
Socially Enhanced Search
and Exploration

in Social Tagging Networks

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Tom Crecelius

Max Planck Institut Informatik

Abteilung 5 : Datenbanken und
Informationssysteme

Saarbrücken, 2012

Dekan der
Naturwissenschaftlich-Technischen
Fakulät I Prof. Dr. Mark Groves

Vorsitzender der Prüfungskommission Prof. Dr. Jens Dittrich
Berichterstatter Privatdozent Dr.-Ing. Ralf Schenkel
Berichterstatter Dr. Sihem Amer-Yahia
Berichterstatter Prof. Dr.-Ing. Gerhard Weikum

Beisitzer Dr.-Ing. Klaus Berberich
Tag des Promotionskolloquiums 23.04.2012

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter
Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, den 16.02.2012

(Tom Crecelius)

Abstract
Social tagging networks have become highly popular for publishing and searching con-
tents. Users in such networks can review, rate and comment on contents, or annotate
them with keywords (social tags) to give short but exact text representations of even
non-textual contents. In addition, there is an inherent support for interactions and re-
lationships among users. Thus, users naturally form groups of friends or of common
interests.

We address three research areas in our work utilising these intrinsic features of
social tagging networks.

• We investigate new approaches for exploiting the social knowledge of and the
relationships between users for searching and recommending relevant contents,
and integrate them in a comprehensive framework, coined SENSE, for search in
social tagging networks.

• To dynamically update precomputed lists of transitive friends in descending or-
der of their distance in user graphs of social tagging networks, we provide an
algorithm for incrementally solving the all pairs shortest distance problem in
large, disk-resident graphs and formally prove its correctness.

• Since users are content providers in social tagging networks, users may keep
their own data at independent, local peers that collaborate in a distributed P2P
network. We provide an algorithm for such systems to counter cheating of peers
in authority computations over social networks.

The viability of each solution is demonstrated by extensive experiments regarding
effectiveness and efficiency.

v

Kurzfassung
Im Internet sind soziale Netzwerke, die es erlauben Inhalte mit Anmerkungen zu verse-
hen, inzwischen weit verbreitet und bei Anwendern gleichermaßen beliebt, um eigene
Informationen zu veröffentlichen oder nach denen andere Benutzer zu suchen. An-
wender können in diesen sozialer Netzwerken vorhandene Inhalte kritisieren, bewerten
und kommentieren oder eben mit Schlagworten, d.h. mit sozialen Annotationen (engl.
social tags) versehen. Ein weiteres Merkmal dieser sozialen Netzwerke ist es, dass In-
teraktionen und Freundshaftsbeziehungen zwischen Benutzern aktiv gefördert werden
und sich so Anwender mit ähnlichen Interessen in Gruppen zusammenschließen.

Hieraus ergeben sich interessante Möglichkeiten für die Forschung. Wir sprechen
drei Bereiche in dieser Arbeit an.

• Wir präsentieren mit SENSE ein umfassendes Rahmenwerk zur Suche in sozialen
Netzwerken und stellen darin neue Ansätze zur Verbesserung von Suchergebnis-
sen vor, die das gemeinschaftliche Wissen der Anwender und die Beziehungen
zwischen den Anwendern nutzen.

• Zur kontinuierlichen Aktualisierung von Freundeslisten, stellen wir einen Al-
gorithmus zur inkrementellen Lösung des kürzesten Wege-Problems zwischen
allen Paaren von Knoten im Benutzergraphen sozialer Netzwerke vor.

• Soziale Netzwerke, die in einer verteilten P2P Umgebung betrieben werden, ste-
hen dem Problem gegenüber, dass Benutzer-Peers versuchen können, Suchergeb-
nisse zu beeinflussen. Wir stellen einen Algorithmus vor, der diesem Problem
entgegentritt.

vii

Summary
Over the years, more and more social tagging networks, like Flickr.com1, Delicious.com2,
Twitter.com3 or LibraryThing.com4, have been emerging from the Internet and have
become highly popular for publishing and searching contents, turning users from mere
consumers into information providers. Users in such networks can easily publish own
contents like photos or opinions, e.g. expressed in ratings, reviews or comments.

Moreover, users can annotate contents with arbitrary keywords, so called social
tags, which allows for short but exact text representations of even non-textual contents.
In this way, tags are collaboratively chosen by the users who publish the same contents
(e.g. the same bookmarks, books, songs) or others who discovered them and find them
worthwhile to annotate.

In addition, the provided services in social tagging networks inherently support and
stimulate interactions and relationships among users. Thus, with a growing number of
members, a more and more tight and huge network of users is established, and naturally,
groups of friends or of common interests are formed.

These intrinsic features of social tagging networks offer great research possibilities.
In this context, we address three challenging areas.

Firstly, we investigate new approaches for exploiting the social knowledge of users
and the relationships between users for searching and recommending relevant content.
Typically, items in social tagging networks like URLs or photos are retrieved by issuing
queries that consist of a set of tags, returning items that have been frequently annotated
with these tags. However, users often prefer a more personalised way of searching over
such a ‘global’ search, exploiting preferences of and connections between users. Hence,
we develop a comprehensive framework, coined SENSE, for socially enhanced search
and exploration in social tagging networks. The framework includes a data model,
defining the entities (e.g. users, tags, items like photos, etc.) and all relations being
available in a multitude of social tagging networks, and allows for sophisticated scor-
ing models, search strategies and efficient top-k algorithms. We apply the data model
to three real world social tagging networks and implement two top-k algorithms in the
context of SENSE. We discuss the distinctiveness of each algorithm, its scoring model
and query processing, and show the effectiveness and efficiency of the respective ap-
proach in extensive experiments. SENSE has been implemented as prototype system
for searching and exploring bookmarks, pictures and books on data retrieved from the
social tagging networks Delicious.com, Flickr.com and LibraryThing.com. Hence, we
introduce the system architecture of our SENSE prototype system.

Secondly, we provide a solution for dynamically updating transitive friendship lists
of users in large social tagging networks when new users enter the system or new
friendship connections are established. Friendship relations define a huge, directed and
weighted graph where users, represented as nodes, are connected to their direct friends
(i.e. the immediate neighbours) and transitive friends (i.e. the friends of friends), with
edge weights defining the friendship strength of two immediate neighbours. In SENSE,
we precompute lists of transitive friends in the order of shortest path distances in friend-

1http://flickr.com
2http://del.icio.us
3http://twitter.com
4http://librarything.com

ix

ship graphs. Hence, when new users enter the social tagging network or new friendship
connections between users are established, these updates to the friendship graph need
to be reflected in the users’ lists of nearest friends.

This problem is not limited to SENSE. Accessing transitive neighbours of a spe-
cific node in a given directed and possibly weighted graph in the order of increasing
distances is a key building block of many algorithms for aggregated search in social
networks, explorative search of connections in knowledge bases, or retrieval in linked
documents. The problem of updating precomputed shortest path distances to transitive
neighbours for all nodes in a graph is known as dynamic all pairs shortest distance
(APSD) problem.

In the context of social tagging networks, we provide a novel algorithm for incre-
mentally solving the APSD problem in large, disk-resident user graphs and formally
prove its correctness.

Thirdly, we consider social tagging networks in the context of peer-to-peer (P2P)
systems. The fact that users are also content providers in social tagging networks nat-
urally motivates the idea that users keep own contents at their private computers and
participate in a distributed network of P2P users instead. To make contents available
and searchable to other users, the local and independent peers in a P2P network have to
collaborate to form a distributed search engine. Of course, in such a distributed setting
where users have to collaborate to identify interesting and authoritative information,
the risk of misbehaving or cheating users arises.

We provide a distributed algorithm which allows us to compute authority scores
over social networks in a Peer-to-Peer environment that correctly works even in the
presence of cheating users.

The viability of our approach is demonstrated in experiments by mapping users and
their data from the real world social tagging network LibraryThing.com to a simulated
P2P network.

x

Zusammenfassung
Über die Jahre haben sich im Internet mehr und mehr soziale Netzwerke etabliert, die
es erlauben in unkomplizierter Weise, eigene Inhalte ins Netz zu stellen oder nach
neuen und interessanten Inhalten anderer Benutzer zu suchen. Beispiele hierfür sind
Flickr.com5, Delicious.com6, Twitter.com7 und LibraryThing.com8. Inhalte können hier-
bei sowohl eigene Dateien sein, z.B. digitale Fotos, oder auch Meinungen, z.B. durch
Schreiben von Bewertungen, Rezensionen oder Kommentaren. Aufgrund sozialer Netz-
werke haben sich somit Internet-Benutzer von bloßen Konsumenten zu Produzenten
von Inhalten gewandelt.

Ein herausragendes Merkmal dieser sozialen Netzwerke ist es, dass Anwender
vorhandene Inhalte mit Anmerkungen versehen, die jeweils nur aus einzelnen aber be-
liebigen Worten bestehen. So ist es möglich mittels kurzen und präzisen Schlagworten,
selbst nicht-textuelle Inhalte geeignet zu repräsentieren. Das Annotieren von Inhalten
ist dabei eine gemeinschaftliche Leistung vieler Anwender – nämlich von denen, die
gleiche Inhalte ins Netz stellen (z.b. die gleichen Lesezeichen, Bücher oder Musik) und
von denen, die sie im Netzwerk auffinden und es als lohnenswert erachten, diese zu an-
notieren. Aus diesem Grund werden die in Anmerkungen verwendeten Schlagworte
als soziale Annotationen bezeichnet (engl. social tags). Des Weiteren bieten soziale
Netzwerke eigens Dienste an, die die Interaktion und die Bildung von sozialen Zusam-
menschlüssen der Benutzer (z.B. in Freundschaften, Gruppen) aktiv unterstützen. Auf
diese Weise entstehen mit steigender Anzahl an Benutzern ein enges und riesiges Netz
von miteinander in Verbindung stehenden Anwendern. Hierdurch entwickeln sich über
die Zeit hinweg eine Vielzahl an Gruppen von Freunden oder Anwendern mit gleichen
Interessen.

Diese inhärenten Eigenschaften sozialer Netzwerke bieten herausfordernde Mög-
lichkeiten für die Forschung. Wir sprechen in dieser Zusammenhang drei interessante
Bereiche an.

Im ersten Teil dieser Arbeit entwickeln wir neue Ansätze, die das soziale Wissen
von Anwendern und die Beziehungen zwischen den Anwendern nutzen, um bessere
Suchergebnisse für Benutzeranfragen erzielen zu können. Inhalte in sozialen Netzwer-
ken (z.B. Fotos, Lesezeichen, etc.) finden Anwender meist, indem sie eine Suchanfrage
bestehend aus einer oder mehreren Schlagworten absenden. Üblicherweise setzen sich
Suchergebnisse für diese Anfragen aus den Inhalten zusammen, die am häufigsten von
allen Benutzen des Netzwerks mit eben jenen Schlagworten annotiert wurden. Eine
personalisierte und um soziale Merkmale erweiterte Suche wird allerdings von Be-
nutzern oftmals einer ‘globalen’ Suche über das gesamte Netzwerk bevorzugt.

Wir präsentieren mit SENSE ein umfassendes Rahmenwerk zur Suche in sozialen
Netzwerken, die sowohl das gemeinschaftliche Wissen aller Anwender als auch die
Vorlieben und Beziehungen der Anwender untereinander miteinbezieht. Hierzu definiert
SENSE ein Datenmodell, das auf eine Vielzahl von sozialen Netzwerken und deren in-
dividuelle Elemente (z.B. Benutzer, Annotationen, Relationen, Inhalte wie Fotos, etc.)
angewendet werden kann. SENSE erlaubt dabei die Definition ausgefeilter Auswer-
tungsmodelle, neuartiger Suchstrategien und effizienter top-k Algorithmen. Wir zeigen

5http://flickr.com
6http://del.icio.us
7http://twitter.com
8http://librarything.com

xi

die Anwendbarkeit des Datenmodells anhand dreier real existierender sozialer Netz-
werke und implementieren in SENSE zwei verschiedene top-k Algorithmen. Wir stellen
die Besonderheiten jeden Algorithmus, ihrer Auswertungsmodelle und Anfrageabwick-
lungen heraus und demonstrieren deren Effizienz und Effektivität in umfassenden Ex-
perimenten. Ebenso stellen wir die Systemarchitektur einer Prototyp-Implementierung
von SENSE vor, die wir zur Suche von Lesezeichen, Bildern und Büchern in einem
Auszug der Daten von Delicious.com, Flickr.com und LibraryThing.com entwickelt
haben.

Im zweiten Teil dieser Arbeit präsentieren wir ein Lösung, um transitive Freund-
schaftslisten von Anwendern in großen sozialen Netzwerken dynamisch zu aktuali-
sieren, wenn neue Anwender dem Netzwerk beitreten oder neue Freundschaftsver-
bindungen erstellt werden. Die Beziehungen zwischen Anwendern in großen sozialen
Netzwerken definieren einen riesigen, gerichteten Graphen, in dem Anwender als Kno-
ten repräsentiert werden und Kanten den Verbindungen zu ihren direkten Freunden
entsprechen. Kantengewichte stellen hierbei dar wie eng das Freundschaftsverhältnis
zwischen zwei direkten Freunden ist. In diesem Freundschaftsgraph sind Anwender
indirekt mit allen transitiven Freunden (d.h. den Freunden der Freunde) verbunden.

In SENSE werden für die Benutzer sozialer Netzwerke Listen vorberechnet, die alle
ihre transitiven Freunde enthalten. Diese Freunschaftslisten sind in absteigender Rei-
henfolge zu den kürzesten Wege-Distanzen im Freundschaftsgraphen sortiert. Treten
dem sozialen Netzwerk neue Benutzer bei oder werden neue Freundschaften geschlos-
sen, so müssen entsprechend die Freundschafslisten angepasst werden. Das Problem
der Aktualisierung kürzester Wege-Distanzen ist allerdings nicht nur auf SENSE be-
schränkt. Eine Schlüsselkomponente in vielen Algorithmen zur aggregierten Suche in
sozialen Netzwerken, zur Erkundung von Zusammenhängen in Wissensdatenbanken
oder zur Suche in verknüpften Dokumenten ist es, die transitiven Nachbarn eines be-
stimmten Knotens in der Reihenfolge ihrer Entfernungen innerhalb eines gerichteten
und potenziell gewichteten Graphen zu finden.

Das Problem der schrittweisen Aktualisierung vorberechneter kürzesten Wege-Dis-
tanzen zu den transitiven Nachbarn von allen Knoten in einem Graph wird als dy-
namisches “all pairs shortest distance (APSD)”-Problem bezeichnet. Wir stellen einen
neuartigen Algorithmus im Rahmen sozialer Netzwerke vor, der das dynamische APSD-
Problem in großen, Plattenspreicher-basierenden Freundschaftsgraphen inkrementell
löst und beweisen die Korrektheit des Algorithmus.

Im dritten Teil dieser Arbeit betrachten wir soziale Netzwerke im Kontext von
Peer-to-Peer (P2P) Systemen. Da Inhalte in sozialen Netzwerken von den Anwen-
dern erstellt werden, können diese Inhalte auch auf den privaten Computern ihrer Be-
sitzer belassen werden, wenn diese in einem verteilen Peer-to-Peer Netzwerk zusam-
mengeschlossen sind. Um Inhalte anderen Anwendern zugänglich zu machen, bilden
die lokalen und unabhängigen Benutzer-Peers eine verteilte Suchmaschine. Das heißt,
in einem solchen System müssen Peers zusammenarbeiten, damit interessante Inhalte
und zuverlässige Informationen gefunden werden können. Hierdurch entsteht natür-
lich das Risiko das sich Benutzer betrügerisch verhalten, um die Suchergebnisse nach
eigenen Vorstellungen zu beeinflussen.

Wir stellen einen verteilten Algorithmus vor, der es in einem P2P Netzwerk mit
betrügerischen Benutzer-Peers erlaubt, korrekte Berechnungen über die Wertigkeit von
Inhalten sozialer Netzwerke durchzuführen.

xii

xiii

CONTENTS CONTENTS

Contents

Outline 1

1 Overview 3
1.1 Scope of Work . 3
1.2 Structure of the Thesis . 4
1.3 Notational Conventions . 5

A Search in Social Tagging Networks 7

2 Introduction 9
2.1 Motivation . 9
2.2 Related Work . 12

3 SENSE Framework 13
3.1 Data Model . 13

3.1.1 Types of Entities . 13
3.1.2 Intra-Entity Relations . 13
3.1.3 Inter-Entity Relations . 15
3.1.4 Remarks . 16

3.2 Datasets . 17
3.2.1 Delicious.com . 17
3.2.2 Flickr.com . 20
3.2.3 LibraryThing.com . 22

3.3 Design Decisions . 25
3.3.1 Relational Database Schemas 25
3.3.2 Inverted Lists . 25

4 Problem Statement 26

5 SOCIALMERGE Algorithm 27
5.1 Scoring Model . 27
5.2 Query Processing . 31

5.2.1 Preprocessing . 32
5.2.2 Notation . 32
5.2.3 Operation Mode . 33

5.3 Search Strategies . 38
5.4 Experiments . 41

6 CONTEXTMERGE Algorithm 45
6.1 Information Needs . 45
6.2 Scoring Model . 48

6.2.1 Modelling Friendship Strengths. 48
6.2.2 Modelling Context Scores 51

6.3 Query Processing . 56
6.3.1 Preprocessing . 56
6.3.2 Notation . 57
6.3.3 Operation Mode . 57

xv

CONTENTS CONTENTS

6.4 Experiments . 68
6.4.1 Social-Context Configuration 69
6.4.2 Full-Context Configuration 74
6.4.3 Lessons Learnt and Open Issues 78

7 System Architecture 79

B Dynamic Updates in User Networks 83

8 Introduction 85
8.1 Motivation . 85
8.2 Related Work . 87

9 Maintaining APSP Distances 88
9.1 Overview . 88
9.2 Social Network Setup . 89
9.3 Problem Statement . 92
9.4 The Basic Algorithm . 93

9.4.1 Basic Mode of Operation . 94
9.4.2 Explanatory Note . 96

9.5 Data Structures and Notation . 97
9.6 Queries & Friendship Updates . 99
9.7 Check for Friendship Updates . 100
9.8 Check for Update Propagation . 101
9.9 EAP Approach . 102

9.9.1 U .update() . 103
9.9.2 U .merge(Uf) . 106
9.9.3 U .getFriend(i) . 107
9.9.4 Friendship Graphs with Cycles 107
9.9.5 Disadvantage of EAP . 108
9.9.6 Improvement by Limitation: fixed-size EAP 108

9.10 LAP Approach . 108
9.10.1 Additional Bookkeeping . 109
9.10.2 U .update() . 111
9.10.3 U .merge(Uf) . 113
9.10.4 U .getFriend(i) . 115
9.10.5 Resolving Cycles . 118
9.10.6 Further Improvements . 122

9.11 Extensions to EAP and LAP . 124
9.11.1 Missing Time Information 124
9.11.2 Missing Path Information 129

9.12 Experiments . 134
9.12.1 Results on LibraryThing.com 136
9.12.2 Results on Twitter.com . 143
9.12.3 Conclusion . 146

xvi

CONTENTS CONTENTS

10 Proof of Correctness 147
10.1 Notation . 147
10.2 Properties . 148
10.3 Mode of Operation . 150

10.3.1 State Description . 151
10.3.2 State Transition for U .update() 152
10.3.3 State Transition for U .merge(Uf) 153
10.3.4 State Transition for ∀Ui 6= U : U .update(), U .merge(Uf) . . 154

10.4 Invariants . 154
10.4.1 Intuition . 155
10.4.2 Formalisation . 158

10.5 Update Operation – U .update() . 162
10.6 Merge Operation – U .merge(Uf) 170
10.7 Update, Merge Operation – ∀Ui 6= U 185
10.8 U .get_Friends() . 187

C Peer-To-Peer User Networks 191

11 Introduction 193
11.1 Motivation . 193
11.2 Related Work . 194

12 Countering Cheating in P2P Networks 195
12.1 Overview . 195
12.2 Problem Definition . 196

12.2.1 P2P Authority Computations 197
12.2.2 Main Issues . 198
12.2.3 Assumptions on the P2P Network 199
12.2.4 Problem Statement . 200

12.3 Distributed Algorithm . 200
12.3.1 Properties . 200
12.3.2 Design Principles . 201
12.3.3 Cheating-Resistant P2P Algorithm 203

12.4 Experiments . 207
12.4.1 Setup . 208
12.4.2 Evaluation Methods . 209
12.4.3 Results . 212

12.5 Conclusion . 216

bibliography 217

list of figures 227

list of tables 231

list of listings 233

index 235

xvii

Part

Outline

1

1 OVERVIEW

1 Overview

Social tagging networks provide an easy to use environment for users in the Internet
to publish own data or information about various contents, to express opinions, and to
interact with other users. Social tags are another key feature of social tagging networks
that allow users to organise or describe data of interest by annotating contents in the
network with arbitrary keywords. In this way, social tagging networks are filled with
data, information and opinions of millions of users. Hence, there is a great potential
for harnessing the "wisdom of crowds", with social interactions of individual users and
user groups taken into account.

In our research studies, we utilise the particular features of social tagging networks
to personalise search results and to explore interesting new data. Moreover, we deal
with the problem of how to dynamically update friendship graphs in such networks.
Another aspect of our research is to consider social tagging networks in the context of
a distributed peer-to-peer (P2P) system instead of relying on a centralised architecture.
In such a P2P environment, where independent peers collaborate to form a distributed
search engine, special care has to be taken about malicious or cheating peers when
computing authoritative information over social tagging networks.

1.1 Scope of Work

Our research presented in this work is threefold.

A We present a comprehensive social search framework, coined SENSE, includ-
ing a data model representing contents and relations in social tagging networks,
sophisticated search strategies and scoring models, and two efficient algorithms
for searching and exploring items of interest to querying users in the network.
Extensive experiments on data from real world social tagging networks show
the quality and efficiency of our approach. Additionally, we discuss the system
architecture of our prototype system implementing the SENSE framework.

Our research work in the area of social search and efficient top-k querying over
social tagging networks has been published in [24], [38], [39], [40], [112], [111]

B Moreover, we discuss the problem of how to incrementally solve the all pairs
shortest distance (APSD) problem for dynamically updating social friendship
lists of users in large social tagging networks. Social friendship lists are precom-
puted lists of nearest neighbours in a weighted user graph of social networks.
We present an algorithm that allows to maintain updates—which inserts new
edges to the graph or increase edge weights—on-the-fly while queries for the
users’ top-k best friends are processed. Experiments on real world social tag-
ging networks demonstrates the viability of our algorithm and a formal proof of
correctness shows that queries always correctly identify the top-k best friends of
users (for any value of top-k).

Our recent research work about retrieving and maintaining nearest neighbours in
large, dynamic graphs of social tagging networks is currently in preparation for
being published.

C Finally, we consider social tagging networks detached from a centralised view
but cast in the distributed environment of a peer-to-peer (P2P) network where

3

1.2 Structure of the Thesis 1 OVERVIEW

users are represented by individual peers and have to collaborate to form a dis-
tributed search engine. Computing authoritative information in such a system is
a challenging task in the presence of malicious peers trying to manipulate the
outcome of the computation. We present an algorithm for countering cheating in
P2P authority computations over social networks.

Our research work in the area of P2P has been published in [25], [26], [102],
[117]

1.2 Structure of the Thesis

This thesis is structured in three parts according to the three areas covered by our re-
search work.

Part A presents our research on social search and efficient top-k querying over so-
cial tagging networks. In Chapter 2, we motivate our research in this area (Section 2.1)
and discuss related work (Section 2.2). Chapter 3 introduces our sophisticated SENSE
framework. We present in Section 3.1 a unified data model capturing the various kinds
of contents and activities typically found in a multitude of social tagging networks. In
Section 3.2 three real world social tagging networks are described and presented in the
context of our data model. In Section 3.3, we explicate the design decisions being fun-
damental to our SENSE framework. In Chapter 4, we then formally introduce the prob-
lem statement that is solved by our two top-k threshold algorithms implemented in the
scope of SENSE. Our first algorithm, coined SOCIALMERGE, is discussed in Chapter 5.
In Section 5.1 and Section 5.2 we present the details of its scoring model and explain
its query processing, respectively, while in Section 5.3 various search strategies based
on the algorithm’s scoring model are defined. In Section 5.4, an experimental evalua-
tion on two real world datasets shows the effectiveness and efficiency of our algorithm
for each respective search strategy. Our second algorithm, coined CONTEXTMERGE,
is discussed in Chapter 6. In Section 6.1, we first classify the task of searching in so-
cial tagging networks according to their information needs before providing detailed
information about our algorithm’s scoring model in Section 6.2 and its query process-
ing in Section 6.3. The effectiveness and efficiency of CONTEXTMERGE is shown in
Section 6.4 by extensive experiments on datasets retrieved from three real world so-
cial tagging networks. In Chapter 7, we finally present the system architecture of our
SENSE prototype implementation.

Part B presents our research work on maintaining and searching the top-k nearest
neighbours of users in large, disk-resident friendship graphs of increasing social tag-
ging networks. In this respect, we developed a novel algorithm solving the all pairs
shortest distance (APSD) problem. In Chapter 8, we motivate our research in this area
(Section 8.1) and discuss related work (Section 8.2). Our research is then presented in
Chapter 9. We give an overview over the problem in Section 9.1, define the setup in
regard to social networks in Section 9.2, and formally introduce the problem statement
in Section 9.3. Our basic algorithm for incrementally solving the all pairs shortest dis-
tance (APSD) problem is presented in Section 9.4. It works on precomputed inverted
lists of nearest friends in friendship graphs of social networks that are maintained by
only two basic operations, i.e. update and merge, while queries for a user’s top-k near-
est friends are processed. In Section 9.5 the associated data structures are defined and
in Section 9.6, we address the difficulty of concurrency in regard to updates to the

4

1 OVERVIEW 1.3 Notational Conventions

graph while queries are processed. In Section 9.7 we explain when there is a need for
an update operation and in Section 9.8, when there is a need for a merge operation.
In Section 9.9 and 9.10 we introduce two alternative approaches, i.e. EAP and LAP,
for implementing update and merge operations and discuss their respective advantages
and disadvantages. In Section 9.11 we discuss improvements to both approaches. The
chapter closes with extensive experiments on two real world social networks in Sec-
tion 9.12 which show the performance of each approach. In Chapter 10 we formally
prove the correctness of our basic algorithm.

Part C of this work presents our research on peer-to-peer (P2P) user networks where
peers are collaborating for computing authoritative information over social tagging net-
works. In Chapter 11, we motivate our research in this area (Section 11.1) and discuss
related work (Section 11.2). Chapter 12 presents our algorithm for countering cheating
in P2P authority computations over social networks. In Section 12.1 first an overview
over the problem is given before we formally define it in Section 12.2. In Section 12.3,
we then present a distributed algorithm that is able to compute correct authority scores
(PageRank scores) in a P2P network even in the presence of peers that try to ma-
liciously manipulate the computation. In Section 12.4, we show the viability of our
approach by experiments on data retrieved from a real social tagging network.

1.3 Notational Conventions
• The spelling in this work follows the rules of British English.

• The end of properties, lemmas, invariants, theorems and definitions are marked
by the following symbol:

• The end of a proof is marked by the following symbol:

• Pseudocode is depicted in the following way:

– code lines are numbered.

– lines with only comments are unnumbered.

– comments are written in grey and preceded by two slashes, e.g. // comment.

– commands regulating the program flow are written in RED, upper case
letters, e.g. IF.

– non-trivial method calls are highlighted by blue, italic, lower case letters,
e.g. U .update().

– curly brackets are written in grey, e.g. {}

5

Part A

Search in Social Tagging Networks

7

2 INTRODUCTION

2 Introduction

Online social networks like Facebook.com, YouTube.com, or Last.fm have established
themselves as very popular and powerful services for publishing and searching content,
as well as for finding and connecting to other users that share common interests. The
contents in these social networks are typically user-generated and include, for exam-
ple, personal blogs (e.g. WordPress.com), bookmarks (e.g. Delicious.com), and digital
photos (e.g. Flickr.com).

A particularly intriguing type of content are user-generated annotations, so called
social tags, that users affix to their own or to other users’ content items. Social tag-
ging, i.e. the collaboration of users to annotate content items, is an integral part of
social tagging networks. Usually social tags are carefully selected and often semanti-
cally meaningful, hence, concise string descriptions of the involved content item and,
therefore, allow for reasoning about the interests of the user who created or published
the content, but also about the users who generated the annotations.

To illustrate the concepts of user provided contents and tags in social tagging net-
works, Figure 1 shows a screenshot of LibraryThing.com[6] displaying a user’s library,
i.e. books catalogued by a user. In LibraryThing.com, users create personal libraries
and catalogue books, enriching book entries with meta data like ratings or tags. A de-
tailed description of LibraryThing.com and other social tagging networks is given in
Section 3.2.

In the following, we motivate our research in this area and give an overview of
related work before introducing in Chapter 3 the basic framework for our SENSE—
Socially ENhanced Search and Exploration—algorithms on social tagging networks.
The formal problem statement follows in Chapter 4 and details on our two algorithms
SOCIALMERGE and CONTEXTMERGE for enabling sophisticated search strategies
and serving different information needs of users in social tagging networks in Chap-
ter 5 and Chapter 6, respectively. For both algorithms we show their usefulness and
efficiency in several experiments on datasets crawled from real world social tagging
networks. Finally, in Chapter 7 we give details about the system architecture of our
prototype implementation of the SENSE framework.

2.1 Motivation

The advent of online social networks like Flickr.com, MySpace.com, Facebook.com, or
YouTube.com has changed the way users interact with the Internet. While previously
most users were mere information consumers, those platforms are offering an easy and
hassle-free way to also publish own content, turning users into content producers, too.
Users are encouraged to share content items, e.g. photos or videos, opinions, to rate
content, but also to explore the online network’s community and to find people with
similar interest profiles. In this sense, social networks not only have changed the way
people interact with the Internet but also the way users interact with each other.

A key feature of social networks is that users are able to maintain lists of friends
which facilitate communication between and notification of friends about latest content
items. The size of such friendship lists is often considered as a gauge for a user’s
reputation in the network. While initially, many users populate their friendship lists
with people they already know from the offline world or other online communities,
as time goes by, they typically identify previously unknown users that share common
interests and also add those users to their list of friends.

9

2.1 Motivation 2 INTRODUCTION

Figure 1: User provided content in the Social Tagging Network LibraryThing.com

Furthermore, in many social networks, like Delicious.com or LibraryThing.com,
another key feature, coined social tagging , is the widely-used opportunity of all users
to attach manually generated annotations, i.e. social tags, to content items. Most social
tagging networks offer comfortable and intuitive ways to explore new content items
based on these tags, e.g. via tag clouds. Therefore, social tagging has emerged as an
important asset to explore the fast-growing communities in order to identify interesting
content and users [52, 56, 70, 119, 118].

Hence, social tagging networks offer a great potential that can be utilised to improve
the search experience of users in the network. We identified the following challenging
research aspects:

• Social Tags. Social tags are usually carefully selected and often semantically
meaningful and, thus, can be considered precise descriptions of content items,
flavoured with the respective personal interest of the user who generated the
tag. Since the multitude of users’ opinions lead to a variety of tags for a single
item, as a consequence, the tags describing an item are collaboratively chosen by
those users who publish the same content items or who find them in the network,
considering it worthwhile to tag, rate or to comment on them.

Hence, the typically high quality of user-generated social tags suggests to lever-
age this "wisdom of the crowds" [122] for identifying and ranking high-quality
and high-authority content. Ratings or comments expressing the user’s opinions
about an item can be taken in addition into account.

10

2 INTRODUCTION 2.1 Motivation

• Social Relations. The relationships among users can be taken into consideration
for ranking search results, the intuition being that you trust the recommendations
of your close friends more than those of your casual acquaintances. This situation
resembles the paradigm of collaborative recommendation [67, 92] which applies
data mining on customer-products and similar usage data to predict items that
users are likely interested in.

However, social networks offer the additional opportunity to exploit the socially
enhanced “wisdom of the crowds” [122] by identifying valuable content that is
recommended by friends. For this, the notion of friendship between two users
can be deduced either directly (i.e. users selected as friends) or indirectly for
transitive friends (i.e. friends of friends), and, taking social tagging into account,
explicitly from user ratings and tag semantics (that express positive or negative
opinions), or implicitly from similar tag usage patterns of users.

• Personalised or Social Search. While differing in the type of content social
tagging networks focus on (e.g. blog entries, photos, videos, bookmarks, etc),
they almost all work similarly. Initially, users register and join the community.
Once registered, they start to produce information, ideally by creating or pub-
lishing their own content items and by adding tags or ratings, comments, etc., to
their own or other users’ content items already available in the network.

Content items, e.g. URLs or videos, are typically searched for and retrieved by
issuing queries that consist of a set of tags, returning items that have been fre-
quently annotated with these tags. However, users often prefer a more person-
alised way of searching over such a ‘global’ search, exploiting preferences of
and connections between users.

To this end, a user can have different information needs when searching for
different content items. Therefore, search in social networks should be flexible
enough to express different information needs to enable a personalised and so-
cially enhanced way of searching in the network.

• Efficiency and Scalability. The existing, traditional algorithms for searching
on the web do not consider user relationships and the assets from social tagging,
thus, fall short of being effective in social networks since they focus only on
the content quality and disregard the social component. Prior methods for col-
laborative recommendation, on the other hand, do not provide the throughput
scalability that one needs for running millions of daily ad-hoc queries in social
communities such as Flickr.com - with more than six billion content items [86],
many million users, and high dynamics.

This makes a strong case for novel methods that exploit the different entities
present in social networks (users, content items, tags) and their mutual relation-
ships. However, the fast growth of communities and the very high rate of content
production and tagging efforts calls for highly efficient and scalable methods.

Motivated by these research opportunities, we conceived a framework to cast the dif-
ferent entities of social tagging networks into a unified data model representing the
mutual relationships of users, content items, and tags. It derives scoring functions for
each of the entities and their relations, includes algorithms for the efficient retrieval of
search results and addresses all the mentioned research aspects. We have performed an
experimental evaluation of the quality of these scoring functions and efficiency of our

11

2.2 Related Work 2 INTRODUCTION

search algorithms on several real-world datasets crawled from the social tagging net-
works Delicious.com, Flickr.com and LibraryThing.com. Manual user assessments of
the result quality suggest that our unified data framework delivers high-quality results
on social networks while the retrieval performance is highly efficient.

2.2 Related Work
Social networks of the Web 2.0 style have received major attention in the recent lit-
erature, with focus on applying data mining methods on social relations and, most
prominently, relations among tags. [56] provides an empirical study of the tagging
behavior and tag usage in online communities. [69, 114] discuss methods for generat-
ing taxonomy-like relations among tags, so-called “folksonomies”, based on statistical
measures. Similar approaches have been applied to query-and-click logs, e.g. in [17],
but none of this work considers social relations between different users. Identifying
important and emergent tags and visualising them in so-called “tag clouds” (and cor-
responding time series) has been extensively explored; recent work along these lines
includes [52, 64, 115]. The dynamics of social relations among users (e.g. the rate of
making friends) has been studied, for example, in [12, 88, 123].

As for the exploitation of social tags for information retrieval, [14] discusses the
challenges of searching and ranking in social communities. Various forms of community-
aware ranking methods have been developed, mostly inspired by the well-known Page-
Rank method [30] for web link analysis. [70] proposes FolkRank for identifying impor-
tant users, data items, and tags. [133] compares different methods for identifying au-
thoritative users with high expertise. [19] introduces SocialPageRank, to measure page
authority based on its annotations, and SocialSimRank for the similarity of tags. [132]
further extends this work by augmenting language models with tag similarities. [49]
shows that explicit user tagging can help to improve precision of queries for Intranet
search. The work of [68] provides an empirical analysis of how social bookmarking
can influence web search, with both positive and negative insights. None of this prior
work considers the impact of user-friendship strengths on the scoring of search results,
and the problem of efficient query processing in the presence of such “social wisdom”.

The work of [13] discusses efficient top-k processing of network-aware search
queries in collaborative tagging sites by clustering users in groups of seakers and tag-
gers with similar behaviour and defining cluster related upper score bounds for items.
However, they do not consider the impact of social relations or tagging activities on the
result quality.

Aspects of user communities have also been considered for peer-to-peer search,
most notably, for establishing “social ties” between peers and routing queries based
on corresponding similarity measures (e.g. similarities of queries issued by different
peers). [25] has studied “social” query routing strategies based on explicit friendship
relationships and behavioral affinity. [103] has developed an architecture and methods
for “social” overlay networks that connect “taste buddies” with each other. [97] has
proposed a community-enhanced web search engine that takes into account prior clicks
by community members. [42] has proposed the notion of Peer-Sensitive ObjectRank,
where peers receive resources from their friends and rank them using peer-specific trust
values.

There is ample literature on collaborative filtering for recommender systems (e.g.
[11, 66, 108, 110]), for example, to predict movies or e-commerce items that customers
are likely to buy or to identify news that news-feed subscribers are likely interested in.
In a nutshell, these methods aim to learn user preferences from the collective behaviour

12

3 SENSE FRAMEWORK

- like purchases or tagging - of an entire community. Typically, statistical analysis and
machine learning techniques are used offline for precomputations, and the actual run-
time recommendations have got limited flexibility and cannot easily cope with high
dynamics and ad-hoc interests of individual users (as expressed by an ad-hoc query).
One of the notable exceptions is the work by [43] which addresses scalability issues
when the number of users and items in a recommender system grows to many millions
and both undergo fast changes. However, in contrast to our “social search” theme, this
prior work considers only the space of user-item pairs and there is no notion of user-
specific tags or annotations on items. Thus, our setting requires search over a three-
dimensional user-tag-item space, as opposed to the two-dimensional user-item space
of the previous work on collaborative filtering.

3 SENSE Framework

In this chapter, we discuss the data model used in our SENSE—Socially ENhanced
Search and Exploration—framework for social tagging networks, introduce the basic
design decisions being made for its implementation and present three real world social
tagging networks that have been mapped to our data model and are the basis for the
experimental evaluations given in Section 5.4 and 6.4.

3.1 Data Model

This section defines a unified set of abstractions, modelling the user-provided data and
activities in social tagging networks. For this, entities occurring in social networks are
cast into the model, representing different types and their mutual relationships.

3.1.1 Types of Entities

We identify three major types of entities in social tagging networks which are repre-
sented in our data model in the following way:

• User U : A user U in social tagging networks produces content either by creating
or publishing own documents or by tagging existing content.

• Document d: A document d is a content item that is published by a user U , e.g.
a blog entry, a bookmark or a photo, etc.

• Tag t : A tag t is a keyword used by a user U to annotate documents d and
usually describes or categorises the respective document.

Additionally, social tagging networks exhibit various relationships, both within entities
of the same type (intra-entity relations) and between entities of different types (inter-
entity relations). Each relationship can be cast into a relational scheme and is given in
detail in the following sections.

3.1.2 Intra-Entity Relations

Each of the three entity types exhibits some sort of relation between the entities of the
same type.

13

3.1 Data Model 3 SENSE FRAMEWORK

User-User Relation: Friendship(U1,U2,type,sf)

Friendship is a user-user relation between two users U1 and U2 with a weight sf equal
to the friendship strength of U2 with respect to U1. In friendship relations, we treat sf
as a pluggable building block; it may also be completely absent (or constant/equal for
each pair of users). Quantitative measures for different friendship relations are given in
Section 5.1 and 6.2.

The friendship relation can be defined in different forms; we therefore allow multi-
ple types of friendship relations captured by the type attribute. A variety of friendship
type definitions are possible, and in the following, we describe three intriguing types:
social, spiritual and global friendship.

Definition 3.1 (Social Friendship). A friendship of type social is defined by a user-
provided relation which can be either symmetric or asymmetric; it assumes that such a
relation exists only if the users know each other by some social interaction in real life
or within the social network.

A key feature of social networks is to allow users to maintain an explicit list of
friends. Hence, a straightforward way to create a social friendship relation with in-
stances of the form that user U1 considers user U2 as a friend is done by the explicit act
of U1 adding U2 to her friendship list.

Additional means of establishing social friendships include, for example, a user
subscribing to another user’s content (e.g. in LibraryThing.com, by adding other users’
books to the own set of interesting libraries), or writing comments on a user’s profile
page or addressing others in messages (e.g. in Twitter.com, by mentioning a user in own
tweets). Regardless of how direct friends are defined, we may consider the transitive
closure of the friendship relation or a bounded set of transitive connections (up to some
distance). The union over all users and social friendship relations defines the user or
friendship graph of a social tagging network.

Definition 3.2 ((Social) Friendship Graph, User Graph). The graph representing all
users in a social network with edges being defined between users according to their
social friendship relations is called the friendship graph or user graph of the social
network.

The friendship strength sf of type = social, also denoted as social friendship
strength, between two users could be finally derived from their distance in the underly-
ing social friendship graph of the network, i.e. the length of the shortest path from one
user to the other, and can function as measure of the trust of one user in another user.
In addition, the friendship strength could be weighted by some semantic measurement
like considering the overlap in the usage of tags, too, such that it is a combination of
social friendship and mutual interests.

Definition 3.3 (Spiritual Friendship). A friendship of type spiritual considers similar
behaviour or activities of users. This type of friendships is a symmetric relation and
does not assume that the users know each other but rather are “Brothers in Spirit”—
hence, the chosen name for this type of friendship—expressing the overlap in thematic
interests and being an indicator of users sharing common interests.

The spiritual friendship could, for example, be based on users’ participation in the-
matic similar groups, or it could be based on similar tags being issued to documents or
personal content items receiving similar tags from third parties. It could also be derived
from mutual comments and ratings.

14

3 SENSE FRAMEWORK 3.1 Data Model

The friendship strength sf of type = spiritual, also denoted as spiritual friendship
strength, between two users represents the degree of mutual interest overlap by taking
the mentioned behaviour and activities of users into account.

Definition 3.4 (Global Friendship). A friendship of type global is defined by neglect-
ing all kind of distinctions of users but treating all of them as one global community of
like-minded users, i.e. each user is a friend of each other user and with an equal weight
for the friendship strength sf for all users.

Concrete definitions of social, spiritual and global friendship relations are given in
Section 5.1 and 6.2.

Tag-Tag Relation: TagSimilarity(t1,t2,tsim)

In social tagging networks, users frequently use more than one tag to describe a particu-
lar document, documents can be tagged by more than one user, and the same tag can be
used on different documents. There is no restriction which terms can be used as tags. In
fact, tags are freely selected annotations, and, given the natural diversity of users’ opin-
ions in social networks, it is often the case that different tags describe the same content
item and may express (near-)synonyms (e.g. “feline” and “cat”, “Web_2.0” and “So-
cial_Web”, etc.) or other kinds of semantically related concepts (e.g. hyponyms such
as “dogs” and “German_shepherd”, “search_engine” and “Google”, etc.).

Determining the similarity of tags is a way of clustering tags with respect to their
meaning. To this end, an ontology, a light-weight knowledge base that captures differ-
ent types of “semantic” relations among tags (e.g. synonymy or specialisation / gen-
eralisation), could be exploited. An ontology may be provided by domain experts or
imported from real ontologies, or they may be built by applying data-mining tech-
niques to the tagging data of the social network. The latter case is more realistic for
today’s types of social tagging networks and is often referred to as “folksonomies”
(folklore taxonomies) [70, 127]. Hence, the tag-usage statistics in the social network
are harnessed to derive a weight corresponding to the tag similarity tsim for two tags t1
and t2. Quantitative measures are given again in Section 5.1 and 6.2.

Document-Document Relation: Linkage(d1,d2,w)

In some applications, like in web search and PageRank computations [31, 99], docu-
ments also exhibit relations among themselves. In the case of web pages, this linkage is
obvious and given by the hyperlink graph, with weights w often chosen proportionally
to the outdegree of the pages. For other types of documents, different notions of links
between two documents d1 and d2 and their weight w need to be defined; conceivable
options include, for example, the geographic proximity of different photos when GPS
information is available or may be based on associated feature vectors representing the
documents.

3.1.3 Inter-Entity Relations

For our unified data model, we observe the following relations between entities of
different types:

15

3.1 Data Model 3 SENSE FRAMEWORK

Document-Tag Relation: Content(d,t,score)

By annotating a document d with a tag t, users strongly associate the tag with the
document so that the tag should be viewed as a strong indication about the document’s
content. We consider the value score in the content relation as a weight associated with
a document-tag pair to reflect how well that tag describes the document.

User-Document Relation: Rating(U ,d,rating)

In many social communities, a user U can explicitly rate a document d, which is cap-
tured by a rating score rating. Another naïve instantiation of Rating is authorship of a
content item, which (e.g. in the case of bookmarks) can be seen as an endorsement for
the document. Alternatively, we can also derive a weight as rating score based on the
tag usage of the user.

User-Tag-Document Relation: Tagging(U ,t,d,score)

A tag t is naturally associated with the document d and user U who associates it with
that document. Hence, Tagging is a ternary relation between users U , documents d, and
tags t. In full generality, it can not be decomposed into three binary relations (users-
docs, docs-tags, users-tags) without losing information. Nevertheless, binary-relation
(or, equivalently, graph or matrix) representations for tagging are very popular in the
literature on social networks for convenience.

Our approach preserves the full information and feeds it into a scoring model
(see Sections 5.1 and 6.2).

3.1.4 Remarks

With the ingredients given above, our data model eventually allows for well-founded
scoring and ranking models that go far beyond ad-hoc retrieval models for social net-
works which often include many hard-to-tune parameters.

Furthermore, it is important to note that the weights for all the relations introduced
in our data model can be defined in many different ways. The examples we have pro-
vided present some of the alternatives, but are not meant to be exhaustive. Our data
model and the upcoming scoring and ranking models presented in Section 5.1 and 6.2
are independent from changes to those functions.

Also note that this model is much richer than, e.g. the datasets in traditional recom-
mender systems. In addition to the shown relations, we can easily add various kinds of
aggregation views, for example, document-tag frequencies aggregated over all users.

Also note, while our data model captures all relationships that might occur in a
social network, some of the introduced relationships might not exist for certain so-
cial networks. In LibraryThing.com, for instance, user interactions are mainly through
bookmarking and tagging, whereas in Flickr.com, the vast majority of users has got
“authored” contents, which in this case are the photos that they have published. More-
over, only few platforms for social networks would show the users’ home locations
and some might not facilitate any cross-references among individual items. A detailed
analysis of three real world social tagging networks is given in Section 3.2.

16

3 SENSE FRAMEWORK 3.2 Datasets

User Content: &
Tag & Rating

dSocial network N = users ∪ Documents ∪ tags :U t

Linkage

Tag Similarity

Spiritual Friendship

d4

t5

Social Friendship

D1

D9

D7

D1

D9

D7

D1

D9

D7

d3

d8

d7 t7

t2

t8

t3

t9

U4

D1

D9

D7

D1

D9

D7

D1

D9

D7

d1

d6

d5 t1

t1

t1

t5

t6

U1

D1

D9

D7

D1

D9

D7

D1

D9

D7

d4

d8

d5 t5

t4

t8

t5 t6

t6

U3

D1

D9

D7

D1

D9

D7

D1

D9

D7

d3

d9

d7 t7

t2

t2

t3

t8 t9

U2

Tagging

Figure 2: Example illustration of our data model

In any case, our data model is flexible enough for being applicable to most social
tagging platforms. And in fact, as shown in Section 5.4 and Section 6.4, our exper-
imental studies on three real world social networks utilise only a subset of our data
model.

An example illustration for our data model with 4 users, their tagged documents and
the relations between entities of the same and of different types, is given in Figure 2.

3.2 Datasets
In this section, we introduce three real world social tagging networks that were the
basis for obtaining the datasets used in all our experimental evaluations.

3.2.1 Delicious.com

The social web bookmarking service Delicious.com [2] is a popular social tagging
network with millions of registered users and over one hundred million unique URLs
bookmarked (as of September 2007 [1], end of 2008 [8]).

By registering at Delicious.com, users can store and share own bookmarks, i.e.
links to URLs of web pages, or discover bookmarked web pages of other users in
the network. For this, each user has got a homepage in the social network, listing all
her bookmarks. When saving a bookmark on her homepage in Delicious.com, a user
can make notes on each web page, allowing for a content description or other related
comments. Notes on web pages are shown in addition to the bookmark on the user’s
homepage. An example of a user homepage in Delicious.com (as of October 2011) is
given in Figure 3a.

While bookmarks are shown in an non-hierarchical and unstructured flat list, the
organisation of bookmarks is achieved by tags, individually chosen by each user. Tags

17

3.2 Datasets 3 SENSE FRAMEWORK

(a) Example for user homepage in Delicious.com

(b) Bookmarks in Delicious.com about "Social Tagging Network"

Figure 3: Example screenshots of Delicious.com

18

3 SENSE FRAMEWORK 3.2 Datasets

are usually assigned when a bookmark is saved in Delicious.com but also can be added
at a later time. They are used to categorise or describe the content of an associated web
page with single keywords. On the right hand side of a homepage, there is a list of all
tags assigned to web pages which allows users or visitors of the homepage to navigate
through all saved bookmarks and to locate web pages of interest. By clicking on the
tags in this list, only the bookmarks annotated with the respective tag are displayed. In
general, all bookmarks listed on a user’s homepage are public and visible to everyone
if not explicitly declared otherwise as private (on a per bookmark granularity).

Apart from the tags and notes used to describe a web page, the list of bookmarks
additionally shows for each URL—and this is true for all URLs discovered in De-
licious.com—how many users in Delicious.com saved the same web page on their
homepages (but not necessarily annotated it with the same tags). Users are offered
many ways for discovering bookmarks. For example, they can browse through most
recent or popular bookmarked URLs or through most recent or popular used tags. For
one or more given tags, Delicious.com lists all bookmarks annotated by any users with
these tags. The latter allows to search for web pages of certain topics. An example is
given in Figure 3b which is a screenshot of the results when searching for the tags
"social", "tagging", and "networks".

Moreover, by clicking on the number showing how many users have saved the
same bookmark, it is possible to navigate to the homepages of those users and browse
through their list of bookmarks. In this way, it is easily possible to find other users with
preferences matching personal interests. Finally, it is possible to remember those users
on the own homepage to quickly have got access to their bookmarks.

At the time when we crawled the Delicious.com website, users could subscribe to
another user’s homepage or to only one or more single tags used by another user. In
this way, either all bookmarks or only those annotated with a certain tag were listed
(separately) on the own homepage, too, being updated when new bookmarks were
saved by the subscribed user.

However, just recently, on 26th of September 2011, Delicious.com changed their
terminology and slightly modified their functionality [7]. Instead of subscribing to a
user’s bookmark list, a user now can follow another user and instead of subscribing
to single tags, a user can follow another user’s stack. A stack allows for thematically
grouping bookmarks by creating a stack for an arbitrary topic and assigning URLs to
this stack. To give an example, a user can create a stack about "healthy recipes" and,
in her sole discretion, then adds web pages to this stack, matching the given topic.
Previously, a user achieved the same by adding the tag "healthy recipes" or ("healthy"
and "recipes") to each URL belonging to this topic. Thus, the principle is unchanged:
A user can choose “friends” to easily have got access to all or a group of bookmarks
on a friend’s homepage in Delicious.com.

Another change in Delicious.com is, that the bookmarks from users being followed
are not listed anymore on the own homepage (like in the former case when a user
subscribed to another user’s homepage). Instead, one has to navigate to her homepage
by clicking on her name in the list of followed users in order to see her bookmarks.

Matching the SENSE Data Model

Obviously, users and tags in Delicious.com match our data model as given and most
relations between these entities apply in a straight forward way, too. Therefore, we only
refer to mappings being non-obvious in Delicious.com.

19

3.2 Datasets 3 SENSE FRAMEWORK

• Documents. The user provided contents in Delicious.com are bookmarks and,
thus, correspond to the documents in our Data Model.

• (social) Friendship Relation. Naturally, the subscription or following activity
of users coincide with the friendship relation as defined in our data model: If
a user U subscribes to / follows another user Uf or subscribes to one of her
tags / follows another user’s stack, Uf is considered a social friend of U .

At the time we crawled Delicious.com, only the subscription functionality ex-
isted. Hence, in our dataset two users participate in a friendship relation when
one user subscribed to the other user or to at least one of the other user’s tags.

• Document-Document Relation. Bookmarks are links to web pages which in-
clude hyperlinks and, thus, the document-document relation is inherently defined
on the hyperlink graph of web pages. However, as the set of web pages harvested
by following the bookmarks from Delicious.com did not exhibit a reasonable
amount of hyperlinks among them, we did not consider a document-document
relation in our studies on Delicious.com.

The dataset from Delicious.com was retrieved by subsequent crawls and, thus, varies
with different experiments. Therefore, the details about the employed dataset are given
together with the description of the respective experimental setup in Section 5.4 and 6.4.

3.2.2 Flickr.com

The image and photo hosting service Flickr.com [5] is a huge social tagging network for
sharing and embedding personal images and photographs with over 50 Million users
and 6 Billion images (as of August 2011) [4, 3].

Typically, a user in Flickr.com uploads photos to her Flickr.com homepage where
they are stored in a so called photostream. A photostream is basically the visual ar-
rangement of all photos being uploaded by a user. Usually, uploaded photos are taken
by the user herself and, thus, we consider a user to be the owner of all photos on her
homepage in Flickr.com. The layout of the photostream can be configured to display
photos in one or more columns and, if present, to list all sets of images on the left
hand side of the homepage. A set is a way to thematically group photos. For this, a
user can add a photo in one or more sets, arbitrarily named according to the user’s own
intentions. Figure 4a shows an example of a user’s homepage in Flickr.com.

Other than by sets, a user can organise photos in her photostream by annotating
them with one or more tags. The entirety assigned tags can be visualised as a complete
list or, for the 150 most frequently used tags, as a tag cloud. A tag cloud shows the
annotations in alphabetic order, arranged in an unstructured, continuous text flow but
in different font sizes, depending on how frequent a tag has been used. The more fre-
quently a tag is applied to different photos, the bigger its font size relative to all other
tags in the cloud. In this way, the most popular tags of a user are perceived first among
all others. By clicking on a tag, only the pictures annotated with that tag are shown in
the user’s photostream. Eventually, the same is achieved for one or more tags entered
in a search bar on the top of the user’s homepage: the photostream is limited to photos
only matching the requested tags.

By default, photos uploaded to Flickr.com are public and can be viewed by all
visitors of a user’s homepage but permissions also can individually be altered on each
photo. A public photo can easily be discovered by searching globally in Flickr.com
with keyword queries matching associated tags or by choosing a tag in the global tag

20

3 SENSE FRAMEWORK 3.2 Datasets

(a) Example for user homepage in Flickr.com

(b) Page in Flickr.comfor a single Photo

Figure 4: Example screenshots of Flickr.com

21

3.2 Datasets 3 SENSE FRAMEWORK

cloud of recent or most popular tags used in the network. Figure 4b is a screenshot of a
photo page, showing a picture from a user’s photostream. Aside from one or more tags,
the owner can assign a title and a textual description to a photo which then is displayed
on the same page. Moreover, a photo page lists other users in Flickr.com who added
the shown photo to their favourites and users who added a comment on the page.

The description and title can only be changed by the user who uploaded a photo.
However, by default, comments on a photo can be placed by all Flickr.com users and
tags can be added by the owner and all her contacts, although, permissions for all
users can be granted, too, or can be withdrawn for contacts. At any time, a user can
add another user as a contact and, if wanted, marking her additionally as friend or
family member to enable a contact to have got access to non-public photos, too.

Matching the SENSE Data Model

As with Delicious.com, users and tags in Flickr.com immediately match our data model
and these entities also apply to most introduced relations as is. Hence, we only refer to
mappings being non-obvious in Flickr.com.

• Documents. The user provided contents in Flickr.com are typically self-taken
photos. Hence, pictures and photos in Flickr.com correspond to the documents in
our data model.

• (social) Friendship Relation. Naturally, all contacts of a user match the (social)
friendship relation in our data model. However, since we discovered that user
contacts are mainly known person in real life (e.g. family or friends), we decided
to additionally consider a user to be a friend of someone when the user posted a
comment on one of her photos: A user Uf is a (social) friend of a user U if Uf
has been chosen as contact or if U posted a comment on one of Uf ’s photos.

• Document-Document Relation. Since there is no trivial mapping on the basis
of the binary data of photos only, we do not consider a document-document
relation in our experimental studies on Flickr.com.

As with Delicious.com, the dataset from Flickr.com was also retrieved by subsequent
crawls and, thus, varies with different experiments, too. Therefore, the details about the
employed dataset are given together with the description of the respective experimental
setup in Section 5.4 and 6.4.

3.2.3 LibraryThing.com

The service provided by the social tagging network LibraryThing.com [6] allows its
over 1.4 million users [9] to store and share information about books by cataloguing
them in personal, virtual libraries. In total, over 69 million books [9] have already been
catalogued by all users in the network (as of January 2012).

By registering with LibraryThing.com, a user can start creating her personal library
by cataloguing own books or books she read and knows about. For this, the user can
enter the title or an ISBN number of a book in LibraryThing.com, which in turn queries
other web pages to retrieve possible candidates of books matching the user input. After
the selection of a book from the suggested candidates, the user can add the book to its
own library and enrich the corresponding book entry with several meta information. To
categorise or organise her books, the user can annotate them with tags, e.g. allowing her

22

3 SENSE FRAMEWORK 3.2 Datasets

(a) Zeitgeist Overview of LibraryThing.com

(b) User Profile Page in LibraryThing.com

Figure 5: Example screenshots of LibraryThing.com

23

3.2 Datasets 3 SENSE FRAMEWORK

to list only the books in her library that match certain tags. Additionally, descriptions,
comments and reviews can be written and attached by a user to book entries in her
library. Moreover, a user can rate books with up to five stars, enabling her to quickly
express and show visitors of her library if she likes a book or not. By default, books
listed in a library are public to all visitors but they also can individually be declared
as private such that no one but the creator of a library can see the corresponding book
entries.

An example for a user’s library has already been provided in Figure 1 of Section 2.
It shows that in addition to the meta data (e.g. author, comments, tags, etc.) associated
to each book, LibraryThing.com lists how many other users have included the same
book in their libraries and how man users have written reviews for a book. By clicking
on these numbers, one can navigate to the libraries of those users and read their reviews.
LibraryThing.com offers several ways to find books or users who catalogued potentially
interesting books in their library. Among other things, LibraryThing.com provides a
web page called Zeitgeist Overview, see Figure 5a, which outlines the zeitgeist for
books and users in the network. For example, it lists the users with the largest libraries
or the books most often reviewed or catalogued in libraries, the most popular tags used
and much more related information.

For interaction and establishing social connections, each user has got a profile page
in LibraryThing.com which summarises available information about her and her library.
Figure 5b shows the web page of an example profile. The user profile enables visitors to
find out about the tags used on books in the user’s library, from which authors the cata-
logued books are or about the recent activities of a user. To mingle with other members
of LibraryThing.com, a user can create or join groups about any kind of topic in order to
discuss with other users. Moreover, LibraryThing.com lists those users in the network
who catalogued the same books and allows to write comments on a members profile
page. Finally, interesting libraries that have been discovered in LibraryThing.com can
be remembered on the profile page or the creators of libraries can be considered as
interesting contacts (– Note: at the time we crawled LibraryThing.com, the feature of
remembering other users as contacts was not yet available). Friends from real life who
are members in LibraryThing.com as well or users in the network who have become
real friends can also be listed on a user profile page, allowing users to easily stay in
touch in LibraryThing.com.

Matching the SENSE Data Model

As in the previous cases, users and tags in LibraryThing.com immediately match our
data model and also apply to most introduced relations of our data model. Hence, we
only refer to mappings being non-obvious in LibraryThing.com.

• Documents. The user provided contents in LibraryThing.com are the books
catalogued in their libraries and the meta data applied to them. Hence, the book
entries in LibraryThing.com correspond to the documents in our data model.

• (social) Friendship Relation. Naturally, all member contacts like friends, con-
tacts and users with interesting libraries listed in a user profile match the (social)
friendship relation of our data model.

Since the contacts feature in LibraryThing.com was not yet present at the time
we crawled the social tagging network, only friends and users with interesting
librariesinteresting library were considered for the social friendship relation in

24

3 SENSE FRAMEWORK 3.3 Design Decisions

our dataset of LibraryThing.com: A user Uf is a (social) friend of a user U if Uf
has been chosen as friend or if U regards Uf ’s library as interesting.

• Document-Document Relation. Although a document-document relation could
be defined on the available textual context (e.g. reviews) or by taking the authors
of books into account, there is no direct linkage between books. Therefore, we
refrain from defining such a relation and did not consider document-document
relations for our experiments on LibraryThing.com.

As with Delicious.com and Flickr.com, the dataset from LibraryThing.com was re-
trieved by subsequent crawls and, thus, varies with different experiments, too. There-
fore, the details about the employed dataset are given together with the description of
the respective experimental setup in Section 5.4 and 6.4.

3.3 Design Decisions
In this section, we discuss the design decisions made for representing the datasets re-
trieved from social tagging networks matching our data model and for implementing
and integrating the model into the general framework of SENSE. The design decisions
made are fundamental for both algorithms SOCIALMERGE and CONTEXTMERGE in
the following Section 5 and 6, respectively. To this end, we introduce at this point also
the concept of inverted lists.

3.3.1 Relational Database Schemas

As defined in Section 3.1.3 by our data model, Tagging is a ternary relation between
users, tags and documents. For representing our data model as a graph with tags, doc-
uments and users being the nodes, the ternary relation needs to be broken into binary
relations such that the edges in the graph can be defined between pairs of nodes ac-
cordingly. However, as already mentioned in Section 3.1.3, this is not possible without
losing information.

One might argue that tags should be considered as attributes of links between users
and documents instead of entities of their own, as in the social content graph suggested
in [14]. However, in this case, either one would have to completely abandon the notion
of tag similarity within the graph model (since edges between edge attributes are not
well defined in graphs) or one would need to consider tag similarities separated from
the graph model.

In our view, the notion of tag similarity is a particularly intriguing and promising
asset for a powerful searching and ranking model. Hence, abandoning this part of our
model is not desirable. However, we also want to preserve the ternary relation user-tag-
document within one unified data model without losing any information. Therefore, we
made the design decision of not using a graph representation. Instead, we implemented
our data model based on a relational database system, using database tables for rep-
resenting each relation. See Figure 2 in Section 3.1 for an example illustration of our
data model.

3.3.2 Inverted Lists

The relations defined by our data model in Section 3.1 can be implemented in database
tables as (key,value)-pairs. The key is a tuple of entities (– in our case, the users, tags
or documents) which are involved in a relation and the value corresponds to the weight

25

4 PROBLEM STATEMENT

defined by the respective relation (– in our case, the friendship strength, tag similarity,
score, etc).

By creating an appropriate index, the entries in such database tables can be sorted
in descending order of their values. In this way, the database tables follow the semantic
of inverted lists where entries are not sorted by their keys but inversely, according to
the respective key’s value. Hence, we will use the notion of inverted lists as a synonym
for the database tables implementing the same functionality.

By sorting database tables in this inverted way, entities can be sequentially fetched
in descending order of their values without the need for way more expensive random
accesses to the database and, thus, the tables can be used like inverted lists with typical
top-k query processing algorithms.

Top-k query processing is a fundamental cornerstone of ranked retrieval of docu-
ments and many other modern applications. Ideally, an efficient query processor would
not read the entire input (i.e. all (key,value)-pairs from the underlying relations) but
should rather find ways of early termination when the k best results can be safely de-
termined, using techniques like priority queues, bounds for partially computed aggre-
gation values, pruning intermediate results, etc. These issues have been intensively re-
searched in recent years (e.g. [32, 35, 44, 54, 61, 91, 98, 125]) and are well-understood.

Most top-k algorithms scan, i.e. sequentially read, inverted lists and aggregate pre-
computed per-term or per-dimension scores into in-memory “accumulators”, one for
each candidate document. The optimisations in the IR literature aim to limit the num-
ber of accumulators and the scan depth on the index lists in order to terminate the
algorithm as early as possible. This involves a variety of heuristics for pruning poten-
tial result candidates and stopping some or all of the index list traversals as early as
possible, ideally after having seen only short prefixes of the potentially very long lists.
For this, it is often beneficial that the entries in inverted lists are kept in descending
order of score values rather than being sorted by document identifiers.

Our algorithms SOCIALMERGE and CONTEXTMERGE operate on index structures
corresponding to inverted lists, too, since both generally fall into the well-established
framework of so-called threshold algorithms (TA) as well. They depend on impact-
sorted inverted lists for efficient top-k query processing and require that score aggre-
gation functions are monotonic (e.g. a weighted summation). Eventually, we employ
variants of Fagin’s Threshold Algorithm (TA) [54] with flexible scheduling of list scans
([124, 20]). Hence, the design decision to cast our data model into inverted lists has
been crucial for both of our algorithms. The details about SOCIALMERGE and CON-
TEXTMERGE are given in Chapter 5 and 6, respectively.

4 Problem Statement

In order to introduce our SOCIALMERGE and CONTEXTMERGE algorithms and the
scoring models used, we first formalise the notion of a query. In line with the free-text
tagging of social networks, we define a query as follows.

Definition 4.1 (Query qU). A query qU = {t0, . . . , tn−1} is a set of query tags issued
by a query initiator U to the social network. A query tag is a keyword, corresponding
to a tag ti used by some user in the network to annotate a document.

26

5 SOCIALMERGE ALGORITHM

The result of a query is then defined as follows:

Definition 4.2 (Query Result RU). The result RU of a query qU is a ranked list of
documents, annotated by at least one of the query tags ti ∈ qU or a tag te similar to ti
which is determined during the query processing by expanding a tag ti ∈ qU to te.
The result list is ordered according to a query-specific document score.

In particular, a query-specific document score enables top-k query processing for
efficiently retrieving the k documents with the highest document scores in regard to
a query. The definition is perfectly in line with the current querying model of popu-
lar search engines. However, in contrast to those search engines, the document scores
used in our model—details are given in Section 5.1 and 6.2—also contain a social
component: the, by definition, query-specific content-based score of a document is ad-
ditionally user-specific, i.e. it depends on the social context of the query initiator.

Even though commercial search engines offer similar personalisation approaches,
social tagging networks are the natural habitat to further explore and improve this
idea since having the additional asset of knowing friendship relations and the friends’
tagging behaviour. Moreover, by considering these additional assets for computing
user-specific query results, queries become high-dimensional and traditional IR text-
retrieval methods are bound to fail. The dimensions of a query are defined as follows:

Definition 4.3 (Query Dimensions). The involved components for computing the final
score of a document with respect to a query are called the query dimensions.

