
Ray Tracing Techniques for Computer Games
and Isosurface Visualization

Heiko Friedrich
Computer Graphics Group

Saarland University
Saarbrücken, Germany

Thesis for obtaining the title of
Doctor of Engineering
of the Faculties of Natural Sciences and
Technology of Saarland University

Betreuender Hochschullehrer / Supervisors:
Prof. Dr. Philipp Slusallek, Universität des Saarlandes,
Saarbrücken, Germany

Gutachter / Reviewers:
Prof. Dr. Philipp Slusallek, Universität des Saarlandes,
Saarbrücken, Germany
Dr. Karol Myszkowski, Max-Planck-Institut für Informatik,
Saarbrücken, Germany

Dean:
Prof. Dr. Mark Groves, Universität des Saarlandes,
Saarbrücken, Germany

Eingereicht am / Thesis submitted:
3. Juni 2009 / June 3rd 2009

Datum des Kolloquium / Date of defense:
21. Oktober 2011 / October 21st 2011

Vorsitzender des Kolloquiums:
Prof. Dr. Joachim Weickert

Wissenschaftlicher Beisitzer:
Dr. Vincent Pegoraro

Heiko Friedrich
Universität des Saarlandes
Fachrichtung 6.2 - Informatik
Im Stadtwald - Building E 1 1, Room 013
66123 Saarbrücken

Abstract

Ray tracing is a powerful image synthesis technique, that has been used for
high-quality offline rendering since decades. In recent years, this technique
has become more important for realtime applications, but still plays only
a minor role in many areas. Some of the reasons are that ray tracing is
compute intensive and has to rely on preprocessed data structures to achieve
fast performance. This dissertation investigates methods to broaden the
applicability of ray tracing and is divided into two parts.

The first part explores the opportunities offered by ray tracing based game
technology in the context of current and expected future performance levels.
In this regard, novel methods are developed to efficiently support certain
kinds of dynamic scenes, while avoiding the burden to fully recompute the
required data structures. Furthermore, todays ray tracing performance levels
are below what is needed for 3D games. Therefore, the multi-core CPU of
the Playstation 3 is investigated, and an optimized ray tracing architecture
presented to take steps towards the required performance.

In part two, the focus shifts to isosurface raytracing. Isosurfaces are
particularly important to understand the distribution of certain values in
volumetric data. Since the structure of volumetric data sets is diverse, op-
timized algorithms and data structures are developed for rectilinear as well
as unstructured data sets which allow for realtime rendering of isosurfaces
including advanced shading and visualization effects. This also includes tech-
niques for out-of-core and time-varying data sets.

Kurzfassung

Ray-tracing ist ein flexibles Bildgebungsverfahren, das schon seit Jahrzehn-
ten für hoch qualitative, aber langsame Bilderzeugung genutzt wird. In
den letzten Jahren wurde Ray-tracing auch für Echtzeitanwendungen im-
mer interessanter, spielt aber in vielen Anwendungsbereichen noch immer
eine untergeordnete Rolle. Einige der Gründe sind die Rechenintensität von
Ray-tracing sowie die Abhängigkeit von vorberechneten Datenstrukturen um
hohe Geschwindigkeiten zu erreichen. Diese Dissertation untersucht Metho-
den um die Anwendbarkeit von Ray-tracing in zwei verschiedenen Bereichen
zu erhöhen.

Im ersten Teil dieser Dissertation werden die Möglichkeiten, die Ray-
tracing basierte Spieletechnologie bietet, im Kontext mit aktueller sowie
zukünftig erwarteten Geschwindigkeiten untersucht. Darüber hinaus wer-
den in diesem Zusammenhang Methoden entwickelt um bestimmte zeitver-
änderliche Szenen darstellen zu können ohne die dafür benötigen Daten-
strukturen von Grund auf neu erstellen zu müssen. Da die Geschwindigkeit
von Ray-tracing für Spiele bisher nicht ausreichend ist, wird die Mehrkern-
CPU der Playstation 3 untersucht, und ein optimiertes Ray-tracing System
beschrieben, das Ray-tracing näher an die benötigte Geschwindigkeit heran-
bringt.

Der zweite Teil beschfäftigt sich mit der Darstellung von Isoflächen mittels
Ray-tracing. Isoflächen sind insbesonders wichtig um die Verteilung einzel-
ner Werte in volumetrischen Datensätzen zu verstehen. Da diese Datensätze
verschieden strukturiert sein können, werden für gitterförmige und unstruk-
turierte Datensätze optimierte Algorithmen und Datenstrukturen entwickelt,
die die Echtzeitdarstellung von Isoflächen erlauben. Dies beinhaltet auch Er-
weiterungen für extrem große und zeitveränderliche Datensätze.

Acknowledgments

I would like to thank a number of people for their help on this disserta-
tion. Working on optimized large scale software systems is always team-
work. First of all, I would like to thank my supervisor Prof. Dr. Philipp
Slusallek. He guided me during my PhD, pushed me forward, inspired me,
and helped me with discussions and ideas. Another thanks I owe my (former)
colleagues, (in alphabetical order): Tim Dahmen, Georg Demme, Andreas
Dietrich, Johannes Günther, Iliyan Georgiev, Krzysztof Kobus, Dr. Marco
Lohse, Dr. Gerd Marmitt, Dr. Andreas Pohmi, Stefan Popov, Michael Rep-
plinger, Dmitri Rubinstein, Michael Scherbaum, Dr. Jörg Schmittler, Dr.
Sven Woop, and Hanna Schilt, the secretary of our computer graphics group.

In particular I have to thank Dr. Ingo Wald and Dr. Carsten Benthin.
They helped me a lot with ideas, discussion and programming on all my
projects. Without their encouraging support and a countless number of
discussions through the last years I would not have been able to complete
this dissertation.

Furthermore I want to thank my colleagues and friends from the Max-
Plank-Institute for Computer Science (MPII) at the department AG4. Spe-
cial thanks also goes to Karol Myszkowski at the MPII for reviewing this
dissertation, and the post graduate programme Leistungsgarantien für Rech-
nersysteme as well as the Deutsche Forschungsgemeinschaft for supporting
my PhD studies with a scholarship. Another thanks goes to the SysAdmin
Team of the computer graphics group. Finally, and most importantly, I want
to thank my parents and friends who supported me all time.

We cannot change the cards that we are dealt,
just how we play the hand.

Randy Pausch

Contents

1 Introduction 1
1.1 The Goals of this Dissertation 2
1.2 The Structure of this Document 3

I Ray Tracing for Computer Games 5

2 An Introduction to Ray Tracing 7
2.1 Rasterization and Ray Tracing 7
2.2 An Outline of Basic Ray Tracing Concepts 8
2.3 Milestones in the Evolution of Ray Tracing 10
2.4 Realtime Ray Tracing Techniques 12

3 Ray Tracing for Computer Games 23
3.1 General Discussion . 23
3.2 Advantages of Ray Tracing for Games 25
3.3 Games using Ray Tracing Projects 31
3.4 OpenRT API . 33
3.5 Dynamic Ray Tracing . 37
3.6 Hardware Support for Ray Tracing 38
3.7 Conclusions . 42

4 Ray Tracing of Dynamic Scenes 45
4.1 Spatial Index Structure Considerations 45
4.2 Dynamics Classification . 46
4.3 The Motion Decomposition Approach 48
4.4 Motion Decomposition of Animation Sequences 52
4.5 Motion Decomposition of Skinned Animations 58
4.6 Conclusions and Future Work 63

5 Ray Tracing on the CELL Processor 65
5.1 The CELL Broadband Architecture 65
5.2 Ray Tracing on the CELL Broadband CPU 67
5.3 CELL-Specific Traversal and Intersection 70
5.4 Explicit Data Caching . 72

x CONTENTS

5.5 Software Multithreading . 77
5.6 Shading . 80
5.7 Parallelization Across Multiple SPUs 82
5.8 Overall Performance Comparison and Discussion 83
5.9 Architectural Shortcomings 86
5.10 Conclusions and Future Work 88

II Isosurface Visualization using Ray Tracing 89

6 An Introduction to Isosurface Rendering 91
6.1 Volume Rendering and Volumetric Data 91
6.2 Volume Visualization Techniques 93
6.3 Volume Ray Tracing . 95
6.4 Normal Estimation . 95
6.5 Isosurface Rendering . 96

7 Isosurface Ray Tracing of Rectilinear Volumes 99
7.1 Isosurface Ray Tracing using Implicit kD-trees 99
7.2 Efficient Traversal and Intersection 102
7.3 Efficient Memory Representation 107
7.4 Integration into the OpenRT Engine 112
7.5 Experiments and Results . 113
7.6 Dynamic Updates . 115
7.7 Out-Of-Core Rendering . 116
7.8 Out-of-Core Isosurface Rendering 116
7.9 Results . 120
7.10 Applications . 122
7.11 Conclusions and Future Work 123

8 Isosurface Ray Tracing of Tetrahedral Volumes 127
8.1 Isosurface Ray Tracing of Tetrahedral Meshes 127
8.2 Isosurface Intersection . 128
8.3 Shading Normal Interpolation 131
8.4 The Implicit Bounding Volume Hierarchy 132
8.5 Time-Varying Data . 135
8.6 Shading and Interaction Modalities 136
8.7 Results and Discussion . 139
8.8 Conclusions and Future Work 144

9 Final Summary, Future Work, and Final Conclusions 147

A A List of Related Papers 151

Bibliography 153

List of Figures

2.1 Rasterization Example . 8
2.2 Recursive Ray Tracing Example 9
2.3 Ray Tracing Image Quality Evolution 11
2.4 kD-Tree Construction Example 15
2.5 Single Ray kD-Tree Traversal 17
2.6 Ray-Frustum kD-Tree Traversal 18
2.7 Coherent BVH Traversal . 20

3.1 Popular Ray Tracing Benchmark Scenes 24
3.2 Mixed Scenes with Advances Illumination Effects 27
3.3 Complex Light Path and Illumination Examples 29
3.4 Realtime Caustics Examples 30
3.5 QuakeRT . 31
3.6 Ray City . 32
3.7 Oasen . 33
3.8 Large and Complex Terrain Rendering 35
3.9 Ray Tracing on the RPU . 41

4.1 Dynamic Scene Example . 48
4.2 Animation with Transformations 50
4.3 Fuzzy-Bounds Example . 51
4.4 Hand Animation . 53
4.5 Hand Clustering Process . 55
4.6 Clustered Dynamic Ray Tracing Test Scenes 56
4.7 Residual Motion and Surface Area Correlation 57
4.8 Dynamic Ray Tracing Rendering Performance Plots 58
4.9 Skinned Model Example . 59
4.10 Skinned Models Poses . 62

5.1 IBM Cell BE . 67
5.2 Standard Cache Oragnizations 73
5.3 Basic Caching Computations 74

xii LIST OF FIGURES

5.4 Cell Ray Tracing Test Scenes 83
5.5 SPE Performance Scaling . 84

6.1 Volumetric Grid Types . 92
6.2 Cells and Reconstruction . 92
6.3 Volume Visualization Techniques 94

7.1 kD-Tree Motivation for Volumetric Grids 100
7.2 Isosurface Examples . 101
7.3 Virtual Nodes Explanation . 110
7.4 Hybrid Isosurface Rendering Example 112
7.5 Isosurface Rendering Test-Datasets 113
7.6 Isosurface Scalability Measurements 115
7.7 Preprocessing Pipeline for OOC Rendering 117
7.8 The Treelet Data Structure 118
7.9 Large and Complex Isosurface Examples 121
7.10 Visible Female Isosurfaces . 124
7.11 Global Illumination on Isosurfaces 124

8.1 Ray-Isopolygon Intersection 130
8.2 Implicit BVH Subtree Culling 134
8.3 Time-Varying Dataset Examples 135
8.4 Buckyball with and w/o Interpolated Normals 137
8.5 Performance Impact of Different Shading Effects 138
8.6 Irregular Grid Isosurface Examples 139

List of Tables

3.1 Performance Comparison of State-of-the-Art RT Implement. . 24
3.2 DRPU Ray Tracing Performance 41

4.1 Performance Comparison of Fuzzy and Static kD-trees 59
4.2 Performance Influence of Pose Space Restrictions 62
4.3 Performance Influence of Mesh Size 63

5.1 Box- and Trianglecache Effectiveness 76
5.2 Cell Ray Tracing Statistics . 78
5.3 Ray Tracing Performance with and w/o SMT 81
5.4 Vertex- and Shadercache Effectiveness 83
5.5 Cell Ray Tracing Performance 85
5.6 Bandwidth-Requirements . 86

7.1 Number of Isosurface Intersections 106
7.2 Fat vs. Slim kD-Tree Memory Requirements 110
7.3 Isosurface Rendering Performance 111
7.4 Isosurface Rendering Performance on PC-Clusters 114
7.5 Treelet Preprocessing Performance 120
7.6 Rendering Performance for OOC Isosurface Rendering 122

8.1 Build and Render Performance for BIH and SAH BVH 140
8.2 Absolute Rendering Performance 141
8.3 Multicore Rendering Performance 141
8.4 Traversal Statistics for Packet-Frustrum Traversal 142

Listings

3.1 OpenRT Surface Shader Example 36
5.1 BVH-Traversal with Software-Multi-Threading 79
7.1 Pseudo-code for the new improved intersection method 104
7.2 Level Structure . 108
7.3 Treelet Traversal and LOD Rendering 119

Chapter 1

Introduction

Ray tracing is a powerful image synthesis technique which has been used
for high-quality offline rendering since decades. An outstanding feature of
ray tracing is its algorithmic simplicity and elegance. In a well-designed ray
tracing system it is possible to integrate different kinds of graphics primitives
and shading models such that they can smoothly interact with each other.
Furthermore, the underlying ray concept allows for arbitrary recursive visi-
bility queries which can be used for e.g. shadow, reflection, refraction, or even
global illumination computations. However, ray tracing is compute intensive
and has to rely on precomputed spatial-index structures for fast performance
which limits its applicability in certain areas.

In recent years, researchers were able to lift ray tracing performance to in-
teractive levels e.g. first by the use of massive parallel supercomputers [KH95,
Muu95, PMS+99], later on commodity PCs by exploiting more suitable and
optimized acceleration structures [GS87, MB90, Hav01a, Wal04], and highly
optimized implementations and algorithmic improvements [Wal04, RSH05,
Ben06].

But still, on current desktop machines the performance is below what
is needed for certain application. For example, 3D computer games require
typically frame rates of more than 30Hz. On todays mainstream CPUs and
GPUs this is not realistic for complex scenes and shading. In other domains
like scientific visualization it is similar.

Even worse, due to the fact that ray tracing relies on acceleration struc-
tures for fast performance, it is in general not possible to change a scenes ge-
ometry without invalidating the corresponding acceleration structure. When
primitives are transformed it is most likely that the acceleration structure
that is build over the initial geometry is not valid for the changed geometry.
Current interactive ray tracing implementations are limited to hierarchical
affine transformations of rigid bodies [WBS03]. For more complex anima-
tions, the corresponding acceleration structures would have to be rebuild

2 Chapter 1: Introduction

from scratch. Unfortunately, acceleration structures cannot be build as fast
as it would be required for 3D computer games or interactive scientific vi-
sualization applications. Even with the fastest known algorithms [Ben06],
acceleration structures can only be rebuild a few times per second for mod-
erately complex scenes.

Additionally, the size of the acceleration structures itself can be prob-
lematic. For example, volumetric datasets tend to be large by itself and the
required acceleration structures can easily exceed the available main memory
of a system.

Finally realtime ray tracing implementations require optimized code that
exploits the features of a specific CPU or GPU for best performance.

1.1 The Goals of this Dissertation

This dissertation concerns itself with several of the above mentioned problems
in different application areas of ray tracing. In short, the goal is to present
solutions that allow for a use of ray tracing in 3D computer games and
isosurface visualization applications.

More specifically, some of the above mentioned problems will be addressed
by the following contributions and are the result of joint work with several
other researchers (see Appendix A for more details):

Ray Tracing for Future 3D Computer Games: Explores the oppor-
tunities offered by ray tracing based game technology in the context of cur-
rent and expected future performance levels. In particular, simulation based
graphics that avoids pre-computations and thus enables the interactive pro-
duction of advanced visual effects is discussed, the advantages of ray tracing
for future computer games analyzed, ray tracing API issues illustrated, and
first results from several ray tracing based game projects presented.

Ray Tracing of Dynamic Scenes: 3D computer games cannot life with-
out dynamic content. Most importantly, support for animated characters is
necessary. This thesis presents solutions to efficiently ray trace keyframe as
well as skinned animations. The algorithm works by introducing a preprocess
that identifies regions of locally coherent motion in a scene. For each of these
regions, the motion can then be divided into an affine transformation and
some residual motion that is captured by fuzzy boxes. Using this approach, a
classic two-level hierarchy can be used to ray trace complex animated objects.

Ray Tracing on IBMs Cell: Current performance levels are below what
is required for ray traced games. Therefore, the multicore-CPU of the Playsta-
tion 3 is investigated and an optimized ray tracing system described that
makes full use of the processors features. Additionally, efficient software
multithreading and caching is exploited to hide latencies for memory fetches.

1.2 The Structure of this Document 3

Both, multithreading and caching are not hardware supported on a Cell’s
SPEs and require a careful software implementation in order to achieve fast
ray shooting performance.

Isosurface Ray Tracing of Rectilinear Datasets: In scientific visual-
ization, isosurfaces are of particular interest. In order to efficiently ray trace
isosurfaces of rectilinear datasets the implicit min/max kD-tree as well as a
fast analytic ray isosurface intersection test are presented. The acceleration
structure does not require much memory and is also extended for the use of
out-of-core datasets.

Isosurface Ray Tracing of Unstructured Datasets: For isosurfaces of
unstructured datasets the implicit min/max BVH is introduced as well as
a fast intersection test that relies on features of the marching tetrahedron
algorithm. A simple update mechanism is also described which allows to
efficiently render time-varying datasets.

1.2 The Structure of this Document

This dissertation consists of two parts. Part one deals with ray tracing for
future computer games in the chapters two to five. Part two concerns itself
with isosurface ray tracing in the chapters six to eight.

Chapter 2 gives a brief introduction to ray tracing and describes some
of the fundamental differences between rasterization and ray tracing. After
a description of the most important terms, the evolution of ray tracing is
sketched. Finally, fast ray traversal and ray triangle intersection tests are
outlined.

Chapter 3 explores the opportunities offered by ray tracing based game
technology in the context of current and expected future performance levels.
It describes the benefits of ray tracing for future computer games as well as
prototype game implementations using ray tracing, and identifies problems
that have to be solved for a serious use of ray tracing in computer games.

Chapter 4 describes a novel preprocess to efficiently ray trace dynamic
scenes that are either defined by a set of keyframes, or skinned animations.
The preprocess exploits the property of locally coherent motion that can be
found in most 3D computer game like animations.

Chapter 5 analyzes the properties of the current Playstation 3 CPU and
presents an optimized ray tracing algorithm. The implementation features
software multithreading as well as manual data caching to hide the long
memory fetch latencies.

Chapter 6 introduces the basic terminology for volume rendering, volu-
metric datasets, and in particular isosurface ray tracing. Furthermore, the

4 Chapter 1: Introduction

evolution of isosurface rendering is briefly sketched and fundamental tech-
niques for isosurface rendering are discussed.

Chapter 7 presents a compact kD-tree based acceleration structure to ray
trace isosurfaces of rectilinear volumetric data sets which only require a low
memory footprint. Additionally, a view independent extension for out-of-
core isosurface ray tracing is proposed, and a novel fast and exact analytic
ray isosurface intersection test is presented.

Chapter 8 describes an optimized system to ray trace isosurfaces in un-
structured volumetric datasets. The system uses a tetrahedrization of the
input data to build an implicit BVH and performs ray isosurface intersec-
tion tests by exploiting marching tetrahedron techniques. A benefit of using
a BVH for unstructured volumetric data sets is that this allows to easily
support time-varying datasets.

Chapter 9 summarizes again the contributions and outlines some direc-
tions for future work before final conclusions are drawn.

Part I

Ray Tracing for Computer Games

.

Chapter 2

An Introduction to Ray Tracing

This chapter begins with a quick comparison of the rasterization and ray
tracing algorithm. After describing the core concept of ray tracing and how
it can be used for image synthesis, the evolution of ray tracing as a high
quality rendering approach is sketched. Finally, the most important concepts
to achieve realtime ray tracing performance are laid out. As this is just a
brief introduction, only the core ideas are described. Further information
can be found e.g. in books [FvDFH97, Gla89, SM03, PH04] as well as PhD
theses [Hav01a, Wal04, Ben06].

2.1 Rasterization and Ray Tracing

There are two major algorithms in computer graphics to synthesize 2D images
from 3D surface descriptions e.g. defined by triangles. On the one hand is
the rasterization approach, which is implemented in all off-the-shelf graphics
cards. Due to the simplicity of the rasterization algorithm its core operations
can be efficiently mapped to special purpose hardware and achieve extremely
high rendering performance.

Rasterization operates sequentially on the geometric primitives of a scene.
First, a geometric primitive is projected from its world-space coordinates onto
the image plane. Then, the set of possibly covered pixels is determined, and
for each of those pixels, a coverage test is performed. To test the coverage, at
a sample point in the center of a pixel a primitive shape’s edge equations are
evaluated. If it is determined that the primitive covers the pixel, the depth
value of this sample is computed. For every pixel, there is a corresponding
depth value stored in the z-buffer [Cat74]. Only if the depth value of a new
sample is less than the already existing value in the z-buffer, its value is
overwritten.

However, advanced optical effects like shadows, reflections, and refrac-
tions cannot be rendered correctly with rasterization because of two funda-
mental problems. First of all, the rasterization algorithm samples a scene

8 Chapter 2: An Introduction to Ray Tracing

Figure 2.1: The rasterization algorithm projects sequentially all primitives
onto the image plane. After the projection of each single primitive, its covered
pixels on the image plane are determined. In order to allow a proper front-
to-back rendering, for each pixel the distance to its current closest geometry
point is stored. This distance is used to reject the attempt to overwrite pixels
by primitives whose surface points are all farther away.

regularly on the image plane, but these samples for which the secondary
effects should be evaluated are distributed irregularly in space. Currently,
no hardware rasterizer is able to evaluate the visibility for this irregular
distributed sample points. And second, the direction from which a sample
should be generated cannot be considered. In short, with rasterization it is
very complex to perform arbitrary visibility queries. A visibility query is de-
fined as an operation that determines for a given origin and direction which
geometry point is next, if any exist [Dur99].

The other rendering algorithm is ray tracing. In contrast to rasterization,
ray tracing operates sequentially on the pixels. For each pixel, it can be
computed independently what is visible using a ray concept. As will be
discussed later, the ray concept allows for arbitrary visibility queries which
makes pixel-accurate advanced optical effects conceptually simple.

2.2 An Outline of Basic Ray Tracing Concepts

The main notion of ray tracing is the ray R(t). A ray, in three dimensions,
is a half-line parametrized by an origin O = (ox, oy, oz), a direction vector
~D = (dx, dy, dz) and a ray distance parameter t such that any point p along

the ray can be calculated by p = O + t ~D.
To compute an image using the ray concept, a camera model generates

for each pixel in the image plane a primary ray that is shot through it. In a
näıve approach the rays are tested for intersection with all scenes primitives to
determine the primitive and hit point with the shortest hit distance. To avoid
the intersection test with all objects in the scene, spatial index structures can

2.2 An Outline of Basic Ray Tracing Concepts 9

Figure 2.2: A recursive ray tracing example: A primary ray is shot through
the center of a pixel in the image plane and the cylinder is found as the
object with the closest hit distance. Since the cylinder uses a glass mate-
rial description, reflection and refraction rays are generated. These rays hit
the pyramid. Because of the definition of a light source in the scene, on
all intersection points the objects surface shaders generate a shadow ray to
determine if the hit points are lit or in the shade. Using the results of the
recursively executed shaders, invoked from the primary and secondary rays,
a pixel color is computed.

be built that allow a traversal with the ray and enumerate only those objects
that are probably pierced by the ray (see Section 2.4). Index structures act as
a database that take a ray as query key, and return the objects along the ray,
not necessarily in a strict but better front-to-back manner, consecutively to a
ray-geometry intersection routine until the closest hit point is found. Having
found the closest point of intersection, a surface shader calculates a color
that is assigned to the corresponding pixel. These shading computations can
either use only local information that is available for the hit point, e.g. its
color and shading normal, or query additional global information from the
scene, e.g. if the hit point is lit by a light source.

All this shading computations depend on the used illumination and shad-
ing models as well as surface properties of the primitives. Based on these
properties new secondary rays can be generated recursively within the sur-
face shaders to query the global information that is needed for the shading
computations (see Figure 2.2 for an example). This possibility of recursive
ray generation allows also for complex lighting simulations, considering also
indirect illumination from reflecting surfaces, resulting in photo realistic im-
ages. If only shading models are used that do not require any secondary rays

10 Chapter 2: An Introduction to Ray Tracing

the described algorithm is called ray casting.
From the above description the four core algorithms of ray tracing can be

deduced: ray generation, traversal, intersection, and shading. A remarkable
property of this algorithms is that they are completely independent. This
means that the underlying algorithms and data structures can be easily re-
placed and different rendering primitives as well as shading models can be
supported in one scene without any interdependencies. Only a common soft-
ware interface is required that lets the different algorithms communicate, and
share the required data.

2.3 Milestones in the Evolution of Ray Tracing

The very first ray tracing system was developed by Appel in 1968 [App68].
It was the first approach to calculate the visibility between two points with
the concept of rays as described above. In this early work, only planes
were supported as scene objects and a monochrome halftone shader was
used to compute shades due to the absence of color output devices in these
days. Nevertheless, this system produced for the first time images including
accurate shadow effects from point lights.

In 1980, Whitted [Whi80] introduced the first fully recursive ray-tracing
approach that allows to accurately render optical correct (mirror-like) reflec-
tions and refractions. In order to realize these effects he applied formulas
from optical physics namely Fresnel’s law for reflections and Snell-Descartes
law for refractions. The actual render algorithm is split into two stages. In
the first stage, a ray-tree is generated. This tree consists of the primary
ray and all recursively generated secondary rays that are shot based on the
surface properties at the hit points, but no actual shading computations are
performed. The recursive ray generation stops automatically if no further
object is hit, no further secondary ray is generated because of the surface
properties at the hit point, or a specified recursion depth is reached. Af-
terwards, in the second stage, this tree is passed to a shader that traverses
the trees nodes, evaluates its surface properties e.g. its specular color and
shading normal, and computes based on all results the final pixel color. This
approach was the first one that queried additional global information, using
rays except for shadow computations, from a scene to increase the visual sen-
sation of rendered images. Additionally, Whitted used also several primary
rays per pixel to avoid aliasing artifacts.

So far the ray tracing algorithm was only able to render effects like hard
shadows, reflections, and refractions. Cook et al. [CPC84] showed in 1984
that many more advanced optical effects are computable with a point sam-
pling approach. Ray tracing is inherently a point sampling algorithm, but
was until then only used to sample the image plane. Cook was the first one

2.3 Milestones in the Evolution of Ray Tracing 11

Figure 2.3: An example for the evolution of ray tracing image quality. On
the left the scene is rendered in Whitted style with a single point light source.
The middle image shows soft shadows sampled according to Cooks method.
Finally, the right image shows a global illumination solution for the scene
driven by Kayijas rendering equation. Please note how the realistic appear-
ance increases from left to right.

who noted that additional rays can also sample motion, camera lenses, light
sources, and shading functions. This sampling of the according functions
allows then to render soft shadows, motion blur, depth of field, translucency,
and glossy reflections. Using these effects enhances the realism of the ren-
dered images significantly.

Although Cooks work was a big leap forward towards realistic images, ray
tracing was still not able to render photo realistic images. This changed with
the seminal work of Kajiya [Kaj86] in 1986. Kajiyas important contribution is
the development of the rendering equation. His rendering equation describes
the exitant radiance for any point in a particular direction and describes for
the first time a generalized solution to the global illumination problem.

Considering light reflected from specular, glossy and diffuse surfaces al-
lows to truly compute photo realistic images including indirect illumination
as well as other optical effects like caustics [Jen01]. Caustics appear when
light is concentrated on small diffuse surface areas by previous specular re-
flections. Kajiya presented also a method for an approximate solution of
the rendering equation because in the general case, the rendering equation
cannot be solved analytically and has to be approximated numerically, e.g.
by using Monte Carlo techniques like point sampling.

The basic idea is to recursively forward a single ray from hit point to
hit point until a light source is hit, or a defined path length is reached. At
the light source, the light contribution of this ray-path can be computed for
a pixel. However, many rays per pixel have to be shot to obtain a smooth,
(almost) noise free image as many ray-path do not hit a light source and such

12 Chapter 2: An Introduction to Ray Tracing

do not contribute radiance to the pixel. This approach of ”shooting a ray-
path” to approximate the rendering equation is called path-tracing. Figure
2.3 compares the visual appearance of a test scene rendered with Whitted’s,
Cook’s, and Kajiya’s method.

2.4 Realtime Ray Tracing Techniques

As described above, ray tracing image synthesis algorithms enhanced signifi-
cant over the years up to global illumination simulations. Unfortunately the
time to compute ray traced images at times of Whitted and Cook were in
the order of several hours, up to days, and for a long time ray tracing was
considered only as a high-quality offline rendering algorithm. Starting in the
1990s [Muu95, PMS+99], researchers started to investigate concepts that are
necessary to speed up ray tracing to interactive or even realtime performance.
Three important concepts for realtime ray tracing are parallelism, coherence,
and acceleration structures. Two important use cases for these acceleration
structures are: the reduction of the required ray-geometry intersection tests,
and the reduction of the computational costs for a single ray-surface inter-
section. Typically these data structures are built in a preprocess before ren-
dering takes place and feature the classical performance-memory trade-off.
In the next sections all these concepts will be discussed in more detail.

2.4.1 Parallelism and Coherence

A property of the ray tracing algorithm is that every computed sample on
the image plane is completely independent from each other. For this reason,
ray tracing is sometimes called an embarrassingly parallel algorithm. In mul-
ticore/multiprocessor environments, this fact can be exploited by assigning
different sets of samples to the processing elements and later combine the
parallel computed samples to a final image. Parker et al. [PMS+99] showed
in 1999 that realtime ray tracing performance can be achieved using large
supercomputers, e.g. an SGI Onyx with more then 128 processors processors,
even for complex scenes with non-trivial lightning simulations.

Another possibility to speed up the rendering performance is to exploit
coherence. An obvious example for coherence in image synthesis is image
space coherence, i.e. neighboring pixels display the same geometric object.
A definite definition of the term coherence in the context of ray tracing
cannot be found in the literature [Ben06]. But loosely speaking it means
that: similar rays will likely execute similar code and access similar data.
The similarity of rays is very dependent on their origins as well as directions.
Rays that have a common origin and similar direction, as primary rays of
neighboring pixels, have a very high coherence whereas rays with origins that
are spread around the scene and with very different directions have a very

2.4 Realtime Ray Tracing Techniques 13

low coherence.
Wald [Wal04] and Benthin [Ben06] showed that exploiting coherence using

Single-Instruction-Multiple-Data (SIMD) extensions of modern CPUs can
speed up the rendering performance by a factor of two to three by tracing
four rays in a data-parallel fashion. A packet size of four rays is chosen
because current SIMD architectures allow to operate on four 32 bit data
values in parallel [AMD, Int02b]. The expected performance gain of a factor
of four cannot be achieved in general due to some overhead, e.g. because
of masking operation for rays that already terminated. Exploiting SIMD
reduces also the required memory-bandwidth and cache miss rate since fewer
data accesses are necessary. Additionally, the penalty costs for a memory
access can be amortized to a fourth e.g. when a requested data word is used
in all four slots of a SIMD register. In their work they also showed that
SIMD extensions can be used for all four core algorithms (ray generation,
traversal, intersection, and shading) as well as complex global illumination
computations [BWS03a].

A recent approach to exploit ray traversal coherence more efficiently was
presented by Reshetov et al. [RSH05] in 2005. Their approach is based on
the observation that coherence while ray traversal is not constant. Most ray
tracing implementations use hierarchical index structures (see Section 2.4.2)
to speed up first-hit calculations. It can be seen that the coherence up in
a hierarchy for ray packets is very much higher then in lower levels. This
led to the idea that it is reasonable to start traversal with a very large ray
bundle, e.g. with 64 × 64 rays, and during traversal split the bundle into
smaller subbundles as coherence decreases. In fact, Reshetov starts with
a large ray bundle and calculates the deepest node in the hierarchy that
covers all primitives that can be intersected by the ray bundle. Afterwards
the ray bundle is split and traversal starts again for the subbundles at the
previously calculated entry-point for the new ray bundles. This refinement
of ray bundles is repeated until the entry-point is at the lowest level of the
hierarchy or a ray bundle contains only four rays. To keep the computational
costs low, only the corner rays of a ray bundle are considered for traversal.
Using this technique, ray traversal performance can be accelerated by an
order of magnitude.

As ray traversal coherence for primary rays can be exploited efficiently
even for large ray bundles, it is much more difficult for secondary rays and
further processing steps like ray-geometry intersections and shading. In order
to increase the coherence of secondary rays, sets of secondary rays can be
reordered, e.g. according to their directions and origins, into more coherent
ray sets that are then traced independently [PKGH97, NFLM07, MMAM07].
But until today these approaches do not deliver the expected performance

14 Chapter 2: An Introduction to Ray Tracing

gain due to high reordering costs.

Intersection test costs for large ray bundles can be reduced by intersecting
first the corner rays of the ray bundle with the primitives. If the corner rays
hit the same primitive, the intersection points for inner rays can be linearly
interpolated – assuming that the primitives are convex [WBS07].

2.4.2 Hierarchical Index Structures and their Construction

A näıve ray tracing implementation would intersect a ray with all primitives
of a scene to determine the closest hit point. For scenes with many primitives
this is not feasible as rendering times would be far from interactive. In
this section data structures are discussed that are suitable to reduce the
number of required ray-geometry intersections by organizing the geometry
in hierarchical spatial structures like the bounding volume hierarchy (BVH)
[RW80, Whi80] or kD-trees [Kap85, Jan86]. Although there are many other
data structures – like grids [AW87], bounding interval hierarchies [WK06],
bkd-trees [WMS06], etc. – that can be exploited for this task, only BVHs
and kD-trees are discussed here and used throughout this thesis, because
they typically offer the best or at least competitive performance results on
commodity PC hardware – when built properly [Hav01a].

The very basic idea of these hierarchical data structures is to distribute
the scenes primitives recursively into two sets; resulting in a binary tree
structure with only a few primitives left per leaf node. In doing so, the
BVH and kD-tree follow two fundamental different approaches. A kD-tree
is build by splitting a given space into two half-spaces, divided by an axis
aligned plane, and distributes the objects into the half-space they belong
to. Objects that overlap both half-spaces will be inserted into both. This
process is recursively repeated until some termination condition is reached
(see below).

A BVH does not split the objects space, but splits the set of objects into
two disjoint sets which yields in turn two enclosing volumes, one for each
set – which can overlap or be completely disjoint. After each split the exact
bounds, of each subset, are computed and stored in the respective node. The
decision, which primitive belongs to which set, is here also based on an axis
aligned splitting plane. For objects that lie on the splitting plane the objects
median can be used to evaluate the best matching set it belongs to. The
enclosing volumes can be arbitrary defined but in practice often axis aligned
boxes are used since they can be very efficiently handled in the traversal
stage (see Section 2.4.3). Since in a BVH a primitive always belongs to only
one split subset, the tree has usually less nodes than a kD-tree for the same
scene. Additionally, a kD-tree will typically have some empty leaf nodes
whereas a BVH does not. Nevertheless, both acceleration structures have a

2.4 Realtime Ray Tracing Techniques 15

4

5

7

1

2

3

6

8

1

7

2

3

4

5

6

8

Figure 2.4: A simple kD-tree construction example: On the left, the recursive
space subdivision with splitting planes. The colored numbers indicate at
which step in the process the corresponding splitting plane is inserted. On
the right, the resulting binary tree structure. Each internal node in the
hierarchy shows the number of its corresponding splitting plane.

construction time complexity of O(n log(n)) which can make this procedure
computational expensive. Figure 2.4 shows a simple kD-tree construction
example.

Build Strategies

An unanswered question is now when a space, or set of objects, is split by an
axis aligned plane what the orientation (x, y, or z axis) and the position of
this splitting plane along the split axis is. Probably the simplest method to
choose the orientation of the splitting plane is to cycle through the dimensions
x, y, and z. Two simple strategies can then be used to determine the splitting
plane position along the splitting axis. First of all, the splitting plane can
be put in the middle of the space. Second, rather then cutting the space in
the middle, another strategy is to position the splitting plane at the location
where the number of objects on both sides is balanced (median).

Nevertheless, currently the best known method for calculating the split-
ting dimension and position is the so called surface area heuristic (SAH)
proposed by Booth et al. [MB90]. Using the SAH can lead to rendering
performance improvemtens up to a factor of two [Wal04] compared to other
strategies. The SAH evaluates at each possible split position – in all dimen-
sions – a cost function:

C = CT + CI

(
NL

SA(VL)

SA(V)
+NR

SA(VR)

SA(V)

)
(2.1)

to determine the split position where C is minimal. CT describes the compu-
tational costs for a traversal step and CI for intersections respectively. These

16 Chapter 2: An Introduction to Ray Tracing

costs have to be measured for each actual implementation since they are very
dependent on the used algorithms for traversal and intersection, (compiler)-
optimizations and hardware architecture. NL and NR are the number of
objects in each of the split partitions. Finally, the function SA determines
the surface area of the complete volume V as well as both split partition
volumes VL and VR. It can be shown that the minimum C lies always on a
vertex position (for triangles) and thus only at those positions equation 2.1
has to be evaluated.

A termination criterion to stop the recursive splitting process is given e.g.
when the total intersection costs are smaller than the traversal costs. Addi-
tional criteria that are often used are a maximum node depth in a tree or a
maximum number of objects in a leaf node. The SAH leads to a good tree
structure because it tries to minimize for arbitrary rays the total computa-
tional costs for traversal and intersections. Although the SAH turns the tree
construction process into a greedy 1 algorithm that could lead to non-optimal
results, no better algorithm is currently known; except the brute force vari-
ant that tests all possible trees for best performance which is impractical for
non-trivial scenes.

A recently published new strategy [WK06, WMG+] for a fast BVH con-
struction is similar to the above mentioned split-in-the-middle strategy. But
rather than computing after each split new exact bounds for the subtrees
the current bound is simply divided in the middle such as the kD-tree spa-
tial subdivision scheme. When the tree build is finished a recursive update
process computes for all tree nodes the correct bounds.

2.4.3 Ray-Traversal Algorithms

The last section described briefly how a BVH or a kD-tree can be built.
Now it will be discussed how these data structures can be traversed to only
perform intersection tests with primitives that are potentially hit by a ray.
Many different traversal algorithms exists for kD-trees and BVHs, but here
only those will will be discussed that are used in this thesis.

kD-Tree Traversal

As mentioned above, a kD-tree is a binary tree with each node having either
no (leaf node) or two descendants (inner node). Each internal node stores
a pointer to its children, the splitting plane dimension and position, as well
a flag that indicates whether it is a leaf node or not. It is possible to use
only one child pointer if both children are stored side by side in memory. A

1A greedy algorithm always makes the choice that looks best at the moment [CLRS01].
For each splitting position the optimal local solution is computed with the goal to achieve
a globally optimal solution. However, this goal cannot always be achieved.

2.4 Realtime Ray Tracing Techniques 17

-+- +

n

f
d

n n

f f
d

d

Figure 2.5: Single ray kD-tree traversal exemplified. In the red box the
correlation between a rays direction and the near/far half-spaces is shown.
It can be seen that the decision which half-space is the near or far one is solely
dependent on the rays direction. The green box shows the three standard
kD-tree traversal cases. If d > f (n > d), only the near (far) half-space has
to be traversed. If n > d < f both half-spaces have to be considered. n
is the distance to the entry point of the ray, d the distance to the splitting
plane, and f the distance before the ray leaves the bounding box.

leaf node stores the number of contained triangles as well as a pointer to the
triangle list. All this information, for both internal and leaf nodes, can be
stored in a single packed representation with eight bytes [Wal04].

A single traversal step in a kD-tree is computational very cheap. It re-
quires only the distance calculation of a ray’s origin to a nodes split plane,
and at most two conditionals. The the two conditionals determine if either
the near or the far node has to be traversed, or both. It can be shown, that
the decision, which of the children’s nodes is near (far) is solely dependent
on the ray direction along the split axis (Figure 2.5 red box). A remark-
able property of the kD-tree is that it allows a strict front-to-back traversal.
That means that once a leaf node is found which contains a triangle that
is hit by a ray, traversal can immediately stop, because no other leaf node
can contain a triangle with a closer hit distance. In the following the de-
cision rules for single ray, coherent SIMD traversal, and frustum traversal
are detailed. For further information including source code please refer to
[Wal04, Ben06, Hav01a].

Single Ray Traversal: The single ray traversal begins by clipping the ray
against the bounding box of the complete scene. This yields ray distance
parameters near, n, and far, f , to the entry and exit point with the scenes
bounding box – assuming that the ray hits the box at all. These initial
parameters are required to start the traversal procedure. After calculating
the ray distance d to the splitting plane, three traversal cases have to be
distinguished (see Figure 2.5 green box). Either the ray traverses only the
near (far), or both half-spaces. A ray traverses only the near (far) half-space
when f < d (n > d), and both in any other case.

