Universität des Saarlandes

Fachrichtung 6.1 - Mathematik

Preprint Nr. 211

A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation

Michael Bildhauer and Martin Fuchs

Saarbrücken 2008

A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation

Michael Bildhauer
Saarland University
Department of Mathematics
P.O. Box 151150
D-66041 Saarbrücken
Germany
bibi@math.uni-sb.de

Martin Fuchs
Saarland University
Department of Mathematics
P.O. Box 151150

D-66041 Saarbrücken
Germany
fuchs@math.uni-sb.de

Edited by
FR 6.1 - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany

Fax: $\quad+496813024443$
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

We discuss variational integrals with density having linear growth on spaces of vector valued $B V$-functions and prove $\operatorname{Im}(u) \subset K$ for minimizers u provided that the boundary data take their values in the closed convex set K assuming in addition that the integrand satisfies natural structure conditions.

Given a closed convex set $K \subset \mathbb{R}^{N}$, we say that minimizers of some variational problem have the convex hull property if they are contained in K in a sense to be made precise provided this is true for their boundary data. A prominent example is given by mass minimizing integer multiplicity m-currents T with compact support, where $m \leq N$ and where the comparison currents S are such that $\partial S=T_{0}$ for a $(m-1)$-current T_{0} with compact support and $\partial T_{0}=0$. Then the support of T is contained in the convex hull of $\operatorname{spt} T_{0}$, which is a consequence of the monotonicity formula for stationary varifolds. We refer the reader to [Si], 19.2 Theorem and 34.2 Remarks. Let us now pass to the setting of variational integrals

$$
I[u, \Omega]=\int_{\Omega} f(\nabla u) \mathrm{d} x
$$

defined for functions $u: \mathbb{R}^{n} \supset \Omega \rightarrow \mathbb{R}^{N}, \Omega$ denoting a bounded Lipschitz domain. Suppose that we are given a function u_{0} such that

$$
\begin{equation*}
u_{0} \in W_{1}^{1}\left(\Omega ; \mathbb{R}^{N}\right), \quad u_{0}(x) \in K \text { a.e. }, \tag{1}
\end{equation*}
$$

where $W_{1}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ is the Sobolev space of vector-valued mappings (see, e.g., [Ad]). Let us further assume that $f(Z)=h(|Z|)$ with

$$
\begin{equation*}
h:[0, \infty) \rightarrow[0, \infty) \text { strictly increasing and convex } \tag{2}
\end{equation*}
$$

Then, if $u \in W_{1}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ minimizes $I[\cdot, \Omega]$ w.r.t. the boundary data u_{0}, i.e.

$$
\left.\begin{array}{l}
I[u, \Omega]<\infty, \quad u-u_{0} \in W_{1}^{1}\left(\Omega ; \mathbb{R}^{N}\right) \quad \text { and } \\
I[u, \Omega] \leq I[v, \Omega] \quad \text { for all } v \in u_{0}+W_{1}^{1}\left(\Omega ; \mathbb{R}^{N}\right),
\end{array}\right\}
$$

it follows that $u(x) \in K$ for almost any $x \in \Omega$. A simple proof is given by the following observation: let $\Phi: \mathbb{R}^{N} \rightarrow K$ denote the nearest-point-projection being Lipschitz with $\operatorname{Lip}(\Phi)=1$. From [AFP], comments given at the beginning of the proof of Theorem 3.96, we see that $v=\Phi(u)$ is admissible and satisfies $|\nabla v| \leq \operatorname{Lip}(\Phi)|\nabla u|=|\nabla u|$. Using the properties of h stated in (2) combined with $|\nabla v| \leq|\nabla u|$, we get from the minimality of u that $I[u, \Omega]=I[v, \Omega]$, and as it is outlined below, this will lead to $\nabla u=\nabla v$, hence $u=v$ and in conclusion $u \in K$ a.e. We remark first that a related maximum principle is due to D'Ottavio, Leonetti and Musciano [DLM], and second that a similar argument

[^0]Keywords: functions of bounded variation, linear growth problems, minimizers, convex hull property, maximum principle
together with a proof of the chain rule in the Lipschitz setting has been presented in [BF1]. However, the reader should note at this stage that a much more general chain rule formula implying $|\nabla(\Phi \circ u)| \leq \operatorname{Lip}(\Phi)|\nabla u|$ is due to Ambrosio and Dal Maso [ADM1]. As a matter of fact the existence of a minimizer u in a suitable Sobolev class requires that h is of superlinear growth, and therefore in general can not be guaranteed if in addition to (2) the function h satisfies

$$
\begin{equation*}
\bar{c}:=\lim _{t \rightarrow \infty} \frac{h(t)}{t} \quad \text { exists in }(0, \infty) \tag{3}
\end{equation*}
$$

