
U
N

IV
E R S IT

A
S

S
A

R
A V I E

N

S
I
S

Semantics, WS 2005 – Assignment 1

Prof. Dr. Gert Smolka, Dipl.-Inform. Andreas Rossberg

http://www.ps.uni-sb.de/courses/sem-ws05/

Recommended reading: Types and Programming Languages, chapters 1–5, emphasis on 5

We consider variables, numbers, terms and values as follows:

x ∈ Var

n ∈ N

t ∈ Ter = x | t t | λx . t | n | S

v ∈ Val = λx . t | n | S

A term is pure if it doesn’t contain numbers or the successor operator S. The reduction

relation → ⊆ Ter2 is defined as follows:

Beta
(λx . t)v → t[x := v]

S
n′ = n+ 1

Sn→ n′

DAL
t1 → t′1

t1t2 → t′1t2
DAR

t → t′

vt → vt′

A procedure is a closed term of the form λx . t. Boolean values, pairs and the natural

numbers can be represented as pure values as follows:

true
def
= λxy . x

false
def
= λxy . y

(t1, t2)
def
= (λxyf . fxy)t1 t2

c0
def
= λfs . s

cn
def
= λfs . cn−1f(fs) (n ≥ 1)

Exercise 1.1: Numbers We say that a term t represents a number n if t is pure and

the term tS0 evalutes to n. Find a pure procedure

(a) add that given values representing m and n yields a value representing m+n.

(b) mul that given values representing m and n yields a value representing m ·n.

(c) exp that given values representing m and n yields a value representing mn.

2005–10–21 19:16

Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Union, Intersection, and Refinement Types
and Reasoning About Type Disjointness

for Security Protocol Analysis

Cătălin Hri̧tcu

Dissertation

zur Erlangung des Grades
des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

Eingereicht am: 14. November 2011
Saarbrücken

Thesis for obtaining the title of Doctor of Natural Sciences of the Faculties of Natural
Sciences and Technology of Saarland University

Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der
Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes

Reporters / Berichterstatter:
Prof. Dr. Michael Backes (Saarland University and MPI-SWS)
Prof. Dr. Andrew D. Gordon (Microsoft Research and University of Edinburgh)
Dr. Matteo Maffei (Saarland University)

Examination Board / Prüfungsausschuss:
Prof. Dr. Gert Smolka (Saarland University)
Prof. Dr. Michael Backes (Saarland University and MPI-SWS)
Dr. Matteo Maffei (Saarland University)
Dr. Derek Dreyer (MPI-SWS)

Dean / Dekan:
Prof. Dr. Holger Hermanns

Date of the Colloquium / Tag des Kolloquiums:
January 10, 2012 / 10. Januar 2012

Version from March 24, 2012/ Textfassung vom 24. März 2012

Copyright c© 2011-2012 Cătălin Hriţcu. All rights reserved.

ii

Abstract

In this thesis we present two new type systems for verifying the security of cryptographic
protocol models expressed in a spi-calculus and, respectively, of protocol implementations
expressed in a concurrent lambda calculus. The two type systems combine prior work
on refinement types with union and intersection types and with the novel ability to
reason statically about the disjointness of types. The increased expressivity enables the
analysis of important protocol classes that were previously out of scope for the type-
based analyses of cryptographic protocols. In particular, our type systems can statically
analyze protocols that are based on zero-knowledge proofs, even in scenarios when certain
protocol participants are compromised. The analysis is scalable and provides security
proofs for an unbounded number of protocol executions. The two type systems come
with mechanized proofs of correctness and efficient implementations.

iii

iv

Kurzzusammenfassung

In dieser Arbeit werden zwei neue Typsysteme vorgestellt, mit denen die Sicherheit
kryptographischer Protokolle, modelliert in einem spi-Kalkül, und Protokollimplemen-
tierungen, beschrieben in einem nebenläufigen Lambdakalkül, verifiziert werden kann.
Die beiden Typsysteme verbinden vorausgehende Arbeiten zu Verfeinerungstypen mit
disjunktiven und konjunktiven Typen, und ermöglichen außerdem, statisch zu folgern,
dass zwei Typen disjunkt sind. Die Ausdrucksstärke der Systeme erlaubt die Analyse
wichtiger Klassen von Protokollen, die bisher nicht durch typbasierte Protokollanalysen
behandelt werden konnten. Insbesondere ist mit den vorgestellten Typsystemen auch
die statische Analyse von Protokollen möglich, die auf Zero-Knowledge-Beweisen basie-
ren, selbst unter der Annahme, dass einige Protokollteilnehmer korrumpiert sind. Die
Analysetechnik skaliert und erlaubt Sicherheitsbeweise für eine unbeschränkte Anzahl
von Protokollausführungen. Die beiden Typsysteme sind formal korrekt bewiesen und
effizient implementiert.

v

vi

Acknowledgements

I consider myself extraordinarily fortunate, being able to work with three distinguished
academic advisors: Michael Backes, Andy Gordon, and Matteo Maffei. I am profoundly
indebted to them for the very many things they have taught me. Michael provided
guidance and support, promoted a friendly and relaxed atmosphere in his group, and
gave me incredible freedom to find and pursue my own way in research. I am grateful
to Andy for his infinite kindness, for taking the time for many in-depth discussions
about research and life in general, and for the wonderful time I had during my visits in
Cambridge. Matteo spent a great amount of time working together with me, and helped
me countless times with his wonderful insights, with endless patience and contagious
enthusiasm. Grazie mille, Matteo!

Gert Smolka gave me invaluable advice on many occasions. I am particularly grateful for
his most inspiring introductions to logic and the semantics of programming languages,
and for his suggestion that I work with Jan Schwinghammer in the spring of 2006. The
year I worked with Jan reshaped my view of theory and research, and was crucial in my
decision to do a PhD. Jan patiently shared with me not only some of his knowledge and
ideas, but also some of his enthusiasm, motivation, and perseverance. Thank you Jan,
my great friend and best man!

I would also like to thank some of my colleagues at Saarland University: Matthias Berg,
Chad Brown, Oana Ciobotaru, Markus Dürmuth, Fabienne Eigner, Sebastian Gerling,
Mark Kaminski, Stefan Lorenz, Aniket Kate, Boris Köpf, Esfandiar Mohammadi, Kim
Pecina, Raphael Reischuk, and Dominique Unruh. They always had an open door and
it was an extreme pleasure to work and discuss with them. I am particularly thankful
to Dominique for teaching me what open-mindedness really means, and for helping me
many times, often on topics that were foreign to him. One special “thank you” goes
to Bettina Balthasar, our group’s amazing administrative assistant, for taking care of
countless numbers of things without a hitch, for getting me a visa appointment a couple
of days before a spring school in Japan, for submitting this thesis on my behalf, and for
the many many other things with which she helped me.

vii

Kudos to Stefan Lorenz, Kim Pecina, and Thorsten Tarrach for helping with the imple-
mentation of the two type systems presented in this thesis. Andy Gordon and Matteo
Maffei provided invaluable feedback on countless drafts of this thesis. Many other peo-
ple provided helpful feedback at various stages of this work: Joshua Dunfield, François
Dupressoir, Cédric Fournet, Deepak Garg, Boris Köpf, Kim Pecina, Jan Schwingham-
mer, Pierre-yves Strub, Dominique Unruh, as well as many anonymous reviewers. A big
thank you to everyone!

My graduate studies in Saarbrücken were supported by fellowships from the International
Max Planck Research School for Computer Science and Microsoft Research. These
institutions offered me not only continuous financial support for five years and a half,
but also many opportunities to meet great people and make many friends.

I thank my new advisor, Benjamin Pierce, for his patience, understanding, and trust in
the last six months. My new colleagues in the Penn PL Club also helped making the last
months more bearable. I especially thank Marco Gaboardi, Michael Greenberg, Benôıt
Montagu, and Benôıt Valiron for their friendship and encouragements.

My family and friends have been a constant source of support. This thesis is dedicated
to my wife, Beate, whose endless love gives sense to my life.

Philadelphia, November 12, 2011 Cătălin Hriţcu

“Peace. It does not mean to be in a place where there is no noise, trouble or
hard work. It means to be in the midst of those things and still be calm in
your heart.” – unknown (quotablemugs)

viii

Contents

1. Introduction 5
1.1. Type-checking Zero-knowledge . 6

1.2. Security Despite Compromise . 8

1.3. Type-checking Protocol Implementations 9

1.4. Soundness Proofs and Implementations 11

1.5. Previous Publications . 11

1.6. Outline . 12

2. Analyzing Protocol Models 13
2.1. Related Work . 14

2.2. Illustrative Example: Simplified DAA-signing 16

2.3. Spi-calculus with Zero-knowledge Proofs 20

2.3.1. Terms and Destructors . 21

2.3.2. Representing Zero-knowledge Proofs 22

2.3.3. Processes . 24

2.3.4. Operational Semantics . 25

2.3.5. Authorization Logic . 27

2.3.6. Safety and Robust Safety . 29

2.4. Type System for Zero-knowledge . 30

2.4.1. Types . 31

2.4.2. Typing Environments and Judgments 33

2.4.3. Formula Entailment Judgment . 34

2.4.4. Subtyping and Kinding . 35

2.4.5. Logical Characterization of Kinding 41

2.4.6. Type Private and Non-disjointness of Types 44

2.4.7. Typing Terms and Destructors . 47

2.4.8. Typing Processes . 50

2.4.9. Type-checking Zero-knowledge Verification 52

2.5. Machine-checked Robust Safety Proof . 60

2.5.1. Basic Properties . 61

1

2 Contents

2.5.2. Transitivity of Subtyping . 64

2.5.3. Logical Characterization of Kinding 65

2.5.4. Non-disjointness of Types . 65

2.5.5. Destructor Consistency . 65

2.5.6. Zero-knowledge . 66

2.5.7. Subject-reduction . 67

2.5.8. Robust Safety . 67

2.6. Case Study: Achieving Security Despite Compromise 68

2.6.1. Illustrative Example . 69

2.6.2. Compromising Participants . 70

2.6.3. Strengthened Protocol . 72

2.7. Case Study: Direct Anonymous Attestation (DAA) 75

2.7.1. The Join Protocol . 76

2.7.2. The DAA-signing Protocol . 78

2.8. Implementation . 80

2.9. Summary . 81

3. Analyzing Protocol Implementations 82
3.1. Related Work . 83

3.2. Our Type System at Work . 87

3.2.1. Protocol Description and Security Annotations 87

3.2.2. Types for Cryptography . 88

3.2.3. Type-checking the NSL Protocol 88

3.3. The RCF∀∧∨ Calculus . 92

3.4. Type System . 95

3.4.1. Well-formed Environments and Entailment 95

3.4.2. Subtyping and Kinding . 97

3.4.3. Encoding Types Un and Private in RCF∀∧∨ 100

3.4.4. Typing Values and Expressions . 101

3.5. Results of the Formalization . 105

3.6. Implementation of Symbolic Cryptography 109

3.6.1. Dynamic Sealing . 109

3.6.2. Digital Signatures . 110

3.6.3. Public-Key Encryption . 111

3.7. Encoding of Zero-knowledge . 111

3.7.1. Illustrative Example: Simplified DAA-sign 111

3.7.2. High-level Specification . 112

3.7.3. Automatic Code Generation . 113

3.8. Implementation . 115

3.9. Related Work on Unions and Intersections 116

3.10. Summary . 117

4. Conclusion and Future Work 118
4.1. Conclusion . 118

Contents 3

4.2. Future Work . 119
4.2.1. Semantic Subtyping for Higher-order Languages with Refinements 119
4.2.2. Strong Secrecy and Observational Equivalence for RCF∀∧∨ 119
4.2.3. Supporting An Intuitionistic Authorization Logic with says Modality120
4.2.4. Generalize the Syntactic Reasoning About Type Disjointness . . . 121
4.2.5. Type inference for RCF∀∧∨ . 121
4.2.6. Automatically Generating Concrete Cryptographic Implementa-

tions from Zero-knowledge Statement Specifications 121

A. Typing Blind Signatures and Secret Hashes 123

B. Formal-RCF∀∧∨ Calculus 128
B.1. Syntax . 128
B.2. Erasure from RCF∀∧∨ to Formal-RCF∀∧∨ 130
B.3. Local Closure . 131
B.4. Operational Semantics . 133
B.5. Properties of the Authorization Logic . 135
B.6. Typing Judgements . 136

C. Zero-knowledge Encoding in RCF∀∧∨ 145
C.1. High-level Specification . 145
C.2. Automatic Code Generation . 147
C.3. Typed Interface . 147
C.4. Generated Implementation . 149
C.5. Checking the Generated Implementation 151

Bibliography 153

4

Chapter 1

Introduction

Many of today’s applications rely on complex cryptographic protocols for communicat-
ing over the insecure Internet (e.g., online banking, electronic commerce, social net-
works, mobile applications, etc.). Protocol designers struggle to keep pace with the
variety of possible security vulnerabilities, which have affected early authentication pro-
tocols like Needham-Schroeder [DS81, Low96], carefully designed de facto standards
like SSL and PKCS [WS96, Ble98], and even widely deployed products like Microsoft
Passport [Fis03], Kerberos [BCJ+06,CJS+08], and the SAML-based Single Sign-On for
Google Apps [ACC+08]. Manual security analyses of cryptographic protocols, and even
more so protocol implementations, are extremely difficult and error-prone. Therefore, it
is important to formalize the intended security properties and devise automated anal-
ysis techniques for security protocols and, more challengingly, for the source code of
distributed applications.

Logic-based authorization policies constitute a well-established and expressive framework
for describing a wide range of security properties of cryptographic protocols, varying from
authenticity [WL94,GJ03] to access control policies [Aba03]. Furthermore, type systems
constitute particularly salient tools to statically and automatically enforce authorization
policies on abstract protocol specifications [FGM07b,FGM07a] and on concrete protocol
implementations [BBF+08,BFG10]. Type systems require little human effort and provide
security proofs for an unbounded number of protocol executions. Furthermore, the
analysis is efficient, scalable, and has a predictable termination behavior.

As with all static analysis techniques, the expressiveness of the analysis is very important,
since, in order to be useful in practice, a type system for security protocols has to be able
to express and reason about many different sound idioms employed by actual protocols.

In this thesis we increase the expressiveness of the existing type-based analyses for secu-
rity protocol models and implementations using union and intersection types and syntac-

5

6 CHAPTER 1. INTRODUCTION

tic reasoning about type disjointness. This increased expressivity enables the analysis
of important protocol classes that were previously out of scope for type systems. In
particular, we show that the increased expressivity allows us

1. to handle more complex cryptographic primitives, and in this work we will focus
mostly on non-interactive zero-knowledge proofs;

2. to statically express the invariants of protocols where participants can be compro-
mised;

3. to provide solutions that work both for abstract protocol models and for concrete
protocol implementations.

We discuss each of these three points in the following three sections.

1.1. Type-checking Protocols Based on Zero-knowledge Proofs

An important challenge in analyzing protocols is the ability to statically characterize
the security properties guaranteed by complex cryptographic operations. For instance,
current analysis techniques support traditional cryptographic primitives such as encryp-
tion and digital signatures, but until recently [BMU08] they could not cope with zero-
knowledge proofs [Gol01]. A zero-knowledge proof combines two seemingly contradictory
properties. First, it is a proof of a statement that cannot be forged, i.e., it is impossible,
or at least computationally infeasible, to produce a wrong zero-knowledge proof that
can pass verification. Second, a zero-knowledge proof does not reveal any information
besides the bare fact that the statement is valid.

Early general-purpose zero-knowledge proofs were primarily designed for showing the
existence of such proofs for very large classes of statements [GMW91]. These proofs
were very inefficient and consequently of only limited use in practical applications. The
recent advent of efficient zero-knowledge proofs for special classes of statements [CDS94,
CL02, GS08, AFG+10] is changing this scenario. The unique security features offered
by zero-knowledge proofs, combined with the possibility to efficiently implement some
of these proofs non-interactively [BFM88, BR93, GS08] have paved the way for their
deployment in real applications.

For instance, zero-knowledge proofs can guarantee the verifiability of electronic elec-
tions yet guarantee the privacy of the votes, as in the Civitas electronic voting sys-
tem [CCM08]; they can allow for remote attestation of a trusted platform while preserv-
ing the anonymity of the users, as in the Direct Anonymous Attestation (DAA) proto-
col [BCC04]; and they can allow a user to prove to a third party that she holds a govern-
ment issued electronic ID card and she is over 18, without revealing her identity and her
age, as in the IBM idemix [IBM] and Microsoft U-Prove [UPr11] anonymous credential
systems. Other than electronic voting [DGS03,Gro05,CCM08,Adi08,HRT10] anonymous

1.1. TYPE-CHECKING ZERO-KNOWLEDGE 7

authentication [BCC04, CHK+06], anonymous credentials and digital identity manage-
ment [CH02,CL04,BCKL08,Hig08,BCC+09,BCGS09, IBM,UPr11] the proposed appli-
cations of zero-knowledge proofs include: e-cash [CHL06, CLM07, BCKL09], electronic
auctions [LAN02, PRST08], anonymous trust and reputation [BSS10, BLMP10], dis-
tributed social networks [TSGW09, BMP11], risk assurance for hedge funds [Szy05],
anonymous electronic ticketing for public transportation [HBCDF06], biometric authen-
tication [BSSM+07, KNON10], privacy-friendly smart metering [RD10], and others. In
these applications zero-knowledge proofs provide security properties that go beyond the
traditional and well-understood secrecy and authenticity properties, allowing the design
of protocols that fulfill seemingly conflicting requirements.

Statically analyzing protocols that use zero-knowledge proofs is conceptually and techni-
cally challenging. While the existing techniques for type-checking cryptographic proto-
cols typically rely on the type of keys for typing cryptographic messages, these techniques
do not directly apply to zero-knowledge proofs, since zero-knowledge proofs do not nec-
essarily depend on a key infrastructure.

In Chapter 2 of this thesis, we introduce the first type system for statically analyzing
the security of protocols based on non-interactive zero-knowledge proofs. We model
protocols in a variant of the spi-calculus [AG99, AB05], and show how the safety prop-
erties guaranteed by zero-knowledge proofs can be formulated in terms of authorization
policies and statically enforced by a type system. Our type system combines prior work
on dependent and refinement types for cryptographic protocols [FGM07a], with union
types, intersection types, and the novel ability to reason statically about the disjointness
of types.

Zero-knowledge proofs are given dependent types where the witnesses kept secret by the
proof are existentially quantified in the authorization logic. We express zero-knowledge
statements as specific positive Boolean formulas in the authorization logic and we define
the type of zero-knowledge proofs using these formulas. The user has the possibility to
extend such types with additional logical formulas describing protocol-dependent security
properties. Our type-checker ensures that honest protocol participants only construct
proofs for which these formulas hold. However, the zero-knowledge proofs received from
the untrusted network can also be created by malicious attackers, which are untyped and
therefore do not play by the rules of the type system. Justifying the formulas conveyed by
a zero-knowledge proof in the common case in which the proof comes from the untrusted
network is a challenging task, which we solve as follows.

We start from the statement being proved and from the type of those public compo-
nents of the proof which the verifier has obtained from a reliable source, and use inter-
section, union, and refinement types to infer very precise type information about the
other arguments of the zero-knowledge proof. For certain protocols the types inferred
this way are already strong enough to justify the formulas in the zero-knowledge proof
type [BGHM09,BLMP10]. In other protocols [BCC04,LHH+07] an additional insight is
needed: if the verifier can somehow deduce that the proof was necessarily constructed
by an honest (and thus type-checked) prover, then the verifier knows that the formulas

8 CHAPTER 1. INTRODUCTION

conveyed by the proof were already checked on the prover’s side, so they must be valid.
The verifier knows that a zero-knowledge proof must be constructed by a honest prover
when the type he infers for one of the secret witnesses of the proof is disjoint from the
type of messages possibly known to the attacker.

We devise a novel technique for syntactically reasoning about the disjointness of types
efficiently and with sufficient precision. The technique is general and should be of inde-
pendent interest, beyond type-checking security protocols.

1.2. Security Despite Compromise

Another important challenge when designing and analyzing cryptographic protocols is
the enforcement of security properties in the presence of compromised participants. In
the setting of logic-based authorization policies, the notion of “security despite com-
promise” [FGM07a] captures the intuition that an invalid authorization decision by an
uncompromised participant should only arise if participants on which the decision logi-
cally depends are compromised. The impact of participant compromise should be thus
apparent from the authorization policy, without having to study the details of the pro-
tocol.

One of the advantages of analyzing security despite compromise using a type system is
that type-checking the protocol once can prove the security of the protocol for a large
number of compromise scenarios. With a flexible enough type system we should be able
to cover all these scenarios with only one set of typing annotations, which decreases
the burden on the user of the type system, who needs to write and maintain these
typing annotations. Union types can be very useful for achieving this. If we track which
participants are compromised by a Compromised predicate, and we want to annotate a
name with type T if participant A is honest and with the (usually weaker) type U if A
is compromised, then this can be precisely captured as a union between two refinement
types: {x : T | ¬Compromised(A)}∨{x : U | Compromised(A)}. Such types are in general
not expressible in the original type system by Fournet et al. [FGM07a].

Fournet et al. [FGM07a] also observe that in order to fix a protocol that is not secure
despite compromise one can either weaken the authorization policy to document all de-
pendencies between participants or correct the specification of the protocol in order to
avoid such dependencies. In another work [Gro09,BGHM09], on which we briefly report
in §2.6, we provide support for achieving the latter: we devise a general technique for
strengthening cryptographic protocols in order to satisfy authorization policies despite
participant compromise. We automatically transform the original cryptographic proto-
cols by adding non-interactive zero-knowledge proofs, so that each participant proves
that the messages sent to the other participants are generated in accordance to the
protocol. The zero-knowledge proofs are forwarded to ensure the correct behavior of
all participants involved in the protocol, without revealing any secret data. Moreover,

1.3. TYPE-CHECKING PROTOCOL IMPLEMENTATIONS 9

the transformation automatically derives type annotations for the strengthened protocol
from the type annotations of the original protocol.

Using our type-checker for zero-knowledge to validate the protocols produced by this
transformation raises, however, additional technical challenges. As explained in §1.1,
our technique for type-checking zero-knowledge crucially relies on honest provers being
type-checked, and on honest verifiers being able to infer that a proof comes from an
honest prover by deducing that one of the witnesses of the proof has a type whose values
are not known to the attacker. In the setting of security despite compromise though, all
this reasoning has to be conditioned by certain participants being indeed honest.

In order to address this challenge our type system has no unconditionally secure types.
Instead, we give a precise characterization of when a type is compromised in the form of
a formula in the authorization logic. We use refinement types that contain such logical
formulas together with union types to express type information that is conditioned by
a participant not being compromised. Such conditional types are inferred automatically
when processing the zero-knowledge statement.

1.3. Type-checking Protocol Implementations

Abstract protocol models usually disregard many implementation details. So, even if
one proves that a model of a protocol is secure, there is usually no guarantee that an
implementation of the same protocol in a mainstream programming language has no se-
curity flaws. On top of that, protocol models are often not executable [Bla01], so it is not
always easy when writing an abstract model to ensure not only that the model is secure,
but also that the model is functional1. On the other hand, a reference implementation in
a mainstream programming language can be written, compiled, executed and debugged
using standard tools, and it can be tested for interoperability against other implementa-
tions of the same protocol specification. One can thus convincingly argue that the best
“model” for a security protocol comes in the form of an executable program. And since
the manual security analysis of executable programs is hardly possible, it is useful to
devise automated analysis techniques that can provide security guarantees for protocol
implementations and, more generally, for the source code of distributed applications.

Adapting the techniques for analyzing protocol models to checking executable code poses
in general some important challenges. While abstract protocol models are usually com-
pact, protocol implementations can be very large, so the efficiency and scalability of
the analysis is even more important. Additionally, code in mainstream programming
languages normally makes use of loops, recursion, state, unbounded data structures,
higher-order functions, concurrency etc., and many of these programming language fea-
tures pose significant problems to state-of-the art protocol verifiers like ProVerif [Bla01]

1If one is only interested in (robust) safety properties, then a completely dysfunctional model is the
most secure.

10 CHAPTER 1. INTRODUCTION

when used as a back end for analyzing protocol implementations [BFGT08]. The type
systems for programming languages, on the other hand, were designed with these fea-
tures in mind, and the analysis they provide is inherently modular. Consequently, type
systems are more efficient and scale better than the state-of-the-art protocol verifiers for
the analysis of source code [BFG10].

In Chapter 3 of this thesis, we show that our technique for type-checking protocol models
can be adapted to the setting of protocol implementations. We add union, intersection
and polymorphic types as well as the ability to reason about type disjointness to the
refinement type system proposed by Bengtson et al. [BBF+08,BBF+11]. The increased
expressivity allows us to statically characterize: (i) more usages of asymmetric cryp-
tography, such as signatures of private data and encryptions of authenticated data; (ii)
authenticity and integrity properties achieved by showing knowledge of secret data; (iii)
applications based on non-interactive zero-knowledge proofs.

Protocols are implemented in RCF∀∧∨, a concurrent lambda-calculus that is expres-
sive enough to encode a considerable fragment of an ML-like programming language
[BBF+08]. As in the spi-calculus [AG99], cryptographic operations are considered fully
reliable building blocks via a symbolic abstraction of cryptography. As opposed to the
spi-calculus, the cryptographic operations are not primitive in RCF∀∧∨, but are instead
encoded using a dynamic sealing mechanism [Mor73, SP07, BBF+08], which is in turn
based on standard functional programming language constructs. The resulting symbolic
cryptographic library is thus type-checked using regular typing rules for functional lan-
guages; in particular these typing rules are not specific to cryptography. We use union
and intersection types to give stronger and more natural types to the operations for
asymmetric cryptography than in the original sealing-based symbolic cryptographic li-
brary of Bengtson et al. [BBF+08]. At the same time, we do preserve the main advantage
of the sealing-based library: adding a new cryptographic operation to the library does
not involve changes to the calculus or manual proofs, one has just to find a well-typed
encoding of the desired cryptographic operation.

In addition to hashes, symmetric cryptography, public-key encryption, and digital sig-
natures, our approach supports non-interactive zero-knowledge proofs out of the box.
Since the realization of zero-knowledge proofs changes according to the statement to be
proven, we provide a tool that, given a statement, automatically generates a sealing-
based symbolic implementation of the corresponding zero-knowledge primitive. This
symbolic implementation is type-checked using standard typing rules, which are not tai-
lored in any way to zero-knowledge proofs. In achieving this we crucially rely on union
and intersection types, as well as on pruning typing derivation branches based on static
information about the disjointness of types.

Finally, we show that our type system can easily reason about authenticity and in-
tegrity properties achieved by showing the knowledge of secret data, as in the Needham-
Schroeder-Lowe public-key protocol [Low96] that relies on the exchange of secret nonces
to authenticate the participants or as in most authentication protocols based on zero-
knowledge proofs (e.g., Direct Anonymous Attestation [BCC04] and Civitas [CCM08]).

1.4. SOUNDNESS PROOFS AND IMPLEMENTATIONS 11

This common cryptographic pattern could not be handled by the original type system
proposed by Bengtson et al. [BBF+08,BBF+11].

1.4. Soundness Proofs and Implementations

We have formalized the two calculi and their operational semantics, our two type systems,
and all the important parts of the soundness proofs in the Coq proof assistant2. We
believe these mechanized formalizations are important, since the powerful combination
of union, intersection, and refinement types and reasoning about type disjointness makes
the soundness proofs non-trivial, tedious, and potentially error-prone. Indeed, this work
has allowed us to discover several relatively small problems in the soundness proofs of
prior type systems with refinement types [FGM07a,BBF+08], as well as our own previous
manual proofs [BHM08c, BGHM09], and to propose and evaluate fixes for the affected
definitions and proofs. Finally, we remark that although our formal proofs are still
partial (the proofs of some helper lemmas are not assert-free), they are done in greater
detail than similar published paper proofs [BBF+08,BBF+11,BHM08c].

We have also implemented efficient type-checkers for the two type systems presented in
this thesis. They rely on first-order logic automated theorem provers or SMT solvers to
discharge proof obligations. Both type-checkers performed very well in our experiments.
The spi-calculus type-checker can verify the authenticity properties of a model of the
Direct Anonymous Attestation protocol (DAA) [BCC04] in less than three seconds, on
a normal laptop. The type-checker for RCF∀∧∨ can verify our symbolic cryptographic
library and sample code totaling more than 1500LOC in around 12 seconds. These
promising results indicate that our analysis technique has the potential to scale up to
very large protocol models and implementations.3

1.5. Previous Publications

The results presented in this thesis have previously appeared in a series of conference
publications that I have coauthored:

• Type-checking Zero-knowledge. In 15th ACM Conference on Computer and Com-
munications Security (CCS 2008), pages 357-370, ACM Press, October 2008. Joint
work with Michael Backes and Matteo Maffei.

2 Full disclosure: On 21st of December 2011 we have discovered a flaw affecting the weakening property
of the spi-calculus type system presented in this thesis. We hope to fix this problem in future work.

3 The soundness proofs and implementations of our two type systems are publicly available at
http://www.infsec.cs.uni-saarland.de/projects/zk-typechecker/, and respectively at
http://www.infsec.cs.uni-saarland.de/projects/F5/.

http://www.infsec.cs.uni-saarland.de/projects/zk-typechecker/
http://www.infsec.cs.uni-saarland.de/projects/F5/

12 CHAPTER 1. INTRODUCTION

• Achieving Security Despite Compromise Using Zero-knowledge. In 22th IEEE Sym-
posium on Computer Security Foundations (CSF 2009), pages 308-323, IEEE Com-
puter Society Press, July 2009. Joint work with Michael Backes, Martin Grochulla,
and Matteo Maffei.

• Union and Intersection Types for Secure Protocol Implementations. To appear
in Theory of Security and Applications (TOSCA’11), Invited Paper, April 2011.
Joint work with Michael Backes and Matteo Maffei.

Preliminary results were also presented at several workshops:

• Type-checking Zero-knowledge. Joint Workshop on Foundations of Computer Secu-
rity, Automated Reasoning for Security Protocol Analysis and Issues in the Theory
of Security (FCS-ARSPA-WITS’08), June 2008. Joint work with Michael Backes
and Matteo Maffei.

• Achieving Security Despite Compromise Using Zero-knowledge. Joint Workshop
on Automated Reasoning for Security Protocol Analysis and Issues in the Theory
of Security (ARSPA-WITS’09), March 2009. Joint work with Michael Backes,
Martin Grochulla, and Matteo Maffei.

• Type-checking Implementations of Protocols Based on Zero-knowledge Proofs -
Work in Progress. Workshop on Foundations of Computer Security (FCS 2009),
August 2009. Joint work with Michael Backes, Matteo Maffei, and Thorsten Tar-
rach.

For the present thesis, I have extended and streamlined the presentation of our results.
Additionally, for this thesis I have mechanized our proofs in the Coq proof assistant.

1.6. Outline

The remainder of the thesis is structured into three chapters. Chapter 2 presents our
type system for analyzing abstract models of protocols based on zero-knowledge proofs.
Chapter 3 presents our type system for analyzing implementations of security protocols.
Chapter 2 and Chapter 3 are reasonably self-contained and can in principle be read in
any order. Chapter 4 concludes and discusses several directions for future work.

Chapter 2

Analyzing Protocol Models

In this chapter, we introduce the first type system for statically analyzing the security
of protocols based on non-interactive zero-knowledge proofs. We model protocols in
a variant of the spi-calculus, and show how the safety properties guaranteed by zero-
knowledge proofs can be formulated in terms of authorization policies and statically
enforced by our type system. Our type system combines prior work on dependent and
refinement types for cryptographic protocols [FGM07a], with union types, intersection
types, and the novel ability to reason statically about the disjointness of types.

Zero-knowledge proofs are given dependent types where the witnesses kept secret by the
proof are existentially quantified in the authorization logic. We express zero-knowledge
statements as specific positive Boolean formulas in the authorization logic and we define
the type of zero-knowledge proofs using these formulas. The user has the possibility
to extend such types with additional logical formulas describing protocol-dependent se-
curity properties. Justifying the formulas conveyed by a zero-knowledge proof when
the verified proof comes from the untrusted network is the main challenge when type-
checking protocols based on zero-knowledge. We use union and intersection types, as
well as syntactic reasoning about type disjointness to address this challenge.

We have formalized our type system and all the important parts of the soundness proof
in the Coq proof assistant. This has allowed us to discover several relatively small
problems in our previous manual proofs [BHM08c,BGHM09], to properly fix the affected
definitions and proofs, and, in the end, to obtain a high degree of confidence in the
soundness of the type system.

We use two bigger case studies to illustrate the applicability of our type system to
real-world protocols. First, we use our type system to verify the security despite com-
promise of protocols that were automatically strengthened in this respect by adding

13

14 CHAPTER 2. ANALYZING PROTOCOL MODELS

non-interactive zero-knowledge proofs [Gro09,BGHM09]. Second, we verify the authen-
ticity properties of the Direct Anonymous Attestation (DAA) protocol [BCC04].

We have implemented a new type-checker that automates the analysis. It relies on first-
order logic automated theorem provers [WDF+09,Sch02,RV99] or SMT solvers [dMB08]
to discharge proof obligations. The type-checker is very efficient: it can verify the
authenticity properties of the DAA protocol [BCC04] in less than three seconds, on a
normal laptop.

Outline §2.1 discusses related work. §2.2 illustrates our approach on a simple anony-
mous authentication protocol inspired by DAA-signing. §2.3 introduces the process cal-
culus we use to model security protocols that use zero-knowledge proofs. §2.4 presents
our type system for zero-knowledge. §2.5 discusses the soundness of our type system
and the machine-checked formalization in Coq. In §2.6 we use our type system to verify
the security despite compromise of protocols automatically strengthened using zero-
knowledge proofs. In §2.7 we apply our type system to analyze a model of the complete
DAA protocol. §2.8 discusses the implementation of our type-checker. §2.9 gives a sum-
mary of the chapter. Appendix A lists the rules for typing blind signatures, used by the
DAA protocol from §2.7.

2.1. Related Work

Dating back to the seminal work by Abadi on secrecy by typing [Aba99, AB03],
type systems were successfully employed to analyze a wide range of security prop-
erties of cryptographic protocols, ranging from authenticity properties [GJ04, HJ05,
HJ06, BFM07, BCFM07], to security despite compromised participants [GJ05, BFM07,
FGM07a, BCD+09a], to authorization policies [FGM07b, FGM07a, BBF+08, BCEM11].
Type-checking is efficient, scalable, and has a predictable termination behavior. None
of the existing type systems for cryptographic protocols is, however, capable of dealing
with zero-knowledge proofs.

Until recently, ProVerif [Bla01, BAF08] has been the only automatic tool that has
been applied to the analysis of protocols that use non-interactive zero-knowledge proofs
[BMU08,BHM08a,DRS08]. ProVerif is based on Horn-clause resolution and can analyze
trace-based security properties as well as selected observational equivalences [BAF08].
The analysis with ProVerif is, however, not compositional and often has unpredictable
termination behavior, with seemingly harmless code changes leading to divergence. In
terms of expressivity, several type systems for security [Aba99,AB03] can deal with strong
secrecy, which is defined as an observational equivalence, while ProVerif can check a
slightly more general notion of observational equivalence based on bi-processes [BAF08].
This allows ProVerif to express certain behavioral properties that are out of scope for
current type systems, such as vote privacy and coercion-resistance in electronic-voting
protocols [DKR09,BHM08a]. ProVerif is, however, restricted to cryptographic primitives

2.1. RELATED WORK 15

that can be expressed as convergent or linear equational theories. Our type-based anal-
ysis does not pose any constraint on the semantics of cryptographic primitives and, as
opposed to ProVerif, can deal with authorization policies using arbitrary logical structure
(e.g., arbitrarily nested quantifiers).

More recently, Camenisch et al. [CMS10] propose another way to model non-interractive
zero-knowledge proofs symbolically and use this to model-check the Identity Mixer
anonymous credential system developed at IBM [CL01] using the AVISPA tool [ABB+05].

The symbolic, Dolev-Yao style [DY83], abstraction of non-interactive zero-knowledge
proofs we use in this chapter was first proposed by Backes et al. [BMU08]. Backes
and Unruh [BU08] later studied the conditions a cryptographic zero-knowledge proof
system needs to satisfy beyond the standard ones in order to serve as a computationally
sound implementation of this symbolic abstraction. Backes and Mohammadi [Moh09,
BM11] have recently shown that non-standard conditions such as non-malleability and
extractability can be relaxed if the symbolic abstraction is changed accordingly.

Backes et al. [BMM10] propose a computationally sound abstraction of secure multi-
party computation. They use this abstraction together with the type system from this
chapter to automatically verify the security of protocols that use secure multi-party
computations as a building block. They use our type-checker “out of the box” together
with the Vampire theorem prover [RV99] to automatically verify the global security
properties of the SIMAP sugar-beet double auction protocol [BCD+09b].

In another work [Gro09,BGHM09], we devise a general technique for strengthening cryp-
tographic protocols in order to satisfy authorization policies despite participant compro-
mise [FGM07a]. We automatically transform the original cryptographic protocols by
adding non-interactive zero-knowledge proofs, so that each participant proves that the
messages sent to the other participants are generated in accordance to the protocol. The
zero-knowledge proofs are forwarded to ensure the correct behavior of all participants
involved in the protocol, without revealing any secret data. Moreover, the transforma-
tion automatically derives type annotations for the strengthened protocol from the type
annotations of the original protocol. We use our type checker to validate that the proto-
cols generated by this transformation are secure despite compromise. Type-checking the
generated protocols raised technical challenges that have motivated some of the design
choices for our type system; this is further discussed in §2.6.

Tarrach [Tar08] devised a translation from the spi-calculus into a concurrent lambda
calculus (RCF) and proved that the translation preserves security typing. The considered
security type systems use refinement types [BBF+08], but are much weaker than the ones
presented in this thesis. The type system for the spi-calculus is less precise even than
the one by Fournet et al. [FGM07a], and doesn’t support nested cryptographic types.

Barthe et al. [BHB+10] devise Coq formalizations for a specific class of efficient cryp-
tographic zero-knowledge proof systems called sigma-protocols [CDS94]. Almeida et
al. [ABB+10] construct a certifying compiler for sigma-protocols, which given a spec-
ification of a sigma-protocol generates an efficient C implementation together with a

16 CHAPTER 2. ANALYZING PROTOCOL MODELS

soundness proof for the generated protocol in Isabelle/HOL. Both these formalization
results are complementary to ours: while Barthe et al. and Almeida et al. focus on the
soundness of the cryptographic primitives for zero-knowledge proofs in a very precise
computational model, our work focuses on verifying that these primitives are used cor-
rectly when constructing larger cryptographic protocols. Our work uses a more abstract
model of cryptography in which cryptographic operations are abstracted as symbolic
terms. Computational soundness results can show that under certain assumptions such
symbolic abstractions are computationally justified, as done for zero-knowledge proofs by
Backes et al. [BMU08,BM11]. Formalizing such results in a theorem prover is, however,
a challenging task on its own [SB08b].

2.2. Illustrative Example: Simplified DAA-signing

This section highlights the fundamental ideas of our type system, which will be elab-
orated in more detail in the following sections. As a running example, we consider a
much simplified version of the Direct Anonymous Attestation (DAA) protocol [BCC04]
(the complete DAA protocol is analyzed in §2.7). DAA is a cryptographic protocol that
enables the remote authentication of a hardware device called Trusted Platform Module
(TPM) [TCG11], while preserving the anonymity of the user of the device. Such TPMs
are included in many personal computers and servers. More precisely, the goal of the
DAA protocol is to enable the TPM to send an arbitrary message to a verifier in a way
that the verifier is convinced that a valid TPM authenticated the message, but neither
the verifier nor any other party learn precisely which TPM was involved in the proto-
col. The DAA protocol heavily relies on zero-knowledge proofs to achieve this form of
anonymous authentication.

The DAA protocol is composed of two sub-protocols: the join protocol and the DAA-
signing protocol. The join protocol allows a TPM to obtain a certificate xcert from an
entity called the issuer. This certificate is just a signature made by the issuer on the
TPM’s secret identifier f , and we represent this symbolically as the spi-calculus term
xcert = sign(f, ki). For the sake of simplicity, in our example we assume that the TPM
has already completed the join protocol and received the certificate xcert from the issuer.
Instead we will focus only on the DAA-signing protocol, which enables the TPM to
authenticate a message m by proving to the verifier the knowledge of a valid certificate.
The TPM sends to the verifier a non-interactive zero-knowledge proof, which shows that
the TPM knows a secret TPM identifier f and a valid certificate xcert for f signed by
the issuer, but without revealing f or xcert to the verifier.

Following Backes et al. [BMU08], we represent this zero-knowledge proof by the term
zkSsdaa

(f, xcert ; yvki ,m). The arguments f and xcert are kept secret by the proof, while
the verification key of the issuer yvki and the message m are revealed to the verifier and
to any other party receiving the proof. We express this by marking the variables xf and

2.2. ILLUSTRATIVE EXAMPLE: SIMPLIFIED DAA-SIGNING 17

xcert as secret witnesses, and by marking yvki and ym as public messages in the definition
of the statement Ssdaa :

Ssdaa = witness xf , xcert public yvki , ym in Bsdaa

The logical formula of the statement can use these placeholder variables to refer to the
actual arguments. In our case this formula is very simple

Bsdaa = check(xcert , yvki) ; xf ,

and states that checking the certificate xcert using the verification key of the issuer yvki
succeeds and yields the TPM identifier xf . Note that, although the payload message ym
does not occur in the formula, the zero-knowledge proof guarantees non-malleability – the
attacker cannot use an existing proof zkSsdaa

(f, xcert ; yvki ,m) to produce another proof
zkSsdaa

(f, xcert ; yvki ,m
′) without knowing all the arguments, including f and xcert .

A zero-knowledge proof is valid if after substituting the placeholder variables with the ac-
tual terms passed as arguments we obtain a valid formula. In our case the zero-knowledge
proof zkSsdaa

(f, sign(f, ki); vk(ki),m) is valid, since after substituting xf by f , xcert by
sign(f, ki), and yvki by vk(ki) in Bsdaa , we obtain the formula check(sign(f, ki), vk(ki)) ;
f , which is valid, since in the semantics of our calculus checking a correct signature for
the given verification key yields indeed the message that was originally signed.

In order to express the security property expected from our simplified DAA-signing
protocol as an authorization policy, we decorate the protocol with security-related events
as follows:

TPM Verifier

assume Send(f,m)
zkSsdaa (f,xcert ; yvki ,m) //

assert Authenticate(m)

Before sending the zero-knowledge proof, the TPM assumes Send(f,m). If the veri-
fication of the received proof succeeds then the verifier asserts Authenticate(m). The
authorization policy we consider for the protocol is:

Policysdaa = assume ∀xf , xcert , ym.Send(xf , ym) ∧OkTPM (xf)⇒ Authenticate(ym)

where the predicate OkTPM (f) is assumed by the issuer before signing f . Since this
is the only assumption where the Authenticate predicate occurs, the verifier is allowed
to authenticate a message m, only if m was sent by a TPM whose f -value is trusted
by the issuer. Everything that is not explicitly allowed by the authorization policy is
prohibited.

We are now ready to write a model of our protocol as a spi-calculus process, by adding
the missing details to the informal arrow notation above.

18 CHAPTER 2. ANALYZING PROTOCOL MODELS

Spi-calculus model of our simplified DAA-sign protocol

TPM =
(* abstract away the join protocol *)
(new f : Private)
assume OkTPM (f) |
let xcert = sign(f, ki) in

(* simplified DAA-sign protocol *)
(new m : Un)

(assume Send(f,m)) |
out(c, zkSsdaa

(f, xcert ; yvki ,m))

SimplifiedDAA =
(new ki : SigKey(Tki))
let yvki = vk(ki) in

(TPM | Verifier | Policysdaa)

Verifier =
!in(c, xz).
if verSsdaa

(xz, yvki) ⇓ ym then
assert Authenticate(ym)

The process SimplifiedDAA sets up the protocol. It first creates the signing key of the
issuer ki, and it obtains the corresponding verification key yvki by applying the vk con-
structor to ki. It then runs the TPM and Verifier processes in parallel, and assumes the
authorization policy Policysdaa . Since we consider that the TPM has already completed
the join protocol, and obtained a valid certificate for its f value, the TPM process starts
by setting up a variable xcert in which it stores this certificate. It proceeds by creating a
message m, marking the point when it is about to send m by assuming the Send(f,m)
predicate, and finally sending the zero-knowledge proof zkSsdaa

(f, xcert ; yvki ,m) to the
Verifier over the public channel c. The Verifier receives the proof from c in variable
xz and spawns a new process to handle the request (the “!” in front of the in process
ensures that the Verifier can handle multiple incoming requests). The ver condition of
the if-then process checks whether xz is a valid proof for statement Ssdaa . Additionally,
the ver checks whether the verification key of the issuer yvki , which the Verifier is as-
sumed to have from a trusted source, matches the first public argument of the proof. If
both these checks succeed, then the payload message is returned in variable ym and the
assert Authenticate(ym) on the then branch is activated.

Intuitively, the assert succeeds if the asserted formula is logically entailed by the previ-
ously activated assumes. In our simple example it is easy to see that the assert succeeds
when the proof comes indeed from the TPM . In this case the Authenticate(ym) predicate
follows from the authorization policy, because the TPM assumed Send(f,m) as well as
OkTPM (f) (on behalf of the issuer), before sending the message, and the semantics of
the verification ensures that ym = m. The property we want for our protocols is, how-
ever, much stronger than this. We want that in all executions all asserts succeed even
in the presence of an arbitrary Dolev-Yao attacker; following Gordon and Jeffrey [GJ03]
we call this stronger properly robust safety. The attacker has complete control over the
public channels: it can read, block, forward messages, and it can inject new messages
constructed from the terms it has already obtained. In particular the attacker can create
zero-knowledge proofs from terms it already knows and send them to the Verifier with-
out assuming any predicate. If an attacker existed that was able to construct a new proof
that could pass verification, our simple protocol would not be robustly safe. Because
manually reasoning about the security of protocols under this strong attacker model is

2.2. ILLUSTRATIVE EXAMPLE: SIMPLIFIED DAA-SIGNING 19

very difficult even for simple protocols like ours, we propose a new type system that can
automatically verify if a protocol using zero-knowledge proofs is robustly safe.

Our type system requires that all freshly generated names carry type annotations. For
instance, the payload message m generated by the TPM has type Un, the type of mes-
sages possibly known to the attacker. The attacker can in fact extract m from the
zero-knowledge proof sent over the public channel. On the other hand, the TPM identi-
fier is given type Private, the type of messages unknown to the attacker. Because of the
first assert in the TPM ’s code, we can in fact give f an even stronger type: the refine-
ment type Tki = {xf : Private | OkTPM (xf)}, which states not only that f is not known
to the attacker, but also that the predicate OkTPM (f) holds. We use this refinement
type to annotate the signing key of the issuer: we give ki type SigKey(Tki). Our type
system ensures that the key ki can only be used to sign private messages for which the
OkTPM predicate holds. The type system has to make sure not only that the code of
the protocol respects this restriction, but also that ki is never leaked to the attacker. By
enforcing these restrictions on the usage of the signing key ki, the type system can infer
that in case checking a signature with the corresponding verification key vk(ki) succeeds,
the signed message has to be of type Tki , and therefore the predicate OkTPM has to
hold for it. So, had the TPM sent the certificate to the Verifier in clear and had the
verifier checked the signature directly, the type of the key ki would have allowed us to
“transfer” the predicate OkTPM from the TPM to the Verifier .

In the DAA protocol, however, the TPM does not send the certificate to the Verifier ,
the TPM only proves that it knows a certificate. So the verifier cannot use the key
to directly check a certificate it never receives. In general zero-knowledge proofs do not
have to rely on keys – protocols based on zero-knowledge proofs exist that do not use any
key whatsoever, such as the PseudoTrust protocol proposed by Lu et al. in [LHH+07].

Our solution is to require the user to provide a type for each statement proved by zero-
knowledge in the protocol. In our example the statement Ssdaa is associated the type

ZKProofSsdaa
(yvki : VerKey(Tki), ym : Un; ∃xf , xcert .Send(xf , ym) ∧OkTPM (xf))

This dependent type lists the types of the public arguments yvki and ym, and contains
an authorization logic formula that is conveyed by the proof, where the witnesses kept
secret by the proof xf and xcert are existentially quantified. In our example the proof
is declared to convey the predicates Send(xf , ym) and OkTPM (xf). Our type system
ensures that the code of the protocol only constructs zero-knowledge proofs for which
these two predicates hold. When type-checking the code of the TPM that creates the
zero-knowledge proof zkSsdaa

(f, xcert ; yvki ,m) it is very easy to check that these predicates
hold, since they are both assumed before in the TPM ’s code.

Justifying these predicates on the Verifier ’s side is, however, much more challenging.
The Verifier receives the zero-knowledge proof it verifies from an untrusted channel,
which we assume to be under the control of the attacker. So the verified proof could
indeed come from the TPM , in which case the predicates are very easy to justify, since

20 CHAPTER 2. ANALYZING PROTOCOL MODELS

they were already checked on the TPM ’s side. But the proof could also come from the
attacker, who does not play by the rules of our type system, and does not need to assume
any predicates before creating valid zero-knowledge proofs.

The type system enforces that only messages of type Un are given to the attacker, so
if the proof was constructed by the attacker, then all its arguments (xf , xcert , yvki , and
ym) would have type Un. On the other hand, the Verifier has obtained the signature
verification key of the issuer vk(ki) from a trusted source, so vk(ki) has type VerKey(Tki).
If the verification of the zero-knowledge proof succeeds then the operational semantics
guarantees that yvki = vk(ki), so we additionally know that yvki has type VerKey(Tki).
We use an intersection type to express the fact that yvki has at the same time type Un
and type VerKey(Tki), i.e., yvki has type Un ∧ VerKey(Tki). So if the proof comes from
the attacker, the type system initially has the following type information:

xf : Un, xcert : Un, yvki : (Un ∧ VerKey(Tki)), ym : Un.

