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Abstract

We investigate the interior regularity of minimizers for an obstacle problem of

higher order that can be seen as a model for the behaviour of a plate subject to a

rather general constitutive law including nonlinear elastic materials.

If we consider a plate that must stay over an obstacle, then this problem formulated
for the linear elastic case can be solved by discussing a suitable variational inequality or
equivalently by minimizing the energy

(1) J [u, Ω] =

∫

Ω

|∇2u|2 dx + lower order terms

among all functions u : Ω → R from a bounded Lipschitz domain Ω ⊂ R
2, which satisfy

the boundary condition

(2) u = 0 = ∂νu on ∂Ω

and respect the obstacle Φ : Ω → R in the sense that

(3) u ≥ Φ on Ω .

Of course (2) and (3) should be compatible, which can be achieved by the requirement
Φ ≤ 0 on ∂Ω. In (1) ∇2u is the matrix (∂α∂βu)1≤α,β≤2 of the second generalized
derivatives, and in (2) ν denotes the exterior normal to ∂Ω. Note that (2) corresponds
to the fact that the plate is clamped at the boundary. The domain Ω represents the
undeformed state of the plate, and our model energy (1) describes the situation if some
outer forces are applied acting in vertical direction.

The mathematical background together with the mechanical framework is discussed in
the monographs of Ciarlet and Rabier [CR], of Friedman [Fr], of Necǎs and Hlávácek
[NH] and of Chudinovich and Costanda [CC], further details and additional references
are contained in Zeidler’s book [Ze]. In particular, it is outlined in these textbooks how

to get a suitable weak formulation of the problem: let K := {w ∈
◦

W 2
2(Ω) : w ≥ Φ on

Ω}, where
◦

W 2
2(Ω) denotes the standard Sobolev space as introduced for example in

[Ad]. Then there exists a unique J [·, Ω]-minimizer within the class K, which according
to Theorem 10.6 of [Fr] is in the space C2(Ω), provided Φ ∈ C2(Ω).

The purpose of our note is to prove regularity results of this type, when the quantity |∇2u|2
occurring in (1) is replaced by a more general expression like f(∇2u) corresponding to
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different nonlinear elastic laws. Here f : S
2 → [0,∞) is a convex function defined on the

space S
2 of symmetric (2 × 2)-matrices satisfying suitable growth conditions. Of course

the definition of the class K has to be adjusted, which means that we have to give weak
variants of (2) and (3) in appropriate function spaces. Then a (weak) minimizer of

(4) I[u, Ω] :=

∫

Ω

f(∇2u) dx

(for technical simplicity we drop any lower order terms) within K is of class C1,α(Ω) for
all 0 < α < 1 in each of the following cases:

(i) (subquadratic power growth) f(ε) = (1 + |ε|2)p/2, ε ∈ S
2, for some exponent 1 <

p ≤ 2 (see ([FLM]);

(ii) general subquadratic growth of f including f(ε) = |ε|ln(1 + |ε|) (compare [BF1]);

(iii) (anisotropic power growth) we have λ(1 + |ε|2) p−2

2 |σ|2 ≤ D2f(ε)(σ, σ) ≤ Λ(1 +

|ε|2) q−2

2 |σ|2 with constants λ, Λ > 0 and for exponents 1 < p < q < ∞ such that
(see [BF2], Remark 2.2)

(5) q < 2p .

We remark that the exceptional case that f is of linear growth modelling perfect
elastoplastic plates has been studied by Seregin in his deep paper [Se] and that the
logarithmic variant from (ii) can be seen as an approximation of the linear situation.

Let us now formulate our hypothesis, which are inspired by the work of Marcellini (see,
e.g. [Ma1], [Ma2], [Ma3] and [MP]) on variational problems with nonstandard growth: let

(6) f(ε) = h(|ε|), ε ∈ S
2 ,

for a function h : [0,∞) → [0,∞) of class C2 for which the following assumptions are
valid:

(A1)
h is strictly increasing and h′′(t) > 0 for all t > 0

together with lim
t↓0

h(t)
t

= 0 and lim
t→∞

h(t)
t

= ∞ .