18 Chapter 2: An Introduction to Ray Tracing

dmin
dmax

fmax

fmin

nmax

nmindmin
dmax

Figure 2.6: The frustum ray segment kD-tree traversal method. For travers-
ing a complete frustum, containing potentially many rays, only a single
distance interval [nmin, fmax] has to be considered. If dmin > fmax only the
near half-space has to be traversed. In the case that dmax < nmin only the
far half-space. All other cases require the traversal of both half-spaces.

SIMD Ray Packets: Considering now a SIMD packet of 4-rays, the same
rules for the traversal can be used – when all rays share the same origin. But
rather comparing only single values now four values are compared at the same
time using SIMD extensions. Identical to the single ray traversal, all rays
in the packet traverse only the near (far) half-space when ∀i ∈ [0, 3]fi < di

(∀i ∈ [0, 3]ni > di), and both in all other cases. As said above, the decision
which half-space is near (far) depends on the ray directions. If the directions
in a packet differ, either the packet can be split and single ray traversal is
used, or the common origin of the rays is used to guarantee a consistent front-
to-back traversal order. All rays traverse first the half-space that includes the
origin. In the case that both half-spaces have to be traversed, it is possible
that not all rays actually pierce both half-spaces. To avoid unnecessary
computations these rays are just turned-off by using an active-ray mask.
Similarly for rays that have already found their closest hit, they will just be
deactivated such that they cannot influence the traversal decisions anymore.

Frustum Traversal: Finally, the last kD-tree traversal scheme that is
briefly touched in this introduction is the frustum traversal (see Figure 2.6).
Similar to the packet traversal case, a frustum consists also of four rays. But
now, these rays are only the corner rays of a (possibly) larger ray bundle
e.g. with 8 × 8 rays. Interestingly enough, it is possible to traverse a com-
plete ray bundle by just looking at a single distance interval [nmin, fmax].
If the dmin > fmax only the near half-space has to be traversed. When
dmax < nmin only the far half-space. In all other cases both. The algo-
rithm starts again by clipping the frustum rays against the scenes bounding
box. To obtain initial values for nmin and fmax the minimum and maxi-
mum of all ni and fi can be determined. dmin and dmax can also be com-

2.4 Realtime Ray Tracing Techniques 19

puted without looking at all individual rays in the bundle. Before traver-
sal starts all minimum min diri = max(∀frustum dirsi) and maximum
max diri = min(∀frustum dirsi) frustum directions, with i ∈ {x, y, z}, are
calculated. These extreme directions can then be used to compute dmin and
dmax.

BVH Traversal

A BVH is a binary tree where each node has either no, or two descendants.
Contrary to the kD-tree, a BVH cannot guarantee a strict front-to-back
traversal. The reason is that a BVH may have overlapping boxes and thus it
cannot be known in which box the first hit can be found. This implies that
traversal cannot just stop after the first leaf node is found which contains a
triangle that intersects the ray and that there is an traversal overhead as the
ray may traverse parts that it would would not traverse otherwise.

Single Ray Traversal: Typically, when single ray traversal is used, a
BVH node stores an axis aligned bounding box, a leaf indicator, and a single
pointer to its children or to its primitives – plus the number of primitives –
when it is a leaf node. In a traversal step, the entry distance to its children’s
bounding boxes are computed, and the closest one is traversed first. The
termination criterion for a ray is reached when the entry point of the next
node is farther away as the current closest hit position with a primitive. Since
the costs of a single traversal step are much larger compared to a single kD-
tree traversal step, single ray BVH implementations are usually slower, at
least on CPUs.

SIMD Traversal: In contrast to single ray traversal, SIMD traversal im-
plementations do in general not intersect the bounding boxes of a node’s
children but the node’s own bounding. The reason is that for the rays in a
SIMD packet, not all rays will have the closest hit with the same children’s
box. Thus the particular distances cannot be efficiently used to determine the
best traversal order. For that reason, another strategy is used which approx-
imately traverses the boxes in distance order [Mah05] using the dimension
of the clipping plane (determined while BVH construction), and the ray di-
rection’s signs [WBS07] – in the same manner as a kD-tree decides which
descendant is the near-son. Many implementations use for convenience just
the sign bits of the first ray in the packet and precompute before traversal
starts for each dimension the near-son index. The less the bounding boxes
of the BVH overlap the better this heuristic works.

Extended SIMD Traversal: As the traversal costs even for SIMD ray
packets are still much larger than for kD-tree traversal, Wald et al. [WBS07]
propose a new algorithm to amortize the expensive ray-box intersection tests

20 Chapter 2: An Introduction to Ray Tracing

Child A
Child B

Child A
Child B

Figure 2.7: First-active descent, frustum test, and active ray tracking: Given
a BVH node, the first active ray in the packet against the bounding box is
speculatively tested. If it hits it can immediately be descended (left). If this
test fails, a frustum test to reject nodes completely outside the frustum is
performed (center). If neither of these tests prove successful, all rays sequen-
tially in a packet are tested until one hits; rays that missed are deactivated
for future traversal steps (right).

over larger ray bundles e.g. with 8×8 rays. The core idea is to split a traver-
sal step into three individual tests: At first, the first active 4-ray packet is
tested for intersection with the nodes bounding box. If this test is successful,
immediately the next node to be traversed can be computed without testing
all other active ray packets in the complete bundle. If this tests fails, the
frustum rays of the bundle are tested with the bounding box to decide if the
frustum hits the bounding box. If this test also fails, all active ray packets
are consecutively tested for intersection until a packet is found that hits the
box. For subsequent traversal steps, this packet is then the first active packet
(see Figure 2.7).

2.4.4 Fast Ray-Triangle Intersection Tests

Today, the most common used graphical primitive is the triangle and realtime
ray tracing engines use optimized ray-triangle implementations that can lead
to a performance improvement of up to a factor of two [Wal04].

A triangle is simply defined by three vertices vi, i ∈ 1, 2, 3 with vi =
(xi, yi, zi). To compute if and where a ray hits a triangle a system of linear
equations can be set up i.e. R(t) = αv1 + βv2 + γv3. t is the hit distance
along the ray, and α, β, γ are the barycentric coordinates of the hit point. A
ray hits a triangle if t ≥ 0, α + β + γ ≤ 1, and 0 ≤ (α, β, γ) ≤ 1.

In order to derive an efficient solution it is common to reformulate this
system of equations to an edge-based form resulting in R(t) = v1 +α~e1 +β ~e2
with ~e1 = v1− v0 and ~e2 = v2− v0. Möller et al. [MT97] rewrite this formula

2.4 Realtime Ray Tracing Techniques 21

as matrix product:

O − v0 =
[
~D ~e1 ~e2

] tα
β

 , (2.2)

and apply then Cramer’s Rule to compute t, α, and β.
Badouel [Bad90] takes a different approach. Rather than computing t, α,

and β in one step, he first computes t by intersecting the ray with the infinite
plane the triangle is embedded in. This can be simply done by e.g. substi-
tuting the ray equation p = O+ t ~D into the plane equation (p− v1) ·N = 0,
with N being the triangles geometry normal. Having now t, and thus the hit
point coordinates, Badouel reduces the equation p = v1 +α~e1 +β ~e2 to two di-
mensions by projecting the triangle on an axis-aligned plane. This allows to
perform all following computations in 2D. In order to avoid numerical issues,
the projection plane is chosen such that the projected area of the triangle is
as large as possible.

Wald [Wal04] showed that many calculations in Badouels approach are
redundant and can thus be precomputed and reused. In his approach, for
each triangle a structure is precomputed that contains values that are con-
stant per triangle for computing t, as well as values that can be used to
compute α, and β. Although this structure increases the memory consump-
tion, cache utilization does not suffer. On the contrary, cache efficiency is
increased because all relevant data that are needed for intersection are stored
in one consecutive block of memory, e.g. one cache line, and thus no random
memory access occurs. Whenever in this thesis a ray-triangle intersection
test is needed a variant of this approach is used. For more details and a
thorough discussion please refer to [Wal04].

Chapter 3

Ray Tracing for Computer Games

This chapter comments briefly on the current state-of-the-art in ray tracing
and exemplifies why ray tracing should be used for the development of future
computer games. It will be also discussed what kind of software and hardware
support is necessary to make ray tracing happen in future computer games.

3.1 General Discussion

Computer games are the single most important force pushing the develop-
ment of parallel, faster, and more capable hardware. Some of the recent 3D
games (e.g. Elder Scrolls IV: Oblivion [Bet05]) require an enormous through-
put of geometry, texture, and fragment data to achieve high realism. They
increasingly use advanced and computationally costly graphics effects like
shadows, reflections, multi-pass lighting, and complex shaders. However,
these advanced effects become increasingly difficult to implement due to the
fundamental limitations of the rasterization algorithm, its inability to per-
form recursive visibility queries from within the rendering pipeline. This
results in a number of significant problems when trying to implement ad-
vanced rendering effects. These limitations will be analyzed in more detail
in Section 3.2.

Ray tracing, on the other hand, has several advantages and avoids many
of these limitations (also discussed in Section 3.2). It is, for example, specif-
ically designed to efficiently answer exactly these recursive visibility queries,
which enables it to accurately simulate the light transport and the appear-
ance of objects in a scene. However, ray tracing had been much too slow
for interactive use in the past. Due to significant research efforts in recent
years, ray tracing has achieved tremendous progress in software ray tracing
performance [WSBW01, RSH05, WBS07, WIK+06] to the point where real-
time frame rates can already be achieved for non-trivial scenes on standard
CPUs and at full screen resolution (see Table 3.1).

Table 3.1 compares the rendering performance of several realtime ray trac-

24 Chapter 3: Ray Tracing for Computer Games

Figure 3.1: Several ray tracing benchmark scenes for performance compar-
isons. From left to right: ERW6, Conference, Soda Hall, Toys, Runner,
Fairy.

ing implementations, namely the original OpenRT system [WBS02], multi-
level ray tracing (MLRT) [RSH05] both using kD-trees as spatial index struc-
tures, and recent implementations with Bounding Volume Hierarchies (BVH)
on CPUs [WBS07] as well as GPUs [GPSS07], and Grids [WIK+06]. These
numbers give an overview of the ray tracing performance that can be achieved
in software, but it is important to note that these systems vary significantly
in their feature set and thus are not directly comparable. Images of the used
test scenes are shown in Figure 3.1. This speedup in software was possible
due to a number of algorithmic improvements across the entire ray tracing
pipeline, beginning with the spatial index structures (see Section 3.5 for more
details) and associated traversal algorithms [Hav01a], ray-primitive intersec-
tion tests e.g. for triangles [Wal04] or Bézier surfaces [BWS06a], and shading
calculations. These algorithmic improvements have been augmented and

Scene #Triangles OpenRT MLRT BVH Grid GPU BVH
2001 2005 2006 2006 2007

ERW6 800 2.3 50.7 31.3 18.3 36.0
Conference 280k 1.9 15.6 9.3 4.0 19.0
Soda Hall 2.5M 1.8 24.0 10.9 7.4 16.2

Toys 11k – – 21.9 20.0 –
Runner 78k – – 14.2 13.1 –
Fairy 180k – – 5.6 3.1 –

Table 3.1: Performance comparison of several ray tracing implementations
measured in frames per second (fps). Note that these systems are not directly
comparable due to their highly varying feature set and exploited hardware
platforms: some even support dynamic scenes while others do not work well
for secondary rays. All numbers have been measured with a simple diffuse
shader at a resolution of 1024 × 1024 pixels on a single high-end CPU core
except the GPU numbers which are measured using an NVidia G80 graphics
board.

3.2 Advantages of Ray Tracing for Games 25

carefully tuned with optimizations for today’s CPU architectures [Ben06].
Due to its high degree of parallelism the ray tracing performance benefits

directly from the current trend towards symmetric and asymmetric multi-
core CPUs and affordable multi-processor systems. In addition, dedicated
ray tracing hardware has been developed [SWW+04, WSS05] that are pro-
grammable and support fully dynamic scenes [WMS06].

These developments on the algorithmic as well as on the software and
hardware implementation side are promising to bring ray tracing performance
to a level where it becomes interesting for computer games. In the following
sections this space will be explored by looking at the potential benefits of us-
ing ray tracing in games (Section 3.2), several prototypes of ray-tracing based
games (Section 3.3) are analyzed, the importance and the different require-
ments of ray tracing for APIs (Section 3.4) are stressed and recent advances
in the support of dynamic scenes (Section 3.5) are reviewed. Finally, the
different options of improving performance through better hardware support
will be analyzed and compared.

3.2 Advantages of Ray Tracing for Games

Before implementations and other details of ray tracing are discussed it is
important to first take a look at the advantages and opportunities this tech-
nology may offer for games.

3.2.1 Recursive Visibility Queries

Due to the fundamental feed forward structure of the rasterization algorithm
the complexity of implementing advanced features has increased significantly.
One indication of this is the large number of publications about reducing
shadowing artifacts in rasterization and the fact that games sometimes still
need to implement multiple shadow algorithms in order to handle each gam-
ing situation [Hur05].

In this context it is important to note, that most computations that occur
during rendering depend on the locally visible part of the scene. This includes,
for example, the surfaces visible from a camera, light sources illuminating a
point, or other surfaces visible in reflections or causing indirect illumination.
Such visibility queries sample the global visibility function which maps some
local coordinates (typically position and direction) to global coordinates (i.e.
a point on some other surface). Interestingly enough, these visibility queries
are exactly what recursive ray tracing is designed to compute efficiently.

Rasterization, however, does not allow for any recursive visibility query
from within its pipeline. To support such computations at all, it must fall
back to precomputing the data in local coordinates in form of the well-known
shadow, reflection, or other maps. However, there are two major issues in-

26 Chapter 3: Ray Tracing for Computer Games

herent in this approach: inefficiency and sampling artifacts.
Inefficiencies arise because in general the entire visibility function for a

point or an object must be precomputed even if later only a small subset may
be relevant (e.g. not everything locally visible will contribute to a reflection).
This is a fundamental problem because the final queries are not known in
advance (otherwise, the result of the previous visibility queries that caused
these queries in the first place would already be known).

Typically discrete maps are used to represent relevant parts of the visibil-
ity function. Thus, aliasing artifacts are unavoidable because this function
is generally continuous and not band-limited.

The design of the rasterization algorithm causes yet more problems with
visibility queries. The algorithm is designed to be efficient only for a very
large set of very regular queries (i.e. millions of rays all starting at a single
origin and going through the uniform grid of pixels on an image plane).
However, the visibility queries that occur during rendering tend to be rather
sparse and irregular. An example are the few reflection rays of a small curved
reflector. Furthermore, this rasterization process is driven directly by the
application in an imperative way (“draw these triangles to the (frame) buffer
in this way”). However, the need for recursive visibility queries arises from
shading computations within the pipeline on the graphics chip. This requires
some form of feedback from the hardware through the driver back to the
application running in a totally different (user) context. This significantly
complicates the process and introduces large latencies.

It is interesting to note that due to the above problems ray tracing is
increasingly being used as a supplementary algorithm within rasterization
based techniques. Examples are displacement mapping [WTL+04], approx-
imate refractions on the GPU [Wym05], or ray casting through volumetric
data [KW03b] (also see Section 3.6.2 regarding the implementation of ray
tracing on GPUs). In this chapter, it is argued that it may be interesting for
games to explore ray tracing as the primary rendering engine instead of just
an add-on.

3.2.2 Plug’n’Play for Geometry and Shading

Ray tracing closely matches the physical process of light transport in the real
world. This has several important implications also for the design of games
when utilizing ray tracing. The most notable advantage is what is called
“Plug’n’Play” for geometry and shaders (see also Section 3.4).

The recursive ray tracing method can support a wide variety of geomet-
ric primitives as long as efficient intersection algorithms are known and the
objects can be inserted into spatial indices. Beyond triangles, realtime algo-
rithms have been published for (trimmed) splines surfaces [BWS06a, GA05],

3.2 Advantages of Ray Tracing for Games 27

Figure 3.2: Left: an office scene with polygonal surfaces, volume data, and a
light field object. Note how all optical effects work as expected: For example,
the volume (skull) casts semi-transparent shadows on procedurally textured
surfaces; the light field (dragon) is also visible through the bump-mapped
reflections on the mirror; and all these effects are again visible in the mirror
sphere. Right: a volumetric Bonsai tree in a polygonal environment with
indirect global illumination and soft shadows. No additional code is required
to handle the complex interaction of light between all these different geometry
representations.

subdivision surfaces [BWS06a], point based surfaces [WS05], and iso-surfaces
of volumetric data [WFM+05, MS06a]. Even more algorithms are known
from off-line computation that may also be accelerated for realtime use.
The RPU ray tracing architecture [WSS05] even supports programmable and
hardware accelerated intersection computations.

Because they all support the same simple interface towards rays, all of
these representations can be freely mixed in the same scene. All interac-
tion between different geometry objects such as reflections or shadows work
seamlessly as is demonstrated in Figure 3.2. No special support is needed by
the application, which is in stark contrast to rasterization, where specialized
rendering algorithms must be integrated for every type of primitive. It is
well-known that these algorithms are generally not orthogonal to each other
and often interfere also with shading algorithms.

For shaders the situation is similar. Shaders describe the material prop-
erties for ray tracing and specify locally how light interacts with the sur-
face they are applied to. However, as discussed above, they may also query
about their global environment by recursively shooting more rays. The global
appearance is then achieved automatically without further participation by
the application. Seemingly difficult effects such as complex inter-reflections,
multiple refraction, or self shadowing are straightforward to achieve in this

28 Chapter 3: Ray Tracing for Computer Games

context (see Figure 3.3). Also no explicit depth sorting of transparent poly-
gons is needed as with rasterization, because the ray tracing algorithm is
guaranteed to visit all surfaces in the correct order.

Together, this allows for full “Plug’n’Play” where shaders can be freely
assigned to geometry, which may then be freely combined with other objects
and their shaders. This simplifies both the development of the graphics
engine in a game and the creation of game content. The content designers
are no longer constrained by sometimes obscure technical limitations. Many
advanced effects that were difficult to achieve with rasterization (such as
simple shadows) come naturally with ray tracing.

3.2.3 Scalability in Scene Size

The scene complexity in games is increasing at an amazing rate and al-
ready reached the point where the basic approach (sequential brute-force
rasterization with z-buffer) cannot handle these scenes any more. Increas-
ingly techniques like level of detail (LOD) [LWC+02], spatial indices like
BSP-trees [FKN80], portals [LG95], and precomputed potential visible sets
(PVSs) [ARFPB90] are used to reduce the number of triangles that must be
processed by the hardware.

It is interesting to note that many of these techniques require data struc-
tures that are almost identical to those used within ray tracing. However,
these data structures are usually built and maintained on the application side
instead of built transparently into the rendering engine itself. As a result, the
granularity of these approaches is usually much coarser than for ray tracing.

Ray tracing is output sensitive by design, i.e. it only ever processes (or
even loads) data touched by rays that are known to contribute to the image.
The typical spatial index structures are hierarchical and lead to an average
computational complexity of O(log(n)) for ray shooting for scenes with n
primitives. This allows for ray tracing of scenes with billions of triangles in
realtime as is shown in Figure 3.8.

3.2.4 Physically-Based Global Lighting Computations

Another major advantage of recursive ray tracing is that it can directly be
mapped to the process of simulating the transport of light particles through
a scene. Here each ray represents some portion of energy that travels through
space until scattered at some surface (or even within participating media).
These events may then recursively spawn new rays. This directly allows for
rendering reflections and refractions even via highly complex light paths as
seen in Figure 3.3. All these lighting computations are typically performed
with floating point precision and thus directly support High-Dynamic-Range
(HDR) rendering.

3.2 Advantages of Ray Tracing for Games 29

Figure 3.3: Left: complex light path with up to 25 levels of recursive reflection
and refraction for the car headlight with highly curved surfaces. Up to 50
rays per pixel need to be traced to achieve an adequate realism. Right: An
example from the industrial use of realtime ray tracing simulating important
multiple reflections for design reviews.

The subtle variations due to indirect illumination significantly increases
the realism of game environments, as it contains information about the spatial
proximity of objects that the human visual systems interprets quickly and
subconsciously. Indirect illumination at some point is caused by light that
bounced off of (all) other visible surfaces in the scenes, and may recursively
involve other non-visible surfaces as well.

This illumination technique has been widely applied in commercial games
but has been limited to static and precomputed results because of the huge
computational cost. Typically radiosity methods [CW93] are used to com-
pute the indirect illumination, which is then stored as vertex colors or light
textures. One increasingly popular method also is precomputed radiance
transfer (PRT) [KSS02, SKS02], which allows changing the illumination of
static objects through a distant environment map. Newer extensions [SLS05]
allow also the use of PRT for locally deforming objects.

An important general technique to efficiently compute indirect illumina-
tion is Instant Radiosity [Kel97]. In a first pass this technique places sec-
ondary light sources in the scene through a random process. In the second
pass these light sources are used to illuminate the scene using normal shadow
computations. This approach directly maps to an efficient implementation
using fast ray tracing [WKB+02, BWS03b] that already runs in realtime on
a small set of CPUs.

Another indirect illumination effect are caustics caused by the concentra-
tion of light due to reflections or refractions (see Figure 3.4). Caustics can
provide important visual clues, especially with transparent objects such as

30 Chapter 3: Ray Tracing for Computer Games

Figure 3.4: Caustic effects caused by multiple reflections or refractions are
well handled by photon mapping based on ray tracing. This images can be
rendered at approximately 15 fps on a cluster of PCs with a resolution of
640× 480 pixels.

glass and liquids. These scenes would look highly unnatural without their
caustics illumination effects.

Photon Mapping [Jen01] is considered the only robust and efficient tech-
nique for computing caustic effects. In a first pass it distributes large number
of “caustic” photons in the scenes via specular reflection of refraction. In the
second pass it then uses the density of photons at a point to compute the
caustic illumination. This method can again be mapped directly to ray trac-
ing (see Figure 3.4) and reaches near-interactive frame rates even on a single
CPU [GWS04].

While indirect lighting techniques have also been implemented using ras-
terization hardware [EAMJ05, DS06] these approaches are quite limited.
They only support a single bounce of light and completely ignore visibil-
ity after the first bounce because of the difficulty to compute it efficiently.

In summary, ray tracing is ideally suited to compute the visibility that is
at the core of most rendering algorithms. Its close match to real world light
transport and its physically-based computation allows for almost arbitrary
flexibility when combining geometric models and shaders in a Plug’n’Play
manner. Finally, ray tracing supports even extremely complex models effi-
ciently and can be used efficiently for obtaining the indirect illumination that

3.3 Games using Ray Tracing Projects 31

is likely to play an important role in future games due to its significant role
in achieving higher realism.

3.3 Games using Ray Tracing Projects

In order to explore the requirements and benefits of ray tracing based games
a number of experiments were performed. On the one hand several ex-
isting rasterization based games were reimplemented, including Quake 3:
Arena [idS99], Quake 4 [idS06], and Grand Theft Auto: Vice City [Roc02].
On the other hand the game Oasen that assumes fast ray tracing hardware
to be available and explores this new design space were developed.

3.3.1 QuakeRT

In 2004, a student project [SDP+04] was realized which implemented a com-
plete graphics engine using the OpenRT API in order to play a simplified
version of Quake 3.

The goal was to fully support all graphical effects of Quake 3 as well as a
collision detection system using ray tracing. Other non-graphic related algo-
rithms like AI were simplified. Figure 3.5 shows some screenshots rendered
on a PC cluster at 20 fps with a screen size of 640 × 480 pixels and 4× full
screen anti-aliasing.

Some features of this engine are realistic glass with reflection and refrac-
tion, correct mirrors, per-pixel shadows, colored lights, fogging, and Bézier
patches with high tessellation. All of these effects are simple to implement
with rudimentary ray tracing techniques. Additionally, two different light
sources are supported: point lights for ordinary lighting and spot lights to
simulate a flashlight. Other effects which can be defined with the Quake 3
shader language are also supported. Rather then using the original scene
geometry some of the walls and floors have been replaced by highly tessel-
lated geometry using static displacement mapping yielding approximately
one million triangles e.g. for the Temple of Retribution map. The game
engine was written from scratch and supports player and bot movement in-

Figure 3.5: Various screenshots of QuakeRT featuring several shading effects
like complex colored shadows from many objects, multiple reflective spheres,
and spot lights.

32 Chapter 3: Ray Tracing for Computer Games

Figure 3.6: Example screenshots of Ray City.

cluding shooting and jumping as well as many special effects like jump-pads
and teleporters.

The complete rendering engine was implemented by a single student
within five months. Furthermore, the code complexity to support all these
effects is very low. All effects were implemented independently and work
together in a simple Plug’n’Play fashion.

Recently also Quake 4 has been ported to work with OpenRT. In contrast
to Quake 3, ray tracing was in this project not only used for the purpose of
rendering, but also to use OpenRT’s ray shooting capabilities for collision
detection computation.

Using the same graphics engine, another project was started to reimple-
ment GTA Vice City (see Figure 3.6). Special extensions to the graphics
engine for this game are a normal mapped glass, water shaders, as well as a
varnish shader for the cars. In contrast to the indoor Quake engine the Ray
City implementation requires rendering large and complex outdoor environ-
ments under changing day and night illumination.

3.3.2 Oasen

Oasen [SDP+04] is maybe the first game designed from scratch with the idea
in mind to use realtime ray tracing as the core rendering engine. The player
takes the role of a salesman on a flying carpet visiting different places, buying
and selling goods while fighting off other players or bots. The landscape
consists of several islands with trees, bushes, and buildings with more than
25 million triangles. No LOD techniques were used either for geometry or
for lighting.

Main features of this game are realistic atmospheric simulation, day and
night simulations including procedural stars and fireplaces at night, a depth-
dependent water shader, procedural clouds, a living environment like swim-

3.4 OpenRT API 33

Figure 3.7: Some example screenshots from the ray traced game Oasen fea-
turing several shading effects. These images are rendered on a PC cluster
with 640× 480 resolution at interactive frame rates.

ming fish in the ocean, and adaptive super sampling for anti-aliasing. Fig-
ure 3.7 shows some of these features.

The up to several hundred fireplaces during the night phase act of course
as light source and are implemented as point lights. This huge number of light
sources is efficiently handled by exploiting a restricted range of illumination
for each light and organizing them in a spatial index structure. For each
location it is then possible to efficiently find the light sources that contribute
to its illumination.

This game was implemented within three to four month by four students
during their spare time based on the experience with the Quake 3 project
using the OpenRT API.

These experiments with ray tracing based games – while very preliminary
– show that even scenes with advanced visual effects are indeed simple to cre-
ate. Very little effort needs to be invested into selecting the correct algorithm
to avoid visual artifacts. Even highly complex geometries and appearances
can simply be modeled separately and work together without any additional
effort.

3.4 OpenRT API

Today computer games communicate with the graphics subsystem on a higher
level of abstraction through application programming interfaces (APIs) –
most notably DirectX [Mic06] and OpenGL [WNDS01]. But although such
interfaces feature powerful and flexible means for realtime 3D image gen-
eration, their design is heavily based on triangle rasterization algorithms.
Unfortunately, this makes it difficult to use them also for interactive ray
tracing due to fundamental algorithmic differences between ray tracing and
rasterization.

An example of a graphics programming interface specifically designed for
realtime ray tracing is OpenRT [DWBS03]. As the name suggests OpenRT
is syntactically similar to OpenGL, but while staying as close a possible, it is
neither a simple extension nor a subset of OpenGL. The OpenRT API itself

34 Chapter 3: Ray Tracing for Computer Games

is composed of two subinterfaces: the application interface and the OpenRTS
interface for shading (see below).

The core OpenRT application programming interface assists an applica-
tion in specifying geometric objects, textures, transformations, etc. in much
the same way as OpenGL. In many cases the usual gl prefix can simply be
replaced with rt. For example, most of OpenGL’s geometric primitives are
available, and are issued by implementing the same rtBegin() / rtVertex()

/ rtNormal() / rtEnd() statements. Despite these similarities in syntax,
there are a few major differences in semantics.

3.4.1 Rendering Semantics

Ray tracing is fundamentally different because it uses global information, e.g.
for shadows or indirect illumination calculations. Because of that, OpenRT’s
ray tracing back-end requires a more object-oriented approach. The user
specifies a geometric object, which encapsulate primitives organized in a spa-
tial index that can be seen as a low-level scene graph. Light transport simula-
tion can be explicitly defined using programmable, dynamically linked shader
plugins. Geometric objects are then bound to shader objects that contain
specific attributes, e.g. material colors. This comes close to the retained mode
of OpenGL where primitives are stored in display lists in a compiled form.
The binding of individual shader instances may be regarded as local state
changes, but two issues have to be kept in mind: First of all, OpenGL display
lists also depend on global state and thus they can be rendered differently
even if remaining unaltered themselves.

3.4.2 Objects and Instantiation

In general, a ray tracer cannot offer immediate mode rendering because all
geometry needs to be defined before the actual light transport simulation
can start. However, for scenes with a manageable triangle count this con-
straint has been somewhat relaxed lately due to new fast index structure
build algorithms like [PGSS06, GPSS07, IWP07] – at least to a certain ex-
tend. OpenRT’s object definition scheme behaves mostly like OpenGL’s
display list handling – except that there are no side effects due to global
state changes. Primitives are grouped into objects, providing a collection of
geometry plus associated shaders. Once an object has been fully defined,
an acceleration structure is built, which is necessary for efficient ray surface
intersection calculations. In the past this was a major drawback because if
the object changed, its acceleration structure had to be rebuild completely
from scratch (see Section 3.5).

Similar to calling OpenGL display lists, objects have to be instantiated
in order to be effective. However, visibility computations will only take place

3.4 OpenRT API 35

Figure 3.8: Forest scene with 365,000 plants and a total number of 1.5 billion
triangles. Note the detailed shadows on leaves and the smooth illumination
on the trunks due to integrating illumination from the entire sky.

if all objects have been specified. Instantiation works most efficient for a ray
tracer (see Figure 3.8). Not only that a single object can be reused multiple
times, because of inherent occlusion culling also no overdraw operations take
place. Even thousands of instances can be used without suffering a major
hit in rendering performance.

3.4.3 Multi-Pass Rendering vs. Shaders

The OpenRTS shading language API provides an interface between shaders
and the ray tracing back-end to provide access to geometric and lighting
information.

OpenRT provides a fully programmable shading model, making it possible
to directly implement shaders for most optical effects. Writing such a shader
is straight forward, and much easier than hand tuning complicated OpenGL
code which often requires multiple passes for e.g. reflections. With ray tracing
the multi-pass complexity can be put into local shaders that query for global
data as needed. For example, adding reflection is one of the basic tasks of
ray tracing. It only requires the shader to shoot on additional reflected ray,
and can be specified by just a few lines of code. Listing 3.1 shows this in
more detail.

One of the biggest advantages of ray tracing is the fact that independently
written OpenRT shaders may also be simultaneously assigned to individual
geometric objects in a simple Plug’n’Play manner. The desired effects are
automatically combined and simulated in the correct order during ray tracing
(see Figure 3.2).

3.4.4 Fragment and 2D Operations

Up to now OpenRT serves as a pure 3D graphics library. Games usually
also apply 2D imaging fragment operations like stencil tests, alpha tests,
or blending, etc. to perform special effects, e.g., alpha-blended explosions.
Fragments, i.e. the output of OpenGL’s actual rasterization stage can be
regarded as partial color results in analogy to radiance values that travel

36 Chapter 3: Ray Tracing for Computer Games

along single rays, and therefore contribute to a pixel’s final color.

class SimpleShader : public RTShader {
// shader parameters
R3 d i f f u s e ; // d i f f u s e co l o r (f l o a t r , g , b)

RTvoid Reg i s t e r ()
{

// expor t shader parameters
r t sDec lareParameter (” d i f f u s e ” ,PER SHADER,

memberoffset (d i f f u s e) ,
s izeof (d i f f u s e)) ;

}

RTvoid Shader (RTState ∗ i n c i d e n t r a y)
{

R3 co lo r , normal ;
R3 l i g h t (0 . 577 f , 0 . 5 7 7 f , 0 . 5 7 7 f) ; // l i g h t d i r e c t i o n

// c a l c u l a t e d i f f u s e term
rtsFindShadingNormal (i n c i d en t ray , normal) ;
c o l o r = d i f f u s e ∗ MAX(Dot (l i g h t , normal) , 0 . 0 f) ;

//add r e f l e c t i v e term
RTState r e f l e c t i o n r a y ;
r t sRe f l e c t i onRay (in c id en t ray ,& r e f l e c t i o n r a y , normal) ;

c o l o r += rtsTrace (& r e f l e c t i o n r a y) ;

r t sReturnColor (c o l o r) ;
}

} ;

Listing 3.1: A simple OpenRT surface shader example. The Register()

function declares a diffuse color vector as parameter. Every time a ray hits
a surface with which the shader is affiliated, the Shade() function is called.
Reflections can be computed by a simple recursive invocation of the ray tracer
(rtsTrace()).

OpenRT does not offer a direct equivalent to these operations, but they
can be performed by programmable shaders. For example, blending can be
realized using transparently textured polygons. Note, that it is also possible
to mix OpenGL and OpenRT rendering.

3.5 Dynamic Ray Tracing 37

3.5 Dynamic Ray Tracing

The interaction of the player with the 3D world is a key factor to build an
immersive experience. Therefore, the use of ray tracing for games strongly
depends on its ability to support dynamic scenes and animations.

Until recently this was considered to be a hard problem [SSM+05]. Some
approaches already existed a few years ago [RSH00, LAM01, WBS03] but
they are limited to a small subset of animation types (linear transformations
only) or they are not fast enough to deliver interactive rendering performance.

The difficulty in dynamic ray tracing lies in maintaining spatial index
structures that organize all scene geometry in order to significantly reduce the
number of expensive ray intersection calculations. With their help typically
only a few primitives need to be tested for intersection with a given ray even
if the scene contains billions of them.

kD-trees are widely used for achieving realtime ray tracing performance
for static scenes. However, their spatial subdivision approach made it difficult
and costly to update it after changes to geometry.

By exploiting coherence with packets of many rays, competitive realtime
ray tracing performance was also demonstrated with grids [WIK+06] as well
as with BVHs [WBS07] that can also support dynamic scenes by exploiting
fast index structure update strategies.

Additionally, two methods were proposed that allow for very fast updates
to kD-trees. Firstly, a hybrid b-kD-tree acceleration structure combines the
fast update properties of the BVH with the high ray tracing performance
of the kD-tree and is already implemented in hardware [WMS06]. And sec-
ondly, fuzzy kD-trees together with a motion decomposition approach avoid
the costly rebuilt of kD-trees almost completely at least for some types of
animation [GFW+06] and skinned meshes [GFSS06]. These fuzzy kD-tree
based approaches will also be discussed in detail in Chapter 4.

All these novel techniques provide realtime ray tracing performance for
much more general dynamics than was ever possible before. The rendering of
predefined animations, skinned meshes, and even more flexible deformations
of the scene geometry are now supported by ray tracing. Thus ray tracing is
at least competitive with rasterization in rendering dynamic worlds created
by today’s games.

Towards Fully Dynamic Game Environments

Traditionally games rely on precomputations to gain speed, e.g. they use
precomputed radiosity solutions [CW93] stored in light maps or precomputed
radiance transfer (PRT) [KSS02, SKS02, SLS05]. Precomputation is also
necessary to allow for visibility culling, reducing the number of polygons sent

38 Chapter 3: Ray Tracing for Computer Games

to rasterization hardware by e.g. potential visible sets (PVS) [ARFPB90],
binary space partition (BSP)-trees [FKN80], or portals [LG95].

Many games are in essence a walkthrough application, like first or third
person shooters, with moving objects: Really changing the geometry such
as destroying (parts of) buildings or digging holes into the landscape is sel-
dom possible. Known exceptions are Red Faction with the GeoMod en-
gine [THQ01] which allows for dynamic changes of the world, e.g. blasting
holes in walls and Sega Rally [Seg07] where the racing tracks are not static
but deform/deteriorate as cars are driving over them.

Because ray tracing computes visibility and simulates lighting on the fly
the precomputed data structures needed for rasterization are unnecessary.
Thus dynamic ray tracing would most likely allow for simulation-based games
with fully dynamic environments as sketched above, leading to a new level
of immersion and game experience.

3.6 Hardware Support for Ray Tracing

Based on the presentations in the previous sections it can be concluded that
ray tracing is able to play an important role for future games. However, the
most important question that still needs to be answered is that of suitable
hardware support for achieving acceptable performance levels.

As a rough estimate for the following discussion it can be assumed that
at least 300 million ray per second (1024 × 1024 pixels, 30 fps, 10 rays per
pixel) are required to achieve a minimally necessary performance level. This
is comparable to the performance of a low end graphics card for scenes with
significant shadow and reflection computations. Based on experience, high-
quality anti-aliasing may increase this number by about a factor of two if
using an adaptive super-sampling strategy equivalent to 8 samples per pixel.

In the following it will be explored how different hardware approaches may
be able to provide adequate computational power. Based on the performance
data given in Section 3 it is in the following a currently achievable ray tracing
performance of about 10 million rays per second on a single CPU/GPU for
static scenes – and half of that for dynamic scenes – assumed. In other words
an improvement in software performance by a factor of 30 to 60, respectively,
or 60 to 120 with anti-aliasing is needed.

3.6.1 Multicore Architectures

For a long time CPUs have mainly tried to increase single-thread perfor-
mance by driving clock rates up. However, this required longer pipelines,
much larger caches, and complex technologies such as large reorder buffers,
advanced branch prediction, and others to prevent problems due to the in-
creasing cost of pipeline stalls. Also, these techniques all occupy precious die

3.6 Hardware Support for Ray Tracing 39

area that cannot be used for the main purpose of computing.
In contrast, many applications from computer graphics and other disci-

plines operate in a highly data parallel fashion. They are able to distribute
their computations over an almost arbitrary number of threads as long as ac-
cess to the necessary data can be provided. Ray tracing is a prime example
of such an embarrassingly parallel algorithm as every pixel could be rendered
independently from all others.

Due to that, a very interesting trend for ray tracing is that multi-core
chips with four and more CPUs are becoming available. The roadmaps of
the manufactures promise even more cores per chip in near future. In addition
commodity multi-processor systems can be built from these, due to fast and
low-latency CPU interconnects such as Hypertransport. Except for memory
bandwidth and capacity, these systems will behave essentially identical to
future multi-core systems when it comes to ray tracing. These systems can
be used to get a rough estimate of the performance of future multi-core
systems. For example, Dietrich et al. showed that 16 processors (eight dual-
core Opterons) already allow for realtime ray tracing of a complex ecosystem
with more then 1.5 billion triangles [DCDS05] (see Figure 3.8).

Given these promising hardware developments this year’s dual-processor,
eight-core system (16 CPUs) will probably be able to achieve the same perfor-
mance and be able to match the minimum performance without anti-aliasing.
Of course, such a system would be beyond the game market but it shows that
even pure software ray tracing on standard processors is able to achieve rea-
sonable performance levels for gaming in a short time frame.

A different multi-core architecture has been developed by IBM in con-
junction with Sony and Toshiba: The Cell processor. It is an asymmetric de-
sign with a less-powerful management processor and eight high performance
Synergistic Processor Elements (SPE) that offer SIMD instructions, oper-
ate solely on a limited local store of only 256 KB, and use fast asynchronous
DMA for memory transfers and communication (up to 20 GB/s) [KDH+05b].

During Siggraph 2005 the German company inTrace [inT06] already sho-
wed a very early prototype implementation of a ray tracer running on the
Cell. Even though this implementation was not fully optimized and sup-
ported only primary rays, it already achieved promising performance at full
screen resolution for the Conference scene with a very simple shading (see
Figure 3.1). In Chapter 5 a new approach based on the BVH will be discussed
in detail.

3.6.2 Ray Tracing on GPUs

Graphics processors (GPUs) have evolved to highly parallel, programmable
high-performance processors that can also be used to execute non-rasteri-

40 Chapter 3: Ray Tracing for Computer Games

zation tasks. The latest GPUs contain 240 parallel processors that work
together in a SIMT (Single Instruction Multiple Threads) fashion and offer
an enormous raw compute performance. Purcell showed that ray tracing and
Photon Mapping can indeed be implemented on GPUs [PBMH02, Pur04].
However, even though several other attempts have been made, e.g. [FS05], in
recent years the ray tracing performance has stayed significantly below that
available from current CPU implementations. However, the programming
model and GPU architecture have changed dramatically. Exploiting new pro-
gramming paradigms like CUDA [Buc07], that offer a direct way to program
GPUs, ray tracing performance was able to speed up significantly. The per-
formance is now at least on par with (single-core) CPUs [PGSS07, GPSS07]
and sometimes even faster. NVIDIA showed at Siggraph 2008 a highly op-
timized GPU ray tracing demo that achieved realtime framerates even for a
complex scene with more than 2 million triangles and complex shading. To-
day, a GPU is not a special purpose rasterization hardware anymore that can
also execute other algorithms, but a highly-parallel multi-core processor that
can also perform rasterization using some specialized blocks of hardware.

3.6.3 Custom Hardware for Ray Tracing

Currently, only a single company [ART03] markets dedicated hardware so-
lutions for ray tracing. However, this product is designed for accelerating
offline rendering and is not suitable for realtime interactive applications.

