
Assertion Level Proof Planning
with Compiled Strategies

Dominik Dietrich

Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der Natur-
wissenschaftlich-Technischen Fakultäten der Universität des Saarlandes.
Saarbrücken, 2011.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibli-
ografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Dietrich, Dominik:
Assertion Level Proof Planning with Compiled Strategies
ISBN 978-3-86376-015-1

Dekan: Prof. Dr. Holger Hermanns, Universität des Saarlandes
Vorsitzender: Prof. Dr. Gerd Smolka, Universität des Saarlandes
Gutachter: Prof. Dr. Jörg Siekmann, Universität des Saarlandes

Prof. Dr. Alan Bundy, University of Edinburgh
Prof. Dr. Fairouz Kamareddine, Heriot-Watt University

Beisitzer: Dr. Helmut Horacek

Tag des Kolloquiums: 27. September 2011

All Rights Reserved
New Edition 2012, Göttingen
c©Optimus Verlag
URL: www.optimus-verlag.de
Printed in Germany

Paper is FSC certified (wood-free, chlorine free and acid-free, and resistant to aging ANSI
3948 and ISO 9706)

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, scanning, or
otherwise without the prior written permission of the Publisher. Request to the Publisher
for permission should be addressed to info@optimus-verlag.de.

Kurzzusammenfassung

Die vorliegende Arbeit beschäftigt sich damit, das Formalisieren von Beweisen zu verein-
fachen, indem Methoden entwickelt werden, um informale Beweise formal zu verifizieren
und erzeugen zu können. Dazu wird ein abstrakter Kalkül entwickelt, der direkt auf der
Faktenebene arbeitet, welche von Menschen geführten Beweisen relativ nahe kommt. An-
hand einer Fallstudie wird gezeigt, dass die abstrakte Beweisführung auf der Fakteneben
vorteilhaft für automatische Suchverfahren ist. Zusätzlich wird eine Strategiesprache ent-
wickelt, die es erlaubt, unterspezifizierte Beweismuster innerhalb des Beweisdokumentes
zu spezifizieren und Beweisskizzen automatisch zu verfeinern. Fallstudien zeigen, dass
komplexe Beweismuster kompakt in der entwickelten Strategiesprache spezifiziert werden
können. Zusammen bilden die einander ergänzenden Methoden den Rahmen zur Automa-
tisierung von deklarativen Beweisen auf der Faktenebene, die bisher überwiegend manuell
entwickelt werden mussten.

iii

Abstract

The objective of this thesis is to ease the formalization of proofs by being able to ver-
ify as well as to automatically construct abstract human-style proofs. This is achieved
by lifting the logical basis to the abstract assertion level, which has been identified as a
style of reasoning that can be found in textbooks. A case study shows that automatic
reasoning procedures benefit from the abstract assertion level reasoning. In addition,
a strategy language is developed that allows the specification of abstract underspecified
declarative proof patterns within the proof document and supports their refinement. Case
studies show that complex reasoning patterns can concisely be specified within the devel-
oped language. Together, the complementary methods provide a framework to automate
declarative proofs at the assertion level.

v

Acknowledgements

First of all, I would like to thank Prof. Dr. Jörg Siekmann who accepted me as his Ph.D.
student, and who has, over the past years, given me all the encouragement and conditions
necessary to carry out this thesis. He has given me a lot of freedom to work on my thesis
and his knowledge, interest in the research, and guidance has helped me to complete this
thesis. My sincere gratitude goes to Prof. Dr. Alan Bundy, who with great experience in
the field and his thorough understanding of my work engaged me in valuable discussions.
I am grateful that he agreed to serve as an examiner of the thesis. I would also like to
thank Prof. Dr. Fairouz Kamareddine for agreeing to become an examiner of this thesis.
Moreover, I want to express my deeply-felt thanks to my thesis advisor Serge Autexier for
his warm encouragement and thoughtful guidance during the entire period. This thesis
greatly benefited from his scientific advice, including the more technical parts of this
thesis.

My research visit at the Carnegie Mellon University was one of the most wonderful
experiences during the time of my Ph.D. study. Therefore, my special thanks go to
Prof. Wilfried Sieg for giving me this great opportunity to be a guest at his laboratory.
I sincerely thank him for his time, discussions and hospitality, from which this thesis
benefited enormously. Moreover, I want to thank the DAAD for the financial support.

The members of the Ωmega group in Saarbrücken and FormalSafe group at DFKI
Bremen have contributed immensely to my personal and professional time. The groups
have been a source of friendships as well as good advice and collaboration. In particular, I
wish to mention Christoph Benzmüller, Mark Buckley, Dieter Hutter, Christian Maeder,
Till Mossakowski, Martin Pollet, Marvin Schiller, Ewaryst Schulz, Lutz Schröder, Holger
Täubig, Marc Wagner, Dennis Walter, and Claus-Peter Wirth.

I wish to thank all anonymous and known reviewers of my papers for providing
thoughtful comments, from which this thesis greatly benefited, and all people who sup-
ported me during the time of writing this thesis. In particular I want to mention my
colleague and friend Ewaryst Schulz for patiently proof-reading almost the complete the-
sis and for discussions about this work, as well as Christoph Benzmüller, who also care-
fully read many parts of this thesis. Moreover, I want to express my appreciation to Till
Mossakowski, Lutz Schröder, and Dennis Walter for reading parts of the thesis.

Finally I would like to thank my parents for the financial support over the years, as
well as my girlfriend Sandra for her love and patience.

vii

Contents

Kurzzusammenfassung ii

Abstract iv

Acknowledgements vii

Zusammenfassung xvii

Extended Abstract xix

I Introduction 1

1 Introduction 3

1.1 Contributions . 5

1.2 Outline of the Thesis . 8

2 Historical Overview and State of the Art 9

2.1 Classical Automated Theorem Proving . 10

2.1.1 Rewriting . 10

2.2 Interactive Theorem Proving and Proof Style 11

2.2.1 Procedural vs. Declarative Proof 11

2.2.2 Tactic Languages . 14

2.2.3 Deduction Modulo, Supernatural Deduction, and Superdeduction . 15

2.2.4 Proof Transformation and Presentation 16

2.3 Proof Planning and Proof Refinement . 17

2.4 Practical Applications of Theorem Proving 19

2.4.1 Verification of Software, Hardware, and Mathematics 20

2.4.2 Tutoring Systems for Mathematics 20

2.5 Summary . 22

II Assertion Level Proofs 23

3 Assertion Level Proofs 25

3.1 Examples of Assertion Applications . 27

3.2 Deep Application . 31

3.3 Summary . 36

ix

CONTENTS

4 Foundations 37

4.1 Syntax, Semantics and Uniform Notation 37

4.1.1 Syntax . 37

4.1.2 Type Inference – Algorithm W . 40

4.1.3 Semantics . 41

4.1.4 Uniform notation and Polarities . 43

4.2 Higher-Order Unification . 46

4.3 Summary . 47

5 Core Proof Theory 49

5.1 Indexed Formula Trees . 49

5.1.1 Instantiations . 53

5.1.2 Core Expansion Rules . 53

5.1.3 Increasing Multiplicities . 55

5.2 Free Variable Indexed Formula Trees . 56

5.2.1 Replacement Rules . 59

5.2.2 Contraction, Weakening and Cut 62

5.2.3 Simplification . 63

5.2.4 Extensionality Rules . 64

5.2.5 Instantiation . 65

5.2.6 Increase of Multiplicities . 65

5.2.7 Schütte’s Rule . 65

5.3 Two Example Proofs . 66

5.3.1 Simple Set Theory . 66

5.3.2 Equational Reasoning . 72

5.4 Summary . 73

6 The Core calculus and the Assertion Level 75

6.1 Windows and Inference Representation . 76

6.2 Representing Assertions . 82

6.2.1 Preprocessing . 86

6.3 Assertion Application . 87

6.4 Assertions: Backward Application . 92

6.4.1 Generation of New Premises and Task Splitting 100

6.5 Assertions: Forward Application . 101

6.6 Application of Rewrite Rules . 108

6.7 Related Work . 109

6.7.1 LeanTAP . 109

6.7.2 Focusing . 110

6.7.3 Prawitz, Supernatural Deduction, Superdeduction 111

6.7.4 Deduction Modulo . 111

6.7.5 Relationship to Hyperresolution and SLD Resolution 111

6.7.6 Imps . 112

6.7.7 Muscadet . 112

6.7.8 Theorema . 113

6.8 Summary . 113

x

CONTENTS

7 Proof Theory 115
7.1 Formal Characterization of Assertion Applications 115
7.2 Soundness and Completeness . 116

7.2.1 Sequent Calculus and Block Tableau Systems 117
7.2.2 Systematic Block Tableau . 117
7.2.3 Systematic Assertion Level Tableau 122

7.3 Summary . 128

III Proof Plans and Proof Strategies 129

8 Proof Plans 131
8.1 Textbook Proofs, Proof Plans, and Declarative Proofs 131
8.2 Proof Plans . 133

8.2.1 Handling Meta-Variables . 135
8.3 A Declarative Proof Language . 138

8.3.1 Realization of the Language . 139
8.4 From Assertion Level proofs to Declarative Proof Scripts 146

8.4.1 Examples . 150
8.5 Related Work . 150

8.5.1 Underspecified Proof Scripts . 150
8.5.2 Proof Script Extraction . 152
8.5.3 Declarative Proof Languages . 152

8.6 Summary . 153

9 Heuristic Control and Compilation of Inferences 155
9.1 Dynamic Effects and User-Defined Constraints 155
9.2 Annotated Inferences . 162
9.3 Inference Programs . 164

9.3.1 Explicit Matching Automata . 168
9.3.2 Pruning . 170
9.3.3 Implementation Note on Traversal Functions 170

9.4 Discussion . 171
9.5 Related Work . 171
9.6 Summary . 172

10 Reasoning at the Strategy Level: Proof Strategies 173
10.1 A Declarative Language for Procedural Strategies 177

10.1.1 Syntax . 179
10.1.2 Semantics of the Query Language 185
10.1.3 Semantics of Strategy Constructors 188
10.1.4 Discussion . 194

10.2 A Declarative Language for Declarative Strategies 195
10.2.1 Syntax of the Basic Language . 200
10.2.2 Semantics . 201
10.2.3 Extension of the Basic Language by Dynamic Patterns 202
10.2.4 Discussion . 207

10.3 Related Work . 209
10.3.1 Math Search and Mathematical Knowledge Retrieval 209
10.3.2 Procedural Tactics . 210

xi

CONTENTS

10.3.3 Declarative Tactics . 212
10.4 Summary . 213

IV Applications 215

11 Using Assertion Level for Tutoring 217
11.1 Motivation and Context . 217
11.2 A Corpus of Mathematical Tutorial Dialogs 219

11.2.1 Corpus of the Second Experiment 219
11.2.2 Phenomena Observed in the Corpus 220
11.2.3 Proof Step Types and Interface . 221

11.3 Mental Proof States . 222
11.3.1 Representing the Possible MPS . 223
11.3.2 Updating the MPS . 223

11.4 Example Verification . 226
11.4.1 A Note on the Search . 227

11.5 Evaluation . 229
11.6 Possible Extensions . 230

11.6.1 Error Detection . 230
11.6.2 Generating Hints . 231

11.7 Discussion . 233
11.8 Related Work . 234
11.9 Summary . 237

12 A Theorem Prover Operating at the Assertion Level 239
12.1 The Problem Domain . 239
12.2 The Setting . 241
12.3 Benchmarks . 242
12.4 Discussion . 244
12.5 Related Work . 245
12.6 Summary . 246

13 Statman Tautologies 247
13.1 The cases n = 2 and n = 3 . 248
13.2 The General Case . 249
13.3 Practical Evaluation . 251
13.4 Related Work - The System KSg . 253
13.5 Understanding Replacement Rules . 256

13.5.1 Directions of Replacement Rules . 256
13.5.2 Deep Axiom Rule and Simplification 256
13.5.3 Literal Extractions . 258
13.5.4 Matrix Calculi . 259

13.6 Summary . 260

14 The Limit Domain 261
14.1 Abstract Formalization . 261

14.1.1 Performing Calculations . 262
14.1.2 Integration of Computer Algebra Systems 266
14.1.3 A Decision Procedure for the Equality of Polynomials over Rings . 267

xii

CONTENTS

14.2 Strategies of the Limit Domain . 270
14.2.1 Constructing Instances . 270
14.2.2 The Extraction Strategy . 273
14.2.3 Complex Estimate Revisited . 274

14.3 The Lim+ Problem . 274
14.4 Comparison with Multi and Discussion 276
14.5 Related Work . 279

14.5.1 Bledsoe’s Imply and STR+VE prover 279
14.5.2 Weierstrass . 279
14.5.3 An Interactive Calculus Theorem-prover for Continuity Properties . 279
14.5.4 Theorema . 280
14.5.5 Oyster Clam . 280

14.6 Summary . 280

15 Integration Into a Scientific Text-Editor 281
15.1 Historical Remarks and Design Goals . 281
15.2 Architecture and Communication . 283

15.2.1 Proof Script Generation, Granularity Change, and Completion . . . 287
15.2.2 Discussion . 287

15.3 Related Work . 288
15.4 Summary . 290

V Conclusion 291

16 Comparison with the previous Ωmega system 293
16.1 Logical Foundations . 293
16.2 Knowledge Representation and Maintenance 296

16.2.1 Different Form of Knowledge . 296
16.2.2 Methods: Original Idea and Practice 297
16.2.3 Limitations of Strategic Reasoning in Multi 297
16.2.4 Improved Knowledge Representation and Maintenance 298

16.3 Integration of External Reasoners . 300

17 Conclusion and Future Work 303
17.1 Future Work . 304

xiii

List of Figures

2.1 Proof of irrationality of
√
2 . 13

3.1 Example derivation . 30
3.2 Induction Step of the example . 30

4.1 uniform notation . 45

5.1 Instantiation and indexed formula trees . 53
5.2 Preprocessing of the assertion (5.22) . 68
5.3 Increasing the multiplicity of the assertion (5.22) 69

6.1 Inference Rules . 84
6.2 Initial free variable indexed formula tree for our example 91
6.3 Possible status updates for the inference (6.49) 92

7.1 Analytic vs. Block tableau for p⇒ q, r ∨ ¬q,¬r, p 117
7.2 Systematic Block Tableau (written upside down) 121
7.3 Illustration of the Cantor pairing function for k = 2 124
7.4 Assertion Level Tableau . 126

8.1 Partial declarative proof script obtained from the textbook proof 133
8.2 An example PDS and one of its PDS-views 134
8.3 Ωmega theory language . 140
8.4 Theory Simple Sets . 141
8.5 Ωmega proof script language . 141
8.6 Realization of the example proof in the proof language 146
8.7 An automatically generated proof tree . 149
8.8 Resulting declarative proof script for TPTP problem SET013+4 150
8.9 Declarative proof script generated for the TPTP problem SET015+4 . . . 151

9.1 Basic syntax to define inferences . 162
9.2 Syntax for Annotated Inferences . 163
9.3 “Traversal Cube”: Principal ways of traversing a tree 164
9.4 Minimal set making all marked nodes reachable 166
9.5 Matching automaton and synthesized program 169

10.1 Semantics for select expressions . 186
10.2 Theory Presburger . 186
10.3 Basic Tactic Language . 201
10.4 Expansion Rules for a Declarative Tactic 203
10.5 Dynamic matching constructs . 205
10.6 Patterns using ellipses . 205

xiv

LIST OF FIGURES

10.7 Expansion of the foreach construct . 207

11.1 Workflow of a dialog move . 218
11.2 Examples of tutorial dialogs from the corpus 220
11.3 Proof reconstruction generated by the tutor 222
11.4 Formalization of the background theory . 223
11.5 Tutor strategies for hence and let . 224
11.6 Checking strategies for tutoring . 226
11.7 Checking of done . 227
11.8 The expanded task after step (i) of verification (abbreviated). 227
11.9 The resulting proof state after verification. 228
11.10Annotated Ωmega assertion level proof for the example dialog. 229
11.11Hierarchical proof plan completing the proof of task T1 232

13.1 Runtime comparison for Statman tautologies 252
13.2 Number of proof steps and matching attempts 252
13.3 Syntactic equivalence of formulas . 254

14.1 Time spent for computing n ∗ n in Peano arithmetic 263
14.2 Time spent for computing 10n ∗ 10n in binary arithmetic 266
14.3 Proof script automatically generated for the lim+ problem 277
14.4 Strategic Control Flow in Multi . 278

15.1 Mediating between text-editor and proof assistant 283
15.2 Example document in the text-editor Texmacs 284
15.3 Extracted document . 285
15.4 Extended proof document and extracted part 286
15.5 Propagated Status Update inside the text-editor Texmacs. 286

xv

List of Tables

3.1 Influence of slight reformulations to the search space 33

7.1 Correspondence block tableau and sequent calculus 118

9.1 Compilation functions . 166

10.1 Proof Support of the declarative style . 176
10.2 Syntax of the procedural strategy language 181
10.3 Available source keywords . 182
10.4 Strategy constructors with corresponding classification 184

11.1 Evaluation of the algorithm . 230

12.1 Test problems from TPTP for the evaluation of the prover 241

13.1 Runtime Comparison for the Statman tautologies 253
13.2 Time needed for conversion in clause normal form 253

xvi

Zusammenfassung

Formale Beweise werden zunehmend in praktischen Anwendungen eingesetzt, um bei-
spielsweise die Korrektheit sicherheitskritischer Hard- und Softwarekomponenten oder
allgemeiner mathematischer Sätze nachzuweisen. Trotz erheblicher Fortschritte in der Au-
tomatisierung formaler Beweise müssen diese in der Regel manuell, das heißt von einem
Experten, erstellt werden. Da jeder einzelne Beweisschritt durch eine Kalkülregel abge-
deckt werden muss, sind formale Beweise sehr umfangreich und aufwendig zu führen.
Insbesondere werden sie unlesbar lang, was eine Präsentation des Beweises und seiner
zugrunde liegenden Beweisidee sehr schwierig macht.