Additionally, if the zero-knowledge verification succeeds then the operational semantics
guarantees that the formula of the proved statement Bsdaa = check(xcert , yvki) ; xf
holds, no matter what the provenance of the proof is. Our type system uses the formula
Bsdaa , together with the initial type information above to infer more precise type infor-
mation for the arguments of the proof. In our simple example, knowing that yvki has
type VerKey(Tki) and that check(xcert , yvki) ; xf holds is enough to infer that xf has
type Tki = {xf : Private | OkTPM (xf)}. This is enough to ensure that the OkTPM (xf)
predicate holds, but it does not help us directly in deriving the Send(xf , ym) predicate.
For this we use the following insight: since xf has type Tki and since Tki is a subtype
of type Private we also have that xf has type Private. But, we already know that xf
also has type Un, and the types Private, the type of messages not known to the attacker,
and Un, the type of messages possibly known to the attacker, are disjoint. Since there
exists no closed term for xf that satisfies these typing constraints, the proof cannot come
from the attacker, so the proof must come from the TPM , and the two predicates were
already checked on the TPM ’s side, so they can indeed also be justified on the Verifier ’s
side.

Our type-checker performs this reasoning in an automatic and completely rigorous way
(see §2.4.9). It can verify that this simple protocol is robustly safe in less than half a
second on a normal laptop.

2.3. Spi-calculus with Zero-knowledge Proofs

We consider a variant of the spi-calculus [AG99] with constructors and destructors similar
to the one implemented by ProVerif [AB05], and we extend it with zero-knowledge proofs.
Following Fournet et al. [FGM07a,BBF+08], the calculus also includes special operators
to assume and assert authorization logic formulas. This section presents the syntax and
operational semantics of the calculus.

2.3. SPI-CALCULUS WITH ZERO-KNOWLEDGE PROOFS 21

In the following we identify any phrase φ of syntax up to consistent renaming of bound
names and variables. We say that φ is closed if it does not have any free variables. We
write φ{φ′/x} for the outcome of the capture-avoiding substitution of φ′ for each free
occurrence of x in φ. Our Coq formalization described in §2.5 is much more precise about
binders, but for the sake of readability in the rest of this chapter we use the familiar
named representation of binders.

2.3.1. Terms and Destructors

In our spi-calculus variant, cryptographic operations are either represented as symbolic
terms (constructors) [DY83], or they operate on such terms (destructors).

Terms

K,L,M,N ::= terms
a, b, c, k names
x, y, z, v variables
(M,N) pair
unit unit
ek(K) encryption key corresponding to decryption key K
enc(M,K) encrypt M with public key K
vk(K) verification key corresponding to signing key K
sign(M,K) signature on M with key K
hash(M) hash of message M
senc(M,K) encryption of M with symmetric key K

zkS (Ñ ; M̃) zero-knowledge proof

Notation: We write M̃ for the sequence M1, . . . ,Mn when n is clear from the context.
We write 〈M̃〉 for the encoded tuple (M1, (M2, . . . , (Mn, unit) . . .)).

Terms are built from variables and names by applying constructors (i.e., function sym-
bols). The constructors we consider in this thesis include pairing, public-key encryption,
digital signatures, symmetric encryption and hashing.1

Destructors

D ::= destructors
id(M) identity
eq(M,N) equality on terms
dec(M,K) decrypt M using private key K
check(M,K) check signature M using verification key K
sdec(M,K) decrypt M using symmetric key K

1 The complete DAA protocol in §2.7 additionally makes use of blind signatures. Our type-checker
supports arbitrary constructors and destructors in a generic way (see §2.8).

22 CHAPTER 2. ANALYZING PROTOCOL MODELS

publicS (M) obtain the public arguments of zero-knowledge proof M

Destructors are cryptographic operations that processes can apply to terms, such as de-
crypting or checking signatures. We also represent equality between terms as a destructor
eq.

Reduction of destructors: D ⇓M

id(M) ⇓M
eq(M,M) ⇓M
dec(enc(M, ek(K)),K) ⇓M
check(sign(M,K), vk(K)) ⇓M
sdec(senc(M,K),K) ⇓M
publicS (zkS (Ñ ; M̃)) ⇓ 〈M̃〉
Notation: We write D6⇓ if there exists no M so that D ⇓M , i.e., the destructor fails.

The semantics of destructors is specified by the destructor reduction relation ⇓: a de-
structor D can either succeed and produce a term M as result (which we denote as
D ⇓ M) or it can fail if none of the reduction rules apply (denoted as D6⇓). The dec
destructor decrypts an encrypted message given the correct decryption key. The check
destructor checks the validity of a signature using a verification key, and if this check
succeeds the message without the signature is returned.

2.3.2. Representing Zero-knowledge Proofs

As first proposed by Backes et al. [BMU08], a non-interactive zero-knowledge proof
of a statement S is represented as a term of the form zkS (N1, . . . , Nn; M1, . . . ,Mm),
where N1, . . . , Nn and M1, . . . ,Mm are two lists of terms. The proof keeps the witnesses
N1, . . . , Nn secret, while the terms M1, . . . ,Mm are revealed (e.g., using the publicS
destructor).

The statement S conveyed by a zero-knowledge proof zkS (N1, . . . , Nn; M1, . . . ,Mm)
has the form witness x1, . . . , xn public y1, . . . , ym in B. The statement S contains a
basic formula B and additionally declares (i.e., binds) the variables used in this for-
mula: x1, . . . , xn and y1, . . . , yn. The variables x1, . . . , xn are placeholders for the se-
cret witnesses N1, . . . , Nn, while y1, . . . , ym are placeholders for the public arguments
M1, . . . ,Mm. In order for S to be well-formed we require that its basic formula B uses
no other variables than the declared ones, and contains no free names.

Zero-knowledge statements

S ::= statement
witness x̃ public ỹ in B scope of x̃ and ỹ is B and x̃, ỹ pairwise distinct

2.3. SPI-CALCULUS WITH ZERO-KNOWLEDGE PROOFS 23

B ::= basic formula
D ; M destructor reduction
B1 ∧ B2 conjunction
B1 ∨ B2 disjunction

Notation: We encode the equality basic formula using the equality destructor
M = N , eq(M,N) ; M , and the Boolean constants using equality: true , unit = unit,
false , unit = (unit, unit).

Basic formulas are positive Boolean formulas formed using a special binary predicate
;, capturing the destructor reduction relation, as well as conjunctions and disjunctions
of other basic formulas. This representation of statements allows us to express a wide
class of zero-knowledge proofs, comprising for instance proof of signature verifications,
decryptions, equalities, as well as Boolean combinations [Cra96].

For instance the zero-knowledge statement Spk = witness xk public ya, ypk in Bpk where
Bpk = dec(enc(ya, ypk), xk) ; ya proves the knowledge of the secret decryption key xk
corresponding to the public encryption key ypk . Intuitively, the statement reads: “There
exists a secret key xk such that the decryption of the ciphertext enc(ya, ypk) with xk yields
ya”. The values of ya and ypk are revealed by the proof while xk is kept secret. One valid
zero-knowledge proof for this statement can be constructed as zkSpk

(k; a, ek(k)) for two
names a and k.

Another interesting application is zero-knowledge proofs about certificate
chains [BLMP10,MP11]. For instance, the statement

Schain2 = witness xvk , xcert1 , xcert2 public yvk , ym in Bchain2, where
Bchain2 = check(xcert1 , yvk) ; xvk ∧ check(xcert2 , xvk) ; ym

proves the knowledge of a valid certificate xcert2 for message ym that can be verified with
a hidden key xvk , for which the prover possesses another valid certificate xcert1 signed
by a trusted party having verification key yvk . The only information revealed by the
proof is the payload message ym and the (public) verification key of the trusted party
yvk . The two certificates xcert1 and xcert2 and the verification key of the prover xvk are
hidden by the proof, which guarantees the anonymity of the prover.

A zero-knowledge proof is valid if after substituting the placeholder variables with the
actual terms in its basic formula we obtain a valid basic formula. Validity of basic
formulas is straightforward to define based on the reduction relation for destructors and
the usual interpretation of conjunction and disjunction.

Semantics of basic formulas: B valid

(Sem Red)
D ⇓M

D ; M valid

(Sem And)
B1 valid B2 valid

B1 ∧ B2 valid

(Sem Or 1)
B1 valid

B1 ∨ B2 valid

(Sem Or 2)
B2 valid

B1 ∨ B2 valid

24 CHAPTER 2. ANALYZING PROTOCOL MODELS

In the simple example above, in order to check whether zkSpk
(k; a, ek(k)) is a valid proof

we substitute BSpk
{k/xk}{a/ya}{ek(k)/ypk} and obtain dec(enc(a, ek(k)), k) ; a, which

is a valid basic formula by (Sem Red) and the destructor reduction rule for dec. We can
check in a similar way that zkSchain2

(vk(kx), sign(vk(kx), ky), sign(m, kx); vk(ky),m) is a
valid proof for Schain2 from the certificate chain example above. For this we substitute
Bchain2{vk(kx)/xvk}{sign(vk(kx), ky)/xcert1}{sign(m, kx)/xcert2}{vk(ky)/yvk}{m/ym}
and obtain the following valid formula:

check(sign(vk(kx), ky), vk(ky)) ; vk(kx) ∧ check(sign(m, kx), vk(kx)) ; m.

2.3.3. Processes

The syntax of processes is mostly standard [AB05,FGM07a]. Replication can only appear
before an input (!in(M,x). P), which makes the calculus easier to implement [Bus11,
BBH11]. Additional to the processes of Fournet et al. [FGM07a], we have an elimination
construct for union types (case x = M in P) [Pie91], and a process to verify the validity

of zero-knowledge proofs (verS (N, M̃) ⇓ x then P1 else P2). We model the verification
of zero-knowledge proofs as a process, and not as a destructor, since this simplifies the
semantics of destructors by explicitly forbidding zero-knowledge statements that talk
about the validity of other zero-knowledge proofs.

Syntax of processes

P,Q,R ::= processes
out(N,M). P output M over channel N then continue as P
in(N, x). P input x from channel N (scope of x is P)
!in(N, x). P replicated input (scope of x is P)
(new a : T)P restriction, name a of type T (scope of a is P)
P | Q parallel composition
0 null process, does nothing
if D ⇓ x then P1 else P2 destructor evaluation (scope of x is P1)

verS (N, M̃) ⇓ x then P1 else P2 zero-knowledge verification (scope of x is P1)
let (x, y) = M in P split pair M (scope of x,y is P and x 6= y)
case x = M in P elimination of union types (scope of x is P)
assume C add formula C to active assumes
assert C expect formula C to follow from active assumes

Notation: let x = M in P , if id(M) ⇓ x then P else 0
if M = N then P1 else P2 , if eq(M,N) ⇓ x then P1 else P2, where x is fresh
let 〈x1, . . . , xn〉 = M in P ,

let (x1, y1) = M in . . . let (xn, yn) = yn−1 in if yn = unit then P else 0, for fresh ỹ

(new ã : T̃)P , (new a1 : T1) . . . (new an : Tn)P

Convention: We usually omit 0 continuation processes.

2.3. SPI-CALCULUS WITH ZERO-KNOWLEDGE PROOFS 25

As proposed by Fournet et al. [FGM07a], the processes assume C and assert C, where
C is a formula in the authorization logic, are used to express authorization policies, and
do not have any computational significance. Assumptions are used to mark security-
related events in processes (such as assume Send(f,m) in §2.2), and also to express
global policies (such as Policysdaa in §2.2). The scope of assumptions is global, i.e., once
an assumption becomes active it affects all processes that run in parallel.

Assertions specify logical formulas that are expected to be entailed at run-time by the
currently active assumptions (such as assert Authenticate(ym) in §2.2). Our type system
guarantees statically that in any execution of any well-typed protocol all asserts succeed
(i.e., are entailed by the currently active assumptions) even in the presence of an arbitrary
attacker (see §2.3.6 and §2.5).

2.3.4. Operational Semantics

The operational semantics of the calculus is defined by a structural equivalence relation
(P ≡ Q) and an internal reduction relation (P → Q). Structural equivalence captures
rearrangements of parallel compositions and restrictions and is completely standard.

Structural equivalence: P ≡ Q

(Eq Refl)
P ≡ P

(Eq Zero Id)
P | 0 ≡ P

(Eq Assoc)
(P | Q) | R ≡ P | (Q | R)

(Eq Comm)
P | Q ≡ Q | P

(Eq Symm)
Q ≡ P
P ≡ Q

(Eq Trans)
P ≡ Q Q ≡ R

P ≡ R

(Eq Scope)
a /∈ fn(P1)

P1 | ((new a : T)P2) ≡ (new a : T) (P1 | P2)

(Eq Ctxt Par)
P ≡ Q

P | R ≡ Q | R

(Eq Ctxt New)
P ≡ Q

(new a : T)P ≡ (new a : T)Q

Internal reduction defines the semantics of message passing communication, destructors,
pair splits, cases, and, most interestingly, the verification of zero-knowledge proofs.

Internal reduction: P → Q

(Red I/O) (out(a,M). P) | (in(a, x). Q)→ P | Q{M/x}

(Red !I/O) (out(a,M). P) | (!in(a, x). Q)→ P | Q{M/x} | !in(a, x). Q

(Red Dtor Then)
D ⇓M

if D ⇓ x then P1 else P2 → P1{M/x}

(Red Dtor Else)
D6⇓

if D ⇓ x then P1 else P2 → P2

26 CHAPTER 2. ANALYZING PROTOCOL MODELS

(Red Ver Then)

S = witness x̃ public ỹ in B B{Ñ/x̃}{M̃/ỹ} valid P ′1 = P1{〈Ml+1, ..,Mm〉/z}
verS (zkS (Ñ ; M1, ..,Ml, ..,Mm),M1, ..,Ml) ⇓ z then P1 else P2 → P ′1

(Red Ver Else No ZK)

N is not of the form zkS (Ñ ; M̃)

verS (N,L1, .., Ll) ⇓ z then P1 else P2 → P2

(Red Ver Else No Match)
∃i ∈ {1, . . . , l}. Mi 6= Li

verS (zkS (Ñ ; M1, ..,Ml, ..,Mm), L1, .., Ll) ⇓ z then P1 else P2 → P2

(Red Ver Else Invalid)

S = witness x̃ public ỹ in B B{Ñ/x̃}{M̃/ỹ} not valid

verS (zkS (Ñ ; M1, ..,Ml, ..,Mm),M1, ..,Ml) ⇓ z then P1 else P2 → P2

(Red Split)
let (x1, x2) = (M1,M2) in P → P{M1/x1}{M2/x2}

(Red Case)
case x = M in P → P{M/x}

(Red Ctxt Par)
P → Q

P | R→ Q | R

(Red Ctxt New)
P → Q

(new a : T)P → (new a : T)Q

(Red Eq)
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

In order for a zero-knowledge verification verS (N,L1, . . . , Ll) to succeed for some S =
witness x1, . . . , xn public y1, . . . , ym in B the following three conditions have to hold:

(i) N has to be a zero-knowledge proof for the verified statement S , i.e., N =
zkS (N1, .., Nn; M1, ..,Mm);

(ii) the remaining arguments of the verification L1, . . . , Ll have to match the first l
public arguments of the proof, i.e., M1 = L1, M2 = L2, . . . , Ml = Ll;

(iii) the basic formula obtained by substituting the placeholders in B with their actual

values has to be valid, i.e., B{Ñ/x̃}{M̃/ỹ} valid.

If these three conditions hold then verification succeeds and returns the other m−l public
arguments of the proof as a tuple: rule (Red Ver Then). Otherwise, verification fails and
the else branch is executed: rules (Red Ver Else No ZK), (Red Ver Else No Match), and
(Red Ver Else Invalid). Condition (ii) was not present in previous work [BMU08], but,
as already illustrated by the simplified DAA-signing example from §2.2, in most cases it
is the strong type of the matched terms L1, . . . , Ll that allow us to give a strong type to
the result of a zero-knowledge verification.

In previous work, Backes et al. [BMU08] define the operational semantics of zero-
knowledge proof verification by an infinite equational theory, which needs to be compiled
into a convergent rewriting system in order to be suitable for ProVerif [Bla01]. The se-
mantics we give to the verification of zero-knowledge proofs is more direct since we use
a type system to analyze the security protocols instead of ProVerif.

2.3. SPI-CALCULUS WITH ZERO-KNOWLEDGE PROOFS 27

2.3.5. Authorization Logic

The formulas of the authorization logic are similar to the ones used by Bengtson et
al. [BBF+08]. The atomic formulas in our logic are either unary uninterpreted predi-
cate symbols applied to their argument (p(M)), or instances of an interpreted binary
predicate representing the destructor reduction relation (D ; M). On top of these
atomic formulas we have the standard logical operations of first-order logic, with sep-
arate quantification over spi-calculus terms (∀x.C and ∃x.C; variables range over spi-
calculus terms) and spi-calculus names (∀a.C and ∃a.C). We remark that the basic
formulas of zero-knowledge proofs can be easily embedded in the authorization logic,
so the positive Boolean logic of basic formulas can be seen as a fragment of the autho-
rization logic. Finally, for technical reasons, we also have universal quantification over
predicates (∀p. C) [FGM07a]. Such second-order quantifiers are only used for obtaining
a logical characterization of kinding that enjoys completeness (§2.4.5); they appear nei-
ther in authorization policies, nor in the first-order logic proof obligations discharged by
our type-checker. Second-order universal quantifiers are only introduced by the logical
characterization of kinding and only appear in positive positions, so in practice they
can always be “extruded” after proper alpha-renaming, and removed once they reach the
top-level since free predicates are implicitly universally quantified.

Authorization logic

C ::= logical formula
p(M) predicate symbol (unary)
D ; M destructor reduction (interpreted binary predicate)
C1 ∧ C2 conjunction
C1 ∨ C2 disjunction
¬C negation
∀x.C universal quantification over terms (x bound in C)
∃x.C existential quantification over terms (x bound in C)
∀a.C universal quantification over names (a bound in C)
∃a.C existential quantification over names (a bound in C)
∀p. C universal quantification over predicates (p bound in C)

Notations: We write M = N for eq(M,N) ; M , also true , unit = unit, false , ¬true,
M 6= N , ¬(M = N), C1 ⇒ C2 , ¬C1 ∨ C2, and C1 ⇔ C2 , C1 ⇒ C2 ∧ C2 ⇒ C1.

We encode n-ary predicates using tuples: p(M̃) , p(〈M̃〉)

The entailment relation of the authorization logic A |= C, where A is a list of formulas,
is not completely fixed. The soundness of our type system relies on a set of properties
that must be satisfied by the entailment relation. Most of the properties we require
are completely standard, such as monotonicity, closure under substitution, cut, and
introduction and elimination rules for the logical operations. Additionally, we have
two requirements that are specific to our setting: (Red) and (Not Red) require that the

28 CHAPTER 2. ANALYZING PROTOCOL MODELS

destructor reduction relation is faithfully reflected in the logic. Since equality in the logic
is encoded using the equality destructor, these two requirements also fix the standard
interpretation of equality. Also, by fixing the interpretation of the ; relation to match
the destructor reduction relation we ensure that the semantics of the authorization logic
agrees with the simple Boolean logic from §2.3.2 – i.e., we can prove as a lemma that
if B valid then ∅ |= B. The implication in the other direction is not necessary in our
proofs, but it does hold under the additional assumption that the authorization logic
is consistent2. Finally, for proving the completeness of our logical characterization of
kinding (§2.4.5) we require that the semantics of disjunction in the authorization logic
matches the semantics of disjunction in the meta-logic (in our case Coq).

Requirements on the entailment relation of the authorization logic: A |= C

(Multiset) if A1, A2 |= C then A2, A1 |= C
(Axiom) C |= C

(Mon) if A |= C then A,C ′ |= C
(Subst) if A |= C then A{M/x} |= C{M/x}

(Subst Name) if A |= C then A{b/a} |= C{b/a}
(Subst Pred) if A |= C then A{q/p} |= C{q/p}

(Cut) if A |= C and A,C |= C ′ then A |= C ′

(And Intro) if A |= C1 and A |= C2 then A |= C1 ∧ C2

(And Elim) if A |= C1 ∧ C2 then A |= C1 and A |= C2

(Or Intro) if A |= C1 or A |= C2 then A |= C1 ∨ C2

(Or Elim) if A |= C1 ∨ C2 and A,C1 |= C and A,C2 |= C then A |= C
(Or Elim Closed) if A |= C1 ∨ C2 and free(C1, C2) = ∅ then A |= C1 or A |= C2

(Impl Intro) if A,C1 |= C2 then A |= C1 ⇒ C2

(Impl Elim) if A |= C1 ⇒ C2 and A |= C1 then A |= C2

(Forall Intro) if A |= C and x /∈ fv(A) then A |= ∀x.C
(Forall Elim) if A |= ∀x.C then A |= C{M/x}

(Forall Name Intro) if A |= C and a /∈ fn(A) then A |= ∀a.C
(Forall Name Elim) if A |= ∀a.C then A |= C{b/a}
(Forall Pred Intro) if A |= C and p /∈ fp(A) then A |= ∀p. C
(Forall Pred Elim) if A |= ∀p. C then A |= C{q/p}

(Exists Intro) if A |= C{x/M} then A |= ∃x.C
(Exists Elim) if A |= ∃x.C and A,C |= C ′ and x /∈ fv(A,C ′) then A |= C ′

(Exists Name Intro) if A |= C{a/b} then A |= ∃a.C
(Exists Name Elim) if A |= ∃a.C and A,C |= C ′ and a /∈ fn(A,C ′) then A |= C ′

(False Intro) if A |= ¬C and A |= C then A |= false
(False Elim) if A |= false then A |= C

(Red) if D ⇓M then ∅ |= D ; M
(Not Red) if not D ⇓M and fv(D,M) = ∅ then ∅ |= ¬(D ; M)

Note: The logics fulfilling these requirements can be classical or constructive.

2 For proving the soundness of our type system we do not require that the authorization logic is
consistent, a property one would surely expect for any practical purpose.

2.3. SPI-CALCULUS WITH ZERO-KNOWLEDGE PROOFS 29

Note: This is not an inductive definition, but a set of minimal requirements on the
authorization logic.

In our implementation we consider classical first-order logic with equality as the autho-
rization logic and we use various automated theorem provers [WDF+09, Sch02, RV99]
or SMT solvers [dMB08] to discharge the proof obligations generated by our type sys-
tem. For the SMT solvers terms and destructors are represented as datatypes, while for
the automated theorem provers they are encoded using explicit injectivity and distinct-
ness axioms. The destructor reduction relation is encoded using axioms of the form:
∀e.∀k. ∀m. dec(e, k) ; m ⇔ e = enc(m, ek(k)). Please note that the trivial encoding
∀m.∀k. dec(enc(m, ek(k)), k) ; m, would not satisfy requirement (Not Red), since the
trivial interpretation for ; that relates all destructors to all terms would fulfill such
“positive” axioms, while invalidating (Not Red).

2.3.6. Safety and Robust Safety

Intuitively, a process is safe if in all executions all active assertions are entailed by the
active assumptions. For this we define a recursive function Q that, given a process Q,
extracts the assumptions currently active in Q as a formula. For restrictions this function
uses existential quantification over names in the authorization logic.

Assumption extraction: Q

assume C = C A | B = A ∧B
(new a : T)A = ∃a. A P = true, otherwise

We use assumption extraction to give the formal definition of safety.

Definition 2.1 (Safety). A closed process P is safe iff whenever P →∗ P ′ and P ′ ≡
(new ã : T̃) (assert C | Q) we have that |= ∃ã. Q⇒ C.

Intuitively, a process is robustly safe if it is safe when run in parallel with an arbitrary
opponent [GJ03].

Definition 2.2 (Opponent). A closed process is an opponent iff it does not contain
any assert, all restrictions occurring therein are annotated with Un3, and the cardinali-
ties of the created zero-knowledge proofs match the ones declared in the corresponding
statements.

3 Fournet et al. [FGM07a] call such a mono-typed process Un-typed. Following their and other previous
work [GJ03, GJ04] we will set up the type system so that there is no difference between Un-typed
and untyped opponents.

30 CHAPTER 2. ANALYZING PROTOCOL MODELS

These three conditions on opponents are very mild, since the type annotations and
asserts do not affect the behavior of processes4. Moreover, asserts are meant to be used
for marking the expectations of the protocol designer, and if opponents were allowed
to contain asserts then no protocol would be considered secure because the process
assert false would also be an opponent. The third condition ensures that the attacker only
creates well-formed terms, in which the cardinality constraints on the zero-knowledge
constructors are respected.

Definition 2.3 (Robust Safety). A closed process P is robustly safe iff P | O is safe for
every opponent O.

As we will later see, our type system guarantees that if a process is well-typed, then it is
robustly safe. Please note that robust safety does not require opponents to be well-typed
a priori, but instead the type system will be designed so that we can prove as a property
of the type system that all opponents are indeed well-typed.

2.4. Type System for Zero-knowledge

This section presents our type system for analyzing protocols based on non-interactive
zero-knowledge proofs. The type system builds upon previous work on authentication
by typing [GJ03,GJ04], on statically enforcing authorization policies on distributed sys-
tems [FGM07a], and on refinement types for security [BBF+08]. The main technical
novelties of the type system include: the usage of union and intersection types in a
security context, the static reasoning about type disjointness, the sound and complete
logical characterization of when a type is compromised, the very precise subtyping rules
for asymmetric cryptography, the typing rule for the equality destructor that uses in-
tersection types and type disjointness, the subtyping rule that makes trivially empty
types subtypes of all the other types, and the very simple typing rule for destructor
evaluations. We believe that these technical improvements over the existing type-based
analyses for security protocols are useful in general, not only for analyzing protocols
based on zero-knowledge proofs.

The remainder of this section is organized as follows: §2.4.1 presents the types in our
system; §2.4.2 introduces typing environments and gives an overview of the judgments
of our type system; §2.4.3 defines the formula entailment judgment; §2.4.4 discusses sub-
typing and kinding; §2.4.5 introduces our novel logical characterization of kinding; §2.4.6
presents our encoding of type Private, a type that is disjoint from Un, and then intro-
duces our general technique for statically reasoning about type disjointness; §2.4.7 de-
fines the term and destructor typing relation; §2.4.8 presents the typing relation for pro-
cesses; finally §2.4.9 presents our solution for typing processes that verify zero-knowledge
proofs.

4For any well-formed process we can obtain an observationally equivalent opponent simply by removing
all asserts and changing the typing annotations to Un.

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 31

2.4.1. Types

The top type > is the supertype of all the other types, any well-typed term also has
type > by subtyping. The intersection type T ∧ U is the type of all terms that have
both type T and type U [Pie97]. Conversely, the union type T ∨ U is the type of all
terms that have type T or type U , maybe both, and we do not necessarily know which
one of them it is [Pie91]. We use union and intersection types as well as the top type
for inferring very precise type information about the arguments of zero-knowledge proofs
(see §2.4.9). These types are, however, also useful on their own. For instance a symmetric
key that is used to sign terms of type T as well as terms of type U can be given type
SymKey(T ∨ U).

Types

T,U, V ::= types
> any well-typed term
T ∧ U term that has both type T and type U
T ∨ U term that has type T or type U
{x : T | C} term of type T that fulfills C (scope of x is C)
Un term that is possibly known to the attacker
Ch(T) channel conveying messages of type T
Pair(x:T,U) dependent pair type (scope of x is U)
SigKey(T) signing key that only signs terms of type T
VerKey(T) verification key for a signing key of type SigKey(T)
Signed(T) signature done using a key of type SigKey(T)
PubEnc(T) public-key encryption of term of type T
DecKey(T) key that only decrypts terms of type PubEnc(T)
EncKey(T) encryption key for decryption key of type DecKey(T)
Hash(T) hash of term of type T
SymKey(T) symmetric key that only encrypts terms of type T

ZKProofS (ỹ : T̃ ; ∃x̃. C) zero-knowledge proof for statement S
(scope of x̃ and ỹ is C and x̃, ỹ pairwise distinct)

Notation:
We call a type T generative iff T ∈ {Un,Ch(U), SigKey(U),DecKey(U),SymKey(U)}

Let x̃ : T̃ denote x1 : T1, . . . , xn : Tn, and ∃x̃. C denote ∃x1. . . .∃xn. C, for some n.

As proposed by Bengtson et al. [BBF+08] we use refinement types to associate logical
formulas to terms: the refinement type {x : T | C} can be given to a term M if M has
type T and if additionally the formula C{M/x} is entailed by the typing environment.
For instance the type {xf : Private | OkTPM (xf)} from §2.2 contains all terms of type
Private for which the predicate OkTPM holds. Pairs are given dependent types of the
form Pair(x:T,U), where the type U of the second component of the pair can depend
on the term x in the first component; for non-dependent pair types we omit the unused

32 CHAPTER 2. ANALYZING PROTOCOL MODELS

variable and write Pair(T,U). Dependent pair types are used together with refinement
types to more easily associate formulas to tuples encoded as nested pairs [FGM07a].
Channels carrying terms of type T are given type Ch(T). More precisely, our type
system enforces that only messages of type T are sent over the channel, and it can
therefore guarantee that the received messages are also of type T .

The untrusted type Un contains all terms possibly known to the attacker, i.e., our type
system enforces that opponents only have access to data of type Un. By a property called
opponent typability [GJ04] (Lemma 2.33 in §2.5.8), any process that does not include
asserts and whose names are all annotated with Un (i.e., any opponent as defined in
§2.3.6) is well-typed in our system. This is possible because the subtyping relation
(see §2.4.4) equates types like Pair(Un,Un), Ch(Un), etc. to Un. The main benefit of
opponent typability is that robust safety, the main property enforced by the type system
and defined in §2.3.6, does not depend in any way on the rules of the type system itself.

Additionally, we consider types for the different cryptographic primitives. For digital
signatures, SigKey(T) denotes the type of signing keys that can only be used to sign
terms of type T (i.e., our type system enforces this restriction), VerKey(T) is the type
of verification keys corresponding to signing keys of type SigKey(T), while Signed(T)
is the type of signatures done with keys of type SigKey(T). For public-key encryption,
PubEnc(T) is the type of encryptions of terms of type T , DecKey(T) is the type of
keys that can only be used to decrypt terms of type PubEnc(T), and EncKey(T) is the
type of public encryption keys corresponding to decryption keys of type DecKey(T).
Finally, the type SymKey(T) is the type of symmetric keys that can only be used to
encrypt terms of type T , while Hash(T) is the type of hashes of terms of type T . In
the types above T is often a refinement type conveying a logical formula. For instance,
SigKey({x : Private | OkTPM (x)}) is the type of keys that can only be used to sign
private terms for which we know that the OkTPM predicate holds.

The zero-knowledge proof type ZKProofS (y1 : T1, . . . , ym : Tm; ∃x1, . . . , xn. C) contains

terms of the form zkS (Ñ ; M̃). This dependent type lists the types of the public argu-
ments y1, . . . , ym, and contains an authorization logic formula C that is conveyed by the
proof, where the witnesses kept secret by the proof x1, . . . , xn are existentially quantified.
The type system preserves the invariant that the public arguments M̃ can be given the
types T̃ , and that the formula C{Ñ/x̃}{M̃/ỹ} is entailed by the typing environment.

Finally, we call a type T generative if it is Un, a channel type, a signing key type, a pri-
vate decryption key type, or a symmetric key type. The type system enforces that only
generative types can annotate name restrictions; see rule (Proc New) in §2.4.8. More-
over, in our current system the closed terms of all the generative types are necessarily
names.

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 33

2.4.2. Typing Environments and Judgments

A typing environment E is a list of name, variable and predicate bindings, and it can
also contain logical formulas. The predicate bindings are needed for ensuring the well-
formedness of authorization logic formulas involving second-order quantifiers, which are
introduced by our logical characterization of kinding (see §2.4.5).

Syntax of typing environments

µ ::= environment entry
a : T name binding
x : T variable binding
p predicate binding
{C} authorization logic formula

E ::= µ1, . . . , µn typing environment is a list of environment entries

We group the judgments of our type system into two: well-formedness judgments and
typing judgments.

Well-formedness judgments

` E ok well-formed environment
E ` C ok well-formed formula
E ` T ok well-formed type
E `M ok well-formed term
E ` D ok well-formed destructor
E ` B ok well-formed statement formula
E ` S ok well-formed statement
E ` P ok well-formed process
E ` P opp well-formed possibly-open opponent process

An environment is well-formed if no name, variable or predicate is bound more than
once, and if the types and formulas occurring in the environment entries are well-
formed in the corresponding prefix of the environment. Additionally, a well-formed
environment only associates generative types to the names. A syntactic phrase φ
(formula, type, term, destructor, statement, or process) is well-formed in environ-
ment E if all free names, variables and predicates in φ are bound in E and E is
well-formed. Additionally, a zero-knowledge proof type ZKProofS (y1 : T1, . . . , ym′ :
Tm′ ; ∃x1, . . . , xn′ . C) is well-formed, where S = witness x1, . . . , xn public y1, . . . , ym in B,
only if n = n′ and m = m′. Similar cardinality conditions are required for zero-
knowledge terms: the term zkS (N1, . . . , Nm′ ; M1, . . . ,Mn′) is well-formed, where S =
witness x1, . . . , xn public y1, . . . , ym in B, only if n = n′ and m = m′.5

5In previous presentations of this work these cardinality conditions were left implicit. Proving things
formally required us to make them explicit, by adding them to the well-formedness judgments.

34 CHAPTER 2. ANALYZING PROTOCOL MODELS

Finally, we generalize the notion of opponent to open processes, by defining an inductive
judgment E ` P opp. The original definition from §2.3.6 is equivalent to ∅ ` P opp. The
more general judgment E ` P opp is useful for proving properties such as Lemma 2.33
(Opponent Typability) by rule induction.

The typing judgments of our type system are listed below and explained in the following
sections.

Typing judgments

E ` C environment E entails formula C
E ` T :: k kinding, k ∈ {pub, tnt}
E ` T <: U subtyping
E ` T ## U ; C non-disjointness, if T and U intersect in E then E ` C
E `M : T term typing
E ` D : T destructor typing
E ` P process typing

2.4.3. Formula Entailment Judgment

The formula entailment judgment E ` C enforces that C is well-formed in the environ-
ment E and additionally that the formulas extracted from E entail C in the authorization
logic. Intuitively, our type system ensures that whenever E ` C holds the formula C
is entailed at execution time from the the active assumes. This entailment judgment
is used for instance when type-checking the process assert C using rule (Proc Assert):
type-checking succeeds only if E ` C holds, which ensures that the assert will succeed
at execution time, as needed for safety.

Entailed formula: E ` C

(Entailed)
E ` C ok forms(E) |= C

E ` C

Definition:
formsx({y : T | C}) = formsx(T), C{x/y}
formsx(T1 ∧ T2) = formsx(T1), formsx(T2)
formsx(T1 ∨ T2) = [C1 ∨ C2 | C1 ∈ formsx(T1), C2 ∈ formsx(T2)]
formsx(ZKProofS (y1:T1, .., ym:Tm; ∃x̃. C)) = ∃y1, . . . , ym. (

∧
i∈1...m formsyi(Ti) ∧ ∃x̃. C)

formsx(T) = ∅, otherwise

forms(E, x : T) = forms(E), formsx(T)
forms(E, {C}) = forms(E), C
forms(E,µ) = forms(E), if µ not of the form x : T or {C}
forms(∅) = ∅

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 35

The function forms(E) inspects the entries in E and gathers the top-level formulas.
Formulas from entries of the form {C} are directly copied. Entries of the form x : T
produce formulas using the auxiliary function formsx(T). For refinement types {y :
T | C} we recurse into the refined type T , and we additionally gather the formula C
after substituting y with the actual binding x. For intersection types T1 ∧ T2 we just
put together the formulas from T1 and T2; concatenation on the left side of a |= is
interpreted conjunctively. For union types T1 ∨ T2 we take all the pair-wise disjunctions
of the formulas extracted from T1 and from T2. Gathering formulas from intersection and
union types ensures the type system has enough precision to deal with the types that are
inferred for the arguments of zero-knowledge proofs (see §2.4.9). Finally, as a proof of
concept, we show that existentially quantified formulas can be gathered even from zero-
knowledge proof types. In practice, however, most zero-knowledge proofs are received
from untrusted channels at type Un, which allows no useful formula to be gathered.

2.4.4. Subtyping and Kinding

Our type system has a subtyping relation on types and allows a term of a subtype to be
used in all contexts that require a term of a supertype. Subtyping increases the flexibility
of the type system, since it allows more correct programs to be accepted as well-typed.
For instance, this allows one to send a message of type {x : T | C} over a channel of
type Ch(T) and thus “forget” the constraint C, since {x : T | C} is a subtype of T .

Following Gordon and Jeffrey [GJ03], subtyping plays two additional very important
roles in our type system. First, subtyping allows us to compare types with type Un: if T
is a subtype of Un then the terms in T are allowed to flow to the opponent, and we call
type T public; on the other hand, if Un is a subtype of T then every term coming from
the opponent can be given type T , and we call type T tainted. We define a separate
kinding judgment E ` T :: k where k ∈ {pub, tnt} that captures this role and contributes
to the subtyping relation via the (Sub Pub Tnt) rule. This rule makes every public type
a subtype of every tainted type. Since by rule (Kind Un) type Un is itself both public
and tainted, we immediately obtain that E ` T :: pub implies E ` T <: Un, and that
E ` T :: tnt implies E ` Un <: T ; the reverse direction of these two implications also
holds but the proofs are more involved (see Lemma 2.16 and Lemma 2.17 in §2.5.2).

Second, subtyping equates type Un with each of the following types: Ch(Un), Pair(Un,Un),
SigKey(Un), VerKey(Un), Signed(Un), PubEnc(Un), DecKey(Un), EncKey(Un), Hash(Un),

SymKey(Un), and ZKProofS (ỹ : Ũn; ∃x̃. true). This “universal type” property of Un al-
lows us to prove that any opponent is well-typed, which is crucial for showing robust
safety by typing.

The rules of the kinding judgment are listed below. As mentioned above type Un is both
public and tainted. The top type > is tainted, since it is always safe to give any well-
typed term type >, including the terms coming from the attacker, which are well-typed
at type Un. Type > is however not public, since if that was the case any well-typed term

36 CHAPTER 2. ANALYZING PROTOCOL MODELS

could be sent to the attacker, which would allow protocol participants to leak any secret.
The rule (Kind Empty Pub) is new to our type system, and allows trivially empty types
to be considered public, since this is harmless and actually useful. For instance, this
rule makes the refinement type {x : T | false} public for any well-formed type T , and
it allows us to regard type > as public in an inconsistent environment. The latter is
important for proving an important property of our type system, which states that in
an inconsistent environment E, for which E ` false holds, all types are both public and
tainted, i.e., equivalent by subtyping to Un. This is necessary for expressing the precise
conditions under which a type is compromised as a logical formula (see §2.4.5), and it
also allows us to prove that in an inconsistent environment any well-formed term has
any well-formed type, by an argument similar to opponent typability (see Lemma 2.8 in
§2.5.1).

An intersection type T1∧T2 is public if T1 is public or T2 is public, and is tainted if both
T1 and T2 are tainted. A term has type T1 ∧ T2 if and only if it has both type T1 and
type T2. Intuitively, if we are given a term of type T1 ∧ T2 we can consider it at either
type, so it is enough if one of them allows us to send it over the untrusted network.
Conversely, if we receive a term from the untrusted network, in order to be able to give
it type T1 ∧ T2 we need to give it both type T1 and type T2, which means that both T1
and T2 need to be tainted. The kinding rules for union types are exactly the dual of the
ones for intersection types.

The refinement type {x : T | C} is public if T is public. The type {x : T | C} is a
subtype of T , so, intuitively, if it is safe to send terms of type T to the attacker, then
it is also safe to send such terms to the attacker when they additionally fulfill condition
C. For considering {x : T | C} tainted we need to be much more restrictive though: we
require that T is tainted and that E, x : T ` C holds. The attacker is not required to
assume any predicate, so if we want to give terms coming from the attacker a refinement
type {x : T | C}, then C needs to hold for every x for which formsx(T) holds.

If we want to send a channel of type Ch(T) to the attacker, or give type Ch(T) to a channel
received from the attacker, then T needs to be both public and tainted, i.e., equivalent
to Un. Protocol participants can send terms of type T over this channel, and if the
attacker has access to the channel it can get these terms. Also, the code of the protocol
expects to receive only terms of type T from this channel, but if the attacker has access
to the channel it can send any term it can construct over the channel. So the channel
type Ch(T) is public or tainted, if T is both public and tainted. In the same way,
the type of symmetric keys SymKey(T) is public or tainted, if T is both public and
tainted. Symmetric encryption produces terms of type Un, which can be safely sent over
the untrusted network, and symmetric decryption takes terms of type Un as argument,
which can come from the untrusted network, so a shared symmetric key allows one to
establish a “private” channel over an untrusted one. It should thus be no surprise that
there is no difference in terms of kinding between “private” channels and symmetric
keys.

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 37

The kinding rules for asymmetric cryptography are much more subtle. The rules we
consider are novel and much more precise than in previous work. For instance Fournet et
al. [FGM07a] only consider signatures, their kinding rules do not always allow verification
keys to be made public, and their kinding rules for signing keys are as restrictive as for
symmetric keys. This prevents their type system from supporting common cryptographic
patterns (e.g., for sign-then-encrypt their type system does not allow the verification key
to be made public). In our type system, first of all, asymmetric encryption keys and
verification keys can always be made public, since requiring them to be kept secret would
not increase the security of the protocols while neutralizing the advantages asymmetric
cryptography6 has over symmetric cryptography (e.g., the ability to authenticate over
an untrusted network without sharing any secret in advance).

Second, since encryption hides the payload term we allow public-key encryptions to be
sent over the untrusted network, and since it is the successful signature verification that
proves the authenticity of the payload term we allow terms that come from the untrusted
network to be verified as signatures. So the type of public-key encryptions PubEnc(T)
is always public, while the type of signatures Signed(T) is always tainted. On the other
hand, signatures in our calculus contain the term that was signed, and verifying the
signature with the public verification key returns this message in clear. This means
that signing a term does not protect its secrecy, so a signature type Signed(T) is public
only if type T is public. Conversely, successfully decrypting a term does not necessarily
authenticate it, since the attacker can also encrypt terms using public keys, so if the
ciphertext comes from the attacker we cannot justify giving the result an untainted
type. To prevent honest participants from decrypting messages from the network if the
result of the decryption would be untainted, the decryption constructor only works on
ciphertexts of type PubEnc(T) and we make sure that an encryption type PubEnc(T) is
tainted, only when T is tainted.

Third, our type system enforces that the verification keys and public encryption keys
used by the protocols are authentic (not tainted), while the signing keys and decryption
keys are both authentic and secret. However, these restrictions are necessary only when
these asymmetric keys are used to protect the security of the system, and signing can
only protect authenticity, while public-key encryption can only protect secrecy. So if a
protocol is signing terms of a tainted type T then the type of the signing key SigKey(T)
and the type of the corresponding verification key VerKey(T) can be allowed to be both
public and tainted, and thus equivalent to Un. So intuitively, if there is no authenticity
to protect for the terms being signed with a certain signing key, we do not need to enforce
any restriction on the usage of this signing key or of the corresponding verification key.
Conversely, if a protocol is using public-key encryption on terms having a public type T ,
we do not need to enforce any restriction on the corresponding encryption and decryption
keys, so the types EncKey(T) and DecKey(T) are in this case both public and tainted.7

6 Asymmetric cryptography is often called public-key cryptography.
7 This last set of rules might seem unnecessarily permissive, but please note that the goal of this type

system is to reject insecure protocols, not to enforce one particular way to design protocols. These
rules could for instance be used to type-check protocols where certain information has to be kept

38 CHAPTER 2. ANALYZING PROTOCOL MODELS

Finally, a zero-knowledge proof type ZKProofS (ỹ : T̃ ; ∃x̃. C) is public if and only if the
types of all public arguments of the proof T̃ are public. This is necessary, since an attacker
that obtains a zero knowledge proof can extract the public arguments using the public
destructor. Conversely, a type ZKProofS (ỹ : T̃ ; ∃x̃. C) is tainted if and only if the types
of the public arguments of the proof T̃ are tainted and additionally E ` ∀x̃. ∀ỹ. C. If a
zero-knowledge term zkS (Ñ ; M̃) has type ZKProofS (ỹ : T̃ ; ∃x̃. C) then our type system

guarantees that the terms M̃ can be given the types T̃ and the formula C{Ñ/x̃}{M̃/ỹ}
is entailed by the current environment. So in order to allow giving a term received from
the attacker-controlled network type ZKProofS (ỹ : T̃ ; ∃x̃. C) we need to ensure that the
invariant above is not violated, i.e., asking that the types T1, . . . , Tm are tainted allows
us to give any term coming from the attacker type Ti, while asking that formula C holds
for all x̃ and ỹ allows us to instantiate C for any terms the attacker might send.

Kinding: E ` T :: k for k ∈ {pub, tnt}

(Kind Un)
` E ok

E ` Un :: k

(Kind Top Tnt)
` E ok

E ` > :: tnt

(Kind Empty Pub)
E, x : T ` false

E ` T :: pub

(Kind And Pub 1)
E ` T :: pub E ` U ok

E ` T ∧ U :: pub

(Kind And Pub 2)
E ` U :: pub E ` T ok

E ` T ∧ U :: pub

(Kind And Tnt)
E ` T :: tnt E ` U :: tnt

E ` T ∧ U :: tnt

(Kind Or Pub)
E ` T :: pub E ` U :: pub

E ` T ∨ U :: pub

(Kind Or Tnt 1)
E ` T :: tnt E ` U ok

E ` T ∨ U :: tnt

(Kind Or Tnt 2)
E ` U :: tnt E ` T ok

E ` T ∨ U :: tnt

(Kind Refine Pub)
E ` T :: pub E, x : T ` C ok

E ` {x : T | C} :: pub

(Kind Refine Tnt)
E ` T :: tnt E, x : T ` C
E ` {x : T | C} :: tnt

(Kind Chan)
E ` T :: pub E ` T :: tnt

E ` Ch(T) :: k

(Kind Pair)
E ` T :: k E, x : T ` U :: k

E ` Pair(x:T,U) :: k

(Kind SymKey)
E ` T :: pub E ` T :: tnt

E ` SymKey(T) :: k

(Kind Signed Pub)
E ` T :: pub

E ` Signed(T) :: pub

(Kind Signed Tnt)
E ` T ok

E ` Signed(T) :: tnt

(Kind SigKey)
E ` T :: tnt

E ` SigKey(T) :: k

(Kind VerKey Pub)
E ` T ok

E ` VerKey(T) :: pub

(Kind VerKey Tnt)
E ` T :: tnt

E ` VerKey(T) :: tnt

(Kind PubEnc Pub)
E ` T ok

E ` PubEnc(T) :: pub

(Kind PubEnc Tnt)
E ` T :: tnt

E ` PubEnc(T) :: tnt

(Kind EncKey Pub)
E ` T ok

E ` EncKey(T) :: pub

secret for a period of time, but needs to be disclosed in a verifiable way after a certain declassification
event occurs. If all the information in the protocol is disclosed at the end then a very simple way to
achieve verifiability is to also publish the keys that were previously used to protect it.

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 39

(Kind EncKey Tnt)
E ` T :: pub

E ` EncKey(T) :: tnt

(Kind DecKey)
E ` T :: pub

E ` DecKey(T) :: k

(Kind Hash Pub)
E ` T ok

E ` Hash(T) :: pub

(Kind Hash Tnt)
E ` T :: tnt

E ` Hash(T) :: tnt

(Kind ZK Pub)

E ` T̃ :: pub E, ỹ : >̃, x̃ : >̃ ` C ok

E ` ZKProofS (ỹ : T̃ ; ∃x̃. C) :: pub

(Kind ZK Tnt)

E ` T̃ :: tnt E, ỹ : >̃, x̃ : >̃ ` C
E ` ZKProofS (ỹ : T̃ ; ∃x̃. C) :: tnt

We explain the most important rules of the subtyping judgment below.

Subtyping: E ` T <: U

(Sub Pub Tnt)
E ` T :: pub E ` U :: tnt

E ` T <: U

(Sub Top)
E ` T ok

E ` T <: >

(Sub Empty)
E, x : T ` false E ` T ′ ok

E ` T <: T ′

(Sub And LB 1)
E ` T <: T ′ E ` U ok

E ` T ∧ U <: T ′

(Sub And LB 2)
E ` U <: U ′ E ` T ok

E ` T ∧ U <: U ′

(Sub And Greatest)
E ` T <: T1 E ` T <: T2

E ` T <: T1 ∧ T2
(Sub Or Least)
E ` T1 <: T E ` T2 <: T

E ` T1 ∨ T2 <: T

(Sub Or UB 1)
E ` T ′ <: T E ` U ok

E ` T ′ <: T ∨ U

(Sub Or UB 2)
E ` U ′ <: U E ` T ok

E ` U ′ <: T ∨ U
(Sub Refine Left)
E ` T <: T ′ E, x : T ` C ok

E ` {x : T | C} <: T ′

(Sub Refine Right)
E ` T <: T ′ E, x : T ` C
E ` T <: {x : T ′ | C}

(Sub Chan Inv)
E ` T <:> U

E ` Ch(T) <: Ch(U)

(Sub Pair Cov)
E ` T1 <: U1 E, x : T1 ` T2 <: U2

E ` Pair(x:T1, T2) <: Pair(x:U1, U2)

(Sub SymKey Inv)
E ` T <:> U

E ` SymKey(T) <: SymKey(U)

(Sub Signed Inv)
E ` T <:> U

E ` Signed(T) <: Signed(U)

(Sub SigKey Inv)
E ` T <:> U

E ` SigKey(T) <: SigKey(U)

(Sub VerKey Cov)
E ` T <: U

E ` VerKey(T) <: VerKey(U)

(Sub PubEnc Inv)
E ` T <:> U

E ` PubEnc(T) <: PubEnc(U)

(Sub EncKey Con)
E ` U <: T

E ` EncKey(T) <: EncKey(U)

(Sub DecKey Inv)
E ` T <:> U

E ` DecKey(T) <: DecKey(U)

(Sub Hash Inv)
E ` T <:> U

E ` Hash(T) <: Hash(U)

(Sub ZK)

E ` Ti <: Ui ∀i ∈ 1 . . .m E, ỹ : >̃, x̃ : >̃, {C} ` C ′

E ` ZKProofS (ỹ : T̃ ; ∃x̃. C) <: ZKProofS (ỹ : Ũ ; ∃x̃. C ′)

40 CHAPTER 2. ANALYZING PROTOCOL MODELS

Notation: We write E ` T <:> U to denote E ` T <: U and E ` U <: T .

