^{1, \alpha_{-}}$ regularity (see also [BF3]) in the general vector case $n \geq 3$ together with $M \geq 2$.

Inspired by Marcellini's paper [Ma2] we are now going to analyze the integrability properties of ∇u for local minimizers $u \in L_{l o c}^{\infty}\left(\Omega ; \mathbb{R}^{M}\right)$ if F is of splitting-type (1.8) with f and g generated by N-functions $a, b:[0, \infty) \rightarrow[0, \infty)$. Let us suppose for simplicity of the exposition that

$$
F(\nabla u)=a(|\tilde{\nabla} u|)+b\left(\left|\partial_{n} u\right|\right)
$$

with N-functions $a \leq b$ having the Δ_{2}-property (see Section 2 for details). Then we have (compare Theorem 2.1-2.3):

- $b\left(\left|\partial_{n} u\right|\right)\left|\partial_{n} u\right|^{2} \in L_{l o c}^{1}(\Omega)$;
- $b(t) \leq c t^{2} a\left(t^{2}\right)$ for large $t \Rightarrow a(|\tilde{\nabla} u|)|\tilde{\nabla} u|^{2} \in L_{l o c}^{1}(\Omega)$;
- $n=2$ and we have at least quadratic growth $\Rightarrow|\nabla u| \in L_{\text {loc }}^{s}$ for all $s<\infty$,
where now " $b(t) \leq c t^{2} a\left(t^{2}\right)$ " replaces " $q \leq 2 p+2$ ".
If the case $M=1$ is considered, then - apart from the particular choice $a(t)=t^{2}-$ we did not succeed to obtain the local integrability of ∇u for any exponent without a condition relating a and b. In fact, this is not surprising since N-functions are allowed to differ essentially from power-growth behaviour. A more detailed explanation will be given in Section 6.

We think that our results are even new in the isotropic case $a=b$: if we assume

$$
F(\nabla u)=a(|\tilde{\nabla} u|)+a\left(\left|\partial_{n} u\right|\right)
$$

together with $M=1$, then we get that $|\nabla u| \in L_{\text {loc }}^{t}(\Omega)$ for any $t<\infty$, and this cannot be deduced from Marcellini's work [Ma2] since his contributions just cover the case $F(\nabla u)=a(|\nabla u|)$ but allowing N-functions a being more general than the ones considered here.

Our paper is organized as follows: in Section 2 we fix our notation and state our results precisely, Section 3 contains the general vector case, in Section 4 we study the case $\Omega \subset \mathbb{R}^{2}$, and in Section 5 we investigate the scalar situation. A list of examples together with a discussion of our hypotheses can be found in Section 6. Finally, some technical details concerning N-functions are summarized in an appendix.

2 Notation and results

Suppose that we are given N-functions $a, b:[0, \infty) \rightarrow[0, \infty)$ of class C^{2} which according to [Ad] means that for $h:=a, h:=b$ it holds
h is strictly increasing and convex satisfying $\quad \lim _{t \downarrow 0} \frac{h(t)}{t}=0, \quad \lim _{t \rightarrow \infty} \frac{h(t)}{t}=\infty$.
Our second hypothesis reads as: there exist $\bar{\varepsilon}>0$ and $\bar{h}>0$ such that for all $t \geq 0$

$$
\begin{equation*}
\bar{\varepsilon} \frac{h^{\prime}(t)}{t} \leq h^{\prime \prime}(t) \leq \bar{h} \frac{h^{\prime}(t)}{t} \tag{H2}
\end{equation*}
$$

A discussion of (H2) and several examples of functions h satisfying (H1) and (H2) are given in Section 6, here we just collect some elementary consequences of our hypotheses.

Remark 2.1. a) Hypothesis (H1) implies

$$
h(0)=0=h^{\prime}(0), \quad h^{\prime}(t)>0 \quad \text { for all } t>0,
$$

where the strict positive sign of h^{\prime} follows from the convexity and the strict monotonicity of h. Note that $h^{\prime \prime}(0)=\lim _{t \rightarrow 0} h^{\prime}(t) / t$, and therefore (H2) means for $t=0$ that

$$
\bar{\varepsilon} h^{\prime \prime}(0) \leq h^{\prime \prime}(0) \leq \bar{h} h^{\prime \prime}(0),
$$

hence $\bar{\varepsilon} \leq 1 \leq \bar{h}$ in case $h^{\prime \prime}(0) \neq 0$.
b) The l.h.s. inequality of (H2) gives with $p:=1+\bar{\varepsilon}$

$$
h(t) \geq c t^{p} .
$$

In fact we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \ln \left(h^{\prime}(t)\right) \geq \bar{\varepsilon} \frac{\mathrm{d}}{\mathrm{~d} t} \ln (t)
$$

which implies that the function $\ln \left(h^{\prime}(t)\right)-\bar{\varepsilon} \ln (t)$ is increasing, thus $(t \geq 1)$

$$
h^{\prime}(t) \geq h^{\prime}(1) t^{\bar{\varepsilon}}
$$

and the claim follows by integrating this inequality.
c) According to Lemma A.1, a), it follows from (H1) and the r.h.s. of inequality (H2) that h fullfils a global Δ_{2}-condition, i.e.

$$
\begin{equation*}
h(2 t) \leq \mu h(t) \quad \text { for all } t \geq 0 \tag{2}
\end{equation*}
$$

for a suitable constant $\mu>0$. In particular, by Lemma A. 2 there exists an exponent q such that for large t

$$
h(t) \leq c t^{q} .
$$

This is also a direct consequence of the r.h.s. of (H2) with the choice $q=1+\bar{h}$.
d) Conversely, if h satisfies (H1) and has the Δ_{2}-property, then the r.h.s. of inequality (H2) holds under the additional assumption that $h^{\prime \prime}$ is increasing (see Lemma A.1, b)) which is equivalent to the convexity of h^{\prime}. At the same time convexity of h^{\prime} implies

$$
0=h^{\prime}(0) \geq h^{\prime}(t)+h^{\prime \prime}(t)(-t),
$$

and this inequality shows that the l.h.s. inequality of (H2) is always satisfied under the extra assumption that h^{\prime} is convex. Thus, if $h \in C^{3}([0, \infty))$ is any N-function with the Δ_{2}-property and $h^{(3)} \geq 0$, then we have (H2).
e) Letting $H(Z):=h(|Z|), Z \in \mathbb{R}^{k}$, we have by elementary calculations

$$
\min \left\{h^{\prime \prime}(|Z|), \frac{h^{\prime}(|Z|)}{|Z|}\right\}|Y|^{2} \leq D^{2} H(Z)(Y, Y) \leq \max \left\{h^{\prime \prime}(|Z|), \frac{h^{\prime}(|Z|)}{|Z|}\right\}|Y|^{2},
$$

and (H2) gives for all $Y, Z \in \mathbb{R}^{k}$
i) $\lambda \frac{h^{\prime}(|Z|)}{|Z|}|Y|^{2} \leq D^{2} H(Z)(Y, Y) \leq \Lambda \frac{h^{\prime}(Z)}{|Z|}|Y|^{2}$.

In particular we observe that the function H is strictly convex.
ii) $\left|D^{2} H(Z)\right| \leq c\left(1+|Z|^{2}\right)^{\frac{q-2}{2}}$.

Here ii) is a consequence of i) and the growth of h, see Remark 3.1 for details.
Now given $n \geq 2, M \geq 1$ we write

$$
Z=\left(Z_{1}, \ldots, Z_{n}\right)=\left(\tilde{Z}, Z_{n}\right), \quad \tilde{Z}:=\left(Z_{1}, \ldots, Z_{n-1}\right), \quad Z_{i} \in \mathbb{R}^{M}, \quad i=1, \ldots, n
$$

for an arbitrary matrix $Z \in \mathbb{R}^{n M}$. If Ω is an open set and if $u: \Omega \rightarrow \mathbb{R}^{M}$ is a (weakly) differentiable function, then the Jacobian matrix $\nabla u=\left(\partial_{1} u, \ldots, \partial_{n} u\right)$ is decomposed as $\nabla u=\left(\tilde{\nabla} u, \partial_{n} u\right)$ with $\tilde{\nabla} u:=\left(\partial_{1} u, \ldots, \partial_{n-1} u\right)$. To our N-functions a and b we associate the functions $\mathcal{A}: \mathbb{R}^{(n-1) M} \rightarrow[0, \infty), \mathcal{B}: \mathbb{R}^{M} \rightarrow[0, \infty)$,

$$
\mathcal{A}(\tilde{Z}):=a(|\tilde{Z}|), \quad \mathcal{B}\left(Z_{n}\right):=b\left(\left|Z_{n}\right|\right), \quad Z \in \mathbb{R}^{n M}
$$

and define the strictly convex energy density

$$
\begin{equation*}
F(Z):=\mathcal{A}(\tilde{Z})+\mathcal{B}\left(Z_{n}\right), \quad Z \in \mathbb{R}^{n M} \tag{2.1}
\end{equation*}
$$

Recalling Remark 2.1, c), we have the upper bound

$$
\begin{equation*}
F(Z) \leq C\left[|Z|^{q}+1\right] \quad \text { for all } Z \in \mathbb{R}^{n M} \tag{2.2}
\end{equation*}
$$

Let us finally assume

$$
\begin{equation*}
a(t) \leq b(t) \tag{2.3}
\end{equation*}
$$

for large values of t.

Introducing the variational integral

$$
\begin{equation*}
I[u, \Omega]:=\int_{\Omega} F(\nabla u) \mathrm{d} x \tag{2.4}
\end{equation*}
$$

it is reasonable to call a function u from the space $W_{1, l o c}^{1}\left(\Omega ; \mathbb{R}^{M}\right)$ (compare [Ad] for a definition of Sobolev and related spaces) a local minimizer of the functional from (2.4) if and only if $I\left[u, \Omega^{\prime}\right]<\infty$ and $I\left[u, \Omega^{\prime}\right] \leq I\left[v, \Omega^{\prime}\right]$ for all subdomains Ω^{\prime} with compact closure in Ω and all $v \in W_{1, l o c}^{1}\left(\Omega ; \mathbb{R}^{M}\right)$ s.t. $\operatorname{spt}(u-v) \subset \Omega^{\prime}$.

Let us now state our results:
Theorem 2.1. (general vector case) Suppose that a, b satisfy (H1) and (H2). Consider a local minimizer $u \in W_{1, l o c}^{1}\left(\Omega ; \mathbb{R}^{M}\right)$ of the energy (2.4) with F defined in (2.1). Suppose further that u is locally bounded. Then we have:
a) $b\left(\left|\partial_{n} u\right|\right)\left|\partial_{n} u\right|^{2}$ is in the space $L_{l o c}^{1}(\Omega)$.
b) Let us further assume that we have

$$
\begin{equation*}
b(t) \leq c t^{2} a\left(t^{2}\right) \quad \text { for large } t \geq 0 \text { and a constant } c>0 . \tag{2.5}
\end{equation*}
$$

Then we obtain $a(|\tilde{\nabla} u|)|\tilde{\nabla} u|^{2} \in L_{l o c}^{1}(\Omega)$.
c) If $a=b$, then $a(|\nabla u|)|\nabla u|^{2} \in L_{l o c}^{1}(\Omega)$.

