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Abstract

Inspired by the work of Marcellini and Papi [MP] we consider local minima u:
R

n ⊃ Ω → R
M of variational integrals of the form

∫
Ω h(|∇u|) dx and prove interior

gradient bounds under rather general assumptions on h working with the additional
hypothesis that u is locally bounded. Our requirements imposed on the density h

do not involve the dimension n.

1 Introduction

In our note we discuss the Lipschitz regularity of vector-valued functions u: Ω → R
M

(from a suitable weak function space) defined on an open set Ω ⊂ R
n which locally

minimize the variational integral

I[u, Ω] =

∫

Ω

H(∇u) dx (1.1)

for a strictly convex density H : R
nM → [0,∞). For vector-valued minimizers in gen-

eral only almost everywhere regularity results are available, and the reader will find a
(historical) overview on this phenomenon of partial regularity together with the most im-
portant contributions in the monographs of Giaquinta [Gia] and of Giusti [Giu]. In order
to exclude the occurrence of singular points, we concentrate on the case

H(Z) := h(|Z|) , Z ∈ R
nM , (1.2)

for a function h: [0,∞) → [0,∞) whose properties will be specified below. The restriction
(1.2) is motivated by the works of many prominent authors: the case h(t) = tp with p ≥ 2
was considered first by Uhlenbeck [Uh] (with extensions due to [GM]), and later on much
attention has been paid to so-called “general growth conditions” mainly by Marcellini
[Ma1], [Ma2], [Ma3], who includes integrands of exponential growth like h(t) = exp(tp)
with p ≥ 2. The case of nearly linear growth, i.e. the model h(t) = t ln(1 + t), has been
the subject of the paper [MS] of Mingione and Siepe.

Of course our list is not complete, but the reader will find further references in
the papers of these authors. Roughly speaking, for the above mentioned examples of
functions h it is possible to show that |∇u| ∈ L∞

loc holds for a local minimizer u, from
which C1,α (and even C∞) regularity of u can be deduced by standard arguments.

Very recently Marcellini and Papi [MP] published an interesting paper addressing the
regularity problem for local minimizers of (1.1) working with hypothesis (1.2) and ex-
hibiting conditions on h which include various kinds of growth. Inspired by this work we
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will impose the following conditions on the function h: consider h: [0,∞) → [0,∞) of
class C2 such that

h is strictly increasing and h′′(t) > 0 for all t > 0 together with

lim
t→0

h(t)

t
= 0 and lim

t→∞

h(t)

t
= ∞ . (H1)

(Note that the first requirement in (H1) is a consequence of the second and the third one.)
¿From (H1) it follows that

h′(t) > 0 for all t > 0 and h′(0) = 0 . (1.3)

Moreover, according to (H1), h is a N -function in the sense of [Ad], Section 8.2. We
therefore call a function u from the local Orlicz-Sobolev class W 1

h,loc(Ω; RM) a local mini-
mizer of the energy I from (1.1) if

I[u, Ω̃] ≤ I[v, Ω̃]

is true for all v ∈ W 1
h,loc(Ω; RM) with spt (u − v) ⊂ Ω̃, where Ω̃ is any subdomain of Ω

s.t. Ω̃ ⋐ Ω.

Our next requirement is:

there exist k̄ > 0, t0 ≥ 0 s.t. h(2t) ≤ k̄h(t) for all t ≥ t0 . (H2)

This means that h satisfies a ∆2-condition near infinity from which we deduce the existence
of an exponent m ≥ 1 such that

h(t) ≤ C(tm + 1) (1.4)

holds for all t ≥ 0 with a suitable constant C ≥ 0. In particular (H2) excludes exponential
growth.

Finally we suppose that

there exist ε̄, h̄ > 0, T0, κ, µ ≥ 0 such that for all t ≥ T0

ε̄
h′(t)

t
(1 + t2)−

µ
2 ≤ h′′(t) ≤ h̄(1 + t2)−

κ
2 h(t) . (H3)

(H1) implies the inequality

t

2
h′(t/2) ≤

∫ t

t/2

h′(s) ds ≤ h(t) =

∫ t

0

h′(s) ds ≤ th′(t)

which on account of (H2) gives the estimate

1

k̄
th′(t) ≤ h(t) ≤ th′(t)

2



at least for t ≥ 2t0. Clearly it is also possible to replace T0 by a number larger than
max{1, 2t0}. Thus, under the hypotheses (H1) and (H2), (H3) can be replaced by the
equivalent requirement

there exist ε̄, h̄ > 0, T0, κ, µ ≥ 0 such that for all t ≥ T0

ε̄
h′(t)

t
t−µ ≤ h′′(t) ≤ h̄t2−κ h′(t)

t
. (H̃3)

In particular the bound κ ≤ 2 + µ is a consequence of our hypotheses.

Note that the functions hs(t) := ts ln(1 + t), t ≥ 0, s ≥ 1, satisfy (H1)–(H3) for any
choice of µ > 0 and κ ≤ 2 on the whole intervall (0,∞) with suitable constants ε̄, h̄ > 0
depending on s. Moreover we can can cover integrands h oscillating between two powers
as introduced for example in formula (2.10) of [MP] and which can also be found in the
work [DMP]. For a precise statement we refer to Remark 1.1 and to the Appendix.