which means that now h is just of linear growth.
W.l.o.g. we will also assume that $h(0)=0$. Based on ideas of De Giorgi (see the recent book [Gio] for an overview on his work), of Giusti [Giu], of Giaquinta, Modica, Souček [GMS], of Goffman and Serrin [GS], of Ambrosio and Dal Maso [ADM2] and of Buttazzo $[\mathrm{Bu}]$ it is possible to introduce suitable concepts of generalized solutions to the problem

$$
\begin{equation*}
I[u, \Omega]=\int_{\Omega} h(|\nabla u|) \mathrm{d} x \rightarrow \min \quad \text { in } u_{0}+\stackrel{\circ}{W_{1}^{1}}\left(\Omega ; \mathbb{R}^{N}\right) \tag{P}
\end{equation*}
$$

Let

$$
\begin{aligned}
\mathcal{M}:= & \left\{u \in B V\left(\Omega ; \mathbb{R}^{N}\right): u \text { is a } L^{1}\right. \text {-cluster point of a } \\
& \text { minimizing sequence of problem }(\mathcal{P})\}
\end{aligned}
$$

and define $K[\cdot, \Omega]: B V\left(\Omega ; \mathbb{R}^{N}\right) \rightarrow \mathbb{R}$,

$$
K[u, \Omega]:=\int_{\Omega} h\left(\left|\nabla^{a} u\right|\right) \mathrm{d} x+\bar{c}\left|\nabla^{s} u\right|(\Omega)+\int_{\partial \Omega} \bar{c}\left|\left(u_{0}-u\right) \otimes \mathcal{N}\right| \mathrm{d} \mathcal{H}^{n-1}
$$

where $B V\left(\Omega ; \mathbb{R}^{N}\right)$ is the space of functions of bounded variation (see [AFP] or [Giu]), \mathcal{N} is the exterior normal of $\partial \Omega$ and where we have used the decomposition of the vector measure ∇u in its absolutely continuous part $\nabla^{a} u\left\llcorner\mathcal{L}^{n}\right.$ and its singular part $\nabla^{s} u$. According to a theorem of Besicovitch ([AFP], Theorem 2.22) we have $\nabla^{a} u \in L^{1}\left(\Omega ; \mathbb{R}^{n N}\right)$ and

$$
\begin{equation*}
\nabla^{a} u(x)=\lim _{\rho \downarrow 0} \frac{\nabla u\left(B_{\rho}(x)\right)}{\mathcal{L}^{n}\left(B_{\rho}(x)\right)} \tag{4}
\end{equation*}
$$

holds for \mathcal{L}^{n}-a.a. $x \in \Omega$. Note that on account of (3) the recession function

$$
f_{\infty}(Z):=\lim _{t \rightarrow 0} \frac{f(t Z)}{t}, \quad Z \in \mathbb{R}^{n N}
$$

equals $\bar{c}|Z|$, hence we have the more familiar formula

$$
\begin{aligned}
K[u, \Omega]= & \int_{\Omega} f\left(\nabla^{a} u\right) \mathrm{d} x+\int_{\Omega} f_{\infty}\left(\frac{\nabla^{s} u}{\left|\nabla^{s} u\right|}\right) \mathrm{d}\left|\nabla^{s} u\right| \\
& +\int_{\partial \Omega} f_{\infty}\left(\left(u_{0}-u\right) \otimes \mathcal{N}\right) \mathrm{d} \mathcal{H}^{n-1}
\end{aligned}
$$

for the extension of I to the space $B V\left(\Omega ; \mathbb{R}^{N}\right)$. We recall the following facts established in [BF2] (compare also [Bi], Appendix A1):
i) $I[\cdot, \Omega]=K[\cdot, \Omega]$ on $u_{0}+\stackrel{\circ}{W}_{1}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$;
ii) $K[\cdot, \Omega] \rightarrow$ min admits at least one solution in $B V\left(\Omega ; \mathbb{R}^{N}\right)$;
iii) these minimizers are exactly the elements of \mathcal{M};
iv) $\inf _{u_{0}+W_{1}^{1}\left(\Omega ; \mathbb{R}^{N}\right)} I[\cdot, \Omega]=\inf _{B V\left(\Omega ; \mathbb{R}^{N}\right)} K[\cdot, \Omega]$.

Based on these facts it is reasonable to address the elements of the set \mathcal{M} as generalized solutions of problem (\mathcal{P}).

Now we can state our main result:
Theorem 1. Suppose that u_{0} satisfies (1) for a closed and convex set $K \subset \mathbb{R}^{N}$. Assume further that we have (2) and (3) for the density h. Then it holds $u(x) \in K$ a.e. for any generalized solution of problem (\mathcal{P}).