Remark 2.2. a) The restriction to the particular variational integral

$$
\int_{\Omega}\left[a(|\tilde{\nabla} u|)+b\left(\left|\partial_{n} u\right|\right)\right] \mathrm{d} x
$$

is just for the simplicity of the exposition. Of course we can consider more general integrals of splitting type, e.g.

$$
\int_{\Omega}\left[f(\tilde{\nabla} u)+g\left(\partial_{n} u\right)\right] \mathrm{d} x
$$

provided the growth and convexity properties of f and g can be described in terms of N-functions a, b in an obvious way. Moreover, in this more general case we must have $f(\tilde{\nabla} u)=f\left(\left|\partial_{1} u\right|, \ldots,\left|\partial_{n-1} u\right|\right), g\left(\partial_{n} u\right)=g\left(\left|\partial_{n} u\right|\right)$ in order to apply the
 concern alternative decompositions of ∇u : if for example ∇u is formed by the two submatrices $(\nabla u)_{1},(\nabla u)_{2}$ or if we replace $\tilde{\nabla} u$ by ∇u and $\partial_{n} u$ by some part $\hat{\nabla} u$ of ∇u, then we have corresponding results for locally bounded local minimizers of

$$
\int_{\Omega}\left[a\left(\left|(\nabla u)_{1}\right|\right)+b\left(\left|(\nabla u)_{2}\right|\right)\right] \mathrm{d} x
$$

and of

$$
\int_{\Omega}[a(|\nabla u|)+b(|\hat{\nabla} u|)] \mathrm{d} x .
$$

b) Theorem 2.1 corresponds to Theorem 1, a), b), in [BF2], where the anisotropic (p, q)-case is considered and where (2.5) reads as $q \leq 2 p+2$.
Theorem 2.2. ($2 D$ vector case) Consider a domain $\Omega \subset \mathbb{R}^{2}$. Suppose that a, b satisfy (H1), (H2) and in addition: there exists $h_{0}>0$ such that

$$
\begin{equation*}
\frac{h^{\prime}(t)}{t} \geq h_{0} \quad \text { on }[0, \infty) \tag{2.6}
\end{equation*}
$$

Moreover, let (2.3) hold. Then, if $u \in W_{1, \text { loc }}^{1}\left(\Omega ; \mathbb{R}^{M}\right)$ denotes an arbitrary local minimizer of the energy from (2.4), we have $|\nabla u| \in L_{\text {loc }}^{t}(\Omega)$ for any finite t.
Remark 2.3. a) We have the same comments as in Remark 2.2, a).
b) If should be emphasized that (2.5) is not required if $n=2$.
c) (2.6) implies that F is of superquadratic growth, i.e.

$$
c\left[|Z|^{2}-1\right] \leq F(Z) \quad \text { for all } Z \in \mathbb{R}^{n M},
$$

in particular we have $u \in W_{2, l o c}^{1}\left(\Omega ; \mathbb{R}^{M}\right)$ for the local minimizer in Theorem 2.2.
Theorem 2.3. (scalar case) Let $M=1$ and suppose that the functions a, b satisfy (H1), (H2) and (2.3). Consider a local minimizer u from the class $W_{1, l o c}^{1} \cap L_{l o c}^{\infty}(\Omega)$.
a) If (2.5) holds, then we have

$$
\begin{array}{cl}
b\left(\left|\partial_{n} u\right|\right)\left|\partial_{n} u\right|^{r} \in L_{l o c}^{1}(\Omega) & \text { for all } r<6, \\
a(|\tilde{\nabla} u|)\left||\tilde{\nabla} u|^{r} \in L_{l o c}^{1}(\Omega)\right. & \text { for all } r<4 .
\end{array}
$$

b) For the particular case $a(t)=t^{2}$ it follows $|\nabla u| \in L_{\text {loc }}^{r}(\Omega)$ for all $r<\infty$ and this is true without (2.5).
c) If (2.5) is replaced by the stronger assumption

$$
\begin{equation*}
b(t) \leq \text { const }^{2} a(t) \quad \text { for large } t, \tag{2.7}
\end{equation*}
$$

then we have $|\nabla u| \in L_{\text {loc }}^{r}(\Omega)$ for all $r<\infty$, so that local higher integrability for any finite exponent holds in the "isotropic" case $a=b$.
Remark 2.4. a) The results of Theorem 2.3 extend to the cases described in Remark 2.1, a).
b) If we compare Theorem 2.3 with the anisotropic power-growth case studied in [BFZ], then in the present setting of N-functions we have as expected much weaker results: we need condition (2.5) to gain some higher integrability of $\partial_{n} u$ and $\tilde{\nabla} u$, whereas the local higher integrability of ∇u for any finite exponent can only be achieved under stronger assumptions or by specifying a or b. For instance, if $a(t)=t^{2}$, then we do not need additional hypotheses for b.
c) The reader should note that (2.7) is a (weaker) variant of (1.6) formulated in terms of N-functions which means that with Theorem 2.3, c) we have an extension of Theorem 5.12 from [Bi] to the class of splitting functionals being in addition not necessarily of power growth.

3 Proof of Theorem 2.1

We proceed as in [BF2] by fixing a ball $B:=B_{R}\left(x_{0}\right) \Subset \Omega$. For small $\varepsilon>0$ let $(u)_{\varepsilon}$ denote the mollification of u. By Remark 2.1, c), we have with $q=1+\bar{h}, \bar{h}$ being defined in (H2),

$$
\begin{equation*}
b(t) \leq c\left(t^{q}+1\right) \quad \text { for all } t \geq 0 \tag{3.1}
\end{equation*}
$$

Fixing $\tilde{q}>\max \{2, q\}$, we let

$$
\delta:=\delta(\varepsilon):=\left[1+\varepsilon^{-1}+\left\|\nabla(u)_{\varepsilon}\right\|_{L^{\tilde{q}}(B)}^{2 \tilde{q}}\right]^{-1}
$$

and define

$$
F_{\delta}(Z)=\delta\left(1+|Z|^{2}\right)^{\frac{\tilde{q}}{2}}+F(Z), \quad Z \in \mathbb{R}^{n M}
$$

We further consider the unique solution u_{δ} of

$$
I_{\delta}[w, B]:=\int_{B} F_{\delta}(\nabla w) \mathrm{d} x \rightarrow \min \quad \text { in } \quad \stackrel{\circ}{W}_{\tilde{q}}^{1}\left(B ; \mathbb{R}^{M}\right)+(u) \varepsilon
$$

Lemma 3.1. a) We have as $\varepsilon \rightarrow 0: u_{\delta} \rightharpoondown u$ in $W_{p}^{1}\left(B ; \mathbb{R}^{M}\right)$, where $p=1+\bar{\varepsilon}$ with $\bar{\varepsilon}$ from (H2);

$$
\delta \int_{B}\left(1+\left|\nabla u_{\delta}\right|^{2}\right)^{\frac{\tilde{2}}{2}} \mathrm{~d} x \rightarrow 0 ; \quad \int_{B} F\left(\nabla u_{\delta}\right) \mathrm{d} x \rightarrow \int_{B} F(\nabla u) \mathrm{d} x .
$$

b) $\left\|u_{\delta}\right\|_{L^{\infty}(B)}$ is bounded independent of ε.
c) ∇u_{δ} is in the space $L_{\text {loc }}^{\infty} \cap W_{2, \text { loc }}^{1}\left(B ; \mathbb{R}^{n M}\right)$.

Proof of Lemma 3.1. a) is standard, compare, e.g., [BF1]. b) follows from the maximum principle of $[\mathrm{DLM}]$, for c) we can quote $[\mathrm{GM}]$ and $[\mathrm{Ca}]$.

Remark 3.1. (3.1) combined with [Da], Lemma 2.2, p. 156, gives

$$
|b(t+\varepsilon)-b(t)| \leq c\left(1+|t+\varepsilon|^{q-1}+|t|^{q-1}\right)|\varepsilon|,
$$

hence

$$
0 \leq b^{\prime}(t) \leq c\left(1+t^{q-1}\right) \quad \text { for } t \geq 0
$$

Applying Remark 2.1, e), i), to \mathcal{B} and the vectors $\tau \in \mathbb{R}^{M},|\tau| \geq 1, \sigma \in \mathbb{R}^{M}$ we therefore get

$$
\begin{aligned}
D^{2} \mathcal{B}(\tau)(\sigma, \sigma) & \leq c \frac{b^{\prime}(|\tau|)}{|\tau|}|\sigma|^{2} \\
& \leq c|\tau|^{-1}\left(1+|\tau|^{q-1}\right)|\sigma|^{2} \\
& \leq c\left(1+|\tau|^{2}\right)^{\frac{q-2}{2}}|\sigma|^{2},
\end{aligned}
$$

and for $|\tau| \leq 1$ the bound

$$
D^{2} \mathcal{B}(\tau)(\sigma, \sigma) \leq c\left(1+|\tau|^{2}\right)^{\frac{q-2}{2}}|\sigma|^{2}
$$

follows from Remark 2.1, e), i) and the l.h.s. of (H2). Analogous calculations using (2.3) imply

$$
D^{2} \mathcal{A}(\tau)(\sigma, \sigma) \leq c\left(1+|\tau|^{2}\right)^{\frac{q-2}{2}}|\sigma|^{2}
$$

now for all $\tau, \sigma \in \mathbb{R}^{(n-1) M}$, so that by (2.1)

$$
D^{2} F(Z)(Y, Y) \leq c\left(1+|Z|^{2}\right)^{\frac{q-2}{2}}|Y|^{2} \quad \text { for all } Z, Y \in \mathbb{R}^{n M}
$$

Since we have chosen $\tilde{q}>q$, we see from this inequality that the arguments of [GM] actually can be applied.

Lemma 3.2. (Caccioppoli-type inequality) For any $\eta \in C_{0}^{\infty}(B)$ and any $\gamma \in\{1, \ldots, n\}$ we have

$$
\begin{equation*}
\int_{B} \eta^{2} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\partial_{\gamma} \nabla u_{\delta}, \partial_{\gamma} \nabla u_{\delta}\right) \mathrm{d} x \leq c \int_{B} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\nabla \eta \otimes \partial_{\gamma} u_{\delta}, \nabla \eta \otimes \partial_{\gamma} u_{\delta}\right) \mathrm{d} x . \tag{3.2}
\end{equation*}
$$

(No summation w.r.t. γ, \otimes denotes the tensor product and c is independent of ε and η.)
Proof of Lemma 3.2. Compare, e.g. [BF1], proof of Lemma 3.1. Inequality (3.2) follows from this reference by applying the Cauchy-Schwarz inequality to the bilinear form $D^{2} F_{\delta}\left(\nabla u_{\delta}\right)$.

We let

$$
\Gamma_{\delta}:=1+\left|\nabla u_{\delta}\right|^{2}, \quad \tilde{\Gamma}_{\delta}:=1+\left|\tilde{\nabla} u_{\delta}\right|^{2}, \quad \Gamma_{n, \delta}:=1+\left|\partial_{n} u_{\delta}\right|^{2}
$$

and consider $\eta \in C_{0}^{\infty}(B), 0 \leq \eta \leq 1, \eta \equiv 1$ on $B_{r}\left(x_{0}\right),|\nabla \eta| \leq c /(R-r)$, where $r<R$. For any $k \in \mathbb{N}$ we have using integration by parts as well as the bound for u_{δ}

$$
\begin{align*}
\int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right)\left|\partial_{n} u_{\delta}\right|^{2} \mathrm{~d} x= & -\int_{B} u_{\delta} \cdot \partial_{n}\left[\eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \partial_{n} u_{\delta}\right] \mathrm{d} x \\
\leq & c\left[\int_{B} \eta^{2 k}\left|\partial_{n} \partial_{n} u_{\delta}\right| b\left(\left|\partial_{n} u_{\delta}\right|\right) \mathrm{d} x\right. \\
& +\int_{B} \eta^{2 k-1}|\nabla \eta| b\left(\left|\partial_{n} u_{\delta}\right|\right)\left|\partial_{n} u_{\delta}\right| \mathrm{d} x \\
& \left.+\int_{B} \eta^{2 k} b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)\left|\partial_{n} \partial_{n} u_{\delta}\right|\left|\partial_{n} u_{\delta}\right| \mathrm{d} x\right] \\
=: & c\left[T_{1}+T_{2}+T_{3}\right], \quad c=c\left(n, N, k,\|u\|_{L^{\infty}(B)}\right) \tag{3.3}
\end{align*}
$$

We discuss the terms T_{i} : from Young's inequality we get

$$
T_{2} \leq \tau \int_{B} \eta^{2 k}\left|\partial_{n} u_{\delta}\right|^{2} b\left(\left|\partial_{n} u_{\delta}\right|\right) \mathrm{d} x+c(\tau) \int_{B} \eta^{2 k-2}|\nabla \eta|^{2} b\left(\left|\partial_{n} u_{\delta}\right|\right) \mathrm{d} x
$$

for any $\tau>0$, and the first term on the r.h.s. can be absorbed into the l.h.s. of (3.3) for small τ, whereas the second integral is bounded by a local constant on account of Lemma 3.1. This together with (3.3) shows

$$
\begin{equation*}
\int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \Gamma_{n, \delta} \mathrm{~d} x \leq c[c_{l o c}+\underbrace{\int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \mathrm{d} x}_{\leq c_{l o c}}+T_{1}+T_{3}] \tag{3.4}
\end{equation*}
$$

Here $c_{l o c}$ denotes a local constant depending in particular on R and r but being independent of ε. Again with Young's inequality we get

$$
T_{1} \leq \tau \int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \Gamma_{n, \delta} \mathrm{~d} x+c(\tau) \int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right)\left|\partial_{n} \partial_{n} u_{\delta}\right|^{2} \Gamma_{n, \delta}^{-1} \mathrm{~d} x
$$

Observing

$$
b\left(\left|\partial_{n} u_{\delta}\right|\right)=\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t} b\left(t\left|\partial_{n} u_{\delta}\right|\right) \mathrm{d} t=\left|\partial_{n} u_{\delta}\right| \int_{0}^{1} b^{\prime}\left(t\left|\partial_{n} u_{\delta}\right|\right) \mathrm{d} t \leq\left|\partial_{n} u_{\delta}\right| b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)
$$