As indicated above, the rule (Sub Pub Tnt) connects subtyping with kinding, by making
every public type a subtype of every tainted one. The rule (Sub Top) makes type > the
supertype of all other well-formed types. Similarly to (Kind Empty Pub), the rule (Sub
Empty) allows trivially empty types to be considered a subtype of any other type. In
particular this makes any refinement type {x : T | false} a subtype of all the other types
(bottom). The rule (Sub Empty) needs however to be phrased in this more general way,
which also takes union and intersection types into account, since otherwise the subtyping
relation would not be transitive (e.g., since the intersection type ⊥ ∧ U is a subtype of
⊥ and ⊥ is a subtype of an arbitrary T , then we need to ensure that ⊥ ∧ U is also a
subtype of T).

As far as subtyping is concerned, the intersection type T1∧T2 is a8 greatest lower bound
of the types T1 and T2. Rules (Sub And LB 1) and (Sub And LB 2) ensure that T1 ∧ T2
is a lower bound: by using reflexivity9 in the premise we obtain that T1 ∧ T2 <: T1 and
T1 ∧ T2 <: T2. Rule (Sub And Greatest) ensures that T1 ∧ T2 is greater than any other
lower bound: if T ′ is another lower bound of T1 and T2 then T ′ is a subtype of T1 ∧ T2.
The union type T1 ∨ T2 is a least upper bound of T1 and T2. The rules for subtyping
union types are exactly the dual of the ones for intersection types.

The refinement type {x : T | C} is a subtype of T ; the reason rule (Sub Refine Left)
is more general is again to “bake-in” transitivity. This rule allows us to discard logical
formulas when they are not needed, for instance, a term of type {x : Un | Ok(x)} can be
sent on a channel of type Ch(Un). Conversely, the type T is a subtype of {x : T | C} if
∀x. formsx(T)⇒ C is entailed in the current typing environment (Sub Refine Right), so
by subtyping we can only add universally valid formulas. This allows us to prove as a
property that whenever T is a subtype of U the formulas in T imply the formulas in U
(see Lemma 2.6 in §2.5.1). Using (Sub Refine Left) and (Sub Refine Right) we can derive
a rule that directly compares two refinement types [BBF+08]: the type {x : T1 | C1} is
a subtype of {x : T2 | C2} if T1 is a subtype of T2 and if the formula ∀x. formsx(T1) ⇒
C1 ⇒ C2 is entailed by the current environment.

Channel types and symmetric key types are invariant, i.e., have most restrictive sub-
typing in which Ch(T) is a subtype of Ch(U) if T is equivalent by subtyping to U .10If
channel types were covariant, we could take a channel of type Ch(T), change its type by
subtyping to Ch(>) and write any term on it, which would clearly be unsafe since the
receivers expect to obtain messages of type T from such channels. Conversely, if channel
types were contravariant, we could take a channel of type Ch(>), change its type by
subtyping to Ch(T), and then give type T to all received terms, although the senders
can send anything over this channel.

8Our subtyping relation is not anti-symmetric, so least and greatest elements are not necessarily unique.
9Reflexivity and transitivity are properties of our definition of subtyping, which make it a preorder.

10 Such type constructors are sometimes called nonvariant or “rigid” [AC96,OSV10].

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 41

By similar arguments many of the types for asymmetric cryptography need to be made
invariant. There are two exceptions though: the type of verification keys can be allowed
to be covariant while the type of public keys can be contravariant. Giving a verifica-
tion key of type VerKey(T) also type VerKey(U) by subsumption for some U that is a
supertype of T is acceptable, since this only allows us to give type U to the result of the
check destructors that use this key, which is anyway already possible by subtyping even
if these results are first given the stronger type T . Conversely, giving a public key of type
EncKey(U) also type EncKey(T) by subsumption for T a subtype of U is also sound, since
this allows us to encrypt terms of type T with this key, which is again already possible
by first giving the terms type U by (Term Subsum) and only then encrypting them.

Finally, a zero-knowledge type ZKProofS (ỹ : T̃ ; ∃x̃. C) is a subtype of another zero-
knowledge type ZKProofS (ỹ : Ũ ; ∃x̃. C ′) if the types of the public arguments T̃ are
subtypes of Ũ , and if additionally the formula ∀x̃. ∀ỹ. C ⇒ C ′ is entailed by the current
environment (Sub ZK). As for refinement types, this last condition ensures that by
subtyping we can only weaken the formula in a zero-knowledge type.

2.4.5. Logical Characterization of Kinding

We capture any instance of the kinding judgment as a formula in the authorization logic.
Such a logical characterization of kinding is helpful for reasoning about the disjointness
of types (§2.4.6), and for encoding type information that is conditioned on a type not
being compromised (§2.4.9).

Our logical characterization of kinding is fully precise (i.e., sound and complete as
shown in §2.5.3): We define a function fkind(E, T, k) that returns an authorization
logic formula that is valid if and only if type T has kind k in environment E. We
define fkind by recursion over the size of types. We can easily define fkind(E,Un, tnt)
as true, fkind(E,SigKey(T), tnt) recursively as fkind(E, T, tnt), and fkind(E,Ch(T), tnt)
recursively as fkind(E, T, pub)∧ fkind(E, T, tnt). Not all cases are equally simple though.
First, the kinding judgment is not fully syntax-directed because of rules such as (Kind
Empty Pub), (Kind And Pub 1), (Kind And Pub 2), etc., so fkind needs to also use
logical disjunction. Second, the rules (Kind Empty Pub), (Kind Refine Tnt), and (Kind
ZK Tnt) have premises that are instances of the formula entailment judgment. For this
we need to encode the entailment relation of the authorization logic into the authoriza-
tion logic itself. This is generally not possible in first-order logic, which motivates the
presence of the second-order quantifiers over predicates in our authorization logic.

We encode E ` C as a formula using the function fentails(E,C), which is defined as
∀dom(E).

∧
forms(E) ⇒ C, where the ∀dom(E) part universally closes all binders in

E, including all the predicates. This is necessary, since otherwise different formulas
generated by fentails would interact with each other, while in the kinding judgment
all occurrences of E ` C are completely independent. In other words, while in the
entailment relation all free variables, names and predicates are implicitly universally

42 CHAPTER 2. ANALYZING PROTOCOL MODELS

quantified, the fkind function needs to make this universal quantification explicit so that
the formula it returns can be used as a part of a bigger formula containing conjunctions
and disjunctions.

We illustrate the definition of ∀dom(E). C on the environment we use to type-check the
simplified DAA example from §2.2.

∀dom(Authenticate,OkTPM ,Send , ki : SigKey(Tki),Policysdaa , xz : Un). C
= ∀Authenticate.∀OkTPM . ∀Send .∀ki.∀xz. C

Second-order quantifiers are only used for obtaining a logical characterization of kind-
ing that enjoys completeness; they appear neither in authorization policies, nor in the
first-order logic proof obligations discharged by our type-checker. The second-order
quantifiers introduced by the logical characterization of kinding only appear in positive
positions, so in practice they can always be “extruded” after proper alpha-renaming,
and removed once they reach the top-level since free predicates are implicitly universally
quantified.

Finally, the kinding rules (Kind Empty Pub), (Kind Pair), (Kind Refine Pub), and
(Kind Refine Tnt) have premises in which the environment is extended with a fresh
variable. In the definition of fkind below we generate this fresh variable explicitly, using
the pick not in function.

Logical characterization of kinding: fkind(E, T, k)

Definition:
∀dom(E, x : T). C , ∀dom(E). ∀x. C ∀dom(E, {C ′}). C , ∀dom(E). C

∀dom(E, p). C , ∀dom(E). ∀p. C ∀dom(∅). C , C
∀dom(E, a : T). C , ∀dom(E). ∀a. C

Definition:
fentails(E,C) , ∀dom(E).

∧
forms(E)⇒ C

Definition:
fkind(E, V, pub) ,

let x = pick not in(dom(E)) in
fentails((E, x : V), false) ∨
(match V with
| > ⇒ fentails(E, false)
| T1 ∧ T2 ⇒ fkind(E, T1, pub) ∨ fkind(E, T2, pub)
| T1 ∨ T2 ⇒ fkind(E, T1, pub) ∧ fkind(E, T2, pub)
| {x : T | C} ⇒ fkind(E, T, pub)
| Un⇒ true
| Ch(T)⇒ fkind(E, T, pub) ∧ fkind(E, T, tnt)
| Pair(x:T,U)⇒

let y = pick not in(dom(E)) in
fkind(E, T, pub) ∧ fkind((E, y : T), U{y/x}, pub)

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 43

| Signed(T)⇒ fkind(E, T, pub)
| SigKey(T)⇒ fkind(E, T, tnt)
| VerKey(T)⇒ true
| PubEnc(T)⇒ true
| EncKey(T)⇒ true
| DecKey(T)⇒ fkind(E, T, pub)
| Hash(T)⇒ true
| SymKey(T)⇒ fkind(E, T, pub) ∧ fkind(E, T, tnt)

| ZKProofS (ỹ : T̃ ; ∃x̃. C)⇒
∧
T∈T̃ fkind(E, T, pub)

end)

with fkind(E, V, tnt) ,
(match V with
| > ⇒ true
| T1 ∧ T2 ⇒ fkind(E, T1, tnt) ∧ fkind(E, T2, tnt)
| T1 ∨ T2 ⇒ fkind(E, T1, tnt) ∨ fkind(E, T2, tnt)
| {x : T | C} ⇒

let y = pick not in(dom(E)) in
fkind(E, T, tnt) ∧ fentails((E, y : T), C{y/x})
| Un⇒ true
| Ch(T)⇒ fkind(E, T, pub) ∧ fkind(E, T, tnt)
| Pair(x:T,U)⇒

let y = pick not in(dom(E)) in
fkind(E, T, tnt) ∧ fkind((E, y : T), U{y/x}, tnt)
| Signed(T)⇒ true
| SigKey(T)⇒ fkind(E, T, tnt)
| VerKey(T)⇒ fkind(E, T, tnt)
| PubEnc(T)⇒ fkind(E, T, tnt)
| EncKey(T)⇒ fkind(E, T, pub)
| DecKey(T)⇒ fkind(E, T, pub)
| Hash(T)⇒ fkind(E, T, tnt)
| SymKey(T)⇒ fkind(E, T, pub) ∧ fkind(E, T, tnt)

| ZKProofS (ỹ : T̃ ; ∃x̃. C)⇒
∧
T∈T̃ fkind(E, T, tnt) ∧ fentails(E,∀x̃. ∀ỹ. C)

end)

We illustrate the logical characterization of kinding, by deriving the formula stating that
the channel type Ch({x : Un | C}) is tainted in environment E. We calculate as follows
by applying the definition above:

fkind(E,Ch({x : Un | C}), tnt)
= fkind(E, {x : Un | C}, pub) ∧ fkind(E, {x : Un | C}, tnt)

44 CHAPTER 2. ANALYZING PROTOCOL MODELS

fkind(E, {x : Un | C}, pub)
= fentails((E, z : {x : Un | C}), false) ∨ fkind(E,Un, pub)
= (∀dom(E).∀z.

∧
forms(E, z : {x : Un | C})⇒ false) ∨ true

= (∀dom(E).∀z.
∧

forms(E) ∧ C{z/x} ⇒ false) ∨ true

fkind(E, {x : Un | C}, tnt)
= fkind(E,Un, tnt) ∧ ∀dom(E).∀z.

∧
forms(E, z : Un)⇒ C{z/x}

= true ∧ ∀dom(E).∀z.
∧

forms(E)⇒ C{z/x}

The result of fkind(E, {x : Un | C}, pub) is logically equivalent to true (by (Or Intro),
(Red), and the encoding of true), so the result of fkind(E,Ch({x : Un | C}), tnt) is
logically equivalent to the formula ∀dom(E).

∧
forms(E)⇒ ∀z. C{z/x}.

2.4.6. Type Private and Non-disjointness of Types

Type Private, the type of messages not known to the attacker, is not primitive in our
type system. It could easily be added, but it can also be easily encoded, so we chose to
encode it. One thing to note, though, is that in our type system we chose not to have any
unconditionally secure type. So in an inconsistent environment, which entails false, all
types are both public and tainted, so all types are equivalent by subtyping, even Private
and Un. We therefore encode a more general type PrivateUnless(C): the terms in this
type are not known to the attacker, unless the formula C is entailed by the environment.
We then obtain type Private as PrivateUnless(false).

Encoding of OK-types and Private types

{C} , {x : Un | C} for some x /∈ fv(C)

PrivateUnless(C) , Ch({C})
Private , PrivateUnless(false)

We encode type PrivateUnless(C) as the channel type Ch({C}). Since channel types are
generative this allows us to create terms of type PrivateUnless(C) using restrictions (new).
The OK-type [FGM07a] {C} is always public, but is tainted only in an environment in
which C holds. Since the only kinding rules that apply for channel types are (Kind
Chan) and (Kind Empty Pub), we can easily derive that the channel type Ch({C}) is
public or tainted only in an environment in which C is entailed. In particular, type
Private is only public or tainted in an inconsistent environment.

Knowing that type Private is neither public (i.e., not a subtype of Un) nor tainted (i.e., not
a supertype of Un) unless the environment is inconsistent is, however, not enough for
the kind of reasoning we want to be able to do for determining with certainty that
a zero-knowledge proof cannot come from the attacker. If we can infer that one of
the arguments of a zero-knowledge proof has both type Private and type Un we want
to be able to deduce that the environment is inconsistent. Intuitively, in a consistent
environment type Private and type Un are disjoint, i.e., they do not share any closed

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 45

term.11 More generally, type PrivateUnless(C) and type Un do not share any closed
terms, unless C is entailed by the environment.

This disjointness property is quite complicated to show, but at a very high-level the
reasoning can be summarized as follows: In a consistent environment any closed term of
type Private has to be a name a that is bound in the typing environment to a channel
type Ch(T), for some type T that is equivalent by subtyping12 to the OK-type {false}.
Since the name a can also be given type Un then it must be the case that type Ch(T) is
public, which means that type T is public and tainted, and therefore {false} is public and
tainted. The type {false} is however only tainted in an inconsistent environment, which
contradicts our original assumption. While we have manually done such disjointness
proofs in Coq, the proofs involve non-trivial inductive arguments and use many of the
properties we have proved about the type system, and we cannot expect an automated
type-checker to do such complicated meta-reasoning about our typing judgments.

In order to reason about type (non-)disjointness in our type system in a purely syntactic
manner, we introduce a new inductively-defined typing judgment E ` T ## U ; C
which guarantees that if the types T and U intersect in E then the formula C is entailed
by E. Defining this judgment is challenging in our setting because kinding makes many
types overlap. For instance, in our type system the types Ch(Un) and Pair(Un,Un) are
equivalent, so it is not enough to look only at the top-level type constructor to decide if
two types can overlap. Moreover, in an inconsistent environment all types overlap, since
all types are equivalent by subtyping.

Non-disjointness of types: E ` T ## U ; C

(ND Gen)
T and U are generative and have different top-level type constructors

E ` T ## U ; (fkind(E, T, pub) ∧ fkind(E,U, tnt)) ∨ (fkind(E, T, tnt) ∧ fkind(E,U, pub))

(ND True)
E ` T1 ok E ` T2 ok

E ` T1 ## T2 ; true

(ND Sym)
E ` T2 ## T1 ; C

E ` T1 ## T2 ; C

(ND Conj)
E ` T ## U ; C1 E ` T ## U ; C2

E ` T ## U ; C1 ∧ C2

(ND Entails)
E ` T1 ## T2 ; C E,C ` C ′

E ` T1 ## T2 ; C ′

(ND Forms And Type)
E ` T1 ok E ` T2 ok x 6∈ fv(T1, T2)

E ` T1 ## T2 ; ∃x.
∧

formsx(T1 ∧ T2)
(ND Sub)
E ` T ## U ; C E ` U ′ <: U

E ` T ## U ′ ; C

(ND Pair)
E ` T1 ## U1 ; C1 E ` T2 ## U2 ; C2

E ` Pair(x:T1, T2) ## Pair(y:U1, U2) ; C1 ∧ C2

11 The fact that a type T is neither public (i.e., not a subtype of Un) nor tainted (i.e., not a supertype
of Un) is a necessary but not a sufficient condition for T being disjoint from Un. For example, type
T0 = Pair(>, {x : Un | P (x)}) is neither public nor tainted in the environment {P (unit)}, still in this
environment the term (unit, unit) has both type T0 and type Un.

12 Channel types are invariant, but our subtyping relation is not anti-symmetric.

46 CHAPTER 2. ANALYZING PROTOCOL MODELS

(ND And)
E ` T1 ## U ; C1 E ` T2 ## U ; C2

E ` (T1 ∧ T2) ## U ; C1 ∧ C2

(ND Or)
E ` T1 ## U ; C1 E ` T2 ## U ; C2

E ` (T1 ∨ T2) ## U ; C1 ∨ C2

Fortunately, we can use the logical characterization of kinding to capture the effect of
kinding on type disjointness. The most important rule of the non-disjointness judgment
(ND Gen) states that if two generative types with different top-level type constructors
overlap then one of them is public and the other is tainted. This rule is very general
and can be instantiated with different generative types. For instance it allows us to
derive syntactically that Private and Un only overlap in an inconsistent environment (see
derived rule (ND Private Un) below); that if Ch(T) or SymKey(T) overlap with Un then
T is both public and tainted (derived rules (ND Channel Un) and (ND SymKey Un));
and that if SigKey(T) overlaps with Un then T is tainted (derived rule (ND SigKey Un)).

Non-disjointness rules derived from (ND Gen) and (ND Entails)

(ND Private Un)
E ` C ok

E ` Private ## Un ; false

(ND PrivateUnless Un)
E ` C ok

E ` PrivateUnless(C) ## Un ; C

(ND Channel Un)
E ` T ok

E ` Ch(T) ## Un ; fkind(E, T, tnt) ∧ fkind(E, T, pub)

(ND SymKey Un)
E ` T ok

E ` SymKey(T) ## Un ; fkind(E, T, tnt) ∧ fkind(E, T, pub)

(ND DecKey Un)
E ` T ok

E ` DecKey(T) ## Un ; fkind(E, T, pub)

(ND SigKey Un)
E ` T ok

E ` SigKey(T) ## Un ; fkind(E, T, tnt)

Rule (ND True) gives the non-disjointness judgment a trivial base case which allows us to
always infer the true formula. Rule (ND Sym) allows us to swap the two type arguments,
since type disjointness is symmetric. Rule (ND Conj) allows us to take two instances of
the non-disjointness judgment and combine their results using logical conjunction. Rule
(ND Entails) allows us to weaken the formula in the non-disjointness judgment to any
other formula that is entailed by it in the current typing environment. This rule together
with (ND True) allow us to copy all formulas of the environment into the output formula,
as done by the derived rule (ND Forms Env) below. Rule (ND Forms And Type) allows
us to gather the formulas from the two types, conjoin them together, and require that
there exists a term for which they all hold. Intuitively, if there exists a term that belongs
to the intersection of the two types, that term will also satisfy the formulas gathered

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 47

from both types. This rule allows us to derive rule (ND Forms Empty), which states
that bottom overlaps other types only in an inconsistent environment. It also allows us
to derive rule (ND Refine Exists) below, which implies that two refinement types that
have contradicting formulas are disjoint. Rule (ND Sub) allows us to replace the types
in the non-disjointness judgment by any of their subtypes. Together with rule (Sub
Refine Left) this allows us to add refinement types in derived rule (ND Refine) (to drop
refinement types if reading the rule backwards). The remaining rules ((ND Or), (ND
And), and (ND Pair)) lift the non-disjointness judgment to union and intersection types
as well as non-dependent pair types.

More derived non-disjointness rules

(ND Forms Env)
E ` T1 ok E ` T2 ok

E ` T1 ## T2 ;
∧

forms(E)

(ND Forms Empty)
E ` T1 ok E ` T2 ok E, x : T1 ` false

E ` T1 ## T2 ; false

(ND Refine)
E ` T1 ## T2 ; C
E, x : T1 ` C1 ok

E ` {x : T1 | C1} ## T2 ; C

(ND Refine Exists)
E ` T1 ## T2 ; C

E ` {x : T1 | C1} ok E ` {x : T2 | C2} ok

E ` {x : T1 | C1} ## {x : T2 | C2}; C ∧ ∃x.C1 ∧ C2

2.4.7. Typing Terms and Destructors

The rules of the term typing judgment E `M : T are listed below. The rules (Term Var)
and (Term Name) look up the type of variables and names in the typing environment.
The subsumption rule (Term Subsum) allows a term having type T to be given any
supertype of T . Rule (Term And) gives a term an intersection type T ∧ U provided
that it can be typed to both type T and type U . Rule (Term Refine) gives a term M a
refinement type {x : T | C} provided M has type T and the formula C{M/x} is entailed
in the typing environment13. Rule (Term Pair) gives pairs dependent types Pair(x:T,U),
where the type of the second component in the pair U refers to the term in the first
component via the variable x.

Typing terms: E `M : T

(Term Unit)
` E ok

E ` unit : Un

(Term Var)
` E ok (x : T) ∈ E

E ` x : T

(Term Name)
` E ok (a : T) ∈ E

E ` a : T

(Term Subsum)
E `M : T E ` T <: T ′

E `M : T ′

(Term And)
E `M : T E `M : U

E `M : T ∧ U

(Term Refine)
E `M : T E ` C{M/x}

E `M : {x : T | C}

(Term Pair)
E `M1 : T1 E `M2 : T2{M1/x}
E ` (M1,M2) : Pair(x:T1, T2)

13 Rule (Term Refine) cannot be encoded with (Term Subsum) and (Sub Refine Right), since this would
require proving C for all values of x, while (Term Refine) only requires proving C for the term M .

48 CHAPTER 2. ANALYZING PROTOCOL MODELS

(Term Enc Key)
E `M : DecKey(T)

E ` ek(M) : EncKey(T)

(Term Pub Enc)
E `M : T E ` K : EncKey(T)

E ` enc(M,K) : PubEnc(T)

(Term Ver Key)
E `M : SigKey(T)

E ` vk(M) : VerKey(T)

(Term Sign)
E `M : T E ` K : SigKey(T)

E ` sign(M,K) : Signed(T)

(Term Hash)
E `M : T

E ` hash(M) : Hash(T)

(Term Sym Enc)
E `M : T E ` K : SymKey(T)

E ` senc(M,K) : Un

(Term ZK Un)

E ` Ñ : Ũn E ` M̃ : Ũn

E ` zkS (Ñ ; M̃) : ZKProofS (ỹ : Ũn; ∃x̃. true)

(Term ZK)

TS = ZKProofS (ỹ : T̃ ; ∃x̃. C) E ` Ñ : >̃ E ` M̃ : T̃ E ` C{Ñ/x̃}{M̃/ỹ}
E ` zkS (Ñ ; M̃) : TS

The typing rules for the constructors representing the basic cryptographic primitives are
all standard [FGM07a]. More interestingly, for typing zero-knowledge terms we have
two different rules: rule (Term ZK) is used for typing honest protocol participants, while
rule (Term ZK Un) is used for typing the opponent to ensure that we are not putting
undue restrictions on it.

Typing most of the basic cryptographic primitives relies on the type of some key, which
the user has to annotate explicitly. But zero-knowledge proofs do not depend on keys
in general. This is a problem since the successful verification of a zero-knowledge proof
should propagate logical formulas in the typing environment of the verifier, and it is
not clear what formulas to consider. For instance, when typing a verification process
if verS (z) ⇓ 〈y〉 then P for some statement S = witness x̃ public ỹ in B , we can safely
assume that the basic formula ∃x̃.B holds for the continuation process P , since this is
guaranteed by the operational semantics of the ver destructor (see §2.3.2). However,
such a basic formula does not suffice for typing many of the examples we have tried,
since it does not mention any user-defined logical predicate.

In order to solve this problem, we assume that each zero-knowledge statement S =
witness x̃ public ỹ in B is annotated by the user with a zero-knowledge proof type
TS = ZKProofS (ỹ : T̃ ; ∃x̃. C). When typing a zero-knowledge proof created by a honest

protocol participant zkS (Ñ ; M̃) using rule (Term ZK) we ensure that the public argu-

ments of the proof M̃ have the types specified by the user T̃ , and that the logical formula
C specified by the user and instantiated with the actual arguments of the proof (x̃ with

Ñ and ỹ with M̃) is entailed by the typing environment. Only if these two conditions
are satisfied we give the zero-knowledge term type TS . Note that if the formula C con-
tains the basic formula B (i.e., if C is of the form B ∧ CP , for some promise CP) we
can ensure that only valid zero-knowledge proofs are created by the honest participants.
However, since C can be chosen arbitrarily by the user this is not necessarily true in
general. Moreover, rule (Term ZK Un) allows the opponent to generate possibly invalid

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 49

zero-knowledge proofs from terms it knows (i.e., any term of type Un) for any statement.
In this case, however, even if the statement was annotated by the user with type TS ,
this type is ignored, and the proof is given type ZKProofS (ỹ : Ũn; ∃x̃. true), which is
equivalent by subtyping to Un.

So the fact that a term can be given a zero-knowledge proof type ZKProofS (ỹ : T̃ ; ∃x̃. C)
for some statement S = witness x̃ public ỹ in B , only guarantees that the formula C in the
type holds for the arguments of the proof, while this need not be the case for the basic
formula B in the statement. To obtain the basic formula B the zero-knowledge proof has
to be successfully verified. Most of the time zero-knowledge proofs are communicated
over untrusted channels, so before the receiver verifies the proof we can only give the
received proofs type Un, which is equivalent by subtyping to ZKProofS (ỹ : Ũn; ∃x̃. true).
This type conveys no useful logical formula.

Most of the typing rules for destructors are simple14. The typing rule for equality is very
strong: the return type makes use of an intersection type and of the non-disjointness
judgment. The equality destructor eq(M1,M2) only succeeds when M1 = M2, and
returns the common value of M1 and M2 as a result. If statically M1 had type T1 and
M2 had type T2 then their common value will have both type T1 and type T2, so also
type T1∧T2. Moreover, since this closed term is an inhabitant of both T1 and T2 the two
types overlap, so we use the non-disjointness judgment to derive an additional formula
that we use to refine the type of the result. This increases the precision of the type
system when type-checking conditionals encoded using the equality destructor.

Typing destructors: E ` D : T

(Dtor Id)
E `M : T

E ` id(M) : T

(Dtor Eq)
E `M1 : T1 E `M2 : T2 E ` T1 ## T2 ; C x /∈ dom(E)

E ` eq(M1,M2) : {x : T1 ∧ T2 | C}
(Dtor Dec)
E `M : PubEnc(T) E ` K : DecKey(T)

E ` dec(M,K) : T

(Dtor Check)
E `M : Signed(T) E ` K : VerKey(T)

E ` check(M,K) : T

(Dtor Sym Dec)
E `M : Un E ` K : SymKey(T)

E ` sdec(M,K) : T

(Dtor Public)

E `M : ZKProofS (ỹ : T̃ ; ∃x̃. C)

E ` publicS (M) : 〈ỹ : T̃ 〉{∃x̃. C}

Notation:

Let 〈x̃ : T̃ 〉{C} denote the refined tuple type Pair(x1:T1, . . .Pair(xn:Tn, {C})) where we
require that the variables x̃ are not bound in T̃ (they can be bound in C though).

Let 〈T̃ 〉 denote the tuple type 〈x̃ : T̃ 〉{true} for some fresh x̃.

14 Proving them consistent is still very complicated because of subtyping and kinding; see §2.5.5.

50 CHAPTER 2. ANALYZING PROTOCOL MODELS

The public destructor returns a tuple containing the public arguments of a zero-knowledge
proof, without verifying whether the proof is valid. Rule (Dtor Public) requires that the
input to public has a zero-knowledge proof type ZKProofS (ỹ : T̃ ; ∃x̃. C), and if this
is indeed the case it gives the result the dependent tuple type 〈ỹ : T̃ 〉{∃x̃. C}. This
apparently strong return type might be surprising, since after all the public destructor
does not verify whether the proof is valid. However, it is the zero-knowledge type of
the input that justifies this return type. If the proof comes from a public channel, as is
usually the case, then it can only be given type ZKProofS (ỹ : Ũn; ∃x̃. true), which makes

the result of public have type 〈Ũn〉, so not so strong after all. Only when the proof is
somehow authenticated (e.g., it comes from an authentic channel) can the receiver give
the result a strong type, but this is justified by the fact that C was already checked
on the side of the sender. More formally, our type system preserves the invariant that
whenever a zero-knowledge proof zkZ(Ñ ; M̃) can be given type ZKProofS (ỹ : T̃ ; ∃x̃. C),

the formula C{Ñ/x̃}{M̃/ỹ} is entailed by the typing environment. Since the publicS
destructor returns the tuple 〈M̃〉 when given such a proof, we can easily justify giving
this tuple type 〈ỹ : T̃ 〉{∃x̃. C}.

2.4.8. Typing Processes

The rules of the process typing judgment E ` P are listed below. Rule (Proc Out)
enforces that only terms of type T can be sent over a channel of type Ch(T), while rules
(Proc In) and (Proc In Repl) guarantee that the terms received from such a channel have
type T . Rule (Proc New) enforces that the names bound by restriction processes are
given generative types. Rule (Proc Assume) is very permissive, any well-formed formula
can be assumed. On the other hand, rule (Proc Assert) checks that the asserted formula
is entailed by the current typing environment and therefore also entailed at execution
time from the active assumes. It is up to the user of the type system to make sure
that the assumes and asserts really reflect her intentions, and special attention should
be given to them when auditing the protocol model. Assumes in particular are trusted
operations, and a bad assume could make the environment inconsistent and thus allow
any protocol to be robustly safe. Rule (Proc Par) for parallel compositions extracts
the active assumes from one process and adds them to the typing environment when
typing the other process, ensuring active assumes have global scope. This is necessary
for proving subject reduction, because in the operational semantics active assumes are
not added to some explicit formula log, but instead persist in parallel with the rest of
the system.

Typing processes: E ` P

(Proc Out)
E ` N : Ch(T) E `M : T E ` P

E ` out(N,M). P

(Proc In)
E ` N : Ch(T) E, x : T ` P

E ` in(N, x). P

(Proc In Repl)
E ` in(N, x). P

E `!in(N, x). P

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 51

(Proc Assume)
E ` C ok

E ` assume C

(Proc Assert)
E ` C

E ` assert C

(Proc Par)

E, {Q} ` P E, {P} ` Q
E ` P | Q

(Proc Zero)
` E ok

E ` 0

(Proc Case)
E `M : T1 ∨ T2 E, x : T1, {x = M} ` P E, x : T2, {x = M} ` P

E ` case x = M in P

(Proc Split)
E `M : Pair(x:T,U) E, x : T, y : U, {(x, y) = M} ` P

E ` let (x, y) = M in P

(Proc New)
T generative E, a : T ` P

E ` (new a : T)P

(Proc Dtor)
E ` D : T E, x : T, {D ; x} ` P1 E, {¬∃y.D ; y} ` P2

E ` if D ⇓ x then P1 else P2

(Proc Ver)

TS = ZKProofS (ỹ : T̃ ; ∃x̃. C) S = witness x1, . . . , xn public y1, . . . , ym in B

E ` N : ZKProofS (ỹ : Ũ ; ∃x̃. C0) ∀i ∈ [1, l]. E ` Li : Ti
E0 = [xk : Un | k ∈ [1, n]], [yi : Ti ∧ Ui ∧ Un | i ∈ [1, l]], [yj : Uj ∧ Un | j ∈ [l + 1,m]]
E ` [|B |]E0,C0 ; E1, C1 E,E1, {C1} ` C ∀j ∈ [l + 1,m]. E,E1, {C1} ` yj : Tj

E, z : 〈yl+1 : Tl+1, . . . , ym : Tm〉{∃x̃. C{Li/yi}i∈[1,l]} ` P1 E ` P2

E ` verS (N,L1, . . . , Ll) ⇓ z then P1 else P2

(Proc Ver Un)
E ` N : Un ∀i ∈ [1, l]. E ` Li : Un E, z : Un ` P1 E ` P2

E ` verS (N, L̃) ⇓ z then P1 else P2

The case process explicitly marks the places where union types are eliminated, which
makes type-checking simpler and more tractable. Rule (Proc Case) requires that the
term M passed to case has a union type T1 ∨T2, binds M to a variable x, and types the
continuation process twice, once under the assumption that x has type T1 and a second
time assuming that x has type T2. Additionally we record the fact that x and M are
equal by adding this formula to the environment used to type the continuation process.
Formulas are also added in rules (Proc Split) and (Proc Dtor), and this increases the
precision of the type system. In rule (Proc Dtor) we add a formula stating that the
destructor reduced successfully and returned x when typing the then branch, and a
negative formula stating that destructor reduction failed when typing the else branch.
This is particularly interesting for the equality destructor, which already has a very
strong typing rule (Dtor Eq), which uses the non-disjointness judgment.

As for creating zero-knowledge proofs, there are two different rules for typing zero-
knowledge verification processes: rule (Proc Ver) for typing honest verifiers and rule
(Proc Ver Un) for typing the verifications done by the attacker. Rule (Proc Ver Un) is
simple, the zero-knowledge proof to be verified as well as the matched arguments are all
expected to have type Un, and the returned tuple of arguments is given type Un in the

52 CHAPTER 2. ANALYZING PROTOCOL MODELS

continuation process. Rule (Proc Ver) is much more complicated, and is explained in
§2.4.9 below.

2.4.9. Type-checking Zero-knowledge Verification

This section is dedicated to type-checking honest verifiers of zero-knowledge proofs, which
is very challenging and constitutes the main technical contribution of this whole chapter.
If the proof received by a honest verifier was created by a honest prover, then we can
justify giving the returned arguments of the proof the strong type annotated by the user.
This is sound because honest provers are type-checked using rule (Term ZK), which
ensures that the arguments used to create the proof have the strong type. However,
opponents can also create valid zero-knowledge proofs and send them over untrusted
channels. Opponents (and compromised participants) are typed using the much more
permissive (Term ZK Un) rule, which does not place any restriction on what arguments
the opponent can use to create the proof. Rule (Term ZK Un) only requires that the
arguments can be given type Un, but this is not a restriction on the opponent, because
our type system enforces anyway that opponents only learn terms of type Un15.

When verifying a zero-knowledge proof received from the untrusted network (which is
under the control of the opponent) a honest participant does not know a priori whether
the creator of the proof is honest or not. So the type system has to check whether
the strong type annotated by the user is still justified even if the proof was created
by the opponent. Our type system starts from the zero-knowledge statement being
verified and from the types of those public arguments of the proof that the verifier has
obtained from a reliable source, and uses intersection, union, and refinement types to
infer very precise type information about the other arguments of the zero-knowledge
proof. For certain protocols the types inferred this way are already strong enough to
justify the user-annotated zero-knowledge proof type [BGHM09, BLMP10]. In other
protocols [BCC04,LHH+07] an additional insight is needed: this whole inference process
also succeeds if the type system can somehow deduce that the proof was necessarily
constructed by an honest prover. This happens when the type inferred for one of the
secret witnesses of the proof is disjoint from the type of messages possibly known to the
attacker.

Since we support security despite compromise this is even more complicated: all the rea-
soning above has to be conditioned by certain protocol participants being indeed honest
(not compromised). We use union types together with refinement types that contain for-
mulas obtained using our logical characterization of kinding to express type information
that is conditioned by a participant not being compromised. Such conditional types are
inferred automatically when processing the zero-knowledge statement. The remainder
of this section explains the whole inference process in more detail.

15 As opponent typability (Lemma 2.33 in §2.5.8) shows, this is only a restriction on the protocol, not
on the opponent.

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 53

We start by explaining the (Proc Ver) typing rule. Suppose that we want to type-check
the process verS (N,L1, . . . , Ll) ⇓ z then P1 else P2, which checks whether N is a valid
proof for the statement S = witness x1, . . . , xn public y1, . . . , ym in B . We require N
to have some zero-knowledge type ZKProofS (ỹ : Ũ ; ∃x̃. C0); this type is usually much
weaker than the type TS = ZKProofS (ỹ : T̃ ; ∃x̃. C) annotated by the user. In the very
common case when N is received from a public channel the only type the verifier can
give to N a priori is ZKProofS (ỹ : Ũn; ∃x̃. true), which is equivalent to Un. We also
require that the matched arguments L1, . . . , Ll have the strong types T1, . . . , Tl defined
by TS . Most often it is the strong types of these matched arguments that allow our type
system to infer strong types for the other arguments, even when the proof was created by
the opponent. If N was a zero-knowledge proof zkS (Ñ ; M̃) created by a honest prover,

then the strong types of the public arguments T̃ and the formula C{Ñ/x̃}{M̃/ỹ} were
already checked on the prover’s side.

On the other hand, if N was created by the opponent, justifying the strong type TS in
case the zero-knowledge verification succeeds is much more complicated. In this case
the type system starts from the basic formula B of the zero-knowledge statement S ,
whose validity is guaranteed by the operational semantics of zero-knowledge verification,
and from an environment E0 containing the type information the type system already
has about the arguments of the proof, and tries to infer more information about the
arguments. The initial environment E0 is constructed as follows: First, because we are
dealing with the case in which the proof was created by the opponent, and opponents
only learn terms of type Un, we can assume that all arguments of the proof have type
Un. Second, since the received proof N has the (usually weak) zero-knowledge type
ZKProofS (ỹ : Ũ ; ∃x̃. C0) we can additionally assume that the public arguments of the
proof ỹ also have types Ũ , and that the formula C0 holds. Finally, since verification
succeeds only if the arguments of the proof y1, . . . , yl match the terms provided by the
verifier L1, . . . , Ll, we can assume that the matched arguments y1, . . . , yl also have the
strong types T1, . . . , Tl of L1, . . . , Ll. We use intersection types to capture the fact that
the public arguments have simultaneously more than one type:

E0 = [xk : Un | k ∈ [1, n]], [yi : Ti ∧ Ui ∧ Un | i ∈ [1, l]], [yj : Uj ∧ Un | j ∈ [l + 1,m]].

For instance in the simplified DAA example from §2.2, the type system initially has the
following type information:

Esdaa
0 = xf : Un, xcert : Un, yvki : (VerKey(Tki) ∧ Un ∧ Un), ym : (Un ∧ Un).

Rule (Proc Ver) uses the basic formula B of the zero-knowledge statement and our novel
statement-based inference judgment E ` [|B |]E0,C0 ; E1, C1 to infer a stronger set of
types E1 for the arguments of the zero-knowledge proof, as well as a stronger formula
C1. The new information in E1 and C1 is then used to check whether the strong formula
C from the zero-knowledge type annotated by the user is entailed, and whether the
returned public arguments yl+1, . . . , ym have the strong types Tl+1, . . . , Tm given by the

54 CHAPTER 2. ANALYZING PROTOCOL MODELS

user, in case the proof were to come from the attacker. Only if all these checks succeed
is the verification process accepted by our type system.

The statement-based inference judgment E ` [|B |]E0,C0 ; E1, C1 is a 6-ary relation
inductively defined by the rules below. Intuitively, the arguments E, B , E0, and C0 are
inputs, while E1 and C1 are outputs: given B , the basic formula of the statement we are
verifying, and an initial typing environment E,E0, {C0}, the relation infers a stronger
typing environment E,E1, {C1}.

Statement-based inference: E ` [|B |]Eold ,Cold
; Enew , Cnew

(Sinfer Stmt)
E ` [|B |]Eold ,Cold

; Enew , Cnew

E ` [|B |]Eold ,Cold
; Enew , (Cnew ∧B)

(Sinfer Ident)
E ` E′ spec E,E′ ` C ′ ok

E ` [|B |]E′,C′ ; E′, C ′

(Sinfer Red)
E,Eold , {Cold} ` D : T E ` T ok E ` (Eold , Cold)[vN : T] Enew , Cnew

E ` [|D ; vN |]Eold ,Cold
; Enew , Cnew

(Sinfer Check)
E,Eold , {Cold} ` vK : VerKey(T) E ` T ok

E ` (Eold , Cold)[vN : {| fkind(E, T, tnt) |} ∨ T] Enew , Cnew

E ` [|check(vM , vK) ; vN |]Eold ,Cold
; Enew , Cnew

(Sinfer Dec)
E,Eold , {Cold} ` vM : PubEnc(T) E ` T ok

E ` (Eold , Cold)[vN : {| fkind(E, T, tnt) |} ∨ T] Enew , Cnew

E ` [|dec(vM , vK) ; vN |]Eold ,Cold
; Enew , Cnew

(Sinfer Enc)
E,Eold , {Cold} ` vM : PubEnc(T) E ` T ok

E ` (Eold , Cold)[vN : {| fkind(E, T, tnt) |} ∨ T] E′, C ′

E ` (E′, C ′)[vK : {| fkind(E, T, tnt) |} ∨ EncKey(T)] Enew , Cnew

E ` [|vM = enc(vN , vK)|]Eold ,Cold
; Enew , Cnew

(Sinfer Pair)
E,Eold , {Cold} ` vM : Pair(z:T1, T2) E ` T1 ok E ` T2 ok

E ` (Eold , Cold)[v1 : T1, v2 : T2] Enew , Cnew

E ` [|vM = (v1, v2)|]Eold ,Cold
; Enew , Cnew

(Sinfer Hash)
E,Eold , {Cold} ` vM : Hash(T) E ` T ok

E ` (Eold , Cold)[vN : {| fkind(E, T, tnt) |} ∨ T] E′, C ′

E ` [|vM = hash(vM)|]Eold ,Cold
; Enew , Cnew

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 55

(Sinfer And)
E ` [|B2|]Eold ,Cold

; E2, C2 E ` [|B1|]E2,C2 ; E12, C12

E ` [|B1|]Eold ,Cold
; E1, C1 E ` [|B2|]E1,C1 ; E21, C21 E12 ∧ E21 ; Enew

E ` [|B1 ∧ B2|]Eold ,Cold
; Enew , (C12 ∧ C21)

(Sinfer Or)
E ` [|B1|]Eold ,Cold

; E1, C1 E ` [|B2|]Eold ,Cold
; E2, C2 E1 ∨ E2 ; Enew

E ` [|B1 ∨ B2|]Eold ,Cold
; Enew , (C1 ∨ C2)

Notation: Let {|C |} denote the refinement type {x : > | C}, where x 6∈ fv(C).

Rule (Sinfer Stmt) conjoins the basic formula B of the statement to the returned formula,
since by the operational semantics (see §2.3.4) zero-knowledge verification succeeds only
if B holds. Rule (Sinfer Ident) provides a trivial base case of our inductively defined
relation, it simply allows to copy the input environment and formula, provided that they
are well-formed. For the environment we require a stronger notion of well-formedness
E ` E′ spec, which holds if and only if E′ only contains variable bindings, and E′

does not have any dependencies to itself, and the compound environment E,E′ is well-
formed.

Special well-formed environment extension: E ` E′ spec

(Wfes Nil)
` E ok

E ` ∅ spec

(Wfes Cons)
E ` E′ spec E ` T ok x /∈ dom(E,E′)

E ` E′, x : T spec

Rule (Sinfer Red) deals with arbitrary logical atoms, which in our case are destruc-
tor reductions. If the destructor D has type Tnew in the original environment, and
if D reduces to the term denoted by the variable vN , then by destructor consistency
(Lemma 2.29 in §2.5) we know that the resulting term will also have type Tnew . We
update the environment to record this new information using the strong environment
update judgment E ` (Eold , Cold)[vN : Tnew] Enew , Cnew . This updates the type of
variable vN to the intersection between the old type of vN , say Told , and the new type
Tnew . The argument of the zero-knowledge proof corresponding to variable vN , has thus
both type Told and type Tnew , so the types Told and Tnew cannot be disjoint. We there-
fore use the non-disjointedness judgment E ` Told ## Tnew ; Cnd to infer an additional
formula Cnd , which we conjoin to the resulting formula, as well as to the type of all
variables. If the types Told and Tnew are disjoint then Cnd is false, and the intersection
type V ∧ {x : > | false} is empty for any V . By rule (Sub Empty) this intersection type
is a subtype of any other type, including the strong type annotated by the user for this
variable.

Strong environment update: E ` (Eold , Cold)[x : Tnew] Enew , Cnew

56 CHAPTER 2. ANALYZING PROTOCOL MODELS

(Strong Update)
E ` Told ## Tnew ; Cnd supd(Eold , x, Told , Tnew , Cnd) Enew

E ` (Eold , Cold)[x : Tnew] Enew , (Cold ∧ Cnd)

(Supd Empty)
supd(∅, x, Told , Tnew , Cnd) ∅
(Supd Cons Neq)

x 6= y supd(E1, x, Told , Tnew , Cnd) E

supd((E1, y : T1), x, Told , Tnew , Cnd) (E, y : (T1 ∧ {|Cnd |}))
(Supd Cons Eq)

supd(E1, x, Told , Tnew , Cnd) E

supd((E1, x : Told), x, Told , Tnew , Cnd) (E, x : (Told ∧ Tnew ∧ {|Cnd |}))

While rule (Sinfer Red) applies to any destructor and allows to transfer the type of the
destructor to its result, for the asymmetric cryptography destructors check and dec we
provide specialized rules that can infer the type of the result only from the type of one of
the arguments of the destructor, provided that the result type is not tainted. Rule (Sinfer
Check) only requires that the verification key in a check can be given type VerKey(T) for
an untainted type T in order to give the result of the check type T . The condition that
T is untainted is crucial for the soundness of this rule, however we cannot add it directly
as a premise of the rule, since a negative premise of the form E 6` T :: tnt would break
the weakening property of the type system, which requires that judgments are stable
under environment extensions16. Instead we use the logical characterization of kinding
and update the type of the result variable with the union type {| fkind(E, T, tnt) |} ∨ T .
If T is not tainted, then this union type is equivalent to {| false |} ∨ T , which is in turn
equivalent to just T . If T is tainted, this union type is equivalent to > ∨ T , which is
in turn equivalent to >, and updating a variable to type > does not change anything
because our strong environment update constructs the intersection between the old and
the new type of the updated variable. This idea avoids negative statements and works
well in the setting of security despite compromise, where a type being untainted is usually
conditioned by certain participants not being compromised. Rule (Sinfer Dec) is very
similar, if we know that the encryption passed to the dec destructor has type PubEnc(T)
for some untainted T , then the decrypted term can be given type T . Similarly, rule
(Sinfer Enc) allows us to infer type information about the message inside an encryption
from the type of the whole encryption.

We illustrate rule (Sinfer Check) by returning to the simplified DAA protocol from §2.2
and examining in full detail how the statement-based inference judgment works on this
example. The typing environment at the point of the verification is Esdaa , while the
initial typing information about the witnesses of the zero-knowledge proof is Esdaa

0 .

Esdaa = Authenticate,OkTPM ,Send , ki : SigKey(Tki),Policysdaa , xz : Un

16 The negation of judgments is clearly not stable under environment extensions.

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 57

Esdaa
0 = xf : Un, xcert : Un, yvki : (VerKey(Tki) ∧ Un ∧ Un), ym : (Un ∧ Un)

The instance of the statement-based inference judgment looks as follows:

Esdaa , E
sdaa
0 , {true} ` yvki : VerKey(Tki) Esdaa ` Tki ok

Esdaa ` (Esdaa
0 , true)[xf : {| fkind(Esdaa , Tki , tnt) |} ∨ Tki] Esdaa

1 , Csdaa
1

Esdaa ` [|check(xcert , yvki) ; xf |]Esdaa
0 ,true ; Esdaa

1 , Csdaa
1

where the resulting environment Esdaa
1 and formula Csdaa

1 still need to be determined by
looking at the following strong environment update derivation.

Esdaa ` Un ## {| fkind(Esdaa , Tki , tnt) |} ∨ Tki ; false
supd(Esdaa

0 , xf ,Un, {| fkind(Esdaa , Tki , tnt) |} ∨ Tki , false) Esdaa
1

Esdaa ` (Esdaa
0 , true)[xf : {| fkind(Esdaa , Tki , tnt) |} ∨ Tki] Esdaa

1 , (true ∧ false)

We list the non-disjointness derivation below; when reading the derivation backwards we
first apply (ND Entails), (ND Sym) and (ND Or), then on the left branch we use the
derived rule (ND Forms Empty), while on the right branch we use the derived rules (ND
Refine) and (ND Private Un).

. . . Esdaa , x : {| fkind(Esdaa , Tki , tnt) |} ` false

Esdaa ` {| fkind(Esdaa , Tki , tnt) |} ## Un ; false

Esdaa ` Private ## Un ; false . . .