Accordingly, high-dimensional queries involve a high number of components dur-
ing the result computation.

Unlike in standard text retrieval, the dimensions of a query, when considering
friendship relations in social tagging networks and in presence of our proposed scoring
methods (see Section 5.1 and 6.2), are not only the tags in a query qU . Instead, for
each query tag ti, the score of a document is additionally influenced by a user-specific
score. Assuming m users in the system and a query with n tags, a query therefore has
got m · n dimensions. If we additionally consider expansions of tags, the number of
query dimensions will again increase a lot. Such high-dimensional queries cannot be
efficiently handled by the existing variants of threshold algorithms (TA) for standard
text retrieval, since usually, for each dimension a corresponding inverted list has to be
precomputed and is eventually involved in the query processing.

In the following chapters, we introduce two different algorithms for efficiently
retrieving content-based and user-specific query results for high-dimensional queries
from social tagging networks. Both algorithms are based on the data model introduced
in Section 3.1.

5 SOCIALMERGE Algorithm
Our first algorithm developed for the SENSE framework is called SOCIALMERGE.
Subsequently, we introduce the associated scoring model followed by details about the
query processing.

5.1 Scoring Model
The scoring model used with our SOCIALMERGE algorithm is based on the relations
defined by our data model in Section 3.1. The score for a document depends on the

27

5.1 Scoring Model 5 SOCIALMERGE ALGORITHM

tags that have been used to annotate the document and on the users who have tagged
the document. In this scoring model, we perform semantic expansions by considering
tags that are similar to the keywords appearing in a query, and social expansion by
preferring documents tagged by close friends. More formally, let be

qU = {t0, . . . , tn−1}

a query with query tags t0, . . . , tn−1. We define the social score ssc(qU , d) of a docu-
ment d with respect to a query qU initiated by user U in the following way:

Definition 5.1 (Social Score ssc(qU , d)).

ssc(qU , d) =
∑
ti∈qU

sts(ti, d, U)

where sts(ti, d, U) is the single tag score of a document d with respect to a query
tag ti ∈ qU and the user U who issued the query.

We define the single tag score sts(ti, d, U) as follows:

Definition 5.2 (Single Tag Score sts(ti, d, U)).

sts(ti, d, U) = DR(d) ×
∑

Uf∈FLIST(U)

sf (U,Uf)

× max
t′∈SIMTAGS(ti)

{tsim(t′, ti) · sd(Uf , t′, d)}

× UR(Uf)

Before defining each of the components used in the definition of the single tag
score sts(ti, d, U), we introduce the notion of friendship in regard to the scoring model
used with our SOCIALMERGE algorithm.

With this scoring model, we use only the user-user relation

Friendship(U1, U2, type = social, sf)

of type social as presented in Section 3.1.2 and abstractly given in Definition 3.1. We
implement the social friendship relation in our scoring model based on the friendship
graph in social tagging networks (see Definition 3.2) by considering the shortest path
distances of users in the graph. Since we are using a different notion of shortest path in
later chapters, we explicitly define the shortest path for our SOCIALMERGE algorithm
in the following (obvious) way:

Definition 5.3 (Shortest Path). Let be G the directed, unweighted friendship graph of
a social tagging network and U and Uf two different users in G. The length of a path
in G leading from U to Uf is equal to its number of edges. A path of shortest length
leading from U to Uf is called a shortest path from U to Uf .

Based on this definition, we now can define the distance between two users in the
friendship graph.

28

5 SOCIALMERGE ALGORITHM 5.1 Scoring Model

Definition 5.4 (Distance of Uf wrt. U). Let be G the directed, unweighted friendship
graph of a social tagging network with U and Uf being two different users in G. The
distance dist(U,Uf) of Uf with respect to U is equal to length of the shortest path
leading from U to Uf in G if such a path exists, otherwise∞, i.e.

dist(U,Uf) =


0 if Uf = U

∞ if 6 ∃ path from U to Uf
#edges of π if π is a shortest path from U to Uf

We consider Uf as a social friend of U if a path from U to Uf in the graph ex-
ists. Furthermore, we denote with FLIST(U) the list of all social friends of a user U .
Formally, we define the social friendship of two users as follows:

Definition 5.5 (Social Friendship). A user Uf 6= U is a (social) friend of U if and
only if there is a path from U to Uf in the friendship graph of a social network, i.e.

Uf is a friend of U ⇐⇒ Uf ∈ FLIST(U)

⇐⇒ 0 < dist(U,Uf) <∞

We denote with FLIST(U) the list of all transitive friends of U .

The measure in our scoring model for the social friendship strength s(U,Uf) of a
user Uf in regard to a user U favours users that are closer to U in the friendship graph
of the social network. The intuition is, that if U issues a query, the results from users
close to U in the friendship graph are preferred because it is likely that a user is more
interested in results from her friends or that she trusts them more than unknown users.
We define the friendship strength as follows:

Definition 5.6 (Friendship Strength sf (U,Uf)).

sf (U,Uf) =


1

dist(U,Uf)2
if Uf ∈ FLIST(U)

1
(|U|)2 if Uf /∈ FLIST(U) and Uf 6= U

0 if Uf == U

where |U| is the number of all users in the network.

The friendship strength of a user U with respect to herself is set to 0, while the
friendship strength for a social friend Uf is equal to the inverse of the square of the
shortest path distance from U to Uf . If there is no path between two users in the friend-
ship graph of a social network, the friendship strength is set to a constant which equals
to the inverse of the square of the longest possible distance, that is, a path leading over
all users.

After having cast the friendship relation defined in our data model into our soring
model, we now define the remaining components of the single tag score sts(ti, d, U)
given in Definition 5.2.

The value of tsim(t, t′) corresponds to the tag similarity of tag t′ in regard to tag t
and actually implements in our scoring model the tag-tag relation

TagSimilarity(t1, t2, tsim)

29

5.1 Scoring Model 5 SOCIALMERGE ALGORITHM

introduced with our data model in Section 3.1.2.
In our scoring model, the similarity of tags is based on the co-occurrence of tags in

the document collection. Formally, it is defined as follows:

Definition 5.7 (Tag Similarity tsim(t, t′)). The list of all tags t′ which are similar to a
tag t is denoted with SIMTAGS(t). The similarity of two tags t and t′ is computed by the
Dice coefficient on the set of documents in the social network tagged with both tags,
i.e.

tsim(t, t′) =
2 · df(t ∧ t′)
df(t) + df(t′)

where df(t ∧ t′) is the document frequency for both tags t and t′, i.e. the number of
documents that are tagged with t and t′; df(t) and df(t) is the document frequency for
the single tag t and t′, respectively.

Note: The most similar tag with respect to a tag t is t itself, i.e. tsim(t, t) = 1, and
thus, is the entry in SIMTAGS(t) with the highest similarity value.

UR(U) and DR(d) define the rank of a user U in the friendship graph and the
rank of a document d in the document graph of a social network, respectively. The
user rank weights documents from users with a high reputation stronger, while the
document rank generally boosts the single tag score sts(ti, d, U) for high authoritative
documents in the social network. The user or document rank is equal to the PageRank
[99] score of the respective entity defined by a random walk on the user or document
graph, respectively, with a random jump probability (1 − ε) set to 0.15. Formally, the
user rank is defined as follows:

Definition 5.8 (User Rank UR(U)).

UR(U) =
1− ε
|U| + ε ·

∑
∀Ui:U∈DIRECTFRIENDS(Ui)

UR(Ui)

|DIRECTFRIENDS(Ui)|

where |U| is the number of all users in the network, |DIRECTFRIENDS(Ui)| is the
number of direct friends of U , i.e. the friends Uf with dist(U,Uf) = 1, and ε = 0.85
is a damping factor.

Analogously, the document rank is defined as:

Definition 5.9 (Document Rank DR(d)).

DR(d) =
1− ε
|D| + ε ·

∑
∀di:di→d

DR(di)

outdegree(di)

where |D| is the number of all documents in the network, outdegree(di) is the number
of outgoing links from di and ε = 0.85 is a damping factor.

Finally, the document score used in Definition 5.2 of the single tag score corre-
sponds to the ternary user-tag-document relation

Tagging(U, t, d, score)

introduced with our data model in Section 3.1.3.
The score computation of a document with respect to a certain tag is based on a

user-specific BM25 [105] formula. Its definition looks as follows:

30

5 SOCIALMERGE ALGORITHM 5.2 Query Processing

Definition 5.10 (Document Score sd(U, t, d)). The score of a document d that is tagged
with a tag t by a user U is defined as

sd(U, t, d) =
k1 + tfU (t, d)

K + tfU (t, d)
· log

NU − dfU (t) + 0.2

dfU (t) + 0.5

where

K =

(
(1− b) + b

lengthU (d)

avg(d′ tagged by U){lengthU (d′)}

)
and k1 and b are constants, set to k1 = 1.2 and b = 0.5.

The value of tfU (t, d) corresponds to the number of timesU tagged dwith t, dfU (t)
corresponds to the number of times U tagged any document with t, NU is equal to the
total number of documents tagged by U , and lengthU (d) corresponds to the number
of tags given to d by U .

Notes on remaining entity relations

By summing up the document score sd(U ′, t, d) over all users U ′ in the social net-
work, the resulting value is independent of any user relation in regard to a querying
user U . Hence, the aggregated document scores for a document d and tag t from the
entire social tagging network implements in our scoring model the document-tag rela-
tion

Content(d, t, score)

as defined by our data model in Section 3.1. We make use of it in Section 5.3 for en-
abling a semantic search strategy (see Definition 5.12).

The scoring model used in our SOCIALMERGE algorithm neither implements the
document-document relation Linkage(d1, d2, w) (see Section 3.1.3) nor the user-do-
cument relationRating(U, d, rating) (see Section 3.1.2) as defined by our data model
in Section 3.1. The reason is that the datasets crawled from real world social tagging
networks (see Section 3.2) and used in our experimental evaluation presented in Sec-
tion 5.4, do not exhibit such relations to the full extend or only could be harvested on a
limited scale.

5.2 Query Processing

Given the scoring model presented in the previous Section 5.1, a naïve application of
top-k threshold algorithms (TA), commonly used for text retrieval, is bound to fail as
queries are high-dimensional (see Section 4 and Definition 4.3).

Our new SOCIALMERGE algorithm is designed for handling high-dimensional
queries in social tagging networks. It explores the user-specific dimensions very care-
fully, opens additional dimensions on demand and only when it is clear that they will
contribute to the score of the final results. Hence, there is no need to precompute in-
verted lists in all dimensions with our algorithm like in standard top-k threshold algo-
rithms.

31

5.2 Query Processing 5 SOCIALMERGE ALGORITHM

5.2.1 Preprocessing

Nevertheless, our SOCIALMERGE algorithm can and does make use of precomputed
inverted lists (see Section 3.3 for more information about inverted lists) as most of the
components used to compute the social score ssc(qU , d) (see Definition 5.1) can be
precomputed and stored in lists in descending order of their score values. Our query
processing algorithm eventually takes advantage of them for efficiently executing top-k
queries.

We maintain only three different kinds of inverted lists which are accessed sequen-
tially in descending order of scores:

• USERDOCS(U, t) contains for a user U and a tag t entries (d,wd) with docu-
ments d tagged by U with tag t in descending order of their weighted document
score wd = sd(d, t) · DR(d).

• FLIST(U) contains for a userU entries (Uf , wf) withU ’s social friendsUf in de-
scending order of their weighted friendship strengthswf = sf (U,Uf) ·UR(Uf).

• SIMTAGS(t) contains for a tag t entries (t′, sim) with all similar tags t′ in de-
scending order of sim = tsim(t, t′).

Note: For the reason of an unambiguous definition, we actually would need to include
in the notion of wd the tag t and user U used in USERDOCS(U, t), e.g. wd(U, t), and
similarly, we would need to state wf as wf (U,Uf) and also could not use an abbrevi-
ated notation for tsim(t, t′). However, to avoid further notational complexity, we will
use the simplified versions wd, wf and sim as given above when their usage is clear
from the respective context.

5.2.2 Notation

Let be,

• |FLIST(U)| the number of social friends of a user U

• pos(U) the current read position in FLIST(U) where pos(U) = 1 means that
one friend has been read and processed from the list.

• highd(U, ti) the last value of wd read from the USERDOCS(U, ti) list

• highf (U) the last value of wf read from the FLIST(U) list

• hight(ti) the last value of sim read from the SIMTAGS(ti) list.

• L(Uf) = {USERDOCS(Uf , ti), ...} the set of lists USERDOCS(Uf , ti) of userUf
and any tag ti that have been opened during the query execution.

• E(Uf , d) = {USERDOCS(Uf , ti), ...} the set of lists USERDOCS(Uf , ti) of a
user Uf and any tag ti in which the document d has already been discovered

Note that the values of highd(U, ti), highf (U) and hight(ti) are upper bounds for
score values of unseen entries in each of the lists as they are sorted in descending order
of the score values.

Furthermore, to simplify the description and for a better understanding of the query
processing with our SOCIALMERGE algorithm, we assume that:

32

5 SOCIALMERGE ALGORITHM 5.2 Query Processing

1. Scores in all lists are normalised to the interval [0 . . . 1].

2. Friendship scores in FLIST(U) are normalised in such a way that the score within
one list sums up to 1, i.e. single score values are divided by the sum over all
values.

Hence, before the first entry is read from the associated list, highd(U, ti), highf (U)
and hight(ti) can be initialised with 1.

5.2.3 Operation Mode

We start describing the query processing with our SOCIALMERGE algorithm by first
neglecting its tag expansion part and, afterwards, extending the approach by adding tag
expansion into the query processing.

Without Tag Expansion

To this end, we focus on computing the results for a simpler social score ssc′(qU , d)
using a single tag score sts′(ti, d, U) without tag expansion and show later how the
processing can be extended towards ssc(qU , d) by using sts(ti, d, U), integrating tag
expansion. Hence, sts′(ti, d, U) is defined like sts(ti, d, U) but without the tag expan-
sion component:

Definition 5.11 (Single Tag Score without Tag expansion sts′(ti, d, U)).

sts′(ti, d, U) = DR(d) ×
∑

Uf∈FLIST(U)

sf (U,Uf)

× sd(Uf , ti, d)

× UR(Uf)

With our SOCIALMERGE algorithm, the query processing starts for a query qU
from user U with query tags {t0, . . . , tn−1} by opening a scan on FLIST(U) and read-
ing its first entry (Uf , wf). By doing this, wf = sf (U,Uf) · UR(Uf) is the highest
weighted friendship strength of all friends of U .

Subsequently, the algorithm opens and then scans, i.e. sequentially reads, the lists
USERDOCS(Uf , ti) for each query tag ti of the previously retrieved best friend Uf .
The weighted document scores wd of documents d read from these lists are multiplied
by the weighted friendship strength wf of U ’s friend Uf . The friend’s document lists
are continuously processed until the score contribution by the next best friend U ′f ,
being currently at the top of the FLIST(U) list, is higher than the contribution from
any of the already read USERDOCS(Uf , ti) lists. The condition to stop reading from
the USERDOCS(Uf , ti) lists of Uf is checked by comparing for any query tags ti the
current highd(Uf , ti) values associated with these lists with highf (U) · 1.0, which is
the maximal upper bound for scores of documents retrieved from the next best friend.

In the event of the stop condition becomes true, the scan on U ’s friendship list
FLIST(U) reads the next entry (U ′f , w

′
f) with the next best friend U ′f and the corre-

sponding weighted friendship strength w′f , such that, the algorithm can first open and
then start reading from U ′f ’s USERDOCS(U ′f , ti) lists for all query tags ti. Afterwards,

33

5.2 Query Processing 5 SOCIALMERGE ALGORITHM

1: ssc′(qU = (t0, . . . , tn−1), d) {
// QT , QC : Queue of top-k docs and candidates. SetF : set of considered friends

2: QC = QT = SetF = {}
// While candidates could make it into QT , enter the loop

3: WHILE(max{bs(d) | d ∈ QC} > {ws(d) | d ∈ QT }) {
// get best friend who is USERDOCS-lists should be opened next

4: (Uf , wf) =FLIST(U).next()
5: highf (U) = wf
6: SetF = SetF ∪ {Uf}
7: ∀ti ∈ Q : USERDOCS(Uf , ti).open() ∧ highd(Uf , ti) = 1.0 ∗ wf

// Read USERDOCS-lists until next friend may have better documents
8: WHILE(max{highd(U ′f , ti) | ti ∈ {t0, . . . , tn−1} ∧ U ′f ∈ SetF } ≥ highf (U)){

// get best document di with score wi from any friend U ′f ∈ SetF for all tags ti
9: FOR(ti ∈ {t0 . . . tn−1}) {

10: (di, wdi) = USERDOCS(ti, U ′f).next() {
// weight the document score by the friendship strength

11: wdi = wdi · wf
12: highd(U

′
f , ti) = wdi

// compute best and worst scores for di
13: bs(di)=BestScoreUpdate(di)
14: ws(di)=WorstScoreUpdate(di)

// if di is better than some doc in QT , replace it and move
// the previous doc in QC , replacing the weakest candidate

15: IF (ws(di) > min{bs(d) | d ∈ QT })
16: Update(QT ,di)
17: ELSE

// otherwise, check if di is at least a candidate. If so,
// insert it in QC

18: IF (bs(di) > min{ws(d) | d ∈ QT } &&
19: bs(di) > min{ws(d) | d ∈ QC})
20: Update(QC ,di)
21: }
22: }
23: }

// return the top-k documents
24: RETURN(QT)
25: }

Listing 1: SOCIALMERGE framework without tag expansion

34

5 SOCIALMERGE ALGORITHM 5.2 Query Processing

among all already opened document lists of the friends seen so far, the one with the po-
tentially highest score contribution for any query tag ti is chosen to be processed next.
The processing continues in this way until again the highest possible score estimation
is contributed by the next best friend in U ’s friendship list FLIST(U), i.e. the score con-
tribution is higher than from any opened USERDOCS(Uf , ti) lists for any query tag ti
and already considered friends Uf . The scan on the list FLIST(U) can be limited by
considering a certain threshold for the friendship strength of a next friend.

The pseudocode of this general framework of our SOCIALMERGE algorithm is
given in Listing 1.

When not yet all dimensions are evaluated in order to compute the final score of
a document that has been read from a friend’s document list USERDOCS(Uf ,ti), up-
per and lower bounds are computed to estimate the best score bs(d) and the worst
score ws(d) of a document d. The worst score of a document is easily computed by
considering the score contributions from not yet known dimensions as 0. Unfortunately,
it is not that trivial to estimate the document’s best score.

Following standard procedures in threshold algorithms, to compute the best score
of a document, the scores of already evaluated dimensions, resulting in the current
worst score of the document, and upper bounds for scores of not yet discovered dimen-
sions are accumulated. For this, the scores in the latter case must be assumed to be the
maximum scores that could be achieved for a document in the remaining undiscovered
dimensions. Hence, they are set to the highest known values, the ones read during the
last access to the corresponding lists in those dimensions. With our data model and the
precomputed inverted lists introduced previously in this section the estimation for the
best scores can be done in as follows:

Given that U has got |FLIST(U)| friends out of which pos(U) have already been
processed and that to some friend Uf belong at most n USERDOCS(Uf , ti) lists for the
query tags t0, . . . , tn−1, then a total of

|L| = (|FLIST(U)| − pos(U)) · n

lists have not yet been opened. With wf = sf (U,Uf) · UR(Uf) being the weighted
friendship strength of Uf in regard to U and with ws(d) is the worst score of a docu-
ment d, and, by using the notation introduced in Section 5.2.2, which denotesE(Uf , d)
as the set of document lists of Uf in which d has been discovered already, and L(Uf)
as the set of all currently opened document lists of Uf for the query tags t0 to tn−1, we
can compute the best score for the document by:

bs(d) = ws(d) (1)
+ highf (U) · |L| · 1.0 (2)

+
∑

∀Uf ∧ list=USERDOCS(Uf ,ti):
list∈{L(Uf)\E(Uf ,d)}

wf · highd(Uf , ti) (3)

The worst score ws(d) in (1) is equal to the score contribution from the document lists
of all processed friends of U in which d has already been discovered. The computation
in (2) is equal to the maximal score contribution from the at most |L| not yet opened
document lists of all not yet discovered friends U ′f in FLIST(U). The weighted friend-
ship strengths of those friends U ′f cannot be greater than highf (U) and the maximal
weighted document score in a list USERDOCS(U ′f ,ti) of U ′f is 1.0. Finally, the maxi-
mal possible score contribution from lists of known friends in which the document d

35

5.2 Query Processing 5 SOCIALMERGE ALGORITHM

has not yet been seen is computed in (3). Since the friend Uf is already known, her
weighted friendship strength wf is also known and can be multiplied with the maximal
weighted document score being possible for d in lists USERDOCS(Uf ,ti) where the
document has not yet been seen. The weighed document score of d cannot be greater
than highd(Uf , ti) in such a list.

Like all threshold algorithms, our SOCIALMERGE algorithm terminates as soon as
the best score for any of the candidates that do not belong to the current top-k results
cannot exceed anymore the worst score of any of the current top-k documents. To this
end, depending on its worst and best scores, a document is kept in one of two distin-
guished priority queues. A queue QT for documents belonging to the current or final
top-k results and a queue QC for candidates that still could displace a document from
the QT queue.

In Listing 1, the functionUpdate(Q, d) inserts or replaces a document d in queueQ
and moves the replaced document d′ out of the queue if appropriate. Is a document
moved out of QT , it will be inserted in QC which again could replace a weaker can-
didate there. Documents moved out of queue QC can’t make it into the top-k queue
anymore and, therefore, are simply pruned.

Besides these round-robin-style sequential accesses (SA) to users’ document lists
for all query tags ti, our SOCIALMERGE implementation can also perform random
accesses (RA) to the index lists.

As RA are usually a lot more expensive than SA (in the order of 100 to 1,000
times for real systems), they have to be carefully selected and scheduled to avoid any
unnecessary work. Our scheduling for RA follows the LAST heuristics from [20],
i.e. our algorithm performs only SA until the estimated cost to perform all RA to
remaining (and potentially not yet seen) candidates is at most as high as the cost for
all SA done so far. The cost for not yet seen candidates is estimated by assuming a
virtual document dv , representing any unseen document appearing right at the front of
the not yet seen part of all document lists. Our estimation for the number ofRA is quite
crude as we just sum, for all candidates (including dv), the number of dimensions that
have not yet been evaluated.

Including Tag Expansion

While the previously described framework of our SOCIALMERGE algorithm has ex-
plored the user dimensions, the computation of the single tag score s′t(ti, d, U) has
set aside tag expansion, i.e. the computation does not explore tags that are similar to
the actual query tags. For enabling tag expansion in our framework, we leverage the
Incremental Merge Algorithm [124] for efficient query expansion in text retrieval.

The framework shown in Listing 1 is unchanged for our final version that includes
expansion of tags and essentially works like explained above. The only difference is
that it does not immediately open for all query tags ti all lists USERDOCS(Uf ,ti) for
reading when a new friend is processed due to the scan on FLIST(U). Instead, it opens
a meta index list META(Uf , ti) that incrementally opens and merges the document lists
USERDOCS(Uf ,tx) for tags tx that are similar to ti. The scores retrieved from these
lists for a document d are weighted by the tag similarity tsim(ti, tx) and only the first
occurrence of a document is considered.

In more detail, the tag expansion of a tag ti by reading from its meta index list

36

5 SOCIALMERGE ALGORITHM 5.2 Query Processing

1: cache = {}
2: META(Uf , ti).next() {

// if similarity of next tag in SIMTAGS(ti) is above some threshold..
3: IF(hight(ti) > tsim-Threshold) {

// keep opening new USERDOCS-list for the tag with next best tsim
// when that could contain potentially a doc with highest score

4: WHILE(hight(ti) > max{wd|(d,wd, t) ∈ cache}) {
// get next best tag to open associated USERDOCS-list..

5: (tx, simx)=SIMTAGS(ti).next()
6: hight(ti) = simx

// .. which may contain doc with potentially highest score ..
7: (d,wd)=USERDOCS(Uf , tx).next()
8: highd(Uf , tx) = wd

// .. even when weighted by tag similarity.
9: wd = wd · simx

// put doc into the cache for later checkout.
10: do_cache(d,wd, tx)
11: }
12: }

// get the doc with maximum score from cache
13: (d,wd, tx) = maxwd

{(d,wd, t)|(d,wd, t) ∈ cache}
// put the next doc from the associated USERDOCS-list in cache

14: (d′, w′d) = USERDOCS(Uf , tx).next()
15: highd(Uf , tx) = w′d
16: w′d = w′d · tsim(ti, tx)
17: do_cache(d,wd, tx)

// the maximum of all high bounds for all opened USERDOCS-lists is the
// current high bound for docs from Uf and query tag ti

18: hight(Uf , ti) = max{highd(Uf , tx) | USERDOCS(Uf , tx)-list ∈ L(Uf)}
19: RETURN((d,wd))
20: }

Listing 2: Incremental merge algorithm with META(Uf , ti) lists to include tag expan-
sion in SOCIALMERGE

37

5.3 Search Strategies 5 SOCIALMERGE ALGORITHM

META(Uf , ti) works as follows:
For a query tag ti and a friend Uf , the meta index list META(Uf , ti) is initialised

by opening a scan on SIMTAGS(ti) and reading its first entry (tx, tsimx) with tx cor-
responding to the most similar tag with respect to ti and tsimx is equal to the tag
similarity tsimx = tsim(ti, tx). In fact, after initially accessing the list SIMTAGS(ti),
tx is equal to ti since ti is the first entry in the list with a similarity of 1.0. Afterwards,
the corresponding document list USERDOCS(Uf , tx) for tag tx of the user Uf is opened
for reading and the top most document d and its score wd weighted by tsimx is read
into a buffer. The computed score wd · tsimx of d serves eventually as highd(Uf , tx)
bound for the USERDOCS(Uf , ti) list. The bound is necessary as usual to provide an
accurate value for the next score contribution that can be retrieved from the list.

As the processing continues and pairs (d,wd) of documents and scores are retrieved
from META(Uf , ti) by the main loop of our SOCIALMERGE algorithm, the documents
and scores read from the meta index lists are always fetched from the (already opened)
USERDOCS(Uf , tx) list which currently can contribute a document with the highest
score value. A new list is opened only, i.e. the tag expansion eventually happens, when
a document from the USERDOCS(Uf , t′x) list for the next similar tag t′x could achieve a
higher score value as any document of already opened lists USERDOCS(Uf , tx) for all
already expanded tags tx. The next similar tag t′x is determined by continuing reading
the next entry from the list of similar tags SIMTAGS(ti) for the original query tag ti.
This incremental merge algorithm uses a threshold for the similarity of related tags and
stops when the similarity of the next tag falls below it.

As a consequence, it is possible that a document, tagged by a friendUf with a tag tx
but not with the initial query tag ti receives a higher document score than any other
document actually tagged with ti by users in the social network. It happens when the
friendship strength and the tag similarity are high enough to achieve a better document
score than any from other user’s document lists USERDOCS(U ′f , ti) for the query tag ti.

The upper score bound highd(Uf , ti) for the meta index lists META(Uf , ti) used
in the main loop of the SOCIALMERGE algorithm is the maximum over all high score
bounds highd(Uf , tx) of currently opened lists for expanded tags tx and the upper
bound hight(ti) of the SIMTAGS(ti) list. As all upper bounds are exact, it is guaranteed
that the meta index lists always delivers entries in descending order of scores.

The pseudocode that determines the document with highest score from the meta
index list META(Uf , ti) is given in Listing 2.

5.3 Search Strategies
The scoring model introduced in Section 5.1 offers several interesting instances for
evaluation and allows for comparing different search strategies which are derived from
the final proposal of modelling Single Tag Scores (see Definition 5.2) by only consider-
ing certain components of the score computation. We define six search strategies which
seamlessly can be used with our SOCIALMERGE algorithm since only the computation
of st(ti, d, U) is modified as shown in the following.

For a query qU = {t0, . . . , tn−1}, a document d and a user U , the score of the
document d with respect to the user U is defined by the sum over all single tag scores
for each query tag as stated by Definition 5.1. However, the single tag score for a tag ti,
a document d and user U differs with respect to the applied search strategy.

Note: Since the social tagging networks introduced in Section 3.2 or the subset
crawled from these networks do not provide a useful document-document relation, we

38

5 SOCIALMERGE ALGORITHM 5.3 Search Strategies

do not use the notion of the document rank (see Definition 5.9) for computing the single
tag score (see Definition 5.2) with any of our strategies.

Semantic Search

When applying a semantic search, the results for a query are contributed by all users
holding similar content to the query, i.e. users who used the query tags in describing
their content. For a tag ti, a retrieved document d is ranked by only using the introduced
user-specific BM25 score.

Definition 5.12 (Semantic Search). Let be U the set of all users in a social tagging
network. By applying a semantic search for a query qU = {t0, . . . , tn−1}, the single
tag score for a document d with respect to a query tag ti and user U is computed as
follows:

sts(ti, d, U) =
∑
Uj∈U

sd(Uj , ti, d)

See Definition 5.10 for details about sd(Uj , ti, d).

Social Search

With a social search strategy, only documents from social friends holding similar con-
tent to a query are considered for determining search results. For each query tag ti, a
retrieved result d is ranked using our user-specific BM25 score weighted by the friends’
social friendship strengths:

Definition 5.13 (Social Search). By applying a social search for the query qU =
{t0, . . . , tn−1}, the single tag score for a document d with respect to a query tag ti
and user U is computed as follows:

sts(ti, d, U) =
∑

Uf∈FLIST(U)

sf (U,Uf) · sd(Uf , ti, d)

where FLIST(U) is the social friendship list of U .

See Definition 5.6 and 5.10 for details about sf (U,Uf) and sd(Uf , ti, d), respec-
tively.

Expanded Semantic Search

For enriching the search results, the expanded semantic search strategy uses a seman-
tic search with tag expansion, i.e. tags with the largest similarity to the query tags are
added to a query. For a query tag ti or an expanded tag t′i, a result d is ranked using the
user-specific BM25 score weighted by the tag similarity:

Definition 5.14 (Expanded Semantic Search). Let be U the set of all users in a social
network. By applying an expanded semantic search for a query qU = {t0, . . . , tn−1},
the single tag score for a document d with respect to a query tag ti and user U is
computed as follows:

st(ti, d, U) =
∑
Uj∈U

max
t′∈SIMTAGS(ti)

tsim(t′, ti) · sd(Uj , t′, d)

39

5.3 Search Strategies 5 SOCIALMERGE ALGORITHM

where SIMTAGS(ti) is the list of all tags similar to ti.

See the Definitions 5.7 and 5.10 for details about tsim(t′, ti) and sd(Uj , t
′, d),

respectively.

Expanded Social Search

The expanded social search strategy uses a social search with tag expansion which
adds similar tags to a query for enriching search results. For each query tag ti or an
expanded tag t′i, a document d from a social friend Uf is ranked using our user-specific
BM25 score weighted by a the friendship strength Uf and the tag similarity:

Definition 5.15 (Expanded Social Search). By applying a expanded social search for
a query qU = {t0, . . . , tn−1}, the single tag score for a document d with respect to a
query tag ti and user U is computed as follows:

sts(ti, d, U) =
∑

Uf∈FLIST(U)

sf (U,Uf) · max
t′∈SIMTAGS(ti)

tsim(t′, ti) · sd(Uf , t′, d)

where SIMTAGS(ti) is the list of tags similar to ti.

See the Definitions 5.6, 5.7 and 5.10 for details about sf (U,Uf), tsim(t′, ti) and
sd(Uf , t

′, d), respectively.

Social Search with User Rank

A social search with user rank strategy considers only results form social friends and
weights them by the friends’ user rank. For each query tag ti, a document d contributed
by a social friend Uf is ranked using the user-specific BM25 score weighted by the
friendship strength of Uf and her user rank:

Definition 5.16 (Social Search with User Rank). By applying a social search with
user rank for a query qU = {t0, . . . , tn−1} from a user U , the single tag score for a
document d with respect to a query tag ti and user U is computed as follows:

sts(ti, d, U) =
∑

Uf∈FLIST(U)

sf (U,Uf) · UR(Uf) · sd(Uf , ti, d)

where FLIST(U) is the friendship list of U .

See the Definitions 5.6, 5.10 and 5.8 for details about sf (U,Uf), sd(Uf , t′, d) and
UR(Uf), respectively.

Expanded Social Search with User Rank

Finally, the strategy combining all the components (except for the document rank as
explained in the beginning of this section) for computing the social score as provided
in Definition 5.1 is called expanded social search with user rank. Query tags are ex-
panded by similar tags and search results are considered only from social friends with
additionally taking their user rank into account. For a query tag ti or an expanded tag t′i,
a document d from a social friend Uf is ranked by using the user-specific BM25 score
weighted by the friendship strength of Uf , her user rank and the tag similarity:

40

5 SOCIALMERGE ALGORITHM 5.4 Experiments

Definition 5.17 (Expanded Social Search with User Rank). By applying an expanded
social search with user rank for a query qU = {t0. . . . , tn−1}, the single tag score for
a document d with respect to a query tag ti and user U is computed ans follows:

sts(ti, d, U) =
∑

Uf∈FLIST(U)

sf (U,Uf)

× UR(Uf)

× max
t′∈SIMTAGS(ti)

tsim(t′, ti)

× sf (Uf , t
′, d)

where FLIST(U) is the friendship list of U and SIMTAGS(ti) is the list of tags similar
to ti.

See the Definitions 5.6, 5.7, 5.10 and 5.8 for details about sf (U,Uf), tsim(t′, ti),
sd(Uf , t

′, d) and UR(Uf), respectively.

5.4 Experiments
For our experimental evaluation of our SOCIALMERGE algorithm and its different
search strategies introduced in Section 5.3, we performed automated web crawls on
the social tagging networks Delicious.com and Flickr.com (see Section 3.2), consti-
tuting our testing environment. Hence, the studies about our SOCIALMERGE search
strategies are based on two real-world datasets with the following features:

• Delicious.com: The dataset harvested from Delicious.com

comprises a total of 13, 515 users with 4, 582, 773 bookmarks and 152, 306
friendship connections.

• Flickr.com: The dataset harvested from Flickr.com comprises a total of 2, 274
users, 1, 357, 424 images and 72, 703 friendship connections.

For both datasets, we identified the most frequent tag pairs used in annotations on
documents as our benchmark query workload. Typical example queries are "landscape,
nature" or "insect, bug" for Flickr.com and "cooking, recipes" or "firefox, extension"
for Delicious.com. For a full list of queries, please refer to the Tables 1 and 2. We
employed the tag pairs for querying and measuring the efficiency and manual assessing
the effectiveness of the corresponding search results for each search strategy. While
the retrieval efficiency for both datasets and the effectiveness for Flickr.com have been
evaluated on the full set of queries, the Delicious.com effectiveness assessments were
only conducted with a subset of queries due to the higher effort of opening web pages
as opposed to checking out photos.

Relevance Assessments

While many previous works focused on recall (i.e. the fraction of documents that is
retrieved from the global set of relevant documents), we do not consider this a useful
measure for social communities. Building the ground truth, i.e. the global set of rele-
vant documents for a query, is virtually impossible in a social network though, as the
notion of relevance is highly subjective and dependent from the query initiator and her
personal context. To capture this, we have conducted a manual relevance assessment
user study based on the following observations that are peculiar to social search.

41

5.4 Experiments 5 SOCIALMERGE ALGORITHM

Tag 1 Tag 2
sky clouds

white black
winter snow

blackandwhite bw
flowers flower
ocean beach

fall autumn
woman girl

selfportrait me
birthday party

green blue
france paris
yellow red
urban city
cats cat

newyork nyc
lights night
d50 nikon

tokyo japan
tree trees

germany deutschland

Tag 1 Tag 2
sun sunset
sea water

nature landscape
color colour

children kids
concert music
dinner food

uk england
thailand bangkok

birds bird
austin texas
italy italia

portrait people
kid child
new york
face eyes

closeup macro
animal pet
brazil brasil
vegas las
bride groom

Tag 1 Tag 2
brick wall

barcelona spain
lomo lca
light luz

graffiti streetart
soccer football
naked nude
auto car

family christmas
botanical gardens
animals zoo

pennsylvania pa
insect bug
happy smile
leaves leaf
mac apple

taiwan taipei
seoul korea
horse horses

architecture buildings

Table 1: Flickr.com Queries

Tag 1 Tag 2
free music

design css
javascript ajax

mac osx
tutorial howto

rails ruby
linux software

programming code
tips reference

lifehacks productivity
video youtube

education learning
webdesign inspiration

tagging folksonomy
firefox extensions
blogs blogging

gallery art
blog internet
tools webdev

plugin wordpress
free freeware

security windows
cooking recipes

cool interesting
film movies

Tag 1 Tag 2
culture society

gtd organization
maps geo
php development

information visualization
humour funny
green environment

podcasting podcast
recipe food
wiki wikipedia

python django
television tv

apple macosx
source open

computer tech
technology trends

health fitness
list links

clothing fashion
xml xslt

startup entrepreneur
graphic illustration
interface ui

ideas web2.0
shop shopping

Tag 1 Tag 2
service social

Mac Apple
books wishlist
daily web

architecture urbanism
USA politics

search Google
academic theory

usa news
Iraq war

language java
soa webservices

investment finance
conference 2007

sharing hosting
investing stocks

useful todo
Software Freeware

semanticweb semweb
fiction science

feminism women
bike cycling

knitting pattern
events nyc

Table 2: Delicious.com Queries

42

5 SOCIALMERGE ALGORITHM 5.4 Experiments

• The query results obtained from the system using a social search strategy depend
on the query initiator, i.e. different users will obtain different results for the same
query. This is obvious as the scoring model explores friendship links and tag
similarities, which are user-specific.

• For judging the relevance of a result document with respect to a query and a
certain social search strategy, the associated query initiator needs to be asked.
For example, a picture of a person may only be relevant if she is known to the
query initiator. However, when we execute our queries in the context of a user,
we obviously have not got that user available to assess the subjective relevance
of a result item, making it even harder to assess the relevance of documents as in
standard information retrieval.

Hence, we conducted a user study as follows. First, the participants were shown a
query. Next, one particular user that has previously used the query tags was randomly
selected from the database as the (fictitious) query initiator. The participants are dis-
played exactly those documents (i.e. pictures or bookmarks) from that user that contain
at least one of the query tags, in order to understand the personal context of the query
initiator. This way, we try to overcome the aforementioned problem of subjectively as-
sessing result qualities with the eyes of the query initiator. Next, the participants are
displayed a 6-column result page that illustrates the top-10 results from each of our
processing strategies under evaluation. The columns are not labelled and presented in
random order. For each result item, the participant has to mark if the item is relevant
to the query in the context of the query initiator or not. From these assessments, we
finally compute the precision of the top-10 documents (Precision[10]) as a measure of
user satisfaction. The precision measure is computed as follows:

Definition 5.18 (Precision).

precision =
of relevant docs retrieved

total # of retrieved docs

Retrieval Effectiveness

We have used the results from our user study to compare the retrieval effectiveness for
all of the above strategies and for both datasets. The results are summarised in Table 3.
First, we note that the precision results on the Flickr.com dataset are constantly higher
than for the Delicious.com dataset. This is partly due to the fact that tags on Flickr.com
are used much more descriptively than for Delicious.com, as one can clearly see from
the queries (that, in turn, were derived from popular tag pairs). Though, mainly this
is due to the more sophisticated context for the Delicious.com users, as presented to
the participants of the user study, which made precision drop due to the better context
information.

Semantic search already yields strong results, in particular for Flickr.com. Social
expansion based on the friendship graph can further improve the precision remarkably,
which makes a strong case for social search strategies.

On the other hand, tag expansiondid not yield the desired results in our experiments,
but had an negative impact. Taking a closer look at the individual numbers indicates that
the Dice coefficient does not do a good job of grouping tags. In effect, tag expansion
often makes the query execution drift away from the original topic.

43

5.4 Experiments 5 SOCIALMERGE ALGORITHM

Finally, the user rank UR (see Definition 5.8) does not seem to have got any re-
markable influence on the precision results. Again, taking a closer look at the individ-
ual numbers indicate that the nature of PageRank-style authority scores [99] assigning
global (i.e. non query-specific) authority scores to users makes the effect on precision
vanish for particular queries. In other words, a high user rank by design can not give
an indication as to whether the authority has been accumulated w.r.t. the particular in-
formation need. This makes a strong case for considering personalised authority-style
analyses that capture authority from the viewpoint of the query initiator and her per-
sonal interest profile [65, 73].

Approach P@10 - Flickr.com P@10 - Delicious.com
Semantic 72% 29%
Social 76% 37%
Expanded Semantic 72% 28%
Expanded Social 66% 36%
Social + UR 77% 33%
Expanded Social 67% 31%+ UR

Table 3: Precision[10]

Retrieval Efficiency

For each query and each of our strategies under evaluation, we measure the follow-
ing performance metrics:

• total number of sequential list accesses

• total number of random list accesses

• total number of dimensions (i.e. number of index lists opened)

We report the average over all queries separately for our Flickr.com and Delicious.com
datasets in Table 4 and Table 5.

Approach #SA #RA #Dim
Semantic 1530.69 4.69 2.0
Social 147.68 0.032 157.16
Expanded Semantic 1531.10 19.27 17.42
Expanded Social 738.0 5.92 2234.29
Social + UserRank 144.06 0.0 157.16
Expanded Social 754.21 5.53 1935.66+ UserRank

Table 4: Performance Figures (Flickr.com)

The numbers show (especially on the Flickr.com dataset but also for the social
search strategy with user rank on the Delicious.com dataset) that our social search

44

6 CONTEXTMERGE ALGORITHM

Approach #SA #RA #Dim
Semantic 294.86 7.41 2.0
Social 778.82 8.38 34.54
Expanded Semantic 778.15 18.78 12.12
Expanded Social 1027.14 26.53 187.35
Social + UserRank 166.72 2.35 9.65
Expanded Social 216.97 5.69 52.88+ UserRank

Table 5: Performance Figures (Delicious.com)

strategies are clearly competitive with the baseline, non-social semantic strategy. In
particular, the exploration of more dimensions does not hurt the overall number of
sequential or rand accesses, due to our sophisticated incremental merge strategy. Also,
the careful scheduling of random accesses does not hurt the query efficiency either, as it
is clearly limited to very low numbers. Combining all this with the shown effectiveness
improvements in Table 3, our social search yields a better benefit/cost-ratio.

6 CONTEXTMERGE Algorithm
The manual assessment accomplished and described in Section 5.4 to evaluate the re-
trieval effectiveness of our SOCIALMERGE algorithm gave us insights about the corre-
lation of the result quality with respect to our different search strategies introduced in
Section 5.3 and the queries used for the evaluation. For some queries a certain search
strategy achieved better results than for other queries. This raised the question if dif-
ferent queries maybe serve different information needs and if we can adjust the query
processing according to the information needs of queries.

Based on the results achieved with our SOCIALMERGE algorithm (see Section 5)
and based on the experience made during its experimental evaluation (see Section 5.4),
we developed the CONTEXTMERGE algorithm with an improved scoring model which
allows for a flexible adjustment to different information needs and the application of
diversified search modes by the query processing.

In the following we present the different information needs that we identified in
social tagging networks. Afterwards we describe in detail the scoring model, and how
the query processing of our CONTEXTMERGE algorithm combines the requirements
of different search modes, serving different information needs.

6.1 Information Needs in Social Tagging Networks
The way in which users interact and search in social tagging networks depends on their
intents. Accordingly, with our CONTEXTMERGE algorithm, we classify the task of
searching in social tagging networks in the following three categories, each expressing
an associated, different kind of information need.

Global Search

In social tagging networks, typically documents, URLs or videos are retrieved by is-
suing queries that consist of a set of tags, returning results that have been frequently

45

6.1 Information Needs 6 CONTEXTMERGE ALGORITHM

annotated with these tags without taking any relation between users into account. We
denote search tasks that neglect user relations but consider all users equally important
as global search tasks. For a global search, it is not important which user can con-
tribute documents to a query as long as results match a requested query. Hence, the
global search fulfils a rather generic information need where queries can be answered
by any user of the global network.

Example Scenario. Assume user U is active in some social tagging network about
books, e.g. LibraryThing.com, and she needs to buy as a birthday present the fifth book
of Harry Potter but does not know its title. To be sure to buy the correct book, she
might issue the query "Harry Potter Book 5" to the social network she is involved in.
From her point of view, it is not important which user provides the correct result to
her since she just wants to have got an exact answer to her request. So, by taking the
answer given by the majority of users, the information need of user U is likely to be
fulfilled.

Social Search

Users often prefer a more personalised way of searching over a global search, exploit-
ing preferences of and connections between users. A reason for this might be that a
user does not care about results from unknown users maybe because a query is about
documents containing information about social friends. Social friends are users in the
social network known from real life or who became acquainted over time and are ex-
plicitly chosen as friends in the network. So, if a user for example is looking for photos,
she might be not interested in photos of unknown people.

Another reason why a user might be more interested in results from social friends
for certain queries is that the user is maybe interested in recommendations and she
likely trusts recommendations of users she knows, i.e. her friends, and thus possibly
sharing her preferences, more than those of some arbitrary, unknown users.

Example Scenario. Again consider the same user U from the example given for
the global search. Assume U does not like "Harry Potter"-books which is the reason
why she had to query for the title of the fifth book by a global search. However, further
assume that in general U is interested in fantasy books and especially in books about
magic and wizards. She just cannot stand Harry Potter books. To descry some new
and interesting novels, she therefore might issue a query "fantasy magic wizard" to her
social tagging network about books.

If a global search is used for such a query, it is likely that results are dominated
by books about "Harry Potter" because the commercial success of its complete series
shows that many people like "Harry Potter" books and, hence, would recommend them.

On the other hand, for such broad topics like fantasy, magic and wizard, it is con-
ceivable that userU has chosen other users in the social network as friends that have got
an overlap in their interests, thus, maybe also dislike Harry Potter books. In this case,
a search restricted to the social context of user U , i.e. information contributed by U ’s
explicit and transitive friends (her friends and the friends of her friends), promises to
better fulfil U ’s information need for her query.

We denote search tasks that only consider results from a user’s transitive friends in
the social friendship graph of a social tagging network as Social Search tasks.

46

6 CONTEXTMERGE ALGORITHM 6.1 Information Needs

Spiritual Search

Another way to personalise search in social tagging networks is to exploit similar pref-
erences, behaviour or activities of users and to consider the information within the
user’s interests already expressed in the network. This can be done for example by tak-
ing into account the users’ overlap in tag usage, bookmarked pages, or commenting
and rating activities.

We denote users who do not necessarily know each other but have got a common
overlap in interests as "Brothers in Spirit" which in turn leads to the notion of spiritual
friends. In contrast to social friends, which are explicitly chosen as friends by a user,
spiritual friends can be considered implicitly related to a user due to their behavioural
affinity. Hence, the name Spiritual Search, which denotes a search task that only con-
siders results from spiritual friends in social tagging networks.

If a user has got some interests in a specific area of a broader topic, her social
friends maybe have not got the same interests and, thus, a social search is likely not to
retrieve desired results for a query. Neither, a global search would lead to good results
because the majority of users is probably be interested in the more general areas of
the topic. However, those users who share the same specific interests can, even if they
do not know each other, recommend and contribute results in which the querying user
most likely is interested in.

Example Scenario. Again consider the same user U from the example given for the
global and social search. So, U does not like Harry Potter-books but is in general inter-
ested in fantasy novels about magic and wizards and so are her social friends. Further
assume that U is additionally interested in topics about Computer and Programming
and especially in the specific area of the small niche computer platform Amiga. WhenU
tries to find programming books about her hobby computer platform, she maybe issues
a query like Computer Programming Amiga to her social tagging network. Neither a
global, and if U ’s social friends do not share U ’s passion for the same niche computer
platform, also a social search might not lead to the desired results because they might
be dominated by general books about programming. However, if there are any users in
the social tagging network with similar preferences as U , they finally could fulfil U ’s
information need.

This kind of personalised search that asks for recommendation-style results is very
common in online communities, for example asking for books tagged by other users
with similar interests, or searching for restaurants tagged by users from the same area
and with similar preferences for food.

Note: The three example scenarios given for the social, spiritual and global search
are not arbitrarily or artificially chosen for a just notional user U but indeed show the
characteristics of a real user in the social tagging network LibraryThing.com (see Sec-
tion 3.2.3). The prototype implementation of our SENSE framework, which applies
the CONTEXTMERGE algorithm on a dataset crawled from LibraryThing.com, demon-
strates this behaviour as described in our three example scenarios given above.

Further note that the information needs identified in social tagging networks and
the associated global, social and spiritual search tasks perfectly match our notion of
social, spiritual and global friendship as given in Definition 3.1, 3.3 and 3.4, respec-
tively, of Section 3.1 introducing our data model and its entity relations.

In the following we introduce our improved scoring model, incorporating flexible
adjusting of scores according to the different information needs and discuss our new

47

6.2 Scoring Model 6 CONTEXTMERGE ALGORITHM

and sophisticated CONTEXTMERGE algorithm.

6.2 Scoring Model
The scoring model used with our CONTEXTMERGE algorithm can be tuned towards
different aspects of social tagging networks and, thus, can be adjusted to match the
information needs of users in the network. To this end, as with our SOCIALMERGE
algorithm, scores for documents are user-specific. However, depending on the config-
uration of the scoring model, scores are based on the social and spiritual context of
the query initiator. Moreover, it extends the traditional IR scoring models (tf-idf-based,
probabilistic IR, language models) to search in social networks, with the following
ingredients:

1. a measure for the importance of users, relative to the querying user,

2. a context-specific tag frequency relative to the querying user that reflects the
relative importance of users which used a tag, and, optionally,

3. the expansion of query tags with related (“semantically similar”) tags.

In our context-specific scoring model, tags given by close social or spiritual friends are
weighted higher than tags given by users at a great distance in the respective friendship
graph (defined by the respective friendship relation, see Definition 3.2) of the social
network.

The scoring model implemented with our CONTEXTMERGE algorithm allows to
specify the information need to perform a social, spiritual or global search (see Sec-
tion 6.1). It also allows for a hybrid search, i.e. a weighted combination of any of the
three search tasks.

6.2.1 Modelling Friendship Strengths.

For matching the different information needs applied to searches in social tagging net-
works (see Section 6.1), with the scoring model of our CONTEXTMERGE algorithm,
we define the user-user relation

Friendship(U1, U2, type, sf)

specified by our data model in Section 3.1 for type=social, type=spiritual and for
type=global. The three different types of friendship relations correspond to the Def-
inition 3.1, 3.3 and 3.4 of social, spiritual and global friendship. The associated three
different quantifications of the friendship strength sf (U1, U2) of a user U2 with re-
spect to some other user U1 form the core of our scoring model. Measuring the friend-
ship strengths can be done in different ways, and our current implementation allows to
switch between different definitions at run-time.

Before going into detail, we change the notation in regard to the friendship strength sf
defined by the user-user relation in order to easier distinguish the friendship strength
for each type of friendship:

• sso(U,Uf) denotes the social friendship strength of Uf w.r.t U

• ssp(U,Uf) denotes the spiritual friendship strength of Uf w.r.t U

• sgl(U,Uf) denotes the global friendship strength of Uf w.r.t U

48

6 CONTEXTMERGE ALGORITHM 6.2 Scoring Model

Eventually, the scoring model enables the different search tasks identified in social
tagging networks by defining the friendship strength of users accordingly. Before in-
troducing the formal definitions, we give a general view on each type of friendship
strength.

• The social friendship strength sso(U,Uf), applied for social searches, is based
on social measures like the inverse shortest path distance of U and Uf in the
friendship graph of the social network, but may additionally include syntactic
measures as used for the computation of the spiritual friendship strength.

• The spiritual friendship strength ssp(U,Uf) of a spiritual friend Uf with respect
to a user U is tuned towards spiritual searches and computed by using a combi-
nation of syntactic measures such as overlap of tag usage, bookmarked pages, or
commenting and rating activity.

• The global friendship strength sgl(U,Uf), used for global searches, gives equal
weight to all users.

Each type of friendship strength is normalised over all users such that for all users U
in the social network, the following is true:∑

Uf

sxx(U,Uf) = 1 with xx ∈ {so, sp, gl}

The friendship strength sxx(U,Uf)with xx ∈ {so, sp, gl}may be viewed as the prob-
ability that with respect to a spiritual, social or global information need, respectively,
documents from a random user Uf will be interesting to U . In this way, the importance
of a user Uf , relative to a querying user U , can be quantified in a single friendship defi-
nition, aggregating the different types of friendship strengths. To this end, we introduce

• the (final) friendship strength sf (U,Uf), computed to evaluate a query, as the
linear mixture of the three definitions of spiritual, social and global friendship
strength.

The formal definition of the final friendship strength of two users is the then:

Definition 6.1 ((final) Friendship Strength sf (U,Uf)). The final friendship strength of
a user Uf with respect to a user U is defined as:

sf (U,Uf) = α · sso(U,Uf) + β · ssp(U,Uf) + (1− α− β) · sgl(U,Uf)

with α, β ∈ [0 : 1] being configurable parameters, α + β ≤ 1 and sf (U,Uf) = 0
if Uf = U .

When setting α = 1 and β = 0 the scoring model is tuned to social searches, when
setting α = 0 and β = 1 it is tuned to spiritual searches, and with α = 0, β = 0
to global searches. However, any nontrivial combination is fine and reasonable. More-
over, we define the friendship strength for a user U with respect to herself to be zero,
i.e. sf (U,U) = 0. The reason is, that a user cannot contribute new results to own search
queries. Thus, we want to ignore own documents in search requests.

Next, we define the different quantification, i.e. the spiritual, social and global
friendship strength, used to compute the final friendship strength.

49

6.2 Scoring Model 6 CONTEXTMERGE ALGORITHM

Spiritual Friendship.

The spiritual friendship strength ssp(U,Uf) of two users U and Uf can be computed
by using a combination of syntactic measures such as overlap of tag usage, bookmarked
pages, or commenting and rating activity.

In our implementation, the spiritual friendship strength is based only on the overlap
in the set of tags both users use.

Definition 6.2 (Spiritual Friendship Strength ssp(Ui, Uj)). For any two usersUi andUj ,
we define their spiritual friendship strength by computing the Dice coefficient of their
tag sets:

ssp(Ui, Uj) =
2× |tagset(Ui) ∩ tagset(Uj)|
|tagset(Ui)|+ |tagset(Uj)|

.

where tagset(U) is the set of tags used by U .

The spiritual friendship strength ssp is a symmetric measure, i.e ssp(Ui, Uj) =
ssp(Uj , Ui) for two users Ui and Uj , with 0 ≤ ssp(Uj , Ui) ≤ 1 for all users Ui, Uj .

Social Friendship.

The social friendship strength sso(U,Uf) is based on social measures like the inverse
shortest path distance of U and Uf in the friendship graph of the social network (see
Definition 3.2) but may additionally include syntactic measures like the spiritual friend-
ship strength.

In our implementation, we first compute an overlap-based similarity, similar to the
spiritual friendship strength but only for directly connected users U , Uf (i.e. there is an
edge from U to Uf) in the friendship graph of the social networks.

Definition 6.3 (Direct (social) Friend). A user Uf who is directly connected with U
over an edge U → Uf in the friendship graph of a social tagging network is called a
direct (social) friend of U .

The overlap-based similarity defines then the weight of the edges between direct
social friends and is again computed as the Dice coefficient of the sets of tags used by
a user U and her direct friend Uf .

Definition 6.4 (Overlap of Tags for Direct Social Friends O(U,Uf)). For Uf being a
direct friend of U , we define their tag overlap by the Dice coefficient of their tag sets:

O(U,Uf) =
2× |tagset(U) ∩ tagsat(Uf)|
|tagset(U)|+ |tagset(Uf)| .

where tagset(U) is the set of tags used by U .

From this definition immediately follows 0 ≤ O(U,Uf) ≤ 1.
We then extend Definition 6.4 to users U and Uf that are indirectly connected by

more than one edge in the friendship graph, over one or more paths leading from U
to Uf , by aggregating the overlap in tag usage for each pair of direct friends along each
path and picking the path with the highest aggregated overlap measure. To this end, the
overlap measure for direct friends can be averaged, multiplied, or multiplied weighted
by (linear or dampened) distance, etc.

In our implementation, we compute the social friendship strength as follows:

50

6 CONTEXTMERGE ALGORITHM 6.2 Scoring Model

Definition 6.5 (Social Friendship Strength sso(U,Uf)).

sso(U,Uf) =

{
0 if 6 ∃ π : U0 . . . Uk

maxπ:U0...Uk

∏k−1
i=0 O(Ui, Ui+1) otherwise.

where π is a path fromU=U0 toUk=Uf with edges (Ui → Ui+1) and 0 ≤ i ≤ (k− 1).

This definition of social friendship flavours, as in the case of the SOCIALMERGE
algorithm, users at small distances. However, in contrast to our SOCIALMERGE algo-
rithm, now the social friendship strength is not defined over the number of edges but
over the weight of the edges for all paths between two users. Since the resulting weight
becomes smaller the more edges are multiplied, it is likely that the path defining the
friendship strength is also "short" with respect to the number of edges. Hence, with our
CONTEXTMERGE algorithm, we want to define the shortest path as follows:

Definition 6.6 (Shortest Path). Let be G the directed, weighted friendship graph of a
social tagging network with edge weights in the interval [0 : 1]. We define the length of
a path in G from a user U to a user Uf as the inverse of the product over all of its edge
weights.

Hence, a shortest path from U to Uf is a path with the maximal product over its
edge weights.

Given the Definition 6.5 of social friendship strengths, with our CONTEXTMERGE
algorithm, the shortest path between a user U and his friend Uf is now, as in the case
of SOCIALMERGE, equal to the path defining their friendship strength sso(U,Uf).

Note: Other types of direct social friendship strength and aggregation over paths
can be easily plugged into the model and our implementation. For directed friendship
graphs, i.e. a user Uf is a friend of a user U but not necessarily the other way around,
the measure of social friendship strength is asymmetric, i.e. sso(U,Uf) 6= sso(Uf , U)

Global Friendship.

The global friendship strength sgl(U,Uf) used for global searches gives equal weight
to all users in the social network.

Definition 6.7 (Global Friendship Strength sgl(Ui, Uj)). For any pair of users Ui
and Uj , the global friendship strength is equal, i.e.

sgl(Ui, Uj) =
1

|U|

where U is the set of all users in the social network.

6.2.2 Modelling Context Scores

With having defined the friendship strength of users, matching the three information
needs in social networks, we next introduce the scoring model for a document d and a
tag t in the context of the information needs and the friendship relations of a user U .

In contrast to the scoring model presented in Section 5.1 used in our SOCIALMERGE
algorithm, the importance of other users in a social network for contributing results to
a query, is not only measured by their social friendship strengths with respect to the

51

6.2 Scoring Model 6 CONTEXTMERGE ALGORITHM

query initiator but depends on all defined friendship relations, dynamically weighted
according to the information need of the querying user. Hence, we call the weighted
social, spiritual and global friendship relations to be the context of a user, issuing a
query.

Context Frequency.

To reflect the friendship strengths of friends (of any kind) who tagged a document that
may be of interest to the querying user, we introduce the notion of context frequency.

To this end, we first define for a user U , a tag t and a document d the user-specific
tag frequency tfU (t, d) and the global tag frequency TF (t, d).

Definition 6.8 (User-Specific Tag Frequency tfU (t, d)). For a user U , a tag t and
a document d, we define the user-specific tag frequency tfU (t, d) as the number of
times U annotated document d with tag t.

Note: In most of today’s social tagging platforms, typically tfU (t, d) = 1, i.e. doc-
ument d has been tagged with t once by U , or tfU (t, d) = 0, i.e. document d has not
been tagged at all with t by U . However, it is conceivable that quantitative ratings are
factored into this measure or user feedback leads to non-binary tfU (t, d) values.

Definition 6.9 (Global Tag Frequency TF (t, d)). For a tag t and a document d, we
define the global tag frequency TF (t, d) to be equal to the number of times all users
together in a social network annotated d with t:

TF (t, d) =
∑
U ′∈ U

tfU ′(t, d)

where U is the set of all users in a social tagging network.

In our scoring model, the context frequency cfU (t, d) replaces the standard IR term
frequency tf(t, d) and considers the social, spiritual and global friendship strengths of
users tagging a document. Formally, it is defined as follows:

Definition 6.10 (Context Frequency cfU (t, d)). The context frequency for a tag t and
a document d, relative to a user U , is defined as

cfU (t, d) =
∑
U ′∈ U

sf (U,U ′) · tfU ′(t, d).

where U is the set of all users in the network and tfU ′(t, d) denotes the user-specific
tag frequency of U ′ for tag t and document d.

By plugging the definition of the friendship strength sf (U,Uf) into the above for-
mula, we obtain

cfU (t, d) =
∑
U ′∈ U

(α · sso(U,U ′) + β · ssp(U,U ′)

+ (1− α− β) · sgl(U,U ′)) · tfU ′(t, d)

52

6 CONTEXTMERGE ALGORITHM 6.2 Scoring Model

By rewriting the equation, we can separate the parts being bound by each friendship
type and when we additionally substitute sgl(U,U ′) with its definition (see Defini-
tion 6.7), we obtain

cfU (t, d) = α ·
∑
U ′∈ U

sso(U,U
′) · tfU ′(t, d) + β ·

∑
U ′∈ U

ssp(U,U
′) · tfU ′(t, d)

+
1− α− β
|U| ·

∑
U ′∈ U

tfU ′(t, d)

With TF (t, d) being the global tag frequency as defined in Definition 6.9, we finally
obtain

cfU (t, d) =α ·
∑
U ′∈ U

sso(U,U
′) · tfU ′(t, d) + β ·

∑
U ′∈ U

ssp(U,U
′) · tfU ′(t, d)

+
1− α− β
|U| · TF (t, d)

For simplifying the notation in subsequent sections, we additionally introduce the
slightly modified context frequency cf ′U (t, d), which is defined as

Definition 6.11 ((modified) Context Frequency cf ′U (t, d)).

cf ′U (t, d) = α · |U| ·
∑
U ′∈ U

sso(U,U
′) · tfU ′(t, d)

+ β · |U| ·
∑
U ′∈ U

ssp(U,U
′) · tfU ′(t, d)

+ (1− α− β) · TF (t, d)

Note that cfU (t, d) and cf ′U (t, d) are proportional

cfU (t, d) ∝ cf ′U (t, d)

and that we can refer to the context frequency for a user U , tag t and document d as

cf ′U (t, d) = |U| · cfU (t, d)

Finally, we can observe that the modified context frequency cf ′U (t, d) can be split into
a global part

(1− α− β) · TF (t, d),

being independent of the querying user and corresponding to a weighted global tag
frequency TF (t, d), and a user-specific frequency

α · |U| ·
∑
U ′∈ U

sso(U,U
′) · tfU ′(t, d) + β · |U| ·

∑
U ′∈ U

ssp(U,U
′) · tfU ′(t, d),

which depends on the social and spiritual friendship strengths of users with respect to
the query initiator. We will make use of this decomposition in Section 6.3 to efficiently
process queries.

Note: The weighted global tag frequency TF (t, d) is agnostic to any user relations
as all users are regarded to be equally important for computing this measure. Hence, it

53

6.2 Scoring Model 6 CONTEXTMERGE ALGORITHM

is an important building block in the definition of our context frequency and defines in
our scoring model the document-tag relation

Content(d, t, score)

as specified in our data model in Section 3.1.3. Accordingly, the user-specific portion
in the definition of cfU (t, d) implements the ternary user-tag-document relation

Tagging(U, t, d, score)

as defined by our data model.

Next, we use our notion of context frequency for defining the score of a document d
for a single tag t with respect to a user U .

Single Tag Context Score.

To compute the single tag context score sts(t, d, U) of a document d with respect
to a single tag t relative to the querying user U , we use a scoring function in the form
of a simplified BM25 [105] score. Unlike the original BM25 formula, our model has
no notion of document length because the number of tags assigned to a document does
not vary as much as the length of text documents. Furthermore, we replace in BM25
the standard term frequency tf(t, d) for a tag t and a document d by our user-specific
context frequency cfU (t, d). We formally define the single tag context score as follows:

Definition 6.12 (Single Tag Context Score sts(t, d, U)). The score of a document d
with respect to a tag t and querying user U is defined as:

sts(t, d, U) =
(k1 + 1) · |U| · cfU (t, d)

k1 + |U| · cfU (t, d)
· idf(t)

where k1 is a tunable coefficient and idf(t) is the inverse document frequency of tag t.

Note from Definition 6.11 that |U| · cfU (t, d) = cf ′U (t, d). The inverse document
frequency [77] is defined for a tag t as follows:

Definition 6.13 (Inverse Document Frequency idf(t)). For a tag t, the inverse docu-
ment frequency is defined as:

idf(t) = log
|D| − df(t) + 0.5

df(t) + 0.5

with df(t) denoting the number of documents that were tagged with t by at least one
user and |D| is equal to the number of all documents in the social network.

By plugging the definitions of the modified context frequency cf ′U (t, d) and the
friendship strength sf (U,Uf) into the formula for computing the single tag context
score of a document, we obtain

sts(t, d, U) = idf(t) · (k1+1)(1−α−β)TF (t, d)+α
∑
U ′ ..sso()..+β

∑
U ′ ..ssp()..

k1+(1−α−β)TF (t, d)+α
∑
U ′ ..sso()..+β

∑
U ′ ..ssp()..

From this, it can be observed that we can obtain the global score of a document d
with respect to a single tag t that is agnostic to any user relations, by choosing α = 0
and β = 0 and, thus, only considering the global tag frequency TF (t, d) and the inverse
document frequency idf(t) in the computation of the single tag context score sts(t, d, U).

54

6 CONTEXTMERGE ALGORITHM 6.2 Scoring Model

Tag Expansion.

Even though related users are likely to have tagged related documents, they may have
used different tags to describe them. It is therefore essential to allow for an expansion
of query tags to semantically related tags. A simple way to account for this would be to
statically expand the query with a fixed number of similar tags; however, experiments
on text IR have shown that this can lead to topic drifts and search results that are in-
ferior to those of the unexpanded, original query [27]. Instead, we adopt the careful
expansion approach proposed in [124] that considers, for the score of a document, only
the best expansion of a query tag, not all of them.

For this, we implement in our scoring model the tag-tag relation

TagSimilarity(t1, t2, tsim)

introduced in our data model in Section 3.1 by defining for all pairs of tags t1, t2 the
similarity function tsim(t1, t2), with 0 ≤ tsim(t1, t2) ≤ 1, as specified in the relation.