If the integrand H(Z), Z ∈ R
nM , is defined according to (1.2), then we have for all Y ,

Z ∈ R
nM the estimate

min
{h′(|Z|)

|Z|
, h′′(|Z|)

}
|Y |2 ≤ D2H(Z)(Y, Y ) ≤ max

{h′(|Z|)

|Z|
, h′′(Z)

}
|Y |2 (1.5)

and from (H1) and (1.3) it follows that D2H(Z) is strictly positive for all Z ∈ R
nM −{0}

which gives the strict convexity of H : R
nM → [0,∞). On the other hand, the convexity

of h together with (1.4) implies that h′(t) grows at most as tm−1, hence (H3) and (1.5)
show the existence of an exponent q (w.l.o.g. q ≥ 2) s.t.

D2H(Z)(Y, Y ) ≤ Λ(1 + |Z|2)
q−2

2 |Y |2 (1.6)

holds for all Y , Z ∈ R
nM with a suitable constant Λ > 0. However, the reader should

note that (H3) together with (1.5) does not guarantee the uniform ellipticity of D2H and
that in general we do not have q = m.

Let us now state our main result:

Theorem 1.1. Suppose that (H1)–(H3) are valid with

2µ < κ .

Consider a local minimizer u ∈ W 1
h,loc(Ω; RM) of the functional I defined in (1.1) with H

from (1.2). Suppose further that u is locally bounded. Then |∇u| is in the space L∞
loc(Ω).

Remark 1.1. Theorem 1.1 shows that the results known in the literature are not sharp
for energy densities satisfying the structure condition (1.2): typical examples of functions
h we have in mind “alternate” between two powers tp and ts with given exponents p < s.
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More precisely, in the Appendix we will construct an example of a function h for which
(H1)–(H3) hold with 2µ < κ and for which the condition of (p, s)-ellipticity, i.e.

λ|Z|p ≤ D2H(Z) ≤ Λ|Z|s for all |Z| ≫ 1 ,

is satisfied but only with exponents p, s such that s > p+2 which means that the regularity
of locally bounded local minimizers does not follow along the lines of [Bi], Section 5.2, or
from Theorem 2 in [BF].

Remark 1.2. a) W.r.t. our structure condition (1.2) the hypothesis u ∈ L∞
loc(Ω; RM) is

rather natural: in fact, if we consider the global minimization problem for boundary
values u0 ∈ L∞(Ω; RM) on a bounded Lipschitz domain Ω, then the maximum-
principle of [DLM] implies the boundedness of the minimizer.

b) Suppose that the function h has the property

∫ ∞

1

h−1(s)

s
n+1

n

dx < ∞ , (1.7)

h−1 being the inverse. Theorem 8.35 in [Ad] then gives the local boundedness of
functions from W 1

h,loc(Ω; RM). Transforming the integral and using the fact that
h(t) and th′(t) have the same behaviour, (1.7) is seen to be equivalent to

∫ ∞

1

1
n
√

h(t)
dt < ∞ , (1.8)

which means that in a certain sense h(t) grows faster than tn as t → ∞. So if we
have (1.8), then u ∈ L∞

loc(Ω; RM) is automatically true. Let us look at the case that
we just know

h(t) ≥ const tn (1.9)

for large values of t, and consider a local minimizer u being not necessarily bounded.
Then, for all x ∈ Ω and almost all r > 0 s.t. Br(x) ⊂ Ω, we get u ∈ C0(∂Br(x); RM)
and therefore u ∈ L∞(Br(x); RM) by the maximum-principle of [DLM]. Thus
(1.9) implies the boundedness of u on suitable balls around each point x ∈ Ω, and
this is enough for carrying out the proof of Theorem 1.1 which means that in the
beginning of Section 2 we require B2R(x0) ⊂ Ω for a “good” radius 2R getting
u ∈ L∞(BR(x0); R

M) as well as part b) of Lemma 2.1.

Remark 1.3. Note that the condition 2µ < κ automatically gives µ < 2 since (H3)
implies κ ≤ 2 + µ.

Remark 1.4. Theorem 1.1 corresponds to Theorem A of [MP], and our condition (H̃3)
looks quite similar to (2.9) of [MP]. We like to emphasize that in contrast to [MP] our
exponents κ, µ do not depend on the dimension n since we work with locally bounded local
minima. This gives in particular in higher dimensions much better results. On the other
hand, no ∆2-condition has to be imposed in [MP].
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Remark 1.5. Of course Theorem 1.1 extends to integrands of linear growth which satisfy
appropriate versions of (H1)–(H3), provided local minimizers from the class W 1

1,loc(Ω; RM)
are considered. We thereby obtain a variant of Theorem B from the paper [MP]. Since
the existence of local or global minimizers of variational problems with linear growth in
general cannot be expected in subclasses of W 1

1,loc(Ω; RM), it seems to be more natural to
extend first the functional I from (1.1) to the space BVloc(Ω; RM) and then to study the
regularity of local BV -minimizers. This requires rather subtile considerations involving
both measure theoretic arguments and a refined look at convex analysis. Note that on
account of our weak assumptions on h even uniqueness results for the dual solution are
not known. We therefore decided to present this material in a separate paper.

Our paper is organized as follows: in Section 2 we introduce a sequence of regularized
problems and collect some auxiliary results. Section 3 contains a higher integrability
result for |∇u| based on an integration-by-parts argument (first used by Choe [Ch] for
the case M = 1) combined with an iteration process. Theorem 1.1 then is established in
Section 4 using DeGiorgi’s technique. In the Appendix we describe the class of examples
mentioned in Remark 1.1.

2 Some auxiliary results

¿From now on we assume the validity of (H1)–(H3) and consider a local I[·, Ω]-minimizer
u ∈ W 1

h,loc(Ω; RM) with the additional property u ∈ L∞
loc(Ω; RM). For ε > 0 let (u)ε

denote the mollification of u with small radius and choose a ball B := BR(x0) with
compact closure in Ω. Moreover, we fix an exponent q̃ > q (q ≥ 2 is defined in (1.6)) and
let

δ = δ(ε) :=
[
1 + ε−1 + ‖∇(u)ε‖

2q̃
Lq̃(B)

]−1

.