Esdaa ` Tki ## Un ; false

Esdaa ` {| fkind(Esdaa , Tki , tnt) |} ∨ Tki ## Un ; false ∨ false

Esdaa ` Un ## {| fkind(Esdaa , Tki , tnt) |} ∨ Tki ; false ∨ false

Esdaa ` Un ## {| fkind(Esdaa , Tki , tnt) |} ∨ Tki ; false

For applying (ND Forms Empty) in the derivation above we compute the value of
fkind(Esdaa , Tki , tnt) using the logical characterization of kinding from §2.4.5.

fkind(Esdaa , Tki , tnt)
= fkind(Esdaa , {xf : Private | OkTPM (xf)}, tnt)
= fkind(Esdaa ,Private, tnt) ∧ fentails(Esdaa , x

′
f : Private,OkTPM (x′f))

fkind(Esdaa ,Private, tnt)
= fkind(Esdaa ,Ch({x : Un | false}), tnt)
= fkind(Esdaa , {x : Un | false}, pub) ∧ fkind(Esdaa , {x : Un | false}, tnt)
= fkind(Esdaa , {x : Un | false}, pub) ∧ fkind(Esdaa ,Un, tnt) ∧ fentails((Esdaa , z : Un), false)
fentails((Esdaa , z : Un), false)
= ∀Authenticate,OkTPM ,Send , ki, xz, z.Policysdaa ⇒ false

The fentails((Esdaa , z : Un), false) conjunct allows us to derive false in an environment in
which Policysdaa holds, and Esdaa does contain Policysdaa . This together with the fact
that Private and Un are disjoint allows us to obtain that Csdaa

1 = true∧false. Furthermore,
by the definition of the auxiliary supd relation we obtain that

Esdaa
1 = xf : Un ∧ ({| fkind(Esdaa , Tki , tnt) |} ∨ Tki) ∧ {| false |},

xcert : Un ∧ {| false |},
yvki : (VerKey(Tki) ∧ Un ∧ Un) ∧ {| false |},
ym : (Un ∧ Un) ∧ {| false |}.

58 CHAPTER 2. ANALYZING PROTOCOL MODELS

The environment Esdaa , E
sdaa
1 , {Csdaa

1 } is inconsistent, corresponding to the intuition
that in this protocol successfully verified zero-knowledge proofs cannot really come from
the opponent. The checks in the (Proc Ver) typing rule

Esdaa , E
sdaa
1 , {Csdaa

1 } ` Send(xf , ym) ∧OkTPM (xf)
Esdaa , E

sdaa
1 , {Csdaa

1 } ` ym : Un

will therefore both succeed, which allows the type system to successfully type-check the
verification process in the simplified DAA protocol.

The remaining two rules in the statement-based inference judgment (Sinfer And) and
(Sinfer Or) deal with logical conjunctions and disjunctions in the zero-knowledge state-
ment by reflecting them as conjunctions and disjunctions between types. We define two
auxiliary judgments that combine two typing environments conjunctively or disjunc-
tively.

Combining environments: E1 ⊗ E2 ; E for ⊗ ∈ {∧,∨}

(Combine Empty)

∅ ⊗ ∅; ∅

(Combine Cons)
E1 ⊗ E2 ; E

(E1, x : T1)⊗ (E2, x : T2) ; E, x : (T1 ⊗ T2)

Since the entries in typing environments are themselves treated conjunctively, only E1 ∧
E2 ; E is fully precise, while E1 ∨ E2 ; E is just a sound approximation that loses
some precision. For instance given E1 = x : T1, y : U1 and E2 = x : T2, y : U2, if
we apply E1 ∨ E2 ; E we obtain the environment E = x : T1 ∨ T2, y : U1 ∨ U2, in
which the correlation between T1 and U1 is lost (provided that all involved types are
disjoint, if x has type T1 then it must be the case that y has type U1, while in this
case the result environment only gives us U1 ∨ U2 for y). This loss of precision in the
disjunctive case is partially offset by the way we have defined the strong environment
update judgment, which adds the non-disjointness information to all the entries in the
environment. This should explain why in the simplified DAA example above there were
four {| false |} conjuncts in Esdaa

1 .

While in rule (Sinfer Or) we simply infer typing information separately for each disjunct
and then just combine it, in rule (Sinfer And) we first use the initial typing information
to infer new information from each conjunct, we then use this inferred information as
input when performing the whole inference process again on the other conjunct, and only
in the end we combine the results. Propagating typing information between conjuncts is
necessary because some of our strong inference rules like (Sinfer Red), (Sinfer Check) and
(Sinfer Dec) rely on certain typing information being already present in the environment
in order to fire, and some of that information is often inferred from the other conjuncts.
Propagating this information in both directions ensures that the order in which the
conjuncts are processed does not essentially affect the precision of the final outcome.
This saves the user of our type system from having to manually arrange the conjuncts in

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 59

a way that respects all dependencies (at the cost of generating bigger types that express
all possible dependencies).

We illustrate how rule (Sinfer And) works on the certificate chain of length two example
from §2.3.2. The initial type information is captured by the environment

Echain2
0 = xvk : Un, xcert1 : Un, xcert2 : Un, yvk : Tvk ∧ Un ∧ Un, ym : Un ∧ Un,

where Tm = {x : Un | Good(x)}, Tvk2 = VerKey(Tm), and Tvk = VerKey(Tvk2). The
instance of (Sinfer And) looks as follows.

E ` [|check(xcert2 , xvk) ; ym|]Echain2
0 ,true ; E2, C2

E ` [|check(xcert1 , yvk) ; xvk |]E2,C2 ; E12, C12

E ` [|check(xcert1 , yvk) ; xvk |]Echain2
0 ,true ; E1, C1

E ` [|check(xcert2 , xvk) ; ym|]E1,C1 ; E21, C21 E12 ∧ E21 ; Echain2
1

E ` [|check(xcert1 , yvk) ; xvk ∧ check(xcert2 , xvk) ; ym|]Echain2
0 ,true ; Echain2

1 , (C12 ∧ C21)

We start by computing E2, C2 and E1, C1. Since the current type of xvk is just Un we
cannot apply rule (Sinfer Check) when inferring E2, C2, so we default to rule (Sinfer
Ident), which makes E2 = Echain2

0 and C2 = true. On the other hand, for inferring
E1, C1 we can apply rule (Sinfer Check) as follows.

E,Echain2
0 , {true} ` yvk : VerKey(Tvk2) E ` Tvk2 ok

E ` (Echain2
0 , true)[xvk : {| fkind(E, Tvk2 , tnt) |} ∨ Tvk2] E1, C1

E ` [|check(xcert1 , yvk) ; xvk |]Echain2
0 ,true ; E1, C1

The result of the strong environment update is obtained by rule (Strong Update).

E ` Un ## {| fkind(E, Tvk2 , tnt) |} ∨ Tvk2 ; Cnd

supd(Echain2
0 , xvk ,Un, {| fkind(E, Tvk2 , tnt) |} ∨ Tvk2 , Cnd) E1

E ` (Echain2
0 , true)[xvk : Tnew] E1, (true ∧ Cnd)

Since verification keys are always public, the types Un and Tvk2 are not disjoint, so we
obtain that Cnd = true by rule (ND True), and hence that C1 = true ∧ true. In E1 the
only significant change compared to Echain2

0 is for variable xvk .

E1 = xvk : Un ∧ ({| fkind(E, Tvk2 , tnt) |} ∨ Tvk2) ∧ {| true |},
xcert1 : Un ∧ {| true |}, xcert2 : Un ∧ {| true |},
yvk : Tvk ∧ Un ∧ Un ∧ {| true |},
ym : Un ∧ Un ∧ {| true |}

Since Tvk2 is not tainted the new type of xvk is equivalent to Un ∧ Tvk2 . This is crucial
for applying rule (Sinfer Check) when inferring E21, C21.

E,E1, {true ∧ true} ` xvk : VerKey(Tm) E ` Tm ok
E ` (E1, true ∧ true)[ym : {| fkind(E, Tm, tnt) |} ∨ Tm] E21, C21

E ` [|check(xcert2 , xvk) ; ym|]E1,true∧true ; E21, C21

60 CHAPTER 2. ANALYZING PROTOCOL MODELS

The result of the strong environment update is the following.

E ` Un ## {| fkind(E, Tm, tnt) |} ∨ Tm ; C ′nd
supd(E1, x,Un, {| fkind(E, Tm, tnt) |} ∨ Tm, C ′nd) E21

E ` (E1, true ∧ true)[x : {| fkind(E, Tm, tnt) |} ∨ Tm] E21, (true ∧ true ∧ C ′nd)

Since the type Tm is also public, it is not disjoint from Un, so we apply rule (ND True)
and obtain that C ′nd = true, and thus C21 = true ∧ true ∧ true. The typing environment
E21 gives a stronger type to ym and is equivalent to E1 on the other variables.

E21 = xvk : Un ∧ ({| fkind(E, Tvk2 , tnt) |} ∨ Tvk2) ∧ {| true |} ∧ {| true |},
xcert1 : Un ∧ {| true |} ∧ {| true |}, xcert2 : Un ∧ {| true |} ∧ {| true |},
yvk : Tvk ∧ Un ∧ Un ∧ {| true |} ∧ {| true |},
ym : Un ∧ Un ∧ {| true |} ∧ ({| fkind(E, Tm, tnt) |} ∨ Tm) ∧ {| true |}

Since ym already has a strong enough type, we simply apply (Sinfer Ident) for obtaining
E12 = Echain2

0 and C12 = true. Combining E12 and E21 into the final Echain2
1 does not

change anything significant compared to what we already had in E21.

Echain2
1 = xvk : Un ∧ Un ∧ ({| fkind(E, Tvk2 , tnt) |} ∨ Tvk2) ∧ {| true |} ∧ {| true |},

xcert1 : Un ∧ Un ∧ {| true |} ∧ {| true |}, xcert2 : Un ∧ Un ∧ {| true |} ∧ {| true |},
yvk : Tvk ∧ Un ∧ Un ∧ Tvk ∧ Un ∧ Un ∧ {| true |} ∧ {| true |},
ym : Un ∧ Un ∧ Un ∧ Un ∧ {| true |} ∧ ({| fkind(E, Tm, tnt) |} ∨ Tm) ∧ {| true |}

Most importantly, since Tm is not tainted the final type of ym is equivalent to Un ∧ Tm,
which allows us to transfer the predicate Good(ym) to the environment of the verifier.
Unlike in the simplified DAA example, the final environment Echain2

1 is consistent, so even
if the proof were to come from the opponent, the signature checks in the zero-knowledge
statement ensure that even if this is the case the predicate Good(ym) holds.

2.5. Machine-checked Robust Safety Proof

We have formalized our spi-calculus variant and our type system in the Coq proof as-
sistant, and have proved formally that the type system enforces robust safety17. We
remark that although this mechanized robust safety proof is still partial (the proofs of
some helper lemmas are not assert-free), the formalization of this type system is im-
portant, since the complexity of the system makes the proof non-trivial, tedious, and
error-prone. Indeed, this work has allowed us to discover several relatively small prob-
lems in the proofs of prior type systems with refinement types [FGM07a,BBF+08], as well
as our own previous manual proofs [BHM08c, BGHM09], and to propose and evaluate
fixes for the affected definitions and proofs.

17 Full disclosure: On 21st of December 2011 we have discovered a flaw affecting the weakening property
of this type system. We hope to fix this problem in future work.

2.5. MACHINE-CHECKED ROBUST SAFETY PROOF 61

Our formalization uses a locally nameless representation of binders [Gor93, ACP+08]:
free variables and free spi-calculus names are represented in a named way, while bound
variables and bound spi-calculus names are represented using de Bruijn indices [dB72].
As advertised by Aydemir et al. [ACP+08], in our formalization the inductive rules
are defined using cofinite quantification. This yields strong induction and inversion
principles for the relations of the system, and obviates the need for reasoning about
alpha-equivalence. While the locally nameless representation of binders and the cofinite
quantification avoid the difficulties associated with alpha-renaming and are very impor-
tant for the machine-checked proofs, for the sake of readability, in this section we will
continue using the more standard named representation of binders.

Our Coq formalization18 totals more than 16.9kLOC,19 out of which more than 2.9kLOC
are just definitions (our type system has more than 250 rules when also counting the
well-formedness judgements). We have used Ott [SNO+10] to generate a large part of
these definitions from a 1.7kLOC long Ott specification. We have used LNgen [AW10]
to generate an additional 37.9kLOC of infrastructure lemmas, which proved invaluable
when working with the locally nameless representation.

In the remainder of this section we present the high-level structure of the proofs and
briefly discuss the main theorems and lemmas. Figure 2.1 on page 62 lists the names
of the most important files in our Coq formalization, and displays the dependencies
between the proofs (transitive dependencies are omitted).

2.5.1. Basic Properties

For the sake of brevity, we use E ` J to denote any typing judgment (i.e., J ∈ {C, T ::
k, T <: U, T ## U ; C,M : T,D : T, P}).

The standard Weakening lemma states that all the judgments in our system are closed
under well-formed extension of the typing environment.

Lemma 2.4 (Weakening). If E,E′ ` J and ` E,µ,E′ ok then E,µ,E′ ` J .

The Tainted Entailed lemma proves that the formulas extracted out of tainted types
are entailed by the current typing environment. For instance if the refinement type
{x : Un | C} is tainted, then it has to be the case that the formula ∀x.C is entailed.
This property is used for proving Lemma 2.6 (Logical Subtyping), Lemma 2.10 (Tainted
Bound), Lemma 2.14 (Pub Down), Lemma 2.15 (Tnt Up), Lemma 2.24 (Non-disjoint
Tainted) and Lemma 2.25 (Non-disjoint).

Lemma 2.5 (Tainted Entailed). If E ` T :: tnt and x /∈ dom(E) then E ` ∀x. formsx(T).

18Available at http://www.infsec.cs.uni-saarland.de/projects/zk-typechecker/
19All code size figures include whitespace and comments.

http://www.infsec.cs.uni-saarland.de/projects/zk-typechecker/

62 CHAPTER 2. ANALYZING PROTOCOL MODELS

Basic

Weakening

BoundWeakening

Formulas

Destructors

NonDisjoint

RobustSafety

Exchange

OkStrengthening

GeneralizedBoundWeakening

InconsistentEnv

Inversion

SubstitutionTransitivity

Kinding

TaintedBound

LogicalKinding

MultiBoundChange

OpponentTypability

SubjectReduction

ZeroKnowledge

Figure 2.1.: Dependency graph of the most important results in our Coq formalization
(transitive dependencies are omitted)

2.5. MACHINE-CHECKED ROBUST SAFETY PROOF 63

The Logical Subtyping lemma shows that if T1 is a subtype of T2 then the formulas
extracted out of T2 are implied by the formulas from T1. For instance if {x : Un | C1}
is a subtype of {x : Un | C2} then it must be the case that the formula ∀x.C1 ⇒ C2 is
entailed by the environment. This result is used for proving Lemma 2.7 (Formulas) and
Lemma 2.9 (Bound Weakening).

Lemma 2.6 (Logical Subtyping).
If E ` T1 <: T2 and x /∈ dom(E) then E, x : T1 ` formsx(T2).

The Formulas lemma states that the formulas extracted from any type T hold when
instantiated with any term having type T . This is useful for proving Lemma 2.12 (Sub-
stitution) for the entailment judgment, as well as for showing the soundness of rules (ND
Gen) and (ND Forms And Type) in Lemma 2.25 (Non-disjoint).

Lemma 2.7 (Formulas). If E `M : T and y /∈ dom(E) then E ` (formsy(T)){M/y}.

An important property of our type system is that typing becomes trivial if the envi-
ronment becomes inconsistent. In an inconsistent environment all well-formed types are
both public and tainted, so by (Sub Pub Tnt) all well-formed types are equivalent, any
well-formed term or destructor has any well-formed type, and any well-formed process
is also well-typed.

Lemma 2.8 (Inconsistent Environment). If E ` false and all components of J are well
formed in E then E ` J .

The Bound Weakening lemma allows to replace a variable binding x : T , with another
one x : T ′ in any judgment, provided that T ′ is a subtype of T . Note, that the direction
of subtyping is reversed with respect to (Term Subsum) since the typing environment
stores premises, and making the premises stronger weakens the judgment as a whole.

Lemma 2.9 (Bound Weakening).
If E ` T ′ <: T and E, x : T,E′ ` J then E, x : T ′, E′ ` J .

In case the type U in a variable binding x : U is tainted, we can replace it with any other
type, not just subtypes of U like in Lemma 2.9 (Bound Weakening). By Lemma 2.5
(Tainted Entailed) we know that the formulas extracted from U are entailed by the
preceding environment entries, so we use the (Cut) and (Mon) properties of the autho-
rization logic to obtain this result.

Lemma 2.10 (Tainted Bound).
If E, x : U,E′ ` T :: k and E ` U :: tnt and E ` U ′ ok then E, x : U ′, E′ ` T :: k.

Similarly, we can remove environment entries {C} if the formula C is entailed by the
preceding environment entries.

Lemma 2.11 (OK Strengthening). If E, {C}, E′ ` J and E ` C then E,E′ ` J .

64 CHAPTER 2. ANALYZING PROTOCOL MODELS

The Substitution lemma does a type-preserving substitution of a variable not only in
the right-hand-side of a judgment, but also in the succeeding environment entries (this
is necessary because of type dependencies).

Lemma 2.12 (Substitution).
If E, x : T,E′ ` J and E ` N : T then E, (E′{N/x}) ` (J {N/x}).

Finally, the Exchange lemma allows us to swap independent environment bindings.

Lemma 2.13 (Exchange). If E,µ1, µ2, E
′ ` J and ` E,µ2, µ1 ok then E,µ2, µ1, E

′ ` J .

2.5.2. Transitivity of Subtyping

Transitivity of subtyping depends on the following relatively standard lemmas [BBF+08].

Lemma 2.14 (Pub Down). If E ` T <: T ′ and E ` T ′ :: pub then E ` T :: pub.

Lemma 2.15 (Tnt Up). If E ` T <: T ′ and E ` T :: tnt then E ` T ′ :: tnt.

Lemma 2.16 (Public). E ` T :: pub if and only if E ` T <: Un.

Lemma 2.17 (Tainted). E ` T :: tnt if and only if E ` Un <: T .

The transitivity proof requires generalizing the induction hypothesis to handle con-
travariant type constructors and dependent types. For the latter we extend the subtyping
relation to environments using the following judgment:

Subtyping Environments: E′ <: E

∅ <: ∅
E <: E′

E,µ <: E′, µ

E <: E′ E ` T <: T ′

E, x : T <: E′, x : T ′

Lemma 2.18 (Transitivity Generalized).
For all E, T1 and T2 so that E ` T1 <: T2 we have that:

1. for all T3 and E′ so that E′ <: E and E′ ` T2 <: T3 we have that E′ ` T1 <: T3;

2. and for all T3 and E′ so that E′ <: E and E′ ` T3 <: T1 we have that E′ ` T3 <: T2.

Corollary 2.19 (Transitivity of Subtyping).
If E ` T1 <: T2 and E ` T2 <: T3 then E ` T1 <: T3.

2.5. MACHINE-CHECKED ROBUST SAFETY PROOF 65

2.5.3. Logical Characterization of Kinding

We have proved that our logical characterization of kinding (§2.4.5) is sound and com-
plete with respect to our inductive kinding judgement (§2.4.4). As an intermediate
step we show that our logical characterization of entailment is sound and complete.
These proofs crucially rely on the use of second-order quantifiers in the definition of
fentails(E,C) to ensure that each entailment check is independent from the others.

Lemma 2.20 (Soundness of fentails). If E ` C then |= fentails(E,C).

Lemma 2.21 (Completeness of fentails). If E ` C ok and |= fentails(E,C) then E ` C.

Lemma 2.22 (Soundness of fkind). If E ` T :: k then |= fkind(E, T, k).

Lemma 2.23 (Completeness of fkind). If E ` T ok and |= fkind(E, T, k) then E ` T :: k.

2.5.4. Non-disjointness of Types

We start by proving that the formula obtained for two tainted types by the non-
disjointness judgment is entailed by the typing environment.

Lemma 2.24 (Non-disjoint Tainted).
If E ` T ## U ; Cnd and E ` T :: tnt and E ` U :: tnt then E ` Cnd .

More importantly, the Non-disjoint lemma provides the characteristic property of the
non-disjointness judgement from §2.4.6. It states that if the non-disjointness judgement
says that types T1 and T2 overlap in environment E implies formula Cnd (E ` T1 ## T2 ;
Cnd) and we can find a closed term M that inhabits both T1 and T2, then the formula
Cnd is indeed entailed by E.

Lemma 2.25 (Non-disjoint).
If E ` T1 ## T2 ; Cnd and E `M : T1 and E `M : T2 and fv(M) = ∅ then E ` Cnd .

2.5.5. Destructor Consistency

One crucial step for the subject-reduction proof is proving type preservation for the
destructor reduction relation. This relies on a very large number of syntactic inversion
lemmas. Proving consistency is particularly challenging for asymmetric cryptography
(the check and dec destructors) because of the permissive kinding and subtyping rules
for the involved types.

Lemma 2.26 (Check consistent).
For all closed terms N and K such that E ` sign(N,K) : Signed(T) and E ` vk(K) :
VerKey(T) we have that E ` N : T .

66 CHAPTER 2. ANALYZING PROTOCOL MODELS

Lemma 2.27 (Dec consistent).
For all closed terms N and K such that E ` enc(N, ek(K)) : PubEnc(T) and E ` K :
DecKey(T) we have that E ` N : T .

Lemma 2.28 (SDec consistent).
For all closed terms N and K such that E ` senc(N,K) : U and E ` K : SymKey(T)
we have that E ` N : T .

Lemma 2.29 (Destructor Consistency).
For all closed destructors D such that D ⇓ N and E ` D : T we have E ` N : T .

2.5.6. Zero-knowledge

The correctness proof of the statement-based inference judgement from §2.4.9 requires a
fairly sophisticated inductive invariant. The judgement E ` [|B|]Eold ,Cold

; Enew , Cnew

takes B , the basic formula of the statement we are verifying, and an initial typing en-
vironment E,Eold , {Cold}, and infers a new typing environment E,Enew , {Cnew}. We
require that the basic formula B is well-formed in environment E,Eold , but only ref-
erences variables in Eold , i.e., it only references the arguments of the zero-knowledge
proof we are verifying. We also require that Eold is a special well-formed environment
extension of E (judgement E ` Eold spec in §2.4.9), which implies that Eold only con-
tains variable bindings, that Eold does not have any dependencies to itself, and that the
compound environment E,Eold is well-formed. We also require that all the arguments
of the zero-knowledge proof M̃ have type Un20 and additionally have the types listed in
Eold . The latter requirement is formalized by the E ` M̃ : E′ judgement below.

Closed terms M̃ have the types in E′: E ` M̃ : E′

(TE Empty)

E ` ∅ : ∅

(TE Cons)

E ` M̃ : E′ E `M : T ∅ `M ok

E ` (M̃,M) : (E′, x : T)

Finally, we require that the formula Cold and the basic formula B21 both hold for ar-
guments M̃ . If all these requirement hold, Lemma 2.30 (Statement-based Inference
Correct) proves that the inferred environment Enew has exactly the same bindings as

Eold (formalized by the E1 ' E2 judgement below), that the arguments M̃ also have the
new types in Enew , and that the formula Cnew holds for these arguments.

20 This assumption is justified since the statement-based inference judgement is only used to deal with
the case when the zero-knowledge proof was created by an opponent.

21 The basic formula B of the zero-knowledge statement can be assumed to hold since statement-based
inference is only used to deal with the case when the zero-knowledge verification succeeds.

2.5. MACHINE-CHECKED ROBUST SAFETY PROOF 67

Environments with the same variable bindings: E1 ' E2

(EE Empty)

∅ ' ∅

(EE Cons)
E1 ' E2

E1, x : T1 ' E2, x : T2

Lemma 2.30 (Statement-based Inference Correct). If E ` [|B|]Eold ,Cold
; Enew , Cnew

and E,Eold ` B ok and fv(B) ⊆ dom(Eold) and E ` Eold spec and E ` M̃ : Ũn and

E ` M̃ : Eold and E ` Cold{M̃/Eold} and B{M̃/Eold} valid then Eold ' Enew and

E ` M̃ : Enew and E ` Cnew{M̃/Eold}.

2.5.7. Subject-reduction

Type preservation constitutes an important step towards proving Theorem 2.34 (Safety).
We show that both structural equivalence and reduction preserve typing.

Lemma 2.31 (Structural Equivalence Preserves Typing).
If E ` P and P ≡ P ′ then E ` P ′

Theorem 2.32 (Reduction Preserves Typing).
If fv(P) = ∅ and E ` P and P → P ′ then E ` P ′

2.5.8. Robust Safety

We call E an opponent environment if all names and variables in E are associated type
Un. For the Opponent Typability lemma we require that the process P is a well-formed
possibly-open opponent (i.e., a well-formed process without any assert and for which all
restrictions are annotated with Un) in an opponent environment.

Lemma 2.33 (Opponent Typability).
If E is an opponent environment and E ` P opp then E ` P

The proof of the Safety theorem uses Theorem 2.32 (Reduction Preserves Typing) and
Lemma 2.31 (Structural Equivalence Preserves Typing).

Theorem 2.34 (Safety).
If E is of the form a1 : T1, . . . , an : Tn, and E ` P then P is safe.

Finally, the Robust Safety theorem follows immediately from Lemma 2.33 (Opponent
Typability) and Theorem 2.34 (Safety).

Theorem 2.35 (Robust Safety).
If E is of the form a1 : Un, . . . , an : Un, and E ` P then P is robustly safe.

68 CHAPTER 2. ANALYZING PROTOCOL MODELS

2.6. Case Study: Achieving Security Despite Compromise
Using Zero-knowledge

An important challenge when designing and analyzing cryptographic protocols is the
enforcement of security properties in the presence of compromised participants. In
the setting of logic-based authorization policies, the notion of “security despite com-
promise” [FGM07a] captures the intuition that an invalid authorization decision by an
uncompromised participant should only arise if participants on which the decision logi-
cally depends are compromised. The impact of participant compromise should be thus
apparent from the authorization policy, without having to study the details of the pro-
tocol.

Zero-knowledge proofs are a natural candidate for strengthening protocols so that they
achieve security despite compromise, since they allow the participants to prove that
they correctly generated the messages they send, without revealing any secret data. In
another work [Gro09, BGHM09], we have introduced a general technique for strength-
ening cryptographic protocols in order to satisfy authorization policies despite partici-
pant compromise. We automatically transform the original cryptographic protocols by
adding non-interactive zero-knowledge proofs, so that each participant proves that the
messages sent to the other participants are generated in accordance to the protocol. The
zero-knowledge proofs are forwarded to ensure the correct behavior of all participants
involved in the protocol, without revealing any secret data. Moreover, the transforma-
tion automatically derives type annotations for the strengthened protocol from the type
annotations of the original protocol.

We use our type-checker for zero-knowledge to validate the protocols produced by this
transformation. This use case has motivated some of the important design decisions
in our type system. Most importantly, as explained in §1.1 and §2.4.9, our technique
for type-checking zero-knowledge crucially relies on honest provers being type-checked,
and on honest verifiers being able to infer that a proof comes from an honest prover by
deducing that one of the witnesses of the proof has a type whose values are not known
to the attacker. In the setting of security despite compromise though, all this reasoning
has to be conditioned by certain participants being indeed honest.

In order to address this challenge our type system has no unconditionally secure types.
Instead, we use logical formulas that precisely characterize when a type is compromised
(see §2.4.5). We use refinement types that contain such logical formulas together with
union types to express type information that is conditioned by a participant not being
compromised. Such conditional types are inferred automatically by the statement-based
inference judgment from §2.4.9.

In the remainder of this section we illustrate the transformation from [BGHM09] by
means of a simple example, and we explain how our type system handles the original
protocol and, more interestingly, the protocol generated by the transformation.

2.6. CASE STUDY: ACHIEVING SECURITY DESPITE COMPROMISE 69

2.6.1. Illustrative Example

As a running example, we consider a simple protocol involving a user, a proxy, and an
online store. This is inspired by a protocol proposed by Fournet et al. [FGM07a]. The
main difference is that we use asymmetric cryptography in the first message, while the
original protocol uses symmetric encryption.

User Proxy Store

assume Request(u, q)

sign(enc((q,p),ek(kPE)),kU) //

assume Registered(u)

sign(enc((u,q),ek(kS)),kPS) //

assert Authenticate(u, q)

In this protocol, the user u sends a query q and a password p to the proxy. This data
is first encrypted with the public key ek(kPE) of the proxy and then signed with u’s
signing key kU . The proxy verifies the signature and decrypts the message, checks that
the password is correct, and sends the user’s name and the query to the online store.
This data is first encrypted with the public key ek(kS) of the store and then signed with
the signing key kPS of the proxy.

The protocol is decorated with two assumptions and one assertion: the assumption
Request(u, q) states that the user u is willing to send a query q, the assumption
Registered(u) states that the user u is registered in the system, and the assertion
Authenticate(u, q) states that the store authenticates the query q sent by user u.

The goal of this protocol is that the online store authenticates the query q as coming
from u only if u has indeed sent query q and u is registered in the system. This is
formulated as the following authorization policy:

∀u, q. Request(u, q) ∧ Registered(u)⇒ Authenticate(u, q) (2.1)

We want Authenticate(u, q) to be entailed in all executions of the protocol that reach the
assert. Since the only way to obtain this predicate is by using policy (2.1), which only
applies if the assertions Request(u, q) and Registered(u) have been previously executed,
this policy enforces that the store authenticates q only if a registered user requested q.

Typing the Original Protocol (Uncompromised Setting)

We illustrate our type system on this protocol. Since the query q the user sends to
the proxy is not secret, but authentic, we give it type {xq : Un | Request(u, xq)}. The

70 CHAPTER 2. ANALYZING PROTOCOL MODELS

password p is of course secret and is given type Private. The payload sent by the user,
the pair (q, p), can therefore be typed to T1 = Pair({xq : Un | Request(u, xq)},Private).
The public key of the proxy ek(kPE) is used to encrypt messages of type T1 so we give
it type EncKey(T1). Similarly, the signing key of the user kU is used to sign the term
enc((q, p), ek(kPE)), so we give it the type SigKey(PubEnc(T1)), while the corresponding
verification key vk(kU) has type VerKey(PubEnc(T1)). Once the proxy verifies the signa-
ture using vk(kU), decrypts the result using kPE, and splits the pair into q and p it can
be sure not only that q is of type Un and p is of type Private, but also that Request(u, q)
holds, i.e., the user has indeed issued a request.

In a very similar way, the signing key of the proxy kPS is given type SigKey(PubEnc(T2)),
where T2 is the dependent pair type 〈xu : Un, xq : Un〉{Request(xu, xq)∧Registered(xu)},
which conveys the conjunction of two logical predicates. If the store successfully checks
the signature using vk(kPS) the resulting message will have type PubEnc(T2). Since kS
has type DecKey(T2) it can be used to decrypt this message and obtain the user name
u and the query q, for which Request(u, q) ∧ Registered(u) holds. By the authorization
policy given above, this logically implies Authenticate(u, q). The authentication request
is thus justified by the policy, so if all participants are honest the original protocol is
secure (i.e., robustly safe with respect to authorization policy (2.1)).

2.6.2. Compromising Participants

We now investigate what happens if some of the participants are compromised. We
model the compromise of a participant v by (a) revealing all her secrets to the attacker;
(b) removing the code of v, since it is controlled by the attacker; and (c) introducing the
assumption Compromised(v). Since the attacker can impersonate v and send messages
on her behalf without assuming any predicate, we make the convention that for each
assumption F in the code of v we have a rule of the form Compromised(v) ⇒ ∀x̃.F in
the authorization policy. In our example we have two such additional rules:

Compromised(proxy)⇒ ∀u.Registered(u). (2.2)

Compromised(user)⇒ ∀q.Request(u, q) (2.3)

With these additional rules the protocol is robustly safe even when the user is com-
promised, since the only way for the attacker to interact with the honest proxy is to
follow the protocol and, by impersonating the user, to authenticate a query with a valid
password. This is, however, harmless since the attacker is just following the protocol.
The protocol is vacuously safe if the store is compromised, since no assertion has to be
justified; moreover, it is safe if both the proxy and the user are compromised, since in
this case the two hypotheses of (2.1) are always entailed.

Therefore the only interesting case is when the proxy is compromised and the other
participants are not. In this case, we introduce the assumption Compromised(proxy),
which by (2.2) implies that ∀u.Registered(u). Still, the compromised proxy might send

2.6. CASE STUDY: ACHIEVING SECURITY DESPITE COMPROMISE 71

a message to the store without having received any query from the user, which would
lead to an Authenticate(u, q) assertion that is not logically entailed by the preceding
assumptions. Notice that the only way to infer Authenticate(u, q) is using (2.1), and this
requires that both Request(u, q) and Registered(u) hold. However, since the user did not
issue a request, the Request(u, q) predicate is not entailed in the system.

As suggested in [FGM07a], we could document the attack by weakening the authorization
policy. This could be achieved by introducing a new rule stating that if the proxy is
compromised, then ∀u, q. Request(u, q) holds. We take a different approach and, instead
of weakening the authorization policy and accepting the attack, we propose a general
methodology to strengthen any protocol so that such attacks are prevented [BGHM09].
In §2.6.3 we strengthen our example protocol and use our type system for zero-knowledge
to analyze the strengthened version.

Adjusting Types for Compromise Scenarios

As explained above, when a participant v is compromised all its secrets are revealed to
the attacker and the predicate Compromised(v) is added to the environment. However,
we need to make the types of p’s secrets public, in order to be able to reveal them to
the attacker. For instance, in our running example, when compromising the proxy the
type of the decryption key kPE needs to be made public. However, once we replace the
type annotation of this key from DecKey(T1) to Un, other types need to be changed
as well. The type of the signing key of the user kU is used to sign an encryption
done with ek(kPE), so one could change the type of kU from SigKey(PubEnc(T1)) to
SigKey(PubEnc(Un)), which is actually equivalent to Un. This type would be, however,
weaker than necessary. The fact that the store is compromised does not affect the fact
that the user assumes Request(u, q), so we can give kU type SigKey(PubEnc(T ′1)), where
T ′1 = Pair({xq : Un | Request(u, xq)},Un). Similar changes need to be done manually
for the other type annotations, resulting in a specification that differs from the original
uncompromised one only with respect to the type annotations.

However, having two different specifications that need to be kept in sync would be error
prone. As proposed by Fournet et al. [FGM07a], we use only one set of type annotations
for both the uncompromised and the compromised scenarios, containing types that are
secure only under the condition that certain participants are uncompromised.

Typing the Original Protocol (Compromised Setting)

We illustrate this on our running example. The type of the payload sent by the user,
which used to be T1 = Pair({xq : Un | Request(u, xq)},Private), is now changed to
T ∗1 = Pair({xq : Un | Request(u, xq)},PrivateUnless(P)). In the uncompromised setting
¬Compromised(proxy) is entailed in the system, type PrivateUnless(P) is equivalent to
Private, and T ∗1 is equivalent to T1. However, if the proxy is compromised then the

72 CHAPTER 2. ANALYZING PROTOCOL MODELS

predicate Compromised(proxy) is entailed, PrivateUnless(P) is equivalent to Un and T ∗1
is equivalent to T ′1. Using this we can give kU type SigKey(PubEnc(T ∗1)) and kPE type
DecKey(T ∗1).

In the uncompromised setting, the payload sent by the proxy has type T2 = 〈xu :
Un, xq : Un〉{Request(xu, xq)∧Registered(xu)}. However, once the proxy is compromised,
the attacker can replace this payload with a message of his choice, so the type of this
payload becomes Un. In order to be able to handle both scenarios we give this payload
the union type T ∗2 = {x : T2 | ¬Compromised(proxy)} ∨ {x : Un | Compromised(proxy)}.
The types of kPS and kS are updated accordingly.

With these changed annotations in place we can still successfully type-check the example
protocol in the case all participants are honest, but in addition we can also try to check
the protocol in case some of the participants are compromised. If only the proxy is com-
promised type-checking will, however, fail, since the store is going to obtain a payload of
type T ∗2 . Since the proxy is compromised, T ∗2 is equivalent to Un, and provides no guar-
antees that could justify the authentication of the request. This is not surprising since,
as explained above, the original protocol is not secure if the proxy is compromised.

2.6.3. Strengthened Protocol

The central idea of our technique [Gro09,BGHM09] is to replace each message exchanged
in the protocol with a non-interactive zero-knowledge proof showing that the message
has been correctly generated. Additionally, zero-knowledge proofs are forwarded by each
participant in order to allow the others to independently check that all the participants
have followed the protocol. For instance, the protocol considered before is transformed
as follows:

User Proxy Store

ZK 1
//

ZK 1,ZK 2
//

S1 , witness α1, α2 public β1, β2, β3, β4 in β4 = enc((α1, α2), β2) ∧ check(β3, β1) ; β4

ZK 1 , zkS1

(α1,α2︷︸︸︷
q, p ;

β1︷ ︸︸ ︷
vk(kU),

β2︷ ︸︸ ︷
ek(kPE),

β3︷ ︸︸ ︷
sign

(
enc
(
(q, p), ek(kPE)

)
, kU

)
,

β4︷ ︸︸ ︷
enc
(
(q, p), ek(kPE)

))
S2 , witness α1, α2, α3 public β1, β2, β3, β4, β5, β6, β7, β8, β9 in check(β5, β4) ; β9

∧dec(β9, α3) ; (α1, α2) ∧ β3 = ek(α3) ∧ β7 = enc((β8, α1), β2) ∧ check(β6, β1) ; β7

ZK 2 , zkS2

(α1,α2,α3︷ ︸︸ ︷
q, p, kPE ;

β1︷ ︸︸ ︷
vk(kPS),

β2︷ ︸︸ ︷
ek(kS),

β3︷ ︸︸ ︷
ek(kPE),

β4︷ ︸︸ ︷
vk(kU),

β5︷ ︸︸ ︷
sign

(
enc
(
(q, p), ek(kPE)

)
, kU

)
,

β6︷ ︸︸ ︷
sign

(
enc
(
(u, q), ek(kS)

)
, kPS

)
,

β7︷ ︸︸ ︷
enc
(
(u, q), ek(kS)

)
,

β8︷︸︸︷
u ,

β9︷ ︸︸ ︷
enc
(
(q, p), ek(kPE)

))

2.6. CASE STUDY: ACHIEVING SECURITY DESPITE COMPROMISE 73

The first zero-knowledge proof states that the message sign
(
enc
(
(q, p), ek(kPE)

)
, kU

)
sent

by the user complies with the protocol specification: the verification of this message with
the user’s verification key succeeds (check(β3, β1) ; β4) and the result is the encryption
of the query and the password with the proxy’s encryption key (β4 = enc((α1, α2), β2)).
We model proofs of knowledge, so the user proves to know the secret query α1 and the
secret password α2, not just that they exist.

The public arguments of the proof were all public in the original protocol. The query
and the password are witnesses since they were encrypted in the original protocol and
could be secrets22. Furthermore, notice that the statement S1 simply describes the
operations performed by the user, except for the signature generation which is replaced
by the signature verification (this is necessary to preserve the secrecy of the signing
key). In general, the statement of the generated zero-knowledge proof is computed as
the conjunction of the individual operations performed to produce the output message.

The second zero-knowledge proof states that the message β5 received from the user com-
plies with the protocol, i.e., it is the signature (check(β5, β4) ; β9)) of an encryption of
two secret terms α1 and α2 (dec(β9, α3) ; (α1, α2)). The zero-knowledge proof addition-
ally ensures that the message β6 sent by the proxy is the signature (check(β6, β1) ; β7)
of an encryption of the user’s name and the query α1 received from the user (β7 =
enc((β8, α1), β2)). The statement S2 guarantees that the query α1 signed by the user is
the same as the one signed by the proxy. Also notice that the proof does not reveal the
secret password α2 received from the user.

The resulting protocol is secure despite compromise, since a compromised proxy can no
longer cheat the store by pretending to have received a query from the user. The query
will be authenticated only if the store can verify the two zero-knowledge proofs sent by
the proxy, and the semantics of these proofs ensures that the proxy is able to generate
a valid proof only it has previously received the query from the user.

Typing the Strengthened Protocol (Compromised Setting)

We use our type system to show that the automatically strengthened protocol above is
robustly safe with respect to its original authorization policy (2.1, 2.2, and 2.3). The
zero-knowledge proof ZK 1 sent by the user to the proxy in the strengthened protocol,
which was defined above as:

zkS1

(α1,α2︷︸︸︷
q, p ;

β1︷ ︸︸ ︷
vk(kU),

β2︷ ︸︸ ︷
ek(kPE),

β3︷ ︸︸ ︷
sign

(
enc
(
(q, p), ek(kPE)

)
, kU

)
,

β4︷ ︸︸ ︷
enc
(
(q, p), ek(kPE)

))
22We need to ensure that no secret messages are leaked by the transformation, at least in case all

participants are honest.

74 CHAPTER 2. ANALYZING PROTOCOL MODELS

where S1 = witness α1, α2 public β1, .., β4 in β4 = enc((α1, α2), β2) ∧ check(β3, β1) ; β4,
is given type:

ZKProofS1

(
β1:VerKey(PubEnc(T ∗1)), β2:EncKey(T ∗1),
β3:Signed(PubEnc(T ∗1)), β4:PubEnc(T ∗1); ∃α1, α2.C1

)
where C1 = (β4 = enc((α1, α2), β2) ∧ check(β3, β1) ; β4 ∧ Request(u, α2)). The first two
conjuncts in C1 directly correspond to the statement S1. It is always safe to include the
proved statement in the formula being conveyed by the zero-knowledge type (rule (Sinfer
Stmt)), since the verification of the proof succeeds only if the statement is valid.

However, very often conveying the statement alone does not suffice to type-check the
examples we have tried, since the statement only talks about terms and does not mention
any logical predicate. The predicates are dependent on the particular protocol and policy,
and are automatically inferred by the transformation. For instance, in our running
example the original message from the user to the proxy was conveying the predicate
Request(u, q), so this predicate is added by the transformation to the formula C1. Our
type-checker verifies that these additional predicates are indeed justified by the statement
and by the types of the public components checked for equality by the verifier of the
proof.

We illustrate this by type-checking the store in the strengthened protocol in case the
proxy is compromised. We start with ZK 1, the zero-knowledge proof created by the
user, intended to be forwarded by the (actually compromised) proxy and then verified
by the store. The first two public messages in ZK 1, vk(kU) and ek(kPE), are checked
for equality against the values the store already has. If the verification of ZK 1 succeeds,
the store knows that β1 and β2 have indeed type VerKey(PubEnc(T ∗1)) and EncKey(T ∗1),
respectively. However, since the proof is received from an untrusted source, it could
have been generated by the attacker, so the other public arguments, β3 and β4, and the
witnesses α1 and α2 are initially given type Un. Using this initial type information and
the fact that the statement’s formula β4 = enc((α1, α2), β2) ∧ check(β3, β1) ; β4 holds,
the type-checker tries to infer additional information.

Since β1 has type VerKey(PubEnc(T ∗1)) and check(β3, β1) ; β4 holds, we use rule (Sinfer
Check) to infer that β4 has type {| fkind(E,PubEnc(T ∗1), tnt) |} ∨ PubEnc(T ∗1), i.e., β4
has type PubEnc(T ∗1) under the condition that the type PubEnc(T ∗1) is not tainted. If
this type was tainted then the type VerKey(PubEnc(T ∗1)) would be equivalent to Un.
However, this is not the case since the user is not compromised. So the new type
inferred for β4 is equivalent to ⊥ ∨ PubEnc(T ∗1) and therefore to PubEnc(T ∗1). Since β4
also has type Un from before, the most precise type we can give to it is the intersection
type PubEnc(T ∗1) ∧ Un. Since PubEnc(T ∗1) is public this happens to be equivalent to
just PubEnc(T ∗1). Since β4 has type PubEnc(T ∗1) and β4 = enc((α1, α2), β2) we can
infer by (Sinfer Enc) that (α1, α2) has type {| fkind(E, T ∗1 , tnt) |} ∨ T ∗1 . Since the user
is not compromised fkind(E, T ∗1 , tnt) is false so (α1, α2) has type T ∗1 . This implies that
the predicate Request(u, α2) holds, and thus justifies the type annotation automatically
generated by the transformation.

2.7. CASE STUDY: DIRECT ANONYMOUS ATTESTATION (DAA) 75

The proof ZK 2 is easier to type-check since its type just contains the formula of S2,
but no additional predicates. This means that its successful verification only conveys
certain relations between terms. These relations are, however, critical for linking the
different messages. Most importantly, they ensure that the query received in ZK 2 is the
same as variable α2 in ZK 1 for which Request(u, α2) holds by the verification of ZK 1, as
explained above. Since the proxy is compromised the predicate Registered(u) holds. So
in the strengthened protocol the authentication decision of the store is indeed justified
by the authorization policy, even if the proxy is compromised.

2.7. Case Study: Direct Anonymous Attestation (DAA)

To exemplify the applicability of our type system to real-world protocols, we have mod-
eled and analyzed the authenticity properties of the Direct Anonymous Attestation pro-
tocol (DAA) [BCC04]. DAA is a cryptographic protocol that enables the remote au-
thentication of a hardware module called the Trusted Platform Module (TPM), while
preserving the anonymity of the user owning the module. Such TPMs are included in
many personal computers and servers. More precisely, the goal of the DAA protocol
is to enable the TPM to sign arbitrary messages and to send them to an entity called
the verifier in such a way that the verifier will only learn that a valid TPM signed that
message, but without revealing the TPM’s identity. The DAA protocol relies heavily on
zero-knowledge proofs to achieve this kind of anonymous authentication.

The DAA protocol is composed of two sub-protocols: the join protocol and the DAA-
signing protocol. The join protocol allows a TPM to obtain a certificate from an entity
called the issuer. The DAA-signing protocol enables a TPM to authenticate a message
and to prove the verifier to own a valid certificate without revealing the TPM’s identity.
The protocol ensures that even the issuer cannot link the TPM to its subsequently
produced DAA-signatures.

Every TPM has a unique identifier id as well as a key-pair (kid , ek(kid)) called endorse-
ment key (EK). The issuer is assumed to know the public component ek(kid) of each
EK. The protocol further assumes the existence a publicly known string bsnI called the
basename of the issuer. Every TPM has a secret seed daaseed that allows it to derive
secret values f := shash(〈shash(〈daaseed , hash(lpk I)〉), cnt , n0〉), where lpk I is the long-
term public key of the issuer, cnt is a counter, and n0 is the integer 0. Each such f-value
represents a virtual identity with respect to which the TPM can execute the join protocol
and the DAA-signing protocol. Secret hashes shash(M) are given type SHash(T), which
is neither public nor tainted, unless T is compromised (see Appendix A).

In order to prevent the issuer from learning f-values, DAA relies on blind signatures
[Cha83]. The idea is that the TPM sends the disguised (i.e., blinded) f-value blind(f, r),
where r is a random blinding factor, to the issuer, which then produces the blind signa-
ture bsign(blind(f, r), kI). The TPM can later unblind the signature obtaining a signature

76 CHAPTER 2. ANALYZING PROTOCOL MODELS

usign(f, kI) of the f-value, which can be publicly verified. The unblinding of blind signa-
tures is done by the unblind destructor, while the verification of the unblinded signature
is done by the bcheck destructor. The type Blinder(T) describes a blinding factor for
messages of type T , Blinded(T) describes blinded messages of type T , BSigKey(T, z. C)
and BVerKey(T, z. C) describe blind signing and verification keys for messages of type
{z : Blinded(T) | C}, and USigned(T) describes unblinded signatures of messages of type
T . Our formalization and proofs include blind signatures and secret hashes. For more
details we refer the interested reader to Appendix A.

Table 2.1 reports the process for the DAA system. For the sake of readability we use
if D ⇓ 〈x1, . . . , xn〉 then P else Q to denote the process if D ⇓ z then let 〈x1, . . . , xn〉 =
z in P else Q, where z is a fresh variable.