In the implementation used with our CONTEXTMERGE algorithm, the similarity
between two tags is determined, similarly as in the case of our SOCIALMERGE algo-
rithm, by the co-occurrence of tags in the entire document collection. However, instead
of computing the Dice coefficient on sets of documents (as in the SOCIALMERGE case,
see Definition 5.7), we estimate conditional probabilities for the co-occurrence of tags.

Definition 6.14 (Tag Similarity tsim(t, t′)). The similarity of two tags t and t′ is
defined as:

tsim(t, t′) = P [t′|t] =
df(t ∧ t′)
df(t)

where df(t) is the number of documents tagged with t and df(t ∧ t′) is the number of
documents tagged with both tags t and t′ (but possibly by different users).

However, other measures such as SocialSimRank from [19] could be easily incor-
porated as well.

Eventually, the single tag context score sts∗U (t, d, U) with tag expansion for a doc-
ument d with respect to a tag t and relative to a querying user U is defined as follows:

Definition 6.15 (Single Tag Context Score with Tag Expansion sts∗(t, d, U)). For a
document d, the score of a document with respect to a tag t and a user U is defined as:

sts∗(t, d, U) = max
t′∈SIMTAGS(t)

tsim(t, t′) · sts(t′, d, U)

where SIMTAGS(t) is the list of all tags t′ similar to tag t.

Context Score for Queries.

Finally, the context score for an entire query qU with multiple query tags t0, . . . , tn−1
is the sum of the per-tag context scores:

Definition 6.16 (Context Score csc∗(d, qU = {t0, . . . , tn−1})). For a query qU with
query tags t0, . . . , tn−1 from a user U , the final score of a document is computed as:

csc∗(d, qU) =
∑
ti∈qU

sts∗(ti, d, U)

55

6.3 Query Processing 6 CONTEXTMERGE ALGORITHM

Note that the context score assumes a non-conjunctive query evaluation. How-
ever, it can easily be extended to conjunctive evaluation by setting the context score
csc∗(d, qU = {t0, . . . , tn−1}) = 0 when for at least one query tag ti, the single tag
context score sts∗(ti, d, U) is equal to 0.

Remark: With the scoring model for our CONTEXTMERGE algorithm, we neither
implement the document-document relation Linkage(d1, d2, w) (see Section 3.1.3)
nor the user-document relation Rating(U, d, rating) (see Section 3.1.2) as defined
by our data model in Section 3.1. The reason is that the datasets crawled from real
world social tagging networks (see Section 3.2) and used in our experimental evaluation
presented in Section 6.4, do not exhibit such relations to the full extend or only could
be harvested on a limited scale.

6.3 Query Processing
In this section, we introduce the CONTEXTMERGE algorithm to efficiently evaluate the
top-k matches for a query, using the context score defined with our scoring model in
Section 6.2. As our SOCIALMERGE algorithm, the CONTEXTMERGE algorithm gen-
erally falls into the well-established framework of threshold algorithms over impact-
ordered inverted lists [54, 15] for efficient top-k query processing. However, as the
context score depends on the user who submits a query, it is impossible to precom-
pute per-tag scores for each document and each user. Standard algorithms that rely on
scanning inverted lists cannot be applied here. Instead, CONTEXTMERGE makes use
of information that is available in social tagging networks anyway, namely, lists of doc-
uments tagged by a user and numbers of documents tagged with tags. It incrementally
builds context frequencies by considering users that are related to the querying user in
descending order of social or spiritual friendship strengths, computes upper and lower
bounds for the context scores from these frequencies, and stops the execution as soon
as it can be guaranteed that the best k documents have been identified.

6.3.1 Preprocessing

Our CONTEXTMERGE algorithm makes use of up to five different kinds of prepro-
cessed inverted lists, depending on the instantiation of the algorithmic framework,
which are built at indexing time and accessed mostly sequentially at querying time.
Additional random accesses to look up the value of an entity in a list are possible, but
more expensive than sequential accesses in terms of access cost.

• DOCS(t): A global document list, containing for a tag t, the documents d tagged
by at least one user with t and the corresponding global tag frequencies TF (t, d)
(see Definition 6.9). The documents in the list are sorted in descending order
of TF (t, d).

• USERDOCS(U, t): A user document list, containing for a user U and a tag t,
the (unsorted) set of documents d tagged by U with t and their user-specific
tag frequency tfU (t, d) (see Definition 6.8) which is often equal to 1 in most of
today’s social tagging networks.

• FLISTso(U): A social friendship list, containing for a userU all social friendsUf
and their social friendship strengths sso(U,Uf), sorted in descending order of the
social friendship strengths.

56

6 CONTEXTMERGE ALGORITHM 6.3 Query Processing

See Definition 6.5 for details about the social friendship strength sso(U,Uf).

• FLISTsp(U) : A spiritual friendship list, containing for a user U all spiritual
friends Uf and their spiritual friendship strengths ssp(U,Uf), sorted in descend-
ing order of the spiritual friendship strengths.

See Definition 6.2 for details about the spiritual friendship strength ssp(U,Uf).

• SIMTAGS(t): A tag similarity list, containing for a tag t all similar tags t′ with
their tag similarity tsim(t, t′) multiplied by the inverse document frequency
of t′, and sorted in descending order of tsim(t, t′) · idf(t′). We denote with
tsimw(t, t′) = tsim(t, t′) · idf(t′) the weighted tag similarity.

See Definition 6.14 for details about the tag similarity tsim(t, t′), and Defini-
tion 6.13 for details about idf(t).

Note: In contrast to the document lists used with our SOCIALMERGE algorithm, the
inverted lists used with the CONTEXTMERGE algorithm contain no precomputed doc-
ument scores but only tag frequencies.

6.3.2 Notation

Let be,

• highd(ti) the last value of TF (t, d) read from the DOCS(ti) list

• highso(U, ti) the last value of sso(U,Uf) read from the FLISTso(U) list for ti

• highsp(U, ti) the last value of ssp(U,Uf) read from the FLISTsp(U) list for ti

• hight(ti) the last value of tsimw(t, t′) read from the SIMTAGS(ti) list

Note: The values of highd(ti), highso(U, ti), highsp(U, ti) and hight(ti) are upper
bounds for score values of unseen entries in each of the lists since those are sorted in
descending order of the score values.

Furthermore, to simplify the description and for a better understanding of the query
processing with our CONTEXTMERGE algorithm, we assume that all friendship lists
are normalised:

Definition 6.17 (Normalized Friendship Lists). The friendship strengths of users in the
lists FLISTso(U) and FLISTsp(U) are normalised in such a way that the score within
one list sums up to 1, i.e. the friendship strength values are divided by the sum over all
values.

6.3.3 Operation Mode

The pseudocode shown in Listing 3 depicts the general structure of our query pro-
cessing framework including tag expansion. However, for a better understanding, we
first describe our CONTEXTMERGE algorithm without tag expansion, i.e. in Listing 3,
Line 30 (l == Taglist) is never true. We first consider only the user expansion
while processing a query, i.e. in Listing 3, Line 19 (l == Social) or Line 23
(l == Spiritual) is true. Afterwards we extend the explanation by including tag
expansion.

57

6.3 Query Processing 6 CONTEXTMERGE ALGORITHM

1: ContextMerge(U,Q = {q0, . . . , qn−1}, α, β) {
// Initialisation of data structures for all query tags qi

2: FOR i = 0 TO n− 1 {
3: Social[i][0] = FLISTso(U)
4: Spiritual[i][0] = FLISTsp(U)
5: Global[i][0] = DOCS(qi)
6: highgl(U ,qi) = DOCS(qi)[0].getTF ()
7: highso(U ,qi) = FLISTso(U)[0].getStrength()
8: highsp(U ,qi) = FLISTsp(U)[0].getStrength()
9: Taglist[i] = SIMTAGS(qi)

10: tag[i][0] = qi
11: exp[i] = 0
12: }

// Initialisation of data structures in first dimension for qi
13: QT = {}
14: QC = {}

// Main loop for retrieving query results for U
15: DO{
16: FOR b = 0 TO batchsize {
17: FOR i = 0 TO n− 1 {

// Choose list and dimension by computing upper score bounds
18: l, j =ChoseNextList(tag,exp,Taglist,α,β)
19: IF (l == Social) {
20: (Uf , s) = Social[i][j].next()

// read docs, compute scores and add them to QT or QC if appropriate
21: QT , QC = read(USERDOCS(Uf))
22: highso(U, tag[i][j]) = s
23: }ELSE IF (l == Spiritual) {
24: (Uf , s) = Spiritual[i][j].next()

// read docs, compute scores and add them to QT or QC if appropriate
25: QT , QC = read(USERDOCS(Uf))
26: highsp(U, tag[i][j]) = s
27: }ELSE IF (l == Global) {

// read docs, compute scores and add them to QT or QC if appropriate
28: QT , QC = read(Global[i][j])
29: highgl(U, tag[i][j]) = lastTFReadFrom(Global[i][k])
30: }ELSE IF (l == Taglist) {

// open a new dimension and initialise data structures
31: exp[i] + +
32: tag[i][exp[i]] = Taglist[i].next()
33: Social[i][exp[i]] = FLISTso(U)
34: Spiritual[i][exp[i]] = FLISTsp(U)
35: Global[i][exp[i]] = DOCS(tag[i][exp[i]])
36: highgl(U ,tag[i][exp[i]]) = DOCS(tag[i][exp[i]])[0].getTF ()
37: highso(U ,tag[i][exp[i]]) = FLISTso(U)[0].getStrength()
38: highsp(U ,tag[i][exp[i]]) = FLISTsp(U)[0].getStrength()
39: }
40: }
41: }
42: CheckRandomAccesses()
43: }WHILE(CheckTermination()==No)
44: }

Listing 3: CONTEXTMERGE framework

58

6 CONTEXTMERGE ALGORITHM 6.3 Query Processing

The user expansion is achieved by processing in addition to the global document
list DOCS(ti), the social and spiritual friendship lists FLISTso(U) and FLISTsp(U) for
adding documents from the (expanded) social and spiritual friends into the query pro-
cessing.

Without Tag Expansion

To compute the top-k results for a query qU = {t0, . . . , tn−1} submitted by a user U ,
our CONTEXTMERGE algorithm sequentially scans for all query tags ti the global
document list DOCS(ti) and U ’s friendship lists FLISTso(U) and FLISTsp(U) in an in-
terleaved way. Documents from user document lists USERDOCS(Uf , ti) of social or
spiritual friends Uf are read only when for a query tag ti the user Uf is the next best
friend in one of U ’s friendship lists.

The algorithm maintains a queueQC of candidate documents seen during the scans
and a queueQT of current top-k documents, and terminates as soon as none of the can-
didates can make it into the top-k queue. To improve efficiency, the CONTEXTMERGE
algorithm additionally performs random accesses to the inverted lists if appropriate to
look up values for selected documents. Details are given later in this section.

To limit the number of disk accesses, the USERDOCS(Uf ,ti) lists for users Uf and
query tags ti are opened on demand, namely when the document score that can be read
for a document from a USERDOCS(Uf ,ti) list is greater than the global score that can
be retrieved for a document from the DOCS(ti) list. To this end, the algorithm reads
initially for each query tag ti the document score of the top entry in DOCS(ti) and
the friendship strength of the top friend in each of the social and spiritual friendship
lists FLISTso(U) and FLISTsp(U). The values are the initial settings for highd(ti),
highso(U, ti) and highsp(U, ti), respectively, and are used to compute upper bounds
for document scores as described in the following.

In each iteration of the main loop, the CONTEXTMERGE algorithm performs a
batch of batchsize list accesses, where in each access a number of documents are
read that potentially belong to the final top-k results with the highest document scores.
Since no precomputed scores are stored in any inverted list of documents, but just tag
frequencies, the score contributions and associated upper bounds have to be computed
from each list at run-time. For this, while processing a query of a user U , our algorithm
maintains for each dimension in highd(ti) the last value read from the list DOCS(ti)
for tags ti, and in highso(U, ti) and in highsp(U, ti) the last value read from U ’s social
friendship list FLISTso(U) and spiritual friendship list FLISTsp(U), respectively.

Upper Score Bounds for Document Lists.

The upper bound max_gl for the score contribution read from the next entry of the
global document list DOCS(ti) for a query from a user U with a tag ti can be com-
puted by evaluating the single tag context score sts(ti, d, U) (see Definition 6.12)
with TF (ti, d) = highd(ti) and neglecting the user-specific part by setting its score
contribution to 0, i.e,

maxgl(ti) =
(k1 + 1) · (1− α− β) · highd(ti)
k1 + (1− α− β) · highd(ti)

· idf(ti)

Analogously, the upper score bounds max_so(ti) and max_sp(ti) for documents
from U ’s social or spiritual friend at the next entry in U ’s social or spiritual friend-

59

6.3 Query Processing 6 CONTEXTMERGE ALGORITHM

ship list are computed by setting the score contributions from the global and spiritual,
or global and social part, respectively, in sts(ti, d, U) to 0, considering only the re-
maining (social or spiritual) contribution. For this, the friendship strength sso(U,Uf)
or ssp(U,Uf), respectively, of the next best friend Uf has to be assumed maximal,
as well as the user-specific tag frequency tfUf

(ti, d) (see Definition 6.8) that possi-
bly could be read for document d from Uf ’s user document list USERDOCS(Uf , ti)
(see Section 6.3.1) for tag ti.

The friendship strength of the next best social or spiritual friend cannot be higher
than highso(U, ti) or highsp(U, ti), respectively, or the user had been found earlier
in the corresponding friendship list. With maxtf(ti) being the maximal user-specific
tag frequency, i.e. the maximal number of times a user has tagged a document with ti,
over all users and documents for a given query tag ti, we finally can compute the upper
score bounds max_so(ti) and max_sp(ti) as follows:

max_sp(ti) =
(k1 + 1) · α · |U| · highsp(U, ti) ·maxtf(ti)

k1 + α · |U| · highsp(U, ti) ·maxtf(ti)
· idf(ti)

and

max_so(ti) =
(k1 + 1) · β · |U| · highso(U, ti) ·maxtf(ti)

k1 + β · |U| · highso(U, ti) ·maxtf(ti)
· idf(ti)

Remark: Usually, maxtf(ti) = 1 in today’s social tagging networks. The required
values of idf(ti) for computing the upper bounds can be fetched once during the ini-
tialisation of the execution.

Choosing the appropriate List.

Our CONTEXTMERGE algorithm greedily selects the list which has got the highest
expected score for the next document to be read. The implementation is shown in List-
ing 4: ChooseNextList().

If a friendship list FLISTso(U) or FLISTsp(U) is selected, its next entry is read to
determineU ’s friendUf with the next highest friendship strength and all the documents
from Uf ’s document list USERDOCS(Uf ,ti) for query tag ti are completely read. Note
that document lists USERDOCS(U, ti) of users for a certain tag ti are short compared
to the global list of all documents tagged with the same tag ti. Moreover, in most of
today’s social tagging applications, all documents in a user’s document list have got
the same tag frequency tf(ti) = 1. Hence, it is reasonable to read all of the documents
from a user in one shot.

If the next selected list is a global document list DOCS(ti), a configurable number
of entries are read from it. The DOCS(ti) lists are usually much longer than the user
document lists USERDOCS(U, ti) because the former globally contain the documents
for a tag ti of all users in the network.

Further Note: The algorithm can be optimised if α or β is set to extreme values:
For α+ β = 1, no DOCS(ti) lists for any query tag need to be opened as the execution
can be limited to the social and spiritual context of U ; analogously, if α = β = 0, there
is no need to consider any lists of friends, so just the DOCS(ti) for ti ∈ {t0, . . . , tn−1}
are read and our CONTEXTMERGE algorithm behaves like a standard top-k algorithm.

60

6 CONTEXTMERGE ALGORITHM 6.3 Query Processing

1: ChoseNextList(tag[], exp[], Taglist[], α, β) {
// get maximal upper bound for docs in new dimension

2: Maxtl =upperBound(Taglist[i].peek())
3: IF (α+ β < 1)

// get dimension j with maximal upper bound for docs from global list
4: (Maxgl, j) =upperBound(∀j=0..exp[i]DOCS(tag[i][j]),α, β)
5: IF (α+ β = 0){
6: IF (Maxgl ≥Maxtl){
7: RETURN (”Global”,j)
8: }ELSE{
9: RETURN (”Taglist”)
10: }
11: }ELSE{
12: Uso=FLISTso(U).peek()
13: Usp=FLISTsp(U).peek()

// get dimension k and l with maximal upper bound for docs from friend’s list
14: (Maxso, k) =upperBound(∀k=0..exp[i]USERDOCS(Uso,tag[i][k]),α, β)
15: (Maxsp, l) =upperBound(∀l=0..exp[i]USERDOCS(Usp,tag[i][l]),α, β)
16: IF (Maxtl > max{Maxgl,Maxso,Maxsp}){
17: RETURN (”Taglist”)
18: }ELSE {
19: IF (α+ β < 1 && Maxgl ≥ max{Maxso,Maxsp}){
20: RETURN (”Global”,j)
21: }ELSE {
22: IF (Maxsp ≥Maxso){
23: RETURN (”Spiritual”,l)
24: }ELSE {
25: RETURN (”Social”,k)
26: }
27: }
28: }
29: }
30: }

Listing 4: ChoseNextList method

61

6.3 Query Processing 6 CONTEXTMERGE ALGORITHM

Candidate Management QC , QT .

With our CONTEXTMERGE algorithm, candidates for the query result are collected
while scanning the inverted lists and maintained in two disjoint priority queues QT
and QC , one for the currently considered top-k documents and another one for the
candidate documents that still could make it into the final top-k results, respectively.
During the processing of a query qU = {t0, . . . , tn−1}, our algorithm maintains for
each top-k or candidate document dj the following information:

• Egl(dj) = {DOCS(ti), ...}:
the set of global document lists DOCS(ti) for tags ti in which the document dj
has already been discovered.

• Eso(U, dj) = {USERDOCS(Uf , ti), ...}:
the set of lists USERDOCS(Uf , ti) of U ’s social friends Uf and any tag ti in
which the document dj has already been discovered.

• Esp(U, dj) = {USERDOCS(Uf , ti), ...}:
the set of lists USERDOCS(Uf , ti) of U ’s spiritual friends Uf and any tag ti in
which the document dj has already been discovered.

• rso(dj , ti):

the number of times document dj has been discovered for tag ti in document
lists USERDOCS(Uf ,ti) of social friends Uf .

• rsp(dj , ti):

the number of times document dj has been discovered for tag ti in document
lists USERDOCS(Uf ,ti) of spiritual friends Uf .

• TF (ti, dj):

the global tag frequency of dj , read from the global document list DOCS(ti).

• ufso(dj , ti) =
∑

USERDOCS(Uf ,ti)∈Eso(U,dj)
sso(U,Uf) · tfUf

(ti, dj):

the weighted sum over the user-specific tag frequencies for document dj , read
from user document lists USERDOCS(Uf , ti) of social friends Uf .

• ufsp(dj , ti) =
∑

USERDOCS(Uf ,ti)∈Esp(U,dj)
ssp(U,Uf) · tfUf

(ti, dj):

the weighted sum over the user-specific tag frequencies for document dj , read
from the user document lists USERDOCS(Uf , qi) of spiritual friends Uf .

• ws(dj):

the worst score of the document dj which is a lower bound for the total score
of dj and is computed from the values seen so far for dj ,

• bs(dj):

the best score of the document dj which is an upper bound for the total score
of dj .

62

6 CONTEXTMERGE ALGORITHM 6.3 Query Processing

Worst Scores.

To compute the worst score ws(dj) of a candidate dj , for each query tag ti, the single
tag context score sts(ti, dj , U) (see Definition 6.12) is evaluated by using only the al-
ready discovered score contributions for computing the context frequency cfU (ti, dj)
(see Definition 6.10)

1. The global term frequency is set to 0 for all dimensions in which dj has not yet
been discovered, i.e.

TF (ti, dj) = 0 for DOCS(ti) 6∈ Egl(dj)

2. In the user-specific context part, the weighted sum over user-specific tag fre-
quencies is used only on values that have already been read from the friends’
document lists (instead of the weighted sum over the tag frequencies from all
users’ document lists), i.e.

ufso(dj , ti) is used instead of
∑
Uf∈ U

sso(U,Uf) · tfUf
(ti, dj)

and
ufsp(dj , ti) is used instead of

∑
Uf∈ U

ssp(U,Uf) · tfUf
(ti, dj)

such that the context frequency used for computing the worst score is the following:

cf ′U (ti, dj) =



α · |U| · ufso(dj , ti)
+ β · |U| · ufsp(dj , ti) if DOCS(ti) 6∈ Egl(dj)

(1− α− β) · TF (ti, dj)

+ α · |U| · ufsp(dj , ti)
+ β · |U| · ufso(dj , ti) otherwise.

Note that in conjunctive evaluation, the worst score of a candidate remains 0 un-
til, for each query tag ti, the document has been seen in DOCS(ti) or in one of the
USERDOCS(Uf ,ti) lists read for spiritual or social friends Uf .

Best Scores.

To compute the best score bs(dj) of a document dj , we have to add to its worst score
the maximal score contribution from lists in which dj has not yet been seen. For this,
we evaluate the context frequency cfU (ti, dj) (see Definition 6.10) in the following
way:

1. We estimate an upper bound for the global document list DOCS(ti), i.e.

TF (ti, dj) = highd(ti) for DOCS(ti) 6∈ Egl(dj)

2. For the user-specific context part, we need to estimate the additional contribu-
tion Cso(ti, dj) and Csp(ti, dj) for a tag ti and document dj from users that

63

6.3 Query Processing 6 CONTEXTMERGE ALGORITHM

have not yet been seen and potentially are social or spiritual friends, such that
we can replace, as in the case of the worst score, the weighted sum by the al-
ready computed part of the score plus an upper bound for the not yet known
contribution, i.e.

ufso(dj , ti) + Cso(ti, dj) is used instead of
∑
Uf∈ U

sso(U,Uf) · tfUf
(ti, dj)

and

ufsp(dj , ti) + Csp(ti, dj) is used instead of
∑
Uf∈ U

ssp(U,Uf) · tfUf
(ti, dj)

such that the context frequency used for computing the best score is the following:

cf ′U (ti, dj) =



(1− α− β) · highd(ti)
+ α · |U| · (ufsp(dj , ti) + Cso(ti, dj))

+ β · |U| · (ufso(dj , ti) + Csp(ti, dj)) if DOCS(ti) 6∈ Egl(dj)

(1− α− β) · TF (ti, dj)

+ α · |U| · (ufsp(dj , ti) + Cso(ti, dj))

+ β · |U| · (ufso(dj , ti) + Csp(ti, dj)) otherwise.

Computing Cso(ti, dj) and Csp(ti, dj). As the algorithm considers users in de-
scending order of their friendship strengths, we know, for users Uf who have not yet
been considered for the score computation ti, that

sso(U,Uf) ≤ highso(U, ti)

and
ssp(U,Uf) ≤ highsp(U, ti)

Hence, denoting with

massso =
∑

USERDOCS(Uf ,ti)
∈ Eso(U,ti)

sso(U,Uf)

and
masssp =

∑
USERDOCS(Uf ,ti)
∈ Esp(U,ti)

ssp(U,Uf)

the sum of social and spiritual friendships strengths of users already considered for ti,
respectively, and by maxtf the maximal tag frequency of any user for any document
and tag in the collection (which again is usually 1), we can estimate the maximal re-
maining contribution by unseen social and spiritual friends as

Cso(ti, dj)(mass) = (1−massso) ·maxtf

and
Csp(ti, dj)(mass) = (1−masssp) ·maxtf

64

6 CONTEXTMERGE ALGORITHM 6.3 Query Processing

because sso(U,Uf) and ssp(U,Uf) are normalised to a sum of 1.
Another way of estimating the contribution of unseen users can be achieved if ad-

ditionally the maximal number maxU (ti) of users is known who tagged any document
with ti. The maximal contribution from unseen social or spiritual friends for dj and ti
is then at most

Cso(ti, dj)(maxU) = (maxU (ti)− rso(dj , ti)) ·maxtf · highso(U, ti)

and

Csp(ti, dj)(maxU) = (maxU (ti)− rsp(dj , ti)) ·maxtf · highsp(U, ti)

The value of maxU (ti) can be read during the initialisation of the algorithm.
Furthermore, the score estimation can be made more precise if the global tag fre-

quency TF (ti, dj) (see Definition 6.9) is known because in this case, maxU (ti) can
be replaced by TF (ti, dj) for estimating the additional score contribution Cso(ti, dj)
and Csp(ti, dj). The total amount of times a document dj was tagged with ti by
any user in the social network is often much smaller than the total number of all
users maxU (ti) who ever used ti on any document. Should TF (ti, dj) be not (yet)
known but documents from the global document list DOCS(ti) are read during the query
execution, i.e. (1 − α − β) > 0, then highd(ti) can be used instead of TF (ti, dj)
since the latter cannot be higher than highd(ti) or the correct global tag frequency
would have already been read during the scan of the corresponding global document
list DOCS(ti). Hence,

Cso(ti, dj)(TF) =

{
(TF (ti, dj)− rso(dj , ti)) · highso(U, ti) if TF (ti, dj) is known
(highd(ti)− rso(dj , ti)) · highso(U, ti) otherwise.

and

Csp(ti, dj)(TF) =

{
(TF (ti, dj)− rsp(dj , ti)) · highsp(U, ti) if TF (ti, dj) is known
(highd(ti)− rsp(dj , ti)) · highsp(U, ti) otherwise.

Finally, the computation of the upper bound for the best score of a document dj for
a query tag ti eventually can be made most precise during the query processing, by
taking the minimum of the above mentioned estimations, i.e.

Cso(ti, dj) = min{Cso(ti, dj)(mass), Cso(ti, dj)(maxU), Cso(ti, dj)(TF)}

and

Csp(ti, dj) = min{Csp(ti, dj)(mass), Csp(ti, dj)(maxU), Csp(ti, dj)(TF)}

Termination Test.

For the termination test, the following information is derived and maintained at each
step during the query execution:

• min_wsk :

the minimum worst score of the current top-k documents. It serves as the stop-
ping threshold.

65

6.3 Query Processing 6 CONTEXTMERGE ALGORITHM

• max_bs :

the maximum best score that any currently unseen document can get. It is com-
puted by assuming a virtual document dv , representing any unseen document,
which appears right at the front of the not yet seen part of all document lists. Its
best score bs(dv) is then computed in each dimension by setting TF (ti, dv) =
highd(ti) and estimating the contribution from not yet seen users like previously
described.

Finally, the CheckTermination() method of our CONTEXTMERGE algorithm can
safely indicate its termination while yielding the correct top-k results, when the max-
imum best score of a document in the candidate queue and the best score max_bs of
any unseen document is not larger than min_wsk. Additionally, whenever the best score
of a document in the candidate queue is not higher than min_wsk, this candidate can
be pruned from the queue. Thus, the memory footprint of the execution is kept low
as unneeded candidates can be removed early in the process. To further limit the CPU
overhead of testing the candidates, the CheckTermination() test is only performed
after a full batch of scan steps, and only enabled after the maximal best score max_bs
of the unseen, virtual document dv is not greater than min_wsk.

Random Accesses.

In addition to sequential accesses (SA) to the index lists, our CONTEXTMERGE al-
gorithm can also perform random accesses (RA) to the index lists in order to look up
missing scores of candidates.

However, it is not feasible to check all user document lists USERDOCS(Uf , ti) of
not yet seen users Uf for a document dj , as this would require to explore the full
range of potentially many thousands of transitive friends. Therefore, the only type of
RA applied by CONTEXTMERGE is RA to global document lists DOCS(ti) to look up
the global tag frequency of a document for a tag ti. This serves two purposes: first, it
can reduce the gap between the document’s worst score and best score values because
TF (ti, dj) is then known exactly for one more tag; second, the estimation of the score
contribution from the remaining friends gets more precise as TF (ti, dj) can be used in
the estimation instead of maxU (ti) as previously described.

As RA are much more expensive than SA (in the order of 100 to 1,000 times for real
systems), they have to be carefully selected and scheduled to avoid any unnecessary
work. Our scheduling for RA follows the LAST heuristics from [20]: our algorithm
performs only SA until the estimated cost to perform all RA to remaining candidates
is at most as high as the cost for all SA done so far. We estimate the number of RA
by summing up, for all candidates, the number of query dimensions (i.e. original query
tags) that have not yet been evaluated.

Including Tag Expansion

Tag expansion adds another dimension that needs to be combined with the user expan-
sion dimension in our CONTEXTMERGE algorithm. In Listing 3, we represent these
additional dimensions by multidimensional arrays:

• DOCS[i][j] for global documents for expanded tags tj from ti,

• FRIENDSso[i][j] for social friends in the expanded tag dimension tj ,

66

6 CONTEXTMERGE ALGORITHM 6.3 Query Processing

• FRIENDSsp[i][j] for spiritual friends in the expanded tag dimension tj .

Assume for a query qU from userU with query tag ti, the global document list DOCS(ti),
and the social and spiritual friendship lists FLISTso(U) and FLISTsp(U), respectively,
are opened and stored in the arrays

DOCS[i], FRIENDSso[i] and FRIENDSsp[i],

Conceptually, the tag expansion for a query tag ti means that for each tag tj similar to
a query tag ti a new dimension is opened, i.e.

DOCS[i][j], FRIENDSso[i][j] and FRIENDSsp[i][j],

representing the global document list DOCS(tj), and for tag tj , new instantiations
of U ’s friendship lists of social and spiritual friends, respectively.

In summary, the user expansion for a query tag ti is realised in the implementation
of our CONTEXTMERGE algorithm by introducing in addition to the array representing
the global document list for ti, i.e. DOCS[i], new arrays for representing a user’s so-
cial and spiritual friends, i.e. FRIENDSso[i] and FRIENDSsp[i], whereas the tag
expansion is realised by adding to the existing arrays another dimension j, represent-
ing the global document list and friendship lists in the new dimension of the expanded
tag tj .

Extended Candidate Management. The upper score bounds for these additional
lists are computed like the bounds for lists without tag expansion, but are additionally
multiplied with the tag similarity of the expanded tag tj , i.e. tsim(ti, tj), read from the
associated tag similarity list SIMTAGS(ti). As a consequence, the candidate manage-
ment needs to be extended for each current top-k and candidate document in order to
maintain not only the information used to compute best and worst scores of documents
in regard to a query tag ti but also to each similar tag tj . Following the max-semantics
of our tag expansion score, worst scores and best scores of candidates are estimated
by the maximum worst score and best score over each query tag and its similar tags
weighted by the associated tag similarity tsim(ti, tj).

However, it would be very inefficient to directly include the lists of all similar tags
in the query processing. Instead, the number of expansion tags per original query tag
are limited (e.g. by a limit of 10) with our CONTEXTMERGE algorithm and lists for
similar tags are incrementally added to the processing on the fly.

To do this, the algorithm maintains for each query tag ti the list SIMTAGS(ti)
of tags tj similar to ti and includes these lists in the selection process of the next
list to open. Listing 4 shows the framework of the corresponding ChooseNextList()
method.

To compute the upper bounds of scores for documents that could be retrieved when
considering a similar tag from the list SIMTAGS(ti), our CONTEXTMERGE algorithm
first reads the next entry (tj , tsimw(ti, tj)) from the list without actually processing
the list to its subsequent entry and looks up the value of idf(tj).

The maximal score contribution achieved when reading the next similar tag tj in
SIMTAGS(ti) is estimated by computing the maximum over the score contributions
from the global document list DOCS(tj) and U ’s social or spiritual friendship lists
FLISTso(U) or FLISTsp(U) for tag tj . The so computed maximal score for a doc-
ument with an expanded tag tj similar to ti is finally weighted by the tag similar-
ity tsim(ti, tj).

67

6.4 Experiments 6 CONTEXTMERGE ALGORITHM

As shown in Listing 3, only if the methodChooseNextList() chooses the tag simi-
larity list SIMTAGS(ti) to be proceeded to its next entry (i.e. Line 30, (l == ”Taglist”)
is true), our CONTEXTMERGE algorithm expands the processing by adding the next tag
dimension to DOCS[i][j], FRIENDSso[i][j] and FRIENDSsp[i][j] for the tag tj
similar to ti. By this dynamic handling of tag expansions, the computation of worst
scores for candidates must take into account that the actual score of a document for a
query tag ti is the maximum over all scores from opened lists for similar tags tj . In
addition, the best score computation needs to consider that not all lists for expanded
tags may have been opened already. For each query tag ti where the tag expansion limit
has not yet been reached, it therefore computes the maximal score that any document
can get for the next similar tag tj in SIMTAGS(ti). The best score of a document is
then the maximum best score it can obtain in all opened lists and from the next tag
expansion. Note that this bound is only correct because the entries in SIMTAGS(ti) are
sorted by tsim(ti, tj) · idf(tj).

6.4 Experiments
To evaluate our CONTEXTMERGE algorithm and its scoring model we ran experiments
on two different general scoring configurations, denoted by a social-context configura-
tion and a full-context configuration.

First, with our social-context configuration, we consider only social friendship rela-
tions of users combined with the global view on the friendship graph in social tagging
networks, trimming the score of a document (see Definition 6.15) by using only the
social and global friendship strengths (see Definition 6.5 and 6.7) of users for com-
puting the context frequency (see Definition 6.10) with respect to a user U , tag t and
document d. Hence, with the definition of

cfU (t, d) =
∑
U ′∈ U

(α · sso(U,U ′) + β · ssp(U,U ′)

+ (1− α− β) · sgl(U,U ′)) · tfU ′(t, d)

we’re using a fixed β = 0 and only varying α ∈ [0, 1] instead.
Afterwards, with our full-context configuration, we compute the context frequency

in its entirety, including also the spiritual friendship strengths of users in the computa-
tion by varying (α+ β) ∈ [0, 1] as defined in Definition 6.1.

We evaluate the effectiveness of our CONTEXTMERGE algorithm with both con-
figuration setups by computing precision and normalised discounted cumulative gain
(NDCG) [72] for the top-10 results with relevance assessments of result documents in
three rating levels: 0 (non-relevant), 1 (relevant) and 2 (highly relevant). Details on how
the relevance assessments of documents are accomplished are given in Section 6.4.1
and 6.4.2.

Hence, we compute

• the precision for the top-10 results, treating both ratings of 2 and 1 as relevant.
The precision measure is defined in Definition 5.18 as follows:

precision =
#relevant docs retrieved

total #retrieved docs

68

6 CONTEXTMERGE ALGORITHM 6.4 Experiments

• the normalised discounted cumulative gain (NDCG) [72] for the top-10 results.

DCG aggregates the ratings (2, 1, or 0) of the results with geometrically decreas-
ing weights towards lower ranks:

DCG ∝
∑
rank i

2rating(i) − 1

log2(1 + i)

which is then normalised into NDCG by dividing by the DCG of an ideal result,
i.e. first all results with rating 2, followed by all results with rating 1, followed by
results with rating 0. Formally, let be DCGI the DCG value of an ideal ranking,
then NDCG is defined as follows:

Definition 6.18 (Normalized Discounted Cumulative Gain).

NDCG =
1

DCGI
·
∑
rank i

2rating(i) − 1

log2(1 + i)

NDCG is a widely adopted standard measure in IR.

6.4.1 Social-Context Configuration

We evaluate the effectiveness of our scoring model and the efficiency of the CON-
TEXTMERGE algorithm using a social-context configuration on three datasets retrieved
from three real world social tagging networks (see Section 3.2).

• Delicious.com: The dataset that we harvested by crawling the social bookmark-
ing service Delicious.com contains a total of 12, 389 users, 175, 754 bookmarks
with 2, 781, 096 tags, and 152, 306 friendship connections.

• Flickr.com: For our experiments on the photo hosting network Flickr.com, we
obtained a dataset with a total of 52, 347 users, 10, 000, 000 images annotated
with 29, 111, 183 tags, and 1, 293, 777 friendship connections. In addition to ex-
plicit friends defined by the user (which rarely happens in Flickr.com), we also
considered two users as friends if one of them commented a photo uploaded by
the other.

• LibraryThing.com: By crawling the social book cataloguing service Library-
Thing.com, we retrieved a third dataset with a total of 9, 986 users, 6, 453, 605
books with 14, 295, 693 tags, and 17, 317 friendship edges. As users in Library-
Thing.com typically use tags that consist of multiple terms, we extracted the
terms from the tags and considered the set of terms used by a user for a book
as if the book was tagged with these terms. The friendship relation is here again
defined in a broader way, and consists of explicit friends and users marked as
having interesting libraries.

For detailed information on the social tagging networks Delicious.com, Flickr.com and
LibraryThing.com, see Section 3.2.

69

6.4 Experiments 6 CONTEXTMERGE ALGORITHM

Relevance Assessments

Finding a good set of queries and relevant results for them is not an easy task. Even
though there has been some work on evaluating queries in social networks, most no-
tably by Bao et al. [19] who use DMOZ categories as global ground truth, such methods
don’t fit our user-centric search task. Here, it is not sufficient to consider global rele-
vance measures, as the notion of relevance is highly subjective and dependent on the
initiator of the query and her personal context. For example, a photo of a person may
only be relevant if she is known to the query initiator. However, when we execute our
queries in the context of a user taken from our collections, it is not possible to ask this
user to assess the subjective relevance of a result item.

To solve this problem, we propose two independent evaluation methods, a user-
specific ground truth and a user study with manual relevance assessments for selected
queries.

• User-Specific ground truth. For a given query qU = {t0, . . . , tn−1} from a
user U , we consider as user-specific ground truth the union of all documents
which were tagged with all query tags by U or any of her direct social friends.
Our decision to consider also documents of friends as part of the ground truth
is based on the fact that these are also documents that the user has got direct
access to and it is likely that the user has seen, and agreed with the tags assigned.
Since documents on the ground truth set contain tags from the query, we eval-
uate the queries on a residual collection where query tags by U and her friends
are removed as they are known to lead towards relevant results. Note that this
introduces a penalty for the social-context configuration of our algorithm as the
transitive friends with highest friendship strengths cannot contribute relevant re-
sults by definition. Queries for the ground truth were randomly selected from
tag pairs with medium frequency in the corpus (between 1, 000 and 2, 000), the
query initiator was chosen randomly among users that have previously used the
query tags and have at least one friend in the collection. This process yielded 150
queries for Delicious.com and 184 queries for LibraryThing.com; note that this
method of identifying ground truth cannot be applied to the Flickr.com dataset
because by the nature of corresponding social tagging network, there is almost
no overlap in the photos that users tag.

• User Study. Our user study is done on the LibraryThing.com and Flickr.com
dataset. For Delicious.com we found the manual relevance assessment much
more difficult and a too time consuming task for people not knowing the book-
marked web pages because of the high effort of browsing through many book-
marks, navigating to the associated websites and reading and understanding their
contents in order to hopefully get an idea of the interests of a query user and to
know if a resulting bookmark might meet or not meet those interests. For our user
study on the LibraryThing.com dataset, we asked five colleagues to register with
LibraryThing.com, tag at least 20 books there, and choose some friends among
other users. They then suggested 28 queries related to the books they tagged. For
Flickr.com, we collected 40 queries from other colleagues and randomly selected
a (fictitious) query initiator among the users in our crawl from Flickr.com who
used all query tags at least once on the same photo. We then ran the queries with
different configurations of our algorithm and pooled the results. In the assess-
ment phase, a volunteer (which was the query initiator for LibraryThing.com)

70

6 CONTEXTMERGE ALGORITHM 6.4 Experiments

was shown, in addition to the results for the query from the pool, the documents
(i.e. books or photos) from the query initiator that contain at least one of the
query tags in order to understand the personal context of the query initiator. In
this way, we try to overcome the problem of subjectively assessing result qual-
ities with the eyes of the query initiator. The participant then marks each result
as highly relevant, relevant, or non-relevant in the context of the query initiator
without knowing which configuration generated the result.

Retrieval Effectiveness

Results for the User Studies. The results from the user study are shown in Table 6.
For both the Flickr.com and the LibraryThing.com dataset set the NDCG improved by
increasing α, but decreased when setting α to 0. This shows that while the semantic as-
pect is more important than the social aspect for these specific datasets, the social com-
ponent helps improving the search result, in particular for Flickr.com. This can also be
seen with the precision[10] in Table 7, which for Flickr.com starts at 0.50 for α = 1.0,
increases to 0.54 for α = 0.1 and drops to 0.40 for α = 0.0.

Results for the User-Specific Ground Truth. The ground truth based experiments
(Table 8) show very similar results. Again, result quality improves when decreasing α,
but drops when ignoring the social aspect and setting α = 0. For Delicious.com the
social aspect seems to be more important than for the other datasets, here the optimal
value is α = 0.2. Overall search effectiveness clearly benefits from integrating social
scores.

Without Tag Expansion
α 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.7 0.2 0.1 0.0
Flickr 0.39 0.42 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.36
LibraryThing 0.61 0.65 0.65 0.66 0.67 0.66 0.66 0.68 0.70 0.72 0.71

With Tag Expansion
α 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.7 0.2 0.1 0.0
Flickr 0.42 0.40 0.40 0.40 0.40 0.39 0.39 0.40 0.40 0.40 0.36
LibraryThing 0.61 0.63 0.64 0.65 0.65 0.65 0.65 0.67 0.69 0.72 0.71

Table 6: NDCG[10] for varying α, manual assessments

Without Tag Expansion
α 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.7 0.2 0.1 0.0
Flickr 0.50 0.53 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.40
LibraryThing 0.65 0.67 0.68 0.69 0.69 0.69 0.79 0.70 0.72 0.75 0.75

With Tag Expansion
α 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.7 0.2 0.1 0.0
Flickr 0.54 0.53 0.53 0.53 0.53 0.52 0.52 0.53 0.53 0.52 0.41
LibraryThing 0.64 0.65 0.67 0.68 0.68 0.68 0.68 0.69 0.72 0.75 0.74

Table 7: Precision[10] for varying α values, manual assessments

71

6.4 Experiments 6 CONTEXTMERGE ALGORITHM

Without Tag Expansion
α 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.7 0.2 0.1 0.0
Delicious 0.15 0.25 0.27 0.33 0.34 0.35 0.35 0.37 0.39 0.39 0.36
LibraryThing 0.29 0.42 0.49 0.54 0.53 0.55 0.56 0.59 0.60 0.63 0.62

With Tag Expansion
α 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.7 0.2 0.1 0.0
Delicious 0.16 0.25 0.28 0.36 0.36 0.36 0.36 0.39 0.40 0.37 0.36
LibraryThing 0.30 0.41 0.46 0.53 0.52 0.53 0.55 0.57 0.59 0.61 0.60

Table 8: Precision[10] for varying α values, ground truth experiments

Retrieval Efficiency

Another main concern in this work has been the efficiency and scalability of the query
processing. To assess the efficiency of our CONTEXTMERGE algorithm, we evaluated
the two sets of queries used for the ground-truth based evaluation on the Library-
Thing.com and Delicious.com datasets, and in addition a set of 164 queries on the
Flickr.com dataset that were computed similarly to the others. The algorithm was im-
plemented in Java, with the index lists stored in an Oracle 10g database. The experi-
ments were done on an Windows-based server machine with four single-core Opteron
CPUs and 16GB of main memory. We measured wall-clock runtimes and abstract cost
in terms of disk accesses, where the cost for a random access was 100 and the cost
for a sequential access 1. We compared our algorithm with a standard join-then-sort
algorithm that reads all index lists involved in the query execution into memory, uses
an in-memory hash join to combine entries for the same document, and finally does an
in-memory sort of the candidate set to compute the top-k results.

For each collection, we performed a large variety of experiments to explore the
space of possible values of α, thresholds for maximal tag expansion, and conjunctive
vs. disjunctive evaluation. However, we limit the discussion to selected results with
conjunctive evaluation since results with disjunctive evaluation generally followed the
same trends. Figure 6 depicts the average abstract cost per query for the three col-
lections and selected values of α, evaluated with CONTEXTMERGE and the baseline
without tag expansion. It is evident that our highly efficient top-k algorithm has got at
most half the cost of the baseline algorithm for most values of α, and shows even higher
savings for the LibraryThing.com collection. Table 9 shows some additional details for
the experiments on LibraryThing.com; it is evident from the table that wall-clock run-
time of our algorithm is also at least 50% better than that of the baseline (which is also
the case for the other two collections).

The Figure 7 shows the abstract cost for the same setup but now with tag expansion
up to a limit of 10 similar tags. Note that the bars for the LibraryThing.com baseline
experiments have been cut at 350, 000. Here, the effectiveness of our dynamic tag ex-
pansion is clearly evident, as it saves factors of 3 to 5 compared to the baseline method
which needs to completely scan the lists of all 10 related tags for each query tag. Ta-
ble 9 again shows details for some experiments on LibraryThing.com; here, our highly
efficient method manages to reduce runtime by up to an order of magnitude over the
baseline. The column avg.#exp shows the average number of similar tags considered
per query. Whereas the baseline methods needs to consider all tags, our self-throttling
expansion technique requires only very few similar tags.

72

6 CONTEXTMERGE ALGORITHM 6.4 Experiments

Figure 6: Average Execution Cost without tag expansion

Figure 7: Average Execution Cost with tag expansion

73

6.4 Experiments 6 CONTEXTMERGE ALGORITHM

Configuration time[s] avg.#SA avg.#SA avg.#SA to avg.#RA #avg.
overall to DOCS USERDOCS overall #exp
alpha = 1.0

CONTEXTMERGE 0.70 70,588 0 70,588 65 0
CONTEXTMERGE w/ tag exp. 1.37 126,772 0 126,772 194 7
Baseline 1.43 165,352 0 165,352 0 0
Baseline w/ tag exp. 6.10 67,0405 0 67,0405 0 20

alpha = 0.5
CONTEXTMERGE 0.68 76,012 21,834 54,178 23 0
CONTEXTMERGE w/ tag exp. 0.84 78,808 22,063 56,745 64 2
Baseline 2.0 248,093 82,742 165,351 0 0
Baseline w/ tag exp. 9.92 1,118,554 448,149 670,405 0 20

alpha = 0.0
CONTEXTMERGE 0.14 11,341 11,341 0 1 0
CONTEXTMERGE w/ tag exp. 0.21 12,223 12,223 0 9 1
Baseline 0.59 82742 82,742 0 0 0
Baseline w/ tag exp. 3.43 448,149 448,149 0 0 20

Table 9: Efficiency details for LibraryThing with conjunctive evaluation

6.4.2 Full-Context Configuration

With a full-context configuration, our CONTEXTMERGE algorithm considers the spir-
itual, social and global friendship strengths (see Definition 6.2, 6.5, 6.7) of users with
respect to a query initiator for computing scores of documents as defined by our scoring
model in Section 6.2.

Retrieval Effectiveness

To study the effectiveness of our fully context-specific scoring model, taking social and
spiritual friendship relations into account, we performed again experiments with data
extracted from partial crawls of the social book cataloguing service LibraryThing.com.
We concentrated on LibraryThing.com only, because it is the most interesting social
tagging network among the ones introduced in Section 3.2, i.e. LibraryThing.com, De-
licious.com and Flickr.com. We found from the previous experiments in Section 5.4
and 6.4.1 that the social aspects in Delicious.com to be rather marginal, as most book-
marked pages are of fairly high quality anyway; so a user does not benefit from her
friends’ recommendations more than from the overall community. Moreover, manual
relevance assessment from the viewpoint of an unknown user in Delicious.com is dif-
ficult as described in Section 6.4.1. Flickr.com, on the other hand, has recently grown
so much that the tagging quality seems to be gradually degrading, also due the fact
that only the owner of a photo or her friends usually can provide tags since, by the
nature of photography and the photo hosting service Flickr.com in particular, there is
almost no overlap in photo collections of users. Hence, mostly only the owner of a
photo indeed annotates a photo with tags and these are sometimes relatively unspecific
and given to an entire series of photos (e.g. vacation July 2007) instead of photos be-
ing individually tagged. LibraryThing.com, in contrast, features intensive tagging of a
quality-controlled set of items, namely, published books, and its users have built up rich
social relations. Finally, books are a matter of subjective taste, so that social relations
do indeed have got high potential value. You trust your friends’ taste, not necessarily
their “technical” expertise.

For our studies, we extracted a dataset from the LibraryThing.com website includ-
ing 11, 717 users who together own or have read 1, 289, 128 distinct books with a
total of 14, 738, 646 tagging events (including same tags for the same book by differ-
ent users), and 17, 915 social friendship relations (see Definition 3.1). For the latter,
we used the LibraryThing.com notion of friends (where users mutually agree on be-

74

6 CONTEXTMERGE ALGORITHM 6.4 Experiments

user 1 user 2 user 3
thailand travel web learning time traveler
asia guide travel mountain climbing leonardo vinci
technology enhanced learn-
ing knowledge manage-
ment

kali death english grammar

multimedia metadata stan-
dards

buddha romance prague

knowledge management
media theory

houdini brazilian literature

social network analysis
theory

science illusion magic shalespeare play

multimedia social software mystery magic stephanie plum
religion irony humor search engines
yakuza spanish literature
hitman portuguese literature

harry potter
wizard

user 4 user 5 user 6
religion god world information retrieval sf nebula winner
challenge theory probability statistics fantasy politics
imagination fantasy sci-
ence

database system fantasy dragaera

drama story novel transaction management sf nuclear war
magic fantasy data mining fantasy malazan
india philosophy software development
fantasy story
novel family life
science fiction future

Table 10: Queries of the user study

ing friends) and the notion of referring to an “interesting library” (see Section 3.2.3).
The users included 6 users from our institute who have been contributing to Library-
Thing.com for an extended time period and have made various social connections.
These 6 users ran queries on the dataset and assessed the quality of the results in a
user study.

Note that such human assessment is indispensable for this kind of experiments, and
in our setting it was crucial that a query result was assessed by the same user who posed
the query. Altogether, our 6 test users ran 49 queries, shown in Table 10.

Query results were computed for a variety of values of α and β, with and without
tag expansion. The results from all runs for the same query were pooled; all of them
together were shown to the corresponding user in random order (in a browser-based
GUI), and the user assessed the quality of each result by assigning one of three possi-
ble ratings:

75

6.4 Experiments 6 CONTEXTMERGE ALGORITHM

H
HHHHα

β
0.0 0.2 0.5 0.8 1.0

0.0 0.666 0.698 0.688 0.682 0.680
0.2 0.661 0.678 0.686 0.690 n/a
0.5 0.637 0.657 0.663 n/a n/a
0.8 0.612 0.647 n/a n/a n/a
1.0 0.549 n/a n/a n/a n/a

Table 11: Precision[10] for all users

HHH
HHα
β

0.0 0.2 0.5 0.8 1.0

0.0 0.546 0.572 0.568 0.565 0.565
0.2 0.564 0.572 0.579 0.581 n/a
0.5 0.539 0.552 0.559 n/a n/a
0.8 0.515 0.546 n/a n/a n/a
1.0 0.465 n/a n/a n/a n/a

Table 12: NDCG[10] for all users

0 = irrelevant or uninteresting

1 = relevant and interesting

2 = super-relevant and very appealing

Results that the user already knew, that is, books that she has got in her own library, are
always discarded.

The Tables 11 and 12 show the precision and NDCG values for different choices
of the configuration parameters α and β, without any form of tag expansion. These are
micro-averaged results over all test users. Values printed in boldface are results that
were significantly better than the baseline case (α = β = 0) according to a statistical
t-test with test level 0.1 [109].

The results show that both social (increasing α) and spiritual (increasing β) pro-
cessing can improve the result quality. This holds for each of these two directions
individually, and the combined effect is even better with a typical maximum at α = 0.2
and β = 0.8. It may seem that the improvements, for example, from an NDCG value
of 0.546 for the baseline to 0.581 for the best case, are not impressive. However, one
has to keep in mind that differences in such effectiveness measures generally tend to
be small in IR experiments as opposed to efficiency differences (e.g. response times) in
the DB literature; we emphasise that the gains are statistically significant [109]. More-
over, it is worth pointing out that for some individual users (i.e. micro-averaging over
the queries of one user only) or for individual queries the gains are higher. For ex-
ample, Tables 13 and 14 show the results for user2 and user5, aggregated over their
individual queries issued and evaluated by the users themselves. Here the NDCG value
increased from the baseline value of 0.67 to 0.73 for α = 0.2, β = 0.8, or from 0.51
to 0.72 for α = 0.5, β = 0.5, respectively.

As anecdotic evidence, the query “science illusion magic” posed by user2 strongly
benefited from the user’s social relations: with global scoring alone, many good results

76

6 CONTEXTMERGE ALGORITHM 6.4 Experiments

H
HHHHα

β
0.0 0.2 0.5 0.8 1.0

0.0 0.68 0.69 0.69 0.68 0.69
0.2 0.68 0.68 0.71 0.73 n/a
0.5 0.62 0.62 0.64 n/a n/a
0.8 0.59 0.60 n/a n/a n/a
1.0 0.59 n/a n/a n/a n/a

Table 13: NDCG[10] for user2

HH
HHHα

β
0.0 0.2 0.5 0.8 1.0

0.0 0.51 0.64 0.65 0.66 0.668
0.2 0.67 0.70 0.71 0.70 n/a
0.5 0.67 0.70 0.72 n/a n/a
0.8 0.65 0.71 n/a n/a n/a
1.0 0.63 n/a n/a n/a n/a

Table 14: NDCG[10] for user5

were missed; with spiritual scoring alone, the results drifted towards a big “Harry Pot-
ter” cluster which was not what the user wanted; only the combination of social and
spiritual similarity gave the excellent results that the user appreciated (which included
novels such as “Prestige”, “Labyrinths”, “Invisible Cities”).

Table 15 shows the NDCG results with tag expansion enabled, aggregated over
all 49 queries of the user study. Across the entire query mix of all users, the tag expan-
sion did not achieve significant improvements over the results without tag expansion
but again, for individual users such as user2 there were noticeable gains. For example,
the query “Yakuza” created the expansion tags “Cosa Nostra”, “Triads”, and “night-
club” (among the top-5 expansions); the first and second expansion could have been
expected (and created also by an ontology-based method), but the third expansion re-
ally reflected tag co-occurrences and implicitly the contents of the kinds of novels that
the user wished to discover.

From a cognitive viewpoint, it is desirable that query results in social tagging net-
works exhibit some diversity. For interesting and surprising discoveries, you want to
benefit from the natural diversity of cultures and tastes in your social network. (Even
computer geeks should have some friends who are not in the IT business or in com-

HHH
HHα
β

0.0 0.2 0.5 0.8 1.0

0.0 0.545 0.565 0.565 0.563 0.565
0.2 0.561 0.573 0.581 0.582 n/a
0.5 0.538 0.550 0.554 n/a n/a
0.8 0.506 0.540 n/a n/a n/a
1.0 0.459 n/a n/a n/a n/a

Table 15: NDCG[10] with up to 5 expansions per tag

77

6.4 Experiments 6 CONTEXTMERGE ALGORITHM

puter science.) Using only spiritual similarities among users would bear the risk of
not exploring items widely enough. To study this hypothesis, we also measured a no-
tion of diversity among the relevant results of a given query (rating 1 or 2 for pre-
cision, rating 2 for strong precision). We computed the pairwise cosine dissimilarity
(i.e. 1−cosine similarity) for the results (inspired by, but not directly related to notions
of result incoherence and query ambiguity [41]). To this end, each result document d
was viewed as a feature vector or frequency distribution over tags, with the frequency
of tag t set to the total number of taggings with t assigned to d aggregated over all
users. In most cases, these diversity measures were maximal at α values around 0.5;
for non-social recommendations with α = 0 the diversity was much lower. This clearly
shows the importance of social relations in diversity-aware recommendations.

6.4.3 Lessons Learnt and Open Issues

We have developed a comprehensive framework for socially enhanced search, ranking,
and recommendation. Our experimental evaluation exhibits interesting results and in-
dicates the potential of exploiting social-tagging information for scoring and ranking.
However, the results reveal mixed insights, and thus also underline the need for further
investigating this line of research.

The combination of social and spiritual scoring nicely improved the results of cer-
tain queries or users, but also led to result degradation in other cases. On average, there
is a significant gain but it is not as impressive as one could have hoped for. It seems
that categorising queries and identifying the query types that can benefit from social
and spiritual relations is the key to a robust solution that would choose non-zero values
for α and β only when benefits can be expected. In our user study, the queries seem to
fall into the following four categories:

1. Queries with a purely global information need that perform best when α = β =
0; examples are “Houdini”, “search engines”, “English grammar” or “Harry Pot-
ter band 5”, all fairly precisely characterised topics with objectively agreeable
high-quality results.

2. Queries with a subjective-taste and thus social aspect that perform best when
α ≈ 1; an example is the query “wizard” or “fantasy magic wizard”. This query
produces a large number of results but the user may like only particular types of
novels such as “Lord of the Rings”, for which “wizard” is a relatively infrequent
tag overall but was frequent among that user’s friends.

3. Queries with a spiritual information need that perform best when β ≈ 1; an ex-
ample is the query “Asia travel guide” or “Computer programming Amiga”where
one can harness the aggregated expertise of the entire user community without
consideration of social relations.

4. Queries with a mixed information need that perform best when α, β ≈ 0.5; an
example is the query “mystery magic”.

Our future work aims at developing a principled understanding of query proper-
ties and their potential for socially-enhanced recommendation. Other issues that are
worthwhile addressing include the temporal evolution of tagging and social relations
(see, e.g. [18, 52]) and the notion of diversity in query results and recommendations
(see, e.g. [85]). For interesting and surprising discoveries, you want to benefit from the
natural diversity of cultures and tastes in your social network.

78

7 SYSTEM ARCHITECTURE

7 System Architecture
We implemented our SENSE framework with its algorithms SOCIALMERGE and CON-
TEXTMERGE. The basic architecture is depicted in Figure 8 for the CONTEXTMERGE
algorithm, the instantiation of SENSE with the SOCIALMERGE algorithm is similar.

In a first step, the data already available in social tagging networks is harvested
and imported in SENSE by creating for each tag t the global document lists DOCS(t)
and for each user U , the user document lists USERDOCS(U, t) needed for our CON-
TEXTMERGE algorithm (see Section 6.3.1). Next, for all tags t, the tag similarity lists
SIMTAGS(t) for tags t′ similar to t are precomputed from the data available in a so-
cial tagging network, as well as the social and spiritual friendship lists FLISTso(U) and
FLISTsp(U) (see Section 6.3.1) for all usersU . In the case of SOCIALMERGE the corre-
sponding inverted lists USERDOCS(U, t), FLIST(U) and SIMTAGS(t) are precomputed
(see Section 5.2.1).

The imported and precomputed index lists are finally fed into our social merge al-
gorithm which sequentially scans them for answering queries from a user. The user
interface for submitting queries is realised as a Java Servlet hosted by a Tomcat server.
Results from our CONTEXTMERGE (or SOCIALMERGE) algorithm are sent back to
the Tomcat server and visualised again in a Java Servlet.

We fully implemented the SENSE framework with its CONTEXTMERGE algorithm
in a prototype application, establishing a hybrid personalised search and exploration
system where a user can perform spiritual, social, or global searches in social tag-
ging networks or hybrid combinations of them. We imported three different datasets
retrieved from the real world social tagging networks Flickr.com, Delicious.com and
LibraryThing.com, and which were basis of our experimental evaluation in Section 6.4.
Section 3.2 gives an overview over each of these social tagging networks.

Any user of one of the three social tagging networks who happen to be also found in
our imported datasets can immediately log in to the system and submit queries in her
own context. However, for the purpose of showcasing SENSE, we also implemented
a way to enable search in the context of any other user whose data was imported
into SENSE. For this, our prototype system allows to first choose among the avail-
able datasets from Flickr.com, Delicious.com or LibraryThing.com, and then to enter a
query with one or multiple tags in order to find an appropriate user for issuing a query
containing these tags. The corresponding user interface is shown in Figure 9a. The
SENSE prototype system generates a list of candidates to be the initiators of the query,
based on the overlap of the tags used in the query with the tags used on the documents
of users, and in addition, on the number of direct social friends users have got in the
social tagging network. Thus, users in the candidates list have got at least one docu-
ment that is annotated with the query tags and at least one social friend. The number of
documents shows how knowledgeable is the candidate about the query subject, and the
number of friends shows how well connected is the candidate to the community. These
two parameters have an impact on the query results, thus, they are the two main criteria
of choosing a candidate as query initiator.

Once a user has been chosen from the provided list of candidates to log in to the
system, queries can be submit in the context of that user.

Submitting queries in the context of different users also allows to study the influ-
ence of the match of the query and user profile (huge vs. few or even no tag overlap)
and the size of the user’s friend network on query performance and result quality.

A query is evaluated as spiritual, social or global search (using buttons in the user

79

7 SYSTEM ARCHITECTURE

D1

D9

D7

D1

D9

D7

D1

D9

D7

d3

d8

d7 t7

t2

t8

t3

t9

U4

D1

D9

D7

D1

D9

D7

D1

D9

D7

d1

d6

d5 t1

t1

t1

t5

t6

U1

D1

D9

D7

D1

D9

D7

D1

D9

D7

d4

d8

d5 t5

t4

t8

t5 t6

t6

U3

D1

D9

D7

D1

D9

D7

D1

D9

D7

d3

d9

d7 t7

t2

t2

t3

t8 t9

U2

import

precompute

U
ser In terfa

c e

Tomcat
Server

ContextMerge
Algorithm

Input data

2.Tags(t):
t

tsim(t,t')t'

tFor each tag : UFor each user :

4.Friendship(U):
U

U' Fso(U,U')

U
'

F
sp
(U,U')

U

1.Docs(t):
t

d TF(t,d)

3.Userdocs(U,t):

d
t

d dU d O
racle D

B

Figure 8: System Architecture of SENSE with our CONTEXTMERGE algorithm

80

7 SYSTEM ARCHITECTURE

interface that set the parameters to predefined values) or as hybrid query by explicitly
specifying values for the parameters α and β according to the scoring model as de-
scribed in Section 6.2. By changing the appropriate settings, our implementation also
allows for enabling or disabling tag expansion for individual searches. Figure 9b shows
the corresponding user interface.

Finally, the results for a query are computed and listed in a configurable number
of columns as shown in Figure 10. In addition, the query initiator’s own documents
matching the query tags are displayed in a scrollable frame of the size of a single row
at the top of the result page. In this way, when executing a query in the context of some
unknown user, it is possible to understand the user’s interests in regard to the query
tags.

When clicking on a result document, a browsable user cloud and tag cloud is
shown, visualising the most influential users and their tags that contributed the highest
scores to the result. By clicking on a user, the query initiator can browse all the user’s

(a) User Interface in SENSE for choosing the dataset, finding a user for a query and log in to the system

(b) User Interface in SENSE for entering a serach query and setting the maximal tag expansion

Figure 9: Query Interface of our Prototype System SENSE

81

7 SYSTEM ARCHITECTURE

Figure 10: Query User Interface in SENSE and Result List for LibraryThing.com

documents and tags just like in the social tagging network itself. This allows to get
some idea why these results were generated. The query evaluation usually takes less
than one second for our imported datasets.

82

Part B

Dynamic Updates in User Networks

83

8 INTRODUCTION

8 Introduction
After having introduced in Part A our SENSE framework for socially enhanced search
and exploration of contents in social tagging networks, a remaining question is how to
dynamically update the social friendship graph of users in social networks when new
users enter the system or new friendship connections between users are created.

Since social friendship relations in SENSE are based on the shortest path distances
of users in the friendship graph of social tagging networks, we are introducing in Part B
of this work a novel algorithm for solving the dynamic All Pairs Shortest Distance
(dynamic APSD) problem in large graphs.

8.1 Motivation
An increasing amount of applications need to manage large graphs with millions of
nodes and billions of edges. Examples include user graphs in social networks such as
Facebook.com, MySpace.com, or Twitter.com, knowledge graphs in large knowledge
bases such as DBPedia [16] or YAGO [121], or keyword search in large databases. A
common problem that many applications need to solve is accessing transitive neigh-
bours of a specific node in the order of increasing distance; it is a key building block
of algorithms for aggregated search in social networks [33, 111], explorative search of
connections in knowledge bases [80], or retrieval in linked documents [57].

Likewise, our SENSE framework presented in part A relies on retrieving documents
from the users’ transitive friends according to their distances in the friendship graph of
a social tagging network in which users are represented as nodes and friendship rela-
tions between users as weighted edges.

For small graphs that fit into main memory, incrementally retrieving neighbours of
a node can be efficiently implemented by running Dijkstra’s algorithm [48]. However,
this is not a valid option for large, disk-resident graphs as each access to a node cor-
responds to one disk access. An efficient solution to this problem is to precompute for
each node in the graph the distances to all other nodes, and maintain them in a list of
nodes ordered by their distances.

As shown for our SOCIALMERGE and CONTEXTMERGE algorithm introduced in
Chapter 5 and 6 of Part A, such precomputed lists are crucial for the effectiveness of
both algorithms and are employed for storing for each user a list of social friends based
on their shortest path distances in the friendship graph of a social tagging network.

While for static graphs that do not change precomputing this information can be ex-
pensive if graphs are large, it is an offline, one-time operation. After the precomputation
is done, it requires only a few disk accesses to load a list and access all neighbours of
a node.

This solution, however, turns prohibitively expensive when the graph changes over
time. When a new edge from a node U is inserted or the weight of an existing edge
starting at a node V changes such that the distance to the edge’s destination node is
reduced, the precomputed nearest neighbour list of U or V , respectively, needs to be
recomputed: new nodes may have appeared in that list or the distance of already con-
nected nodes may have decreased. Figure 11a depicts an example graph and 11b the
corresponding initial neighbour list for node U containing its transitive neighbours and
their shortest path distances. In this example, the length of a path is computed by sum-
ming up its edge weights. The dashed lines indicate two graph updates: a new edge
with weight 1 is inserted at node U and the weight of the edge starting at V is reduced

85

8.1 Motivation 8 INTRODUCTION

Figure 11: Example graph: A single inserted edge at U changes its entire nearest neigh-
bour list and a decreased edge weight at V affects almost the entire graph because of
changes in shortest paths for all predecessor nodes of Z.

from 10 to 2. As a consequence, nodesW andX are now connected withU through the
new edge and appear as additional entries in U ’s neighbour list. Furthermore, the path
to V and Z through the new edge is now shorter than the previously existing shortest
path (i.e. the distance to V and Z changes from 13 and 23 to 6 and 8, respectively).
Hence, the corresponding entries in U ’s nearest neighbour list change as shown in Fig-
ure 11c. More severely, the nearest neighbour lists of all nodes preceding an updated
node V may have to be recomputed because a new edge or a changed weight may affect
the distances from these nodes to any node reachable through that edge. In our given
example the shortest path distance to node Z changes indeed for all other nodes in the
graph due to the decreased weight of the edge starting at V .