Then an appropriate regularization of our original problem is given by (Hδ(Z) := δ(1 +
|Z|2)q̃/2 + H(Z), Z ∈ R

nM)

Iδ[w, B] :=

∫

B

Hδ(∇w) dx → min in (u)ε+
◦

W
1
q̃(B; RM)

with unique solution uδ. In fact, we have the following properties of {uδ}:

Lemma 2.1. a) If we let ε → 0, then:

uδ ⇁ u in W 1
1 (B; RM) ;

δ

∫

B

(1 + |∇uδ|
2)

q̃
2 dx → 0 ;

∫

B

H(∇uδ) dx →

∫

B

H(∇u) dx .

b) ‖uδ‖L∞(B) is bounded independent of ε.
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c) ∇uδ is in the space L∞
loc ∩ W 1

2,loc(B; RnM).

Proof. a) From the definition of uδ it follows that

sup
ε>0

‖uδ‖W 1
h(B) < ∞ ,

hence uδ ⇁: ū in W 1
1 (B; RM) as ε → 0 for some function ū from this space. But the

lower-semicontinuity of I[·, B] together with the strict convexity of H implies ū = u.

b) This is a consequence of the maximum-principle established in [DLM].

c) Since q̃ > q we can quote [GM], Theorem 5.1, for the local boundedness of ∇uδ.
Well-known arguments presented for example in [Ca] imply the weak differentiability of
∇uδ.

Lemma 2.2. (Caccioppoli-type inequality) Let s ≥ 0 and η ∈ C∞
0 (B), 0 ≤ η ≤ 1. For

κ > 1 consider the set (Γδ := 1 + |∇uδ|
2)

Bκ := {x ∈ B : Γδ > κ} .

Then there is a positive constant c = c(s) independent of ε and κ such that (summation
w.r.t. α = 1, . . . , n)

∫

B2κ

D2Hδ(∇uδ)(∂α∇uδ, ∂α∇uδ)Γ
s
2

δ η2 dx ≤ c(s)

∫

Bκ

|D2Hδ(∇uδ)|Γ
s+2

2

δ |∇η|2 dx . (2.1)

Proof. For the case M = 1 inequality (2.1) is presented in [Bi], Lemma 5.20; we also refer
to [BFM]. But since Hδ(Z) = hδ(|Z|), we can repeat these calculations starting from the
identity

0 =

∫

B

D2Hδ(∇uδ)
(
∂α∇uδ,∇

[
η2∂αuδΦκ

(Γδ)Γ
s/2
δ

])
dx ,

where Φ
κ
(t) := Φ̃(t/κ), and where Φ̃: [0,∞) → [0,∞) satisfies

Φ̃(t) =

{
0 , t ∈ [0, 1] ,
1 , t ≥ 2

together with Φ̃′ ≥ 0. (For instance following [Bi], formula (32), p.62, it is evident that
our arguments really rely on the structure condition Hδ(Z) = hδ(|Z|).)

Remark 2.1. If in addition to (1.6) we have the “Hölder condition” (1.4) of [GM] for our
integrand H (letting m = q in (1.4) of [GM]), then we can choose q̃ := q, and Theorem
3.1 of [GM] implies uδ ∈ C1,α(B; RM) for a suitable α > 0. Since we do not want to put
this extra assumption on the function H, we decided to perturb H with the q̃-power of |Z|,
which means that the resulting density Hδ is asymptotically regular in the sense of [GM],
Section 5.
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3 Higher integrability of |∇u|

Let the assumptions of Theorem 1.1 hold. Referring to Section 2 we let

hδ(t) := δ(1 + t2)
q̃
2 + h(t) , t ≥ 0 ,

Hδ(Z) := hδ(|Z|) , Z ∈ R
nM ,

and consider the corresponding approximations uδ. Let us now fix numbers κ > 0 and
s ≥ 0, and define Φ

κ
as done after Lemma 2.2. Finally we choose η ∈ C∞

0 (B), 0 ≤
η ≤ 1, and proceed similar to [Bi], proof of Theorem 5.21, observing that the following
calculations are justified on account of Lemma 2.1, c). We have (summation w.r.t. α = 1,
. . . , n)

∫

B

η2h(|∇uδ|)Φκ
(Γδ)Γ

s+2

2

δ dx

=

∫

B

η2h(|∇uδ|)Φκ
(Γδ)Γ

s
2

δ dx +

∫

B

∂αuδ · ∂αuδη
2h(|∇uδ|)Φκ

(Γδ)Γ
s
2

δ dx

=: T1 + T2 , (3.1)

T2 = −

∫

B

uδ · ∂α

[
∂αuδη

2h(|∇uδ|)Φκ
(Γδ)Γ

s/2
δ

]
dx

≤ c

[ ∫

B

|∇η|ηh(|∇uδ|)|∇uδ|Φκ
(Γδ)Γ

s
2

δ dx

+

∫

B

η2|∇2uδ|h(|∇uδ|)Φκ
(Γδ)Γ

s
2

δ dx

+

∫

B

η2|∇uδ|h
′(|∇uδ|)|∇

2uδ|Φκ
(Γδ)Γ

s
2

δ dx

+

∫

B

η2|∇uδ|
2h(|∇uδ|)Φ

′
κ
(Γδ)|∇

2uδ|Γ
s
2

δ dx

]