2.7.1. The Join Protocol

In the join protocol, the TPM requests a certificate for one of its f-values f from the
issuer. The join protocol has the following overall shape:

TPM/Host Issuer

assume OKTPM(hash(〈ζI , f〉))
zkSjoin

(f,v; id ,blind(f,v),hash(〈ζI ,f〉),ζI) //

assume JOIN(id , blind(f, v))
auth. ch.

id , blind(f,v) //

assert CERTIFIED(id , blind(f, v))

oo bsign(blind(f,v),kI)

assert JOINED(id , f, blind(f, v))

The TPM sends to the issuer the blinded f-value blind(f, v), for some random blinding
factor v. The TPM is also required to send the hash value hash

(
〈ζI , f〉

)
along with its

request, where ζI is a value derived from the issuer’s basename bsnI . This message is
used in a rogue-tagging procedure allowing the issuer to recognize corrupted TPMs. All
these messages are transmitted together with a zero-knowledge proof, which guarantees
that the f-value f is hashed together with ζI in hash

(
〈ζI , f〉

)
. The statement of this

zero-knowledge proof is modeled as follows:

Sjoin := witness xf , xv public yid , yU , yN , yζ in yU = blind(xf , xv) ∧ yN = hash
(
〈yζ , xf 〉

)
The DAA protocol assumes an authentic channel between the TPM and the issuer in
order to authenticate the blinded f-value, and the authors suggest a challenge-response
handshake based on the TPM endorsement key as a possible implementation [BCC04].
For the sake of simplicity, we abstract away from the actual cryptographic implementa-
tion of such an authentic channel, and we let the TPM send its own identifier together

2.7. CASE STUDY: DIRECT ANONYMOUS ATTESTATION (DAA) 77

Tf := SHash(〈SHash(〈Private,Un〉),Un,Un〉)

CkI (y) := ∃id .CERTIFIED(id , y)

TkI := 〈yU : Blinded(Tf)〉{CkI (yU)}

Sjoin := witness xf , xv public yid , yU , yN , yζ in yU = blind(xf , xv) ∧ yN = hash
(
〈yζ , xf 〉

)
Ssign := witness xf , xcert public yvk , yN , yζ , ym in bcheck(xcert , yvk) ; xf ∧ yN = hash

(
〈yζ , xf 〉

)
TSjoin := ZKProofSjoin

(
yid : Un, yU : Blinded(Tf), yN : Un, yζ : Un;
∃xf , xv. yU = blind(xf , xv) ∧ yN = hash

(
〈yζ , xf 〉

))

TSsign := ZKProofSsign

 yvk : BVerKey(Tf , yU . CkI (yU)), yN : Un, yζ : Un, ym : Un;
∃xf , xcert .∃xv, xid . yN = hash

(
〈yζ , xf 〉

)
∧ CERTIFIED(xid , blind(xf , xv)) ∧ SIGNED(xf , ym)

Pjoin :=
∀id , f, v1, v2.(JOIN(id , blind(f, v1)) ∧ OKTPM(hash

(
〈v2, f〉

)
)

⇒ CERTIFIED(id , blind(f, v1)))
∧ (∃id ′.CERTIFIED(id ′, blind(f, v1))⇒ JOINED(id , f, blind(f, v1)))

Psign := ∀f, v,m.(∃id ′.CERTIFIED(id ′, blind(f, v)) ∧ SIGNED(f,m))⇒ AUTHENTICATED(m)

daa := new kI : BSigKey(Tf , yU . CkI (yU)). new daaseed : Private. new kid : DecKey(Un).
let f = shash(〈shash(〈daaseed , hash(lpk I)〉), cnt , n0〉) in
let ζI = hash

(
〈n1, bsnI〉

)
in

let NI = hash(〈ζI , f〉) in
new authch : Ch(〈yid : Un, yU : Blinded(Tf)〉{JOIN(yid , yU)}).
(tpm | issuer | verifier | assume Pjoin | assume Psign)

tpm :=
new v : Blinder(Tf).
let U = blind(f, v) in
(assume JOIN(id , U) |
let zkjoin = zkSjoin(f, v; id , U,NI , ζI) in
out(pub, zkjoin). out(authch, 〈id , U〉).
in(pub, x).
if unblind(x, v, bvk(kI)) ⇓ xcert then
if bcheck(xcert , bvk(kI)) ⇓ 〈xf 〉 then
if xf = f then
(assert JOINED(id , f, U) |
new m : Un. new ζ : Un.
let N = hash

(
〈ζ, f〉

)
in

(assume SIGNED(f,m) |
let zksign = zkSsign(f, xcert ; bvk(kI), N, ζ,m) in
out(pub, zksign))))

issuer :=
assume OKTPM(NI) |
!in(pub, zkjoin).
in(authch, z).
let 〈yid , yU 〉 = z in
verSjoin(zkjoin, yid , yU , NI , ζI) ⇓ 〈〉 then
(assert CERTIFIED(yid , yU) |
out(pub, bsign(〈yU 〉, kI)))

verifier :=
!in(pub, zksign).
verSsign(zksign, bvk(kI)) ⇓ 〈xN , xζ , xm〉 then
assert AUTHENTICATED(xm)

Table 2.1.: Our model of DAA

78 CHAPTER 2. ANALYZING PROTOCOL MODELS

with the blinded f-value over a private channel shared with the issuer. Note that the
blinded f-value is still known to the attacker, since it occurs in the public component
of the zero-knowledge proof, which is sent over an untrusted channel. Finally, if the
zero-knowledge proof received from the TPM passes verification, the issuer sends to the
TPM the blind signature bsign(blind(f, v), kI).

Type-checking the Join Protocol

The type specified by the user for Sjoin is

TSjoin
:= ZKProofSjoin

(
yid : Un, yU : Blinded(Tf), yN : Un, yζ : Un;
∃xf , xv. yU = blind(xf , xv) ∧ yN = hash

(
〈yζ , xf 〉

))
and the type of the f-value is Tf := SHash(〈SHash(〈Private,Un〉),Un,Un〉). The formula
in TSjoin

simply gives a logical characterization of the structure of the messages sent by
the TPM to the issuer, which is directly guaranteed by the statement Sjoin of the zero-
knowledge proof. The zero-knowledge verification done by the issuer is typed using rules
(Proc Ver) and (Sinfer Stmt) and the logical formula ∃xf , xv. yU = blind(xf , xv) ∧ yN =
hash

(
〈yζ , xf 〉

)
is inserted into the typing environment of the issuer. The type of the au-

thentic channel is Ch(〈yid : Un, yU : Blinded(Tf)〉{JOIN(yid , yU)}). The type system guar-
antees that the TPM assumes JOIN(id, U) before sending id and the blinded f-value U on
such a channel. Finally, the type of the issuer’s signing key is BSigKey(Tf , yU . CkI (yU)).
The type system guarantees that whenever the issuer produces a certificate for message
M , M is a blinded secret and there exists id such that CERTIFIED(id ,M) is entailed by
the formulas in the typing environment. The authorization policy for the join protocol
is as follows:

∀id , f, v1, v2.(JOIN(id , blind(f, v1)) ∧ OKTPM(hash
(
〈v2, f〉

)
)

⇒ CERTIFIED(id , blind(f, v1)))
∧ (∃id ′.CERTIFIED(id ′, blind(f, v1))⇒ JOINED(id , f, blind(f, v1)))

This policy allows the issuer to produce a blind signature for TPM id (assertion
CERTIFIED(id , blind(f, v1))) only if the TPM id has started the join protocol to au-
thenticate blind(f, v1) (assumption JOIN(id, blind(f, v1))) and the f-value f is asso-
ciated to a valid TPM (assumption OKTPM(hash

(
〈v2, f〉

)
)). Additionally, the pol-

icy guarantees that whenever a TPM id successfully completes the join protocol
(assertion JOINED(id, f, blind(f, v1))), the issuer has certified blind(f, v1) (assertion
∃id′.CERTIFIED(id′, blind(f, v1))).

2.7.2. The DAA-signing Protocol

After successfully executing the join protocol, the TPM has a valid certificate for its
f-value f signed by the issuer. Since only valid TPMs should be able to DAA-sign a

2.7. CASE STUDY: DIRECT ANONYMOUS ATTESTATION (DAA) 79

message m, the TPM has to convince a verifier that it possesses a valid certificate. Of
course, the TPM cannot directly send it to the verifier, since this would reveal f . Instead,
the TPM produces zksign, a zero-knowledge proof that it knows a valid certificate. If
the TPM would, however, just send (zksign,m) to the verifier, the protocol would be
subject to a trivial message substitution attack. Message m is instead combined with
the proof so that one can only replace m by redoing the proof (and this again can only
be done by knowing a valid certificate). The overall shape of the DAA-signing protocol
is hence as follows:

TPM/Host Verifier

assume SIGNED(f,m)

zkSsign
(f,usign(f,kI); bvk(kI),hash(〈ζ,f〉),ζ,m) //

assert AUTHENTICATED(m)

with Ssign := witness xf , xcert public yvk , yN , yζ , ym in bcheck(xcert , yvk) ; xf ∧ yN =
hash

(
〈yζ , xf 〉

)
). The zero-knowledge proof guarantees that the secret f-value f is signed

by the issuer and that such a value is hashed together with a fresh value ζ23. This hash
is used in the rogue tagging procedure mentioned above.

Type-checking the DAA-signing Protocol

The type specified by the user for Ssign is

TSsign
:= ZKProofSsign

 yvk : BVerKey(Tf , yU . CkI (yU)), yN : Un, yζ : Un, ym : Un;
∃xf , xcert .∃xv, xid . yN = hash

(
〈yζ , xf 〉

)
∧ CERTIFIED(xid , blind(xf , xv)) ∧ SIGNED(xf , ym)

This type guarantees that the f-value of the TPM has been certified by the issuer (asser-
tion CERTIFIED(xid, blind(xf , xv)), captures the constraint on the hash inherited from
the statement of the zero-knowledge proof (yN = hash

(
〈yζ , xf 〉

)
), and states that the

user has signed message m (assumption SIGNED(xf , ym)). On the verifier’s side, the
assertion CERTIFIED(xid, blind(xf , xv)) is guaranteed to hold by the verification of the
certificate proved by zero-knowledge and by the type of the verification key, while the
equality yN = hash

(
〈yζ , xf 〉

)
is enforced by the semantics of zero-knowledge verification.

Furthermore the type of the verification key guarantees that the f-value used to create
the proof is of type Tf . Since values of this type cannot be given type Un (type Tf
is disjoint from Un) the proof is generated by a honest TPM, and thus we can apply
rule (Proc Ver), and the logical formula is inserted into the typing environment of the
continuation process. The authorization policy for the DAA-signing protocol is:

∀f, v,m.(∃id ′.CERTIFIED(id ′, blind(f, v)) ∧ SIGNED(f,m))⇒ AUTHENTICATED(m)

23In the pseudonymous variant of the DAA-signing protocol ζ is derived in a deterministic fashion from
the basename bsnV of the verifier. Our analysis can be easily adapted to this variant.

80 CHAPTER 2. ANALYZING PROTOCOL MODELS

This policy allows the verifier to authenticate message m (assertion
AUTHENTICATED(m)) only if the sender proves the knowledge of some certified
f-value f associated to some TPM id (assertion ∃id′.CERTIFIED(id′, blind(f, v))) and
the zero-knowledge proof includes message m (assumption SIGNED(f,m)). Note that
the id of the TPM is existentially quantified, since it is not known to the verifier.

Our type-checker can prove in less than three seconds that the daa process is well-typed.
By Theorem 2.35 (Robust Safety), this guarantees that the daa process is robustly safe.

2.8. Implementation

We have implemented a type-checker for the type system presented in this chapter.
The type-checking phase generates proof obligations that are discharged independently,
leading to a scalable and robust analysis. The type-checker relies on first-order logic
automated theorem provers [WDF+09, Sch02, RV99] or SMT solvers [dMB08] to dis-
charge proof obligations. We rely on standard input formats for theorem provers (the
TPTP format [Sut09] and the old DFG format [WDF+09]) and SMT solvers (STM-LIB
1.2 [RT06]). When the prover fails to discharge a proof obligation, we can easily track
that back to a location in the code.

Our implementation of kinding uses the logical characterization from §2.4.5, instead
of the (equivalent) syntax directed rules. We check subtyping in a similar way, by
relying on an encoding of the subtyping judgement in the authorization logic. This
technique has the advantage of efficiently implementing the subtyping judgement, which
is very far from being syntax directed. We thus rely on the FOL prover for handling
disjunctions, instead of naively backtracking when multiple rules apply. For typing terms
we rely on semi-unification for inferring instantiations of the type variables, since most
constructors and destructors are let-polymorphic, and asking the user to annotate every
constructor and destructor application would have been unacceptable from a usability
perspective.24 Typing processes works similar to a bidirectional type system [PT00],
using type inference for synthesizing the type of many of the involved terms, and checking
that a term has a certain type when such a type is given (e.g., by an explicit type
annotation).

Our implementation is extensible: adding new constructors, destructors, and types can
be done easily by changing a configuration file. One still needs to extend Lemma 2.29
(Destructor Consistency) to handle the newly added destructors, but for most primi-
tives that is all that is needed for extending the type system. The implementation25 is
written in OCaml, comprises more than 5kLOC, and is open source, distributed under
the Apache License version 2.0.

24 While the semi-unification problem is undecidable in general [KTU90], broad special cases are decid-
able [Got11] and simple heuristics work well in practice [SC08].

25 Type-checker is available at http://www.infsec.cs.uni-saarland.de/projects/zk-typechecker/

http://www.infsec.cs.uni-saarland.de/projects/zk-typechecker/

2.9. SUMMARY 81

We have tested our type-checker on a model of the DAA protocol [BCC04] (see §2.7),
on protocols automatically strengthened against compromised participants (see §2.6),
and on several simpler examples. The analysis of DAA terminated in less than three
seconds, while for the simpler examples the analysis time was less than half a second,
on a normal laptop. These promising results show that our static analysis technique has
the potential to scale up to very large protocols.

2.9. Summary

In this chapter, we have introduced the first type system for statically analyzing the
security of protocols based on non-interactive zero-knowledge proofs. The type system
combines prior work on refinement types for cryptographic protocols, with union types,
intersection types, and the novel ability to reason statically about the disjointness of
types. We believe that the improvements brought by this type system over the existing
type-based analyses for security protocols are useful in general, beyond analyzing pro-
tocols based on zero-knowledge proofs. The next chapter will show that our techniques
are useful for analyzing concrete implementations of cryptographic protocols.

Chapter 3

Analyzing Protocol
Implementations

This chapter presents a new type system for verifying the source code of crypto-
graphic protocol implementations. The underlying type theory combines refinement
types [BBF+08, BBF+11] with union, intersection, and polymorphic types. Addition-
ally, we use a relation for statically reasoning about the disjointness of types that is
very similar to the one we introduced in §2.4.6. This expressive type system extends
the scope of existing type-based analyses of protocol implementations [BBF+08,BFG10]
to important protocol classes that were not covered so far. In particular, our types
statically characterize: (i) more usages of asymmetric cryptography, such as signatures
of private data and encryptions of authenticated data; (ii) authenticity and integrity
properties achieved by showing knowledge of secret data; (iii) applications based on
non-interactive zero-knowledge proofs.

The cryptographic protocols are implemented in RCF∀∧∨ [BBF+08, BBF+11], a con-
current lambda-calculus, and the cryptographic operations are considered fully reliable
building blocks and represented symbolically using a dynamic sealing mechanism [Mor73,
SP07,BBF+08], which is based on standard functional programming language constructs.
In addition to hashes, symmetric cryptography, public-key encryption, and digital sig-
natures, our approach supports non-interactive zero-knowledge proofs. Since the real-
ization of zero-knowledge proofs changes according to the statement to be proven, we
provide a tool that, given a statement, automatically generates a sealing-based symbolic
implementation of the corresponding zero-knowledge primitive.

We have formalized RCF∀∧∨, the type system, and all the important parts of the sound-
ness proof in the Coq proof assistant. We achieve this by defining a core calculus, which
we call Formal-RCF∀∧∨, and which is obtained from RCF∀∧∨ by type erasure and by

82

3.1. RELATED WORK 83

adopting a locally nameless representation for binders [ACP+08]. This work allowed us
to discover three relatively small problems in the soundness proofs of prior type sys-
tems with refinement types [BBF+08, BHM08c] and to propose and evaluate fixes for
the faulty proofs.

Our type-based analysis is automated, modular, efficient, and provides security proofs for
an unbounded number of sessions. We have implemented a type-checker that performed
very well in our experiments: it type-checks all our symbolic libraries and sample code
totaling more than 1500LOC in around 12 seconds, on a normal laptop. The type-
checker features a user-friendly graphical interface for examining typing derivations.
The tool-chain we have developed additionally contains the automatic code generator
for zero-knowledge proofs, an interpreter, and a visual debugger. The formalization and
the implementation are available online1.

Outline The remainder of this chapter is structured as follows: §3.1 discusses related
work. §3.2 gives an intuitive overview of our type system and exemplifies the most
important concepts on a simple authentication protocol. §3.3 introduces the syntax of
RCF∀∧∨, the language supported by our type-checker. §3.4 presents our type system.
§3.5 describes the results of our Coq formalization. In §3.6 we use union and inter-
section types to give stronger and more natural types to the dynamic sealing-based
encoding of asymmetric cryptography. §3.7 presents our dynamic sealing-based encod-
ing of zero-knowledge proofs. §3.8 describes our implementation and experiments. §3.9
discusses related work on union and intersection types. §3.10 provides a summary of this
chapter.

Furthermore, Appendix B lists the Formal-RCF∀∧∨ calculus, the erasure function from
RCF∀∧∨, the operational semantics and the type system of Formal-RCF∀∧∨; Appendix C
provides more details about our encoding of zero-knowledge proofs.

3.1. Related Work

Our type system extends the refinement type system by Bengtson et al. [BBF+08] with
union, intersection, and polymorphic types, as well as with syntactic reasoning about
the disjointness of types. We also provide a novel encoding of type Private, which is
used to characterize data that are not known to the attacker. A crucial property is
that the set of values of type Private is disjoint from the set of values of type Un, which
is the type of the messages known to the attacker. This property allows us to prune
typing derivations following equality tests between values of type Private and values of
type Un. This technique was first proposed by Abadi and Blanchet in their seminal
work on secrecy types for asymmetric cryptography [AB03], but later disappeared in the
more advanced type systems for authorization policies. Our extension allows the type

1http://www.infsec.cs.uni-saarland.de/projects/F5/

http://www.infsec.cs.uni-saarland.de/projects/F5/

84 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

system to deal with protocols based on zero-knowledge proofs and to verify integrity
and authenticity properties obtained by showing knowledge of secret data (e.g., the
Needham-Schroeder-Lowe public-key protocol). In addition, our extension removes the
restrictions that the type system proposed by Bengtson et al. [BBF+08] poses on the
usage of asymmetric cryptography. For instance, if a key is used to sign a secret message,
then the corresponding verification key could not be made public. These limitations
were preventing the analysis of many interesting cryptographic applications, such as the
Direct Anonymous Attestation protocol [BCC04], which involves digital signatures on
secret TPM identifiers.

In independent parallel work, Bhargavan et al. [BFG10] have developed an additional
cryptographic library for a simplified version of the type system proposed by Bengtson et
al. [BBF+08]. This library does not rely on dynamic sealing but on datatype constructors
and inductive logical invariants that allow for reasoning about symmetric and asymmet-
ric cryptography, hybrid encryption, and different forms of nested cryptography. The
aforementioned logical invariants are, however, fairly complex and have to be proven
manually. Moreover, these logical invariants are global, which means that adding new
cryptographic primitives could require reproving the previously established invariants.
Therefore, extending a symbolic cryptographic library in the style of [BFG10] to new
primitives requires expertise and a considerable human effort. In contrast, extending
our sealing-based library does not involve any additional proof: one has just to find a
well-typed encoding of the desired cryptographic primitive, which is relatively easy. For
instance, Eigner [Eig09] reports encoding the sophisticated cryptographic schemes used
in the Civitas [CCM08] electronic voting protocol using dynamic seals, in a relatively
short amount of time.

The main simplification Bhargavan et al. [BFG10] propose over the type system by
Bengtson et al. [BBF+08] is the removal of the kinding relation, which classifies types
as public or tainted, and allows values of public types to also be given any tainted type
by subsumption. While this simplification removes the last security-specific part of the
type system, therefore making it more standard, this change also requires attackers to
be well-typed with respect to a carefully constructed attacker interface. The security
property guaranteed in the result of Bhargavan et al. [BFG10] is thus weaker than the
widely-accepted robust safety property [GJ03, GJ04, FGM07a, BBF+08]; in particular
the property guaranteed by their type system depends on the type system itself giving
the right meaning to the attacker interface and properly enforcing it on the attacker.
In contrast, by retaining the kinding relation from [BBF+08] we also retain the prop-
erty that all attackers are well-typed with respect to our type system (this property
is usually called opponent typability [GJ03]), which allows us to prove that our type
system enforces robust safety. Despite the two downsides discussed above, Bhargavan et
al. [BFG10] manage to solve some of the problems in the original work of Bengtson et
al. [BBF+08] without relying on union and intersection types. Moreover, if all refine-
ments are over a common base type, such as bytes, then it is usually possible to represent
unions and intersection types using the logical connectives inside the refinement types.

3.1. RELATED WORK 85

It would be interesting future work to better compare our work to this approach, and
maybe to try to combine the advantages of both approaches in a unified framework.

Backes et al. [BMU10] have recently established a semantic correspondence for asym-
metric cryptography between a library based on sealing and one based on datatype
constructors, showing that both libraries enjoy computational soundness guarantees.
They establish the computational soundness of symbolic trace properties in RCF by
translation to the CoSP framework [BHU09]; these properties can then be established
by typing, for instance using our type system, or by any other verification technique.

In another very recent work, Fournet et al. [FKS11], develop a probabilistic variant
of RCF, and formalize its type safety in Coq. They develop typed modules and in-
terfaces for MACs, signatures, and encryptions, and establish their authenticity and
secrecy properties in the setting of concrete cryptography (i.e., security against chosen
plaintext and chosen ciphertext attacks). This allows them to establish computational
properties by typing in a modular way, including observational equivalences, such as
indistinguishability.

Eigner [Eig09] uses our type system to verify eligibility, inalterability, and individual ver-
ifiability for a simple implementation of the Civitas electronic voting protocol [CCM08].
These properties are expressed as authorization policies and verified by our type-checker.
The sophisticated cryptographic schemes used by the Civitas protocol (i.e., distributed
decryption, plaintext equivalence tests, homomorphic encryptions, mix nets, and a vari-
ety of zero-knowledge proofs) are all encoded using dynamic seals.

Maffei and Pecina [MP11] have recently proposed privacy-aware proof-carrying autho-
rization, a framework for the specification and enforcement of authorization policies in
decentralized systems. In proof-carrying authorization the request for access to a sen-
sitive resource comes together with a proof showing that the requester has permissions
to access the desired resource according to a decentralized policy. Logical formulas of
the form “P says F” where principal P endorses formula F are witnessed by the digital
signature of P on F . Such certificates are combined to form proofs of more complicated
statements, and then verified by the reference monitor protecting the requested resource.
These certificates can, however, leak sensitive information to the reference monitor. In
privacy-aware proof-carrying authorization, existential quantification in the authoriza-
tion logic is used to mark information that must be kept secret, and zero-knowledge
proofs are used to transmit such formulas to the reference monitor in a privacy-preserving
way. The generated cryptographic protocol between the requester and the reference mon-
itor is modeled in RCF∀∧∨, and the correctness of the authorization decision is verified
using our type system.

Goubault-Larrecq and Parrennes developed a static analysis technique [GLP05] based
on pointer analysis and Horn clause resolution for cryptographic protocols implemented
in C. The analysis is limited to secrecy properties, assumes that the analyzed C program
is memory safe, deals only with standard cryptographic primitives, and does not offer

86 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

scalability since the number of generated clauses is very high even on small protocol
examples.

Chaki and Datta have proposed a technique [CD08] based on software model checking for
the automated verification of protocols implemented in C. The analysis provides security
guarantees for a bounded number of sessions and is effective at discovering attacks. It
was used to check secrecy and authentication properties of the main loop of OpenSSL
for configurations of up to three servers and three clients. The analysis only deals with
standard cryptographic primitives, relies on the specifications of the called functions
being correct, and offers only limited scalability.

Dupressoir et al. [DGJN11] have recently proposed to use a general-purpose verifier for
analyzing C implementations of cryptographic protocols. The technique can prove both
memory safety and security properties for an unbounded number sessions. It uses a
general theory of symbolic cryptography, independent of any programming language,
developed in the Coq proof assistant – this generalizes the invariants for cryptographic
structures introduced for F#/RCF by Bhargavan et al. [BFG10]. Properties of this
theory are imported as first-order axioms to the verifier. By using a general-purpose C
verifier the authors aim to benefit from economies of scale and future improvements in
C verification in general. The main remaining challenge is reducing verification times
and the number of user supplied annotations.

Bhargavan et al. proposed a technique [BFGT08] for the verification of F# protocol
implementations by automatically extracting ProVerif models [Bla01], using an extension
of the functions as processes encoding [Mil92]. The technique was successfully used to
verify implementations of real-world cryptographic protocols such as TLS [BCFZ08] and
Europay-MasterCard-Visa (EMV) [dRP11]. The underlying analysis using ProVerif is,
however, not compositional and is significantly less scalable than type-checking [BFG10].
Furthermore, the considered fragment of F# is quite restrictive: it does not include
higher-order functions, and it allows only for a very limited usage of recursion and
state.

More recently, Aizatulin et al. [AGJ11] and Corin and Manzano [CM11] have proposed
techniques for analyzing C programs by extracting abstract models using symbolic ex-
ecution. The solution by Aizatulin et al. [AGJ11] needs neither a pre-existing protocol
description nor manual inspection of source code, and uses existing results for the ap-
plied pi calculus [BHU09] to establish computational soundness. Their current prototype
can, however, analyze only a single execution path, so it is limited to protocols with no
significant branching. The solution by Corin and Manzano [CM11] seems to be able to
handle branches, but it cannot yet handle security properties.

Swamy et al. [SCC10] propose Fine, a security-typed language for enforcing dynamic,
stateful policies for access control and information flow tracking using a combination
of refinement and affine types. Fine distinguishes itself from RCF, primarily in its
ability to express both stateful authorization (stateful properties can still be specified
and verified within RCF using a refined state monad [BGP11]) and information flow. As

3.2. OUR TYPE SYSTEM AT WORK 87

opposed to RCF, however, Fine is not concurrent and cannot easily express Dolev-Yao
attackers and cryptographic operations. In very recent work, Swamy et al. [SCF+11]
seem to partially address the latter limitation using some of the ideas of Bhargavan et
al. [BFG10].

The more technical discussion about the related work on union and intersection types is
postponed to §3.9.

3.2. Our Type System at Work

Before giving the details of the calculus and the type system, we illustrate the main
concepts of our static analysis technique on the Needham-Schroeder-Lowe public-key
protocol [Low96] (NSL), which could not be analyzed by the original refinement type
system by Bengtson et al. [BBF+08]. For convenience, throughout this section we use
some syntactic sugar that is supported by our type-checker and can be obtained from
the core calculus presented in §3.3 by standard encodings [BBF+08].

3.2.1. Protocol Description and Security Annotations

The Needham-Schroeder-Lowe protocol is depicted below:

A B
{B,nB}k+

A
oo

assume authr(A,B, nB, nA)
{A,nB ,nA}k+

B
//

assert authr(A,B, nB, nA)

assume authi(B,A, nB, nA)
{nA}k+

A
oo

assert authi(B,A, nB, nA)

The goal of this protocol is to allow A and B to authenticate with each other and to
exchange two fresh nonces, which are meant to be private and be later used to construct
a session key. B creates a fresh nonce nB and encrypts it together with his own identifier
with A’s public key. A decrypts the ciphertext with her private key. At this point of
the of the protocol, A does not know whether the ciphertext comes from B or from the
opponent as the encryption key used to create the ciphertext is public. A continues the
protocol by creating a fresh nonce nA, and encrypts this nonce together with nB and
her own identifier with B’s public key. B decrypts the ciphertext and, although the
encryption key used to create the ciphertext is public, if the nonce he received matches
the one he has sent to A then B does indeed know that the ciphertext comes from A,
since the nonce nB is private and only A has access to it. Finally, B encrypts the nonce
nA received from A with A’s public key, and sends it back to A. After decrypting the

88 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

ciphertext and checking the nonce, A knows that the ciphertext comes from B as the
nonce nA is private and only B has access to it.

Following [FGM07a, BBF+08], we decorate the code with assumptions and assertions.
Intuitively, assumptions introduce new hypotheses, while assertions declare formulas that
should logically follow from the previously introduced hypotheses. A program is safe if
in all program runs the assertions are entailed by the assumptions. The assumptions and
assertions of the NSL protocol capture the standard mutual authentication property.

3.2.2. Types for Cryptography

Before illustrating how we can type-check this protocol, let us introduce the typed in-
terface of our library for public-key cryptography. Intuitively, since encryption keys are
public, they can be used by honest principals to encrypt data as specified by the pro-
tocol, or by the attacker to encrypt arbitrary data. This intuitive reasoning is captured
by the following typed interface:

encrypt : ∀α. PubKey〈α〉 → α ∨ Un→ Un
decrypt : ∀α. Un→ PrivKey〈α〉 → α ∨ Un

Like many of the functions in our cryptographic library, the encrypt and decrypt func-
tions are polymorphic. Their code is type-checked only once and given an universal type.
The type variable α stands in this case for the type of the payload that is encrypted,
and can be instantiated with an arbitrary type when the functions are used.

Type Un describes those values that may be known to the opponent, i.e., data that may
come from or be sent to the opponent. The type PubKey〈α〉 describes public keys. Since
the opponent has access to the public key and to the encryption function, the type system
has to take into account that the library may be used by honest principals to encrypt
data of type α or by the opponent to encrypt data of type Un. The encrypt function
takes as input a public key of type PubKey〈α〉 a message of type α ∨ Un, and returns
a ciphertext of type Un. The decrypt function takes as input a ciphertext of type Un,
a private key of type PrivKey〈α〉 and returns a payload of type α ∨ Un. Without union
types, the type of the payload is constrained to be Un or a supertype thereof [BBF+08],
which severely limits the expressiveness of the type system and prevents the analysis of
a number of protocols, including this very simple example.

3.2.3. Type-checking the NSL Protocol

We first introduce the type definitions2 for the content of the three ciphertexts:

msg1 = (Un ∗ Private)
msg2[xB] = (xA : Un ∗ xnB : Private ∨ Un ∗ {xnA : Private | authr(xA, xB , xnB , xnA)})
msg3 = {xnA : Private | ∃xA, xB , xnB .

authr(xA, xB , xnB , xnA) ∧ authi(xB , xA, xnB , xnA)}
2Type definitions are syntactic sugar, and are inlined by the type-checker.

3.2. OUR TYPE SYSTEM AT WORK 89

The first ciphertext contains a pair composed of a public identifier of type Un and a
nonce of type Private. Type Private describes values that are not known to the at-
tacker: the set of values of type Un is disjoint from the set of values of type Private.
Type msg2[xA] is a combination of two dependent pair types and one refinement type.
This type describes a triple composed of an identifier xA of type Un, a first nonce
xnB of type Private ∨ Un, and a second nonce xnA of type Private such that the pred-
icate authr(xA, xB, xnB , xnA) is entailed by the assumptions in the system (A assumes
authr(A,B, nB, nA) before creating the second ciphertext). The free occurrence of xB is
bound in the type definition. Notice that xnB is given type Private ∨ Un since A does
not know whether the nonce received in the first ciphertext comes from B or from the
opponent. Type msg3 is a refinement type describing a nonce xnA of type Private such
that the formula ∃xA, xB, xnB . authr(xA, xB, xnB , xnA) ∧ authi(xB, xA, xnB , xnA) is en-
tailed by the assumptions in the system. Indeed, before creating the third ciphertext, B
has asserted authr(A,B, nB, nA) and assumed authi(B,A, nB, nA). Since the payload of
the third message only contains xnA we existentially quantify the other variables. The
overall type of the payload is obtained by combining the three previous types:

payload[x] = Msg1 of msg1 | Msg2 of msg2[x] | Msg3 of msg3

The type of A’s public key is defined as PubKey〈payload[A]〉 and the type of B’s public
key is defined as PubKey〈payload[B]〉.

The code of the initiator (B in our diagram) and the code of the responder (A) abstract
over the principal’s identity and they are type-checked independently of each other.

Since library functions such as encrypt,decrypt, send and so on are polymorphic, they
are instantiated with a concrete types in the code (e.g., the encryptions in the initiator’s
code are instantiated with type payload[xA] since they take as argument xA’s public
key). The initiator creates a fresh private nonce by means of the function mkPriv. The
nonce is encrypted together with B’s identifier and sent on the network. The message
x obtained by decrypting the second ciphertext is given type payload[xB] ∨ Un, which
reflects the fact that B does not know whether the first ciphertext comes from A or from
the attacker. Since we cannot statically predict which of the two types is the right one,
we have to type-check the continuation code twice, once under the assumption that x
has type payload[xB] and once assuming that x has type Un. This is realized by the
expression case x1 = x : payload[xB] ∨ Un in

If x has type payload[xB], then its components are given strong types: yA is
given type Un, ynB is given type Private ∨ Un, and ynA is given the refine-
ment type {ynA : Private | authr(xA, xB, ynB , ynA)}. This refinement type en-
sures that authr(xA, xB, ynB , ynA) will be entailed at run-time by the assumptions
in the system and thus justifies the assertion assert authr(xA, xB, ynB , ynA). Finally,
the assumption assume authi(xB, xA, ynB , ynA) allows us to give ynA type {ynA :
Private | ∃xA, xB, xnB . authr(xA, xB, xnB , ynA) ∧ authi(xB, xA, xnB , ynA)} = msg3 and
thus to type-check the final encryption.

90 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

init = λxB : Un. λxA : Un.
λkB : PrivKey〈payload[xB]〉.
λpkA : PubKey〈payload[xA]〉.
λch : Ch(Un).

let nB = mkPriv() in
let p1 = (Msg1 (xB , nB)) in
let m1 = encrypt〈payload[xA]〉 pkA p1 in
send〈Un〉 ch m1;
let z = recv〈Un〉 ch in
let x = decrypt〈payload[xB]〉 kB z in
case x1 = x : payload[xB] ∨ Un in
match x1 with Msg2 x2 ⇒
let (yA, ynB , ynA) = x2 in
if yA = xA then
if ynB = nB then
assert authr(xA, xB , ynB , ynA);
assume authi(xB , xA, ynB , ynA);
let p3 = (Msg3 ynA) in
let m3 = encrypt〈payload[xA]〉 pkA p3 in
send〈Un〉 ch m3

resp = λxA : Un. λxB : Un.
λpkB : PubKey〈payload[xB]〉.
λkA : PrivKey〈payload[xA]〉.
λch : Ch(Un).

let m1 = recv〈Un〉 ch in
let x1 in decrypt〈payload[xA]〉 kA m1

case y1 = x1 : payload[xA] ∨ Un in
match y1 with Msg1 z1 ⇒
let (yB , xnB) = z1 in
if yB = xB then
let nA = mkPriv() in
assume authr(xA, xB , xnB , nA);
let p2 = Msg2(xA, xnB , nA) in
let m2 = encrypt〈payload[xB]〉 pkB p2 in
send〈Un〉 ch m2;
let m3 = recv〈Un〉ch in
let x3 = decrypt〈payload[xA]〉 kA m3 in
case y3 = x3 : payload[xA] ∨ Un in
match y3 with Msg3 ynA ⇒
if ynA = nA then
assert authi(xB , xA, xnB , nA)

Table 3.1.: NSL Initiator Code and Responder Code

If x has type Un then yA, ynB , and ynA are also given type Un. The following equality
check between the value ynB of type Un and the nonce nB of type Private makes type-
checking the remaining code superfluous: since the set of values of type Un is disjoint
from the set of values of type Private, it cannot be that the equality test succeeds. So
type-checking the initiator’s code succeeds.

Type-checking the responder’s code is similar. The code contains two case expressions
to deal with the union types introduced by the two decryptions. In particular, the
code after the second decryption has to be type-checked under the assumption that the
variable ynA has type msg3 and under the assumption that ynA has type Un.

In the former case, the assertion assert authi(xB, xA, xnB , nA) is justified by the previously
assumed formula authr(xA, xB, xnB , nA), the formula in the above refinement type, and
the following global assumption, stating that there cannot be two different assumptions
authr(xA, xB, x

′
nB , x

′
nA) and authr(x

′
A, x

′
B, x

′
nB , x

′
nA) with the same nonce xnB .

assume ∀xA, xB , x′A, x′B , xnA, x′nA, xnB . authr(xA, xB , xnB , xnA) ∧ authr(x
′
A, x

′
B , xnB , x

′
nA)

⇒ xA = x′A ∧ xB = x′B ∧ xnA = x′nA

This assumption is justified by the fact that the predicate authr is assumed only in the
responder’s code, immediately after the creation of a fresh nonce xnB .

If ynA is given type Un then type-checking the following code succeeds because the
equality check between ynA and the value nA of type Private cannot succeed.

3.2. OUR TYPE SYSTEM AT WORK 91

The functions init and resp take private keys as input, so they are not available to the
attacker. We provide two public functions that capture the capabilities of the attacker.

Attacker’s Interface for NSL

createPrincipal = λx : Un.
let k = mkPrivKey〈payload[x]〉 () in addToDB x k; getPubKey〈payload[x]〉 k

startNSL = λ(role : Un)(xA : Un)(xB : Un)(c : Un).
let kA = getFromDB xA in let pkA = getPubKey〈payload[xA]〉 kA in
let kB = getFromDB xB in let pkB = getPubKey〈payload[xB]〉 kB in
match role with inl ⇒ (init xA xB kA pkB c)
| inr ⇒ (resp xB xA pkA kB c)

We allow the attacker to create arbitrarily many new principals using the createPrincipal
function. This generates a new encryption key-pair, stores it in a private database,
and then returns the corresponding public key to the attacker. The second function,
startNSL, allows the attacker to start an arbitrary number of sessions of the protocol,
between principals of his choice. When calling startNSL, the attacker chooses whether
he wants to start an initiator or a responder, the principals to be involved in the session,
and the channel on which the communication occurs. One principal can be involved in
many sessions simultaneously, in which it may play different roles.

For simplicity of presentation, we do not give the attacker the capability to compromise
principals, so the famous attack discovered by Lowe [Low96] is not possible even if we
were to drop A’s identity from the second message.

The two functions above express the capabilities of the attacker for verification purposes,
and would not be exposed in a production setting. However, they can also be useful for
testing and debugging the code of the protocol: for instance we can execute a protocol
run using the following code.

Test Setup for NSL

createPrincipal “Alice”; createPrincipal “Bob”;
let c = mkChan〈Un〉 () in
(startNSL (inl ()) “Alice”“Bob” c) � (startNSL (inr ()) “Alice”“Bob” c)

Since the code of the NSL protocol is well-typed, the soundness result of the type system
ensures that in all program runs the assertions are entailed by the assumptions, i.e., the
code is safe when executed by an arbitrary attacker. In addition, the two nonces are
given type Private and thus they are not revealed to the opponent.

92 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

3.3. The RCF∀∧∨ Calculus

The Refined Concurrent FPC (RCF) [BBF+08] is a simple programming language ex-
tending the Fixed Point Calculus [Gun92] with refinement types [FP91, ROS98, XP99]
and concurrency [Mil99, AG99]. This core calculus is expressive enough to encode a
considerable fragment of an ML-like programming language [BBF+08]. In this thesis,
we further increase the expressivity of the calculus by adding intersection types [Pie97],
union types [Pie91], parametric polymorphism [Rey83, Gir86], and the novel ability to
reason statically about type disjointness. We call the extended calculus RCF∀∧∨ and
describe it in this and the following section.

We start by presenting the surface syntax of RCF∀∧∨, which is a subset of the syntax
supported by our type-checker. In the surface syntax of RCF∀∧∨ variables are named,
which makes programs human-readable. The surface syntax also contains explicit typing
annotations that guide type-checking. RCF∀∧∨ is given semantics by translation (i.e., type
erasure) into a core implicitly-typed calculus, Formal-RCF∀∧∨, which we have formalized
in Coq (see §3.5).

Given a phrase of syntax φ, let φ{M/x} denote the substitution of each free occurrence
of the variable x in φ with the value M . We use φ̃ to denote the sequence φ1, . . . , φn for
some n. A phrase is closed if it does not have free variables.

The syntax comprises the four mutually-inductively-defined sets of values, types, expres-
sions, and formulas. We mark with star (*) the constructs that are completely new with
respect to RCF [BBF+08].

Surface syntax of RCF∀∧∨ values

x, y, z variable
h ::= inl | inr constructor for sum types
M,N ::= value

x variable
() unit
λx : T.A function (scope of x is A)
(M,N) pair
h M value of sum type
foldµα. T M recursive value
Λα.A type abstraction* (scope of α is A)

for α̃ in T̃ ; Ũ . M value of intersection type* (scope of α̃ = α1, .., αn is M)

The set of values is composed of variables, the unit value, functions, pairs, and intro-
duction forms for disjoint union, recursive, polymorphic, and intersection types.

3.3. THE RCF∀∧∨ CALCULUS 93

Surface syntax of RCF∀∧∨ types

α, β type variable
T,U, V ::= type

unit unit type
x : T → U dependent function type (scope of x is U)
x : T ∗ U dependent pair type (scope of x is U)
T + U disjoint sum type
µα. T iso-recursive type (scope of α is T)
α type variable
{x : T | C} refinement type (scope of x is C)
T ∧ U intersection type*
T ∨ U union type*
> top type*
∀α. T polymorphic type* (scope of α is T)

The unit value () is given type unit. Functions λx : T.A taking as input values of type
T and returning values of type U are given the dependent type x : T → U , where the
result type U can depend on the input value x. Pairs are given dependent types of
the form x : T ∗ U , where the type U of the second component of the pair can depend
on the value x of the first component. If U does not depend on x, then we use the
abbreviations T → U and T ∗U . The sum type T +U describes values inl(M) where M
is of type T and values inr(N) where N is of type U (disjoint union). The iso-recursive
type µα. T is the type of all values foldµα. T M where M is of type T{µα. T/α}. We use
refinement types [FP91, ROS98, XP99, BBF+08] to associate logical formulas to values.
The refinement type {x : T | C} describes values M of type T for which the formula
C{M/x} is entailed by the current typing environment. A value is given the intersection
type T ∧U if it has both type T and type U . A value is given a union type T ∨U if it has
type T or if it has type U , but we do not necessarily know what its precise type is. The
top type > is the supertype of all the other types, and contains all well-typed values.
The universal type ∀α. T [Rey83, Gir86] describes polymorphic values Λα.A such that
A{U/α} is of type T{U/α} for all types U .

Surface syntax of RCF∀∧∨ expressions

a, b name
A,B ::= expression

M value
M N function application
M〈T 〉 type instantiation*
let x = A in B let (scope of x is B)
let (x, y) = M in A pair split (scope of x,y is A and x 6= y)
match M with inl x⇒ A | inr y ⇒ B pattern matching (scope of x is A, of y is B)
unfoldµα. T M use recursive value

94 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

case x = M : T ∨ U in A elimination of union types* (scope of x is A)
if M = N as x then A else B equality check* (scope of x is A)
(νa l T)A restriction (scope of a is A)
A � B fork off parallel expression
a!M scope of M is a
a? receive on channel a
assume C add formula C to global log
assert C formula C must hold

The syntax of expressions is mostly standard [BBF+08, Pie91, Rey83, Gir86]. A type
instantiation M〈T 〉 specializes a polymorphic value M with the concrete type T . The
elimination form for union types case x = M : T ∨U in A substitutes the value M in A.
The conditional if M = N as x then A else B checks if M is syntactically equal to N ,
if this is the case it substitutes x with the common value. Syntactic equality is defined
up to alpha-renaming of binders and the erasure of typing annotations and of the for
construct (see §3.5). During type-checking the variable x is given the intersection of the
types of M and N . When the variable x is not necessary we omit the as clause, as we
did in §3.2. The restriction (νa l T)A generates a globally fresh channel a that can
only be used in A to convey values of type T . The expression A � B evaluates A and
B in parallel, and returns the result of B (the result of A is discarded). The expression
a!M outputs the value M on channel a and returns the unit value (). Expression a?
blocks until some value M is available on channel a, removes M from the channel, and
then returns M . Expression assume C adds the logical formula C to a global log. The
assertion assert C returns () when triggered. If at this point C is entailed by the list S
of formulas in the global log, written as S |= C, we say the assertion succeeds; otherwise,
we say the assertion fails.

Intuitively, an expression A is safe if, once it is translated into Formal-RCF∀∧∨, all asser-
tions succeed in all evaluations. When reasoning about implementations of cryptographic
protocols, we are interested in the safety of programs executed in parallel with an arbi-
trary attacker. This property is called robust safety and is stated formally in §3.5 and
statically enforced by our type system from §3.4.

Surface syntax of RCF∀∧∨ authorization logic formulas

C ::= authorization logic formula
p(M) predicate symbol
M = N equality
C1 ∧ C2 conjunction
C1 ∨ C2 disjunction
¬C negation
∀x.C universal quantifier (scope of x is C)
∃x.C existential quantifier (scope of x is C)
∃a.C existential quantifier over names (scope of a is C)

3.4. TYPE SYSTEM 95

We consider a variant of first-order logic with equality as the authorization logic. We
assume that RCF∀∧∨ values are the terms of this logic, and equality M = N is interpreted
as syntactic equality between values.

3.4. Type System

This section presents our type system for enforcing authorization policies on RCF∀∧∨ code.
This extends the type system proposed by Bengtson et al. [BBF+08] with union [Pie91],
intersection [Pie97], and polymorphic types [Rey83, Gir86]. Additionally, we encode a
new type Private, which is used to characterize data that are not known to the attacker,
and introduce a novel relation for statically reasoning about the disjointness of types.
In the following we introduce the typing judgments, list all the typing rules and discuss
the most important ones.

Typing judgments

E ` � E is well-formed
E ` T type T is well-formed in E
E ` C formula C is entailed from E
E ` T :: k type T has kind k in E (where k ∈ {pub, tnt})
E ` T <: U type T is a subtype of type U in E
E `M : T value M has type T in E
E ` A : T expression A has type T in E

3.4.1. Well-formed Environments and Entailment

A typing environment E is a list of bindings for variables (x : T), type variables (α or
α :: k), names (a l T , where the name a stands for a channel conveying values of type
T), and formulas (bindings of the form {C}).

Syntax of typing environments

µ ::= environment entry
α type variable
α :: k kind-bounded type variable
a l T channel name
x : T variable
{C} formula*

E ::= µ1, . . . , µn typing environment

96 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

An environment is well-formed (E ` �) if all variables, names, and type variables are
defined before use, and no duplicate definitions exist. A type T is well-formed in envi-
ronment E (written E ` T) if all its free variables, names, and type variables are defined
in E, and E is itself well-formed.

Domain of environment dom(E); free bindings of environment entry free(µ)

dom(α) = {α}
dom(α :: k) = {α}
dom(a l T) = {a}
dom(x : T) = {x}
dom({C}) = ∅
dom(E1, E2) = dom(E1) ∪ dom(E2)

free(x : T) = free(T)
free(a l T) = free(T)
free({C}) = free(C)
free(µ) = ∅, otherwise

Well-formed environments and types

(Env Empty)

∅ ` �

(Env Entry)
E ` � free(µ) ⊆ dom(E) dom(µ) ∩ dom(E) = ∅

E,µ ` �

(Type)
E ` �

free(T) ⊆ dom(E)

E ` T

An important judgment in the type system is E ` C, which states that the formula C
is derivable from the formulas in E. Intuitively, our type system ensures that whenever
E ` C we have that C is logically entailed by the global formula log at execution time.
This judgment is used for instance when type-checking assert C using (Exp Assert):
type-checking succeeds only if C is entailed in the current typing environment. If E
binds a variable y to a refinement type {x : T | C}, we know that the formula C{y/x} is
entailed in the system and therefore E ` C{y/x}. In general, the idea is to inspect each
of the type bindings in E and to extract the set of formulas occurring within refinement
types. For intersection types we take the union of the formulas occurring in the two
types, while for union types we take their component-wise disjunction.

Entailed formulas E ` C

(Derive)
E ` � free(C) ⊆ dom(E) Tforms(E)U |= TCU

E ` C
forms(y : {x : T | C}) = {C{y/x}} ∪ forms(y : T)
forms(y : T1 ∧ T2) = forms(y : T1) ∪ forms(y : T2)
forms(y : T1 ∨ T2) = {C1 ∨ C2 | C1 ∈ forms(y : T1), C2 ∈ forms(y : T2)}
forms({C}) = C
forms(E1, E2) = forms(E1) ∪ forms(E2)
forms(E) = ∅, otherwise

3.4. TYPE SYSTEM 97

3.4.2. Subtyping and Kinding

The type system defines a subtyping relation on types and allows an expression of a
subtype to be used in all contexts that require an expression of a supertype. This preorder
provides more flexibility to the type system, since it allows more correct programs to be
accepted as well-typed. For instance, all data sent to and received from an untrusted
channel have type Un, since such channels are considered under the complete control of
the adversary. However, a system in which only data of type Un can be communicated
over the untrusted network would be too restrictive, e.g., a value of type {x : Un | Ok(x)}
could not be sent over the network.

Subtyping is commonly used to compare types with type Un. In particular, we allow
values having type T that is a subtype of Un, denoted T <: Un, to flow to the attacker
(e.g., to be sent over the untrusted network), and we say that the type T has kind public
in this case. Similarly, we allow values of type Un that flow from the attacker (e.g., that
are received from the untrusted network) to be used as values of type U , provided that
Un <: U , and in this case we say that type U has kind tainted. Kinding is defined as a
separate judgment that contributes to the subtyping judgment via the (Sub Pub Tnt)
rule. We list all rules for kinding and subtyping, and then explain the more interesting
ones below.