Corollary 1. (Maximum-principle) Suppose that h satisfies (2) and (3). Assume further that $u_{0} \in W_{1}^{1}\left(\Omega ; \mathbb{R}^{N}\right) \cap L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$. Then any generalized minimizer $u \in B V\left(\Omega ; \mathbb{R}^{N}\right)$ of problem (\mathcal{P}) satisfies $\|u\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}\right\|_{L^{\infty}(\Omega)}$.

Remark 1. The proof of Theorem 1 given below immediately extends to integrands of the form

$$
f(Z)=\sum_{i=1}^{n} h_{i}\left(\left|Z_{i}\right|\right), \quad Z=\left(Z_{1}, \ldots, Z_{n}\right) \in \mathbb{R}^{n N}, \quad Z_{i} \in \mathbb{R}^{N}
$$

with functions h_{1}, \ldots, h_{n} satisfying (2) and having the property that

$$
\bar{c}_{i}:=\lim _{t \rightarrow \infty} \frac{h_{i}(t)}{t}
$$

exists in $(0, \infty)$. In this case it holds

$$
f_{\infty}(Z)=\sum_{i=1}^{n} \bar{c}_{i}\left|Z_{i}\right| .
$$

Of course any other additive decomposition of f depending on the moduli of the Z_{i} can be considered, e.g.

$$
f(Z)=h_{1}\left(\sqrt{\left|Z_{1}\right|^{2}+\left|Z_{2}\right|^{2}}\right)+h_{2}\left(\left|Z_{3}\right|\right) \quad \text { or } \quad f(Z)=h_{1}\left(\left|Z_{1}\right|\right)+h_{2}\left(\sqrt{\left|Z_{2}\right|^{2}+\left|Z_{3}\right|^{2}}\right)
$$

are admissible in the case $n=3$. In fact, a careful inspection of the proof of the chain rule shows the validity of

$$
\left|\partial_{i}(\Phi \circ u)\right| \leq \operatorname{Lip}(\Phi)\left|\partial_{i} u\right|, \quad i=1, \ldots, n
$$

so that $\left|\partial_{i}(\Phi \circ u)\right| \leq\left|\partial_{i} u\right|$.

Proof. We fix a Lipschitz domain $\hat{\Omega} \ni \Omega$, extend u_{0} to an element of $W_{1}^{1}\left(\hat{\Omega} ; \mathbb{R}^{N}\right)$ with values in K and let

$$
B V_{u_{0}}\left(\Omega ; \mathbb{R}^{N}\right):=\left\{w \in B V\left(\hat{\Omega} ; \mathbb{R}^{N}\right): w=u_{0} \text { on } \hat{\Omega}-\Omega\right\}
$$

Following [GMS] we define

$$
\begin{aligned}
\hat{I}[w, \hat{\Omega}] & :=\int_{\hat{\Omega}} f\left(\nabla^{a} w\right) \mathrm{d} x+\int_{\hat{\Omega}} f_{\infty}\left(\frac{\nabla^{s} w}{\left|\nabla^{s} w\right|}\right) \mathrm{d}\left|\nabla^{s} w\right| \\
& =\int_{\hat{\Omega}} h\left(\left|\nabla^{a} w\right|\right) \mathrm{d} x+\bar{c}\left|\nabla^{s} w\right|(\hat{\Omega})
\end{aligned}
$$

for $w \in B V_{u_{0}}\left(\Omega ; \mathbb{R}^{N}\right)$, and as outlined in $[\mathrm{BF} 2]$ we have

$$
\hat{I}[w, \hat{\Omega}]=K\left[w_{\mid \Omega}, \Omega\right]+\text { const } .
$$

Conversely, if $v \in B V\left(\Omega ; \mathbb{R}^{N}\right)$ and if we put

$$
\hat{v}:=\left\{\begin{array}{lll}
v & \text { on } \Omega \\
u_{0} & \text { on } & \hat{\Omega}-\Omega
\end{array}\right\} \in B V_{u_{0}}\left(\Omega ; \mathbb{R}^{N}\right),
$$

then

$$
\hat{I}[\hat{v}, \hat{\Omega}]=K[v, \Omega]+\text { const },
$$

where const $=\int_{\hat{\Omega}-\Omega} h\left(\left|\nabla u_{0}\right|\right) \mathrm{d} x$. Due to this observation it is sufficient to consider a solution $u \in B V_{u_{0}}\left(\Omega ; \mathbb{R}^{N}\right)$ of

$$
\hat{I}[\cdot, \hat{\Omega}] \rightarrow \min \quad \text { in } B V_{u_{0}}\left(\Omega ; \mathbb{R}^{N}\right)
$$

and to prove that $u(x) \in K$ a.e.
To this purpose we consider the retraction $\Phi: \mathbb{R}^{N} \rightarrow K$ and let as before $v:=\Phi \circ u$. According to the comments given at the beginning of the proof of Theorem 3.96 in [AFP] v is in $B V\left(\hat{\Omega} ; \mathbb{R}^{N}\right)$ and $(\operatorname{recall} \operatorname{Lip}(\Phi)=1)$

