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Abstract

We consider a Stokes-type system of partial differential equations in 2D, which
describes the stationary and also slow flow of an incompressible fluid. Here the
nonlinear differential operator related to the stress tensor is generated by a potential
H(ε) = h(|ε|) acting on symmetric (2×2)-matrices, where h is a N -function of rather
general type leading to a non-uniformly elliptic problem.

In our note we discuss the regularity problem for steady flows of certain classes of general-
ized Newtonian fluids in two dimensions assuming that the velocity is small which means
that we mainly concentrate on some variants of the classical Stokes problem. To be pre-
cise, consider a bounded open set Ω ⊂ R

2 and a system of volume forces f : Ω → R
2. For

a given boundary datum u0 we then like to find a velocity field v : Ω → R
2 and a pressure

function p : Ω → R such that

(1)






− div [T (ε(v))] + ∇p = f in Ω,
div v = 0 in Ω,

v = u0 on ∂Ω .

We assume that the tensor T is the gradient of a potential H : S → [0,∞) defined on
the space S of all symmetric (2 × 2)- matrices, where in (1) ε(v) := 1

2

(
∇v + (∇v)T

)
is

the symmetric gradient of v and where the operator div has to be applied “line-wise”.
Due to the absence of the convective term it is easy to see that (1) is reducible to a
variational problem, and therefore it makes sense to study the regularity properties of
local minimizers u : Ω → R

2 of the variational integral

(2) I[w, Ω] =

∫

Ω

H(ε(w)) dx

defined for solenoidal fields w from a suitable energy space, where just for notational
simplicity we assume f ≡ 0. The choice H(ε) = ν

2
|ε|2 for some ν > 0 leads to Stokes

problem which is treated in the monographs of Ladyzhenskaya [La] and Galdi [Ga1],
[Ga2]. The case of p-growth potentials, i.e.

(3) λ(1 + |ε|2) p−2

2 |σ|2 ≤ D2H(ε)(σ, σ) ≤ Λ(1 + |ε|2) p−2

2 |σ|2

for some p ∈ (1,∞) and with constants λ, Λ > 0 has been investigated in [KMS] leading
to the C1,µ-regularity of local minima u. In fact, Kaplický, Málek and Stará even
construct globally smooth solutions of (1) in case u0 = 0 including the convective term
provided p > 3/2 (see [KMS]), Theorem 5.30). Moreover they show the existence of a
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solution of (1) (+ convective term) being smooth in the interior assuming that p > 6/5.
Here we like to remark that Frehse, Málek and Steinhauer proved in [FMS] that (1)
including the convective term has a weak solution v ∈ W 1

p (Ω; R2) for any p > 1 provided
u0 = 0 and the tensor T is monotone with (p−1)-growth but not necessarily the gradient
of a potential H . Concerning the regularity of this weak solution nothing is known.

In the paper [BFZ1] we investigated the behaviour of local minimizers of the energy I
defined in (2) replacing (3) by its anisotropic variant

(4) λ(1 + |ε|2) p−2

2 |σ|2 ≤ D2H(ε)(σ, σ) ≤ Λ(1 + |ε|2) q−2

2 |σ|2

with exponents 1 < p ≤ q and obtained interior C1,µ- regularity of local minima provided

(5) q < min(2p, p + 2) .

Moreover, if we have (4) and (5) with p > 6/5 and if we include the convective term in (1)
together with homogeneous boundary data, then we constructed a weak solution of (1)
without interior singularities. Further extensions concerning non-autonomous anisotropic
potentials H = H(x, ε) are given in [BFZ2]. We wish to mention that similar regularity
results for electrorheological fluids are due to Diening, Ettwein and Růžička [DER].

Of course our list of known results is not complete, and the reader will find further
references in the above mentioned papers. Moreover, the textbooks [Ga1], [Ga2], [La],
[MNRR], [Ru] and [FS] provide additional information concerning the mathematical and
physical background of the problems under consideration.