Kinding E ` T :: k

(Kind Refine Pub)
E ` {x : T | C} E ` T :: pub

E ` {x : T | C} :: pub

(Kind Refine Tnt)
E ` T :: tnt E, x : T ` C
E ` {x : T | C} :: tnt

(Kind Fun)

E ` T :: k E, x : T ` U :: k

E ` (x : T → U) :: k

(Kind Univ*)
E,α ` T :: k

E ` ∀α. T :: k

(Kind Unit)
E ` �

E ` unit :: k

(Kind Sum)
E ` T :: k E ` U :: k

E ` (T + U) :: k

(Kind And Pub 1)
E ` T1 :: pub E ` T2
E ` T1 ∧ T2 :: pub

(Kind And Pub 2)
E ` T1 E ` T2 :: pub

E ` T1 ∧ T2 :: pub

(Kind And Tnt)
E ` T1 :: tnt Γ ` T2 :: tnt

Γ ` T1 ∧ T2 :: tnt

(Kind Or Pub)
E ` T1 :: pub E ` T2 :: pub

E ` T1 ∨ T2 :: pub

(Kind Or Tnt 1)
E ` T1 :: tnt E ` T2
E ` T1 ∨ T2 :: tnt

(Kind Or Tnt 2)
E ` T1 E ` T2 :: tnt

E ` T1 ∨ T2 :: tnt

(Kind Pair)
E ` T :: k E, x : T ` U :: k

E ` (x : T ∗ U) :: k

(Kind Var)
E ` � (α :: k) ∈ E

E ` α :: k

(Kind Var False*)
α ∈ dom(E) E ` false

E ` α :: k

(Kind Rec)
E,α :: k ` T :: k

E ` (µα. T) :: k

(Kind Top Tnt*)
E ` �

E ` > :: tnt

(Kind Top Pub*)
E ` false

E ` > :: pub

98 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

Notation: pub = tnt and tnt = pub

Subtyping E ` T <: U

(Sub Refl*)
E ` T

E ` T <: T

(Sub Top*)
E ` T

E ` T <: >

(Sub Pub Tnt)
E ` T :: pub E ` U :: tnt

E ` T <: U

(Sub Refine Left)
E ` {x : T | C} E ` T <: T ′

E ` {x : T | C} <: T ′

(Sub Refine Right)
E ` T <: T ′ E, x : T ` C
E ` T <: {x : T ′ | C}

(Sub Univ*)
E,α ` T <: U

E ` ∀α. T <: ∀α.U
(Sub Pair)
E ` T <: T ′ E, x : T ′ ` U <: U ′

E ` (x : T ∗ U) <: (x : T ′ ∗ U ′)

(Sub Arrow)
E ` T ′ <: T E, x : T ′ ` U <: U ′

E ` (x : T → U) <: (x : T ′ → U ′)

(Sub And LB 1)
E ` T1 <: U E ` T2
E ` T1 ∧ T2 <: U

(Sub And LB 2)
E ` T1 E ` T2 <: U

E ` T1 ∧ T2 <: U

(Sub And Greatest)
E ` T ′ <: T1 E ` T ′ <: T2

E ` T ′ <: T1 ∧ T2
(Sub Or Least)
E ` T1 <: U E ` T2 <: U

E ` T1 ∨ T2 <: U

(Sub Or UB 1)
E ` T <: U1 E ` U2

E ` T <: U1 ∨ U2

(Sub Or UB 2)
E ` U1 E ` T <: U2

E ` T <: U1 ∨ U2

(Sub Sum)
E ` T <: T ′ E ` U <: U ′

E ` (T + U) <: (T ′ + U ′)

(Sub Pos Rec*)
E,α ` T <: U α only occurs positively in T and U

E ` µα. T <: µα.U

Refinement Types. The refinement type {x : T | C} is a subtype of T . This allows
us to discard logical formulas when they are not needed. For instance, a value of type
{x : Un | Ok(x)} can be sent on a channel of type Un. Conversely, the type T is a subtype
of {x : T | C} only if ∀x. forms(x : T)⇒ C is entailed in the current typing environment,
so by subtyping we can only add universally valid formulas. Similarly, a type {x : T | C}
is public when T is public, and tainted when T is tainted and ∀x. forms(x : T) ⇒ C
is entailed in the typing environment. The intuition is that {x : T | C} <: T by (Sub
Refine Left) and (Sub Refl*), so if additionally we have that that T is public (T <: Un),
then we can use transitivity of subtyping to conclude that {x : T | C} is public as well
({x : T | C} <: Un). Please note, however, that transitivity of subtyping is a property
we later prove for the type system, not a subtyping rule.

Function Types. Function types are contravariant in their input and covariant in their
output, i.e., T → U is a subtype of T ′ → U ′ if T ′ is a subtype of T and U is a subtype
of U ′. Intuitively, this means that a function can be used in place of another function
if the former is “more liberal” in the types it accepts and “more conservative” in the
type it returns [LW94]. A function type T → U is public only if the return type U is

3.4. TYPE SYSTEM 99

public (otherwise λx:unit.Msecret would be public) and the argument type T is tainted
(otherwise λk : PrivKey〈Private〉. let x = encrypt〈Private〉 k Msecret in apub!x would be
public). Or intuitively, if T is tainted (i.e., Un <: T) and U is public (i.e., U <: Un)
then T → U is public, since by transitivity (T → U) <: (Un→ Un) <:> Un. Conversely,
T → U is tainted if T is public and U is tainted.

Union and Intersection Types. The intersection type T1 ∧ T2 is a3 greatest lower
bound of the types T1 and T2. Rules (Sub And LB 1) and (Sub And LB 2) ensure that
T1∧T2 is a lower bound: by using reflexivity in the premise we obtain that T1∧T2 <: T1
and T1 ∧ T2 <: T2. Rule (Sub And Greatest) ensures that T1 ∧ T2 is greater than any
other lower bound: if T ′ is another lower bound of T1 and T2 then T ′ is a subtype of
T1 ∧ T2. As far as kinding is concerned, the type T1 ∧ T2 is public if T1 is public or T2 is
public, and it is tainted if both T1 and T2 are tainted. The union type T1 ∨ T2 is a least
upper bound of T1 and T2. The rules for union types are exactly the dual of the ones
for intersection types.

Our type system has no distributivity rules between union and intersection types and the
primitive type constructors. Some distributivity rules are derivable from the primitive
rules above: for instance we can prove from (Sub Arrow), (Sub And LB 1), (Sub And LB
2), and (Sub And Greatest) that T → (U1 ∧ U2) is a subtype of (T → U1) ∧ (T → U2),
but not the other way around. In fact adding a subtyping rule in the other direction
would be unsound [DP00], since in our system functions can have side-effects and such
distributivity rules would allow circumventing the value restriction on the introduction
of intersection types (see §3.4.4 and §3.9).

Polymorphic Types. Our rule for subtyping polymorphic types (Sub Univ*) is simple:
the type ∀α. T is subtype of ∀α.U if T is a subtype of U . Similarly, ∀α. T has kind k
if T has kind k in an environment extended with a binding for α. Note that α can be
substituted by any type, so we cannot assume anything about α when checking that
T :: k and T <: U respectively. Bounded (or kind-bounded) quantification could easily
be added to our language, but so far we found no compelling example in our applica-
tion domain that would require bounded quantification (bounded quantifiers can also be
encoded with normal quantifiers and intersection types [Pie91]). Recent work by Dun-
field [Dun09] and others studies more precise subtyping rules for first-class polymorphic
types.

Recursive Types. Our rule (Sub Pos Rec*) for subtyping recursive types can be
tracked back to Val Tannen et al. [TCGS89]. It differs significantly from Cardelli’s
Amber rule [AC93, Car97], which is more well-known and which is used by the original
RCF [BBF+08]:

Cardelli’s Amber rule (used by the original RCF)

3The subtyping relation of RCF is not anti-symmetric, so least and greatest elements are not necessarily
unique.

100 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

(Sub Rec)
E,α <: α′ ` T <: T ′ α 6= α′ α 6∈ ftv(T ′) α′ 6∈ ftv(T)

E ` µα. T <: µα′. T ′

The soundness of the Amber rule (Sub Rec) is hard to prove syntactically [BBF+08] – in
particular proving the transitivity of subtyping in the presence of the Amber rule requires
a very complicated inductive argument, which only works for “executable” environments,
as well as spurious restrictions on the usage of type variables in the rules (Sub Refl*),
(Kind And Pub 1), (Kind And Pub 2), (Kind Or Tnt 1), (Kind Or Tnt 2), (Sub And LB
1), (Sub And LB 2), (Sub Or UB 1), (Sub Or UB 2). We use the simpler (Sub Pos Rec*)
rule, which is much easier to prove sound and requires no restrictions on the other rules.
It resembles (Sub Univ*), our rule for subtyping universal types, with the additional
restriction that the recursive variable is not allowed to appear in a contravariant position
(such as α→ T). While this positivity restriction is crucial for the soundness of the (Sub
Pos Rec*) rule4, this did not pose big problems for us in practice5, where most of the
time only positive recursive types [Men91, Urz95] are used. Moreover, this positivity
restriction only affects subyping, so programs involving negative occurrences of recursion
variables that do not require subtyping can still be properly type-checked (e.g., we can
still type-check the encodings of fixpoint combinators on expressions [BBF+08])

Ligatti et al. [LNBH11] have very recently proposed subtyping rules for iso-recursive
types that are not only sound, but also complete with respect to type safety. The
incompleteness of the Amber rule (Sub Rec) stems from its lack of considering unrolled
types. We are not sure, however, if formalizing the transitivity of subtyping proof of
Ligatti et al. would be any easier than for the Amber rule.

3.4.3. Encoding Types Un and Private in RCF∀∧∨

In RCF [BBF+08] type Un is not primitive. By the (Sub Pub Tnt) rule that relates
kinding and subtyping, any type that is both public and tainted is equivalent to Un.
Since type unit is both public and tainted, Un is actually encoded as unit.

The (Sub Pub Tnt) rule equates many of the types in the system. For instance in RCF
all the following types are equivalent by subtyping: Un, Un → Un, Un ∗ Un, Un + Un,

4 Let T = µα. α → pos and U = µα. α → nat; if it wasn’t for the positivity restriction, rule (Sub
Pos Rec*) would allow us to show that T is a subtype of U . One would then expect that also the
unfoldings of T and U are subtypes of each other, i.e., that T → pos is a subtype of U → nat. By
the contravariance of function types this is only the case if U is a subtype of T , so only when T and
U are equivalent by subtyping, which is clearly not the case.

5 Val Tannen et al. [TGS89] give µα. int∗{l : α,m : α→ α} <: µβ. int∗{l : β} as an example subtyping
that is intuitively valid, but which cannot be handled by rule (Sub Pos Rec*) because of the positivity
restriction. Our type system has, however, no record types, and it cannot encode record types that
satisfy subtyping in width. The only way we found to write a similar example in our system was to
use union or intersection types inside the recursive type, as in µα. int ∗ (α∧ (α→ α)) <: µβ. (int ∗ β),
but this is by no means a commonly used idiom in practice.

3.4. TYPE SYSTEM 101

µα.Un, and ∀α.Un. As a consequence it is hard to come up with RCF types that do
not share any values with type Un, a property we want for our Private type. Perhaps
unintuitively, it is not enough that a type is not public and not tainted to make it disjoint
from Un (e.g., > → > is not public and not tainted, still λx : >. x and λx : Un. x are
two syntactically equal values that inhabit > → > and Un → Un respectively). A final
observation is that, in RCF∀∧∨, in an inconsistent environment (E ` false) all types are
equivalent and all values inhabit all types. This means that Private being disjoint from
Un is relative to the formulas in the environment.

Encoding type Private

{C} , {x : unit | C} x /∈ free(C)

PrivateC , {f : {C} → Un | ∃x. f = λy : {C}. assert C;x}
Private , Privatefalse

We therefore encode a more general type PrivateC , read “private unless C”. The values
in this type are not known to the attacker, unless the formula C is entailed by the
environment6. Intuitively, if the attacker would know a value of this type, then he could
call it (values of type PrivateC have to be functions), which would exercise the assert C
and invalidate the safety of the system, unless C can be derived from the formula log.
Type PrivateC resembles a singleton type, in that it contains only values of a very specific
form. We use an existential quantifier over values to ensure that there are infinitely many
values of this type. The type Private is obtained as Privatefalse.

3.4.4. Typing Values and Expressions

The main judgments of the type system are E ` M : T , which states that value M has
type T , and E ` A : T , stating that expression A returns a value of type T . These two
judgments are mutually-inductively defined. We first list the rules of each judgment,
and then we explain the some of the ones that are new with respect to [BBF+08].

Typing values E `M : T

(Val Var)
E ` � (x : T) ∈ E

E ` x : T

(Val Subsum)
E `M : T E ` T <: T ′

E `M : T ′

(Val Refine)
E `M : T E ` C{M/x}

E `M : {x : T | C}
(Val Lam)

E, x : T ` A : U

E ` λx : T.A : (x : T → U)

(Val TLam*)
E,α ` A : T

E ` Λα.A : ∀α. T

(Val Pair)
E `M1 : T1 E `M2 : T2{M1/x}

E ` (M1,M2) : (x : T1 ∗ T2)

6The type PrivateC also appears naturally when reasoning about security despite compromised partic-
ipants [BGHM09].

102 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

(Val And*)
E `M : T E `M : U

E `M : T ∧ U

(Val For 1*)

E `M{T̃ /α̃} : V

E ` for α̃ in T̃ ; Ũ . M : V

(Val For 2*)

E `M{Ũ/α̃} : V

E ` for α̃ in T̃ ; Ũ . M : V

(Val Fold)
E `M : T{µα. T/α} E ` µα. T

E ` foldµα. T M : µα. T

(Val Unit)
E ` �

E ` () : unit

(Val Inl)
E `M : T

E ` inl M : T + U

(Val Inr)
E `M : U

E ` inr M : T + U

Rule (Val And*) allows us to give value M an intersection type T ∧ U , if we can give
M both type T and type U . As discovered by Davies and Pfenning [DP00] the value
restriction is crucial for the soundness of this introduction rule in the presence of side-
effects (also see §3.9). Also, unrelated to the value restriction, this rule is not very useful
on its own: since we are in a calculus with typing annotations, it is hard to give one
annotated value two different types. For instance, if we want to give the identity function
type (Private→Private)∧ (Un→Un) we need to annotate the argument with type Private
(i.e., λx:Private. x) in order to give it type Private→Private, but then we cannot give this
value type Un→Un. Following Pierce [Pie91,Pie97] and Reynolds [Rey96] we use the for
construct to explicitly alternate type annotations. For instance, the identity function
of type (Private→Private) ∧ (Un→Un) can be written as (for α in Private; Un. λx:α. x).
By rule (Val For 1*) we can give this value type Private→Private if we can give value
λx:Private. x the same type, which is trivial. Similarly, by (Val For 2*) we can give the
for value type Un→Un, so by (Val And*) we can give it the desired intersection type.

Typing expressions E ` A : T

(Exp Appl)
E `M : (x : T → U) E ` N : T

E `M N : U{N/x}

(Exp Inst*)
E `M : ∀α.U

E `M〈T 〉 : U{T/α}

(Exp Subsum)
E ` A : T E ` T <: T ′

E ` A : T ′

(Exp If*)
E `M : T1 E ` N : T2 ` T1 ## T2 ; C

E, x : T1 ∧ T2, {x = M ∧M = N ∧ C} ` A : U E, {M 6= N} ` B : U

E ` if M = N as x then A else B : U

(Exp Case*)
E `M : T1 ∨ T2 E, x : T1 ` A : U E, x : T2 ` A : U

E ` case x = M : T1 ∨ T2 in A : U

(Exp Assert)
E ` C

E ` assert C : unit

(Exp Let)
E ` A : T E, x : T ` B : U x /∈ fv(U)

E ` let x = A in B : U

(Exp Assume)
E ` � free(C) ⊆ dom(E)

E ` assume C : { : unit | C}
(Exp Res)
E, a l T ` A : U a /∈ fn(U)

E ` (νa l T)A : U

(Exp Send)
E `M : T (a l T) ∈ E

E ` a!M : unit

(Exp Recv)
E ` � (a l T) ∈ E

E ` a? : T

3.4. TYPE SYSTEM 103

(Exp Split)
E `M : (x : T ∗ U)

E, x : T, y : U, {(x, y) = M} ` A : V
{x, y} ∩ fv(V) = ∅

E ` let (x, y) = M in A : V

(Exp Match)
E `M : T1 + T2

E, x : T1, {inl x = M} ` A : U x /∈ fv(U)
E, y : T2, {inr y = M} ` B : U y /∈ fv(U)

E ` match M with inl x⇒ A | inr y ⇒ B : U

(Exp Unfold)
E `M : µα. T

E ` unfoldµα. T M : T{µα. T/α}

(Exp Fork)

E, {A2} ` A1 : T E, {A1} ` A2 : U

E ` (A1 � A2) : U

The rule for type-checking A1 � A2, relies on an auxiliary function that extracts the
top-level formulas from A2 for type-checking A1 and vice-versa. The function A returns
the conjunction of each formula C occurring in a top-level assume C in A, with restricted
names existentially quantified.

Formula extraction

assume C = C A � B = A ∧B A = true, otherwise

(νa l T)A = ∃a. A let x = A in B = A

Union Types are introduced by subtyping (T1 is a subtype of T1∨T2 for any well-formed
type T2), and eliminated by a case x = M : T1∨T2 in A expression [Pie91] using the (Exp
Case*) rule.7 Given a value M of type T1∨T2, we do not know in general whether M is of
type T1 or of type T2, so we have to type-check A under each of these assumptions. This
is useful when type-checking code interacting with the attacker. For instance, suppose
that a party receives a value encrypted with a public-key that is used by honest parties
to encrypt messages of type T (as in the protocol from §3.2). After decryption, the
obtained plaintext is given type T ∨Un since it might come from a honest party as well
as from the attacker. We have thus to type-check the remaining code twice, once under
the assumption that x is of type T , and once assuming that x is of type Un.

The rule (Exp If*) exploits intersection types for strengthening the type of the values
tested for equality in the conditional if M = N as x then A else B. If M is of type T1
and N is of type T2, then we type-check A under the assumption that x = M ∧ M = N ,
and x is of type T1 ∧ T2. This corresponds to a type-cast that is always safe, since the
conditional succeeds only if M is syntactically equal to N , in which case the common
value has indeed both the type of M and the type of N . This is useful for type-checking
the symbolic implementations of digital signatures (see §3.6.2) and zero-knowledge (see
§3.7). Additionally, if the equality test of the conditional succeeds then the types T1 and
T2 are not disjoint. However, certain types such as Un and Private have common values
only if the environment is inconsistent (i.e., E ` false). Therefore, when comparing

7As pointed out by Dunfield and Pfenning [DP04] eliminating union types for expressions that are not
in evaluation contexts is unsound in the presence of non-determinism (this is further discussed in
§3.9).

104 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

values of disjoint types it is safe to add false to the environment when type-checking
A, which makes checking A always succeed. Intuitively, if T1 and T2 are disjoint the
conditional cannot succeed, so the expression A will not be executed. This idea has
been applied in [AB03] for verifying secrecy properties of nonce handshakes, but later
disappeared in the more advanced type systems for authorization policies.

Non-disjointness of types (*) ` T ## U ; C

(ND Private Un)
fv(C) = ∅

` PrivateC ## Un ; C

(ND True)

` T1 ## T2 ; true

(ND Sym)
` T2 ## T1 ; C

` T1 ## T2 ; C

(ND Refine)
` T1 ## T2 ; C

` {x : T1 | C1} ## T2 ; C

(ND Rec)
` (T{α/µα. T}) ## (U{β/µβ. U}) ; C

` (µα. T) ## (µβ.U) ; C

(ND Pair)
` T1 ## U1 ; C1 ` T2 ## U2 ; C2

` (T1 ∗ T2) ## (U1 ∗ U2) ; C1 ∧ C2

(ND Sum)
` T1 ## U1 ; C1 ` T2 ## U2 ; C2

` (T1 + T2) ## (U1 + U2) ; (C1 ∨ C2)

(ND And)
` T1 ## U ; C1 ` T2 ## U ; C2

` (T1 ∧ T2) ## U ; C1 ∧ C2

(ND Or)
` T1 ## U ; C1 ` T2 ## U ; C2

` (T1 ∨ T2) ## U ; C1 ∨ C2

We take this idea a lot further: we inductively define a ternary relation, which relates
two types with a logical formula. If ` T1 ## T2 ; C holds then any environment E in
which T1 and T2 have a common value, has to entail the condition C (i.e., E ` C). The
base case of this relation is ` PrivateC ## Un ; C, in particular ` Private ## Un ; false.
We call two types provably disjoint if ` T1 ## T2 ; C for some formula C that logically
entails false, so Private and Un are provably disjoint. Intuitively, two provably disjoint
types have common values only in an inconsistent environment.

The other inductive rules lift the NonDisj relation to refinement, pair, sum, recursive,
union, and intersection types. We explain two of them in terms of provable disjointness.
In order to show that two (non-dependent) pair types (T1∗T2) and (U1∗U2) are provably
disjoint, we apply rule (ND Pair) and we need to show that T1 and U1 are provably
disjoint, or that T2 and U2 are provably disjoint (a conjunction is false if at least one of
the conjuncts is false). On the other hand, in order to show that two sum types (T1+T2)
and (U1 + U2) are disjoint using (ND Sum) we need to show both that T1 and U1 are
disjoint and that T2 and U2 are disjoint.

To illustrate the expressivity of this definition we consider a type for binary trees:
tree〈α〉 , µβ. α+(α∗β∗β). Each node in the tree is either a leaf or has two children, and
both kind of nodes store some information of type α. We can show that tree〈Private〉 and
tree〈Un〉 are provably disjoint. By (ND Rec) we need to show that the unfolded types

3.5. RESULTS OF THE FORMALIZATION 105

Private+(Private∗ tree〈Private〉∗ tree〈Private〉) and Un+(Un∗ tree〈Un〉∗ tree〈Un〉) are dis-
joint. By (ND Sum) we need to show both that Private and Un are disjoint, which is im-
mediate by (ND Private Un), and that the pair types (Private∗tree〈Private〉∗tree〈Private〉)
and (Un ∗ tree〈Un〉 ∗ tree〈Un〉) are disjoint. For the latter, by (ND Pair) it suffices to
show that the types of the first components of the pair are disjoint, which follows again
by (ND Private Un).

Finally, we remark that the property we called provable disjointness in this section is a
tractable (mostly syntax-directed) approximation for the real disjointness of types. This
approximation is formally proven sound in Theorem 3.5 from §3.5.

3.5. Results of the Formalization

We have formalized the metatheory of RCF∀∧∨ in the Coq proof assistant [Coq09]. We
achieve this by defining Formal-RCF∀∧∨, a core calculus where terms are encoded using a
locally nameless representation [Gor93,ACP+08]: free variables, free type variables and
free RCF names are represented in a named way, while bound variables, bound type
variables and bound names are represented using de Bruijn indices [dB72]. Each alpha-
equivalence class has thus a unique representation, avoiding the difficulties associated
with alpha-renaming. Besides the formalization of binders, the only other difference
between Formal-RCF∀∧∨ and RCF∀∧∨ is that in Formal-RCF∀∧∨ all type annotations from
values, expressions and formulas are erased.

Type erasure for selected values and expressions

Tλx : T.AU = v lam (closex TAU) TΛα.AU = v tlam TAU
Tfor α̃ in T̃ ; Ũ . MU = TMU TM〈T 〉U = e inst TMU
Tcase x = M : T ∨ U in AU = e let TMU (closex TAU)

While this erasure process is straightforward, it is crucial for the soundness of the type
system that the operational semantics and authorization logic work on erased values.
The following type derivation illustrates this aspect.

∅ `M{T1/α} : T ∅ |= M{T1/α} = M{T1/α}
∅ `M{T1/α} : {x : T | x = M{T1/α}}

∅ ` for α in T1;T2. M : {x : T | x = M{T1/α}}

It uses the (Val Refine) rule to give M{T1/α} a singleton type, and then the (Val For
1*) rule to give the same singleton type to the value (for α in T1;T2. M). The only way
this can possibly work is because the logic equates M{T1/α} and (for α in T1;T2. M), by
working on values where all type annotations and the for construct for type annotation
alternation are completely erased. So in our setting the main motivation for doing type
erasure is not efficiency, but the soundness of the type system.

106 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

Another benefit of doing type erasure is that it makes Formal-RCF∀∧∨ very close to the
original RCF [BBF+08], which is also extrinsically typed. In particular the operational
semantics of Formal-RCF∀∧∨

8 corresponds directly to the one of the original RCF, which
is defined in terms of a heating relation that allows for syntactic rearrangements of
concurrent expressions (eV e′) and a standard reduction relation (e→ e′). To prevent
confusion, in the following we use e to stand for the expressions, v for the values, and F
for the formulas of Formal-RCF∀∧∨.

As advertised by Aydemir et al. [ACP+08], in our core language the inductive rules
are defined using cofinite quantification. This yields strong induction and inversion
principles for the relations of the system, and obviates the need for reasoning about
alpha-equivalence.

Two of the rules using cofinite quantification

∀a 6∈ L. opena e1 V opena e2

e new e1 V e new e2

∀α /∈ L. E, α e : openα T

E v tlam e : t univ T

When applying such a rule forwards, one has to choose a finite set L of avoided names
(for instance the domain of E), and then has to prove the premise of the rule for an
arbitrary name that is not in the set L. This provides a stronger induction principle,
since for these rules the induction hypothesis will hold for all names except those in some
finite set L, rather than just for a single name.

We have proved that the typing judgments of RCF∀∧∨ are preserved by type erasure. This
proof relies on standard [ACP+08] renaming lemmas for the Formal-RCF∀∧∨ judgments
(we use to denote Formal-RCF∀∧∨ judgments).

Lemma 3.1 (Renaming for E e : T).
If x, y /∈ dom(E) ∪ fv(e, T) and E, x : U openx e : T then E, y : U openy e : T

Theorem 3.2 (Adequacy of RCF∀∧∨ Type System).
For all typing judgments J , if E ` J then TEU TJ U.

The main result we have proved for the type system is that well-typed expressions are
robustly safe. As in [BBF+08], the property follows from the subject-reduction property
of the type system. We also list a couple of important lemmas and theorems used in the
proof. The high-level structure of our proofs is similar to the one of our proofs for the
spi-calculus (§2.5).

Lemma 3.3 (Inconsistent Environment). If E false, E T and free(e) ⊆ dom(E)
then E e : T .

8Note that while Formal-RCF∀
∧∨ has an operational semantics of its own, RCF∀

∧∨ is only given semantics
by translation into Formal-RCF∀

∧∨ (i.e., type erasure).

3.5. RESULTS OF THE FORMALIZATION 107

Lemma 3.4 (Transitivity of Subtyping). If E T1 <: T2 and E T2 <: T3 then
E T1 <: T3.

Theorem 3.5 (Non-disjoint). If NonDisj T1 T2 ; F and v is a closed value so that
E v : T1 and E v : T2, then E F .

Theorem 3.6 (Reduction Preserves Types). If fv(e) = ∅, E e : T , and e → e′ then
E e′ : T .

Definition 3.7 (Safety). A closed expression e is safe if and only if, in all evaluations
of e, all assertions succeed.

Theorem 3.8 (Safety). If ∅ e : T then e is safe.

Definition 3.9 (Opponent). An opponent is an expression e that does not contain
asserts, free variables or names.

Definition 3.10 (Robust Safety). An expression e is robustly safe if the application O e
is safe for any opponent O.

Theorem 3.11 (Robust Safety for Formal-RCF∀∧∨).
If ∅ e : TUnU then e is robustly safe.

Corollary 3.12 (Robust Safety for RCF∀∧∨).
If ∅ ` A : Un then TAU is robustly safe.

In a similar way to the definition of robust secrecy of Bengtson et al. [BBF+08] (which
is, however, a property of contexts, not of values), we define a notion of robustly private
values.

Definition 3.13 (Robustly Private Values). We call a value v robustly private in e unless
C if free(v, e) = ∅ and the pair expression (e, λx. if x = v then assert C) is robustly safe.

Intuitively, a robustly private value is not known to the attacker, since if the attacker
would somehow produce or obtain such a value, he could pass it as an argument to the
lambda abstraction causing the conditional to succeed and the assert to be triggered.
It is very easy to show using Theorem 3.11 (Robust Safety) that every value of type
PrivateC is robustly private in e unless C, for any well-typed expression e.

Theorem 3.14 (Value of Type Private ⇒ Robustly Private). If ∅ v : TPrivateCU and
∅ e : TUnU then v is robustly private in e unless C.

The proof of these theorems was formalized in the Coq proof assistant [Coq09], together
with most of the necessary lemmas. The only notable exception is Theorem 3.2 (Ade-
quacy of Surface Syntax), which is proved by hand. Adequacy proofs are usually done by
hand, since formal and informal definitions (e.g. the “variable convention” in our surface
syntax) are in general impossible to relate formally. We remark that although the proofs

108 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

of some helper lemmas are not assert-free, our formal proofs are done in greater detail
than similar published paper proofs [BBF+08,BBF+11,BHM08c]

At the moment, our Coq formalization9 totals more than 14kLOC,10 out of which more
than 1.5kLOC are just definitions. We used Ott [SNO+10] to generate a large part of
these definitions from a 1kLOC long Ott specification, but for the more complex rules
we often needed to patch the output of Ott. We used LNgen [AW10] to generate an
additional 25kLOC of infrastructure lemmas, which proved invaluable when working
with the locally nameless representation.

During the formalization we found and fixed three problems in the paper proofs for
the original RCF [BBF+08]. First, the “Public Down/Tainted Up” lemma was applying
“Bound Weakening” in the wrong direction in the arrow type case, disregarding con-
travariance. Fixing this problem was easy, and only required proving a new lemma
for replacing tainted bounds. Second, in the original RCF opponents can contain free
names, so the proof of Theorem 3.11 (Robust Safety) used Theorem 3.8 (Safety) for a
non-empty environment; however, safety was proved only for empty environments. We
fixed this by not allowing the opponents to contain free names, since they can already
generate names using the (νa l T)A expression.

Lemma 3.15 (Replacing Tainted Bounds).
If E, x : T ′, E′ ` U :: k, and E ` T , and E ` T ′ :: tnt then E, x : T,E′ ` U :: k.

Finally, the proof of the “Strengthening” lemma in the original RCF [BBF+08], and also
in other refinement type systems for security [BHM08c], is wrong, and the status of the
lemma in its original form is still unclear.

Claim 3.16 (Strengthening).
If E,µ,E′ ` J and dom(µ) ∩ (free(E′) ∪ free(J)) = ∅ and E,E′ ` forms(µ), then
E,E′ ` J .

The proof is claimed to be by induction on the depth of the derivation of E,µ,E′ ` J ,
however, in the (Exp Subsum) case the induction does not go through. In this case we
know that E,µ,E′ ` A : T and E,µ,E′ ` T <: T ′, and need to show that E,E′ ` A : T ′.
Additionally we know that dom(µ) ∩ (free(E′) ∪ free(A, T ′)) = ∅ and E,E′ ` forms(µ).
However, in order to apply the induction hypothesis for E,µ,E′ ` A : T we would need
as a freshness condition that dom(µ) ∩ free(T) = ∅, which we do not know since T and
T ′ do not necessarily share the same free variables and names. The solution the RCF
authors proposed is to weaken the claim of the lemma to only cover type variable and
“anonymous” variable bindings (which in our work we replaced by formula bindings).
This is enough for the other results to go through, while avoiding the problems with the
freshness condition.

9http://www.infsec.cs.uni-saarland.de/projects/F5/
10All code size figures include whitespace and comments.

http://www.infsec.cs.uni-saarland.de/projects/F5/

3.6. IMPLEMENTATION OF SYMBOLIC CRYPTOGRAPHY 109

3.6. Implementation of Symbolic Cryptography

In contrast to process calculi for cryptographic protocols [AG99, AF01], RCF∀∧∨ does
not have any built-in construct to model cryptography. Cryptographic primitives are
instead encoded using a dynamic sealing mechanism [Mor73], which is based on stan-
dard RCF∀∧∨ constructs. The resulting symbolic cryptographic libraries are type-checked
using the regular typing rules. The main advantage is that, adding a new primitive to
the library does not involve changes in the calculus or in the soundness proofs: one has
just to find a well-typed encoding of the desired cryptographic primitive. In addition,
Backes et al. have recently [BMU10] shown that sealing-based libraries for asymmetric
cryptography are computationally sound and semantically equivalent to the more tradi-
tional Dolev-Yao libraries based on datatype constructors. §3.6.1 overviews the dynamic
sealing mechanism used in [BBF+08] to encode symbolic cryptography, while §3.6.2 and
§3.6.3 show how our expressive type system can be used to improve this encoding and
extend the class of supported protocols.

3.6.1. Dynamic Sealing

The notion of dynamic sealing was initially introduced by Morris [Mor73] as a protection
mechanism for programs. Later, Sumii and Pierce [SP03, SP07] studied the semantics
of dynamic sealing in a λ-calculus, observing a close correspondence with symmetric
encryption. So the original spi-calculus [AG99], which baked in symmetric encryption,
can essentially be seen as the pi-calculus [Mil99] with dynamic sealing.

In RCF [BBF+08] seals are encoded using pairs, functions, references and lists. A seal
is a pair of a sealing function and an unsealing function, having type:

Seal 〈T 〉 = (T → Un) ∗ (Un→ T).

The sealing function takes as input a value M of type T and returns a fresh value N
of type Un, after adding the pair (M,N) to a secret list that is stored in a reference.
The unsealing function takes as input a value N of type Un, scans the list in search of a
pair (M,N), and returns M . Only the sealing function and the unsealing function can
access this secret list. In RCF, each key-pair is (symbolically) implemented by means
of a seal. In the case of public-key cryptography, for instance, the sealing function is
used for encrypting, the unsealing function is used for decrypting, and the sealed value
N represents the ciphertext.

Let us take a look at the type Seal 〈T 〉. If T is neither public nor tainted, as is usually
the case for symmetric-key cryptography, neither the sealing function nor the unsealing
function are public, meaning that the symmetric key is kept secret. If T is tainted but not
public, as usually the case for public-key encryption, the sealing function is public but the
unsealing function is not, meaning that the encryption key may be given to the adversary
but the decryption key is kept secret. If T is public but not tainted, as typically the

110 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

case for digital signatures, the sealing function is not public and the unsealing function
is public, meaning that the signing key is kept secret but the verification key may be
given to the adversary.

Although this unified interpretation of cryptography as sealing and unsealing functions
is conceptually appealing, it actually exhibits some undesired side-effects when modeling
asymmetric cryptography. If the type of a signed message is not public, then the verifi-
cation key is not public either and cannot be given to the adversary. This is unrealistic,
since in most cases verification keys are public even if the message to be signed is not
(as in DAA, see §3.7.1). Moreover, if the type of a message encrypted with a public key
is not tainted, then the public key is not public and cannot be given to the adversary.
This may be problematic, for instance, when modeling authentication protocols based
on public keys as the NSL protocol (see §3.2), where the type of the encrypted messages
is neither public nor tainted.

3.6.2. Digital Signatures

In this section, we focus on digital signatures and show how union and intersection types
can be used to solve the aforementioned problems. The signing key consists of the seal
itself and is given type SigKey〈T 〉 , Seal 〈T 〉, as in the original RCF library [BBF+08].
The verification key, instead, is encoded as a function that (i) takes the signature x and
the signed message t as input; (ii) calls the unsealing function to retrieve the message y
bound to x in the secret list; and (iii) returns y if y is equal to t and fails otherwise. In
this encoding, the verifier has to know the signed message in order to verify the signature.
This is reasonable as, for efficiency reasons, one usually signs a hash of the message as
opposed to the message in plain.

Symbolic implementation of signing-verification key pair

mkSigPair : ∀α. unit→ SigKey〈α〉 ∗ VerKey〈α〉
mkSigPair = Λα. λu : unit.

let (seal , unseal) = mkSeal 〈α〉 in
let vk = λx : Un. for β in >; Un. λt : β.

if t = (unseal x) as z then z else failwith “verification failed”
in (seal , vk)

The type VerKey〈T 〉 of a verification key is defined as Un→
(
(x : > → {y : T | x = y})∧

(Un→ Un)
)
. The verification key takes the signature of type Un as first argument. The

second part of this type is an intersection of two types: The type x : > → {y : T | x = y}
is used to type-check honest callers: the signed message x has any type (top type) and
the message y returned by the unsealing function has the stronger type T , which means
that the unsealing function casts the type of the signed message from > down to T . This
is safe since the sealing function is not public and can only be used to sign messages

3.7. ENCODING OF ZERO-KNOWLEDGE 111

of type T . The type Un → Un makes VerKey〈T 〉 always public.11 Hence, in contrast
to [BBF+08], we can reason about protocols where the signing key is used to sign private
messages while the verification key is public (e.g., in DAA [BCC04]). Finally, we present
the typed interface of the functions to create and check signatures:

sign : ∀α. (xsk : SigKey〈α〉 → α→ Un) ∧ Un
check : ∀α. (xvk : VerKey〈α〉 → Un→ >→ α) ∧ Un

We type-check sign and check twice, to give them intersection types whose right-hand side
is Un. While making these functions available to the adversary is not strictly necessary
(the attacker can directly use the signing and verification keys to which he has access),
this is convenient for the encoding of zero-knowledge we describe in §3.7 (dishonest
verifier cases).

3.6.3. Public-Key Encryption

For public-key encryption we simply use a seal of type Seal 〈T ∨ Un〉, i.e., PrivKey〈T 〉 ,
Seal 〈T ∨ Un〉 and PubKey〈T 〉 , (T ∨ Un) → Un. This allows us to obtain the types
described in §3.2.2. In contrast to [BBF+08], the encryption key is always public, even
if the type T of the encrypted message is not tainted.12

3.7. Encoding of Zero-knowledge

This section describes how we automatically generate the symbolic implementation of
non-interactive zero-knowledge proofs, starting from a high-level specification. Intu-
itively, this implementation resembles an oracle that provides three operations: one for
creating zero-knowledge proofs, one for verifying such proofs, and one for obtaining
the public values used to create the proofs. Some of the values used to create a zero-
knowledge proof are revealed by the proof to the verifier and to any eavesdropper, while
the others (which we call witnesses) are kept secret. A zero-knowledge proof does not
reveal any information about these witnesses, other than the validity of the statement
being proved.

3.7.1. Illustrative Example: Simplified DAA-sign

We are going to illustrate our technique on a simplified variant of the Direct Anonymous
Attestation (DAA) protocol [BCC04]. This simplified variant of the protocol was also
considered in §2.2. The goal of the DAA protocol is to enable the TPM to sign arbitrary
messages and to send them to an entity called the verifier in such a way that the verifier

11A type of the form Un → (T1 ∧ T2) is public if T1 or T2 are public, and in our case T2 = Un → Un is
public.

12A type of the form (T1 ∨ T2)→ Un is public if T1 or T2 is tainted, and in our case T2 = Un is tainted.

112 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

will only learn that a valid TPM signed that message, but without revealing the TPM’s
identity. The DAA protocol is composed of two sub-protocols: the join protocol and
the DAA-signing protocol. The join protocol allows a TPM to obtain a certificate xcert
from an entity called the issuer. This certificate is just a signature on the TPM’s secret
identifier xf . The DAA-signing protocol enables a TPM to authenticate a message ym
by proving to the verifier the knowledge of a valid certificate, but without revealing the
TPM’s identifier or the certificate. In this section, we focus on the DAA-signing protocol
and we assume that the TPM has already completed the join protocol and received the
certificate from the issuer. In the DAA-signing protocol the TPM sends to the verifier a
zero-knowledge proof.

TPM Verifier

assume Send(xf , ym)
zkdaa (xf ,xcert ,yvki ,ym) //

assert Authenticate(ym)

The TPM proves the knowledge of a certificate xcert of its identifier xf that can be
verified with the verification key yvki of the issuer. Note that although the payload
message ym does not occur in the statement, the proof guarantees non-malleability so
an attacker cannot change ym without redoing the proof. Before sending the zero-
knowledge proof, the TPM assumes Send(xf , ym). After verifying the zero-knowledge
proof, the verifier asserts Authenticate(ym). The authorization policy we consider for the
DAA-sign protocol is

assume ∀xf , xcert , ym. Send(xf , ym) ∧ OkTPM(xf)⇒ Authenticate(ym)

where the predicate OkTPM(xf) is assumed by the issuer before signing xf .

3.7.2. High-level Specification

Our high-level specification of non-interactive zero-knowledge proofs is similar in spirit
to the symbolic representation of zero-knowledge proofs in a process calculus [BMU08,
BHM08c]. For a specification the user needs to provide: (1) variables representing the
witnesses and public values of the proof, (2) a Boolean formula over these variables
representing the statement of the proof, (3) types for the variables, and, if desired, (4)
a promise, i.e., a logical formula that is conveyed by the proof only if the prover is
honest.

High-level specification of simplified DAA

zkdef daa =
witness = [xf : Tvki , xcert : Un]
matched = [yvki : VerKey〈Tvki〉]
public = [ym : Un]
statement = [xf = check〈Tvki〉 yvki xcert xf]

3.7. ENCODING OF ZERO-KNOWLEDGE 113

promise = [Send(xf , ym)]
where Tvki = {zf : Private | OkTPM(zf)}

Variables. The variables xf and xcert stand for witnesses. The value of yvki is matched
against the signature verification key of the issuer, which is already known to the verifier
of the zero-knowledge proof. The payload message ym is returned to the verifier of the
proof, so it is public.

Statement. The statement conveyed by a zero-knowledge proof is in general a positive
Boolean formula over equality checks. In our simplified DAA example this is just xf =
check〈Tvki〉 yvki xcert xf .

Types. The user also needs to provide types for the variables. The DAA-sign proto-
col does not preserve the secrecy of the signed message, so ym has type Un. On the
other hand, the TPM identifier xf is given a secret and untainted type Tvki = {zf :
Private | OkTPM(zf)}. This type ensures that xf is not known to the attacker and that
the predicate OkTPM(xf) holds. The verification key of the issuer is used to check signed
messages of type Tvki , so it is given type VerKey〈Tvki〉. Finally the certificate xcert is a
signature, so it has type Un. Even though it has type Un, it would break the anonymity
of the user to make the certificate a public value, since the verifier could then always
distinguish if two consecutive requests come from the same user or not.

Promise. The user can additionally specify a promise: an arbitrary authorization logic
formula that holds in the typing environment of the prover. If the statement is strong
enough to identify the prover as an honest (type-checked) protocol participant (signature
proofs of knowledge such as DAA-signing have this property [BCC04, LHH+07]), then
the promise can be safely transmitted to the typing environment of the verifier. In the
DAA example we have the promise Send(xf , ym), since this predicate holds in the typing
environment of a honest TPM.

3.7.3. Automatic Code Generation

We automatically generate both a typed interface and a symbolic implementation for
the oracle corresponding to a zero-knowledge specification.

Generated typed interface for simplified DAA

createdaa : Tdaa ∨ Un→ Un publicdaa : Un→ Un

verifydaa : Un→ ((yvki : VerKey〈Tvki〉 → Udaa) ∧ Un→ Un)

where Tdaa = yvki : VerKey〈Tvki〉 ∗ ym : Un ∗ xf : Tvki ∗ xcert : Un ∗ {Send(xf , ym)}
and Udaa = {ym : Un | ∃xf , xcert . OkTPM(xf) ∧ Send(xf , ym)}

114 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

The generated interface for DAA contains three functions that share a hidden seal of
type Tdaa ∨Un. The function createdaa is used to create zero-knowledge proofs. It takes
as argument a tuple containing values for all variables of the proof, or an argument
of type Un if it is called by the adversary. In case a protocol participant calls this
function, we check that the values have the specified types. Additionally, we check that
the promise Send(xf , ym) holds in the typing environment of the prover. The returned
zero-knowledge proof is given type Un so that it can be sent over the public network.

The function publicdaa is used to read the public values of a proof, so it takes as input
the sealed proof of type Un and returns ym, also at type Un.

The function verifydaa is used for verifying zero-knowledge proofs. Because of the second
part of the intersection type, this function can be called by the attacker, in which case
it returns a value of type Un. When called by a protocol participant, however, it takes
as argument a candidate zero-knowledge proof of type Un and the verification key of
the issuer with type VerKey〈Tdaa〉. On successful verification, verifydaa returns ym, the
only public variable, but with a stronger type than in publicdaa . The function guarantees
that the formula ∃xf , xcert . OkTPM(xf) ∧ Send(xf , ym) holds, where the witnesses are
existentially quantified. The first conjunct, OkTPM(xf), guarantees that if verification
succeeds then the statement indeed holds, no matter what the origin of the proof is. This
predicate is automatically extracted from the return type of the check〈Tvki〉 function (see
§3.6.2). The second conjunct Send(xf , ym) is the promise of the proof.

The generated implementation for this interface creates a fresh seal kdaa for values of
type Tdaa ∨ Un. The sealing function of kdaa is directly used to implement the createdaa
function. The unsealing function of kdaa is used to implement the publicdaa and verifydaa
functions. The implementation of publicdaa is very simple: since the zero-knowledge
proof is just a sealed value, publicdaa unseals it and returns ym. The witnesses are
discarded, and the validity of the statement is not checked.

The implementation of the verifydaa function is more interesting. This function takes
a candidate zero-knowledge proof z of type Un as input, and a value for the matched
variable yvki . Since the type of verifydaa contains an intersection type we use a for
construct to introduce this intersection type. If the proof is verified by the attacker we
can assume that the yvki has type Un and need to type the return value to Un. On the
other hand, if the proof is verified by a protocol participant we can assume that yvki has
the type VerKey〈Tvki〉. In general, it is the strong types of the matched values that allow
us to guarantee the strong types of the returned public values, as well as the promise.

Generated symbolic implementation for simplified DAA

verifydaa = λz : Un.
for α in Un; VerKey〈Tvki〉. λy′vki : α.
let z′ = (snd kdaa) z in (1)
case z′′ = z′ : Un ∨ Tdaa in (2)
let (yvki , ym, xf , xcert ,) = z′′ in (3)
if yvki = y′vki as y′′vki then (4)

3.8. IMPLEMENTATION 115

if xf = check〈Tvki〉 y′′vki xcert xf then ym (5)
else failwith “statement not valid”

else failwith “yvki does not match”

The generated verifydaa function performs the following five steps: (1) it unseals z using
“snd kdaa” and obtains z′; (2) since z′ has a union type, it does case analysis on it, and
assigns its value to z′′; (3) it splits the tuple z′′ into the public values (yvki and ym)
and the witnesses (xf and xcert). (4) it tests if the matched variable yvki is equal to the
argument y′vki , and in case of success assigns the value to the variable y′′vki – since y′′vki
has a stronger type than y′vki and yvki we use this new variable to stand for yvki in the
following; (5) it tests if the statement is true by applying the check〈Tvki〉 function, and
checking the result for equality with the value of xf . In general, this last step is slightly
complicated by the fact that the statement can contain conjunctions and disjunctions,
so we use decision trees. However, for the DAA example the decision tree has a trivial
structure with only one node.

Since the automatically generated implementation of zero-knowledge proofs relies on
types and formulas provided by the user, which may both be wrong, the generated
implementation is not guaranteed to fulfill its interface. We use our type-checker to check
whether this is indeed the case. If type-checking the generated code against its interface
succeeds, then this code can be safely used in protocol implementations. Note that
because of the for and case constructs the body of verifydaa is type-checked four times,
corresponding to the following four scenarios: honest prover / honest verifier, honest
prover / dishonest verifier, dishonest prover / honest verifier, and dishonest prover /
dishonest verifier. In DAA the most interesting case is dishonest prover / honest verifier,
when z′′ and hence xf are given type Un, while the result of the signature verification is
of type Tvki . Since ` {zf : Private | OkTPM(zf)} ## Un ; false by rules (ND Refine) and
(ND Private Un), false is added to the environment in which ym is type-checked. The
variable ym has type Un in this environment, but since this environment is inconsistent
ym can also be given type Udaa .

3.8. Implementation

We have implemented a complete tool-chain for RCF∀∧∨: it includes a type-checker for
the type system described in §3.4, the automatic code generator for zero-knowledge
described in §3.7, an interpreter, and a visual debugger.

The type-checker supports an extended syntax with respect to the one from §3.3, includ-
ing: a simple module system, algebraic data types, recursive functions, type definitions,
and mutable references. We use first-order logic with equality as the authorization logic
and the type-checker invokes the Z3 SMT solver [dMB08] to discharge proof obligations.
The type-checker performed very well in our experiments: it type-checks all our symbolic
libraries and samples totaling more than 1.5kLOC in around 12 seconds, on a normal

116 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

laptop. The type-checker produces an XML log file containing the complete type deriva-
tion in case of success, and a partial derivation that leads to the typing error in case of
failure. This can be inspected using our visualizer to easily detect and fix flaws in the
protocol implementation. The type-checker also performs very limited type inference:
it can infer the instantiation of some polymorphic functions from the type of the argu-
ments, however, the user has to provide all the other typing annotations – we would like
to improve the amount of type inference in the future (see §4.2.5 for a discussion).

The type-checker, the code generator for zero-knowledge, and the interpreter are
command-line tools implemented in F#, while the graphical user interfaces of the visual
debugger and the visualizer for type derivations are specified using WPF (Windows Pre-
sentation Foundation). The type-checker consists of around 2.5kLOC, while the whole
tool-chain has over 5kLOC. All the tools and samples are available online13.

3.9. Related Work on Unions and Intersections

The for construct for explicitly alternating type annotations was introduced by
Pierce [Pie91, Pie97] as a generalization of an idea Reynolds [Rey96] used in Forsythe
for giving intersection types to annotated lambda abstractions of the form λx:τ1..τn. e.
In a Church-style system, however, the for construct does not have a clear operational
semantics. Compagnoni [Com97] gives an operational semantics to function application
expressions of the form ((for α in T ;U. λx:V. e1) e2) by pushing the application inside
the for – i.e., this expression reduces in one step to (for α in T ;U. ((λx:V. e2) e2)). It is
unclear if this can be generalized to anything other than function applications. More-
over, this reduction rule does not respect the value restriction for the introduction of
intersection types (our rule (Val And*) in §3.4). As discovered by Davies and Pfen-
ning [DP00] the value restriction on intersection introduction is crucial for soundness
in the presence of side-effects. The counterexample they give is in fact very similar to
the one used to illustrate the unsoundness of ML, in the absence of the value restric-
tion, due to the interaction of polymorphism with side-effects [HL]. Moreover, Davies
and Pfenning [DP00] observed that some standard distributivity laws of subtyping are
unsound in a setting with side-effects, since they basically allow one to circumvent the
value restriction. We obtain all the benefits of the for construct in RCF∀∧∨, but erase it
completely when translating values into Formal-RCF∀∧∨, and use the value restriction on
both levels to ensure soundness.

The case construct for eliminating union types was introduced by Pierce [Pie91] as a way
to make type-checking more efficient, by asking the programmer to annotate the position
in the code where union elimination should occur. Dunfield and Pfenning [DP04] later
pointed out that unrestricted elimination of union types is unsound in the presence of
non-determinism. This observation is crucial for us, since our calculus, as opposed to
the one studied by Dunfield and Pfenning, is in fact non-deterministic. They propose

13http://www.infsec.cs.uni-saarland.de/projects/F5/

http://www.infsec.cs.uni-saarland.de/projects/F5/

3.10. SUMMARY 117

an evaluation context restriction that recovers soundness, but this is not enough to
make type-checking efficient. In recent work, Dunfield [Dun10], shows that carefully
transforming programs into let-normal form improves efficiency. This is encouraging,
since our expressions are already in let normal form, so we can hope to replace the case
construct by a normal let in the future, and still preserve efficient type-checking.