Here the first requirement in (A1) is a consequence of the second and the third one. Note
also that h′(t) > 0 for all t > 0 and h′(0) = h(0) = 0.

(A2)
There exists k > 0 such that h(2t) ≤ k h(t) for all
t ≥ 0 .
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It is easy to check that the ∆2-condition (A2) implies the existence of an exponent m > 1
such that

(7) h(t) ≤ C(tm + 1), t ≥ 0 ,

for a suitable constant C. Moreover, (A1) combined with (A2) implies the inequality

(8)
1

k
th′(t) ≤ h(t) ≤ th′(t) ∀ t ≥ 0 .

Finally we suppose that

(A3)
there exist ε, h > 0 and α ≥ 0 such that

εh′(t)
t

≤ h′′(t) ≤ h(1 + t2)
α
2

h′(t)
t

for all t > 0 .

X-AntiVirus: checked by AntiVir MailGuard (Version: 8.0.0.18; AVE: 8.1.0.30; VDF:
7.0.3.177)

Note that the functions t 7→ tsln(1 + t), t ≥ 0, s > 1, satisfy (A1 - 3) with suitable
constants ε, k, h and α depending on the value of s. Clearly t 7→ tp is admissible for any
p ≥ 2, whereas for p > 1 we can include t 7→ (1 + t2)

p

2 − 1. Moreover, if we consider
arbitrary exponents 1 < p < q < ∞, for which (5) is violated, then it is easy to construct
integrands f(ε) = h(|ε|), which satisfy the ellipticity inequality stated in (iii) exactly for
this choice of p and q and for which (A1 - 3) are satisfied. To these examples we can not
apply the regularity result of [BF2] but the interior smoothness of minimizers will be a
consequence of Theorem 1 stated below.

Concerning Φ we require for simplicity that

(9) Φ ∈ C4(Ω) and Φ|∂Ω < 0 .

If h satisfies (A1 - 3), we let

KΦ := {w ∈
◦

W
2
h(Ω) : w ≥ Φ on Ω} ,

◦

W2
h(Ω) being the Orlicz-Sobolev class as defined for example in [Ad]. Note that from the

first inequality in (A3) it follows that (p := 1 + ε)

(10) h(t) ≥ a tp − b, t ≥ 0 ,

with constants a > 0, b ≥ 0, hence

◦

W
2
h(Ω) ⊂

◦

W
2
p(Ω) ⊂ C0(Ω)

on account of Sobolev’s embedding theorem. As remarked in [FLM] we can find a function
w ∈ C∞

0 (Ω) s.t. w ≥ Φ, in particular we have KΦ 6= ∅ and therefore the variational
problem (with f from (6))

(P) I[u, Ω] =

∫

Ω

f(∇2u) dx → min in KΦ
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is well-posed. The existence of a unique solution u ∈ KΦ follows exactly along the lines
of [FO], Theorem 3.1, and this solution is different from zero, if Φ(x) > 0 for some point
x ∈ Ω. Of course we could also add lower order terms to the functional I[·, Ω] but this
will not lead to a deeper insight.

We have the following regularity result:

THEOREM 1. Let (A1 - 3) and (9) hold. Suppose that u ∈ KΦ is the solution of problem
(P) with f satisfying (6). Then u is of class W 2

t,loc(Ω) for any finite t, in particular we
have u ∈ C1,µ(Ω) for all µ < 1.

REMARK 1. We do not know if |∇2u| ∈ L∞
loc(Ω) or even u ∈ C2(Ω) are true.

REMARK 2. Our result easily extends to vectorial functions u : Ω → R
M with compo-

nentwise constraints ui ≥ Φi for i = 1, . . . , M .