Inspired by Marcellini’s work on variational problems with energy densities of nonstandard
growth (see, e.g. [Ma1], [Ma2], [Ma3], [MP]) we now introduce a class of potentials H
which not necessarily satisfy (3) or the anisotropic variant (4) together with (5). Suppose
that

(6) H(ε) = h(|ε|), ε ∈ S ,

for a function h : [0,∞) → [0,∞) of class C2 such that the following assumptions (A1 -
4) hold:

(A1)

{
h is strictly increasing and convex together with h′′(0) > 0

and lim
t↓0

h(t)
t

= 0 ;

(A2)

{
there exists a constant k > 0 such that h(2t) ≤ k h(t) for all
t ≥ 0 ;
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(A3)

{
for an exponent α ≥ 0 and a constant a ≥ 0 we have
h′(s)

s
≤ h′′(s) ≤ a(1 + s2)

α
2

h′(s)
s

∀ s ≥ 0 ;

(A4)

∫ ∞

1

h−1(t)

t3/2
dt < ∞, h−1 denoting the inverse function .

Let us give some comments on our hypotheses:

i) We have h(0) = h′(0) = 0, and since h is convex, h′ must be an increasing function
with h′(t) > 0 for all t > 0: otherwise it would follow h′ = 0 on a certain interval
[0, t0] contradicting the first part of (A1).

ii) From h′(s) 1
s
≤ h′′(s) we get that

(7) h(t) ≥ 1

2
h′′(0)t2 ∀ t ≥ 0 .

Moreover, t 7→ h′(t)
t

is an increasing function.

(A1) together with (7) implies that h is a N -function in the sense of [Ad, Section
8.2], and (A2) states that h has the (∆2)-property.

iii) It is easy to see that (A2) gives the existence of a number c1 > 0 and of an exponent
m ≥ 2 such that

(8) h(t) ≤ c1(t
m + 1)

holds for all t ≥ 0. Since h is convex, (8) implies

(9) h′(t) ≤ c2(t
m−1 + 1) .

Note that (8) does not follow from (A1) and (A3): these conditions also hold for
certain functions with exponential growth.

iv) Since h is a N -function and since we have Korn’s inequality in Orlicz-Sobolev spaces
(see [MM], Remark 5, and [Ko1], [Ko2]), we say that a mapping u with div u = 0
from the local Orlicz-Sobolev class W 1

h,loc(Ω; R2) is a local minimizer of the functional

I from (2) iff I[u, Ω̃] ≤ I[v, Ω̃] holds for all v ∈ W 1
h,loc(Ω; R2) such div v = 0 and

spt(u − v) ⊂ Ω̃, where Ω̃ is any subdomain of Ω with compact closure in Ω.

v) From (6) we get for all ε, σ ∈ S
2

min

{
h′(|ε|)
|ε| , h′′ (|ε|)

}
|σ|2 ≤ D2H(ε)(σ, σ) ≤ max

{
h′(|ε|)
|ε| , h′′(|ε|)

}
|σ|2,
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so that by (A3)

(10)
h′(|ε|)
|ε| |σ|2 ≤ D2H(ε)(σ, σ) ≤ a

(
1 + |ε|2

)α
2

h′(|ε|)
|ε| |σ|2 .

The first inequality in (10) combined with i) gives the strict convexity of H , and
from (9) it follows

(11) D2H(ε)(σ, σ) ≤ c3

(
1 + |ε|2

)m−2

2 |σ|2 ,

where m = m + α.

vi) According to [Ad], Theorem 8.35, we deduce from (A4) that W 1
h,loc(Ω; R2) is a

subspace of C0 ∩ L∞
loc(Ω; R2). Note that on account of (A4) h(t) must grow faster

than t2 as t → ∞. It is easy to see that from (A1) and (A2) we get that h(t) ≤
th′(t) ≤ kh(t). Therefore we can replace (A4) by the equivalent condition

∫ ∞

1

dt

h(t)1/2
< ∞ .

Let us now state our main result:

THEOREM 1. Let (6) and (A1-4) hold with α < 2. If u locally minimizes the energy I
from (2) within the class {v ∈ W 1

h,loc(Ω; R2) : div v = 0}, then u is in the space C1,µ(Ω; R2)
for any µ < 1.