Of course, the problem is evident especially in popular, fast growing social tagging
networks, and thus, our SOCIALMERGE and CONTEXTMERGE algorithm suffer from
it, too, due to their need of sequentially accessing friendship lists sorted according
to the shortest path distances of friends. When new users register with social tagging
networks or new friendship connections between users are established, these updates
to the friendship graph need to be reflected in the users’ lists of nearest friends.

This problem, known as dynamic All Pairs Shortest Distance (dynamic APSD), has
been intensively studied in the literature for only inserting / decreasing or deleting / in-
creasing of edge weights in graphs or both (see Section 8.2 for an overview). However,
this existing work focuses on maintaining in-memory data structures for graphs that
fit into main memory, and therefore cannot be applied for large, disk-resident graphs.
Additionally, the proposed algorithms attempt to update all affected precomputed in-
formation as soon as a new edge is inserted. In most applications, this proactive update
is not needed as some lists may not be read for a long time, and additional updates in
the future may happen before the list is accessed again due to a certain query to the
system.

In this work, we propose an algorithm for incrementally maintaining precomputed

86

8 INTRODUCTION 8.2 Related Work

nearest neighbour lists under edge addition and changing edge weights that decrease
the distances of paths. Updates to the lists are deferred as long as possible, namely to
the point where a query attempts to read an entry from a list which is not up to date.
Any query that does not touch updated edges will efficiently read the precomputed list
of neighbours.

With regard to the SENSE framework presented in Part A of this work, our algo-
rithm for incrementally maintaining neighbour lists, i.e. friendship lists in SENSE, has
been developed with friendship graphs of social networks in mind where the insertion
of friendship connections happen much more frequent than their deletion. Moreover,
we are aiming in our work at operations on graphs that introduce "better" paths (to
friends in social networks), not on operations that reduce the quality of existing paths.

We provide two alternative versions of the algorithm, where the first incrementally
maintains friendship lists by updating complete or fixed lengths prefixes of lists on
demand, and the second integrates updates by dynamically determining when the pro-
cessing of a list can be stopped, i.e. reading a variable number of entries from each
list.

8.2 Related Work
The majority of work on indexing graphs has focused on compactly storing reachabil-
ity information. Here, the proposed approaches include 2-hop covers [37, 113], 3-hop
covers [75, 76], and storing tree- and non-tree edges of a graph separately [126]. Only
a few proposals exist for efficiently updating such an index [29, 113].

Efficiently representing distances in such a compact index is a difficult problem,
and mainly two classes of solutions have been proposed: adding distance information
to 2-hop covers [28, 36, 37, 113], and building a shortest-path index by storing mul-
tiple BFS trees [130]. Gubichev et al [58] use path sketches to compute approximate
distances and shortest paths between two nodes. Only [113] considers the problem of
incremental index maintenance.

The problem of maintaining all-pairs shortest path information under certain classes
of graph updates (like increasing or decreasing edge weights) is also an active topic in
the algorithms community [21, 47, 55, 96, 46, 83, 104]. Here, solutions usually fo-
cus on graphs that fit in main memory. King [83] proposes a fully dynamic algorithm
for APSP in directed graphs with integer edge weights bounded by b, which requires
constant time to determine the distance between two arbitrary nodes. It provides amor-
tized cost of O(n2

√
bn) for a series of updates in a graph with n nodes [84], and it

can be modified to retrieve neighbors of a node in ascending order of distance. Frigoni
et al. [55] propose an algorithm for fully dynamic APSP in directed graphs with real
weights; here, the amortized complexity of an update is O(m · log n) in a graph with
n nodes and m edges. Demetrescu and Italiano [47] experimentally compare several
algorithms for the dynamic all-pair shortest path problem, namely [46, 83, 104] on ran-
dom and real-world graphs of up to 3,000 nodes. Unlike these proposals, our method
assumes that the graph is too big to store in memory and needs to be kept on disk, so
traversing the graph as these methods do is not viable here. To the best of our knowl-
edge, Meyer’s work [96] is the only that considers graphs stored on external memory;
however, it does not precompute any information, but performs a BFS traversal of the
graph to determine node distances.

The problem of incremental maintenance of precomputed transitive closures and
distances in databases was considered in [50, 100]. They update the complete set of
precomputed information after a new edge was inserted or an existing edge was deleted.

87

9 MAINTAINING APSP DISTANCES

It is incremental in the sense that it does not need to recompute from scratch, but can
modify the existing information. In contrast, our proposed approach is also incremental,
but considers only a subset of the precomputed information affected by an update, and
defers maintenance to the point where queries access information that is potentially
out-of-date.

9 Maintaining APSP Distances in Large Graphs
This section introduces our algorithm for incrementally maintaining shortest distances
of shortest paths in directed, weighted graphs under edge insertion and changing edge
weights that decrease the distances of paths.

9.1 Overview
For each node in a graph, we store an inverted index list (see Part A, Section 3.3) that
represents all reachable nodes in the graph. A list entry contains a node identifier and
the weight associated to the shortest path to that node.

We associate a weight to all paths in order to avoid the confusion about the differ-
ent notions of a shortest path given in Definition 5.3 and 6.6 in the Chapters 5 and 6
of Part A introducing our SOCIALMERGE and CONTEXTMERGE algorithms, respec-
tively. In both cases, the definition of a shortest path aims at maximising the friendship
strength of two users being connected in a friendship graph of a social tagging network.
Therefore, we define the weight of a shortest path as follows:

Definition 9.1 (Shortest Path Weight). Independent of the details of how the length of
a path between nodes is defined, we define that the weight associated to a path has to
be higher the shorter a path is. Hence, a shortest path between two nodes is a path with
maximal weight.

In the case a path actually becomes shorter by decreasing its edge weights (e.g. by
summing over edge weights as in the example given in Section 8.1 or in Definition 5.3
which implicitly assumes edge weights of 1 for all edges) then, to match the defi-
nition 9.1, the weight associated to a path can be defined by the inverse of the path
length. In the contrary case, that paths become longer by decreasing edge weights (as
in Definition 6.6), the weight of a path can be defined to be equal to the path’s length.

Definition 9.1 allows us to talk synonymously about shortest paths and paths with
maximal weights. Hence, the presented algorithm applies to graphs with updates that
increase or decrease edge weights as long as they are always reducing path distances.

Inverted list of nodes are accessed only sequentially by our algorithm for main-
taining all pair shortest distances. The rationale to restrict ourselves to only sequential
access index lists is two-fold:

1. Efficiency: When fetching data from a comparably slow storage backend, a se-
quential access is much faster than a random access which first has to search for
the location at the storage backend in order to eventually access the data. When
doing only sequential accesses, elements at the storage backend are fetched one
by one in the order they have been stored. Hence, there is no need to search for
a data item because after retrieving the first one, the position of the next item is
already known.

88

9 MAINTAINING APSP DISTANCES 9.2 Social Network Setup

In our algorithm, we exploit the efficiency of sequential accesses to maintain
shortest distances in directed graphs.

2. Applicability of TA: The popular family of so-called threshold algorithms (TA)
operate on score-sorted index lists and assume that the score aggregation func-
tion is monotonic (e.g. a weighted summation). We employ variants of Fagin’s
Threshold Algorithm (TA) [53] with flexible scheduling of list scans for our so-
cial search engine SENSE which operates on social tagging networks and utilises
shortest path distances between users of the corresponding friendship graph to
search for and explore available contents (see Part A of this work).

By using only sequential accesses on inverted lists for maintaining weighted,
shortest distances, we can keep the data structures needed by TA up-to-date while
processing these lists. Consequently, there is no need to recompute inverted lists
from scratch.

Dynamic Updates

Typically, a social network grows dynamically over time. Users in such a network can
easily choose other users as new friends which corresponds to an insertion of a new and
possibly weighted edge into the social friendship graph of the network. Additionally,
an edge insertion can also cause an increase in the weight of the shortest paths between
a large number of users because of a closer connection over the newly inserted edge.

We call such changes to the social network dynamic updates to contrast the fixed
weights and edges in a static graph where all connections are precomputed and do not
change until the entire graph is reconstructed again.

In the following sections, we introduce our algorithm for incrementally maintaining
weighted, shortest path distances in directed graphs under edge insertion and increas-
ing path weights. For each node in the graph, we store a corresponding inverted list that
represents all its reachable nodes. A list entry contains a node identifier and the asso-
ciated weight of the shortest path to that node. The list is sorted in descending order of
all weights such that the nearest node is the top entry in the list.

Since our algorithm has been designed with data from social networks in mind, we
will use the notation and terminology given in Section 9.2 in the remaining sections
and chapters of Part B.

9.2 Social Network Setup

In our social network setup, a node in the associated friendship graph corresponds to
a user of the network and the users’ social friendship connections are represented by
edges in the graph. Based on the shortest path distances between users, and in presence
of dynamic (friendship) updates (see Section 9.1), we formally define in the following
the notion of dynamic friendship graphs in social networks.

Dynamic Friendship Graph

We introduce the basic data structure used in this social network setup, representing
the inverted lists required by our incremental APSD algorithm, and the terminology

89

9.2 Social Network Setup 9 MAINTAINING APSP DISTANCES

and notation used in the following discussion of the algorithm for dynamically updat-
ing users’ lists of transitive friends in social networks. The terminology and definitions
are based on the data model introduced in Part A, Section 3.1. Hence, the friendship
graph of social tagging networks is defined by the social friendship relations of users
(see Part A, Definition 3.1) inherent to the network.

Definition 9.2 (User U). Each user U of a social network is represented by a node in
the corresponding friendship graph.

The friendship relations between users define the friendship edges in the graph:

Definition 9.3 (Friendship Edge (U,Uf) & Friend Uf). A direct edge e = (U,Uf) in
the friendship graph represents the friendship relation between two users U , Uf and is
called a friendship edge. Uf is called a friend of U .

Definition 9.4 (Dynamic Friendship Graph G). We consider G = (G0, . . . , Gt, . . .) a
sequence of directed, weighted friendship graphs Gt for t > 0 with a constant node
set V = {U0, . . . , Un−1}, and a varying set Et of edges and weights wt. The nodes
correspond to the users in a social network and the weighted edges to the friendship
edges between pairs of users. The index t in the sequence of friendship graphs corre-
spond to the version of the graph at time t.

A friendship graph Gt = (V,Et) with friendship edges Et at time t does not
contain any self edges. For each edge e = (Ui → Uj) ∈ Et, there is an edge
weight 0 < wt(e) < 1. Two consecutive friendship graphs Gt−1 and Gt in the se-
quence differ either by

• the weight of a friendship edge that was increased in Gt, i.e. wt−1(e) < wt(e)
for exactly one edge e and wt(e′) = wt−1(e′) for all other edges e′ 6= e, or

• a single friendship edge e = (U → Uf) was added to Gt−1.

Note: The restriction to a constant set of users has been made only to simplify the
discussion. The retrieval of the nearest friends for newly added users without friendship
edges is trivial as there are no connections to friends at all. Hence, those users could be
ignored for the definition of Gt and Gt+1. However, as soon as there’s a new edge for
or to such a node, the problem description complies to the one mentioned above.

We call the new or increased friendship edge in Gt, for t > 0, a friendship update
on U at time t. It can be thought of as a user Uf in Gt−1 is becoming a friend or a
better friend of U at time t.

Definition 9.5 (Friendship Update (U → Uf)). We consider the insertion of a new
friendship edge (U → Uf) or the change of a weight of an existing friendship edge
(U → Uf), representing the difference in the sequence of friendship graphs from Gt−1
to Gt, a friendship update on U with respect to Uf at time t.

Each friendship update is defined by a unique timestamp TSe(U → Uf) corre-
sponding to time t of the occurrence of the update.

With this construction of a friendship graph, we now can define the friendship strengths,
the shortest paths and the distances between users. The definitions follow the ones given
in Chapter 6 of Part A for our CONTEXTMERGE algorithm.

We define the friendship strength between two direct friends to be a value between 0
and 1 and being equal to the weight of the corresponding friendship edge.

90

9 MAINTAINING APSP DISTANCES 9.2 Social Network Setup

Definition 9.6 ((Direct) Friendship Strength sf,t(U → Uf)). We define the direct
friendship strength sf,t(U → Uf) of a direct friend Uf of a user U in Gt as

0 < sf,t(e) = wt(e) < 1

where e = (U → Uf) ∈ Et, i.e. sf,t(e) is equal to the weight wt(e) of the edge
e = (U → Uf) in Gt.

The friendship strength along a certain path in the friendship graph is computed as
the product over all the path’s edge weights:

Definition 9.7 ((Indirect) Friendship Strength sf,t(U1 → · · · → Un)). We define the
indirect friendship strength sf,t(U1 → · · · → Un) of a user Un wrt. user U1 for a
path (U1 → · · · → Un) as

sf,t(U1 → · · · → Un) =
∏

1≤i<n

sf,t(Ui → Ui+1)

With reference to Definition 9.1, we define the weight associated to each path as
follows:

Definition 9.8 (Weight of Path π). The weight of a path π = (U1 → · · · → Un)
leading from U1 to Un is equal to the indirect friendship strength sf,t(π) computed
for π.

Finally, we define the friendship strength for arbitrary users in the graph as follows:

Definition 9.9 ((Maximal) Friendship Strength sf,t(U,Uf)). Let Πt(U,Uf) be the set
of paths π = (U → · · · → Uf) in Gt. We define the friendship strength or maximal
friendship strength sf,t(U,Uf) of an arbitrary user Uf 6= U wrt. a user U to be equal
to the maximal weight over all paths from U to Uf if there is such path, 0 otherwise
and 1 if Uf = U :

sf,t(U,Uf) =


1 if Uf = U

0 if Πt(U,Uf) = ∅
max{sf,t(π) | π ∈ Πt(U,Uf)} otherwise.

Based on the friendship definitions between users, we define the shortest path in
the friendship graph of a social network as follows:

Definition 9.10 (Shortest Path). We define the length of a path π from U to Uf in Gt
to be the inverse of the indirect friendship strength sf,t(π) computed for path π or 0
if Uf = U .

The shortest path from a user U to a user Uf in Gt is the path with maximal weight
from U to Uf in Gt.

Hence, the shorter a path starting at U and ending at Uf , the greater its weight and
the stronger is the friendship strength of Uf wrt. U .

In compliance with the notion of a dynamic friendship graph given in Defini-
tion 9.4, we define for each user U a dynamic friendship list of users being friends
of U with respect to a given time t.

91

9.3 Problem Statement 9 MAINTAINING APSP DISTANCES

U2

U3

U U1
0.9

0.5
0.4

0.8

(a) Example friendship graph G0

0.9

0.72

0.5

U

U1

U3

U2

(b) Friendship list of U wrt. G0

Figure 12: Example of a friendship graph G0 with users U , U1, U2 and U3 in (a) and
the corresponding friendship list FlistU,0 for U in (b).

Definition 9.11 (Dynamic Friendship List FlistU,t). We define the dynamic friendship
list FlistU,t of a user U as the list of pairs (Uf , s) for all transitive friends Uf of U
in Gt in descending order of s with s = st(U,Uf) is equal to the (maximal) friendship
strength of Uf with respect to U .

Figure 12a depicts an initial friendship graphG0 consisting of four users U , U1, U2

and U3 with no friendship updates. The weight of the shortest path is determined by
multiplying the edge weights. In Figure 12b the corresponding dynamic friendship
list FlistU,t at time t = 0 of user U is sketched.

9.3 Problem Statement

In this section we introduce the notion of a query and the APSD problem that has to be
solved in the context of a user U in a social network.

Definition 9.12 (Query QU). A query QU issued in the context of a user U of a social
network aims at retrieving U ’s best friends in descending order of their friendship
strengths until all or an arbitrary number of top-k friends has been retrieved. The
value of top-k can be determined during a query or specified beforehand.

Remember: The length of the shortest path (see Definition 9.10), hence the APSD
problem, is based on the friendship strength of users.

To define the result of a query in the presence of friendship updates (see Defi-
nition 9.5), we first have to define the point in time when a query is issued in the
network.

Definition 9.13 (Query Time t(QU)). When a query QU is issued in the context of a
user U , the time t(QU) of the query is equal to the maximal timestamp TSe = t of
any friendship update (see Definition 9.5) occurred so far for any user in the dynamic
friendship graph G = (G0, . . . , Gt) of a social network. Friendship updates at a later
time t′, such that Gt is transformed into Gt′ , are not considered for a query at query
time t(QU) < t′.

Finally, the result of a query is equal to the dynamic friendship list of best friends
(or a certain prefix of it) when for computing the friendship strengths of users only the
friendship updates up to the query time are taken into account.

92

9 MAINTAINING APSP DISTANCES 9.4 The Basic Algorithm

Definition 9.14 (Query Result R(QU)). For a query QU at query time t(QU), the
query result R(QU) is equal to U ’s dynamic friendship list of best friends at time
t(QU) sorted in descending order of their friendship strengths, or to a prefix of it of
size top-k as given with the query QU , i.e.

R(QU) = FlistU,t with t = t(QU)

or
R(QU) = FlistU,t[0 : i] with t = t(QU) and i = top-k

9.4 The Basic Algorithm
Our algorithm handles friendship updates in social friendship graphs that either insert
new friendship edges or increase the friendship strengths of users by incrementally
solving the All Pairs Shortest Distance (APSD) problem. For this, a user’s friendship
list is sequentially processed and any changes to the friendship graph are incorporated
on-the-fly when certain conditions indicate a requirement for an appropriate action to
correct the subsequent friendship list entry.

The algorithm is composed only of two basic operations, i.e. an update operation
and a merge operation, to achieve the correct maintenance of friendship updates in
social networks:

1. U .update(): An update operation on a user U computes for all new friendship
updates (U → Uf) the friendship strength sf of Uf with respect to U and in-
corporates the pair (Uf , sf) in U ’s friendship list. The friendship strength sf
corresponds to the weight of the new or updated direct edge (U → Uf).

2. U .merge(Uf): The merge operation effectively propagates the information about
friendship updates from friendsUf toU in order to adjust the friendship strengths
of already known or completely new friends.

When a friendship update (U → Uf) occurs in a social network, the update operation
on user U is postponed until there is the need to find her best friend. That is the case
when U submits a query to the social network or a user Uq submits a query and U is
a friend of Uq and Uq’s next best friend after U has to be identified. In the same way,
merge operations are deferred until it is necessary to merge in new information found
in a friend’s friendship list.

Our algorithm can be characterised in the following way: Friendship updates in a
social network are handled on-the-fly and processed on demand and only when needed
such that the actual maintenance is deferred to the latest point in time.

The pseudocode of our basic algorithm is given in Listing 5. The algorithm is called
in the context of a querying user U and it successively determines the top-k friends by
processing U ’s friendship list, accomplishing checks for update and merge operations
for each previously processed user in the list and doing the appropriate operation if
necessary in order to guarantee that indeed the next best friend can be found next in the
list.

A call to Uf .update() and U .merge(Uf) for an arbitrary user Uf can only happen
when Uf is part of a shortest path from U to her top-k friends and hence, Uf is one of
the top-k friends.

93

9.4 The Basic Algorithm 9 MAINTAINING APSP DISTANCES

1: U .get_Friends(top-k) {
2: Rtopk=new List<User,sf>()
3: IF (U .needs_update()) U .update()
4: i=0 //find U ’s next (i.e. i-th) best friend
5: DO {

// remember U ’s next best friend and friendship strength in Rtopk
6: Rtopk.add((Uf , sf)=U .getFriend(i))
7: IF(++i==topk || Uf==NULL) BREAK
8: IF(Uf .needs_update()) Uf .update()
9: IF(U .needs_merge(Uf)) U .merge(Uf)

10: IF(i > tpU) tpU = i //tpU is a bookkeeping variable
11: }WHILE(true)
12: RETURN(Rtopk) //return U ’s top-k friends
13: }

Listing 5: U .get_Friends(top-k)

The method call U .getFriend(i) determines the i-th friend in U ’s friendship list
and returns it. Basically, it is used to retrieve the next best friend of U as i is al-
ways incremented by one. Moreover, we can easily replace that method by an itera-
tor U.getNext() on U ’s friendship list which does not need an argument i but, instead,
internally keeps track on the current positions in FlistU for each querying user who
tries to process U ’s friendship list. The real implementation of our algorithm is indeed
done in this way.

However, when later more details about our algorithm are given, it is handy to keep
in mind which position of a user’s friendship list is currently processed or that a step
from position i to i + 1 has to be done next. In addition, it simplifies the description
when we have to clarify that our algorithm proceeds from a certain entry with a certain
friend Uf to the next position in U ’s friendship list, i.e. posU (Uf) to posU (Uf) + 1.
Finally, we also need sometimes to access the very best friend of a user U and then,
we easily can use the same method U .getFriend(0) to retrieve the top element of U ’s
friendship list.

Before going into the details of how we maintain the all pair shortest path distances
by just applying update and merge operations on friendship lists, we introduce the basic
operation mode of our algorithm.

9.4.1 Basic Mode of Operation

The query processing in the context of a user U is based on her initial friendship list
that is precomputed over the friendship relations defined in G0 (see Definition 9.4) and
is stored at a disk-resident storage backend, e.g. a database. The query result for U
is then dynamically built in main memory by starting with an empty friendship list
which is filled by entries sequentially retrieved from the version located at the storage
backend.

Is a query issued at time t(QU) = 0, that is before any update to G0 is applied,
the in-memory list can be filled one by one from the storage backend and returned as
result. Nothing else has to be done; the in-memory list can be finally discarded. The

94

9 MAINTAINING APSP DISTANCES 9.4 The Basic Algorithm

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

U8

DB

0.6

U

0.9

0.8

0.8

0.4U8

U2

U7

U8

Figure 13: Example for an in-memory list being built by reading from a storage back-
end and by a new friendship update.

same is true for a query at a time t(QU) > 0 that does not need to modify anything in
U ’s friendship list.

In any other case, only the in-memory part of a friendship list is modified during a
query, while the storage backend is continued to be read by sequential accesses only.
As a consequence, users that become new or better friends to U and, thus, are inserted
in the in-memory friendship list, e.g. due to a new friendship edge, might be retrieved
at a later iteration step of our algorithm from the storage backend for a second time. In
this case, the entry with the weaker friendship strength can be simply discarded since
we are only considering improvements of shortest paths.

In Figure 13 an example is given to illustrate this fact. A query on user U builds
up a new list FlistU in main memory by reading from a previous version stored at a
database DB. Assuming there is no friendship update for U , the first entry (U7, 0.9)
is just read from the database and put into the list in main memory. However, as in the
case given in this example, if there is a friendship update (U → U8) with friendship
strength 0.8, an entry (U8, 0.8) is created first in FlistU and then the entry (U7, 0.9)
is read from DB. Since U7 is a better friend than U8, the entry is inserted in front
of (U8, 0.8) which moves downwards in FlistU by one position. Afterwards, theDB is
continued to be sequentially read and the next entry can be simply appended to FlistU .
At this stage, we can observe that there is already a previous entry for U8 in DBU
with a smaller friendship strength 0.4. Thus, there are two entries for U8 discovered
during the query processing. Though, for computing the result of a query, we simply
can discard the entry with the smaller friendship strength and go on by sequentially
reading from DB.

Once a query has been finished, the modified list in main memory needs to be
written back to the storage backend (when ignoring caching techniques at this point).
The in-memory friendship list contains entries for all friends retrieved during the query
from its disk-resident counterpart, plus potentially additional entries with new friends
due to update and merge operations. All new entries and all entries that have changed
during the query processing need to be written back to the storage backend.

95

9.4 The Basic Algorithm 9 MAINTAINING APSP DISTANCES

Writing back entries that were read from disk and modified during a query is cheap
since they can be quickly found and replaced as their position at the storage backend
is already known. All these entries are part of the already read prefix at the storage
backend of size at most of the query result (that is, when all results correspond to
already known friends) and there can only be the need to change their position within
this prefix. Remember: a path can only become shorter by friendship updates. Hence,
users can only move up to the top of the friendship list. If no new user was added in the
in-memory list in addition to the ones read from the storage backend or the complete
list was retrieved, the in-memory list can even simply replace in its completeness the
part that has been read from the database.

We have to take more care when there are new users in the in-memory friend-
ship list, too. In this case, these users have to be correctly sorted into the disk-resident
friendship list. However, there is no need to look for already existing entries at the
storage backend to adjust location and friendship strengths. The reason is that even if
those apparently new users are located at some later position at the storage backend,
too, and therefore potentially users are stored multiple times on disk (with different
friendship strengths), the additional entries with weaker friendship strengths can be
discarded from the disk-resident list in the same way as previously described by sub-
sequent queries that happen to read the same friend for a second time.

In this way, a friend that becomes a better friend over time automatically “moves
up” in the friendship list of a querying user by just sequentially accessing the storage
backend.

9.4.2 Explanatory Note

As explained in Section 9.4.1, technically, it is not difficult to built friendship lists
in main-memory from a previous disk-resident version which is only sequentially ac-
cessed.

However, for a better understanding of the description of our algorithm, we assume
in the following, that the friendship list of a querying user U is always completely
available in main memory. In this way, we can easily describe tasks like: “Uf becomes
a better friend and moves up to some position i” without repeating again and again the
trivial but technical details mentioned above of how to identify and discard a user Uf
that has been inserted due to a friendship update in the in-memory part of the friendship
list and later is discovered for a second time.

Thus, assuming the friendship list is completely in main memory nicely eases the
description of how our algorithm works for maintaining shortest path distances in
friendship graphs of social networks, and therefore helps for a better understanding.
If in the following certain aspects should differ for data being located in main mem-
ory or partly at a storage backend, then of course, we direct the attention back to the
technical details.

In general, with our algorithm, we always only sequentially process lists at a stor-
age backend without any random access to entries not being already located in main
memory. As just mentioned, only for the purpose of an easier understanding, an excep-
tion is made for this description only when trying to clarify the point that a user in a
friendship list becomes a better friend due to a friendship update, and hence, moves up
to an earlier list position. In our actual implementation, no random but only sequential
accesses are applied in the way as described in Section 9.4.1.

Furthermore, when talking in subsequent sections about a known or already pro-
cessed part of a friendship list, we always refer to the prefix of a friendship list which

96

9 MAINTAINING APSP DISTANCES 9.5 Data Structures and Notation

is already located in main memory. In contrast, the not yet known or processed part of
a friendship list can be located both in memory and at a storage backend, depending on
the current state of our algorithm.

Before going deeper into the details, we first introduce some required data struc-
tures for the bookkeeping of applied and outstanding friendship updates and define the
notations used in later sections.

9.5 Data Structures, Definitions and Notation

Next, we introduce the data structures, definitions and notations used in the description
of our algorithm.

Basic Data Structure

The basic data structure used by our algorithm in order to maintain all pair shortest
distances in friendship graphs is an inverted list. We refer to this data structure with
regard to a user U by using the following notation:

Definition 9.15 (Friendship List FlistU). For each user U , FlistU denotes the in-
verted list of transitive friends of U incrementally built by our algorithm. The list is
sorted in descending order of the users friendship strength. An entry in FlistU is a
pair fle = (Uf , sf) with sf is the friendship strength of U ’s friend Uf .

Accordingly, U ’s best friend is listed at the first position of her friendship list,
i.e. FlistU [0], the second best friend at the second position, i.e. FlistU [1], and so on.

In Chapter 10, we will prove the correctness of our algorithm by showing that for
each query at any time t, FlistU [0 : i] = FlistU,t[0 : i] (see Definition 9.11) in each
iteration step i of our algorithm.

For the decision when to do an update and when to do a merge operation, we need
some bookkeeping data structures which we define in the following. For this, we first
introduce the notion of a pending friendship update.

Definition 9.16 (Pending Friendship Update). We call a friendship update (U → Uf)
pending if a friendship update on U with respect to Uf occurred but has not yet been
considered for recomputing Uf ’s friendship strength and position in U ’s friendship
list FlistU .

Global Bookkeeping of Friendship Updates

For each new or updated edge in the friendship graph of a social network, we need
to remember when that friendship update (see Definition 9.5) occurred.

Definition 9.17 (Timestamp TSe and TSmax of Friendship Updates). Each friendship
update (U → Uf) (see Definition 9.5) in G, transforming Gt−1 into Gt is remembered
via its timestamp TSe = t and stored in a global data structure OP called opera-
tion map. The timestamp of the latest friendship update occurred in G is remembered
in TSmax.

97

9.5 Data Structures and Notation 9 MAINTAINING APSP DISTANCES

This maintenance of TSe is easily achieved by uniquely numbering new friendship
updates in increasing order of appearance.

The set of pending friendship updates (U → Uf) is stored together with their
unique timestamps TSe for each user U in a global operation map OP and removed
again as soon as the update is accomplished.

Definition 9.18 (Operation Map OP). For each user U , the set of friendship up-
dates (U → Uf) which have not yet been processed for U are stored in a operation
mapOP , such thatOP [U] = {(TSe, Uf), ...}with (U → Uf) is a pending friendship
update on U which occurred at time TSe, i.e.

OP [U] =


{ope = (TSe, Uf) | ∃(U → Uf) ∈ Gt with t = TSe and

sf,t(U → Uf) > sf,t−1(U → Uf)}
or NULL

Local Bookkeeping on each user’s Friendship List:

Furthermore, we need to remember the time when a user’s friendship list has been
updated for the last time due to an update or merge operation.

Definition 9.19 (Timestamp TSU of U ’s Friendship List). For each user U , we assign
a timestamp TSU to the user’s friendship list. TSU is equal to the timestamp TSe of
the last processed friendship update for U in OP after an update operation on U is
performed or to the timestamp of the last friendship update known by U ’s friend Uf
which is propagated to U when performing a merge operation on U with Uf . Prior to
any update or merge operation, TSU is equal to 0.

Hence, the value of TSU corresponds to the time for which all friendship updates
with respect to U have been seen.

Finally, we need to remember for a given timestamp the last entry known to be
correct in a friendship list.

Definition 9.20 (Timestamp Validity Pointer tpU). The timestamp validity pointer tpU
is an offset into U ’s friendship list and points to the position up to which all friends are
correctly identified with respect to timestamp TSU .

Auxiliary Functions

Moreover, for the readability of the pseudocode of our algorithm, we introduce some
auxiliary functions and methods on friendship lists. However, our algorithm ensures
that they are only applied on the in-memory prefix of a friendship list which has been
already sequentially retrieved from the storage backend. Hence, these functions are ex-
ecuted quickly and do not effect the need of sequentially reading from friendship lists
at the storage backend.

posU (Uf): For the sake of a simpler notation, let posU (Uf) denote an auxiliary func-
tion that returns the index of Uf ’s position in U ’s friendship list and −1 if Uf
has not yet been seen in (the main memory based prefix of) FlistU .

98

9 MAINTAINING APSP DISTANCES 9.6 Queries & Friendship Updates

findposU (s): For the same reason, let findposU (s) denote an auxiliary function that
returns an index i in U ’s friendship list where an entry with friendship strength s
could be inserted to preserve the correct ordering in (the main memory based
prefix of) FlistU .

FlistU .set((Uf , s), i): Let denote FlistU .set((Uf , s), i) an auxiliary method on U ’s
friendship list that inserts a user Uf with friendship strength s before the current
i-th entry in (the main memory based prefix of) FlistU .

FlistU .remove(i) Let denote FlistU .remove(i) an auxiliary method on U ’s friend-
ship list that removes the i-th entry in (the main memory based prefix of) FlistU .

Next, we define the way how friendship updates and queries in dynamic friendship
graphs occur.

9.6 Queries & Friendship Updates
Note: From Definition 9.17 follows that the query time t(QU) is set to the current value
of TSmax, i.e. t(QU) = TSmax, when a queryQU is issued in the context of a user U .

Hence, a query QU submitted at query time t(QU) (see Definition 9.13) in the
context of a user U is supposed to retrieve the top-k best friends of U with respect to
time TSmax when the query started (see Definition 9.14).

If friendship updates are permitted while a query is not yet completed, the top-k
friends of a user U can change while U ’s friendship list is traversed. Hence, a query
started at time TSmax could identify friends at later positions in FlistU that actu-
ally were not yet known at time TSmax but emerged because of friendship updates at
time TS′max > TSmax. Moreover, the first best friends already identified for a query
at time TSmax could also change while a query is still proceeding due to new friend-
ship updates not yet existent at time TSmax but at time TS′max > TSmax. Hence, the
retrieved query results would not be well-defined because neither they correspond to
the top-k friends at time TSmax nor at time TS′max.

To circumvent this problem, we can keep the original, well-defined semantic (see
Definition 9.14) of retrieving the top-k friends for a query with respect to a certain
time TSmax by keeping copies of friendship lists for the timestamp TSmax while any
query for this time is still active, i.e. there is still a query with a matching query time
which is not yet completed. Hence, friendship updates during a query are applied only
to the latest version of friendship lists (not to their copies) and new queries only access
the most up-to-date version of friendship lists available at query time, too. A copy of a
friendship list can be removed again as soon as no query is active that started at a query
time equal to the TSmax-timestamp for the friendship list copy.

A simple example is given in Figure 14. Assume a query started on U at query
time t(QU) = TSmax = 3. While the query is processed a friendship update on U at
time t = 4 occurs. Moreover, a second query on U is issued while the first one still is
processed. In this case, the second query needs to work on a copy of the friendship list,
corresponding to the version at time tsmax = 4 in the figure. The friendship update
is applied to the new list only, while the previous list version still exists as it is to
serve the former query. Once, the former query ends and no other query related to the
same timestamp tsmax = 3 exists, the older friendship list version can be discarded
and the newer remains the only existing one. Although copies of friendship lists are
only needed for a very short time, since queries are supposed to be answered quickly,
maintaining copies of lists can be much more complex as in this simple example. If

99

9.7 Check for Friendship Updates 9 MAINTAINING APSP DISTANCES

U8

U

0.9

0.8

U

0.9

0.8

t=4

0.6

0.6

TSmax=4 TSmax=3

U7

U8

U4

U7

U4

Figure 14: Example for using copies of friendship list. A query processes FlistU at
time tsmax = 3. While the query is active a new update at time tsmax = t = 4
arrives and is applied to a copy of U ’s friendship list. Once, the query on the list at
time TSmax = 3 is finished, and no other query with such a timestamp is active, that
list can be discarded while the newer list remains.

during the processing of a friendship list a merge operation with some other user’s
friendship list is needed, then, this list must have the same timestamp tsmax. Hence,
multiple copies of friendship lists per query might be needed for several concurrent
queries and friendship updates. However, the details are only complex from a technical
point of view. Eventually, by working with copies of friendship lists, we ignore updates
for a query until the end of the query.

Therefore, in favour of a better understanding and since it does not change the in-
trinsic functionality of our algorithm, we neglect in the following the details of keeping
and removing copies of friendship lists, but instead, limit friendship updates to appear
only when no query is active. As a consequence, the timestamp TSmax can be assumed
to be fixed during each query.

Next, we give detailed information about our basic algorithm and describe when
there is a need for an update or merge operation.

9.7 Check for Friendship Updates
When there is at least one pending friendship update for a user U and our algorithm
needs to access U ’s friendship list, an update operation on U has to be applied first.
Therefore,

Definition 9.21 (U .needs_update()).

U .needs_update() == True

⇐⇒ ∃ t′ ∧ e = (U → Uf) : TSU < t′

∧ e ∈ Gt′ ∧ (e 6∈ Gt′−1 ∨ wt′−1(e) < wt′(e))

⇐⇒ ∃ e = (U → Uf) : TSU < TSe(U → Uf)

⇐⇒ ∃ (Uf , TSe) ∈ OP [U] : TSU < TSe

100

9 MAINTAINING APSP DISTANCES 9.8 Check for Update Propagation

Hence, the main loop of our algorithm only initiates an update operation when there
is at least one friendship update in the operation map OP [U] for U or in OP [Uf] for
the currently processed friend Uf in U ’s friendship list.

The pseudocode of U .needs_update() is shown in Listing 6.

1: U .needs_update() {
2: IF (∃ e = (U,Uf) with (Uf , TSe) ∈ OP [U])
3: RETURN(true)
4: ELSE
5: RETURN(false)
6: }

Listing 6: U .needs_update()

9.8 Check for Update Propagation
While processing a friendship list of a userU , for each friendUf in FlistU , the friend’s
friendship list has to be checked for potential updates since she was discovered for the
last time in U ’s friendship list. If that is the case, a merge operation propagates the
friend’s friendship updates to U . Therefore,

Definition 9.22 (U .needs_merge(Uf)).

U .needs_merge(Uf) == True

⇐⇒ TSU < TSUf︸ ︷︷ ︸
(1)

or (posU (Uf) ≥ tpU ∧ TSUf
> 0)︸ ︷︷ ︸

(2)

.

The decision for a merge operation is based on the timestamp TSU of U ’s friend-
ship list, the timestamp TSUf

of the friendship list ofU ’s currently processed friendUf
and U ’s timestamp validity pointer tpU . The two conditions for a merge operation are
based on the following intuition:

(1) Whenever a friend Uf in U ’s friendship list is found and the timestamp of her
friendship is greater than the one of U ’s friendship list, then the currently pro-
cessed friend Uf must have seen some more recent updates than U herself.
Hence, we have to merge these updates from Uf ’s friendship list into U ’s friend-
ship list to be able to find the correct next best friend.

(2) Let Uf be the friend located at the position pointed to by U ’s timestamp validity
pointer tpU . Then, Uf is the last friend in U ’s friendship list who is correctly
known to be among the top-k best friends.

When subsequently the next best friend is identified and the timestamp TSUf

ofUf ’s friendship list is greater than 0, there might be a friendship update merged
into Uf ’s friendship list that has not been merged yet into U ’s friendship list.

Actually, we cannot really know because tpU tells us only up to which entry there
are correct friendship entries but there is nothing known about users at positions
beyond tpU . Furthermore, a timestamp greater than 0 means, there was at least
one update or merge operation on Uf since it initially was precomputed overG0.

101

9.9 EAP Approach 9 MAINTAINING APSP DISTANCES

Therefore, we need to merge the friendship lists of U and Uf in order to not miss
any friendship updates even if the merge operation may not be necessary.

In reference to our basic algorithm shown in Listing 5, the pseudocode for the method
U .needs_merge(Uf) is given in the following Listing 9.8:

1: U .needs_merge(Uf) {
// (1) The timestamp of Uf ’s friendship list is newer or (2) i > tpU
// and Uf ’s friendship list was updated at some time, i.e. TSUf

> 0
2: IF(TSU < TSUf

|| ((i :=posU (Uf)+1) > tpU && TSUf
> 0))

3: RETURN(true)
4: ELSE
5: RETURN(false)
6: }

Listing 7: U .needs_merge(Uf)

When there is a merge operation on a user U with a user Uf but no merge opera-
tion is necessary because all the information about transitive friends of Uf are already
known in U ’s friendship list or are not relevant for U (because shorter paths not leading
over Uf exist for U), we call the merge operation redundant.

Definition 9.23 (Redundent Merge Operation). A merge operation on a user U with
a friend Uf is redundant when that merge operation does not change anything in U ’s
friendship list FlistU .

For example, a merge operation on U with Uf is redundant when that merge oper-
ation was already previously accomplished and since then, nothing relevant for U with
respect to Uf has changed in the friendship graph.

Note: If Uf has been updated just before the check of U .needs_merge(Uf) then
this method always returns true because the update on Uf causes the timestamp of Uf ’s
friendship list to be greater than the one of U ’s. Hence, U ’s and Uf ’s friendship lists
will be merged. As a consequence, when within the loop of our basic algorithm, there
is a need to update Uf ’s friendship list then it will also cause a merge operation on U
with her friend Uf .

In the following, we describe further details of our algorithm which can be imple-
mented in different ways with different approaches for the update and merge opera-
tions. We introduce two approaches that considerably differ in the way all method calls
work. Moreover, although both approaches are based on the same basic algorithm and
retrieve the same true top-k friends for each user U in the network, they vary consider-
ably with respect to their workload.

9.9 EAger Propagation (EAP) Approach
With our algorithm, we want to postpone friendship updates in a social network until
a search for the top-k friends of a querying user U makes it necessary to consider all
new information relevant for one of the shortest paths from U to these best friends.

With the eager propagation (EAP) approach, however, once we decide to update a
friendship list FlistU of a user U , i.e. when a check for an update or merge condi-
tion indicates the need for it, we eagerly propagate all available, updated information

102

9 MAINTAINING APSP DISTANCES 9.9 EAP Approach

from other users to U and modify FlistU accordingly. Update and merge operations
immediately inserts all new or updated information into a user’s friendship list.

Next, we introduce the operations U .update() and U .merge(Uf) defining the EAP
approach.

9.9.1 U .update()

An update operation on a user U identifies and removes all new or updated edges
from OP [U], determines among all these friendship updates the maximum times-
tampmaxTSe and correctly incorporates the newly discovered path information inU ’s
friendship list.

For this, the weight for each new or updated edge (U,Uf) is computed and poten-
tially corresponds to the new maximum friendship strength of Uf with respect to U .
However, when Uf has been previously discovered over a different but higher weighted
path, i.e. Uf is found in (the memory based prefix of) FlistU among U ’s best friends,
the new or updated edge is not the new shortest path from U to Uf and simply can
be discarded. Otherwise, if a friendship update leads to a shorter path, Uf ’s friendship
strength has to be adjusted and the corresponding entry in FlistU has to be moved up
to its correct position in U ’s friendship list. If Uf is not yet a friend of U at all, i.e. Uf
is not found in FlistU , a new entry for Uf can be created and simply be sorted into U ’s
friendship list.

Note: If parts of a friendship list are located at a storage backend, a new entry in-
serted in the main memory based prefix of the list can later move downwards to its
true position (in main memory) while the friendship list is further processed over time.
When eventually the very same user is found at the storage backend for a second time,
we either discard the new or the old entry depending on the higher friendship strength.
When the entry from the storage backend is discarded, the user actually becomes a bet-
ter friend and moves up in the friendship list (at the storage backend). For explanations
about how to move entries by sequential accesses only, see Section 9.4.1. Neverthe-
less, once an entry is inserted in a friendship list, it can never move further upwards in
the list without another friendship update since users which are already better friends
cannot lose any friendship strength by update or merge operations.

The user Uf finally will reach her correct position among the top-k friends (if she
indeed belongs to them) due to appropriately setting the timestamp validity pointer tpU .
In the case of an update operation, we conservatively set tpU = 0. By setting tpU to 0,
it must be true that all entries in FlistU up to tpU are correct because all direct friends
are already in U ’s friendship list—either at their correct position or, in case the part
of FlistU stored at the storage backend is not yet up-to-date, at a possibly too good
position but not the first one. Hence, the very best friend of U can only be found by
a direct edge in the friendship graph and FlistU [0] will always correctly contain U ’s
best friend.

Next, TSU can safely be set to maxTSe because all friendship updates for U up to
time maxTSe have been already included in FlistU .

In addition, after inserting a new friend Uf into U ’s friendship list, we have to
merge Uf ’s friendship list into U ’s because there could have previously been friendship
updates for Uf which are relevant to U , too. The merge operation on U with Uf will
propagate all relevant information in U ’s friendship list.

The pseudocode for an update operation on U is shown in Listing 8.

103

9.9 EAP Approach 9 MAINTAINING APSP DISTANCES

1: U .update() {
// find the timestamp for newest edge update

2: maxTSe = max{TSe|(Uf , TSe) ∈ OP [U]}
// place all new friends correctly in FlistU

3: FOREACH (e = (U,Uf) with ope = (Uf , TSe) ∈ OP [U]) {
4: OP [U].remove(ope)

// compute friendship strength s for e = (U,Uf)
5: snew = strength(U,Uf)

// if i < 0 then Uf has not yet been seen in FlistU
6: i = posU (Uf)
7: IF (i ≥ 0) {

// otherwise, we check if the new path to Uf is shorter
8: fle = (Uf , s) = FlistU [i]
9: IF (snew > s)

10: // if so, we remove the old entry in FlistU
11: FlistU .remove(i)
12: ELSE

// if not, there is no improvement. Hence,we discard it
13: RETURN
14: }
15: fle = (Uf , snew)

// find the position where to insert Uf in U ’s friendship list ..
16: i=findPosU (snew)

// .. and insert (Uf , snew) at that position
17: FlistU .set(fle, i)

// merge friendship lists to not miss potential new friends
18: U .merge(Uf)
19: }

// U is now up-to-date, there are no more new edges
20: TSU = maxTSe

// after the update, U’s best friend is for sure at FlistU [0]
21: tpU = 0
22: }

Listing 8: U .update()

104

9 MAINTAINING APSP DISTANCES 9.9 EAP Approach

1: U .merge(Uf) {
2: //get the friendship strength s1 of Uf with respect to U
3: i = posU (Uf)
4: (Uf , s1) = FlistU [i]

// merge each entry of Uf ’s friendship list into U ’ list
5: FOREACH ((Uff , s2) ∈ FlistUf

) {
// when U is also a friend of Uf (==cycle), we can skip this entry.

6: IF(Uff == U) CONTINUE
7: // compute weight w of the path from U to Uff over Uf

w = s1 ∗ s2
8: i = findposU (w)
9: pi = posU (Uff)

// check if Uff has previously been found over a different path
10: IF (pi ≥ 0) {

// U knows Uff already, check if new path is shorter
// Uf and s1 are no longer needed. Fill with new values

11: (Uf , s1) = FlistU [pi]
12: IF (w > s1)

//new path is shorter, remove wrong entry
13: FlistU .remove(pi)
14: ELSE

//new path is longer, discard it
15: CONTINUE
16: }

//insert new friend or updated friendship strength
17: FlistU .set((Uff , w), i)
18: }

// we merged in all infos known of both lists
19: TSU=max(TSU ,TSUf

)
// U ’s list can only have changed after the position of Uf

20: tpU=posU (Uf)+1
21: }

Listing 9: U .merge(Uf)

105

9.9 EAP Approach 9 MAINTAINING APSP DISTANCES

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

Ux

0.5

0.90.9

0.5

0.4

U

<

>

0.7 / TSe=9

TS=4

tp=2
0.6

U5

U2

U8

U7

U2

U5

(a) Example for a friendship update (U → Ux) with
initial friendship lists given for U and Ux

0.9

U

0.4

0.7

0.63

0.42

TS=9

tp=0
Ux

U2

U5

U7

U8

(b) Resulting FlistU after applying
the update operation on U .

Figure 15: In (a) an example for a friendship update (U → Ux) is given with initial
friendship lists for U and Ux. (b) shows the resulting friendship list for U after the
update operation on U (which includes a merge operation on U with Ux)

9.9.2 U .merge(Uf)

A merge operation on U with Uf identifies all users Uff in Uf ’s friendship list who are
not yet known to U or whose friendship strength increases because the path over Uf
to Uff is shorter than a previously discovered path to Uff . The pseudocode for a merge
operation U is given in Listing 9.

Our algorithm ensures that we only do a merge operation on U with Uf when a
friend Uf has been found at its correct position in U ’s friendship list and there is no
more friendship update for Uf . It also means that friends taken from Uf ’s friendship
list have got a weaker friendship strength with respect to U than Uf and, thus, will be
inserted in U ’s friendship list at a position later than Uf .

In compliance with Definition 9.7, the indirect friendship strength for a user Uff
from Uf ’s friendship list with respect to U (for the path from U to Uff over Uf), is
computed by multiplying the weight of the path from U to Uf with the weight of the
path from Uf to Uff , i.e. sf (U,Uff) = sf (U,Uf) · sf (Uf , Uff).

If a user Uff found in Uf ’s friendship list is already known to U , we have to
check if the new path over Uf is shorter. If not, we simply can discard the longer path.
Otherwise, we remove the old entry withUff fromU ’s friendship list and appropriately
insert it again with the updated friendship strength.

As soon as we have merged the complete lists, we can increase the timestamp TSU
of U ’s friendship list to the highest timestamp of both lists. All the latest information
with respect to that timestamp is now available in U ’s friendship list.

The timestamp validity pointer tpU is set to the next entry afterUf inU ’s friendship
list because Uf ’s friend with the highest friendship strength could at best be inserted at
exactly that position and, hence, could have displaced the user at that position.

An example for an update operation (U → Ux), including a merge operation on U
withUx, is given in Figure 15. Initially, the timestamp ofU ’s friendship list is TSU = 4
and the timestamp validity pointer tpU = 2. Then, an update operation is applied on U

106

9 MAINTAINING APSP DISTANCES 9.9 EAP Approach

for a friendship update (U → Ux) with a new friendship strength 0.7 at time TSe = 9.
Figure 15a sketches this setup and depicts the friends and their friendship strengths in
both users’ friendship lists. It can be observed that the two users U2 and U5 in Ux’s
friendship list are also friends of U while the remaining friend U8 of Ux is not yet
known to U . Figure 15b shows the resulting friendship list of U after the update oper-
ation on U has been applied which also involves a merge operation on U with Ux. The
resulting friendship list is achieved as follows: First, the update operation inserts the
new friend Ux together with her friendship strength 0.7 in U ’s friendship list. Next, the
merge operation with Ux replaces the entry with U2 in U ’s friendship list since the path
from U to U2 over Ux is the new shortest path. U2’s new friendship strength is com-
puted by multiplying the friendship strength of Ux with respect to U and the one of U2

with respect to Ux. Hence, U2’s friendship strength increased to 0.63 = 0.7∗0.9 due to
the friendship update for U . However, there is no change for the second user U5 known
to both users U and Ux since her friendship strength, 0.4, is already greater than the
weight of the path over Ux, i.e. 0.35 = 0.7 ∗ 0.5. Finally, the new friend U8 is merged
from Ux in U ’s friendship list. The update operation is completed by setting the times-
tamp of U ’s friendship list to the timestamp of the friendship update, i.e. TSU = 9,
and by setting U ’s timestamp validity pointer tpU to 0.

9.9.3 U .getFriend(i)

With our EAP approach, this method is very simple because all work for correcting
friendship lists is accomplished by U .update() and U .merge(Uf). Furthermore, we
only process U ’s friendship list sequentially and, thus, when this method is called,
necessary update and merge operations have already been done. Hence, the timestamp
validity pointer tpU is always equal to i and, in this case, we know that the i-th entry
in U ’s friendship list is correct. Therefore, this method only needs to return the friend
found at the i-th position which is shown by the following pseudocode in Listing 10:

1: U .getFriend(i) {
2: (Uf , s)=FlistU [i]
3: RETURN((Uf , s))
4: }

Listing 10: U .getFriend(i)

9.9.4 Friendship Graphs with Cycles

With EAP, a merge operation on U with a friend Uf immediately merges all those
entries with users in Uf ’s friendship list who are not yet known to U or who become
better friends of U when considering the path leading over Uf . No other entries are
considered for inserting in U ’s friendship list. Moreover, by multiplying the friend-
ship strengths of friends more than once, by definition, a friend cannot become a better
friend, and in particular, a merge operation never merges U herself into her own friend-
ship list because U is, of course, known to herself and the friendship strength cannot
increase, too (—U ’s friendship strength to herself is 1 according to Definition 9.9).
Hence, after a merge operation, all paths with cycles starting in U and leading over U
to some user Uf have already been discarded with respect to the current timestamp
as Uf is already known over a shorter path. The same is true for possible subsequent

107

9.10 LAP Approach 9 MAINTAINING APSP DISTANCES

merge operations on Uf with U . Therefore, cycles in friendship graphs do not cause
any problems with the EAP approach and do not require any special attention.

9.9.5 Disadvantage of EAP

Although the EAP approach of our APSD algorithm works nicely when all friendship
lists of users that are processed during a query can be loaded quickly into main memory
or when they actually can be completely kept there, it considerably slows down when
all user entries of very long friendship lists are fetched one by one from a comparatively
slow storage backend like a database.

Even though our algorithm implementing EAP only starts updating and inserting
new edges into friendship list when necessary—that is, when a query leads to a friend
with new and relevant information—and also only for those users who are involved in
the process of answering a query, yet complete lists have to be processed from the first
entry to the last for both users involved in a merge operation.

By eagerly propagating update information, our algorithm does not miss any tran-
sitive friends but takes all information from all users found during a query into account
– from the very best friend at the first position to the user farthest away but who is still
connected in the friendship graph of a social network. Since we only merge lists once
for a given timestamp, we could miss transitive friends otherwise.

9.9.6 Improvement by Limitation: fixed-size EAP

An idea for improving the EAP approach is to either fix the value of top-k for all queries
or to introduce a second, fixed value max-k which functions as an upper bound on the
value of top-k for all queries. Afterwards, we limit the entries in friendship lists being
considered during a merge operation to the first top-k or max-k entries in both lists. The
intuition here is that users at later positions cannot become one of the top-k friends (for
all values of top-k≤max-k) because all friends at earlier positions are already known to
be better. We call this modified EAP approach fixed-size EAP.

However, fixed-size EAP only applies when it can be guaranteed that a query never
has to retrieve more than the specified fixed number of friends. Once a fixed value of
top-k or max-k has been chosen, there is no way to dynamically extend the search to
more than this fixed number of friends without computing erroneous results as most
likely, the knowledge about friends at later positions in friendship lists are incomplete.
Hence, the friendship lists for all users have to be recomputed from scratch in such a
case.

9.10 LAzy Propagation (LAP) Approach
The idea of the lazy propagation (LAP) approach of our algorithm for incrementally
maintaining shortest path distances between all pairs of users in a friendship graph of
a social network actually carries the general idea of postponing friendship updates (as
already done in EAP) to the next level: We further postpone work that is necessary
to keep friendship lists up-to-date, and, at all times, only do as little work as possi-
ble while avoiding the introduced limitations (see Section 9.9.6) and disadvantages
(see Section 9.9.5) of EAP. Hence, once they are necessary, friendship updates of users
are only lazily propagated to other users.

To be more precise, with the LAP approach, we want to avoid complete merges of
friendship lists but instead only want to repeatedly merge single entries until we have

108

9 MAINTAINING APSP DISTANCES 9.10 LAP Approach

identified all users who potentially could become one of the top-k friends. For this,
the work done by calls to U .update() and U .merge(Uf) is deferred until it is really
necessary to be done, namely, when U .getFriend(i) is called. Moreover, the amount
of work is limited to that part which immediately has to be done.

Usually, the requested top-k friends form only a small prefix of a user’s comparably
long friendship list which contains all reachable users in the friendship graph of a social
network. Therefore, it is not necessary to maintain the correctness of friendship lists
beyond the first top-k positions as long as we still can do that later when required, i.e.
when a query asks for larger number of top-k friends.

With LAP, the execution of an update and especially of a merge operation differs
considerably compared to the EAP approach (see Section 9.9). LAP implements the
following principles:

1. U .update(): As with EAP (see Section 9.9.1), an update operation onU retrieves
from the operation map OP for U all relevant new or updated edges. How-
ever, in contrast to EAP, even during the query processing, U ’s friendship list
is not immediately modified with those friendship updates. Instead, the friend-
ship strength together with a reference to the corresponding updated friend Uf
is stored in a priority queue PQU of “next best friend”-candidates (see Sec-
tion 9.10.1). The head of the queue always points to the candidate with the high-
est friendship strength.

2. U .merge(Uf): Again, as with EAP (see Section 9.9.2), a merge operation on U
with Uf effectively gathers the information about friendship updates from U ’s
friend Uf in order to propagate to U shortest path distances of friends found on
a path over Uf . However, in contrast to EAP, the friendship list of Uf is not
completely merged into U ’s but only a reference to Uf ’s best friend, i.e. the
first entry in Uf ’s friendship list, together with her friendship strength in regard
to U is kept in a priority queue PQU of “next best friend”-candidates for U
(see Section 9.10.1).

9.10.1 Additional Bookkeeping

In contrast to our first approach and as mentioned earlier, we need an additional data
structure which keeps pointers to friends’ friendship lists which have not yet been com-
pletely merged.

In order to postpone updates and merges of friendship lists, and, most important,
to avoid complete list merges, we maintain for each user U a priority queue PQU of
“next best friend”-candidates.

Definition 9.24 (“Next Best Friend”-Candidate). A user Uff is a “next best friend”-
candidate of U when U ’s friendship list FlistU is processed during a query and Uff
is a candidate for being inserted at position i in FlistU while i− 1 friends of U have
already been identified.

Definition 9.25 (Priority Queue PQU of U ’s “next best friend”-candidates). For each
user U , a priority queue PQU contains triples pqt = (Uf , Uff , s) where Uf is an
already known friend of U and Uff is a friend of Uf , or Uff = Uf . Hence, Uff is
a “next best friend”-candidate of U with friendship strength s, corresponding to the
weight of the shortest, known path from U to Uff leading over Uf . The head of the
priority queue PQU is always the candidate with the highest friendship strength s.

109

9.10 LAP Approach 9 MAINTAINING APSP DISTANCES

In other words, Uff is U ’s friend’s friend and s corresponds to the weight of a path
from U over Uf to Uff which potentially is indeed the shortest path from U to Uff .

Remark: When discovering due to a friendship update a new path forU to a friendUf
which only consists of a single, direct edge, not the best friend of Uf is a candidate
for U ’s next best friend but Uf herself (because the friendship strength of Uf may have
increased due to the new or updated edge). Hence, we set Uff = Uf for the correspond-
ing entry in PQU .

A candidate Uff is indeed the next best friend of U , when it turns out that the
currently known shortest path over Uf to Uff is in fact a shortest path, and the path
is not yet known in FlistU , and no shortest path to another candidate in PQU has a
higher weight.

Since the friendship strength s remembered in an entry in PQU is equal to the
weight of the shortest path from U to Uff leading over Uf , it is in any case a lower
bound for the actual friendship strength of Uff with respect to U and timestamp TSU .

In our algorithm the following characteristics for PQU are always true:

• Uff is a friend of Uf or equal to Uf . In either case, Uff is a candidate for the
“next best friend” of U .

• When Uff is Uf ’s friend, she can be found in Uf ’s friendship list. Her position
in FlistUf

is subsequent to the prefix that already has been merged into U ’s
friendship list.

• At all times, there is always only one friendUff originating fromUf ’s friendship
list in PQU . Hence,Uf ’s friendship list is also only once referred to in PQU and,
moreover, Uf can only appear in a single triple as the first element of an entry
in PQU . However, the same user can be a friend of several different users and,
thus, she may be known in several different friendship lists. Therefore, the same
user can appear several times as the second element in different triples in PQU .

Maintaining a disk-resident version of PQU

In Section 9.4.1 we explained that our algorithm dynamically builds friendship lists in
main memory by sequentially retrieving entries from a previous, disk-resident version
of the list. Once, the processing of a query finishes, the updated list in main memory is
written back to the storage backend.

By introducing PQU , we need to extend this procedure accordingly. For efficiency
reasons, PQU has to be completely available in main memory as soon as the query
processing needs to access U ’s priority queue since PQU is not suitable for being
maintained by sequential accesses only. Hence, PQU is always associated to the friend-
ship list that is dynamically built in main memory. There is no priority queue associ-
ated to the disk-resident friendship list whose entries, as before, are just sequentially
read and inserted into the friendship list in main memory. For this reason, the priority
queue PQU can be written back to disk at any time by simply replacing any earlier
version on disk and loaded back into main memory whenever a query needs to access
it.

110

9 MAINTAINING APSP DISTANCES 9.10 LAP Approach

Since the priority queue PQU can usually be expected to be much smaller than
FlistU (depending on the value of top-k—not more than top-k users can be actu-
ally candidates for query results of size top-k) writing back and reloading PQU into
main memory is usually not a big performance issue. Over time, however, when the
friendship graph and the user’s top-k friends change a lot, there might be old candi-
dates in PQU due to queries to early graph versions that may never belong to the
current best top-k friends. Hence the queue grows over time and, thus, such weak can-
didates should be removed from PQU by merging their lists completely into FlistU .
In our experiments presented in Section 9.12, the priority queues PQU for users U in-
volved in queries, do not exhibit enormous sizes and their loading times—even though
no caching techniques are applied but the loading improvements described in Sec-
tion 9.10.6—do only a little penalise the average runtimes of our LAP approach com-
pared to fixed-size EAP.

The maintenance of the in-memory friendship list is unchanged with regard to the
description given in Section 9.4.1.

Next we describe the implementation details of the update and merge operations
with the LAP approach.

9.10.2 U .update()

A call of U .update() finds and removes all new or updated friends Uf in the operation
map OP [U] for U , computes the respective friendship strength s = sf (U,Uf) and
adds Uf together with s to U ’s priority queue PQU . The pseudocode for an update
operation is given in Listing 11.

As mentioned earlier, an entry in PQU is a triple pqt = (Uf , Uff , s) and we
set Uff = Uf for all friends Uf who have been newly found over a shortest path
consisting of only a single edge starting at U . The priority queue ensures that the head
of the queue is always the candidate with the highest friendship strength. If there is a
friendship update (U → Uf) forU with respect to a userUf andUf or a user fromUf ’s
friendship list is already a “next best friend”-candidate in PQU , it means, Uf was pre-
viously discovered either over an indirect path from U to Uf or due to a differently
weighted direct edge. Hence, the following has to be accomplished for a friendship
update on U with respect to Uf :

• If the weight of the new or updated edge e = (U,Uf) is smaller than the weight
of an already known path to Uf , then the friendship update can simply be dis-
carded since the shortest path to Uf has not changed.

• Otherwise, if there is an entry (Uf , Uff , s) in PQU , it has to be removed in order
to update s to the new friendship strength of Uf and we set Uff = Uf .

The latter is done to process Uf ’s friendship list from the top again and is nec-
essary because all friends of U found on a shortest path over Uf have become
better friends due to the increase in the friendship strength of Uf .

Finally, the entry (Uf , Uff , s) is added to PQU again.

• If there is not yet an entry (Uf , Uff , s) in PQU , we add (Uf , Uff = Uf , s) to
PQU with s is equal to Uf ’s friendship strength.

Next, the timestamp TSU and the timestamp validity pointer tpU of U ’s friendship
list FlistU can be changed. TSU is set to the newest timestamp TSe of all friendship

111

9.10 LAP Approach 9 MAINTAINING APSP DISTANCES

1: U .update() {
// find the timestamp for newest edge update

2: maxTSe = max{TSe|(Uf , TSe) ∈ OP [U]}
// put all new friends in PQU

3: FOREACH (e = (U,Uf) with ope = (Uf , TSe) ∈ OP [U]) {
4: OP [U].remove(ope)

// compute friendship strength s for e = (U,Uf)
5: snew = strength(U,Uf)

// if there is an entry in PQU which was found in Uf ’s friendship list ..
6: IF (∃ pqt = (Uf , Uff , s) ∈ PQU) {

// .. then Uf is already known. If Uf became a better friend now ..
7: IF (snew > s)

// .. we remove pqt, so we can also update all friends of Uf wrt. U
8: PQU .remove(pqt)
9: ELSE

// else, we can discard the update. There is a shorter path to Uf
10: CONTINUE
11: }

// and put a new triple with Uff = Uf in PQU
12: PQU .add(Uf ,Uf ,snew)
13: }

// U is now up-to-date, there are no more new edges
14: TSU = maxTSe

// after updating, U’s best friend is either at FlistU [0]
// or the head element of PQU

15: tpU = 0
16: }

Listing 11: U .update()

112

9 MAINTAINING APSP DISTANCES 9.10 LAP Approach

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

Ux

0.5

0.9
TS=4

tp=2

0.9

0.5

0.4

U

PQ:

<

>

0.7 / TSe=9

0.6

U5

U2

U8

U7

U2

U5

(a) Example for a friendship update (U → Ux) with initial
FlistU and empty PQU .

0.9

0.5

0.4

TS=9

tp=0

U

PQ:

Ux

0.7

U7

U2

U5

Ux

(b) Resulting FlistU and PQU after ap-
plying an update operation.

Figure 16: In (a) the same example for a friendship update (U → Ux) is given as shown
with our first approach. (b) shows the resulting friendship list and priority queue for U
after the update operation on U with our second approach.

updates because all changes to the social network with respect to user U and times-
tamp TSe are eventually known to U . Hence, all friends of U up to this timestamp have
been seen and are either in PQU or in FlistU . That means, the very best friend of U
is either still at the first position of U ’s friendship list FlistU [0] or can now be found
in PQU . Finally, we safely can set the timestamp validity pointer tpU to 0 because it
is guaranteed to find at least the best friend of U with respect to the timestamp TSU .

An example for an update operation on U is given in Figure 16. The setup follows the
one given in Figure 15a for the EAP approach and is re-sketched with respect to LAP in
Figure 16a. Actually, the only difference is that in addition an empty priority queue of
"next best friend"-candidates is given. The initial friendship lists with friends and their
friendship strengths of both users U and Ux, and the friendship update (U → Ux) at
timestamp TSe with weight 0.7 are unchanged.

However, as shown in Figure 16b, the resulting friendship list of U differs con-
siderably from our first approach. In fact, U ’s friendship list has not changed at all.
Instead, only the new or updated friend Ux has been added to U ’s priority queue. The
timestamp TSU of U ’s friendship list and the timestamp validity pointer tpU are nev-
ertheless set in the same way as in the EAP approach to TSU = 9 and tpU = 0,
respectively.

A subsequent call to U .getFriend(0) determines U ’s best friend by comparing the
friendship strength of the first friend in U ’s friendship list with the one at the head of
the priority queue. See Section 9.10.4 for a detailed explanation.

9.10.3 U .merge(Uf)

In contrast to the EAP approach, with LAP, we do not want to immediately propa-
gate into U ’s friendship list all updates found in a friend’s friendship list but only to
identify that single user who is a “next best friend”-candidate for U . In U ’s priority
queue PQU , we remember the new candidate Uff , her friendship strength s with re-
spect to U and the owner Uf of the friendship list in which the candidate was found,

113

9.10 LAP Approach 9 MAINTAINING APSP DISTANCES

1: U .merge(Uf) {
//if there is a user from Uf ’s friendship list in PQU → remove her

2: IF (∃ pqt = (Uf , Uff , s) ∈ PQU)
3: PQu.remove(pqt)

// get the very best friend of Uf
4: Uff=Uf .getFriend(0)

// put Uf ’s best friend to PQU
5: PQU .add((Uf , Uff , s = strength(U,Uf) · strength(Uf , Uff)))

// we merged in all infos known at time of max. timestamp
6: TSU=max(TSU ,TSUf

)
// U ’s list can only have changed after position of Uf

7: tpU=posU (Uf)+1
8: }

Listing 12: U .merge(Uf)

i.e. (Uf , Uff , s) ∈ PQU .
The head of the queue is always the candidate with the highest friendship strength.

A triple (Uf , Uff , s) is permanently removed from PQU only, when all friends found
in Uf ’s friendship list has been merged into U ’s friendship list. There is always only
one triple in PQU with Uf as a first element, and therefore, at the same time, only one
friend originating from Uf ’s friendship list can be a candidate for the next best friend
of U .