$$
\begin{equation*}
|\nabla v| \leq \operatorname{Lip}(\Phi)|\nabla u|=|\nabla u|, \tag{5}
\end{equation*}
$$

where $|\nabla v|$ and $|\nabla u|$ denote the total variations of the vector measures ∇v and ∇u. Here we like to emphasize again that a general chain rule formula as stated for example in Theorem 3.101 of [AFP] is due to Ambrosio and Dal Maso [ADM1], and that (5) is a simple consequence of this important formula. Clearly $v \in B V_{u_{0}}\left(\Omega ; \mathbb{R}^{N}\right)$ so that

$$
\begin{equation*}
\hat{I}[u, \hat{\Omega}] \leq \hat{I}[v, \hat{\Omega}] . \tag{6}
\end{equation*}
$$

Now we use (4) for u and v which implies in combination with (5) for \mathcal{L}^{n}-a.a. $x \in \hat{\Omega}$

$$
\left|\nabla^{a} v(x)\right|=\lim _{\rho \downarrow 0} \frac{|\nabla v|\left(B_{\rho}(x)\right)}{\mathcal{L}^{n}\left(B_{\rho}(x)\right)} \leq \lim _{\rho \downarrow 0} \frac{|\nabla u|\left(B_{\rho}(x)\right)}{\mathcal{L}^{n}\left(B_{\rho}(x)\right)}=\left|\nabla^{a} u(x)\right|,
$$

and the monotonicity of h gives

$$
\begin{equation*}
\int_{\hat{\Omega}} h\left(\left|\nabla^{a} v\right|\right) \mathrm{d} x \leq \int_{\hat{\Omega}} h\left(\left|\nabla^{a} u\right|\right) \mathrm{d} x \tag{7}
\end{equation*}
$$

Quoting [AFP], Proposition 3.92 (a), we may write for functions $w \in B V\left(\hat{\Omega} ; \mathbb{R}^{N}\right)$

$$
\begin{equation*}
\nabla^{s} w=\nabla w\left\llcorner S_{w}, \quad S_{w}:=\left\{x \in \hat{\Omega}: \lim _{\rho \downarrow 0} \frac{|\nabla w|\left(B_{\rho}(x)\right)}{\mathcal{L}^{n}\left(B_{\rho}(x)\right)}=\infty\right\},\right. \tag{8}
\end{equation*}
$$

and deduce from (5) that

$$
\begin{equation*}
S_{v} \subset S_{u} \tag{9}
\end{equation*}
$$

since

$$
|\nabla v|\left(B_{\rho}(x)\right) \leq|\nabla u|\left(B_{\rho}(x)\right) .
$$

Next we use (5), (8) and (9) and get

$$
\begin{equation*}
\left|\nabla^{s} v\right|(\hat{\Omega})=|\nabla v|\left(S_{v}\right) \leq|\nabla u|\left(S_{u}\right)=\left|\nabla^{s} u\right|(\hat{\Omega}) \tag{10}
\end{equation*}
$$

which in combination with (7) leads to

$$
\hat{I}[v, \hat{\Omega}] \leq \hat{I}[u, \hat{\Omega}] .
$$

By (6) we must have

$$
\hat{I}[v, \hat{\Omega}]=\hat{I}[u, \hat{\Omega}]
$$

and by (7) and (10) this is only possible if

$$
\begin{align*}
\int_{\hat{\Omega}} h\left(\left|\nabla^{a} u\right|\right) \mathrm{d} x & =\int_{\hat{\Omega}} h\left(\left|\nabla^{a} v\right|\right) \mathrm{d} x \tag{11}\\
\left|\nabla^{s} u\right|(\hat{\Omega}) & =\left|\nabla^{s} v\right|(\hat{\Omega}) \tag{12}
\end{align*}
$$

¿From (11), from $\left|\nabla^{a} v\right| \leq\left|\nabla^{a} u\right|$ and from the requirement (2) it is immediate that

$$
\begin{equation*}
\left|\nabla^{a} u\right|=\left|\nabla^{a} v\right| \quad \mathcal{L}^{n} \text {-a.e. on } \hat{\Omega} . \tag{13}
\end{equation*}
$$

If $E \subset \hat{\Omega}$ is a Borel set, then analogous to (10) we get from (5) and (9)

$$
\begin{equation*}
\left|\nabla^{s} v\right|(E)=|\nabla v|\left(S_{v} \cap E\right) \leq|\nabla u|\left(S_{u} \cap E\right)=\left|\nabla^{s} u\right|(E) . \tag{14}
\end{equation*}
$$