=: c[T3 + T4 + T5 + T6] , (3.2)

where here and in what follows c always denotes a positive constant independent of ε but
possibly depending on s (and later) on κ. Young’s inequality implies for any τ > 0

T3 ≤ τ

∫

B

η2h(|∇uδ|)Φκ
(Γδ)Γ

s+2

2

δ dx + c(τ)

∫

B

|∇η|2h(|∇uδ|)Φκ
(Γδ)Γ

s
2

δ dx ,

and for τ ≪ 1 the τ -integral can be absorbed in the l.h.s. of (3.1). Therefore we get from
(3.1) and (3.2)

∫

B

η2h(|∇uδ|)Φκ
(Γδ)Γ

s+2

2

δ dx

≤ c

[ ∫

B

(η2 + |∇η|2)h(|∇uδ|)Φκ
(Γδ)Γ

s
2

δ dx + T4 + T5 + T6

]
. (3.3)
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Similarly we apply Young’s inequality to T4:

T4 ≤ τ

∫

B

η2h(|∇uδ|)Φκ
(Γδ)Γ

s+2

2

δ dx + c(τ)

∫

B

η2|∇2uδ|
2h(|∇uδ|)Γ

s−2

2

δ Φ
κ
(Γδ) dx .

For handling T5 we recall the inequality (see the formula after (H3))

ξh′(ξ) ≤ h(2ξ) ≤ k̄h(ξ) ,

provided ξ ≥ t0. This implies

h′(|∇uδ|) ≤ k̄
1

|∇uδ|
h(|∇uδ|) (3.4)

on [|∇uδ| ≥ t0], but since in T5 we only have to consider the set [Γδ ≥ κ], we can assume
the validity of (3.4) for κ ≥ κ(t0) sufficiently large. From (3.4) we therefore get

T5 ≤ c

∫

B

h(|∇uδ|)η
2|∇2uδ|Φκ

(Γδ)Γ
s
2

δ dx = cT4 ,

and this quantity has already been discussed. Returning to (3.3) we see

∫

B

η2h(|∇uδ|)Φκ
(Γδ)Γ

s+2

2

δ dx

≤ c

[ ∫

B

(η2 + |∇η|2)h(|∇uδ|)Φκ
(Γδ)Γ

s
2

δ dx +

∫

B

η2|∇2uδ|
2h(|∇uδ|)Γ

s−2

2

δ Φ
κ
(Γδ) dx

+

∫

B

η2|∇uδ|
2h(|∇uδ|)Φ

′
κ
(Γδ)|∇

2uδ|Γ
s
2

δ dx

]
=: c

[
S1 + S2 + S3

]
. (3.5)

In S1 and S2 the domain of integration is the set Bκ = {x ∈ B : Γδ(x) > κ}, and by
enlarging κ (if necessary) we may assume |∇uδ| ≥ T0 on Bκ. By (H3) we therefore have
on Bκ

ε̄|∇uδ|
−1h′(|∇uδ|)Γ

−
µ
2

δ ≤ h′′(|∇uδ|) ≤ h̄Γ
−κ

2

δ h(|∇uδ|) . (3.6)

Using h(t) ≤ th′(t) (recall the second formula after (H3)) we deduce

S2 ≤

∫

B

η2|∇2uδ|
2|∇uδ|h

′(|∇uδ|)Γ
s−2

2

δ Φ
κ
(Γδ) dx

≤

∫

B

η2|∇2uδ|
2h′(|∇uδ|)

|∇uδ|
Γ

s
2

δ Φ
κ
(Γδ) dx

≤

∫

B

η2D2H(∇uδ)(∂α∇uδ, ∂α∇uδ)Γ
s+µ
2

δ Φ
κ
(Γδ) dx ,

where the last inequality follows from (3.6) and (1.5). In S3 we actually have to integrate
over the set [κ ≤ Γδ ≤ 2κ], and for this reason we have for κ sufficiently large with
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constants depending on κ

S3 ≤ c

∫

[κ≤Γδ≤2κ]

η2|∇2uδ| dx

≤ c

[
1 +

∫

[κ≤Γδ≤2κ]

η2|∇2uδ|
2 dx

]

≤ c

[
1 +

∫

[κ≤Γδ≤2κ]

η2D2H(∇uδ)(∂α∇uδ, ∂α∇uδ)Γ
s+µ
2

δ Φ
κ
(Γδ) dx

]

≤ c

[
1 +

∫

B

η2D2H(∇uδ)(∂α∇uδ, ∂α∇uδ)Γ
s+µ
2

δ Φ
κ
(Γδ) dx

]
.

Together with (3.5) we have shown that
∫

B

η2h(|∇uδ|)Φκ
(Γδ)Γ

s+2

2

δ dx

≤ c

[
1 +

∫

B

(η2 + |∇η|2)h(|∇uδ|)Φκ
(Γδ)Γ

s
2

δ dx

+

∫

B

D2H(∇uδ)(∂α∇uδ, ∂α∇uδ)η
2Γ

s+µ
2

δ Φ
κ
(Γδ) dx

]
. (3.7)

Let gδ(t) := δ(1 + t2)q̃/2, Gδ(Z) := gδ(|Z|) for t ≥ 0 and Z ∈ R
nM . Then the same

calculations lead to
∫

B

η2gδ(|∇uδ|)Φκ
(Γδ)Γ

s+2

2

δ dx

≤ c

[
1 +

∫

B

(η2 + |∇η|2)gδ(|∇uδ|)Φκ
(Γδ)Γ

s
2

δ dx

+

∫

B

D2Gδ(∇uδ)(∂α∇uδ, ∂α∇uδ)η
2Γ

s
2

δ Φ
κ
(Γδ) dx

]
. (3.8)

Let us give a comment on (3.8): first we replace gδ by g̃δ := gδ(t) − δ in order to have
g̃δ(0) = 0. Then we get (3.5) with h replaced by g̃δ. Next we observe

c|∇uδ|
−1g′

δ(|∇uδ|) ≤ g′′
δ (|∇uδ|) ≤ CΓ−1

δ g̃δ(|∇uδ|) (3.9)

on Bκ, hence we obtain (3.8) with g̃δ on the l.h.s. But of course

δ

∫

B

η2Φ
κ
(|∇uδ|)Γ

s+2

2

δ dx

is bounded from above by
∫

B

η2gδ(|∇uδ|)Φκ
(|∇uδ|)Γ

s
2

δ dx ,
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and (3.8) follows.