A call of U .merge(Uf) only happens for users Uf in U ’s friendship list and only,
when Uf ’s friendship list has changed such that it potentially could contain a candidate
for U ’s next best friend.

Observation A shortest path which leads over a friend Uf and ends at one of her
friends can only be longer than a shortest path that ends at Uf herself. Therefore, all
friends found in Uf ’s friendship list can only have got a lower friendship strength with
respect to U than Uf herself. Hence, all friends of Uf who are merged into U ’s friend-
ship list will be sorted below the position of Uf whose position and friendship strength
itself remains unaffected.

However, U ’s next best friend after Uf may have changed due to updates in Uf ’s
friendship list. Therefore, Uf ’s very best friend Uff is added to PQU because she is a
possible candidate for this position. According to Definition 9.7, the friendship strength
for this candidate is the product of Uf ’s friendship strength with respect to U and that
of Uff with respect to Uf , i.e. sf (U,Uff) = sf (U,Uf) · sf (Uf , Uff).

After adding the very best friend of Uf to PQU , we know for sure that U ’s next
best friend after Uf is either already the next entry in U ’s friendship list or can be found
in PQU .

For the same reasons as for an update operation, we have to remove from PQU an
already existing entry with Uf as friendship list owner before we add the new entry.
Hence, in contrast to EAP, a merge operation is very similar to an update operation
with our LAP approach.

114

9 MAINTAINING APSP DISTANCES 9.10 LAP Approach

The timestamp TSU is set to the maximum of the timestamps of U ’s and Uf ’s
friendship list because we have identified (and remembered in PQU) all information
known from both lists with respect to the maximum timestamp. The timestamp validity
pointer tpU can safely be set to the next entry after Uf . The next best friend for this
position is either already found at that position or can be found in PQU .

The pseudocode for a merge operation on U is shown in Listing 12.

9.10.4 U .getFriend(i)

As seen in the previous sections, there is almost no work done by an update or merge
operation. When a need for an update or merge operation has been identified, only (a
triple with) the new friend in case of an update or (a triple with) the friend of a friend
in case of a merge operation is put into PQU .

While with the EAP approach of our algorithm both operations have to do all the
work immediately, the operations for update and merge with LAP are almost identi-
cal and defer the actual work to the time when indeed the next best friend has to be
identified.

That is also the reason why with EAP the method call U .getFriend(i) did actually
nothing but returning the friend at the i-th entry in U ’s friendship list, i.e. FlistU [i],
while the same method with the LAP approach has to do almost the entire work: iden-
tifying the next best friend from all candidates and correcting U ’s friendship list if
necessary.

A call of U .getFriend(i) to U ’s friendship list is always done in a sequential man-
ner from the top, starting with i = 0 towards the bottom with i set to the last entry
for which a next best friend can be correctly identified either in FlistU or PQU and
without the need for any further merge or update operations. The timestamp valid-
ity pointer tpU is a marker for that entry. Therefore, when U .getFriend(i) is called,
i ≤ tpU is always true.

For the case i < tpU , the method simply returns the friend found at the i-th position
of U ’s friendship list and nothing else has to be done. This is correct because of the
characteristics of tpU .

The more interesting case occurs when i = tpU . In this case, we have to identify
the candidate in PQU who is not yet one of the top-i best friends of U and check if this
candidate is indeed a better friend than the user who is already listed at the i-th position
in U ’s friendship list.

Note: For all candidates Upq found in PQU , we can safely say that their friend-
ship strengths with respect to U are smaller or equal to those of all friends at posi-
tions i < tpU , i.e. s(U,Upq) ≤ s(U,F list[i′]) with i′ < tpU . That is true, because oth-
erwise the candidate had been found in a previous call of U .getFriend(i′) with i′ < i.

However, identifying the actual i-th friend from all candidates in PQU is not trivial
and can be expensive because of potentially many nested method calls.

The following tasks have to be done:

115

9.10 LAP Approach 9 MAINTAINING APSP DISTANCES

1. Remove from PQU the triple (Uf , Upq, s) with the top “next best friend”-can-
didate Upq . The user Uf is the owner of the friendship list in which Upq has
been found. The friendship strength s of candidate Upq is the highest among all
candidates in PQU .

2. If s is not higher than the friendship strength of the user at the i-th entry in U ’s
friendship list, we have to put the current candidate back to PQU . The user
at Flist[i] is a better friend but Upq is still a candidate for a later position in U ’s
friendship list. At this point, the method call is done and returns the friend found
at Flist[i].

3. Otherwise, if s is the currently highest friendship strength, we have to iden-
tify Uf ’s next friend after Upq and add her to U ’s priority queue PQU . This step
actually causes a (nested) call to Uf .getFriend(i′) and is necessary because
there could be more not yet known friends in Uf ’s friendship list that at a later
point in time have to be merged in U ’s list.

Remember: by using an iterator on each opened list, the argument i of the
method .getFriend(i) is actually not needed. It is used only to ease the dis-
cussion of our algorithm. Hence, the argument i′ mentioned above is implicitly
known during the execution.

4. Next, we have to check if the current candidate Upq is already in U ’s friendship
list at an already processed position < i. If so the candidate was already found
earlier by a different path which is shorter. Hence, we have to go back to task 1
again.

5. We also have to check if Upq is equal to U herself. If so, we have found a path
with a cycle that leads back to U . That path can be ignored by going back to
task 1 again.

6. Finally, if the friendship strength s of the top candidate Upq is higher than the
current friend at position i of U ’s friendship list, then Upq is indeed the next
best friend and we insert an entry (Upq, s) at the i-th position in FlistU . If the
friendship strength of Upq actually was increased over time, it means, that Upq is
moving up (see Section 9.4.1) from a later position than tpU to i = tpU .

7. The method call is finally done by returning the friend found at Flist[i].

The pseudocode of U .getFriend(i) is shown in Listing 13.

The method U .queueNext(pqt) adds the next friend of U ’s friend Uf to U ’s prior-
ity queue PQU and is actually only an auxiliary function to improve readability. The
pseudocode is shown in the following Listing 14.

116

9 MAINTAINING APSP DISTANCES 9.10 LAP Approach

1: U .getFriend(i) {
// entries up to FlistU [tpU − 1] are always correct. Flist[tpU] is
// either correct or entry is found in PQU . It’s always true: i ≤ tpU

2: IF (i == tpU) {
// get and remove from PQU the triple pqt with top candidate Upq ,

3: pqt = (Uf , Upq, s) = PQU .poll()
// when Upq is known or equals to U , put the next friend from Uf ’s
// friendship list in PQU and fetch again the top candidate

4: WHILE(0 ≤ posU (Upq) < tp || Upq == U) {
// note: here it is always true that s ≤ strength(U,UPQ)
// because otherwise Upq would have been found earlier

5: U .queueNext(pqt)
// get & remove the new top element

6: pqt = PQU .poll()
7: }

// pqt==NULL: no more candidates in PQU , return Uf
8: IF (pqt==NULL) RETURN(Uf with Uf ∈ (Uf , s) = FlistU [i])

// IF: now, Upq is either U ’s next best friend and has not yet been
// known (posU (Upq) < 0) or has been found at tpU with a better s

9: IF (Flist[i]==NULL || s > strength(U,F list[i]) {
// here: strength(U,F listU [i− 1]) ≥ s > strength(U,F listU [i])

// insert or move up Upq to i
10: FListU .set(Upq, i)
11: U .queueNext(pqt)

// ELSE: Upq is not U ’ next best friend
12: }ELSE {

// we put the top user Upq back into PQU because
// the i-th entry in FlistU is correct

13: PQu.add(Uf , Upq, s)
14: }// here, i == tpU , and the i-th entry in FlistU is now correct

// therefore, increase tpU by one, so (i+1)-friend is found next
15: tpU++
16: }
17: RETURN FlistU [i]
18: }

Listing 13: U .getFriend(i)

117

9.10 LAP Approach 9 MAINTAINING APSP DISTANCES

1: U .queueNext(pqt = (Uf , Upq, s)) {
// check if there is a need to update Upq’s friendship list ..

2: IF (Upq .needs_update()) Upq .update()
// .. and if we need to merge any updates of Upq in Uf ’s friendship list

3: IF (Uf .needs_merge(Upq)) Uf .merge(Upq)
// find the next friend from Uf ’s list ..

4: Upq=Uf .getFriend(posUf
(Upq) + 1)

// .. and put her into PQU
5: PQU .add(Uf , Upq , s = (strength(U,Uf) · strength(Uf , Upq)))
6: }

Listing 14: U .queueNext(pqt = (Uf , Upq, s))

Note: When in U ’s priority queue PQU the currently processed candidate Upq is
equal to the friendship list owner Uf because Uf herself is the candidate for U ’s next
best friend, then the candidate Upq cannot be found in Uf ’s friendship list. Hence,
posUf

(Upq) = −1 and Uf .getFriend(posUf
(Upq) + 1) = Uf .getFriend(0), which

means, we correctly queue Uf ’s very best friend in PQU .

9.10.5 Resolving Cyclic Friendship Connections

With LAP, we also have to pay attention to cycles in friendship graphs. The reason is,
that in this approach, a merge operation does not merge entire lists but only considers
a single entry from a list.

To illustrate the problem and complexity of resolving cycles in friendship lists, we
present two showcases and also discard our assumption (see Section 9.4.2) that friend-
ship lists are completely located in main memory. Instead, FlistU is constructed from
an empty list by sequentially reading a previous version of U ’s friendship list and by
examining U ’s priority queue of “next best friend”-candidates.

For a user U , let DBU denote the latest known version of her friendship list which
is correct with respect to its timestamp TSU up to the position indicated by tpU and let
DBU be located at a storage backend, e.g. a database (remember from Section 9.10.1:
there is no priority queue associated with DBU). Furthermore, we continue to restrict
ourselves to only sequentially access entries dbe = (Uf , s) in DBU with Uf is a friend
of U and s denotes her friendship strength. Therefore, at any time, we only can fetch
the next entry in DBU , that is, DBU [0] when accessing the friendship list DBU for
the first time, DBU [1] when accessing the list a second time, and so on until there is
no more entry in DBU .

For a given query, U ’s friendship list FlistU is then build in main memory by read-
ing from DBU and its associated priority queue PQU .

Note: It is possible during the query processing, that there is an entry in the in-
memory prefix ofU ’s friendship list which is located at a position Flist[i] with i>tpU .
This eventually means that the list has been already processed to a position later than
the current value of tpU at a time earlier than indicated by the current value of TSU .
Hence, a user located at that i-th entry is maybe not the true i-th friend with respect to
the current timestamp TSU . However, as users in FlistU originate either from PQU

118

9 MAINTAINING APSP DISTANCES 9.10 LAP Approach

A B
0.9

0.8

(a) Example for graph with a cycle

0.80.9 tp=0tp=0

PQ:

B

0.72

A

PQ:

A

B

0.72

A

B

??

B

A

??

(b) Resulting friendship lists and priority queues

Figure 17: In (a) two users A and B are given with friendship updates from one to each
other. In (b), the resulting data structures are depicted after a top-1 query on A. The
grey, dashed arrows indicate the problem with retrieving the next best friend of A.

orDBU , it means that each user found inU ’s currently processed friendship listFlistU
must be already a better friend than anyone yet to be found inDBU ; candidates chosen
from PQU are either not yet known friends and, thus, cannot be found inDBU , or, with
reference to the current timestamp, are now even better friends. Users from DBU are
fetched in descending order of their friendship strength and as soon as a user is chosen
to be the next best friend in FlistU , the list DBU is traversed to its next entry, and
therefore, the next user in DBU cannot be a better friend than anyone who is already
located in FlistU .

Showcase I: Assume we have got two users A and B and both users are mutual best
friends. Further assume that A is the querying user and for A and B, the very best
friend is discovered during the query execution by processing in each case a friendship
update (A → B) with weight 0.9 or (B → A) with weight 0.8, respectively. The
example graph is depicted in Figure 17a.

When A issues a query, our algorithm first updates A with the new edge to B by
adding pqt = (B,B, 0.9) toA’s priority queue PQA due to a call ofA.update(). AsB
is by assumption the new best friend of A, the entry will be at the head of PQA.

When our algorithm now tries to identify the very best friend of A by calling
A.getFriend(0), it finds B as top candidate in A’s priority queue and inserts (B, 0.9)
as top entry in FlistA. Furthermore, B’s very best friend is queued next into PQA.
Since A is by assumption the best friend of B, it means, A herself is regarded as can-
didate with a friendship strength of 0.72 = 0.9 ∗ 0.8. Hence, the triple (B,A, 0.72) is
added to PQA.

However, to identify that A is B’s very best friend, for B, the same checks and
method calls B.update() and B.getFriend(0) have to be accomplished. Indeed, this
is the case with our second approach due to A’s call of A.queueNext((B, 0.9)). In
conclusion, first (A, 0.8) is added to PQB because of the friendship update (B → A)
with weight 0.8. Then, A is chosen to be at the top entry in FlistB because A is
by assumption the very best friend of B and, finally, A’s very best friend is queued
next in PQB , which is again B herself with a friendship strength 0.72 = 0.8 ∗ 0.9.
Hence, (A,B, 0.72) is the next triple in PQB .

At this point in time, we have identified the first friend for a top-k query issued

119

9.10 LAP Approach 9 MAINTAINING APSP DISTANCES

by A and in the main loop of our algorithm, we increase i by one to get the next best
friend. A snapshot of our current data structures is illustrated in Figure 17b.

The problem with cycles in friendship graphs becomes obvious when trying to
find A’s next best friend, i.e. the second best friend, in order to update A’s friendship
list at FlistA[1].

Assume, as depicted in the example graph in Figure 17a, there is no other friendship
list involved, i.e. there is no further candidate in PQA and PQB and also there is no
other friend found at the storage backend DBA or DBB .

Now, when trying to find A’s next best friend, the candidate at the head of the
priority queue PQA is fetched which is A as (B,A, sba) is the only entry in PQA.
Since A is obviously not the right next best friend, and because there is no other friend
in FListA or DBA, our algorithm tries to queue B’s next best friend as another can-
didate for A.

However, by trying to findB’s next best friend, we will end up in the same situation
as with A. The candidate for B’s next best friend is A’s next best friend. Hence, we are
stuck in a cycle which is depicted in Figure 17b by the two crossing arrows pointing
from the entries in each user’s priority queue to the unknown entry of the other user’s
friendship list.

When we are able to identify a cycle, the solution for our first showcase is simple.
As there is no other candidate for a best friend, we know, that each list ends at the
current entry and there is only one friend for A and B.

Showcase II: When there are more possible candidates involved in a search for a
next best friend and a call to U .getFriend(i) ends in a cycle, we have to take care of
all potential sources where the true i-th friend could be found.

Assume the following plausible state of our algorithm as illustrated in Figure 18a
where A is the querying user and B and C are already known friends of A. Moreover,
there is a cycle from A over C to B and back to A, and B is the final user on the
cycle before A is reached again. The corresponding data structures are depicted in
Figure 18b.

The friendship list of user A has already been processed up to its (i − 1)-th entry
and B is the corresponding friend at that position. The best candidate in PQA for the
i-th best friend ofA is found at the head of the priority queue and is currentlyA herself
who previously was found in C’s friendship list. Furthermore,B’s very best friend isA
and C’s very best friend is B. Obviously, we have got a cycle from A over C to B and
back to A.

Further assume we have identified the cycle at this point and also that the friendship
strength of friend F , found at the top position i′ ofA’s storage backendDBA, is weaker
than the weight 0.384 of the cyclic path to A over C. In this situation, we have not yet
identified A’s next best friend but instead have to find an adequate candidate in PQA.

Potentially, the following users could be A’s next best friend: One of the next best
friends found in C’s friendship list, which also could be one of the friends in B’s
friendship list. However, A’s next best friend could also be found among the remaining
candidates in PQA, e.g. users found in the lists of D or E. However, if these users
are all already known by A and, thus, were previously found over a shorter path, ev-
ery other potential candidate in PQA is indeed a candidate for A’s next best friend.
Eventually, the i-th friend could also be retrieved from the storage backend DBA or,
in addition, the appropriate friend could already be in FlistA at the position indicated
by A’s timestamp validity pointer tpA.

120

9 MAINTAINING APSP DISTANCES 9.10 LAP Approach

C

B

0.8

A

0.8
0.6

E

D

(a) Example graph with a cycle over 3 users

DB:

...

......
0.8

0.64tp=1

tp=2

tp=i

PQ:

B

0.380.72

C D

s1

E

s2 0.72

A

PQ:

A

PQ:

C

C

B

0.3F

...

...

...

A 0.8
...

B

0.48

B

0.6

CA U1 U2

B

A

(b) A possible snapshot of the data structures for the users involved in a cycle

Figure 18: In (a) an example graph is given with a cycle over 3 users. A conceivable
snapshot of each user’s friendship list and priority queue is given in (b).

Nevertheless, the number of elements in PQA is limited by the number of already
processed friends in FListA. In the worst case, no two users in FListA are found in
the same friendship list, i.e. each candidate is equal to the friendship list owner because
of edge updates. If a friend Uff of A is known due to a path over another friend Uf ,
then the path to Uf is shorter and, hence, Uf is a better friend in FlistU . Since Uf is a
friendship list owner in PQA and each friendship list can be referenced only once by a
triple in PQA, the number of potential candidates is limited.

Furthermore, even in the worst case the i-th friend of A is found not later then at
the i-th position in a friendship list of a friend as each user can only appear once in a
friendship list and friends are sorted in descending order of their friendship strengths.
All users at previous positions are already better friends of A.

In conclusion, we have to proceed over at most i users in the worst case to find
the i-th friend. Each of these users themselves could also proceed only over i users to
find their own i-th friend. After O(i2) users, we must have identified the i-th friend.
Moreover, as shown in our experiments (see Section 9.12) on real friendship graphs of
social networks, on average, the actual number of opened lists and accessed friendship
list entries is much lower.

U .resolveCycle()

A cycle is only of concern when we want to find the i-th friend of a user U and tpU = i.
When i < tpU the i-th entry in FlistU is already correct and i > tpU is not possible
because we can only sequentially process a friendship list and tpU is never set to a

121

9.10 LAP Approach 9 MAINTAINING APSP DISTANCES

previously processed entry—only to the currently processed entry.
When having identified a cycle, the following tasks have to be done to find the true

next best friend:

1. If the triple pqt = (Uf , Upq, s) is the head in PQU and Upq belongs to a cycle
then remove pqt from PQU and call U .queueNext(pqt) in order to proceed to
the next friend in Uf ’s friendship list and add the new candidate to PQU . Repeat
this step until we have got a candidate in the head position of PQU who does
not belong to a cycle or there is no more candidate.

If there is no more next friend inUf ’s friendship list, discard the triple from PQU
and repeat step 1 until we found a valid candidate or PQU is empty.

2. If there is no more candidate in PQU , the i-th friend is either found at Flist[tpU],
or if there is no user at position tpU in U ’s friendship list, the i-th friend is equal
to the friend found at the top entry of the storage backend DBU [i′]. In this case,
set Flist[tpU] = DBU [i′] and traverse DBU to its i’+1 entry.

If there is no more friend at DBU [i′], too, then there are also no more friends
of U and we are done.

3. Otherwise, determine the i-th friend among Upq and Flist[tpU] or among Upq
and DBU [i′] if there is no entry at Flist[tpU]. Set Flist[tpU] appropriately.

4. If Upq is not the next best friend add pqt back to PQU—she is still a candidate
for a later best friend position. Otherwise, call U .queueNext(pqt) to queue Uf ’s
next friend in PQU which is another candidate for the subsequent next best
friend position.

As it can be seen, multiple calls to U .queueNext(pqt) can be involved.

Identifying Cycles in Friendship Graphs

Luckily, it is easy to identify a cycle; it can be done in different ways. One way is to
remember for a query all users U who cause a call to the method U .queueNext(pqt)
in a global data structure, e.g. a HashSet. When the method returns, U is removed
from the data structure again. If the method is called for a user U and the next en-
try in the friendship list of a friend Uf shall be queued, i.e. U .queueNext(pqt) with
Uf ∈ pqt = {Uf , Upq, s}, and that friend Uf can be found in the global data structure,
we have got identified a cycle.

Obviously, we also have found a cycle as soon as a user U should be put into her
own priority queue of "next best friend"-candidates. This could happen whenU appears
in a friendship list of her friend Uf . The cycle leads then from U over Uf back to U .

9.10.6 Further Improvements of the LAP Approach

Before the query execution for a user U can start, all necessary data structures must be
appropriately loaded into main memory, including PQU as described in Section 9.10.1,
in order to efficiently determine the user’s next best friend. Initialising a priority queue
with possibly many candidates means that many friendship lists have to be opened and
sequentially processed until the correct candidate can be fetched and loaded into PQU .
There is no way to avoid the processing of these lists until each candidate is put

122

9 MAINTAINING APSP DISTANCES 9.10 LAP Approach

into PQU because at some point in time, each candidate could become U ’s next best
friend. Of course, to initialise a priority queue in this way is expensive, especially if
there are many candidates that are located at late positions in a friendship list.

An option to speed up the initialisation of PQU is to defer also the loading of
candidates to a point when we indeed need to identify the best candidate. For this, we do
not remember in PQU a reference to a user anymore but the index of the corresponding
entry in a friendship list where the candidate was found. Furthermore, instead of the
candidate’s friendship strength with respect to U , we remember the friendship strength
of the owner of the friendship list where the candidate was found, and as well, the
friendship strength of the candidate with respect to that list owner. In this way, we
determine the actual friendship strength of a candidate with respect toU by multiplying
the two remembered values.

The advantage of this modification is that we maybe do not need to open all friend-
ship lists to identify the next best friend and her friendship strength. When the friend-
ship strength of the friendship list owner or the multiplication of both remembered
values is already too low to change the user at the head of PQU , there is no point in
processing a list to find a candidate. Moreover, over time it is quite likely that such
candidates in PQU exist who never will belong to the best top-k friends. All merge op-
erations during a query are merging in at most the first top-k users from a friendship list
owner in PQU and thus, the top-k+1-th user in the list will never be an actual candidate
for the next best friend. However, if some later queries require to identify more than
the previous top-k friends, our algorithm is still able to handle that case as the posi-
tions of all possible candidates in all associated lists are still included in PQU . Hence,
friendship lists for fetching ”next best friend“-candidates are only opened when there
is a need for it.

Of course, as soon as the algorithm indeed needs to look into a friendship list in or-
der to identify a candidate, a list will be sequentially processed to the position indicated
by the remembered index of the priority queue. Yet this is only done when needed and
at most once for a query and friendship list’s owner in PQU . The latter is true because
as soon as we have opened a list and processed it to a certain entry, we can keep the list
open until the query has been finished.

Deferring the processing of friendship lists in PQU to only retrieve one candidate
at a time requires some additional attention to the task of determining the next best
friend of a querying user U .

Let’s say, during the processing of a query from a user U , the friendship list of
a user Uf in PQU has to be opened. When the i − th entry in Uf ’s friendship list
is U ’s best candidate, Uf ’s list is sequentially accessed until the i− th entry can be re-
trieved. However, entries at positions prior to i can have changed since the index i was
remembered in PQU . Therefore, when finally processing a friendship list from PQU ,
there have to be checks for update and merge conditions on each user in the list until
the i − th one has been identified. If some entry requires an update or merge opera-
tion, we execute that operation and chose as new candidate the user in Uf ’s friendship
list that follows the position causing the update or merge operation. The newly chosen
candidate is maybe not yet known to U because of the modifications in Uf ’s friendship
list, hence, she is indeed a candidate for being U ’s next best friend.

Due to the postponed loading of all candidates in PQU , the identification of the
proper next best candidate can again lead to several nested method calls to different lists
and priority queues. However, there is no extra work involved but it is only postponed

123

9.11 Extensions to EAP and LAP 9 MAINTAINING APSP DISTANCES

to a point in time when it is needed to be done. Therefore, it is just an implementational
challenge because of the need for additional checks of merge and update conditions and
the corresponding update and merge operations that have to be done in order to finally
determine the correct next candidate. When not all lists in PQU have to be opened, the
additional effort is worthwhile because answering a query is sped up in this way.

9.11 Data Structure Extensions to EAP and LAP
In both approaches of our algorithm, there is potentially more than once a merge opera-
tion on a user with the same friend, even though it would not be necessary for a correct
identification of the user’s next best friend.

The following sections explain why such redundant merge operations happen and,
in addition, gives suggestions for both approaches of our algorithm how to avoid them.

9.11.1 Missing Time Information

The merge condition given in the following Listing 15 can cause merge operations on
users with friends although no merge operation is necessary.

1: IF (i > tpU && TSUf
> 0)

2: U .merge(Uf)

Listing 15: Merge condition causes redundant merge operations

When Uf is a user found at a position later than the one indicated by tpU in U ’s friend-
ship list, and when the timestamp TSUf

of Uf ’s own friendship list is greater than 0,
then the only information we have got with respect to Uf is that there was at some
point in time at least one update to Uf ’s friendship list. However, we do not know if U
already knows about that update or not.

Imagine TSUf
> 0 and there was already a merge operation on U with Uf dur-

ing some previous query on U . When a later query on U modifies U ’s friendship list
at a position prior to Uf , then the timestamp TSU increases while the timestamp va-
lidity pointer tpU decreases. Hence, if finally a subsequent query discovers Uf again
in FlistU , the check shown in Listing 15 will indicate a need for a merge operation
on U with Uf—even if nothing has changed for Uf since the last merge operation on U
with Uf .

The problem exists because by decreasing the timestamp validity pointer tpU , we
lose the information about those users who have already been seen for an earlier times-
tamp at later positions in a friendship list. Nonetheless, we do have to decrease tpU and
increase TSU when doing a merge operation with a friend at a position less than tpU
because otherwise we could miss updates for those users at subsequent positions who’s
friendship lists indeed changed at a time between the old and new value of TSU . The
following example clarifies this fact and is sketched in Figure 19.

Example: Assume there is a userU , her friendship list is timestamped with TSU = 3
and there are two friends U1 and U2 in FlistU , located at position i and j, respectively,
with i < j < tpU .

Furthermore, assume that at this stage, an update operation on the friend U1 is
applied for a friendship update with timestamp TSe = 10 such that U1’s timestamp

124

9 MAINTAINING APSP DISTANCES 9.11 Extensions to EAP and LAP

U1TS =10

TS = 5U2

UTS =10

i

tp=i+1

UTS =3

tp=..

i

j

Query at time t=10:

UU

...

0.48U2

...

U1

...

...

0.48U2

...

U1

...

0.60.6

(a) Initial and resulting friendship list of U after a query at time t = 10

TS =5U2

U1TS =0

Query at time t=5:

U1TS =10

TS = 5U2

Query at time t=10:

UTS =3
UTS =10UTS =5

i

j

tp=..

i

tp=i+1

i

tp=j+1

j

U U U

...

0.48U2

...

U1

...

...

0.48U2

...

U1

...

...

0.48U2

...

U1

...

0.6 0.60.6

(b) Initial and resulting friendship list of U after two subsequent queries at time t = 5 and t = 10

Figure 19: In (a) an example is given for a missed merge operation on U with U2 if tp
were not set to i+ 1. In (b) an example is given for a redundant merge operation on U
with U2 because of setting tp to i+ 1.

is increased to TSU1 = 10. A subsequent query on U at time t = 10 increases the
timestamp of U ’s friendship list to TSU = TSU1 = 10, too, and decreases the times-
tamp validity pointer to tpU = i + 1 because of a merge operation on U with U1

as soon as U1 is encountered in FlistU . Assume additionally, there was prior to the
query on U also an update operation on the friend U2 of U for a friendship update
with timestamp TSe = 5. Hence, the update operation increased the timestamp of U2’s
friendship list to TSU2 = 5. Moreover, no other change relevant to U exists at the time
of the query on U . See Figure 19a for an illustration of the resulting friendship list of U
and the timestamps of all involved parties.

Given this setup, when finally a query at time t = 10 passes the entry with U2

in U ’s friendship list, the timestamp of TSU2 = 5 of U2’s friendship list is smaller
then TSU = 10. If the merge operation on U with U1 didn’t decrease the timestamp
validity pointer tpU to i + 1, our check shown in Listing 15 for a merge operation
on U2 would not indicate a need for merging U2’s friendship list with U ’s and, thus,
the friendship update for U2 at time 5 had been missed.

On the other hand, because of decreasing tpU to i+1 at time t = 10, our algorithm

125

9.11 Extensions to EAP and LAP 9 MAINTAINING APSP DISTANCES

initiates under similar circumstances a redundant merge operation on U . To see this,
let’s again assume the same setup as described for our previous example. The initial
friendship list of U is depicted in Figure 19b on the left hand side.

In contrast to the previous example, we assume a query on U at time 5 previous to
the friendship update for U1 but after the update operation on U2. The query increases
the timestamp of U ’s friendship list to TSU = 5 and decreases the timestamp validity
pointer tpU to tpU = j+ 1 as soon as U2 is passed in FlistU due to a merge operation
on U with U2. Since at this time there has not yet been a friendship update for U1,
nothing has changed in U1’s friendship list and while processing the query, U1’s entry
in FlistU is correctly passed without indicating an update or merge operation. At this
point, all relevant information fromU1’s andU2’s friendship list up to time 5 are known
to U and already available in her friendship list as depicted in the middle of Figure 19b.

Finally, when at time 10 a query on U is issued after the update operation on U1

(which caused U1’s timestamp to be increased to TSU1
= 10 > TSU), our algo-

rithm correctly indicates a need for a merge operation when passing position i of U1

in FlistU . Consequently, the timestamp of U ’s friendship list is set to TSU = TSU1 =
10 and the timestamp validity pointer is decreased to tpU = i + 1. The resulting
friendship list of U up to U2’s position j and the timestamps of all involved par-
ties TSU , TSU1 and TSU2 are eventually equal as in the previous example and are
shown in Figure 19b on the right hand side. The only difference to the previous ex-
ample is that the merge operation on U with U2 due to the friendship update for U2 at
time 5 has been already applied.

In this scenario, even if there’s no more change in any friendship relation, the next
query processing FlistU up to the entry with U2 initiates an additional merge operation
on U with U2 due to the check given in Listing 15. Hence, a redundant merge operation
on U is applied.

The reason for these kind of redundant merge operations is that there is no infor-
mation about when the last merge operation with a friend has taken place. To avoid the
overhead of redundant merge operations, we need to determine if a user’s friendship
list has changed since a previous merge operation.

Timestamp Extensions

As an extension to the EAP and LAP approach of our algorithm, we add timestamps
as additional bookkeeping information to each user’s friendship list. These timestamps
allow us to determine for a user U if all friendship updates for a friend Uf have already
be seen or if new updates have been applied to Uf ’s friendship list since she was last
encountered in FlistU .

Therefore, for each user, we need a second, single timestamp pTSU which is asso-
ciated (globally) to her friendship list in order to remember a previous value of TSU .
The timestamp pTSU is initially set to 0 and changed to the value of TSU when the
following two constraints apply:

1. Prior to a query on U , the timestamp TSU is greater than 0.

2. The timestamp TSU changes during a query for the first time due to a merge
operation with a friend of U .

At the end of the query execution, the current value of pTSU is additionally associated
(locally) to a list entry. This works as follows:

126

9 MAINTAINING APSP DISTANCES 9.11 Extensions to EAP and LAP

U1TS =10

TS = 5U2

UTS =3
UTS =10

U=0pTS
U= 3pTS

U=3pTS

U=0pTSU=0pTS

Query at time t=10:

tp=..

i

j

i

tp=i+1

U U

...

0.48U2

...

U1

...

...

0.48U2

...

U1

...

0.6 0.6

(a) Initial and resulting friendship list of U with additional timestamp pTSU after
a query at time t = 10

UTS =3
U=0pTS

U=0pTS

i

j

tp=..

TS =5U2

U1TS =0

Query at time t=5:

UTS =5

U=0pTS

U=3pTS

U=3pTS

i

tp=j+1

j

UTS =10

U=0pTS

U= 5pTS

U=5pTS

i

tp=i+1

U1TS =10

TS = 5U2

Query at time t=10:

U U U

...

0.48U2

...

U1

...

...

0.48U2

...

U1

...

...

0.48U2

...

U1

...

0.6 0.6 0.6

(b) Initial and resulting friendship list of U with additional timestamp pTSU after two subsequent queries at
time t = 5 and t = 10

Figure 20: (a) shows that no merge operation on U with U2 is missed despite pTSU .
(b) shows that no redundant merge operation onU withU2 is applied because of pTSU .

The value of pTSU is stored in FlistU next to the entry found at the position
indicated by tpU if and only if there is no such timestamp yet. A timestamp is removed
from an entry in U ’s friendship list again as soon as the query processing encounters it
in FlistU . The removed timestamp replaces then the one previously stored in pTSU .

In this way, all users found in U ’s friendship list at positions later than the one
indicated by tpU are either new friends with a friendship list with a timestamp newer
than TSU , or are already known friends of U that have been seen last at time pTSU .

For clarification, the example previously used and depicted in Figure 19 is extended
in Figure 20 to comply with the suggested timestamp extension.

Example: On the left hand side in Figure 20a, the friendship list of user U is shown
before a query in her context is submitted at time t = 10. The friendship list’s initial
timestamps are TSU = 3 and pTSU = 0. The friendship lists of U ’s friends U1 and U2

are timestamped at query time with TSU1 = 10 and TSU2 = 5, respectively. U1

is located at position i and U2 at position j in U ’s friendship list with i < j. For
simplicity, we assume that the last query on U proceeded deeper in FlistU than any
other query before. Therefore, at the position tpU > j, the entry is marked with the

127

9.11 Extensions to EAP and LAP 9 MAINTAINING APSP DISTANCES

initial value 0 of the timestamp pTSU .
In the beginning, when the query onU at time t = 10 is issued, the value of pTSU is

unchanged. However, when U1 at position i is encountered in FlistU during the query
processing, a merge operation on U with U1 is applied because of the higher timestamp
of U1’s friendship list. As with the previous example, this causes the timestamp of U ’s
friendship list to be changed to TSU = TSU1 = 10 and the timestamp validity pointer
to be set to tpU = i+1, and therefore, in pTSU the previous value 3 of TSU is saved. If
the query stopped at this point, the timestamp pTSU would be stored next to the entry
pointed to by tpU = i+ 1. The resulting data structures are sketched in Figure 20a on
the right hand side.

The effect now is, that for the current query and all subsequent queries on U (as
long as there is no other friendship update), all entries in U ’s friendship list starting
from position i + 1 to the entry marked with the timestamp 0, are known to be cor-
rect at time pTSU = 3. Nevertheless, since the timestamp of U2’s friendship list
TSU2 = 5 > 3, we still know that a merge operation on U with U2 has to be
applied.

In the second scenario, given in Figure 20b, we now can see that we avoid redun-
dant merge operations by taking the pTSU value into account. Since there is prior to
time t = 10 a query on U at time t′ = 5, the timestamp of U ’s friendship list is set
to TSU = 5 by the merge operation on U with U2. Hence, during the query at time 10,
the timestamp pTSU is set to 5 when the merge operation on U with friend U1 at posi-
tion i is applied. Consequently, all entries starting from entry tpU = i+ 1 to the entry
marked with the initial timestamp 0 of pTSU have already been seen at the time of the
current value of pTSU = 5.

When finally U2 is encountered in FlistU , it can be justified now from the value
of pTSU = 5 that no more need for a merge operation on U with U2 is necessary
since the timestamp TSU2 = 5 is not newer than the current value of pTSU . Hence,
no change to U2’s friendship list happened since U2 was seen for the last time and the
redundant merge operation can be avoided.

As already said, the value of pTSU is adjusted whenever a timestamp is found next
to an entry of U ’s friendship list. Obeying these rules ensures that the timestamp for an
entry at the furthest position away which ever was discovered during any query execu-
tion is 0 and all remembered timestamps at entries in FlistU are always in descending
order of their values.

Finally, by extending the bookkeeping data structures for each user U with an ad-
ditional timestamp pTSU for their friendship list, we can modify the merge condition
shown in Listing 15 as follows: When during the processing of a query an entry with
a friend Uf in FlistU is passed and if Uf is found at the position indicated by the
timestamp validity pointer tpU , then there is only a need for a merge operation when
the timestamp of Uf ’s friendship list is greater than pTSU . The pseudocode is given in
the following Listing 16.

1: IF (i > tpU && TSUf
> pTSU)

2: U .merge(Uf)

Listing 16: Merge condition with timestamp extension pTSU .

If the timestamp TSUf
is less than or equal to pTSU , we have seen that entry already

128

9 MAINTAINING APSP DISTANCES 9.11 Extensions to EAP and LAP

at the time indicated by pTSU and all corresponding merges have already been done.
Hence, we do not need to do another merge operation.

Advantage The advantage of extending friendship lists with timestamps is obvious:
We can avoid doing unnecessary merge operations. Although a merge operation is
cheaper for the LAP approach of our algorithm than with EAP, especially when there
is nothing that has to be merged for the first top-k elements, avoiding redundant merge
operations is desirable. Moreover, the EAP approach could benefit a lot from this ex-
tension because even to find out that nothing has to be merged, the entire friendship
lists of both involved users have to be processed.

Disadvantage On the other hand, there is also a disadvantage involved that cannot
be disregarded. The space requirements to store a timestamp at potentially every entry
in each friendship list can be huge. Depending on the storage backend, it could mean,
that for each entry in all friendship lists additional space has to be reserved such that
the additional timestamp value can be placed there. A friendship list does not consist
of entries of pairs anymore—the user ID and the value of the friendship strength—but
of triples. In each entry a placeholder is needed for potentially additional values of the
timestamps pTSU for each user U .

9.11.2 Missing Path Information

Another kind of redundant merge operation occurs because of missing path information
for shortest distance values. With just the information available in a user’s friendship
list, it is not possible to know if the shortest path to a friend is a prefix of the shortest
path to another friend.

When doing a merge operation with a friend who is found on a prefix of a path to
some later friend and that merge operation includes already friendship updates from
both friends, then there is no way to know about that and potentially a merge operation
can happen with the later friend again even if there is no new information available.

Example: Let U , U2, and U3 be users with U2 is U ’s best friend, U3 is U2’s best
friend and no other friendship connections exist at time t = 2. Moreover, all user’s
friendship lists are up-to-date at that time. At time t′ = 3, assume there is a friendship
update (U3 → U4) for U3 with respect to a user U4. Figure 21a visualises this initial
setup. Assume that first a query for U2’s top-2 friends is issued. In this case, our algo-
rithm first updates U3’s friendship list and finally propagates the information about the
new friend U4 also into U2’s friendship list. The timestamp for both users’ friendship
list is equal to t′ = 3 afterwards. Since, neither a query in the context of U is issued
at this point nor is U part of the shortest part from U2 to U4, the friendship list of U
does not change. Figure 21b shows the updated setting for all users after the retrieval
of U2’s two best friends. However, a subsequent query on U for her top-3 friends first
merges the changes from U2’s into U ’s friendship list and sets tpU = 1 and TSU to
time t′ = 3. At this point, U ’s friendship list is already up-to-date because the new
information about U4 has been found by the merge operation with U2. Hence, the first
entry in U ’s friendship list contains U2, the second entry contains U3 and the third entry
contains U4 and the friendship strengths of all friends are correct. Figure 21c depicts
the current state of our example.

129

9.11 Extensions to EAP and LAP 9 MAINTAINING APSP DISTANCES

tp=0
TS=2

tp=1

TS=2

0.6

0.8

0.8 / TSe=3
U2

0.8U3

U

U3 0.48

U2
U4

U3

0.6

(a) Initial setup

0.6

TS=2

tp=1

TS=3
tp=0

0.8

0.8

TS=3

tp=1
U2

U3 0.48

U

U4

0.8

U3

U2

U4 0.64

0.8U3

0.6

U4

(b) Intermediate step after top-2 query on U2

tp=1

TS=3
tp=1

TS=3 0.8

TS=3
tp=0

0.6

0.8

U2

U4 0.64

0.8U3

U4

U3

U4 0.8

U

U4 0.38

U3 0.48

U2 0.6

(c) Redundant merge operation on U caused when identifying U ’s 3rd best friend.

Figure 21: In (a) an initial example graph is given. A redundant merge operation on U
occurs when first a top-2 query on U2 occurs, depicted in (b), and then a top-3 query
on U follows. Figure (c) shows the state of the graph right before the redundant merge
operation.

130

9 MAINTAINING APSP DISTANCES 9.11 Extensions to EAP and LAP

In the final step of U ’s top-3 query, for identifying U ’s third best friend, the infor-
mation is lost that U4 was already found in U3’s friendship list and propagated along
the shortest path over U2 back to U by the merge operations on U with U2. Therefore,
our algorithm indicates a need for a merge operation on U with U3 when processing the
third entry in U ’s friendship list due to the merge condition drafted in Listing 15. Even
when using the modified version introduced in Section 9.11.1 and given in Listing 16,
a need for a merge operation is still indicated because U3 has been previously seen at
time 2 as shown in Figure 21b, and hence, the introduced previous timestamp pTSU is
set to pTSU = 2 < TSU = 3. In summary, at the current stage of our example, the
following condition indicates the redundant merge operation:

1: IF (i > tpU && TSU3 > pTSU)
2: U .merge(U3)

where i = 2, tpU = 1 and the timestamps TSU3
= 3 and pTSU = 2.

Path Information Extension

To avoid this kind of redundant merge operation, we have to enrich each entry of a
user’s friendship list with another user identifier. There are two options:

1. We remember the owner of the friendship list where a shortest path distance
value originates from:

For each merge operation on U with a friend Um, and each new or updated
friend Uf who is merged into U ’s friendship list, we add to the associated entry
in FlistU also the owner Um of the friendship list where Uf was found.

2. We remember the first friend on a shortest path for the corresponding shortest
distance value in a user’s friendship list:

Same as with option 1, but if Um was previously found by a merge operation
with a user U ′m, we remember U ′m also for the modified entry with Uf instead
of Um. In this way, the remembered user is always the first user different from U
on the shortest path from U to Uf and, hence, a direct successor of U .

With both options, we call the user Um the intermediate user on the path from U to Uf .
A friend Uf of U , who is not found by a merge operation, must be a direct suc-

cessor of U , i.e. the shortest path from U to Uf is a direct edge. For those users, Uf is
remembered twice at the corresponding entry in FlistU , such that Um = Uf .

The extended definition of FlistU and its entries is then the following:

Definition 9.26 (Extended Friendship List FlistU). For each user U , FlistU is the
inverted list of all transitive friends of U sorted in descending order of their friendship
strengths. FlistU is called the extended friendship list of U .

An entry in FlistU is a triple fle = (Uf , s, Um) with s = st(U,Uf) is the friend-
ship strength of Uf with respect to U and Um is either

• Option 1: the user with whom the merge operation on U was applied to find Uf
or

• Option 2: the direct successor of U on the shortest path from U to Uf .

131

9.11 Extensions to EAP and LAP 9 MAINTAINING APSP DISTANCES

With these ingredients, we can again modify the check for our merge operation in
order to avoid redundant merge operations.

Let be (Uf , s, Um) = FlistU [tpU] the entry in U ’s friendship list at position tpU
and assume, that a query on U is going to identify the (tpU + 1)-th friend of U . If the
timestamp TSUf

of Uf ’s friendship list is greater than 0 (or greater than pTSU when
using the modification introduced in Section 9.11.1), we additionally check if Uf is
located on a path that is already up-to-date. If so, there is no need for another merge
operation.

Consider the following cases:

TSUm
< TSUf

: When the timestamp ofUm’s friendship list is older than that ofUf ’s
then clearly, Uf has been updated with information that Um and also U cannot
know yet. Hence, we need to do a merge operation on U with Uf .

TSUm = TSUf
: When the timestamp of Um’s friendship list is equal to that of Uf

and Um 6= Uf , then we do not need to apply a merge operation on U with Uf .
The reason is that timestamps of friendship updates are unique and the only
case when the timestamps of two lists become equal is when those two lists are
merged. The timestamp of the friendship list on which the merge operation is
applied is set by definition to the maximum timestamp of both lists.

Therefore, TSUm
can only be equal to TSUf

when the timestamp of Uf ’s friend-
ship list is newer than that of Um’s before a merge operation Um.merge(Uf) is
applied. However, that merge operation must already have propagated into Um’s
friendship list all new information found on the path over Uf . Furthermore,
since Um is a better friend of U than Uf , she is discovered prior to Uf dur-
ing the query processing and then all relevant information from Um is inserted
into U ’s friendship list by an appropriate merge operation on U with Um. Hence,
no other U .merge(Um) is necessary anymore.

When TSUm = TSUf
and Um = Uf , then Uf is a direct successor of U and no

intermediate user on the path from U to Uf exists. Hence, no merge operation on
that path has been applied so far and the merge operation still needs to be done.

TSUm > TSUf
: This final case is slightly more difficult to check because we cannot

know if changes to Uf have already been merged into Um’s friendship list with-
out (roughly) knowing the position of Uf in FlistUm

. When the position of Uf
in Um’s friendship list is prior to tpUm

, then we know by definition of tpUm
and

the correctness of our basic algorithm that Uf ’s friendship list is also up-to-date
with respect to Um’s timestamp. Hence, we only need to apply a merge operation
on U with Uf if posUm(Uf) ≥ tpUm .

In summary, we can further adjust our check for a merge operation to avoid redundant
merge operations due to missing path information in the way, shown in Listing 17.

1: IF (i > tpU && TSUf
> pTSU)

2: IF (Um = Uf || TSUm < TSUf

3: || (TSUm
> TSUf

&& tpUm
≤ posUm

(Uf)))
4: U .merge(Uf)

Listing 17: Merge condition with path information

132

9 MAINTAINING APSP DISTANCES 9.11 Extensions to EAP and LAP

Example: With reference to our example given above and sketched in Figure 21,
the redundant merge operation on U with U3 can now be avoided. To see this, we
rewrite the merge condition to match the situation depicted in Figure 21c. User U3

in U ’s friendship list has been found by a merge operation on U with U2. Therefore,
the intermediate user (Um) for U3 is U2 (with both options 1 or 2) and the final check
for a merge condition on U with U3 looks in this state as follows:

1: IF (i > tpU && TSU3 > pTSU)
2: IF (U2 = U3 || TSU2

< TSU3

3: || (TSU2
> TSU3

&& tpU2
≤ posU2

(U3)))
4: U .merge(U3)

The corresponding data structures have got the following values: i = 2, TSU = 3,
and TSU2

= 3. Since posU2
(U3) = 0 < tpU2

= 1, there is no redundant merge opera-
tion on U .

Of course, in order to apply this modification, it is crucial for efficiency reasons to
find out easily the position ofUf inUm’s friendship list without sequentially processing
the list to Uf ’s position.

Since a merge operation between U and Um has to touch the first tpUm entries
in Um’s friendship list anyway, the idea is, to remember the corresponding friends in
main memory during a query for each user Um when a merge operation on U with Um
is applied. In this way, we can quickly check if the position of Uf is prior to tpUm

in a friendship list for all intermediate friends Um of U . If no entry for Um has been
remembered at all or if Uf is not among the first tpUm best friends of Um, there was
either no merge operation between U and Um or no merge operation between Um
and Uf . Therefore, our check indicates the need for a merge operation between U
and Uf and otherwise, avoids redundant merge operations.

As soon as the top-k friends for U has been identified, the memory occupied to
remember the first tpUm friends of each user Um that caused a merge operation on U
can be released again. In the worst case, that are the first top-k friends for U ’s first top-k
entries.

Differences of Option 1 and 2

Choosing option 1 or 2 for dealing with missing path information about shortest path
distance values leads to different effects. If the friendship list of a direct successor of
a querying user is rarely updated but there are frequent changes at subsequent friends,
option 2 has got only a little effect.

However, option 1 is more difficult to maintain because we may want to change the
identifier Um to some U ′m for each entry with a user Uf in U ’s friendship list whenever
there is a merge operation on U with U ′m and that user is part of a shortest path to Uf .
We may want to do that even if the friendship strength of Uf does not change, just to
reflect the most frequent updated user Um on a shortest path to Uf in U ’s friendship
list. In addition, such changes in friendship lists are expensive because at some point
in time the modified entries of a friendship list have to be written back to the storage
backend and, thus, they cause more I/O costs than option 2.

133

9.12 Experiments 9 MAINTAINING APSP DISTANCES

Furthermore, with both options, we cannot guarantee to avoid all possible redun-
dant merge operations of the kind that occur because of missing path information. We
only check for one user of a shortest path to some friend at a potentially far distance if
a merge operation for the later friend on the same path is indeed needed. However, the
greater the distance of a friend the more and better friends a querying user has already
identified and, thus, the less redundant merge operations can be applied until a query
finishes.

In order to avoid all redundant merge operations, we either have to traverse each
shortest path and perform such additional checks not only at one intermediate user but
at all users on a shortest path. With option 2, this could be done by traversing the path
from one direct successor to the next which is expensive in terms of execution time and
I/O costs, or with option 1, by storing not only one user, but all the users on a shortest
path who caused a merge operation which is expensive in terms of storage – potentially
all users of a shortest path have to be remembered at each entry in a friendship list – and
also in terms of I/O costs because these information have to be properly maintained.

We assess both solutions as not viable. The I/O cost for storing or the effort for
maintaining complete shortest path information in friendship list is way too high. How-
ever, as shown in our experiments (see Section 9.12), the performance of our algorithm
is decent even in the presence of redundant merge operations.

9.12 Experiments
In this section, we introduce the setup for our runtime experiments that show the via-
bility of our algorithm.

To evaluate our algorithm, we used two different datasets crawled from the two
social network sites LibraryThing.com and Twitter.com.

1. For our experiments, we extended the dataset of LibraryThing.com used in Part A,
Section 6.4 for evaluating our CONTEXTMERGE algorithm by yet another crawl
of the LibraryThing.com social tagging network site. In this way, we obtained an
extended dataset with 21, 345 users, 10, 062, 267 books and in total 20, 306, 633
tags. The connected friendship graph based on this extended dataset consists
of 7, 793 distinct users with 28, 853 friendship connections. Though, only 5, 813
uses established outgoing friendship connections.

The weight of a friendship edge corresponds to a measure for the overlap in
tag usage between two directly connected friends. The weight was obtained by
computing the dice coefficient of the tag sets used by two users, i.e.

O(U1, U2) =
2 · |tagset(U1 ∧ U2)|

|tagset(U1)|+ |tagset(U2)|

Finally, the weight was normalised between (0, 1) over all users.

2. In addition, we obtained a snapshot of an anonymised topology of the social net-
work Twitter.com which was created in August 2009 by the authors of [89]. The
dataset contains 41, 652, 164 user accounts and 1, 468, 359, 999 social (follow)
links. Edge weights were chosen uniformly at randomly from the interval (0, 1).

We used for our experiments an Oracle 10 database as a storage backend on a
Windows 2003 Server with 32GB of main memory and 2 dual-core AMD Opteron
2218 processors. The CPUs are running at a clock rate of around 2.4GHz. Although

134

9 MAINTAINING APSP DISTANCES 9.12 Experiments

the performance of the mentioned server is decent, its characteristics is far away from
cutting-edge technology. However, for our experiments the performance is sufficient
since only sequential accesses on the database are necessary. Friendship lists are rep-
resented by a table of the from (user,friend,friendship strength) with
an index on all entries in descending order of the friendship strength.

All experiments were executed on a Linux desktop PC with 4GB main memory and
a 4-core Intel i5 650 CPU running at a clock rate of 3.20GHz and were implemented
in Java. In this setup, the main bottleneck, however, is the I/O access established via a
remote TCP/IP connection to the database from the desktop PC. Hence, the I/O access
dominates the overall runtime requirements and the CPU’s speed of the desktop PC is
not crucial. This also has been confirmed by our single threaded experiments which
barely uses the computational power of only a single core.

For these reasons, we measured in addition to wall clock times also the number of
performed merge operations, opened friendship lists and retrieved list entries to give a
more complete picture about the actual runtime requirements of our algorithm.

To evaluate our algorithm, we implemented both EAP and LAP as presented in the
previous Section 9.9 and 9.10 including the introduced improvements for reducing the
number of performed accesses to friendship lists caused by redundant merge opera-
tions. However, we disregarded the suggested extensions that add additional informa-
tion to friendship lists, i.e. missing timestamp (see Section 9.11.1) and path information
(see Section 9.11.2), in order to keep the inverted index list as simple as possible and
the size of the storage backend low.

A series of experiments were done on the smaller friendship graph from Library-
Thing.com to show the correctness of our implementations. For this, we precomputed
all friendship lists by using an in-memory all pairs shortest path algorithm, executed
on a Linux server with a decent amount of main memory and stored the results in our
Oracle 10 database. Afterwards, we removed about 1

3 of all edges from users with more
than 2 friends and one edge from users with only 2 friends by randomly choosing the
edge to remove. Additionally, for about half of all users with only 1 friend, we also re-
moved the corresponding single outgoing edge. On the remaining subgraph, we again
precomputed the inverted index lists and stored the lists of transitive friends in our
database.

Finally, we ran our algorithm on the diminished graph of LibraryThing.com in the
context of each user by querying for all or a certain fraction of all transitive friends
while inserting the previously removed edges in the subgraph over time again. The
order of querying users were chosen randomly. The resulting friendship lists retrieved
by our algorithm were eventually compared to the precomputed one of the entire graph.
We repeated these experiments several times with the EAP and LAP approach and
at varying edge insertion rates. In all queries, the retrieved order of friends and the
friendship strengths computed for each of them coincided for EAP and LAP with the
values precomputed over the entire graph. Although, in general, this does not prove
the correctness of our implementation, it gives a strong indication that it is at least
correct for the LibraryThing.com dataset. The same experiments could not be done on
the Twitter.com dataset due to its huge size.

Notwithstanding, a formal proof of the correctness of our basic algorithm is given
in Chapter 10.

Next, we discuss how well our algorithm performs and how much the presented
approaches differ with respect to their runtimes.

135

9.12 Experiments 9 MAINTAINING APSP DISTANCES

(a) RT, full merge, top-k=200, upd-ratio 1/100 (b) #SA, full merge, top-k=200, upd-ratio 1/100

(c) #OL, full merge, top-k=200, upd-ratio 1/100 (d) #MRG, full merge, top-k=200, upd-ratio 1/100

Figure 22: Experiments for EAP on LibraryThing.com, randomly selected querying
users, 1 update per 100 queries, top-k=200, fully merged friendship lists for (a), (b), (c)
and (d)

For the experimental evaluation, we measured the number of performed merge op-
erations (#MRG), opened lists (#OL), the total number of list entries retrieved by se-
quential accesses (#SA) to the database and the wall clock runtimes (RT) for each
query. The results are discussed in the following sections and reported by charts where
the x-axis denotes the number of the query, and the y-axis denotes the monitored per-
formance result for this query. Additionally, the charts contain the moving average over
intervals of 1000 queries.

9.12.1 Results on LibraryThing.com

We performed a series on experiments on the dataset crawled from LibraryThing.com.
About a third of all edges were removed from the graph and were re-inserted again
during our experiments. The re-insertion of edges simulated the creation of new edges
over time. Next, we randomly chose a user among the ones with at least one outgoing
edge in the full dataset to query for her top-k best friends and measured wall clock
times (RT) and counted the various number of I/O operations (i.e. #SA, #MRG and
#OL) performed until the top-k results could be correctly found.

EAP Approach With EAP, we chose top-k = 200 and queries were submitted se-
quentially by a randomly chosen user from LibraryThing.com who had at least one
outgoing edge to a friend.

136

9 MAINTAINING APSP DISTANCES 9.12 Experiments

Figure 22a shows the wall-clock runtimes and Figure 22b the number of sequential
accesses to the database measured by experiments with our algorithm implementing
EAP which merges complete friendship lists. In total 63,572 queries were executed
and every 100 queries one update was applied to the graph. With EAP, the runtimes are
not affected that much from the number of merge operations (#MRG), or the number of
opened friendship lists (#OL) but mainly from the total number of read operations on
list entries which correspond to sequential accesses to the database (#SA). In the worst
case, when each of the top-k friends are found in different lists by merge operations,
200 lists are opened with top-k=200. Indeed, it can be observed by the experiments,
as depicted in Figure 22c, that for the EAP approach on LibraryThing.com on average
around 180 lists have to be opened. This can be taken as evidence that the graph is
tightly connected and a single update already influences many shortest path distances.
Moreover, with EAP, #MRG=#OL, since friendship lists are opened only when merge
operations are applied and then all entries are read such that complete lists are merged.
For completeness, the Figures 22c and 22d visualise this property of our algorithm.

Finally, from the Figures 22a and 22b it easily can be seen that the runtimes are I/O
driven and increase rapidly with the number of list entries fetched from the database.
It takes over 20s to sequentially read around 60k entries from the involved friendship
lists. The number of sequential reads is so large since the lists of transitive neighbours
involved in a merge operation are long and, by the characteristics of the static algo-
rithm, have to be read completely during a merge operation.

fixed-size EAP: Restricting EAP to a fixed number of top-k When always the same
constant number of top-k friends are queried for users in some system, we can modify
our EAP approach by restricting the number of list entries considered in merge oper-
ations to the value of top-k, denoting this restricted EAP approach as fixed-size EAP
(see Section 9.9.6). fixed-size EAP makes sense since merging of friendship list with a
huge number of transitive friends is expensive and merge operations only on prefixes
of friendship lists still allow us to retrieve the correct top-k results as long as no query
requires to fetch more than this fixed number of entries from any friendship list.

In the following experiment, we fixed the lists’ lengths in merge operations to the
number of retrieved top-k friends with top-k=200 and for all queries, always 200 friends
were retrieved, if available.

The results for RT are shown in the Figures 23a-23c and for #SA in the Fig-
ures 23e-23g. The update ratio varies in the corresponding experiments from 1 up-
date per 1, 10 and 100 queries and, depending on the update ratio, 17, 438, 93, 007
or 218, 910 queries, respectively, were submitted in the context of a randomly chosen
user.

It can be observed that the different update ratios have got only little effect on RT
and #SA. For a query with an update ratio of 1/1, the maximum value for RT and #SA
is 693ms or 2925 sequential accesses to the DB, respectively, and with an update ratio
of 1/100, the maximum values are slightly over 723ms and 2130 sequential reads from
friendship lists. The reason that RA is slightly higher in the latter case although #SA is
lower is most likely caused by network latency issues during the experiments.

The charts additionally visualise the moving average over those (worst-case) queries
that indeed received the total requested top-k friends within intervals of size 1000.
Hence, the average RT and #SA is fairly similar for each update ratio, too. The drop in
RT and #SA in the Figures 23a-23b and 23e-23f after 8,456 or 84,560 queries, respec-
tively, happens because all available edge updates have been applied to the graph at that

137

9.12 Experiments 9 MAINTAINING APSP DISTANCES

(a) RT, max-k=top-k, upd-ratio 1/1 (b) RT, max-k=top-k, upd-ratio 1/10

(c) RT, max-k=top-k, upd-ratio 1/100 (d) RT, max-k=500, upd-ratio 1/100

(e) #SA, max-k=top-k, upd-ratio 1/1 (f) SA, max-k=top-k, upd-ratio 1/10

(g) #SA, max-k=top-k, upd-ratio 1/100 (h) #SA, max-k=500, upd-ratio 1/100

Figure 23: Runtime and #SA measurements of EAP on LibraryThing.com, randomly
selected querying users, 1 update per varying number of queries: 1, 10 or 100, top-
k=200, only top-k prefixes are merged. for (a), (b), (c), and (e), (f), (g). In (d) and (h)
upd-ratio 1/100 and top-k=200 but merge operations on prefixes of size max-k=500.

138

9 MAINTAINING APSP DISTANCES 9.12 Experiments

time and, finally, the performance further improves when there are no more updates for
a large number of queries. These experiments demonstrate that EAP, when restricting
queries and merge operations to top-k list entries, can handle different update loads and
benefits quickly from long periods without updates.

fixed-size EAP: Restricting EAP to a maximum number max-k To allow querying
for a varied number of top-k friends, yet limiting the number of list entries involved in
a merge operation, we introduces a constant max-k which specifies the maximum value
allowed for top-k. In this way, a merge operation with fixed-size EAP merges always
list prefixes of fixed-size max-k and the requested number of friends issued by a query
can vary up to max-k while the correctness of the retrieved results still can be ensured
by our algorithm.

The Figures 23d and 23h show the results for RT and #SA of our experiments with
max-k=500 and 1 update per 100 queries. In order to compare the evaluation with the
results shown in the Figures23c and 23g, the value for top-k has been kept equal to 200
for each query. As expected, RT and #SA increase compared to the modification which
restricts queries and merge operations to a constant value of top-k entries because larger
prefixes of lists need to be merged. However, the average #RA/#SA keeps fairly stable
at around 850ms or 2800 sequential accesses to the DB, respectively.

For completeness, in Figure 24 the number of opened lists, #OL, and number of
merge operations, #MRG, are shown for both versions of our fixed-size EAP approach.

(a) #OL, max-k=top-k, upd-ratio 1/100 (b) #MRG, max-k=top-k, upd-ratio 1/100

(c) #OL, max-k=500, upd-ratio 1/100 (d) #MRG, max-k=500, upd-ratio 1/100

Figure 24: Experiments for EAP on LibraryThing.com, randomly selected querying
users, 100 queries per update, top-k=200, merges only of top-k prefixes in (a), (b) of
size 200 and in (c), (d) of size 500

139

9.12 Experiments 9 MAINTAINING APSP DISTANCES

(a) RT, max-k=500, upd-ratio 1/1 (b) #RT, max-k=500, upd-ratio 1/10

(c) #SA, max-k=500, upd-ratio 1/1 (d) #SA, max-k=500, upd-ratio 1/10

Figure 25: Experiments for EAP on LibraryThing.com, randomly selected querying
users, top-k=200, and 1 update per 1 query in (a), (c), and 1 update per 10 queries in
(b) and (d) with merges of size max-k=500.

By the characteristics of EAP, it follows #OL=#MRG which is confirmed by our exper-
iments shown in the Figures24a-24b and 24c-24d. Furthermore, since only larger list
prefixes are involved in merge operations but top-k is also not varied in our experiments
with max-k=500, of course, #OL and #MRG are exactly the same as in the previous ex-
periments since the same merge calls have to be done for retrieving the correct top-k
friends. Hence, the corresponding charts are equal.

Additionally, the Figures 25a, 25c and 25b, 25d show in comparison with Fig-
ure 23d and 23h again that at higher update ratios RT and #SA keeps fairly stable in
our experiments with max-k=500, too. The drop in RT and #SA after 8, 456 or 84, 560
queries, respectively, occurs again because all edge updates have been applied to the
graph at that time.

LAP Approach For the experiments with the LAP approach of our algorithm, we set
top-k = 200, too, in order to compare the results with EAP. Moreover, we varied the
update ratio of new friendship edges in the same way as with EAP.

With LAP the runtimes, RT, and the number of sequential accesses to the database,
#SA, depend on the number of opened lists, #OL, and the number of merge operations,
#MRG, since only single list entries are merged on demand.

The Figures 26a-26d show the results for our experiments with the LAP approach
of our algorithm. New friendship edges are inserted at an update ratio of 1 update
each 100 queries. It can be observed that #SA on average is fairly low although #MRG

140

9 MAINTAINING APSP DISTANCES 9.12 Experiments

(a) RT, top-k=200, upd-ratio 1/100 (b) #SA, top-k=200, upd-ratio 1/100

(c) #OL, top-k=200, upd-ratio 1/100 (d) #MRG, top-k=200, upd-ratio 1/100

(e) RT, top-k=200, upd-ratio 1/10 (f) RT, top-k=200, upd-ratio 1/1

(g) #SA, top-k=200, upd-ratio 1/10 (h) #SA, top-k=200, upd-ratio 1/1

Figure 26: Experiments for LAP on LibraryThing.com, randomly selected querying
users, top-k=200, 1 update per 100 queries in 26a-(d), and and 1 update per query for
RT in (f) and #SA in (h), and 1 update per 10 queries for RT in (e) and #SA in (g).

141

9.12 Experiments 9 MAINTAINING APSP DISTANCES

is much higher than with the EAP approach, even though the same number of lists are
opened (#OL). The reason is that more merge operations have to be applied until all
updates from other lists are merged since only a single entry is merged with each merge
operation. In addition, for #SA is even lower as in the best case of EAP that restricts
merge operations on only short prefixes of the size of some constant top-k, it also shows
that indeed on average shorter prefixes of lists (< 200) have to be read until the top-k
nearest friends can be correctly identified.

However, when comparing the average RT of LAP shown in 26a with the results
of fixed-size EAP shown in 23c and 23d, we can see that RT is slightly worse than the
fixed-size EAP with a constant top-k value of 200 but much better than with the one
with max-k=500. However, in any case, #SA is better with the LAP approach. There
are two reasons why RT is not better than both versions of fixed-size EAP although #SA
is: first, maintaining the queue of candidates with LAP causes additional costs—again
the dominating factor is I/O, not CPU time. Second, although the queue of candidates
is small (no more than top-k friends can be candidates), it is initialised with each query
by fetching each single candidate from DB. A more efficient maintenance that allows
to retrieve the lists with only one access to the DB could additionally reduce the costs
of maintenance.

From the Figures 26e-26h it easily can be observed that LAP is more sensitive
to the update ratio. For higher update ratios, both RT and #SA increase. The higher
sensitivity becomes especially visible in the Figures 26f and 26h after 8, 456 queries,

(a) #OL, top-k=200, upd-ratio 1/10 (b) #OL, top-k=200, upd-ratio 1/1

(c) #MRG, top-k=200, upd-ratio 1/10 (d) #MRG, top-k=200, upd-ratio 1/1

Figure 27: Experiments for LAP on LibraryThing.com, randomly selected querying
users, top-k=200, 1 update per 10 queries for #OL in (a) and #MRG in (c), and 1
update per query for #OL in (b) and #MRG in (d).

142

9 MAINTAINING APSP DISTANCES 9.12 Experiments

and Figures 26e and 26g after 84, 560 queries, when all friendship updates have been
applied. The drop in RA and #SA is much more abrupt and steep than with EAP as
depicted in the Figures 23a-23b and 23e-23f.

For completeness, the Figures 27a-27d depict the number of opened lists and num-
ber of merge operations applied with LAP at an update ratio of 1 update per 10 queries
and 1 update per query. As expected, in comparison with Figure 26d, it can be observed
that with higher update ratios, the number of merge operations increases. However, the
average number of opened lists stays the same since the final top-k friends, of course,
are found in the same lists. Again, although the number of merge operation increases
with higher update ratios, the number of sequential accesses to the database does not.
This can be taken as another indication that the graph is tightly connected and shorter
prefixes of involved lists (compared to EAP) have to be read until the top-k friends can
be identified.