Die vorliegende Arbeit beschäftigt sich damit, das Formalisieren von Beweisen zu
vereinfachen, indem Methoden entwickelt werden, um informale Beweise formal zu verifi-
zieren und erzeugen zu können. Es werden Beweisdokumente entwickelt, die menschenles-
und schreibbar sind, aber auch maschinell erzeugt und auf Korrektheit überprüft werden
können. Zusätzlich wird das Spezifizieren von Beweisstrategien innerhalb des Beweisdo-
kumentes unterstützt. Das wird durch folgende Techniken möglich:

Erstens: Wir entwickeln einen abstrakten Kalkül, mit dem Beweise direkt auf der so-
genannten Faktenebene konstruiert und verifiziert werden können. Die Faktenebene ist
ein Beweisstil, in dem jeder Beweisschritt einer Anwendung eines mathematischen Sat-
zes, eines Axioms, oder einer Annahme entspricht, was Beweisen aus Textbüchern relativ
nahe kommt. Verglichen mit Beweisen im Sequenzenkalkül erhält man eine Reduktion
der Schrittanzahl um ungefähr eine Zehnerpotenz. Aus diesem Grund sind solche Bewei-
se wesentlich kompakter und können menschenverständlich dargestellt werden. Obwohl
die Faktenebene bereits vor über fünfzehn Jahren eingeführt wurde, war es bisher nicht
möglich, Beweise direkt auf der Faktenebene zu konstruieren. Stattdessen konnten sie
lediglich aus Resolutionsbeweisen oder Beweisen im Kalkül des natürlichen Schließens
durch Beweistransformation und Abstraktion gewonnen werden. Um die Anzahl der Be-
weisschritte weiter zu reduzieren, kombinieren wir die Faktenebene mit der Technik des
tiefen Schließens, die Schlussregeln derart erweitert, dass sie auch auf Teilformeln ange-
wendet werden können, wie man es von Gleichungsanwendungen kennt. Dadurch können
Beweise konstruiert werden, deren Länge exponentiell kürzer ist als Beweise im Sequen-
zenkalkül ohne Schnitt.

Zweitens: Wir entwickeln eine Strategiesprache, die es erlaubt, allgemeine Beweissuch-
verfahren und häufige Beweismuster innerhalb von Beweisdokumenten zu spezifizieren
und somit Standardaufgaben effizient zu automatisieren. Die Sprache stellt Mechanismen
bereit, um die Anwendung von Schlussregeln zu steuern und sie an konkrete Anwen-
dung anzupassen. Außerdem führen wir den Begriff der deklarativen Taktik ein, die es
erlaubt, unterspezifizierte deklarative Beweisskripte zu erzeugen und dabei ihre Granu-
larität, Benennungen von wichtigen Voraussetzungen, oder die Wahl zwischen Vorwärts-
und Rückwärsschritten zu steuern. Die Effizienz der Strategien wird durch Kompilierungs-
techniken erreicht.

Damit stellen wir insgesamt zwei Möglichkeiten zur Verfügung, sogenannte deklarative

xvii

LIST OF TABLES

Beweise zu automatisieren, die bisher überwiegend nur manuell entwickelt werden. Zum
einen können Faktenbeweise in deklarative Beweisskripte umgewandelt werden. Zum an-
deren erzeugen deklarativen Taktiken direkt deklarative Beweisskripte und kombinieren
somit die Vorteile des deklarativen und prozeduralen Beweisstils. Für die Beweisplanung
stellen deklarative Strategien ein neues Speicherformat dar, das es ermöglicht, Beweis-
muster kompakt zu repräsentieren. Insbesondere unterstützen sie das abstrakte Suchen
und anschließende Verfeinern von Beweisplänen. Dadurch, dass ein Großteil des Such-
wissens deklarativ innerhalb des Beweisdokumentes spezifiziert werden kann, erhöht sich
die Benutzbarkeit von Beweisplanern und es wird möglich, Beweisplanungssysteme zu
evaluieren. Insbesondere erreichen wir eine Trennung der Strategiesprache von der Imple-
mentierungssprache, was die Wartbarkeit des Systems erhöht und zu effizienterem Lauf-
zeitverhalten führt, weil Optimierungen durchgeführt werden können, die normalerweise
zu aufwendig sind.

Die unterschiedlichen Aspekte dieser Arbeit wurden mit folgenden Ergebnissen eva-
luiert: (i) Die Problemklasse der Statmantautologien, deren Beweise O(2n) Schritte im
Sequenzenkalkül benötigen, können effizient in O(n2) ohne Rücksetzungsschritte gelöst
werden. (ii) Die Faktenebene erlaubt das Automatisieren von Testproblemen in der Men-
gentheorie aus der TPTP Bibliothek, die von vielen aktuellen Beweisern nicht gelöst wer-
den können. Dabei kommen ausschließlich allgemeingültigen Suchstrategien zum Einsatz.
Das Ergebnis zeigt, dass die Faktenebene nicht nur die Qualität der Beweise verbessert,
sondern auch sehr nützlich für die eigentliche Beweissuche ist. (iii) Spezielle Suchalgorith-
men auf der Faktenebene erlauben es, einen Korpus von tutoriellen Dialogen, die inner-
halb des Dialog-Projektes gesammelt wurden, korrekt abzubilden und zu klassifizieren.
Die erforderliche Rekonstruktion löst unterspezifizierte und unvollständige Eingaben auf,
was über reine Korrektheitsüberprüfung hinausgeht und nicht mit herkömmlichen Me-
thoden erreicht werden kann. Die rekonstruierten Beweise bilden die Grundlage für eine
weitere Analyse der Eingabe, wie beispielsweise einer Granularitätsanalyse, die nicht mit
herkömmlichen Kalkülen durchgeführt werden kann. (iv) Wir automatisieren Beweise in
der sogenannten Limesdomäne, welche sich mit Grenzwertsätzen beschäftigt. Verglichen
mit einer vorherigen Referenzimplementierung wird gezeigt, dass die Heuristiken deutlich
kompakter repräsentiert werden können, gemessen in Spezifikationszeilen der Strategien.
Dies ist durch neue Kontrollflüsse möglich, die vorher nicht ausgedrückt werden konnten.
Die Kompaktheit erhöht die Lesbarkeit und Wartbarkeit der Strategien und reduziert den
Spezifikationsaufwand.

Insgesamt liefern die entwickelten Techniken wesentliche Beiträge im Bereich des inter-
aktiven Beweisens und der Beweisplanung und eröffnen neue Anwendungsmöglichkeiten
für automatische Beweiser in Bereichen, in denen die Nachvollziehbarkeit von Schritten
wichtig ist, wie zum Beispiel in Lernumgebungen für mathematische Beweise. Das entwi-
ckelte System wurde erfolgreich im Bereich des interaktiven Beweisens sowie als Modul
der mathematischen e-Learning Plattform ActiveMath eingesetzt.

xviii

Extended Abstract

Formal proofs are increasingly employed in practical applications and used to verify critical
pieces in hard- and software, as well as mathematics. Even though efficient automated
reasoning procedures have been developed within the last decades and also been used
to prove open conjectures, the mechanization of a proof is still an enormously difficult
undertaking. This is because many proofs still need to be constructed interactively due
to practical limitations of automated search procedures. Moreover, the level of detail of
a formal proof is significantly higher than in human proofs, resulting in very large proofs.
This so-called formal noise hides the line of reasoning that can be followed and understood
by humans, and the intelligible presentation of formal proofs is usually not attempted.

The objective of this thesis is to ease the formalization of proofs by being able to
verify as well as to automatically construct abstract human-style proofs. Our approach
is centered around proof documents that are human-readable, human-writable, machine-
checkable, machine-producible, and support the specifications of proof strategies within
the proof document. We approach this goal from two angles.

First, we develop an abstract calculus that allows the construction of proofs directly
at the assertion level , a proof style in which each reasoning step corresponds to the
application of an axiom, lemma, theorem, or hypothesis. It has been identified as a
proof style that comes close to proofs as written by humans. Due to their abstract
nature, assertion level proofs substantially reduce the noise of formal proofs and lead to
an understandable, i.e., human-readable, presentation. While being introduced already
more than fifteen years ago, proofs could not directly be constructed at the assertion level,
but must be obtained by transformation of an underlying proof in natural deduction or
resolution. The ability to perform proof search directly at the assertion level thus identifies
assertion level proofs to be directly machine-checkable and machine-producible. To further
reduce the proof size, we combine the assertion level mechanism with the deep inference
paradigm, which generalizes the notion of inference rules by allowing their application
at arbitrary depth inside logical expressions, similar to rewriting rules. The increased
freedom allows the construction of new proofs that are exponentially shorter and not
available in the sequent calculus without cut.

Second, we develop a strategy language to express generic search strategies as well as
common patterns of reasoning within the proof document with the objective to efficiently
automate routine tasks. The language provides constructs to control the increased non-
determinism which comes as a side-effect of deep inference and allows its adjustment
according to the needs of the application given at hand. Moreover, it provides the notion of
a declarative tactic as a means to produce underspecified, declarative proof scripts, thereby
controlling stylistic choices such as their granularity, naming of important formulas that
are expected to play a major role in the subsequent proof, or the choice between forward
and backward steps. Compilation techniques are used to increase efficiency.

Our approach naturally provides two possibilities to automate the declarative style
of proof, which has been established as the means of proof presentation of choice, but

xix

LIST OF TABLES

which is not sufficiently automated by current state of the art proof assistants. First,
abstract assertion level proofs can directly be translated to declarative proof scripts.
Second, we introduce the notion of a declarative tactic, which direclty produce declarative
proof scripts and combine the advantages of the procedural and the declarative style of
proof. From a proof planning perspective, declarative tactics provide a new format to
encode common patterns of reasoning, which is a main issue when trying to automate
human problem solving behavior. In particular, declarative tactics provide a major means
for global search control in the spirit of proof planning, as they naturally support the
refinement of abstract proof plans to formal proofs. The fact that the majority of the
knowledge is declaratively encoded within the proof document is a major step to increase
the usability of proof planners by users, as well as to provide a possibility to evaluate
proof planning systems, as all knowledge becomes explicit. The separation of the strategy
language from the programming language plays an essential role in the overall design of
our system and provides benefits both for the maintenance of proof planning systems,
but also for the runtime behavior, as optimizations can easily be incorporated and local
decisions are treated locally.

We evaluated the different aspects of our framework on four case studies with the
following results: (i) The class of Statman tautologies, whose proof size is in O(2n) in the
sequent calculus without cut, can be automated efficiently in O(n2) in a goal directed way
within our formalism. (ii) In the domain of set theory, generic assertion level reasoning
allows the automation of TPTP benchmark problems which are beyond the scope of most
automated theorem provers. Thus, our approach does not only reduce the size of the re-
sulting proofs, but is also beneficial for proof automation. (iii) Based on abstract assertion
level reasoning and search space restrictions expressed in the strategy language, a cor-
pus of tutorial dialogues collected in the context of the Dialog project can be correctly
classified. The generated proofs build the basis for further analysis, such as granularity,
which is not possible in other approaches. Moreover, incomplete and underspecified steps
can be verified. (iv) The so-called limit domain is automated by heuristics. Compared
with a previous reference implementation, it is shown that the strategy language drasti-
cally reduces the specification costs of proof strategies measured in lines of code, increases
the readability and maintainability of the strategies, and allows the formulation of more
sophisticated control flows that could not be expressed before.

Overall, the general techniques developed in this thesis contribute both to the commu-
nity of interactive theorem proving and the community of proof planning. Moreover, the
abstract nature of the generated proofs opens new applications for theorem provers where
the comprehensibility of proof steps is crucial, such as the computer-assisted teaching of
mathematical proofs. The system has successfully been used in the context of automated
reasoning and proof tutoring in the ActiveMath system.

xx

Part I

Introduction

1

1
Introduction

The notion of a mathematical proof has a long tradition and lies at the heart of mathe-
matics. It represents a compelling argument that some statement of interest is necessarily
true, as expressed by the equation “Proof = Guarantee + Explanation” (see [Rob00]).
Mechanization of mathematical proof describes the computer-supported process of devel-
oping mathematical proofs in a format such that it can be checked by a machine, and
has been classified as “potentially one of the most interesting and useful applications of
automatic computers.” (see [McC62]).

Even though efficient automated reasoning procedures have been developed within
the last decades (see for instance [Rob65, And81, Bib81, NR01, BGML01]) and even been
used to prove open conjectures (see e.g. [McC97]), the mechanization of proof search is
usually a complex undertaking. This is not only because the proofs themselves are often
very difficult, but also for the following reasons:

• Automated theorem provers are often unable to prove non-trivial theorems due to
their time and space requirements in practice, even if they could in theory. Moreover,
there are also rich formalisms that cannot be fully automated in principle. As a
result, many proofs need to be constructed interactively.

• Formal proofs require the use of a strictly formal language, and the level of detail
of a formal proof is significantly higher than in human proofs. To be machine-
checkable, all these details need to be filled in (see for example [Geu09, Wie05] for
a discussion), increasing the size of the formal proof. This “formal noise” hides the
line of reasoning that can be followed and understood by humans, and the intelligible
presentation of formal proofs is still under research.

• Automated theorem provers are usually restricted to normal forms. While this re-
sults in simple and efficient calculi with only a few inference rules, the normalization
process destroys the structure of the formula and introduces copies of subformulas
that are distributed over several clauses. This is not an option in the interactive
setting, where the user needs to exploit the relationship between the input specifi-
cation and the proof state to fix the specification in the case that the proof attempt
fails. Therefore, one essential requirement is to communicate (partial) proofs in a

3

CHAPTER 1. INTRODUCTION

natural format (see for example [Bun99]). Consequently, most interactive provers
are based on a variant of the sequent calculus or natural deduction.

• While being relatively human-readable, sequent calculi are less suited for automa-
tion compared to machine oriented calculi, such as resolution. One reason for this
can be found in the restriction that inferences may only be applied to top-level for-
mulas and thus must follow the logical connectives to extract subformulas that are
needed for the proof. This is not only tedious in the interactive setting1, but also
has the effect that for certain classes of problems the proof size grows exponentially
with the size of the formula when no cut is used, such as for the so-called Statman
tautologies [Sta78]. Indeed, decomposition of formulas can be seen as normalization
to clause form, which leads to an explosion of the number of literals [And81]. Nev-
ertheless, an interactive prover should support automation of proofs or proof parts
whenever possible.

• To allow proof construction at a more abstract level, several macro facilities, such
as tactics [GMW79] or macetes [FGT92] have been developed. However, tactics
were mainly designed to support the interactive discovery of a proof, rather than to
represent a proof in a readable format. Indeed, tactic proofs, also called procedural
proofs , are considered to be difficult to read, and therefore difficult to modify and
to maintain (see for example [Zam99] or [Har96c] for a general discussion).

As an alternative to the procedural proof, the so-called declarative style of proof has
been developed with the objective of providing a readable format for proofs. This
comes at the expense that declarative proofs are more tedious to write. While being
readable, the declarative style of proof is not sufficiently automated, and there is no
analog to procedural tactics.

• During the development of a theory, it is usually necessary to extend the automation
facilities by writing tactics. However, development of tactics is a very difficult task,
because tactics cannot be specified within the proof document, but have to be
written in the programming language of the underlying theorem prover (such as
ML or Lisp). This is because these languages are designed for writing any kind of
programs and are not specialized for writing tactics. In addition, the tactic developer
must use the system-specific interface provided by the prover.

The contribution of this thesis attempts to make the mechanization of mathematics
more natural by reducing the gap between formal and informal proofs. Our approach
is centered around proof documents that are human-readable, human-writable, machine-
checkable, and support the specifications of proof strategies within the proof document.
We approach this goal from two angles:

A1 We develop an abstract calculus that allows the construction of proofs directly at
the assertion level . The assertion level (see [Hua96]) is a proof style that comes
close to proofs as written by humans. The key inference rule is the application
of an assertion, which is a generic term to denote axioms, lemmas, hypotheses or
other forms of previously established pieces of mathematical knowledge. Due to
their abstract nature, assertion level proofs substantially reduce the noise of formal
proofs and lead to an understandable presentation. To further reduce the proof size,
we combine the assertion level mechanism with the deep inference paradigm, which

1in particular in the context of side conditions

4

1.1. CONTRIBUTIONS

generalizes the notion of inference rules in the sequent calculus and allows their
application at arbitrary depths inside logical expressions, similar to rewriting rules.
As a consequence, decomposition steps that are needed in the sequent calculus or
natural deduction become superfluous.