REMARK 1. If we go back to problem (1) and include the convective term in the first
line of (1), then - under the assumptions of Theorem 1 concerning H - we can modify
the arguments leading to Theorem 4.1 of [BFZ1] in the spirit of the proof of Theorem 1
presented below in order to get the existence of a weak solution of (1) at least in the case
u0 = 0 being smooth in the interior of Ω.

REMARK 2. Given numbers 2 < p < q < ∞ it is easy to construct functions h
“alternating” between tp and tq which means that (4) holds exactly for these choices of
p and q. At the same time t 7→ h′(t)

/
t is increasing and also gives an upper bound for

h′′(t) in the sense of the second inequality from (A3). Thus Theorem 1 shows regularity
of local minimizers which from [BFZ1] can only be deduced if (5) holds, i.e. if we require
q < p + 2.
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Proof of Theorem 1

In order to be not too technical, we present a formal proof whose details can be made
precise by working with the following regularisation: we fix a disc D compactly contained
in Ω and consider the mollification (u)ρ with small radius ρ > 0 of our local minimizer.
We further let

δ := δ(ρ) :=
[
1 + ρ−1 + ‖ε ((u)ρ)‖2m

Lm(D)

]−1

,

where m ≥ 2 is taken from (11).

With Hδ(ε) := δ (1 + |ε|2)
m
2 + H(ε), ε ∈ S, we then denote by uδ the unique minimizer of

∫
D

Hδ (ε(w)) dx among all functions w ∈ (u)ρ+
◦

W1
m(D; R2) such that div w = 0. For the

properties of the functions uδ we refer to [BF]. Now, dropping the index δ, we have on
account of (4.10) from [BF]

(12)

∫

Ω

η2∂kσ : ε(∂ku) dx ≤ −2

∫

Ω

η∂kτ : (∇η ⊙ ∂k[u − Qx]) dx ,

where σ := DH (ε(u)) and τ := σ−p 1 for a suitable pressure function p, i.e. ∇p = div σ.
In (12) η denotes a cut-off function from C1

0(Ω) such that 0 ≤ η ≤ 1, and “⊙ ” is the
symmetric product of vectors, whereas “ : ” is the scalar product of matrices. Here and
in what follows we always take the sum w.r.t. k = 1, 2. Finally, Q represents an arbitrary
(2 × 2) -matrix not necessarily symmetric. We have

(13) |∇τ | ≤ c|∇σ|

and
(
Φ := D2H (ε(u)) (∂kε(u), ∂kε(u))1/2

)

|∇σ|2 = ∂kσ : ∂kσ = D2H (ε(u)) (∂kε(u), ∂kσ)

≤ D2H (ε(u)) (∂kε(u), ∂kε(u))1/2 D2H (ε(u)) (∂kσ, ∂kσ)1/2

≤ Φ
∣∣D2H (ε(u))

∣∣1/2 |∇σ| ,

hence by (10)

(14) |∇σ| ≤ c Φϕ, ϕ :=
(
h′

(
ε(u)

)/
|ε(u)|

)1/2 (
1 + |ε(u)|2

)α/4
.

Here and in the sequel c stands for a positive constant not depending on the approxima-
tion. Using (13) and (14) on the r.h.s. of (12), we find

(15)

∫
−

BR(x0)

Φ2 dx ≤ c
1

R

∫
−

B2R(x0)

ϕΦ|∇u − Q| dx ,
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where B2R(x0) ⋐ Ω, provided η has support in B2R(x0), η ≡ 1 on BR(x0) and |∇η| ≤ c/R.
Letting γ := 4/3 we apply Hölder’s and Sobolev-Poincaré’s inequality to the r.h.s. of (15)
to obtain (with Q :=

∫
−

B2R(xo)
∇u dx)

1

R

∫
−

B2R(x0)

ϕΦ|∇u − Q| dx

≤ 1

R




∫
−

B2R(x0)

(ϕΦ)γ dx




1/γ 


∫
−

B2R(x0)

|∇u − Q|4 dx




1/4

≤ c




∫
−

B2R(x0)

(ϕΦ)γ dx




1/γ 


∫
−

B2R(x0)

|∇2u|γ dx




1/γ

.