At the same time - using (14) with E replaced by $\hat{\Omega}-E$ - it holds on account of (12)

$$
\begin{aligned}
\left|\nabla^{s} v\right|(E) & =\left|\nabla^{s} v\right|(\hat{\Omega})-\left|\nabla^{s} v\right|(\hat{\Omega}-E) \geq\left|\nabla^{s} v\right|(\hat{\Omega})-\left|\nabla^{s} u\right|(\hat{\Omega}-E) \\
& =\left|\nabla^{s} u\right|(\hat{\Omega})-\left|\nabla^{s} u\right|(\hat{\Omega}-E)=\left|\nabla^{s} u\right|(E)
\end{aligned}
$$

and with (14) it is shown that

$$
\begin{equation*}
\left|\nabla^{s} u\right|=\left|\nabla^{s} v\right| \tag{15}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
\mathcal{L}^{n}\left(\left\{x \in \hat{\Omega}: \nabla^{a} u(x) \neq \nabla^{a} v(x)\right\}\right)>0 . \tag{16}
\end{equation*}
$$

We have

$$
\begin{equation*}
\int_{\left[\nabla^{a} u \neq \nabla^{a} v\right]}\left(\left|\nabla^{a} u\right|+\left|\nabla^{a} v\right|-\left|\nabla^{a} u+\nabla^{a} v\right|\right) \mathrm{d} x>0 \tag{17}
\end{equation*}
$$

since otherwise

$$
\left|\nabla^{a} u+\nabla^{a} v\right|=\left|\nabla^{a} u\right|+\left|\nabla^{a} v\right|
$$

a.e. on $\left[\nabla^{a} u \neq \nabla^{a} v\right]$ and therefore

$$
\nabla^{a} u=\lambda \nabla^{a} v
$$

on this set with a non-negative function λ. But (13) then gives the contradiction $\lambda=1$. ¿From (17) we get recalling (2)

$$
\begin{aligned}
\int_{\hat{\Omega}} h\left(\left|\nabla^{a}\left(\frac{u+v}{2}\right)\right|\right) \mathrm{d} x & <\int_{\hat{\Omega}} h\left(\frac{1}{2}\left|\nabla^{a} u\right|+\frac{1}{2}\left|\nabla^{a} v\right|\right) \mathrm{d} x \\
& \leq \frac{1}{2} \int_{\hat{\Omega}} h\left(\left|\nabla^{a} u\right|\right) \mathrm{d} x+\frac{1}{2} \int_{\hat{\Omega}} h\left(\left|\nabla^{a} v\right|\right) \mathrm{d} x
\end{aligned}
$$

and since $\left|\nabla^{s}(u+v)\right| \leq\left|\nabla^{s} u\right|+\left|\nabla^{s} v\right|$ it follows from (13) and (15) that

$$
\begin{equation*}
\hat{I}\left[\frac{u+v}{2}, \hat{\Omega}\right]<\hat{I}[u, \hat{\Omega}] . \tag{18}
\end{equation*}
$$

But $(u+v) / 2$ belongs to $B V_{u_{0}}\left(\Omega ; \mathbb{R}^{N}\right)$, thus the strict inequality (18) contradicts the minimizing property of u, and assumption (16) is wrong which means

$$
\begin{equation*}
\nabla^{a} u=\nabla^{a} v \quad \mathcal{L}^{n} \text {-a.e. on } \hat{\Omega} . \tag{19}
\end{equation*}
$$

Consider the measure $\mu:=\left|\nabla^{s} u\right|$. Using (15) we find μ-measurable functions Θ_{u}, Θ_{v} : $\hat{\Omega} \rightarrow \mathbb{R}^{n N}$ s.t. $\left|\Theta_{u}\right|=1=\left|\Theta_{v}\right| \mu$-a.e. and

$$
\begin{equation*}
\nabla^{s} u=\Theta_{u}\left\llcorner\mu, \quad \nabla^{s} v=\Theta_{v}\llcorner\mu\right. \tag{20}
\end{equation*}
$$

Let us assume that

$$
\begin{equation*}
\left|\nabla^{s}\left(\frac{u+v}{2}\right)\right|(\hat{\Omega})<\left|\nabla^{s} u\right|(\hat{\Omega}) . \tag{21}
\end{equation*}
$$

This implies on account of (19)

$$
\hat{I}\left[\frac{u+v}{2}, \hat{\Omega}\right]=\int_{\hat{\Omega}} h\left(\left|\nabla^{a} u\right|\right) \mathrm{d} x+\bar{c}\left|\nabla^{s}\left(\frac{u+v}{2}\right)\right|(\hat{\Omega})<\hat{I}[u, \hat{\Omega}]
$$

which is in contradiction to the minimality of u. We therefore have in place of (21)

$$
\left|\int_{\hat{\Omega}} \frac{1}{2}\left(\Theta_{u}+\Theta_{v}\right) \mathrm{d} \mu\right|=\mu(\hat{\Omega})
$$

hence

$$
\mu(\hat{\Omega}) \leq \frac{1}{2} \int_{\hat{\Omega}}\left|\Theta_{u}+\Theta_{v}\right| \mathrm{d} \mu \leq \frac{1}{2} \int_{\hat{\Omega}}\left(\left|\Theta_{u}\right|+\left|\Theta_{v}\right|\right) \mathrm{d} \mu=\mu(\hat{\Omega})
$$

and in conclusion

$$
\left|\Theta_{u}+\Theta_{v}\right|=\left|\Theta_{u}\right|+\left|\Theta_{v}\right| \quad \mu \text {-a.e. }
$$