(note: b^{\prime} is increasing) we find

$$
T_{1} \leq \tau \int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \Gamma_{n, \delta} \mathrm{~d} x+c(\tau) \int_{B} \eta^{2 k} \frac{b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)}{\left|\partial_{n} u_{\delta}\right|}\left|\partial_{n} \partial_{n} u_{\delta}\right|^{2} \mathrm{~d} x
$$

Now we use Remark 2.1, e), i), for \mathcal{B} to estimate

$$
\int_{B} \eta^{2 k} \frac{b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)}{\left|\partial_{n} u_{\delta}\right|}\left|\partial_{n} \partial_{n} u_{\delta}\right|^{2} \mathrm{~d} x \leq \int_{B} \eta^{2 k} D^{2} \mathcal{B}\left(\partial_{n} u_{\delta}\right)\left(\partial_{n} \partial_{n} u_{\delta}, \partial_{n} \partial_{n} u_{\delta}\right) \mathrm{d} x
$$

and get for $\tau \ll 1$ from (3.4)

$$
\begin{equation*}
\int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \Gamma_{n, \delta} \mathrm{~d} x \leq c\left[c_{l o c}+\int_{B} \eta^{2 k} D^{2} \mathcal{B}\left(\partial_{n} u_{\delta}\right)\left(\partial_{n} \partial_{n} u_{\delta}, \partial_{n} \partial_{n} u_{\delta}\right) \mathrm{d} x+T_{3}\right] \tag{3.5}
\end{equation*}
$$

Finally we observe (using Young's inequality)

$$
T_{3} \leq \tau \int_{B} \eta^{2 k} b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)\left|\partial_{n} u_{\delta}\right|^{3} \mathrm{~d} x+c(\tau) \int_{B} \eta^{2 k} \frac{b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)}{\left|\partial_{n} u_{\delta}\right|}\left|\partial_{n} \partial_{n} u_{\delta}\right|^{2} \mathrm{~d} x
$$

where the second term on the r.h.s. has already been estimated before (3.5). For discussing the first term we claim

$$
\begin{equation*}
b^{\prime}(t) t \leq c b(t) \quad \text { for all } t \geq 0 \tag{3.6}
\end{equation*}
$$

In fact we have

$$
b(2 t)=\int_{0}^{2} \frac{\mathrm{~d}}{\mathrm{~d} s} b(s t) \mathrm{d} s=t \int_{0}^{2} b^{\prime}(s t) \mathrm{d} s \geq t \int_{1}^{2} b^{\prime}(s t) \mathrm{d} s \geq t b^{\prime}(t)
$$

by the monotonicity of b^{\prime}. If we use the Δ_{2}-property for b, then we get (3.6), and this inequality implies

$$
\tau \int_{B} \eta^{2 k} b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)\left|\partial_{n} u_{\delta}\right|^{3} \mathrm{~d} x \leq c \tau \int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \Gamma_{n, \delta} \mathrm{~d} x
$$

so that we can absorb this term. Summing up it is shown that

$$
\begin{equation*}
\int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \Gamma_{n, \delta} \mathrm{~d} x \leq c\left[c_{l o c}+\int_{B} \eta^{2 k} D^{2} \mathcal{B}\left(\partial_{n} u_{\delta}\right)\left(\partial_{n} \partial_{n} u_{\delta}, \partial_{n} \partial_{n} u_{\delta}\right) \mathrm{d} x\right] . \tag{3.7}
\end{equation*}
$$

By the Caccioppoli inequality (3.2) we have

$$
\begin{aligned}
& \int_{B} \eta^{2 k} D^{2} \mathcal{B}\left(\partial_{n} u_{\delta}\right)\left(\partial_{n} \partial_{n} u_{\delta}, \partial_{n} \partial_{n} u_{\delta}\right) \mathrm{d} x \\
& \leq \int_{B} \eta^{2 k} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\partial_{n} \nabla u_{\delta}, \partial_{n} \nabla u_{\delta}\right) \mathrm{d} x \\
& \leq c \int_{B} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\nabla \eta \otimes \partial_{n} u_{\delta}, \nabla \eta \otimes \partial_{n} u_{\delta}\right) \eta^{2 k-2} \mathrm{~d} x \\
& \leq c\left[\int_{B} \delta \Gamma_{\delta}^{\frac{\tilde{q}}{2}}|\nabla \eta|^{2} \eta^{2 k-2} \mathrm{~d} x\right. \\
&+\int_{B} D^{2} \mathcal{A}\left(\tilde{\nabla} u_{\delta}\right)\left(\nabla \eta \otimes \partial_{n} u_{\delta}, \nabla \eta \otimes \partial_{n} u_{\delta}\right) \eta^{2 k-2} \mathrm{~d} x \\
&\left.+\int_{B} D^{2} \mathcal{B}\left(\partial_{n} u_{\delta}\right)\left(\nabla \eta \otimes \partial_{n} u_{\delta}, \nabla \eta \otimes \partial_{n} u_{\delta}\right) \eta^{2 k-2} \mathrm{~d} x\right] \\
&= c\left[S_{1}+S_{2}+S_{3}\right],
\end{aligned}
$$

and Lemma 3.1 implies

$$
S_{1} \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

¿From Remark 2.1, e), i), and from (3.6) we get

$$
\begin{aligned}
S_{3} & \leq c \int_{B}|\nabla \eta|^{2} \eta^{2 k-2} \frac{b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)}{\left|\partial_{n} u_{\delta}\right|}\left|\partial_{n} u_{\delta}\right|^{2} \mathrm{~d} x \\
& \leq c \int_{B} \eta^{2 k-2}|\nabla \eta|^{2} b\left(\left|\partial_{n} u_{\delta}\right|\right) \mathrm{d} x \leq c_{l o c} .
\end{aligned}
$$

Again by Remark 2.1, e), i), we see

$$
S_{2} \leq c \int_{B}|\nabla \eta|^{2} \eta^{2 k-2} \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\delta}\right|\right)}{\left|\tilde{\nabla} u_{\delta}\right|}\left|\partial_{n} u_{\delta}\right|^{2} \mathrm{~d} x
$$

and in order to proceed further let

$$
\mathcal{N}(t):=b(\sqrt{t}) t, \quad t \geq 0 .
$$

Since

$$
\begin{aligned}
\mathcal{N}^{\prime}(t) & =b(\sqrt{t})+\frac{1}{2} b^{\prime}(\sqrt{t}) \sqrt{t} \\
\mathcal{N}^{\prime \prime}(t) & =\frac{1}{2 \sqrt{t}} b^{\prime}(\sqrt{t})+\frac{1}{4 \sqrt{t}} b^{\prime}(\sqrt{t})+\frac{1}{4} b^{\prime \prime}(t)
\end{aligned}
$$

we see that \mathcal{N} is a N-function (with the Δ_{2}-property). For $\tau>0$ let $\mathcal{N}_{\tau}(t):=\tau \mathcal{N}(t)$ and define

$$
\rho:=\eta^{2 k-2}|\nabla \eta|^{2} \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\delta}\right|\right)}{\left|\tilde{\nabla} u_{\delta}\right|}\left|\partial_{n} u_{\delta}\right|^{2} .
$$

On the set $B \cap\left[\left|\tilde{\nabla} u_{\delta}\right| \leq 1\right]$ we estimate (using (H2))

$$
\rho \leq c \eta^{2 k-2}|\nabla \eta|^{2} a^{\prime \prime}\left(\left|\tilde{\nabla} u_{\delta}\right|\right)\left|\partial_{n} u_{\delta}\right|^{2} \leq c \eta^{2 k-2}|\nabla \eta|^{2}\left|\partial_{n} u_{\delta}\right|^{2} \leq c_{l o c} \eta^{2 k-2} \Gamma_{n, \delta},
$$

i.e.

$$
\int_{B \cap\left[\left|\tilde{\nabla} u_{\delta}\right| \leq 1\right]} \rho \mathrm{d} x \leq c_{l o c} \int_{B} \eta^{2 k-2} \Gamma_{n, \delta} \mathrm{~d} x,
$$

whereas (by Young's inequality for N-functions)

$$
\begin{aligned}
\int_{B \cap\left[\left|\bar{\nabla} u_{\delta}\right| \geq 1\right]} \rho \mathrm{d} x \leq & \int_{B \cap\left[\left|\tilde{\nabla} u_{\delta}\right| \geq 1\right]} \mathcal{N}_{\tau}\left(\eta^{2 k-2}\left|\partial_{n} u_{\delta}\right|^{2}\right) \mathrm{d} x \\
& +\int_{B \cap\left[\left|\tilde{\nabla} u_{\delta}\right| \geq 1\right]} \mathcal{N}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\delta}\right|\right)}{\left|\tilde{\nabla} u_{\delta}\right|}\right) \mathrm{d} x \\
= & \tau \int_{B \cap\left[\left|\tilde{\nabla} u_{\delta}\right| \geq 1\right]} \eta^{2 k-2}\left|\partial_{n} u_{\delta}\right|^{2} b\left(\eta^{k-1}\left|\partial_{n} u_{\delta}\right|\right) \mathrm{d} x \\
& +\int_{B \cap\left[\left|\tilde{\nabla} u_{\delta}\right| \geq 1\right]} \mathcal{N}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\delta}\right|\right)}{\left|\tilde{\nabla} u_{\delta}\right|}\right) \mathrm{d} x \\
=: & \tau U_{1}+U_{2} .
\end{aligned}
$$

Since b is convex with $b(0)=0$, we have

$$
b\left(\eta^{k-1}\left|\partial_{n} u_{\delta}\right|\right) \leq \eta^{k-1} b\left(\left|\partial_{n} u_{\delta}\right|\right),
$$

which means that for k large and τ small the term τU_{1} can be absorbed in the l.h.s. of (3.7). By definition the conjugate function \mathcal{N}_{τ}^{*} satisfies

$$
\begin{aligned}
\mathcal{N}_{\tau}^{*}(t) & =\sup _{s \geq 0}[s t-\tau b(\sqrt{s}) s]=\sup _{s \geq 0}[t-\tau b(\sqrt{s})] s=\sup _{s \leq\left[b^{-1}(t / \tau)\right]^{2}}[t-\tau b(\sqrt{s})] s \\
& \leq\left[b^{-1}(t / \tau)\right]^{2} \sup [t-\tau b(\sqrt{s})] \\
& \leq t\left[b^{-1}(t / \tau)\right]^{2} .
\end{aligned}
$$

Applying (3.6) to the function a we see

$$
\int_{B \cap\left[\left|\tilde{\nabla} u_{\delta}\right| \geq 1\right]} \mathcal{N}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\delta}\right|\right)}{\left|\tilde{\nabla} u_{\delta}\right|}\right) \mathrm{d} x \leq \int_{B \cap\left[\left|\tilde{\nabla} u_{\delta}\right| \geq 1\right]} \mathcal{N}_{\tau}^{*}\left(|\nabla \eta|^{2}\left|\tilde{\nabla} u_{\delta}\right|^{-2} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right)\right) \mathrm{d} x
$$

and by the convexity of \mathcal{N}_{τ}^{*} we have on the set of integration

$$
\mathcal{N}_{\tau}^{*}\left(|\nabla \eta|^{2}\left|\tilde{\nabla} u_{\delta}\right|^{-2} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right)\right) \leq\left|\tilde{\nabla} u_{\delta}\right|^{-2} \mathcal{N}_{\tau}^{*}\left(|\nabla \eta|^{2} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right)\right),
$$

whereas the Δ_{2}-property of \mathcal{N}_{τ}^{*} can be used to control the last term through the quantity

$$
c(\tau, \eta)\left|\tilde{\nabla} u_{\delta}\right|^{-2} \mathcal{N}_{\tau}^{*}\left(\tau a\left(\left|\tilde{\nabla} u_{\delta}\right|\right)\right) .
$$