A2 We develop a strategy language to express generic search strategies as well as com-
mon patterns of reasoning. The underlying motivation is to provide generic facilities
to automate as many subtasks as possible. The language provides constructs to con-
trol the increased non-determinism arising from the deep inference feature and allows
its adjustment according to the needs of the application given at hand. Moreover,
it explicitly supports the automation of the declarative style of proof and provides
fine-grained control over stylistic choices, such as the granularity of the resulting
proof scripts, naming of important formulas that are expected to play a major role
in the subsequent proof, or the choice between forward and backward steps.

In particular, our approach naturally provides two possibilities to automate the declarative
style of proof. First, abstract assertion level proofs can directly be translated to declarative
proof scripts. Second, we introduce the notion of a declarative strategy, which is defined
as an extension of a declarative proof language and directly operates on declarative proof
scripts.

1.1 Contributions

We classify the contributions of this thesis with respect to (A1) and (A2). With regard
to (A1), the contributions are as follows:

(i) We show that it is possible to directly search for a proof at the assertion level.
Compared to the sequent calculus, the resulting proofs are both shorter and involve
fewer formulas; they are therefore more readable. Due to their natural form they can
directly be presented to the user without the necessity of being translated, allowing
for a direct integration into applications. In particular, failed proof attempts can be
analyzed in order to detect and fix the errors. Note that while the assertion level has
already been proposed two decades ago, so far, proofs were not directly constructed
at the assertion level, but had to be obtained by transformation of an underlying
proof in natural deduction or resolution. Moreover, only proof parts of a specific
form could be abstracted.

(ii) We show that assertion level proof search is complete for first order logic.

(iii) We show that it is possible to combine the assertion level calculus with deep in-
ference. This obviates the decomposition of formulas and allows for exponentially
shorter proofs. In particular it preserves the structure of the goal and avoids its
normalization via decomposition.

While the resulting calculus is interesting in its own right, we also investigate its practical
use:

(iv) We show that the assertion level is not only advantageous for proof presentation,
but also for proof automation, based on theorems in the domain of set theory. Set
theory is a difficult domain for automated reasoning programs, as it is based on
only a few primitives and many axioms. We show that a set of TPTP problems

5

CHAPTER 1. INTRODUCTION

that cannot be proved by most state of the art reasoning systems can be automated
efficiently by our approach with generic strategies.

(v) Similarly, we show that deep inference brings practical benefits in terms of runtime.
As an example, we show that we can efficiently solve the class of so-called Statman
tautologies2 in O(n2) steps relying only on invertible deep rule applications, which
can therefore be seen as some kind of simplification. Thereby, we outperform classical
reasoners. We illustrate how this simplification technique can easily be specified
within the new developed strategy language.

(vi) We explore the connection between assertion level proofs and declarative proof
scripts and show how to translate assertion level proofs to declarative proof scripts.
Conversely, we show that underspecified declarative proof scripts can be translated
to declarative proof plans, whose gaps can be filled automatically by proof strategies.

The contributions with respect to (A2) are:

(i) Allowing deep inference has the consequence that the search space has a higher
branching factor compared to shallow inference, as more inferences are applicable at
each step due to the access of subformulas. By just extending an inference system
to deep inference, redundancies are introduced to the search space, as new proofs
for the same theorem become possible. Moreover, depending on the depth of a rule
application, the proof steps might become difficult to understand for a human. For
practical applications one therefore has to consider the trade-off between shorter
proofs and higher nondeterminism as well as the interplay between the inference
rules and the deep inference feature carefully. Therefore, we introduce an inference
language to define a calculus and thus giving the user full control over the structure
of the search space. The language provides constructs to control the application of
the rules. In particular, it provides control constructs to restrict the deep application
of the inference rules, covering the full range from full deep inference to top-level
inference systems. Thus, classical systems can be obtained as a special case within
our framework.

(ii) We provide a strategy language that is independent of the underlying programming
language such that it fully supports the document centric approach. The five high-
lights of the strategy language are: (a) A query language to dynamically retrieve
relevant knowledge from structured theories, resulting in adaptive proof strategies.
(b) Control of the deep inference features and context dependent restrictions of tac-
tic modifications. (c) Horizontal as well as vertical refinements3 of proof sketches
being expressed in a declarative language. (d) Dynamic declarative proof scripts as
declarative specification language of proof plans. (e) Efficiency by compiling the
control information to executable programs.

Of particular interest is point (c), as it provides new foundational ideas to automate
the declarative style of proof. For the community of interactive theorem proving,
it provides declarative strategies as an analog to procedural tactics. Declarative
strategies are specified within the proof document in a language that the user is

2Note that in the sequent calculus without cut the length of the proof is O(2n)
3Horizontal refinements describe the modification of a proof sketch at a specific granularity by adding

one or several abstract proof steps, whereas vertical refinements describe the refinement of already existing
abstract proof steps.

6

1.1. CONTRIBUTIONS

already familiar with. Stylistic choices, such as the granularity of the resulting proof
scripts, naming of important formulas that are expected to play a major role in the
subsequent proof, or the choice between forward and backward steps, can easily be
expressed within the language, which is not possible within the procedural strategies.

From a proof planning perspective, declarative strategies provide a new format to
encode common patterns of reasoning, which is a main issue when trying to model
human problem solving behavior. In particular, declarative strategies provide a
major means for global search control in the spirit of proof planning, as they nat-
urally support the refinement of abstract proof plans to formal proofs. The fact
that the majority of the knowledge is declaratively encoded in an intermediate lan-
guage within the proof document is a major step to increase the usability of proof
planners, as well as to provide a possibility to evaluate proof planning systems, as
all knowledge becomes explicit. The separation of the strategy language from the
programming language plays an essential role in the overall design of our system and
provides benefits both for the maintenance of proof planning systems and for the
runtime behavior, as optimizations can easily be incorporated and local decisions
are treated locally.

These contributions are evaluated as follows:

E1 We show that our approach can successfully be applied to verify underspecified
and ambiguous proof steps entered by students in the context of proof tutoring.
In 2006, a corpus of tutorial dialogs was collected in the Wizard-of-Oz paradigm
between students and experienced mathematics teachers [BHL+06]. The presented
techniques allow the correct classification of 95.9%4 of the corpus, which builds the
foundation of further analysis as the constructed proofs are at the assertion level.
Due to underspecification this is not possible with standard techniques.

E2 We consider the so-called limit domain (see [Mel98b]) and demonstrate how it can
be automated using the developed strategy language. Compared with a reference
implementation used by the proof planner Multi [Mei03], we show that the new
language drastically reduces the specification costs of proof strategies measured in
lines of code, increases the readability and maintainability of the strategies, and al-
lows the formulation of more sophisticated control flows that could not be expressed
before.

Overall, the techniques developed within this thesis result in a proof assistant that sup-
ports the construction of short and human-readable proofs, i.e., proofs that are machine-
checkable but also come with an explanation. This makes it well suited for tasks arising
in interactive theorem proving, but, additionally, enlarges the application spectrum of
theorem provers to be used for teaching mathematical proof. The system has successfully
been used for proof tutoring in the context of the Dialog project [BFG+03] and provided
the foundations for a proof step analysis that goes beyond the correctness of proof steps,
such as proof granularity [Sch10], which are not featured by other approaches. Within
this setting, Schiller showed that a single assertion level step is judged by experts in 90
percent of the cases to be of an appropriate step size.

Publications: Different aspects of the work presented in this thesis have been pub-
lished in [ABDW08, DB07, SDB07, BDSA07, AD06, DSW08, DS08, DS09, SDB09, DB09,
ABDS08, AD10a, BDSA07, AD09, AD10b, ADW10].

4The remaining four percent correspond to student input that could not be modeled by the system.

7

CHAPTER 1. INTRODUCTION

1.2 Outline of the Thesis

This thesis is organized into five parts. The first part, ending with Chapter 2 recapitulates
the history and state of the art of interactive and automated theorem proving and its
applications to formalizing mathematics and tutoring. The main contributions of the
thesis are presented in Part II and Part III.

Part II presents the proof theory underlying the assertion level reasoning. We start
with the necessary theoretical background before introducing the notion of an inference
and defining its application.

Part III presents proof plans as a means to store hierarchical proofs. Subsequently, we
develop a specification language for inferences to express local search space restrictions.
We then present a mechanism to compile such a specification into a program, that uses
advantageously the attached control information. Subsequently, we define a strategy
language allowing for global restrictions of the search space.

Part IV applies the techniques developed in this thesis. First, we show that our
framework features the requirements needed in the context of proof tutoring in Chapter
11. In Chapter 12, we show that the assertion level allows the efficient automation of the
domain of set theory. Chapter 13 introduces the problem class of Statman tautologies
and shows that it can be solved efficiently due to the deep inference mechanism. Finally,
we demonstrate how to automate proofs in the context of the so-called limit domain in
Chapter 14.

In Part V we summarize the contributions of this work, give a detailed comparison
with the previous Ωmega system and present an outlook for future research based on the
foundations laid in this thesis.

8

2
Historical Overview and State of the

Art

The vision of mechanizing mathematical reasoning dates back at least to Gottfried Wil-
helm Leibniz in the 17th century. Leibniz dreamed of a language in which all knowledge
could be formally expressed, the “lingua characteristica”, and a calculus of reasoning,
the “calculus ratiocinator”, such that two philosophers who disagreed over some problem
could say “Calculemus!” to resolve their dispute by calculation.

But it took more than 200 years until the foundations of what today is known as
“modern logic” were developed by George Boole and Augustus de Morgan [Boo47, Boo58,
Mor47] and others, who developed and studied the calculus of propositional logic. This
was extended to first order predicate calculus and Frege’s “Begriffsschrift”[Fre79] sep-
arated syntax from semantics and gave one of the first accounts of modern mathe-
matical logic. Subsequently, a variety of different logics were developed and studied,
for example by Zermelo [Zer08] Whitehead and Russell [WR10], Fraenkel [Fra22], and
Bernays [Ber37]. Higher-order logic in the form of the simply typed λ-calculus was in-
troduced by Church [Chu40]. These new logics were mainly investigated with respect to
the development of complete calculi, decidability, and consistency of theories within these
logics.

The community suffered a setback after the publication of Gödel’s incompleteness
theorems – showing that any consistent theory of a certain expressive strength is incom-
plete – and the undecidability results of first order logic by Church [Chu36] and Tur-
ing [Tur37]. The undecidability result of first order logic was relativized by Herbrand’s
theorem [Her30], which essentially allows a certain type of reduction of first-order logic
to propositional logic and shows its semi-decidability. A similar result was obtained by
Gentzen’s work on cut elimination [Gen69], which can be used to prove a variant of Her-
brand’s theorem constructively. Moreover, Gentzen introduced the first human-oriented
calculus, natural deduction, aiming at the formalization of a ”natural” way of reasoning.
One main feature of natural deduction and related calculi is that they provide a represen-
tation of temporary assumptions and hypotheses – a major improvement compared with
Hilbert style proofs. The sequent calculus was later reformulated by Beth to obtain the
semantic tableau calculus [Bet65].

9

CHAPTER 2. HISTORICAL OVERVIEW AND STATE OF THE ART

The first automated theorem provers (ATP) were developed in the late 1950’s, like for
example the Logic Theorist [NSS57] by Herb Simon and Alan Newell, Gelernter’s geometry
prover [Gel59], Gilmore’s procedure [Gil60], or the Davis Putman method [DP60, DLL62]
and the first mechanically generated proof was found by Martin Davis’ system. An impor-
tant step forward was the invention of the resolution calculus and unification by Robin-
son [Rob65], which is the foundation of many efficient calculi known today.

Since then, a variety of different logics as well as tools to automate them have been
developed. These include constructive type theories, temporal logics, process algebras,
dynamic logics, and modal logics, to name a just few. However, building theorem provers
for these logics is a non-trivial task. Indeed, state of the art theorem provers will often
fail to prove non-trivial theorems automatically. As a consequence, interactive theorem
provers have been developed, where the task is divided between the computer and a
mathematician.

2.1 Classical Automated Theorem Proving

We denote by classical automated theorem provers systems that are based upon inference
rules especially suited for a computer, for instance because the number of available infer-
ence rules is very small. Their strength comes from their ability to traverse a huge search
space very efficiently – even though blindly – thereby relying on sophisticated represen-
tation techniques to speed up the search and to remove redundancies from the search
space. The resulting proofs are at a very low level, hence often very long and not suited
for humans, for example, because they rely on non intuitive clausal forms.

For propositional logic, most provers are variants of DPLL [DLL62]. First order or
higher-order theorem provers are mainly based on resolution [Rob65], paramodulation and
superposition [BGLS92], tableaux [Smu68] and the connection method [And81, Bib81].

Further developments and refinements resulted in powerful machine oriented theorem
provers, some prominent representatives of the field are Sato [Zha97] Chaff [MMZ+01],
and Grasp [SMS96] for propositional logic, Bliksem [dN99] Mkrp [OS91], Otter
[McC94], Vampire [RV99], Setheo [Sch97], Spass [WAB+99], E [Sch02], and Wald-
Meister [HJL99] for first order logic, Leo [BK98, Ben99] and its successor Leo II [BTPF08],
Satallax [Bro11], and TPS [ASDP90, ABB00] for higher-order logic.

In addition to these general solvers, specialized programs have been designed to prove
only particular theorems within a certain class. An example is the four color problem,
which states that any map in a plane can be colored using four colors in such a way that
regions sharing a common boundary (other than a single point) do not share the same
color. The first proof was constructed by Appel and Haken in 1977 [AH77a, AH77b]
and heavily relied on a computer program to carry out a gigantic case analysis. Another
prominent example of a famous and long standing open conjecture that has been solved
automatically is Robbins conjecture, questioning whether Robbins Algebras are Boolean
algebras.

2.1.1 Rewriting

Due to the importance of equational reasoning, term rewriting has been studied intensely
on its own. A good overview of the field can be found in the textbook [BN98] as well
as in [DP01]. For the purpose of this thesis, we summarize the most important concepts
subsequently. An equational system is a set of equations l = r. Directed equations l → r
are called rewrite rules and are used to replace instances of l by instances of r. A term

10

2.2. INTERACTIVE THEOREM PROVING AND PROOF STYLE

rewriting system is a set of rewrite rules. An important concept in rewriting is the concept
of a normal form. A term is said to be in normal form if it cannot be rewritten further.
If each term has a normal form, the term rewriting system is called terminating . If the
normal form of a term is unique, the rewriting system is called convergent . During the
rewrite process, it might be the case that several rewrite rules are applicable. If this choice
does not matter, the rewrite system is called confluent . Thus, convergent is just another
description for being confluent and terminating. An important algorithm that tries to
transform rewrite system into a confluent one is the Knuth-Bendix completion algorithm
(see [KB70]). When the algorithm terminates, it can be used to decide whether two terms
are equal.

2.2 Interactive Theorem Proving and Proof Style

The Automath project [dB70, dB73, Bru73, dB94] was the first significant attempt to
formalize mathematics and to use a computer to check its correctness. Automath is
a pure proof checker: it does not provide tools for automation, but requires the user to
specify each proof step manually. The development of interactive tactic based theorem
provers started with the LCF system [GMW79], a system to support automated reason-
ing in Dana Scott’s “Logic for Computable Functions”. The main idea was to base the
prover on a small trusted kernel, while also allowing for ordinary user extensions without
compromising soundness. For that purpose Milner designed the functional programming
language ML and embedded LCF to ML. ML allowed the representation of subgoaling
strategies by functions, called tactics, and to combine them as higher-order functions,
called tacticals. By declaring an abstract type theorem with only simple inference rules,
type checking guaranteed that tactics decompose to primitive inference rules, thus ensur-
ing soundness.

Many state of the art interactive theorem provers, such as Hol [AP92], Isabelle
[NPW02], HOL Light [Har96a], Coq [BC04], or Nuprl [CAB+86] are direct descen-
dants of LCF and still based on the same methodology (see for example [BW05, Gor00,
Geu09] for an overview and historical remarks). However, they differ in the underlying
logic, proof automation, and provide different possibilities to communicate proofs.

An important characteristic which allows the classification of existing systems is the
type of proof language and tactic language provided by the system. With the proof
language we understand the language in which the proof is communicated and stored,
whereas the tactic language corresponds to the language in which proof schemes, repre-
senting common patterns of reasoning, are specified. Note that in the original LCF both
proof language and tactic language are realized by the ML language.

2.2.1 Procedural vs. Declarative Proof

State of the art proof assistants provide two main approaches to formalize proofs in a
computer: the so-called procedural style of proof, and the declarative style of proof.

A procedural proof consists of a sequence of tactic applications that reduce the theorem
to be proved to trivial facts. While allowing for an efficient execution of recorded proofs,
these kind of proofs are difficult to understand. This is because intermediate proof states
become only visible when considering the changes caused by the stepwise execution of
the tactics. Tactic proofs can be extremely fragile, or reliant on a lot of hidden, assumed
details, and are therefore difficult to maintain and modify (see for example [Zam99] or
[Har96c] for a general discussion). As the only information during the processing of a

11

CHAPTER 2. HISTORICAL OVERVIEW AND STATE OF THE ART

proof is the current proof state and the next tactic to be executed, a procedural prover
has to stop checking at the first error it encounters.