REMARK 3. There is no restriction on the size of the parameter α occurring in (A3).
However, if we want to weaken (9) in the sense that only Φ ∈ C3(Ω) (with Φ|∂Ω < 0) is
required, then we need the bound α ≤ 2: for Φ ∈ C3(Ω) inequality (21) below has to be
replaced in an obvious way by an alternative variant and a substitute for (22) can only be
established if α ≤ 2.

Proof of Theorem 1
We divide our arguments into several steps.

Step 1. approximation

¿From (6) we deduce for all ε, σ ∈ S
2

min

{

h′(|ε|)
|ε| , h′′(|ε|)

}

|σ|2 ≤ D2f(ε)(σ, σ) ≤

max

{

h′(|ε|)
|ε| , h′′(|ε|)

}

|σ|2 ,

so that by assumption (A3) is follow (w.l.o.g. ε ≤ 1, h ≥ 1)

(11) ε
h′(|ε|)
|ε| |σ|2 ≤ D2f(ε)(σ, σ) ≤ h(1 + |ε|2)α

2

h′(|ε|)
|ε| |σ|2 .

We also remark that from (7) and the convexity of h we have

(12) |Df(ε)| = h′(|ε|) ≤ c
(

|ε|m−1 + 1
)

.

Combining (11) and (12) it is immediate that we can find an exponent q ≥ 2 such that

(13) D2f(ε)(σ, σ) ≤ c
(

1 + |ε|2
)

q−2

2 |σ|2 ∀ε, σ ∈ S
2 ,
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where c always denotes a positive constant whose value may change from line to line. For
δ ∈ (0, 1] we let hδ(t) := δ

[

(1 + t2)q/2 − 1
]

+ h(t) and fδ(ε) = hδ(|ε|). We then consider
the variational problem

(Pδ) Iδ[w, Ω] :=

∫

Ω

fδ(∇2w) dx → min in
◦

W
2
q,Φ(Ω) ,

where we have set
◦

W
2
q,Φ(Ω) :=

{

w ∈
◦

W
2
q(Ω) : w ≥ Φ on Ω

}

.

Let uδ denote the unique solution to (Pδ). We fix a subdomain Ω′ ⋐ Ω and a function
η ∈ C∞

0 (Ω′) such that 0 ≤ η ≤ 1. For a coordinate direction eγ , γ = 1, 2, and for ρ 6= 0
we define the difference quotient

∆ρw(x) :=
1

ρ
(w(x + ρeγ) − w(x))

of a function w in direction eγ. For t > 0 such that ρ−2t < 1/2 we finally let

vδ
t := uδ + t∆−ρ

(

η6∆ρ[uδ − Φ]
)

=: uδ + tϕ .

¿From

vδ
t (x) = Φ(x) +

[

1 − t

ρ2
η6(x − ρeγ) −

t

ρ2
η6(x)

]

(u − Φ)(x)

+
t

ρ2
η6(x − ρeγ)(u − Φ)(x − ρeγ)

+
t

ρ2
η6(x)(u − Φ)(x + ρeγ)

it follows that vδ
t ∈

◦

W 2
q,Φ(Ω) together with spt(uδ − vδ

t ) ⊂ Ω′, provided ρ is sufficiently
small. The minimality of uδ gives

1

t

∫

Ω

[

fδ(∇2uδ + t∇2ϕ) − fδ(∇2uδ)
]

dt ≥ 0 ,

and exactly as in [FLM], (3.1), we may pass to the limit t ↓ 0 to obtain

(14)

∫

Ω

∆ρ

[

Dfδ(∇2uδ)
]

: ∇2
[

η6∆ρ(uδ − Φ)
]

dx ≤ 0 .