Zeilberger [Zei08] tries to explain why phenomena such as the value and evaluation
context restrictions can arise synthetically from a logical view of refinement typing.

3.10. Summary

In this chapter we have presented a new type system that combines refinement types with
union types, intersection types, and polymorphic types. A novelty of the type system
is its ability to reason statically about the disjointness of types. This extends the scope
of the existing type-based analyses of protocol implementations to important classes of
cryptographic protocols that were not covered so far, including protocols based on zero-
knowledge proofs. Our type system comes with a mechanized proof of correctness and
an efficient implementation14.

14The implementation and formalization are available at
http://www.infsec.cs.uni-saarland.de/projects/F5/

http://www.infsec.cs.uni-saarland.de/projects/F5/

Chapter 4

Conclusion and Future Work

4.1. Conclusion

In this thesis we have shown that the combination of union, intersection, and refinement
types and static reasoning about the disjointness of types can be used for analyzing ab-
stract models as well as concrete implementations of cryptographic protocols. To show
this we have introduced two security type systems based on these features, one for a
variant of the spi-calculus, and the other for a concurrent lambda calculus. We have
developed mechanized formalizations of the type systems and proved formally that they
guarantee the adherence of all well-typed protocols to their authorization policies, even
in the presence of an arbitrary untyped attacker. The high expressive power of the type
systems enables the analysis of important protocol classes that were out of scope for
the existing type systems for cryptographic protocols. In this thesis, we have used the
class of protocols based on non-interactive zero-knowledge proofs as the main running
example, since it was not covered by any previous type system and was the original mo-
tivation for this work. The techniques we propose in this thesis are, however, also helpful
for analyzing security despite compromised participants, for analyzing basic protocols
that achieve authenticity by showing knowledge of secret data, and for giving a more
faithful dynamic-sealing-based symbolic abstraction of asymmetric cryptography. The
type-based analysis technique we have proposed is scalable and provides security proofs
for an unbounded number of protocol executions. We have developed efficient imple-
mentations of our type systems based on state-of-the-art automatic reasoning tools.

118

4.2. FUTURE WORK 119

4.2. Future Work

In this section we discuss several interesting directions for future work.

4.2.1. Semantic Subtyping for Higher-order Languages with Refinements

The subtyping relation of RCF∀∧∨ is purely syntactic, and this can be counter-intuitive
for types like refinement, union and intersection types, about which programmers often
have a strong set-theoretic intuition (“types are sets of values”, “refinements are set
comprehensions”, “the intersection of two types is the intersection of their sets of values”,
etc.). Purely syntactic subtyping is, however, very coarse and often invalidates this
intuition. In RCF∀∧∨ subtyping for refinement types is defined by the rules (Sub Refine
Left) and (Sub Refine Right), while intersection types are just greatest-lower bounds
and union types are just least-upper bounds. This allows us to prove inversion lemmas
that are quite counter-intuitive:

Lemma 4.1. If E ` {x : T | C} <: U1 → U2 then E ` T <: U1 → U2.

Lemma 4.2. If E ` T1∧T2 <: U1 → U2 then E ` T1 <: U1 → U2 or E ` T2 <: U1 → U2.

Semantic subtyping solves this problem by being fully precise and completely in sync
with the “types as sets of values” intuition [HVP05]. It also enables the type-checker to
provide precise counterexamples when subtyping fails. Semantic subtyping was limited
to first-order languages until Frisch et al. [FCB08] realized that for higher-order lan-
guages the model of types can be defined independently from values in order to avoid
circularities, while still recovering the “types as sets of values” interpretation at a later
stage. While in the first-order setting it is relatively easy to mix semantic subtyping
with refinement types [BGHL10], the way Frisch et al. avoid circularities by abstracting
away from values when defining the semantics of types appears to be incompatible with
types that can directly mention values such as refinement types (e.g., refinement types
can easily encode singleton types). Supporting semantic subtyping for a higher-order
language with refinement types such as RCF∀∧∨ is currently an open problem.

4.2.2. Strong Secrecy and Observational Equivalence for RCF∀∧∨

The original work of Abadi on secrecy by typing [Aba99], as well as some of the follow up
work by Abadi and Blanchet [AB03,AB05] dealt with a strong notion of secrecy based on
observational equivalence. Later type systems usually considered a weaker trace-based
notion of secrecy that only prevents direct flows to the attacker [GJ05]. For instance,
the original type system for RCF [BBF+08] only considers weak secrecy for contexts
(under the name of robust secrecy), while in this work we study the weak secrecy of
values (under the name of robustly private values, see §3.5). In recent work Fournet et

120 CHAPTER 4. CONCLUSION AND FUTURE WORK

al. [FKS11] use parametricity [Mor73, SP03, SP07, BAF08] to prove strong secrecy by
typing for a probabilistic variant of RCF. It would be interesting future work to apply
this work to zero-knowledge proofs, since the zero-knowledge property is a strong secrecy
property we do not currently capture.

More generally, it would be interesting to adapt some of the general techniques for estab-
lishing observational equivalences such as logical relations and bisimulations to RCF∀∧∨.
This would enable reasoning about privacy [DKR09, BHM08b, MP11] and anonymity
properties [CH02,BCC04,BCGS09,BLMP10] not only for abstract protocol models, but
also for protocol implementations. It is often the case that such properties are achieved
using zero-knowledge proofs.

4.2.3. Supporting An Intuitionistic Authorization Logic with says Modality

The two authorization logics considered in this work do not have a says modality that
attributes logical formulas to principals [ABLP93, Aba03, Aba07]. The says modality is
particularly useful in the setting of security despite compromise [GP06,FGM07a], where
it can easier encapsulate the effects of compromised participants, and ensure that the
assertions made by certain principals will not affect the truth of the assertions made
by others. Our design choice not to include the says modality is mostly for pragmatic
reasons, since we prefer to be able to discharge proof obligations using the state-of-the-
art automatic tools for classical first-order logic, and the says modality does not have a
clear meaning in classical logic. For the applications that we have considered so far, we
found it relatively easy to encode the effect of participant compromise explicitly into the
authorization policy.

The requirements imposed by our soundness proof on the entailment relation of the
authorization logic can, however, be satisfied by both classical and intuitionistic logics.
We leave it as future work to support an intuitionistic authorization logic with says
modality in a way that preserves efficient automation and practicality. One idea would
be to translate the says modality into a standard modal logic [GA08], and then to use
an encoding of this modal logic into classical first-order logic [HSW99, HS00]. This
could be achieved by extending the translation by Garg and Abadi [GA08] to first-order
quantifiers and equality. A similar idea would be to directly translate the says modality
into intuitionistic first-order logic as done by Garg and Tschantz [GT08], and then use
one of the automatic theorem-provers for intuitionistic first-order logic [Tam96,ROK07,
MP09]. Finally, it would also be possible to develop special-purpose tools for automating
specific authorization logics [Gar09], however, such an effort would not automatically
benefit from the constant progress on general-purpose theorem provers.

4.2. FUTURE WORK 121

4.2.4. Generalize the Syntactic Reasoning About Type Disjointness

Defining the non-disjointness judgment is challenging in our setting because kinding
makes many types overlap. Because of kinding it is not enough to look only at the
top-level type constructor to decide if two types can overlap. In the type system for the
spi-calculus we use the logical characterization of kinding to capture the effect of kinding
on type disjointness (§2.4.6). This allows us to give a general rule for comparing two
generative types that have different top-level type constructors. While this covers the
most common use cases (e.g., types Private and Un are both generative), it would be
interesting to also study the types of terms created by constructors (e.g., when is a pair
type disjoint from Un).

A much bigger challenge would be to try to bring more of these ideas to RCF∀∧∨, where
currently the only non-trivial base case for the non-disjointness relation is for Private
and Un. The main reason for this is that in RCF∀∧∨ there are no generative types, and
our encoded type Private is the the only type we could find that is disjoint from Un.
And even if we found a way to circumvent this problem, it would still be hard to capture
the influence of kinding on type disjointness, since defining a logical characterization of
kinding for RCF∀∧∨ would be more challenging because of polymorphism.

Finally, it would be interesting to look for other contexts where reasoning about type
disjointness is used, and try to see if any of our ideas are useful there. For instance, in de-
pendently typed calculi such as the Calculus of Inductive Constructions [CH88,PPM90,
CPM90] unsatisfiable equality assumptions can be added in the context introduced by
a guard expression.

4.2.5. Type inference for RCF∀∧∨

Our type-checker for RCF∀∧∨ was very efficient in our experiments; however, the amount
of typing annotations it requires is at the moment quite high. This issue is more pro-
nounced in our symbolic cryptography library, where intersection and union types are
fairly pervasive. This is less of a problem in the code that links against these libraries,
and in the case of zero-knowledge even the code in the library is automatically gener-
ated together with all the necessary annotations. In the future we would like to perform
more type inference, maybe leveraging some of the recent progress on type inference for
refinement types [RKJ08, JMR11]. The good news is that intersection and union types
can be very useful when devising precise type inference algorithms [BHM08c,Kob09].

4.2.6. Automatically Generating Concrete Cryptographic Implementations
from Zero-knowledge Statement Specifications

In §3.7 of this thesis we have presented a general technique to automatically generate
a symbolic implementation of a zero-knowledge proof system starting from a high-level

122 CHAPTER 4. CONCLUSION AND FUTURE WORK

specification of the statement. While this symbolic implementation is useful for veri-
fication and debugging purposes, the actual cryptographic implementation of the zero-
knowledge proofs still has to be provided by the user. While several classes of statements
admit efficient zero-knowledge proofs [CDS94,CL02,GS08,AFG+10], the effort of finding
the right cryptographic schemes and implementing them efficiently is still substantial.
Devising a library of reusable cryptographic schemes that can be used to implement
zero-knowledge proofs can help in reducing this effort [BLMP10, BMP11, MP11]. Even
more useful would be to automate the whole implementation process by devising a code
generator that starts from a high-level specification of the statement and produces an
efficient cryptographic implementation, by automatically selecting the right schemes.
There has been interest recently in building such code generators for a particular kind
of efficient zero-knowledge proofs called sigma-protocols [BBH+09, ABB+10, MEK+10].
The level of abstraction at which the zero-knowledge statements are specified in these
tools is, however, much lower than our specifications from §3.7 and the specification lan-
guage seems tailored towards sigma-protocols. It would be interesting to devise a more
abstract specification language that can target a larger set of efficient zero-knowledge
proof systems, including the techniques based on bilinear groups [GS08,AFG+10].

Appendix A

Typing Blind Signatures
and Secret Hashes

For type-checking a model of the complete DAA protocol (§2.7) we extend the type
system from §2.4 with blind signatures and secret hashes.

The only difference between secret hashes and the regular hashes defined in Chapter 2 is
that the type of secret hashes has a more restrictive kinding rule (Kind SHash). While
regular hashes are always public, and can thus be sent to the attacker, secret hashes are
in general not public. For instance the f -value in the DAA protocol is a secret hash;
revealing the f -value would allow attackers to impersonate the TPM (in fact the DAA
protocol has a rogue tagging mechanism for rejecting f -values that are known to be
leaked). Our type system statically enforces that secret hashes are not leaked to the
attacker. An important consequence is that the type SHash(T) is disjoint from Un if T
is disjoint from Un; we capture this in rule (ND SHash Un). This new rule is crucial for
type-checking the DAA-signing protocol.

In order to prevent the issuer from learning f-values, DAA relies on blind signatures
[Cha83]. The TPM sends the blinded f-value blind(f, r), where r is a random blinding
factor, to the issuer, which then produces the blind signature bsign(blind(f, r), kI). The
TPM can later unblind the signature obtaining a signature usign(f, kI) of the f-value,
which can be publicly verified. The unblinding of blind signatures is done by the unblind
destructor, while the verification of the unblinded signature is done by the bcheck de-
structor.

Additional terms

K,L,M,N ::= terms
. . .

123

124 APPENDIX A. TYPING BLIND SIGNATURES AND SECRET HASHES

blind(M,L) blind term M using blinding factor L
bsign(M,K) sign blinded term M using key K
bvk(K) verification key corresponding to blind signing key K
usign(M,K) signature obtained after unblinding M ,

which was blind signed with key K
shash(M) secret hash of term M

Additional destructors

D ::= destructors
. . .
unblind(M,L,K) use blinding factor L to unblind blind signature M

done with the signing key for verification key K
bcheck(M,K) check the unblinded signature M using verification key K

The destructor reduction relation is extended with new rules for unblind and bcheck.

Additional destructor reduction rules: D ⇓M

unblind(bsign(blind(M,L),K), L, bvk(K)) ⇓ usign(M,K)
bcheck(usign(M,K), bvk(K)) ⇓M

We add 5 types for type-checking protocols based on blind signatures: The type Blinder(T)
describes blinding factors that can only be used to blind terms of type T ; Blinded(T)
describes the result of blinding a term of type T ; BSigKey(T, z. C) contains signing
keys that can only be used to sign blinded terms of type T for which additionally the
formula C holds (i.e., blinded terms of type {z : Blinded(T) | C}); BVerKey(T, z. C)
describes verification keys corresponding to blind signing keys of type BSigKey(T, z. C);
and USigned(T) describes unblinded signatures on terms of type T .

Additional types

T,U, V ::= types
. . .
Blinder(T) blinding factor that only blinds terms of type T
Blinded(T) the result of blinding a term of type T
BSigKey(T, x. C) signing key that only signs blinded terms of type T

for which additionally C holds (scope of x is C)
BVerKey(T, x. C) verification key corresponding to blind signing key

of type BSigKey(T, x. C) (scope of x is C)
USigned(T) unblinded signature on a term of type T
SHash(T) secret hash of a term of type T

We call a type T generative iff T ∈ {. . . ,Blinder(T),BSigKey(T, x. C)}

125

The kinding and subtyping rules for blind signatures are quite similar to but not ex-
actly the same as the ones for symmetric encryption and regular signatures. Blind-
ing factors behave like symmetric encryption keys, so Blinder(T) has the same kind-
ing and subtyping rules as SymKey(T). The type of blinded terms Blinded(T) is al-
ways public, but in general not tainted (unlike the result type of the senc construc-
tor, which is Un). The types of blind signing and verification keys BSigKey(T, x. C)
and BVerKey(T, x. C) have the same kinding rules as SigKey({x : Blinded(T) | C})
and, respectively, VerKey({x : Blinded(T) | C}). Subtyping is, however, stronger for
BSigKey(T, x. C) and BVerKey(T, x. C) compared to the types for regular signatures. In
particular we can show that if E ` BSigKey(T1, x. C1) <:> BSigKey(T2, x. C2) then E `
T1 <:> T2. This property is crucial when proving blind signatures sound, but it does not
hold for regular signature types of refinement types (i.e., SigKey({x : Blinded(T) | C})).
Another difference compared to regular signatures is that the type BVerKey(T, x. C) is
invariant while VerKey(T) is covariant. Finally, the kinding and subtyping rules for
USigned(T) are the same as for Signed(T).

Additional kinding rules: E ` T :: k for k ∈ {pub, tnt}

(Kind Blinder)
E ` T :: pub E ` T :: tnt

E ` Blinder(T) :: k

(Kind Blinded Pub)
E ` T ok

E ` Blinded(T) :: pub

(Kind Blinded Tnt)
E ` T :: pub E ` T :: tnt

E ` Blinded(T) :: tnt

(Kind BSigKey)
E ` T :: pub E ` T :: tnt E, x : > ` C

E ` BSigKey(T, x. C) :: k

(Kind BVerKey Pub)
E ` T ok E, x : > ` C ok

E ` BVerKey(T, x. C) :: pub

(Kind BVerKey Tnt)
E ` T :: pub E ` T :: tnt E, x : > ` C

E ` BVerKey(T, x. C) :: tnt

(Kind USigned Pub)
E ` T :: pub

E ` USigned(T) :: pub

(Kind USigned Tnt)
E ` T ok

E ` USigned(T) :: tnt

(Kind SHash)
E ` T :: pub E ` T :: tnt

E ` SHash(T) :: k

Additional subtyping rules: E ` T <: U

(Sub Blinder Inv)
E ` T <:> U

E ` Blinder(T) <: Blinder(U)

(Sub Blinded Inv)
E ` T <:> U

E ` Blinded(T) <: Blinded(U)

(Sub BSigKey Inv)
E ` T1 <:> T2 E, x : > ` C1 ⇔ C2

E ` BSigKey(T1, x. C1) <: BSigKey(T1, x. C2)

(Sub USigned Inv)
E ` T <:> U

E ` USigned(T) <: USigned(U)

126 APPENDIX A. TYPING BLIND SIGNATURES AND SECRET HASHES

(Sub BVerKey Inv)
E ` T1 <:> T2 E, x : > ` C1 ⇔ C2

E ` BVerKey(T1, x. C1) <: BVerKey(T1, x. C2)

(Sub SHash Inv)
E ` T <:> U

E ` SHash(T) <: SHash(U)

The secret hash type SHash(T) is public only if T is both public and tainted, which
allows us to add a strong non-disjointness rule comparing SHash(T) with Un.

Additional non-disjointness rules E ` T ## U ; C

(ND SHash Un)
E ` T ## Un ; C

E ` SHash(T) ## Un ; C

The new term typing rules are as one would expect. Rule (Term BSign) reflects again the
correspondence between BSigKey(T, z. C) and SigKey({z : Blinded(T) | C}). Rule (Term
USign) is not directly used by our type-checker, since protocols do not contain terms
using usign; instead terms that use usign are generated only by the unblind destructor.
It is, however, crucial for Lemma A.1 (Unblind consistent) that the result of the unblind
destructor can still be type-checked.

Additional term typing rules: E `M : T

(Term Blind)
E `M : T E ` L : Blinder(T)

E ` blind(M,L) : Blinded(T)

(Term BVK)
E ` K : BSigKey(T, z. C)

E ` bvk(K) : BVerKey(T, z. C)

(Term BSign)
E ` N : {z : Blinded(T) | C} E ` K : BSigKey(T, z. C)

E ` bsign(N,K) : Un

(Term SHash)
E `M : T

E ` shash(M) : SHash(T)

(Term USign)
E `M : {x : T | ∃y. C{blind(x, y)/z}} E ` K : BSigKey(T, z. C)

E ` usign(M,K) : USigned(T)

We introduce two new destructor typing rules. Rule (Dtor BCheck) is particularly
interesting, since it returns a very strong type. When successfully checking a blind
signature with a verification key of type BVerKey(T, z. C) we know not only that the
resulting termM has type T , but also that the formula C holds for the blinding ofM with
some unknown blinding factor y. We use existential quantification in the authorization
logic to reflect the fact that the blinding factor y is unknown to the principal signing M
blindly.

127

Additional destructor typing rules: E ` D : T

(Dtor Unblind)
E `M : Un E ` L : Blinder(T) E ` K : BVerKey(T, z. C)

E ` unblind(M,L,K) : USigned(T)

(Dtor BCheck)
E `M : USigned(T) E ` K : BVerKey(T, z. C)

E ` bcheck(M,K) : {x : T | ∃y. C{blind(x, y)/z}}

We have extended the Coq proof of destructor consistency (Lemma 2.29) to cover blind
signatures.

Lemma A.1 (Unblind consistent). For all closed terms M , L and K such that E `
bsign(blind(M,L),K) : Un and E ` L : Blinder(T) and E ` bvk(K) : BVerKey(T, z. C)
we have that E ` usign(M,K) : USigned(T).

Lemma A.2 (BCheck consistent).
For all closed terms N and K such that E ` usign(N,K) : USigned(T) and E ` bvk(K) :
BVerKey(T, z. C) we have that E ` N : {x : T | ∃y. C{blind(x, y)/z}}.

Finally, we extend the statement-based inference judgement with two additional rules.
The rule for secret hashes (Sinfer SHash) is the same as for regular hashes (Sinfer Hash),
while the rule for checking a blind signature (Sinfer BCheck) closely corresponds to
(Sinfer Check) in §2.4.9.

Additional statement-based inference rules: E ` [|B |]Eold ,Cold
; Enew , Cnew

(Sinfer BCheck)
E,Eold , {Cold} ` vK : BVerKey(T, z. C) T ′ = {x : Blinded(T) | C} E ` T ′ ok

E ` (Eold , Cold)[vN : {| fkind(E, T ′, tnt) |} ∨ T ′] Enew , Cnew

E ` [|bcheck(vM , vK) ; vN |]Eold ,Cold
; Enew , Cnew

(Sinfer SHash)
E,Eold , {Cold} ` vM : SHash(T) E ` T ok

E ` (Eold , Cold)[vN : {| fkind(E, T, tnt) |} ∨ T] E′, C ′

E ` [|vM = shash(vM)|]Eold ,Cold
; Enew , Cnew

Appendix B

Formal-RCF∀∧∨ Calculus

B.1. Syntax

Formal-RCF∀∧∨ values, formulas and expressions

c ::= name
name b n bound name (de Bruijn)
name f a free name (named)

v, u ::= value
v var b n bound variable (de Bruijn)
v var f x free variable (named)
v unit unit
v lam e function
v pair v1 v2 pair
v inx h v constructor
v fold v recursive value
v tlam e polymorphic value

F ::= formula
f pred P v predicate symbol
f eq v1 v2 equality
f and F1 F2 conjunction
f or F1 F2 disjunction
f not F negation
f forall F universal quantification
f exists F existential quantification

e ::= expression
e val v value

128

B.1. SYNTAX 129

e app v1 v2 function application
e inst v instantiation
e let e1 e2 let
e first v split first
e second v e split second
e match v e1 e2 pattern matching
e unfold v use recursive value
e if v1 v2 e1 e2 equality with type cast
e new e name restriction
e fork e1 e2 fork off process
e send c v send v on channel c
e recv c receive on channel c
e assume F add formula F to log
e assert F formula F must hold

Formal-RCF∀∧∨ syntax of types

T,U, V ::= types
t unit unit type
t arrow T U dependent function type
t pair T U dependent pair type
t sum T U disjoint sum type
t rec T iso-recursive type
t var b n bound type variable (de Bruijn)
t var f α free type variable (named)
t refine T C refinement type
t and T U intersection type
t or T U union type
t top top type
t univ T polymorphic type

Formal-RCF∀∧∨ syntax of environment entries

µ ::= environment entry
ee tvar α type variable
ee kind α k kind-bounded type variable
ee var x T variable x of type T
ee chan a T name a of type T
ee ok F assumed formula

130 APPENDIX B. FORMAL-RCF∀∧∨ CALCULUS

Formal-RCF∀∧∨ syntax of variances

η ::= variance
vnc covar covariant
vnc contr contravariant

B.2. Erasure from RCF∀∧∨ to Formal-RCF∀∧∨

Erasure for values

TxU = v var f x
T()U = v unit
Tλx : T.AU = v lam (closex TAU)
T(M,N)U = v pair TMU TNU
Th MU = v inx h TMU
Tfoldµα. T MU = v fold TMU
TΛα.AU = v tlam TAU
Tfor α̃ in T̃ ; Ũ . MU = TMU

Erasure for formulas

TP (M)U = f pred P TMU
TM = NU = f eq TMU TNU
TC1 ∧ C2U = f and TC1U TC2U
TC1 ∨ C2U = f or TC1U TC2U
T¬CU = f not TCU
T∀x.CU = f forall (closex TCU)
T∃x.CU = f exists (closex TCU)

Erasure for expressions

TM NU = e app TMU TNU
TM〈T 〉U = e inst TMU
Tlet x = A in BU = e let TAU (closex TBU)
Tlet (x, y) = M in AU =

e let (e first TMU)
(e second TMU (closey (closex TAU)))

Tmatch M with inl x⇒ A | inr y ⇒ BU =
e match TMU (closex TAU) (closey TBU)

Tunfoldµα. T MU = e unfold TMU
Tcase x = M : T ∨ U in AU = e let TMU (closex TAU)

B.3. LOCAL CLOSURE 131

Tif M = N as x then A else BU =
e if TMU TNU (closex TAU) TBU

T(νa l T)AU = e new (closea TAU)
TA � BU = e fork TAU TBU
Ta!NU = e send a TNU
Ta?U = e recv a
Tassume CU = e assume TCU
Tassert CU = e assert TCU

Erasure for types

TunitU = t unit
Tx : T → UU = t arrow TTU (closex TUU)
Tx : T ∗ UU = t pair TTU (closex TUU)
TT + UU = t sum TTU TUU
Tµα. TU = t rec (closex TTU)
TαU = t var f α
T{x : T | C}U = t refine T (closex TCU)
TT ∧ UU = t and TTU TUU
TT ∨ UU = t or TTU TUU
T>U = t top
T∀α. TU = t univ (closeα TTU)

Erasure for typing environments

TαU = ee tvar α
Tα :: kU = ee kind α k
Ta l TU = ee chan a TTU
Tx : TU = ee var x TTU
T{C}U = ee ok TCU
Tµ1, . . . , µnU = Tµ1U, . . . ,TµnU

B.3. Local Closure

Locally closed values, formulas and expressions

lc (v var f x) lc (v unit)

∀x. lc (open(v var f x) e)

lc (v lam e)

lc e

lc (v tlam e)

lc v1 lc v2

lc (v pair v1 v2)

lc v

lc (v inx h v)

132 APPENDIX B. FORMAL-RCF∀∧∨ CALCULUS

lc v

lc (v fold v)

lc v

lc (f pred P v)

lc v1 lc v2

lc (f eq v1 v2)

lc F1 lc F2

lc (f and F1 F2)

lc F1 lc F2

lc (f or F1 F2)

lc F

lc (f not F)

∀x. lc (open(v var f x) F)

lc (f forall F)

∀x. lc (open(v var f x) F)

lc (f exists F)

lc v

lc (e val v)

lc v1 lc v2

lc (e app v1 v2)

lc v

lc (e inst v)

lc e1 ∀x. lc (open(v var f x) e2)

lc (e let e1 e2)

lc v

lc (e first v)

lc v ∀x. lc (open(v var f x) e)

lc (e second v e)

lc v ∀x. lc (open(v var f x) e1) ∀y. lc (open(v var f y) e2)

lc (e match v e1 e2)

lc v

lc (e unfold v)

lc F

lc (e assert F)

lc F

lc (e assume F)

lc v1 lc v2 ∀x. lc (open(v var f x) e1) lc e2

lc (e if v1 v2 e1 e2)

∀a. lc (open(name f a) e)

lc (e new e)

lc e1 lc e2

lc (e fork e1 e2)

lc (name f a)

lc c lc v

lc (e send c v)

lc c

lc (e recv c)

Locally closed types

lc (t unit)

lc T ∀x. lc (open(v var f x) U)

lc (t arrow T U)

lc T ∀x. lc (open(v var f x) U)

lc (t pair T U)

lc T lc U

lc (t sum T U)

∀α. lc (open(t var f α) T)

lc (t rec T) lc (t var f α)

lc T ∀x. lc (open(v var f x) F)

lc (t refine T F)

lc T lc U

lc (t and T U)

lc T lc U

lc (t or T U) lc (t top)

∀α. lc (opent var f α T)

lc (t univ T)

B.4. OPERATIONAL SEMANTICS 133

Locally closed environment entries

lc (ee tvar α) lc (ee kind α k)

lc T

lc (ee var x T)

lc T

lc (ee chan a T)

lc F

lc (ee ok F)

B.4. Operational Semantics

Heating Relation: e1 V e2

(heat refl)
lc e

eV e

(heat trans)
e1 V e2 e2 V e3

e1 V e3

(heat let)
lc (e let e1 e2) e1 V e′1
e let e1 e2 V e let e′1 e2

(heat res)
∀a 6∈ L. open(name f a) e1 V open(name f a) e2

e new e1 V e new e2

(heat fork 1)
e1 V e′1 lc e2

e fork e1 e2 V e fork e′1 e2

(heat fork 2)
e2 V e′2 lc e1

e fork e1 e2 V e fork e1 e
′
2

(heat fork unit 1)
lc e

e fork (e val v unit) eV e

(heat fork unit 2)
lc e

eV e fork (e val v unit) e

(heat msg unit)
lc c lc v

e send c v V e fork (e send c v) (e val v unit)

(heat assume unit)
lc F

e assume F V e fork (e assume F) (e val v unit)

(heat res fork 1)
lc e1 lc (e new e2)

e fork e1 (e new e2)V e new (e fork e1 e2)

(heat res fork 2)
lc (e new e1) lc e2

e fork (e new e1) e2 V e new (e fork e1 e2)

134 APPENDIX B. FORMAL-RCF∀∧∨ CALCULUS

(heat res let)
lc (e let (e new e1) e2)

e let (e new e1) e2 V e new (e let e1 e2)

(heat fork assoc 1)
lc e1 lc e2 lc e3

e fork (e fork e1 e2) e3 V e fork e1 (e fork e2 e3)

(heat fork assoc 2)
lc e1 lc e2 lc e3

e fork e1 (e fork e2 e3)V e fork (e fork e1 e2) e3

(heat fork comm)
lc e1 lc e2 lc e3

e fork (e fork e1 e2) e3 V e fork (e fork e2 e1) e3

(heat fork let 1)
lc (e let (e fork e1 e2) e3) lc e1 lc e2

e let (e fork e1 e2) e3 V e fork e1 (e let e2 e3)

(heat fork let 2)
lc (e let e2 e3) lc e1 lc e2

e fork e1 (e let e2 e3)V e let (e fork e1 e2) e3

Reduction Relation: e1 → e2

(red beta)
lc (v lam e) lc v

e app (v lam e) v → openv e

(red inst)
lc e

e inst (v tlam e)→ e

(red first)
lc v1 lc v2

e first (v pair v1 v2)→ e val v1

(red second)
lc (e second (v pair v1 v2) e)

e second (v pair v1 v2) e→ e val v2

(red match inl)
lc (e match (v inx inl v) e1 e2)

e match (v inx inl v) e1 e2 → openv e1

(red match inr)
lc (e match (v inx inr v) e1 e2)

e match (v inx inr v) e1 e2 → openv e2

B.5. PROPERTIES OF THE AUTHORIZATION LOGIC 135

(red unfold)
lc v

e unfold (v fold v)→ e val v

(red if true)
v1 = v2 lc (e if v1 v2 e1 e2)

e if v1 v2 e1 e2 → openv e1

(red if false)
v1 6= v2 lc (e if v1 v2 e1 e2)

e if v1 v2 e1 e2 → e2

(red comm)
lc c lc v

e fork (e send c v) (e recv c)→ e val v

(red assert)
lc F

e assert F → e val v unit

(red let val)
lc (e let (e val v) e)

e let (e val v) e→ openv e

(red let)
e1 → e′1 lc (e let e1 e2)

e let e1 e2 → e let e′1 e2

(red res)
∀a 6∈ L. open(name f a) e→ open(name f a) e

′

e new e→ e new e′

(red fork 1)
e1 → e′1 lc e2

e fork e1 e2 → e fork e′1 e2

(red fork 2)
e2 → e′2 lc e1

e fork e1 e2 → e fork e1 e
′
2

(red heat)
e1 V e2 e2 → e3 e3 V e4

e1 → e4

B.5. Properties of the Authorization Logic

Properties of Deducibility S |= F

(multiset)
(S1++S2) |= F

(S2++S1) |= F

(axiom)
lc F

(F :: nil) |= F

(mon)
lc F ′ S |= F

(F ′ :: S) |= F

(subst)
lc v

S |= F

S{v/x} |= F{v/x}

(cut)
S |= F

(F :: S) |= F ′

S |= F ′

(and intro)
S |= F1

S |= F2

S |= (f and F1 F2)

136 APPENDIX B. FORMAL-RCF∀∧∨ CALCULUS

(and elim l)
S |= (f and F1 F2)

S |= F1

(and elim r)
S |= (f and F1 F2)

S |= F2

(or intro l)
S |= F1 lc F2

S |= (f or F1 F2)

(or intro r)
lc F1 S |= F2

S |= (f or F1 F2)

(or elim*)
S |= (f or F1 F2) (F1 :: S) |= F (F2 :: S) |= F

S |= F

(eq)
lc v

nil |= (f eq v v)

(ineq)
lc v1 lc v2 v1 6= v2 fv(v1, v2) = ∅

nil |= (f not (f eq v1 v2))

(ineq inx)
lc v @v′. v inx h v′ = v fv(v) = ∅

nil |= (f forall (f not (f eq (v inx h (v var b 0)) v)))

(ineq fold)
lc v @v′. v fold v′ = v fv(v) = ∅

nil |= (f forall (f not (f eq (v fold (v var b 0)) v)))

(exists intro)
lc v S |= (openv F)

S |= (f exists F)

(exists elim)
S |= (f exists F)

∀x /∈ L∪fv(F ′)∪fv(S). ((open(v var f x) F) :: S) |= F ′

S |= F ′

(false*)
lc F S |= f false

S |= F

(contra*)
S |= f not F S |= F

S |= f false

(ineq exists*)
lc (f exists (f eq v1 v2)) fv(v1, v2) = ∅

@v. openv v1 = openv v2

nil |= (f not (f exists (f eq v1 v2)))

B.6. Typing Judgements

Well-formed environments E �

B.6. TYPING JUDGEMENTS 137

(wfe empty)

nil �

(wfe entry)
lc µ E � fv ee µ ⊆ dom v E

fn ee µ ⊆ dom n E ftv ee µ ⊆ dom tv E
(dom v ee µ) ∩ (dom v E) = ∅
(dom n ee µ) ∩ (dom n E) = ∅

(dom tv ee µ) ∩ (dom tv E) = ∅
µ :: E �

Well-formed types E T

(wft type)
lc T E � fv type T ⊆ dom v E

fn type T ⊆ dom n E ftv type T ⊆ dom tv E

E T

Entailed formula E F

(entails derive)
E � fv form F ⊆ dom v E fn formF ⊆ dom n E

(forms env E) |= F

E F

Kinding E T :: k

(kind var)
E � (ee kind α k) ∈ E

E (t var f α) :: k

(kind unit)
E �

E t unit :: k

(kind arrow)

E T :: k
∀x /∈ L. ((ee var x T) :: E) (open(v var f x) U) :: k

E (t arrow T U) :: k

(kind pair)
E T :: k

∀x /∈ L. ((ee var x T) :: E) (open(v var f x) U) :: k

E (t pair T U) :: k

(kind sum)
E T :: k E U :: k

E (t sum T U) :: k

138 APPENDIX B. FORMAL-RCF∀∧∨ CALCULUS

(kind rec)
∀α /∈ L. ((ee kind α k) :: E) (open(t var f α) T) :: k

E (t rec T) :: k

(kind refine pub)
E (t refine T F) E T :: pub

E (t refine T F) :: pub

(kind refine tnt)
E T :: tnt

∀x /∈ L. ((ee var x T) :: E) (open(v var f x) F)

E (t refine T F) :: tnt

(kind var false)
α ∈ dom tv E E f false

E (t var f α) :: k

(kind top tnt)
E �

E t top :: tnt

(kind top pub)
E f false

E t top :: pub

(kind and pub 1)
E T :: pub E U

E (t and T U) :: pub

(kind and pub 2)
E T E U :: pub

E (t and T U) :: pub

(kind and tnt)
E T :: tnt E U :: tnt

E (t and T U) :: tnt

(kind or pub)
E T :: pub E U :: pub

E (t or T U) :: pub

(kind or tnt 1)
E T :: tnt E U

E (t or T U) :: tnt

(kind or tnt 2)
E T E U :: tnt

E (t or T U) :: tnt

(kind univ)
∀α /∈ L. ((ee tvar α) :: E) (open(t var f α) T) :: k

E (t univ T) :: k

Subtyping E T <: U

(sub refl)
E T

E T <: T

(sub pub tnt)
E T :: pub E U :: tnt

E T <: U

B.6. TYPING JUDGEMENTS 139

(sub arrow)
E T ′ <: T

∀x /∈ L. ((ee var x T ′) :: E)
 open(v var f x) U <: open(v var f x) U

′

E (t arrow T U) <: (t arrow T ′ U ′)

(sub pair)
E T <: T ′

∀x /∈ L. ((ee var x T) :: E)
 open(v var f x) U <: open(v var f x) U

′

E (t pair T U) <: (t pair T ′ U ′)

(sub sum)
E T <: T ′ E U <: U ′

E (t sum T U) <: (t sum T ′ U ′)

(sub top)
E T

E T <: t top

(sub refine left)
E (t refine T F) E T <: T ′

E (t refine T F) <: T ′

(sub refine right)
E T <: T ′

∀x /∈ L. ((ee var e T) :: E) open(v var f x) F

E T <: (t refine T ′ F)

(sub and lb 1)
E T <: T ′ E U

E (t and T U) <: T ′

(sub and lb 2)
E T E U <: T ′

E (t and T U) <: T ′

(sub and greatest)
E T <: T1 E T <: T2

E T <: (t and T1 T2)

(sub or least)
E T1 <: T E T2 <: T

E (t or T1 T2) <: T

(sub or ub 1)
E T ′ <: T E U

E T ′ <: (t or T U)

(sub or ub 2)
E T E T ′ <: U

E T ′ <: (t or T U)

(sub univ)
∀α /∈ L. ((ee tvar α) :: E)

 open(t var f α) T <: open(t var f α) U

E t univ T <: t univ U

140 APPENDIX B. FORMAL-RCF∀∧∨ CALCULUS

(sub pos rec)
∀α /∈ L.
(ee tvar α) :: E open(t var f α) T <: open(t var f α) U

has variance α vnc covar open(t var f α) T

has variance α vnc covar open(t var f α) U

E t rec T <: t rec U

α has variance η in T (has variance α η T)

(hv var eq)

has variance α vnc covar (t var f α)

(hv var neq)
α 6= β

has variance α η (t var f β)

(hv unit)

has variance α η t unit

(hv arrow)
has variance α (neg vnc η) T

∀x /∈ L. has variance α η (open(v var f x) U)

has variance α η (t arrow T U)

(hv pair)
has variance α η T

∀x /∈ L. has variance α η (open(v var f x) U)

has variance α η (t pair T U)

(hv sum)
has variance α η T has variance α η U

has variance α η (t sum T U)

(hv rec)
∀β /∈ L. has variance α η (open(t var f β) T)

has variance α η (t rec T)

(hv refine)
lc (t refine T C) has variance α η T

has variance α η (t refine T C)

(hv and)
has variance α η T has variance α η U

has variance α η (t and T U)

B.6. TYPING JUDGEMENTS 141

(hv or)
has variance α η T has variance α η U

has variance α η (t or T U)

(hv top)

has variance α η t top

(hv univ)
∀β /∈ L. has variance α η (open(t var f β) T)

has variance α η (t univ T)

Typing values E v : T

(tval var)
E � (ee var x T) ∈ E

E (v var f x) : T

(tval unit)
E �

E v unit : t unit

(tval lam)
∀x /∈ L.
((ee var x T) :: E) open(v var f x) e : open(v var f x) U

E (v lam e) : t arrow T U

(tval tlam)
∀α /∈ L. ((ee tvar α) :: E) e : open(t var f α) T

E (v tlam e) : (t univ T)

(tval pair)
E v1 : T1 E v2 : (openv1 T2)

E (v pair v1 v2) : (t pair T1 T2)

(tval inl)
E v : T E U

E (v inx inl v) : (t sum T U)

(tval inr)
E v : U E T

E (v inx inr v) : (t sum T U)

(tval fold)
E v : (open(t rec T) T) E (t rec T)

E (v fold v) : (t rec T)

(tval refine)
E v : T E (openv F)

E v : (t refine T F)

(tval subsum)
E v : T E T <: T ′

E v : T ′

142 APPENDIX B. FORMAL-RCF∀∧∨ CALCULUS

(tval and)
E v : T E v : U

E v : (t and T U)

Typing expressions E e : T

(texp val)
E v : T

E (e val v) : T

(texp subsum)
E e : T E T <: T ′

E e : T ′

(texp appl)
E v1 : (t arrow T U) E v2 : T

E (e app v1 v2) : (openv2 U)

(texp inst)
E v : (t univ U) E T

E e inst v : (openT U)

(texp first)
E v : (t pair T U)

F = (f exists (f eq (v pair (v var b 1) (v var b 0)) v))

E (e first v) : t refine T F

(texp second)
E v : (t pair T U)

µ = (ee ok (f eq (v pair (v var f x) (v var f y)) v))
E′ = µ :: (ee var y (open(v var f x) U)) :: (ee var x T) :: E

∀x 6= y /∈ L. E′ (open(v var f y) e) : V

E (e second v e) : V

(texp match)
E v : (t sum T U)

µ1 = (ee ok (f eq v inx inl (v var f x) v))
∀x /∈ L. µ1 :: (ee var x T) :: E (open(v var f x) e1) : V

µ2 = (ee ok (f eq v inx inr (v var f y) v))
∀y /∈ L. µ2 :: (ee var y T) :: E (open(v var f y) e2) : V

E (e match v e1 e2) : V

(texp unfold)
E v : (t rec T)

E (e unfold v) : (open(t rec T) T)

B.6. TYPING JUDGEMENTS 143

(texp if)
E v1 : T1 E v2 : T2 NonDisj T1 T2 ; F

µ = (ee var x (t and T1 T2))
F ′ = (f and (f and (f eq (v var f x) v1) (f eq v1 v2)) F)
∀x /∈ L. (ee ok F ′) :: µ :: E (open(v var f x) e1) : U

E (e if v1 v2 e1 e2) : U

(texp assume)
E � lc F

fv form F ⊆ dom v E fn formF ⊆ dom n E

E (e assume F) : (t refine t unit F)

(texp assert)
E F

E (e assert F) : t unit

(texp let)
E e1 : T1

∀x /∈ L. ((ee var x T1) :: E) (open(v var f x) e2) : T2

E e let e1 e2 : T2

(texp case)
E e1 : (t or T1 T2)

∀x /∈ L. ((ee var x T1) :: E) (open(v var f x) e2) : U

∀x /∈ L. ((ee var x T2) :: E) (open(v var f x) e2) : U

E e let e1 e2 : U

(texp res)
∀a /∈ L ∪ (fn type U).

(ee chan a T) :: E open(name f a) e : U

E (e new e) : U

(texp send)
(ee chan a T) ∈ E E v : T

E (e send (name f a) v) : t unit

(texp recv)
(ee chan a T) ∈ E E �
E (e recv (name f a)) : T

(texp fork)
((ee ok (extr e2)) :: E) e1 : T1
((ee ok (extr e1)) :: E) e2 : T2

E (e fork e1 e2) : T2

Non-disjointness of types NonDisj T U ; F

144 APPENDIX B. FORMAL-RCF∀∧∨ CALCULUS

(nd private un)
lc F fv(F) = ∅

 NonDisj TPrivateFU t unit ; F

(nd true)
lc T1 lc T2

 NonDisj T1 T2 ; f true

(nd sym)
 NonDisj T2 T1 ; F

 NonDisj T1 T2 ; F

(nd refine)
 NonDisj T1 T2 ; F ∀x /∈ L. lc open(v var f x) F1

 NonDisj (t refine T1 F1) T2 ; F

(nd pair)
 NonDisj T1 U1 ; F1 NonDisj T2 U2 ; F2

 NonDisj (t pair T1 T2) (t pair U1 U2) ; (f and F1 F2)

(nd sum)
 NonDisj T1 U1 ; F1 NonDisj T2 U2 ; F2

 NonDisj (t sum T1 T2) (t sum U1 U2) ; (f or F1 F2)

(nd rec)
 NonDisj (open(t rec T) T) (open(t rec U) U) ; F

 NonDisj (t rec T) (t rec U) ; F

(nd and)
 NonDisj T1 U ; F1 NonDisj T2 U ; F2

 NonDisj (t and T1 T2) U ; (f and F1 F2)

(nd or)
 NonDisj T1 U ; F1 NonDisj T2 U ; F2

 NonDisj (t or T1 T2) U ; (f or F1 F2)

Appendix C

Technical Details of the Symbolic
Encoding of Zero-knowledge
Proofs in RCF∀∧∨

We implement a zero-knowledge oracle in RCF∀∧∨ as three public functions that share
a secret seal. In order to create a zero-knowledge proof the first function seals the
witnesses and public values provided by the caller all together and returns a sealed value
representing the non-interactive zero-knowledge proof, which can be sent to the verifier.
The verification function unseals the sealed values, and checks if they indeed satisfy
the statement by performing the corresponding cryptographic and logical operations. If
verification succeeds then the verification function returns the public values of the proof.
The public values can also be obtained with the third function, without checking the
validity of the proof.

C.1. High-level Specification

Our high-level specification of non-interactive zero-knowledge proofs is similar in spirit
to the symbolic representation of zero-knowledge proofs in a process calculus [BMU08,
BHM08c]. For a specification S the user needs to provide: (1) variables representing
the witnesses and public values of the proof, (2) a positive Boolean formula over these
variables representing the statement of the proof, (3) types for the variables, and, if
desired, (4) a promise, i.e., a logical formula that is conveyed by the proof only if the
prover is honest.

145

146 APPENDIX C. ZERO-KNOWLEDGE ENCODING IN RCF∀∧∨

Variables. We use variables to stand for the witnesses and public values of a zero-
knowledge proof. The witnesses are (usually secret) values that are never revealed by
the proof, and are represented by witness variables. On the other hand, the public values
are revealed by the proof. For the purpose of typing, we further make a distinction
between the public values that are checked for equality by the verifier – represented by
matched public variables, and the ones that are obtained as the result of the verification
– represented by returned public variables.

In the DAA example, the variables xf and xcert stand for witnesses (sortdaa(xf) =
sortdaa(xcert) = witness). The value of yvki is matched against the signature verifica-
tion key of the issuer, which the verifier of the zero-knowledge proof already knows
(sortdaa(yvki) = matched). The payload message ym is returned to the verifier of the
proof, so sortdaa(ym) = returned.

In the following we assume a function sortS that for each variable x of specification S
assigns: matched if the value of x is revealed by the proof and the verifier checks the
value of x for equality with a known value, public if x has a public value obtained by the
verifier after checking the proof, witness if the value of x is not revealed by the proof.

Statement. We assume that the statement conveyed by a zero-knowledge proof for
specification S is a positive Boolean formula SS . Statements are formed using equalities
between variables and RCF∀∧∨ functions applied to variables, as well as conjunctions and
disjunctions of such basic statements.

Syntax of zero-knowledge statements

S,R ::= statements

x = f〈T̃ 〉 x1 . . . xn function application
S1 ∧ S conjunction
S1 ∨ S2 disjunction

Intuitively, a statement is valid for a certain instantiation of the variables if after substi-
tuting all variables with the corresponding values and applying all RCF∀∧∨ functions to
their arguments we obtain a valid Boolean formula. We assume that the RCF∀∧∨ func-
tions occurring in the statement have deterministic behavior1, i.e., when called twice
with the same arguments they return the same value.

For example, the statement of the zero-knowledge proof in the DAA-signing protocol is
Sdaa = (xf = check〈Tvki〉 yvki xcert xf). This statement is valid for a certain instantiation
if the check function returns the value of xf when the values of yvki , xcert , and xf are
passed as arguments. Note that although the payload message ym does not occur in
the statement, the proof guarantees non-malleability so an attacker cannot change ym
without redoing the proof.

1In order to model randomized functions one can take the random seed as an explicit argument.

C.2. AUTOMATIC CODE GENERATION 147

Types. The user also needs to provide a type for all specified variables. In the following
we assume a function tS that assigns a type to each variable in specification S . The
DAA-sign protocol does not preserve the secrecy of the signed message, so tdaa(ym) =
Un. On the other hand, the TPM identifier xf is given a secret and untainted type:
tdaa(xf) = Tvki = {zf : Private | OkTPM(zf)}. This ensures that xf is not known to the
attacker and that it is certified by the issuer (i.e., the predicate OkTPM(xf) holds). The
verification key of the issuer is used to check signed messages of type Tvki , so it is given
type VerKey〈Tvki〉. Finally the certificate xcert is a signature, so it has type Un. Even
though it has type Un, it would break the anonymity of the user to give the certificate
sort public, since the verifier could then always distinguish if two consecutive requests
come from the same user or not (as in the pseudonymous version of DAA). While we
assume that if sortS (x) = public or sortS (x) = matched then tS (x) has kind public, the
converse does not need to be true.

Promise. The user can additionally specify a promise: an arbitrary formula in the
authorization logic that holds in the typing environment of the prover. If the statement
is strong enough to identify the prover as a honest (type-checked) protocol participant2,
then the promise can be safely transmitted to the typing environment of the verifier.
For a specification S we denote the promise by PS . In the DAA example we have
that Pdaa = Send(xf , ym), since this predicate holds true in the typing environment of a
honest TPM.

C.2. Automatic Code Generation

We automatically generate both a typed interface and a symbolic implementation for
the oracle corresponding to a zero-knowledge specification.

C.3. Typed Interface

The interface generated for a specification S contains three functions3 that share hidden
state (a seal for values of type τS):

createS : τS → Un
where τS = t or Un

∑
x∈varsS x : tS (x).{PS }

publicS : Un→ Un
verifyS : Un→ (Un ∧

∏
y∈matchedS

y : tS (y).∑
z∈returnedS

z : tS (y).{ ∃x̃.
x̃=witnessS

F (SS , E) ∧ PS })

2Signature proofs of knowledge have this property [BCC04,LHH+07].
3We use

∑
x∈varsS

x : tS (x).{PS } to denote the nested dependent pair type x1 : tS (x1) ∗ . . . ∗ xn :
tS (xn)∗{PS } where x̃ = varsS , and

∏
y∈matchedS

y : tS (y). T to denote the dependent function type
y1 : tS (y1)→ . . .→ ym : tS (ym), where ỹ = matchedS .