The ability to define and execute tactics represents a key advancement for interactive
theorem provers, as tactics reduce the number of proof commands a user needs to issue to
construct a proof. However, tactics do not reduce the length of the proof which is to be
checked by a proof checker (or a mathematician), since each tactic has to be expanded to
a low level proof which makes use only of calculus level rules. Moreover, proof languages
based on tactics were mainly designed to support the interactive discovery of a proof,
rather than to represent a proof in a readable format. Indeed, tactic proofs are considered
to be difficult to read, and therefore difficult to modify and to maintain. An example of
a procedural proof is shown in Figure 2.1(a), which shows a formalization of the proof of
the irrationality of

√
2 in the Hol system. The cryptic style is not due to the peculiarity

of the Hol system, but typical for a procedural proof due to the facts mentioned above.

An alternative to the procedural proof, a so-called declarative proof, is shown in
Figure 2.1(b). In the declarative style, a proof consists of intermediate statements that
refer to each other, as shown in Figure 2.1(c).

The roots of the declarative style of proof can be traced back to theAutomath project
which addressed the problem of developing a formal language with a natural-language-
like syntax that allows for both the exact formalization and for the easy reading and
writing of mathematical documents. Whereas the original Automath language was still
quite mechanical, its descendants Mathematical Vernacular [dB94], Weak Type
Theory [KN04], and Mathlang [KMW04], are close to natural language. Similar
to Automath, the Mizar system [TB85] pioneered the declarative approach to proof
languages. In a declarative proof language, a proof step states what is proved at each step,
as opposed to a list of interactions required to derive it. They are thus closer to informal
mathematics and reasoning and therefore more readable. Moreover, as a declarative proof
contains explicit statements for all reasoning steps, a proof checker can recover from errors
and continue checking proofs after the first error. It has been noted in [Wen99a] that a
proof language can be implemented rather independently of the underlying logic and thus
provides an additional abstraction layer. Disadvantages of the declarative approach are
that the resulting proofs are longer, therefore more tedious to write, and that they cannot
be processed as efficiently as procedural proofs.

Due to its advantage many interactive theorem provers nowadays support declarative
proofs (see for example [Sym99, Wen99a, AF06, Cor07, Sym97]). However, the design of
a proof language that is both readable and supports the discovery of proof is a non-trivial
task. One shortcoming of the declarative approach is that almost all details needed for a
formal verification of a proof have to be filled in by the user. Therefore, even declarative,
formal proofs still significantly differ from proofs which can be found in mathematical
textbooks, because of the standard practice to omit easily inferable proof steps. However,
in principle a declarative proof can simply be a sequence of intermediate assertions, acting
as islands or step stones between the assumptions and the conclusion (by omitting the con-
straints indicating how to find a justification of the proof step) leaving the task of closing
the gaps to automation tools. Such islands are sometimes also called proof plans [DJP06]
or proof sketches [Wie04]. In recent years, many systems – sometimes called proof finders
or proof planner – have been developed trying to automatically close such gaps, such
as Mizar, Nqthm [BM88], Spl [Zam99], Sad [VLP07], Naproche [KCKS09], Scu-
nak [Bro06], Tutch [ACP01], or the Ωmega proof checker [DSW08].

12

2.2. INTERACTIVE THEOREM PROVING AND PROOF STYLE

local open realTheory transcTheory

in

val SQRT 2 IRRATIONAL = Q.prove (‘ Rational (sqrt 2r)‘, RW TAC std ss

[Rational def,abs, SQRT POS LE,REAL POS] THEN Cases on ‘q = 0‘ THEN

ASM REWRITE TAC [] THEN SPOSE NOT THEN (MP TAC o Q.AP TERM ‘\x. x

pow 2‘) THEN RW TAC arith ss [SQRT POW 2, REAL POS, REAL POW DIV,

REAL EQ RDIV EQ,REAL LT, REAL POW LT] THEN REWRITE TAC [REAL OF NUM POW,

REAL MUL, REAL INJ] THEN PROVE TAC [lemma])

end;
(a) Procedural Proof

theorem sqrt 2 is irrational

proof

assume sqrt 2 is rational;

then consider i being Integer, n being Nat such that

W1: n<>0 and

W2: sqrt 2=i/n and

W3: for i1 being Integer, n1 being Nat st n1<>0 & sqrt 2=i1/n1 holds

n<=n1 by RAT 1:25;

A5: i=sqrt 2*n by W1,XCMPLX 1:88,W2;

C: sqrt 2>=0 & n>0 by W1,NAT 1:19,SQUARE 1:93;

then i>=0 by A5,REAL 2:121;

then reconsider m = i as Nat by INT 1:16;

A6: m*m = n*n*(sqrt 2*sqrt 2) by A5

.= n*n*(sqrt 2)2̂ by SQUARE 1:def 3

.= 2*(n*n) by SQUARE 1:def 4;

then 2 divides m*m by NAT 1:def 3;

**** remaining 17 lines removed *****
(b) Declarative Proof

Assume
√
2 is rational, i.e., there exists natural numbers p, q with no common divisor

such that
√
2 = p/q. Then q

√
2 = p, and thus 2q2 = p2. Hence p2 is even and, since odd

numbers square to odds, p is even; say p = 2m. Then 2q2 = (2m)2 = 4m2, i.e. q2 = 2m2.
But now q2 is even too and so is q. But then both q and p are even, contradicting the
fact that they do not have a common divisor.

(c) Textbook Proof

Figure 2.1: Proof of irrationality of
√
2 in procedural style, declarative style, and in

textbook style.

13

CHAPTER 2. HISTORICAL OVERVIEW AND STATE OF THE ART

2.2.2 Tactic Languages

Tactics and tactical have first been introduced in the LCF system. In [Pau83], Paul-
son stresses their importance: “The discovery of the operators THEN, ORELSE, and
REPEAT, for combining tactics, was a breakthrough in the development of Edinburgh
LCF”. Indeed, these operators provide the basic machinery for almost all tactic languages
and are available in most interactive theorem provers.

However, tactic development is a very difficult task. This is due to the following rea-
sons: (i) Tactics follow a bottom up approach for proof construction, as they are stepwise
built on primitive inference rules and other tactics. Therefore, a tactic developer has to
keep in mind the peculiarities of the underlying logic and design the tactic accordingly.
(ii) Tactics are usually expressed in the programming language of the underlying theorem
prover (such as ML or Lisp), thereby making use of the interface provided by the theorem
prover.

The use of the programming language and the use of the interface to the theorem prover
often prevent the non-expert user from writing tactics. Even experienced users often prefer
a high number of interaction steps to the design of a special purpose proof strategy, even
though it could be easily realized in principle. This is because writing a tactic usually
forces the user to leave the current proof document, to write the tactic, reload the theory
again, and reexecuting the proof to the position where the new tactic can now be applied.
This contradicts the document-centric approach [ALW06, DF06, GM06, ABDW08], where
the main idea is that the document, containing a formal theory and the formal proofs,
is the central medium around which tools to assist the author are made available. As a
formal theory usually requires the development of several tactics, it is only consequent to
integrate these into the document. Also for theoretical purposes the use of a programming
language to specify tactics is disadvantageous, because it is very difficult to give tactics a
precise semantics.

Moreover, tactic languages and their interfaces vary widely from one theorem prover to
the next, with the consequence that tactics cannot be changed between different systems.
As a consequence, user seem to stick to a particular theorem prover, as learning and
understanding the details of a prover is a difficult task.

A first attempt to separate the tactic layer from the underlying programming language
has been realized with Coq’s tactic language Ltac [Del02]. The language is intended to
provide a simple to use tactic language layer to bridge the gap between the predefined
proof operators and the programming language of the proof assistant. This new layer
of abstraction can be seen in analogy to what has been done by introducing declarative
proof languages, which are usually build upon top of procedural languages. However,
Ltac remains in the procedural style of the underlying tactic language instead of following
the declarative approach of theorem proving. Nevertheless, it already provides pattern
matching facilities to match against the current goal state, which can be used to make
the structure of the goal state explicit.

In the context of proof planning (see 2.3) Richardson and Smaill present a non-
deterministic meta-interpreter (see [Ric02]) which gives a semantic to methodical expres-
sions for the λClam system [RSG98]. Similar to tacticals, methodicals combine methods,
which are abstractions from tactics and are the planning operators within proof planning
[Bun88]. Their meta-interpreter works by stepwise unfolding a continuation, keeping track
of the methodical expression to be evaluated. In [Ric02] the language of methodicals is
extended and a nondeterministic variant presented, where choice points are pushed on
a stack. Note that methodicals are not allowed to backtrack. Similarly, each reasoning
state in Isaplanner [Dix05], which is a descendant of λClam, contains a continuation

14

2.2. INTERACTIVE THEOREM PROVING AND PROOF STYLE

representing the next reasoning technique to be applied, which expresses in a sense the
future of the evaluation. However, methodicals and reasoning techniques are still specified
in the underlying programming language.

Several tactic languages exist for rewriting systems. The general idea is to provide
a language to specify a class of derivations the user is interested in by controlling the
rule applications. For example, most of them provide language constructs to describe
preferred application position of rewrite rules, such as bottom-up, top-down, leftmost-
innermost or leftmost-outermost. Depending on the language, its constructs are either
defined by a combination of low-level primitives or built-in primitives. On a second layer,
the languages provide constructs to express choice, sequencing, and recursion. Prominent
examples are Aps [Let93], Elan [BK97, BKKR01], Maude [MOMV05], and Stratego
[Vis01].

2.2.3 Deduction Modulo, Supernatural Deduction, and Superd-
eduction

Proofs are usually searched within a context of a specific theory, such as set theory
or arithmetic. Therefore, it is crucial to support theory reasoning efficiently. Within
interactive theorem proving, the standard approach consists of defining special decision
and simplification procedures and to encode them as tactics. However, it is also possible
to try to build theory reasoning in the underlying proof theory and to study its properties.

One possibility is to apply the inference rules modulo a congruence ≡ associated with a
term rewriting system, which is known as deduction modulo [DHK98]. This mechanism is
calculus independent and can for example be employed for resolution or natural deduction.
Consider for example the standard axiom rule in natural deduction and the correspondent
inference rule in deduction modulo, which are shown below, where the equality in the side
condition has been replaced by the congruence:

Ax
Γ ⊢ ϕ ψ ∈ Γ ∧ ψ = ϕ Ax

Γ ⊢ ϕ ψ ∈ Γ ∧ ψ ≡ ϕ
(2.1)

For deduction rules with several premises, deduction modulo usually allows the use of the
equivalence relation ≡ either on the conclusion or a single premise. For example, given
the left identity of the neutral element e in group theory in the form of the rewrite rule
e ∗ x = x, uniqueness of the neutral element can be shown as follows:

∀y.y ∗ e′ = y ⊢ ∀y.y ∗ e′ = y
Ax

∀y.(y ∗ e′ = y) ⊢ e ∗ e′ = e

∀y.y ∗ e′ = y ⇒ e′ = e
⇒I

∀E

Note the use of the rewrite rule e ∗ x = x in the ⇒I step. In practice, confluent and
terminating term rewrite systems are used to keep the congruence ≡ decidable.

Similarly, rewrite rules that rewrite propositions can be added to the congruence. For
example, the equivalence ∀A,B.A ⊂ B ⇔ ∀x.x ∈ A ⇒ x ∈ B might be formulated as
the rewrite rule A ⊂ B → ∀x.x ∈ A ⇒ x ∈ B. However, it has been pointed out that
rewriting with propositions might be confusing (see [Wac05a] for details). This has lead to
supernatural deduction, where the idea is to replace equivalences on predicate symbols by

15

CHAPTER 2. HISTORICAL OVERVIEW AND STATE OF THE ART

new introduction and elimination rules. For example, for ⊂, we obtain the two deduction
rules

⊂I

Γ, x ∈ X ⊢ x ∈ Y

Γ ⊢ X ⊂ X
x /∈ FV(Γ) ⊂E

Γ ⊢ X ⊂ Y Γ ⊢ t ∈ X

Γ ⊢ t ∈ Y (2.2)

In [Wac05a], Wack shows soundness and completeness of this calculus and proves cut
elimination with an extended notion of a cut: Cuts are the usual cuts; additional cuts are
derivations in which a new introduction rule is immediately followed by an elimination
rule. Superdeduction (see [BHK07a], [BHK07b]) carries over these ideas to the sequent
calculus.

2.2.4 Proof Transformation and Presentation

To be able to explain a machine found proof in a natural style, but also to be able to
integrate proofs in machine-oriented calculi in an interactive prover, researchers developed
algorithms to transform proofs in machine-oriented calculi into ND proofs [And80, Mil84,
Pfe87, Lin89, Wos90, And91, Mei00a]. Based on natural deduction, attempts have been
made to present a proof even in natural language.

The χ-proof system [FM88] was one of the first theorem provers designed with a natural
language output component. It has been recognized that the proof object used to generate
the natural language output plays an essential role for the quality of the generated output:
“Since the mechanism for translating a proof tree into a text is so simple1, much of the
challenge in constructing natural text can be transferred to constructing proof trees: to
first generate good text, generate good proof terms.” [FM88].

Several other systems have been equipped with modules to generate natural language
or pseudo-natural language: Natural Language Explainer [McD83] was devised as a back
end for the natural deduction theorem prover Thinker [Pel86, Pel98]. Ilf [Da97] uses
templates with canned sentence chunks to verbalize proofs. The same is true for the
pseudo-natural language presentation components of Coq [TCK95] and the proof system
Theorema [BJD98].

However, even in the case of human-oriented calculi, such as natural deduction, proofs
can become very complex and contain too much information. Huang [Hua96] realized
that in human-written proofs, in contrast, an inference step is often described in terms
of the application of a definition, axiom, lemma or theorem, which he collectively called
assertions . More often than not there are constructs above at the so-called proof level,
such as, e.g., “by analogy”. He developed techniques to detect assertion applications
of a specific form and abstracted them to a single step. The assertion level proved to
be much better suited for a subsequent verbalization of the proofs than a traditional
calculus [Hua94a, HF96].

Still, even at the assertion level, humans often omit obvious inferences to further
compress a proof. There has been the attempt to capture the notion of obvious inference
in order to identify (and hide) obvious steps (see for example [Rud87, Dav81] for an early
work). Most recently, Schiller has studied the problem in the context of assertion level
proofs and presented an approach to automatically learn obvious inferences from users
and to adapt a computer generated proof automatically [Sch10].

Another option to reduce the complexity is to structure the proof hierarchically and
to present only the outline of the proof at first. Only on demand, a more detailed proof

1Which turned out to be otherwise.

16

2.3. PROOF PLANNING AND PROOF REFINEMENT

of a specific step is shown. Hierarchical proofs have been advocated by several people,
such as Lamport [Lam93] in the context of informal proofs. A similar idea is proposed by
Back and colleagues for calculational proofs [BGvW96]. In the context of HOL, Grundy
and Langbacka [GL97] developed an algorithm to present hierarchical proofs in a brows-
able format. In the context of the Ωmega system, Cheikhrouhou and Sorge developed a
hierarchical proof data structure, called PDS [CS00, ABD+06], which was not only used
for proof presentation, but also for proof search. In particular, the PDS supports the
presentation of a proof plan or proof sketch (see the next section for details about proof
planning), and refinement operations to close these gaps. The same idea has been picked
up by Denney, who developed the notion of hiproof [DPT06]. Most recently, a tactic
language for hiproofs has been proposed in [ADL10]. Another possibility for hierarchical
proof construction is provided by a method called window inference [RS93]. Window in-
ference allows the user to focus on a particular subformula of the proof state, transforming
it and thereby making use of its context, as well as opening subwindows, resulting in a
hierarchical structure.

2.3 Proof Planning and Proof Refinement

Motivated by the fact that humans perform proof search at a high level and subsequently
refine their ideas, Bundy introduced the notion of proof planning [Bun88] as a technique
for guiding the search for a proof at an abstract level. Proof planning tries to capture
and encode common patterns of reasoning – such as induction – in a in so-called methods
which are tactics annotated with pre- and postconditions. Originally, the process of
proof planning a theorem was divided into two phases: First, a proof is planned at the
level of proof methods. If a proof plan – i.e., a sequence of methods that transform the
assumptions of the proof to the conjecture – was found, the corresponding tactics are
executed, called expansion. In the case that the execution of these tactics fails the proof
planner has to try an alternative.

Though there is no general problem to directly perform a search at the level of tactics,
it can be advantageous to perform the search at the level of methods: (i) The attached
tactic need not be executed. Thus using only the specification can speed up the search. (ii)
The specification of the tactic can be incomplete or may contain additional constraints
or control knowledge to restrict the search, i.e., to provide some form of guidance of
proof search. Hence the search space for a proof plan is usually considerably smaller
than the one for a calculus level proof [Bun02, MS99b] while loosing completeness. In
particular, methods provide a top-down approach to proof development. (iii) Due to the
more abstract search at the level of proof plans and the declarativity of methods, proof
planning is regarded to be human oriented. Indeed, many methods try to simulate human
problem solving behavior – they can thus be seen as an attempt to make problem solving
knowledge explicit. Consequently, proof plans are often better to read. (iv) Proof methods
provide a basis for the integration and combination of external algorithmic systems such
as computer algebra systems. This is because their results can easily be integrated and
checked afterwards.