Using |∇2u| ≤ c|∇ε(u)| we deduce from (15)

(16)

∫
−

BR(x0)

Φ2 dx ≤ c




∫
−

B2R(x0)

(ϕΦ)γ dx




1/γ 


∫
−

B2r(x0)

|∇ε(u)|γ dx




1/γ

.

¿From the first inequality in (10) we get

|∇ε(u)| ≤ Φ
(
|ε(u)|

/
h′ (|ε(u)|)

)1/2

,

and if we observe the validity of

(17)

(
h′(t)

t

)1/2 (
1 + t2

)α
4 ≥ c

(
t

h′(t)

)1/2

for all t ≥ 0 and with a constant c > 0 (in case t << 1 (17) follows from h′(0) = 0,

h′′(0) > 0, whereas for “large” t we estimate h′(t)
t

(1 + t2)
α
4 ≥ ch(t)

t2
t

α
2

(7)

≥ ctα/2 ≥ c) we see
that (16) together with (17) gives the estimate

(18)




∫
−

BR(x0)

Φ2 dx




1/2

≤ c




∫
−

B2R(x0)

(ϕΦ)γ dx




1/γ

.

In order to continue we first derive a local L2-bound for the function Φ in terms of the
energy and then use this information to show that certain auxiliary functions belong to
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W 1
2,loc (uniformly w.r.t. the approximation) which finally will enable us to handle the

function ϕ so that we can exploit (18).

Step 1: a local L2-bound for Φ

From (12) - (14) (choosing Q = 0) we deduce

∫

Ω

η2Φ2 dx ≤ c

∫

Ω

η|∇η|Φϕ|∇u| dx ,

hence by Young’s inequality

(19)

∫

Ω

η2Φ2 dx ≤ c

∫

Ω

|∇η|2ϕ2|∇u|2 dx .

We have (recall α < 2)

ϕ2|∇u|2 =
h′(|ε(u)|)
|ε(u)| (1 + |ε(u)|2)α

2 |∇u|2

≤ c
h′(|ε(u)|)
|ε(u)|

[
|ε(u)|2 + 1

]
|∇u|2

≤ ch′ (|ε(u)|) |ε(u)||∇u|2

a.e. on [|ε(u)| ≥ 1]. From (A1) it follows

h(t) ≥
∫ t

t/2

h′(s)ds ≥ h′(t/2)t/2 ,

hence
th′(t) ≤ kh(t)

on account of (A2). This implies

ϕ2|∇u|2 ≤ ch (|ε(u)|) |∇u|2

on [|ε(u)| ≥ 1]. On [|ε(u) ≤ 1] we just observe ϕ2|∇u|2 ≤ c|∇u|2 so that by(7)

ϕ2|∇u|2 ≤ c
[
1 + |∇u|2

]
h(|∇u|) .

W.r.t. (19) this shows

(20)

∫

Ω

η2Φ2 dx ≤ c

∫

Ω

|∇η|2
(
1 + |∇u|2

)
h (|∇u|) dx ,
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and it therefore remains to bound |ε(u)|2h (|ε(u)|) in L1
loc (in terms of the energy) which

by (20) then leads to the desired L1
loc-bound for Φ2 on account of Korn’s inequality now

applied in the space generated by t 7→ t2h(t). For the following calculations we observe
that we actually work with a regularisation which means that we have enough smoothness
to perform the steps. Moreover, from (A4) we deduce uniform L∞-bounds for the functions
uδ. Now, with η as usual, we have

∫

Ω

η2|ε(u)|2h(|ε(u)|) dx =
1

2

∫

Ω

η2(∂ju
i + ∂iu

j)ε(u)ijh(|ε(u)|) dx

=

∫

Ω

∂ju
i
[
η2ε(u)ijh (|ε(u)|)

]
dx = −

∫

Ω

ui∂j

[
η2ε(u)ijh (|ε(u)|)

]
dx

≤ c
[ ∫

Ω

η|∇η||ε(u)|h(|ε(u)|) dx +

∫

Ω

η2|∇ε(u)|h(|ε(u)|) dx

+

∫

Ω

η2|∇ε(u)||ε(u)|h′(|ε(u)|) dx
]

=: c[T1 + T2 + T3] .