For this reason we can write

$$
\Theta_{u}=\bar{\lambda} \Theta_{v}
$$

with $\bar{\lambda}$ non-negative and μ-measurable, but $\left|\Theta_{u}\right|=1=\left|\Theta_{v}\right|$ gives $\bar{\lambda} \equiv$ 1, i.e. $\Theta_{u}=\Theta_{v}$ μ-a.e. From (20) it follows $\nabla^{s} u=\nabla^{s} v$ which together with (19) shows that $\nabla u=\nabla v$. Quoting Proposition 3.2 of [AFP] we see $u-v \equiv$ const and $u=u_{0}=v$ on $\hat{\Omega}-\Omega$ yields $u=v$ and in conclusion $u(x) \in K$ a.e. The proof of Theorem 1 is complete.

For the sake of completeness we have a look at the scalar case for which it is possible to give up the special structure of the integrand and to obtain a maximum principle close to the classical one. To be precise, let us assume that $F: \mathbb{R}^{n} \rightarrow[0, \infty)$ is strictly convex together with $F(0)=0$. For $u_{0} \in W_{1}^{1}(\Omega)$ we consider again the variational problem

$$
\begin{equation*}
I[u, \Omega]=\int_{\Omega} F(\nabla u) \mathrm{d} x \rightarrow \min \quad \text { in } u_{0}+\stackrel{\circ}{W}_{1}^{1}(\Omega) \tag{P}
\end{equation*}
$$

and observe

$$
\begin{equation*}
\inf _{\partial \Omega} u_{0} \leq u \leq \sup _{\partial \Omega} u_{0} \tag{22}
\end{equation*}
$$

provided we can find a soluton $u \in W_{1}^{1}(\Omega)$ of (\mathcal{P}). In fact, if we assume $M:=\sup _{\partial \Omega} u_{0}<$ ∞, then we deduce from

$$
I[u, \Omega] \leq I[\min (u, M), \Omega]
$$

that

$$
\int_{[u>M]} F(\nabla u) \mathrm{d} x=0,
$$

and $0 \leq F(\nabla u / 2)<F(\nabla u) / 2$ on $[\nabla u \neq 0]$ implies $\nabla u=0$ on $[u>M]$, hence $\nabla \max (u, M)=0$, which shows $u \leq M$.

Let us now assume that F is of linear growth, i.e. with constants $a, A>0, b, B \in \mathbb{R}$ it holds

$$
\begin{equation*}
a|\xi|+b \leq F(\xi) \leq A|\xi|+B \tag{23}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{n}$. Moreover, we require

$$
\begin{equation*}
F(-\eta)=F(\eta) \quad \text { for all } \eta \in \mathbb{R}^{n} \tag{24}
\end{equation*}
$$

Then we have

Theorem 2. Let the strictly convex function F satisfy (23) and (24) together with $F(0)=$ 0 . If $u \in \mathcal{M}$ denotes a generalized minimizer of problem (\mathcal{P}), then (the slightly weaker variant of (22))

$$
\begin{equation*}
\inf _{\Omega} u_{0} \leq u(x) \leq \sup _{\Omega} u_{0} \tag{25}
\end{equation*}
$$

is satisfied for a.a. $x \in \Omega$.
Proof. It is sufficient to consider the case $M:=\sup _{\Omega} u_{0}<\infty$ and to prove the second inequality stated in (25). We extend u_{0} to a function of class $W_{1}^{1}(\Omega)$ on a bounded Lipschitz domain $\hat{\Omega} \ni \Omega$ assuming that this extension - again denoted by u_{0} - still satisfies $u_{0} \leq M$ a.e. (now on $\hat{\Omega}$), since otherwise we may compose it with the function $\psi(t):=\min (M, t), t \in \mathbb{R}$. As outlined in the proof of Theorem 1 the claim of Theorem 2 will follow if we can show that any solution $u \in B V_{u_{0}}(\Omega)$ of

$$
\hat{I}[w, \hat{\Omega}]:=\int_{\hat{\Omega}} F\left(\nabla^{a} w\right) \mathrm{d} x+\int_{\hat{\Omega}} F_{\infty}\left(\frac{\nabla^{s} w}{\left|\nabla^{s} w\right|}\right) \mathrm{d}\left|\nabla^{s} w\right| \rightarrow \min \quad \text { in } B V_{u_{0}}(\Omega)
$$