Nowadays, proof planners also interleave the expansion with the proof planning phase
and execute tactics such as simplification directly. However, the general idea of providing
techniques to structure and organize the search space and to generate proofs where the
reasoning patterns are transparent remains. To make allowance for these developments,
one simply denotes the output generated by a proof planner as proof plan.

There are three main proof planning systems: The Oyster-Clam series [BvHHS90,

17

CHAPTER 2. HISTORICAL OVERVIEW AND STATE OF THE ART

RSG98], Ωmega’s proof planner Multi [MM05b], and Isaplanner [Dix05], all of which
implement proof planning slightly differently, and all of which use slightly varying termi-
nology (see [DJP06] for a comparison).

Proof planning has been successfully applied in a number of first and higher-order
settings, including mathematical induction [BvHHS91], hardware verification [CBSB96],
higher-order program synthesis [DLS00], nonstandard analysis [MFS02], limit problems
[Mel98a, MS99b, Mel98b] and problems in the domain of residue-classes [MPS02].

Over the years, further enhancements took place, aiming at more flexible methods
that are no longer restricted to its tactical origins, and the improvement of the global
search behavior:

Methodicals: Methodicals represent program constructs such as repeat or if-then-else
and allow the combination of several methods to more complex methods, similar to tacti-
cals for tactics. In particular, they provide a facility to specify what to do next, i.e., after
successful application of a (basic) method.

Due to these extensions of methods the differences between a tactic and a method
became unclear [Den04a, Den04b].

Proof critics: Proof critics or failure reasoning (see [Ire92, Ire96, MM05a]) attempt to
make use of information from failed proof attempts. They are used (1) to patch a failed
proof plan, (2) to suggest a lemma or a generalization, or (3) to introduce a case split.
Originally, critics were developed to handle failures of the rippling method in Oyster-
Clam. They can significantly expand the reasoning power of proof planning systems.
More generally, also backtracking can be understood as a critic. The difference between a
critic and a method is that a critic can modify (delete and replace) any part of the proof
plan, whereas a method performs a local modification of a branch of the proof plan.

Knowledge based proof planning: Knowledge based proof planning [MS99b] focuses
on the incorporation of mathematical knowledge into the planning process, as advocated
inter alia by Bledsoe [BB77]. One major step is the separation of the heuristic knowledge
contained in the preconditions of a method and its explicit representation in the form of
control rules. Control rules cannot only reason about the current goals and assumptions,
but also about the proof planning history and the proof planning context. Thus, the
introduction of control rules makes the control flow more flexible and extends the meta-
reasoning facilities of proof planning. In some sense they are similar to the control flow
which can be expressed by methodicals, even though this correspondence has not been
studied theoretically. Another key step is the integration of other tools in the knowledge
base to provide justifications for method applications. For example, Ωmega is linked to
classical theorem provers, computer algebra systems and constraint solvers to support the
proof search. The use of external systems has several advantages: External reasoning
systems can make use of special data structures to speed up the search; only the final
proof has to be translated back to the proof assistant. Even if an external system does
not provide a proof that can be transferred back to the system, their use is beneficial in
situations where finding is much harder than checking. This is for example the case for
factorization or integration in the context of computer algebra systems.

Proof planning with multiple strategies: Proof planning with multiple strate-
gies [MMS08] is based on the notion of a strategy. A strategy is an instance of an algo-
rithm that refines or modifies a partial proof plan. Examples for strategies are instances

18

2.4. PRACTICAL APPLICATIONS OF THEOREM PROVING

of planning-, instantiation- and backtracking algorithms. In particular, the possibility to
invoke a planning algorithm with a subset of the available methods allows for a further
restriction of the search space by tailoring strategies for solving a subproblem. Several
strategies can cooperate during the proof process, where this cooperation is guided by
strategic meta-reasoning.

Proof plans as declarative proof scripts: One of the main features of proof plans
is the abstract representation of a proof. Similarly, the main feature of a declarative
proof is that it is human-readable. The connection between proof plans and declarative
proof scripts has been recognized and exploited by Dixon [Dix05]: He observed that it is
possible to present a proof plan as a declarative proof script and designed Isaplanner
to generate declarative proofs. To represent unjustified steps, Dixon introduced a “gap”
command, which can be annotated with a technique to close the gap.

Despite its success proof planning still has problems in practice: (i) It is not trivial to
discover common patterns of reasoning or abstract heuristics to guide the proof search. As
for all knowledge based systems, there is the risk to put too much specific knowledge in the
knowledge base (over tuning) such that eventually all examples can be proved, without
being general. Though there are some guidelines in [Bun98] what a common pattern of
reasoning is or might be, it is in practice more or less infeasible to check whether the
used methods obey those principles or to inspect all control rules which were used for the
search. (ii) All proof planning systems have not yet retrieved much practical attention.
One reason might be that these systems are difficult to use, to setup, and to customize
unless you happen to be a developer. Indeed, similar to the case of tactics, proof planning
operators are difficult to specify: the user needs to know the underlying programming
language of the proof planner and details about the internals of the implementation.
Moreover, the success of proof planners is difficult to judge, as the details of the underlying
programming language make it difficult to easily perceive the knowledge encoded in the
proof planning operators. (iii) Proof planning is not complete, but neither is human
proving. (iv) Even though proof planning claims to be human-oriented and natural in
the sense that methods encode common patterns of reasoning, it is nearly impossible
for a non logician to successfully encode such a pattern, as these methods are heavily
influenced by the underlying calculus, as shown in [BMM+01]. Moreover, in addition to
abstract methods there are usually many rules representing calculus steps such as the
decomposition of connectives. Consequently many proofs constructed by the technique
of proof planning are still not very natural compared with standard proofs that can be
found in mathematical textbooks.

2.4 Practical Applications of Theorem Proving

Automated and interactive theorem provers are nowadays commonly used by experts
mainly to verify hard- and software, but also in mathematics. More recently, they are
also used as domain reasoner in the context of proof tutoring, and the application areas
are further growing.

One significant shortcoming of theorem provers that hinders their further dissem-
ination is that they are not fully integrated into or accessible from standard tools that
are already routinely employed in practice, like, for instance, standard mathematical text-
editors. Integrating formal modeling and reasoning with tools that are routinely employed
in specific areas is the key step in promoting the use of formal logic based techniques. To

19

CHAPTER 2. HISTORICAL OVERVIEW AND STATE OF THE ART

make a step towards this direction, there is the recent trend towards document-centric
approaches. The main idea is that the document, containing a formal theory and formal
proofs, is the central medium around which other tools are built to assist the author.

Several attempts have been made in the spirit of the document-centric approach to in-
tegrate theorem provers into mathematical practice, e.g., theTheorema project [BJK+97,
BJD98], which extends the computer algebra program Mathematica by domain specific
theorem provers, the symbolic computing system Analytica [BCZ98] which is also built
on top of Mathematica, or the Coq [Coq03] community, which recently connected the
WYSIWYG-editor Texmacs to the Coq proof assistant. Similarly Ωmega has been
integrated into Texmacs [vdH01], based on the mediator Plato [MW07].

Even though the declarative style of theorem proving is a step towards the document-
centric approach, the overall goal has not yet been fully realized. The implementation
of proof search procedures in an interactive prover still requires to write tactics in the
underlying programming language and thus to know about the data structures, functions
and existing tactics. Thus, only experts can adapt and extend the systems. Nevertheless,
theorem provers are nowadays used within practical applications: for verification (by
experts), and within tutoring systems.

2.4.1 Verification of Software, Hardware, and Mathematics

Even though interactive theorem proving is still time consuming and tedious, even for ex-
perts, interactive theorem provers have grown far beyond very academic examples and are
nowadays used for impressive verification projects in mathematics and computer science.
This is because they offer two main benefits: (i) confidence of correctness (ii) automatic
assistance with routine parts of a proof. Their main application areas are situations in
which the cost of error is too high, as witnessed for example for the famous Pentium
FDIV bug [Cor94]. The verification of hard- and software is one of the main industrial
applications of interactive theorem proving.

For example, J Strother Moore and Matt Kaufmann used ACL2 to prove the correct-
ness of the floating point division operations of the AMD K5 microprocessor [MLK96].
There are many more industrial applications, see e.g. [Har06] for an overview. There has
also been the trend to verify large parts of software: Within the Compcert project, an
optimizing compiler from a large subset of C to PowerPC assembly code has been verified
(see e.g. [Ler09]). Even more impressive, a complete OS kernel has been verified [KAE+10]
and verification of protocols has become standard.

Even in the field of mathematics, formalization and verification enjoys a recent boom,
motivated by the fact that complex proofs become difficult to check by humans, as was
the case for the proof of Kepler’s conjecture [Hal06], which is now in the process of being
formally verified.

2.4.2 Tutoring Systems for Mathematics

In recent years, a number of software tools have emerged which support tutoring mathe-
matics. As the field is rather broad, we only present a selection of the existing systems.
We classify some systems for teaching mathematics (or logic) with respect to three cate-
gories: (i) Teaching systems based on computer algebra (ii) logic tutors, and (iii) systems
for learning deductions.

20

2.4. PRACTICAL APPLICATIONS OF THEOREM PROVING

Teaching based on Computer Algebra

A number of tutoring systems in mathematics exist which focus on algebraic manipu-
lations and the modeling of math’s problems (e.g. algebra symbolization) rather than
deductive proof. Examples are the MsLundquist algebra tutor [HK00, HK02], or
Aplusix [RBGL07], Buggy [BB78], Slopert [Zin06], AlgeBrain [SRA99], Active-
Math [Mel05], and Beetle [CDF+07].

While these systems are very interesting and valuable when studying general tutoring
techniques, such as user modeling or hinting strategies, they do not require sophisticated
domain reasoning. Either, the functionality of a computer algebra system is used, or a
rather simple rewrite system if a trace of the computation is required for an analysis.
For example, derivatives can easily be computed by means of a confluent term rewriting
system, such that no search has to be performed. These computations are generally
unique and do not have to deal with underspecification and ambiguity.

Logic Tutors

It has been recognized that in addition to computational tasks, students must learn how
to conduct mathematical argumentation and mathematical proofs [KAB+04]. Therefore
tools have been developed which teach proving skills. For propositional and first order
logic examples are the CMU Proof Tutor [SS94], Easy , P Logic Tutor [LLB02],
Alfie [vS00], ProofWeb [KWHvR07], Jape [SB96] andWinke [DE98], and for higher-
order logic, ETPS [ABP+04]. These systems focus on pure logic and support proof
construction using for example Fitch-style diagrams or trees.

Teaching Systems for Mathematical Proofs

There have also been attempts to support teaching mathematics at a more abstract level,
comparable to the type of mathematics taught in schools. These include the Epgy
Theorem Proving Environment [SN04, MRS01], Mathpert [Bee92], Easy [GBK08],
Tutch [ACP01], and Proofnavigator [Sch09], which is a tool for teaching inductive
proofs in program verification tasks. In the specialized field of teaching geometric proofs,
a variety of systems such as Advanced Geometry Tutor [MV05], Angle [KA93],
and Baghera [WBPB01] exist. Note that the fragment of geometry theorem proving is
decidable [Har09]. Another example is the Dialog project [BFG+03, BHKK+07a], which
had the final goal of natural tutorial dialog between a student and a mathematical assis-
tance system. The ActiveMath [GUM+04] is a learning environment, which provides a
fully-fledged learning environment for mathematics.

To teach this kind of mathematics, a tutor system must be able to interact with the
student at a level of reasoning similar to that which the student uses to write a proof.
The student should be free to express mathematical arguments in a natural way, and
not be restricted, for instance, to rule applications in the underlying logic. Therefore, a
key point in the design of teaching tools for mathematical proofs is the ability to close
the gap between formal proofs and proofs as they are written by students. Filling such
gaps automatically seems reasonable, as the problems considered for tutoring are rather
trivial from a mathematical point of view and are therefore easier to automate. Staying
within the low-level of a logic is not an option as argued by Abel et al.: “Larger proofs ...
were tedious since each step had to be a single natural deduction inference. For practical
reasoning this restriction is highly unsatisfactory...” [ACP01].

21

CHAPTER 2. HISTORICAL OVERVIEW AND STATE OF THE ART

2.5 Summary

In this chapter we have surveyed the main developments that build the foundations of
computer assisted formal reasoning as it is known today. We have pointed out the differ-
ence between proof discovery and presentation, as well as the importance of readability
and maintainability of proofs within the interactive setting. Moreover, we presented two
proof styles that are supported by current proof assistants: The procedural style which
is purely based on tactics and hides intermediate proof states, and the declarative style
which is more readable as it makes intermediate proof states explicit. Moreover, we have
presented approaches that allow the generation of more abstract proofs automatically,
namely proof planning that works above the underlying calculus, and deduction mod-
ulo, supernatural deduction and superdeduction which build theory knowledge into the
calculus.

22

Part II

Assertion Level Proofs

23

3
Assertion Level Proofs

Proofs contain mathematical knowledge and for mathematical knowledge management
it is important to represent this adequately. While tactics facilitate interactive proof
construction, they do not reduce the length of the proof which is to be checked by a proof
checker or by a mathematician, since each tactic has to be expanded to a low level proof
which makes use only of calculus level rules. Moreover, though it might be easy to guess
in some situations what the result of a tactic application is, “a HOL script looks nothing
like a textbook proof. Even HOL experts cannot really read a typical HOL proof without
replaying it in a session.” (see [Har96b], p. 2).

Indeed, it has been noted that “a major barrier to more common use of mechanical
theorem provers in both software and hardware verification, or verification of mathemati-
cal results in general, is the distance between the proof style natural for a mathematician
and the proof style supported in various mechanical theorem provers” [AH97]. However,
also from a practical point of view there is the need to search for the proofs at a more
abstract level, as already noted in [ST89]: “it is practically impossible to prove theorems
in calculus, using only basic logical rules”.

To present machine generated proofs at a more abstract level, techniques have been
developed to convert (completed) resolution proofs or matrix proofs into human-oriented
calculi, (see [And80, Mil84, Pfe87, Lin89, Wos90, And91, Mei00a]). However, as analyzed
in [Hua99], although individual steps in natural deduction can be understood easily, the
entire proof is still usually at a very low level of abstraction and contains too many steps
to be adequate as input for a presentation in natural language.

To come close to the style of proofs as done by humans, Huang [Hua94b, Hua96] intro-
duced the assertion-level, where individual proof steps are justified by axioms, definitions,
or theorems, or even above at the so-called proof level, such as “by analogy”. The idea of
the assertion-level is, for instance, that given the facts U ⊂ V and V ⊂ W we can prove
U ⊂ W directly using the assertion:

⊂Trans: ∀U.∀V.∀W.U ⊂ V ∧ V ⊂ W ⇒ U ⊂ W

An assertion level step usually subsumes several deduction steps in a standard calculus,
say the classical sequent calculus [Gen69]. Therefore, traditional theorem provers can only
achieve such conclusions after a number of proof steps. To use an assertion in the classical
sequent calculus, it must be present in the antecedent of the sequent and be processed by

25

CHAPTER 3. ASSERTION LEVEL PROOFS

means of decomposition rules, usually leading to new branches in the derivation tree. Some
of these branches are subsequently closed by means of the axiom rule which correspond
to “using” that assertion on known facts or goals.

Huang characterizes assertions as macro steps and describes the following two ways
for acquiring new assertion level rules: (i) learning by chunking-and-variablization, (ii)
learning by contraposition. The former tries to find and remember repeated applications of
an assertion as a new rule by inspecting proofs of a theory that have already be performed.
The latter derives a new rule from a given rule by the following rule schema: If r is an
existing rule of the form

Γ ⊢ p1 . . . Γ ⊢ pn
Γ ⊢ q (3.1)

then r′ can be acquired by contraposition:

r′ =
Γ ⊢ p1 . . . Γ ⊢ pi−1 Γ ⊢ pi+1 . . .Γ ⊢ pn Γ ⊢ ¬q

Γ ⊢ ¬pi
(3.2)

For instance, for the inference rule

Γ ⊢ a ∈ U Γ ⊢ U ⊂ F

Γ ⊢ a ∈ F
(3.3)

the following two other rules can be derived by contraposition

Γ ⊢ a ∈ U Γ ⊢ a /∈ F

Γ ⊢ U 6⊂ F
(3.4)

Γ ⊢ a /∈ F Γ ⊢ U ⊂ F

Γ ⊢ a /∈ U
(3.5)

Huang followed the approach of a human-oriented proof style and developed an algo-
rithm to abstract a given ND proof to the assertion level by finding assertion applications
and replacing them by a single rule. His algorithm had to consider each proof step indi-
vidually and was therefore very expensive from a computational point of view. Moreover,
he noted that “the algorithm works well on neatly structured ND proofs, but performs
very poorly on machine generated proofs that are mainly indirect” ([Hua99] p. 13). This
is because proof steps are often twisted in machine-generated proofs and need to be re-
ordered before a transformation becomes possible. Indeed, it has been noted in [Mei00b]
(p. 52) that there is “no practically usable algorithm to abstract ’bad’ ND proofs”.