Now we combine (3.7) and (3.8): by (2.1) we have

∫

B

η2hδ(|∇uδ|)Φκ
(Γδ)Γ

s+2

2

δ dx

≤ c

[
1 +

∫

B

(η2 + |∇η|2)hδ(|∇uδ|)Φκ
(Γδ)Γ

s
2

δ dx

+

∫

B

D2Hδ(∇uδ)(∂α∇uδ, ∂α∇uδ)η
2Φ

κ
(Γδ)Γ

s+µ
2

δ dx

]

≤ c

[
1 +

∫

B

(η2 + |∇η|2)hδ(|∇uδ|)Φκ
(Γδ)Γ

s
2

δ dx

+

∫

Bκ/2

|D2Hδ(∇uδ)||∇η|2Γ
s+2+µ

2

δ dx

]
,

hence by (3.6) and (3.9) (combined with |D2Hδ(Z)| ≤ |D2Gδ(Z)| + |D2H(Z)| ≤
max{g′

δ(|Z|)/|Z|, g′′
δ (|Z|)} + max{h′(|Z|)/|Z|, h′′(|Z|)})

∫

B

η2hδ(|∇uδ|)Φκ
(Γδ)Γ

s+2

2

δ dx

≤ c

[
1 +

∫

B

(η2 + |∇η|2)hδ(|∇uδ|)Φκ
(Γδ)Γ

s
2

δ dx

+

∫

Bκ/2

|∇η|2gδ(|∇uδ|)Γ
s+µ
2

δ dx +

∫

Bκ/2

|∇η|2h(|∇uδ|)Γ
s+2+2µ−κ

2

δ dx

]
,

and since κ is a fixed value we can state:
∫

B

η2gδ(|∇uδ|)Γ
s+2

2

δ dx +

∫

B

η2h(|∇uδ|)Γ
s+2

2

δ dx

≤ c

[
1 +

∫

B

(η2 + |∇η|2)gδ(|∇uδ|)Γ
s
2

δ dx +

∫

B

(η2 + |∇η|2)h(|∇uδ|)Γ
s
2

δ dx

+

∫

B

|∇η|2gδ(|∇uδ|)Γ
s+µ
2

δ dx +

∫

B

|∇η|2h(|∇uδ|)Γ
s+2+2µ−κ

2

δ dx

]
.

Let us replace η by ηl for l ∈ N large. Recalling µ < 2, 2µ < κ we have for suitable α1,
α2, β1, β2

η2l−2|∇η|2Γ
s+µ
2

δ ≤ τηα1Γ
s+2

2

δ + c(τ)|∇η|β1

η2l−2|∇η|2Γ
s+2+2µ−κ

2

δ ≤ τηα2Γ
s+2

2

δ + c(τ)|∇η|β2

10



so that we can split the last two integrals on the r.h.s. of the above inequality and obtain
for τ ≪ 1 and l very large

∫

B

η2lgδ(|∇uδ|)Γ
s+2

2

δ dx +

∫

B

η2lh(|∇uδ|)Γ
s+2

2

δ dx

≤ c

[
1 +

∫

spt η

gδ(|∇uδ|)Γ
s
2

δ dx +

∫

spt η

h(|∇uδ|)Γ
s
2

δ dx

]
. (3.10)

(3.10) is valid for all s ≥ 0 with c depending on s and on ‖∇η‖∞. Lemma 2.1 implies for
any ρ < R ∫

Bρ

[
gδ(|∇uδ|) + h(|∇uδ|)

]
dx ≤ c(ρ) < ∞

with c(ρ) independent of ε, thus by (3.10)

∫

Bρ

Γδ

[
gδ(|∇uδ|) + h(|∇uδ|)

]
dx ≤ c(ρ) < ∞ ,

and iteration of (3.10) shows

∫

Bρ

Γ
s
2

δ

[
gδ(|∇uδ|) + h(|∇uδ|)

]
dx ≤ c(s, ρ) < ∞

for any s ≥ 0. (H1) implies

∫

Bρ

|∇uδ|
s dx ≤ c(s, ρ) < ∞

for any finite s, and by Lemma 2.1 the same is true for ∇u.

4 Proof of Theorem 1.1

We use the same notation as in the previous section. Let r < R and η ∈ C∞
0 (Br(x0)).