9.12.2 Results on Twitter.com

For Twitter.com, we were not able to use the same setup as for LibraryThing.com be-
cause of its huge size. We preprocessed the Twitter.com dataset in the same way as the
one from LibraryThing.com by removing around 1

3 of the edges from all Twitter.com
users with more than 2 friends and for half of all users with only 2 edges, we removed
one of them. In both cases we randomly chose which edge to remove. Additionally, we
also randomly chose half of the users with only 1 edge and removed the only existing
edge. All removed edges and the finally remaining subgraph were stored in the same
Oracle 10 database as the LibraryThing.com dataset.

However, the size of the subgraph still exceeded by far the size of usual memory
configurations of modern PCs and also of our database server that we used for our
experiments. In addition, for being able to compare the results of our algorithm on
Twitter.com with these on LibraryThing.com, we wanted to use exactly the same im-
plementation of our algorithm. However, the runtime of our Java implementation of
Dijkstra’s APSP algorithm on such a huge graph like Twitter.com adds up to weeks
instead of hours—even when all data completely is available in main memory. There-
fore, we didn’t precompute the shortest paths between all possible user combinations
like we did on LibraryThing.com.

Before we are going into details about the final setup for Twitter.com, we want to
give more precise information about the resource requirements needed for our straight
forward implementation of Dijkstra’s APSP algorithm in Java:

The graph has been implemented by using objects for nodes and edges. An object
of type Node contains an variable ID of the primitive data type int, a variable weight
of the primitive data type double (which is needed for the APSP algorithm), and an
array of Edge-objects, i.e. Edges[], to maintain outgoing edges. An object of type Edge
contains a variable ID andweight of type int and double, respectively, too. Eventually,
as commonly adequate in object-oriented programming, our Java implementation of
Edge- and Node-objects has been completed by methods to set the weight, connect
edges with nodes, etc.

Using this straight forward construction of a graph, in order to keep only the re-
duced subgraph of the Twitter.com dataset in main memory, an initial allocation of far
over 120GB of heap space is required with Java. We then first tried to compute the
shortest paths between all pairs of users in this subgraph by our (again straight for-
ward) implementation of Dijkstra’s APSP algorithm which was already used with the
LibraryThing.com dataset. For this, we managed to get access to a powerful Linux

143

9.12 Experiments 9 MAINTAINING APSP DISTANCES

server with 256GB of main memory. Nevertheless, the computation could not be fin-
ished because the runtime simply was way too long and, hence, we stopped it.

Instead, we randomly chose a single user with 20 directly connected friends and
applied a variant of Dijkstra’s SSSP algorithm starting with this user and, subsequently,
for each other user found during the execution of the algorithm. The search, however,
was restricted to only the closest one thousand transitive friends of each user. After
around 2 weeks, we stopped the execution and had managed to compute the shortest
path distances for 2.427.523 of 41.659.253 users and their 1000 closest friends.

After these precomputation steps, we started the execution of our algorithm while
re-inserting the former removed edges over time again. We randomly chose distinct
users from the 2.4 millions in total and queried in the context of these users for their
top-200 friends while randomly adding friendship edges to the graph. Each applied
update was always related to one of the users with precomputed friendship lists, too.

Again, as with LibraryThing.com, we measured the wall clock runtimes (RA) needed
to retrieve the results, the number of sequential accesses to the database (#SA), the
number opened friendship lists (#OL) and the number of merge operations (#MRG)
needed to identify the correct top-k friends for each querying user.

Since the size of the reduced Twitter.com dataset used for our experiments is still
huge, we only ran the most promising approaches of our algorithm as concluded from
the experiments on the smaller LibraryThing.com graph. We additionally relinquished
the verification of the correctness of the results on Twitter.com since the correctness of
our implementation was already shown by the experiments on LibraryThing.com and
because of the longish runtime of the straight forward implementation of Dijkstra’s
APSP algorithm in Java for such a huge dataset.

fixed-size EAP and LAP Approach In our experiments on Twitter.com using the
fixed-size EAP approach with max-k=top-k and also for the LAP approach of our algo-
rithm, we chose top-k=200 and added each 100 queries a new edge to the precomputed
graph.

For the number of users in the precomputed graph is quiet large, it takes a huge
number of queries, as shown in our experiments, until the effects of update operations
propagate through the graph and affect the runtimes. The Figures 28a-28d show the
result for over 2 million queries on Twitter.com for RT, #SA, #MRG and #OL on both
approaches fixed-size EAP and LAP. It can be observed that in general RT seem to
increase linearly over time for fixed-size EAP and LAP but huge peaks happen here
and there. However, no such peaks can be observed for the I/O related charts (see
Figures 28b-28d) for #SA, #MRG and #OL. In the contrary, #SA even seem to increase
slightly less the longer the algorithm runs.

One explanation for this odd behaviour of our experiments on Twitter.com is that the
experiments ran for weeks until over 2 million queries had been processed. Therefore,
it is likely that these peaks in RT are network-related or are caused by problems on the
database side. In addition, it turned out that the database needs to perform on average
more than 3 accesses to the disk storage for each sequential read of a list entry. This
can explain the relatively high runtimes on Twitter.com, even though #MRG, #OL and
#SA have—even after 2 million queries—not yet reached the same level as shown
in the experiments on the smaller dataset from LibraryThing.com. In fact, since the
I/O load on Twitter.com in terms of #MRG, #OL and #SA is actually lower than on
LibraryThing.com, the RT should be lower, too. However, apparently the huge amount
of data in our current database setup with the attached disk storage or the remote access

144

9 MAINTAINING APSP DISTANCES 9.12 Experiments

(a) RT: fixed-size EAP on the left, LAP on the right hand side

(b) #OL: fixed-size EAP on the left, LAP on the right hand side

(c) #MRG: fixed-size EAP on the left, LAP on the right hand side

(d) #SA: fixed-size EAP on the left, LAP on the right hand side

Figure 28: Experiments on Twitter.com for fixed-size EAP with maxk=top-k on the left
and for LAP on the right hand side, randomly selected querying users, top-k=200, 1 up-
date per 100 queries.

145

9.12 Experiments 9 MAINTAINING APSP DISTANCES

to the DB via Ethernet causes unexpected problems during long term experiments.
When comparing for top-k=200, fixed-size EAP using max-k=top-k with LAP, we

can see that both approaches perform equally well on Twitter.com. Although, the abso-
lute runtimes can hardly be compared due to the odd peaks in both charts, the moving
average over intervals of 1000 queries show all about the same values (see Figure 28a).
Not surprisingly, the same is true for #OL (see Figure 28b) since the same lists are in-
volved in both approaches to find the top-k friends for a querying user. As expected, the
number of merge operation (see Figure 28c) on fixed-size EAP is equal to the number
of opened lists and much lower than in LAP since the fixed-size EAP approach merges
full prefixes of lists while LAP only merges one single entry at a time. Figure 28b fi-
nally shows that with LAP also on Twitter.com the number of sequential accesses to the
database can be slightly reduced compared to full prefix merge operations as with the
EAP approach. That the difference in #SA is not huge shows that for Twitter.com, the
top-200 friends of users indeed are from many different friendship list retrieved. Hence,
the users in our dataset are tightly connected in the friendship graph of Twitter.com.

9.12.3 Conclusion

The evaluation of our experiments show that our shortest path distances algorithm
can dynamically handle insertion and increasing edge weights for large, disk-resident
graphs up to millions of nodes. Both of our introduced approaches support a large vari-
ety of update ratios up to extreme situations where the number of updates and queries
are similar. Moreover, the experiments have shown that both approaches EAP and LAP
benefit quickly when updates occur less frequent or even do not happen for longer
time periods. While the fixed-size EAP approach with an upper bound for the number
of top-k results is even less sensitive for higher update ratios, the LAP approach not
only quickly benefits from phases where no updates happen, it also allows to retrieve
a flexible number of top-k results for different queries without introducing a larger
performance penalty compared to EAP. As shown in our experiments, EAP and LAP
are also applicable when the graph is tightly connected and a single update already
influences large parts of the graph.

146

10 PROOF OF CORRECTNESS

10 Proof of Correctness
To prove the correctness of our algorithm for maintaining dynamic shortest distances,
we formalise the operations used in our EAP approach as described in Section 9.4
and show in a first step that by applying the two basic operations U .update() and
U .merge(Uf), the data structures used for maintaining shortest distances are always
well-defined and in a predictable state for all users and at any time. To do so, we intro-
duce in Section 10.4 two invariants on friendship lists and prove they are not violated
for all users in the graph by an update or a merge operation.

In a second step, we show in Section 10.8 with the help of these invariants that
for each querying user our algorithm successively finds the user’s correct next best
friend and computes her correct friendship strength. Both steps combined prove that
our algorithm always returns the requested top-k best friends in descending order or
their friendship strength.

In Section 10.1, we introduce some notation and in Section 10.2, we give some
properties on the defined friendship strengths of users in friendship graphs. In Sec-
tion 10.3, we introduce the state description which is the basis for proving the correct-
ness of our algorithm and formalise both operations U .update() and U .merge(Uf) in
this regard. Afterwards, in Section 10.4, two important invariants are introduced and
the proof that they hold for all users U and update or merge operations on U is given
in Section 10.5 and Section 10.6, respectively. Section 10.7 extends the proof to all
users in the friendship graph and, finally, with the help of the introduced invariants, in
Section 10.8, a proof by induction is given that shows our algorithm always computes
the correct results.

10.1 Notation
To ease readability, we briefly repeat in the following from Section 9.2 and Section 9.5
the most important notation used for the data structures of our algorithm:

• FlistU,t : the dynamic friendship list (see Definition 9.11) of U containing all
her transitive friends in Gt at time t of the dynamic friendship graph G (see
Definition 9.4).

• FlistU : the friendship list as maintained by our algorithm for user U with
entries e = (Uf , s) sorted in descending order of the friendship strength s of U ’s
friends Uf .

FlistU [i] refers to the i-th entry ei = (Uf , s) in U ’s friendship list.

• TSU : timestamp of FlistU

• tpU : timestamp validity pointer of FlistU

• OP [U] : operation map of pending friendship updates for U . OP contains
sets of pairs ope = (Uf , TSe) for each user U and pending friendship updates
e = (U → Uf) with timestamp TSe, i.e.

OP [U] =


{ope = (TSe, Uf) | ∃(U → Uf) ∈ Gt with t = TSe and

sf,t(U → Uf) > sf,t−1(U → Uf)}
or NULL

147

10.2 Properties 10 PROOF OF CORRECTNESS

• posU (Uf) : auxiliary method that returns the position i of a friend Uf in FlistU
where (Uf , s) = FlistU [i] or −1 otherwise.

To simplify the discussion, we introduce some additional notation in regard to the dy-
namic friendship graph defined in Section 9.2 and for conveniently referencing ele-
ments in friendship lists.

We define a shortcut for referring to a friend Uf or her friendship strength sf at a
given position in U ’s friendship list.

Definition 10.1 (Shortcut for Uf or sf at position i in FlistU).

Uf ∈ FlistU [i] or sf ∈ FlistU [i]⇔ (Uf , sf) = FlistU [i]

For convenience, we define U to be the owner of the friendship list FlistU who
can be referenced by the negative index −1 in FlistU with friendship strength 0.

Definition 10.2 (Ownership of FlistU). For referencing the owner U of a friendship
list FlistU , we define

FlistU [−1] = (U, 1)

We denote with bft(U) the best friend of U at time t

Definition 10.3 (Best Friend bft(U)). The best friend of a user U at time t is defined
as

bft(U) = Uf with (Uf , sf,t) = FlistU,t[0]

We denote with Uf ∈ FlistU,t[i] the i-th best friend Uf of U in Gt and with
sf,t ∈ FlistU,t[i] her friendship strength at time t.

Definition 10.4 (i-th Best Friend in FlistU,t). For the user Uf with the i-th best friend-
ship strength sf,t with respect to U in Gt, we define:

Uf ∈ FlistU,t[i]⇔ (Uf , s) = FlistU,t[i] and s = sf,t(U,Uf)

and
sf,t ∈ FlistU,t[i]⇔ (Uf , s) = FlistU,t[i] and s = sf,t(U,Uf)

10.2 Properties

In this section we declare some properties of a friendship graph Gt and involved data
structures which will ease the understanding of the discussions in subsequent sections.

A property of the friendship strength sf,t(U,Uf) (see Definition 9.9) is that it is a
multiplication of minimal number of edges weights which maximizes its values along
the shortest path from U to Uf .

148

10 PROOF OF CORRECTNESS 10.2 Properties

Property 10.1.

sf,t(U,Uf) = max({sf,t(U → Uf)} ∪
{sf,t(U → Û) · sf,t(Û , Uf) | for all edges U → Û})

Property 10.2. Monotonicity of friendship strengths

t < t′ : Πt(U,Uf) ⊆ Πt′(U,Uf) and

: ∀π ∈ Πt(U,Uf) : sf,t(π) ≤ sf,t′(π)

The monotonicity of friendship strengths follows from the requirement that only
friendship updates are considered which reduces the length (maximises the weight) of
shortest paths to friends.

Property 10.3. bft(U) is a direct successor of U in Gt

Property 10.3 follows from Property 10.1 and can trivially be proved by counter
example: Assume that U1 is the best friend of U in Gt and U1 is not a direct successor.
Then, there is a path π = (U → U2 → . . . → U1) from U to U1 over a direct
successor U2 of U . In that case, sf,t(U → U2) must be greater than sf,t(U,U1) which
is a contradiction to our assumption.

Property 10.4. For all users U , when at time t no friendship update appears for U
in Gt, her best friend does not change in Gt, i.e. bft−1(U) = bft(U).

Property 10.4 immediately follows from Property 10.3.

Property 10.5. If a friendship update (U → Uf) appears in Gt, then

bft(U) =

{
Uf if sf,t(U → Uf) ≥ sf,t(U, bft−1(U))

bft−1(U) otherwise.

Property 10.5 immediately follows from Property 10.3 and Property 10.4.

Property 10.6. When applying a new friendship update to Gt, the shortest path be-
tween all users in Gt who are connected over a path including the new friendship
update, potentially change.

Let be (U → Uf) the friendship update that is applied at time t to Gt, and
sf,t(π) = sf,t(U1, U) · sf,t(U → Uf) · sf,t(Uf , U2) is the maximum weight for a
path π from U1 to U2 which includes the friendship update (U → Uf). Then for all
nodes U1, U2:

sf,t(U1, U2) =

{
sf,t−1(U1, U2) if sf,t−1(U1, U2) > sf,t(π)

sf,t(π) otherwise.

From the Properties 10.2, 10.3 and 10.4 follows: sf,t−1(U1, U) = sf,t(U1, U) and
sf,t−1(Uf , U2) = sf,t(Uf , U2). Hence, also Property 10.6 must hold.

149

10.3 Mode of Operation 10 PROOF OF CORRECTNESS

10.3 Mode of Operation

In this section we give an overview of our correctness proof. For this, we introduce a
state description on friendship graphs and define the update and merge operation in this
regard.

Query-Dependent Maximal Timestamp TSmax

The value of TSmax (see Definition 9.17) corresponds to the timestamp of the latest
friendship update in the dynamic friendship graph G (see Definition 9.4 in Section 9.2)
and increases whenever there is an additional friendship update for some user in G,
extending the sequence of friendship graphs Gt defined by G.

A query QU submitted in the context of a user U is supposed to retrieve the top-k
best friends of U with respect to query time t(QU) = TSmax (see Definition 9.13).
However, as discussed in Section 9.6, we may assume that there is no friendship update
while a query is processed and, thus, that the value of TSmax does not changes during
a query.

For our correctness proof, we formalise this assumption by the following definition.

Definition 10.5 (Query-Dependent Fixed Timestamp TSmax). For each queryQU , the
value of the maximal timestamp TSmax does not change but stays equal to the query
time t(QU) as long as QU is not completely processed.

In other words: There are no friendship updates while a query from a user U is
processed.

Point of Interest x(U)

To discuss the changes in friendship lists for all users in the friendship graph of a
social network due to update and merge operations on an arbitrary user, we introduce
an important definition.

We define the point of interest in a user’s friendship list to be the first position in the
list that requires our attention to adjust the next best friend or her friendship strength
found at this point.

Definition 10.6 (Point of Interest x(U)). We define the Point of Interest x(U) with
respect to a friendship list FlistU of a user U in the following way: Let be,

firstUpdate(U) = min{i | Uf .needs_update() with Uf ∈ FlistU [i]}
firstMerge(U) = min{i | TSUf

> TSU with Uf ∈ FlistU [i]}

Then,
x(U) = min{tpU , firstUpdate(U), firstMerge(U)}

Note: With new friendship updates in G, firstUpdate(U) or firstMerge(U)
might change without the need of a query or an update/merge operation on FlistU .
According to Definition 10.5 the value of TSmax does not change during a query but
may change between two subsequent queries. Thus, when there is no query on U , but
there are friendship updates related to U , the value of x(U) can change over time.

150

10 PROOF OF CORRECTNESS 10.3 Mode of Operation

10.3.1 State Description

For proving the correctness of our algorithm, we first assume that all the data structures
representing a friendship graphGt are in a valid state at a given time t. Then, we discuss
the resulting state of all data structures after an update or a merge operation is applied
to any user in the friendship graph.

Definition 10.7 (Initial State σU). For all users U , we define the state of all user-
specific data structures as

σU = (FlistU , tpU , TSU , tsmaxU) and x(U)

with tsmaxU is equal to TSmax at the time of the last or current update or merge
operation on FlistU .

The initial state σU contains all user-related data structures that might change over
time due to any operations of our algorithm. The timestamp TSmax implicitly changes
for all users when new friendship updates arrive but is actually tied to the user-specific
query time t(QU) when U issues a query. Although, by Definition 10.5, TSmax is
fixed during a query, it can change between two subsequent queries. Thus, we define
the additonal data structure tsmaxU to be part of the initial state σU (and of the re-
sulting state, see Definition 10.8) to reflect possible changes of TSmax between two
subsequent queries in the friendship graph. As a consequence, tsmaxU denotes the
timestamp of the last known friendship update at the time of the transition to state σU .
Moreover, due to Definition 10.5, tsmaxU corresponds to the query time t(QU) of the
last query on U .

The point of interest x(U) is not a user-specific data structure but indicates the po-
sition in a friendship list that needs attention—hence, it is related to a user-specific data
structure. Since that position might change when applying update or merge operations,
we have to take care of it together with σU . In contrast to tsmaxU (or TSmax), it is
not obvious when x(U) changes for a user U but needs to be discussed for each user
and update or merge operation.

After applying an update or a merge operation on some user Uj in Gt, the resulting
state for each user is denoted as follows.

Definition 10.8 (Resulting State σ′U). For all users U in Gt at time t, we define the
resulting state σ′U after applying an update or merge operation on any user Uj due to
a friendship update transforming Gt into Gt′ as:

σ′U = (Flist′U , tp
′
U , TS

′
U , tsmax

′
U) and x′(U)

where Flist′U , tp
′
U , TS

′
U , tsmax′U correspond to the data structures of user U right

after the applied operation; x′(U) is the resulting point of interest in Flist′U .

Although our algorithm shown in Listing 5 of Section 9.4 ensures that the following
is true (since the method Uf .needs_update() is called before the call of the method
U .needs_merge(Uf)), we define an order on operations on users to clarify which op-
eration is applied first.

Definition 10.9 (Priority of Operations). In case, while processing a query, there is
both a need for an update operation on a user U or a user Uf and a merge operation
on U with Uf then the update operation on user U or Uf is always applied first.

151

10.3 Mode of Operation 10 PROOF OF CORRECTNESS

With these ingredients, we can derive invariants on the state of all users in the
friendship graph (see Section 10.4) and prove they hold for update and merge opera-
tions (see Section 10.5, 10.6 and 10.7) by discussing the resulting state of σ′U for all
users U as defined by our algorithm and comparing the resulting friendship list FlistU
with the dynamic friendship list FlistU,t′ at time t′ for all users U in the friendship
graph, where t′ is equal to the friendship list’s resulting timestamp TS′U .

To this end, we formalise the semantic of an update operation and a merge operation
on U in Gt by deriving the resulting state σ′U from an initial state σU .

10.3.2 State Transition for U .update()

For a user U , we assume an initial state σU and define an update operation on U by
describing the resulting state σ′U of U .

Definition 10.10 (Update Operation on U). For a friendship update (U → Uf) at time
t′ > t = TSU with associated friendship strength sf,t′(U → Uf), an update operation
on U transforms σU into U ’s resulting state

σ′U = (Flist′U , tp
′
U , TS

′
U , tsmax

′
U)

where

σ′U = σU if sf,t′(U → Uf) < s = sf,t(U,Uf) and (Uf , s) ∈ FlistU

or otherwise,

• Flist′U is the result from merging into FlistU :

1. the new or now better friend Uf of U with the new friendship strength
s = sf,t′(U → Uf)

2. the friends of Uf merged in by a merge operation on U with Uf , i.e.
U .merge(Uf).

• U ’s timestamp validity pointer is set to 0, i.e.

tp′U = 0

• the timestamp of U ’s friendship list is set to the time of the the latest friendship
update t′, i.e.

TS′U = t′

• the maximal timestamp does not change during an update operation, i.e.

tsmax′U = tsmaxU

Note: If there is more than one friendship update for a user U , the update operation
on U is called for each friendship update in ascending order of their timestamps TSe
until all friendship updates for U have been inserted in FlistU .

The pseudocode implementing this state transition of the update operationU .update()
on U is shown in Listing 8 of Section 9.4.

152

10 PROOF OF CORRECTNESS 10.3 Mode of Operation

10.3.3 State Transition for U .merge(Uf)

Before a merge operation on some user U with some friend Uf can be applied, first
all update operations on Uf are applied (see Definition 10.9) by calling Uf .update() if
necessary (i.e. when there is at least one pending friendship update for Uf).

For a user U , we again assume an initial state σU and define a merge operation
on U with some user Uf by describing the resulting state σ′U of U .

The resulting state of U when a merge operation on U with Uf is applied is defined
as follows:

Definition 10.11 (Merge Operation on U with Uf). For a merge operation on a user U
with a user Uf , first all update operations on Uf are applied for pending friendship
updates, then the merge operation on U results in U ’s following state:

σ′U = (Flist′U , tp
′
U , TS

′
U , tsmax

′
U)

where
σ′U = σU if Uf /∈ FlistU

and otherwise,

let be s = sf,t(U,Uf) the friendship strength of Uf wrt. U . Then,

• Flist′U is the result from merging into FlistU from FlistUf
:

1. all users who are not yet friends of U at time t.

2. all users who have become better friends to U because of a shorter path
over Uf , i.e.

∀(Uff , sf) ∈ FlistUf
∧ sf,t′(U,Uff) = s · sf > sf,t(U,Uff) :

merge (Uff , s · sf) in FlistU

Note: to “merge” means an entry with Uff is either replaced or inserted
in FlistU .

• the timestamp TSU and timestamp validity pointer tpU of U ’s friendship list is
set in the following way:

If posU (Uf) ≤ tpU

TS′U = max{TSU , TSUf
}

tp′U = posU (Uf) + 1

otherwise

TS′U = TSU

tp′U = tpU

• the maximal timestamp does not change during a merge operation, i.e.

tsmax′U = tsmaxU

153

10.4 Invariants 10 PROOF OF CORRECTNESS

Note: According to this definition of a merge operation, it immediately follows that
pos′U (Uf) = posU (Uf) and Flist′U [0 : i] = FlistU [0 : i] with i ≤ posU (Uf).

The pseudocode implementing the defined state transition for the merge operation
U .merge(Uf) is shown in Listing 9 of Section 9.4.

10.3.4 State Transition for ∀Ui 6= U : U .update(), U .merge(Uf)

When applying an update or merge operation on U , then, for all users Ui 6= U , the
initial state of Ui does not change.

Definition 10.12 (Ui 6= U : Update or Merge operation on U). An update or merge
operation on U does not change the state of any user Ui 6= U . Hence, σ′Ui

= σUi :

• Flist′Ui
= FlistUi ,

• TS′Ui
= TSUi , and

• tp′Ui
= tpUi .

• tsmax′Ui
= tsmaxUi

Note: tsmaxUi
in σUi

is part of the state description for Ui. Hence, it is equal to
the last known friendship update in G at the time the data structures related to Ui were
set into state σUi . ∀Ui 6= U , it is not necessarily equal to the timestamp of the latest
friendship update in G (in contrast to tsmaxU in σU for any operation on U due to
Definition 10.5).

Next, we define the processing of friendship lists and the meaning of tpU in this
respect.

Definition 10.13 (Sequential List Access). Each friendship list FlistU is processed se-
quentially. Update and merge operations are applied when needed. tpU marks the last
entry in FlistU that was processed with reference to TSU . For this, tpU is increased
by one if no update operation on Uf or merge operation on U with Uf is applied for a
user Uf ∈ FlistU [i] with i = tpU + 1.

The need for an update or merge operation with reference to TSU is defined as in
Definition 9.21 and Definition 9.22, respectively.

In particular, Definition 10.13 implies the following lemma:

Lemma 10.1. ∀U : If TSmax = tsmaxU it follows x(U) = tpU .

Proof. From Definition 10.13 and with tsmaxU = TSmax, it immediately follows
that there cannot be any pending friendship update for U or a user Uf ∈ FlistU [i]
with i < tpU , and the timestamps TSUf

of those users’ friendship lists cannot be
greater than TSU by definition of an update and merge operation. Hence, with refer-
ence to Definition 10.6, it follows x(U) = tpU .

10.4 Invariants
In this section we introduce the two invariants on friendship lists that hold for each
update or merge operation and all users U in a social friendship graph. In addition we
introduce two lemmas that help to prove the correctness of the invariants.

154

10 PROOF OF CORRECTNESS 10.4 Invariants

10.4.1 Intuition

Before formalising the two invariants on friendship lists, we want to sketch the intuition
that leads to their formulation.

Invariant 1

For all users U , the first invariant applies to all entries in a user’s friendship list up
to and including its point of interest x(U). The intuition of Invariant 1 is fairly simple:
At all times, the prefix of a friendship list specified by its point of interest x(U) is
correct, i.e. no friend is missing, the order of friends is correct and also their friend-
ship strengths with respect to U correspond correctly to the weights of the respective
shortest paths starting at U .

Invariant 2

Invariant 2 concerns the entry next to the point of interest x(U) at position x(U) + 1 in
a friendship list of a user U .

The intuition behind Invariant 2 is not so easy to see. Therefore, we sketch it with
the help of short examples for an update operation on a single user U . Though, the
invariant holds, of course, for all users at any time and for all operations.

Note: For the time being, take the logical clauses in captions of the following exam-
ple figures (like in Figure 29b: ¬A ∧D1) just as discriminative identifiers. Their true
intentions will become clear as soon as we formalise the intuition given in this section.

In Figure 29a, a graph G2 with 3 users is visualised and an update operation
on U has been applied for the friendship update (U → UX) at time t = 2. Hence,
TSmax = 2 as there is no other friendship update. After the update operation on U has
been applied, the timestamp TSU of U ’s friendship list is equal to 2 and the timestamp
validity pointer tpU is equal to 0. Hence, according to its definition, the point of inter-
est x(U) is equal to tpU = 0 since neither there is a friendship update for the user UX
at position 0 nor the timestamp TSUX

of her friendship list is greater than TSU and
no other user previous to UX meets these requirements. What we can observe from
Figure 29a is,

1. the shortest path to U2 at position x(U) + 1 does not lead over UX in G2

with TSmax = 2.

2. the timestamp TSU ofU ’s friendship list is newer than TSUX
ofUX ’s friendship

list.

3. the entry (U2, 0.5) at position x(U) + 1 in U ’s friendship list is correct wrt. to
the maximal timestamp TSmax = 2.

Hence, the intuition sketched in Figure 29a is the following:

A: If the shortest path does not lead over the user found at position x(U) in U ’s
friendship list, then the timestamp TSU is greater than that of the user at position x(U)
and the entry at x(U) + 1 is correct.

155

10.4 Invariants 10 PROOF OF CORRECTNESS

(a) Example graph for A (b) Example graph for ¬A ∧D1

Figure 29: Example graph for σ′U with friendship update (U → UX). In (a) the update
operation onU happened while TSmax = 2. In (b) the update operation onU happened
while TSmax = 3 and UX was previously updated.

In Figure 29b we see the same setup as in Figure 29a but after the update operation
on U , a new friendship update (UX → U2) for UX occurred. Hence, TSmax = 3 and
by applying an update operation on UX , the graph G2 is transformed into G3. Since
the shortest path from U to U2 has changed inG3, the entry at position x(U)+1 in U ’s
friendship list is not correct anymore. However, UX is still correct and, according to
its definition, x(U) = posU (UX) since the timestamp TSUX

of UX ’s friendship list is
greater than the one of U ’s.

What we finally can observe from Figure 29b with respect to U ’s friendship list is,

1. the shortest path toU2 at position x(U)+1 leads overUX inG3 with TSmax = 3

2. the timestamp TSUX
= 3 of UX ’s friendship list is greater than the time-

stamp TSU = 2 of U ’s friendship list

Moreover, a merge operation on U with UX would correct the entry with U2 in U ’s
friendship list. Hence, the intuition sketched in Figure 29b is the following:

¬A∧D1: If the shortest path leads over the user at position x(U) inU ’s friendship
list and the timestamp of her friendship list is greater than the one of U ’s, it contains
updated information about shortest paths which needs to be merged in U ’s friendship
list.

The graph G3 with TSmax = 3 depicted in Figure 30a shows the same users and
friendship connections as previously but now, the order of the friendship updates has
been changed. The friendship update (U → UX) occurs at time t = 3 and is applied
on U before the friendship update (UX → U2) which was inserted in G at time t = 2.
Therefore, the timestamp TSU of U ’s friendship list is equal to 3, tpU = 0 and, accord-
ing to its definition, x(U) = posU (UX) sinceUX is the first friend inU ’s friendship list
with a pending friendship update. Furthermore, the entry with U2 at position x(U) + 1
is not correct with respect to G3 and TSmax = 3.

156

10 PROOF OF CORRECTNESS 10.4 Invariants

(a) Example graph for ¬A ∧ C (b) Example graph for ¬A ∧D2

Figure 30: Example graph for σ′U with friendship update (U → UX). The update
operation on U happened while TSmax = 3. However, in (a) UX is still in a need for
an update operation while in (b) the update for UX was previously done.

What we now can observe from Figure 30a with respect to U ’s friendship list is,

1. the shortest path toU2 at position x(U)+1 leads overUX inG3 with TSmax = 3

2. there is a pending friendship update for UX

Moreover, an update operation on UX and a subsequent merge operation on U with UX
would correct the entry with U2. Hence, the intuition sketched in Figure 30a is:

¬ A ∧ C: If the shortest path leads over the user with a pending friendship update
at position x(U) in U ’s friendship list, the shortest path information in U ’s friendship
list for the x(U) + 1-th entry is possibly not yet correct.

The Figure 30b shows the same setup as in Figure 30a. However, here the friend-
ship update for U2 that happened at time t = 2 is finally applied on U2 in G3 with
TSmax = 3.

What we now can observe from Figure 30b with respect to U ’s friendship list is,

1. the shortest path toU2 at position x(U)+1 leads overUX inG3 with TSmax = 3

2. the timestamp TSUX
= 2 of UX ’s friendship list is not newer than TSU = 3

of U ’s friendship list

3. x(U) = tpU and the timestamp of the user’s friendship list at position x(U) is
greater than 0, i.e. TSUX

> 0

Moreover, a merge operation on U with UX would again correct the entry with U2.
Hence, the intuition sketched in Figure 30b is the following:

¬ A ∧ D2: When x(U) = tpU and the friendship list’s timestamp of the user at po-
sition x(U) is greater than 0, there could be shortest path information in that friend’s
friendship list which is not yet merged into U ’s friendship list.

157

10.4 Invariants 10 PROOF OF CORRECTNESS

(a) Example graph for ¬A ∧ E

Figure 31: Example graph for σ′U with a friendship update (U → U2) and TSmax = 3.
The best friend of U has already been found while TSmax = 2 and all friendship
updates on UX have already been applied.

The last example graph G3 with TSmax = 3 is given in Figure 31a. Here the
friendship update (U → U2) at time t = 3 has got no effect on U ’s friendship list as
the shortest path over UX to U2 is already known.

What we now can observe from Figure 31a with respect to U ’s friendship list is,

1. the shortest path toU2 at position x(U)+1 leads overUX inG3 with TSmax = 3

2. the entry at x(U) + 1 in U ’s friendship list is already correct wrt. G3 and
TSmax = 3.

Hence, the intuition sketched in Figure 31a is the following:

¬ A ∧ E: If none of the cases described in the previous example graphs are true,
then all shortest path information is available in U ’s friendship list and the entry at
position x(U) + 1 is correct.

In summary, the main point of Invariant 2 is actually that for all operations done
by our algorithm, the friendship lists for maintaining shortest path distances are always
well-defined and in one of the described states depicted by the example graphs above—
and no other state exists.

Next, we formalise these observations.

10.4.2 Formalisation

Invariant 1. For all users U ∈ GTSU
:

FlistU [0 : x(U)] = is a prefix of FlistU,TSU

= FlistU,TSU
[0 : x(U)]

158

10 PROOF OF CORRECTNESS 10.4 Invariants

Invariant 2. For all users U :

A: If the path with maximum weight toUf ∈ FlistU,TSU
[x(U)+1] does not include

UX ∈ FlistU,TSU
[x(U)], then

B: the entry FlistU [x(U) + 1] is unchanged and correct:
FlistU [x(U) + 1] = FlistU,TSU

[x(U) + 1] = FlistU,TS′
U

(U)[x(U) + 1]

¬A: Otherwise, for UX ∈ FlistU [x(U)] the following or-cases hold:

C: UX needs an update and is older than U :
UX .needs_update() == True and TSUX

< TSU

D: There is a need for a merge operation on U with UX , since

D1: UX ’s friendship list is newer than U ’s:
TSUX

> TSU

D2: UX is the last friend who is known to be the next best friend in FlistU
but her friendship list was meanwhile updated:
x(U) = tpU ∧ TSUX

> 0

E: entry FlistU [x(U) + 1] is already correct:
FlistU [x(U) + 1] = FlistU,TS′

U
[x(U) + 1]

That means:
(A⇒ B) ∨ (¬A⇒ (C ∨ D ∨ E)) with D = (D1 ∨D2)

The statements being inferred from both invariants are informally spoken the following:

I1: At all times, all entries in a users friendship list up to x(U) are correct.

I2: If the entry at x(U) + 1 is not correct, at any time, the list is in a state
such that update and merge operations will fix it. Afterwards, I1+I2 is still true.

I1+I2: The friendship lists can be incrementally maintained.

Before we prove that both invariants hold for update and merge operations for all users
in a friendship graph and finally, (with the help of Invariant 1 and 2) that by incremen-
tally processing friendship lists our algorithm always finds the next best friend, we first
introduce and prove in the following two lemmas.

Lemma 10.2. ∀Ui 6= U : If there is a need for an update or merge operation on U , the
accomplishment of that operation does not affect x(Ui), i.e. x′(Ui) = x(Ui).

Proof. Before U is updated with a new friendship edge or before a merge operation
on U is applied, either U .needs_update() must be True or, for some friend Uf of U ,
U .needs_merge(Uf) must be True, respectively.

Therefore, if U is a friend of Ui 6= U then no user in Ui’s friendship list at later
positions than U can match the definition of x(Ui) (see Definition 10.6). That means,

∀Ui 6= U ∧ posUi
(U) ≥ 0 : x(Ui) ≤ posUi

(U)

Hence, if

159

10.4 Invariants 10 PROOF OF CORRECTNESS

• x(Ui) < posUi
(U) or posUi

(U) = −1.

Then,
x′(Ui) = x(Ui)

because no change to U can affect x(Ui). Operations on U can either only affect
entries at positions subsequent to U in FlistUi,t—a path from Ui over U to
friends of U is always longer than to U herself—or at no entries at all: if there is
no path to U then there is also no path to U ’s friends over U .

Hence, a new or a known friend of U whose friendship strength changed cannot
reduce the friendship strength of any user that precedes U in FlistUi,t.

• x(Ui) = posUi(U) = tpUi

Then it is also true that
x′(Ui) = x(Ui)

since again, up to posUi
(U) nothing on which x(Ui) depends can change by an

update or merge operation on U and, by Definition 10.12, tpU does not change.
Hence, x′(U) = tpU = x(U).

• x(Ui) = posUi(U) < tpUi

In this case, x(Ui) can only be equal to the definition of (a) Ui.firstUpdate()
or (b) Ui.firstMerge() (see Definition 10.6) and by assumption, x(Ui) is equal
to posUi

(U). However, then it must be true again, that

x′(Ui) = x(Ui)

because the timestamp TSU can only increase and, thus, either (a) is still true,
or case (b) still is or becomes true since according to Lemma 10.4 the time-
stamp TS′U increases to a value greater than TSUi

by applying an update opera-
tion on U . Hence, in any case, TSU > TSUi

or U is in the need of another edge
update and x′(U) = posUi

= x(U).

Lemma 10.3. If due to an update operation on U or a merge operation on U with
UX ∈ FlistU,t[x(U)] the best new or updated friend Uf has been placed at a position
greater than x′(U) + 1 in U ’s friendship list, then the following is true:

If the path of maximal weight to user U ′X+1 ∈ FlistU,t′ [x′(U) + 1] does not lead
over U ′X ∈ FlistU,t′ [x′(U)] then there is also no such path before the insertion of Uf .

Proof. The update or merge operation can only affect entries at positions subsequent
to Uf in FlistU,t because Uf is the user with the highest friendship strength among all
users newly inserted in U ’s friendship list and a path from U over Uf to any other user
can only be longer than to Uf herself.

Then,

• x′(U) = 0 ≤ x(U) ≤ tpU
in case of an update operation on U since tp′U = 0 by definition of U .update()
(see Definition 10.10), or

160

10 PROOF OF CORRECTNESS 10.4 Invariants

• x′(U) = x(U) + 1 ≤ tpU + 1

in case of a merge operation on U with UX ∈ FlistU,t[x(U)] because either

1. x(U) = firstMerge(U) < tpU or

2. x(U) = tpU
(and TSUX

> 0 or x(U) = firstMerge(U) = tpU).

according to the definition of x(U) (see Definition 10.6) and UX .

Moreover, by definition of U .merge(UX) (see Definition 10.11) all edge updates
for UX must have been already applied and tp′U = x(U)+1 and TS′U ≥ TS′UX

.
Hence, x′(U) = tp′U = x(U) + 1.

In the case of a merge operation, by assumption, the position of Uf in FlistU,t′ is
greater than x(U) + 2 = x′(U) + 1 and therefore, the entry in FlistU,t at posi-
tion x(U) + 1 = x′(U) cannot have changed due to that merge operation and is correct
at time t′ according to Invariant 1.

It follows, the entry was already correct at time t, too, because when

1. If x(U) = firstMerge(U) < tpU , then, obviously x′(U) = tp′U ≤ tpU .

From Lemma 10.1 and from Invariant 1, it follows all entries in FlistU up to
position tpU are correct with respect to GTSU

. Thus, at time t = TSU , the entry
at position x′(U) is correct.

2. If x(U) = tpU , then x′(U) = tpU + 1 and due to our assumption that Uf is
the best new or updated friend of U , inserted at a position later than x′(U) + 1
in U ’s friendship list, the friendship strength of U ′X at position x′(U) cannot
have change between time t and t′.

Otherwise there must be either a user previous to x′(U) in FlistU,t who is on
a path to U ′X and whose friendship strength changed in between (t, t′] or a new
direct edge from U to U ′X with a timestamp greater than t must still exist for U .
However, that contradicts the definition of x′(U).

Hence, FlistU,t[x′(U) = x(U) + 1] must have been already correct at time t.

In any case, it is true for an update and merge operation that

FlistU [0 : x(U) + 1] = Flist′U [0 : x′(U)] // due to x(U)+1<posU (Uf)

= FlistU,t′ [0 : x′(U)] // due to x’(U)<posU (Uf)

= FlistU,t[0 : x(U) + 1] // as discussed above

Note: in case of an update operation: x′(U) = tp′U = 0

Let be U ′X+1 the user in FlistU,t′ at position x′(U)+1 and at time t′. Furthermore,
let be UX+1 the user in FlistU,t at the same position x′(U) + 1 but at the previous
time t. Due to our assumption that at time t′ the path from U to U ′X+1 with maximal
weight does not lead over U ′X ∈ FlistU,t′ [x

′(U)] = FlistU,t[x
′(U)], the following

must be true at time t:

• Either there is a direct edge U → U ′X+1, and then, UX+1 = U ′X+1,

161

10.5 Update Operation – U .update() 10 PROOF OF CORRECTNESS

because by assumption, in case of an update operation, U → Uf is the first new
update for U after time t or, in case of a merge operation, Uf is the best user that
is merged into U ’s friendship list. In both cases, U ′X+1 6= Uf .

However, then no previous user to U ′X suddenly can be in a need for an update
or merge operation in the time interval (t, t′] because of Lemma 10.2 and by
definition of x(U).

• Or there is a direct edge from a user Uj → U ′X+1 with posU (Uj) < x′(U), and
then, UX+1 = U ′X+1, too,

because the best indirect path from U to U ′X+1 can only lead over users at posi-
tions prior to x′(U) — each user on a path with maximal weight to U ′X+1 must
be a better friend of U than U ′X+1 — and there cannot be any new edge update
for any such user Uj with posU (Uj) < x′(U) in the time interval (t : t′] because
of Lemma 10.2 and the definition of x(U).

In any case, U ′X+1 = UX+1 for an update or merge operation and it immediately
follows either

sf,t(U,UX+1) = sf,t(U → UX+1) // for a direct edge U → UX+1

= sf,t′(U → U ′X+1)// the edge cannot have changed
= sf,t′(U,U

′
X+1)

or

sf,t(U,UX+1) = sf,t(U → ..→ Uj → UX+1) // no direct edge from U

= sf,t′(U → ..→ Uj → U ′X+1) // path cannot have changed
= sf,t′(U,U

′
X+1)

Finally. it is true, that

FlistU [0 : x′(U) + 1] = FlistU,t[0 : x′(U) + 1] // because x′(U) + 1 < posU (Uf)

= Flist′U [0 : x′(U) + 1]

= FlistU,t′ [0 : x′(U) + 1]

Hence, the path with maximal weight from user U to user U ′X+1 does also not lead
over the user U ′X at time t because there is not such path at time t′ and FlistU cannot
have changed up to position of U ′X+1 in the interval (t, t′].

10.5 Update Operation – U .update()

In this section, we show that both invariants introduced in Section 10.4 holds for a
user U when there is an update operation on U :

∀U : Flist′U [0 : x′(U)] = Flist′U,t′ [0 : x′(U)]

For this, we first introduce the following lemma and prove its correctness.

Lemma 10.4. When there is a need for an update operation on Ui ∈ FlistU,t[i] with
i < tpU then TSUi > TSU after the update operation on Ui.

162

10 PROOF OF CORRECTNESS 10.5 Update Operation – U .update()

Proof. Let denote TS′Ui
, TS′U and tp′U the timestamps of Ui and U , and U ’s times-

tamp validity pointer after the update of Ui, respectively. According to the definition
of an update operation on Ui for U 6= Ui (see Definition 10.12) we know, tp′U = tpU
and TS′U = TSU for all users U 6= Ui.

Proof by contradiction: assume the lemma is wrong, i.e. TS′Ui
<= TS′U .

In any way, there must be some pending friendship update (Ui → Uj) with a times-
tamp t′ > TSUi

or otherwise there is no need to update Ui. After the update TS′Ui
= t′

by Definition 10.10 for that update operation.
From our assumption TS′Ui

<= TS′U it follows t′ <= TS′U = TSU and, thus, the
friendship update for Ui already existed at time TSU .

However, according to Definition 10.13, for users at position i < tpU , thus in-
cluding Ui, all friendship updates up to time TSU have been checked (with calls to
Ui.needs_update()) and applied (by Ui.update()).

Therefore, either there is no pending friendship update for Ui or its timestamp must
be greater than TSU , i.e. t′ > TSU , which is a contradiction to our assumption.

Theorem 10.1. Invariant 1 holds for U and an update operation on U .

Proof. According to Definition 10.10 given in Section 10.3.2 for the state transition σ′U
of an update operation, tp′U = 0. It follows x′(U) = 0, too, because by Defini-
tion 10.6 x′(U) cannot be smaller than 0 or greater than tp′U . Therefore, we just have
to show Flist′U [0] = bft′(U) (see Definition 10.3). We also may assume that Invari-
ant 1 holds at time t for U and her friendship list FlistU . Hence, all friendship updates
for U up to time t have already been correctly inserted in FlistU or otherwise her best
friend bft(U) at time t could not be guaranteed to be correct. Since x(U) ≥ 0 by def-
inition and Invariant 1 says all entries up to x(U) are correct at all times, bft(U) must
be correct, too.

By the definition of an update operation, all friendship updates will be removed
from OP [U] in the order of their timestamp and inserted one after the other in U ’s
friendship list Flist[U] at their correct positions.

Let be U ′ with timestamp t′ and friendship strength s′ the first update inserted
in FlistU due to an update operation.

Since by assumption there is no new or updated friendship edge for U in the time
interval [t, t′), there is no change within this interval with respect to U ’s very best
friend. Hence, bft′−1(U) = bft(U). Therefore, after the insertion of the first friendship
update, U ’s best friend at time t′ can be either the previously known best friend bft(U)
or the user U ′ with friendship strength s′.

bft′(U) =

{
U ′ if s′ ≥ sf,t(U → bft(U))

bft(U) else

=

{
U ′ if s′ ≥ sf,t(U → bft(U))

Uf ∈ FlistU [0] else

= FlistU,t′ [0]

= Flist′U [0]

Hence,

Flist′U [0 : x′(U)] = Flist′U [0]

= Flist′U,t′ [0]

= Flist′U,t′ [0 : x′(U)]

163

10.5 Update Operation – U .update() 10 PROOF OF CORRECTNESS

Theorem 10.2. Invariant 2 holds for U and an update operation on U .

To prove that Invariant 2 still holds for U after an update operation has been applied
on U , we may assume that both invariants hold for U ’s friendship list at time t and
further have to show:

I: A’ =⇒ B’. If the path with maximal weight from U to her second best
friend does not lead over her best friend bf ′t(U) ∈ FlistU,t′ [0], then the entry
at Flist′U [1] is correct with respect to time t′.

II: ¬A’ =⇒ C’ ∨ D1’ ∨ D2’ ∨ E’. If the path with maximal weight from U to
her second best friend leads over her best friend bft′(U) ∈ FlistU,t′ [0], then
there is either the need to update bft′(U) or a merge condition is true or the entry
at Flist′U [1] is correct with respect to time t′.

Alternatively, with ¬D := ¬(D1 ∨ D2):

¬A’ ∧ ¬C’ ∧ ¬D’ =⇒ E’. If the path with maximal weight from U to her
second best friend leads over her best friend bft′(U) ∈ FlistU,t′ [0], and there is
neither the need to update bft′(U) nor a merge condition is true, then the entry
at Flist′U [1] is correct with respect to time t′.

Proof. According to Definition 10.10 of an update operation, tp′U = 0, and therefore
it follows that x′(U) = 0.

When a new or updated friendship edge (U → Uf) with weight s has been inserted
inU ’s friendship list due to an update operation, there are three relevant cases whereUf
can be located in Flist′U afterwards:

Case 1: Uf ∈ Flist′U [0] or

Case 2: Uf ∈ Flist′U [1] or

Case 3: Uf ∈ Flist′U [i] with i > 1

We have to show that in all three cases Invariant 2 is true.

• Case 1: Flist′U [x′(U)] = Flist′U [0] = (Uf , s)

I: A’. The path with maximal weight to FlistU,t′ [1] does not lead over
FlistU,t′ [0] = (Uf , s)

In this case, U ’s best friend at time t is U ’s second best friend at time t′ and
her friendship strength is unchanged, i.e.

FlistU,t′ [1] = FlistU,t[0].

This is true because:

1. Right before the update operation, U ’s best friend is also a direct suc-
cessor of U due to Property 10.3 of the friendship graph Gt (see Sec-
tion 10.2).

164

10 PROOF OF CORRECTNESS 10.5 Update Operation – U .update()

2. Since FlistU,t[0] is correct at timestamp t and each updated edge is
applied in the order of the corresponding timestamps, there cannot be
any other edge update in the time interval [t, t′) and, thus, there is no
change to FlistU,t[0] until time t′.

3. Due to the assumption that Uf is the new best friend and that the sec-
ond best friend is found over a direct edge, too, the best friend at time t
has to be U ’s second best friend at time t′.

By definition, an update operation that inserts a user Uf into U ’s friendship
list also merges the information about the shortest paths to Uf ’s friends
into U ’s friendship list if adequate. However, in Case 1.I, we do not have
to consider this additional merge operation since all friends found on a
shortest path over Uf are inserted below the second best friend due to the
assumption that the second best friend is a user found over a direct edge
of U .

Hence,

Flist′U [0] = FlistU,t′ [0] (due to Invariant 1)
Flist′U [1] = FlistU,t[0] (due to correct insert/merge)

= FlistU,t′ [1]

and A’ =⇒ B’:

II: ¬A’. The path to FlistU,t′ [1] with maximal weight leads over
FlistU,t′ [0] = (Uf , s)

Let us assume ¬C’, i.e. there is no new edge update for Uf in the time
interval [t, t′] and ¬D’, i.e. (¬D1′ ∧ ¬D2′): the timestamp TSUf

of Uf ’s
friendship list is equal to 0, (—although, the latter assumption ¬D′ is not
even needed as shown below).
We know (from being in Case 1.II) that U ’s second best friend is a succes-
sor of U ’s newly updated best friend Uf and, therefore, U ’s second best
friend must be a user found over a direct edge starting at Uf . If there were
some intermediate users, the first user on that path starting at Uf would be
a direct successor and due to the monotonicity of friendship strengths (see
Property 10.2 in Section 10.2) an even better friend for Uf and eventually
also for U . Thus, ifD or ¬D is true can be ignored for this part of the proof
since D is about the need for a merge operations which propagates indirect
friends to friendship lists.
So, the second best friend of U at time t′ is either Uf ’s very best friend or,
in case of a friendship graph cycle such that U ∈ FlistUf

[0], Uf ’s second
best friend.
Since an update operation on a user U always merges the friendship list
of an updated friend after inserting her into FlistU , also all direct friends
of Uf in FlistUf

are merged into U ’s friendship list. In addition, no direct
friend of Uf with respect to time t′ is missing in Uf ’s friendship list be-
cause of our assumption ¬C’.

165

10.5 Update Operation – U .update() 10 PROOF OF CORRECTNESS

Hence,

Flist′U [0] = FlistU,t′ [0] (due to Invariant 1)

Flist′U [1] =

FlistUf ,TS′
Uf

[0] if bft′(Uf) 6= U

FlistUf ,TS′
Uf

[1] otherwise

//due to the definition of update

= FlistU,t′ [1] (due to ¬C’ and 1.II)

Therefore, ¬ A’ ∧¬ C’ (∧¬ D’) =⇒ E’

• Case 2: Flist′U [x′(U) + 1] = Flist′U [1] = (Uf , s)

It follows that
Flist′U [x′(U)] = Flist′U [0] = FlistU [0]

because with Case 2, U ’s newly updated friend Uf is sorted into FlistU at the
position 1 and all other changes due to the update operation to FlistU can only
affect entries at positions i, with i > 1, as there is no new or updated edge with
a timestamp smaller than t′ (the edge (U → Uf) is the first one for U with
timestamp t′) and a path to all friends of Uf that lead over Uf herself can only
be longer than a direct edge to Uf .

I: A’. The path with maximal weight to FlistU,t′ [1] = (Uf , s) does not lead
over U ′0 ∈ FlistU,t′ [0]

Obviously,FlistU,t[0] does not change due to the update operation at time t′

and Uf is a direct successor of U who, consequently, is inserted in FlistU
with her correct friendship strength.

It immediately follows:

Flist′U [0] = FlistU,t′ [0] (due to Invariant 1)
Flist′U [1] = FlistU,t′ [1] = (Uf , s) (due to 2.I)

and A’ =⇒ B’

II: ¬A’. The path to FlistU,t′ [1] = (Uf , s) with the maximal weight leads over
U ′0 ∈ FlistU,t′ [0]

Again, there is no change to the first position in U ’s friendship list by ap-
plying the update operation. Furthermore, we may assume ¬C’ ∧ ¬D’.
Consequently, when there is no update or change in the time interval [t, t′]
with respect to U ’s very best friend U0 and, by assumption 2.II, the shortest
path to the second best friend Uf leads over U0 at time t′, then the same
shortest path must have existed already at time t′. Furthermore, the new
or updated direct friendship edge (U,Uf) cannot form a shorter path and,
thus, has got no influence on the second entry in U ’s friendship list.

166

10 PROOF OF CORRECTNESS 10.5 Update Operation – U .update()

Finally, when Invariant 2 holds at time t and there is neither caused a
change to FlistU,t[0] nor to FlistU,t[1] by the update operation, and in ad-
dition, when there is also no pending update operation forU ’s best friendU0

(due to ¬C ′) and no new information available in U0’s friendship list (due
to ¬D′), then Invariant 2 must still hold at t′.

It follows:

Flist′U [0] = FlistU,t′ [0] (Invariant 1)
Flist′U [1] = FlistU,t[1] = (Uf , s) (2.II)

= FlistU,t′ [1] (¬C ′ and ¬D′)

and ¬ A’ ∧ ¬ C’ ∧ ¬ D’ =⇒ E’

• Case 3: Flist′U [x′(U) + i] = Flist′U [i] = (Uf , s) with i > 1

I: A’. The path with maximal weight to U ′1 ∈ FlistU,t′ [1] does not lead over
U ′0 ∈ FlistU,t′ [0]

In this case, FlistU,t′ [1] is a direct successor of U , too, because the best
indirect successor can only lead over FlistU,t′ [0] which contradicts 3.I.

Since (U → Uf) is the first new friendship edge for U in the time inter-
val (t, t′] and by assumption 3.I, the friendship strength s = sf,t′(U → Uf)
is smaller than the ones of si ∈ FlistU [i] for all 0 ≤ i ≤ x′(U) + 1,
which means, the update has got no influence on any entry in U ’s friend-
ship list up to FlistU [x′(U) + 1], the best and second best friend of U
cannot have changed between time t and t′. Otherwise Uf would have ap-
peared in FlistU,t′ [0 : 1] as both best friends in U ’s friendship list are
found over direct edges at time t′. It follows:

FlistU,t′ [0 : x′(U) + 1] = FlistU,t[0 : x′(U) + 1]

Moreover, as a result of Lemma 10.3, the path with maximal weight to
Flistt[1] cannot have lead over FlistU,t[0] at time t.
Since x′(U) = 0 ≤ x(U) by Definition 10.6 of x(U) and Definition 10.10
of an update operation, and since by assumption Invariant 1 and 2 hold
for FlistU at time t, both best friends in FlistU must be also correct
at time t′. If x′(U) < x(U) then this is true due to Invariant 1 and if
x′(U) = x(U) it is true due to Invariant 2.

It follows:

Flist′U [0 : x′(U) + 1] = FlistU [0 : x′(U) + 1] (due to correct insert)
= FlistU,t[0 : x′(U) + 1]

= FlistU,t′ [0 : x′(U) + 1]

(due to x′(U) ≤ x(U), 3.I and
both invariants hold at time t)

167

10.5 Update Operation – U .update() 10 PROOF OF CORRECTNESS

and A’ =⇒ B’

II: ¬A’. The path to U ′1 ∈ FlistU,t′ [1] with the maximal weight leads over
U ′0 ∈ FlistU,t′ [0]

We may again assume that the edge (U → Uf) at time t′ is the first new
edge for U since time t and from 3.II, we know that its associated weight is
less then s0 ∈ FlistU [0]. Therefore, the best friend of U has not changed
between t and t′, i.e.

FlistU [0] = FlistU,t[0]

= FlistU,t′ [0]

= Flist′U [0]

Since Flist′U [i] = (Uf , s) with i > 1, the edge (U,Uf) has got no in-
fluence on Flist′U [0 : 1] and, for this reason, FlistU [0] = Flist′U [0]
and Flist[1] = Flist′U [1].

However, to show that Invariant 2 still holds for Flist′U , we have to distin-
guish 2 cases at time t:

(1) A. At time t: The path with maximal weight to U1 ∈ FlistU,t[1] does
not lead over U0 ∈ FlistU,t[0]

According to Invariant 2, FlistU,t[1] is correct at time t, but it is not at
time t′ because by assumption 3.II, at time t′ there is a new path with
maximal weight from U over FlistU,t′ [0] to FlistU,t′ [1].
Though, as there is no change in the time interval (t, t′] to the first en-
try of U ’s friendship list, and that entry is correct at time t, it is also
correct at time t′, i.e. FlistU,t[0] = FlistU,t′ [0].

According to (1) there is no path with maximal weight fromFlistU,t[0]
to FlistU,t[1] at time t but according to 3.II, there is such a path at
time t′. It follows there must exist an edge update forU0 ∈ FlistU [0]—
with a timestamp tx > 0 by the definition of edge updates—such that
the following situation is true: A’ but ¬B’.

Consequently, at time t′−1, one of the following conditions must have
been true:

a) U0.needs_update() == True

=⇒ C’: As U0.needs_update() is true right before the update
operation on U , it is still true afterwards. Otherwise, condition b)
or c) is true.

b) TSU0
> TSU : Then U0 was updated before U has been up-

dated and therefore, the timestamp of the friendship list of U ’s
best friend U0 is greater than U ’s, i.e. tx > t.

168

10 PROOF OF CORRECTNESS 10.5 Update Operation – U .update()

If tx > t′: =⇒ D1’: After the update operation on U the times-
tamp TS′U0

= tx is still greater than TS′U = t′.

If tx < t′: =⇒ D2’: After the update operation on U the times-
tamp TS′U0

= tx is smaller than TS′U = t′ but tpU = 0 by the
definition of an update operation and tx > 0.

c) TSU0 < TSU : Then U0’s friendship list was updated with a new
edge at a time later than t but the timestamp tx of the new edge is
even smaller then t. However, tx > 0.

=⇒ D2’: As U0’s timestamp was greater than 0 before the
update operation on U , it still must be greater afterwards, thus,
TS′U0

= tx > 0 and tp′U = 0 due to the definition of an update
operation.

Hence, Invariant 2 holds: ¬ A’ =⇒ C’ ∨ D1’ ∨ D2’

(2) ¬A. At time t, the path to U1 ∈ FlistU,t[1] with maximal weight leads
over U0 ∈ FlistU,t[0]

Again, FlistU [0 : 1] is not changed by the update on U and accord-
ing to Invariant 1, FlistU [0] is also correct at time t′. By assumption
(2), we know that there was already a shortest path from the very best
friend to the second best friend at time t. However, we have to verify
the possibilities that could have occurred in the interval between time t
and t′ to U0 in order to know if Invariant 2 holds for U1 at time t′.

From the definition of an update operation, we again may assume that
the updated edge (U,Uf) with timestamp t′ is the first update for U
since time t. Therefore, it is sufficient to concern about possible con-
ditions at time t′ − 1:

a) U0.needs_update() == true

=⇒ C’: If there is a need for an update operation on U0 at
time t′ − 1, the same is true after the update on U at time t′. Oth-
erwise, condition b) or c) is true.

b) TSU0 > TSU : The timestamp of U0’s friendship list is newer than
the one of U ’s,

=⇒ D1’ ∨ D2’: The timestamp of U0’s friendship list can only
increase. Hence, after the update operation on U , either it is still
true that TSU0

> TSU or, at least, TSU0
> 0 and, by definition

of an update operation, tpU = 0.

c) 0 < TSU0
< TSU : The timestamp of U0’s friendship list is

smaller than the one of U ’s,

169

10.6 Merge Operation – U .merge(Uf) 10 PROOF OF CORRECTNESS

=⇒ D2’: Since the timestamp TSU0
cannot decrease, it is still

greater than 0 at time t′, i.e. TSU0
> 0 and, by definition of an

update operation, tpU = 0.

d) There is no update for U0 ∈ FlistU,t[0] and TSU0
= 0.

=⇒ E’: By assumption, Invariant 2 holds at time t and due
to d), i.e. ¬C ∧ ¬D, it follows FlistU [1] is correct at time t.
Since there are also no changes for U0 up to time t′, it follows
that Flist′U,t[1] = Flist′U,t′ [1].
Therefore,

Flist′U [1] = FlistU [1] (due to 3.II)
= FlistU,t[1] (due to Inv 2 holds at t and d)
= FlistU,t′ [1] (due to d))

and Flist′U [1] is already correct at timestamp t′.

Hence, Invariant 2 holds at time t′ due to a) to d):
¬ A’ =⇒ C’ ∨ D1’ ∨ D2’ ∨ E’

Hence, Invariant 2 holds for all users U and U .update():

(A’ =⇒ B’) ∨ (¬A’ =⇒ C’ ∨ D’ ∨ E’)

10.6 Merge Operation – U .merge(Uf)
Next we show that both invariants introduced in Section 10.4 hold for U when there is
a merge operation on a user U with a user Uf . For this, we may assume both invariants
hold on FlistU right before the applied merge operation. Moreover, we introduce in
the following three lemmas and prove their correctness.

Lemma 10.5. When a merge operation U .merge(Uf) inserts a user Uff into FlistU
with Uff is a direct successor of Uf and no indirect path from Uf to Uff exists with
a higher weight, then the friendship strength of Uff in FlistU is correct with respect
to U and time t′.

Proof. When there is no better indirect path over another friend of Uf , a path to a direct
successor of Uf must be correct with respect to time t′ because by definition a merge
operation on U with Uf is only applied when Uf has already been updated with all
new or better edges. Hence, all direct edges are present in FlistUf

and up-to-date with
respect to timestamp t′.

There also cannot be a shorter path from U to Uff at time t′ that does not lead
over Uf , or Uff had been merged earlier into FlistU since x(U) = posU (Uf) or
there is no merge operation on U with Uf . However, in this case, there is no friendship
update to any user prior to Uf in FlistU in the time interval [t, t′] and all entries up to
position x(U) are correct.

Since the path with maximal weight to Uff from Uf leads over a direct edge with a
correctly computed edge weight and the path from U to Uf is a subpath of the one with

170

10 PROOF OF CORRECTNESS 10.6 Merge Operation – U .merge(Uf)

maximum weight to Uff . the friendship strength of Uff must be correct in FlistU ,
too.

Lemma 10.6. For a merge operation U .merge(Uf), the friend Uff with the highest
friendship strength who is merged into FlistU is either a direct successors of Uf or of
a weaker friend of U who is on the shortest path from Uf to Uff .

Proof. We may assume according to the definition of tpU that FlistU is correct wrt.
to GTSU

up to tpU before the merge operation is applied and, thus, all entries prior to
Uf in FlistU are correct since x(U) ≤ tpU by definition and there is only a merge
operation when posU (Uf) == x(U).

The shortest path from U to Uff leads over Uf since Uff is inserted in FListU
due to the merge operation on U with Uf and no shorter path to Uff that does not lead
over Uf can exist. Otherwise, a user prior to Uf in FlistU must be a direct predecessor
of Uff . However, all direct friends of such a user must be already in FlistU because of
the Definition 10.6 of x(U), Definition 10.13 and our assumption x(U) = posU (Uf).

Furthermore, if Uff were not a direct successor of Uf or of a user at a position
subsequent to Uf in FlistU then there must be an intermediate user on the shortest
path to Uff who is a direct predecessor of Uff and either a better friend to Uf than Uff
and located prior to Uff in FlistUf

or even a better friend to U than Uf is to U .
However, all users prior to Uff in Uf ’s friendship list are already known to U

and located in FlistU prior to Uff . Otherwise, such a user would need to be merged
into FlistU by the merge operation on U with Uf , too, but that is a contradiction to
our assumption about Uff .

Furthermore, all direct friends of users at positions prior to x(U) must have already
been merged into FlistU since otherwise there would be a need for an update or merge
operation on such a user which again contradicts the definition of x(U).

Hence, Uff is either a direct successor of Uf or of a user subsequent to Uf in U ’s
friendship list who is located on the shortest path from Uf to Uff .

Lemma 10.7. If Uff is that friend of Uf with the highest friendship strength among all
users merged into FlistU by a merge operation U .merge(Uf) and if Uff is positioned
next to Uf in FlistU or if the shortest path to Uff does not lead over users subsequent
to Uf in FlistU , then the entry with Uff in Flist′U is correct with respect to time t′.

Proof. Immediately follows from Lemma 10.6 and 10.5.

Theorem 10.3. Invariant 1 holds for U and a merge operation on U .

Proof. To show that Invariant 1 holds, we have to distinguish the possible locations
of Uf in FlistU relative to x(U) for the initial state σU when a merge operation on U
with Uf is applied (see Definition 10.11).

• FlistU [x(U)] = Uf

By definition x(U) ≤ tpU and according to the definition of a merge operation, it
follows x′(U) ≤ tp′U = posU (Uf)+1 = x(U)+1 ≤ tpU+1. In addition, x′(U)
cannot be smaller than x(U) because a merge operation does not change any
entries in FlistU [i] with i ≤ posU (Uf) = x(U) and FlistU [x(U)] = Uf by
assumption.

171

10.6 Merge Operation – U .merge(Uf) 10 PROOF OF CORRECTNESS

Furthermore, there cannot be the need for an update operation with respect to
time t′ ≤ TSmax for any entry in FlistU [i] with i < posU (Uf) = x(U) because
the need for that update operation would have existed already before the current
merge operation and, thus, is a contradiction to the definition of x(U). For the
same reason, no such entry can have a timestamp greater than t.

Note: x(U) and merge operations are query or state dependent atomic operations
on σU . During a query execution several merge operation on different friendship
lists could run in parallel, such that x(U) could even decrease before a current
merge operation is executed. However, this only could happen, when TSmax
increases because otherwise, we had identified the need for an update opera-
tion when passing such an entry. Therefore, x(U) is always bound to a certain
state σU with a fixed maximal timestamp TSmax as defined by Definition 10.5.
Hence, query results are computed with respect to the given timestamp tsmaxU ,
corresponding to the maximal timestamp t(QU) = TSmax when the query is
issued as defined by Definition 9.14.

It follows x′(U) = x(U) + 1 and

Flist′U [0 : x′(U)− 1] = FlistU [0 : x(U)]

= FlistU,t[0 : x(U)]

= FlistU,t′ [0 : x(U)]

= FlistU,t′ [0 : x′(U)− 1]

The user at position x′(U) = x(U) + 1 is either the best direct friend merged
in from Uf ’s friendship list (see Lemma 10.7) if the path with maximum weight
to U ’s next best friend leads over Uf , or the user at that position in U ’s friendship
list is unchanged by the merge operation and correct at time t′, too. The latter is
true because in this case the shortest path from U to the user at position x′(U)
leads only over U ’s friends at positions prior to Uf in FlistU and no such friend
can have changed in the time interval [t, t′] since it would contradict the defi-
nition of x(U) which by assumption is equal to Uf ’s position in U ’s friendship
list.