148 APPENDIX C. ZERO-KNOWLEDGE ENCODING IN RCF∀∧∨

The function createS is used to create zero-knowledge proofs for specification S . It takes
as argument a tuple containing values for all variables of the proof, or an argument
of type Un if it is called by the adversary. In case a protocol participant calls this
function, we check that the values have the types provided by the user. Additionally,
we check that the promise PS provided by the user holds in the typing environment
of the prover. The returned zero-knowledge proof is given type Un so that it can be
sent over the public network. For instance, in the DAA example we have that: τdaa =
Un∨ ((yvki :VerKey〈Tvki〉∗ym:Un∗xf :Tvki ∗xcert :Un)∗{Send(xf , ym)}), where Tvki = {zf :
Private | OkTPM(zf)}.

The function publicS is used to read the public values of a zero-knowledge proof for S ,
so it takes as input the sealed proof of type Un and returns the tuple of public values,
also at type Un.

The function verifyS is used for verifying zero-knowledge proofs. This function can be
called by the attacker in which case it returns a value of type Un. When called by a
protocol participant, however, it takes as argument a candidate zero-knowledge proof of
type Un and the values for the matched variables, which have the user-specified types.
On successful verification, this function returns a tuple containing the values of the
public variables, again with their respective types. The function guarantees that the
formula ∃x̃.F (SS , E) ∧ PS holds, where the public variables are free and the witnesses
are existentially quantified. The first conjunct, F (SS , E), guarantees that if verifica-
tion succeeds then the statement indeed holds, no matter what the origin of the proof
is. Since the statement itself is not a formula in the logic (as it was for instance the
case in [BHM08c]), we use a transformation function F that computes the formula con-
veyed by the statement. This transformation is straightforward: it extracts the formulas
guaranteed by the dependently-typed cryptographic functions (the post-conditions) and
combines them using the corresponding logical connectives of the authorization logic.

The formula conveyed by a statement F (S,E)

F (x = f〈Ũ〉 x1 . . . xn, E) = ∧C∈forms(x:T)C{x̃/ỹ}
if f : ∀α̃. U ∈ E and U{Ũ/α̃} = (

∏
ỹ : T̃ . T) ∧ Un

F (x = f〈Ũ〉 x1 . . . xn, E) = true, otherwise
F (S1 ∧ S2, E) = F (S1, E) ∧ F (S2, E)
F (S1 ∨ S2, E) = F (S1, E) ∨ F (S2, E)

If the prover is a protocol participant then the second conjunct PS was already checked
when creating the proof, and can be easily justified. However, the attacker can, at least
in principle, also create valid zero-knowledge proofs for which the formula PS does not
hold. In order to justify its return type, the implementation of the verification function
has in many cases to make sure that this is actually not the case, and the proof can only
come from a protocol participant.

C.4. GENERATED IMPLEMENTATION 149

For instance, in the DAA example, we have that

F (Sdaa , Estd) = F (xf = check〈Tvki〉 yvki xcert xf , Estd)

As explained in §3.6, we have that Estd ` check〈Tvki〉 : xvk : VerKey〈Tvki〉 → z :
Un → x : (Tvki ∨ Un) → {y : Tvki | y = x}. So for the first conjunct after applying
the corresponding substitutions we obtain the formula: (xf = xf) ∧ OkTPM(xf). The
predicate OkTPM(xf) was obtained from the nested refinement type Tvki , according to
the definition of forms from §3.4.1. Finally, after removing the trivial equality we obtain
that:

F (daa, Estd) = OkTPM(xf)

C.4. Generated Implementation

The generated mkZKS function creates a fresh seal k of type τS = Un ∨
∑

x∈vars(S) x :
tS(x).{PS }. The union type is necessary since the values that are sealed can come from
the attacker as well as from honest participants. The sealing function of the seal k is
directly used to implement the creation of zero-knowledge proofs. The unsealing function
is instead passed to two auxiliary functions pubS and verS that return the function for
extracting the public values and the zero-knowledge verification function, respectively.

mkZKS = λx : unit.
let k = mkSeal〈τS 〉 () in
let (, ksealing , kunsealing) = k in
(ksealing , verS kunsealing , pubS kunsealing)

pubS : (Un→ τS)→ Un→ Un
verS : (Un→ τS)→ VerifyS

The implementation of pubS is very simple: since the zero-knowledge proof is just a
sealed value, pubS unseals it using the sealing function received as argument and returns
all public and matched witnesses as a tuple (ỹz). The secret witnesses x̃ are simply
discarded, and the validity of the statement is not checked.

pubS = λkunsealing : Un→ τS . λz : Un.
let z′ = kunsealing z in
case z′′ = z′ : Un ∨

∑
x∈vars(S) x : tS(x).{PS} in

let (ỹz, x̃) = z′′ in (ỹz)

The case construct is necessary since τS is a union type. In case z′ has type Un then the
declared return type Un is trivial to justify. In case z′ has type

∑
x∈vars(S) x : tS(x).{PS}

150 APPENDIX C. ZERO-KNOWLEDGE ENCODING IN RCF∀∧∨

we rely on the earlier assumption that all public and matched variables have a public
type, in order to give the returned tuple (ỹ) type Un.

The type and the implementation of the verS function are more involved. The function
inputs the unsealing function kunsealing of type Un → τS , a candidate zero-knowledge
proof z of type Un, and values for the matched variables. Since the type VerifyS contains
an intersection type (Un is one of the branches and this makes the type VerifyS public)
we use a for construct to introduce this intersection type. If the proof is verified by the
attacker we can assume that for all y′ ∈ matched(S) we have y′ : Un and need to type the
return value to Un. On the other hand, if the proof is verified by a protocol participant
we can assume that for all y′ ∈ matched(S) we have y′ : tS(y′), and need to give the
returned value type

∑
y∈returned(S) y : tS(y).{∃x̃=witness(S)x̃. PS ∧ F (S,E)}. Intuitively,

the strong types of the matched values allow us to guarantee the strong types of the
returned public values, as well as the two formulas PS and F (S,E).

The generated verS function performs the following five steps (the first three ones are
the same as for the pubS function): (1) it unseals z using kunsealing and obtains z′; (2)
since z′ has a union type, it does case analysis on it, and assigns its value to z′′; (3)
it splits the tuple z′′ into the matched witnesses ỹ, the public ones z̃, and the secret
ones x̃; (4) it tests if the matched witnesses ỹ are equal to the values ỹ′ received as
arguments, and in case of success assigns the equal values to the variables ỹ′′ – since
ỹ′′ have stronger types than ỹ and ỹ′ we use these variables to stand for the matched
witnesses in the following; (5) it tests if the statement is true by applying the functions
in S and checking the results for equality with the corresponding witnesses. This last
step (denoted by “exp(prime(S), {ỹ′′/ỹ})”) is slightly complicated by the fact that the
statement can contain disjunctions and is discussed in more detail below.

verS = λkunsealing : Un→ τS . λz : Un.

for α̃ in Ũn; t̃S(y).
λy′1 : α1. . . . λy

′
n : αn.

(∗1∗) let z′ = kunsealing z in
(∗2∗) case z′′ = z′ : Un ∨

∑
x∈vars(S) x : tS(x).{PS} in

(∗3∗) let (ỹ, z̃, x̃) = z′′ in
(∗4∗) if (ỹ) = (ỹ′) as (ỹ′′) then
(∗5∗) “ exp(prime(S), {ỹ′′/ỹ})”

else failwith “variables do not match”

In order to convert a statement into the corresponding succession of tests, we first
break the statement S into the corresponding atomic statements of the form R =
(x = f〈T̃ 〉 x1 . . . xn). By slightly abusing notation, we denote this decomposition as
S [R1, . . . , Rn]. We then convert S [R1, . . . , Rn] into a decision tree. Decisions trees are
defined by the following grammar:

D ::= true | false | if x = f〈T̃ 〉 x1 . . . xn then D1 else D2

C.5. CHECKING THE GENERATED IMPLEMENTATION 151

We implement this as a function called prime, that given a decomposed statement
S [R1, . . . , Rn] produces its prime tree, i.e., an ordered and reduced decision tree; we
refer the interested reader to [Bry86,SB08a] for the details.

Finally, the decision tree prime(S [R1, . . . , Rn]) is converted into an RCF∀∧∨ expression
using a function called exp.

Converting Decision Trees to Expressions

exp(true, σ) = (σ(z1), . . . , σ(zn)), where z̃ = returned(S)
exp(false, σ) = failwith “statement not valid”

exp(if x = f〈T̃ 〉 x1 . . . xn then D1 else D2, σ) =

if σ(x) = f〈T̃ 〉 σ(x1) . . . σ(xn) as y then
exp(D1, σ{y/x}) else exp(D2, σ)

Note: Variables y, y1, and y2 are always freshly chosen.

Other than the decision tree, this function takes as argument a substitution σ that
records which is the variable with the strongest type that corresponds to each witness.
Initially this substitution is {ỹ′/ỹ}, i.e., it maps the matched variables ỹ to the values
ỹ′ taken as arguments (remember that since ỹ and ỹ′ were tested for equality in the
previous step and ỹ′ have the stronger types). After checking each atomic statement the
conversion introduces new variables that stand for some of the witnesses and updates the
substitution accordingly. The conversion works as follows. The leaves of the decision tree
marked with true are converted into expressions that return the tuple (σ(x1), . . . , σ(xn)),
i.e., a tuple containing the public witnesses with their strongest type. The leaves marked
with false are converted into an expression that indicates a verification error. The inner
nodes of the decision tree are converted into if statements. More precisely, a node
“if x = f〈T̃ 〉 x1 . . . xn then D1 else D2” in the tree is converted into an application on the
function f〈T̃ 〉 to the arguments σ(x1) . . . σ(xn). The result is then checked for equality
with σ(x), using an if statement with an “as y” clause, where y is a fresh variable. In
order to generate the tree corresponding to a successful check we recursively invoke exp
on D1 and the substitution updating σ to match x to y. The else branch is generated
by recursively calling exp(D2, σ).

In the DAA example the decision tree has a very simple structure:
if xf = check〈Tvki〉 yvki xcert xf then true else false.

C.5. Checking the Generated Implementation

Since the automatically generated implementation of zero-knowledge proofs relies on
types and formulas provided by the user, which may both be wrong, the generated
implementation is not guaranteed to fulfill its interface. We use our type-checker to

152 APPENDIX C. ZERO-KNOWLEDGE ENCODING IN RCF∀∧∨

check whether this is indeed the case. If type-checking the generated code against its
interface succeeds, then this code can be safely used in protocol implementations.

In general, there are two situations in which type-checking the generated implementation
fails. First, the types provided by the user for the the public witnesses are not public. In
this case the implementation of pubS cannot match its defined type Un → Un. Second,
the formula PS is not justified by the statement and the types of the witnesses. In this
case verS cannot match its defined type.

Bibliography

[AB03] Mart́ın Abadi and Bruno Blanchet. Secrecy types for asymmetric commu-
nication. Theoretical Computer Science, 3(298):387–415, 2003. 14, 83, 104,
119

[AB05] Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with se-
crecy types and logic programs. Journal of the ACM, 52(1):102–146, 2005.
7, 20, 24, 119

[Aba99] Mart́ın Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, 1999. 14, 119

[Aba03] Mart́ın Abadi. Logic in access control. In Proc. 18th IEEE Symposium on
Logic in Computer Science (LICS), pages 228–233. IEEE Computer Society
Press, 2003. 5, 120

[Aba07] Mart́ın Abadi. Access control in a core calculus of dependency. Electronic
Notes on Theoretical Computer Science, 172:5–31, 2007. 120

[ABB+05] Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Cheva-
lier, Luca Compagna, Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille
Héam, Olga Kouchnarenko, Jacopo Mantovani, Sebastian Mödersheim,
David von Oheimb, Michaël Rusinowitch, Judson Santiago, Mathieu Turu-
ani, Luca Viganò, and Laurent Vigneron. The avispa tool for the automated
validation of internet security protocols and applications. In Proc. 17th In-
ternational Conference on Computer Aided Verification (CAV 2005), pages
281–285. Springer-Verlag, 2005. 15

[ABB+10] José Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn,
Ahmad-Reza Sadeghi, and Thomas Schneider. A certifying compiler for
zero-knowledge proofs of knowledge based on sigma-protocols. In Proc.
15th European Symposium on Research in Computer Security (ESORICS),
pages 151–167. Springer-Verlag, 2010. 15, 122

153

154 Bibliography

[ABLP93] Mart́ın Abadi, Michael Burrows, Butler W. Lampson, and Gordon D.
Plotkin. A calculus for access control in distributed systems. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 15(4):706–734,
1993. 120

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types.
ACM Transactions on Programming Languages and Systems (TOPLAS),
15(4):575–631, 1993. 99

[AC96] Mart́ın Abadi and Luca Cardelli. A theory of objects. Springer, 1996. 40

[ACC+08] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuellar,
and Llanos Tobarra. Formal analysis of SAML 2.0 web browser single sign-
on: breaking the SAML-based single sign-on for Google Apps. In Proc.
of 6th ACM workshop on Formal methods in security engineering (FMSE
’08), pages 1–10. ACM Press, 2008. 5

[ACP+08] Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pol-
lack, and Stephanie Weirich. Engineering formal metatheory. In Proc. 35th
Symposium on Principles of Programming Languages (POPL ’08), pages
3–15, 2008. 61, 83, 105, 106

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In Proc 17th USENIX
Security Symposium, pages 335–348, 2008. 6

[AF01] M. Abadi and C. Fournet. Mobile values, new names, and secure communi-
cation. In Proc. 28th Symposium on Principles of Programming Languages
(POPL), pages 104–115. ACM Press, 2001. 109

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. In Advances in Cryptology - CRYPTO 2010, pages
209–236, 2010. 6, 122

[AG99] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic pro-
tocols: The spi calculus. Information and Computation, 148(1):1–70, 1999.
7, 10, 20, 92, 109

[AGJ11] Mihhail Aizatulin, Andrew D. Gordon, and Jan Jürjens. Extracting and
verifying cryptographic models from C protocol code by symbolic execution.
Draft, 2011. 86

[AW10] Brian E. Aydemir and Stephanie Weirich. LNgen: Tool support for locally
nameless representations. Draft available at http://www.cis.upenn.edu/
~sweirich/papers/lngen/, 2010. 61, 108

[BAF08] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verifica-
tion of selected equivalences for security protocols. Journal of Logic and
Algebraic Programming, 75(1):3–51, February–March 2008. 14, 120

http://www.cis.upenn.edu/~sweirich/papers/lngen/
http://www.cis.upenn.edu/~sweirich/papers/lngen/

Bibliography 155

[BBF+08] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D.
Gordon, and Sergio Maffeis. Refinement types for secure implementa-
tions. In Proc. 21th IEEE Symposium on Computer Security Founda-
tions (CSF), pages 17–32. IEEE Computer Society Press, 2008. Super-
seded by [BBF+11]. Long version appeared as MSR-TR-2008-118; Novem-
ber 2010 revision available at http://research.microsoft.com/en-us/

um/people/adg/Publications/MSR-TR-2008-118-SP2.pdf. 5, 10, 11, 14,
15, 20, 27, 30, 31, 40, 60, 64, 82, 83, 84, 87, 88, 92, 93, 94, 95, 99, 100, 101,
106, 107, 108, 109, 110, 111, 119

[BBF+11] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gor-
don, and Sergio Maffeis. Refinement types for secure implementations.
ACM Transactions on Programming Languages and Systems (TOPLAS),
33(2):8, 2011. 10, 11, 82, 108, 155

[BBH+09] Endre Bangerter, Thomas Briner, Wilko Henecka, Stephan Krenn, Ahmad-
Reza Sadeghi, and Thomas Schneider. Automatic generation of sigma-
protocols. In 6th European Workshop on Public Key Infrastructures, Ser-
vices and Applications (EuroPKI 2009), pages 67–82, 2009. 122

[BBH11] Michael Backes, Alex Busenius, and Cătălin Hriţcu. On the development
and formalization of an extensible code generator for real life security pro-
tocols. Submitted, October 2011. 24

[BCC04] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. In Proc. 11th ACM Conference on Computer and Communi-
cations Security, pages 132–145. ACM Press, 2004. 6, 7, 10, 11, 14, 16, 52,
75, 76, 81, 84, 111, 113, 120, 147

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna
Lysyanskaya, and Hovav Shacham. Randomizable proofs and delegatable
anonymous credentials. In Advances in Cryptology - CRYPTO 2009, pages
108–125, 2009. 7

[BCD+09a] Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Four-
net, and James J. Leifer. Cryptographic protocol synthesis and verification
for multiparty sessions. In Proc. 22th IEEE Symposium on Computer Se-
curity Foundations (CSF), pages 124–140. IEEE Computer Society Press,
2009. 14

[BCD+09b] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas
Toft. Secure multiparty computation goes live. In 13th International Con-
ference on Financial Cryptography and Data Security, pages 325–343, 2009.
15

http://research.microsoft.com/en-us/um/people/adg/Publications/MSR-TR-2008-118-SP2.pdf
http://research.microsoft.com/en-us/um/people/adg/Publications/MSR-TR-2008-118-SP2.pdf

156 Bibliography

[BCEM11] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maf-
fei. Resource-aware authorization policies for statically typed cryptographic
protocols. In Proc. 24th IEEE Symposium on Computer Security Founda-
tions (CSF). IEEE Computer Society Press, 2011. To appear. 14

[BCFM07] Michael Backes, Agostino Cortesi, Riccardo Focardi, and Matteo Maffei.
A calculus of challenges and responses. In Proc. 5th ACM Workshop on
Formal Methods in Security Engineering (FMSE), pages 101–116. ACM
Press, 2007. 14

[BCFZ08] Karthikeyan Bhargavan, Ricardo Corin, Cédric Fournet, and Eugen Zăli-
nescu. Cryptographically verified implementations for TLS. In 15th ACM
Conference on Computer and Communications Security (CCS 2008), pages
459–468. ACM Press, 2008. 86

[BCGS09] Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. Anony-
mous credentials on a standard java card. In Proc. 16th ACM Conference
on Computer and Communications Security (CCS), pages 600–610, 2009.
7, 120

[BCJ+06] Frederick Butler, Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and
Christopher Walstad. Formal analysis of Kerberos 5. Theoretical Computer
Science, 367(1):57–87, 2006. 5

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya.
P-signatures and noninteractive anonymous credentials. In Proc. 5nd The-
ory of Cryptography Conference (TCC), pages 356–374, 2008. 7

[BCKL09] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya.
Compact e-cash and simulatable VRFs revisited. In Proc. 3rd International
Conference on Pairing-Based Cryptography (Pairing), pages 114–131, 2009.
7

[BFG10] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Modular
verification of security protocol code by typing. In Proc. 37th Symposium on
Principles of Programming Languages (POPL ’10), pages 445–456, 2010. 5,
10, 82, 84, 86, 87

[BFGT08] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Stephen
Tse. Verified interoperable implementations of security protocols. ACM
Transactions on Programming Languages and Systems (TOPLAS), 31(1),
2008. 10, 86

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In Proc. 20th Annual
ACM Symposium on Theory of Computing (STOC), pages 103–112, 1988.
6

Bibliography 157

[BFM07] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Dynamic types for
authentication. Journal of Computer Security, 15(6):563–617, 2007. 14

[BGHL10] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David Lang-
worthy. Semantic subtyping with an SMT solver. In 15th ACM SIGPLAN
International Conference on Functional programming (ICFP 2010), pages
105–116. ACM Press, September 2010. 119

[BGHM09] Michael Backes, Martin P. Grochulla, Cătălin Hriţcu, and Matteo Maf-
fei. Achieving security despite compromise using zero-knowledge. In 22th
IEEE Symposium on Computer Security Foundations (CSF 2009). IEEE
Computer Society Press, July 2009. 7, 8, 11, 13, 14, 15, 52, 60, 68, 71, 72,
101

[BGP11] Johannes Borgström, Andrew D. Gordon, and Riccardo Pucella. Roles,
stacks, histories: A triple for hoare. Journal of Functional Programming,
21(02):159–207, 2011. 86

[BHB+10] Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin Grégoire,
and Sylvain Heraud. A machine-checked formalization of sigma-protocols.
In Proc. 23th IEEE Symposium on Computer Security Foundations (CSF),
pages 246–260. IEEE Computer Society Press, 2010. 15

[BHM08a] Michael Backes, Cătălin Hriţcu, and Matteo Maffei. Automated verification
of remote electronic voting protocols in the applied pi-calculus. In Proc.
21th IEEE Symposium on Computer Security Foundations (CSF), pages
195–209. IEEE Computer Society Press, 2008. 14

[BHM08b] Michael Backes, Cătălin Hriţcu, and Matteo Maffei. Automated verification
of remote electronic voting protocols in the applied pi-calculus. In 21th
IEEE Symposium on Computer Security Foundations (CSF 2008), pages
195–209. IEEE Computer Society Press, June 2008. 120

[BHM08c] Michael Backes, Cătălin Hriţcu, and Matteo Maffei. Type-checking zero-
knowledge. In 15th ACM Conference on Computer and Communications
Security (CCS 2008), pages 357–370. ACM Press, 2008. 11, 13, 60, 83, 108,
112, 121, 145, 148

[BHU09] Michael Backes, Dennis Hofheinz, and Dominique Unruh. CoSP: A general
framework for computational soundness proofs. In Proc. 16th ACM Con-
ference on Computer and Communications Security (CCS), pages 66–78,
2009. 85, 86

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based on Pro-
log rules. In Proc. 14th IEEE Computer Security Foundations Workshop
(CSFW), pages 82–96. IEEE Computer Society Press, 2001. 9, 14, 26, 86

158 Bibliography

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS. In Advances in Cryptology:
CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages
1–12. Springer-Verlag, 1998. 5

[BLMP10] Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina. Anony-
mous webs of trust. In Proc. 10th Privacy Enhancing Technologies Sympo-
sium (PETS’10), volume 6205 of Lecture Notes in Computer Science, pages
130–148. Springer-Verlag, 2010. 7, 23, 52, 120, 122

[BM11] Michael Backes and Esfandiar Mohammadi. Computational soundness of
malleable zero-knowledge proofs (abstract). 7th Workshop on Formal and
Computational Cryptography (FCC), 2011. 15, 16

[BMM10] Michael Backes, Matteo Maffei, and Esfandiar Mohammadi. Computation-
ally sound abstraction and verification of secure multi-party computations.
In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2010), volume 8, pages 352–363,
2010. 15

[BMP11] Michael Backes, Matteo Maffei, and Kim Pecina. A security API for dis-
tributed social networks. In 18th Annual Network & Distributed System
Security Symposium (NDSS’11), pages 35–51. Internet Society, 2011. 7,
122

[BMU08] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in
the applied pi-calculus and automated verification of the direct anonymous
attestation protocol. In Proc. 29th IEEE Symposium on Security and Pri-
vacy, pages 202–215. IEEE Computer Society Press, 2008. 6, 14, 15, 16,
22, 26, 112, 145

[BMU10] Michael Backes, Matteo Maffei, and Dominique Unruh. Computationally
sound verification of source code. In Proc. 17th ACM Conference on Com-
puter and Communications Security (CCS), pages 387–398. ACM Press,
2010. 85, 109

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM Conference on Com-
puter and Communications Security, pages 62–73, 1993. 6

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Transactions on Computers, 35:677–691, 1986. 151

[BSS10] John Bethencourt, Elaine Shi, and Dawn Song. Signatures of reputation.
In 14th International Conference on Financial Cryptography and Data Se-
curity, pages 400–407, 2010. 7

Bibliography 159

[BSSM+07] Abhilasha Bhargav-Spantzel, Anna Cinzia Squicciarini, Shimon K. Modi,
Matthew Young, Elisa Bertino, and Stephen J. Elliott. Privacy preserving
multi-factor authentication with biometrics. Journal of Computer Security,
15(5):529–560, 2007. 7

[BU08] Michael Backes and Dominique Unruh. Computational soundness of sym-
bolic zero-knowledge proofs against active attackers. In Proc. 21th IEEE
Symposium on Computer Security Foundations (CSF), pages 255–269.
IEEE Computer Society Press, 2008. 15

[Bus11] Alex Busenius. Mechanized formalization of a transformation from an ex-
tensible spi calculus to Java. Master’s thesis, Saarland University, April
2011. 24

[Car97] Luca Cardelli. Type systems. In The Computer Science and Engineering
Handbook, pages 2208–2236. CRC Press, 1997. 99

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: A
secure voting system. In Proc. 29th IEEE Symposium on Security and
Privacy, pages 354–368. IEEE Computer Society Press, 2008. 6, 10, 84, 85

[CD08] Sagar Chaki and Anupam Datta. ASPIER: An automated framework for
verifying security protocol implementations. Technical report, CMU CyLab,
October 2008. 86

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Advances
in Cryptology - CRYPTO 1994, volume 839 of Lecture Notes in Computer
Science, pages 174–187. Springer-Verlag, 1994. 6, 15, 122

[CH88] Thierry Coquand and Gerard Huet. The calculus of constructions. Infor-
mation and Computation, 76:95–120, February 1988. 121

[CH02] Jan Camenisch and Els Van Herreweghen. Design and implementation of
the idemix anonymous credential system. In Proc. 9th ACM Conference on
Computer and Communications Security, pages 21–30, 2002. 7, 120

[Cha83] David Chaum. Blind signatures for untraceable payments. In Advances in
Cryptology: CRYPTO’82, pages 199–203, 1983. 75, 123

[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clonewars: efficient peri-
odic n-times anonymous authentication. In Proc. 13th ACM Conference on
Computer and Communications Security, pages 201–210, 2006. 7

[CHL06] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing ac-
countability and privacy using e-cash (extended abstract). In Proc. 5th In-
ternational Conference on Security and Cryptography for Networks (SCN),
pages 141–155, 2006. 7

160 Bibliography

[CJS+08] Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, Joe-Kai Tsay, and
Christopher Walstad. Breaking and fixing public-key Kerberos. Information
and Computation, 206:402–424, February 2008. 5

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Advances in Cryptology - EUROCRYPT 2001, pages 93–118, 2001. 15

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In Proc. 3rd International Conference on Security in Communi-
cation Networks (SCN), volume 2576 of Lecture Notes in Computer Science,
pages 268–289. Springer-Verlag, 2002. 6, 122

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Advances in Cryptology - CRYPTO 2004,
pages 56–72, 2004. 7

[CLM07] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. Endorsed e-cash.
In Proc. 28th IEEE Symposium on Security & Privacy, pages 101–115, 2007.
7

[CM11] Ricardo Corin and Felipe Andrés Manzano. Efficient symbolic execution
for analysing cryptographic protocol implementations. In Proc. 3rd Inter-
national Symposium on Engineering Secure Software and Systems, volume
6542 of LNCS, pages 58–72. Springer, 2011. 86

[CMS10] Jan Camenisch, Sebastian Mödersheim, and Dieter Sommer. A formal
model of identity mixer. In Proc. 5th International Workshop on Formal
Methods for Industrial Critical Systems (FMICS), pages 198–214. Springer-
Verlag, 2010. 15

[Com97] Adriana B. Compagnoni. Subject reduction and minimal types for higher
order subtyping. Technical Report ECS-LFCS-97-363, LFCS, University of
Edinburgh, August 1997. 116

[Coq09] The Coq proof assistant, 2009. Version 8.2. 105, 107

[CPM90] Thierry Coquand and Christine Paulin-Mohring. Inductively defined
types. In Proceedings of the International Conference on Computer Logic
(COLOG-88), pages 50–66. Springer-Verlag, 1990. 121

[Cra96] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Pro-
tocols. PhD thesis, CWI and University of Amsterdam, 1996. 23

[dB72] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae, 75(5):381 – 392, 1972. 61, 105

Bibliography 161

[DGJN11] François Dupressoir, Andrew D. Gordon, Jan Jürjens, and David A. Nau-
mann. Guiding a general-purpose C verifier to prove cryptographic proto-
cols. In Proc. 24th IEEE Symposium on Computer Security Foundations
(CSF), 2011. To appear. 86

[DGS03] Ivan Damg̊aard, Jens Groth, and Gorm Salomonsen. The theory and imple-
mentation of an electronic voting system. In Proc. Secure Electronic Voting
(SEC), pages 77–100, 2003. 6

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security,
17(4):435–487, 2009. 14, 120

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Proceedings of TACAS, 2008. 14, 29, 80, 115

[DP00] Rowan Davies and Frank Pfenning. Intersection types and computational
effects. In Proc. International Conference on Functional Programming
(ICFP 2000), pages 198–208, 2000. 99, 102, 116

[DP04] Joshua Dunfield and Frank Pfenning. Tridirectional typechecking. In Proc.
31th Symposium on Principles of Programming Languages (POPL ’04),
pages 281–292. ACM Press, 2004. 103, 116

[dRP11] Joeri de Ruiter and Erik Poll. Formal analysis of the EMV protocol suite.
In Theory of Security and Applications (TOSCA 2011). Springer-Verlag,
2011. To appear. 86

[DRS08] Stéphanie Delaune, Mark Ryan, and Benn Smyth. Automatic verification
of privacy properties in the applied pi calculus. To appear in 2nd Joint
iTrust and PST Conferences on Privacy, Trust Management and Security
(IFIPTM’08), 2008. 14

[DS81] Dorothy E. Denning and Giovanni M. Sacco. Timestamps in key distribu-
tion protocols. Communications of the ACM, 24(8):533–536, 1981. 5

[Dun09] Joshua Dunfield. Greedy bidirectional polymorphism. In ML Workshop
(ML ’09), pages 15–26, August 2009. 99

[Dun10] Joshua Dunfield. Untangling typechecking of intersections and unions. In
Workshop on Intersection Types and Related Systems (ITRS), July 2010.
117

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 29(2):198–208, 1983. 15, 21

[Eig09] Fabienne Eigner. Type-based verification of electronic voting systems. Mas-
ter’s thesis, Saarland University, 2009. 84, 85

162 Bibliography

[FCB08] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic sub-
typing: Dealing set-theoretically with function, union, intersection, and
negation types. Journal of the ACM, 55(4), 2008. 119

[FGM07a] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline
for authorization in distributed systems. In Proc. 20th IEEE Symposium
on Computer Security Foundations (CSF), pages 31–45. IEEE Computer
Society Press, 2007. 5, 7, 8, 11, 13, 14, 15, 20, 24, 25, 27, 29, 30, 32, 37, 44,
48, 60, 68, 69, 71, 84, 88, 120

[FGM07b] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline
for authorization policies. ACM Transactions on Programming Languages
and Systems (TOPLAS), 29(5), 2007. 5, 14

[Fis03] Dennis Fisher. Millions of .Net Passport accounts put at risk. eWeek, May
2003. (Flaw detected by Muhammad Faisal Rauf Danka). 5

[FKS11] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular code-
based cryptographic verification. In Proc. 18th ACM Conference on Com-
puter and Communications Security (CCS), pages 341–350. ACM Press,
2011. 85, 120

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In In Pro-
gramming Language Design and Implementation (PLDI’91), pages 268–277.
ACM Press, 1991. 92, 93

[GA08] Deepak Garg and Mart́ın Abadi. A modal deconstruction of access control
logics. In Proc. 11th International Conference on Foundations of Software
Science and Computation Structures (FOSSACS), pages 216–230. Springer-
Verlag, 2008. 120

[Gar09] Deepak Garg. Proof search in an authorization logic. Technical report,
Carnegie Mellon University, School of Computer Science, 2009. CMU-CS-
09-121. 120

[Gir86] Jean-Yves Girard. The System F of variable types, fifteen years later.
Theoretical Computer Science, 45(2):159–192, 1986. 92, 93, 94, 95

[GJ03] Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security
protocols. Journal of Computer Security, 4(11):451–521, 2003. 5, 18, 29,
30, 35, 84

[GJ04] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryp-
tographic protocols. Journal of Computer Security, 12(3):435–484, 2004. 14,
29, 30, 32, 84

Bibliography 163

[GJ05] Andrew D. Gordon and Alan Jeffrey. Secrecy despite compromise: Types,
cryptography, and the pi-calculus. In Proc. 16th International Confer-
ence on Concurrency Theory (CONCUR), volume 3653, pages 186–201.
Springer-Verlag, 2005. 14, 119

[GLP05] Jean Goubault-Larrecq and Fabrice Parrennes. Cryptographic protocol
analysis on real C code. In 6th International Conference on Verification,
Model Checking, and Abstract Interpretation, (VMCAI 2005), pages 363–
379. Springer, 2005. 85

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-
ing but their validity or all languages in NP have zero-knowledge proof
systems. Journal of the ACM, 38(3):690–728, 1991. Online available at
http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf. 6

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, 2001. 6

[Gor93] Andrew D. Gordon. A mechanisation of name-carrying syntax up to alpha-
conversion. In 6th International Workshop on Higher-order Logic Theorem
Proving and its Applications (HUG ’93), pages 413–425, 1993. 61, 105

[Got11] Eli Gottlieb. Simple, decidable type inference with subtyping. CoRR,
abs/1104.3116, 2011. 80

[GP06] Deepak Garg and Frank Pfenning. Non-interference in constructive autho-
rization logic. In Proc. 19th IEEE Computer Security Foundations Work-
shop (CSFW), pages 283–296. IEEE Computer Society Press, 2006. 120

[Gro05] Jens Groth. Non-interactive zero-knowledge arguments for voting. In Proc.
3rd International Conference on Applied Cryptography and Network Secu-
rity (ACNS), pages 467–482, 2005. 6

[Gro09] Martin P. Grochulla. Security despite system compromise with zero-
knowledge proofs. Master’s thesis, Saarland University, 2009. 8, 14, 15,
68, 72

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Advances in Cryptology - EUROCRYPT 2008, pages
415–432, 2008. 6, 122

[GT08] Deepak Garg and Michael Carl Tschantz. From indexed lax logic to intu-
itionistic logic. Technical Report CMU-CS-07-167, Carnegie Mellon Uni-
versity, School of Computer Science, January 2008. 120

[Gun92] Carl A. Gunter. Semantics of Programming Languages: Structures and
Techniques. MIT Press, 1992. 92

http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf

164 Bibliography

[HBCDF06] Thomas S. Heydt-Benjamin, Hee-Jin Chae, Benessa Defend, and Kevin
Fu. Privacy for public transportation. In 6th International Workshop on
Privacy Enhancing Technologies (PETS), pages 1–19, 2006. 7

[Hig08] Eclipse Higgins: Open source identity framework, 2008. http://www.

eclipse.org/higgins/. 7

[HJ05] Christian Haack and Alan Jeffrey. Timed spi-calculus with types for secrecy
and authenticity. In Proc. 16th International Conference on Concurrency
Theory (CONCUR), volume 3653, pages 202–216. Springer-Verlag, 2005.
14

[HJ06] Christian Haack and Alan Jeffrey. Pattern-matching spi-calculus. Informa-
tion and Computation, 204(8):1195–1263, 2006. 14

[HL] Bob Harper and Mark Lillibridge. ML with callcc is unsound. Post to
TYPES mailing list, July 8, 1991, archived at http://www.seas.upenn.

edu/~sweirich/types/archive/1991/msg00034.html. 116

[HRT10] James Heather, Peter Y. A. Ryan, and Vanessa Teague. Pretty good democ-
racy for more expressive voting schemes. In Proc. 15th European Symposium
on Research in Computer Security (ESORICS), pages 405–423. Springer-
Verlag, 2010. 6

[HS00] Ullrich Hustadt and Renate A. Schmidt. MSPASS: Modal reasoning by
translation and first-order resolution. In Proc. International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, pages
67–71. Springer-Verlag, 2000. 120

[HSW99] Ullrich Hustadt, Renate A. Schmidt, and Christoph Weidenbach. MSPASS:
Subsumption testing with SPASS. In Proc. of the 1999 International Work-
shop on Description Logics (DL’99), 1999. 120

[HVP05] Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce. Regular expres-
sion types for xml. ACM Transactions on Programming Languages and
Systems (TOPLAS), 27(1):46–90, 2005. 119

[IBM] IBM identity governance project. http://www.zurich.ibm.com/

security/idemix/. 6, 7

[JMR11] Ranjit Jhala, Rupak Majumdar, and Andrey Rybalchenko. HMC: Verifying
functional programs using abstract interpreters. In Proceedings of CAV,
pages 470–485, 2011. 121

[KNON10] Hiroaki Kikuchi, Kei Nagai, Wakaha Ogata, and Masakatsu Nishigaki.
Privacy-preserving similarity evaluation and application to remote biomet-
rics authentication. Soft Computing, 14(5):529–536, 2010. 7

http://www.eclipse.org/higgins/
http://www.eclipse.org/higgins/
http://www.seas.upenn.edu/~sweirich/types/archive/1991/msg00034.html
http://www.seas.upenn.edu/~sweirich/types/archive/1991/msg00034.html
http://www.zurich.ibm.com/security/idemix/
http://www.zurich.ibm.com/security/idemix/

Bibliography 165

[Kob09] Naoki Kobayashi. Types and higher-order recursion schemes for verifica-
tion of higher-order programs. In Proc. 36th Symposium on Principles of
Programming Languages (POPL ’09), pages 416–428, 2009. 121

[KTU90] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-
unification problem. In Proc. 22nd ACM Symposium on Theory of Com-
puting (STOC ’90), pages 468–476. ACM, 1990. 80

[LAN02] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure vickrey auctions
without threshold trust. In 6th International Conference on Financial Cryp-
tography (FC), pages 87–101, 2002. 7

[LHH+07] Li Lu, Jinsong Han, Lei Hu, Jinpeng Huai, Yunhao Liu, and Lionel M. Ni.
Pseudo trust: Zero-knowledge based authentication in anonymous peer-to-
peer protocols. In Proc. 2007 IEEE International Parallel and Distributed
Processing Symposium, page 94. IEEE Computer Society Press, 2007. 7,
19, 52, 113, 147

[LNBH11] Jay Ligatti, Michael Nachtigal, Jeremy Blackburn, and Ivory Hernandez.
Completely subtyping iso-recursive types. Unpublished Draft, 2011. 100

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR. In Proc. 2nd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages
147–166. Springer-Verlag, 1996. 5, 10, 87, 91

[LW94] Barbara H. Liskov and Jeanette M. Wing. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems (TOPLAS),
16:1811–1841, 1994. 98

[MEK+10] Sarah Meiklejohn, C. Christopher Erway, Alptekin Küpçü, Theodora Hin-
kle, and Anna Lysyanskaya. ZKPDL: a language-based system for efficient
zero-knowledge proofs and electronic cash. In Proc. 19th USENIX Security
Symposium, pages 193–206, 2010. 122

[Men91] Nax Paul Mendler. Inductive types and type constraints in the second-order
lambda calculus. Annals of Pure and Applied Logic, 51(1-2):159–172, 1991.
100

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119–141, 1992. 86

[Mil99] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cam-
bridge University Press, 1999. 92, 109

[Moh09] Esfandiar Mohammadi. Computational soundness for symbolic zero-
knowledge proofs against active attackers under relaxed assumptions. Mas-
ter’s thesis, Saarland University, 2009. 15

166 Bibliography

[Mor73] James H. Morris, Jr. Protection in programming languages. Communica-
tions of the ACM, 16(1):15–21, 1973. 10, 82, 109, 120

[MP09] Sean McLaughlin and Frank Pfenning. Efficient intuitionistic theorem prov-
ing with the polarized inverse method. In Automated Deduction – CADE-
22: 22st International Conference on Automated Deduction, pages 230–244.
Springer-Verlag, 2009. 120

[MP11] Matteo Maffei and Kim Pecina. Privacy-aware proof-carrying authorization.
Position Paper, PLAS 2011, to appear, April 2011. 23, 85, 120, 122

[OSV10] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala,
Second Edition. Artima, 2010. 40

[Pie91] Benjamin C. Pierce. Programming with intersection types, union types,
and polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon
University, 1991. 24, 31, 92, 94, 95, 99, 102, 103, 116

[Pie97] Benjamin C. Pierce. Intersection types and bounded polymorphism. Math-
ematical Structures in Computer Science, 7(2):129–193, 1997. 31, 92, 95,
102, 116

[PPM90] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types
in the calculus of constructions. In Proc. 5th International Conference
on Mathematical Foundations of Programming Semantics, pages 209–226.
Springer-Verlag, 1990. 121

[PRST08] David C. Parkes, Michael O. Rabin, Stuart M. Shieber, and Christopher
Thorpe. Practical secrecy-preserving, verifiably correct and trustworthy
auctions. Electronic Commerce Research and Applications, 7(3):294–312,
2008. 7

[PT00] Benjamin C. Pierce and David N. Turner. Local type inference. ACM
Transactions on Programming Languages and Systems (TOPLAS), 22(1):1–
44, 2000. 80

[RD10] Alfredo Rial and George Danezis. Privacy-preserving smart metering.
Technical Report MSR-TR-2010-150, Microsoft Research, November 2010.
http://research.microsoft.com/apps/pubs/?id=141726. 7

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism. In
IFIP Congress, pages 513–523, 1983. 92, 93, 94, 95

[Rey96] John C. Reynolds. Design of the programming language Forsythe. Technical
Report CMU-CS-96-146, Carnegie Mellon University, June 1996. Reprinted
in O’Hearn and Tennent, ALGOL-like Languages, vol. 1, pages 173-233,
Birkhäuser, 1997. 102, 116

http://research.microsoft.com/apps/pubs/?id=141726

Bibliography 167

[RKJ08] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types.
In Proc. ACM SIGPLAN 2008 Conference on Programming Language De-
sign and Implementation (PLDI ’08), pages 159–169, 2008. 121

[ROK07] Thomas Raths, Jens Otten, and Christoph Kreitz. The ILTP problem li-
brary for intuitionistic logic. Journal of Automated Reasoning, 38(1-3):261–
271, 2007. 120

[ROS98] John Rushby, Sam Owre, and N. Shankar. Subtypes for specifications:
Predicate subtyping in PVS. IEEE Transactions on Software Engineering,
24(9):709–720, 1998. 92, 93

[RT06] Silvio Ranise and Cesare Tinelli. The SMT-LIB standard: Version 1.2,
August 2006. 80

[RV99] Alexandre Riazanov and Andrei Voronkov. Vampire. In Proc. 16th Interna-
tional Conference on Automated Deduction (CADE), pages 292–296, 1999.
14, 15, 29, 80

[SB08a] Gert Smolka and Chad E. Brown. Introduction to computational logic.
Lecture Notes, Saarland University, July 2008. Available at http://www.

ps.uni-saarland.de/courses/cl-ss08/script/icl.pdf. 151

[SB08b] Christoph Sprenger and David A. Basin. Cryptographically-sound protocol-
model abstractions. In Proc. 21th IEEE Symposium on Computer Security
Foundations (CSF), pages 115–129. IEEE Computer Society Press, 2008.
16

[SC08] Daniel Smith and Robert Cartwright. Java type inference is broken: can we
fix it? In Proc. 23rd ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA 2008), pages
505–524. ACM, 2008. 80

[SCC10] Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing stateful authoriza-
tion and information flow policies in Fine. In Proc. 19th European Sympo-
sium on Programming (ESOP). Springer-Verlag, 2010. 86

[SCF+11] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan
Bharagavan, and Jean Yang. Secure distributed programming with value-
dependent types. Technical Report MSR-TR-2011-37, Microsoft Research,
March 2011. Accepted at ICFP 2011. 87

[Sch02] Stephan Schulz. E – A Brainiac Theorem Prover. Journal of AI Commu-
nications, 15(2/3):111–126, 2002. 14, 29, 80

[SNO+10] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,
Thomas Ridge, Susmit Sarkar, and Rok Strnisa. Ott: Effective tool sup-
port for the working semanticist. The Journal of Functional Programming,
20(1):71–122, 2010. 61, 108

http://www.ps.uni-saarland.de/courses/cl-ss08/script/icl.pdf
http://www.ps.uni-saarland.de/courses/cl-ss08/script/icl.pdf

168 Bibliography

[SP03] Eijiro Sumii and Benjamin C. Pierce. Logical relations for encryption.
Journal of Computer Security, 11(4):521–554, 2003. 109, 120

[SP07] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic sealing.
Theoretical Computer Science, 375(1-3):169–192, 2007. 10, 82, 109, 120

[Sut09] G. Sutcliffe. The TPTP Problem Library and Associated Infrastruc-
ture: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning,
43(4):337–362, 2009. 80

[Szy05] Michael Szydlo. Risk assurance for hedge funds using zero knowledge proofs.
In 9th International Conference on Financial Cryptography and Data Se-
curity (FC), pages 156–171, 2005. 7

[Tam96] Tanel Tammet. A resolution theorem prover for intuitonistic logic. In Auto-
mated Deduction – CADE-13: 13st International Conference on Automated
Deduction, pages 2–16. Springer-Verlag, 1996. 120

[Tar08] Thorsten Tarrach. Spi2F# – A prototype code generator for security pro-
tocols. Bachelor’s Thesis, Saarland University, 2008. 15

[TCG11] TPM Main. Specification Version 1.2, Revision 116, Trusted Com-
puting Group Published, March 2011. Available at http://www.

trustedcomputinggroup.org/resources/tpm_main_specification. 16

[TCGS89] Val Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. In-
heritance and explicit coercion (preliminary report). In Proc. 4th IEEE
Symposium on Logic in Computer Science (LICS), pages 112–129. IEEE
Computer Society Press, 1989. 99

[TGS89] Val Tannen, Carl A. Gunter, and Andre Scedrov. Denotational semantics
for subtyping between recursive types. Technical Report MS-CIS-89-63,
University of Pennsylvania, Department of Computer & Information Sci-
ence, November 1989. 100

[TSGW09] Amin Tootoonchian, Stefan Saroiu, Yashar Ganjali, and Alec Wolman.
Lockr: better privacy for social networks. In Proc. Conference on Emerging
Networking Experiments and Technology (CoNEXT), pages 169–180. ACM
Press, 2009. 7

[UPr11] Microsoft U-Prove, Community Technology Preview R2, February 2011.
http://www.microsoft.com/u-prove. 6, 7

[Urz95] Pawel Urzyczyn. Positive recursive type assignment. In Proc. 20th In-
ternational Symposium Mathematical Foundations of Computer Science
(MFCS’95), pages 382–391, 1995. 100

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.microsoft.com/u-prove

Bibliography 169

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,
Martin Suda, and Patrick Wischnewski. SPASS version 3.5. In Automated
Deduction – CADE-22 : 22nd International Conference on Automated De-
duction, pages 140–145, 2009. 14, 29, 80

[WL94] Thomas Y. C. Woo and Simon S. Lam. A lesson on authentication protocol
design. Operation Systems Review, 28(3):24–37, 1994. 5

[WS96] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol. In
Proc. 2nd USENIX Workshop on Electronic Commerce, pages 29–40, 1996.
5

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical program-
ming. In Proc. 26th Symposium on Principles of Programming Languages
(POPL ’99), pages 214–227. ACM Press, 1999. 92, 93

[Zei08] Noam Zeilberger. Refinement types and computational duality. In Proc. 3rd
Workshop on Programming Languages Meets Program Verification (PLPV),
pages 15–26. ACM Press, 2008. 117

	Introduction
	Type-checking Zero-knowledge
	Security Despite Compromise
	Type-checking Protocol Implementations
	Soundness Proofs and Implementations
	Previous Publications
	Outline

	Analyzing Protocol Models
	Related Work
	Illustrative Example: Simplified DAA-signing
	Spi-calculus with Zero-knowledge Proofs
	Terms and Destructors
	Representing Zero-knowledge Proofs
	Processes
	Operational Semantics
	Authorization Logic
	Safety and Robust Safety

	Type System for Zero-knowledge
	Types
	Typing Environments and Judgments
	Formula Entailment Judgment
	Subtyping and Kinding
	Logical Characterization of Kinding
	Type Private and Non-disjointness of Types
	Typing Terms and Destructors
	Typing Processes
	Type-checking Zero-knowledge Verification

	Machine-checked Robust Safety Proof
	Basic Properties
	Transitivity of Subtyping
	Logical Characterization of Kinding
	Non-disjointness of Types
	Destructor Consistency
	Zero-knowledge
	Subject-reduction
	Robust Safety

	Case Study: Achieving Security Despite Compromise
	Illustrative Example
	Compromising Participants
	Strengthened Protocol

	Case Study: Direct Anonymous Attestation (DAA)
	The Join Protocol
	The DAA-signing Protocol

	Implementation
	Summary

	Analyzing Protocol Implementations
	Related Work
	Our Type System at Work
	Protocol Description and Security Annotations
	Types for Cryptography
	Type-checking the NSL Protocol

	The RCF Calculus
	Type System
	Well-formed Environments and Entailment
	Subtyping and Kinding
	Encoding Types Un and Private in RCF
	Typing Values and Expressions

	Results of the Formalization
	Implementation of Symbolic Cryptography
	Dynamic Sealing
	Digital Signatures
	Public-Key Encryption

	Encoding of Zero-knowledge
	Illustrative Example: Simplified DAA-sign
	High-level Specification
	Automatic Code Generation

	Implementation
	Related Work on Unions and Intersections
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Semantic Subtyping for Higher-order Languages with Refinements
	Strong Secrecy and Observational Equivalence for RCF
	Supporting An Intuitionistic Authorization Logic with says Modality
	Generalize the Syntactic Reasoning About Type Disjointness
	Type inference for RCF
	Automatically Generating Concrete Cryptographic Implementations from Zero-knowledge Statement Specifications

	Typing Blind Signatures and Secret Hashes
	FormalRCF Calculus
	Syntax
	Erasure from RCF to Formal-RCF
	Local Closure
	Operational Semantics
	Properties of the Authorization Logic
	Typing Judgements

	Zero-knowledge Encoding in RCF
	High-level Specification
	Automatic Code Generation
	Typed Interface
	Generated Implementation
	Checking the Generated Implementation

	Bibliography