We further take a number k > 0 and define

A(k, r) := {x ∈ Br(x0) : Γδ > k} ,

where the dependence of A(k, r) on the parameter δ = δ(ε) is not explicitely stated. In
order to prove our claim we apply an appropriate variant of the DeGiorgi technique as it
is also done in [Bi], proof of Theorem 5.22. We have (summation w.r.t. α = 1, . . . , n)

0 =

∫

Br(x0)

D2Hδ(∇uδ)
(
∂α∇uδ,∇

[
η2∂αuδ max(Γδ − k, 0)

])
dx ,

11



which follows by differentiating the Euler equation satisfied by uδ and using the test-vector
η2∂αuδ max(Γδ − k, 0), whose admissibility is guaranteed by Lemma 2.1. It follows

∫

A(k,r)

D2Hδ(∇uδ)(∂α∇uδ, ∂α∇uδ)(Γδ − k)η2 dx

+

∫

A(k,r)

D2Hδ(∇uδ)(∂α∇uδ, ∂αuδ ⊗∇Γδ)η
2 dx

= −2

∫

A(k,r)

D2Hδ(∇uδ)(∂α∇uδ, ∂αuδ ⊗∇η)η(Γδ − k) dx .

We drop the first integral on the l.h.s. and observe that the second term on the l.h.s. is
equal to

∫

A(k,r)

aαβ∂αΓδ∂βΓδη
2 dx ,

aαβ :=
1

2
δαβ

h′
δ(|∇uδ|)

|∇uδ|
+

1

2

[
h′′

δ (|∇uδ|) −
h′

δ(|∇uδ|)

|∇uδ|

]∂αuδ · ∂βuδ

|∇uδ|2
. (4.1)

Using
D2Hδ(∇uδ)(∂α∇uδ, ∂αuδ ⊗∇η) = aαβ∂αΓδ∂βη

we get the inequality

∫

A(k,r)

η2aαβ∂αΓδ∂βΓδ dx ≤ −2

∫

A(k,r)

aαβ∂αΓδ∂βηη(Γδ − k) dx . (4.2)

On the r.h.s. of (4.2) we can apply the Cauchy-Schwarz inequality to the symmetric
form induced by (aαβ) = (aβα) which in combination with Young’s inequality implies the
estimate (with c being independent of ε)

∫

A(k,r)

η2aαβ∂αΓδ∂βΓδ dx ≤ c

∫

A(k,r)

aαβ∂αη∂βη(Γδ − k)2 dx . (4.3)

Here we like to remark that the coefficients aαβ defined in (4.1) satisfy the inequality

1

2
min

[h′
δ(|∇uδ|)

|∇uδ|
, h′′

δ(|∇uδ|)
]
|τ |2

≤ aαβτατβ ≤
1

2
max

[h′
δ(|∇uδ|)

|∇uδ|
, h′′

δ(|∇uδ|)
]
|τ |2 , (4.4)

τ ∈ R
n. Now we follow [Bi], proof of Lemma 5.23: let Br ⊂ Br̂ ⊂ BR (balls with center

x0) and consider η ≥ 0, n ≡ 1 on Br, spt η ⊂ Br̂, |∇η| ≤ c/(r̂ − r). Then we have

∫

A(k,r)

(Γδ − k)
n

n−1 dx ≤ c
[
I

n
n−1

1 + I
n

n−1

2

]
, (4.5)
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where

I
n

n−1

1 :=

[ ∫

A(k,r̂)

|∇η|(Γδ − k) dx

] n
n−1

≤ c(r̂ − r)−
n

n−1

[ ∫

A(k,r̂)

(Γδ − k) dx

] n
n−1

,

I
n

n−1

2 :=

[ ∫

A(k,r̂)

η|∇Γδ| dx

] n
n−1

.

Note that (4.5) follows from
∫

A(k,r)

(Γδ − k)
n

n−1 dx ≤

∫

Br̂

[η(Γδ − k)+]
n

n−1 dx ,

if we apply Sobolev’s inequality on the r.h.s. We want to use (4.3) in order to estimate
I2. To this purpose we need control on the quantities min{. . .}, max{. . . } occuring in
(4.4): in I2 the domain of integration is Br̂ ∩ [Γδ > k], and we assume that k ≥ k(T0) in
order to have (H3) on the relevant set. Then it holds

h′
δ(|∇uδ|)|∇uδ|

−1 = g′
δ(|∇uδ|)|∇uδ|

−1 + h′(|∇uδ|)|∇uδ|
−1

≤ c
[
g′

δ(|∇uδ|)|∇uδ|
−1 + Γ

µ
2

δ h′′(|∇uδ|)
]

≤ c
[
g′

δ(|∇uδ|)|∇uδ|
−1 + Γ

µ−κ
2

δ h(|∇uδ|)
]

≤ c
[
Γ−1

δ gδ(|∇uδ|) + Γ
µ−κ

2

δ h(|∇uδ|)
]

and
h′′

δ (|∇uδ|) ≤ c
[
Γ−1

δ gδ(|∇uδ|) + Γ
−κ

2

δ h(|∇uδ|)
]
,

hence

max
[h′

δ(|∇uδ|)

|∇uδ|
, h′′

δ(|∇uδ|)
]
≤ c

[
Γ−1

δ gδ(|∇uδ|) + Γ
µ−κ

2

δ h(|∇uδ|)
]

(4.6)

and in the same way

h′
δ(|∇uδ|)|∇uδ|

−1 ≥ c
[
Γ−1

δ gδ(|∇uδ|) + |∇uδ|
−1h′(|∇uδ|)

]

≥ c
[
Γ−1

δ gδ(|∇uδ|) + Γ−1
δ h(|∇uδ|)

]

as well as

h′′
δ (|∇uδ|) ≥ c

[
Γ−1

δ gδ(|∇uδ|) + h′′(|∇uδ|)
]

≥ c
[
Γ−1

δ gδ(|∇uδ|) + Γ
−

µ
2

δ |∇uδ|
−1h′(|∇uδ|)

]

≥ c
[
Γ−1

δ gδ(|∇uδ|) + Γ
−

µ+2

2

δ h(|∇uδ|)
]
.