Now we can apply the upper bound for \mathcal{N}_{τ}^{*} to get

$$
\begin{aligned}
& \int_{B \cap\left[\left|\tilde{\nabla} u_{\delta}\right| \geq 1\right]} \mathcal{N}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\delta}\right|\right)}{\left|\tilde{\nabla} u_{\delta}\right|}\right) \mathrm{d} x \\
& \quad \leq c(\tau, \eta) \int_{B \cap\left[\left|\bar{\nabla} u_{\delta}\right| \geq 1\right]}\left|\tilde{\nabla} u_{\delta}\right|^{-2} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right)\left[b^{-1}\left(a\left(\left|\tilde{\nabla} u_{\delta}\right|\right)\right)\right]^{2} \mathrm{~d} x \\
& \quad \leq c(\tau, \eta) \int_{B \cap\left[\left|\bar{\nabla} u_{\delta}\right| \geq 1\right]} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right) \mathrm{d} x \leq c_{l o c},
\end{aligned}
$$

where we have used the inequality (2.3). Thus it is shown that

$$
\int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \Gamma_{n, \delta} \mathrm{~d} x \leq c_{l o c}\left[1+\int_{B} \eta^{2 k-2} \Gamma_{n, \delta} \mathrm{~d} x\right],
$$

and for $k>3$ and τ sufficiently small Young's inequality gives

$$
\begin{aligned}
\int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \Gamma_{n, \delta} \mathrm{~d} x & \leq c_{l o c}\left[1+\tau \int_{B} \eta^{2 k} \Gamma_{n, \delta}^{\frac{3}{2}} \mathrm{~d} x+c(\tau)\right] \\
& \leq c_{l o c}\left[c(\tau)+\int_{B \cap\left[\left|\partial u_{n}\right| \leq K\right]} \eta^{2 k} \Gamma_{n, \delta}^{\frac{3}{2}} \mathrm{~d} x+\tau \int_{B \cap\left[\left|\partial u_{n}\right|>K\right]} \eta^{2 k} \Gamma_{n, \delta}^{\frac{3}{2}} \mathrm{~d} x\right]
\end{aligned}
$$

where K is chosen such that $b(t) \geq\left(1+t^{2}\right)^{1 / 2}$ for $t \geq K$, i.e. the last integral can be absorbed into the l.h.s. and the other integral trivially is bounded. Altogether we end up with

$$
\begin{equation*}
\int_{B} \eta^{2 k} b\left(\left|\partial_{n} u_{\delta}\right|\right) \Gamma_{n, \delta} \mathrm{~d} x \leq c_{l o c} \tag{3.8}
\end{equation*}
$$

and this proves Theorem 2.1, a), by passing to the limit $\varepsilon \rightarrow 0$ and recalling Lemma 3.1.
For proving part b) we keep our notation and get analogous to (3.7)

$$
\begin{equation*}
\int_{B} \eta^{2 k} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right) \tilde{\Gamma}_{\delta} \mathrm{d} x \leq c\left[c_{l o c}+\int_{B} \eta^{2 k} D^{2} \mathcal{A}\left(\tilde{\nabla} u_{\delta}\right)\left(\partial_{\gamma} \tilde{\nabla} u_{\delta}, \partial_{\gamma} \tilde{\nabla} u_{\delta}\right) \mathrm{d} x\right] \tag{3.9}
\end{equation*}
$$

where here and in what follows we always take the sum w.r.t. $\gamma=1, \ldots, n-1$. In fact, (3.9) is established along the same lines as (3.7) by performing an integration by parts on the r.h.s. of the following equation

$$
\int_{B} \eta^{2 k} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right)\left|\tilde{\nabla} u_{\delta}\right|^{2} \mathrm{~d} x=\int_{B} \partial_{\gamma} u_{\delta} \cdot\left[\eta^{2 k} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right) \partial_{\gamma} u_{\delta}\right] \mathrm{d} x
$$

using the uniform boundedness of u_{δ}.
Inequality (3.2) gives

$$
\begin{aligned}
& \int_{B} \eta^{2 k} D^{2} \mathcal{A}\left(\tilde{\nabla} u_{\delta}\right)\left(\partial_{\gamma} \tilde{\nabla} u_{\delta}, \partial_{\gamma} \tilde{\nabla} u_{\delta}\right) \mathrm{d} x \\
& \leq \\
& \quad \int_{B} \eta^{2 k} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\partial_{\gamma} \nabla u_{\delta}, \partial_{\gamma} \nabla u_{\delta}\right) \mathrm{d} x \\
& \leq \\
& \quad c\left[\delta \int_{B} \eta^{2 k-2}|\nabla \eta|^{2} \Gamma_{\delta}^{\frac{\tilde{q}}{2}} \mathrm{~d} x+\int_{B} \eta^{2 k-2} D^{2} \mathcal{A}\left(\tilde{\nabla} u_{\delta}\right)\left(\nabla \eta \otimes \partial_{\gamma} u_{\delta}, \nabla \eta \otimes \partial_{\gamma} u_{\delta}\right) \mathrm{d} x\right. \\
& \quad+\int_{B} \eta^{2 k-2} D^{2} \mathcal{B}\left(\partial_{n} u_{\delta}\right)\left(\nabla \eta \otimes \partial_{\gamma} u_{\delta}, \nabla \eta \otimes \partial_{\gamma} u_{\delta} \mathrm{d} x\right]
\end{aligned}
$$

and if we use Remark 2.1, e), i), for \mathcal{A} and \mathcal{B} together with

$$
\delta \int_{B} \eta^{2 k-2}|\nabla \eta|^{2} \Gamma_{\delta}^{\frac{\tilde{q}}{2}} \mathrm{~d} x \rightarrow 0 \quad \text { as } \delta \rightarrow 0
$$

we see

$$
\begin{align*}
& \int_{B} \eta^{2 k} D^{2} \mathcal{A}\left(\tilde{\nabla} u_{\delta}\right)\left(\partial_{\gamma} \tilde{\nabla} u_{\delta}, \partial_{\gamma} \tilde{\nabla} u_{\delta}\right) \mathrm{d} x \\
& \quad \leq c\left[c_{\mathrm{loc}}+\int_{B} \eta^{2 k-2}|\nabla \eta|^{2} \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\delta}\right|\right)}{\left|\tilde{\nabla} u_{\delta}\right|}\left|\tilde{\nabla} u_{\delta}\right|^{2}+\int_{B} \eta^{2 k-2}|\nabla \eta|^{2} \frac{b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)}{\left|\partial_{n} u_{\delta}\right|}\left|\tilde{\nabla} u_{\delta}\right|^{2} \mathrm{~d} x\right] \\
& =: c\left[c_{l o c}+W_{1}+W_{2}\right] . \tag{3.10}
\end{align*}
$$

Using (3.6) for a we deduce

$$
\begin{equation*}
W_{1} \leq c \int_{B} \eta^{2 k-2}|\nabla \eta|^{2} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right) \mathrm{d} x \leq c_{l o c} . \tag{3.11}
\end{equation*}
$$

For discussing W_{2} we consider the N-functions

$$
\mathcal{M}(t):=t a(\sqrt{t}), \quad \mathcal{M}_{\tau}(t):=\tau \mathcal{M}(t)
$$

with small $\tau>0$ and observe first (recalling (H2))

$$
\begin{aligned}
& \int_{B \cap\left[\left|\partial_{n} u_{\delta}\right| \leq 1\right]} \eta^{2 k-2}|\nabla \eta|^{2} \frac{b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)}{\left|\partial_{n} u_{\delta}\right|}\left|\tilde{\nabla} u_{\delta}\right|^{2} \mathrm{~d} x \\
& \leq c \int_{B \cap\left[\left|\partial_{n} u_{\delta}\right| \leq 1\right]} \eta^{2 k-2}|\nabla \eta|^{2} b^{\prime \prime}\left(\left|\partial_{n} u_{\delta}\right|^{2}\right)\left|\tilde{\nabla} u_{\delta}\right|^{2} \mathrm{~d} x \\
& \leq c_{l o c} \max _{0 \leq t \leq 1} b^{\prime \prime}(t) \int_{B \cap\left[\left|\partial_{n} u_{\delta}\right| \leq 1\right]} \eta^{2 k-2} \tilde{\Gamma}_{\delta} \mathrm{d} x
\end{aligned}
$$

whereas

$$
\begin{aligned}
& \int_{B \cap\left[\left|\partial_{n} u_{\delta}\right| \geq 1\right]} \eta^{2 k-2}|\nabla \eta|^{2} \frac{b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)}{\left|\partial_{n} u_{\delta}\right|}\left|\tilde{\nabla} u_{\delta}\right|^{2} \mathrm{~d} x \\
& \leq \int_{B \cap\left[\left|\partial_{n} u_{\delta}\right| \geq 1\right]} \mathcal{M}_{\tau}\left(\eta^{2 k-2}\left|\tilde{\nabla} u_{\delta}\right|^{2}\right) \mathrm{d} x+\int_{B \cap\left[\left|\partial_{n} u_{\delta}\right| \geq 1\right]} \mathcal{M}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)}{\left|\partial_{n} u_{\delta}\right|}\right) \mathrm{d} x \\
& \leq \tau \int_{B} \eta^{2 k-2}\left|\tilde{\nabla} u_{\delta}\right|^{2} \underbrace{a\left(\eta^{k-1}\left|\tilde{\nabla} u_{\delta}\right|\right)}_{\leq \eta^{k-1} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right)} \mathrm{d} x+\int_{B \cap\left[\left|\partial_{n} u_{\delta}\right| \geq 1\right]} \mathcal{M}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)}{\left|\partial_{n} u_{\delta}\right|}\right) \mathrm{d} x
\end{aligned}
$$

and for $\tau \ll 1$ and $k \in \mathbb{N}$ large enough we can put the τ-term to the l.h.s. of (3.9). In the same way as before for \mathcal{N}_{τ}^{*} we find

$$
\mathcal{M}_{\tau}^{*}(t) \leq t\left[a^{-1}(t / \tau)\right]^{2}
$$

and using the Δ_{2}-property of \mathcal{M}_{τ}^{*} we have for $t \geq 1$ by (3.6)

$$
\begin{aligned}
\mathcal{M}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{b^{\prime}(t)}{t}\right) & \leq c(\eta) \mathcal{M}_{\tau}^{*}\left(\frac{b^{\prime}(t)}{t}\right) \leq c(\eta) \mathcal{M}_{\tau}^{*}\left(t^{-2} b(t)\right) \leq c(\tau, \eta) \mathcal{M}_{\tau}^{*}\left(\tau b(t) t^{-2}\right) \\
& \leq c(\tau, \eta) t^{-2} b(t)\left[a^{-1}\left(t^{-2} b(t)\right)\right]^{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \int_{B \cap\left[\left|\partial_{n} u_{\delta}\right| \geq 1\right]} \mathcal{M}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{b^{\prime}\left(\left|\partial_{n} u_{\delta}\right|\right)}{\left|\partial_{n} u_{\delta}\right|}\right) \mathrm{d} x \\
& \quad \leq c(\tau, \eta) \int_{\text {spt } \eta \cap\left[\left|\partial_{n} u_{\delta}\right| \geq 1\right]}\left|\partial_{n} u_{\delta}\right|^{-2} b\left(\left|\partial_{n} u_{\delta}\right|\right)\left[a^{-1}\left(\left|\partial_{n} u_{\delta}\right|^{-2} b\left(\left|\partial_{n} u_{\delta}\right|\right)\right)\right]^{2} \mathrm{~d} x
\end{aligned}
$$

and we can apply (3.8) provided

$$
\left[a^{-1}\left(\left|\partial_{n} u_{\delta}\right|^{-2} b\left(\left|\partial_{n} u_{\delta}\right|\right)\right)\right]^{2} \leq c\left|\partial_{n} u_{\delta}\right|^{4}
$$

but this follows from assumption (2.5) (w.l.o.g. assuming the validity of (2.5) for $t \geq 1$), i.e. we can handle W_{2} in an appropriate way. By combining the above estimates with (3.8), (3.10) and (3.11) and returning to (3.9) it is proved by repeating the calculations before (3.8) that

$$
\begin{equation*}
\int_{B} \eta^{2 k} a\left(\left|\tilde{\nabla} u_{\delta}\right|\right) \tilde{\Gamma}_{\delta} \mathrm{d} x \leq c_{l o c} \tag{3.12}
\end{equation*}
$$

and b)of Theorem 2.1 follows. The last part is immediate.

4 Proof of Theorem 2.2

We first give a slight modification of the approximation from Section 3: we now start from a local minimizer $u \in W_{2, l o c}^{1}\left(\Omega ; \mathbb{R}^{M}\right)$ (recall Remark 2.3, c)) being a priori unbounded.