An entire family of custom realtime ray tracing processors has been de-
signed by Schmittler and Woop at al., ranging from a non-programmable
architecture [SWS02] and its FPGA realization [SWW+04] to a fully pro-
grammable architecture (DRPU) [WSS05] and its extension that also sup-
ports fully dynamic scenes [WMS06]. All these designs have been realized
using FPGA technology and achieve realtime performance (see Figure 3.9).

The hardware architecture of the fully programmable RPU design in-
cludes on-chip ray generation, kD-tree traversal, programmable intersection
computations, arbitrary levels of reflection or transparency, and fully pro-
grammable shading. The RPU is designed essentially as a highly parallel
processor that efficiently supports recursive ray tracing computations. The
hardware can exploit the usually large coherence in ray tracing by a SIMD
technique that adaptively splits packets as they may become incoherent dur-
ing the computation. This programmability of the RPU supports also pro-
grammable geometry and image processing.

The extended RPU design [WMS06] also efficiently supports dynamic
scenes due to its use of b-kD-trees (see Section 3.5). The update of changed
geometry as well as general skinning operations are directly performed in
hardware. The update is extremely cheap such that even on an FPGA mil-

3.6 Hardware Support for Ray Tracing 41

Figure 3.9: Four example images rendered with the RPU design at interactive
frame rates at a resolution of 1024× 768.

lions of triangles can undergo transformations without introducing a bottle-
neck.

The performance of the FPGA prototype running at only 66 MHz com-
pares well with that of OpenRT running on a processor with 40x the clock
rate (see Table 3.2). Current research investigates the performance expected
when implementing the RPU architecture in ASIC technology. Preliminary
results show that a completely unoptimized ASIC with twelve RPU engines
should already be able to achieve between 62 and 250 million rays per second
at a clock rate of 266 MHz and at a resolution of 1024× 1024 pixels.

Note that these estimates are for an initial prototype of the RPU archi-
tecture in an ASIC process without optimized compute-blocks like floating-
point adders or multipliers. There is still a significant gap between these
performance numbers and those from current GPUs. However, they are very
encouraging given that these numbers from first prototype are compared to
chips that have been refined over many years.

The estimated performance numbers above are interesting in a number of
ways. A pure software solution is still greatly limited by the number of pro-
cessing cores available in a system. It seems that more aggressive multi-core
designs are required in order to overcome this bottleneck. The Cell processor
with its eight cores is promising but is still not fast enough for gaming pur-
pose (see Chapter 5). In the non-gaming environment larger multi-processor
machines should be able to achieve the necessary performance levels for fully

Scene Scene6 Office Quake3 UT2003 Conference

Triangles 0.8k 34k 39k 42k 282k
FPS 5.2 3.6 3.1 1.8 1.3

Table 3.2: Performance results measured in million rays per second for the
FPGA prototype of the RPU clocked at 66 MHz at a resolution of 1024×1024
pixels. Note, that the performance is already comparable to that of OpenRT
even though that runs on CPUs with 40× the clock rate.

42 Chapter 3: Ray Tracing for Computer Games

interactive simulations. However, it is clear that these systems will be too
expensive in order to be interesting for a mass market. The situation is
somewhat different for dedicated ray tracing hardware, though. It can be
assumed that these performance numbers for dedicated ray tracing hardware
have a very large potential to increase significantly. More efficient hard-
ware implementations and optimizations to the architecture are two obvious
strategies.

All of these approaches are likely to benefit greatly from future approaches
to further minimize the number of rays that need to be computed for a specific
effect and further optimizations of the core ray tracing operations. It can be
assumed that we are just starting to see the potential of realtime ray tracing
– in games and other applications.

3.7 Conclusions

In this chapter it is argued that the dramatic increase in ray tracing perfor-
mance seen over the last few years together with current trends in hardware
development should make it interesting to take a new look at the use of ray
tracing for gaming applications.

This argument is supported by analyzing the benefits of ray tracing com-
pared to current technology and by presenting key developments that are
important in the context of game development, including application inter-
face issues and support for dynamic scenes. Additionally, experience from
several prototype game projects were presented that support the conclusion
that the physics-based approach of ray tracing greatly simplifies the devel-
opment of game engines as well as the design of game content.

This Plug’n’Play approach for content design together with the ability to
efficiently and accurately simulate even advanced effects and complex lighting
situations without the danger of introducing objectionable artifacts is a major
bonus for simulation-based games, which increasingly avoid precomputation
and instead rely on runtime simulation of the effects.

Unfortunately, the current performance level of ray tracing is not yet suf-
ficient to sustain a larger market for gaming. However, the current trends to-
wards high-performance parallel hardware strongly support and complement
the improvements on the algorithmic and implementation side. However,
given the lead times in game and hardware development, it seems that the
time may be right to explore ray tracing based games in a wider context.

Finally, it is clear that realtime ray tracing is still an emerging field where
major breakthroughs are still likely. It is also an area that still requires
significant future research, including further improvements in the handling
of dynamic scenes, even faster simulation techniques for global and indirect
lighting effects, efficient anti-aliasing that decouples visibility samples from

3.7 Conclusions 43

the shading samples, and of course further performance improvements for all
parts of the ray tracing pipeline.

Chapter 4

Ray Tracing of Dynamic Scenes

In Chapter 3 it is pointed out that the ability to render dynamic scenes ef-
ficiently is a requirement for a serious use of ray tracing in computer games.
This chapter describes a novel approach that preprocesses dynamic scenes
such that, while rendering, only very little on-the-fly computations are nec-
essary. The preprocessing is in particular designed for animation sequences
and skinned animations as they are typically used for computer games.

4.1 Spatial Index Structure Considerations

As seen in the Chapter 2, ray tracing requires (hierarchical) spatial index
structures to achieve realtime rendering performance. Due to the nature of
dynamic scenes to change over time, an index structure built for a particular
point in time may not be valid for the next one, as the location of the
geometry changed. This implies: for each new frame a new index structure
must be build. Unfortunately, the construction time complexity – for the
hitherto most efficient hierarchical index structures – is O(n log(n)) for both
kD-trees [WH06] and BVHs [Wal07]. This renders a complete rebuild, at
least for non-trivial scenes, impractical. Grids can be constructed in O(n)
[WIK+06] but are in average somewhat less efficient in terms of rendering
performance, and suffer from the ”teapot in a stadium” problem since they do
not adapt to locally different geometric densities and object sizes in a scene.
Recently it was found that a BVH, once built, can simply be updated to
support efficiently certain kinds of dynamic scenes [WBS07]. Nevertheless,
all this approaches depend on the number of primitives a dynamic object
consists of. In contrast to these approaches the below described motion
decomposition approach supports dynamic scenes for all kinds of hierarchical
index structures that can be build over axis-aligned bounding boxes and is
– while rendering – independent of the number of primitives and thus avoids
the need of a complete rebuild or update.

46 Chapter 4: Ray Tracing of Dynamic Scenes

4.2 Dynamics Classification

In order to render dynamic scenes efficiently it is advantageous to have
some knowledge about the dynamic content. If nothing is known, one can
only treat the dynamics as black-box and rebuild the index structures from
scratch. However if the dynamics is known, either because it is completely
predefined or at least some algorithmic constraints are known, it is possi-
ble to derive some information from the animation and it has to be decided
when and how this information is utilized. Naturally, this can be done in a
preprocessing phase or while rendering.

The dynamic scenes that are considered in the context of this chapter –
namely 3D computer games – consist of individual objects, each consisting
of a number of connected triangles, that change its position with time. Nev-
ertheless, it is not allowed that the number of triangles or its connectivity
changes throughout the animation. An example of such an object can be
seen in Figure 4.1, a human performing a running motion.

In the following dynamics is classified by the kind of deformations that are
applied to the triangle meshes, or how the motion is specified for processing.
Furthermore, it is described what kind of solutions exist to ray trace these
kinds of dynamic scenes:

No Deformations: The simplest deformation for a scene is simply no
deformation. Static scenes can be efficiently ray traced today using data
structures like kD-trees [RSH05, Res06] or BVHs [WBS07] and their related
coherent algorithms as discussed in Section 2.4.3.

Affine Transformations: In computer games it is very common to apply
affine transformations to objects e.g. to translate, rotate, and scale them on-
the-fly based on some physical models. Lext et al. [LAM01] proposed a two-
level approach, using a hierarchy of oriented bounding boxes (OOB), where
each individual object gets its own acceleration structure and a final top-level
structure is build over all the individual OOBs. This allows, for example,
to support hierarchical robot like animations of avatars in computer games.
The top-level construction complexity is then only dependent on the number
of objects in the scene and not on the number of individual primitives, e.g.
triangles a scene consists of. If an affine transformation is applied to an
object, rather than transforming all its primitives, only its bounding box
has be transformed. After transforming all OOBs a new top-level structure
can be build. A ray that traverses the top-level structure and reaches a
top-level leaf node is then transformed to the local coordinate system of the
object whose associated index structure has to be traversed next. Wald et al.
[WBS03] used a similar two-level approach with kD-trees and achieved for

4.2 Dynamics Classification 47

this kind of animation for the first time interactive frame rates on a desktop
PC.

Random Motion: Another form of motion can be found in particle and
turbulence flow systems. In contrast to typical CAD or 3D computer games
scenes, these scenes consist of very many individual particles whose motion
is steered by some mathematical simulation e.g. in flow field visualizations.
Moreover new particles may be generated on-the-fly or disappear such that
the number of particles in the system depends on the state of the simulation.
Reinhard et al. [RSH00] proposed the interactive grids approach to handle
such particle systems efficiently. A special feature of this approach is that the
grid – once build over the particles in an initial state – can grow with particles
that would be moved (or generated) outside the initial grid in the simulation.
To insert a particle, outside the initial grid, a wrapped position in the initial
grid is computed. A then newly defined virtual grid over the new real bounds
is then used for ray traversal. In order to achieve interactive frame rates
Reinhard used an SGI Origin 2000 with 32 processors. Today, exploiting a
coherent grid traversal [IKW07] would probably achieve the same, or even
better, performance on a single modern PC. If no information is present to
exploit tricks – like transforming a ray instead of thousand of triangles as
described above – the grid seems to be the best choice for visualizing particle
simulations and related problems.

Fixed Animation Sequences: For computer games it is quite common
to specify an animation as a fixed set of animation steps – the keyframes –
e.g. for a walking-sequence of an avatar. No further information, except the
object description for each time step is available to rendering system. Until
recently, the two best possibilities to ray trace this kind of animation were
to: build an own acceleration structure for each time step of the animated
object and choose the right one dependent on the timestamp while rendering,
or to build a new acceleration structure on-the-fly as it is needed. Both ap-
proaches are not optimal – at least for computer games that require realtime
performance with additional restrictions to the available host memory: Ei-
ther too much memory for all the preprocessed index structures is required,
or the overall rendering performance is reduced due to a separate build for
each animated object before the rendering can take place. Properties that
were not exploited until recently are: that these animation sets are known in
advance, have always the same number of triangles, share the triangles con-
nectivity across the animation, and the animation itself comprises a certain
kind of locality. Locality means in this context that triangles that are locally
close together (largely) follow the same, or at least a similar trajectory. Until
recently no algorithm was known, that exploits these properties to ray trace

48 Chapter 4: Ray Tracing of Dynamic Scenes

Figure 4.1: A typical (simple) example animation as it can be found in a com-
puter game or animated movie. The animation is given as a set of individual
triangle meshes – the keyframes. Each keyframe has its own set of triangles,
but throughout the animation the connectivity between the triangles is fixed.

keyframed animations.

Skinned Animations: Mesh animations that are based on an underly-
ing skeleton are also frequently used in computer games. Examples are not
limited to avatars but also plants like trees, grass, and many other things
that can be animated by fitting a skeleton to its limbs. In a first step, a
designer generates a model of the object that is to be animated. Then, a
skeleton, consisting of bones, is build and fit to the model. Generally, but
not necessarily, this skeleton builds a single hierarchy like a human skeleton.

To make the motion of the vertices dependent on the bones, a set of
vertices is assigned to each bone in the fitting step. A single vertex can be-
long to multiple bones, e.g. vertices that are close to the joint of two bones.
To control the motion of the vertices, each vertex has an associated weight
per bone that controls its influence. A modeler can now design different
animation sequences with just a few keyframes per sequence, and new inter-
polated poses can just be computed on-the-fly without manual intervening.
If a transformation is applied to a bone, all associated vertices follow this
motion based on the associated weights (see Section 4.5 for more details).

The advantage of this skinned animations is that they allow to interpolate
new poses between two keyframes that are not explicitly defined, and to blend
seamless different motion sequences like the transition of a walk sequence to
a jump of an avatar. Similar to static animation sequences, no algorithm was
until now published that targets explicitly at ray tracing skinned animations
using its inherent properties.

4.3 The Motion Decomposition Approach

In the last section, two classes of dynamic scenes have been identified, ani-
mation sequences and skinned animations, that are important for computer

4.3 The Motion Decomposition Approach 49

games. Sections 4.4 (animation sequences) and 4.5 (skinned animations)
will present a solution to ray trace these kind of animations exploiting their
inherent properties.

4.3.1 The Idea

In contrast to other dynamic ray tracing methods that were recently pub-
lished, e.g. [HMS06, LYTM06, YCM07, ISP07, IWP07] to name just a few,
the motion decomposition is a preprocess. The goal of this preprocess is to
avoid the dependency between the number of transformed primitives in the
scene and the acceleration structure rebuild. At the core of the motion de-
composition approach is the idea to exploit the local coherence that can be
found in the dynamics of many animation sequences and skinned animations.
Consider the simple animation in Figure 4.2 that consists of two keyframes.
At first the triangle mesh is in its initial position. Then a transformation T
is applied to the mesh. Basically the motion of the mesh follows a simple
affine transformation (rotation and translation) plus some additional motion
for two vertices of the orange triangle. In essence that means, this motion
can be separated into two independent parts: a common affine motion and
a remainder, or residual motion. Let’s suppose an animation consists of two
time steps S1 and S2. The idea is now to find a good mapping, i.e. an affine
transformation A, that transforms S1 to S2. Using the affine transforma-
tion A solely will in most cases not result in a correct mapping because the
real transformation from S1 to S2 was probably more complex, e.g. as in the
example above. However, a resulting error can be catched by some ∆ such
that:

S2 = AS1 + ∆ (4.1)

can be used to transform S1 to S2
1.

In doing so, the motion of the mesh in Figure 4.2 could be described by
the motion that can be covered by the transformation A plus a correcting
term for the residual motion of the two vertices of the orange triangle that is
captured in ∆. Of course this method can also be applied if the animation
consists of n time steps i.e. :

Si = AiS1 + ∆i (4.2)

Then every time step simply requires its own transformation matrix Ai and
∆i with i ∈ {1..n}.

1Please recall that AS1 implies the multiplication of A with every single vertex S
consists of. Similarly, for every vertex in S, there is a corresponding δ which is basically
an offset vector. The set of all δ is referred to as ∆. This notation is just chosen for
simplicity.

50 Chapter 4: Ray Tracing of Dynamic Scenes

Figure 4.2: A simple animation sequence. The mesh on the left (mesh one)
is transformed with T resulting in mesh two. Please note that T is not just
affine. T includes a common rotation and translation for all vertices and an
additional transformation that is only applied to two vertices of the orange
triangle.

4.3.2 Fuzzy Bounds and Positions

What does that mean to ray tracing? Using Equation 4.2 the motion of an
animation is decomposed into two parts. An affine transformation and some
delta that corrects the error that a sole affine transformation would induce.
In Section 4.2 it is described that dynamic objects can be ray traced using
a two-level hierarchy of index structures, that use affine maps to transform
bounding boxes and rays instead of triangles [LAM01, WBS03]. This ap-
proach is exactly what can be used for the affine transformations Ai. The
remaining problem is now what to do with ∆i.

In Figure 4.3 it is shown how the ∆i can be handled. On the left side,
the previous animation example is shown. But this time each mesh has an
associated bounding volume, e.g. a box that a leaf node in a BVH would
comprise. As can be seen, the size of the volumes are different for both
meshes. If mesh two is projected into the coordinate system of mesh one,
it is possible to merge their bounding volumes such that a single box can
be constructed that contains all the space that is required by the animation
(Figure 4.3 right). More formally, by multiplying Equation 4.2 with Ai

−1, Si

is transformed into the coordinate system of S1:

Ai
−1Si = S1 + Ai

−1∆i (4.3)

Ai
−1Si is then the so called fuzzy pose of Si, and the union of all bounding

volumes results their fuzzy bounds. It is now possible to construct for every
triangle in the scene its fuzzy box that includes all the space that is required
for its animation. Now, rather than constructing an index structure over the

4.3 The Motion Decomposition Approach 51

Figure 4.3: The simple mesh animation sequence including their bounding
boxes (left). When time step two is transformed into the coordinate system
of time step one, using A−1

i , the union of the bounding boxes results in a new
one that is valid for the whole animation (right).

scenes primitives, the index structure is build over all positions of Ai
−1Si of

a primitive. This results in an index structure that is valid for the complete
animation.

4.3.3 Clustering

Unfortunately, most animations are much more complex, both in motion and
size. Consider the hand motion sequence in Figure 4.4. This animation is
given as a set of triangle meshes consisting of more than 15,000 triangles each.
All fingers move in the animation at the same time to different positions.
Additionally, each single finger comes with three joints (except the thumb
with only two) that move differently. When each triangle is now treated
as a separate object and gets its own fuzzy box this would result in huge
fuzzy boxes with a lot of overlap. Even though a resulting index structure,
that could be build over these huge fuzzy boxes, would be valid for the
whole animation, the ray tracing performance would be poor since too many
triangles would have to be tested for intersection due to the too large and
heavily overlapping fuzzy boxes. This would, in a worst case scenario, come
close to the case where no index structure is used at all for ray tracing.

What is needed is a way to minimize the size and overlap of the fuzzy
boxes. An extreme would be to reduce the overlap to zero by avoiding the
fuzzy boxes and just build the index structure over the hands triangles, or
their tight bounding boxes. Unfortunately, this requires then again a full
rebuild of the index structure for every frame since the index structure is
then again only valid for one particular time step. In essence, this means
that there is a overlap-rebuild tradeoff. The question is now if there is an
optimal setting that minimizes the size and overlap of the fuzzy boxes while

52 Chapter 4: Ray Tracing of Dynamic Scenes

avoiding a full rebuild of the index structure.

When the motion of the hand is observed, it can be seen that there are
sets of triangles that follow basically the same trajectory. Triangle areas that
follow the same trajectory will probably have a very small ∆ after compen-
sating their common motion using an affine transformation. This yields the
idea to identify those coherently moving mesh regions that produce a very
small overlap in their fuzzy boxes. Having identified these regions, they can
be treated as separate objects that will have for each time step a separate
index structure, optimized bounding volume, associated transformation, and
deltas.

Then, for each new frame a new top-level index structure is build over
the current bounding volumes that the regions cover in the spirit of Lext and
Wald [LAM01, WBS03].

In doing so, the overlap of the bounding volumes in the top-level structure
is minimized. The index structures of the individual regions have not to be
rebuild since they are constructed using the fuzzy bounds of the triangles.
This is acceptable since the number of these coherent moving regions, and
thus the number of bounding volumes that have to be used to construct the
top-level structure is usually small (see Sections 4.4.4).

In the next two Sections, 4.4 and 4.5, details of the motion decomposition
will be discussed with respect to animation sequences and skinned anima-
tions. In the following several key questions have to be answered: How can
the transformation matrices Ai be computed, what is a good strategy for
identifying regions of coherent motion in the animation, and is it really a
good idea to compute all mappings with respect to the first keyframe or
should another keyframe be used, which one?

4.4 Motion Decomposition of Animation Sequences

In this section, the answers to the above mentioned questions are given with
respect to animation sequences. To make the motion decomposition work,
there are constraints the animation has to meet. It is not allowed that the
number of triangles or their connectivity changes across the animation. But
most importantly, the more locality can be identified in the time animated
mesh, the better the algorithm will work. If the animation behaves like a
particle system – with many individual objects – that do not have coherent
but random motion, the algorithm would not be as efficient, because the
properties that should be exploited are not present. In the next four sections
missing details about the motion decomposition and results are presented.

4.4 Motion Decomposition of Animation Sequences 53

Figure 4.4: An example of an animated hand: Due to the complexity of the
animation the complete mesh has to be segmented into regions of coherent
motion such that the fuzzy bounds are small and their overlap is minimized.

4.4.1 Calculating Ai

In Equation 4.2 a mesh Si is transformed to a reference mesh S1 by an affine
transformation plus some additional motion ∆i. But until now, it is not clear
how the Ai can actually be computed. Since we deal with triangle meshes in
3D and want to have affine transformations, each Ai has to be a homogeneous
4×4 transformation matrix. Furthermore, as described above, the ∆i should
be as small as possible to avoid large overlapping fuzzy bounds. A criterion
to obtain a good Ai is to minimize the squared sum of the length of all
offsets vectors in each ∆i. This leads then to a linear least squares problem
(LLS) [Str03]. If Equation 4.2 is solved for ∆i we can write the formula as:

‖∆i‖2 = ‖AiS1 − Si‖2 (4.4)

Essentially, Equation 4.4 expresses ∆i as an error that an affine only trans-
formation would induce when transforming S1 to Si. This LLS optimization
problem can be solved using conventional mathematical techniques like the
singular value decomposition. The result of the LLS computation is a Ai

with a minimal ‖∆i‖. This is achieved by minimizing the sum of the squares
of the offsets, i.e. the differences AiS1 − Si. A big disadvantage of the LLS
method is that it is in general prone to outliers, which results from squaring
the errors. Outliers have then too much importance. Fortunately, here the
Ai are not affected because outliers will be removed automatically as they
will be identified in the mesh segmentation step and act as seeds for new
clusters (see Section 4.4.2 for more details).

4.4.2 Mesh Segmentation

Mostly all interesting animation sequences are large and complex in its mo-
tion trajectories and size. As described before, complex meshes have to be
segmented into coherently moving parts to achieve an optimal ray tracing
performance. A commonly applied technique for mesh segmentation is clus-
tering. Clustering is a fundamental data analysis tool used for many scientific
problems [KNT05] and can be used to classify objects according to perceived

54 Chapter 4: Ray Tracing of Dynamic Scenes

similarities [JD88]. In the case of this work, the similarity is the coherent
motion of connected triangles. It is possible to think of many ways to guide a
clustering process for generating appropriate triangle clusters. Here, a clus-
ter is a number of connected triangles that have a similar motion across
the animation sequence and thus a small ∆. Now there are two options for
the clustering. Either a fixed number of clusters could be generated, or new
clusters are generated until a certain criterion is reached. Here, the second
method is used. The goal of the clustering process is now to identify those
regions in a mesh that minimize the sum of all ∆i. Since the clustering pro-
cess generates new submeshes the notation is now changed to k∆i and kAi.
The k indicates then the number of clusters that are used for the object.

Among all the possible clustering methods the generalized Lloyd’s algo-
rithm [Llo82] is a suitable candidate to cluster the triangles into coherently
moving submeshes. Lloyd’s algorithm is an iterative clustering approach and
has four parts: initialization, partitioning, refitting, and repeat.

Initialization: Since the optimal number of clusters is not known in ad-
vance, just a single cluster containing the fuzzy bounds of all triangles is
generated to initialize the clustering process.

Partitioning: In the partitioning phase all kAi are computed and each tri-
angle is assigned to the cluster where it has the smallest residual motion. This
process is repeated until the sum of all k∆i does not decrease significantly
anymore or a (user defined) maximum number of iterations is reached. Please
recall that the kAi are 4× 4 matrices and that a unique solution requires at
least four vertices, e.g. two triangles, in the LLS computation. Therefore, if a
cluster has only one triangle, one of its neighboring triangles is also assigned
to this cluster.

Refitting: After distributing the triangles optimaly to the existing clusters
in the partitioning phase, a new cluster is now generated. The seed for the
new cluster is the triangle that has the largest residual motion. For all the
old clusters a new seed is chosen as well. A triangle in an old cluster will
be chosen as new seed when it has the smallest residual motion. Then the
triangles are distributed again to the clusters as in a partitioning step.

Repeat: Partitioning and refitting will be repeated until the clustering
converged. In the current implementation the clustering is considered con-
verged when the sum of all k∆i does not decrease more then a user specified
threshold i.e. 1%. Figure 4.5 shows an example run for the hand animation.

4.4 Motion Decomposition of Animation Sequences 55

Figure 4.5: An example run of the clustering algorithm: As the number of
clusters increases the surface area of the bounding volumes shrinks until a
point where new clusters are not beneficial anymore. To depict the clustering
process, each new cluster and bounding volume is colored differently.

4.4.3 Selecting the Reference Mesh

Until now it was alway said that a mesh Si should be mapped to a mesh S1

for computing the Ai. If a set of keyframes is given, as in Figure 4.1, it is not
very likely that the first keyframe is the optimal mesh in the set to which
the other meshes should be mapped to. So, what is the reference frame Sx

that is used best for the mapping computations?

A priori it cannot be known which keyframe will produce the best result in
the clustering process. If preprocessing is not time critical, every cluster cycle
is executed for each keyframe and the one that minimized the surface area of
all clusters is chosen. This makes sense since in general the surface area of the
bounding volumes and their overlap is strongly coupled. When the animation
consists of too many frames such that the preprocessing time would not be
acceptable the clustering uses a simple uniform sampling approach, that can
be guided by the user, and only every js frame is tested. Of course it may be
that the optimal reference frame is not found. But still a good result can be
obtained because most animations have a smooth behavior such that close
to optimal results are achieved.

4.4.4 Results

In order to test the efficiency of the described motion decomposition approach
several test scenes from small to large, and simple to complex animations,
have been chosen (see Figure 4.6). As index structure the kD-tree is chosen
although BVHs could also be used. All algorithms – including the motion
decomposition algorithm and ray tracing engine – are implemented in C++
using SIMD extension whenever useful. The ray tracing engine uses the ray-
triangle intersection test of Wald et al. [Wal04], the surface area heuristic for
building (boxed) kD-trees [MB90, Ben06], and the inverse frustum culling
approach for ray traversal [RSH05] (see Chapter 2 for more details). For
measurements a 2.8GHz Opteron PC is used, equipped with 2GB of RAM

56 Chapter 4: Ray Tracing of Dynamic Scenes

Figure 4.6: Example images of clustered test scenes. Each colored region
represents a separate cluster. From left to right: Ben, Chicken, Cow, Dolphin,
and Hand.

and a GeForce 6800GT graphics board that is solely used for displaying the
rendered images. Next, the used test datasets are briefly described:

Ben, Hand: The Ben and Hand animations comprise both natural motion.
Ben is a running sequence as it could be found in a typical computer game
or animated movie. In the hand animation the fingers just bend and stretch
back to its initial position. Both animations consists of 30 keyframes. The
clustering procedure stopped for the Ben model with 20 and the Hand with
21 clusters. Ben consists of roughly 78k triangles and the Hand of 15k.

Chicken: The Chicken animation is a cartoon like animation with typical
squeeze and stretch elements resulting in unnatural poses of the chicken. 400
keyframes are used for the animation and consists of several different motion
sequences like walking, running, and fluttering. Each keyframe consists of
approx. 56k triangles that are segmented into 21 clusters.

Cow, Dolphin: Both, Ben, Hand, and Chicken look like animations that
are designed with a skeleton that is fitted to the models. The Cow and Dol-
phin animations are computed based on some physical simulations. Although
the swim-animation of the dolphin still looks realistic the cow is almost ar-
bitrary squeezed, stretched and skewed. The cow consists of 204 and the
dolphin of 101 keyframes resulting in 20 and 16 clusters.

Clustering Efficiency

In Section 4.4.2 it is claimed that if the sum of all k∆i is minimized, the sur-
face area of the clusters shrinks and is therefor a good optimization criterion.
Figure 4.7 shows this correlation.

As can be also seen in Figure 4.7, a number between 20 and 25 clusters
is in general sufficient. This allows also a very quick rebuild of the top-level
structure per frame. The running time of the clustering preprocess is highly
dependent on the size of the meshes with respect to the numbers of triangles
and keyframes. The Hand and Cow animations can be clustered in approx.
20 minutes. Nevertheless, the Chicken sequence requires up to 90 minutes

4.4 Motion Decomposition of Animation Sequences 57

which is still a reasonable timeframe.

As the images in Figure 4.6 show, the final clustering of the Hand, Ben,
and Chicken models fit nicely to a skeleton structure. Although the Dolphin
and Cow model do not show such a skeletal based clustering, the clusters are
absolutely usable in term of ray tracing performance.

Overall Performance

Maybe the most important measure is the total ray tracing performance in
FPS that can be achieved using the motion decomposition approach. Figure
4.8 shows the performance for all the test datasets across the whole anima-
tion. Easily it can be seen that the performance is always at least in an
interactive range from six to 50 FPS, rendered with a screen resolution of
10242 pixels and simple diffuse shading.

The frame rate for the Ben, Hand, and Dolphin animations are more
”stable” compared to the Chicken and Cow sequences that show larger fluc-
tuations. In the Chicken animation the frame rate increases drastically in
the last frames because the chicken runs away from the camera such that it
only covers a small fraction of the screen area anymore. Similarly the large
differences in the frame rate of the Cow animation can be explained since
the number of covered pixels varies strongly with the animation.

Performance Comparison

Another interesting measure is how much the rendering performance is re-
duced when a fuzzy index structure is used in comparison to an optimized
index structure for a single keyframe. For this measurements, a separate kD-
tree is build for every keyframe and the performance measured in terms of
traversal steps, intersected triangles, and finally the rendering performance
in FPS. Table 4.1 shows this numbers averaged for the whole animation in
comparison to the same numbers measured using the motion decomposition

1

10

100

1000

10000

100000

1000000

10000000

10000000

1E+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

R
e

si
d

u
al

 M
o

ti
o

n

Number of Clusters

Ben Chicken Cow Dolphin Hand

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Su
rf

ac
e

 A
re

a
o

f
Fu

zz
y

B
o

u
n

d
s

Numbers of Cluster

Hand Chicken Cow Ben Dolphin

Figure 4.7: The correlation between the overall residual motion ∆ and the
sum of the surface area of the fuzzy boxes. As the residual motion decreases,
the surface area shrinks in a similar fashion.

58 Chapter 4: Ray Tracing of Dynamic Scenes

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Fr
am

e
s

p
e

r
Se

co
n

d

Time

Ben

Hand

0,00

5,00

10,00

15,00

20,00

25,00

30,00

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

1
4
5

1
5
4

1
6
3

1
7
2

1
8
1

1
9
0

1
9
9

Fr
am

e
s

p
e

r
Se

co
n

d

Time

Cow

0,00

5,00

10,00

15,00

20,00

25,00

30,00

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

2
0
1

Fr
am

e
s

p
e

r
Se

co
n

d

Time

Cow

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1

1
7

3
3

4
9
6
5

8
1
9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

2
5
7

2
7
3

2
8
9

3
0
5

3
2
1

3
3
7

3
5
3

3
6
9

3
8
5

Fr
am

e
s

p
e

r
Se

co
n

d

Time

Chicken

Figure 4.8: Overall rendering performance timelines for the test datasets. All
datasets are rendered with a screen resolution of 10242 and for shading a sim-
ple diffuse model is used. As can be clearly seen, the ray tracing performance
is always in a range from six to 50 fps.

approach.
As can be seen in Table 4.1, the ray tracing performance just drops down

by a factor of 2.6 at most. This is an absolutely acceptable result considering
that a full kD-tree rebuild typically would be more expensive. For shorter
and less complex animations, all statistical results are in an expected range
as the number of traversal steps and triangle intersections just double. The
Chicken and Cow animations stress the motion decomposition approach due
to their length and different animation sequences. In contrast the Ben, Hand,
and Dolphin only consist of a single animation sequence e.g. the hand just
opens and closes. Nevertheless, even the Chicken animation can be ray traced
on a single CPU-core fluently since the increase in intersection tests does not
hurt significantly.

4.5 Motion Decomposition of Skinned Animations

In the last section, a preprocess was discussed that allows to ray trace
dynamic scenes efficiently that are completely predetermined by a set of
keyframes. Now, skinned animations will be considered that also consist of
keyframes but provide additionally more information and a certain freedom
of the motion. Rather than relying solely on keyframes, skinned animations
possess a skeleton that allows to extract information about the motion (see
Figure 4.9 for an example). This allows two things: first, to interpolate be-

4.5 Motion Decomposition of Skinned Animations 59

#Traversal steps #Intersections Average FPS
Scene Static Fuzzy Ratio Static Fuzzy Ratio Static Fuzzy Ratio

Ben 722,068 1,111,808 1.54 1.2 2.28 1.9 20.98 10.77 1.94
Chicken 210,458 379,466 1.80 0.80 4.96 6.2 39.24 15.03 2.61
Cow 634,173 946,558 1.49 0.92 3.68 4.0 19.21 12.49 1.53
Dolphin 534,156 1,020,469 1.91 1.08 1.72 1.59 22.56 19.31 1.16
Hand 1,330,951 2,307,758 1.76 1.28 1.48 1.15 17.98 10.94 1.64

Table 4.1: Comparison of a fuzzy kD-tree that is build for the complete
animation vs. ordinary kD-trees that are build per keyframe. The number of
traversal steps, triangle intersection, and FPS are averaged over all keyframes
and amortized for a single ray, as frustum kD-tree traversal is used. For not
too complex scenes – like the Hand, Ben, and Dolphin model, the traversal
steps and intersections only double at most for the fuzzy tree. For larger, and
more complex scenes, e.g. Chicken and Cow, the statistics looks worse. But
nevertheless, the important FPS performance does not follow linearly the
traversal, and intersection statistics and at most an acceptable performance
lost of a factor of 2.6 is observed for these test scenes.

Figure 4.9: An example of a skinned model and its underlying skeleton. The
colored lines show the skeletons bones and the blue squares are the joints
that connect the bones to its skeletal structure.

tween two keyframes of the same animation sequence, and second to blend
seamless two different animation sequences like a run and jump sequence of
an avatar. Nevertheless, the restrictions that the keyframes have to have
the same number of triangles and identical connectivity is still necessary.
The details for the necessary motion decomposition as well as results will be
discussed in the following sections.

60 Chapter 4: Ray Tracing of Dynamic Scenes

4.5.1 Skinned Animations

After the verbal description of skinned animations in Section 4.2, Equation
4.5 formalizes the procedure. Consider a single vertex v whose position can
be influenced by n bones. The skinned position v′ can then be computed as
a weighted sum from all weights wi, affine transformation matrices Ai and
the vertex v.

v′ =
n∑

i=1

wiAiv (4.5)

In the general case, the weights wi are specified by the application and
normalized such that their sum is equal to one. For animated sequences
it was shown in Section 4.4.1 how to compute the transformation matrices
Ai. Here, dealing with skinned animations, this is not necessary anymore
because the application that uses the ray tracing engine has to specify how
the animation should look like, and returns Ai and wi to the ray tracer.
Since a skeleton is given that guides the animation, the pure bone motion –
which is in fact an affine transformation – can directly be used. No further
computations are necessary e.g. to determine an optimal reference mesh. The
reference mesh is simply an initial mesh that is defined by a modeler. All
this features simplify the preprocessing to a great extend.

4.5.2 Mesh Segmentation

In Section 4.4.2 it was shown how a mesh can be decomposed into areas of
coherent motion for animated sequences using a clustering approach. One
observation at this point was, that if the models motion behaves like it has
an underlying skeleton, the clustering process will identify these regions that
map directly to the skeletons bones (see the Hand and Ben model in Figure
4.4 for an example). That means, a bone structure directly yields a usable
clustering by itself. If each triangle can be only influenced by a single bone,
there is directly a one to one mapping. However, this is not always the case.
For triangles that are affected by multiple bones, it is not directly clear to
which bone they belong best. To solve that problem, the fuzzy bounds can
be computed for each bone (see Section 4.5.3) and a triangle is assigned to
the one where it has the smallest residual motion.

4.5.3 Conservative Fuzzy-Bounds Estimation

Given a set of keyframes and Equation 4.5 it is clear that the maximum fuzzy-
bound extends are not directly specified by the keyframes as it was the case
with the animation sequences. The maximal extend can be in-between two
keyframes. To make the motion decomposition work for skinned animations

4.5 Motion Decomposition of Skinned Animations 61

it is necessary to conservatively estimate those fuzzy-bounds. But too large
and conservative fuzzy-bounds will decrease the ray tracing performance. If
the fuzzy-bounds are too small rendering artifacts will occur. A conservative
method is to sample the complete pose space that could be formed with the
bones. Just rotate all bones around their joints, and all combinations of bone
rotations, and compute the fuzzy-bounds for the triangles per bone. This will
result in conservative but large fuzzy-bounds. To shrink the fuzzy-bounds it
is also possible to exploit natural limits to a bones motion e.g. most people
are not able to rotate their wrist around 360o. If that kind of information
can be obtained from an application, much ”tighter” fuzzy-bounds can be
computed.

4.5.4 Results

To evaluate the motion decomposition approach for skinned animations two
datasets are used (see Figure 4.10 for a description) for the measurements.
The core ray tracing engine is the same as described in Section 4.4.4. In
order to add skinning support to the ray tracer, and to obtain all necessary
information for the motion decomposition, the CAL3D open source library
is used [Ope06]. All renderings are measured with a 10242 pixel screen size,
simple diffuse shading, and an Opteron CPU that is clocked at 2.4GHz.

Fuzzy-Bounds Estimation

Skinned animations allow for a certain freedom in the potential motion of
an object. As described above, dependent on the chosen freedom the fuzzy-
bounds will be rather larger or small. In Table 4.2 the correlation between
the motions freedom and performance is shown. When many arbitrary bone
rotations are used for sampling the fuzzy-bounds it is clear that the fuzzy-
bounds, and thus their overlap and average number of triangles per leaf, are
large resulting in a decreased ray tracing performance. Applying some con-
straints, e.g. only natural/realistic bone movements are allowed, less samples
are required and it can be observed that the fuzzy-bounds decrease. When
more and more restrictions are applied this trend continues resulting in the
best performance where the motion of just one animation sequence, consist-
ing of several keyframes.

The optimal choice for the used sampling method is of course depended
on the application. If the motion decomposition should be used in a 3D
modeling package it is very likely that arbitrary bone rotations should be
used for sampling. For computer games, it seems to be best to sample all
possible animation sequences such that blend effects between them are pos-
sible. Nevertheless, at least for the tested animations, all sampling strategies
result in interactive frame rates.

62 Chapter 4: Ray Tracing of Dynamic Scenes

Figure 4.10: The two example models used for performance evaluation: Top,
the Cally dataset. Cally consist of roughly 3k triangles and four skinned
animation cycles (going, running, waving and kicking). Bottom, an avatar
from UT2003. The UT2003 avatar consists of 2k triangles and has three
skinned animation cycles (knee bend, crook of the arms, and swinging).

Pose Space Sampling #Samples Fuzzy Area #Tris per Leaf FPS

Arbitrary Bone Rotations 1000 747 4.1 7.7
Applying Joint Limits 245 580 3.4 10.2
Several Animation Sequences 124 552 3.2 11.6
Just One Animation Sequence 62 515 3.1 12.0

Table 4.2: Effects on restricting the sampled pose space: As the pose space
sampling is restricted, the area of the fuzzy-bounds as well as the average
number of triangles per leaf node decrease. Please note that even sampling
arbitrary bone rotations results in acceptable frame rates. These would also
allow to use the motion decomposition approach in the design phase of ani-
mation sequences.

Mesh Size Influence

Certainly, the size of the mesh affects the preprocessing as well as the render-
ing time. In Table 4.3 some important results are summarized. Probably the
most important number is the preprocessing time for the sampling. As can
be seen the sampling performance is almost linear in the number of triangles.
But even for larger meshes with more than 200k of triangles the sampling
time is below a minute. Compared to the preprocessing time of the anima-
tion sequences in Section 4.4.4 it can be noticed that the preprocessing time
is greatly reduced while allowing a certain freedom in the objects motion at
the same time. Also the time for constructing the fuzzy kD-trees stays in a

4.6 Conclusions and Future Work 63

Preprocessing Cally UT 2003
Time in Secs. 3k 10k 30k 90k 271k 2k 7k 22k 67k 200k

Sampling 0.63 1.80 5.21 16.40 50.40 0.59 1.23 3.08 8.63 29.7
kD-trees Build 0.65 2.28 8.77 34.50 150.00 0.39 1.67 6.41 23.8 88.9
FPS 9.50 7.10 5.70 3.60 2.00 15.30 12.30 7.40 4.00 1.90

Table 4.3: The influence of the mesh size to preprocessing and rendering
performance: As the size of the meshes is further increased – by triangle
subdivision – the sampling and kD-tree build stays in a reasonable time pe-
riod. On the other hand the rendering performance suffers more as expected
from a ray tracing system because the skinning operation is linear in the num-
ber of triangles. That explains the significant drop in rendering performance
as the number of triangles increases.

reasonable time period as the number of triangles increases. Unfortunately,
the overall rendering performance drops down significantly with an increased
triangle count – more than expected. A reason is that the per frame skinning
operations are linear in the number of triangles and thus the well-known log-
arithmic scaling with the scene size for ray tracing is lost. A way to avoid
that penalty would be to use some additional motion LOD methods e.g. to
simplify the mesh and skeleton as proposed in [AOW06]. Nevertheless, for
realistic models, high interactive frame rates can be achieve.