This gives

min
[h′

δ(|∇uδ|)

|∇uδ|
, h′′

δ(|∇uδ|)
]
≥ c

[
Γ−1

δ gδ(|∇uδ|) + Γ
−

µ+2

2

δ h(|∇uδ|)
]
. (4.7)
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We have by Hölder’s inequality

I
n

n−1

2 =

[∫

A(k,r̂)

η|∇Γδ|h(|∇uδ|)
1

2 Γ
−

µ+2

4

δ Γ
µ+2

4

δ h(|∇uδ|)
− 1

2 dx

] n
n−1

≤

[∫

A(k,r̂)

η2|∇Γδ|
2h(|∇uδ|)Γ

−
µ+2

2

δ dx

] 1

2

n
n−1

[∫

A(k,r̂)

Γ
µ+2

2

δ h(|∇uδ|)
−1 dx

] 1

2

n
n−1

and by (4.3), (4.4), (4.7)

I
n

n−1

2 ≤

[∫

A(k,r̂)

η2aαβ∂αΓδ∂βΓδ dx

] 1

2

n
n−1

[∫

A(k,r̂)

Γ
µ+2

2

δ h(|∇uδ|)
−1 dx

] 1

2

n
n−1

≤ c

[∫

A(k,r̂)

aαβ∂αη∂βη(Γδ − k)2 dx

] 1

2

n
n−1

[ ∫

A(k,r̂)

Γ
µ+2

2

δ h(|∇uδ|)
−1

] 1

2

n
n−1

.

(4.4) and (4.6) give

I
n

n−1

2 ≤ c(r̂ − r)−
n

n−1

[∫

A(k,r̂)

(Γδ − k)2
[
Γ−1

δ gδ(|∇uδ|) + Γ
µ−κ

2

δ h(|∇uδ|)
]
dx

] 1

2

n
n−1

[ ∫

A(k,r̂)

Γ
µ+2

2

δ h(|∇uδ|)
−1 dx

] 1

2

n
n−1

. (4.8)

Again from Hölder’s inequality we get

I
n

n−1

1 ≤ c(r̂ − r)−
n

n−1

[∫

A(k,r̂)

(Γδ − k) dx

] n
n−1

≤ c(r̂ − r)−
n

n−1

[∫

A(k,r̂)

(Γδ − k)2
[
Γ−1

δ gδ(|∇uδ|) + Γ
µ−κ

2

δ h(|∇uδ|)
]
dx

] 1

2

n
n−1

[ ∫

A(k,r̂)

[
Γ−1

δ gδ(|∇uδ|) + Γ
µ−κ

2

δ h(|∇uδ|)
]−1

dx

] 1

2

n
n−1

.

Clearly

[
Γ−1

δ gδ(|∇uδ|) + Γ
µ−κ

2

δ h(|∇uδ|)
]−1

≤ Γ
κ−µ

2

δ h(|∇uδ|)
−1 ≤ Γ

µ+2

2

δ h(|∇uδ|)
−1 ,
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which follows from κ ≤ µ + 2. Thus the r.h.s. of (4.8) also is an upper bound for I
n/(n−1)
1

and returning to (4.5) it is shown that

∫

A(k,r)

(Γδ − k)
n

n−1 dx

≤ c(r̂ − r)−
n

n−1

[∫

A(k,r̂)

(Γδ − k)2
[
Γ−1

δ gδ(|∇uδ|) + Γ
µ−κ

2

δ h(|∇uδ|)
]
dx

] 1

2

n
n−1

[ ∫

A(k,r̂)

Γ
µ+2

2

δ h(|∇uδ|)
−1 dx

] 1

2

n
n−1

. (4.9)

We recall (1.4) and choose an exponent q∗ > 1 such that

(1 + t2)−1gδ(t) + (1 + t2)
µ−κ

2 h(t) ≤ C(1 + t2)
q∗−2

2 (4.10)

for all t ≥ 1, C being independent of ε. At the same time we have h(t) ≥ Ct for all t ≥ 1,
for another constant, hence there exists an exponent µ∗ such that

h(t)−1(1 + t2)
µ+2

2 ≤ C(1 + t2)
µ∗

2 (4.11)

for all t ≥ 1. If we use (4.10) and (4.11) in (4.9), then (4.9) exactly takes the form of
inequality (24) in Lemma 5.23 of [Bi] (with q, µ replaced by q∗, µ∗). Then – without
further changes – we can follow the calculations from p.158 of [Bi] (using Section 3) to
get uniform local boundedness of ∇uδ which completes the proof.

Appendix. An example of a function h satisfying

(H1)–(H3) with 2µ < κ and for which

“(p, s)-ellipticity” with s < p + 2 does not

hold

It remains to give an explicit construction of an energy density h as indicated in Remark
1.1. The idea is that we have piecewise the “usual” relations h ≈ th′ ≈ t2h′′ s.t. Theorem
1.1 applies. On the other hand, h does not satisfy a global uniform power growth
estimate and it is not possible to find uniform global exponents s.t. results similar to [Bi],
Section 5.2, apply.

Suppose that r > 2 and let

[0,∞) =
∞⋃

i=1

Ii , Ii := [ai−1, ai] ,
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where 0 = a0 < a1 < · · · < ai−1 < ai < . . . and where ai ≪ ai+1. We define the function

g(t) :=

{
cit on Ii , if i is odd ,
cit

r−1 on Ii , if i is even ,

where c1 := 1 and where ci > 0, i ≥ 2, are such that g ∈ C0([0,∞)). Finally we let

h(t) :=

∫ t

0

g(s) ds

being of class C1,1([0, A]) for any A > 0. In order to have “h ∈ C2” it will be neces-
sary to replace h by its local mollification around points ai with small radii depending on i.