Then we select a disc B^{\prime} such that $B \Subset B^{\prime} \Subset \Omega$ and such that $u_{\mid \partial B^{\prime}} \in W_{2}^{1}\left(\partial B^{\prime} ; \mathbb{R}^{M}\right) \subset$ $C^{0}\left(\partial B^{\prime} ; \mathbb{R}^{M}\right)$ which is possible by [Mo], Theorem 3.6.1, c). The maximum principle of [DLM] gives $u \in L^{\infty}\left(B^{\prime} ; \mathbb{R}^{M}\right)$, thus $(u)_{\varepsilon} \in L^{\infty}\left(B ; \mathbb{R}^{M}\right)$ uniformly and again by quoting [DLM] we deduce

$$
\left\|u_{\delta}\right\|_{L^{\infty}(B)} \leq \text { const }<\infty .
$$

We proceed as in [BF2] by first showing

$$
\begin{equation*}
\partial_{2} u_{\delta} \in W_{2, l o c}^{1}\left(B ; \mathbb{R}^{M}\right) \tag{4.1}
\end{equation*}
$$

uniformly w.r.t. ε. We have by Remark 2.1, e), i), and by (3.2) with $\gamma=2$ and for $\eta \in C_{0}^{\infty}(B)$

$$
\begin{aligned}
& \int_{B} \eta^{2} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\partial_{2} \nabla u_{\delta}, \partial_{2} \nabla u_{\delta}\right) \mathrm{d} x \\
& \quad \leq c \int_{B} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\nabla \eta \otimes \partial_{2} u_{\delta}, \nabla \eta \otimes \partial_{2} u_{\delta}\right) \mathrm{d} x \\
& \quad \leq c\left[\int_{B}|\nabla \eta|^{2} \Gamma_{\delta}^{\frac{\tilde{q}}{2}} \mathrm{~d} x+\int_{B}|\nabla \eta|^{2} \frac{b^{\prime}\left(\left|\partial_{2} u_{\delta}\right|\right)}{\left|\partial_{2} u_{\delta}\right|}\left|\partial_{2} u_{\delta}\right|^{2} \mathrm{~d} x+\int_{B}|\nabla \eta|^{2} \frac{a^{\prime}\left(\left|\partial_{1} u_{\delta}\right|\right)}{\left|\partial_{1} u_{\delta}\right|}\left|\partial_{2} u_{\delta}\right|^{2} \mathrm{~d} x\right]
\end{aligned}
$$

The first term on the r.h.s. goes to zero as $\varepsilon \rightarrow 0$, the third one corresponds to the quantity S_{2} introduced in the previous section, and as demonstrated in Section 3 (compare the discussion of $\left.\int_{B} \rho \mathrm{~d} x\right)$ we can control

$$
\int_{B}|\nabla \eta|^{2} \frac{a^{\prime}\left(\left|\partial_{1} u_{\delta}\right|\right)}{\left|\partial_{1} u_{\delta}\right|}\left|\partial_{2} u_{\delta}\right|^{2} \mathrm{~d} x
$$

in terms of local constants and the quantity

$$
\int_{\text {spt } \eta} b\left(\left|\partial_{2} u_{\delta}\right|\right)\left|\partial_{2} u_{\delta}\right|^{2} \mathrm{~d} x
$$

But this term is bounded by $c_{l o c}$ on account of (3.8). The second term on the r.h.s. corresponds to S_{3} in Section 3, and in Section 3 we showed $S_{3} \leq c_{l o c}$. Therefore we get

$$
\int_{B} \eta^{2} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\partial_{2} \nabla u_{\delta}, \partial_{2} \nabla u_{\delta}\right) \mathrm{d} x \leq c_{l o c}
$$

without using (2.5). Combining (2.6) and Remark 2.1, e), i), we deduce from this inequality that

$$
\int_{B} \eta^{2}\left|\partial_{2} \nabla u_{\delta}\right|^{2} \mathrm{~d} x \leq c_{l o c}
$$

and (4.1) follows. Sobolev's embedding theorem then implies

$$
\begin{equation*}
\partial_{2} u_{\delta} \in L_{l o c}^{s}\left(B ; \mathbb{R}^{M}\right) \tag{4.2}
\end{equation*}
$$

for all $s<\infty$ uniformly w.r.t. ε.
In a second step we want to prove (3.12), i.e.

$$
\begin{equation*}
a\left(\left|\partial_{1} u_{\delta}\right|\right)\left|\partial_{1} u_{\delta}\right|^{2} \in L_{l o c}^{1}(B) \tag{4.3}
\end{equation*}
$$

uniformly in ε without (2.5). This can be achieved starting from (3.9) by bounding the integral W_{2} defined in (3.10) in a different way: to this purpose we recall Remark 2.1, c), hence we can estimate for $t \geq 1$ (once more by (3.6))

$$
\begin{aligned}
\mathcal{M}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{b^{\prime}(t)}{t}\right) & \leq c(\eta) \mathcal{M}_{\tau}^{*}\left(\frac{b^{\prime}(t)}{t}\right) \leq c(\eta) \mathcal{M}_{\tau}^{*}\left(t^{-2} b(t)\right) \leq c(\eta) \mathcal{M}_{\tau}^{*}\left(t^{q-2}\right) \\
& \leq c(\eta, \tau) \mathcal{M}_{\tau}^{*}\left(t^{q-2} \tau\right) \leq c(\eta, \tau) t^{q-2}\left[a^{-1}\left(t^{q-2}\right)\right]^{2}
\end{aligned}
$$

Recalling $a^{\prime}(0)=0$ and using $a^{\prime \prime}(t) \geq a_{0}>0$ we get that $a(t) \geq c t^{2}$, i.e. $a^{-1}(t) \leq c \sqrt{t}$, and in conclusion

$$
\mathcal{M}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{b^{\prime}(t)}{t}\right) \leq c(\eta, \tau) t^{2 q-4}
$$

This shows

$$
\int_{B \cap\left[\left|\partial_{2} u_{\delta}\right| \geq 1\right]} \mathcal{M}_{\tau}^{*}\left(|\nabla \eta|^{2} \frac{b^{\prime}\left(\left|\partial_{2} u_{\delta}\right|\right)}{\left|\partial_{2} u_{\delta}\right|}\right) \mathrm{d} x \leq c(\eta, \tau) \int_{\text {spt } \eta} \Gamma_{2, \delta}^{q-2} \mathrm{~d} x,
$$

and to the latter integral we can apply (4.2), hence we get (4.3).
Let

$$
H_{\delta}:=D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\partial_{\gamma} \nabla u_{\delta}, \partial_{\gamma} \nabla u_{\delta}\right)^{\frac{1}{2}}
$$

where here in what follows the sum is taken w.r.t. $\gamma=1,2$. Remark 2.1, e), i), together with (2.6) applied to a and b gives

$$
c\left[\partial_{\gamma} \partial_{1} u_{\delta} \cdot \partial_{\gamma} \partial_{1} u_{\delta}+\partial_{\gamma} \partial_{2} u_{\delta} \cdot \partial_{\gamma} \partial_{2} u_{\delta}\right] \leq H_{\delta}^{2},
$$

i.e.

$$
\left|\nabla^{2} u_{\delta}\right|^{2} \leq c H_{\delta}^{2}
$$

¿From (3.2) it follows

$$
\begin{aligned}
\int_{B} \eta H_{\delta}^{2} \mathrm{~d} x \leq & c \int_{B} D^{2} F_{\delta}\left(\nabla u_{\delta}\right)\left(\nabla \eta \otimes \partial_{\gamma} u_{\delta}, \nabla \eta \otimes \partial_{\gamma} u_{\delta}\right) \mathrm{d} x \\
\leq & c\left[\int_{B}|\nabla \eta|^{2} \Gamma_{\delta}^{\tilde{q}} \mathrm{~d} x+\int_{B} a^{\prime}\left(\left|\partial_{1} u_{\delta}\right|\right)\left|\partial_{1} u_{\delta}\right||\nabla \eta|^{2} \mathrm{~d} x\right. \\
& +\int_{B} b^{\prime}\left(\left|\partial_{2} u_{\delta}\right|\right)\left|\partial_{2} u_{\delta}\right||\nabla \eta|^{2} \mathrm{~d} x+\int_{B} \frac{a^{\prime}\left(\left|\partial_{1} u_{\delta}\right|\right)}{\left|\partial_{1} u_{\delta}\right|}\left|\partial_{2} u_{\delta}\right|^{2}|\nabla \eta|^{2} \mathrm{~d} x \\
& \left.+\int_{B} \frac{b^{\prime}\left(\left|\partial_{2} u_{\delta}\right|\right)}{\left|\partial_{2} u_{\delta}\right|}\left|\partial_{1} u_{\delta}\right|^{2}|\nabla \eta|^{2} \mathrm{~d} x\right]
\end{aligned}
$$

and the first three integrals on the r.h.s. are bounded by a local constant: for the first one we use Lemma 3.1, the second and the third one are bounded by (3.6) applied to a and b combined with Lemma 3.1. The fourth one occurs as an upper bound for S_{2} and the calculations from Section 3 show

$$
\int_{B} \frac{a^{\prime}\left(\left|\partial_{1} u_{\delta}\right|\right)}{\left|\partial_{1} u_{\delta}\right|}\left|\partial_{2} u_{\delta}\right|^{2}|\nabla \eta|^{2} \mathrm{~d} x \leq c_{l o c}
$$

on account of (3.8). The fifth integral corresponds to W_{2} from Section 3 and has already been discussed after (4.3), where it was outlined how the calculations of Section 3 can be modified to give (recall (4.2))

$$
\int_{B} \frac{b^{\prime}\left(\left|\partial_{2} u_{\delta}\right|\right)}{\left|\partial_{2} u_{\delta}\right|}\left|\partial_{1} u_{\delta}\right|^{2}|\nabla \eta|^{2} \mathrm{~d} x \leq c\left[c_{l o c}+\int_{\operatorname{spt} \eta} \Gamma_{2, \delta}^{q-2} \mathrm{~d} x\right] \leq c_{l o c} .
$$

Altogether it follows

$$
H_{\delta} \in L_{l o c}^{2}(B)
$$

uniformly in $\varepsilon>0$, hence $\nabla u_{\delta} \in W_{2, l o c}^{1}\left(B ; \mathbb{R}^{2 M}\right)$ uniformly, and Sobolev's embedding theorem implies the uniform local higher integrability of ∇u_{δ} for any finite exponent. The proof of Theorem 2.2 is complete.

5 Proof of Theorem 2.3

In the scalar case we choose a different way of regularization avoiding the introduction of an extra power-growth energy. Proceeding as in [BFZ] we first fix a ball $B:=B_{R}\left(x_{0}\right) \Subset \Omega$ and consider the mollification $(u)_{\varepsilon}$ of our local minimizer $u \in L_{l o c}^{\infty}(\Omega)$. Let u_{ε} denote the unique Lipschitz function minimizing $I[\cdot, B]$ among all Lipschitz maps $w: \bar{B} \rightarrow \mathbb{R}$ for boundary values $(u)_{\varepsilon}$, i.e. u_{ε} is the Hilbert-Haar solution (see, e.g., $[M M]$, Theorem 4, p. 162). For the next auxiliary results we refer to [BFZ].

Lemma 5.1. a) Passing to the limit $\varepsilon \rightarrow 0$ we have $(p:=1+\bar{\varepsilon})$

$$
u_{\varepsilon} \rightharpoondown u \quad \text { in } W_{p}^{1}(B), \quad \int_{B} F\left(\nabla u_{\varepsilon}\right) \mathrm{d} x \rightarrow \int_{B} F(\nabla u) \mathrm{d} x .
$$

b) $\left\|u_{\varepsilon}\right\|_{L^{\infty}(B)}$ is bounded independent of ε.

Lemma 5.2. The functions u_{ε} are of class $C^{1, \alpha}(B) \cap W_{2, \text { loc }}^{2}(B)$ for any $\alpha<1$.
Lemma 5.3. (Variants of Caccioppoli's inequality) For any numbers $\alpha, \beta \geq 0$ and for all $\eta \in C_{0}^{\infty}(B)$ s.t. $0 \leq \eta \leq 1$ we have

$$
\begin{align*}
& \int_{B} D^{2} F\left(\nabla u_{\varepsilon}\right)\left(\partial_{n} \nabla u_{\varepsilon}, \partial_{n} \nabla u_{\varepsilon}\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}} \eta^{2} \mathrm{~d} x \\
& \quad \leq c(\alpha) \int_{\Omega} D^{2} F\left(\nabla u_{\varepsilon}\right)(\nabla \eta, \nabla \eta) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}}\left|\partial_{n} u_{\varepsilon}\right|^{2} \mathrm{~d} x \tag{5.1}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{B} D^{2} F\left(\nabla u_{\varepsilon}\right)\left(\partial_{\gamma} \nabla u_{\varepsilon}, \partial_{\gamma} \nabla u_{\varepsilon}\right) \tilde{\Gamma}_{\varepsilon}^{\frac{\beta}{2}} \eta^{2} \mathrm{~d} x \\
& \quad \leq c(\beta) \int_{B} D^{2} F\left(\nabla u_{\varepsilon}\right)(\nabla \eta, \nabla \eta) \tilde{\Gamma}_{\varepsilon}^{\frac{\beta}{2}}\left|\tilde{\nabla} u_{\varepsilon}\right|^{2} \mathrm{~d} x \tag{5.2}
\end{align*}
$$