4.6 Conclusions and Future Work

In this chapter a novel approach was presented that allows to ray trace ef-
ficiently keyframed animation sequences and skinned animations using hier-
archical index structures. The main idea is to decompose the motion of an
object into two independent parts: an affine transformation and some resid-
ual motion ∆. Since the animations are in general too complex for just a
single transformation and ∆ per keyframe, the meshes have to be decomposed
into coherently moving regions. In order to make the motion decomposition
work, several assumptions have to be made. The triangles connectivity of the
animation has be constant across the animation, and the animations have to
have some local coherent motion that can be exploited. If the animation has
no local coherent motion the can be exploited the motion decomposition will
still work, but the ray tracing performance will be very likely poor.

Although the number of traversal steps and triangle intersections are in-
creased compared to an optimized index structure, for a particular pose in
an animation, the rendering performance is always in an interactive range
even when only a single CPU core is used. Typically the performance drops

64 Chapter 4: Ray Tracing of Dynamic Scenes

just by a factor of two. Furthermore, the required main memory require-
ments are moderate. For each cluster, or bone, one fuzzy index structure is
required plus an transformation matrix for each keyframe when animation
sequences are used for rendering. Currently, the largest memory overhead
are the triangle meshes of the keyframes. If memory is here an issue, the
animations could be compressed [AM00, KG04], and the required triangles
decoded before an intersection test can take place. Additionally, the required
preprocessing for both skinned meshes and animation sequences is sufficient
fast and not cumbersome for practical applications. However, there is still
room for improvements i.e. rather then sampling the pose space of skinned
animations it might be possible to analytically compute the fuzzy-bounds.
One of the real beauties of this algorithm is that a ray tracing implementa-
tion that already supports affine transformations, i.e. using Wald’s [WBS03]
two-level approach, do not have to change their core ray traversal and inter-
section code. These implementations can with just a few modifications render
additional classes of dynamic scenes without the need to change complex and
critical parts of code.

In the last two years a true flood of approaches for dynamic ray tracing
has been published. To name just a few there are: new algorithms for fast kD-
tree [PGSS06, WH06] and BVH [Wal07, LYTM06] construction, fast BVH
updates [YCM07], selective BVH updates [YCM07], asynchronous BVH up-
dates [IWP07], and fast grid construction methods [WIK+06, ISP07]. This
list is far from complete. Right now it is not possible to compare all of those
approaches since they all support different kinds of motion, have a differ-
ent code bases, use internally different algorithms, e.g. for ray traversal or
intersection tests, and data structures [WMG+]. One possibility for future
work could be to concentrate on particular domains where specific knowledge
is available to determine a (close to) optimal index structure and guide its
(re)builds, updates and traversal algorithms that depend on the character-
istic of the application. Finally, it can be said that the presented motion
decomposition approach is for typical scenes on par with other solutions, in
terms of memory overhead and performance, that could be used for computer
games or animated movies.

Chapter 5

Ray Tracing on the CELL Processor

In Chapter 3 it is discussed that hardware support for ray tracing is essen-
tial to achieve sufficient performance for 3D-based computer games. In this
chapter the processor of the Playstation 3, the IBM Cell processor, will be
analyzed in terms of ray tracing performance. Specifically, it is interesting
to explore what kind of algorithmic changes and extensions are needed to
achieve the best possible ray tracing performance, and what the inherent
limitations are for this new processor architecture.

5.1 The CELL Broadband Architecture

Before the implementation of the ray tracing algorithm to the Cell processor
is discussed, first the unique features of this architecture are described. In
particular where it differs from traditional CPU architectures. One of the
most important differences to conventional multi-core CPUs is that the Cell is
not a homogeneous system with multiple copies of the same core [KDH+05a].
Instead, it is a heterogeneous system, consisting of one 64 bit PowerPC core
(PPE) and eight synergistic processor elements (SPEs), each of which con-
tains a synergistic processing unit (SPU) (see Figure 5.1). The SPE differs
from standard x86 CPU cores, in that it is much smaller, exclusively designed
for streaming workloads, and do not support hardware multithreading. In its
intended use, the Cell’s SPEs do the real work in a data parallel or streaming
(pipeline) manner, while the PPE core performs synchronization tasks and
executes non-parallelizeable code.

Instead of a memory cache, each SPE has 256KB of local store mem-
ory. Direct access to the PPEs main memory from an SPE is not possible.
Instead the SPE can explicitly perform (asynchronous) DMA transfers to
or from main memory. The local store has to accommodate both data and
code. The SPEs have their own reduced RISC-like instruction set, where
each instruction is a 32 bit word with a fixed execution latency of two to
seven cycles (except double precision floating-point instructions that are not

66 Chapter 5: Ray Tracing on the CELL Processor

used and hence not considered here).
Compared to standard x86 CPUs, each SPU has a large unified register

file of 128× 16 byte SIMD registers. Most of the SPE instructions are SIMD
instructions, in particular for performing multimedia and general floating-
point processing. These instructions are more flexible than e.g. Intel’s SIMD
instruction sets [Int02b] and include, for example, three-operand instructions
with a throughput of one SIMD multiply-add per cycle, allowing for a theo-
retical peak performance of 25.6 (single-precision) GFlops on a 3.2GHz SPE.
Each SPE has two pipelines, where each is specialized for a certain type of
instructions (load/store vs. arithmetic). This allows for dispatching two (in-
dependent) instructions in parallel, achieving a theoretical throughput of 6.4
billion SIMD instructions per second per SPE. Besides the special instruc-
tion set, the SPE has no branch prediction as known from standard CPU
cores. Instead a branch hint instruction is supported which helps the SPE to
predict if a certain branch has to be taken or not. The branch hint takes a
branch target address – that should point to the most likely executed branch
– and prefetches up to 32 instructions starting from the target address. In
doing so, a correctly predicted branch does not incur any penalty.

Both, PPE and SPEs are in-order processors. As the 256KB local store of
the SPE has a fixed access latency of 7 cycles, in-order instruction execution is
a suitable simplification: The compiler can predict the (local-store) memory
access and therefore schedule the instructions for maximum performance.
However, in-order execution on the PPE with its standard 32KB L1 and
512KB L2 cache harms memory intensive applications, making the core less
powerful compared to standard x86 CPUs with out-of-order execution. In
order to reduce the impact of cache misses, the PPE uses 2-way symmetric
multi-threading [KDH+05a] which is comparable to Intel’s Hyperhreading
[Int02c].

To keep the SPEs supplied with data – and to allow efficient communi-
cation between the SPEs – the Cell uses a high performance element inter-
connection bus (EIB). The EIB is capable of transferring 96 bytes per cycle
between the different elements – PPE, SPEs, I/O interface, and system mem-
ory. The DMA engine can support up to 16 concurrent requests per SPE,
and the DMA bandwidth between the local store and the EIB is 8 bytes per
cycle in each direction. The aggregate bandwidth to system memory is 25.6
GB/s, and the bandwidth between SPEs can be more than 300GB/s on a
3.2GHz Cell. SPE-to-SPE transfers are kept within the EIB, avoiding any
main memory transaction.

The minimalistic design of the SPEs (no cache, no branch prediction, in-
order execution, no hardware threading support) allows for very high clock
rates. For experiments a dual Cell-Blade system (with 512 MB of XDR main

5.2 Ray Tracing on the CELL Broadband CPU 67

SPU

LS
MFC

(DMA)

SPE 1

SPU

LS
MFC

(DMA)

SPE 2

SPU

LS
MFC

(DMA)

SPE 5

SPU

LS
MFC

(DMA)

SPE 8

SPU

LS
MFC

(DMA)

SPE 3

SPU

LS
MFC

(DMA)

SPE 4

SPU

LS
MFC

(DMA)

SPE 6

SPU

LS
MFC

(DMA)

SPE 7

EIB (300 GB/s)

PPE Memory

Figure 5.1: Each Cell consists of a 64 bit PowerPC core (PPE) and eight
synergistic processor elements (SPEs). Each SPE has 256KB local store,
a memory flow controller (MFC) and a synergistic processing unit (SPU)
with a SIMD processing unit and 128 registers of 16 bytes each. An element
interconnection bus (EIB) with an internal bandwidth of more than 300 GB/s
(per 3.2GHz Cell processor), is responsible of transferring data between the
SPEs. The maximum bandwidth from the SPEs to main memory is 25 GB/s.

memory) is used in which the Cells are clocked at 3.2GHz (which is the same
clockrate as the PS3 offers).

5.2 Ray Tracing on the CELL Broadband CPU

As just shown, the Cell is quite different from today’s x86 based mainstream
processors. In order to enable efficient ray tracing on the Cell, the following
differences have to be taken care of (Section 5.9 discusses also the drawbacks
that are inherent to the current Cell architecture):

In-order Execution: An SPE executes the instructions in-order, which
means that pipeline stalls, caused by code dependencies or mispredicted
branches, are more expensive than on a CPU with out-of-order execution.
To avoid this, the compiler is responsible for a suitable instruction scheduling
and to untangle code dependency chains. Most of the time the compiler re-
solves the dependencies automatically, but sometimes the algorithms have to
be (manually) adapted to help the compiler finding independent instruction
sequences. These instruction sequences can then be interleaved to prevent
stalls efficiently.

SIMD Instruction Set: As the SPE’s instruction set is designed for SIMD
processing, most of the instructions operate on multiple data elements at once

68 Chapter 5: Ray Tracing on the CELL Processor

(two to sixteen elements depending on element size). As an instruction has a
throughput of one per cycle and a latency between two to seven cycles, one
has to ensure enough independent data to work on. Otherwise, dependency
chains, and therefore pipeline stalls, are unavoidable. Unfortunately, the
instruction set is suboptimal for scalar code, so even simple operations such
as increasing an unaligned counter in memory require a costly read-modify-
write sequence.

Memory Access: Each SPE has an explicit three-level memory hierarchy:
a 128 × 16 bytes register file, a 256KB local store, and main memory. As
the local store does not work as hardware-managed memory cache, all main
memory accesses must be done explicitly by DMA transfers. Even though
the memory bandwidth of 25.6 GB/s is rather high, each memory access
has a high latency of several hundred SPE clock cycles. In order to hide
the latency, the DMA engine supports asynchronous transfers, whose states
can be queried on demand. Even though this setting is ideal for streaming
operations in which huge blocks of data are being processed sequentially, it is
challenging for a data-intensive application with irregular memory accesses
such as a ray tracer.

Parallel Execution: Each Cell has 8 SPEs. There are different ways of
mapping an algorithm onto such a parallel architecture, and the exact way
this is done will have a significant impact on performance.

In the next section these mappings and its possible implications will be
discussed in detail.

5.2.1 Ray Tracing Algorithm Mapping

The first design decision to consider is how to map the ray tracing algo-
rithm to the multiple SPEs. In a heterogeneous approach, each SPE runs
a different kernel, and the results are sent from one SPE to another. In
a homogeneous approach, each SPE runs a full ray tracer, but on different
pixels. Traditional multi-core architectures favor the latter, but traditional
streaming architectures are usually intended to be used in the heterogeneous
way (also see [KDK+01, PBMH02, CDR02]).

As seen in Chapter 2, ray tracing can be broken into the tasks: ray gen-
eration, traversing rays through a spatial index structure, intersecting the
rays with geometric primitives, and shading the corresponding intersection
points, including the generation of secondary rays and their recursive evalua-
tion. One way of mapping ray tracing to the Cell is to have each SPE perform
only one of these tasks, and to send its results to the SPE that performs the
next task in the ray tracing pipeline. For example, one SPE could generate
primary rays which are then sent to one or more SPEs doing the traversal,

5.2 Ray Tracing on the CELL Broadband CPU 69

which in turn send ray-triangle intersection tasks to other SPEs. In fact, the
Cell’s architecture is able to support such a streaming workload: the high
inter-SPE bandwidth (of up to 300GB/s) lets the SPEs communicate with
each other; and the asynchronous DMA transfers allow for transferring one
SPE’s output to another while both operate on the next block of data in the
stream. In principle, mapping a ray tracer to such an environment is pos-
sible, and has been demonstrated for Smart Memories [CDR02] and GPUs
[PBMH02]. The streaming approach works best if the individual tasks can be
cascaded and if there is a steady flow of data from one task (i.e. SPE) to the
next (as in video/speech processing, or scientific computations) [WSO+06].
A ray tracer, unfortunately, has a much more complex execution flow: the
traversal unit does not pass results unidirectionally to the intersection unit,
but also has to wait for its results; the shader not only shades intersection
points, but can also trigger additional rays to be shot; etc. Such dependency
chains require one task to pause and wait for the results of another, creat-
ing stalls. In addition, this approach makes it hard to balance the load of
different SPEs, as the relative cost of traversal, intersection, shading, etc.,
varies from pixel to pixel. As soon as one SPE in the chain becomes a bot-
tleneck, it starves the other ones. To a certain degree this starvation can be
avoided by buffering the SPEs in- and outputs in main memory, and then fre-
quently switch the kernels each SPE executes depending on what tasks need
to be done most. This implies a non-trivial system design (synchronization,
load balancing, etc), and also poses significant strain on the memory sys-
tem (whose bandwidth is more than an order of magnitude lower than the
inter-SPE bandwidth). Even though 25 GB/s seem plentiful, the target is to
achieve several dozen frames per second, each frame requiring at least one
million rays, and reading/writing each ray several times when passing it from
task to task may easily create a bottleneck.

The above considerations have led us to follow an approach typically used
on conventional shared-memory multiprocessor architectures: each SPE in-
dependently runs a full ray tracer, and parallelization is achieved by SPEs
working on different pixels (see Section 5.7). Having each SPE work inde-
pendently ensures less communication between SPEs, and avoids exchanging
intermediate results with either other SPEs or main memory. In addition,
it avoids dependency chains between different SPEs in- and outputs, and fa-
cilitates high SPE utilization. On the downside, having each SPE run a full
ray tracer forces us to operate the SPEs in a way they are not designed to
be used: in particular, each SPE may access any data in the scene database,
in a random-access manner. As the local store is too small to store the en-
tire scene, this requires appropriate ways of accessing and caching the scene
data, as well as means to handle the resulting SPE-memory dependencies.

70 Chapter 5: Ray Tracing on the CELL Processor

It also limits the possible code size for each pipeline stage size drastically.
All algorithms from ray generation to shading have to share the same small
local store.

5.2.2 Spatial Index Structure and Traversal Method

Having decided on the programming model, the next decision is which spa-
tial index structure to use. As discussed in Section 2.4.2 efficient ray tracing
requires the use of spatial index structures, such as bounding volume hier-
archies (BVHs) [RW80], Grids [AW87], or kD-trees [Jan86]. In particular,
tracing coherent packets of rays [WSBW01] – possibly accelerated by look-
ing at the packet’s bounding frustum [RSH05] – has been shown to be an
important factor in reaching high performance [Wal04, Ben06]. As explained
earlier, tracing packets of rays allows for amortizing memory accesses over
multiple rays, allows for efficiently using SIMD extensions, and increases the
compute-to-memory access ratio. Though already important for a conven-
tional CPU, these advantages are even more important for a Cell, which
depends on dense SIMD-code, and for which memory accesses are even more
costly than for a standard CPU. Measurements have shown that a single
DMA transfer requires about 1000 clock cycles until it is finished.

Naturally, since computer games are the main focus of this thesis, the
acceleration structure of choice should also support dynamic scenes. Among
the three discussed traversal acceleration structures in Section 2.4.2 the Grid
is the most general in the kind of animations it supports. Its more reg-
ular structure would nicely fit a streaming architecture. For example, a
straightforward extension of the technique proposed in [MFT05] would allow
for prefetching the grid cells before traversing them. However, the BVH and
kD-trees currently seem to be faster than the Grid, more suitable for complex
scenes – in particular for scenes with different geometric density –, and some-
what more robust for secondary rays [WBS07]. Since the BVH can support
the same kind of animations, as a kD-tree even without the preprocessing
discussed in Chapter 4, the BVH is chosen (with 8× 8 rays per packet), but
most ideas generalize to Grids and kD-trees as well. Compared to a kD-tree,
a BVH offers offers even more advantages that are particularly interesting
for a Cell like architecture: a BVH will have fewer memory accesses and a
higher compute-to-memory access ratio, because it has fewer nodes than a
kD-tree, and more arithmetic to be done per node.

5.3 CELL-Specific Traversal and Intersection

As mentioned in Section 5.2.2, this system closely follows the traversal pro-
posed in [WBS07], and the traversal algorithm and triangle intersection are
exactly the same. Nevertheless, the Cell is not like the CPUs that the origi-

5.3 CELL-Specific Traversal and Intersection 71

nal traversal and intersection framework was designed for. Therefore, special
optimizations have to be done to efficiently map these routines to an SPE.

5.3.1 BVH Traversal

Branch mispredictions on the Cell are costly. Unfortunately, the BVH traver-
sal proposed in [WBS07] (see also Section 2.4.3) has two conditionals in its
inner loop, both of which have a 40-45% chance of being taken: to reduce
ray-box tests, one does not test each ray against every node, but first per-
forms two tests that can often decide the traversal case without having to
look at all the individual rays. First, one tests the first ray that hit the parent
node, and immediately descends if it hits; if not, the node is tested against
the packet’s bounding frustum, leading to an immediate exit if the frustum
misses the box. These two tests cover around 80-90% of the traversal cases,
making an efficient implementation mandatory. As a serial execution of the
two tests introduces dependency chains and therefore pipeline stalls, two
tests are performed in parallel, while postponing the branches as far as pos-
sible. Moreover, the branches are arranged in such a way, that mispredicted
branches occur only for the third traversal case. The parallel computation
completely avoids dependency stalls and increases the double instruction dis-
patch rate to 35%, yielding total costs of 51 cycles (without a misprediction
stall), which is an 10-20% performance improvement, compared to a serial
test execution. The average cycles-per-instruction (CPI) ratio for the code
is 0.65, where 0.5 is the optimum (please remember that each SPU has two
pipelines and can thus dispatch, under some circumstances, two independent
instructions as described in Section 5.1).

5.3.2 Triangle Test

As packet-triangle test, the algorithm proposed in [Wal04, Ben06] is used:
this test is particular suited for SIMD processing, and in addition, stores all
data required for the triangle test in a single memory location (see Section
2.4.4). As proposed in [WBS07], a SIMD frustum culling step is performed
to detect if the frustum completely misses a triangle.

As with the BVH traversal, the triangle test was originally designed for a
x86 CPU, and the Cells in-order execution model requires some changes to
remain efficient. The triangle test consists of four individual tests: one first
tests the distance to the triangle’s embedding plane, and then computes and
tests the three barycentric coordinates of the point where the ray pierces the
plane. On a x86 CPU, the best performance is achieved if each of these tests
is immediately followed by a branch that skips the remaining computations if
it failed. On the Cell, these branches cause dependency chains and frequent
branch misprediction stalls, which cause the same code to run quite ineffi-

72 Chapter 5: Ray Tracing on the CELL Processor

cient. To avoid these, all branches are removed, and always sixteen SIMD
tests (i.e. for 64 rays) are performed in parallel. Results are updated via
branch-free conditional moves. With these modifications, a packet of 64 rays
can be intersected in only 520 cycles, or 8.125 cycles per ray on average.
In particular the Cell’s large number of registers is quite helpful: while on
an x86 CPU even a single test can lead to register spilling, the SPE’s 128
registers allow for unrolling the intersection test eight times, which yields a
double instruction dispatch of 37.5% and a CPI ratio of 0.71. Moreover, all
required triangle data can be held in registers, without having to reload –
and reshuffle – the triangle data for every new batch of rays in the packet.

5.4 Explicit Data Caching

In Section 5.1 it is stated that the Cells SPE’s do not have a cache memory
but local store. What does that mean? Since the advent of the Von-Neumann
architecture, CPU’s clockrate increases at a higher pace as access times to
main memory decrease. This so called Von-Neumann bottleneck [Hil89] is
steadily increasing as more and more clock cycles are wasted for slow data
request from main memory and the CPU has nothing to do but wait. For this
reason, traditionally CPUs have a small, yet expensive, low latency memory
(hierarchy) on-die. In this on-die memory data from main memory can be
transfered, and computations using the data that is already ”on-the-chip” can
be performed with highly reduced data access times. Unfortunately, the size
of the the small on-die memories is way too small for all code and program
data that are needed for most applications. A cache is now a combination of
an on-die memory and logic that automatically fetches requested data into
the cache, if not already residing there, and decides which data has to be
swapped out if the cache is full. The SPE’s local store is missing the cache
logic and data have to be swapped in and out manually.

5.4.1 On Caching

The cache has the primary task to cache the data that are most likely reused
soon. In general a cache consists of two parts: a tag list and associated data
blocks. The tag is a base address where in the main memory the data can
be found and is thus a unique identifier. Data blocks – also called cache
lines – have typically a size of 2n bytes, e.g. 64. The size of the cache lines
determines the granularity of memory requests. If a program fetches some
data, the request-address is translated to a tag, and looked up in the tag
list. The translation is necessary to also find cached addresses in the tag list
whose address lies within a cache line. When the tag can be found, the data
is already in the cache and can be accessed in the associated data block of
the tag. Otherwise the data, more precisely a complete data block starting

5.4 Explicit Data Caching 73

Direct-Mapped Set-Associative Fully-Associative

v v v

SetSlot

Figure 5.2: The three standard cache organizations: In a direct-mapped
cache, the date of a particular address can only be stored in one slot. There
exists then a direct 1:1 mapping from main memory addresses to the slots
in the cache. In a set-associative cache, slots are grouped to sets. Addresses
are then mapped to sets. The date of an address can then be placed in each
slot of a set. Fully-associative caches allow to store the date of an address to
every slot.

from the tag address, is requested from main memory, and the tag is placed
in the tag list.

There are three standard ways a cache can be organized [Bre03] (see
Figure 5.2). First there is the fully-associative cache. In this cache, the
data of an address can be placed in every slot in the cache. To determine
if some data is in the cache it is necessary to check all tags whether the tag
is found. If the cache is reasonable large, e.g. it has 256 entries, this linear
search is very expensive. Contrary to a fully-associative cache, in a direct-
mapped cache there is for every address only one slot where its data can be
placed. This makes the cache look up very cheap since the tag has only to be
searched in one slot. Nevertheless, multiple addresses map to each particular
slot and data will be often replaced by other data that map to the same slot
in the cache. A compromise between these two cache organizations is the
set-associative cache. Here, sets of slots are grouped together e.g. four. In
that case the cache could be refered as a 4-way set-associative cache. The
advantage is that addresses are now mapped to sets, and that the data can
be placed in any slot – the so-called ways – within a set. A fully-associative
cache is in that sense a set-associative cache with only one set containing all
slots. If a set-associative cache is implemented in software it is advantageous
to choose 4-ways. The four tags of a set can then be placed in a SIMD-register
and a requested tag is simply looked up by a single SIMD-compare.

To compute now exactly the tag, set index, and byte offset in a cache
line for an address, only some bit operations are necessary if the size of a
cache line and the number of sets is a power of two. Lets consider a 4-way

74 Chapter 5: Ray Tracing on the CELL Processor

031 ...
32 bit Address

05
Offset Bits

610
Set Index Bits

31 11
Tag Bits

Cache Configuration:

128 Cache Lines, 32 Sets, 64 Bytes per Cache Line
4-way set-associative

Offset Bits: 0 .. ld(64) - 1
Set Bits: ld(64) .. ld(64) + ld(32) - 1
Tag Bits: 31 .. ld(64) + ld(32)

Figure 5.3: An example for the computations of the offset, set index, and tag
of a 32 bit address.

associative cache with 128 cache lines (s = 32 sets) with a capacity of b = 64
bytes per data block. The offset of an address in a cache line is determined
by its least significant bits from 0 to log2(b). To find the set index, the bits
from log2(b) to log2(b) + log2(s) − 1 can be used. Finally the tag can be
extracted from the most significant bits from 31 to log2(b) + log2(s) – on a
32 bit machine. Figure 5.3 clarifies the address mapping with an example.

But what happens now when data have to be overwritten because there
are already data in a slot or the cache is completely full? In the case of
the direct-mapped cache new data always overwrite old data. There is no
other way since an address only maps to one particular slot. Set- and fully-
associative caches need a replacement strategy that decides what data should
be overwritten. The goal of the replacement strategy is to leave the data in
the cache that are very likely to be reused in future and overwrite that data
that are not needed anymore. That is in general a very difficult problem
since it cannot be known in advance what data will be needed in future. For
example a simple rule could be used to evict the data in a set’s slot that is
not used for the longest time.

Typically on todays commodity CPUs caching is performed in hardware.
Nevertheless, one of the SPE’s design goals was to use as little as possible
die-area and thus hardware caching capabilities were considered as too ex-
pensive. However, each SPE requires access to all scene data, which does
not fit into local store. As main memory accesses can only be performed by
DMA transfers, caching is emulated by creating small self-maintained soft-
ware memory caches within the SPE’s local store. The lack of a hardware
supported cache means that all cache logic has to be performed, using se-
rial code, in software – which is costly. In addition, cache misses result in
high-latency DMA transfers, and are also quite costly. Finally, even cache
hits require a short instruction sequence to obtain the data, increasing access
latency of cached data. Fortunately, caching of scene data in a ray tracer has
shown to yield high cache hit rates [SWW+04, SWS02, WSS05] and cache
accesses can be additionally amortized over an entire ray packet.

5.4 Explicit Data Caching 75

5.4.2 Cached Data Types

Instead of a unified memory cache, an approach recently used for design-
ing ray tracing hardware [SWS02, WSS05] is followed that uses specialized
caches for each kind of scene data. Having specialized caches allows for
fine tuning each individual cache’s organization and granularity. Due to the
DMA transfer granularity, all cache granularities must be powers of two. For
the kD-tree based hardware architectures, three types of caches are required:
node caches, triangle caches, and item list caches. A BVH references each
triangle exactly once, and item lists can be completely abandoned.

Node Cache: Each BVH node stores minimum and maximum box extent,
a pointer to the first child (for inner nodes) or first triangle (for leaves), and
some additional bits. These can be stored within a 32 byte data structure,
which is also a power of two. In addition, a BVH – in contrast to a kD-tree
– always has to test both children of a node (see Section 2.4.3). Due to that,
individual BVH nodes are not cached, but instead use a 64 byte granularity
and cache pairs of BVH node siblings. Compared to caching individual BVH
nodes, this yields a roughly 10% higher cache hit rate.

Triangle Cache: As mentioned above, the triangle test proposed in [Wal04]
is used, which uses a precomputed record of 12 words (48 bytes) for the trian-
gle test. This data is fully sufficient for the intersection test, so no additional
caches for triangle connectivity or vertex positions are required, which greatly
simplifies the cache design. As 48 is not a power of two, a triangle cache’s
cache line size of 64 bytes is chosen. The additional 16 bytes are then used to
store indices to the three vertices respectively normals and an index to the
global shader list. These are not required for the intersection test, but are
required when shading the intersection points and hence, additional costly
DMA transfers can be avoided.

5.4.3 Cache Organization and Efficiency of Caching

Ray traversal offers a high degree of spatial coherence, and even a simple
direct mapped cache offers high cache hit rates (see Table 5.1). A four-way
set-associative cache (with a least-recently-used replacement policy) provides
an additional 1-5% higher cache hit rate but requires significantly more com-
plex logic, which increases cache access latency. As a cache access has to
be performed in every traversal step, better performance can be achieved
with a direct mapped cache, even though it has a somewhat lower hit rate.
Fully-associative caches were not considered since cache look ups are way too
expensive. Though a BVH instead of a kD-tree is used, the cache statistics in
Table 5.1 show nearly identical results to those reported in [SWS02, WSS05],
showing similarly good cache hit rates. In order to reduce instruction de-

76 Chapter 5: Ray Tracing on the CELL Processor

Cached 128KB 256KB 512KB 1024KB
Scene Data 4-way DM 4-way DM 4-way DM 4-way DM

ERW6 BC 99.8 99.4 99.9 99.7 99.9 99.9 99.9 99.9
Conference BC 95.7 91.2 98.0 94.4 98.5 96.9 98.7 97.8
VW Beetle BC 87.6 84.4 91.6 88.3 93.5 91.6 94.1 93.2

ERW6 TC 98.1 96.8 98.4 97.4 98.7 98.4 98.7 97.7
Conference TC 71.0 61.5 80.0 74.8 86.7 82.7 98.2 86.5
VW Beetle TC 45.1 39.8 50.9 45.8 55.1 50.4 57.2 52.9

Table 5.1: Cache hit rates for 4-way associative (4-way) vs. direct mapped
(DM) caches for BVH nodes cache (BC) and triangle cache (TC). Measured
with casting primary rays at a resolution of 10242 pixels, 8 × 8 rays per
packet, and a default setting of 256 BC entries (17KB), and 256 TC entries
(17KB).

pendency chains, speculative execution is applied: In parallel to the cache
hit test, the data is speculatively loaded from the cache and reformatted
for further processing. The potential branch to the miss handler is slightly
postponed, which allows for hiding cache access latency by interleaving the
instruction sequence with surrounding code. As the cache hit rate is typically
very high, the increased number of instructions executed in case of a cache
miss does not have a significant impact. Due to the high cache hit rates,
branch hints are used to optimize all cache access branches for hits. Thus,
the hit logic is cheap, and a costly branch miss occurs only in the case of a
cache miss.

5.4.4 Cache Sizes

In addition to the caches, the SPE’s local store must also accommodate pro-
gram code, ray packet data (rays and intersection points), and some auxiliary
buffers. Since local store is scarce, the cache sizes must be chosen carefully.
Table 5.1 shows that for three test scenes a BVH node cache of 256 entries is
a good compromise between cache hit rate (> 88%) and memory consump-
tion (17KB); doubling the cache size increases hit rates by a mere 3%, but
doubles memory consumption. For the triangle cache, the situation is more
complicated. Since triangle intersections are performed where the rays are
least coherent (at the leaves), the triangle cache has a much lower hit rate,
hence a large cache is beneficial. Nevertheless, even where the hit rates are
very low–down to 40-55% for the Beetle scene – even a much larger cache
cannot significantly improve the hit rate: for finely tessellated geometry, tri-
angles are smaller than the spatial extent spawned by the 8 × 8 rays in a

5.5 Software Multithreading 77

packet, and will therefore often be intersected by a single packet only. It can
be argued that a ray bundle itself acts as a kind of zero-level cache with a very
high cache hit rate even for fine tessellated scenes across the rays in a bundle.
Even though the triangle cache’s hit rates of only around 50% look utterly
devastating, triangle accesses are rare compared to BVH traversal steps, so
the total impact of these misses stays tolerable. Because of the costly DMA
transfers, a cache hit rate of 50% still ensures a higher performance than
using no cache at all.

5.4.5 Traversal Performance including Caching

With cached access to scene data, the per-SPE performance of the traversal
and intersection code is now evaluated on three example scenes with different
geometric complexity (see Section 5.8 for a detailed description). Table 5.2
gives performance data per SPE, casting only primary rays (no shading oper-
ations are applied). DMA transfers invoked by cache misses are performed as
blocking operations, making cache misses quite costly. For the rather simple
ERW6 scene – which also features very high hit rates – a single SPE (clocked
at 3.2GHz) achieves 30 million rays per second(MRays/sec), the more com-
plex conference and VW beetle scenes still achieve 6.7 MRays/sec and 5.3
MRays/sec, respectively.

5.5 Software Multithreading

Though a set of small self-maintained caches within the local store allows for
efficiently caching a large fraction of the scene data, having only compara-
tively tiny caches of 256 entries (for more than half a million triangles), cache
hit rates in particular for the triangle cache drop quickly with increasing ge-
ometric complexity. Being a streaming processors, the Cell is optimized for
high-bandwidth transfers of large data streams, not for low-latency random
memory accesses. All memory accesses are performed via DMA requests,
which have a latency of several hundred SPE cycles. The discrepancy be-
tween bandwidth and memory latency is not a phenomenon unique to the
Cell processor, but exists similarly for every one of today’s CPU architec-
tures. One of the most powerful concepts to counter this problem is software
multithreading: the CPU works exclusively on one thread as long as possi-
ble, but as soon as this thread hits a cache miss, it is suspended, the data is
fetched asynchronously, and another thread is being worked on in the mean-
time. If thread switching is fast enough, and if enough threads are available,
multihreading can lead to a significant reduction of pipeline stalls and can
therefore lead to higher resource utilization.

Though multithreading is most commonly associated with CPUs, it is also
used in other contexts. For example, the RPU [WSS05] architecture makes

78 Chapter 5: Ray Tracing on the CELL Processor

TravSteps/ # Isecs/ Traversal (in %)
Scene Bundle Bundle Early Exits Early Hits MRays/sec

ERW 18.73 1.47 44 52 30.52
Conference 55.33 5.94 40 52 7.24
VW Beetle 43.9 7.21 34 48 7.08

Table 5.2: Performance per 3.2Ghz SPE, in frames per second for casting
primary rays (no shading) at a resolution of 10242 pixels, with 8 × 8 rays
per packet, 256 BVH cache entries (17KB) and 256 triangle cache entries
(17KB). Triangle intersections means triangle intersections after SIMD frus-
tum culling. Even though only a small amount of local store is reserved
for caches (< 35KB), and all DMA transfers are performed as blocking op-
erations, a single SPE achieves a performance of 7 - 30.5 million rays per
second.

heavy use of multithreading, and uses 32 simultaneous threads per RPU core
to hide memory latencies. Similarly, the same concept has been used in
Wald et al. [WSB01], albeit one level higher up in the memory hierarchy:
instead of switching on a memory access, the system in [WSB01] switched to a
different packet if a network access was required. Other systems use similar
concepts (e.g. [PKGH97]). Though the Cells PowerPC-PPE does support
multihreading, the SPEs do not. Still, similar to [WSB01] the concept can be
emulated in software. Having no hardware support for the context switch, a
complete SPE context switch which would include saving all registers and the
complete local store to memory, would be prohibitively expensive. Therefore,
a lightweight thread is defined as a single 8 × 8 ray packet, and multiple of
them are traversed simultaneously. Thus, only a small data set has to be
saved and restored. DMA transfers can be declared as non-blocking (i.e.,
asynchronous) and their state can be requested any time. Each time a cache
miss occurs, an asynchronous DMA transfer is invoked and the traversal
continues execution with the next packet; once the original packet is resumed,
its data will usually be available. Listing 5.1 shows the complete procedure.

5.5.1 Implementation

In addition to the ray and intersection data, each packet also requires its own
stack. Due to scarcity of local store, only a limited number of packets can
be kept at the same time. In the current implementation, four packets are
being used simultaneously. In order to suspend and to resume ray packets, all
packet-specific data – the ray packet context – has to be saved and restored.
In the current implementation, the packet context comprises a pointer to the
corresponding ray packet, a stack pointer, a DMA transfer state, etc.

5.5 Software Multithreading 79

packetIndex = 0 ;
goto startBVHTraversal ;

processNextPacket :
do {

packetIndex = (packetIndex +1) \% NUM SMT PACKETS;
}
while (terminated [packetIndex] == fa l se)

RestoreContext (packetIndex) ;

startBVHTraversal :
while (1) {

i f (s tackIndex == 0) break ;
while (1) {

index = stack [−−s tackIndex] ;
i f (InsidelocalStoreBVHCache (index) == fa l se) {

SaveContext (packetIndex) ;
Init iateDMATransfer (index) ;
goto processNextPacket ;

}
box = GetBoxFromLocalStoreBVHCache (index) ;
i f (Ear lyHitTest (box) == fa l se) {

i f (RayBeamMissesBox (box) == true
&& AllRayPacketsMissBox (box) == true)

goto startBVHTraversal ;
}

i f (I sL ea f (box) == true) {
break ;

}
else {

s tack [s tackIndex++] = GetBackChildIndex (box) ;
index = GetFrontChildIndex (box) ;

}
}

Per fo rmRayTr iang l e Inte r sec t ionTest s (box) ;
}

Listing 5.1: Pseudo-code for BVH traversal with software-multihreading.
Once a cache miss occurs, the current context is saved, an asynchronous
data transfer is invoked, and the traversal continues by restoring the next
(not yet terminated) packet.

80 Chapter 5: Ray Tracing on the CELL Processor

Pointers can be represented as 32 bit integers, and pointers for the four
contexts can be stored within a single integer vector, which allows for quick
insertion and extraction of data.

5.5.2 Performance Influence

As can be seen in Listing 5.1, software-multithreading is a non-trivial task,
and the context saves and restores carry some significant cost as well. Still,
this cost is lower than the several hundred cycles that would be incurred by
waiting for the memory request to complete. Overall, software-multithreading
(SHT) gives a noticeable speed up, as can be seen in Table 5.3, which com-
pares the performance of a caching-only implementation (see Section 5.4.5)
to the performance achieved when applying SHT to both BVH and triangle
cache. As expected, SHT cannot give a noticeable benefit for small scenes
in which only few cache misses occur anyway. For larger scenes, however,
where cache misses become significant, SHT can achieve more than 30% im-
provement in performance.

5.6 Shading

Once being able to trace rays, the resulting intersection points have to be
shaded. Ideally, the Cell would be used as a ray tracing processor only, with
shading being done on a GPU. In a Playstation 3, for example, GPU and Cell
have a high-bandwidth connection, and sending rays back and forth would
probably be feasible. In that setup, the GPU could do what it’s best at –
shading – and the Cell would only trace rays. Nevertheless, a Playstation
3 can only use this high-bandwidth connection using its own operating sys-
tem and libraries. Until now, it is not possible to use the available Linux
environment with this feature.

In the following, a set of 8 × 8 intersection points is defined as an i-set.
Each intersection point within an i-set comprises the triangle index, the hit
point in world space, the shading normal (interpolated from the three vertex
normals), the reference to a surface shader etc. For the SPE’s SIMD archi-
tecture, shading is most efficient if multiple intersection points are shaded in
parallel. Unfortunately, neighboring rays may have hit different geometry,
requiring different data to be shaded. Since the smallest SIMD-size is four,
these 8 × 8 intersection points are grouped into 16 intersection packets of
four rays each, and work on each of these in a SIMD manner.

Compared to ray packet traversal, parallel shading has a much more com-
plex control flow, and a significantly more complex data access pattern. In
particular, while traversal always intersects all rays with the same node or tri-
angle, shading each ray may require different shading data, which may have
to be fetched from completely different memory locations (material data, ver-

5.6 Shading 81

FPS
Scene w/o SMT with SMT Speedup (in %)

ERW6 30.52 30.54 0.01
Conference 7.24 8.27 14.2
VW Beetle 7.08 9.29 31.21

Table 5.3: Impact of software-multihreading (SMT) on per-SPE performance.
Performance in frames per second (10242 pixels, 256 BVH node and triangle
cache entries each, no shading) on a 3.2Ghz SPE. As scene size increases, it
can be realized that SMT becomes more and more important.

tex positions, vertex normals, etc.). Though, in principle these accesses could
be completely random, in practice there is at least some degree of coherence.
For instance, neighboring intersection points typically have the same shader
(even if they hit different triangles), and neighboring rays even frequently hit
the same triangle. Although, of course, there is a possibility that the worst
case scenario happens where all four rays have hit a surface with a difference
shader, but this is very rare in practice.

Since the SIMD-width is four – not 64 – four rays are shaded always at the
same time. For each intersection packet a flag whether the four intersection
points refer to the same triangle are stored additionally. This allows for a
more efficient implementation because cache accesses to the scene data can
be amortized over the whole intersection packet. Smooth shading typically
requires a surface normal that is interpolated by the three vertex normals,
so an additional cache for vertex data is maintained while filling in the i-set.
All vertex data – normal, position, and texture coordinates – is stored within
a 64 bytes element, allowing to cache all vertex data in one aligned cache
record. In addition to vertex data, a cache for material data (diffuse and
specular color, etc.) is maintained.

The actual shading process is split into several steps. First, is is checked
(by testing the triangle flag) whether rays in the packet have hit the same
triangle, using the information to efficiently gather geometric data, in partic-
ular, the three vertex normals: the data is loaded once, and then (possibly)
replicated across the intersection packet. As can be seen from Table 5.4,
for the 4-ray packets the probability of having hit the same triangle is actu-
ally rather high.The second step uses a multi-pass approach for the shading
of an i-set: All different surface shaders, which are referenced within the
i-set, are sequentially executed. Each of these shading passes works on the
full i-set, performing all shading computations for all 64 intersection points,
while using bit masks for invalidation of non-related intersection points. In

82 Chapter 5: Ray Tracing on the CELL Processor

order to speed up the sequential scanning for different surface shaders, each
surface shaders invalidates its shader reference in the i-set after execution,
ensuring that the corresponding surface shader is not executed again. Table
5.4 shows also that for the test scenes only one to two shading passes per
i-set are required. After accessing the material cache for a shading pass, no
further cache accesses have to be performed, and the intersection points can
be efficiently shaded in parallel using SIMD instructions. Note that the cur-
rent implementation does not support software-based multithreading for the
geometry or material caches.

For secondary rays, the same approach as Boulos et al. [BEL+07] is fol-
lowed: to generate coherent secondary packets, each 8 × 8 primary packet
generates one reflection packet (of up to 8×8 rays), multiple shadow packets
(one per light source), etc. In order to simplify matters, the current im-
plementation uses only a diffuse shading model with shadows, but without
reflection or refraction rays.