By Young’s inequality we see for all β > 0

T1 ≤ β

∫

Ω

η2|ε(u)|2h(|ε(u)|) dx + c(β)

∫

Ω

|∇η|2h(|ε(u)|) dx,

and if β is small enough we get

(21)

∫

Ω

η2|ε(u)|2h(|ε(u)|) dx ≤ c




∫

Ω

|∇η|2h(|ε(u)|) dx + T2 + T3



 .

In a similar way (using 0 = h(0) ≥ h(t) − th′(t)) we find

T2 =

∫

Ω

η2|∇ε(u)|h1/2(|ε(u)|)|ε(u)|−1|ε(u)|h(|ε(u)|)1/2 dx

≤ β

∫

Ω

η2|ε(u)|2h(|ε(u)|) dx + c(β)

∫

ω

η2|∇ε(u)|2h(|ε(u)|)|ε(u)|−2 dx

≤ β

∫

Ω

η2|ε(u)|2h(|ε(u)|) dx + c(β)

∫

Ω

η2|∇ε(u)|2h′(|ε(u)|)
|ε(u)| dx

(10)

≤ β

∫

Ω

η2|ε(u)|2h(|ε(u)|) dx + c(β)

∫

ω

η2Φ2 dx ,

8



and since th′(t) ≤ kh(t), we obtain the same bound for T3. Thus (21) together with the
above estimates implies

(22)

∫

Ω

η2|ε(u)|2h(|ε(u)|) dx ≤ c



∫

Ω

|∇η|2h(|ε(u)|) dx +

∫

Ω

η2Φ2 dx


 .

At first glance (22) does not look very promising since our goal is to bound
∫
Ω

η2Φ2 dx

from above through the l.h.s. of (22). But if we use (19) on the r.h.s. of (22) and observe
that ∫

Ω

|∇η|2h (|ε(u)|) dx ≤ cloc < ∞

for a local constant depending on η, we get

(23)

∫

Ω

η2|ε(u)|2h (|ε(u)|) dx ≤ c


cloc +

∫

Ω

|∇η|2h′(|ε(u)|)
|ε(u)|

(
1 + |ε(u)|2

)α
2 |∇u|2 dx


 .

Let Ω∗ denote a subdomain such that Ω∗ ⋐ Ω and consider discs Br(z) ⊂ BR(z) in Ω∗.
The constant cloc in (23) depends on Ω∗, and if η is chosen such that 0 ≤ η ≤ 1, η = 1
on Br(z), |∇η| ≤ c/(R − r), spt η ⊂ BR(z), we deduce with the help of Korn’s inequality
(applied to the N -function t 7→ t2h(t))

(24) l.h.s. of (23) ≥ c

[∫

Br(z)

|∇u|2h (|∇u|) dx − cloc

]
,

where here and in the sequel “c” is a constant not depending on Ω∗ or the approximation.
For the discussion of the r.h.s. of (23) we observe that b(t) := th(

√
t), t ≥ 0, is a

N -function. Applying Young’s inequality with bβ(t) := βb(t), β > 0, we get

h′(|ε(u)|)
|ε(u)|

(
1 + |ε(u)|2

)α
2 |∇u|2

≤ bβ

(
|∇u|2

)
+ b∗β(

h′(|ε(u)|)
|ε(u)|

(
1 + |ε(u)|2

)α
2

︸ ︷︷ ︸
=:ξ

) ,

b∗β denoting the conjugate function for which we have b∗β(t) ≤ t
[
h−1

(
1
β
t
)]2

, h−1 being

the inverse. It follows

(25)

r.h.s. of (23) ≤ c

[
cloc + β(R − r)−2

∫

BR(z)

|∇u|2h (|∇u|) dx

+(R − r)−2

∫

BR(z)

ξ

(
h−1

(
1

β
ξ

))2

dx

]
.

9



For discussing the last integral on the r.h.s. of (25) we observe that on [|ε(u)| ≥ 1] (using
α ≤ 2)

1

β
ξ ≤ c

β
h′ (|ε(u)|) |ε(u)| ≤ c

β
h(|ε(u)|) .