Huang was mainly concerned with using the abstract representation at the asser-
tion level for proof presentation in natural language [Hua96, Fie01]; therefore there was
no proof theoretic foundation for the assertion level. In particular, it was not possible to
directly search for a proof at the assertion level. The reconstruction approach had the dis-
advantage that only proof parts of a specific form – corresponding to previously extracted
assertions – could be abstracted. Moreover, due to the complexity of the abstraction
mechanisms the abstraction had to be restricted to global assertions, i.e., definitions and
theorems belonging to the theory. Local assertions such as an induction hypothesis were
not considered.

It has been argued that assertion level should serve as a basis on which knowledge based
proof planning should be based: “We are convinced that it will be possible to overcome
at least some of the identified limitations and problems of proof planning as discussed
in [BMM+01, Bun02], in particular those that are caused by an unfortunate intertwining

26

3.1. EXAMPLES OF ASSERTION APPLICATIONS

of the proof planning and calculus level theorem proving.” [VBA03]. However, this has
not been studied so far. Therefore, in this thesis we will face this challenge and base the
theorem proving process directly on the assertion level. This has the following advantages:

• Assertion level proofs come close to hand written proofs (Contribution A1, Section
1.1). Therefore, they do not only provide a correctness guarantee, but also an expla-
nation. Consequently, they become accessible to a broader audience. In particular,
they can naturally be used in the domain of proof tutoring (Evaluation E1, Section
1.1).

• Assertion level proofs can naturally be translated to declarative proof scripts (Con-
tribution A1(vi), Section 1.1), which have become the standard means to commu-
nicate proofs in an interactive theorem prover. Therefore, (partial) proofs as well
as failed proof attempts can be presented at an abstract level. Note that this is
nontrivial, and not supported in state of the art interactive theorem provers, such
as Isabelle or Coq: “There is currently no way to transform internal system-level
representations of Isabelle proofs back to Isar text” (see [Wen99b], p. 11).

• The use of assertions naturally leads to a goal directed proof search, allowing for
efficient proof search procedures that even outperform classical reasoners in specific
domains (Contribution A1(iv), Section 1.1). More importantly, it generates much
fewer sequents until a proof is found. In many cases, a proof can be found without
any search at all by exploiting some abstract reduction properties, which get lost
when normalizing the assertion.

• The problem of handling multiplicities of the quantifiers, which is the main problem
in first order logic, can be handled for assertions in a natural way, as quantifiers
belonging to a single assertion are grouped together.

• The assertion level allows the natural specification of heuristics which cannot easily
be formulated at a lower level of abstraction (Contribution A2(i), Section 1.1).

3.1 Examples of Assertion Applications

Before presenting the technical details of the assertion level, we give several examples
illustrating the difference between an assertion level justification – including deep assertion
applications – and the corresponding justification in the sequent calculus. The key points
which are illustrated are:

• Assertion level proofs are shorter than corresponding proofs in sequent calculus or
natural deduction.

• Deep inference further shortens the proof size and makes rule application invariant
under slight reformulations of the problem.

The first example shows the use of a proper definition at the assertion level, i.e., a formula
∀x.P ⇔ Q, where P is a predicate and Q is not necessarily atomic. This simple structure
falls in the category which can be handled within superdeduction [BHK07a, BHK07b] and
supernatural deduction [BDW07], which follows a similar motivation as the assertion level.
It is important to note that the lifting of an assertion to a rule is more than just a “macro”
collapsing a sequence of introductions into a single one: The formula corresponding to

27

CHAPTER 3. ASSERTION LEVEL PROOFS

the assertion is replaced by a rule, while the formula itself is removed from the proof
state. This results in non-trivial proof theoretical questions, such as whether the lifting
of assertions is a safe operation, i.e., whether provability is preserved when lifting an
assertion. From a user’s perspective, the resulting sequents get much more readable, as
the size of the antecedent is reduced. Moreover, the operational representation of an
assertion as inference reflects its effective use as a means to transform a proof state.

Example 3.1.1. Consider the assertion step that derives a1 ∈ V1 from U1 ⊆ V1 and
a1 ∈ U1 which we assume to be contained in Γ. The corresponding sequent calculus proof
is:

Γ, ∀U, V. U ⊆ V ⇔ ∀x.x ∈ U ⇒ x ∈ V ⊢ ∆

Γ, ∀V. U1 ⊆ V ⇔ ∀x.x ∈ U1 ⇒ x ∈ V ⊢ ∆
∀L

Γ, U1 ⊆ V1 ⇔ ∀x.x ∈ U1 ⇒ x ∈ V1 ⊢ ∆
∀L

Γ, U1 ⊆ V1 ⇒ ∀x.x ∈ U1 ⇒ x ∈ V1 ⊢ ∆
⇔L

Γ ⊢ U1 ⊆ V1∆
Ax

Γ, ∀x.x ∈ U1 ⇒ x ∈ V1 ⊢ ∆
⇒L

Γ, a1 ∈ U1 ⇒ a1 ∈ V1 ⊢ ∆
∀L

Γ ⊢ a1 ∈ U1,∆
Ax

············
Γ, a1 ∈ V1 ⊢ ∆

⇒L

Lifting the assertion ∀A,B.A ⊂ B ⇔ ∀x.x ∈ A⇒ x ∈ B to the inference level makes the
assertion directly available as a rule and allows for the following one step deduction:

Γ, a1 ∈ U,U ⊂ V, a1 ∈ V1 ⊢ ∆

Γ, a1 ∈ U,U ⊂ V ⊢ ∆
⊂-Def

The second example illustrates the use of an assertion that is not an equivalence. As
such, it cannot be handled by superdeduction or supernatural deduction. Moreover, it
illustrates the different ways the assertion can be applied.

Example 3.1.2. Consider the assertion

(⊂Trans) ∀A,B,C.A ⊂ B ∧ B ⊂ C ⇒ A ⊂ C

and a corresponding derivation shown below, illustrating how the assertion can be used to
derive ∆ = {U ⊂ W} under the assumptions Γ = {U ⊂ V, V ⊂ W}:

∀L
∀L
∀L

⇒L

∧R

Ax
Γ ⊢ U ⊂ V,∆ Γ ⊢ V ⊂ W,∆

Ax

Γ ⊢ U ⊂ V ∧ V ⊂ W Γ, U ⊂ W ⊢ ∆
Ax

Γ, U ⊂ V ∧ V ⊂ W ⇒ U ⊂ W ⊢ ∆

Γ, ∀C.U ⊂ V ∧ V ⊂ C ⇒ U ⊂ C ⊢ ∆

Γ, ∀B,C.U ⊂ B ∧B ⊂ C ⇒ U ⊂ C ⊢ ∆

Γ, ∀A,B,C.A ⊂ B ∧B ⊂ C ⇒ A ⊂ C ⊢ U ⊂ W︸ ︷︷ ︸
∆

The crucial steps in this derivation are to use the assertion (⊂Trans) with the instanti-
ation [U/A, V/B,W/C] to show U ⊂ W . As before, the other steps can be understood as
unfolding or preparation steps, yielding several branches in the derivation tree, some of

28

3.1. EXAMPLES OF ASSERTION APPLICATIONS

which can be closed using the axiom rule and the available facts Γ or goals ∆. In contrast,
at the assertion level, the same derivation looks as follows:

U ⊂ V, V ⊂ W ⊢ U ⊂ W
⊂trans

The two examples show that the lifting of an initial assertion can be very beneficial.
The next example illustrates that it is also beneficial to lift intermediate formulas, such as
the induction hypothesis in an inductive proof. Note that the lifted formula is not closed.

Example 3.1.3. Consider the proof of the following simple statement about natural num-
bers ∀n,m.n < m⇒ ∃u.n+ u = m under the assertions

Nat : ∀x.x = 0 ∨ ∃y.x = s(y)

+s : ∀n,m.s(n) +m = s(n+m)

<s: ∀n,m.n < m⇒ s(n) < s(m)

=<0: ∀n.n < 0 ⇒ ⊥
=s: ∀n,m.s(n) = s(m) ⇒ n = m

giving – among others – rise to the following rules:

Nat
Γ, X = 0 ⊢ ∆ Γ, X = s(f[∃y.X=s(y)](X) ⊢ ∆

Γ ⊢ ∆
<s

Γ, N < M ⊢ ∆

Γ, s(N) < s(M) ⊢ ∆

=<0
Γ, N < 0 ⊢ ∆

In the first rule, f[∃y.X=s(y)] corresponds to the Skolem function that is introduced by using

the liberalized δ+
+

rule [BHS93], which can be understood as follows: Standard Skolemiza-
tion requires that the Skolem function f is new with respect to the whole sequent and takes
as arguments all variables that occur free in the sequent. Contrary to that, the liberalized
δ+

+

approach allows the use of the same Skolem function for all formulas that are equal
modulo α-renaming. For example, the same Skolem function can be used for ∀x.P (x) and
∀y.P (y). We denote such Skolem-Functions by f[∀x.F] where [∀x.F] denotes the set of all
formulas α-equal to ∀x.F . Secondly, the arguments to the Skolem function are only all
free variables that actually occur in ∀x.F .

During the proof, which is done by induction over n, many steps consists of the ap-
plication of one of these assertions by decomposing and instantiating it in an appropriate
way, thereby yielding several branches in the derivation tree, some of which can be closed
using available facts and the axiom rule. Consider, for example, the derivation in Fig-
ure 3.1, which shows the assertion derivation of <s from which the following assertions
can be extracted:

In the example above, we obtain the following possibilities:

< ①
Γ, u < v, s(u) < s(v) ⊢ ∆

Γ, u < v ⊢ ∆
< ②

Γ ⊢ n < m,∆

Γ ⊢ s(n) < s(m),∆

< ①②
Γ, n < m ⊢ s(n) < s(m),∆

29

CHAPTER 3. ASSERTION LEVEL PROOFS

Ax
①

Γ ⊢ u < v ⊢ ∆

②

Γ, s(u) < s(v) ⊢ ∆
Ax

Γ, u < v ⇒ s(u) < s(v), u < v ⊢ ∆
⇒L

Γ, ∀m.u < m⇒< m ⊢ ∆
∀L

Γ, ∀n,m.n < m⇒ s(n) < s(m) ⊢ ∆
∀L

Figure 3.1: Example derivation

For instance, if ∆ = {} and Γ = {u < v}, then the axiom rule is no longer applicable
in ① which gets a new open sequent. Note that this remains a valid derivation if we add
arbitrary formulas Γ′ to the antecedent or ∆′ to the succedent. We get a variety of these
inferences depending on which application of axiom rules are enabled by filling the Γ and
∆; these rules all represent one possible application of the assertion. However, if there
is not at least one axiom rule application, then we do not consider this as an application
of the assertion (otherwise it would always be applicable); moreover, this derivation is
somehow superfluous if none of the subformulas of the assertions is used in the proof.
Skolem functions introduced by ∀R-rules are always the same, which results from the use
of the δ+

+

rule, where we use the same Skolem function for the same formulas. In the
case of derived rules, these are always the subformulas of the assertion which are always
the same.

s(n) < 0,m = 0 ⊢ ∃u.s(n) + u = 0
<0

s(n) < 0,m = 0 ⊢ ∃u.s(n) + u = m
=s

n < f1(m),m = s(f1(m)) ⊢ n < f1(m), n+ f1(f1(m)) = f1(m)
Ax

n < f1(m),m = s(f1(m)) ⊢ n+ U = f1(m)
Hyp1

n < f1(m),m = s(f1(m)) ⊢ s(n+ U) = s(f1(m))
=s

s(n) < s(f1(m)),m = s(f1(m)) ⊢ s(n+ U) = s(f1(m))
<s

s(n) < m,m = s(f1(m)) ⊢ ∃u.s(n) + u = m
∃R,=∗

···········
s(n) < m ⊢ ∃u.s(n) + u = m

Nat

⊢ s(n) < m⇒ ∃u.s(n) + u = m
⇒R

⊢ ∀m.s(n) < m⇒ ∃u.s(n) + u = m
∀R

Figure 3.2: Induction Step of the example

Figure 3.2 shows the induction step of the example statement where the assertions
{Nat,+s, , <s,=<0,=s} and the induction hypothesis (which contains free variables)

∀m′.n < m′ ⇒ ∃u′.n+ u′ = m′

have been lifted to the level of inference rules. The induction hypothesis gives rise to two

30

3.2. DEEP APPLICATION

new inferences Hyp1 and Hyp2

Hyp1
Γ ⊢ n < M ′, n+ f1(M

′) =M ′,∆

Γ ⊢ n+ f1(M
′) =M ′,∆

Hyp2
Γ, n < M ′, n+ f1(M

′) ⊢ ∆

Γ, n < M ′ ⊢ ∆

where f1 stands for the Skolem constant f[∃y.X=s(y)].

3.2 Deep Application

While being particularly suited for human machine interaction, human oriented calculi,
such as the sequent calculus, are less suited for automation and the degree of the automa-
tion is rather low compared to machine oriented calculi. One of the reasons is that the
inference steps have to follow the logical connectives of a formula, which can introduce
high branching just because of the structure of the proof. At the same time, it has been
noted in [Har96b] that the use of derived rules in forward direction in interactive theorem
proving can be very hard, unless the exact structure of the proof is planned before start-
ing the proof. This is because a rule can only be applied in forward direction if all its
premises are available as facts in the current proof state. In spite of many enhancements,
such as adding ad-hoc rules for modus ponens and modus tollens [DM94, OS88], imposing
regularity conditions [DM94, LMG94], using controlled from of cut [DM94, LMG94], or
factoring and merging [MR94], exploiting universal variables [Bec97, BP95], and incor-
porating features of hyper-resolution [BFN96], tableau and sequent calculi are yet not as
efficient as other more machine oriented calculi.

Deep inference formalisms allow the application of inference rules deeply inside for-
mulas, thus compensating for the limitation mentioned above. Intuitively, this can be
motivated as follows:

In propositional logic, the sequent proof of Γ ⊢ ∆ is in the worst case of size O(2|Γ∪∆|)
[Urq98]. If we can reduce Γ ⊢ ∆ to Γ′ ⊢ ∆′ so that its size decreases (e.g. by the
application of the axiom rule deeply inside), if only by 1, we would reduce the potential
search space at least by half. Thus, we trade off some polynomial processing for an
exponential gain: scanning the formula and looking for occurrences of the same formula
can be done in polynomial time.

However, let us stress that even though the ability of finding shorter proofs is very ben-
eficial in the interactive setting, strengthening a calculus as above adds non-determinism,
i.e., there are more possibilities to proceed at each expansion step. Thus, there is a trade-
off between the advantage of shorter proofs and the disadvantage that these short proofs
may be harder to be found automatically, because there are more choice points in the
search space. Moreover, deep inference steps may be hard to be understood by a human.

We now give several examples of deep inference applications.
The following example is taken from [BHK07b] in which the authors study the re-

lation of rewriting and equivalences. While the additional rules shorten the proof size
considerably, we go one step further and illustrate that the proof collapses to a single
step derivation when we allow the application of the assertion deeply inside formulas.
Moreover, the deep matching makes the search procedure invariant under some simple
variations of the problem.

Example 3.2.1. Consider the axiom

(Trans) ∀x.∀z.(x ≤ z ⇔ ∃y.(x ≤ y ∧ y ≤ z))

31

CHAPTER 3. ASSERTION LEVEL PROOFS

giving rise to the following two inferences:

TransL
Γ, x ≤ y, y ≤ z ⊢ ∆

Γ, x ≤ z ⊢ ∆
y new TransR

Γ ⊢ x ≤ y,∆ Γ ⊢ y ≤ z,∆

Γ ⊢ x ≤ z,∆

The following example illustrates the difference between a proof in sequent calculus and
the corresponding one in the extended deduction system:

a ≤ b, b ≤ c ⊢ a ≤ b, a ≤ c
Ax

a ≤ b, b ≤ c ⊢ a ≤ b, a ≤ c
Ax

a ≤ b, b ≤ c ⊢ a ≤ b ∧ b ≤ c, a ≤ c
∧R

a ≤ b, b ≤ c ⊢ ∃y.(a ≤ y ∧ y ≤ c), a ≤ c
∃R

····· a ≤ c, a ≤ b, b ≤ c ⊢ a ≤ c
Ax

∃y.(a < y ∧ y < c) ⇒ a ≤ c, a ≤ b, b ≤ c ⊢ a ≤ c
⇒L

a ≤ c⇔ ∃y.(a ≤ y ∧ y ≤ c), a ≤ b, b ≤ c ⊢ a ≤ c
⇔L

∀z.(a ≤ z ⇔ ∃y.(a ≤ y ∧ y ≤ z)), a ≤ b, b ≤ c ⊢ a ≤ c
∀L

∀x.∀z.(x ≤ z ⇔ ∃y.(x ≤ y ∧ y ≤ z)), a ≤ b, b ≤ c ⊢ a ≤ c
∀L

∀x.∀z.(x ≤ z ⇔ ∃y.(x ≤ y ∧ y ≤ z)), a ≤ b ⊢ b ≤ c⇒ a ≤ c
⇒R

∀x.∀z.(x ≤ z ⇔ ∃y.(x ≤ y ∧ y ≤ z)) ⊢ a ≤ b⇒ b ≤ c⇒ a ≤ c
⇒R

Using the axiom (Trans) the proof becomes

a ≤ b, b ≤ c ⊢ b ≤ c, a ≤ c
Ax

a ≤ b, b ≤ c ⊢ a ≤ b, a ≤ c
Ax

a ≤ b, b ≤ c ⊢ a ≤ c

a ≤ b ⊢ b ≤ c⇒ a ≤ c

⊢ a ≤ b⇒ b ≤ c⇒ a ≤ c
⇒R

⇒R

TransR

Going further and allowing for deep matching, the proof reduces further to a single
step:

TransR ⊢ a ≤ b⇒ b ≤ c⇒ a ≤ c

Interestingly, this is independent of slight changes of the formula, such as

TransR ⊢ a ≤ b ∧ b ≤ c⇒ a ≤ c
TransR ⊢ b ≤ c ∧ a ≤ b⇒ a ≤ c

TransR ⊢ b ≤ c⇒ a ≤ b⇒ a ≤ c

Let us further elaborate on problem reformulations.