5.7 Parallelization Across Multiple SPUs

So far, the only considered was to make ray tracing fast on a single SPE.
However, each Cell has eight SPEs, and a dual processor system even has 16 of
them. Since a homogeneous programming model is used, and therefore have
no SPE-to-SPE communication, from a programmers perspective it makes
no difference where the SPEs are physically located.

Keeping all 16 SPEs utilized requires efficient load balancing. A standard
approach of defining the SPE’s working tasks by subdividing the image plane
into a set of image tiles can be used to accomplish an efficient load balancing.
From this shared task queue, each SPE dynamically fetches a new tile, and
renders it. As accesses to this task queue must be synchronized, the Cell’s
atomic lookup and update capabilities are employed: an integer variable
specifying the ID of the next tile to be rendered is allocated in the PPE’s
main memory. This variable is visible among all SPEs, and each time an SPE
queries the value of the variable, it performs anatomic fetch-and-increment.
This atomic update mechanism allows the SPEs to work fully independently
from both other SPEs and PPE, requiring no communication among those
units. The only explicit synchronization is at the end of each frame, where the
PPE waits to receive an end frame signal from each SPE. Figure 5.5 shows
the efficiency of the dynamic load balancing for three test scenes, using the
same settings as in the previous sections.

As image tile size 64× 64 pixels are used resulting in 256 image tiles per
frame. Even though the image tiles are only distributed across a single frame
(which implies synchronization at the frame end), the approach provides
almost linear scalability (without frame buffer transfer and shading) using

5.8 Overall Performance Comparison and Discussion 83

Same Triangle Passes Cache Hits (in %)
Scene (4-Ray-Packet) Per Bundle Vertices Material

ERW6 97.18 1.005 99.54 99.99
Conference 88.74 1.23 96.11 98.04
VW Beetle 78.49 1.07 89.35 99.62

Table 5.4: Probability of an intersection packet (four rays) sharing the same
triangle, and the cache hit rates for the vertex and material cache (direct
mapped, 1 - 2 shading passes). Both, the vertex and shader cache have 64
entries; all scenes are rendered at 10242 (only primary rays).

up to 16 SPEs.

5.8 Overall Performance Comparison and Discussion

In order to evaluate the efficiency of this approach, it is compared to existing
optimized alternative approaches. Figure 5.4 shows the used test scenes. On
the Cell processor, no real alternative approach is published until now and
other existing implementations follow exactly the above described strategies
[MNM06], or at least a subset [FSY+06] (software caching), and therefore
offer only similar or slower performance and are thus not intersecting for a
comparison. Today’s fastest published ray tracing results have all been real-
ized on commodity CPUs (using either Pentium-IV CPUs [RSH05, WIK+06],
or Opteron CPUs [WBS07]). To compare against these ray tracers, some of
the scenes also used in [WBS07] and [WIK+06] are taken, and measured their
performance. Table 5.5 reports the achieved fps on a single 3.2GHz SPE, as
well as on a single and dual 3.2Ghz Cell processor evaluation system with 8
respectively 16 SPEs. As a baseline for comparisons, a x86-based implemen-

Figure 5.4: The test scenes: ERW6 with 804 Tris (left), the Conference-Room
with 280K Tris (middle), and a VW-Beetle scene with 680K Tris (right).

84 Chapter 5: Ray Tracing on the CELL Processor

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

FP
S

Number of SPEs

ERW6

Conference

Beetle

Figure 5.5: Scalability across several SPEs using dynamic load balancing
based on image tiles. The atomic lookup and update capabilities of the Cell
makes a fast and efficient implementation possible which is able to provide
an almost linear scalability with up to sixteen 3.2Ghz SPEs. All tests were
run with 256 BVH box cache entries and 256 triangle data cache entries.

tation of the algorithm proposed by Wald et al. [WBS07] is included; for
a fairer comparison, Wald et al.’s code is not used, but a reimplementation
that performs exactly the same intersection, traversal, and – in particular –
shading computations as on the Cell, but with Opteron-optimized code (thus
achieving roughly the same performance as Wald et al.’s system).

As shown in Table 5.5, the Cell-based implementation is quite efficient:
on a single 3.2Ghz SPE, our implementation achieves a performance that is
roughly on par with that achieved by one of the fastest known ray tracing
implementations on a full-fledged Opteron CPU. As the system scales well
over the available SPEs, the Cell system is then roughly twice as fast as a
modern quad-core x86-based system.

Applying the profiling features of the Cell Simulator [Int05] allows for
obtaining a detailed dependency stall analysis on the SPEs. As the current
simulator does not provide a cycle accurate profiling of DMA transfers, cache
accesses (and the related DMA transfers) are excluded from the analysis.
For pure ray casting, roughly 25% of all cycles are taken by stalls: 11%
for mispredicted branches, 10% by dependency stalls and 4% by branch-hit
related stalls. The CPI ratio for complete BVH traversal is 0.99.

5.8 Overall Performance Comparison and Discussion 85

2.4GHz 3.2 GHz Cells
Scene Shading x86 1 SPE 8 SPEs 16 SPEs

ERW6 No 28.1 30.5 226.4 401.4
Conference No 8.7 8.2 62.0 115.7
VW Beetle No 7.7 9.2 61.1 109.4

ERW6 Diffuse 15.3 16.7 126.6 215.2
Conference Diffuse 6.7 5.6 42.9 79.1
VW Beetle Diffuse 6.0 4.4 36.1 65.3

ERW6 +Shadow 7.2 9.14 70.95 130.90
Conference +Shadow 3.0 3.01 23.52 44.43
VW Beetle +Shadow 2.5 1.89 15.21 29.78

Table 5.5: Performance in frames/sec on a 3.2GHz SPE, a single respectively
dual 3.2Ghz Cell processor system, and a 2.4Ghz x86 AMD Opteron CPU
using pure ray casting, shading, and shading with shadows (at 10242 pixels).
For pure ray casting, the implementation on a single 3.2Ghz SPE is almost
roughly on par with an up-to-data Opteron CPU. In addition, a Cell has 8
such SPEs, and can, in future, be clocked at a higher rate. Nevertheless, to-
day, quad-core x86 CPUs are available and the Cell’s performance advantage
will degenerate quickly.

5.8.1 Shading and Secondary Rays

As can also be seen from Table 5.5, the Cell-based shading does not work as
good as the traversal and intersection: in particular for more complex scenes
in which rays hit different triangles, even simple shading becomes costly.
For example, while for all test scenes pure ray casting on a single SPE is
roughly as fast as on a AMD Opteron core, the Opteron is up to twice as
fast once shading gets turned on. This, however, is not surprising, as this
implementation is mostly focused on efficient ray traversal and intersection
so far. In particular, profiling the shading code (using the simulator) shows
that 43% of the cycles required for shading are wasted in stalls: 21.5% for
dependency and 21.5% for mispredicted branches. This is mostly caused by
inefficient instruction scheduling, so it can be expected that future compiler
versions in combination with manual optimizations will provide a significant
performance increase for the shading part. Secondary rays, on the other
hand, do not further widen the performance gap between x86 and the Cell
processor, as they again benefit from the optimized ray traversal kernel. In
addition, shadow rays could be further accelerated using early shadow ray
termination, which has not been applied, yet.

For highly recursive shading and realistic lighting effects it is still not clear

86 Chapter 5: Ray Tracing on the CELL Processor

Used Data in KB per Frame for
Scene BVH Nodes TriAccels Vertices Materials Total

ERW6 24 43 130 0.03 202
Conference 1,113 2,797 1,278 87 5,275
VW Beetle 3,724 4,766 4,303 153 12,794

Table 5.6: Required bandwidth to system memory for loading different types
of scene data (in KB per frame). All scenes are rendered at 10242 pixels
using simple shading, and with 256 entries for both BVH and triangle cache.
Due to our caching framework, even the complex VW Beetle requires only a
mere of 12 MB memory bandwidth per frame.

how to efficiently map them to a packet-based shading framework. First work
has already been done [BEL+07], and it can be believed that most of this
is directly applicable. However, the limitation of the Cell processor, e.g.
limited local store size, makes the realization of complex shading even more
challenging.

5.8.2 Caching, Software-Multithreading, and Bandwidth

As shown in the previous sections, caching works well for BVH nodes, but the
cache hit rates for triangles quickly drop with an increasing scene complexity.
Under the assumption that enough memory bandwidth can be reserved, one
could abandon the triangle cache completely. However, for high frame rates
the bandwidth could possibly limit the total performance.

Table 5.6 shows that for the complex VW Beetle scene only 12MB of
bandwidth to memory is required. In particular, the largest part of the
bandwidth is taken by loading triangle data (4.7 MB). Note that for writing
the final color as 32bit RGB values to the frame buffer, 4,096 KB per frame
of additional bandwidth is required. Even though a memory bandwidth of 12
MB per frame seems to be low, one should keep in mind that DMA transfers
are not performed in large chunks of data, but with small granularities of
16, 32 or 64 bytes. Memory latency has therefore a much higher impact
than memory bandwidth. For this kind of latency-bounded memory access,
software multithreading is a useful approach.

5.9 Architectural Shortcomings

Even though the Cell – and, in particular, the SPEs – have a powerful archi-
tecture and instruction set, even small general extensions to the SPEs could
further improve its efficiency for ray tracing e.g.:

5.9 Architectural Shortcomings 87

Hardware Caching: In order to avoid redundant data loads from the
PPE’s main memory to the SPE’s local store as much as possible, it is neces-
sary to exploiting caching strategies (see Section 5.5). These caching strate-
gies are costly in terms of clock cycles. In the currently used implementation
a cache hit requires between 32 (direct mapped) and 44 (4-way) cycles. A
cache miss more than 1000 (without multithreading). Even if 100% cache
hits could be achieved every single data access costs still at least 32 cycles
which significantly reduces the rendering performance. A future version of
the Cell should, if possible, include a hardware caching mechanism to reduce
this impact.

Hardware Multithreading: After exploiting software caching, it was
consequent to implement software multithreading to reduce the impact of
cache misses. Although it is possible to do that (see Section 5.5), it is rather
complicated and each software engineer is forced to implement its own op-
timized version for specific problems, or to use (slow) libraries provided by
the Cell-SDK. Hardware support for multithreading, e.g. two threads, would
speed up all kinds of applications with complex and poorly predictable mem-
ory access patterns, and relief developers from this task.

Larger local store Size: Currently, the size of the local store per SPE
is limited to 256KB memory. For some applications this may not be suf-
ficient, e.g. a shader library with many complex shaders and preprocessed
data might easily exceed this size. Another problem is that it is common to
use templates, e.g. in C++, to generate at compile time different optimized
execution path for several functions like the BVH traversal for ray bundles
with a common origin and bundles that do not. This can also lead to too
large programs for an SPE and care has to be taken to stay below the avail-
able memory limit. Although it is possible to page in and out functions on
the fly, for realtime applications this is not an option.

DMA Setup: The shading part requires many data gather operations, e.g.
loading four word elements from four different locations in the local store,
where the four addresses are held within a single register. As each of these
word elements does not need to be aligned on a sixteen byte boundary, a
long and costly instruction sequence (scalar loading) is required to load and
arrange the data. Therefore, an extended load instruction would be very
helpful.

Hardware Transcendental Functions: In ray tracing, transcendental
functions can be used for shading computations or to generate new sec-
ondary rays e.g. uniformly distributed rays over a hemisphere in a Monte
Carlo-based rendering algorithm. Unfortunately, there is no hardware sup-

88 Chapter 5: Ray Tracing on the CELL Processor

port and software functions have to be used. If it is considered that millions
of transcendental function have to be computed in a global illumination sim-
ulation per frame the required 74 cycles, e.g. for a sin, are quite costly.

Extended Branching: Only a single branch hint can be specified at a time
(fixed at compile time), and this must be placed at a certain distance before
the branch. This results in an increased number of branch mispredictions
for branch intense code. Specifying branch hints for multiple branches in
advance, and dynamic branching where the branch target can be changed
during runtime could significantly reduce the misprediction rate.

Although these suggested changes require significant modifications to the
Cells circuit design, they have the potential to speed up all kinds of algorithms
including ray tracing.

5.10 Conclusions and Future Work

In this chapter, it is shown how ray tracing can be efficiently mapped to the
Cell architecture. The resulting ray tracing performance of the presented ap-
proach is on a single SPE roughly comparable to the fastest known x86-based
systems (running on a single core). Using a SIMD enabled BVH traversal and
optimized routines, a per-SPE performance of several million rays per second
can be achieved. Access to memory is handled via explicitly caching scene
data, and software-multithreading is used to bridge cache miss latencies. In
addition, a load-balanced parallelization scheme achieves nearly linear scal-
ability across multiple SPEs, thereby using all of the Cell’s computational
resources. The remaining bottleneck is shading, which requires many cache
accesses, costly data gather operations, and a complex control flow, making
the Cell architecture less efficient than a commodity x86 core. Therefore,
future modifications should directly concentrate on a simplified but efficient
shading framework e.g. using a compiler approach. For example, a shading
compiler for a RenderMen like language could hide all ray bundle, thread-
ing, and caching issues from a programmer to simplify the development of
new advanced shaders. On the software side, a full-fledged ray tracing sys-
tem should also integrate multi-threading in the shading stage. As the SPEs
are exclusively designed for high clock rates, it can be expected that future
versions of the Cell processor to have a higher clock rate and an increased
number of SPEs. Even the current generation of SPEs has been reported
to run stable at 5.2 GHz [ADF+] by Asano et al.; so a great performance
boost from future generations can be expected. But still, the goal to achieve
suitable ray tracing performance for future computer games is not fulfilled
and future revisions of the Cell processor, possibly including the proposed
modifications in Section 5.9, have to be evaluated from scratch again.

Part II

Isosurface Visualization using Ray Tracing

.

Chapter 6

An Introduction to
Isosurface Rendering

The first part of this thesis is focused on ray tracing of (dynamic) surface-
meshes and its relation to future computer games and hardware platforms. In
this second part, the focus is on volumetric datasets in the context of scientific
visualization. More precisely on the subproblem of isosurface rendering. Due
to the fact that volume rendering uses fundamentally different primitives and
rendering methods this introduction outlines the most important concepts
and algorithms.

6.1 Volume Rendering and Volumetric Data

Volume rendering is a method to generate 2D images from 3D volumes
[HJ04]. The goal is to visualize the volumetric data such that important
properties can be intuitively examined and inner, otherwise hidden, struc-
tures are exposed [SM00].

Volumetric datasets are used in many application areas such as medicine
[WR02], forensic [MMU05] and fluid mechanics [MCC+99] to name just a few.
Primary sources for volumes are CT (Computed Tomography) or MRI (Mag-
netic Resonance Imaging) machines or numerical simulations. In essence
volumetric datasets consist of scalar values [SM00] defined at discrete spa-
tial locations. For this reason, the volumes are also referred to as scalar
fields. Each of those scalar values – called voxel for volumetric element –
represents a physical quantity like pressure or density and are the smallest
element of computation in volume rendering. A voxel can be seen as the 3D
equivalent to a 2D pixel (picture element). The data types used for the vox-
els can be arbitrary ranging from simple binary values up to floating point
numbers. Nevertheless, it is common that all voxels have the same data
type in a dataset. Typically, scanned datasets have a voxel quantization of
eight, twelve, or 16 bit and represent integers whereas numerical simulations
generate often 32 or 64 bit floating point numbers.

92 Chapter 6: An Introduction to Isosurface Rendering

Figure 6.1: 2D examples of various volumetric grid types (from left to right):
regular, anisotropic regular, rectilinear, curvilinear, and unstructured.

The structure of these scalar fields is diverse. Principally one can dis-
tinguish between structured and unstructured datasets. Structured datasets
have an inherent organization that allows for simple addressing computations
of voxels in a grid. By contrast, unstructured datasets require additional in-
formation about the topology of the grid in the form of an adjacency list, i.e.
to determine the neighbors of a voxel. Figure 6.1 exemplifies some widely
used volumetric grid types and their terminology.

For regular and rectilinear datasets cells can be defined by eight grid
points (see Figure 6.2 left). Curvilinear datasets can also use this cell concept
by transforming the volume from its real physical space to a computational
space [WCA+90] that maps the twisted grid into a regular one. In the case
of unstructured grids the voxel-soup is usually partitioned, e.g. into a tetra-
hedral mesh, for further processing. Whenever in this thesis unstructured
grids are used, they are converted first to such tetrahedral meshes. Each
tetrahedron can then be considered as a cell. In the following the eight vox-
els of a cubic cell are addressed by ci,j,k with i, j, k ∈ {0, 1}. The voxels of a
tetrahedron by ti with i ∈ {0..3}.

pi

pi

Figure 6.2: Left: a cell (light blue box) defined by eight voxel locations.
Middle: within a cubic cell at each location pi a value can be reconstructed
by trilinear interpolation. Right: For tetrahedra a linear interpolation can
be used to reconstruct in-between values using barycentric coordinates.

6.2 Volume Visualization Techniques 93

6.1.1 Reconstruction and Interpolation

Since a volume is only defined at some discrete locations in space, it is nec-
essary to reconstruct in-between values.

Cubic Cells: In the case of regular, rectilinear and curvilinear datasets, a
trilinear interpolation is usually applied within a cell (see Figure 6.2 middle)
but higher, and lower, order interpolations are also possible [The01, RZNS04].
The computations to trilinearly interpolate a scalar at the local cell coordi-
nates (x, y, z) are shown in Equation 6.1:

f(x, y, z) =
∑

i,j,k∈{0,1}

xiyizivi,j,k (6.1)

x0 = 1− x and x1 = x, y0 = 1− y and y1 = y, and z0 = 1− z and z1 = z.

Tetrahedral Cells: For unstructured datasets it is common to exploit
a linear interpolation scheme within the tetrahedra. Figure 6.2 shows the
correlation between cells and their commonly used interpolation methods.

Given a point pi = (x, y, z) in an arbitrary defined cell with n voxels, a
scalar f(pi) can be reconstructed as a weighted sum of the n voxels vi:

f(pi) =
n−1∑
i=0

f(ti)wi; (6.2)

The weights wi are then the barycentric coordinates of pi and can be
computed e.g. for a tetrahedron by solving the equation system pi = αA +
βB+γC+ δD for α, β, γ, δ with A,B,C, and D being the coordinates of the
tetrahedrons vertices; and α + β + γ + δ = 1.

6.2 Volume Visualization Techniques

Typically the literature differentiates between five volume rendering tech-
niques, each with a special field of application [SM00, LCN98, HJ04]. See
Figure 6.3 for typical images that are generated by these methods.

Decomposition: Decomposition methods show the dataset on a per voxel
or slice basis. In a voxel based approach, for every voxel a geometric repre-
sentative is generated, e.g. a sphere, that is scaled and/or colored according
to its data value at the voxel. A spacing between the primitives allows to
view inside the volume – at least to a certain degree. Slices are commonly,
but not necessarily, axis aligned layers of the volume. They can be rendered
in many ways like (colored) textures, height maps, or be used for a further
processing like segmentations of certain regions [NH90].

94 Chapter 6: An Introduction to Isosurface Rendering

a) b) c) d) e)

Figure 6.3: An MRI scanned head dataset rendered using various volume
rendering methods. a) A typical slice view. b) Maximum Intensity Projec-
tion. c) X-Ray rendering. d) An isosurface. e) The head rendered using
semi-transparent volume rendering. Please note how each of these methods
let a user interpret the dataset in a completely different way.

Isosurfaces: In some applications it is important to investigate the distri-
bution of a certain single value (the isovalue) within a dataset. In particular
it is sometimes interesting to examine the topological and geometrical prop-
erties of these distributions. The visualization of all points within the dataset
with the same isovalue (aka. as level set) yields in most cases a surface – or
several – and therefore this method is called isosurface rendering. An iso-
surface can formally be defined as the set of all points within the volume
that fulfill f(x, y, z) = c. c is then a user specified isovalue. An important
application for isosurface rendering is e.g. virtual endoscopy.

Maximum Intensity Projection (MIP): For each pixel the MIP method
computes the maximum value that can be encountered along a ray that
pierces a volume. This method is often used for Magnetic Resonance An-
giograms where thin structures, e.g. blood vessels, have to be rendered ac-
curately and other visualization methods fail to preserve such fine details.
Unfortunately MIP rendered images do not comprise a good visual sensation
of depth such that it cannot be decided from a still image what is in front or
back. Due to that, MIP applications commonly rotate the view around the
object to increases the depth perception.

Physically based Models: Physically based volume rendering models
consider the volume as a transparent medium. If light passes this medium
it can be absorbed, scattered, or initiate new light emissions. These effects
are captured with the general Radiative Transfer Equation [SH92, Max95,
WMS98]. A transfer function [Sab88, Lev88, UK88] can be used to map
the voxel quantities to optical properties. These semi-transparent rendering
models are in particular useful when the whole dataset should be visualized
at once and individual surfaces are not (that) important.

6.3 Volume Ray Tracing 95

X-Ray: X-Ray rendering is a special case of the physical based models
which only considers radiance absorption [DCH88]. Metaphorically speaking
a ray that pierces a volume integrates the absorption along its way through
the volume. This results in typical x-ray machine pictures and can thus be
used for the same purpose.

6.3 Volume Ray Tracing

After having described various techniques to visualize volumetric datasets, it
is interesting to note that all of these methods can be rendered with a unified
volume ray tracing approach, e.g. only a single index structure is required for
isosurface, MIP, and semi-transparent rendering. Volume ray tracing works
fundamentally in the same manner as surface ray tracing except its underly-
ing primitive – the volume and its cells – needs to be treated differently. In
fact a volume is just another render primitive for a sophisticated ray tracing
engine.

In volume ray tracing a ray does not just hit a volume like a surface at a
single point, but spans the volume and pierces some of the its cells. The task
of volume ray tracing is to enumerate all relevant pierced cells and to perform
a special operation on each of them. Which cells are relevant and what kind
of operation per cell is performed depends on the volume rendering method.
For example, in the case of MIP, for each relevant ray segment that spans a
cell the maximum intensity has to be computed. Each cell that potentially
bears a higher intensity along its ray segment has to be checked. Physically
based models integrate the radiance of each ray segment. All cells that have
a zero contribution are not relevant and should be skipped for performance
reasons. Isosurface rendering seeks in the relevant cells the first hit point
of the isosurface and the ray. In isosurface rendering a cell is relevant if
potentially a ray isosurface hit point can be found.

Again, as in the case of surface ray tracing, realtime implementations
have to reduce the number of cell operations that do not contribute to the
final result, and the costs per visited cell. A thorough discussion can be
found in [MFS06]. As isosurface rendering is the focus of this second part of
the thesis, Section 6.5 will discuss it in more detail.

6.4 Normal Estimation

For some volume rendering techniques, in particular for isosurfaces, it is
useful to perform shading computations. However, a volume is just a ”point
cloud” and no shading normals are a priori available – but required even
for simple shading models. Therefore it is necessary to estimate normals
at shading locations. A common method is to compute a gradient G using
finite differences. The gradient is, in this context, an unnormalized vector

96 Chapter 6: An Introduction to Isosurface Rendering

that points away from regions of high quantities and is perpendicular to the
isosurface. A normal N can then be estimated by N ≈ G/|G|. Among the
finite difference methods the central difference is commonly used because it
offers the best trade-off between computational costs, memory accesses, and
estimated gradient quality. Equation 6.3 shows the calculations:

Gx =
f(x−∆x, y, z)− f(x+ ∆x, y, z)

2∆x

Gy =
f(x, y −∆y, z)− f(x, y + ∆y, z)

2∆y

(6.3)

Gy =
f(x, y, z −∆z)− f(x, y, z + ∆z)

2∆z

Given a global sample location at (x, y, z), six values have to be recon-
structed for the gradient estimation. The distances ∆i are best chosen such
that interpolation locations in neighboring cells have the same local coor-
dinates as (x, y, z) – assuming anisotropic grids. Another possibility is to
calculate first the central differences at a cells voxel locations, and then to
interpolate a gradient at (x, y, z) using these corner gradients. Although
this seems to be computational more expensive this derivative first approach
[MMMY97] may pay-off when those corner gradients are cached and reused
[GBKG04]. For most applications the central difference is a sufficient gradi-
ent estimation scheme but produces artifacts when close-up views are ren-
dered [Gri05]. A thorough discussion of other normal estimation methods and
their computation-quality trade-off can be found in [MMMY97, YCK92].

6.5 Isosurface Rendering

In order to render isosurfaces basically two different approaches exists: ex-
traction and direct rendering. The first approach extracts prior to rendering
a polygonal approximation of the isosurface that is afterwards passed to a
rendering system. The latter one uses e.g. ray tracing to directly render the
isosurface without the extraction preprocess. The next two sections describe
both methods in more detail.

6.5.1 Isosurface Extraction

Probably the very first approach to render isosurfaces was presented by Kep-
pel [Kep75] in 1975. Keppel divided the isosurface generation into two steps.
In the first step isolines were computed on each 2D slice of the volume, i.e.
in the x-y plane. Afterwards these isolines were connected by triangles. Un-
fortunately the isoline connecting algorithm is far from trivial as it is not

6.5 Isosurface Rendering 97

always clear which contours belong together and user interaction is some-
times required to resolve ambiguous cases. Automatic approaches do exist
today but do not guarantee a correct result [SM00].

A simpler approach, that does also not require any user interaction, to
display isosurfaces was presented by Hermann et al. [HL79] in 1979. Their
idea was to consider a voxel as a homogeneous box, called cuberille with
a certain extend. For each voxel that matches the isovalue simply a six
sided box is rendered resulting in blocky approximations of the isosurface.
However, the overall computational costs for extracting and rendering an
isosurface were reduced significantly. Furthermore, this algorithm is very
simple and does not produce any ambiguities.

However, today isosurface rendering is dominated by extraction algo-
rithms, like Lorensen et al’s. marching cubes approach, that work directly
on the (cubic) cells of a (rectilinear) grid. Marching cubes creates a polyg-
onal approximation, i.e. with triangles, directly for each cell that contains
a part of the isosurface. In the following a cell that contains a part of the
isosurface is referred to as boundary cell. To determine whether a cell is a
boundary cell, the isovalue is compared to the cells eight voxels. If the voxel
value is greater than the isovalue it is marked with a +, and with a − when
it is less. When all marks of a cell are equal, the isosurface does not cross
this cell and no further computations are necessary. In order to generate
polygons in the boundary cells, first some vertices have to be computed. On
each cell’s edge with different marks, a vertex is generated at a location that
can be computed by linear interpolation. Finally the generated vertices can
be triangulated. The same approach can also be used for other kinds of cells
like tetrahedra [DK91a].

After the initial development of the marching cubes algorithm, it has been
extended in many forms: e.g. in the better handling of topological ambiguities
that can appear in the triangulation step [NH91], higher efficiency for larger
data sets [CMM+97, LSJ96], view-dependent extraction methods [LH98], and
adaptive or multi-resolution methods [WKE99] to name just a few.

6.5.2 Isosurface Ray Tracing

An alternative to isosurface extraction is to directly compute the isosurface,
either by some form of preintegrated direct volume rendering [RSEB+00,
EKE01] or by ray tracing, i.e., by computing the intersection of rays with the
implicit function f(x, y, z) = c. Due to the high computational cost, realtime
isosurface ray tracing was first realized on supercomputers by Parker et al.
[PSL+98, PMS+99] but is nowadays also feasible on modern GPUs as well
[WS01].

Isosurface ray tracing consists of the same two task as surface ray tracing:

98 Chapter 6: An Introduction to Isosurface Rendering

a (front-to-back) traversal scheme that enumerates the boundary cells along
the ray, and an intersection test between a ray and the isosurface. A brute
force approach would use e.g. ray marching, like [AW87], to traverse through
the volumetric grid, check if a cell is a boundary cell, and if that’s the case
perform an intersection test. This procedure repeats until the first hit point
is found. In Chapter 7 a novel memory-efficient index-structure based on kD-
trees is described to speed up the boundary cell enumeration in rectilinear
grids. Chapter 8 shows how to use BVHs for this task with unstructured
volumes.

The ray isosurface intersection test can be performed in two ways. Either
some polygons are generated to approximate the isosurface in a cell, i.e. via
marching cubes1, and the intersection is computed with these polygons (see
Section 2.4.4) or the intersection is performed analytically with the ray and
the isosurface.

For example in cubic cells, an analytic solution can be derived by sub-
stituting the ray equation R(t) = O + t ~D into the trilinear interpolation
formula (see Equation 6.1) which yields:

f(t) =
∑

i,j,k∈{0,1}

(ox + tdx)(oy + tdy)(oz + tdz)ci,j,k (6.4)

When this sum is expanded and solved for the distance parameter t a
cubic polynomial is obtained that can be solved e.g. using Cardanos formula
[MFK+04].

Compared to extracting the complete explicit tessellation of the isosurface
in the first place before the rendering starts, direct ray tracing has several
advantages. First of all, ray tracing directly supports global effects and scales
well with the scene size (as discussed in Chapter 2 and 3). Second, ray trac-
ing does not rely on a polygonal approximation of the volume function, as
it is possible to compute the intersection analytically. Even in cases where
a polygonal approximation is preferable, using ray tracing it is possible to
extract only those polygons that are visible since the algorithm is absolutely
view dependent. Finally, since their is no explicit tessellation, no new ap-
proximation has to be generated when the isovalue is changed. This allows
then to change the isovalue arbitrary at any time.

1In this case ray tracing is used to extract the geometric approximation in a view
dependent manner.

Chapter 7

Isosurface Ray Tracing of
Rectilinear Volumes

This chapter describes a novel memory-efficient data structure based on kD-
trees for interactive isosurface ray tracing of rectilinear volumes, including
an extension for out-of-core data sets. Furthermore a new fast and accurate
ray-isosurface intersection test is proposed. The overall approach allows to
inspect even massive (out-of-core) data sets in the gigabyte range at interac-
tive frame rates including on-thy-fly isovalue changes.

7.1 Isosurface Ray Tracing using Implicit kD-trees

kD-trees and BVHs are well-known for representing polygonal scenes, where
they often outperform other data structures, as they can adapt much better
to the scene’s geometry [Hav01b, Wal04]. This is particularly the case for
scenes with highly varying primitive density, as these usually contain large
regions of empty space that a well-built kD-tree or BVH can traverse with
very few traversal steps.

For highly regular scenes such as a 3D volume however these advantages
– varying geometry density and empty space – cannot be exploited, and the
large amount of inner nodes in a kD-tree is usually detrimental in both mem-
ory overhead and number of traversal steps. Thus, grid-like data structures
are usually better traversed from cell to cell with a voxel walking algorithm
such as the one by Amanatides et al. [AW87] or Wald et al’s. [WIK+06]
coherent grid traverser. For example, just finding the starting voxel of a
ray incurs logarithmic cost for a kD-tree, while in a grid it can be found in
constant time.

While these arguments are undoubtedly true for rectilinear (volume)
datasets, they do not necessarily hold for the specific task of rendering isosur-
faces defined by such a volume data set: While the set of data points in fact
is a regular 3D grid, the isosurface defined by that data set is only located
within the small subset of boundary cells. These boundary cells share again

100 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

Figure 7.1: The small, regular cells in a regular volume data set offer few
potential for exploiting the advantages of kD-trees and packet traversal, as
rays have to perform many traversal steps, and diverge quickly. However,
considering only the boundary cells of an isovalue, a kD-tree allows for quickly
skipping large regions of space.

many properties with primitives in polygonal ray tracing: They are irregu-
larly distributed, sparse, and often enclosed by large regions of empty space.
This once again is the environment for which hierarchical index structures
are ideally suited (also see Figure 7.1). As a BVH plays to its strength only
when geometry is heavily overlapping, or changes (due to its cheap update
capabilities), what is not the case here, a kD-tree is chosen as basic data
structure.

7.1.1 The Implicit Min/Max kD-tree

This only leaves the question how to best use a kD-tree for representing
the isosurface. If one were willing to restrict oneself to rendering a fixed
isovalue only, one could identify all boundary cells in advance, build a kD-
tree only over those ”primitives”, and expect to reap all the benefits of kD-
trees also for isosurface ray tracing. Unfortunately this would no longer
allow for interactively changing the isovalue. Instead, a kD-tree that contains
all possible isosurfaces at the same time is build. Each kD-tree node is
annotated with information on what isosurfaces it contains, and performs
the classification implicitly during traversal. Knowing which isovalues are
contained within a subtree allows to easily skip entire subtrees of cells that
do not contain the required isovalue, and thus – implicitly – traverse a kD-
tree only containing boundary cells of the current isovalue.

In order to realize this implicit kD-tree, only two ingredients are required:
First, a kD-tree in which each node maintains information on what isosurfaces

7.1 Isosurface Ray Tracing using Implicit kD-trees 101

Figure 7.2: Implicitly culling non-contributing branches of the implicit kD-
tree during traversal also allows for rendering multiple isosurfaces at the
same time. Left: The bonsai tree, with a green isosurface for the leaves,
and a brown one for the trunk. Right: The Visible Female’s head, with
isosurfaces for bones and semitransparent skin.

are contained within its subtree. Second, a modified traversal algorithm that
traverses a kD-tree, but implicitly classifies each visited node for whether it
can actually contain the queried isovalue and skips it if that is not the case.
As the tree still encodes the whole data set, the isovalue can still be changed
on-the-fly. As a side effect, this approach also allows for searching for several
different isosurfaces concurrently within the same traversal operation, as one
can trivially base the culling operation on multiple isovalues at the same
time. This is particularly important for scenes in which multiple isosurfaces
– e.g. both skin and bone – are of equal interest (see Figure 7.2).

7.1.2 Building the Implicit Min/Max kD-tree

Building the implicit min/max kD-tree consists of two interleaved steps.
First, a kD-tree over all the cells of the entire data set is recursively built
until a leaf contains a single cell. This is done in a way that a kD-tree split
plane always coincides with the cell boundaries of the volume cells, yielding
a one-to-one mapping between the volume’s cells and the voxels of the kD-
tree. Currently, the volume is split in the middle at the cell boundary that is
closest in the center of the largest dimension. Second, each leaf node stores
the min/max values of its voxels, and each inner node stores the min/max
values of its children in order to annotate the range of isosurfaces contained
within a subtree. Note that this data structure is similar to the one used by
Wilhelm and van Gelder [WV], except that a kD-tree instead of an octree
is used and that the kD-tree is used for efficient ray traversal instead of for
isosurface extraction.

102 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

7.2 Efficient Traversal and Intersection

As mentioned before this isosurface rendering system is to be integrated into
the current OpenRT system. In the current state, OpenRT only supports
single rays and four-ray packets which means that here no larger ray bundle
algorithms are exploited – but could if necessary. In the next two sections ray
traversal, closely following [Wal04], and various ray-isosurface intersection
tests, including a novel one, are discussed.

7.2.1 Ray Traversal

The data structure for each kD-tree node is – except for the min/max values
stored per node – very similar to the polygonal case (outlined in Section
2.4.3). Thus, the already well-known polygonal traversal code requires only
minimal modifications: During each traversal step first it is tested whether
the current isovalue lies in the min/max range specified by the current node.
If this is not the case, this subtree is immediately culled, and the far node
is processed. Otherwise, exactly the same operations as in the polygonal
case (see Section 2.4.3 and [Wal04, Hav01b, Ben06] for more details) are per-
formed. The culling can be realized by two simple compares fiso ≥ fmin(node)
and fiso ≤ fmax(node) in one additional conditional in each traversal step.
Although these tests have to be performed in every traversal step, they are
still quite affordable (see below).

As already discussed in Section 2.4.1, the efficiency of a SIMD packet
traversal code depends to a large degree on the average utilization of the
SIMD units, i.e. on the average number of rays that are active in a packet.
As the cells of a volume data set are often quite small in comparison to the
screen resolution one could näıvely expect the SIMD efficiency to be small
as well, as different rays may traverse different nodes. When using a kD-tree
however, for most of the traversal steps in the upper tree levels the rays stay
together (see Table 7.1). As expected, the SIMD traversal suffers from a lack
of coherence for distant views of high-resolution data sets, in particular for
low screen resolutions. For less extreme settings however, the SIMD code
allows for reducing the number of traversal steps by up to a factor of four,
and in practice works quite well. Nonetheless, for high resolution data sets
and large ray bundles, as used in Section 5.3 for BVHs, the coherence drops
to an unusable extent resulting in single ray performance [KWPH06].

7.2.2 Isosurface Intersection

While traversing the kD-tree data structure is almost the same as in polygo-
nal ray tracing, when reaching a leaf the situation changes. While in polygo-
nal ray tracing a leaf contains a list of triangle IDs, here the tree is built such
that each leaf contains exactly one ”primitive” – a single cell. As described in

7.2 Efficient Traversal and Intersection 103

Section 6.5.2 computing an exact ray-isosurface intersection requires to setup
a cubic polynomial in order to find the smallest root that lies in the interval
[tnear, tfar], the ray segment overlapping the cell. As this ray-isosurface in-
tersection is considerably more costly than a ray-triangle intersection special
care has to be taken to implement this operation efficiently. In the following,
the existing fast but approximative, and exact but slow intersection tests will
be discussed in order to subsequentially motivate a novel fast and exact
intersection method.

Approximative Intersection Tests

Approximative intersection tests consider the function along the ray not as
cubic but mostly linear. For polynomials with two roots these tests are likely
to fail and for three roots a wrong or no solution could be calculated. In
practice however, the artifacts that can be introduced, i.e. by not finding a hit
point, are quite tolerable [NMHW02, MFK+04] and cannot be observed very
often, if at all, since it is very rarely the case that a cell contains multiple,
unconnected, and overlapping isosurface parts (which also depends on the
viewing direction) that would result in a full cubic polynomial.

Linear Interpolation: Probably the most simple way of performing an
intersection test is to just assume that the function along the ray is linear. For
the complete intersection test then three steps are necessary: First, compute
f(t0 = tnear) and f(t1 = tfar) by trilinear interpolation 1. Then, iff the
isovalue c is f(t0) < c < f(t1) the ray hits the isosurface. Finally, the hit
distance t within the cell can be computed by t = (c−f(t0))/(−f(t0)+f(t1)).

Neubauer-Iteration: One interesting extension to the linear intersection
test is Neubauer’s approximate intersection [NMHW02] method, which com-
putes the intersection distance iteratively by repeated interval subdivision
to refine the hit distance accuracy: First, f(t0 = tnear) and f(t1 = tfar)
are computed by trilinear interpolation as above. If for the isovalue c,
f(t0) < c < f(t1) is true, an additional value f(tc) for a new interval
[t0 < tc < t1] is computed, again using trilinear interpolation. Depending on
f(tc), one then selects either the interval [t0, tc], or the interval [tc, t1], and it-
erates. Typically two or three iterations are chosen to refine the hit distance.
Although this intersection test lacks the same problems as using a single
linear interpolation the rendered isosurfaces have a somewhat ”smoother”
appearance.

1Although only bilinear interpolations are necessary it turned out that a trilinear in-
terpolation is cheaper because this avoids to determine the face of the cell for which the
bilinear interpolation has to be performed.

104 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

Exact Intersection Tests

Not just relying on a linear function but the analytically derived cubic poly-
nomial f(t) = at3 + bt2 + ct + d (usually reparameterized to t ∈ [0, 1] for
numerical stability) finds all three possible roots (intersection points). Nev-
ertheless, in a basic approach this method requires finding all three potential
roots before being able to determine the smallest valid one. One of the best-
know methods to explicitly compute all roots is Schwarze’s cubic root solver
[Gla90] and is used e.g. in [PSL+98, DPH+03] and [Shi02]2.

Schwarzes Cubic Root Solver: After the coefficients a, b, c are calculated
the degree of the polynomial is determined. Then, dependent on the degree
an appropriate root solver is used i.e. the p, q-formula for quadrics. For real
cubics, a, b, c 6= 0, a variant of Cardano’s approach is used. Unfortunately,
this requires costly trigonometric and hyperbolic functions and is numerically
problematic, in particular when using single-precision floats e.g. for divisions.

An Exact Improved Iteration Method: Until now, the intersection test
where either fast but approximative, or slow and accurate. By combining the
ideas of Neubauers and Schwarzes approach a fast and accurate intersection
test can be derived. Rather than computing all roots of the polynomial,
an alternative is to use an iterative method with a proper start value. For
finding the start value, the three intervals defined by [−∞,+∞], [tnear, tfar],
[t0, t1] have to be considered, where t0, t1 are the extrema of f(t) (computed
by solving f ′(t) = 3at2 + 2bt+ c using the p, q-formula).

From these three intervals, the first interval [a, b] with tnear ≤ a, b ≤ tfar,
and sign(f(a)) 6= sign(f(b)) contains only one root, which is the one that is
searched for. This root can then be found by midpoint interpolation, i.e. by
computing the midpoint c = 0.5∗ (a+ b), then choosing the next appropriate
interval either [a, c] or [c, b], and iterate. Except for one square root (for
computing the extrema), this method uses only adds and muls, thus can be
well implemented with SIMD, and is numerically very stable.

Like Schwarze, the improved iteration requires to explicitly compute the
coefficients of the polynomial. Though this carries some initialization cost,
knowing the coefficients also allows for computing f(t) by evaluating the
polynomial, which is much faster than through the trilinear interpolations
performed by the Neubauer method. Thus, the improved iteration method
is similarly fast as Neubauer iteration, while being exact in all cases.

f 0=f (tmin) ; f 1=f (tmax) ; // i n t e r p o l a t e f0 , f1
i f (hasRealRoots (A,B,C,D) == true) {

2Please note that the term exact does not refer to the numerical precision of the solution
but to the fact that all roots of the polynomial are found.