Note that the derivation of (14) clearly uses the fact that fδ is a power growth integrand
with exponent q as it follows from (13) and the definition of fδ. We have

∇2(η6∆ρuδ) = η6∇2(∆ρuδ)

+
(

∂α∂βη6∆ρuδ + ∂αη6∂β∆ρuδ + ∂βη6∂α∆ρuδ

)

1≤α,β≤2

=: η6∇2(∆ρuδ) + T δ
ρ ,
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hence by (14)
∫

Ω

∆ρ

[

Dfδ(∇2uδ)
]

: ∇2(∆ρuδ)η
6 dx(15)

≤
∫

Ω

∆ρ

[

Dfδ(∇2uδ)
]

:
[

∇2(η6∆ρΦ) − T δ
ρ

]

dx .

Introducing the parameter dependent bilinear form

Bx(ε, σ) :=

∫ 1

0

D2fδ (ξt(x)) (ε, σ) dt ,

ξt := ∇2uδ + tρ∆ρ(∇2uδ) ,

(15) can be written as
∫

Ω

η6Bx(∆ρ∇2uδ, ∆ρ∇2uδ) dx

≤
∫

Ω

Bx

(

∆ρ∇2uδ,∇2(η6∆ρΦ) − T δ
ρ

)

dx ,

and an application of the Cauchy-Schwarz inequality gives
∫

Ω

η6Bx(∆ρ∇2uδ, ∆ρ∇2uδ) dx(16)

≤ c(η)

∫

spt η

|Bx|
(

|∆ρΦ|2 + |∇∆ρΦ|2 + |∇2∆ρΦ|2

+ |∆ρuδ|2 + |∇∆ρuδ|2
)

dx .

Using the definition of Bx, the (q − 2)-growth of D2fδ as well as elementary properties of
difference quotients and the fact that Φ is in C3(Ω), Hölder’s inequality implies:

r.h.s. of (16) ≤ c(η, δ) < ∞

uniformly in ρ, hence by (16)

(17)

∫

Ω

η6Bx(∆ρ∇2uδ, ∆ρ∇2uδ) dx ≤ c(η, δ) .

Obviously Bx(ε, ε) ≥ δ|ε|2 and (17) gives |∇3uδ| ∈ L2
loc(Ω), in particular we have

(18) ∆ρ∇2uδ → ∂γ∇2uδ in L2
loc(Ω) and a.e.

6



Combining (18) with Fatou’s Lemma, we deduce from (17) that (from now on summation
w.r.t. γ = 1, 2)

(19) wδ := D2Fδ(∇2uδ)(∂γ∇2uδ, ∂γ∇2uδ) ∈ L1
loc(Ω) .

Note that (up to now) (19) is not uniform in δ. X-AntiVirus: checked by AntiVir Mail-
Guard (Version: 8.0.0.18; AVE: 8.1.0.30; VDF: 7.0.3.177)

Step 2. a (uniform) bound for
h′

δ
(|∇2uδ|)

|∇2uδ|
|∇3uδ|2

We return to (15) and observe that by (18) together with (11) and Fatou’s Lemma we
have

(20) ε

∫

Ω

η6h′
δ(|∇2uδ|)
|∇2uδ|

|∇3uδ|2 dx ≤ lim inf
ρ→0

{r.h.s. of (15)} .

In order to handle the r.h.s. of (20) we can use the calculations starting with (3.20) from
[BF3]: replacing F , v, ε(v), s in this reference by fδ, uδ, ∇2uδ, q we see

lim inf
ρ→0

{r.h.s. of (15)}

=

∫

Ω

∂γ

[

Dfδ(∇2uδ)
]

:
[

∇2(η6∂γΦ) − Sδ
γ

]

dx ,

Sδ
γ :=

(

∂α∂βη
6∂γuδ + ∂αη6∂β∂γuδ + ∂βη6∂α∂γuδ

)

1≤α,β≤2
,

and therefore (20) yields after integration by parts

ε

∫

Ω

η6h′
δ(|∇2uδ|)
|∇2uδ|

|∇3uδ|2 dx(21)

≤ −
∫

Ω

Dfδ(∇2uδ) : ∂γ

[

∇2(η6∂γΦ) − Sδ
γ

]

dx .