satisfies $u \leq M$ a.e. Quoting the chain rule for real valued functions as stated in Theorem 3.99 of [AFP] we have $v:=\psi \circ u \in B V_{u_{0}}(\Omega)$ together with

$$
\nabla v=\psi^{\prime}(u) \nabla^{a} u\left\llcorner\mathcal{L}^{n}+\left(\psi\left(u^{+}\right)-\psi\left(u^{-}\right)\right) \nu_{u} \mathcal{H}^{n-1}\left\llcorner J_{u}+\psi^{\prime}(\tilde{u}) \nabla^{c} u,\right.\right.
$$

where our notation follows the terminology of [AFP]. Let us look at the part $\psi^{\prime}(u) \nabla^{a} u\left\llcorner\mathcal{L}^{n}\right.$ of the vector measure ∇v being absolutely continuous w.r.t. \mathcal{L}^{n}. It holds $\psi^{\prime}(u)=0$ a.e. on the set $[u>M]$, wheras $\psi^{\prime}(u)=1$ a.e. on $[u<M]$. Since the density $\nabla^{a} u$ equals the approximative differential of u (see [AFP], Theorem 3.83), and since the approximative differential of u vanishes a.e. on $[u=M]$ (see [AFP], Proposition 3.73 (c)), we get

$$
\begin{equation*}
\int_{\hat{\Omega}} F\left(\nabla^{a} v\right) \mathrm{d} x=\int_{[u<M]} F\left(\nabla^{a} u\right) \mathrm{d} x . \tag{26}
\end{equation*}
$$

Notice that the measures $\nabla^{j} v$ and $\nabla^{c} v$ are mutually orthogonal, hence we can write

$$
\begin{equation*}
\int_{\hat{\Omega}} F_{\infty}\left(\frac{\nabla^{s} v}{\left|\nabla^{s} v\right|}\right) \mathrm{d}\left|\nabla^{s} v\right|=\int_{J_{u}} F_{\infty}\left(\psi\left(u^{+}\right)-\psi\left(u^{-}\right)\right) \nu_{u} \mathrm{~d} \mathcal{H}^{n-1}+\int_{\hat{\Omega}} F_{\infty}\left(\psi^{\prime}(\tilde{u}) \frac{\nabla^{c} u}{\left|\nabla^{c} u\right|}\right) \mathrm{d}\left|\nabla^{c} u\right| . \tag{27}
\end{equation*}
$$

The function $\psi^{\prime}(\tilde{u})$ has values in $\{0,1\}$, which means

$$
F_{\infty}\left(\psi^{\prime}(\tilde{u}) \frac{\nabla^{c} u}{\left|\nabla^{c} u\right|}\right) \leq F_{\infty}\left(\frac{\nabla^{c} u}{\left|\nabla^{c} u\right|}\right)
$$

$\left|\nabla^{c} u\right|$-a.e. At the same time we have \mathcal{H}^{n-1}-a.e. on J_{u}

$$
\begin{aligned}
F_{\infty}\left(\left(\psi\left(u^{+}\right)-\psi\left(u^{-}\right)\right) \nu_{u}\right) & =\left|\psi\left(u^{+}\right)-\psi\left(u^{-}\right)\right| F_{\infty}\left(\operatorname{sign}\left[\psi\left(u^{+}\right)-\psi\left(u^{-}\right)\right] \nu_{u}\right) \\
& =\left|\psi\left(u^{+}\right)-\psi\left(u^{-}\right)\right| F_{\infty}\left(\nu_{u}\right) \\
& \leq\left|u^{+}-u^{-}\right| F_{\infty}\left(\nu_{u}\right) \\
& =F_{\infty}\left(\left(u^{+}-u^{-}\right) \nu_{u}\right) .
\end{aligned}
$$

Here the first equality sign follows from the fact that the recession function is positively homogeneous of degree one, the second is a consequence of (24) and the last equation is established in the same way. Combing the inequalities from above with (26) and (27) and using the minimality of u we find

$$
\begin{equation*}
\int_{[u \geq M]} F\left(\nabla^{a} u\right) \mathrm{d} x=0 \tag{28}
\end{equation*}
$$

together with

$$
\begin{equation*}
\int_{J_{u}} F_{\infty}\left(\left(\psi\left(u^{+}\right)-\psi\left(u^{-}\right)\right) \nu_{u}\right) \mathrm{d} \mathcal{H}^{n-1}=\int_{J_{u}} F_{\infty}\left(\left(u^{+}-u^{-}\right) \nu_{u}\right) \mathrm{d} \mathcal{H}^{n-1} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\hat{\Omega}} F_{\infty}\left(\psi^{\prime}(\tilde{u}) \frac{\nabla^{c} u}{\left|\nabla^{c} u\right|}\right) \mathrm{d}\left|\nabla^{c} u\right|=\int_{\hat{\Omega}} F_{\infty}\left(\frac{\nabla^{c} u}{\left|\nabla^{c} u\right|}\right) \mathrm{d}\left|\nabla^{c} u\right| . \tag{30}
\end{equation*}
$$