7.2 Efficient Traversal and Intersection 105

e0=getF i r s tRoot (A,B,C,D) ;
i f (inRange (e0 , t0 , t1) == true) {

i f (s i gn (f (e0)) == s ign (f 0)) {
t0=e0 ; f 0=f (e0) // second segment

}
else {

t1=e0 ; f 1=f (e0) ;
}

}
e1=getSecondRoot (A,B,C,D) ;
i f (inRange (e1 , t0 , t1) == true) {

i f (s i gn (f (e1)) == s ign (f 0)) {
t0=e1 ; f 0=f (e1) // t h i r d segment

}
else {

t1=e1 ; f 1=f (e1) ;
}

}
}
i f (s i gn (f 0) == s ign (f1)

return fa l se ;
for (int i = 0 ; i < N; i++)
{

t=t0+(t1−t0)∗(− f 0 /(f1−f 0)) ;
i f (s i gn (f (t) == s ign (f0)) {

t0=t ; f 0=f (t) ;
}
else {

t1=t ; f 1=f (t) ;
}

}
t h i t=t0+(t1−t0)∗(− f 0 /(f1−f 0)) ;

Listing 7.1: Pseudo-code for the new improved intersection method

SIMD Considerations

After SIMD traversal allows for significantly reducing the number of traversal
steps, it would be highly beneficial to use a SIMD variant for isosurface
intersections as well. Due to the high computational density of the ray-voxel
intersection, a SIMD variant that intersects a packet of four rays in parallel
can be implemented quite efficiently, and achieves good speedups (see Table
7.1). Nonetheless, in the beginning there were two (related) issues that made
the SIMD isosurface intersection problematic.

106 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

512× 512 1024× 1024
Data Set Resolution C SIMD Ratio C SIMD Ratio
Aneurism 2563 307 186 1.65 1229 545 2.25
Bonsai 2563 544 360 1.51 2184 1027 2.12
ML 323 215 79 3.20 3451 927 3.55
ML 1283 786 381 2.06 786 381 2.06
ML 5123 680 646 1.05 2718 1863 1.46
Female 5122 ∗ 1734 179 177 1.01 716 708 1.01
” (zoom) 5122 ∗ 1734 384 98 3.99 1535 390 3.99

LLNL 20482 ∗ 1920 631 632 0.98 2523 2520 1.02
” (zoom) 20482 ∗ 1920 907 228 3.98 3630 909 3.99

Table 7.1: Number of surface intersection tests (in thousands) for both single-
ray and SIMD traversal code, for various scenes and screen resolutions. The
ratio column reveals the average number of active rays in a 4-ray packet.
Due to the loss of coherency at the leaves, for extreme settings the number
of intersections can even be slightly higher than in the single-ray code. For
less extreme setting however the SIMD code can still achieve reasonable
reductions in the the number of voxel intersections computed.

First, the SIMD efficiency for isosurface intersection is usually much lower
than for packet traversal, as – in contrast to traversal – an intersection is al-
ways performed at the level where the rays are most incoherent. Therefore,
intersection coherence is usually much lower than the average traversal co-
herence, and often very few rays are actually still active in a ray packet when
reaching the leaf cells (see Table 7.1). Unfortunately SIMD code often bears
some overhead as compared to a single-ray variant, which only pays-off if the
SIMD code can be used for many rays in parallel. If however only a single
ray is active, any potential overhead of the SIMD implementation may even
result in a reduction of the overall performance.

Second, upon successful intersection a large number of values have to be
stored to update the current information: hit flag, hit distance, local cell
coordinates, and shadig normal – for a total of eight values per ray (128
bytes total). As these values are only stored for those rays that actually had
an intersection, each of these stores in SIMD mode has to be realized with
several masking operations to implement conditional moves [Adv03]. This
turnes out to consume a significant portion of compute time, and leads to a
significant overhead, which – combined with the low intersection coherence
described above – makes an implementation quite problematic for certain
settings.

7.3 Efficient Memory Representation 107

Therefore, the intersection code is split into its computational core and
into a result storage phase. The computational core is implemented entirely
in SIMD mode using SSE intrinsics [Int02a]. Due to the high computa-
tional density of this code, combined with the high floating point efficiency
of intrinsics-code, this part of the code never gets slower than the single-ray
C-code, and thus can be safely used even if only a low degree of coherence is
present.

The high cost of the result storage phase can be significantly reduced as
well. Even if the overall SIMD efficiency is quite low, it often happens that
either none, or all four of the rays had an intersection. Though checking
these special cases separately is very much unlike typical SIMD coding, it
significantly reduces the amount of the costly conditional moves. In com-
bination, these two measures make the current SIMD intersection code well
applicable in practice.

For the remainder of this chapter the intersection test of choice is the
new proposed exact iterative algorithm. In general the computational cost
of a single intersection test is three times higher compared to the simple
linear intersection test. Nevertheless, the new method is more as twice as
fast compared to Schwarze’s analytic solver [Gla90] and thus an acceptable
trade-off.

7.3 Efficient Memory Representation

So far, the structure of the implicit min/max kD-tree has been discussed only
on an abstract level. In a näıve implementation, one would simply use the
same node layout as in [WSBW01] (see Section 2.4.3), and simply add the two
min/max values to each node. Assuming a default of 16-bit voxel quantities
this näıve approach however requires twelve bytes for each node: eight bytes
for specifying the plane and pointers, plus four bytes for the min/max values.
As a kD-tree of N leaves has an additional N − 1 inner nodes, for N 16-bit
data points (2N − 1) × 12 bytes are required for the kD-tree. At two bytes
per input data value, the size of the acceleration structure would then be
twelve times the size of the input data.

Furthermore, the node layout assumes that the entire data set can be
addressed by 29 bits 3(see [Wal04]). Larger data sets (i.e. 10243), would need
64-bit-pointers, or additional four bytes per node. Obviously, this 12-fold
memory overhead is too high except for small data sets. For 8-bit values, the
relative overhead would be even worse (20 bytes per 1 byte input data). This
of course is not practical. For a practical realization it is therefore important

3A single 32-bit variable is used to store a nodes leaf flag (1 bit), the dimension of the
splitting plane (2 bits) and a child pointer (29 bits).

108 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

to find a more memory-efficient realization.

7.3.1 Reducing Node Storage

Fortunately the memory overhead can be significantly reduced: If it is as-
sumed for a moment that the number of voxels in each dimension is a power
of two (later this constraint will be relaxed), the resulting kD-tree would be
a balanced binary tree, i.e. all its leaves are on the same level. In a balanced
binary tree however it is easy to show that all the nodes in the same level
l will use the same splitting dimension dl. Therefore, it is not necessary to
store that value in each node, but just once as a single dimension-value per
level.

Similarly, the split plane position has not to be stored in each node either:
If level l splits Rx,l×Ry,l×Rz,l voxels in the dl = x dimension, then there are
only Rx,l − 1 possible split locations, and each node (i, j, k, l) 4 will use the
split plane x = xi,l. Thus, instead of storing a split in each node, only Rx,l

floats per level l will be stored in a small table. The same argument holds
for dl = y and dl = z of course as well.

struct Level {
// r e s o l u t i o n o f current l e v e l , i . e . 1 ,1 ,1 f o r roo t vo x e l

Vec3i r e s o l u t i o n ;
// base addr o f f i r s t node in l e v e l

Node ∗base ;
// s p l i t v a l u e s ∗ in ∗ curren t nodes ,
//e . g .\ even the (1 ,1 ,1)− re s roo t vo x e l have s p l i t = {0.5}
f loat ∗ s p l i t ;

// dimension in which curren t l e v e l i s be ing s p l i t
int dimension ;
} ;

Listing 7.2: Data structure for information about a single compressed kD-tree
level.

Finally, having a balanced tree allows for performing all address compu-
tations without pointers: The address of node (i, j, k, l) is basel+(x+Rx,l(y+
Ry,l)), and the children of (i, j, k, l) (for splits in d = x dimension) will be
(2i, j, k, l + 1) and (2i + 1, j, k, l + 1), respectively. As a side effect of not
storing any pointers, this approach will work unmodified (and even without
any additional memory) also on a 64-bit architecture, and can thus handle
extremely large data sets.

In summary, it is possible to get rid of all node description data except for
the min/max values, thus save two thirds of the kD-tree data, and reduce the

4(i, j, k, l) denotes the node (i, j, k) in level l.

7.3 Efficient Memory Representation 109

memory overhead from 12 to 4 (respectively from 16 to 4 for 8-bit densities).

7.3.2 Getting Rid of Leaves

Additionally to these savings, storing the min/max values for leaf nodes can
be avoided as well, and instead the leaf’s min/max values are computed on
the fly from the cell’s corner densities. This on the fly computation of the
leaves is quite tolerable, as min/max operations can be implemented quite
efficiently with both regular C/C++ code and SIMD extensions. Further-
more, these min/max operations have to be performed only for leaf traver-
sals, which are much less common than inner node traversals. Finally, as the
min/max values allow for efficiently culling non-boundary cells, almost all
visited leaves also require a ray/voxel intersection, whose cost totally domi-
nates the cheap min/max computations.

As in a binary tree half of all nodes are leaves, getting rid of the leaves
allows for reducing the memory requirements by another factor of two, re-
ducing the total overhead from 12 (respectively 20 for 8-bit values) to a mere
2. Of course, a memory overhead of two is still significant, in particular when
compared to the 0.5% overhead achieved by Parker et al [PMS+99]. Nonethe-
less, a factor of two can be considered tolerable already, in particular as the
hierarchical traversal touches only a fraction of the overall data.

Taking it all together, on average two additional values for each input data
value have to be stored, i.e. N data values result in a total of 3N values. This
factor of 3 is exactly what also many other volume rendering approaches on
graphics hardware require (e.g. for storing three sets of axis-aligned slices),
and is quite tolerable. Also note that only host memory is used, which is
much less scarce than graphics card memory.

7.3.3 Relaxing the power-of-two Constraint

As mentioned before, the memory reduction scheme requires that each level
of the tree has 2i cells, i.e. that the original data set has a resolution of 2i +1
voxel in each dimension. One simple method of making arbitrary data sets
comply to this constraint would be to pad them to a suitable resolution.

Instead, a better solution is to imagine that all nodes were embedded in a
larger, virtual grid of a suitable size that exceeds the scene’s original bounding
box of [0..1]3, and to build the kD-tree over that virtual grid (see Figure
7.3). By properly assigning the split-plane positions, it can be guaranteed
that all virtual nodes lie outside the real scene’s bounding box of [0..1]3. As
the kD-tree traversal code always first clips the ray to that bounding box
(see [Wal04]), rays will never be traversed outside that box, and thus can
guarantee that no ray will ever touch any of these virtual nodes. As such,
they do not have to be stored, either. Obviously, the same argument also

110 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

1.66

1.33

0.66

0.33
0.

2

0.
6 1 1.
2

1.
4

1.
60

0
0.

4

0.
8

Figure 7.3: Using virtual nodes to relax the power-of-two constraint: This
example shows a 3x5 data set embedded in a virtual 4x8 grid with a balanced
kD-tree. By cleverly choosing the split plane positions it can be guaranteed
that virtual voxels lie outside the scene bounds [0..1]2, and thus will never
be traversed by a ray. Thus, these nodes do not have to be stored, and thus
do not consume any memory, either.

Fat Slim
Data Raw with Leaves without Leaves

Data Set Bits Data Mem Mem Ratio Mem Ratio
Bonsai 8 16MB 316MB 64MB 5 32MB 10
Aneurism 8 16MB 316MB 64MB 5 32MB 10
ML 323 16 65KB 680KB 220KB 3 110KB 6
ML 1283 16 4MB 46MB 15MB 3 7.8MB 6
ML 5123 16 256MB 3GB 1GB 3 509MB 6
Female 12(16) 900MB – 3.4GB – 1.7GB –
LLNL 8 8GB – 36GB – 18GB –

Table 7.2: Memory savings of the compressed (”slim”) vs. the näıve (”fat”)
implementation. The slim representation can achieve memory reductions of
up to a factor of 10. Note that both the female and LLNL data sets cannot
be rendered at all with the näıve representation, as the address bits in the fat
node layout do not suffice for addressing as large data sets. The slim variant
does not use any pointers at all, and thus can be used for arbitrarily sized
data sets.

holds for nodes on inner levels as well.

All that has to be done to use this scheme for a data set of Rx × Ry ×
Rz cells is to find R′x,y,z = min{2i|Rx,y,z ≤ 2i}, and just build the kD-
tree over this virtually padded volume R′x × R′y × R′z, while still doing the

7.3 Efficient Memory Representation 111

C SIMD
Data Set Fat Slim Overhead Fat Slim Overhead
Aneurism 1.57 0.99 1.59 3.44 2.24 1.54
Bonsai 1.79 1.14 1.57 2.91 2.1 1.39
ML 323 2.47 1.47 1.68 4.92 3.41 1.44
ML 1283 1.86 1.14 1.63 2.93 2.14 1.37
ML 5123 1.30 0.91 1.43 1.62 1.24 1.31

Table 7.3: Performance (in fps) of the compressed (”slim”) vs. the näıve
(”fat”) kD-tree, for both single rays and SIMD code, measured at 512× 512
pixels. Larger scenes (such as female and LLNL) could not be rendered with
the fat kD-tree, due to too high memory requirements.

address computations and memory allocation with the (unpadded) original
resolutions of Rx, Ry, and Rz.

Using the compression scheme, the memory overhead of the kD-tree can
be reduced from 12–20 to a mere 2 (see Table 7.2), independent of the data
set’s resolution.

7.3.4 Traversal Overhead of the Compressed kD-tree

Unfortunately, such significant memory savings rarely come for free: Whereas
the uncompressed ”fat” variant can use almost exactly the same traversal
code as the original implementation [WSBW01], the compressed ”slim” vari-
ant requires additional operations in each traversal step for the address com-
putations. In particular, it requires tracking and updating the four (i, j, k, l)
indices of the current node, as well as several integer multiplications and ad-
ditions for computing the children’s address. Additionally, tracking a node
by four indices instead of only one address requires additional stack opera-
tions. As these additional operations have to be performed for each traversal
step, they can have a notable impact on total rendering performance.

As can be seen in Table 7.3, the slim variant shows an overhead of roughly
40 to 60 percent as compared to the fat variant. As expected, the overhead
is slightly less for the SIMD code, as the latter allows for amortizing address
computation overhead over all rays in the packet.

Overall, an overhead of at most 68 percent is quite a reasonable price for
a memory reduction by a factor of up to 10. In particular for large models
such as the visible female or the LLNL data set, the slim representation is
the only reasonable alternative, as the high memory requirements of these
scenes did not allow for rendering using the fat node layout at all. Therefore,
usually the slim variant should be used, except for very small data sets.

112 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

Figure 7.4: Ray tracing in a hybrid polygonal/isosurface scene, showing the
bonsai data set in the polygonal office scene. Note how shadows and re-
flections are computed correctly between both isosurfaces and polygons. a.)
Overview. b.) Zoom onto the bonsai tree. On a single PC, these scenes
render at 0.9 and 1.4 fps including shadows and reflections at 640 × 480
pixel.

7.4 Integration into the OpenRT Engine

Using similar algorithms and data structures as the original coherent ray
tracing system, the implicit kD-tree can be seamlessly integrated into the
RTRT/OpenRT framework [Wal04]: In order to support dynamically chang-
ing scenes, the OpenRT system uses a two-level hierarchy in which the lower
levels of the hierarchy represent polygonal meshes, which have then been effi-
ciently organized in an upper-level kD-tree [Wal04]. This two-level structure
has been modified to also support isosurface objects in the lower hierarchy
level. Most core data structures (e.g. ray, hit info, shader and scene access)
are shared between the polygonal and the isosurface part. Similarly, both
parts share exactly the same external interface, e.g. for shooting secondary
rays. Thus, it was possible to implement isosurface rendering as simply an-
other level object.

This allowed the integration to be minimally intrusive. Few changes had
to be done, and most parts of the overall system (e.g. shaders and application
frontend) do not know about different object types at all. Obviously, a tight
integration implies that all aspects of the OpenRT framework continue to
function as before: Picking, parallelization, indirect effects like shadows and
reflections, occlusion culling and early ray termination, all kinds of shaders
(including even global illumination) etc. all continue to function on isosur-
faces as they did on polygons. In particular, isosurfaces and polygons fit
seamlessly together, i.e., a polygon may be reflected off of an isosurface,

7.5 Experiments and Results 113

Figure 7.5: The test data sets: The bonsai tree (2563), the Aneurism
(2563), various resolutions of the synthetic Marschner-Lobb data set (from
323 to 10243), the Visible Female (5122×1734), and the Lawrence-Livermore
(LLNL) Richtmyer-Meshkov simulation (20482×1920). These data sets have
been carefully selected to cover a wide range of different data, from low (ML)
to high surface frequency (bonsai, LLNL), from medical (aneurism and fe-
male) to scientific data (LLNL), and from very small (ML32) to extremely
large data sets (female, LLNL).

and an isosurface may cast a shadow on any other kind of geometry (see
Figure 7.4).

7.5 Experiments and Results

Once all the ingredients of the realtime isosurfacing system are described, its
performance can be evaluated. Figure 7.5 shows and describes the used test
data sets. In particular, it is interesting to measure its absolute performance
and scalability behavior. If not mentioned otherwise, for the following ex-
periments a single dual-1.8 GHz AMD Opteron 246 desktop PC with 6 GB
RAM is used. Renderings are measured at a default resolution of 512× 512
pixels.

7.5.1 Overall Performance Data

First of all, the overall performance of the system for different data sets is
quantified. As can be seen from Table 7.4, interactive performance for all
tested scenes can be achieve even on a single PC. Note that this PC is not
even state of the art any more. Additionally, higher performance can be
achieved by running the framework on multiple PCs in parallel. To this
end a mini-cluster of five dual-1.8 GHz Opteron PCs with 2GB RAM each,
linked via Gigabit Ethernet is used. Unfortunately, scalability could not
be measured beyond that number, as only 5 such dual-Opterons have been
available for testing. As can be seen from Table 7.4, this setup allows for
frame rates of up to 39 frames per second, even including the most complex
data sets. Note that this compares quite favorably to previous approaches
(e.g. [NMHW02, PPL+99, DPH+03, DGP04]).

114 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

Single PC 5-Node Cluster
Data Set Layout C SIMD Ratio C SIMD Ratio
Bonsai fat 3.4 5.2 1.5 16.2 24.6 1.5
Aneurism fat 3.0 6.2 2.0 14.6 29.8 2.0
ML 643 fat 4.3 7.8 1.8 20.1 35.7 1.7
ML 5123 slim 1.2 2.3 1.8 6.1 11.3 1.8
Female slim 2.7 4.2 1.5 13.6 20.7 1.5
” (zoom) slim 2.3 7.9 3.5 11.2 39.1 3.5

LLNL slim 0.9 1.3 1.5 – – –
” (zoom) slim 1.6 5.4 3.9 7.6 28.7 3.8

Table 7.4: Overall rendering performance data when running the framework
in various scenes including diffuse shading, for both a single (dual-CPU) PC,
as well as with a 5-node dual-Opteron cluster. The overview of the LLNL
data set could not be rendered, because the memory footprint at this view
was larger than the 2GB RAM per client in the cluster setup.

7.5.2 Scalability in Data Set Complexity

In polygonal ray tracing, one of the biggest advantages of ray tracing is its
sublinear (i.e., logarithmic) scalability in model size, which is due to the use
of hierarchical data structures such as kD-trees [Hav01b, PMS+99].

As such a hierarchical data structure is now used as well for volumes, the
same properties should also apply to the isosurface ray tracing framework.
To verify this, various resolutions of the synthetic Marschner-Lobb data set
are generated, and measured both the number of traversal steps and over-
all rendering performance. As expected, Figure 7.6 shows that the implicit
min/max kD-tree exhibits roughly logarithmic scalability in model size – the
slight rise of the curve beyond 2563 is most likely due to caching effects for
such large models, as can be seen by the number of traversal steps (also
given in Figure 7.6) which exhibits a perfectly logarithmic behavior. This
logarithmic scalability makes the method highly suitable for extremely com-
plex datasets: Even for an increase in data set complexity from 323 (3.2×104

cells) to a full 10243 (109 cells) – corresponding to 41
2

orders of magnitude in
scene complexity – the performance only drops by a mere factor of 2.1.

7.5.3 Comparison to Graphics Hardware

In order to fully appreciate this level of performance for the complex data
sets, one must compare to the standard approach of extracting a polygonal
isosurface to be rendered via graphics hardware. For example, a GeForce
G80 currently delivers a theoretical peak performance of more than 300 mil-

7.6 Dynamic Updates 115

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

32 64 128 256 512 1024

Se
co

n
d

s
p

e
r

Fr
am

e
 (

SP
F)

Data Set Resolution x3

SPF

Trav. Steps (Millions)

Figure 7.6: Scalability of the implicit min/max kD-tree with increasing data
set resolution, measured with various resolutions of the synthetic Marschner-
Lobb data set. Note the exponential scale (23x) on the x-axis, which for a
roughly linear graph implies a logarithmic curve (the slight rise of the curve
beyond 2563 is most likely due to caching effects, as can be seen by the almost
perfectly logarithmic number of traversal steps). Due to this logarithmic
scalability, performance drops by a mere factor of 2.1 for an increase in data
of 41

2
orders of magnitude.

lion shaded and lit triangles per second. However, for the LLNL data set the
tessellated isosurface consists of 470 million triangles, which would require
several seconds to rasterize even under best-case assumptions. Additionally,
by directly ray tracing the isosurface the isovalue can still be interactively ad-
just, which is not easily possible using a pretessellated model. Also note that
this level of performance clearly outperforms previously published isosurface
ray tracing results on similar hardware.

7.6 Dynamic Updates

For some applications it is interesting to visualize time-varying data sets.
Although the discussed kD-tree data structure is not specifically designed for
supporting dynamic updates, in particular the slim variant is highly suitable.
Assuming that the volume resolution Rx ×Ry ×Rz stays constant, the slim
kD-tree variant allows to support two different kinds of dynamic updates.

First of all, since the structure of the kD-tree is independent of the actual
splitting plane positions the spacing of voxels in a rectilinear grid can be
changed arbitrary. Only the few values in the tables that store the splitting
plane positions per kD-tree level have to be updated. And second, after a
modification of the actual voxel data in the volume a simple update procedure
can update the already existing min/max values in the kD-tree. The last level

116 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

of the tree has to fetch the real voxel data to update its min/max values, but
all other nodes in the levels above can simply by updated by simple min/max
operations with the values of its descendants.

7.7 Out-Of-Core Rendering

Although the current slim variant has already a small memory footprint, for
massive data sets in the gigabyte range the in-core requirements might still
easily exceed the available main-memory (see e.g. the LLNL data set in Table
7.2). Even if enough memory is available, if an already precomputed kD-tree
has to be streamed over a slow network connection, e.g. via NFS, it can take
a long time until all data is loaded and the visualization can start. The main
goal of this out-of-core extension is to immediately start the exploration of
the dataset without the need to wait for all, maybe multiple GB of data.
Additionally, the in-core memory-footprint should be as small as possible
such that even the RAM of a commodity PC is (almost) sufficient.

7.7.1 Algorithm Overview

To do so, first an LOD hierarchy of the volume is built. These LOD data
are solely used for rendering as long as the data of the finest LOD level are
not loaded or no more main-memory is available. Then, for each LOD level
an implicit kD-tree is constructed and merged together such that a single
kD-tree is obtained that is valid for all LOD levels. This merged kD-tree and
the LOD data are then decomposed into treelets and stored in a page-based
data structure (Section 7.8.1). During rendering, a separate thread loads all
relevant treelets that are required to render the desired isosurfaces from the
hard disc in a breadth-first-search (bfs) order (Section 7.8.2). Whenever a
new LOD level is completely loaded, the render threads are notified such that
they can use a finer LOD level for the next frame.

7.8 Out-of-Core Isosurface Rendering

After having outlined the basic approach the next sections will discuss all
details about the out-of-core data structure, traversal and data loading.

7.8.1 Building the Out-of-Core Data Structure

The complete preprocessing chain is sketched in Figure 7.7. In the first step
an LOD hierarchy of the volume is built. Since it is not known in advance
which isovalues are interesting for the user, a simple 3D Gauss-filter kernel
is used to scale down the data set, and thus it is not tried to preserve the
topology of scaled down isosurfaces.

Then for each LOD level (including the original volume data) a min/max
kD-tree is built. These kD-trees are merged such that a single min/max

7.8 Out-of-Core Isosurface Rendering 117

Figure 7.7: The preprocess pipeline: At first an LOD hierarchy from the
volume data is constructed. Then, for each LOD data set a min/max kD-
tree is built. Afterwards all LOD kD-trees are joined into a single one. This
kD-tree is finally decomposed into subtrees of a certain hight and together
with the corresponding LOD data of the subtree stored in a treelet array on
the hard-disc. While rendering, a bit-table keeps track of what treelets are
already fetched into main memory.

kD-tree is obtained. This single kD-tree could then be used to render all
different LOD levels. To do so, just the min/max intervals of the nodes have
to be adjusted by joining the corresponding min/max intervals. This merging
is necessary because the LOD filter shifts the range of values and thus the
kD-tree of the original data may not be valid for all LOD volumes.

Once the min/max kD-trees are merged, this tree and the LOD volume
data are decomposed into treelets (see Figure 7.8). A treelet consists of a
subtree of the min/max kD-tree with a fixed height N (e.g. 63 nodes for
N = 6), a corresponding block of LOD voxels (similar to [BPTZ99]), or
voxels from the original data set at the last treelet level, an ID that identifies
the treelet, and the number of voxels in each dimension (see Figure 7.8). All
subtrees have the same height except maybe the top-most subtree. Note that
the number of LOD levels correlates with the height of the subtrees. If there
are e.g. four levels of treelets, then also four LOD levels are used.

These treelets are stored in a page-based data structure that allows fast
loading from the hard disc. Page-based means that treelets will be stored
with the size of a memory-page on the hard disc. The size of the page is
given by the operating system and is here 4k bytes. This page based treelet
approach is similar to the blocklets approach by Bajaj et al. [BPTZ99] and
Zhang et al. [ZN03]. If the treelets do not have the size of a page, the data
will be padded to page size, or the next multiple of page size if the treelet is
larger than one page. If the size of a treelet is small enough multiple treelets
can be placed in one page. All treelets of a particular LOD level are stored

118 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

IDVoxel DataMin/Max Values Padding

(2N-1) * (sizeof(voxel)/2) 8w*b*h*sizeof(voxel)

w,b,h
24

Figure 7.8: The structure and memory requirements of a treelet. Min/max
values, voxel data, an ID, and the dimensions of the voxel data are grouped
together. If the size of a treelet is small enough multiple treelet structures
can be placed in one page on the hard disc. Width w, breadth b, and height
h of the voxel block include an outer layer of voxels for calculating central
differences for shading.

consecutively in breadth-first-search order.

In order to allow a proper shading, not only the voxel data of the corre-
sponding voxel region are placed in a treelet but also an outer layer of voxels
such that the central difference can be calculated for gradient estimation. In
order to decrease the memory requirements, the min/max values are quan-
tized to half of the original bit resolution. The additional traversal operations
that are caused by a reduced efficiency of the subtree culling decreases the
overall rendering performance typically in the range of five to ten percent.

7.8.2 Treelet Loading

For loading the required data from hard disc a similar memory-management-
unit (MMU) technique as Dietrich and Wald et al. propose in [DWS05,
WDS04] and [WFM+05] is exploited. The MMU has to perform two tasks:
The first task is to load all treelets that are required for rendering a particular
isosurface without stalling the application and second to notify the render
threads whenever all required treelets of the next LOD level are loaded.

To do so, the MMU creates a loader thread that manually fetches the
data required for the current isovalue such that the loading process does
not stall the render threads. The loader thread sweeps over the treelets,
which are stored in breadth-first-search manner, and checks the min/max
intervals of the leaf nodes of the kD-tree subtrees. If the isovalue is within
the min/max interval both children will be loaded and afterwards marked
as present in a bit-table. For every memory-page this bit-table has an entry
that is covered by the mmaped (memory mapped) file with treelets. Before
the sweep process starts the very first treelet is loaded separately to assure
that it is available. The bit-table is necessary because it has to be known
in LOD level +1 which treelets have been loaded in the previous level and
thus do not touch unneeded data on the hard disc. When the isovalue is
changed while inspecting the data set, it is checked if the new one lies within
the current (quantized) interval. If that is not the case, the bit list is cleared

7.8 Out-of-Core Isosurface Rendering 119

and rendering starts again with the first LOD level.
In order to notify the render threads that a new LOD level is loaded, a

mutex protected global variable is used. After loading a new LOD level the
variable is increased such that it represents the current loaded LOD levels.
The code that controls the render threads checks then before a new frame is
rendered the available LODs and passes that value to its renderer threads.

7.8.3 Traversal

The basic traversal scheme for a single treelet is equivalent to the traversal
of the slim-variant kD-tree. Nevertheless the overall traversal scheme has to
incorporate the structure of the treelets. After having traversed a treelet it
must be checked if a finer LOD level is already loaded. If yes, the address of
the next treelet is computed and traversal starts again for the new treelet.
If no further LOD level is available an intersection test is performed with
the voxel data from the current leaf node. Figure 7.3 sketches the overall
traversal algorithm.

t r e e l e t = LoadFi r s tTree l e t () ;
StartLoaderThread () ;
while{1}
{

Traver seTree l e t (t r e e l e t) ;
i f { c u r r e n t T r e e l e t L e v e l < l oadedLeve l s }
{

t r e e l e t = CalculateNextTree letAddr (t r e e l e t) ;
continue ;

}
i f { I n t e r s e c t T r e e l e t (t r e e l e t) == true}
{

return true ;
}

}
Listing 7.3: Traversal pseudo-code: The first treelet is loaded from the hard
disc and a loader thread is started before rendering. Afterwards, for each ray
the traversal starts with the first treelet and traverses as much LOD levels as
have been already loaded. The loader thread updates the maximum traversal
depth for the render threads whenever the necessary treelets of a new LOD
level are loaded. After traversal the usual ray isosurface intersection and
shading takes place with the current treelet data.

Due to the fact that all needed data for treelet traversal, intersection tests
etc. are stored in one memory page cache-aliasing can be reduced (since data
in a single page map to different sets in the cache, see also Section 5.4.1).

120 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

Another advantage is that the height of the subtree into a treelet is known
in advance. This fact can be used to remove a conditional (leaf-node check)
in the innermost traversal loop.

7.9 Results

In order to evaluate the efficiency of the out-of-core data structure perfor-
mance numbers for two data sets are measured: Time-step 270 of the LLNL
Richtmyer-Meshkov instability with a voxel resolution of 20482×1920 as well
as a synthetic data set Attractor (see Figure 7.9).

The Attractor volume consists of three different 3D-attractors and a voxel
resolution of 20483. Both data sets use 8-bit data values. The test system is
a dual dual-core Opteron 275 (2.2GHz) PC with 8GB main memory. Image
resolution is always 640× 480 pixel and for shading a simple diffuse surface-
shader is used (see Table 7.6).

7.9.1 Treelet-Size Influence

As described in Section 7.8.1 the LOD data and min/max kD-tree is de-
composed in a treelet hierarchy. The number of treelet levels influences the
required disc space, in-core RAM for a particular isosurface, loading time,
and rendering performance. Table 7.5 shows the results when the height of
the treelets is increased, and thus reduces the number of levels in the treelet
hierarchy.

The preprocessing time in Table 7.5 includes loading/writing the data
from/to hard disc, LOD creation, min/max kD-tree building, and merging.
In the experiments a treelet height of nine resulted in the best overall per-
formance numbers – at least for the tested data sets. With larger treelets,
some numbers i.e. the required in-core RAM increase again.

Treelet preprocess Disc Working Loading
Height Time (h) Space (GB) Set (GB) Time (Min) FPS

3 17 292 16.0 58 1.0
6 3 66 10.0 30 1.8
9 1 33 6.1 5 2.5

Table 7.5: Performance numbers for the LLNL data set with increasing treelet
heights. If the treelet height is increased, the preprocessing time, the required
in-core memory for rendering a particular isosurface, and the loading time
of the relevant data decrease significantly. At the same time the rendering
performance almost doubles.

7.9 Results 121

Figure 7.9: Example images of the test scenes: LLNL and Attractor rendered
with phong-shading, progressive soft-shadows and a single point-light source
between 1.0 and 1.9 fps at 640× 480 image resolution using two CPU cores.

7.9.2 Overall Rendering Performance

The overall rendering performance is presented in Table 7.6 (see Figure 7.9).
As the fps numbers show always at least interactive rendering performance is
achieved. These numbers indicate the FPS for the finest level in the hierarchy.
The rendering of coarser LOD levels is faster and drops down with every finer
LOD level.

Furthermore, the required in-core memory is reasonable, especially if it
is considered that quantized min/max values in the treelets are used. That
means that not only treelets are loaded for a single isosurface but all treelets
for a quantized ”bucket”.

7.9.3 Comparison

In comparison to the approach of DeMarle et al. [DPH+03] almost the same
rendering performance is achieved by using only a single PC rather then a
32 PC cluster setup (although obviously a newer and correspondingly more
powerful multi-core CPU is used compared to the CPUs used in DeMarle’s

122 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

Loading Working FPS
Scene Iso Time (Min) Set (GB) 2 Cores 4 Cores

LLNL (zoom) 16 5 6.1 2.0 3.9
LLNL (overview) 16 5 6.1 2.6 5.1
Attr (zoom) 25 4 2.1 1.5 2.9
Attr (overview) 25 4 2.1 3.6 6.9

Table 7.6: Overall rendering performance for the two test scenes (Figure 7.9)
measured with a simple diffuse shading using two and four CPU cores. As
the results show, independent from the viewpoint at least interactive frame
rates can be achieved. The loading time is the time until all relevant data
from the finest level are loaded.

cluster). This reduces the hardware requirements significantly.

In addition, very fast loading times can be achieved due to the linear
memory-page loading from hard disc. Wald et al’s [WFM+05] view depen-
dent out-of-core method requires for the LLNL data set approximately 18
minutes until all relevant data are loaded. However, only the visible data
are loaded and if the camera position changes loading starts again. This is
in contrast to the presented method were all relevant data for an isosurface
are loaded independent of visibility. Furthermore, the in-core footprint is
smaller: 6.1GB in the new system compared to 8.0GB in Wald’s approach
(for all views). An additional plus is the faster kD-tree traversal. Due to the
simple out-of-core scheme approximately twice the rendering performance of
Wald’s approach can be achieved.

Compared to the octree approach of Knoll et al. [KWPH06, KHW07] the
rendering performance is higher but on the other side more main-memory is
required due to the usage of a kD-tree. Nevertheless, both approaches have
orthogonal feature sets (except that Knolls approach does not easily sup-
port dynamic updates because the octree is stored in a compressed format).
Both approaches could be combined into a single system either by adding
their in-core octree compression scheme and view-depedent LOD usage into
this system or by extending their approach with the presented out-of-core
approach.

7.10 Applications

After having described both the framework and analyzed its performance,
some of the practical applications will be discussed that it allows for.

7.11 Conclusions and Future Work 123

7.10.1 Interactive Exploration of Complex Isosurfaces

Due to the logarithmic scalability in data set size (see Section 7.5.2), one ob-
vious application of the framework is the interactive visualization of highly
complex data sets. For example, Figure 7.10 shows the 512×512×1920 Vis-
ible Female data set, rendered with different shader configurations. Except
for the transparent skin example, fast SIMD code can be used for visualizing
the model, and achieve frame rates of 8.6, 5.0, and 4.0 frames per second at
640 × 480 pixels, respectively, even on a single PC. Due to splitting up of
the rays, for the transparent skin example single-ray code is exploited, but
still – including all secondary rays – achieve 0.8 frames per second per PC.
Using the distribution features of OpenRT, higher frame rates can easily be
achieved by running the system in parallel (see Table 7.4).

7.10.2 Interactive Global Illumination on Isosurfaces

Once being able to handle shadows and reflections, it is an obvious next
step to also support global illumination on isosurfaces. For that purpose,
the ”Instant Global Illumination” technique [WKB+02, BWS03b, Wal04] is
used, in which the illumination in a scene is approximated using ”Virtual
Point Lights” generated by tracing light particles into a scene and using
those for illumination.

The Instant Global Illumination algorithm is completely independent of
geometry, only requires the ability to shoot rays, and thus is ideally suited
for the hybrid polygon/isosurface setting. As four-ray packet-traversal is
supported, even the fast implementation of Benthin et al. [BWS03b] could
be used without major modifications.

Figure 7.11 once again shows the bonsai model on the desk of the office
scene, now with global illumination from three area lights turned on. As
can be seen, all indirect interactions between the polygonal scene and the
isosurface data set work as expected.

7.11 Conclusions and Future Work

In this chapter, it was shown how advancements in polygonal ray tracing can
be leveraged to also significantly increase interactive isosurface ray tracing
performance on off-the-shelf PCs.

To this end, the usage of an ”implicit kD-tree” for storing the data set in
a hierarchical way is proposed that is well suited for efficient ray traversal.
Furthermore a memory efficient representation has been discussed which was
also extended to support out-of-core data sets. The presented data struc-
ture and proposed novel exact isosurface intersection test together allow for
achieving interactive isosurface ray tracing performance on individual PCs,
and furthermore allow for scaling performance by running in parallel on mul-

124 Chapter 7: Isosurface Ray Tracing of Rectilinear Volumes

Figure 7.10: The Visible Female (512 × 512 × 1920), rendered at 640 × 480
pixels on a single dual-1.8 GHz Opteron PC a) Overall model with direct
display of the skin isosurface (8.6fps/1PC). b) Zoom onto the head with
bones isovalue (5FPS/1PC). c) with additional shadows (4FPS/1PC). d.)
The same, plus semi-transparent skin (0.8fps/1PC).

tiple PCs. Even for highly non-trivial data sets, interactive performance can
be achieved on a single dual-processor desktop PC. Due to the excelent scal-
ability in data set complexity, this level of performance can be maintained
even for massively complex data sets of several Gigabytes.

The new hierarchical kD-tree based data structure, as well as the opti-
mized implementation allow to clearly outperform previously published iso-
surface ray tracing approaches in particular when considering the flexibility
of the overall system. While on a single PC GPU-based methods can achieve
higher frame rates for small datasets, they usually do not easily scale to larger
datasets, and for datasets as used in the presented system, they are often not

Figure 7.11: Instant global illumination on isosurfaces. a) The aneurism
data set in a Cornell box. Note the slight color bleeding on the ceiling,
as well as the smooth shadows on the walls and the floor. b) Bonsai tree
in the office scene, with smooth shadows and indirect illumination. As the
method is tightly integrated into the RTRT/OpenRT system, the Instant
Global Illumination implementation can be applied to the isosurfaces just as
easily as originally proposed for polygons.

7.11 Conclusions and Future Work 125

applicable at all. Note however that the proposed methods are not limited to
CPUs, but should similarly benefit GPU-based ray tracing approaches (e.g.
[WS01, GPSS07, PGSS07]) as well.

Having never made any assumption on the isovalue, the isovalue can be
interactively changed any time, and even multiple isosurfaces of the same
data set can be easily rendered concurrently. Finally, being tightly integrated
into the OpenRT engine, the presented framework allows for augmenting
isosurfaces with ray traced lighting effects such as transparency, shadows,
reflections, refraction, and even global illumination. At the given level of
performance, all these effects can be fully recomputed every frame even under
interactive changes to camera, isovalue(s), or scene.

In a next step, it would be interesting to investigate how to further reduce
the memory overhead, for both main memory and hard disc, in order to
have a comparable memory-footprint e.g. to [KWPH06]. While the current
implementation is already quite fast, there is still room for improvement. In
particular, the exact caching behavior requires closer attention, in particular
for complex data sets.

Finally, it is an obvious next challenge to investigate complex time-varying
data sets such as the full 1.5TB LLNL dataset. In particular the hierarchical
nature of the proposed approach seems promising for this specific application.

Chapter 8

Isosurface Ray Tracing of
Tetrahedral Volumes

In this chapter, a new approach is proposed to directly ray trace isosur-
faces defined over tetrahedral domains by combining recent advancements
in polygonal ray tracing with existing techniques for isosurface extraction.
A novel ray-packet tetrahedron intersection test, inspired by the marching
tetrahedra algorithm, and its integration with a coherent implicit bounding
volume hierarchy traversal is detailed. These techniques are extended to
time-varying data sets as well as practical shading and visualization features
such as multiple transparent isosurfaces and dynamic shadows.

8.1 Isosurface Ray Tracing of Tetrahedral Meshes

The core of this novel approach to ray trace unstructured scalar fields, that
are decomposed into tetrahedral meshes, is an implicit dynamic bounding
volume hierarchy in the spirit of implicit kD-trees (see Chapter 7). This
is used with an aggressive coherent ray traversal, and a specially designed
ray-packet isosurface intersection technique inspired by fast packet-triangle
intersectors and the Marching Tetrahedra [DK91a] algorithm.