Assuming β
c
≤ 1 the convexity of h gives (h(0) = 0)

h (|ε(u)|) = h

(
β

c

c

β
|ε(u)|

)
≤ β

c
h

(
c

β
|ε(u)|

)
,

hence 1
β
ξ ≤ h

(
c
β
|ε(u)|

)
and in conclusion

ξ

(
h−1

(
1

β
ξ

))2

≤ h′(|ε(u)|)
|ε(u)|

(
1 + |ε(u)|2

)α
2

c2

β2
|ε(u)|2

≤ c

β2
h (|ε(u)|) |ε(u)|α

on the set [|ε(u)| ≥ 1]. If |ε(u)| ≤ 1, then by (A3)

h′(|ε(u)|)
|ε(u)| ≤ h′′ (|ε(u)|) ≤ c ,

i.e. 1
β
ξ ≤ c

β
. From (7) we deduce h−1(s) ≤ cs1/2 so that

ξ

(
h−1

(
1

β
ξ

))2

≤ c

β2
,

and we get

(R − r)−2

∫

BR(z)

ξ

(
h−1

(
1

β
ξ

))2

dx(26)

≤ c(R − r)−2β−2

∫

BR(z)

[1 + |ε(u)|αh (|ε(u)|)] dx .

Next we choose β ∼ (R − r)2 in order to obtain from (23) - (26) (γ1 denoting a positve
exponent)

∫

Br(z)

|∇u|2h (|∇u|) dx ≤ 1

2

∫

BR(z)

|∇u|2h (|∇u|) dx(27)

+c(R − r)−γ1

∫

BR(z)

|ε(u)|αh (|ε(u)|) dx + cloc(R − r)−γ1 .
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Up to now the strict inequality α < 2 has not been used but due to this assumption we
can apply Young’s inequality to the second term on the r.h.s. of (27) with the result
(γ2 > 0 properly chosen)

c(R − r)−γ1

∫

BR(z)

|ε(u)|αh (|ε(u)|) dx

≤ 1

4

∫

BR(z)

|∇u|2h (|∇u|) dx + c(R − r)−γ2

∫

BR(z)

h (|ε(u)|) dx .

Since
∫

BR(z)
h (|ε(u)|) dx ≤ cloc, we finally deduce from (27)

∫

Br(z)

|∇u|2h (|∇u|) dx ≤ 3

4

∫

BR(z)

|∇u|2h (|∇u|) dx + cloc(R − r)−γ2 ,

and this inequality holds for 0 < r < R, R − r ≤ 1, BR(z) ⊂ Ω∗. We therefore can
apply Lemma 3.1, p.161, of [Gi] to get |∇u|2h(|∇u|) ∈ L1

loc (uniformly with respect to the
approximation). Returning to (20), the desired L2

loc-bound for Φ is established.

Step 2: estimates for the function ϕ

We recall that ϕ :=
(

h′(|ε(u)|)
|ε(u)|

)1/2

(1 + |ε(u)|2)α/4
. Let us introduce the function

Ψ :=

∫ |ε(u)|

0

(
h′(t)

t

)1/2

dt .

Hölder’s inequality implies

Ψ2 ≤ |ε(u)|
∫ |ε(u)|

0

h′(t)

t
dt

(A3)

≤ |ε(u)|
∫ |ε(u)|

0

h′′(t) dt = |ε(u)|h′(|ε(u)|)

≤ ch(|ε(u)|) ,

hence Ψ ∈ L2
loc (uniformly w.r.t. the hidden approximation parameter ρ). At the same

time

|∇Ψ|2 ≤ |∇ε(u)|2h
′(|ε(u)|)
|ε(u)|

(10)

≤ D2H(ε(u)) (∂kε(u), ∂kε(u)) = Φ2 ,

11



so that we can apply the result of Step 1 in order to get Ψ ∈ W 1
2,loc (uniformly). Therefore,

by Trudinger’s inequality (Theorem 7.15 in [GT]), we can state

(28)

∫

Bt(x0)

exp(β0Ψ
2) dx ≤ const (Bt(x0)) ,

where the positive number β0 depends on the W 1
2 (Bt(x0))-norm of Ψ. Consider next a

(large) number β > 0. We have on the set [|ε(u)| ≥ 1] (writing ε := ε(u))