In (5.2) (and in what follows) we always take the sum w.r.t. γ from 1 to $n-1 . c(\alpha)$, $c(\beta)$ denote positive constants independent of ε, and we have set: $\Gamma_{n, \varepsilon}=1+\left(\partial_{n} u_{\varepsilon}\right)^{2}$, $\tilde{\Gamma}_{\varepsilon}=1+\left|\tilde{\nabla} u_{\varepsilon}\right|^{2}, \tilde{\nabla}:=\left(\partial_{1}, \ldots, \partial_{n-1}\right)$.
We fix some $\alpha \geq 0$ and a function $\eta \in C_{0}^{\infty}(B)$ such that $0 \leq \eta \leq 1$. Writing

$$
\begin{aligned}
& \int_{B} \eta^{2} b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha+2}{2}} \mathrm{~d} x \\
& \quad=\int_{B} \eta^{2} b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}} \mathrm{~d} x+\int_{B} \eta^{2} b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}} \partial_{n} u_{\varepsilon} \partial_{n} u_{\varepsilon} \mathrm{d} x
\end{aligned}
$$

and performing an integration by parts in the second integral on the r.h.s., i.e.

$$
\begin{aligned}
& \int_{B} \eta^{2} b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}} \partial_{n} u_{\varepsilon} \partial_{n} u_{\varepsilon} \mathrm{d} x \\
& \quad=-\int_{B} u_{\varepsilon} \partial_{n}\left[\partial_{n} u_{\varepsilon} \eta^{2} b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}}\right] \mathrm{d} x
\end{aligned}
$$

analogous calculations as carried out in Section 3 together with Lemma 5.1, b), lead to the result (compare (3.7))

$$
\begin{align*}
& \int_{B} \eta^{2} b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha+2}{2}} \mathrm{~d} x \tag{5.3}\\
& \quad \leq c\left[\int_{B}\left(\eta^{2}+|\nabla \eta|^{2}\right) b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}} \mathrm{~d} x+\int_{B} \eta^{2} D^{2} \mathcal{B}\left(\partial_{n} u_{\varepsilon}\right)\left(\partial_{n} \partial_{n} u_{\varepsilon}, \partial_{n} \partial_{n} u_{\varepsilon}\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}} \mathrm{~d} x\right]
\end{align*}
$$

whereas for any $\beta \geq 0$ we obtain (see (3.9))

$$
\begin{align*}
& \int_{B} \eta^{2} a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right) \tilde{\Gamma}_{\varepsilon}^{\frac{\beta+2}{2}} \mathrm{~d} x \tag{5.4}\\
& \quad \leq c\left[\int_{B}\left(\eta^{2}+|\nabla \eta|^{2}\right) a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right) \tilde{\Gamma}_{\varepsilon}^{\frac{\beta}{2}} \mathrm{~d} x+\int_{B} \eta^{2} D^{2} \mathcal{A}\left(\tilde{\nabla} u_{\varepsilon}\right)\left(\partial_{\gamma} \tilde{\nabla} u_{\varepsilon}, \partial_{\gamma} \tilde{\nabla} u_{\varepsilon}\right) \tilde{\Gamma}_{\varepsilon}^{\frac{\beta}{2}} \mathrm{~d} x\right]
\end{align*}
$$

On the r.h.s. of (5.3) and (5.4), respectively, we apply (5.1) and (5.2) in order to get

$$
\int_{B} \eta^{2} D^{2} \mathcal{B}\left(\partial_{n} u_{\varepsilon}\right)\left(\partial_{n} \partial_{n} u_{\varepsilon}, \partial_{n} \partial_{n} u_{\varepsilon}\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}} \mathrm{~d} x \leq c(\alpha) \int_{B} D^{2} F\left(\nabla u_{\varepsilon}\right)(\nabla \eta, \nabla \eta) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}}\left|\partial_{n} u_{\varepsilon}\right|^{2} \mathrm{~d} x
$$

as well as

$$
\int_{B} \eta^{2} D^{2} \mathcal{A}\left(\tilde{\nabla} u_{\varepsilon}\right)\left(\partial_{\gamma} \tilde{\nabla} u_{\varepsilon}, \partial_{\gamma} \tilde{\nabla} u_{\varepsilon}\right) \tilde{\Gamma}_{\varepsilon}^{\frac{\beta}{2}} \mathrm{~d} x \leq c(\beta) \int_{B} D^{2} F\left(\nabla u_{\varepsilon}\right)(\nabla \eta, \nabla \eta) \tilde{\Gamma}_{\varepsilon}^{\frac{\beta}{2}}\left|\tilde{\nabla} u_{\varepsilon}\right|^{2} \mathrm{~d} x .
$$

Inserting these inequalities in (5.3), (5.4) and using Remark 2.1, e), i), to obtain an upper bound for $D^{2} F\left(\nabla u_{\varepsilon}\right)(\nabla \eta, \nabla \eta)$ we find

$$
\begin{aligned}
& \int_{B} \eta^{2} b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha+2}{2}} \\
& \leq \\
& \quad c(\alpha)\left[\int_{B}\left(\eta^{2}+|\nabla \eta|^{2}\right) b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}}+\int_{B}|\nabla \eta|^{2} \frac{b^{\prime}\left(\left|\partial_{n} u_{\varepsilon}\right|\right)}{\left|\partial_{n} u_{\varepsilon}\right|} \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}}\left|\partial_{n} u_{\varepsilon}\right|^{2} \mathrm{~d} x\right. \\
& \left.\quad+\int_{B}|\nabla \eta|^{2^{\prime}} \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)}{\left|\tilde{\nabla} u_{\varepsilon}\right|} \Gamma_{n, \varepsilon}^{\frac{\alpha+2}{2}} \mathrm{~d} x\right] .
\end{aligned}
$$

Recalling (3.6) we have

$$
\frac{b^{\prime}\left(\left|\partial_{n} u_{\varepsilon}\right|\right)}{\left|\partial_{n} u_{\varepsilon}\right|} \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}}\left|\partial_{n} u_{\varepsilon}\right|^{2} \leq c b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}}
$$

hence

$$
\begin{align*}
& \int_{B} \eta^{2} b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha+2}{2}} \mathrm{~d} x \\
& \quad \leq c(\alpha)\left[\int_{B}\left(\eta^{2}+|\nabla \eta|^{2}\right) b\left(\left|\partial_{n} u_{\varepsilon}\right|\right) \Gamma_{n, \varepsilon}^{\frac{\alpha}{2}} \mathrm{~d} x+\int_{B}|\nabla \eta|^{2} \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)}{\left|\tilde{\nabla} u_{\varepsilon}\right|} \Gamma_{n, \varepsilon}^{\frac{\alpha+2}{2}} \mathrm{~d} x\right], \tag{5.5}
\end{align*}
$$

and in the same way

$$
\begin{align*}
& \int_{B} \eta^{2} a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right) \tilde{\Gamma}_{\varepsilon}^{\frac{\beta+2}{2}} \mathrm{~d} x \\
& \quad \leq c(\beta)\left[\int_{B}\left(\eta^{2}+|\nabla \eta|^{2}\right) a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right) \tilde{\Gamma}_{\varepsilon}^{\frac{\beta}{2}} \mathrm{~d} x+\int_{B}|\nabla \eta|^{2} \frac{2^{\prime}\left(\left|\partial_{n} u_{\varepsilon}\right|\right)}{\left|\partial_{n} u_{\varepsilon}\right|} \tilde{\Gamma}_{\varepsilon}^{\frac{\beta+2}{2}} \mathrm{~d} x\right] \tag{5.6}
\end{align*}
$$

The next calculations can be made precise easily along the lines of Section 3 by replacing η^{2} in (5.5) and (5.6) by $\eta^{2 k}$ for $k \in \mathbb{N}$ large enough and by using Young's inequality with an additional factor τ in order to absorb terms in the l.h.s.'s. In what follows the domain of integration always is the support of a "hidden testfunction". If we reduce (5.5) and (5.6) to the core, then we have

$$
\begin{align*}
& \int b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)\left|\partial_{n} u_{\varepsilon}\right|^{\alpha+2} \mathrm{~d} x \\
& \leq c(\alpha)\left[\int b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)\left|\partial_{n} u_{\varepsilon}\right|^{\alpha} \mathrm{d} x+\int \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)}{\left|\tilde{\nabla} u_{\varepsilon}\right|}\left|\partial_{n} u_{\varepsilon}\right|^{\alpha+2} \mathrm{~d} x\right] \tag{5.7}
\end{align*}
$$

and

$$
\begin{align*}
& \int a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{\beta+2} \mathrm{~d} x \\
& \quad \leq c(\beta)\left[\int a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{\beta} \mathrm{d} x+\int \frac{b^{\prime}\left(\left|\partial_{n} u_{\varepsilon}\right|\right)}{\left|\partial_{n} u_{\varepsilon}\right|}\left|\tilde{\nabla} u_{\varepsilon}\right|^{\beta+2} \mathrm{~d} x\right] . \tag{5.8}
\end{align*}
$$

We discuss the r.h.s. of (5.7): since

$$
\begin{aligned}
b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)\left|\partial_{n} u_{\varepsilon}\right|^{\alpha} & =b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)^{\frac{\alpha}{\alpha+2}}\left|\partial_{n} u_{\varepsilon}\right|^{\alpha} b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)^{\frac{2}{2+\alpha}} \\
& \leq\left[b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)^{\frac{\alpha}{\alpha+2}}\left|\partial_{n} u_{\varepsilon}\right|^{\alpha}\right]^{\frac{\alpha+2}{\alpha}}+b\left(\left|\partial_{n} u_{\varepsilon}\right|\right),
\end{aligned}
$$

the first integral on the r.h.s. of (5.7) can be absorbed in the l.h.s. ("use τ ") producing on the r.h.s. a term being bounded by a local constant. Let

$$
K(t):=t b\left(t^{\frac{1}{\alpha+2}}\right), \quad t \geq 0
$$

It is easy to check that K is an N-function, and we have an estimate for the conjugate function:

$$
\begin{aligned}
K^{*}(s) & =\sup _{t \geq 0}[t s-K(t)]=\sup _{t \geq 0}\left[s-b\left(t^{\frac{1}{\alpha+2}}\right)\right] t=\sup _{t \leq\left[b^{-1}(s)\right]^{\alpha+2}}\left[s-b\left(t^{\frac{1}{\alpha+2}}\right)\right] t \\
& \leq s\left[b^{-1}(s)\right]^{\alpha+2}
\end{aligned}
$$

This gives for the second term on the r.h.s. of (5.7)

$$
\int \frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)}{\left|\tilde{\nabla} u_{\varepsilon}\right|}\left|\partial_{n} u_{\varepsilon}\right|^{\alpha+2} \mathrm{~d} x \leq \int K\left(\left|\partial_{n} u_{\varepsilon}\right|^{\alpha+2}\right) \mathrm{d} x+\int K^{*}\left(\frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)}{\left|\tilde{\nabla} u_{\varepsilon}\right|}\right) \mathrm{d} x
$$

and using (3.6) and (Δ_{2}) we find

$$
\begin{aligned}
\int K^{*}\left(\frac{a^{\prime}\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)}{\left|\tilde{\nabla} u_{\varepsilon}\right|}\right) \mathrm{d} x & \leq c \int K^{*}\left(a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{-2}\right) \mathrm{d} x \\
& \leq c \int a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{-2}\left[b^{-1}\left(a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{-2}\right)\right]^{\alpha+2} \mathrm{~d} x
\end{aligned}
$$

We therefore deduce from (5.7)

$$
\begin{align*}
& \int b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)\left|\partial_{n} u_{\varepsilon}\right|^{\alpha+2} \mathrm{~d} x \\
& \quad \leq c(\alpha)\left[\int a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{-2}\left[b^{-1}\left(a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{-2}\right)\right]^{\alpha+2} \mathrm{~d} x+\ldots\right] \tag{5.9}
\end{align*}
$$

and in an analogous way (5.8) implies

$$
\begin{align*}
& \int a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{\beta+2} \mathrm{~d} x \\
& \quad \leq c(\beta)\left[\int b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)\left|\partial_{n} u_{\varepsilon}\right|^{-2}\left[a^{-1}\left(b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)\left|\partial_{n} u_{\varepsilon}\right|^{-2}\right)\right]^{\beta+2} \mathrm{~d} x+\ldots\right] \tag{5.10}
\end{align*}
$$

where "..." represent terms being bounded by local constants. Let

$$
\begin{aligned}
m(\alpha) & :=\int b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)\left|\partial_{n} u_{\varepsilon}\right|^{\alpha+2} \mathrm{~d} x \\
M(\alpha) & :=\int a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{-2}\left[b^{-1}\left(a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{-2}\right)\right]^{\alpha+2} \mathrm{~d} x \\
n(\beta) & :=\int a\left(\left|\tilde{\nabla} u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{\beta+2} \mathrm{~d} x, \\
N(\beta) & :=\int b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)\left|\partial_{n} u_{\varepsilon}\right|^{-2}\left[a^{-1}\left(b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)\left|\partial_{n} u_{\varepsilon}\right|^{-2}\right)\right]^{\beta+2} \mathrm{~d} x .
\end{aligned}
$$