In unstructured volumetric grids, the scalar field can be defined through
linear interpolation over tetrahedral primitives; each such tetrahedron can
then contain one or more more isosurfaces given user-specified isovalues. As
with implicit kD-trees, a hierarchical index structure is built over these prim-
itives such that each node in the hierarchy contains the minimum and maxi-
mum of the scalar field below that node’s subtree. These min/max intervals,
or isoranges, can then be used during traversal to discard subtrees that can-
not contain the isovalue. Nevertheless, instead of kD-trees, bounding volume
hierarchies are now used. In practice, they are at least as fast, equally effi-
cient for time-varying data, and better suited to the irregular, overlapping
geometry of unstructured volumes.

The implicit bounding volume hierarchy encourages a variation of the ag-

128 Chapter 8: Isosurface Ray Tracing of Tetrahedral Volumes

gressive packet-frustum BVH traversal that was recently proposed for polyg-
onal ray tracing [WBS07]. This traversal operates on much larger packets
(typically 8x8 or 16x16 rays) than the 4-ray SIMD traversal used for implicit
kD-trees, and uses frustum culling and speculative descent to minimize the
number of ray-node traversal steps. Larger packets also imply better amor-
tization of per-packet costs, and thus help in hiding the overhead induced
through implicit culling. Since the implicit BVH is built over the space of all
isovalues, the isovalue(s) of interest can be changed interactively any time,
and even multiple isovalues can be trivially supported. A BVH also allows
for easily updating the data structure once the scalar field or even vertex po-
sitions change, and thus allows for naturally supporting time-varying data.

In both core algorithms intersection and traversal, heavy use of large-
packet/frustum techniques is made which were recently developed in polyg-
onal ray tracing. This large ray packets can be supported here since it is
not aimed to integrate this new techniques into the OpenRT system. Unless
otherwise specified, both intersection and traversal are assumed to operate
on packets of 16× 16 rays.

8.2 Isosurface Intersection

An isosurface is the implicit surface f(x, y, z) = c where a scalar field f(x, y, z)
takes on a given isovalue c. For conventional first-order finite elements, the
scalar field is given as a tetrahedral mesh in which the scalar values specified
at the vertices A, B, C, and D; the scalar field inside each isotetrahedron,
or isotet, is defined by linear interpolation f(x, y, z) = αA+ βB + γC + δD,
where α, β, γ, δ are the barycentric coordinates of (x, y, z).

To intersect a ray R(t) = O + t ~D with any isosurface f(x, y, z) = c
one can immediately substitute the ray equation into the linear interpolation
equation, solve a resulting linear system for t, and check that the solution lies
within the isotet1. However, it can be observed that for linear interpolation
an isosurface must be planar within a tet. This plane is bounded by line
segments along the edges of the isotet in which it exists, forming either a
triangular or quadrilateral polygon as shown in the various cases of Marching
Tetrahedra. This extracted polygon is denoted an isopolygon (or isopoly) for
the rest of this chapter. Unlike solving the ray-parametrized implicit, this
isopolygon must only be computed once per isotet traversed; that cost is
amortized over all rays in the packet, and the full array of fast ray-polygon
techniques can be applied.

1Please note that A,B,C,D are 4D coordinates denoting the 3D space position plus
the voxel value at this position as 4th component. Similarly the ray has to be extend to
4D with O = (xo, yo, zo, c) and D = (xd, yd, zd, 0).

8.2 Isosurface Intersection 129

8.2.1 Extracting the Isopolygon

To compute the plane equation and bounding edges of the isopolygon, the
Marching Tetrahedra algorithm [DK91b] is used. Vertices of the isopolygon
lie on edges of the isotet, and isopolygon edges lie on the tet faces. Polygon
vertices will lie only on those tet edges for which one vertex is greater and
one is smaller than the isovalue. Having four vertices, there are only 16
cases for which a given vertex is either larger or smaller than the isovalue.
For each of these cases, it can be stored how many vertices the resulting
polygon will have, and the indices of the two tet vertices that span the edge
on which that polygon vertex must lie. In SSE, this lookup is particularly
simple: after loading the four vertices’ isovalues vi into a SIMD register,
a single SSE comparison, ∀vi > c, followed by a movemask operation will
return conveniently the case in a 4-bit integer (one bit for each comparison)
that can be directly used to index into aforementioned table of 16 cases.
Once it is known which tet edges contain an isopolygon vertex, each isopoly
vertex can be computed by linear interpolation along the two vertices of the
corresponding tet edge i.e.:

V = P
c− Pv

Pv +Qv

+Q(1− c− Pv

Pv +Qv

), (8.1)

where P and Q are two (4D) tet vertices, and V is the resulting isopolygon
vertex.

8.2.2 Ray-Isopolygon Intersection

Once the vertices of the polygon are known, an extension of Wald’s trian-
gle test [Wal04] can be used to intersect it. As shown in Figure 8.1 (left),
ray-isopolygon intersection first computes the distance to the precomputed
plane, then projects the ray hit point onto a suitable 2D coordinate plane.
Here, each of the edges defines a (2D) half-space, which is oriented to point
towards the inside of the isopolygon. Since the isopolygon must be convex,
the projected hit point can then be taken and perform a 2D half-space test
with each of the edges, and can reject the hit point as soon as any of these
tests fails. This test can be performed efficiently for four rays in SSE for
both triangle and quad cases.

8.2.3 SIMD Frustum Culling

In addition to fast SIMD intersection, a conservative ”full miss” and ”full
hit” tests is also applied for the entire packet, using packet frustum culling,
e.g. [DHS04, BWS06b]. These tests require computation of the four corner
rays bounding the packet frustum in SSE. For a given isopolygon, individual
ray intersections can be avoided when all four bounding rays fail for the same

130 Chapter 8: Isosurface Ray Tracing of Tetrahedral Volumes

A

B

C

D

A

B

C

D

Figure 8.1: Ray-Isopolygon Intersection in an Isotetrahedron: Knowing that
the isosurface inside the tetrahedron is a plane, first an isopolygon is ex-
tracted. Then the point where the ray pierces that polygon’s supporting
plane is computed, and project both the polygon and that hit point to a 2D
coordinate plane. In 2D, then a point in (convex) polygon test is performed
by considering if the point is on each of the edges’ positive half-spaces. The
test can trivially be extended to support frustum culling: If all corner rays of
the bounding frustum fail at the same edge, all the rays inside the frustum
must fail.

2D half-space test (Figure 8.1, right). Similarly, if all four rays pass all half-
space tests, the entire packet passes through the triangle, and it must be only
a distance test performed for the component rays. Thus, intersection tests
for individual rays are only required when the frustum neither fully misses
nor fully hits.

The efficiency of frustum culling depends on the relative areas of the
frustum and isopolygon within the plane. For complex scenes, tets are too
small to have full hits, and frustum culling rarely succeeds. However, full
misses are quite common due to the loose nature of the implicit BVH, making
this test highly effective overall. Typically, frustum culling can reject 40–60%
of the packet-isopolygon tests, tough this ratio declines for larger models.
Every time SIMD frustum culling rejects a packet test, 256 individual ray-
isopolygon tests are avoided.

8.3 Shading Normal Interpolation 131

8.2.4 Isopolygon Precomputations

Isopolygon computation can be executed in three ways:

1. Full precomputation: Precompute all isopolys every time the user
changes the isovalue(s) of interest.

2. On-the-fly computation: from scratch on demand.

3. On-the-fly computation with caching: Compute isopolys only
when needed, but keep a cache of already computed isotets; clear the
cache every time the user changes the isovalue(s) or time step.

Full precomputation maximizes performance for navigation with static
isovalues, but requires a larger memory footprint and incurs delays when the
user changes isovalue or time step in time-varying data sets. On-the-fly com-
putation is slower during rendering, but offers greater flexibility with scene
interaction. Caching in theory offers a compromise, but in practice is quite
complicated in a multi-core environment, as it requires the resolution of cache
conflicts in a thread-safe manner, requiring significant synchronization over-
head. Therefore only on-the-fly computation is used by default. Due to the
use of large packets – which allow for amortizing the on-the-fly computations
over 64 rays – the overhead is in the range of 5–8%, which is a tolerable price
for the ability to arbitrarily change the time step or isovalue.

8.3 Shading Normal Interpolation

After determining the proper hit points for a ray bundle (if any exists) for
each pixel a corresponding color has to be computed. For many shading
models i.e. Phong [Pho75] a shading normal needs to be interpolated at the
hit point.

To support smooth interpolated normals at each vertex position a gradi-
ent could be estimated in a preprocess (or on-the-fly). This gradients would
then be used in the surface shaders for normal interpolation by: n(p) =
αn1 +βn2 +γn3 + δn4 with α, β, γ, δ being the barycentric coordinates of the
hit point p.

Unfortunately, the described isopoly intersection test does not calculate
the barycentric coordinates within the isotet. To circumvent this problem
the gradients are not stored directly but an intermediate 4 × 4 matrix is
determined for each isotet. This matrix can then be used to calculate an
interpolated normal at p without the actual vertex gradients and barycentric
coordinates α, β, γ, δ.

132 Chapter 8: Isosurface Ray Tracing of Tetrahedral Volumes

To do so, two matrices are set up: V = (A,B,C,D) andN = (n1, n2, n3, n4)
with A,B,C,D as the 4D vertices of the isotet and n1, n2, n3, n4 the corre-
sponding gradients. Now the intermediate matrix M = NV −1 can be calcu-
lated and stored. Finally, for any given p inside the isotet Mp will yield the
interpolated normal. Of course this comes at the price of storing a complete
3 × 4 matrix for each isotet (the last row has always the form (0, 0, 0, 1)).
However, this allows us to interpolate a normal without the need of comput-
ing the barycentric coordinates directly.

8.4 The Implicit Bounding Volume Hierarchy

The concept of the implicit BVH is similar to that of the implicit kD-tree
(see Chapter 7) in that the acceleration structure is not built for a single
isovalue, but rather as a tree of min-max isovalue ranges (e.g. Wilhelms
& Van Gelder [WG92]). Each node stores the minimum and maximum of
all scalar field values contained within that subtree. During traversal, all
BVH nodes that do not contain the desired isovalue can be consequently
culled. Once built, the implicit BVH structure is valid for all isovalues, and
thus allows for simultaneously rendering multiple isosurfaces from the entire
range of isovalues. As subtrees that do not contain the isovalue are never
traversed, the only effective cost of supporting arbitrary isovalues is a slightly
looser-fitting BVH.

8.4.1 Building the BVH

Building an implicit BVH for tets in fact is similar to building a BVH for
triangle meshes. Most mesh-BVH builds rely on bounding boxes or centroids
of their primitives as construction metrics (Section 2.4.2), and tets behave
similarly to triangles in this regard.

Traditional bottom-up BVH builds (e.g. [GS87]) generally result in inef-
ficient BVHs [Hav01a]. Recent BVH literature has favored top-down builds,
which recursively partition primitives into two subgroups. Two partitioning
strategies are of particular interest: Wald et al.’s sweep surface area heuris-
tic (SAH) build [WBS07] and Wächter et al.’s fast spatial median build as
proposed in his bounding interval hierarchy paper [WK06]. The SAH build
employs a surface area heuristic [GS87, Hav01a] to select a partition with
lowest expected cost, but is costly to build. The BIH-style build is closer in
spirit to spatial median builds and, as it requires no cost function evaluation,
it builds significantly faster than SAH methods. In both constructions, nodes
are partitioned until leaves contain 12 or fewer tet primitives. Empirically,
experiments showed that this fixed value works best.

BVH Structure: The BVH node employs the same structure as [WBS07],
with a crucial modification: the minimum and maximum voxel values of a

8.4 The Implicit Bounding Volume Hierarchy 133

subtree are interpreted as 4th dimension of the axis-aligned bounding volume
defined by bmin and bmax, leading to 4D bounds bmin = {xmin, ymin, zmin, vmin}
and bmax = {xmax, ymax, zmax, vmax}. These can then be stored and processed
per node as SSE vectors. Integers for the child node index and traversal
bookkeeping follow, padded to ensure SSE-friendly 16-byte alignment. Stor-
ing isovalues alongside geometric extents allow all dimensions to be processed
simultaneously in SSE.

8.4.2 Implicit BVH Traversal

Having described the construction of the implicit BVH, now the traversal
procedure is detailed. As previously mentioned, the coherent traversal algo-
rithm of Wald et al. [WBS07] is employed, and extended with implicit iso
range culling. In general, this algorithm operates on large packets of rays,
and tracks both a bounding frustum and the first ”active” ray in the packet
that intersects a current BVH node. Instead of intersecting each traversed
node with all the rays in the packet, it employs optimizations such as spec-
ulative descent and frustum culling of nodes. With the implicit BVH, nodes
not containing an isovalue in their min-max range are culled. More generally,
these traversal tests proceed as follows:

I) Implicit Culling: At the heart of implicit BVH traversal lies the
concept of culling subtrees that are known to be inactive – those whose isor-
ange does not contain an isovalue. As this test is very cheap, it is performed
first. In addition, it can be observed that each active node must have at least
one active child, and if the first child is inactive, it can be continued with
its active sibling. Only at bifurcation nodes - where both children are active
- it is actually reverted to the geometric tests outlined below. In the worst
case, this behavior descends several times into a subtree that is not actually
visible. Since these speculative descents are fast, however, this is still quicker
than testing all the nodes for visibility; and even if the fast descent led to
a subtree that is outside the packet’s bounding frustum, this node would be
immediately rejected by the frustum test outlined below (see Figure 8.2).

II) Speculative First-Active Descent: For the first geometric traver-
sal test, the first active ray is examined in the packet. If that hits the current
node, it can be immediately descend without performing any more ray-box
tests, as illustrated in Figure 2.7(a). Since it is never tested whether any of
the other rays actually hit the current node, this test is speculative. Though
it may cause modest extra work when few rays in the packet are also ac-
tive, this strategy allows many ray-box tests to be skipped when numerous
consecutive rays are active.

III) Frustum Test: If the first active test fails, it is sure that the
packet at least partially misses the box, and a frustum test to conservatively

134 Chapter 8: Isosurface Ray Tracing of Tetrahedral Volumes

0,100

0,60 20,100

0,30 20,60 20,30 30,100

0,20 20,30 20,40 38,60 20,22 21,30 30,60 40,100

isovalue = 39

0

1

2 3

4

5

6

bifurcation nodes

intersected leaves

Figure 8.2: Implicit Culling. The implicit BVH is a min-max tree containing
only a subset of BVH nodes containing the desired isovalue(s). Speculatively
it can be descend the min-max tree until a leaf is reached, or an intersection
test fails. Only at bifurcation nodes (dark blue) it must be switched im-
mediately to geometric packet-BVH traversal computation. Thus, geometric
tests are performed as if the BVH had only been built over active nodes for
a single isovalue.

determine if the entire packet misses is performed. Technically an interval
arithmetic (e.g. [RSH05, BWS06b]) test is employed instead of a geometric
frustum test, but the effect is similar in behavior. If the full packet missed,
the current node is rejected and the next node on the stack is processed (see
Figure 2.7(b)).

IV) First-Active Ray Tracking: If both the speculative descent and
frustum tests fail, all remaining rays are tested until the first active one is
found that hits the current node. Those rays that failed the test are marked
inactive by tracking the index of the first active ray in the packet (all rays
with a smaller index are known to be inactive). If no active ray could be
found, the node is rejected and the next subtree is popped from the traversal
stack. Rays with indices higher than the first active one found so far are not
tested, and are speculatively descended into the subtree as well.

V) Leaf Traversal: When encountering a leaf, first a frustum test is
performed as for all other nodes. If that test passes, all tets referenced in that
node are visited sequentially. For each tet then the isorange is determined
(which may be smaller than the node’s isorange), and used to test that
range against the isovalue. Finally the tet is either rejected or intersected as
described above.

8.5 Time-Varying Data 135

Figure 8.3: Two examples of time-varying data sets, rendered at 1024×1024
pixels, using a 16-core 2.4 GHz Opteron workstation. Top: An artificially
created deforming bucky ball that shows severe deformation of its 226K tets,
running at 50+ frames per second including shadows from a point light
source. Bottom: The fusion data set with a time-varying scalar field (3m
tets, 116 time steps), rendered with four layers of isosurfaces, a crop box,
shadows, and transparency, running at 7 to 15 frames per second. Camera
and light positions, time step, and number and parameters of the isosurfaces
can be changed interactively.

8.5 Time-Varying Data

Time-varying data is extremely common in FE (finite element) simulations.
In the simplest time-varying tet meshes, geometry remains constant and only
scalar values change. More complex scenarios include changing geometry and
topology, and potentially dynamic addition and removal of elements from
one time step to the next. To address these possibilities, two schema for
dynamic BVH construction, balancing performance and memory footprint
are proposed. Results are analyzed in Section 8.7.5.

8.5.1 Schema I: Unique BVH Per-Step

The näıve way of accommodating time-varying data is to compute a unique
BVH for each individual time step. Thus, no render-time computation is
necessary to progress from one time step to the next, regardless of changes
in geometry or scalar element values. As only main memory is used, this
approach is in fact very efficient. However, for large data sets with many
time steps such as the fusion data set in Figure 8.3, this approach may
require considerable amounts of memory which might not be available.

8.5.2 Schema II: Dynamic Refitting

Fully computing a new BVH on-the-fly during rendering is too costly for
large data, even using the fast BIH-style build. However, it can be observed
that when tet mesh vertices change position but connectivity remains con-

136 Chapter 8: Isosurface Ray Tracing of Tetrahedral Volumes

stant, the BVH structure will not change drastically between time steps.
Thus, simply refitting the nodes’ bounding extents will yield a correct BVH.
This technique has been successfully applied to ray tracing dynamic trian-
gle meshes [WBS07, LYTM06]. The main drawback is that, particularly in
cases of extreme geometric deformation, the refit BVH may perform worse
than a BVH built from scratch for that particular time step. Fortunately,
for tet meshes and the BVH, this method works extremely well due to the
continuous nature of tet deformations in FE simulation, particularly for rigid
bodies. Moreover, when vertices remain constant but the scalar field changes,
the BVH is identical for all time steps, as only the min-max isovalues must
be updated.

As previously mentioned, minimum and maximum geometric bounds and
isovalues are stored adjacently in 4D SSE vectors. Refitting the 4D extents
can thus be accomplished with one SSE min and one SSE max per BVH node.
Tet vertices and scalars are also stored as 4D points; thus computing the 4D
bounds of a tet is also extremely efficient, requiring only 3 SSE min and
max operations each per tet. With multi-core CPU’s, it is straightforward to
parallelize the update process. After the initial BVH has been built, for each
refit thread an entry point in the BVH is computed such that the number of
nodes in its subtree is approximately equal for each thread. During a refit,
these subtrees can then be update in parallel. Once all subtrees are updated,
a single thread refits the remaining few nodes close to the root node.

8.6 Shading and Interaction Modalities

Having leveraged the algorithms for efficient unstructured volume ray trac-
ing, several visualization modalities will now be described that can assist in
understanding unstructured data sets.

Smooth Normals: Since linear interpolation in tetrahedral meshes leads
to piecewise-planar isosurfaces, the rendered isosurface has normal disconti-
nuities where different tets abut, resulting in a faceted surface appearance.
Instead of using the geometric surface normal for shading, a smooth sur-
face appearance can be achieved by precomputing and interpolating vertex
normals, with little additional cost (see Section 8.3). Though visually more
pleasing, most scientists prefer seeing the data ”as computed”, so this feature
is by default disabled.

Shadows: A far more useful effect that a ray tracer can support is shadows,
which can add important visual cues over an object’s shape (see Figure 8.5).
In casting shadow packets, rays are generally coherent and share a common
origin in the case of point lights. Unlike primary rays, shadow rays do not
inherently form a regular beam, and thus have no concept of ”corner rays”

8.6 Shading and Interaction Modalities 137

Figure 8.4: Instead of shading with the surface normal, a smoother appear-
ance can be achieved by precomputing and interpolating the tets’ vertex
gradients.

for SIMD frustum culling. Though bounding corner rays could easily be com-
puted from a packet [BWS06b], this is not yet implemented. Fortunately,
frustum culling during BVH traversal still works for shadow rays using the
Reshetov et al. [RSH05] technique, which requires no actual geometric frus-
tum. In theory, shadow rays are simpler than other rays, as they can be
terminated as soon as any valid intersection is detected. These special cases,
however, are not yet exploited. The overall speed impact of shadow rays
varies, but is typically lower than 2× (see Figure 8.5a-b).

Multiple Isosurfaces: Supporting multiple isosurfaces in an implicit BVH
is straightforward, by simply testing whether a BVH subtree overlaps any of
the isovalues before descending it. To follow the SIMD paradigm, up to four
different isosurfaces are supported, though it would be trivial to add more.
Keeping the four isovalues in a SIMD vector, it can then be tested whether a
BVH node’s or isotetrahedron’s iso range contains any of these four isovalues
in parallel. These are in turn intersected with all the rays that actually
hit the leaf node. Though rendering multiple surfaces can require tracing
more rays per image, particularly when transparency is enabled, it causes no
significant computation penalty in and of itself.

Clipping Planes and Boxes: While isosurfaces provide an intuitive way
of visualizing a data set, one of their drawbacks is that the surface often
occludes the data set’s interior. For that reason, visualization systems often
employ clipping planes (or boxes) that allow for cropping certain parts of the
model to expose its interior. Currently a single box that may or may not

138 Chapter 8: Isosurface Ray Tracing of Tetrahedral Volumes

Figure 8.5: Impact of adding additional shading effects: a) A bucky ball
rendered with a single isosurface, and diffuse shading. b) After turning on
diffuse shading with shadows. c) With a second isosurface and an interactive
clip-box to expose the interior. d) Adding transparency as well. At 1024 ×
1024 pixels on a Intel Core 1 duo laptop, these screenshots render at 15.6,
10.2, 5.4, and 2.6 frames per second, respectively. On a 16-core Opteron
2.4 GHz workstation, they render at 90, 70, 42, and 19 frames per second,
respectively.

extend to infinity (to simulate a plane) is allowed for, and use this to clip
BVH subtrees. During traversal, if a node’s subtree is completely enclosed
in the crop box, the subtree is skipped just as if it was out of the isorange.
In SIMD, a box-in-box test is very cheap and can be amortized per packet,
incurring negligible cost. An example of this feature is shown in Figure 8.5.

Transparent Depth Peeling: Another effect that allows one to see through
an isosurface is to render it with transparency. Though straightforward to
implement, transparency multiplies the complexity of rendering an image by
the number of transparent hits required. Depth peeling could also be han-
dled by storing multiple hit points in a ray packet, but for the currently used
ray tracing architecture it is more elegant to implement it via secondary
rays in the shader. Rather than generating a set of completely new rays
at the first surface, the original ray packet is re-used by specifying a mini-
mum hit distance for each ray. Thus, the secondary packet has exactly the
same (common) origin, corner rays and frustum as the primary packet, al-
lowing for all of the aforementioned optimizations. Rays that do not require
a transparency ray are disabled, sometimes leading to partially-filled packets,
but incurring no additional traversal steps or isopolygon intersections. Note
that even though a BVH can have overlapping subtrees, shading will always
be performed front-to-back, so both shadows and transparency are always
computed accurately (Figure 8.5).

8.7 Results and Discussion 139

Figure 8.6: From left to right: ell32P (149K tets), feok (122K), bucky ball
(177K), bluntfin (225K tets, two isosurfaces), bucky cube (4x4x4 bucky balls,
for a total of 11.3m tets), and time step 50 of the fusion data set. With simple
shading, these examples run at 14.2, 12.6, 13.3, 18.9, 2.8, and 3.3 frames per
second (1024 × 1024 pixels) on a Intel Core 1 duo laptop with 1GB RAM,
and at 95, 93, 90, 94, 19.1, and 26.1 frames per second on a 16-core 2.4 GHz
Opteron workstation.

8.7 Results and Discussion

Thus far, performance tradeoffs of individual algorithmic components are
addressed in their respective sections. In this section, benchmarks for the
system as a whole are considered, and evaluate the overall success of coher-
ent BVH ray tracing for tet-volume isosurfaces. For the experiments, three
representative machines are used: a laptop equipped with an Intel Core (1)
Duo 2.33 GHz and 1 GB RAM; a Mac Pro desktop PC with a dual Intel
Core 2 Duo 2.66 GHz and 4 GB RAM; and a 8-CPU dual-core (16 cores
total) Opteron 2.4 GHz workstation with 64 GB RAM. In general the ex-
periments showed that the desktop frequently performed on par with the
workstation, except in the case of multiple transparent isosurfaces on large
data where the large L2 cache of the workstation had a major impact. If not
mentioned otherwise, all examples run at 1024×1024 pixels, and use packets
of 16 × 16 rays. The data sets and scenes used for comparison are depicted
in Figures 8.6 and 8.3.

8.7.1 Build Time and Performance

Because a tetrahedral mesh has far less geometric variation than a polygonal
model (i.e., tets form a partition of space, and never overlap or self-intersect),
the qualitative difference between a SAH and a BIH build is virtually nonex-
istent (Table 8.1). Because of the lower build times, the BIH-style build is
used as default, though the SAH could potentially be useful for extremely
irregular data. However, with the fast BIH-style build, most of the smaller
data sets could in fact be rebuilt from scratch per frame.

8.7.2 Rendering Performance

As can be seen from Table 8.1 and Table 8.2, all of the static examples can
be rendered at multiple frames per second even on the dual-core laptop. For

140 Chapter 8: Isosurface Ray Tracing of Tetrahedral Volumes

Ell32P Feok Bucky Blunt BuckyCube Fusion (t=50)
#Tets 148,955 121,668 224,874 176,856 11.3m 3m x 116
Render Performance (Frames per Second)
BIH 27.0 23.6 18.8 28.4 6.23 11.47
SAH 26.3 23.6 18.9 28.5 6.30 12.13
Build Time (ms, dual Intel Core 2 Duo 2.66 GHz)
BIH 46 42 61 87 4988 1495
SAH 2432 1854 2932 3887 312620 70689

Table 8.1: BIH-style build vs SAH for building the Implicit BVH. Because
the tetrahedra are distributed over space for more evenly than triangles in a
polygonal model, the render performance between BIH-style build and SAH
build is very similar, but executing the BIH-style build is much faster.

static scenes, performance is typically linear in the number of CPU cores,
but with an upper bound of 50–60 fps due to the cost of writing ray-traced
pixels to the GPU frame buffer. Empirically, the application scales roughly
linearly with respect to number of pixels per frame. Thus, a frame buffer of
512 × 512 generally renders four times faster than at 1024 × 1024, allowing
for quite interactive rates even when rendering difficult scenes on the laptop.

Scalability in Model Size: Performance degrades quite gracefully when
increasing model size, dropping at most by 4x when going from the smallest
model (feok, 121k tets) to the most complex one (buckycube, 11.3m tets),
even though the latter has nearly 100 times the number of tets. This is largely
due to the logarithmic complexity of ray tracing efficiency structures, and the
packet-amortized cost of memory access. To further evaluate scalability to
large models, several example scenes are generated where a bucky ball is
replicated n× n× n times without instancing. As evident in Table 8.3, per-
formance drops moderately even for hugely complex models of up to nearly
a billion tets.

Comparison to Existing Approaches: The results compare quite fa-
vorably to the isosurface ray tracing performance achieved by Marmitt et
al.’s Plücker-based tet marching algorithm [MS06b], which reported 1.67 and
0.92 fps at 512 × 512 on a dual-Opteron for isosurfaces on the bluntfin and
buckyball, respectively. On comparable hardware (and scaled to same view-
port size), the system performs approximately 40 times faster. However, it
is important to note that the Marmitt et al. method also supports semi-
transparent volume ray casting, which ours doesn’t. Comparison with GPU
isosurfacing methods is more difficult, due to completely different and contin-
ually changing hardware and programming models. Therefore it is restrained

8.7 Results and Discussion 141

Ell32P feok Bucky Blunt BuckyCube Fusion (t=50)
Laptop 14.2 12.6 13.3 18.9 2.8 3.3
Desktop 29.4 25.9 27.3 45.5 7.21 8.47
Workstation 95 93 90 94 19.1 26.1

Table 8.2: Performance in frames per second for various data sets and plat-
forms: Laptop is an Intel Core Duo 2.33 GHz, 1 GB RAM. Desktop is a
4-core dual Intel Core 2 Duo 2.66 GHz, 4 GB RAM. Workstation is a 16-
core cc-NUMA 2.4 GHz Opteron, with 64 GB RAM. Refer to Figure 8.6 for
images.

Replications 1 23 43 83 163

Tets Total 177k 1.4m 11.3m 90.4m 724m
Frames per Second 34 13.5 5.0 1.8 0.66

Table 8.3: Performance in frames per second on four Opteron 2.4GHz cores,
for varying numbers of replication of the bucky ball scene (no instancing is
used).

from any absolute comparisons, but believe that the frame rates achieved are
sufficiently interactive to compete with most GPU based methods for large
data sets, while offering more flexibility and unconditional accuracy.

8.7.3 Traversal Efficiency

The key to this interactive performance lies in the aggressive large-packet
traversal scheme, as can be seen from Table 8.4. Speculative descent and
frustum culling greatly reduce the number of individual ray-box tests during
traversal by roughly a factor of 18–51 compared to tracing 2×2 packets (the
smallest an SSE-based system can trace). Using packets allows for traversal
and intersection code in SSE, which is crucial to realizing the performance
potential of modern CPU’s.

Because the ray-isotet intersection is transformed to a polygonal prob-
lem, the same frustum culling techniques can also be used to significantly
reduce the number of individual ray-isopolygon tests, by about 2–3×, even
though for the most complex scene the number of ray-isopolygon tests ac-
tually increases (see Table 8.4). Finally, larger packets allow for amortizing
per-packet operations like isorange culling and isotet extraction over the en-
tire packet, thus reducing the total number of these operations per frame.
As evident in Table 8.4, this reduces the number of isopolygon generations
by about 6–40×, and the number of culling tests by 22–55×.

142 Chapter 8: Isosurface Ray Tracing of Tetrahedral Volumes

Scene Bluntfin Buckyball Ell32P Feok Fusion50 BuckyCube
Number of Individual Ray-Box Tests
2x2 48.05 93.84 56.75 57.42 175.83 95.89
16x16 0.94 1.8 1.11 1.10 4.32 5.44
Ratio 51× 52× 52× 52× 41× 18×
Number of Individual Ray-Isopolygon Tests
2x2 8.90 13.52 8.0 12.45 29.35 15.51
16x16 3.19 4.42 3.39 3.86 16.47 23.91
Ratio 2.8× 3.0× 2.4× 3.5× 1.8× 0.65×
Number of Total Packet Isorange Tests
2x2 76.75 152.31 99.89 95.96 279.75 181.48
16x16 1.45 2.84 1.88 1.79 6.48 8.29
Ratio 51× 54× 53× 53× 43× 22×
Number of Total Isopolygon Extractions (×1000)
2x2 2216 354 1908 4436 7285 3468
16x16 69 10 6429 109 296 616
Ratio 32× 34× 29× 41× 25× 5.6×

Table 8.4: Traversal statistics of using the aggressive packet-frustum traversal
scheme (using 16× 16 rays) vs. standard 2× 2 packet traversal.

Isopolygon caching vs. On-the-Fly Recomputation: Because the large
packets reduce the number of isopolygon extractions, caching the isopolygons
has a relatively low impact. Even when using only a single CPU and a large
enough cache (so no conflicts occur, and all synchronization can be disabled),
caching only increases total frame rate by 5–8% over on-the-fly recomputa-
tion, thus on-the-fly recomputation is used by default.

8.7.4 Multiple Isosurfaces, Shadows, and Transparency

As mentioned in Section 8.6, more advanced shading bears a significant cost,
mostly due to the higher number of rays traced in the scene. Shadows usu-
ally increase the render cost by about 2x if the rendered object covers the
entire screen, and somewhat less, otherwise (also see Figure 8.5). Of course,
adding more shadow-casting light sources–or even soft shadows or global
illumination–would further increase the cost per image, making these effects
infeasible on low-end hardware.

Transparency, too, adds to the number of rays traced per image, and
correspondingly increases the render cost, particularly if the object has a
high depth complexity. For this reason, the number of transparency levels
is typically reduced to a user-specified maximum (2 by default), which can
be changed interactively. All these effects can be supported simultaneously,

8.7 Results and Discussion 143

even for the complex time-varying data sets (see Figures 8.5 and 8.3).

With diffuse shading, supporting multiple isosurfaces in itself does not
significantly raise the cost of an image, due to the ray tracer’s implicit oc-
clusion culling (the 2× drop in frame rate in Figure 8.5 is entirely due to
the 2× higher projected area of the model after adding the outer isosurface).
Adding the clip-box in Figure 8.5 is virtually cost-free.

8.7.5 Time-Varying Data Sets

With isopolygon caching disabled by default, the performance for handling
time-varying data depends entirely on the cost of retrieving the BVH and
geometry for the proceeding frame. When BVH and vertex positions are
precomputed for each frame, switching to a new BVH has no measurable
performance impact, as switching requires only changing a few pointers, and
models are too large to remain resident in L2 cache anyway. On the other
hand, precomputation requires a lavish amount of main memory: for the
fusion data set, storing a precomputed BVH and vertices for each time step
currently requires a total of 21 GB of memory. Though it can be argued that
this could be significantly reduced, this memory footprint is still significant.

Without replicating the vertex arrays and precomputing the BVHs, all
116 time steps of the 3 million tet fusion data set can be fit into 538 MB (in-
cluding one shared BVH that is refit per frame), allowing us to render even
that model on the laptop. However, refitting requires updating the vertex
array, all the BVH nodes, and some precomputed shading data (e.g., per-tet
gradients) per frame, adding a significant per-frame cost that limits maxi-
mum performance. The update is fully parallelized, but – unlike rendering
– scales poorly due to intensive and asymmetrical memory access on that
particular workstation’s cc-NUMA architecture.

In short, precomputation and refitting offer a classical trade-off between
performance and memory consumption. For the fusion data set shown in
Figure 8.3 with all effects turned on, precomputation results in 7–15 fps on
the 16-core Opteron, but requires 21 GB or memory. Refitting requires only
538 MB of memory, but is limited to 3.5 fps when to a new time step is
switched every frame.

For smaller models, interactive refitting is not an issue, and for model
sizes of 100K–250K tets even per-frame rebuilds are feasible (see Table 8.1).
This would even allow for applications where neither scalar field, nor number
of tets, nor mesh topology are known in advance. For models as large as the
fusion data set, this is currently not possible at interactive rates. However,
as the serial BIH build is sufficiently fast that an efficiently implemented
distributed build could permit fully dynamic rebuilding.

144 Chapter 8: Isosurface Ray Tracing of Tetrahedral Volumes

8.8 Conclusions and Future Work

In this chapter it is shown that it is possible to ray trace isosurfaces of
tetrahedral scalar fields at interactive to real-time frame rates, purely on the
CPU. In doing so, it is possible to correctly visualize large unstructured vol-
umes, interactively manipulate isovalues and shader modalities, and handle
time-varying data with hundreds of steps.

The main algorithmic contributions are a fast packet-isotetrahedron in-
tersection test and extension of the coherent BVH to an implicit min-max
tree over the tetrahedral volume. The implementation naturally supports
multiple isosurfaces, on-the-fly clipping, semi-transparent depth peeling, and
shadows. Accommodation of large data is limited only by host memory ca-
pacity, though the overhead of the BVH must be taken into consideration.
Time-varying data can be handled by either precomputing an implicit BVH,
or by building a single BVH per time step that is updated on the fly. In the
former case, one can jump immediately between arbitrary time steps – a feat
that would be difficult for streaming GPU methods. Overall, a practical tool
for visualizing large tetrahedral data sets is presented.

The approach opens several avenues for future work. For example it
should be possible to the extend BVH traversal to direct volume render-
ing methods, such as maximum intensity projection (MIP) or full transfer-
function methods. Though the latter suffer from high traversal complexity,
the BVH could still be useful for space-skipping when the transfer function
is sufficiently sparse, as in [KW03a]. Another intriguing extension would be
support for higher-order finite elements in the spirit of Nelson et al. [NK05] or
Rössl et al. [RZNS04]. This would require a completely different intersection
routine, but the BVH traversal would remain unchanged. For complicated
nonlinear implicit expressions, a robust arbitrary implicit intersector such as
Knoll et al. [KHH+07, KHK+07] could be employed. Also of interest would
be more advanced lighting effects such as soft shadows, ambient occlusion,
or global illumination, which can significantly improve understanding of data
sets [Gri06].

Finally, investigating scalable build algorithms could allow for rendering
even complex data with arbitrary deformations without precomputation.

CPU ray tracing is practical for visualization applications in the near
term. Though GPU’s continue to outpace multi-core CPU’s in computa-
tional power, limited on-board memory and bus latency restrict addressing
of large data from the GPU. Fewer such limitations exist for CPU worksta-
tions or clusters. Thus, this method is geared primarily towards cutting-edge
data sets that are too large for näıve GPU methods, and scientific applica-
tions where consistently correct visualization is crucial. In the long run,

8.8 Conclusions and Future Work 145

regardless of hardware platform, isosurface ray tracing, with its logarithmic
complexity, is inherently scalable to large data, and trivial to parallelize. As
GPU programming models increase in algorithmic flexibility i.e. using CUDA
[Buc07], and mainboard memory access improves in transparency, ray tracing
methods will likely be ported to graphics hardware, replacing rasterization
for large data visualization.

Chapter 9

Final Summary,
Future Work, and Final Conclusions

This last chapter summarizes again the main contributions and results of this
dissertation and discusses potential future work before final conclusions are
drawn.

Final Summary

This dissertation has presented several contributions to broaden the appli-
cability of ray tracing in 3D computer games and isosurface visualization
applications. To do so, it concerned itself with questions like: what are
the benefits of ray tracing for future computer games, how can certain dy-
namic scenes efficiently be ray traced, how can ray tracing be implemented
efficiently on an IBM-Cell CPU, and how can isosurfaces be ray traced effi-
ciently. In particular, the chapters in this work showed:

Chapter 3 analyzed the benefits that ray tracing based game technology
offers, and the current state of ray tracing with regards to 3D computer
games. Furthermore, some of the fundamental differences between rasteriza-
tion driven and ray tracing based games engines were highlighted, as well as
prototype ray tracing based games presented.

Chapter 4 presented an approach to efficiently ray trace keyframe as well
as skinned animations. The algorithm works by introducing a preprocess
that clusters mesh segments with locally coherent motion. For each cluster, or
submesh, a fuzzy acceleration structure is build that is valid for the complete
animation. Then, for every frame, only a small top-level structure has to
be constructed with optimized bounds for the particular time step of the
animation. This procedure allows to ray trace dynamic scenes at realtime
frame rates with almost no runtime cost. Compared to optimized trees a
factor of two in ray tracing performance is lost in average, but ultimately
there is a performance net gain because it would be much more expensive to
rebuild the acceleration structures from scratch.

148 Chapter 9: Final Summary, Future Work, and Final Conclusions

Chapter 5 presented an optimized ray tracing architecture for the IBM-
Cell processor. The basic implementation uses BVHs, packet/frustum traver-
sal, and an optimized variant of Wald’s ray triangle intersection test. In order
to achieve fast ray shooting performance, software multithreading as well as
manual data caching for triangle and BVH nodes is exploited. The results
show that such an approach can achieve on an SPE a similar performance
as an optimized ray tracer running on a x86 core. However, a Cell processor
has eight compute cores and achieves with them, on a chip-to-chip com-
parison, higher ray tracing performance than any other current ray tracing
implementation.

Chapter 7 described the implicit min/max kD-tree as well as a fast and
exact ray isosurface intersection test for volumetric datasets with rectilinear
cells. The presented solution clearly outperforms all previously published
isosurface ray tracing methods and is at least on par with approaches that
have been published recently. It is also shown how the implicit min/max kD-
tree approach can be extended to support out-of-core data sets. With this
extension is it possible to render gigabyte datasets interactively on todays
PCs.

Chapter 8 introduced the implicit min/max BVH with a speculative pack-
et/frustum traversal for isosurface ray tracing of unstructured (dynamic)
volumetric datasets. Furthermore, a ray isosurface intersection test was pre-
sented that is based on the marching tetrahedra algorithm. Together, this
techniques allow to ray trace large time-varying isosurfaces at interactive
rates including advanced effects like clipping, transparencies etc.

Future Work

Although it is possible to achieve impressive ray shooting performance with
current algorithms on todays CPU and GPUs all has not been said and done.
There is always a need and opportunity for more performance.

For example, currently all well known ray tracing implementations that
exploit multicore CPUs perform the complete ray tracing pipeline (traversal,
intersection, shading) on every single core. This stresses the caches and it
might be worthwhile to exploit a vertical distribution of the separate tasks
to the processor cores. Furthermore, writing optimized shaders for several
different platforms is time consuming and error-prone, e.g. the shaders for
the presented Cell implementation do currently not support multithreading
and caching. Adding these features manually is just too much work and
new high level shading languages and compilers could be used to generate
optimized code for different back-ends.

Support for dynamic scenes requires also more research. Currently, all
existing solutions are limited in the dynamics they can support, or require

149

complicated strategies to selectively rebuild the acceleration structures which
can lead again to too long and unpredictable construction times. A solution
might be to use construction methods which are cheap enough such that
a full rebuild of the acceleration structure is possible for each frame. One
possibility could be the use an one dimensional linear ordering of all objects
in a scene, e.g. a space-filling curve is used to spatially sort the primitives. An
acceleration structure could then be build quickly over the sorted primitives.