Note that this integration by parts is justified since the “critical term” occurring in
Df(∇2uδ) : ∂γ [. . .] is of the type

|Dfδ(∇2uδ)||∇3uδ|

7



which according to (12) can be estimated as follows:

|Dfδ(∇2uδ)||∇3uδ|

=
√

h′
δ(|∇2uδ|)/|∇2uδ|

√

h′
δ(|∇2uδ|)|∇2uδ| |∇3uδ|

(8)

≤ c
√

h′
δ(|∇2uδ|)/|∇2uδ|

√

hδ(|∇2uδ|) |∇3uδ|

≤ τ
h′

δ(|∇2uδ|)
|∇2uδ|

|∇3uδ|2 + c(τ)hδ(|∇2uδ|) .

Here we have used Young’s inequality. Since wδ from (19) is an upper bound for the
τ -term and since we have (19), we see that (21) is true. At the same time the above
inequality shows that if we take care of the test function in front of ∇3uδ and choose τ
small enough, we arrive at

∫

Ω

η6h′
δ(|∇2uδ|)
|∇2uδ|

|∇3uδ|2 dx(22)

≤ c(η)

∫

Ω

h′
δ(|∇2uδ|)

[

|∇uδ| + |∇2uδ| +
4

∑

i=1

|∇iΦ|
]

,

c(η) being independent of δ. Since hδ is a N -function, we have for s, t ≥ 0

h′
δ(t)s ≤ h∗

δ(h
′
δ(t)) + hδ(s) = th′

δ(t) − hδ(t) + hδ(s)
(8)

≤ chδ(t) + hδ(s) .

Applying this estimate with t = |∇2uδ| and for appropriate choices of s, (22) leads to

∫

Ω

η6h′
δ(|∇2uδ|)
|∇2uδ|

|∇3uδ|2 dx(23)

≤ c(η, Φ)

∫

Ω

(

hδ(|∇uδ|) + hδ(|∇2uδ|) + 1
)

dx ,

where obviously all integrals involving Φ have been estimated in a rough way. We em-
phasize that c(η, Φ) does not depend on δ.
Referring to Step 3 we will now use that

(24) sup
0<δ<1

∫

Ω

(

hδ(|∇uδ|) + hδ(|∇2uδ|)
)

dx < ∞ .

8



Let us introduce the function

Ψδ :=

∫ |∇2uδ|

0

(

h′
δ(t)

t

)1/2

dt .

Then we have

|∇Ψδ|2 ≤
h′(|∇2uδ|)
|∇2uδ|

|∇3uδ|2 ,

hence by (23) and (24)

(25)

∫

Ω′

|∇Ψδ|2 dx ≤ c(Ω′, Φ)

for any subdomain Ω′ ⋐ Ω. At the same time we have a.e. on the set [|∇2uδ| ≥ 1]

Ψ
(A3)

≤
∫ 1

0

(h′′
δ(t)/ε)

1/2
+

∫ |∇2uδ|

1

(

h′
δ(t)

t

)1/2

dt

≤ c + (|∇2uδ| − 1)h′
δ(|∇2uδ|)1/2

≤ c
(

1 + |∇2uδ| + |∇2uδ|h′
δ(|∇2uδ)

)

,

whereas Ψ ≤ c a.e. on [|∇2uδ| ≤ 1]. Using (8) and (10) we get

∫

Ω

Ψδ dx ≤ c



1 +

∫

Ω

hδ(|∇2uδ|) dx



 ,

so that together with (25)
‖Ψδ‖W 1

1
(Ω′) ≤ c(Ω′, Φ)

for all Ω′ ⋐ Ω. But then Sobolev’s embedding theorem shows

‖Ψδ‖L2(Ω′) ≤ c(Ω′, Φ) ,

and we may quote (25) one more time to obtain.

(26) ‖Ψδ‖W 1

2
(Ω′) ≤ c(Ω′, Φ) .