Example 3.2.2. In [Sie09] Sieg discusses the dependence of the proof search on slight
structural reformulations of a problem which is given in the supplement of [SDM+65].
The problem is to prove

(¬ (K ⇒ A) ∨ (K ⇒ B)) (3.6)

32

3.2. DEEP APPLICATION

under the assumptions

(H ∨ ¬ (A ∧K)) (3.7)

and (H ⇒ (¬A ∨ B)) (3.8)

The reformulations of the problem consist of replacing one or several occurrences of
(¬X ∨∆) or (X ∨ ¬∆) by (X ⇒ ∆), respectively (∆ ⇒ X).

Table 3.1 summarizes the case study: Depending on the problem formulation, the
number of search steps needed by prover Apros to solve the problem ranges from 9 to 277.
This is because proof search in Apros is driven by the logical structure of the problem:
Replacing the conclusion by

(K ⇒ A) ⇒ (K ⇒ B) (3.9)

triggers inversion, i.e., the backward use of introduction rules, which transforms the prob-
lem to

(3.7), (3.8), (K ⇒ A) , K ⊢ B (3.10)

These two assumptions simplify the proof search essentially. In particular, when also
rewriting the assumptions (3.7) and (3.8), they allow the deduction of the intermediate
facts A, H and therefore B.

Problem Search Steps Proof Length
original 277 77
1. premise modified 273 87
1.+2. premise modified 149 86
1.+2. premise + conclusion modified 9 12
goal modified 18 29

Table 3.1: Influence of slight reformulations to the search space

By allowing for deep inference, the proof search becomes independent of such a refor-
mulation. To see this, we consider the original problem and the extreme case where all
disjunctions have been replaced by implications and show how the problem can be solved by
a sequence of axiom rule applications. Within both variants, the same sequence of axiom
rule applications results in a proof for the conjecture; in particular its length does not
change. We mark the places where the axiom rule is applied by boxes. Each axiom rule
application involves both a negative and a positive occurrence of a subformula, where the
positive subformula is replaced by true1.

Formulation 1:

(
H+ ⇒

(
¬A+ ∨ B−

)−)−
,
(
H− ∨ ¬

(
A+ ∧ K+

)+)−

⊢
(
¬
(
K+ ⇒ A−

)− ∨
(
K− ⇒ B+

)+)+

(3.11)

(
H+ ⇒

(
¬A+ ∨ B−

)−)−
,
(
H− ∨ ¬A+

)− ⊢
(
¬
(
K+ ⇒ A−

)−
∨
(
K− ⇒ B+

)+)+

(3.12)

1As we will see later, this is the case because there is no β-related formula on the path from the
negative occurrence to the root of the formula.

33

CHAPTER 3. ASSERTION LEVEL PROOFS

(
H+ ⇒

(
¬ A+ ∨ B−

)−)−
,
(
H− ∨ ¬A+

)− ⊢
(
¬
(
A−

)+
∨
(
K− ⇒ B+

)+)+

(3.13)

(
H+ ⇒ B−

)−
,
(
H− ∨ ¬ A+

)−
⊢
(
¬
(
A−

)+
∨
(
K− ⇒ B+

)+)+

(3.14)

(
H+ ⇒

(
B−

)−)−
, H− ⊢

(
¬
(
A−

)− ∨
(
K− ⇒ B+

))+

(3.15)

B− , H− ⊢
(
¬
(
A−

)− ∨K− ⇒ B+

)+

(3.16)

Formulation 2:

(
H+ ⇒

(
A+ ⇒ B−

)−)−
,
((
A+ ∧ K+

)+
⇒ H−

)−

⊢
((

K+ ⇒ A−
)−

⇒
(
K− ⇒ B+

)+)+

(3.17)

(
H+ ⇒

(
A+ ⇒ B−

)−)−
,
(
A+ ⇒ H−

)− ⊢
((

K+ ⇒ A−
)−

⇒
(
K− ⇒ B+

)+)+

(3.18)

(
H+ ⇒

(
A+ ⇒ B−

)−)−
,
(
A+ ⇒ H−

)− ⊢
(
A− ⇒

(
K− ⇒ B+

)+)+

(3.19)

(
H+ ⇒ B−

)−
,
(
A+ ⇒ H−

)−
⊢
(
A− ⇒

(
K− ⇒ B+

)+)+

(3.20)

(
H+ ⇒ B−

)−
, H− ⊢

(
A− ⇒

(
K− ⇒ B+

)+)+

(3.21)

B− , H− ⊢
(
A− ⇒

(
K− ⇒ B+

)+)+

(3.22)

Finally, we consider the so-called Statman tautologies [Sta78], which are interesting
because their proofs grow exponentially with the size of the formula in the cut-free sequent
calculus.

Example 3.2.3. The nth Statman tautology Gn (n ≥ 1) is defined as follows:

Fk =
k∧

j=1

(cj ∨ dj)

A1 = c1 B1 = d1

Ai+1 = Fi ⇒ ci+1 Bi+1 = Fi ⇒ di+1

Gn = ([[(A1 ∨B1) ∧ . . .] ∧ (An ∨ Bn)]) ⇒ (cn ∨ dn)

34

3.2. DEEP APPLICATION

F1 = (c1 ∨ d1) (3.23)

F2 = (c1 ∨ d1) ∧ (c2 ∨ d2) (3.24)

F3 = [(c1 ∨ d1) ∧ (c2 ∨ d2)] ∧ (c3 ∨ d3) (3.25)

A1 = c1 B1 = d1 (3.26)

A2 = (c1 ∨ d1) ⇒ c2 B2 = (c1 ∨ d1) ⇒ d2 (3.27)

A3 = (c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ c3 B3 = (c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ d3 (3.28)

Thus we get for n = 2

⊢ ((c1 ∨ d1) ∧ (((c1 ∨ d1) ⇒ c2) ∨ ((c1 ∨ d1) ⇒ d2))) ⇒ (c2 ∨ d2) (3.29)

and for n = 3 we obtain

(c1 ∨ d1) ∧ [(c1 ∨ d1) ⇒ c2 ∨ (c1 ∨ d1) ⇒ d2]

∧ [[(c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ c3] ∨ [(c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ d3]]

⇒ (c3 ∨ d3) (3.30)

Theorem 3.2.4 (Statman [Sta78]). Every proof of Gn in Gentzen’s system without cut
has size O(2n).

This is because the proofs have 2n branches, illustrated below for n = 2:

(c1 ∨ c2), c2 ⊢ c2, d2
(c1 ∨ c2), c2 ⊢ (c2 ∨ d2) (c1 ∨ d1) ⊢ c1 ∨ d1, c2 ∨ d2

(c1 ∨ d1), ((c1 ∨ d1) ⇒ c2) ⊢ (c1 ∨ c2)
...

(c1 ∨ d1), (((c1 ∨ d1) ⇒ c2) ∨ (c1 ∨ d1) ⇒ d2)) ⊢ c2 ∨ d2
(c1 ∨ d1) ∧ (((c1 ∨ d1) ⇒ c2) ∨ (c1 ∨ d1) ⇒ d2)) ⊢ c2 ∨ d2

⊢ (c1 ∨ d1) ∧ (((c1 ∨ d1) ⇒ c2) ∨ (c1 ∨ d1) ⇒ d2)) ⇒ c2 ∨ d2
In contrast, the applicability of the inference rules at any depth, as provided by deep

inference, allows us to start the construction of the proof from subformulas, that is, from
inside out. As a consequence, the decomposition steps that introduce the branching and
give rise to the complexity are no longer needed, as shown below:

⊢
[
(c−1 ∨ d−1)− ∧

(
((c+1 ∨ d+1)+ ⇒ c−2)

− ∨ ((c+1 ∨ d+1)+ ⇒ d−2)
−
)−]

⇒ (c+2 ∨ d+2)+

(3.31)

⊢
[
(c−1 ∨ d−1)− ∧ (c−2 ∨ ((c+1 ∨ d+1)+ ⇒ d−2))

]−
⇒ (c+2 ∨ d+2)+ (3.32)

⊢
[
(c−1 ∨ d−1)− ∧ (c−2 ∨ d−2)−

]−
⇒ (c+2 ∨ d+2)+ (3.33)

We will show in Chapter 13 that we can prove these problems in O(n2) due to deep
inference, thus the speedup is exponential. While other calculi, such as the matrix or
connection calculus, also allow for an efficient solution of the problem, the interesting
feature of our approach is that in each step the proof state is manipulated, and the
result of the manipulation can be presented to the user. Therefore, partial proofs can be
presented to the user. In contrast, a partial set of connections generally does not contain
any information that can be understood by a human.

35

CHAPTER 3. ASSERTION LEVEL PROOFS

3.3 Summary

In this chapter we introduced the assertion level which was originally developed by Huang
in the context of proof presentation and which will become the basic reasoning layer for
this thesis. Thereby, our presentation emphasized the relation of assertion applications
with existing approaches such as derived rules and supernatural deduction and illustrated
how shorter and more readable proofs can be constructed. We then showed how the length
of a proof can further be reduced by allowing the application of inference rules deeply
inside formulas. We also showed that deep inference makes proof search more robust
against reformulations of a problem.

36

4
Foundations

We shall now present an overview of the basic notions and methodologies on which our
proof theory will be based. Our basic representation language is a simply typed lambda
calculus [Chu40], enriched by polymorphic functions. We then introduce the semantics for
higher-order logic based on the general models of Henkin [Hen50], taken into account An-
drews’ corrections [And72]. Recently, Henkin models have been generalized in [BBK04],
in which Andrews corrections correspond to the so-called property q. However, the under-
lying proof theory remains the same. Finally, we present uniform notation and polarities
in the style of Smullyan [Smu68] as a convenient means to present the proof theory in a
simple and elegant way.

4.1 Syntax, Semantics and Uniform Notation

4.1.1 Syntax

The simply typed lambda calculus (λ→) is a typed interpretation of the lambda calcu-
lus with only one type constructor → that builds function types. By introducing types,
Church restricted the set of all (untyped) lambda terms to those which can get assigned
a unique type. Types were originally introduced as a means to avoid paradoxes such as
Russell’s Paradox [Rus03]. “Let”-polymorphism, also called Rank-1 (prenex) polymor-
phism, essentially adds type schemas and allows the definition of polymorphic functions.
An example is the function length to compute the length of a list, which can be defined
independently of the types of the elements.

Definition 4.1.1 (Types). Let TB be a nonempty, finite set of symbols, whose members
will be called base types. Moreover, let TV be a nonempty, finite set of symbols disjoint
from TB, whose members will be called type variables. The set T of types is the smallest
set satisfying

• if τ ∈ TB then τ ∈ T (called a base type)

• if τ ∈ TV then τ ∈ T (called a type variable)

• if τ1 ∈ T and τ2 ∈ T then (τ1 → τ2) ∈ T (called functional types)

37

CHAPTER 4. FOUNDATIONS

Notation 4.1.2. • If τ1, . . . , τn ∈ T then τ1 → τ2 → . . .→ τn stands for (τ1 → (τ2 →
. . . → (τn−1 → τn) . . .)), that is the functional type constructor → associates to the
right.

• If τ0, τ1, . . . , τn ∈ T then τ1 × . . .× τn → τ0 stands for (τ1 → (. . .→ (τn → τ0)))

Informally, we think of τ1 → τ2 as the set of all functions with domain τ1 and range τ2
that fulfill a certain property. In the following we assume a fixed set of base types TB with
ι, o ∈ TB, where o denotes the type of truth values and ι denotes the type of individuals .
We will omit types if they are clear from the context.

Definition 4.1.3 (Signature). Let T be a set of types. A signature over T is a collection
of sets (Στ)τ∈T . The elements of Στ are called constants.

Given a signature Σ, the well-typed λ-terms are defined as follows:

Definition 4.1.4 (λ-terms). Let Σ be a signature over T , and for each τ ∈ T let Vτ

be an infinite set of variables. For each τ ∈ T , we define the typed λ-terms of type τ ,
denoted by TΣ,V,τ , as follows:

(i) if c ∈ Στ then c ∈ TΣ,V,τ . We say that c is a constant of type τ , also denoted by cτ .

(ii) if v ∈ Vτ then v ∈ TΣ,V,τ . We say that v is a variable of type τ , also denoted by vτ .

(iii) if Aτ1→τ2 ∈ TΣ,V,τ1→τ2 and Bτ1 ∈ TΣ,V,τ1 then (AB) ∈ TΣ,V,τ2. We say that (AB) is
an application of type τ2, denoted by (AB)τ2.

(iv) if Aτ1 ∈ TΣ,V,τ1 and xτ2 ∈ Vτ2 then λx A ∈ TΣ,V,τ2→τ1. We say that λx A is an
abstraction of type τ2 → τ1.

The set of all λ-terms over Σ is defined as

TΣ,V :=
⋃

τ∈T

TΣ,V,τ

Terms of type o are also called formulas, denoted by wff .

In this thesis we will consider the higher-order logic CHOL, whose signature is given
below:

CHOL - classical higher-order logic Assume T is the set of higher-order types over
an arbitrary set of base types TB and additional base type o.
ΣCHOL := {Trueo, Falseo,¬o→o,∨o×o→o,∧o×o→o,⇒o×o→o,⇔o×o→o, ∀(τ→o)→o,
∃(τ→o)→o and =τ×τ→o for all τ ∈ T }. The CHOL terms are the λ-terms over ΣCHOL.

Substitutions are finite mappings from variables to terms, and extend homomorphi-
cally from variables to terms. Formally, they are defined as follows:

Definition 4.1.5 (Substitution). Let Σ be a higher-order signature over T and let V the
set of variables over T . A substitution is a type preserving function1 σ : V → TΣ,V . The
homomorphic extension of σ is the extension of σ to terms, i.e., the application of σ to
terms, defined by

σ(t) =

σ(t) if t ∈ V or t ∈ Σ

(σ(t1)σ(t2)) if t = (t1t2)

λyτ σ[y/y](t′) if t = λyτ t′

1i.e., for all variables x : τ , σ(x) has also type τ

38

4.1. SYNTAX, SEMANTICS AND UNIFORM NOTATION

Here σ[y/x] denotes the function which behaves like σ except for x on which it yields y.
The domain of a substitution σ, denoted by dom(σ) is the set of variables x for which
σx 6= x.

Notation 4.1.6. Suppose σ is a substitution having finite domain; say {x1, . . . , xn} =
dom(σ) , and for each i = 1, . . . , n xiσ = ti. Then we write [t1/x1, . . . , tn/xn]. In
particular our notation for the identity substitution is {}.

Remark 4.1.7. A substitution σ is idempotent, if its homomorphic extension is idem-
potent, i.e., σ(σ(t)) = σ(t) ∀t ∈ TΣ,V

In the following we introduce the βη long normal form, based on the β and η reduction
rules. The βη normal form is unique up to renaming of bound variables (α renaming).

Definition 4.1.8 (Free Variables). Let M ∈ TΣ,V be a term. The set of free variables of
M , denoted by FV (M), is inductively defined as follows:

(i) FV (x) = {x} for x ∈ V

(ii) FV (c) = {} for c ∈ TΣ

(iii) FV (MN) = FV (M) ∪ FV (N)

(iv) FV (λx A) = FV (A)− {x}

Definition 4.1.9 (λ-conversion). Let A,B ∈ TΣ,V1 be λ-terms. We define three rules of
λ-conversion:

(i) λXτ1 Aτ2 →α λYτ1 Aτ2 [Y/X], provided Y 6∈ FV (A) (α-conversion)

(ii) (λXτ1 Aτ2)Bτ1 →β Aτ2 [B/X] (β-conversion)

(iii) (λXτ1 Aτ1τ2Xτ1) →η Aτ1τ2 if X 6∈ FV (A) (η-conversion)

If the conversion rule is used from left to right in (ii) or (iii), we speak of reduction, if it
is used from right to left we speak of expansion.

Definition 4.1.10 (βη long normal form). A term t ∈ TΣ,V is in βη long normal form if
it cannot be β-reduced or η-expanded.