(5.9) and (5.10) then turn into the inequalities

$$
m(\alpha) \leq c(\alpha)[M(\alpha)+\ldots]
$$

and

$$
n(\beta) \leq c(\beta)[N(\beta)+\ldots]
$$

Suppose for the moment that $a(t)=t^{2}$. Then $M(\alpha) \leq c(\alpha)$ for any $\alpha \geq 0$, so that by (5.9 $)_{\alpha}$) the same is true for $m(\alpha)$, and this implies

$$
\left|\partial_{n} u_{\varepsilon}\right| \in L_{l o c}^{r}(B)
$$

for any finite r uniformly in ε.
This together with Remark 2.1, c), gives $N(\beta) \leq c(\beta)$ for any $\beta \geq 0$, and $\left(5.10_{\beta}\right)$ shows $n(\beta) \leq c(\beta)$ for all β, i.e.

$$
\left|\tilde{\nabla} u_{\varepsilon}\right| \in L_{l o c}^{r}(B),
$$

again for any finite r uniformly in ε.
We return to the general case and claim the existence of $\alpha_{0}>0$ s.t.

$$
\begin{equation*}
M\left(\alpha_{0}\right) \leq c_{0} \tag{5.11}
\end{equation*}
$$

Clearly (5.11) will follow if we have for large enough t the estimate

$$
t^{-2}\left[b^{-1}\left(a(t) t^{-2}\right)\right]^{\alpha_{0}+2} \leq c
$$

By the Δ_{2}-property this inequality will hold if we can prove

$$
\begin{equation*}
a(t) \leq c t^{2} b\left(t^{\frac{2}{2+\alpha_{0}}}\right), \quad t \gg 1 \tag{5.12}
\end{equation*}
$$

Let us discuss the validity of (5.12): from

$$
b(2 s) \leq \mu b(s) \quad \text { for all } s \geq 0
$$

we get according to Lemma A. 3

$$
b(\lambda s) \leq\left[1+\mu^{1+\frac{\ln (\lambda)}{\ln (2)}}\right] b(s) .
$$

Letting $\lambda=t^{\alpha_{0} /\left(2+\alpha_{0}\right)}$, $s=t^{2 /\left(2+\alpha_{0}\right)}$ for some α_{0} being specified later this inequality gives for $t \gg 1$

$$
\begin{aligned}
b(t) & \leq c\left[1+t^{\gamma_{0}}\right] b\left(t^{\frac{2}{2+\alpha_{0}}}\right) \\
& \leq c t^{\gamma_{0}} b\left(t^{\frac{2}{2+\alpha_{0}}}\right), \\
\gamma_{0} & :=\frac{\alpha_{0}}{2+\alpha_{0}} \frac{\ln (\mu)}{\ln (2)} .
\end{aligned}
$$

In particular we see

$$
\begin{equation*}
b(t) \leq c t^{2} b\left(t^{\frac{2}{2+\alpha_{0}}}\right) \tag{5.13}
\end{equation*}
$$

as long as $\gamma_{0} \leq 2$. So if we define α_{0} through the equation

$$
\begin{equation*}
\frac{\alpha_{0}}{2+\alpha_{0}} \frac{\ln (\mu)}{\ln (2)}=2 \tag{5.14}
\end{equation*}
$$

then (5.13) together with $a(t) \leq b(t)$ guarantees (5.12) and hence (5.11).
(5.11) and $\left(5.9_{\alpha_{0}}\right)$ show that $m\left(\alpha_{0}\right) \leq c_{0}$, and by the definition of $N(\beta)$ we will get

$$
\begin{equation*}
N\left(\beta_{0}\right) \leq c_{0} \tag{5.15}
\end{equation*}
$$

provided that β_{0} is chosen in such a way that for large t

$$
t^{-2}\left[a^{-1}\left(b(t) t^{-2}\right)\right]^{\beta_{0}+2} \leq c t^{\alpha_{0}+2}
$$

This inequality in turn follows from

$$
b(t) \leq c t^{2} a\left(t^{\frac{4+\alpha_{0}}{2+\beta_{0}}}\right)
$$

and by (2.5) we may take $\beta_{0}=\alpha_{0} / 2$ to get the above estimate leading to (5.15). Next we claim

$$
\begin{equation*}
M\left(\alpha_{l}\right)+N\left(\beta_{l}\right) \leq c_{l} \tag{l}
\end{equation*}
$$

for suitable sequences $\alpha_{l}, \beta_{l}, c_{l}$. For $l=0$ this is true by (5.11) and (5.15) and the choices of α_{0}, β_{0}. Suppose now that $l \geq 1$ and that $\left(5.16_{l-1}\right)$ is valid. From $N\left(\beta_{l-1}\right) \leq c_{l-1}$ we deduce quoting $\left(5.10_{\beta_{l-1}}\right)$ that

$$
n\left(\beta_{l-1}\right) \leq c_{l-1}
$$

and this together with the definition of M shows

$$
\begin{equation*}
M\left(\alpha_{l}\right) \leq c_{l} \tag{5.17}
\end{equation*}
$$

provided we have for large t

$$
t^{-2}\left[b^{-1}\left(a(t) t^{-2}\right)\right]^{\alpha_{l}+2} \leq c t^{\beta_{l-1}+2}
$$

or (which is the same)

$$
\begin{equation*}
a(t) \leq c t^{2} b\left(t^{\frac{4+\beta_{l-1}}{2+\alpha_{l}}}\right) \tag{5.18}
\end{equation*}
$$

Clearly (5.18) is satisfied for the choice

$$
\begin{equation*}
\alpha_{l}=2+\beta_{l-1} \tag{5.19}
\end{equation*}
$$

and (5.19) implies (5.17). Now, (5.17) and (5.9 $\alpha_{\alpha_{l}}$) give $m\left(\alpha_{l}\right) \leq c_{l}$, and

$$
\begin{equation*}
N\left(\beta_{l}\right) \leq c_{l} \tag{5.20}
\end{equation*}
$$

will follow if we require (see the definition of N)

$$
t^{-2}\left[a^{-1}\left(t^{-2} b(t)\right)\right]^{\beta_{l}+2} \leq c t^{\alpha_{l}+2}
$$

for $t \gg 1$, i.e.

$$
\begin{equation*}
b(t) \leq c t^{2} a\left(t^{\frac{4+\alpha_{l}}{2+\beta_{l}}}\right) \tag{5.21}
\end{equation*}
$$

and we may take

$$
\beta_{l}=\frac{1}{2} \alpha_{l}
$$

on account of (2.5). In conclusion, by (5.17) and (5.20) we have established (5.16 $)$, and (5.16 $)$ holds for all l if we define α_{0} according to (5.14) and (recall (5.19)) take

$$
\alpha_{l}=2+\beta_{l-1}, \quad \beta_{l}=\frac{1}{2} \alpha_{l} .
$$

This gives the recursion

$$
\alpha_{l}=2+\frac{1}{2} \alpha_{l-1},
$$

hence $\alpha_{l} \rightarrow 4$ and $\beta_{l} \rightarrow 2$ as $l \rightarrow \infty$, and we have shown (recall that $\left(5.9_{\alpha_{l}}\right)$ and $\left(5.10_{\beta_{l}}\right)$ together with $\left(5.16_{l}\right)$ give $\left.m\left(\alpha_{l}\right)+n\left(\beta_{l}\right) \leq c_{l}\right)$

$$
\begin{aligned}
b\left(\left|\partial_{n} u_{\varepsilon}\right|\right)\left|\partial_{n} u_{\varepsilon}\right|^{\rho} \in L_{l o c}^{1}(B), & \rho<6, \\
a\left(\left|\left|\nabla \nabla u_{\varepsilon}\right|\right)\left|\tilde{\nabla} u_{\varepsilon}\right|^{\rho} \in L_{l o c}^{1}(B),\right. & \rho<4,
\end{aligned}
$$

uniformly w.r.t. ε. In the particular case $a=b$ or if $b(t) \leq c t^{2} a(t)$ is assumed we may choose $\beta_{l}=2+\alpha_{l}$ in (5.21) replacing the requirement $\beta_{l}=\alpha_{l} / 2$, and at the same time we may keep the choice of α_{0} and the relation $\alpha_{l}=2+\beta_{l-1}$. This implies

$$
\alpha_{l}=4+\alpha_{l-1}, \quad \alpha_{0}>0
$$

hence $\alpha_{l} \rightarrow \infty$ and $\beta_{l} \rightarrow \infty$ so that for $a=b$ or $b(t) \leq c t^{2} a(t)$ we arrive at

$$
\left|\nabla u_{\varepsilon}\right| \in L_{l o c}^{s}(B) \quad \text { for all } s<\infty
$$

uniformly in ε.

6 Examples

We start with a rather standard example of a N-function h being very close to the power growth case. Here h is of nearly s-growth provided that

$$
c t^{s-\varepsilon} \leq h(t) \leq C t^{s+\varepsilon}
$$

for all $t \gg 1$, for positive constants c, C and for any $\varepsilon>0$.

Example 6.1. a) For $s \geq 2$ the function

$$
h(t)=\left[\left(1+t^{2}\right)^{\frac{s}{2}}-1\right] \ln (1+t), \quad t \geq 0,
$$

satisfies (H1), (H2) and (2.6).
b) If $s>1$, then

$$
h(t)=t^{s} \ln (1+t) \quad, \quad t \geq 0
$$

fulfills (H1) and (H2).
Remark 6.1. Of course it is possible to replace $\ln (1+t)$ by iterated variants.
Example 6.2. (compare Remark 2.1, d)) Suppose that the continuous function θ : $[0, \infty) \rightarrow[0, \infty)$ is increasing and satisfies $\left(\Delta_{2}\right)$. Suppose further that $\theta(0)>0$ and let

$$
h(t)=\int_{0}^{t}\left[\int_{0}^{u} \theta(s) \mathrm{d} s\right] \mathrm{d} u, \quad t \geq 0
$$

Then (H1), (H2) and (2.6) hold for the function h.
In fact, since

$$
h^{\prime}(t)=\int_{0}^{t} \theta(s) \mathrm{d} s, \quad h^{\prime \prime}(t)=\theta(t) \geq \theta(0)>0
$$

(H1) clearly holds. We observe

$$
\frac{h^{\prime}(t)}{t}=\frac{1}{t} \int_{0}^{t} \theta(s) \mathrm{d} s \geq \frac{1}{t} \int_{0}^{t} \theta(0) \mathrm{d} s=\theta(0)
$$

which gives (2.6), and at the same time

$$
\frac{h^{\prime}(t)}{t}=\frac{1}{t} \int_{0}^{t} \theta(s) \mathrm{d} s=\theta(\xi) \leq \theta(t)=h^{\prime \prime}(t)
$$

where ξ denotes a suitable number in $(0, t)$. This proves the first part of $(H 2)$. For the second part we argue as follows: we have

$$
\frac{h^{\prime}(t)}{t}=\frac{1}{t} \int_{0}^{t} \theta(s) \mathrm{d} s \geq \frac{1}{2} \theta(t / 2)
$$

i.e.

$$
\theta(t) \leq \mu \theta(t / 2) \leq \frac{2}{t} \mu h^{\prime}(t)
$$

and in conclusion

$$
h^{\prime \prime}(t) \leq 2 \mu \frac{h^{\prime}(t)}{t}
$$

In order to construct "explicit" examples which really "oscillate" between $\bar{\varepsilon}+1$ and $\bar{h}+1$-growth and still satisfy (H1) and (H2) we need an equivalent formulation of (H2) which clarifies the geometric structure of (H2) in terms of h^{\prime}.

Suppose there exist $0<\bar{\varepsilon} \leq \bar{h}$ such that on $(0, \infty)$

$$
\begin{equation*}
\frac{h^{\prime}(t)}{t^{\bar{\varepsilon}}} \text { increases and } \frac{h^{\prime}(t)}{t^{\bar{h}}} \text { decreases. } \tag{*}
\end{equation*}
$$

Then we have $(H 2) \Leftrightarrow\left(H 2^{*}\right)$, where the equivalence

$$
\bar{\varepsilon} \frac{h^{\prime}(t)}{t} \leq h^{\prime \prime}(t) \quad \Leftrightarrow \quad \frac{h^{\prime}(t)}{t^{\bar{\varepsilon}}} \text { is increasing }
$$

is stated in Remark 2.1, b), and where the second equivalence is just a similar observation.
Example 6.3. Suppose that $\bar{\varepsilon}<\varepsilon_{1}<h_{1}<\bar{h}$ and that \mathbb{R}^{+}is the disjoint union of Intervalls, $\mathbb{R}^{+}=\bigcup_{i} I_{i}$. Then we let

$$
h^{\prime}=c_{1} t^{h_{1}} \quad \text { on } I_{1}, \quad h^{\prime}=c_{2} t^{\varepsilon_{1}} \quad \text { on } I_{2}, \quad h^{\prime}=c_{3} t^{h_{1}} \quad \text { on } I_{3} \quad \ldots,
$$

where the positive constants c_{i} are chosen s.t. h^{\prime} is of class C^{0}. Then (H2*) is satisfied, i.e. we have (H2). Integrating h^{\prime} we obtain a function h which satisfies depending on the choice of the intervalls

$$
c t^{\varepsilon_{2}} \leq h(t) \leq C t^{h_{2}}
$$

with positive constants c, C and with optimal exponents $\varepsilon_{1} \leq \varepsilon_{2}<h_{2} \leq h_{1}$. In this sense the function h is far away from being of power growth.