¿From (28) we deduce using the strict convexity of F together with $F(0)=0$ that

$$
\begin{equation*}
\nabla^{a} u=0 \quad \mathcal{L}^{n} \text {-a.e. on }[u \geq M] . \tag{31}
\end{equation*}
$$

¿From (29) and

$$
F_{\infty}\left(\left(\psi\left(u^{+}\right)-\psi\left(u^{-}\right)\right) \nu_{u}\right) \leq F_{\infty}\left(\left(u^{+}-u^{-}\right) \nu_{u}\right)
$$

\mathcal{H}^{n-1}-a.e. on J_{u} it follows that

$$
\begin{equation*}
F_{\infty}\left(\left(\psi\left(u^{+}\right)-\psi\left(u^{-}\right)\right) \nu_{u}\right)=F_{\infty}\left(\left(u^{+}-u^{-}\right) \nu_{u}\right) \tag{32}
\end{equation*}
$$

\mathcal{H}^{n-1}-a.e. on J_{u}, since otherwise we would have a contradiction to the minimality of u. (32) gives

$$
\begin{equation*}
\left|\psi\left(u^{+}\right)-\psi\left(u^{-}\right)\right|=\left|u^{+}-u^{-}\right| \tag{33}
\end{equation*}
$$

\mathcal{H}^{n-1}-a.e. on $J_{u}\left(\right.$ recall $\left.F_{\infty}(t \xi)=|t| F_{\infty}(\xi)\right)$ but by definition of ψ this means

$$
\begin{equation*}
\psi\left(u^{+}\right)-\psi\left(u^{-}\right)=u^{+}-u^{-} \tag{34}
\end{equation*}
$$

\mathcal{H}^{n-1}-a.e. on J_{u}. In the same way we obtain from (30), from

$$
F_{\infty}\left(\psi^{\prime}(\tilde{u}) \frac{\nabla^{c} u}{\left|\nabla^{c} u\right|}\right) \leq F_{\infty}\left(\frac{\nabla^{c} u}{\left|\nabla^{c} u\right|}\right)
$$

and from the minimality of u that

$$
\begin{equation*}
\psi^{\prime}(\tilde{u})=1 \quad\left|\nabla^{c} u\right|-\text { a.e. } \tag{35}
\end{equation*}
$$

Recalling the formula for ∇v and using (31), (34) and (35) we arrive at $\nabla v=\nabla u$, hence $v=u$ and in conclusion $u \leq M$ a.e. on $\hat{\Omega}$.

References

[Ad] Adams, R. A., Sobolev spaces. Academic Press, New York-San Francisco-London 1975.
[ADM1] Ambrosio, L., Dal Maso, G., A general chain rule for distributional derivatives. Proc. Amer. Math. Soc. 108 (1990), 691-702.
[ADM2] Ambrosio, L., Dal Maso, G., On the relaxation in $B V\left(\Omega ; \mathbb{R}^{m}\right)$ of quasi-convex integrals. J. Funct. Anal. 109 (1992), 76-97.
[AFP] Ambrosio, L., Fusco, N., Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications, Clarendon Press, Oxford 2000.
[Bi] Bildhauer, M., Convex variational problems: linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg-New York, 2003.
[BF1] Bildhauer, M., Fuchs, M., Partial regularity for a class of anisotropic variational integrals with convex hull property. Asymp. Anal. 32 (2002), 293-315.
[BF2] Bildhauer, M., Fuchs, M., Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions. Algebra i Analiz 14 (2002), 26-45.
[Bu] Buttazzo, G., Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Res. Notes in Math., Longman, Harlow 1989.
[DLM] D'Ottavio, A., Leonetti, F., Musciano, C., Maximum principle for vector valued mappings minimizing variational integrals. Atti Sem. Mat. Fis. Uni. Modena XLVI (1998), 677-683.
[Gio] De Giorgi, E., Selected papers. Edited by L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S. Spagnolo, Springer, Berlin, 2006.
[Giu] Giusti, E., Minimal surfaces and functions of bounded variation. Monographs in Mathematics 80, Birkhäuser, Boston-Basel-Stuttgart, 1984.
[GMS] Giaquinta, M., Modica, G., Souček, J., Functionals with linear growth in the calculus of variations. Comm. Math. Univ. Carolinae 20 (1979), 143-171.
[GS] Goffman, C., Serrin, J., Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964), 159-178.
[Si] Simon, L., Lectures on geometric measure theory. Proc. Centre Math. Anal., Australian Nat. Univ., 3, 1983.

[^0]: AMS Subject Classification: 49Q20