The validity of (H1) for h is immediate. For (H2) we observe that by the definition of g

g̃ : t 7→
g(t)

tr−1
(t > 0)

is decreasing on each intervall Ii, and since g is continuous, g̃ is decreasing on (0,∞), in
particular

g̃(2t) ≤ g̃(t) for all t > 0 ,

hence g(2t) ≤ 2r−1g(t). This implies

h(2t) =

∫ 2t

0

g(s) ds =

∫ t

0

2g(2s) ds ≤ 2r

∫ t

0

g(s) ds = 2rh(t) ,

and we have (H2) for h.
For t 6= ai it holds

1

t
h′(t) =

{
h′′(t) on Ii , if i is odd ,
h′′(t)/(r − 1) on Ii , if i is even ,

so that (H̃3) is true a.e. with µ = 0 and κ = 2. Thus the growth of D2H(Z) is exactly
measured in terms of h′(t)/t, t = |Z|.

¿From (H1), (H2) we deduce as usual

cth′(t) ≤ h(t) ≤ Cth′(t) ,

hence by (1.5)

c̃
h(|Z|)

|Z|2
|Y |2 ≤ D2H(Z)(Y, Y ) ≤ C̃

h(|Z|)

|Z|2
|Y |2 (A.1)

for all Y , Z ∈ R
nM , |Z| ≥ 1, |Z| 6= ai.
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Let us fix a very small number δ > 0. We claim that the sequence {ai} can be chosen
in such a way that

h(ãi)

ãr−δ
i

≥ i , for even i , (A.2)

h(ãi)

ã2+δ
i

≤
1

i
, for odd i . (A.3)

Here we pass from ai to ãi := ai/2 ≫ ai−1 in order to avoid difficulties during the
mentioned smoothing procedure. Recalling c1 = 1 we proceed by induction:

h(ã1) =

∫ ã1

0

c1t dt =
ã2

1

2
⇒

h(ã1)

ã2+δ
1

=
1

2
ã−δ

1 ≤ 1 ,

if ã1 ≥ (1/2)1/δ,

h(ã2) = h(a1) +

∫ ã2

a1

c2t
r−1 dt =: K1(a1) + K2ã

r
2 ⇒

h(ã2)

ãr−δ
2

= K1ã
δ−r
2 + K2ã

δ
2 ≥ 2 ,

if a2 ≫ 1. Thus we have (A.2) and (A.3) for i = 1, 2. The inductive step is the same
calculation.

We now claim

there exist λ, Λ > 0 s.t. for all |Z| ≥ 1, |Z| 6= ai,

λ ≤ D2H(Z) ≤ Λ|Z|r−2 (A.4)

and

there do not exist λ̄, Λ̄ > 0 s.t. for all |Z| ≥ 1, |Z| 6= ai,

λ̄|Z|δ ≤ D2H(Z) ≤ Λ̄|Z|r−2−δ . (A.5)

Inequality (A.4) shows that H is of anisotropic (2, r)-growth, and (A.5) means that the
upper and lower growth rates are nearly optimal.

ad (A.4): we showed that t 7→ h′(t)/tr−1 is decreasing, in particular

h′(t)

tr−1
≤ h′(1) for all t ≥ 1 ⇒

h′(t)

t
≤ const tr−2 for all t ≥ 1 ,

and since D2H(Z) behaves like h′(|Z|)/|Z|, the second inequality of (A.4) follows. Note
that t 7→ h′(t)/t increases (immediate from the definition of g), hence h′(t)/t ≥ h′(1) = 1
for t ≥ 1, which gives the first part of (A.4).
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ad (A.5): suppose that we can find λ̄, Λ̄ s.t. the estimates hold. ¿From (A.1) it then
follows

λ̃tδ ≤
1

t2
h(t) ≤ Λ̃tr−2−δ

for all t > 1 with λ̃, Λ̃ > 0, in particular

h(ãi)

ã2+δ
i

≥ λ̃ ,
h(ãi)

ãr−δ
i

≤ Λ̃

for all i, which is in contradiction to (A.1) and (A.2).

Finally we observe that r can be chosen arbitrary large, which means that the condition
“s < p + 2” implying the regularity of bounded local minima of (p, s)-elliptic integrals is
violated. On the contrary, the hypotheses of Theorem 1.1 (with “2µ < κ”) are clearly
satisfied, and we can deduce the regularity of local minimizers u ∈ L∞

loc(Ω; RM).

References

[Ad] Adams, R. A., Sobolev spaces. Academic Press, New York-San Francisco-London
1975.

[Bi] Bildhauer, M., Convex variational problems: linear, nearly linear and anisotropic
growth conditions. Lecture Notes in Mathematics 1818, Springer, Berlin-
Heidelberg-New York, 2003.

[BF] Bildhauer, M., Fuchs, M., Elliptic variational problems with nonstandard
growth. International Mathematical Series, Vol. 1, Nonlinear problems in math-
ematical physics and related topics I, in honor of Prof. O.A. Ladyzhenskaya. By
Tamara Rozhkovskaya, Novosibirsk, Russia, March 2002 (in Russian), 49–62. By
Kluwer/Plenum Publishers, June 2002 (in English), 53–66.

[BFM] Bildhauer, M., Fuchs, M., Mingione, G., Apriori gradient bounds and local C1,α-
estimates for (double) obstacle problems under nonstandard growth conditions.
Z. Anal. Anw. 20, no.4 (2001), 959–985.
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