With respect to user U , let be s the friendship strength of the friend Uf , i.e.
sf,t′(U,Uf) = sf,t(U,Uf), and be sff the friendship strength of Uf ’s best
friend Uff that was merged into FlistU , i.e. sff = s · sf,t(Uf → Uff), and
be sX+1 the friendship strength of the user found at position x(U)+1 in FlistU ,
i.e. sX+1 ∈ FlistU,t[x(U) + 1]. Then,

FlistU,t′ [x
′(U)] =

{
(Uff , sff) if sff > sX+1

FlistU,t[x(U) + 1] otherwise.

Finally, it is true, that

Flist′U [x′(U)] = Flist′U,t′ [x
′(U)]

because either there is no change for FlistU caused at position x(U) + 1 by the
merge operation or Uff is correctly merged into FlistU by the definition of the
merge operation.

172

10 PROOF OF CORRECTNESS 10.6 Merge Operation – U .merge(Uf)

• FlistU [x(U)] 6= Uf and posU (Uf) < x(U)

In this case, according to Definition 10.6 of x(U), there is neither a need to
updateUf nor is the timestamp of her friendship list greater than the one ofU and
by assumption posU (Uf) < x(U) ≤ tpU . Therefore, there is no need for a merge
operation on U with Uf . If we did a merge operation anyway, FlistU would stay
unchanged because nothing not yet known to U can be merged from Uf .

It follows, x′(U) = x(U), tp′U = tpU , TSU = t = t′ = TS′U and

Flist′U [0 : x′(U)] = FlistU [0 : x(U)]

= FlistU,t[0 : x(U)]

= FlistU,t′ [0 : x′(U)]

• FlistU [x(U)] 6= Uf and posU (Uf) > x(U)

Due to Definition 10.13 this case is not possible. However, if we did a merge for
posU (Uf) > tpU = x(U), according to the Definition 10.11 follows:

Flist′U [0 : i] = FlistU [0 : i]

with i ≤ posU (Uf), and also TSU = t = t′ = TS′U , x′(U) = x(U). Hence,

Flist′U [0 : x′(U)] = FlistU,t′ [0 : x′(U)]

because the merge operation has got no influence on any entry prior to posU (Uf)
in FlistU and actually does nothing by definition.

A merge operation, however, for a user Uf selected by a random access at po-
sition x(U) < posU (Uf) ≤ tpU must be strictly prohibited as it could in-
crease TSU and, thus, cause a missing merge operation for a user Ui at position i
with x(i) ≤ i < posU (Uf). Hence, this case shows that sequentially processing
friendship lists (as defined in Definition 10.13) is a fundamental requirement for
our algorithm.

Theorem 10.4. Invariant 2 holds for U and a merge operation on U .

Proof. For this proof, we again examine the possible changes in the transition from the
initial state σU to the final state σ′U (see Definition 10.7 and 10.8) for all users U when
a merge operation (see Definition 10.11) on a user U or Ui 6= U is applied.

When merging the friendship list of Uf into U ’s friendship list FlistU , no entry
in FlistU at positions prior to or equal to the one with Uf can change according to Def-
inition 10.11 of a merge operation. All friends of Uf that are newly sorted into FlistU
or have become better friends with respect to U will be merged subsequent to Uf ’s po-
sition into FlistU . Furthermore, a friend of Uf which is not merged into FlistU must
have previously been found on a path with a higher weight than the one over Uf , and
hence, must be already a better friend of U .

According to Lemma 10.7, among all friends of Uf who are newly merged into
FlistU , the best new friend Uff for U is a direct friend of Uf if placed next to Uf
in FlistU or no user in between Uf and Uff in FlistU is part of the shortest path
from U to Uff .

For the rest of this proof, we apply the following notation:

173

10.6 Merge Operation – U .merge(Uf) 10 PROOF OF CORRECTNESS

• Uff denotes the best friend for U inserted in FlistU by a merge operation on U
with Uf .

• sf ∈ FlistUf
[posUf

(Uff)]

• s = sf,t(U,Uf)

Then, all users Ui ∈ FlistUf
[i] with i < posUf

(Uff) are already friends of U and
found at entries in FlistU prior to Uf . The friendship strength of Uff with respect
to U is sff = s · sf according to the definition of a merge operation.

For a merge operation U .merge(Uf) with posU (Uf) < x(U) (although, the check
for a merge operation would never indicate a need for it according to Definition 9.22),
it follows from Definition 10.13, the Definition 10.6 of x(U) and Invariant 1 that all
friends in Uf ’s friendship list are already known to U and correctly inserted in FlistU
and nothing changes forU . By definition 10.11 of a merge operation, it also follows that
in this case, x′(U) = tp′U = posU (Uf) + 1 ≤ x(U) and TS′U = TSU is unchanged as
by definition of x(U) the timestamp of Uf ’s friendship list cannot be greater than TSU .

When Invariant 2 holds for FlistU at time t even up to position x(U), it obviously
holds at the same time t′ = t also for any position x′(U) ≤ x(U).

Flist′U [0 : x′(U) + 1] = FlistU [0 : x′(U) + 1]

= FlistU,t[0 : x′(U) + 1]

= FlistU,t′ [0 : x′(U) + 1]

For the rest of this proof, we can assume, a merge operation is only applied on U with
a friend Uf , when x(U) = posU (Uf) as by Definition 10.13, our algorithm processes
friendship lists only sequentially. If posU (Uf) > x(U) for some friend Uf then first
a merge operation on U with UX ∈ FlistU [x(U)] is applied before a merge oper-
ation on Uf can be applied. After the merge operation on UX , by Definition 10.11,
tp′U = x(U) + 1 which is also the earliest possible position of Uf in FlistU . If Uf is
still at a later position, either tpU is increased by one due to another merge operation
or due to our main algorithm (as defined by Definition 10.13) proceeds to the next po-
sition in U ’s friendship list. In both cases it is always true that x(U) = tpU . Hence,
when initially posU (Uf) > x(U) it follows that x(U) = posU (Uf) when Uf is found
in FlistU .

From this it follows that for proving Invariant 2 holds for a merge operation on U
with Uf , we have to discuss both parts of Invariant 2, i.e. A’ and ¬A’, only with respect
to the possible position of the best friend Uff merged into Flist′U from Uf ’s friendship
list by a merge operation U .merge(Uf).

• Flist′U [x′(U)] = (Uff , sff)

By Definition 10.11 of a merge operation, it follows x′(U) = tp′U = x(U) + 1
and as discussed above, we may further assume, x(U) = posU (Uf).

I: A’. The path with maximal weight to U ′X+1 ∈ FlistU,t′ [x′(U) + 1] does not
lead over U ′X ∈ FlistU,t′ [x′(U)]

From Invariant 1, we may assume Flist′U is correct with respect to time t′

and x′(U). Therefore, it follows U ′X = Uff . Next we discuss the possible

174

10 PROOF OF CORRECTNESS 10.6 Merge Operation – U .merge(Uf)

cases for U ′X+1.

1. The Path to U ′X+1 ∈ FlistU,t′ [x′(U) + 1] does not lead over Uf , too,
but over Ui with posU (Ui) = i and i < posU (Uf).

To make a valid conclusion about U ′X+1, we additionally have to dis-
cuss the possible changes of U ’s friendship list in the interval [t, t′].
Remember, the friendship strength between two users can only in-
crease over time. Therefore, we only have to distinguish the following
two cases:
(a) At time t the user Uff is not in FlistU,t or is located at a posi-

tion posU (Uff) > x(U) + 1.

Then, Uff is newly inserted into FlistU by the merger opera-
tion at position x′(U) = x(U) + 1 and as a consequence, the
user UX+1 ∈ FlistU,t[x(U) + 1] must be located at the posi-
tion next to Uff at time t′. This is true because by assumption
the path with maximal weight to U ′X+1 does neither lead over Uf
nor over Uff and, thus, the entry at position x′(U) + 1 is not set
by the merge operation. Furthermore, there also cannot be another
new or updated friendship edge at some time tx with t < tx < t′

such that there is a better friend of U who should be positioned
at x′(U)+1 in FlistU instead. Such a new or updated edge would
need to originate from a user prior to Uf in U ’s friendship list but
that is a contradiction to our definition of x(U) = posU (Uf).

It follows, U ′X+1 = UX+1 and since there is no path with maxi-
mum weight over Uf to U ′X+1 at time t′ and as shown above, the
shortest path to UX+1 did no change in [t, t′], there also cannot
have been such a path over Uf at time t.

Hence, the entry in FlistU with user UX+1 is correct at time t
due to the assumption that Invariant 2 is true at time t and because
of U ′X+1 = UX+1 and the shortest path from U to UX+1 has not
changed since time t. Thus, the entry must still be correct at time t′

and the following true:

Flist′U [0 : x′(U)− 1] = FlistU [0 : x(U)]

= FlistU,t[0 : x(U)]

= FlistU,t′ [0 : x′(U)− 1]

Flist′U [x′(U)] = (Uff , sff) // (correct insertion)
= FlistU,t′ [x

′(U)]

Flist′U [x′(U) + 1] = FlistU [x(U) + 1] // (correct insertion)
= FlistU,t[x(U) + 1]

= FlistU,t′ [x
′(U) + 1]

(b) At time t it is already true that posU (Uff) = x(U) + 1

175

10.6 Merge Operation – U .merge(Uf) 10 PROOF OF CORRECTNESS

In this case, the position of the user Uff in FlistU,t does not
change due to the merge operation but the friendship strength
does. That means, the user found at position next to Uf is the
same at time t and t′. Again, because of x(U) = posU (Uf) no
other user can have become a better friend than Uff in the time
interval [t, t′).
Furthermore, due to our assumption that the path with the highest
weight to U ′X+1 ∈ FlistU,t′ [x′(U) + 1] does neither lead over Uf
nor over Uff , the entry in FlistU at position x′(U) + 1 cannot
have changed since time t or otherwise, there would be a need for
an update or merge operation to a user prior to Uf which again
contradicts the definition of x(U) = posU (Uf).

Accordingly, x′(U) + 1 == x(U) + 2 and, thus, it follows that
U ′X+1 ∈ FlistU,t′ [x′(U) + 1] == UX+2 ∈ FlistU,t[x(U) + 2].

Although, we cannot immediately follow by assumption thatUX+2

was correct at time t, we can conclude the correctness in the cur-
rent case.

At time t all entries in FlistU,t up to position x(U) are correct
by assumption. In Addition, the friendship strength of Uff at po-
sition x(U) + 1 becomes stronger only at time t′. However, the
maximum path to U ’s subsequent friend UX+2 still does not lead
over Uf or Uff but over a user prior to Uf by assumption. There-
fore, that path cannot have changed since time t or there would
have been a need for an update or merge operation on one of the
users located on this path which again is a contradiction to the def-
inition of x(U).

Hence, also at time t the path with maximum weight to UX+2 did
not lead over Uf or Uff and, thus, FlistU,t′ [x(U) + 2] must be
correct. Assuming otherwise, then there is at time t a direct friend-
ship edge with weight w from some user (Ui, si) ∈ FlistU,t[i]
with i < x(U) to UX+2 such that si ·w>sX+2∈FlistU,t[x+2].
However, either that edge was not yet updated into Ui’s friendship
list at time t or there is a need for U to merge this new information
from Ui into U ’s friendship list. In both cases, this is a contradic-
tion to the definition of x(U). It follows:

Flist′U [0 : x′(U)− 1] = FlistU [0 : x(U)]

= FlistU,t[0 : x(U)]

= FlistU,t′ [0 : x′(U)− 1]

Flist′U [x′(U)] = (Uff , s
′
ff) // (correct change of sff)

= FlistU,t′ [x
′(U)]

Flist′U [x′(U) + 1] = FlistU [x(U) + 2] // (correctly unchanged)
= FlistU,t[x(U) + 2]

= FlistU,t′ [x
′(U) + 1]

176

10 PROOF OF CORRECTNESS 10.6 Merge Operation – U .merge(Uf)

Hence, in both cases (a) and (b) Invariant 2 holds: A’ =⇒ B’

2. Path to FlistU,t′ [x′(U) + 1] leads over Uf

Again, we have to discuss the possible states of FlistU at time t.

(a) At time t, both users Uff and U ′X+1 ∈ FlistU,t′ [x′(U)+1] are ei-
ther not yet friends of U , i.e. /∈ FlistU,t, or not that good friends,
i.e. posU (Uff) > x(U) or posU (U ′X+1) > x(U), respectively.

In this case, since by assumption the shortest path to U ′X+1 leads
over Uf but does not lead over Uff , it follows U ′X+1 is a di-
rect successors of Uf , too. Moreover, Uff at position x′(U) =
x(U) + 1 and U ′X+1 at x′(U) + 1 = x(U) + 2 have been newly
merged into FlistU,t′ with their correct friendship strengths ac-
cording to the definition of a merge operation. It immediately fol-
lows FlistU,t′ [x′(U) + 1] is correct:

Flist′U [0 : x′(U)− 1] = FlistU [0 : x(U)]

= FlistU,t[0 : x(U)]

= FlistU,t′ [0 : x′(U)− 1]

Flist′U [x′(U)] = (Uff , sff) // (correctly inserted)
= FlistU,t′ [x

′(U)]

Flist′U [x′(U) + 1] = (U ′X+1, s
′
X+1) // (correctly inserted)

= FlistU,t′ [x
′(U) + 1]

(b) At time t, only Uff is either not yet a friend of U , i.e. /∈ FlistU,t,
or a not that good friend, i.e. posU (Uff) > x(U), but the user
U ′X+1 ∈ FlistU,t′ [x′(U) + 1] is already a friend at time t.

To summarise, by assumption the following is true: Uff is the
best friend of Uf that is merged into FlistU at position x′(U) but
the friend U ′X+1 at the position subsequent to Uff is not merged
into U ’s friendship list by the merge operation with Uf .
That means, the merge operation on U pushes UX+1 downwards
by one position in order to insert Uff in FlistU . Thus, it follows
U ′X+1 ∈ FlistU,t′ [x′(U)] with U ′X+1 = UX+1.
Again, there cannot be another user who became a better friend
of U than U ′X + 1 in the time interval [t, t′] or that user must be
found on a shortest path that does not lead overUf but over friends
prior to Uf in FlistU . However, that is again a contradiction to
Invariant 1 and the definition of x(U).
Furthermore, since the path with maximal weight to U ′X+1 leads
over Uf , the merge operation correctly adjusts U ′X+1 friendship
strengths, if necessary—if there was no change to the friendship
strength, i.e. the shortest path is a unchanged direct edge to U ′X+1

fromUf , there is also no change for the entry withU ′X+1 inFlistU .
Hence, the entry with U ′X+1 must be correct at time t′ because ei-
ther it is correctly adjusted or it was already correct at time t.

177

10.6 Merge Operation – U .merge(Uf) 10 PROOF OF CORRECTNESS

It follows:

Flist′U [0 : x′(U)− 1] = FlistU [0 : x(U)]

= FlistU,t[0 : x(U)]

= FlistU,t′ [0 : x′(U)− 1]

Flist′U [x′(U)] = (Uff , sff) // (correctly inserted)
= FlistU,t′ [x

′(U)]

Flist′U [x′(U) + 1] =

{
FlistU [x(U) + 1] if correct at t
(U ′X+1, s

′
X+1) if sX+1 increased

= FlistU,t′ [x
′(U) + 1]

(c) At time t, user Uff is already located at position x′(U), but U ′X+1

is not yet a friend, i.e. /∈ FlistU,t, or not a that good friend,
i.e. posU (U ′X+1) > x(U).

In this case, the merge operation on Uf correctly adjusts Uff ’s
friendship strength at position x′(U) = x(U) + 1 and correctly
inserts U ′X+1 into FlistU at position x′(U) + 1 = x(U) + 2. It
immediately follows:

Flist′U [0 : x′(U)− 1] = FlistU [0 : x(U)]

= FlistU,t[0 : x(U)]

= FlistU,t′ [0 : x′(U)− 1]

Flist′U [x′(U)] = (Uff , s
′
ff) // (correct merge)

= FlistU,t′ [x
′(U)]

Flist′U [x′(U) + 1] = (U ′X+1, s
′
X+1) // (correctly inserted)

= FlistU,t′ [x
′(U) + 1]

(d) At time t, both users Uff and U ′X+1 ∈ FlistU,t′ [x′(U) + 1] are
already at position x′(U) or x′(U) + 1, respectively, and thus,
posU (Uff) = x(U) and posU (U ′X+1) = x′(U) + 1.

In this case, both users at the positions x′(U) = x(U) + 1 and
x′(U) + 1 = x(U) + 2 do not change in FlistU,t′ compared
to time t but the friendship strength of at least Uff does. In any
case, the merge operation correctly adjusts both values if neces-
sary. Again, it immediately follows:

Flist′U [0 : x′(U)− 1] = FlistU [0 : x(U)]

= FlistU,t[0 : x(U)]

= FlistU,t′ [0 : x′(U)− 1]

Flist′U [x′(U)] = (Uff , s
′
ff) (correct merge)

= FlistU,t′ [x
′(U)]

Flist′U [x′(U) + 1] = (U ′X+1, s
′
X+1) (correct merge)

= FlistU,t′ [x
′(U) + 1]

178

10 PROOF OF CORRECTNESS 10.6 Merge Operation – U .merge(Uf)

Hence, in all four cases (a), (b), (c) and (d) Invariant 2 holds: A’ =⇒ B’

II: ¬ A’ . The path to U ′X+1 ∈ FlistU,t′ [x′(U) + 1] with the maximal weight
leads over Uff ∈ FlistU,t′ [x′(U)]

From Invariant 1, we know FlistU [0 : x′(U)] is correct. Now, we again
have to distinguish the possible positions of Uff at time t. Since Uff is
found on a shortest path over Uf ∈ FlistU [x(U)], it follows, at time t, Uff
cannot be located prior toUf inU ’s friendship list. Therefore, we only have
to distinguish the following two cases:

1. At time t the user Uff is not in FlistU,t or posU (Uff) > x(U) + 1.

We may assume, Uff does not need to be updated and there is no need
for a merge operation on Uff , i.e. ¬C’ ∧ ¬D’.

By assumption, at time t′ the user U ′X+1 is the next best friend of U
after Uff and additionally, is found on a shortest path over Uff . In
this case, U ′X+1 must be a direct successor of Uff or there would be
a better friend of Uff on the shortest path to U ′X+1. However, such
a user cannot exist: (a) if such a user existed and were an even better
friend with respect to U than Uff , the shortest path to U ′X+1 could
not lead over Uff which is a contradiction to our assumption and (b)
if such a user existed and were not a better friend with respect to U
than Uff , she would at least be a better friend than U ′X+1 because of
the shorter path over Uff . Again, this is a contradiction to our assump-
tion that U ′X+1 is U ’s next best friend after Uff . Furthermore, U ′X+1

must be a already in Uff ’s friendship list at time t due to ¬C’ ∧ ¬D’.

Consequently, the entry with U ′X+1 in Uff ’s friendship list exists and
is correctly merged into U ’s friendship list.
It immediately follows:

Flist′U [0 : x′(U)− 1] = FlistU [0 : x(U)]

= FlistU,t[0 : x(U)]

= FlistU,t′ [0 : x′(U)− 1] (due to Inv. 1)
Flist′U [x′(U)] = (Uff , sff) (due to correct merge)

= FlistU,t′ [x
′(U)] (due to II.1)

Flist′U [x′(U) + 1] = (U ′X+1, s
′
X+1) (due to correct merge)

= FlistU,t′ [x
′(U) + 1] (due to II.1)

2. At time t it is already true that posU (Uff) = x(U) + 1

As a consequence, only the friendship strength sff of the user Uff ∈
FlistU,t[x(U) + 1] can have changed but Uff is still the same best
friend at position x′(U) = x(U) + 1 and time t′.

We again may assume, Uff does not need to be updated and there is

179

10.6 Merge Operation – U .merge(Uf) 10 PROOF OF CORRECTNESS

no need for a merge operation on Uff , i.e. ¬C’ ∧ ¬D’.

Since in addition, the shortest path to UX+1 ∈ FlistU,t′ [x′(U) + 1]
leads over Uff by assumption, the entry in Flist′U must be correct for
the same reasons as in the previous case II.1. It immediately follows:

Flist′U [0 : x′(U)− 1] = FlistU [0 : x(U)]

= FlistU,t[0 : x(U)]

= FlistU,t′ [0 : x′(U)− 1] (due to Inv. 1)
Flist′U [x′(U)] = (Uff , sff) (due to correct merge)

= FlistU,t′ [x
′(U)] (due to II.2)

Flist′U [x′(U) + 1] = (U ′X+1, s
′
X+1) (due to correct merge)

= FlistU,t′ [x
′(U) + 1] (due to II.2)

Hence, in both cases Invariant 2 holds: ¬ A’ ∧¬ C’ ∧¬ D’ =⇒ E’

• Flist′U [x′(U) + 1] = (Uff , sff)

From Invariant 1, we may assume that at FlistU [0 : x′(U)] is correct at time t′

and Invariant 2 holds at time t. Next we show that Invariant 2 also holds at time t′.

I: A’ . The path with maximal weight to U ′X+1 ∈ FlistU,t′ [x′(U) + 1] does not
lead over U ′X ∈ FlistU,t′ [x′(U)]

By assumption, x(U) = posU (Uf) at time t or there would be no merge
operation. Furthermore, at time t′ the shortest path to Uff leads over Uf .
Otherwise, either Uff would not be merged into U ’s friendship list if there
was already a shorter path known to U at time t or in the time interval (t, t′]
a friendship update must have happened for U or one of her friends with
a stronger friendship strength than Uf . However, the first is a contradic-
tion to our assumption about Uff and the second contradicts the definition
of x(U).
Since by assumption Uff is merged at position x′(U) + 1 and the shortest
path to U ′X+1 does not lead over U ′X , it immediately follows from Invari-
ant 1 that the entry in FlistU with U ′X is correct and according to Lemma
10.7 that Uff is a direct successor of Uf and the corresponding friendship
strength in FlistU is correct, too. Therefore,

Flist′U [0 : x′(U)] = FlistU [0 : x(U) + 1]

= FlistU,t′ [0 : x′(U)] (due to Inv. 1)
Flist′U [x′(U) + 1] = (U ′X+1, s

′
X+1) (due to correct merge)

= FlistU,t′ [x
′(U) + 1] (due to Lemma 10.7)

Hence, Invariant 2 holds: A’ =⇒ B’

II: ¬ A’ . The path to U ′X+1 ∈ FlistU,t′ [x′(U) + 1] with the maximal weight
leads over U ′X ∈ FlistU,t′ [x′(U)]

180

10 PROOF OF CORRECTNESS 10.6 Merge Operation – U .merge(Uf)

In this case, the path with maximal weight toUff leads overUf , too, orUff
would not be merged into U ’s friendship list. Hence, the path with maxi-
mal weight from U to U ′X leads also over Uf or the weight of the shortest
path to Uff could not be maximal over Uf which contradicts our assump-
tion ¬A’.
In addition, U ′X = UX+1 ∈ FlistUU, t[x(U) + 1] because the merge
operation can only change entries with users subsequent to Uff and there
also could not be a friendship update at a time tx ∈ (t, t′) such that the
entry at FlistU,t[x(U) + 1] changed because of the definition of x(U), our
assumption x(U) = posUUf , and eventually because of the correctness of
Invariant 1.
Moreover, Uff must be a direct successor of U ′X and U ′X must be a direct
successor of Uf . Assuming otherwise, then there exists an intermediate
user Ui on the path with maximal weight from Uf to U ′X or to Uff , re-
spectively. That means, Ui is a better friend to Uf than Uf ’s friends U ′X
or Uff , respectively. Furthermore, since Ui was not merged into FlistU
(or her merge position in FlistU would have been located prior to Uff
which contradicts our assumption that Uff is the best friend of Uf who is
merged into FlistU), the user Ui must be a even better friend to U than Uf .
But then, the path from U over Ui to U ′X or Uff that does not lead over Uf
would be shorter and its weight higher. However, this is a contradiction to
our assumption ¬ A’.

Again, we may assume that neither a condition for an update on U ′X nor a
merge operation on U with U ′X is true, i.e. ¬C’ ∧ ¬D’.

According to Invariant 1, U ′X is correct with respect to time t′ and Flist′U .
Furthermore, as there is no need for an update operation, all direct edges
of U ′X and their weights must be correct and found in U ′X ’s friendship list.
Since TSU ′

X
= 0, there is no need for a merge operation on U with U ′X

and all direct friends of U ′X are already correctly known to U at time t, too.
Consequently, U ′X+1 in Flist′U must be correct as well.

Note: At time t, there must have already existed a path with maximal
weight over a direct edge from U ′X == UX+1 to U ′X+1. Otherwise, at
some time tx ∈ (t, t′] there is a friendship update to U ′X such that a new
path with maximum weight to Uff exists. However, in that case, at time t′

there would be still a need for an update operation on U ′X or a merge oper-
ation which is a contradiction to our assumption.
It follows,

Flist′U [0 : x′(U)] = FlistU [0 : x(U) + 1]

= FlistU,t′ [0 : x′(U)] (due to Inv. 1)
Flist′U [x′(U) + 1] = (U ′X+1, s

′
X+1) (due to correct merge)

= FlistU,t′ [x
′(U) + 1]

(due to ¬C’ ∧ ¬D’ and x(U) = posU (Uf)

Hence, Invariant 2 holds: ¬ A’ ∧¬ C’ ∧¬ D’ =⇒ E’

181

10.6 Merge Operation – U .merge(Uf) 10 PROOF OF CORRECTNESS

• Flist′U [x′(U) + i] = (Uff , sff) with i > 1

I: A’. The path with maximal weight to U ′X+1 ∈ FlistU,t′ [x′(U) + 1] does not
lead over U ′X ∈ FlistU,t′ [x′(U)]

According to Invariant 1 all entries up to U ′X in Flist′U are correct with
respect to time t′. It follows there is no need for an update or a merge
operation on any userUi ∈ FlistU,t′ [i] with i < x′(U) = x(U)+1. Hence,
all direct edges from such a user Ui must have already been updated and the
timestamps of corresponding friendships list must be ≤ TSU . Assuming
otherwise would contradict the definition of x′(U).
By assumption, the merge operation does not change the entry with the
user U ′X+1 = UX+2 and, thus, that entry cannot have changed since time t.
By assumption, at time t′ there is no shortest path fromU overU ′X toU ′X+1

but over some user Ui ∈ FlistU,t′ [i] with i < x′(U). Hence, only the
following two options are possible at time t′:

(a) At time t′, there is a shortest path from U to U ′X+1 over a direct edge
from some user Ui to U ′X+1 with Ui ∈ FlistU,t′ [i] and i < posU (Uf).

Assuming such a shortest path did not exist at time t, then within
the interval (t, t′] a friendship update must have happened to a friend
Ui ∈ FlistU,t′ [i] with i < posU (Uf) such that at time tx ≤ t′ there
is a shorter path from U to U ′X+1 which leads over a direct edge
from Ui to UX+1. However, according to the definition of x(U), it
means, x(U) is equal to posU (Ui) at time t which contradicts our as-
sumption x(U) = posU (Uf).

Hence the shortest path from user U over Ui to user U ′X+1 existed
already at time t and it immediately follows that the entry with the user
UX+2 ∈ FlistU,t[x(U) + 2] is equal to the one with U ′X+1 at time t′.
Moreover, that entry was already correct at time t because all direct
edges of users prior the one at position x(U) in FlistU are up-to-date
with respect to time t and correct. Hence, the entry is unchanged in
between time t and t′ and it follows

Flist′U [0 : x′(U)] = FlistU [0 : x(U) + 1]

= FlistU,t′ [0 : x′(U)] (due to Inv. 1)
Flist′U [x′(U) + 1] = FlistU [x(U) + 2] (due to correct merge)

= FlistU,t[x(U) + 2] (due to Ui → U ′X+1)
= FlistU,t′ [x

′(U) + 1]

(due to U ′X+1 = UX+2 and (a))

(b) At time t′, there is a shortest path from U to U ′X+1 leading over Uf .

Consequently, there is a direct edge from Uf to U ′X+1 at time t′, which
will be proved by contradiction.

182

10 PROOF OF CORRECTNESS 10.6 Merge Operation – U .merge(Uf)

Assuming (a) is not true and also that there is no direct friendship edge
(Uf → U ′X+1) but an indirect shortest path from Uf to U ′X+1 means
that there must be direct successor of Uf who is a better friend of Uf
than U ′X+1.
From Definition 10.11 follows that all direct successor of Uf must
be correctly known in FlistUf

before the merge operation is applied
since pending friendship updates are applied to Uf first. Furthermore,
any user unknown to U or any friend of U in FlistU with a lower
friendship strength than Uf (i.e. users located subsequently to Uf in
FlistU), but who are successors of Uf on the shortest path to U ′X+1,
have to be located prior to U ′X+1 in FlistUf ,t′ and would be merged
in U ’s friendship list at a position prior to U ′X+1, too, according to the
Definition 10.11 of a merge operation.
Since all direct edges of Uf are correctly known in FlistUf

and ap-
propriately merged into FlistU , all direct friends of Uf who are better
friends thanU ′X+1 have to be located inFlistU betweenUf andU ′X+1,
including the direct friend of Uf who is part of the shortest path to
UX+1.
At time t′, there is only one user U ′X at position x′(U) in FlistU who
potentially is a predecessor of U ′X+1 of a shortest path from U lead-
ing over Uf . However, from Invariant 1, we know the entry with U ′X
in FlistU is correct with respect to time t′ and, thus, is indeedU ’s next
best friend after Uf . Since the path to U ′X+1 does not lead over U ′X by
assumption, it follows from the reasoning above, that UX+1 is a direct
successor of Uf .

Finally, since Uff is the best user from Uf ’s friendship list that is
inserted into FlistU at a position later than U ′X+1 by the merge op-
eration, the (better) direct friend U ′X+1 of Uf known to U already at
time t. Hence, the corresponding entry in FlistU must have been al-
ready correct at time t or the merge operation would have modified it
by definition.
Therefore,

Flist′U [0 : x′(U)] = FlistU [0 : x(U) + 1]

= FlistU,t′ [0 : x′(U)] (due to Inv. 1)
Flist′U [x′(U) + 1] = FlistU [x(U) + 2] (due to correct merge)

= FlistU,t[x(U) + 2]

(due to e = (Uf → UX+2)) and no update for e
= FlistU,t′ [x

′(U) + 1]

(due to U ′X+1 = UX+2 and posU (Uff)

Hence, Invariant 2 holds: A’ =⇒ B’

II: ¬ A’ . The path to U ′X+1 ∈ FlistU,t′ [x′(U) + 1] with the maximal weight
leads over U ′X ∈ FlistU,t′ [x′(U)]

183

10.6 Merge Operation – U .merge(Uf) 10 PROOF OF CORRECTNESS

We may assume again there is no need for an update operation on U ′X′ or a
merge operation on U with U ′X = UX+1, i.e. ¬C’ ∧ ¬D’.
In this case, the entry with UX+1 ∈ FlistU must have already been correct
at time t because by definition of a merge operation U ′X = UX+1 and by
Invariant 1, U ′X is correct at time t′. In addition, no friendship update can
have happened to any user prior to UX in FlistU in the time interval [t, t′)
due to x(U) = posU (Uf) and by assumption, the merge operation only
affects entries at later positions than even x′(U)+1. Therefore, there cannot
have been a change for the entry at position x′(U) since time t.

From the assumption ¬ A’ it follows that the shortest path from U to U ′X+1

leads over a direct edge from U ′X . Assuming otherwise, then there exists a
direct successor of U ′X on the shortest path from U ′X to U ′X+1 which is a
better friend of U than U ′X+1. However, the shortest path from U to such
an intermediate user must also lead over U ′X or the path to any subsequent
user on such a path would be shorter than the one over U ′X , too, which is a
contradiction to our assumption ¬A’. Therefore, no such intermediate user
can exist and U ′X+1 is a direct friend of U ′X .

From ¬C’ it follows that there is no pending friendship update for U ′X
and all entries of direct successors of U ′X are correct in FlistU ′

X
. Since at

time t′, by definition of the merge operation, tp′U = x′(U) = posU (U ′X),
it follows from our assumption ¬D’, that the timestamp of U ′X ’s friendship
list TSU ′

X
is equal to 0. It follows there never was a friendship update

for U ′X . Hence, all direct successors of U ′X must have been already known
byU at time t and, thus, all direct friends ofUX+1 must be correctly located
in FlistU .

Since U ′X = UX+1 and the shortest path from U to U ′X+1 leads over
a direct edge from U ′X at time t′ that already existed at time t, it fol-
lows U ′X+1 = UX+2. Moreover, as U ′X is correct and all its direct friends
are correctly known in FlistU at time t, also U ′X+1 = UX+2 must have
been correct at time t. Finally, it follows

Flist′U [0 : x′(U)] = FlistU [0 : x(U) + 1]

= FlistU,t′ [0 : x′(U)] (due to Inv. 1)
Flist′U [x′(U) + 1] = FlistU [x(U) + 2] (due to correct merge)

= FlistU,t[x(U) + 2]

(due to e = (U ′X → U ′X+1))
= FlistU,t′ [x

′(U) + 1]

(due to U ′X+1 = UX+2 and posU (Uff)

Hence, Invariant 2 holds: ¬ A’ ∧¬ C’ ∧¬ D’ =⇒ E’

Hence, Invariant 2 holds for all users U and U .merge(Uf):

(A =⇒ B) ∨ (¬A ∧ ¬C ∧ ¬D =⇒ E)

184

10 PROOF OF CORRECTNESS 10.7 Update, Merge Operation – ∀Ui 6= U

10.7 Update, Merge – ∀Ui 6= U : U .update(), U .merge(Uf)
Finally, we show that both invariants introduced in Section 10.4 also hold for each
user Ui 6= U for either an update operation or a merge operation on U .

Theorem 10.5. Invariant 1 holds ∀Ui 6= U and for an update or a merge operation
on U .

Proof. For any operation onU , Definition 10.12 defines ∀Ui 6= U : Flist′Ui
= FlistUi

,
tp′Ui

= tpUi
, TS′Ui

= TSUi
.

According to Lemma 10.2, x′(Ui) = x(Ui) and according to Definition 10.6,
x(Ui) ≤ posUi

(U) if U ∈ FlistUi
. From this, it immediate follows that no entry

prior to x(Ui) can have changed and because of Definition 10.10 and 10.11 for up-
date and merge operations the entry with U itself also cannot have changed by any
operation on U . A shortest path from Ui to U is always shorter than a path to U ’s
friends which includes U . The same is obviously true, if U is not a friend of Ui at all,
i.e. U /∈ FlistUi .

As a consequence, Flist′Ui
is unchanged and correct up to position x′(Ui) as

x′(U) = x(U), TS′Ui
= TSU , Flist′Ui

= FlistUi and since we may assume In-
variant 1 holds for Ui right before any operation on U starts.

It follows,

Flist′Ui
[0 : x′(Ui)] = FlistUi

[0 : x(Ui)]

(due to x′(Ui) = x(Ui) and by definition)
= FlistUi,TSUi

[0 : x(Ui)] (correct by assumption)

= FlistUi,t[0 : x(Ui)] (due to t = TSUi
)

= Flist′Ui,t′ [0 : x′(U)] (due to t′ = t and x′(Ui) = x(Ui))

Theorem 10.6. Invariant 2 holds ∀Ui 6= U and for an update or a merge operation
on U .

Proof. According to Invariant 1, ∀Ui 6= U : Flist′Ui
is correct up to position x′(Ui).

For the discussion about the entry at the position x′(Ui) + 1, we have to distinguish the
possible cases of U ’s position relative to x(Ui) in a user’s friendship list FlistUi .

Remember: According to Lemma 10.2, ∀Ui 6= U : x′(Ui) = x(Ui) and from the
definition of x(Ui), it follows, x(Ui) ≤ posUi

(U).
Moreover, Flist′Ui

= FlistUi
, TS′Ui

= TSUi
and tp′Ui

= tpUi
by Definition 10.10

and Definition 10.11 of an update or merge operation on U for all user Ui 6= U . Fur-
thermore, we may assume at time t = TSUi

that both invariants hold.

• Case 1: x(Ui) < posUi(U, s)

I: A’. The path with maximal weight to user U ′X+1 ∈ FlistUi,t′ [x
′(Ui) + 1]

does not lead over U ′X ∈ FlistUi,t′ [x
′(Ui)]

Due to x′(Ui) = x(Ui) and Lemma 10.3, it follows: A′ =⇒ A, i.e. the
shortest path does not lead over a edge (UX → UX+1) at time t. Hence, at

185

10.7 Update, Merge Operation – ∀Ui 6= U 10 PROOF OF CORRECTNESS

time t, the entry at position x(U) + 1 was already correct by assumption
that Invariant 2 is correct at time t.
Since a merge operation on U can only affect entries in FlistUi,t at later
positions than posUi(U) ≥ x(Ui) + 1, and t′ = t, x′(Ui) = x(Ui), it
follows Flist′Ui

[x′(Ui) + 1] must still be correct.
Thus, A’ =⇒ B’.

II: ¬A’. The path with maximal weight to user U ′X+1 ∈ FlistUi,t′ [x
′(Ui) + 1]

leads over U ′X ∈ FlistUi,t′ [x
′(Ui)]

Here, the same argumentation is true as before. The operation on U cannot
change anything for FlistUi,t up to posUi(U) ≥ x(Ui) + 1. Hence, the
entries up to x′(Ui) + 1 = x(U) + 1 cannot have changed for t′ = t due to
the update or merge operation on U .

Since t′ = t and x′(U) = x(U) and we may assume that Invariant 2 holds
at FlistUi

right before an operation on U , then Invariant 2 must still hold
for Flist′Ui

because Flist′Ui
= FlistUi .

• Case 2: x(Ui) = posUi(U, s) < tpUi

Note: This case can only occur when TSmax has changed since the last time a
query on Ui discovered U , i.e. tsmaxU < TSmax and at least one friendship
update related to U occurred in G. Otherwise, there would be no need for an
operation on U because of posUi(U, s) < tpUi and Definition 10.13. Hence, the
reason why tsmaxU is part of the state description σU (see Definition 10.7).

I: A’. The path with maximal weight to user U ′X+1 ∈ FlistUi,t′ [x
′(Ui) + 1]

does not lead over U == U ′X ∈ FlistUi,t′ [x
′(Ui)]

Due to our assumption that there is no direct edge fromU == U ′X toU ′X+1,
there cannot have been such edge before the update operation on U because
of x′(Ui) = x(Ui) and according to Lemma 10.3.
Hence,

Flist′Ui
[x′(Ui) + 1] = FlistUi

[x(Ui) + 1] (due to Case 1, by def.)
= FlistUi,t[x(Ui) + 1]

(due to A’ and Lemma 10.3)
= FlistUi,t′ [x

′(Ui) + 1] (due to x’(U)=x(U), t′ = t)

Furthermore, FlistUi,t[x(Ui)+1] was correct at time t and so it is at t′ = t.
It follows: A’ =⇒ B’

II: ¬A’. The path with max. weight to user U ′X+1 ∈ FlistUi,t′ [x
′(Ui)+1] leads

over U == U ′X ∈ FlistUi,t′ [x
′(Ui)]

This is an obvious case. According to Lemma 10.4, at time t′, we know,
TS′U > TS′Ui

.
Hence, ¬ A’ =⇒ D’

186

10 PROOF OF CORRECTNESS 10.8 U .get_Friends()

• Case 3: x(Ui) = posUi
(U, s) = tpUi

A’ : The path with maximal weight to user U ′X+1 ∈ FlistUi,t′ [x
′(Ui) + 1]

does not lead over U == U ′X ∈ FlistUi,t′ [x
′(Ui)]

Again, because of Lemma 10.3 and x′(Ui) == x(Ui), it follows that
there is also no such shortest path from UX ∈ FlistUi,t[x(Ui)] to the user
UX+1 ∈ FlistUi,t[x(Ui) + 1] at time t.
As x(Ui) = tpUi

and there is no direct edge from UX = U ′X to UX+1 =
U ′X+1, it follows that at time t the path with maximum weight to UX+1

leads over a user at FlistU [j] with j < x(Ui). This path must have been
already correct at time t or otherwise it would contradict the definition of
x(Ui).
Since the entry at FlistU [x(Ui) + 1] was already correct at time t and due
to A’ the operation on U cannot have changed it, and with t′ = t, the same
entry still must be correct after the operation on U .
It follows,

Flist′Ui
[x(Ui) + 1] = FlistUi

[x(Ui) + 1](due to Case 3)
= FlistUi,t[x(Ui) + 1] (due to A’ and Lemma 10.3)
= FlistUi,t′ [x

′(Ui) + 1] (due to t′ = t, x′(Ui) = x(Ui))

A’ =⇒ B’

¬A’ : The path with max. weight to user U ′X+1 ∈ FlistUi,t′ [x
′(Ui) + 1] leads

over U == U ′X ∈ FlistUi,t′ [x
′(Ui)]

Again, this is an obvious case, because TS′U > 0 and x′(Ui) = tp′Ui
by

assumption, it follows, ¬ A’ =⇒ D2’

Finally, in all possible cases, we could show, that Invariant 2 holds for an update or
merge operation on U and all users Ui 6= U .

10.8 U .get_Friends()
The final step to prove the correctness of our algorithm for finding always the true top-k
friends of some user U is done by induction over the position i of the last identified
next best friend. Note: As our algorithm traverses a friendship list always sequentially
by starting from the first entry and increases tpU to i whenever i exceeds tpU , the cur-
rent i-th best friend for U is always located at a position ≤ tpU in FlistU .

Theorem 10.7. Our Algorithm U .get_Friends() presented in Listing 5 works cor-
rectly and retrieves for each user U her top-k best friends.

Proof. Induction Basis. i = 0 : When i = 0, we want to identify the best friend
of U . According to Property 10.3, the best friend is a direct successor of U . At query
time, all new edges for U are updated and new friends and their friendship strengths
are correctly inserted into U ’s friendship list. Hence, the very first entry FlistU [0] is
correct according to the correctness of Invariant 1 with respect to U .update().

187

10.8 U .get_Friends() 10 PROOF OF CORRECTNESS

Hence, our algorithm correctly identifies with U .get_Friend(0) the best friend of
user U .

Induction Step. i → i + 1 : Assuming our algorithm has already correctly iden-
tified the first i friends, then, we have to show that the algorithm correctly identifies
the next best friend. In other words, after having identified the i-th best friend of U , we
next want to correctly identify the (i+1)-th friend.

We have to distinguish the following cases:

• i < tpU :

From Invariant 1 and by applying the induction hypothesis, we are allowed to
assume that all entries in FlistU up to position i are correct and hence, all nec-
essary update or merge operations have been already applied on users found at
these entries. Therefore, x(U) can only be equal to or greater than i by definition
of x(U).

When i < x(U) ≤ tpU , then there is no need for an update or merge operation
on Ui ∈ FlistU [i] and i + 1 ≤ x(U) ≤ tpU . Hence, according to Invariant 1
the (i+1)-th entry is correct and the user at that position is indeed U ’s next best
friend.

When i = x(U) < tpU , then there is either (a) a need for an update operation
onUi or (b) a need for a merge operation onU withUi according to the definition
of x(U). However, the checks for U .needs_update() or U .needs_merge(Ui)
defined by our algorithm exactly match the definition of x(U). Therefore, before
identifying the next best friend, our algorithm applies the operation Ui.update()
or U .merge(Ui), respectively. In addition, an update operation on a friend Ui
of U causes always a merge operation on U with Ui.

By definition of U .merge(Ui), the timestamp validity pointer tpU is set to i+ 1
which correctly corresponds to the position of the next best friend ofU according
to Invariant 1.

Hence, in any case, our algorithm correctly identifies the i+1-th friend of U .

• i = tpU :

In this case, by definition of x(U) and by applying the induction hypothesis
that all entries up to position i are correct, with all necessary merge and update
operation have been applied, it follows, x(U) = tpU .

Moreover, when i == x(U), our algorithm identifies as a next step the friend at
position x(U) + 1. The path with maximal weight to this next best friend leads
either (a) over a user in FlistU prior to the i-th position and not over the i-th
friend or (b) the (i+1)-th best friend of U is a direct successor of U ’s i-th friend.

When there is no need for an update or merge operation on the i-th friend, then
according to Invariant 2, the (i+1)-th entry in FlistU is already correct in both
cases (a) and (b). Hence, our algorithm can safely increase tpU to i+1 and return
the i+1 best friend of U .

When (b) is true but there is a need for an update operation or a merge op-
eration on the i-th user Ui ∈ FlistU [i] as defined by x(U), then, the check
for Ui.needs_update() or U .needs_merge(Ui) is true as these methods exactly

188

10 PROOF OF CORRECTNESS 10.8 U .get_Friends()

match the definition of x(U) and, thus, the corresponding operation is applied.
Furthermore, an update operation on Ui always causes a merge operation on U
with Ui.

Hence, in any case, after the merge operation on U , the next best friend can be
correctly identified because then tp′U is equal to x′(U) = i+ 1 and according to
Invariant 1 all entries up to x′(U) are correct for any update or merge operation.

Finally, Invariant 2 guarantees to identify a need for a merge operation on U
with Ui or the need for an update operation on Ui, and therefore, our algorithm
correctly identifies the i+ 1-th friend of U .

Both, induction basis and induction step have been proved. Hence, it has been proved
that our algorithm correctly works and always identifies for any i the i-th best friends
of a querying user U .

189

Part C

Peer-To-Peer User Networks

191

11 INTRODUCTION

11 Introduction

For technological as well as business reasons, today’s social tagging networks are typ-
ically implemented in a centralised way on servers or server farms belonging to single
companies. However, Peer-to-Peer (P2P) Systems naturally provide a suitable environ-
ment for hosting social tagging networks with users and their data being mapped to the
peers in the P2P system. Such a distributed network of users introduces the additional
challenge of how to counter misbehaviour like cheating of users without reverting to
any centralised controlling mechanisms.

In this chapter, we provide a distributed algorithm which allows to compute au-
thority scores over social networks in a Peer-to-Peer environment and which correctly
works even in the presence of cheating users.

11.1 Motivation

In Web 2.0 applications like social tagging networks, users are not only content con-
sumers but also content providers. As described in Part A, Section 3.2, e.g. users
publish own photos in Flickr.com, links to web pages (bookmarks) in Delicious.com,
and information about books they own or have read in LibraryThing.com. In addi-
tion, users tag, comment or rate the items in the network, adding valuable attributes to
them and enabling social recommendations and social search strategies based on this
user-provided feedback—as shown by our socially enhanced search and exploration
framework SENSE presented in Part A of this work.

Since users’ own contents are an intrinsic feature of social tagging networks, nat-
urally, this motivates the idea that contents should reside on the users’ own computers
rather than being given away and stored at a centralised service on the web. The ap-
proach of keeping the users’ data on the users’ own computers is also advantageous in
terms of lower vulnerability to privacy breaches, and other forms of attacks, censorship,
or manipulation and even to performance bottlenecks because of the joint power of po-
tentially hundreds of millions of computers. Due to its scalability and the autonomy of
peers, a peer-to-peer system exactly features such an approach.

Social tagging networks can be cast into P2P systems by mapping the users of the
network to individual peers. In such a scenario, user-specific contents like their photos
in Flickr.com, bookmarks in Delicious.com or books in LibraryThing.com, etc., or the
users’ lists of friends, the information about private interactions, personal recommen-
dations, tags and subjective ratings reside on the users’ private computers—each acting
as a peer in the corresponding P2P system. Hence, the peers in the network are collab-
orating and forming a distributed search engine to enable searching for and browsing
of other users’ contents.

Of course, in such a distributed setting where users have to collaborate to identify
authoritative information, the risk of misbehaving or cheating users arises.

The notion of authority is not only bound to user graphs of social tagging networks
and differs with respect to the graph and the defined semantic of the associated node
relations. However, it typically refers to a combination of factors like trustworthiness
[60], reputation [78], importance or prestige of entities [87, 71], or the level of attention.
Hence, misbehaving or cheating users in social networks may try to influence authority
computations to promote own preferences or demote those of others. Therefore, espe-
cially in a distributed setting like in a P2P system, authority computations over social
networks in the presence of users trying to influence the results are a challenging task.

193

11.2 Related Work 11 INTRODUCTION

Before introducing our algorithm for countering cheating in such a P2P environ-
ment, we discuss related work.

11.2 Related Work
Link analysis for authority scoring is a well studied topic with rich literature. One of
the best known models is PageRank, introduced by Brin and Page [31], and further
explored in many other works. A good survey can be found at [90].

With the advent of the Web 2.0, there has been much research on adapting existing
retrieval and mining techniques from web search to online communities. [14] discusses
the challenges of searching and ranking in social communities. Many methods for rank-
ing based on the analysis of social links have been developed. [70] proposes FolkRank
for identifying important users, data items, and tags. [133] compares different methods
for identifying authoritative users with high expertise. [19] introduces SocialPageRank,
to measure page authority based on its annotations, and SocialSimRank for the simi-
larity of tags, and [111] considers the link structure defined by the relationship among
users to improve the retrieval quality. Another interesting work is [93] where the au-
thority scores are computed on the graph defined by the users’ browsing experience,
and [107] where the authors devise an efficient algorithm to estimate PageRank in large
graphs.

In the context of P2P networks [120], work has been devoted to techniques for
distributed link analysis. In [128], Wang and DeWitt presented a framework, in which
the authority score of each page is computed by performing the PageRank algorithm
at the web server that is the responsible host for the page, based only on the intra-
server links. They also assign authority scores to each server in the network, based on
the inter-server links, and then approximate global PageRank values by combining lo-
cal page authority scores and server authority values. Wu and Aberer [129] pursue a
similar approach based on a layered Markov model. A fundamental approach to dis-
tributed spectral decomposition of graphs is given by Kempe and McSherry [82], where
distributed link analysis would be a special case of the presented mathematical and al-
gorithmic framework.

In [106], Sankaralingam et al. presented a P2P algorithm in which the PageR-
ank computation is performed at the network level, with peers constantly updating
the scores of their local pages and sending these updated values through the network.
Shi et al. [116] also compute PageRank at the network level, but they reduce the com-
munication among peers by distributing the pages among the peers according to some
load-sharing function. The JXP algorithm, presented in [101] performs local PageRank
score computations on the peers’ local graph fragments, where each local graph is aug-
mented by a world node that represents the locally unknown part of the global graph.
Meetings among peers are used for mutual exchange of information about their local
graph fragments and to continuously improve each peer’s knowledge about its world
node.

Several other works have looked at social networks from a decentralised point of
view, also in the context of P2P networks. Some of these approaches exploit social
links to propose new strategies for content searching [102]. Aspects of user commu-
nities have also been considered for P2P search, most notably, for establishing “so-
cial ties” between peers and routing queries based on corresponding similarity mea-
sures (e.g., similarities of queries issued by different peers). [25] has studied “so-
cial” query routing strategies based on explicit friendship relationships and behavioural
affinity. [103] has developed an architecture and methods for “social” overlay networks

194

12 COUNTERING CHEATING IN P2P NETWORKS

that connect “taste buddies” with each other. [97] has proposed a community-enhanced
web search engine that takes into account prior clicks by community members. [42] has
proposed the notion of Peer-Sensitive ObjectRank, where peers receive resources from
their friends and rank them using peer-specific trust values.

All the distributed approaches mentioned above require that every site participating
in the computation is trustful and the values reported are not manipulated: a strong and
rather unrealistic assumption in a P2P environment, given that high authority/reputation
scores are desired by users, with potential benefits like higher attention, access traffic,
or even income from ads and sales.

There has been much work on establishing reputation systems that would help to
assess the quality and trustworthiness of peers. In [95], the authors present a com-
plete overview of the issues related to the design of a decentralised reputation system.
EigenTrust [79] is one of the first methods introduced to assign a global trust value to
each peers, computed as the stationary distribution of the Markov chain defined by the
normalised local trust matrix C where cij is the local trust value that a peer j assign
to a peer j. Extensions towards distributed and non-manipulable EigenTrust computa-
tions are presented in [10]. Another framework for reputation-based trust management
is presented in [131], where peers give feedback about other peers’ good or bad be-
haviour and various forms of network-wide trust measures can be derived in a P2P-style
distributed computation. A general framework for different types of trust and distrust
propagation in a graph of web pages, sites, or other entities is introduced in [59].

Instead of trying to identify malicious peers to eliminate their impact on the dis-
tributed computation, our algorithm instead is able to correctly compute the PageRank
values without the need to identify the cheating sites, as long as the fraction of cheating
peers is only a minority. Our only assumption is that peer identities are unforgeable,
which can be guaranteed by standard methods of cryptographic security [94]. There
is also work on using the link structure to identify spam pages [23] and computing
authority scores based only on trusted sites [63, 62]. Our work, however, focuses on
malicious behaviour of peers, regardless of the content of the entities they possess. De-
ciding whether a certain entity contains spam or not is orthogonal to our work, and
could as well be incorporated into our framework.

12 Countering Cheating in P2P Authority Computa-
tions over Social Networks

In this section, we address the problem of cheating peers in a decentralised computation
of authority values, providing a solution being surprisingly simple, i.e. not difficult to
implement, and fairly general, i.e. making very few and weak assumptions about peers
and the network.

12.1 Overview

Ranking entities, e.g. web pages, users, photos, etc., in social networks, web graphs,
and other relational structures is important in many applications such as web search or
Web 2.0 applications. A widely used family of measures to analyse authority, trust, or
reputation is by computing the principal eigenvector of a matrix derived from the un-
derlying relation (e.g. a weighted adjacency matrix for web pages or a weighted friend-
ship/acquaintance matrix for the users of a social network). The standard algorithm for

195

12.2 Problem Definition 12 COUNTERING CHEATING IN P2P NETWORKS

computing such authority measures is the Jacobi power-iteration method [90], the most
prominent use case being Google’s PageRank algorithm. On large graphs, these com-
putations are expensive, especially in terms of memory requirements, so that distributed
algorithms for eigenvector analysis are an attractive option. Moreover, in some appli-
cations like social-network analysis, users are the owners of contents and may care
about autonomy and privacy, so that they would ideally keep their parts of the overall
contents on their own computers, including e.g. their friendship lists. For instance, in
a setting like the LibraryThing.com social tagging network, every user may manage
her own book libraries, friendship lists, and friends information on her own computer
or at least by means of a personalised agent running in the provider’s data centre and
which is governed by the user’s individual policy, e.g. for visibility by other parties
and for revoking information. This aspect calls for a peer-to-peer (P2P) approach with
decentralised computation spread across largely autonomous, asynchronously commu-
nicating peers.

Distributed and P2P algorithms for power iteration and other spectral analyses have
received significant attention in prior research, most notably for but not limited to web-
graph link analysis, providing good solutions such as [45, 82, 101, 106, 116, 128, 129].
A common principle among these distributed analysis algorithms is that peers perform
local computations on their, relatively small, local fragments of the underlying graph,
and then communicate these local results among each other. For example, approximate
authority values for the entities owned by or known to one peer may be propagated
along outgoing edges to neighbouring peers [82]. Alternatively, peers could communi-
cate in a batched manner, exchanging locally computed vectors of estimated PageRank
or other authority or prestige values to improve other peers’ estimates in an iterative
manner [101], [102].

However, regardless of the details of such distributed computations, this opens up
opportunities for bad guys: dishonest peers ignoring the rules of the algorithm and
playing their own games. For example, a user may want to artificially boost the impor-
tance of a web page or book that she likes, or improve her own social prestige in an
undeserved, manipulative manner. The forms of misbehaviour may range from egoistic
behaviour and cheating all the way to being malicious and attempting to sabotage the
entire social network.

The ways in which peers cheat and misbehave cannot be easily specified, e.g. in
the form of an attacker model, and their effects cannot be controlled at all if an un-
bounded number of peers ignores the rules. However, we can realistically assume that
it is indeed only a small minority, or some bounded fraction of all peers that attempts
cheating. Even under this assumption, all the previously proposed algorithms could
possibly arrive at largely distorted authority and reputation scores that may arbitrarily
deviate from the true values that an unmanipulated computation would yield. These
algorithms have not got any built-in countermeasure to cheating, and thus, are facing a
severe problem in real world P2P user network.

Next, we formally define the problem that has to be solved in P2P authority compu-
tations when there are peers in the network which ignore the computational guidelines.

12.2 Problem Definition

We start with briefly summarise the PageRank (PR) algorithm as it is the main tool we
use in order to evaluate authority scores.

196

12 COUNTERING CHEATING IN P2P NETWORKS 12.2 Problem Definition

The basic idea of PR is that if an entity el has got a link to an entity ei then el is im-
plicitly endorsing ei, i.e. giving some importance to entity ei. How much el contributes
to the importance of ei is proportional to the importance of el itself.

This recursive definition of importance is captured by the stationary distribution
of a Markov chain that describes a random walk over the graph where we start at
an arbitrary entity and at each step choose a random outgoing edge from the current
entity. To ensure the ergodicity of this Markov chain (i.e. the existence of stationary
entity-visit probabilities), additional random jumps to uniformly chosen target entities
are allowed with small probability (1− α). Formally, PageRank is defined for a given
directed graph G (representing an ergodic Markov chain) as follows:

Definition 12.1 (PageRank πG(ei)). For an entity ei in a directed graph G, the Page-
Rank πG(ei) of ei is defined as:

πG(ei) =
(1− α)

m
+ α

∑
el|el→ei

πG(el)

δl

where m is the total number of entities in the link graph, πG(el) is the PR score of
the entity el, δl is the outdegree of el and (1− α) is the random jump probability, with
0 < α < 1.

The sum for calculating the PR of entity ei ranges over all link predecessors of ei,
and α is usually set to a value like 0.85. In what follows, we shall omit the subscript G
in πG wherever this is not crucial.

12.2.1 P2P Authority Computations & Malicious Peers

PR values are usually computed by initialising a PR vector with uniform values 1
m ,

and then applying a power iteration method, with the previous iteration’s values sub-
stituted in the right-hand side of the above equation for evaluating the left-hand side.
This iteration step is repeated until sufficient convergence, i.e. until the PR scores of
the high-authority entities of interest exhibit only minor changes.

For referring to the score computed at step t in the power iteration, we introduce
the following definition:

Definition 12.2 (t−refined Score). The score computed at iteration step t in the power
iteration method is denoted as t-refined score.

Informally, we can define the problem of computing PageRank scores using the
power iteration method in a P2P network (without malicious peers) as follows: A di-
rected graph G is divided into (possibly overlapping) subgraphs, each subgraph Gi
being stored at a peer pi. Initially, peers know only their own subgraphs, yet they wish
to compute their entities’ PageRank scores with respect to the global graph G.

In the presence of malicious peers, we should be more careful in defining our prob-
lem, as such peers might lie not only about the computed score values for own entities
but also about the existence of edges as well as nodes in their local graphs (in the
spirit of link spammers, see e.g. [62, 34]). In this case the global graph G would no
longer be uniquely defined; so the peers can impossibly rebuild the true G, not even
in a centralised manner, and there is no way of computing the real scores. To escape
this ill-defined problem, we essentially defineG to be the union (merging) of the peers’
local graphs. In the cases when two peers disagree about whether an edge exists or not,
we use a simple majority scheme. This motivates the following formal definition of the
merged graph MG :

197

12.2 Problem Definition 12 COUNTERING CHEATING IN P2P NETWORKS

Definition 12.3 (Merged Graph MG). Let G = G1, . . . , Gn be a collection of directed
graphs where Gi = (Vi, Ei). Vi denotes the set of vertices in Gi and Ei denotes the
set of directed edges in Gi for all i = 1, . . . , n.

For each edge e = u → v let n+e be the number of graphs in the collection G
containing u → v and let n−e be the number of graphs containing both u and v but
not u→ v.

Then, the graph MG = (VG , EG), obtained by merging the graphs in G is defined
as follows:

• VG =
⋃
i Vi;

• e = u→ v ∈ EG iff n+e > n−e .

The definition is also motivated by the fact that if a peer knows the entities u and v
it knows also whether there is an edge between them. This is especially true in the case
when entities are web pages or users of a social tagging network.

If there is an entity contained only at one peer there is no way to avoid in the formal
definition of the problem the implicit assumption that this peer informs correctly about
this entity. Hence, we are also implicitly assuming that malicious peers do not change
their local graph Gi by adding additional edges and entities, or if they do, that there is
a stable state where the majority of peers knows if there’s such an edge or entity or not.
Computing scores for the “true” global graph would have to simultaneously address
the link-spam-detection problem for the graph construction and the peers’ cheating
behaviour in the distributed power iteration. Therefore, we focus in this work on the
well-defined problem of computing the PageRank scores in MG .

12.2.2 Main Issues

In this section, we discuss the problems caused by coalitions of malicious peers and by
applying the power iteration method in a fully asynchronous P2P network.

Distributed algorithms for computing authority scores in a P2P setting obey the
common principle that peers

• perform computations only on their locally stored subgraph

• communicate their results to other peers

Consequently, for locally computing correct PageRank scores, a peer has to meet other
peers in the network to find out about predecessors of the peer’s local entities and the
predecessors’ score contributions.

Coalitions of Malicious Peers

A malicious peer might communicate wrong results to other peers in the network in
order to manipulate the authority score computation for certain entities. In the case that
more than one peer can communicate a score value for the same entity, the problem
becomes even harder since malicious peers might form a coalition such that they all
report the same wrong value for an entity without even knowing its real score value.

The problem caused by malicious peers forming a coalition to influence the author-
ity computation of entities is illustrated in Figure 32. It shows a peer pi with her local
subgraph, containing the entities A, B, C and D, and which meets other peers in the

198

12 COUNTERING CHEATING IN P2P NETWORKS 12.2 Problem Definition

A
B

CD

Pi

Pk

Pm

Pj

0.99

0.30

0.25

F

F

F

F

Figure 32: Example for a coalition of malicious peers in an asynchronous P2P network

network in order to find out the score contribution of D’s predecessor F . In this exam-
ple, the malicious peer pk forms a coalition with 3 other malicious peers to wrongly
communicate a too high score value for entity F . In this way, the malicious peers out-
number the two remaining honest peers pm and pj reporting also score values for the
same entity F .

Asynchrony

As indicated in Figure 32, even when peers are honest, it can happen in a fully asyn-
chronous P2P network that peers do not agree on the same score value for certain
entities. In the given example, peer pj might have not yet finished all necessary itera-
tion steps for entity F or is still missing some information about predecessors of F that
peer pm already knows. Hence, even if peers are honest, their reported score values
might not be true in the beginning due to asynchronous computations steps.

12.2.3 Assumptions on the P2P Network

Our algorithm only requires very weak and realistic assumptions on the P2P network.
In this section, we introduce the P2P setup for computing authority scores in the pres-
ence of malicious peers.

Each peer pi in the network initially knows only a local subgraph Gi of the net-
work’s underlying global graph structure but can increase its knowledge about the
global graph MG by exchanging information with other peers selected at random. The
storage capacity of each peer is bounded and typically much smaller than the capacity
necessary to store the whole graph G.

A fraction f of the peers in the P2P network is malicious, that is, they may not
execute the algorithm as it is presented in the subsequent Section 12.3. However, we
make the following assumptions:

199

12.3 Distributed Algorithm 12 COUNTERING CHEATING IN P2P NETWORKS

1. The majority of peers is not malicious, i.e. f < 1/2.

2. There is an unforgeable mechanism for peers’ identities.

These assumptions appear to be natural and realistic for a P2P network. In literature
there are many studies on how to provide peers with an unforgeable mechanism for
their identities. Some of them rely on the authority of a trusted agency (see [51] for
a survey), some others tackle this in a different way (see e.g. [22]). Having a small
fraction of malicious peers also reflects typical scenarios, besides being necessary for
the problem to be solvable.

Additionally, we assume that there is an underlying mechanism which may be in-
voked by any peer to pick another peer uniformly at random. This abstraction allows
us to devise a distributed algorithm for all kinds of P2P networks (see [120] for a sur-
vey) where the details of the diverse protocols used, might just blur the essence of the
problem. We are considering an asynchronous model where no mechanism is available
for global synchronisation among peers.

12.2.4 Problem Statement

The goal of each peer pi is to compute the stationary distribution πMG (j) for each
entity ej in Gi. The total cost of the distributed computation is measured in terms of
number of meetings performed by all peers in order to have got sufficiently accurate
values for the PageRank scores. Formally, the problem is defined as follows:

Definition 12.4 (Problem Statement). Given a set of n peers containing f ·n malicious
peers where 0 < f < 1/2, a set of m entities, a collection of directed graphs G =
G1, . . . , Gn over the set of entities with each Gi being stored at peer pi, a real value
0 < α < 1, the goal for each peer is to compute πMG (ej) for each ej in Gi.

As defined in Definition 12.1, the PageRank score of an entity is a linear function
of its predecessors scores. In a distributed environment, an entity and its predecessors
might be located in different peers allowing malicious peers to spread wrong scores in
the network as well as to form coalitions to fool other peers.

12.3 Distributed Algorithm
In addition to provide an asynchronous and distributed implementation of the Page-
Rank scores computation, we also face the difficulty of dealing with malicious peers
who may mislead the computation of such scores to turn it to their advantage. We
present a distributed algorithm which computes a good approximation of the scores,
even when a large part of the network is compromised. Our result does not assume any
limitation on the freedom of malicious peers who can lie about the score of any page
and even make coalitions with other malicious peers.

12.3.1 Properties

Our algorithm is based on two key principles. First, we introduce a certain amount of re-
dundancy into the network by replicating the entities of interest (i.e. web pages, books,
friends) in a randomised manner. Second, whenever two peers exchange information
about the authority of an entity, they provide a version history of the entity’s previous
values, thus enabling the receiving peers to compare values from different peers or at

200

12 COUNTERING CHEATING IN P2P NETWORKS 12.3 Distributed Algorithm

different times in a meaningful manner. The algorithm works under the realistic as-
sumptions that the fraction of cheating peers is bounded and only a minority, and that
peer identities are unforgeable using standard methods of cryptographic security.

The salient properties of our distributed algorithm are the following:

• The algorithm works in a perfectly decentralised and asynchronous manner, can
handle arbitrary distributions of the data across peers, makes only weak and rea-
sonable assumptions about the form of how peers cheat or behave maliciously,
yet computes non-distorted, correct authority scores.