Another application of Sobolev’s embedding theorem in combination with (26) yields

(27)

∫

Ω′

Ψt
δ dx ≤ c(Ω′, Φ, t)

9



for any finite t. Now we observe that

Ψδ ≥
∫ |∇2uδ|

|∇2uδ|/2

(

h′
δ(t)

t

)1/2

dt

(A1)

≥ 1

2
|∇2uδ|h′

δ(|∇2uδ|/2)1/2|∇2uδ|−1/2

=
(

h′
δ(|∇2uδ|/2)|∇2uδ|/2

)−1/2
1/
√

2

(8),(A2)

≥ chδ(|∇2uδ|)1/2

and see from (10) that the above estimate together with (27) leads to

(28)

∫

Ω′

|∇2uδ|t dx ≤ c(Ω′, Φ, t)

for all t < ∞ and any Ω′ ⋐ Ω. It therefore remains to verify (24) and to discuss in which
sense we have convergence of {uδ} towards u. This will be done in X-AntiVirus: checked
by AntiVir MailGuard (Version: 8.0.0.18; AVE: 8.1.0.30; VDF: 7.0.3.177)

Step 3. passage to the limit δ ց 0 and conclusions

We fix some u0 ∈
◦

W2
q,Φ(Ω) and get from the Iδ[·, Ω]-minimality of uδ

Iδ[uδ, Ω] ≤ Iδ[u0, Ω] ≤ I1[u0, Ω] =: c1 ,

so that I[uδ, Ω] ≤ c1 for all 0 < δ ≤ 1. Since uδ ∈
◦

W 2
h(Ω) we can apply Poincaré’s

inequality (see, e.g. [FO], Lemma 2.4) two times to see

(29) ‖uδ‖W 2

h
(Ω) ≤ c2 ,

which immediately leads to (24). At the same time (29) together with (10) implies uδ ⇁: u

weakly in W 2
p (Ω). Obviously u ∈

◦

W 2
p(Ω) and also (by lower semicontinuity) u ∈ W 2

h (Ω),

but a variant of Theorem 2.1 from [FO] gives u ∈
◦

W 2
h(Ω), thus u ∈ KΦ, since we clearly

have u ≥ Φ. The lower semicontinuity of I[·, Ω] shows

I[u, Ω] ≤ lim inf
δց0

I[uδ, Ω]

≤ lim inf
δց0

Iδ[uδ, Ω] ≤ lim inf
δց0

Iδ[v, Ω] = I[v, Ω]

for all v ∈
◦

W2
q,Φ(Ω), where again the Iδ[·, Ω]-minimality of uδ has been used. But

◦

W2
q,Φ(Ω)

is dense in KΦ, which follows from an adjustment of Lemma 2.3 from [FLM] to the present

10



setting, hence u is a solution of (P) and therefore u = u. Now (28) combined with uδ ⇁ u
in W 2

p (Ω) gives the claim of Theorem 1. We remark that Lemma 2.3 of [FLM] is based
on a deep result of Adams and Hedberg [AH], Theorem 9.1.3, but it is possible to avoid
this rather delicate tool by working with a slightly different regularisation, which means
that (Pδ) is formulated with respect to a suitable perturbed obstacle function Φδ. Then
as before it follows u = u and all properties of the sequence {uδ} remain unchanged. The
reader will find the details in Section 2 of [BF1].

�

REMARK 4. Suppose that ε = 1 in (A3). Then the estimates following (27) together
with (10) show that Ψδ ≥ A|∇2uδ| − B with constants A > 0, B ≥ 0. (26) combined with
Trudinger’s inequality (see [GT], Theorem 7.15) implies

∫

Ω′

exp(Ψδ) dx ≤ c(Ω′) ,

hence
∫

Ω′

exp
(

|∇2uδ|
)

dx ≤ c(Ω′)

for any subdomain Ω′. By lower semicontinuity it follows in addition to the result of
Theorem 1 that exp(|∇2u|) is in the space L1

loc(Ω).
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