Ψ ≥
∫ |ε|

|ε|/2

(
h′(t)

t

)1/2

dt ≥ c

∫ |ε|

|ε|/2

h(t)1/2

t
dt

≥ ch (|ε|/2)1/2

∫ |ε|

|ε|/2

dt

t
≥ ch

( |ε|
2

)1/2

≥ ch (|ε|)1/2 ≥ c (|ε|h′(|ε|))1/2
,

where we have made use of th′(t) ≥ h(t) ≥ cth′(t) and the monotonicity of h. This shows

ϕ ≤ c|ε|α
2
−1Ψ ,

hence
ϕ2 ≤ µΨ2 + c(µ)|ε(u)|α−2

for any µ > 0. On the set [|ε(u)| ≤ 1] it holds

ϕ2 ≤ sup
0≤t≤1

(
h′(t)

t
(1 + t2)

α
2

)
< ∞

so that in both cases we have

(29) ϕ2 ≤ µΨ2 + c(µ) .

Letting µ = β0/β we get from (28) and (29)

∫

Bt(x0)

exp(βϕ2) dx ≤
∫

Bt(x0)

exp
(
β0Ψ

2 + c(β)
)

dx

≤ const (β, Bt(x0)) ,

which means

(30) exp
(
βϕ2

)
∈ L1

loc ∀ β > 0 ,

where the L1
loc- norm depends on β but is independent of the approximation.

12



Step 3: conclusions

Letting d := 2/γ = 3/2, f := Φγ, g := ϕγ, inequality (18) takes the form




∫
−

BR(x0)

fd dx




1/d

≤ c

∫
−

B2R

fg dx

with f ∈ Ld
loc. By (30) exp(βgd) ∈ L1

loc for any β > 0, and Lemma 1.2 of [BFZ1] implies

(31) Φ2 lnβ (e + Φ) ∈ L1
loc

for any β > 0. We claim that (31) implies

(32) |∇σ|2 lnβ (e + |∇σ|) ∈ L1
loc

again for all β > 0. Assuming that (32) is true we can apply exactly the same arguments
as used at the end of the proof of Theorem 1.1 in [BFZ1] to get the result of Theorem 1.
Let us now discuss (32): to this purpose we recall estimate (14), i.e.

|∇σ| ≤ cϕΦ ,

which we combine with the inequality (see (2.12) in [BFZ1])

(st)2 lnω(e + st) ≤ 2ωs2 lnω+2(e + s) + c(ω) exp(6t)

valid for s, t ≥ 0 and ω > 0. This gives for β > 0

∫

BR(x0)

|∇σ|2 lnβ (e + |∇σ|) dx

≤
∫

BR(x0)

(cΦϕ)2 lnβ (e + cΦϕ) dx

≤ c(β)

∫

BR(x0)

Φ2 lnβ+2 (e + Φ) dx

+c(β)

∫

BR(x0)

exp(6cϕ) dx ≤ c (β, BR(x0)) ,

where we have applied (30) and (31). Thus we have (32). �
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[KMS] Kaplický, P., Málek, J., Stará, J., C1,α–solutions to a class of nonlinear fluids
in two dimensions–stationary Dirichlet problem. Zapiski Nauchnyh Seminarov
POMI 259 (1999), 122-144.

14



[Ko1] Koizumi, S., On the singular integrals I. Proc. Japan Acad. 34 (1958), 193–198.

[Ko2] Koizumi, S., On the singular integrals II. Proc. Japan Acad. 34 (1958), 235–240.

[La] Ladyzhenskaya, O. A., The mathematical theory of viscous incompressible flow.
Gordon and Breach, 1969.

[Ma1] Marcellini, P., Regularity of minimizers of integrals of the calculus of variations
with non standard growth conditions. Arch. Rat. Mech. Anal. 105 (1989), 267–
284.

[Ma2] Marcellini, P., Regularity for elliptic equations with general growth conditions.
J. Diff. Equ. 105 (1993), 296–333.

[Ma3] Marcellini, P., Everywhere regularity for a class of elliptic systems without growth
conditions. Ann. Scuola Norm. Sup. Pisa 23 (1996), 1–25.
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