Isosurface ray tracing of time-varying out-of-core volumetric datasets is
also still a challenge. These datasets are huge and allocate terabytes of hard
disk space. Even using e.g. the small presented acceleration structure for
rectilinear datasets would result in too much data. For such datasets new
concepts are needed which allow to change the isovalue and time step on-the-
fly but provide instantly enough information for a meaningful visualization.

Another interesting area for future research are hybrid algorithms. Hybrid
algorithms first execute a rasterization pass, and then ray tracing will be used
e.g. for exact shadow or reflection computations. This would allow to use
the best of both worlds and also offer the opportunity to slowly integrate ray
tracing into already exiting rasterization based render engines.

Final Conclusions

This dissertation has presented several practical techniques to broaden the
applicability of ray tracing for future 3D computer games and isosurface
visualization applications. Although rasterization will not be replaced by
ray tracing on a massive scale at any time soon, it can be assumed that ray
tracing will be more and more important in future. Of course not all problems
are solved yet, but new (hybrid)-algorithms, data structures, and massive
parallel CPU and GPU architectures will further improve the applicability
of ray tracing for real-world rendering applications.

150 Chapter 9: Final Summary, Future Work, and Final Conclusions

Appendix A

A List of Related Papers

The chapters of this thesis are based on the following publications and the
result of collaborative work with the according authors.

Chapter 2:
Exploring the Use of Ray Tracing for Future Games
H. Friedrich, J. Günther, A. Dietrich, M. Scherbaum, H. P. Seidel, and P.
Slusallek
Proceedings of ACM SIGGRAPH Video Game Symposium, Boston, USA,
2006

Chapter 3:
Ray Tracing Animated Scenes using Motion Decomposition
J. Günther, H. Friedrich, I. Wald, H. P. Seidel, and P. Slusallek
Proceedings of Eurographics, Vienna, Austria, 2006

Interactive Ray Tracing of Skinned Animations
J. Günther, H. Friedrich, H. P. Seidel, and P. Slusallek
Proceedings of Pacific Graphics, Taipei, Taiwan, 2006

Chapter 4:
Ray Tracing on the CELL processor
C. Benthin, I. Wald, and H. Friedrich
Proceedings of the IEEE Symposium on Interactive Ray Tracing, Salt Lake
City, USA, 2006

Chapter 5:
Interactive Volume Rendering with Ray Tracing
G. Marmitt, H. Friedrich, and P. Slusallek
Eurographics State-of-the-Art Report 2006, Vienna, 2006

152 Chapter A: A List of Related Papers

Chapter 6:
Faster Isosurface Ray Tracing using Implicit KD-Trees
I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H. P. Seidel
IEEE Transactions on Visualization and Computer Graphics, 2005

Fast and Accurate Ray-Voxel Intersection Techniques for Iso-Surface
Ray Tracing
G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek
Proceedings of Vision, Modeling, and Visualization, Stanford, USA, 2004

Chapter 7:
Interactive Isosurface Ray Tracing of Time-Varying Tetrahedral
Volumes
I. Wald, H. Friedrich, A. Knoll, and C. D. Hansen
Proceedings of IEEE Visualization/InfoVis, Sacramento, USA, 2007

Bibliography

[ADF+] S. Asano, S.H. Dhong, B. Flachs, G. Gervais, A. Hatakeyama,
P. Hotstee, R. Kim, T. Le, J. Leenstra, J. Liberty, P. Liu,
B. Michael, S.M. Mueller, H. Oh, O. Takahashi, Y. Watanabe,
and N. Yano. A streaming processing unit for a cell proces-
sor. Solid-State Circuits Conference, 2005. Digest of Technical
Papers. ISSCC. 2005 IEEE International.

[Adv03] Advanced Micro Devices. Software Optimization Guide for
AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, 2003.

[AM00] Marc Alexa and Wolfgang Müller. Representing animations by
principal components. Computer Graphics Forum, 19(3):17–24,
2000.

[AMD] Advanced Micro Devices. Inside 3DNow![tm] Technology.
http://www.amd.com/products/cpg/k623d/inside3d.html.

[AOW06] Junghyun Ahn, Seungwoo Oh, and Kwangyun Wohn. Optimized
motion simplification for crowd animation: Research articles.
Comput. Animat. Virtual Worlds, 17(3):155–165, 2006.

[App68] Arthur Appel. Some Techniques for Shading Machine Render-
ings of Solids. Proceedings of the Spring Joint Computer Con-
ference, pages 27–45, 1968.

[ARFPB90] John M. Airey, John H. Rohlf, and Jr. Frederick P. Brooks.
Towards image realism with interactive update rates in complex
virtual building environments. In SI3D ’90: Proceedings of the
1990 symposium on Interactive 3D graphics, pages 41–50, New
York, NY, USA, 1990. ACM Press.

[ART03] ARTVPS. Pure PCi-X 3D Rendering Card
. http://www.artvps.com/page/15/pure.htm, 2003.

154 BIBLIOGRAPHY

[AW87] John Amanatides and Andrew Woo. A Fast Voxel Traversal Al-
gorithm for Ray Tracing. In Proceedings of Eurographics, pages
3–10. Eurographics Association, 1987.

[Bad90] Didier Badouel. An efficient ray-polygon intersection. Academic
Press Professional, Inc., San Diego, CA, USA, 1990.

[BEL+07] Solomon Boulos, Dave Edwards, J Dylan Lacewell, Joe Kniss,
Jan Kautz, Peter Shirley, and Ingo Wald. Packet-based Whitted
and Distribution Ray Tracing. In Proc. Graphics Interface, May
2007.

[Ben06] Carsten Benthin. Realtime Ray Tracing on Current CPU Ar-
chitectures. PhD thesis, Computer Graphics Group, Saarland
University, 2006.

[Bet05] Bethesda Softworks LLC. The Elder Scrolls IV: Oblivion.
http://www.elderscrolls.com/, 2005.

[BPTZ99] C. L. Bajaj, V. Pascucci, D. Thompson, and X. Y. Zhang. Par-
allel accelerated isocontouring for out-of-core visualization. In
PVGS ’99: Proceedings of the 1999 IEEE symposium on Par-
allel visualization and graphics, pages 97–104, New York, NY,
USA, 1999. ACM Press.

[Bre03] Mark W. Brehob. On the Mathematics of Caching. PhD thesis,
Michigan State University, 2003.

[Buc07] Ian Buck. GPU Computing with NVIDIA CUDA. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 courses, page 6, New
York, NY, USA, 2007. ACM Press.

[BWS03a] Carsten Benthin, Ingo Wald, and Philipp Slusallek. A Scalable
Approach to Interactive Global Illumination. Computer Graph-
ics Forum, 22(2):621–630, June 2003.

[BWS03b] Carsten Benthin, Ingo Wald, and Philipp Slusallek. A Scalable
Approach to Interactive Global Illumination. Computer Graph-
ics Forum (Proceedings of Eurographics), 22(3):621–630, 2003.

[BWS06a] Carsten Benthin, Ingo Wald, and Philipp Slusallek. Techniques
for interactive ray tracing of Bézier surfaces. Journal of Graphics
Tools, 11(2), 2006. (to appear).

BIBLIOGRAPHY 155

[BWS06b] Solomon Boulos, Ingo Wald, and Peter Shirley. Geometric and
Arithmetic Culling Methods for Entire Ray Packets. Technical
Report UUCS-06-010, SCI Institute, University of Utah, 2006.

[Cat74] Edwin Earl Catmull. A subdivision algorithm for computer dis-
play of curved surfaces. PhD thesis, 1974.

[CDR02] Alan Chalmers, Timothy Davis, and Erik Reinhard, editors.
Practical Parallel Rendering. A K Peters, 2002. ISBN 1-56881-
179-9.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. The MIT Press, 2nd
edition, 2001.

[CMM+97] Paolo Cignoni, Paola Marino, Claudio Montani, Enrico Puppo,
and Roberto Scopigno. Speeding Up Isosurface Extraction Using
Interval Trees. IEEE Transactions on Visualization and Com-
puter Graphics, 3(2):158–170, 1997.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Dis-
tributed ray tracing. In SIGGRAPH ’84: Proceedings of the
11th annual conference on Computer graphics and interactive
techniques, pages 137–145, New York, NY, USA, 1984. ACM
Press.

[CW93] Michael F. Cohen and John R. Wallace. Radiosity and Realistic
Image Synthesis. Morgan Kaufmann Publishers, 1993.

[DCDS05] Andreas Dietrich, Carsten Colditz, Oliver Deussen, and Philipp
Slusallek. Realistic and Interactive Visualization of High-
Density Plant Ecosystems. In Natural Phenomena 2005, Pro-
ceedings of the Eurographics Workshop on Natural Phenomena,
pages 73–81, August 2005.

[DCH88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Vol-
ume rendering. In SIGGRAPH ’88: Proceedings of the 15th
annual conference on Computer graphics and interactive tech-
niques, pages 65–74, New York, NY, USA, 1988. ACM Press.

[DGP04] David E. DeMarle, Christiaan Gribble, and Steven Parker.
Memory-Savvy Distributed Interactive Ray Tracing. In Eu-
rographics Symposium on Parallel Graphics and Visualization,
pages 93–100, 2004.

156 BIBLIOGRAPHY

[DHS04] Kirill Dmitriev, Vlastimil Havran, and Hans-Peter Seidel. Faster
Ray Tracing with SIMD Shaft Culling. Research Report MPI-
I-2004-4-006, Max-Planck-Institut für Informatik, Saarbrücken,
Germany, 2004.

[DK91a] A. Dai and A. Koide. An Efficient Method of Triangulating
Equi-Valued Surfaces by Using Tetrahedral Cells. In IEICE
Trans. Commun. Elec. Inf. Syst., pages 214–224, 1991.

[DK91b] Akio Doi and Akoi Koide. An efficient method of triangulating
equi-valued surfaces by using tetrahedral cells. IEICE Trans
Commun. Elec. Inf. Syst, E-74(1):213–224, 1991.

[DPH+03] David E. DeMarle, Steve Parker, Mark Hartner, Christiaan
Gribble, and Charles Hansen. Distributed Interactive Ray Trac-
ing for Large Volume Visualization. In Proceedings of the
IEEE Symposium on Parallel and Large-Data Visualization and
Graphics (PVG), pages 87–94, 2003.

[DS06] Carsten Dachsbacher and Marc Stamminger. Splatting indirect
illumination. In SI3D ’06: Proceedings of the 2006 symposium
on Interactive 3D graphics and games, pages 93–100, New York,
NY, USA, 2006. ACM Press.

[Dur99] Frédo Durand. 3D Visibility: Analytical Study and Applications.
PhD thesis, Université Joseph Fourier, Grenoble I, July 1999.
http://www-imagis.imag.fr.

[DWBS03] Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp
Slusallek. The OpenRT Application Programming Interface –
Towards A Common API for Interactive Ray Tracing. In Pro-
ceedings of the 2003 OpenSG Symposium, pages 23–31, 2003.

[DWS05] Andreas Dietrich, Ingo Wald, and Philipp Slusallek. Large-Scale
CAD Model Visualization on a Scalable Shared-Memory Ar-
chitecture. In Günther Greiner, Joachim Hornegger, Heinrich
Niemann, and Marc Stamminger, editors, Proceedings of 10th
International Fall Workshop - Vision, Modeling, and Visualiza-
tion (VMV) 2005, pages 303–310, Erlangen, Germany, Novem-
ber 2005. Akademische Verlagsgesellschaft Aka.

[EAMJ05] Manfred Ernst, Tomas Akenine-Möller, and Henrik Wann
Jensen. Interactive rendering of caustics using interpolated

BIBLIOGRAPHY 157

warped volumes. In GI ’05: Proceedings of the 2005 conference
on Graphics interface, pages 87–96, School of Computer Sci-
ence, University of Waterloo, Waterloo, Ontario, Canada, 2005.
Canadian Human-Computer Communications Society.

[EKE01] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-
integrated volume rendering using hardware-accelerated pixel
shading. In Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS workshop on Graphics hardware, pages 9–16, 2001.

[FKN80] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On vis-
ible surface generation by a priori tree structures. In SIG-
GRAPH ’80: Proceedings of the 7th annual conference on Com-
puter graphics and interactive techniques, pages 124–133. ACM
Press, 1980.

[FS05] Tim Foley and Jeremy Sugerman. KD-tree Acceleration Struc-
tures for a GPU Raytracer. In HWWS ’05 Proceedings, pages
15–22, New York, NY, USA, 2005. ACM Press.

[FSY+06] Tim Foley, Jeremy Sugerman, Shigeatsu Yoshioka, , and Pat
Hanrahan. Ray Tracing on a Cell Processor with Software
Caching. In Proceedings of the 2006 IEEE Symposium on Inter-
active Ray Tracing, page 8, 2006.

[FvDFH97] Foley, van Dam, Feiner, and Hughes. Computer Graphics –
Principles and Practice, 2nd edition. Addison Wesley, 1997.

[GA05] Markus Geimer and O. Abert. Interactive Ray Tracing
of Trimmed Bicubic Bezier Surfaces without Triangulation.
WSCG’2005 Full Papers Conference Proceedings, pages 71–78,
2005.

[GBKG04] Sören Grimm, Stefan Bruckner, Armin Kanitsar, and Meis-
ter Eduard Gröller. Memory efficient acceleration structures
and techniques for cpu-based volume raycasting of large data.
In Proceedings IEEE/SIGGRAPH Symposium on Volume Visu-
alization and Graphics, pages 1–8, October 2004.

[GFSS06] Johannes Günther, Heiko Friedrich, Hans-Peter Seidel, and
Philipp Slusallek. Interactive ray tracing of skinned animations.
The Visual Computer, 22(9):785–792, September 2006. (Pro-
ceedings of Pacific Graphics).

158 BIBLIOGRAPHY

[GFW+06] Johannes Günther, Heiko Friedrich, Ingo Wald, Hans-Peter Sei-
del, and Philipp Slusallek. Ray tracing animated scenes using
motion decomposition. Computer Graphics Forum, 25(3):517–
525, September 2006. (Proceedings of Eurographics).

[Gla89] Andrew Glassner. An Introduction to Ray Tracing. Morgan
Kaufmann, 1989.

[Gla90] Andres Glassner, editor. Graphics Gems. Academic Press, 1990.

[GPSS07] Johannes Günther, Stefan Popov, Hans-Peter Seidel, and
Philipp Slusallek. Realtime ray tracing on GPU with BVH-
based packet traversal. In Proceedings of the IEEE/Eurographics
Symposium on Interactive Ray Tracing 2007, September 2007.

[Gri05] Sören Grimm. Real-Time Mono- and Multi-Volume Rendering
of Large Medical Datasets on Standard PC Hardware. PhD the-
sis, Technischen Universität Wien, 2005.

[Gri06] Christiaan Gribble. Interactive Methods for Effective Particle
Visualization. PhD thesis, University of Utah, 2006.

[GS87] Jeffrey Goldsmith and John Salmon. Automatic creation of ob-
ject hierarchies for ray tracing. IEEE Computer Graphics and
Applications, 7(5):14–20, May 1987.

[GWS04] Johannes Günther, Ingo Wald, and Philipp Slusallek. Realtime
Caustics using Distributed Photon Mapping. In Rendering Tech-
niques 2004, pages 111–121, June 2004.

[Hav01a] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD
thesis, Faculty of Electrical Engineering, Czech Technical Uni-
versity in Prague, 2001.

[Hav01b] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD
thesis, Czech Technical University in Prague, 2001.

[Hil89] W. Danny Hillis. The Connection Machine. MIT-Press, 1989.

[HJ04] Charles Hansen and Chris R. Johnson. The Visualization Hand-
book. Elsevier, 2004.

[HL79] G.T. Hermann and H.K. Lin. Three dimensional display of hu-
man organs from computed tomograms. In Computer Vision,
Graphics and Image Processing, pages 1–21, 1979.

BIBLIOGRAPHY 159

[HMS06] Warren Hunt, William R. Mark, and Gordon Stoll. Fast kd-tree
construction with an adaptive error-bounded heuristic. In 2006
IEEE Symposium on Interactive Ray Tracing. IEEE, Sept. 2006.

[Hur05] Jim Hurley. Ray tracing goes mainstream. Intel Technology
Journal, 9(2):99–108, 2005.

[idS99] idSoftware.
Quake III Arena.
http://www.idsoftware.com/games/quake/quake3-arena/,
1999.

[idS06] idSoftware.
Quake IV.
http://www.idsoftware.com/games/quake/quake4/, 2006.

[IKW07] Thiago Ize, Andrew Kensler, and Ingo Wald. A coherent
grid traversal approach to visualizing particle-based simula-
tion data. IEEE Transactions on Visualization and Computer
Graphics, 13(4):758–768, 2007. Member-Christiaan P. Gribble
and Member-Steven G. Parker.

[Int02a] Intel Corp.
Intel C/C++ Compilers, 2002.
http://www.intel.com/software/products/compilers.

[Int02b] Intel Corp.
Intel Pentium III Streaming SIMD Extensions.
http://developer.intel.com/vtune/cbts/simd.htm, 2002.

[Int02c] Intel Corp.
Introduction to Hyper-Threading Technology.
http://developer.intel.com/technology/hyperthread, 2002.

[Int05] International Business Machines. The Cell Project at IBM Re-
search. http://www.research.ibm.com/cell/, 2005.

[inT06] inTrace. Company Hompage. http://www.intrace.com/, 2006.

[ISP07] Thiago Ize, Peter Shirley, and Steven G. Parker. Grid creation
strategies for efficient ray tracing. In 2007 IEEE Symposium on
Interactive Ray Tracing. IEEE, Sept. 2007.

160 BIBLIOGRAPHY

[IWP07] Thiago Ize, Ingo Wald, and Steven G Parker. Asynchronous
BVH Construction for Ray Tracing Dynamic Scenes on Parallel
Multi-Core Architectures. In Proceedings of the 2007 Eurograph-
ics Symposium on Parallel Graphics and Visualization, 2007.

[Jan86] F. W. Jansen. Data structures for ray tracing. In Proceedings
of the workshop on Data structures for Raster Graphics, pages
57–73, 1986.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for Cluster-
ing Data. Prentice Hall Advanced Reference Series: Computer
Science, 1988.

[Jen01] Henrik Wann Jensen. Realistic Image Synthesis Using Photon
Mapping. A K Peters, 2001.

[Kaj86] James T. Kajiya. The rendering equation. In SIGGRAPH ’86:
Proceedings of the 13th annual conference on Computer graphics
and interactive techniques, pages 143–150, New York, NY, USA,
1986. ACM Press.

[Kap85] Michael R. Kaplan. Space Tracing: A Constant Time Ray
Tracer. In SIGGRAPH 85 Tutorial on the State of the Art in
Image Synthesis, July 1985.

[KDH+05a] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy. Introduction to the Cell Multiproces-
sor. IBM Journal of Research and Development, 49(4-5):589–
604, 2005.

[KDH+05b] James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R.
Johns, Theodor R. Maeurer, and David Shippy. Introduction to
the Cell multiprocessor. IBM Journal of Research and Develop-
ment, 49(4):589–604, 2005.

[KDK+01] Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Matt-
son, Jinyung Namkoong, John D. Owens, Brian Towles, An-
drew Chang, and Scott Rixner. Imagine: Media processing with
streams. IEEE Micro, 21(2):35–46, 2001.

[Kel97] Alexander Keller. Instant Radiosity. Computer Graphics (Pro-
ceedings of ACM SIGGRAPH), pages 49–56, 1997.

BIBLIOGRAPHY 161

[Kep75] E. Keppel. Approximating Complex Surfaces by Triangulation
of Contour Lines. In IBM Journal of Research and Development,
pages 2–11, 1975.

[KG04] Z. Karni and C. Gotsman. Compression of soft-body animation
sequences, 2004.

[KH95] Martin J. Keates and Roger J. Hubbold. Interactive ray trac-
ing on a virtual shared-memory parallel computer. Computer
Graphics Forum, 14(4):189–202, 1995.

[KHH+07] Aaron Knoll, Younis Hijazi, Charles D Hansen, Ingo Wald, and
Hans Hagen. Interactive Ray Tracing of Arbitrary Implicit Func-
tions. In Proceedings of the 2007 Eurographics/IEEE Symposium
on Interactive Ray Tracing, 2007.

[KHK+07] Aaron Knoll, Younis Hijazi, Andrew Kensler, Mathias Schott,
Charles Hansen, and Hans Hagen. Fast and Robust Ray Tracing
of General Implicits on the GPU. Technical report, 2007.

[KHW07] Aaron Knoll, Charles Hansen, and Ingo Wald. Coherent Mul-
tiresolution Isosurface Ray Tracing. Technical Report UUSCI-
2007-001, University of Utah, School of Computing, 2007.

[KNT05] Jacob Kogan, Charles Nicholas, and Marc Teboulle. Group-
ing Multidimensional Data. Recent Advances in Clustering.
Springer, 2005.

[KSS02] Jan Kautz, Peter-Pike Sloan, and John Snyder. Fast, arbitrary
brdf shading for low-frequency lighting using spherical harmon-
ics. In EGRW ’02: Proceedings of the 13th Eurographics work-
shop on Rendering, pages 291–296, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

[KW03a] Jens Krueger and Ruediger Westermann. Acceleration Tech-
niques for GPU-based Volume Rendering. In Proceedings IEEE
Visualization 2003, 2003.

[KW03b] J. Kruger and R. Westermann. Acceleration techniques for
GPU-based volume rendering. In VIS ’03: Proceedings of the
14th IEEE Visualization 2003 (VIS’03), page 38, Washington,
DC, USA, 2003. IEEE Computer Society.

162 BIBLIOGRAPHY

[KWPH06] Aaron Knoll, Ingo Wald, Steven G Parker, and Charles D
Hansen. Interactive Isosurface Ray Tracing of Large Octree Vol-
umes. In Proceedings of the 2006 IEEE Symposium on Interac-
tive Ray Tracing, 2006.

[LAM01] Jonas Lext and Tomas Akenine-Möller. Towards Rapid Recon-
struction for Animated Ray Tracing. In Eurographics 2001 –
Short Presentations, pages 311–318, 2001.

[LCN98] Barthold Lichtenbelt, Randy Crane, and Shaz Naqvi. Introduc-
tion to Volume Rendering. Person Education, 1998.

[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE Com-
put. Graph. Appl., 8(3):29–37, 1988.

[LG95] David Luebke and Chris Georges. Portals and mirrors: simple,
fast evaluation of potentially visible sets. In SI3D ’95: Proceed-
ings of the 1995 symposium on Interactive 3D graphics, pages
105–ff., New York, NY, USA, 1995. ACM Press.

[LH98] Yarden Livnat and Charles Hansen. View dependent isosurface
extraction. In VIS ’98: Proceedings of the conference on Visual-
ization ’98, pages 175–180, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

[Llo82] Stuart P. Lloyd. Least squares quantization in pcm. IEEE
Transactions on Information Theory, 28:129–137, 1982.

[LSJ96] Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson.
A Near Optimal Isosurface Extraction Algorithm Using the
Span Space. IEEE Transactions on Visualization and Computer
Graphics, 2(1):73–84, 1996.

[LWC+02] David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin
Reddy, and Amitabh Varshney. Level of Detail for 3D Graphics.
Elsevier Science Inc., New York, NY, USA, 2002.

[LYTM06] C. Lauterbach, S.-E. Yoon, D. Tuft, and Manocha. Rt-deform:
Interactive ray tracing of dynamic scenes using bvhs. In 2006
IEEE Symposium on Interactive Ray Tracing, pages 39–45.
IEEE, Sept. 2006.

[Mah05] Jeffrey Mahovsky. Ray Tracing with Reduced-Precision Bound-
ing Volume Hierarchies. PhD thesis, University of Calgary, 2005.

BIBLIOGRAPHY 163

[Max95] Nelson Max. Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 1(2):99–
108, 1995.

[MB90] David J. MacDonald and Kellogg S. Booth. Heuristics for ray
tracing using space subdivision. Vis. Comput., 6(3):153–166,
1990.

[MCC+99] Arthur A. Mirin, Ron H. Cohen, Bruce C. Curtis, William P.
Dannevik, Andris, M. Dimits, Mark A. Duchaineau, D. E. Elia-
son, Daniel R. Schikore, S. E. Anderson, D. H. Porter, and
Paul R. Woodward. Very High Resolution Simulation Of Com-
pressible Turbulence On The IBM-SP System. In Proceedings of
SuperComputing, 1999. (Also available as Lawrence Livermore
National Laboratory technical report UCRL-MI-134237).

[MFK+04] Gerd Marmitt, Heiko Friedrich, Andreas Kleer, Ingo Wald, and
Philipp Slusallek. Fast and Accurate Ray-Voxel Intersection
Techniques for Iso-Surface Ray Tracing. In Proceedings of Vi-
sion, Modeling, and Visualization (VMV), pages 429–435, 2004.

[MFS06] Gerd Marmitt, Heiko Friedrich, and Philipp Slusallek. Interac-
tive Volume Rendering with Ray Tracing. In Eurographics State
of the Art Reports, 2006.

[MFT05] B. Minor, G. Fossum, and V. To. TRE : Cell Broadband Opti-
mized Real-Time Ray-Caster. In Proceedings of GPSx, 2005.

[Mic06] Microsoft. DirectX 9.0. http://www.microsoft.com/-
windows/directx/, 2006.

[MMAM07] Erik Mansson, Jacob Munkberg, and Tomas Akenine-Moller.
Deep coherent ray tracing. In 2007 IEEE Symposium on Inter-
active Ray Tracing, pages 79–85. IEEE, Sept. 2007.

[MMMY97] Torsten Möller, Raghu Machiraju, Klaus Mueller, and Roni
Yagel. A comparison of normal estimation schemes. In VIS ’97:
Proceedings of the 8th conference on Visualization ’97, pages
19–ff., Los Alamitos, CA, USA, 1997. IEEE Computer Society
Press.

[MMU05] Thali M.J., Braun M., and Buck U. VIRTOPSY - Scientific
Documentation, Reconstruction and Animation in Forensic: In-
dividual and Real 3d Data Based Geometric Approach including

164 BIBLIOGRAPHY

Optical Body/Object. Journal of Forensic Sciences, 50(2):15,
2005.

[MNM06] B. Minor, M. Nutter, and J. Madruga. iRT : An Interactive Ray
Tracer for the CELL Processor. In IBM Techreports, 2006.

[MS06a] Gerd Marmitt and Philipp Slusallek. Fast ray traversal of tetra-
hedral and hexahedral meshes for direct volume rendering. In
Proceedings of Eurographics/IEEE-VGTC Symposium on Visu-
alization (EuroVIS) 2006, pages 235–242, May 2006.

[MS06b] Gerd Marmitt and Philipp Slusallek. Fast Ray Traversal of
Tetrahedral and Hexahedral Meshes for Direct Volume Render-
ing. In EuroVis 2006, 2006. (to appear).

[MT97] Tomas Möller and Ben Trumbore. Fast, Minimum Storage Ray
Triangle Intersection. Journal of Graphics Tools, 2(1):21–28,
1997.

[Muu95] Michael J. Muuss. Towards Real-Time Ray-Tracing of Combi-
natorial Solid Geometric Models. In Proceedings of BRL-CAD
Symposium, 1995.

[NFLM07] Paul Arthur Navratil, Donald S. Fussell, Calvin Lin, and
William R. Mark. Dynamic ray scheduling to improve ray co-
herence and bandwidth utilization. In 2007 IEEE Symposium
on Interactive Ray Tracing, pages 95–104. IEEE, Sept. 2007.

[NH90] Gregory M. Nielson and Bernd Hamann. Techniques for the
interactive visualization of volumetric data. In VIS ’90: Pro-
ceedings of the 1st conference on Visualization ’90, pages 45–50,
Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[NH91] Greg Nielson and Bernd Hamann. The Asymptotic Decider:
Removing the Ambiguity in Marching Cubes. In G. Nielson and
L. Rosenblum, editors, Proceedings of Visualization ’91, pages
83–91. IEEE Computer Society Press, 1991.

[NK05] Blake Nelson and Robert M. Kirby. Ray-tracing polymor-
phic multi-domain spectral/hp elements for isosurface render-
ing. IEEE Transactions on Visualization and Computer Graph-
ics (Proceedings IEEE Visualization 2005), 12(1):114–125, 2005.

BIBLIOGRAPHY 165

[NMHW02] A. Neubauer, L. Mroz, H. Hauser, and R. Wegenkittl. Cell-based
first-hit ray casting. In Proceedings of the Symposium on Data
Visualisation 2002, pages 77–ff, 2002.

[Ope06] Open Source Community. The CAL3D Library.
https://gna.org/projects/cal3d/, 2006.

[PBMH02] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanra-
han. Ray Tracing on Programmable Graphics Hardware. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH),
21(3):703–712, 2002.

[PGSS06] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and
Philipp Slusallek. Experiences with streaming construction of
SAH KD-trees. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, pages 89–94, September 2006.

[PGSS07] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and
Philipp Slusallek. Stackless kd-tree traversal for high perfor-
mance gpu ray tracing. Computer Graphics Forum, 26(3),
September 2007. (Proceedings of Eurographics), to appear.

[PH04] Matt Pharr and Greg Humphreys. Physically Based Rendering
: From Theory to Implementation. Morgan Kaufman, 2004.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures.
Commun. ACM, 18(6):311–317, 1975.

[PKGH97] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan.
Rendering Complex Scenes with Memory-Coherent Ray Trac-
ing. Computer Graphics, 31(Annual Conference Series):101–108,
August 1997.

[PMS+99] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter
Shirley, Brian Smits, and Charles Hansen. Interactive ray trac-
ing. In I3D ’99: Proceedings of the 1999 symposium on Inter-
active 3D graphics, pages 119–126, New York, NY, USA, 1999.
ACM Press.

[PPL+99] Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike
Sloan, Chuck Hansen, and Peter Shirley. Interactive Ray Trac-
ing for Volume Visualization. IEEE Transactions on Computer
Graphics and Visualization, 5(3):238–250, 1999.

166 BIBLIOGRAPHY

[PSL+98] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen,
and Peter-Pike Sloan. Interactive Ray Tracing for Isosurface
Rendering. In IEEE Visualization, pages 233–238, October
1998.

[Pur04] Timothy J. Purcell. Ray Tracing on a Stream Processor. PhD
thesis, Stanford University, 2004.

[Res06] Alexander Reshetov. Omnidirectional Ray Tracing Traversal
Algorithm for kd-trees. In Proceedings of the 2006 IEEE Sym-
posium on Interactive Ray Tracing, pages 57–60, 2006.

[Roc02] Rockstar Games. Grand Theft Auto: Vice City.
http://www.rockstargames.com/vicecity/, 2002.

[RSEB+00] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl.
Interactive Volume Rendering on Standard PC Graphics Hard-
ware using Multi-textures and Multi-stage Rasterization. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardware, pages 109–118. ACM Press, 2000.

[RSH00] Erik Reinhard, Brian Smits, and Chuck Hansen. Dynamic Accel-
eration Structures for Interactive Ray Tracing. In Proceedings of
the Eurographics Workshop on Rendering, pages 299–306, Brno,
Czech Republic, June 2000.

[RSH05] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-
Level Ray Tracing Algorithm. ACM Transaction of Graphics,
24(3):1176–1185, 2005. (Proceedings of ACM SIGGRAPH).

[RW80] Steve M. Rubin and Turner Whitted. A three-dimensional repre-
sentation for fast rendering of complex scenes. Computer Graph-
ics, 14(3):110–116, July 1980.

[RZNS04] Christian Rössl, Frank Zeilfelder, Günther Nürnberger, and
Hans-Peter Seidel. Reconstruction of Volume Data with
Quadratic Super Splines. IEEE Transactions on Visualization
and Computer Graphics, 10(4):397–409, 2004.

[Sab88] Paolo Sabella. A rendering algorithm for visualizing 3d scalar
fields. In SIGGRAPH ’88: Proceedings of the 15th annual con-
ference on Computer graphics and interactive techniques, pages
51–58, New York, NY, USA, 1988. ACM Press.

BIBLIOGRAPHY 167

[SDP+04] Jörg Schmittler, Tim Dahmen, Daniel Pohl, Christian Vogelge-
sang, and Philipp Slusallek. Ray Tracing for Current and Future
Games. In Proceedings of 34. Jahrestagung der Gesellschaft für
Informatik, 2004.

[Seg07] Sega. http://www.sega.com/, 2007.

[SH92] Robert Siegel and John R. Howell. Thermal Radiation Heat
Transfer, Third Edition. Taylor & Francis, 1992.

[Shi02] Peter Shirley. Fundamentals of Computer Graphics. A K Peters,
2002.

[SKS02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In SIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer graphics and in-
teractive techniques, pages 527–536, New York, NY, USA, 2002.
ACM Press.

[SLS05] Peter-Pike Sloan, Ben Luna, and John Snyder. Local, de-
formable precomputed radiance transfer. ACM Trans. Graph.,
24(3):1216–1224, 2005.

[SM00] Heidrun Schumann and Wolfgang Mueller. Visualisierung -
Grundlagen und allgemeine Methoden. Springer, 2000.

[SM03] Peter Shirley and R. Keith Morley. Realistic Ray Tracing. A K
Peters, second edition, 2003.

[SSM+05] Peter Shirley, Philipp Slusallek, Bill Mark, Gordon Stoll, and
Ingo Wald. Introduction to real-time ray tracing. In Course
notes #38 for ACM SIGGRAPH. ACM Press, 2005.

[Str03] Gilbert Strang. Introduction to Linear Algebra. Wellesley-
Cambridge Press, third edition, 2003.

[SWS02] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR
– A Hardware Architecture for Ray Tracing. In Proceedings
of the ACM SIGGRAPH/Eurographics Conference on Graphics
Hardware, pages 27–36, 2002.

[SWW+04] Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang J. Paul,
and Philipp Slusallek. Realtime Ray Tracing of Dynamic Scenes
on an FPGA Chip. In Proceedings of Graphics Hardware, 2004.

168 BIBLIOGRAPHY

[The01] Holger Theisel. CAGD and Scientific Visualization, Habilitation
Thesis, 2001.

[THQ01] THQ Inc. Red Faction. http://www.redfaction.com/, 2001.

[UK88] Craig Upson and Michael Keeler. V-buffer: visible volume ren-
dering. In SIGGRAPH ’88: Proceedings of the 15th annual con-
ference on Computer graphics and interactive techniques, pages
59–64, New York, NY, USA, 1988. ACM Press.

[Wal04] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumi-
nation. PhD thesis, Computer Graphics Group, Saarland Uni-
versity, 2004.

[Wal07] Ingo Wald. On fast Construction of SAH-based Bounding Vol-
ume Hierarchies. In Proceedings of the 2007 IEEE Symposium
on Interactive Ray Tracing, pages 51–58, 2007.

[WBS02] Ingo Wald, Carsten Benthin, and Philipp Slusallek. OpenRT
- A Flexible and Scalable Rendering Engine for Interactive 3D
Graphics. Technical report, Saarland University, 2002. Available
at http://graphics.cs.uni-sb.de/Publications.

[WBS03] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Distributed
Interactive Ray Tracing of Dynamic Scenes. In Proceedings of
the IEEE Symposium on Parallel and Large-Data Visualization
and Graphics (PVG), 2003.

[WBS07] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray tracing
deformable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph., 26(1):6, 2007.

[WCA+90] Jane Wihelms, Judy Challinger, Naim Alper, Shankar Ra-
mamoorthy, and Arsi Vaziri. Direct volume rendering of curvi-
linear volumes. In VVS ’90: Proceedings of the 1990 workshop
on Volume visualization, pages 41–47, New York, NY, USA,
1990. ACM Press.

[WDS04] Ingo Wald, Andreas Dietrich, and Philipp Slusallek. An Inter-
active Out-of-Core Rendering Framework for Visualizing Mas-
sively Complex Models. In Rendering Techniques 2004, Proceed-
ings of the Eurographics Symposium on Rendering, pages 81–92,
2004.

BIBLIOGRAPHY 169

[WFM+05] Ingo Wald, Heiko Friedrich, Gerd Marmitt, Philipp Slusallek,
and Hans-Peter Seidel. Faster Isosurface Ray Tracing using Im-
plicit KD-Trees. IEEE Transactions on Visualization and Com-
puter Graphics, 11(5):562–573, 2005.

[WG92] Jane Wilhelms and Allen Van Gelder. Octrees for faster isosur-
face generation. ACM Transaction on Graphics, 11, 1992.

[WH06] Ingo Wald and Vlastimil Havran. On building fast kd-trees for
ray tracing, and on doing that in O(N log N). Technical re-
port, SCI Institute, University of Utah, 2006. (submitted for
publication).

[Whi80] Turner Whitted. An improved illumination model for shaded
display. Commun. ACM, 23(6):343–349, 1980.

[WIK+06] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and
Steven G. Parker. Ray tracing animated scenes using coher-
ent grid traversal. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Papers, pages 485–493, New York, NY, USA, 2006. ACM Press.

[WK06] Carsten Wächter and Alexander Keller. Instant Ray Tracing:
The Bounding Interval Hierarchy. In Rendering Techniques 2006
– Proceedings of the 17th Eurographics Symposium on Render-
ing, pages 139–149, 2006.

[WKB+02] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller,
and Philipp Slusallek. Interactive Global Illumination using Fast
Ray Tracing. In Paul Debevec and Simon Gibson, editors, Ren-
dering Techniques 2002, pages 15–24, Pisa, Italy, June 2002.
Eurographics Association, Eurographics. (Proceedings of the
13th Eurographics Workshop on Rendering).

[WKE99] Rüdiger Westermann, Leif Kobbelt, and Tom Ertl. Real-time
Exploration of Regular Volume Data by Adaptive Reconstruc-
tion of Iso-Surfaces. The Visual Computer, 15(2):100–111, 1999.

[WMG+] Ingo Wald, William R Mark, Johannes Günther, Solomon Bou-
los, Thiago Ize, Warren Hunt, Steven G Parker, and Peter
Shirley. State of the Art in Ray Tracing Animated Scenes. In
Eurographics 2007 State of the Art Reports.

[WMS98] Peter L. Williams, Nelson L. Max, and Clifford M. Stein. A
High Accuracy Volume Renderer for Unstructured Data. IEEE

170 BIBLIOGRAPHY

Transactions on Visualization and Computer Graphics, 4(1):37–
54, 1998.

[WMS06] Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-kd trees for
hardware accelerated ray tracing of dynamic scenes. Technical
report, Computer Graphics Group, Saarland University, 2006.
(submitted for publication).

[WNDS01] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner.
OpenGL Programming Guide, Version 1.2. Addison Wesley,
third edition, May 2001.

[WR02] Bradford J Wood and Pouneh Razavi. Virtual Endoscopy: A
Promising new Technology. American family physician., 66,
2002.

[WS01] Ruediger Westermann and Bernd Sevenich. Accelerated Volume
Ray-Casting using Texture Mapping. In IEEE Visualization
2001, 2001.

[WS05] Ingo Wald and Hans-Peter Seidel. Interactive Ray Tracing of
Point Based Models. In Proceedings of 2005 Symposium on Point
Based Graphics (PGB), page to appear, 2005.

[WSB01] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interac-
tive Distributed Ray Tracing of Highly Complex Models. In
Steven J. Gortler and Karol Myszkowski, editors, Rendering
Techniques, Proceedings of the 12th Eurographics Workshop on
Rendering Techniques, London, UK, June 25-27, 2001, pages
274–285. Springer, 2001.

[WSBW01] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus
Wagner. Interactive Rendering with Coherent Ray Tracing.
Computer Graphics Forum, 20(3):153–164, 2001. (Proceedings
of Eurographics).

[WSO+06] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil,
Parry Husbands, and Katherine Yelick. The potential of the
cell processor for scientific computing. In CF ’06: Proceedings
of the 3rd conference on Computing frontiers, pages 9–20, New
York, NY, USA, 2006. ACM Press.

BIBLIOGRAPHY 171

[WSS05] Sven Woop, Joerg Schmittler, and Philipp Slusallek. RPU: A
Programmable Ray Processing Unit for Realtime Ray Tracing.
Proceedings of ACM SIGGRAPH, 2005.

[WTL+04] Xi Wang, Xin Tong, Stephen Lin, Shi-Min Hu, Baining Guo,
and Heung-Yeung Shum. Generalized displacement maps. In
Alexander Keller and Henrik Wann Jensen, editors, Render-
ing Techniques 2004, pages 227–234. Eurographics Association,
June 2004.

[WV] J Wilhelms and A Van Gelder. Octrees for faster isosurface
generation. pages 201–227.

[Wym05] Chris Wyman. An approximate image-space approach for inter-
active refraction. ACM Trans. Graph., 24(3):1050–1053, 2005.

[YCK92] R. Yagel, D. Cohen, and A. Kaufman. Normal estimation in 3D
discrete space. The Visual Computer, 8(5-6):278–291, 1992.

[YCM07] Sung-Eui Yoon, Sean Curtis, and Dinesh Manocha. Ray tracing
dynamic scenes using selective restructuring. In SIGGRAPH
’07: ACM SIGGRAPH 2007 sketches, page 55, New York, NY,
USA, 2007. ACM Press.

[ZN03] Huijuan Zhang and Timothy S. Newman. Efficient parallel out-
of-core isosurface extraction. In PVG ’03: Proceedings of the
2003 IEEE Symposium on Parallel and Large-Data Visualiza-
tion and Graphics, page 3, Washington, DC, USA, 2003. IEEE
Computer Society.