• The algorithm is practically viable in terms of the necessary degree of replica-
tion, convergence speed, and communication overhead. We show this by provid-
ing experimental evidence, based on an excerpt of the social-tagging network
LibraryThing.com.

12.3.2 Design Principles

Any distributed algorithm for our problem must tackle the following two main difficul-
ties:

• Information provided by malicious peers is potentially manipulated and needs to
be filtered out; this is complicated by the fact that malicious peers may form a
coalition (see Section 12.2.2).

• There is no mechanism for global synchronisation. For example, we cannot and
do not want to run a distributed power iteration in a lock-step manner, with every
peer making one step for each of its entities and waiting for all peers to complete
this step before entering the next round of such steps.

One approach to the first problem is to replicate each entity on the majority of peers.
In this way, the exact score of an entity may be retrieved by asking all peers and then
computing the majority. However, this approach is not practically viable since it causes
very high storage costs by the massive replication and also requires a huge amount of
messages to be sent.

Our solution is to make sure that each entity is replicated in only a (sufficiently
large) random sample of peers. The main idea is to use randomisation to guarantee that
the majority of peers in the random sample is honest with high probability; then the
true score could be obtained by computing the majority in the sample. Unfortunately,
this solution presents the issue that malicious peers may claim to possess a replica
even if this is not the case. This allows them to form coalitions to outnumber the hon-
est peers which actually possess the entity. To overcome this problem, our algorithm
makes sure that every peer is responsible (i.e. can “vote”) only for a subset of entities.
An entity’s score computed by a peer is considered only if the peer is responsible for
that entity, otherwise it is ignored. The key point is that such an assignment of respon-
sibilities is verifiable by any peer in the system due to unforgeable peer identifiers and
a globally known family of hash functions for the assignment. The details are given in
Section 12.3.3.

Asynchronous Mode of Operation

We now discuss the main issues of replicating entities to multiple peers caused by
the lack of global synchronisation.

201

12.3 Distributed Algorithm 12 COUNTERING CHEATING IN P2P NETWORKS

Our algorithm is a distributed implementation of the power iteration method where
in iteration t, each peer needs to collect a set of (t − 1)-refined scores in order to
compute a t-refined score. For a given entity that the peer is responsible for, the relevant
set of scores to obtain from other peers are the ones for the entity’s in-link neighbours,
i.e. the predecessors in the global graph. In an asynchronous computation, these scores
may not be received in the right order as the following example illustrates (and as
already indicated in Section 12.2.2, albeit without reference to replicas) :

Example: Consider an entity e at a peer with in-link neighbours a and b where each
of a and b are replicated across three peers. Ideally, the peer that wants to compute
the t-refined score for e should receive 6 messages with the (t − 1)-refined scores for
the replicas of a and b. But in an asynchronous system, some peers may be slower
than others so that the receiving peer may de facto have got scores for a as of itera-
tions t− 1, t− 2, and t− 9 and for b as of iterations t− 3, t− 4, and t− 5.

To solve this issue, each score that peers send to other peers need to be extended
with an integer t indicating the step in the power iteration method that the sender has
last performed. Now, a naive algorithm could be to let each peer wait until all (t− 1)-
refined scores have arrived before computing its t-refined scores. However, this would
lead us back towards a mostly synchronous system.

In order to support full asynchrony and also to speed up the entire computation, we
let peers to periodically send for each entity a short history of (improving estimations
of) t-refined scores for t = 0, . . . , T − 1, where T is in the order of a few tens (e.g.
50). This value of T corresponds to the maximum number of power iteration steps
that a centralised link-analysis algorithm needs to compute sufficiently accurate scores.
With these history vectors of scores, which are also maintained at each peer for each
in-link neighbour of any entity the peer is responsible for, it is now easy to perform
meaningful t-refined scores. The procedure is the following:

• The peer computing a t-refined score of an entity e executes one step of the
power iteration method by considering the set of available t − 1-refined scores
of the in-link neighbours of e as input.

Initially, the scores of some in-link neighbours might be missing but eventually
all the necessary scores will be collected and a good estimation of e’s score will
be computed.

• To effectively remove the distorting effects of malicious peers, instead of con-
sidering one single t-refined score of a given entity e, the most frequent score
among the ones received for e is used in each step of the power iteration method.

Again, initially the majority of scores received could be manipulated by mali-
cious peers but since the honest peers responsible for e outnumber the malicious
ones, eventually, the votes for the true scores will outnumber the manipulated
ones, too.

If a peer is responsible for multiple entities, this method is applied separately for each
different entity at the peer.

The bottom line of this approach is that it allows for arbitrary asynchrony as caused,
for example, by temporal and spatial load variation in the network. While this leads
a more complicated solution than simply synchronising the iterations of the power

202

12 COUNTERING CHEATING IN P2P NETWORKS 12.3 Distributed Algorithm

iteration method, it can easily cope with transient failures and it actually leads to faster
convergence of the authority scores.

Our solution entails bookkeeping overhead at each peer and also increases the net-
work bandwidth consumption by sending history vectors rather than single scores. But
the storage cost at each peer is very modest: a few hundred bytes for each entity at the
peer. And the number of messages to be sent does not increase at all; the extra payload
is simply piggybacked on the messages that are sent anyway. The cost difference be-
tween sending a message of 100 bytes and a message of say 500 bytes is negligible in
practise.

12.3.3 Cheating-Resistant P2P Algorithm

In this section we present in detail our distributed P2P algorithm which correctly com-
putes authority scores even in the presence of malicious or cheating peers.

Notation

The following notation is used with our algorithm.

• Peer pi : Each peer is associated with a unique ID pi where i = 1, . . . , n and n
denotes the total number of peers in the network.

• Item ej : Each item is associated with a unique ID ej where j = 1, . . . ,m and
m denotes the total number of items in the network.

Each peer is responsible for computing authority scores only for a certain subset of
entities in the network.

Definition 12.5 (Set of ResponsibilityRi). The setRi denotes the subset of all entities
the peer pi is responsible for.

Next we define when an entity ej is said to be compromised.

Definition 12.6 (Compromised Entity). An entity ej is said to be compromised if the
majority of peers who is responsible for ej is malicious.

We define that the fraction f of malicious peers is a minority in the network.

Definition 12.7 (Fraction f of Malicious Peers).

f ≤ 1− ε
2

with ε ∈ (0, 1)

For each of the entities in the network, our algorithm requires that it is replicated
randomly over all peers. We define the degree of replication as follows:

Definition 12.8 (Degree of Replication r). Let m be the number of entities in the
network. For each of the m entities at least r randomly chosen peers are responsible
for it. We denote r as the degree of replication.

203

12.3 Distributed Algorithm 12 COUNTERING CHEATING IN P2P NETWORKS

In the Section 12.4, we study how different values of the replication degree r affect
the performances of our algorithm.

Once chosen, the degree of replication is obtained by simulating in a distributed en-
vironment the following centralised procedure. For each item ej , j = 1, . . . ,m, the set
of r peers responsible for such items is determined by drawing without replacement r
integer numbers in the range [1, n]. This ensures that exactly r replicas are generated.
The set of responsibility Ri for each peer pi is then computed accordingly.

To simulate this procedure in a distributed environment, we assume peers to be pro-
vided with a common random number generator. For each item ej , j = 1, . . . ,m, each
peers generates (without replacement) a set of r random numbers in the range [1, n]
corresponding to the set of peers who will be responsible for item ej . Such a procedure
is iterated for all items. In order to achieve among all peers the Ri’s to be consistent,
we let each peer use the same seed (for instance the start date of the algorithm). In this
way, each set Ri can be verified by every peer simply by re-executing the generating
procedure (recall that the ID pi of a peer can be trusted). By standard assumptions, the
distributed procedure gives a good approximation of the centralised one.

Our algorithm implicitly assumes that the total number of entities in the network
is known or can be estimated with decent accuracy. This is not a critical assumption,
since there are efficient techniques for distributed counting with duplicate elimination
(e.g. [74, 81]).

Data structures and Bookkeeping

For computing correct authority scores, our algorithm makes use of several data struc-
tures that are defined in the following.

Peers keep a list of predecessors to entities they are responsible for. Formally, we
define the list of predecessor as follows:

Definition 12.9 (List of Predecessors Pi(ej)). For peer pi and an entity ej which
peer pi is responsible for, the list Pi(ej) denotes all predecessors of entity ej that
peer pi is aware of.

Moreover, for each predecessor el of an entity ej that a peer pi is responsible for,
the peer pi remembers all t−refined score values of el reported in meetings with other
peers. Additionally, a peer remembers which peer reported which value. In this way,
the corresponding value can be adjusted when the same peer is met again, reporting a
corrected score value.

Definition 12.10 (Set of t−refined Scores Sti (el)). Given a peer pi, a predecessor el
of an entity ej that peer pi is responsible for, Sti (el) denotes the set of t−refined scores
collected by peer i during meetings with other peers.

An entry in Sti (el) is a pair (pk, sk) with pk is the ID of peer pk which sent peer pi
the t-refined score sk of el.

From all remembered score values in Sti (el), each peer pi determines the most
frequent value. It corresponds to the score value reported by the majority of peers.

Definition 12.11 (Majority t−refined Score πti(el)). Let el be an predecessor of an
entity ej that peer pi is responsible for. Then, we denote with πti(el) the most frequent
value of a t−refind score found in Sti (el).

204

12 COUNTERING CHEATING IN P2P NETWORKS 12.3 Distributed Algorithm

After having defined the required data structures, we can now outline the information
every peer pi maintains for each entity ej it is responsible for and its corresponding
value at initialisation time.

Each peer pi maintains the following information for ej ∈ Ri:

• The list of predecessors Pi(ej).

Initially, Pi(ej) is an empty list.

• A collection of sets S1
i (el), . . . , S

T
i (el) for each predecessor el ∈ Pi(ej).

Initially, each Sti (el) for t = 0, . . . , T − 1 is an empty set.

• The majority score πti(el) ∈ Sti (el) for each predecessor el ∈ Pi(ej).

Initially, the scores π1
i (ej) for all entities ej are set to 1

m .

Both, the list of predecessors Pi(ej) and the sets of t−refined scores Sti (el) will be
updated as new predecessors or adjusted score values of predecessors are discovered
during peer meetings.

Peer Meetings and Score Computations

Peers in the network meet uniformly at random. When a peer pi meets another ran-
domly selected peer pk, the following activities take place:

• First, peer pi learns from peer pk about previously unknown predecessors el of
entities ej ∈ Ri that pi is responsible for.

• Next, peer pi receives from peer pk the scores π1
k(el), . . . , π

T
k (el) for each en-

tity el that peer k is responsible for and which in addition is a predecessor of an
entity ej that peer pi is responsible for, i.e.

peer pk sends to pi : π1
k(el), . . . , π

T
k (el) ⇔ el ∈ Rk ∧ el ∈ Pi(ej)

• Finally, peer pi in turn sends to peer pk the scores of the predecessors of entities
peer pk is responsible for, i.e.

peer pi sends to pk : π1
i (el), . . . , π

T
i (el) ⇔ el ∈ Ri ∧ el ∈ Pk(ej)

Of course, in a setting with malicious peers, the scores for predecessors reported by a
peer pk might be manipulated and that peer could also report scores for entities it is
not responsible for. However, since the peer ID pk is unforgable by assumption and
because peer pi can verify if el ∈ Rk and el ∈ Pi(ej), score values are only accepted
when the conditions stated above are true.

Definition 12.12 (Acceptance of πtk(ej)). When two peers pi and pk meet, we define
the following rule for accepting t−refined score values of an entity el:

peer pi accepts form pk : π1
k(el), . . . , π

T
k (el) ⇔ el ∈ Rk ∧ el ∈ Pi(ej)

where ej is an entity that peer pi is responsible for.

205

12.3 Distributed Algorithm 12 COUNTERING CHEATING IN P2P NETWORKS

After the meeting, peer pi (and analogously peer pk) updates its scores πti(el) for
each el ∈ Pi(ej) and ej ∈ Ri if necessary by determining the most frequent value in
the corresponding set Sti (el). The scores of entity ej are then refined by including in the
summation of the power iteration method the new score πti(el) of all predecessors el ∈
Pi(ej) at each iteration step t.

Formally, for each t = 1, . . . , T − 1, we apply the following definition to compute
the t−refined scores for an entity ej .

Definition 12.13 (t−refined Score Computation). Let Pi(ej) and πti(el) be defined
as in Definition 12.9 and 12.11, respectively. A peer pi which is responsible for an
entity ej computes the t−refined score as follows:

πti(ej) =
1− α
m

+
∑

el∈Pi(ej)

πt−1i (el)
α

δl

where (1− α) is the random jump probability, m the number of entities in the network
and δl the outdegree of entity el.

This t−refined score computation may be seen as a stepwise approximation of
an ideal, global power iteration method, where every peer obtains increasingly better
knowledge of the global graph. The new set of t−refined scores computed this way,
will be communicated to the other peers during the next meetings and will in turn be
used there to refine their own scores.

To demonstrate how the main issues presented in Section 12.2.2 are resolved by
this algorithm, we pick up the same example scenario already depicted in Figure 32.

Example. Figure 33 re-sketches the example scenario previously given in Figure 32,
and illustrates how the attempt of cheating by a coalition of malicious peers is coun-
tered and how the issue caused by asynchrony is tackled. To this end, Figure 33 addi-
tionally depicts the data structures introduced with our algorithm

Setup : As in the example scenario previously given in Section 12.2.2, peer pi owns
a local subgraph with entities A, B, C and D. However, peer pi does not compute
authority scores for the entities in this local subgraph but only for the entities in the
setRi that peer pi is responsible for and which were randomly selected at initialisation
time. The information about the local subgraph is used only to inform other peers about
predecessors of entities.

In our example scenario, the coalition around the malicious peer pk wants to manip-
ulate pi’s authority computation on entity D by reporting a way too high score for D’s
predecessor F . The two honest peers pm and pj also report score values for entity F
and they are outnumbered by the coalition of malicious peers.

Countering Coalitions of Malicious Peers : Since pi only accepts information
about entities from peers who are responsible for these entities and entities are dis-
tributed uniformly at random, the coalition of malicious peers hardly succeed with their
goal to manipulate the score computation. It’s unlikely that the majority of peers being
responsible for the same entity F is malicious (and maybe in addition is responsible for
entities which malicious peers find worthwhile to manipulate). In our example, let’s say
the malicious peer pk is indeed responsible for entity F and, thus, can communicate a
wrong value to peer pi. By remembering all received score values for F and determin-
ing the most frequent one among them, finally, the true score reported by the honest

206

12 COUNTERING CHEATING IN P2P NETWORKS 12.4 Experiments

AA
BB

CCDD

PiPi

Pk

Pk

Pm

Pm

Pj

Pj

Ri:Ri:

0.300.30

0.99

0.99

0.30

0.30

0.30

0.30

0.250.25

0.80

0.80

0.25

0.25

0.25

0.25

t-1

t-1

t-1

t-1t-1

t-2

t-2

t-2

t-2t-2 00

..

..

..

..

......

......

...

...

......

...

FF

F

F

F

F

F

F

DD VV TT EE

Figure 33: Example for countering a coalition of malicious Peers in a asynchroneous
P2P network

peers outnumber the wrong one. Hence, our algorithm successfully counters cheating
of coalitions of malicious peers.

Tackling the Issue of Asynchrony : Since in a meeting the peers not only submit
a single score value but all t−refined scores starting from t = 0 to the latest itera-
tion step a peer managed to compute, the peer pi in our example can map the received
score values to the iteration steps they belong to and select the most frequent value
in each step to adjust its own authority computations. In Figure 33 this is shown for
entity F , depicted as a table of score values received for iteration step 0 to t − 1 from
the peers pk, pm and pj . Hence, asynchrony has got no negative effect but with more
and more meetings, all scores in each iteration step can be correctly identified.

We observe that initially, the scores computed by peers are not guaranteed to be a
good estimation of the real scores, as they may not be trusted (since not enough scores
may have been collected); moreover, in the beginning, peers may be aware of only a
proper subset of predecessors of their own entities, therefore having only incomplete
information. However, as more knowledge of the global graph is gained, these two
problems gradually disappear and the wrong scores will be replaced by the correct
ones.

12.4 Experiments
The experimental evaluation of our P2P algorithm for authority computations in the
presence of malicious peers was performed on a simulated P2P network using data
obtained from the social tagging network LibraryThing.com (see Part A, Section 3.2
for an introduction to LibraryThing.com). To this end, each peer in the P2P network
represents a user and contains the user’s collection of books. The simulation was done
by running all peers on the same Linux server.

207

12.4 Experiments 12 COUNTERING CHEATING IN P2P NETWORKS

Figure 34: Construction of the global graph with data from LibraryThing.com

12.4.1 Setup

Figure 34 indicates the construction of the graph used in our experimental evaluation
of our algorithm. The graph is created as follows:

1. The users and their books in LibraryThing.com correspond to the entities in G.

2. A directed edge is created from each user to the books she owns and from each
book to all users who own it.

3. The “friends” and “interesting libraries” relations in LibraryThing.com define
additional directed edges between users.

Consequently, we define the global graph, for whose entities we want to compute
meaningful authority scores, according to this construction.

Definition 12.14 (Global Graph). The union of all users, books, and the edges among
them define the global graph.

In our experimental setup we have got 243 peers which together store a graph
of 15, 242 entities (i.e. users and books).

As defined by our P2P algorithm (see Section 12.3) for countering cheating in au-
thority computations over social networks, the entities in the global graph are replicated
and distributed uniformly at random. In the context of our chosen social network setup,
this means, that books as well as users are assigned to the peers’ set of responsibilityR
(see Definition 12.5). Figure 35 shows an example of how the entities of the global
graph can be distributed among peers. The books and users are arbitrarily distributed
to honest and malicious peers without, of course, being known which peer is honest
or malicious. Thus, any peer can be responsible to compute authority scores for books
and users, only for books or—even though unlikely because of the ratio of number of
books to numbers of users—only for users.

For our experimental evaluation, peers in the network are also chosen randomly
to be malicious. The percentage of malicious peers in the network and the number

208

12 COUNTERING CHEATING IN P2P NETWORKS 12.4 Experiments

R

R

R

Figure 35: Books and users from LibraryThing.com are distributed uniformly at ran-
dom to the peers’ set of responsibilityR

of replicas per entity vary in our experiments and, thus, are given in Section 12.4.3
together with the achieved results for each setting.

12.4.2 Evaluation Methods

From the construction of the global graph as described in Section 12.4.1, it is easy
to see that users occupy the top positions in the entities rank since users possess many
books. Hence, entities corresponding to users have got many incoming edges but books
have got only a handful of owners. Moreover, since every book contributes only with
a small fraction to the users’ scores, a wrong score provided by a malicious peer for a
book will not have a big impact in the users’ rank. Scores of books, on the other hand,
are highly sensitive to the scores of their incoming neighbours, making them more
susceptible to malicious attacks.

For this reason, given the construction of the graph as described in Section 12.4.1,
we consider in our experimental evaluation only the ranking and scores of books. Be-
fore proceeding with describing the way of how to evaluate our P2P algorithm, we first
introduce the following definitions:

Definition 12.15 (Global Score Vector). The vector which contains the true authority
scores of all books and represents their ranking in the global graph is denoted as global
score vector.

We create the global score vector by computing the scores of all entities in the
global graph by a centralised algorithm and include only the scores for books in that
vector. The global score vector is the ground truth in all of our experiments.

Definition 12.16 (Local Peer Vector). The local peer vector represents the ranking and
authority scores of the books in the set of responsibility of a local peer as computed by
our algorithm.

209

12.4 Experiments 12 COUNTERING CHEATING IN P2P NETWORKS

The local peer vector is created at each peer pi by computing the authority scores
for all entities in Ri as presented in Section 12.3 with our P2P algorithm, and keeping
only those entities that are books.

With the help of these definitions, we now can describe how we do the score com-
parison of the values as computed by all peers in the network applying our distributed
algorithm and the true authority scores as computed by a centralised algorithm on the
global graph. We apply the following practice:

• We compute the authority scores of every entity in the graph, but for evaluation
purposes, we compare only the authority scores of books returned by our dis-
tributed algorithm against the true authority scores of the books in the complete
graph.

• For comparing against the true authority scores, given that in our approach the
entities are distributed among the peers, we first merge the authority scores in all
local peer vectors from all honest peers and, then, compare the resulting vector
with the global score vector.

Note: This is done for the experimental evaluation only. In a real P2P network
knowing which peers are honest and merging their knowledge would neither be
needed nor desired.

• Since entities are replicated and no synchronisation is required, it can happen
that a particular entity has got different scores at different peers. In this case, the
entity’s score for the ranking over all peers is considered to be the average over
its scores in each local peer vector.

For completeness, we define the vector achieved by merging all local peer vectors of
honest peers as follows:

Definition 12.17 (Merged Peer Vector). The resulting vector obtained by merging all
local peer vectors from honest peers, while considering the average over different
scores for the same entity at honest peers, is denoted as merged peer vector.

Finally, the merged peer vector as computed by our P2P algorithm is evaluated
against the global score vector by comparing ranking and scores using three different
measurement methods.

To this end, we compute the top-k Kendall’s Tau distance. It corresponds to the
number of pair-wise disagreements for the entities in the top-k positions and is defined
as follows:

Definition 12.18 (top-k Kendall’s Tau Distance K(τ1, τ2)). For two score vectors τ1,
τ2 and a given value of top-k, the Kendall’s Tau distance for the top-k entities is defined
as follows:

K(τ1, τ2) =|{(ei, ej) : ei, ej ∈ τ1[0 : k − 1], ei 6= ej ,

(τ1(ei) < τ1(ej) ∧ τ2(ei) > τ2(ej)) ∨
(τ1(ei) > τ1(ej) ∧ τ2(ei) < τ2(ej))}| / (k(k − 1)/2)

where τ1[0 : k−1] denotes the set of entities at the first top-k positions in τ1, and τ1(ei)
and τ2(ei) is the rank position of entity ei in the corresponding vector τ1 and τ2,
respectively.

210

12 COUNTERING CHEATING IN P2P NETWORKS 12.4 Experiments

Kendall’s Tau is a standard measure for comparing rankings; it is normalised be-
tween 0 and 1 where 1 means that there is not a single pair-wise ordering of τ1 pre-
served in τ2 and 0 indicates that the two rankings are identical.

In addition, we calculate the top-k recall and the top-k statistical distance measure
which both are introduced next.

Let τG be the global authority vector representing the correct scores and ranking of
all books in the defined global graph, and let τM be the merged peer vector representing
the ranking of books according to our P2P algorithm in presence of malicious peers.
Moreover, let τG[0 : top-k − 1] and τM [0 : top-k − 1] denote the set of books in τG
or τM , respectively, with the top-k highest authority scores.

In our setting, the top-k recall defines the percentage of the books in the top-k
positions of the ground truth which are also found in the top-k positions of the merged
peer vector.

Definition 12.19 (top-k Recall). The top-k recall of a score vector τM with ground
truth τG is defined as:

recallk =
|{i|i ∈ τG[0 : k − 1] ∧ i ∈ τM [0 : k − 1]}|

k

The top-k statistical distance is defined in our setting as the sum over the differences
of the score values of the top-k entities in the global score vector and the score values
of those entities in the merged peer vector.

Definition 12.20 (top-k Statistical Distance). The top-k statistical distance for a vec-
tor τM with respect to the ground truth vector τG is defined as:

distk =
∑

ei∈τG[0:k−1]

|τG(ei)− τM (ei)|

where τG[0 : k − 1] denotes the top-k elements in τG, τG(ei) and τM (ei) denotes the
score of entity ei in τG and τM , respectively.

Consistent Lying Behaviour

In our experiments, we consider the worst case scenario where all malicious peers form
a coalition by consistently lying about score values of entities. This means, whenever
any two malicious peers are responsible for the same entity, they both report the same
wrong value such that they can compromise (see Definition 12.6) as much entities as
possible.

It works as follows: first, we inform the malicious peers by an artificial oracle about
the ground truth scores. The bad peers aim at promoting low ranked entities and de-
moting high ranked ones, and at the same time permuting the scores of entities in the
middle of the rank. The consistent lying behaviour of malicious peers with respect to
the authority score of an entity ei is then defined as follows:

Definition 12.21 (Consistent Lying Behaviour). Let τG be the global score vector with
entities ei where 0 ≤ i < m denotes the entity’s rank and 0 is the rank with the highest
authority score.

211

12.4 Experiments 12 COUNTERING CHEATING IN P2P NETWORKS

For a given top-k, we define the consistent lying behaviour of all malicious peers
in the following way: If a malicious peer is responsible for entity ei, it reports the
following wrong score value:

score(ei) =

{ (1−α)
m if i < k

trueScore(0) if i ≥ m− k
trueScore(m− i+ 1) otherwise

where (1−α) is the random jump probability,m the number of all entities in the global
graph, and trueScore(i) is the true score of the entity at rank i in τG.

The value (1−α)
m corresponds to the score contribution by a random jump, i.e. the

lowest score an entity can have.

12.4.3 Results

We evaluate our algorithm for countering cheating in authority computations over so-
cial networks by two sets of experiments. In the first set, we vary the fraction of mali-
cious peers and in the second set, we vary the degree of replication.

Varying fraction of malicious peers

In our first set of experiments, we examine the influence of a coalition of malicious
peers on our P2P authority computations by varying the percentage of malicious peers
in the network while keeping the number of replicas for each entity constant. To this
end, we compute the top-100 Kendall’s Tau distance (see Definition 12.18), the top-100
recall (see Definition 12.19) and the top-100 statistical distance (see Definition 12.20)
in regard to the global score vector (see Definition 12.15) and the merged peer vector
(see Definition 12.17).

Peers in the network are randomly chosen to behave maliciously by applying the
consistent lying model (see Definition 12.21) and entities are replicated as defined by
our algorithm according to the description given in Section 12.3.3. Hence, in this set of
experiments, we fix the degree of replication r (see Definition 12.8) to 5 replicas per
entity in the network and vary the percentage of malicious peers with each experiment
by choosing the fraction f of malicious peers (see Definition 12.7) in the network to
be 0%, 5% and 20%.

Figure 36, 37 and 38 show the results for the top-100 Kendall’s Tau distance,
top-100 recall, and top-100 statistical distance, respectively.

We can observe from Figure 36, visualising the Kendall’s Tau distance, that when
no peer behaves maliciously, the ranking as given in the merged peer vector and com-
puted by our distributed algorithm matches with increasing numbers of meetings the
ranking of the global score vector defining the ground truth. The same is true for the
computed authority score values of the top-k entities as shown by the statistical distance
in Figure 38, finally converging to 0.

However, when the percentage of malicious peers is increased, the gap between the
computed scores of our algorithm and the ground truth gets larger; yet we are able to
obtain results. In particular, note from Figure 37 that 10.000 meetings suffice to ob-
tain a top-100 recall of 90%. Though, as indicated by the results for the Kendall’s Tau
distance and statistical distance, already with 5% of the peers being dishonest, only 5
replicas are not enough to guarantee convergence.

212

12 COUNTERING CHEATING IN P2P NETWORKS 12.4 Experiments

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 200 400 600 800 1000 1200 1400

T
op

-1
00

 K
en

da
lls

 T
au

Number of meetings in the network (x 1000)

0% Malicious, 5x Replication
5% Malicious, 5x Replication

20% Malicious, 5x Replication

Figure 36: Top-100 Kendall’s Tau: 5 replicas per entity, varying % of malicious peers

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 15000 25000 35000

T
op

-1
00

 R
ec

al
l

Number of meetings in the network

0% Malicious, 5x Replication
5% Malicious, 5x Replication

20% Malicious, 5x Replication

Figure 37: Top-100 Recall: 5 replicas per entity, varying % of malicious peers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400

T
op

-1
00

 S
ta

tis
tic

al
 D

is
ta

nc
e

Number of meetings in the network (x 1000)

0% Malicious, 5x Replication
5% Malicious, 5x Replication

20% Malicious, 5x Replication

Figure 38: Statistical Distance: 5 replicas per entity, varying % of malicious peers

213

12.4 Experiments 12 COUNTERING CHEATING IN P2P NETWORKS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000 1200 1400

T
op

-1
00

0
K

en
da

lls
 T

au

Number of meetings in the network (x 1000)

5% Malicious, 0x Replication
5% Malicious, 5x Replication

5% Malicious, 15x Replication

Figure 39: Top-1000 Kendall’s Tau: 5% malicious peers, varying the number of replicas

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

T
op

-1
00

0
R

ec
al

l

Number of meetings in the network (x 1000)

5% Malicious, 0x Replication
5% Malicious, 5x Replication

5% Malicious, 15x Replication

Figure 40: Top-1000 Recall: 5% malicious peers, varying the number of replicas

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400

T
op

-1
00

0
S

ta
tis

tic
al

 D
is

ta
nc

e

Number of meetings in the network (x 1000)

5% Malicious, 0x Replication
5% Malicious, 5x Replication

5% Malicious, 15x Replication

Figure 41: Statistical Distance: 5% malicious peers, varying the number of replicas

214

12 COUNTERING CHEATING IN P2P NETWORKS 12.4 Experiments

Varying degree of replication

In our second set of experiments, we change the setting in order to determine if indeed
an increased number of replicas per entity breaks the influence of a given coalition with
malicious peers.

For this, we fix the fraction f of malicious peers in the network to 5% and instead,
vary in our experiments the degree or replication, evaluating our algorithm with 0, 5
and 15 replicas for each entity in the network. Again, malicious peers are chosen ran-
domly among all peers and all malicious peers lie consistently about the score values of
entities as defined in Definition 12.21, and replicas are distributed uniformly at random
to all peers, too.

We compute in this set of experiments the Kendall’s Tau distance, the recall and the
statistical distance for the top-1000 entities in our merged peer vector.

Figure 39 shows the results for the top-1000 Kendall’s Tau distance, Figure 40 for
the top-1000 recall and Figure 41 for the top-1000 statistical distance.

At first glance, the results for this second set of experiments appear to be coun-
terintuitive: In all three charts it can be observed that adding more replicas causes the
results to initially become worse. The pair-wise disagreements in the ranking as shown
by the Kendall’s Tau distance, as well as the recall for the top-1000 rankings are worse
when more replicas per entity are used with our algorithm. The effect is even more
visible for the score values of the top-1000 entities. With more replicas, the statistical
distance shows that initially, with an increasing number of peer meetings, the author-
ity scores computed by our algorithm veer away from the true authority scores. After
more and more meetings and a sufficient number of replicas, however, the ranking and
scores almost instantly converge to the correct values. This oddity becomes evident by
considering the following explanation.

Since each entity is replicated more times, each peer (both honest and dishonest
ones) is responsible for more entities. In this way, malicious peers are able to report
false scores for a larger fraction of the entities. Moreover, more honest peers are re-
sponsible for the same entities, too. Hence, in total, more meetings are necessary until
all honest peers have learnt about all predecessors of the same entity and can agree on
the same score value. Until they don’t agree on the same scores, a consistently lying
coalition of malicious peers might have the majority in all equal votes for an entity’s
authority score (and if there is no distinct majority yet, only an arbitrarily value can be
chosen).

Nevertheless, from the three charts shown in Figure 39, 40 and 41, we can see, too,
that with 15 replicas and an increasing number of meetings, every honest peer finally is
able to obtain the correct ranking and scores by computing the majority for each entity,
with scores correctly converging to the ground truth.

This second set of experiments give valuable insights on the behaviour of our algo-
rithm. When the number of malicious peers is small, introducing more replicas might
initially affect the quality of the results adversely, but guarantees convergence. One in-
teresting direction for future research is to derive the optimal number of replicas as a
function of the number of malicious peers.

Also it is worth noticing, when comparing the results from both sets of experiments
for the setup with a fraction of 5% malicious peers and 5 replicas, the results for the
top-100 scores seem to be more accurate than those for the top-1000 ones. This might
depend on the heavy-tailed distribution of the scores which social networks frequently

215

12.5 Conclusion 12 COUNTERING CHEATING IN P2P NETWORKS

exhibit. In this case, low-rank scores lie within a short range, making the task of re-
trieving the correct top-k scores harder for higher values of top-k.

12.5 Conclusion
We believe that decentralised algorithms for eigenvector-oriented computations of au-
thority and social prestige will gain importance for P2P-based physically distributed
settings or for cases where user-specific autonomous agents interact on a server(-farm)-
based platform. These settings are inevitably vulnerable to malicious behaviour by bad
peers.

Our algorithm is the very first one that we are aware of, that can counter the effects
of misbehaviour in a systematic manner, and our computational model makes only very
weak and realistic assumptions about the system.

Interesting directions for future work are a formal analysis of the algorithm’s prop-
erties, most notably, its convergence speed, and also to research optimisations that aim
to minimise the degree of replication that is necessary to counter a certain fraction of
bad peers.

216

REFERENCES REFERENCES

References
[1] Screen shot and feature overview of delicious 2.0 pre-

view. http://techcrunch.com/2007/09/06/
exclusive-screen-shots-and-feature-overview-of-delicious-20-preview/,
Sept. 2007.

[2] Delicious.com. http://delicious.com, 2011.

[3] Flickr. http://advertising.yahoo.com/article/flickr.
html/, Aug. 2011.

[4] Flickr boasts 6 billion photo uploads. http://news.softpedia.com/
newsImage/Flickr-Boasts-6-Billion-Photo-Uploads-2.
jpg/, Aug. 2011.

[5] Flickr.com. http://flickr.com, 2011.

[6] Librarything.com. http://librarything.com, 2011.

[7] A new flavor...still delicious. http://blog.delicious.com/2011/
09/a-new-flavor...still-delicious/, Sept. 2011.

[8] Wikipedia entry: Delicious.com. http://en.wikipedia.org/wiki/
Delicious.com, Jan. 2012.

[9] Zeitgeist overview. http://www.librarything.com/zeitgeist,
Jan. 2012.

[10] Z. Abrams, R. McGrew, and S. Plotkin. A non-manipulable trust system based
on eigentrust. SIGecom Exch., 5(4):21–30, 2005.

[11] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6):734–749, 2005.

[12] Y.-Y. Ahn et al. Analysis of topological characteristics of huge online social
networking services. In WWW, 2007.

[13] S. Amer-Yahia, M. Benedikt, L. V. S. Lakshmanan, and J. Stoyanovich. Efficient
network aware search in collaborative tagging sites. PVLDB, 1(1):710–721,
2008.

[14] S. Amer-Yahia et al. Challenges in searching online communities. IEEE Data
Eng. Bull., 30(2):23–31, 2007.

[15] V. N. Anh and A. Moffat. Pruned query evaluation using pre-computed impacts.
In SIGIR, 2006.

[16] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives. Dbpedia: A nucleus
for a web of open data. In In 6th Inx’l Semantic Web Conference, Busan, Korea,
pages 11–15. Springer, 2007.

[17] R. A. Baeza-Yates and A. Tiberi. Extracting semantic relations from query logs.
In KDD, 2007.

217

REFERENCES REFERENCES

[18] N. Bansal and N. Koudas. Searching the blogosphere. In WebDB, 2007.

[19] S. Bao, G.-R. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing web search
using social annotations. In WWW, pages 501–510, 2007.

[20] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum. Io-top-
k: Index-access optimized top-k query processing. In VLDB, pages 475–486,
2006.

[21] S. Baswana, R. Hariharan, and S. Sen. Improved decremental algorithms for
maintaining transitive closure and all-pairs shortest paths. In STOC, pages 117–
123, 2002.

[22] R. A. Bazzi and G. Konjevod. On the establishment of distinct identities in
overlay networks. In PODC ’05: Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing, pages 312–320, New York,
NY, USA, 2005. ACM.

[23] L. Becchetti, C. Castillo, D. Donato, R. Baeza-Yates, and S. Leonardi. Link
analysis for web spam detection. ACM Trans. Web, 2(1):1–42, February 2008.

[24] M. Bender, T. Crecelius, M. Kacimi, S. Michel, T. Neumann, J. X. Parreira,
R. Schenkel, and G. Weikum. Exploiting social relations for query expansion
and result ranking. In Data Engineering for Blogs, Social Media, and Web 2.0,
ICDE 2008 Workshops, pages 501–506, Cancun, Mexico, 2008. IEEE Computer
Society.

[25] M. Bender, T. Crecelius, M. Kacimi, S. Michel, J. X. Parreira, and G. Weikum.
Peer-to-peer information search: Semantic, social, or spiritual? IEEE Data(base)
Engineering Bulletin, 30(2):51–60, 2007.

[26] M. Bender, T. Crecelius, S. Michel, and J. X. Parreira. P2p web search: Make it
light, make it fly (demo). In CIDR, pages 164–168, 2007.

[27] B. Billerbeck and J. Zobel. Questioning query expansion: An examination of
behaviour and parameters. In ADC, 2004.

[28] P. Bouros, S. Skiadopoulos, T. Dalamagas, D. Sacharidis, and T. K. Sellis. Eval-
uating reachability queries over path collections. In SSDBM, pages 398–416,
2009.

[29] R. Bramandia, B. Choi, and W. K. Ng. Incremental maintenance of 2-hop label-
ing of large graphs. IEEE Trans. Knowl. Data Eng., 22(5):682–698, 2010.

[30] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search
engine. Computer Networks, 30(1–7):107–117, 1998.

[31] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. volume 30, pages 107–117, 1998.

[32] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries over rela-
tional databases: Mapping strategies and performance evaluation. ACM Trans.
Database Syst., 27(2):153–187, 2002.

218

REFERENCES REFERENCES

[33] D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman, N. Har’El, I. Ronen,
E. Uziel, S. Yogev, and S. Chernov. Personalized social search based on the
user’s social network. In CIKM, pages 1227–1236, 2009.

[34] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know your
neighbors: web spam detection using the web topology. In SIGIR, pages 423–
430, 2007.

[35] K. C.-C. Chang and S. won Hwang. Minimal probing: supporting expensive
predicates for top-k queries. In SIGMOD Conference, pages 346–357, 2002.

[36] J. Cheng and J. X. Yu. On-line exact shortest distance query processing. In
EDBT, pages 481–492, 2009.

[37] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance
queries via 2-hop labels. In SODA, pages 937–946, 2002.

[38] T. Crecelius, M. Kacimi, S. Michel, T. Neumann, J. X. Parreira, R. Schenkel, and
G. Weikum. Making sense: Socially enhanced search and exploration. In Pro-
ceedings of the 34th International Conference on Very Large Data Bases (VLDB
2008), volume 1, pages 1480–1483, Auckland, New Zealand, 2008. ACM.

[39] T. Crecelius, M. Kacimi, S. Michel, T. Neumann, J. X. Parreira, R. Schenkel,
and G. Weikum. Social recommenations at work (demo). In Proceedings of the
31st Annual International ACM SIGIR Conference on Research & Development
on Information Retrieval (SIGIR 2008), pages 884–884, Singapore, Singapore,
July 2008. ACM.

[40] T. Crecelius and R. Schenkel. Evaluating network-aware retrieval in social net-
works. In S. Geva, J. Kamps, C. Peters, T. Sakai, A. Trotman, and E. Voorhees,
editors, SIGIR 2009 Workshop on the Future of IR Evaluation, pages 17–18,
Boston, USA, 2009. IR Publications.

[41] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting query performance.
In Proceedings of the 2002 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2002), pages 299–306, 2002.

[42] A. Damian, W. Nejdl, and R. Paiu. Peer-sensitive objectrank - valuing contextual
information in social networks. In A. H. H. Ngu, M. Kitsuregawa, E. J. Neuhold,
J.-Y. Chung, and Q. Z. Sheng, editors, WISE, volume 3806 of Lecture Notes in
Computer Science, pages 512–519. Springer, 2005.

[43] A. Das et al. Google news personalization: scalable online collaborative filter-
ing. In WWW, 2007.

[44] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k queries
using views. In VLDB, pages 451–462, 2006.

[45] J. V. Davis and I. S. Dhillon. Estimating the global pagerank of web communi-
ties. In KDD, pages 116–125, New York, NY, USA, 2006. ACM Press.

[46] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004.

219

REFERENCES REFERENCES

[47] C. Demetrescu and G. F. Italiano. Experimental analysis of dynamic all pairs
shortest path algorithms. ACM Transactions on Algorithms, 2(4):578–601, 2006.

[48] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[49] P. A. Dmitriev, N. Eiron, M. Fontoura, and E. J. Shekita. Using annotations in
enterprise search. In WWW, pages 811–817, 2006.

[50] G. Dong, L. Libkin, J. Su, and L. Wong. Maintaining transitive closure of graphs
in sql. Int. Journal on Information Technology, 5:1–23, 1999.

[51] J. Douceur. The sybil attack. In IPTPS, pages 251–260, 2002.

[52] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan, and A. Tomkins.
Visualizing tags over time. ACM Transactions on the Web, 1(2), 2007.

[53] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middle-
ware. In PODS, 2001.

[54] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middle-
ware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[55] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic shortest
paths in digraphs with arbitrary arc weights. J. Algorithms, 49(1):86–113, 2003.

[56] S. Golder and B. A. Huberman. Usage patterns of collaborative tagging systems.
Journal of Information Science, 32(2):198–208, April 2006.

[57] J. Graupmann, R. Schenkel, and G. Weikum. The spheresearch engine for uni-
fied ranked retrieval of heterogeneous xml and web documents. In VLDB, pages
529–540, 2005.

[58] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum. Fast and accurate estima-
tion of shortest paths in large networks. In CIKM, 2010.

[59] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and
distrust. In WWW, pages 403–412, New York, NY, USA, 2004. ACM Press.

[60] R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and
distrust. In WWW, pages 403–412, 2004.

[61] U. Güntzer, W. Balke, and W. Kießling. Optimizing multi-feature queries for
image databases. In VLDB, 2000.

[62] Z. Gyöngyi, P. Berkhin, H. Garcia-Molina, and J. O. Pedersen. Link spam de-
tection based on mass estimation. In VLDB, pages 439–450, 2006.

[63] Z. Gyöngyi, H. G. Molina, and J. Pedersen. Combating web spam with trustrank.
In VLDB, pages 576–587, 2004.

[64] H. Halpin et al. The complex dynamics of collaborative tagging. In WWW,
2007.

[65] T. H. Haveliwala. Topic-sensitive pagerank. In Proceedings of the Eleventh
International World Wide Web Conference, Honolulu, Hawaii, May 2002.

220

REFERENCES REFERENCES

[66] D. Heckerman et al. Dependency networks for inference, collaborative filtering,
and data visualization. Journal of Machine Learning Research, 1:49–75, 2000.

[67] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. Riedl. Evaluating collabora-
tive filtering recommender systems. ACM Transactions on Information Systems,
22(1), 2004.

[68] P. Heymann et al. Can social bookmarking improve web search? In WSDM,
2008.

[69] P. Heymann and H. Garcia-Molina. Collaborative creation of communal hi-
erarchical taxonomies in social tagging systems. Technical Report 2006-10,
Stanford University, April 2006.

[70] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information retrieval in
folksonomies: Search and ranking. In Y. Sure and J. Domingue, editors, The
Semantic Web: Research and Applications, volume 4011 of LNAI, pages 411–
426, Heidelberg, June 2006. Springer.

[71] H. Hwang, V. Hristidis, and Y. Papakonstantinou. Objectrank: a system for
authority-based search on databases. In SIGMOD Conference, pages 796–798,
2006.

[72] K. Järvelin and J. Kekäläinen. Ir evaluation methods for retrieving highly rele-
vant documents. In SIGIR, pages 41–48, 2000.

[73] G. Jeh and J. Widom. Scaling personalized web search. In WWW ’03: Proceed-
ings of the 12th international conference on World Wide Web, pages 271–279,
New York, NY, USA, 2003. ACM Press.

[74] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.
Gossip-based peer sampling. ACM Trans. Comput. Syst., (3), 2007.

[75] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-compression indexing
scheme for reachability query. In SIGMOD Conference, pages 813–826, 2009.

[76] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering reachability
queries on very large directed graphs. In SIGMOD Conference, pages 595–608,
2008.

[77] K. S. Jones. Idf term weighting and ir research lessons. Journal of Documenta-
tion, 60:521–523, 2004.

[78] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In WWW, pages 640–651, 2003.

[79] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In WWW, pages 640–651, New
York, NY, USA, 2003. ACM Press.

[80] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum. Naga:
Searching and ranking knowledge. In ICDE, pages 953–962, 2008.

[81] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate
information. In FOCS, pages 482–491, 2003.

221

REFERENCES REFERENCES

[82] D. Kempe and F. McSherry. A decentralized algorithm for spectral analysis. In
STOC, pages 561–568, 2004.

[83] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In FOCS, pages 81–91, 1999.

[84] V. King and M. Thorup. A space saving trick for directed dynamic transitive
closure and shortest path algorithms. In J. Wang, editor, COCOON, volume
2108 of Lecture Notes in Computer Science, pages 268–277. Springer, 2001.

[85] J. A. Konstan, S. M. McNee, C.-N. Ziegler, R. Torres, N. Kapoor, and J. Riedl.
Lessons on applying automated recommender systems to information-seeking
tasks. In AAAI, 2006.

[86] K. Kremerskothen. Flickr blog: The 6 billionth photo upload. http://blog.
flickr.net/en/2011/08/04/6000000000/, Aug. 2011.

[87] V. Krikos, S. Stamou, P. Kokosis, A. Ntoulas, and D. Christodoulakis. Directo-
ryrank: ordering pages in web directories. In WIDM, pages 17–22, 2005.

[88] R. Kumar et al. Structure and evolution of online social networks. In KDD,
2006.

[89] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a
news media? In WWW ’10: Proceedings of the 19th international conference on
World wide web, pages 591–600, New York, NY, USA, 2010. ACM.

[90] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science
of Search Engine Rankings. Princeton University Press, Princeton, NJ, USA,
2006.

[91] C. Li, K. Chang, I. Ilyas, and S. Song. Ranksql: Query algebra and optimization
for relational top-k queries. In SIGMOD, 2005.

[92] G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing, 7(1), 2003.

[93] Y.-T. Liu, B. Gao, T.-Y. Liu, Y. Zhang, Z. Ma, S. He, and H. Li. Browserank:
letting web users vote for page importance. In SIGIR, pages 451–458, 2008.

[94] S. Marti and H. Garcia-Molina. Identity crisis: Anonymity vs. reputation in p2p
systems. In Peer-to-Peer Computing, page 134, Washington, DC, USA, 2003.
IEEE Computer Society.

[95] S. Marti and H. Garcia-Molina. Taxonomy of trust: Categorizing p2p reputation
systems. Computer Networks, 50(4):472–484, 2006.

[96] U. Meyer. On dynamic breadth-first search in external-memory. In S. Albers and
P. Weil, editors, STACS, volume 1 of LIPIcs, pages 551–560. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany, 2008.

[97] A. Mislove et al. Exploiting social networks for internet search. In HotNets,
2006.

[98] S. Nepal and M. V. Ramakrishna. Query processing issues in image (multime-
dia) databases. In ICDE, pages 22–29, 1999.

222

REFERENCES REFERENCES

[99] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web, 1999.

[100] C. Pang, G. Dong, and K. Ramamohanarao. Incremental maintenance of shortest
distance and transitive closure in first-order logic and sql. ACM Trans. Database
Syst., 30(3):698–721, 2005.

[101] J. X. Parreira, C. Castillo, D. Donato, S. Michel, and G. Weikum. The juxtaposed
approximate pagerank method for robust pagerank approximation in a peer-to-
peer web search network. VLDB J., 17(2):291–313, 2008.

[102] J. X. Parreira, S. Michel, M. Bender, T. Crecelius, and G. Weikum. P2P authority
analysis for social communities. In C. Koch, J. Gehrke, M. N. Garofalakis,
D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti, C.-
C. Kanne, W. Klas, and E. J. Neuhold, editors, 33rd International Conference on
Very Large Data Bases (VLDB 2007), pages 1398–1401, Vienna, Austria, 2007.
ACM.

[103] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J.
Epema, M. Reinders, M. R. van Steen, and H. J. Sips. Tribler: a social-based
peer-to-peer system: Research articles. volume 20, pages 127–138, Chichester,
UK, UK, 2008. John Wiley and Sons Ltd.

[104] G. Ramalingam and T. W. Reps. An incremental algorithm for a generalization
of the shortest-path problem. J. Algorithms, 21(2):267–305, 1996.

[105] S. E. Robertson and S. Walker. Some simple effective approximations to the
2-poisson model for probabilistic weighted retrieval. In SIGIR, 1994.

[106] K. Sankaralingam, M. Yalamanchi, S. Sethumadhavan, and J. C. Browne. Pager-
ank computation and keyword search on distributed systems and p2p networks.
J. Grid Comput., 1(3):291–307, 2003.

[107] A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating pagerank on graph
streams. In PODS, pages 69–78, 2008.

[108] B. M. Sarwar et al. Item-based collaborative filtering recommendation algo-
rithms. In WWW, 2001.

[109] J. Savoy. Statistical inference in retrieval effectiveness evaluation. Inf. Process.
Manage., 33(4):495–512, 1997.

[110] J. B. Schafer et al. Collaborative filtering recommender systems. In The Adap-
tive Web, 2007.

[111] R. Schenkel, T. Crecelius, M. Kacimi, S. Michel, T. Neumann, J. X. Parreira, and
G. Weikum. Efficient top-k querying over social-tagging networks. In SIGIR,
pages 523–530, 2008.

[112] R. Schenkel, T. Crecelius, M. Kacimi, T. Neumann, J. X. Parreira, M. Spaniol,
and G. Weikum. Social wisdom for search and recommendation. IEEE Data
Eng. Bull., 31(2):40–49, 2008.

223

REFERENCES REFERENCES

[113] R. Schenkel, A. Theobald, and G. Weikum. Efficient creation and incremental
maintenance of the hopi index for complex xml document collections. In ICDE,
pages 360–371, 2005.

[114] C. Schmitz et al. Mining association rules in folksonomies. In Data Science and
Classification. Springer, 2006.

[115] S. Sen et al. Tagging, communities, vocabulary, evolution. In CSCW, 2006.

[116] S. Shi, J. Yu, G. Yang, and D. Wang. Distributed page ranking in structured p2p
networks. In ICPP, pages 179–186, 2003.

[117] M. Sozio, T. Crecelius, J. X. Parreira, and G. Weikum. Good guys vs. bad
guys: Countering cheating in peer-to-peer authority computations over social
networks. In WebDB, 2008.

[118] Special section on social media and search. IEEE Internet Computing, 11(6),
2007.

[119] Special issue on data management issues in social sciences. IEEE Data Engi-
neering Bulletin, 30(2), 2007.

[120] R. Steinmetz and K. Wehrle, editors. Peer-to-Peer Systems and Applications,
volume 3485 of Lecture Notes in Computer Science. Springer, 2005.

[121] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic Knowl-
edge. In 16th international World Wide Web conference (WWW 2007), New
York, NY, USA, 2007. ACM Press.

[122] J. Surowiecki. The Wisdom of Crowds. New York, 2004.

[123] C. Tantipathananandh et al. A framework for community identification in dy-
namic social networks. In KDD, 2007.

[124] M. Theobald, R. Schenkel, and G. Weikum. Efficient and self-tuning incremen-
tal query expansion for top-k query processing. In SIGIR, pages 242–249, 2005.

[125] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with prob-
abilistic guarantees. In VLDB, pages 648–659, 2004.

[126] S. Trißl and U. Leser. Fast and practical indexing and querying of very large
graphs. In SIGMOD Conference, pages 845–856, 2007.

[127] T. Vander Wal. Folksonomy. http://vanderwal.net/folksonomy.
html, Feb. 2007.

[128] Y. Wang and D. J. DeWitt. Computing pagerank in a distributed internet search
engine system. In VLDB, pages 420–431, 2004.

[129] J. Wu and K. Aberer. Using a Layered Markov Model for Distributed Web
Ranking Computation. In ICDCS, pages 533–542, 2005.

[130] Y. Xiao, W. Wu, J. Pei, W. W. 0009, and Z. He. Efficiently indexing shortest
paths by exploiting symmetry in graphs. In EDBT, pages 493–504, 2009.

224

REFERENCES REFERENCES

[131] L. Xiong and L. Liu. Peertrust: Supporting reputation-based trust for peer-to-
peer electronic communities. IEEE Trans. Knowl. Data Eng., 16(7):843–857,
2004.

[132] S. Xu et al. Using social annotations to improve language model for information
retrieval. In CIKM, 2007.

[133] J. Zhang, M. S. Ackerman, and L. A. Adamic. Expertise networks in online
communities: structure and algorithms. In WWW, pages 221–230, 2007.

225

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 User provided content in the Social Tagging Network LibraryThing.com 10
2 Example illustration of our data model 17
3 Example screenshots of Delicious.com 18
4 Example screenshots of Flickr.com 21
5 Example screenshots of LibraryThing.com 23
6 Average Execution Cost without tag expansion 73
7 Average Execution Cost with tag expansion 73
8 System Architecture of SENSE with our CONTEXTMERGE algorithm 80
9 Query Interface of our Prototype System SENSE 81
10 Query User Interface in SENSE and Result List for LibraryThing.com 82
11 Example graph: A single inserted edge at U changes its entire nearest

neighbour list and a decreased edge weight at V affects almost the
entire graph because of changes in shortest paths for all predecessor
nodes of Z. 86

12 Example of a friendship graph G0 with users U , U1, U2 and U3 in (a)
and the corresponding friendship list FlistU,0 for U in (b). 92

13 Example for an in-memory list being built by reading from a storage
backend and by a new friendship update. 95

14 Example for using copies of friendship list. A query processes FlistU
at time tsmax = 3. While the query is active a new update at time tsmax =
t = 4 arrives and is applied to a copy of U ’s friendship list. Once, the
query on the list at time TSmax = 3 is finished, and no other query
with such a timestamp is active, that list can be discarded while the
newer list remains. 100

15 In (a) an example for a friendship update (U → Ux) is given with
initial friendship lists for U and Ux. (b) shows the resulting friendship
list for U after the update operation on U (which includes a merge
operation on U with Ux) . 106

16 In (a) the same example for a friendship update (U → Ux) is given
as shown with our first approach. (b) shows the resulting friendship
list and priority queue for U after the update operation on U with our
second approach. 113

17 In (a) two users A and B are given with friendship updates from one
to each other. In (b), the resulting data structures are depicted after a
top-1 query on A. The grey, dashed arrows indicate the problem with
retrieving the next best friend of A. 119

18 In (a) an example graph is given with a cycle over 3 users. A conceiv-
able snapshot of each user’s friendship list and priority queue is given
in (b). 121

19 In (a) an example is given for a missed merge operation on U with U2
if tp were not set to i + 1. In (b) an example is given for a redundant
merge operation on U with U2 because of setting tp to i+ 1. 125

20 (a) shows that no merge operation onU withU2 is missed despite pTSU .
(b) shows that no redundant merge operation on U with U2 is applied
because of pTSU . 127

227

LIST OF FIGURES LIST OF FIGURES

21 In (a) an initial example graph is given. A redundant merge operation
on U occurs when first a top-2 query on U2 occurs, depicted in (b), and
then a top-3 query on U follows. Figure (c) shows the state of the graph
right before the redundant merge operation. 130

22 Experiments for EAP on LibraryThing.com, randomly selected query-
ing users, 1 update per 100 queries, top-k=200, fully merged friendship
lists for (a), (b), (c) and (d) . 136

23 Runtime and #SA measurements of EAP on LibraryThing.com, ran-
domly selected querying users, 1 update per varying number of queries:
1, 10 or 100, top-k=200, only top-k prefixes are merged. for (a), (b), (c),
and (e), (f), (g). In (d) and (h) upd-ratio 1/100 and top-k=200 but merge
operations on prefixes of size max-k=500. 138

24 Experiments for EAP on LibraryThing.com, randomly selected query-
ing users, 100 queries per update, top-k=200, merges only of top-k
prefixes in (a), (b) of size 200 and in (c), (d) of size 500 139

25 Experiments for EAP on LibraryThing.com, randomly selected query-
ing users, top-k=200, and 1 update per 1 query in (a), (c), and 1 update
per 10 queries in (b) and (d) with merges of size max-k=500. 140

26 Experiments for LAP on LibraryThing.com, randomly selected query-
ing users, top-k=200, 1 update per 100 queries in 26a-(d), and and 1
update per query for RT in (f) and #SA in (h), and 1 update per 10
queries for RT in (e) and #SA in (g). 141

27 Experiments for LAP on LibraryThing.com, randomly selected query-
ing users, top-k=200, 1 update per 10 queries for #OL in (a) and #MRG
in (c), and 1 update per query for #OL in (b) and #MRG in (d). 142

28 Experiments on Twitter.com for fixed-size EAP with maxk=top-k on the
left and for LAP on the right hand side, randomly selected querying
users, top-k=200, 1 update per 100 queries. 145

29 Example graph for σ′U with friendship update (U → UX). In (a) the
update operation on U happened while TSmax = 2. In (b) the update
operation on U happened while TSmax = 3 and UX was previously
updated. 156

30 Example graph for σ′U with friendship update (U → UX). The update
operation on U happened while TSmax = 3. However, in (a) UX is
still in a need for an update operation while in (b) the update for UX
was previously done. 157

31 Example graph for σ′U with a friendship update (U → U2) and TSmax =
3. The best friend of U has already been found while TSmax = 2 and
all friendship updates on UX have already been applied. 158

32 Example for a coalition of malicious peers in an asynchronous P2P
network . 199

33 Example for countering a coalition of malicious Peers in a asynchro-
neous P2P network . 207

34 Construction of the global graph with data from LibraryThing.com . . 208
35 Books and users from LibraryThing.com are distributed uniformly at

random to the peers’ set of responsibilityR 209
36 Top-100 Kendall’s Tau: 5 replicas per entity, varying % of malicious

peers . 213
37 Top-100 Recall: 5 replicas per entity, varying % of malicious peers . . 213
38 Statistical Distance: 5 replicas per entity, varying % of malicious peers 213

228

LIST OF FIGURES LIST OF FIGURES

39 Top-1000 Kendall’s Tau: 5% malicious peers, varying the number of
replicas . 214

40 Top-1000 Recall: 5% malicious peers, varying the number of replicas 214
41 Statistical Distance: 5% malicious peers, varying the number of replicas 214

229

LIST OF TABLES LIST OF TABLES

List of Tables
1 Flickr.com Queries . 42
2 Delicious.com Queries . 42
3 Precision[10] . 44
4 Performance Figures (Flickr.com) 44
5 Performance Figures (Delicious.com) 45
6 NDCG[10] for varying α, manual assessments 71
7 Precision[10] for varying α values, manual assessments 71
8 Precision[10] for varying α values, ground truth experiments 72
9 Efficiency details for LibraryThing with conjunctive evaluation 74
10 Queries of the user study . 75
11 Precision[10] for all users . 76
12 NDCG[10] for all users . 76
13 NDCG[10] for user2 . 77
14 NDCG[10] for user5 . 77
15 NDCG[10] with up to 5 expansions per tag 77

231

LIST OF LISTINGS LIST OF LISTINGS

List of Listings
1 SOCIALMERGE framework without tag expansion 34
2 Incremental merge algorithm with META(Uf , ti) lists to include tag

expansion in SOCIALMERGE . 37
3 CONTEXTMERGE framework . 58
4 ChoseNextList method . 61
5 U .get_Friends(top-k) . 94
6 U .needs_update() . 101
7 U .needs_merge(Uf) . 102
8 U .update() . 104
9 U .merge(Uf) . 105
10 U .getFriend(i) . 107
11 U .update() . 112
12 U .merge(Uf) . 114
13 U .getFriend(i) . 117
14 U .queueNext(pqt = (Uf , Upq, s)) 118
15 Merge condition causes redundant merge operations 124
16 Merge condition with timestamp extension pTSU 128
17 Merge condition with path information 132

233

Index
CONTEXTMERGE, 26, 45, 57, 85
Delicious.com, 17, 19, 41, 69
Flickr.com, 20, 41, 69
LibraryThing.com, 22, 69, 74, 134
SENSE, 13, 27, 47, 79
SOCIALMERGE, 26, 27, 32, 36, 85
top-k, 26, 27, 31, 59, 92
Twitter.com, 134

all pairs shortest distance, 85, 86
Amiga, 47
anecdotic evidence, 76
APSD, 85, 86, 92
auxiliary functions, 98

baseline, 72
basic algorithm, 93
best friend, 148
best score, 35, 63, 67
BM25, 54
bookmarks, 17
books, 22, 24
bound

upper, 32, 38, 57, 59, 65
bounds

lower, 35

candidate, 36, 59, 62, 109
next best friend, 109

candidate management, 62
extended, 67

collaborative recommendation, 11
context frequency, 52, 63

modified, 53
context scores, 51, 55
cycles, 107, 118, 120–122

data model, 13, 16, 19, 22, 24, 35, 47
data structures, 97
database table, 135
database tables, 25
datasets, 17, 41, 43
design decisions, 25
dice coefficient, 43, 50
Dijkstra, 85
direct friends, 50
disk-resident graph, 85

distance, 29
diversity, 77
DMOZ, 70
document, 13, 20, 22, 24, 30
document frequency, 30
document rank, 30
document score, 30, 68

weighted, 32, 33, 35
dynamic updates, 89

eager propagation, 102
EAP, 102

extensions, 124
fixed-size, 108

edge weight, 50, 90
efficiency, 11, 88
entities, 13
evaluation, 136
experiments, 41, 68, 134
extension

timestamp, 126

framework, 13
friend, 90
friends, 9
friendship, 14, 48

global, 15
pending update, 100
social, 14, 29
spiritual, 14
strength, 29

friendship edge, 90
friendship graph

dynamic, 89, 90
friendship list, 9

dynamic, 91, 147
normalized, 57
social, 59
spiritual, 59

friendship strength, 49
direct, 90, 91
final, 49
global, 48, 51, 74
indirect, 91
social, 48, 50, 56, 68, 74
spiritual, 48, 50, 57, 74
weighted, 32, 33, 35

235

INDEX INDEX

friendship update, 90, 97
pending, 97

full-context configuration, 68, 74

get next friend, 107, 115, 120
global document list, 56
global friendship strength, 68
global score, 54
global search, 46
global tag frequency, 52, 56, 65

weighted, 53
global term frequency, 63
graph model, 25
ground truth, 41

hybrid search, 48

incremental merge algorithm, 36
information need, 45

global, 45
social, 46
spiritual, 47

initial state, 151
intermediate user, 131
intuition, 155
invariants, 154, 158
inverse document frequency, 54, 57
inverted list, 25, 32, 35, 56, 88

LAP, 108, 122
extensions, 124

LAST heuristic, 36
lazy propagation, 108
library, 22, 24
lower bound, 110

manual assessment, 75
maximal tag frequency, 64
maximum best score, 66, 67
maximum worst score, 67
merge

condition, 101
redundant operation, 102

meta index list, 36
minimum worst score, 65
mode of operation, 150
monotonicity, 149

NDCG, 68, 76
next best friend, 94, 109

operation
merge, 93, 106, 113, 118, 153
redundant merge, 124
redundant operation, 132
update, 111, 152

operation map, 98, 109, 147
operation mode, 33
oracle, 134
ownership, 148

PageRank, 30
pagerank, 44
path information, 129
path weight, 91
personalised search, 11
photo page, 22
photostream, 20
point of interest, 150
precision, 43, 68, 71, 76
precomputed neighbour lists, 87
preferences, 46, 47
priority of operations, 151
priority queue, 36, 59, 62, 109, 118, 122
probability, 49
problem statement, 26
proof of correctness, 147
properties, 148
pseudocode, 35, 38, 57, 60, 67, 93, 101,

103, 106, 111, 115, 116

query, 26, 55, 92
dimension, 27, 66
processing, 27, 31, 33, 56
result, 27, 43, 75, 93
tag, 26
time, 92, 99

random access, 36, 44, 59, 66
recall, 41
recommendations, 46
relation, 16

document-document, 15, 20, 25, 31,
56

document-tag, 16, 31, 54
friendship, 20, 22, 24
inter-entity, 15
intra-entity, 13
tag-tag, 15, 29, 55
ternary, 16, 25, 30, 54
user-document, 16, 31, 56

236

INDEX INDEX

user-tag-document, 16, 30, 54
user-user, 14, 28, 48

relational database, 25
relations

document-document, 22, 38
relevance, 41
relevance assessments, 41, 70
research aspects, 10
resulting state, 151
results, 43
retrieval effectiveness, 41, 43, 71, 74
retrieval efficiency, 41, 44, 72

scalability, 11
scan, 26, 33
score contribution, 33, 35, 59
scores, 32
scoring model, 16, 27, 38, 43, 48
search strategies, 38
semantic expansion, 28
sequential access, 26, 36, 44, 88
shortcut, 148
shortest path, 14, 29, 49, 50, 88, 91

weight, 88
showcase, 119, 120
simpler social score, 33
single tag context score, 54, 59, 63

expanded, 55
single tag score, 28, 29, 33, 38
social

friends, 29
friendship, 28, 29
relations, 11
search, 11
tag, 13, 15, 16
tagging, 9, 10, 16
tags, 9, 10, 26, 30

social expansion, 28
social friend, 59
social friends, 46, 48
social friendship list, 56
social friendship strength, 14
social score, 28
social tagging network, 9, 10, 17, 20, 22,

31
social tagging networks, 41, 45
social-context configuration, 68, 69
socialmerge, 31
spiritual friend, 59
spiritual friends, 47, 48

spiritual friendship list, 57
spiritual friendship strength, 15
spiritual search, 47
state description, 151
state transition

merge, 153, 154
update, 152, 154

stop condition, 33
storage backend, 134
strategy

semantic search, 39, 43
expanded, 39, 43

social search, 39, 43
expanded, 40, 43
expanded with user rank, 40, 44
with user rank, 40, 44

system Architecture, 79

tag, 9, 10, 13, 15, 16, 26, 30
tag cloud, 20, 81
tag expansion, 36, 43, 55, 57, 66, 72, 77
tag overlap, 50
tag similarity, 15, 29, 32, 55, 57
tag similarity list, 57, 67
tagging, 9, 10, 16
termination, 36
termination test, 65
threshold algorithm, 26, 31, 36, 56, 89
time information, 124
timestamp, 97, 98, 147

edge update, 90
fixed query-dependent, 150
maximal, 150
previous, 126
query-dependent, 150

timestamp validity pointer, 98, 147

update
condition, 100
operation, 93, 103

user, 13, 90
user cloud, 81
user document list, 56, 60
user expansion, 57, 67
user interface, 79
user rank, 30, 44
user study, 41, 43
user-specific frequency, 53
user-specific ground truth, 70
user-specific tag frequency, 52, 56, 60

237

INDEX INDEX

user-study, 70

very best friend, 103
virtual document, 36, 66

weighted tag similarity, 57
wisdom of the crowds, 10, 11
worst score, 35, 63, 67

zeitgeist, 24

238