Remark 6.2. Of course the energy density considered in Example 6.3 is not of class C^{2}. To overcome this difficulty let us consider the endpoint of one fixed intervall I_{i} of the construction. If $(\cdot)_{\gamma}$ denotes a local mollification around this point with radii less than $\gamma>0$, then we observe that the a.e. identity

$$
\varepsilon_{1} \frac{h^{\prime}}{t} \leq h^{\prime \prime} \leq h_{1} \frac{h^{\prime}}{t}
$$

implies

$$
\varepsilon_{1}\left(\frac{h^{\prime}}{t}\right)_{\gamma} \leq\left(h^{\prime \prime}\right)_{\gamma} \leq h_{1}\left(\frac{h^{\prime}}{t}\right)_{\gamma} .
$$

Since the function h^{\prime} / t is of class C^{0} we have for γ sufficiently small

$$
\left(\frac{h^{\prime}}{t}\right)_{\gamma} \approx \frac{h^{\prime}}{t} \approx \frac{\left(h^{\prime}\right)_{\gamma}}{t}
$$

and since h^{\prime} weakly differentiable we have in addition

$$
\left(h^{\prime \prime}\right)_{\gamma}=\left(\left(h^{\prime}\right)_{\gamma}\right)^{\prime},
$$

thus $\left(h^{\prime}\right)_{\gamma}$ is a smooth function satisfying

$$
\varepsilon_{0} \frac{\left(h^{\prime}\right)_{\gamma}}{t} \leq\left(\left(h^{\prime}\right)_{\gamma}\right)^{\prime} \leq h_{0} \frac{\left(h^{\prime}\right)_{\gamma}}{t}
$$

with exponents $\bar{\varepsilon} \leq \varepsilon_{0}<\varepsilon_{1}<h_{1}<h_{0} \leq \bar{h}$.
Example 6.4. Let us finally mention an example of a N-function which does not satisfy (H2). Here we choose

$$
\theta(t)=\cos ^{2}(t)+t \sin ^{2}(t)
$$

and integrate twice to obtain a N-function h which is not covered by our assumptions. We leave the details to the reader.

Appendix. Elementary properties of N-functions

Consider a N-function $h:[0, \infty) \rightarrow[0, \infty)$ of class C^{2}, i.e. we have assumption (H1).
Lemma A.1. a) If we know for all $t \geq 0$

$$
\begin{equation*}
t h^{\prime \prime}(t) \leq \bar{h} h^{\prime}(t) \tag{A.1}
\end{equation*}
$$

for a non-negative constant \bar{h}, then h satisfies a Δ_{2}-condition, i.e. we have $\left(\Delta_{2}\right)$ of Section 2.
b) Conversely, if we have $\left(\Delta_{2}\right)$ and if in addition $h^{\prime \prime}$ is increasing, i.e. h^{\prime} is convex, then (A.1) holds.

Proof of Lemma A.1.
ad a). According to the non-vanishing of h^{\prime} on $(0, \infty)$ we can rewrite (A.1) in the form

$$
\frac{h^{\prime \prime}(t)}{h^{\prime}(t)} \leq \frac{\bar{h}}{t} \quad \text { for all } t>0
$$

which gives

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\ln \left(h^{\prime}(t)\right)-\bar{h} \ln (t)\right] \leq 0 \quad \text { on } \quad(0, \infty)
$$

Thus the function $t \mapsto \ln \left(h^{\prime}(t)\right)-\bar{h} \ln (t)$ is decreasing, in particular

$$
\ln \left(h^{\prime}(2 t)\right)-\bar{h} \ln (2 t) \leq \ln \left(h^{\prime}(t)\right)-\bar{h} \ln (t),
$$

i.e.

$$
\ln \left(h^{\prime}(2 t) / h^{\prime}(t)\right) \leq \bar{h} \ln (2)
$$

and in conclusion

$$
\begin{equation*}
h^{\prime}(2 t) \leq 2^{\bar{h}} h^{\prime}(t) \quad \text { for all } t>0 \tag{A.2}
\end{equation*}
$$

¿From $h(0)=0$ we get using (A.2)

$$
h(2 t)=\int_{0}^{2 t} h^{\prime}(s) \mathrm{d} s=2 \int_{0}^{t} h^{\prime}(2 s) \mathrm{d} s \leq 2 \int_{0}^{t} 2^{\bar{h}} h^{\prime}(s) \mathrm{d} s=2^{\bar{h}+1} h(t) .
$$

Therefore we have $\left(\Delta_{2}\right)$ with $\mu=2^{\bar{h}+1}$.
ad b). We show that $\left(\Delta_{2}\right)$ for h implies a similar condition for h^{\prime} : we have

$$
h(t)=\int_{0}^{t} h^{\prime}(s) \mathrm{d} s \geq \int_{t / 2}^{t} h^{\prime}(s) \mathrm{d} s \geq \frac{t}{2} h^{\prime}(t / 2)
$$

since h^{\prime} is nonnegative and increasing. This gives

$$
t h^{\prime}(t) \leq h(2 t)
$$

and in conclusion by the Δ_{2}-property of $h(s>0)$

$$
\begin{equation*}
h^{\prime}(2 s) \leq \frac{1}{2 s} h(4 s) \leq \frac{1}{2} \frac{1}{s} \mu^{2} h(s)=\frac{\mu^{2}}{2} \frac{1}{s} \int_{0}^{s} h^{\prime}(t) \mathrm{d} t \leq \frac{\mu^{2}}{2} h^{\prime}(s) . \tag{A.3}
\end{equation*}
$$

Next we use our additional assumption that $h^{\prime \prime}$ is increasing: as usual it holds

$$
h^{\prime}(s)=\int_{0}^{s} h^{\prime \prime}(t) \mathrm{d} t \geq \int_{s / 2}^{s} h^{\prime \prime}(t) \mathrm{d} t
$$

(recall $\left.h^{\prime}(0)=\lim _{t \rightarrow 0} h(t) / t=0\right)$ and now we can estimate

$$
\int_{s / 2}^{s} h^{\prime \prime}(t) \mathrm{d} t \geq \frac{s}{2} h^{\prime \prime}(s / 2)
$$

with the result

$$
t h^{\prime \prime}(t) \leq h^{\prime}(2 t)
$$

But with (A.3) this inequality implies (A.1).

Lemma A.2. If the Δ_{2}-condition $\left(\Delta_{2}\right)$ holds for the function h, then we have

$$
\begin{equation*}
h(t) \leq h(1) t^{\mu} \quad \text { for all } t \geq 1 \tag{A.4}
\end{equation*}
$$

Proof of Lemma A.2. Similar to the last step in the proof of b) of Lemma A. 1 we have

$$
h(t)=\int_{0}^{t} h^{\prime}(s) \mathrm{d} s \geq \int_{t / 2}^{t} h^{\prime}(s) \mathrm{d} s \geq \frac{t}{2} h^{\prime}(t / 2)
$$

i.e.

$$
s h^{\prime}(s) \leq h(2 s) .
$$

Using $\left(\Delta_{2}\right)$ we see

$$
s h^{\prime}(s) \leq \mu h(s)
$$

so that for $t>0$

$$
\frac{h^{\prime}(t)}{h(t)} \leq \frac{\mu}{t},
$$

which means

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[\ln (h(t))-\mu \ln (t)] \leq 0
$$

Thus the function $t \mapsto \ln (h(t))-\mu \ln (t)$ is decreasing, for $t \geq 1$ it follows

$$
\ln (h(t))-\mu \ln (t) \leq \ln (h(1)),
$$

and (A.4) is established.

Lemma A.3. If the Δ_{2}-condition holds for the function h, then we get

$$
\begin{equation*}
h(\lambda s) \leq\left(1+\mu^{1+\frac{\ln (\lambda)}{\ln (2)}}\right) h(s) \tag{A.5}
\end{equation*}
$$

for all $\lambda, s>0$.
Proof of Lemma A.3. If $\lambda \leq 1$, then we just observe $h(\lambda s) \leq h(s)$. Let $\lambda>1$. Then we select $l \in \mathbb{N}$ s.t. $\lambda \in\left[2^{l-1}, 2^{l}\right]$ and get

$$
h(\lambda s) \leq h\left(2^{l} s\right) \leq \mu h\left(2^{l-1} s\right) \leq \mu^{l} h(s) .
$$

By the choice of l we have $\lambda \geq 2^{l-1}$, i.e. $l \leq 1+\frac{\ln (\lambda)}{\ln (2)}$, and (A.5) follows by combining both cases.

References

[AF] Acerbi, E., Fusco, N., Partial regularity under anisotropic (p, q) growth conditions. J. Diff. Equ. 107, no. 1 (1994), 46-67.
[Ad] Adams, R. A., Sobolev spaces. Academic Press, New York-San Francisco-London 1975.
[Bi] Bildhauer, M., Convex variational problems: linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg-New York, 2003.
[BF1] Bildhauer, M., Fuchs, M., Partial regularity for a class of anisotropic variational integrals with convex hull property. Asymp. Anal. 32 (2002), 293-315.
[BF2] Bildhauer, M., Fuchs, M., Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals. Manus. Math. 123 (2007), 269-283.
[BF3] Bildhauer, M., Fuchs, M., Partial regularity for local minimizers of splitting-type variational integrals. To appear in Asympt. Anal. (2007).
[BFZ] Bildhauer, M., Fuchs, M., Zhong, X., A regularity theory for scalar local minimizers of splitting-type variational integrals. To appear in Ann. Scuola Norm. Sup. Pisa.
[Ca] Campanato, S., Hölder continuity of the solutions of some non-linear elliptic systems. Adv. Math. 48 (1983), 16-43.
[Ch] Choe, H.J., Interior behaviour of minimizers for certain functionals with nonstandard growth. Nonlinear Analysis, Theory, Methods \& Appl. 19.10 (1992), 933-945.
[Da] Dacorogna, B., Direct methods in the calculus of variations. Applied Mathematical Sciences 78, Springer, Berlin-Heidelberg-New York, 1989.
[DLM] D'Ottavio, A., Leonetti, F., Musciano, C., Maximum principle for vector valued mappings minimizing variational integrals. Atti Sem. Mat. Fis. Uni. Modena XLVI (1998), 677-683.
[ELM1] Esposito, L., Leonetti, F., Mingione, G., Higher integrability for minimizers of integral functionals with (p, q)-growth. J. Diff. Eq. 157 (1999), 414-438.
[ELM2] Esposito, L., Leonetti, F., Mingione, G., Regularity for minimizers of functionals with p-q growth. Nonlinear Diff. Equ. Appl. 6 (1999), 133-148.
[FS] Fusco, N., Sbordone, C., Some remarks on the regularity of minima of anisotropic integrals. Comm. P.D.E. 18, 153-167 (1993).
[Gi] Giaquinta, M., Growth conditions and regularity, a counterexample. Manus. Math. 59 (1987), 245-248.
[GM] Giaquinta, M., Modica, G., Remarks on the regularity of the minimizers of certain degenerate functionals. Manus. Math. 57 (1986), 55-99.
[Ho] Hong, M.C., Some remarks on the minimizers of variational integrals with non standard growth conditions. Boll. U.M.I. (7) 6-A (1992), 91-101.
[Ma1] Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Rat. Mech. Anal. 105 (1989), 267284.
[Ma2] Marcellini, P., Regularity for elliptic equations with general growth conditions. J. Diff. Equ. 105 (1993), 296-333.
[Ma3] Marcellini, P., Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa 23 (1996), 1-25.
[MM] Massari, U., Miranda, M., Minimal surfaces of codimension one. North-Holland Mathematics Studies 91, North-Holland, Amsterdam-New York-Oxford, 1983.
[MP] Marcellini, P., Papi, G., Nonlinear elliptic systems with general growth. J. Diff. Eq. 221 (2006), 412-443.
[Mo] Morrey, C. B., Multiple integrals in the calculus of variations. Grundlehren der math. Wiss. in Einzeldarstellungen 130, Springer, Berlin-Heidelberg-New York 1966.