Note that a term can always be converted into βη long normal form (see [Hue76] for
details). From now on, we assume that every substitution is idempotent, as this can
always be achieved. Furthermore we assume that all terms are in βη long normal form.
We now describe positions in λ-terms by sequences over natural number. The sequence
corresponds to a path to the subterm. The empty sequence is denoted by ǫ.

Definition 4.1.11 (Term Positions). Let N∗ be the set of words over the non negative
integers and let ǫ denote the empty word in N

∗. Let Σ be a signature, V variables over T
and A ∈ TΣ,V be a term. The set of term positions is inductively defined on the structure
of A:

O(A) =

{ǫ} A is a constant or a variable

{ǫ} ∪ {0.p|p ∈ O(t′)} A is an abstraction of the form λx.t′

{ǫ} ∪ ⋃n
i=0{i.p|p ∈ pos(ti)} A is an application of the form t0 t1 . . . tn

39

CHAPTER 4. FOUNDATIONS

where ’.’ denotes the concatenation of words in N
∗.

Let A ∈ TΣ,V be a term and π ∈ O(A) a term position. The subterm at term position
π, denoted by [A]π, is inductively defined as follows:

[A]π =

A if π = ǫ

[ti]p if π = i.p and A = t0 t1 . . . tn

[t′]p if π = 0.p and A = λx t′

Example 4.1.12. Consider the formula A := λxι sιιxι. Then O(A) = {ǫ, 0, 00, 01}. The
subterms of A can be represented in a treelike structure, where the nodes represent the
subterms at position ǫ, 0, 00, 01 respectively:

Definition 4.1.13 (Ordering on Term Positions). Let p, q be term positions. Then p ≤ q
if there exists p′ ∈ N ∗ with pp′ = q.

4.1.2 Type Inference – Algorithm W
In practice, we do not require the user to annotate each term with its corresponding type.
Rather, we use the Hindley-Milner type inference algorithm W as a means to automat-
ically derive the principal type (most general type) of a given term t. The algorithm
relies on type schemes, which are types that can additionally be universally closed at the
outermost level.

Definition 4.1.14 (Type Schema). The set of type schemas, denoted by T S, is the
smallest set satisfying the following conditions:

• If t ∈ T , then t ∈ T S

• Let t ∈ T be a type and tv1, . . . , tvn ∈ TV be type variables. Then ∀tv1 . . . ∀tvn.t ∈ T S

A type schema with bound type variables is called generic or polymorph, otherwise it is
called monomorph.

Let us stress here that all universal quantifiers occur in the beginning of a type scheme,
i.e., a type τ cannot contain a type scheme σ.

Definition 4.1.15 (Type Substitution). A type substitution is a finite map TV → T .

Type schemas allow the binding of/generalization over type variables in order to allow
the instantiation of a let expression with different types within an expression. This makes
expression as the following typable2:

let id = λx.x in pair(id(4), id(true)) (4.1)

The type environment contains type schemas for declared constants. This binding
induces a partition of the type variables in free and bound type variables. A type schema
can be instantiated by substituting types for all bound type variables.

Definition 4.1.16 (Free Type Variables). Let τ be a type schema. The free variables
FV3 of τ are defined as follows:

2Note that id is used with type int→ int as well as with type o→ o
3we use the same symbol for the free variables of a term and a type as the argument to which the

function is applied to allows for a clear distinction

40

4.1. SYNTAX, SEMANTICS AND UNIFORM NOTATION

• FV(α) = α where α is a type variable

• FV(τ1 → τ2) = FV(τ1) ∪ FV(τn)

• FV(∀τ1.τ) = FV(τ)\τ1
In the original setting, the type environment Γ is initially empty and can be extended

through “let”-expressions. Within our setting, the constants are defined within a theory,
similar to the let constructs in the original framework. Formally, a type environment is
defined as follows:

Definition 4.1.17 (Type Environment). Let Id be a set of identifiers. A type environ-
ment is a mapping Id→ T S.

We use gen(Γ, τ) to bind the type variables of τ which are not contained within the
context Γ, known as generalization. Generalization of a type τ can be understood as
closing the expression by quantification over the type variables that are free in τ but
not free in the type environment Γ. Moreover, we write unify(τ1, τ2) to unify types τ1
and τ2. In the case that the unification fails, the term on which the type inference was
invoked is not typable and a type error is signaled. Otherwise, the substitution is applied
to the type environment Γ. In its original form, the algorithm W is pure functional;
in this case a substitution as well as a counter for new type variables are maintained
within the algorithm to guarantee that new type variables are always fresh and to keep
track of changes in the type environment. In an imperative implementation, those effects
can be modeled via side effects. We describe the standard algorithm, which supports let
statements to introduce polymorphism. We use the notation Γ � e : τ to indicate that
in the type environment Γ, the expression e has type τ ; we write Γ(x) to describe the
look-up of the variable x in the type environment Γ.

Id
Γ � x : [αi/τi]

x : ∀τ1 . . . τn.τ ∈ Γ; αi new

Appl
Γ � e1 : τ1 → τ2 Γ � e2 : τ

′
1

Γ � e1 e2 : τ2σ
unify(τ1, τ

′
1) = σ Abs

Γ ∪ x : α� e : τ2

Γ � λx.e : Γ(x) → τ2
α new

Let
Γ � e1 : τ Γ ∪ x1 : gen(Γ, τ) � e : τ ′

Γ � let x1 = e1 in e : τ
′

The algorithm above can be shown to be sound : If, given an environment Γ and a
term t, the algorithm W terminates with the resulting type τ , then we can prove that t
has type τ . Moreover, it is complete, meaning that for every provable type judgement τ
for a term t and an environment Γ, the algorithm terminates with an result τ for t and
Γ.

4.1.3 Semantics

This section introduces the model-theoretic semantics of CHOL, which is standard: Fol-
lowing Henkin [Hen50] and Andrews [And72] we will define the notion of a general model,
which provides a means for giving mathematical meaning to each well-formed expression.

First we define the notion of a frame.

41

CHAPTER 4. FOUNDATIONS

Definition 4.1.18 (Frame). A frame is a T -indexed family {Dτ}τ∈T of nonempty do-
mains, such that Do = {⊤,⊥} and Dτ1→τ2 is a collection of functions mapping Dτ1 into
Dτ2, for τ1, τ2 ∈ T . The member of Do are called truth values.

Assignments assign values to variables:

Definition 4.1.19 (Assignment). Let {Dτ}τ∈T be a frame. An assignment is a function
ρ : V → ∪τ∈TDτ such that for each xτ ∈ Vτ ρ(xτ) ∈ Dτ .

For the definition of the function spaces in a frame we use Λxτeτ ′ to denote a function
from Dτ into Dτ ′ in order to distinguish it from the syntax.

Definition 4.1.20 (Extensional General Models). A frame {Dτ}τ∈T is an extensional
general model in the sense of [And72] if it satisfies the following conditions:

(a0) For each τ ∈ T , Dτ×τ→o contains the identity relation q on Dτ×τ→o,

(a1) Do→o contains the negation function n such that n(⊤) = ⊥ and n(⊥) = ⊤,

(a2) Do→o contains Λxo⊤ and Λxoxo. Also, Do→o contains the alternation function a
such that a(⊤) = Λxo⊤ and a(⊥) = Λxoxo,

(a3) For each τ ∈ T , D(τ→o)→o contains a function π(τ→o)→o such that for all g ∈ Dτ→o

π(τ→o)→o(g) = ⊤ if g = Λxτ⊤,

(b) For all τ, τ ′ ∈ T and all e ∈ Dτ the function Λxτ ′e is in Dτ ′→τ ,

(c) For all τ, τ ′ ∈ T the function ΛxτΛyτ ′xτ is in Dτ×τ ′→τ ,

(d) For all τ, τ ′, τ ′′ ∈ T , all x ∈ Dτ×τ ′→τ ′′ and all y ∈ Dτ→τ ′ the function Λzτx(z, y(z))
is in Dτ→τ ′′,

(e) For all τ, τ ′, τ ′′ ∈ T and all x ∈ Dτ×τ ′→τ ′′ the function Λyτ→τ ′Λzτx(z, y(z)) is in
D(τ→τ ′)×τ→τ ′′,

(f) For all τ, τ ′, τ ′′ ∈ T the function Λxτ×τ ′→τ ′′Λyτ→τ ′Λzτx(z, y(z)) is in
D(τ×τ ′→τ ′′)×(τ→τ ′)×τ→τ ′′.

The interpretation of a λ-term t by an extensional general model M := {Dτ}τ and with
respect to an assignment ρ is the usual interpretation defined by:

• M(o) := Do = {⊤,⊥},

• Mρ(True) := ⊤,Mρ(False) := ⊥, Mρ(¬) := n, Mρ(=τ×τ→o) := q ∈ Dτ×τ→o, and
the logical functions ∧,∨,⇒, and ⇔ have the classical interpretation,

• Mρ(∀(τ→o)→o) := π ∈ D(τ→o)→o, and M
ρ(∃(τ→o)→o) :=Mρ(λxτ→o¬(∀(λyτ¬(xy)))),

• Mρ(cτ) ∈ Dτ , for any constant cτ ,

• Mρ(xτ) := ρ(xτ) ∈ Dτ , for any variable xτ ,

• Mρ(t0 t1, . . . , tn) :=Mρ(t0)(M
ρ(t1), . . . ,M

ρ(tn)),

• Mρ(λxτ tτ ′) is the function from Dτ to Dτ ′ that maps every element e ∈ Dτ to
Mρ[e/x](t).

42

4.1. SYNTAX, SEMANTICS AND UNIFORM NOTATION

Definition 4.1.21 (Satisfiable, Valid). A formula Φ is satisfiable if there is a model M
such that for all variable assignments ρ it holds that Mρ(Φ) = ⊤. A formula Φ is valid
if it is satisfiable in all models.

Notation 4.1.22. We write Mρ(Φ) |= Φ to indicate that model M satisfies Φ. We write
|= Φ to indicate that Φ is valid.

4.1.4 Uniform notation and Polarities

In this section, we introduce signed formulas, which are simply formulas annotated with
a polarity which is either positive (+), negative (−), or undefined (◦). Intuitively, the
polarities encode the side in the sequent calculus on which a subformula will occur when
decomposing the formula: If a subformula has negative polarity, it will occur in the
antecedent of the sequent, if it has positive polarity, it will occur in the succedent of the
sequent.

Definition 4.1.23 (Signed Formula). Let Σ be a signature over types T . A signed formula
is a pair 〈A, p〉 where A ∈ TΣ,V,o is a formula and p ∈ {+,−, ◦} is the polarity of A. We
write Ap for 〈A, p〉.

As we will mainly consider signed formulas, we extend the notion of satisfiability to
signed formulas:

Definition 4.1.24 (Satisfiability of Signed Formulas). Let F p be a signed formula of
polarity p, M a model and ρ an assignment. Then we define Mρ |= F+ if Mρ 6|= F .
Conversely, Mρ |= F− if Mρ |= F . We extend the notion to sets of formulas F by
Mρ |= F if ∀F ∈ F Mρ |= F p

The uniform notation assigns uniform types to signed formulas. Intuitively, the uni-
form type encodes the effect of decomposing a formula into its major subformulas in a
sequent calculus proof. There are six uniform types: α and β for propositional connec-
tives, γ and δ for quantification over object variables, and ǫ and ζ for equations and
equivalences.

The uniform types α, β encode the behavior of decomposing a propositional formula.
If a connective has uniform type α and is decomposed using the decomposition rules of the
sequent calculus SK, the resulting subformulas occur in the same sequent of the proof. If
a connective has uniform type β and is decomposed using the decomposition rules of SK,
the proof splits into two branches and both subformulas occur in the different branches.

The uniform notation reduces the number of cases in the definition of a Hintikka set,
which we will need later to show the completeness of assertion level proofs, as well as
in some other proofs. Moreover, it will be used to statically determine the context of a
subformula, based on which transformation rules can be derived.

Example 4.1.25. The following example illustrates how uniform types and polarities
define the behavior of subformulas during the proof. We use subscripts to differentiate
between the two occurrences of A,B and C in the sequent.

43

CHAPTER 4. FOUNDATIONS

axiom
A1, B1 ⊢ A2 A1, B1 ⊢ B2

axiom

A1, B1 ⊢ A2 ∧B2

∧R
A1, B1, C1 ⊢ C2

axiom

A1, B1, (A2 ∧ B2 ⇒ C1) ⊢ C2

⇒L

(A1 ∧B1), (A2 ∧B2 ⇒ C1) ⊢ C2

∧L

(A1 ∧ B1) ∧ (A2 ∧ B2 ⇒ C1) ⊢ C2

⊢ (A1 ∧ B1) ∧ (A2 ∧ B2 ⇒ C1) ⇒ C2

⇒R

∧L

If we annotate the formula (A1 ∧ B1) ∧ (A2 ∧ B2 ⇒ C1) ⇒ C2 with polarities and
uniform types, we get the following:

([
(A−1 ∧α B−1)

− ∧α ([A+
2 ∧β B+

2]
+ ⇒β C−1)

−
]− ⇒α C+

2

)+

(4.2)

Indeed, the single formula C1 occurs only on the left-hand side on top-level of sequences
and the single formula C2 occurs on top-level on the right-hand side of sequences.

Definition 4.1.26 (Uniform Notation). (i) A signed formula is of type α if the ma-
jor subformulas obtained by application of the corresponding decomposition sequent
calculus rule both occur in the same sequent.

(ii) A signed formula is of type β if the application of the corresponding decomposi-
tion sequent calculus rule splits the proof, such that the major subformulas occur in
different sequences.

(iii) A signed formula is of type γ if the corresponding sequent calculus quantifier elimi-
nation rule doesn’t impose any restrictions on the instantiations

(iv) A signed formula is of type δ if the corresponding sequent calculus quantifier elimi-
nation rule imposes an Eigenvariable condition , i.e., the inserted variable has to be
new.

The groups and and notions of instances are given in Figure 4.1.

Notation 4.1.27. • αp(αp1
1 , α

p2
2) denotes the signed formula of polarity p, uniform

type α and subformulas αi with polarities pi respectively.

• βp(βp1
1 , β

p2
2) denotes the signed formula of polarity p, uniform type β and subformulas

βi with polarities pi respectively.

• β
p
(ϕp1

1 , . . . ϕ
pn
n) denotes a signed formula of polarity p, with subformulas ϕi of po-

larity pi, all of which are β-related to each other. It is undefined for the case that
n = 1 and p1 6= p.

β
p
(ϕp1

1 , . . . ϕ
pn
n) :=

false− if n = 0 and p = −
true+ if n = 0 and p = +

ϕp1
1 if n = 1 and p1 = p

⊥ if n = 1 and p1 6= p

βp(ϕp1
1 , ϕ

p2
2) if n = 2

βp(ϕp1
1 , β

p
(ϕp2

2 , . . . , ϕ
pn
n)) else

44

4.1. SYNTAX, SEMANTICS AND UNIFORM NOTATION

α α1 α2

(Φ ∨Ψ)+ Φ+ Ψ+

(Φ → Ψ)+ Φ− Ψ+

(Φ ∧Ψ)− Φ− Ψ−

(¬Φ)+ Φ−

(¬Φ)− Φ+

β β1 β2
(Φ ∧Ψ)+ Φ+ Ψ+

(Φ ∨Ψ)− Φ− Ψ−

(Φ ⇒ Ψ)− Φ+ Ψ−

δ δ0
(∀xΦ[x])+ Φ[x/c]+

(∃x.Φ[x])− Φ[x/c]−

γ γ0
(∀x.Φ[x])− Φ[x/c]−

(∃x.Φ[x])+ Φ[x/c]+

ǫ ǫ1 ǫ2
(Φ ⇔ Ψ)− Φ0 Ψ0

(Φ = Ψ)− Φ0 Ψ0

ζ ζ0 ζ1
(s⇔ t)+ so to

(s = t)+ so t0

Figure 4.1: uniform notation

Given a formula F and a subformula G of F , we can intuitively think of the α-related
subformulas of G in F as formulas which may be used to prove F , i.e., the context of
F . We can think of the β-related formulas as conditions which have to be shown to get
access to the subformula.

We will use the function β to construct new formulas containing the conditions of the
subformula G.

Definition 4.1.28 (α,β-related). Let Φ(F,G)p ∈ TΣ,V,o be a signed formula of polarity
p with subformulas F and G. We say that F and G are α-related (β-related resp.) in
Φ(F,G)p, if and only if the smallest signed subformula of Φ(F,G) which contains both F
and G is of uniform type α (β resp.).

Moreover, F and G are strictly α (β-related) to each other, if all nodes on the path
between F and G are of type α (β).

Notation 4.1.29. Let Φ[F,G]p be a signed formula with subformulas F and G. If F and
G are α-related, we write F ∼α G. Similarly, we write F ∼β G, if F and G are β-related.

Example 4.1.30. Consider the signed formula F = (Φ ⇒ Ψ∧Ψ′)+. The smallest signed
subformula of F containing both Φ and Ψ′ is the whole signed formula F . As this formula
is of type α, Φ and Ψ′ are α-related.

Lemma 4.1.31 (Satisfiability of Signed Formulas). Let M be a model, µ be a variable
assignment, ϕp a signed L-formula of polarity p. Then it holds that

• Mµ |= (α(α1, α2)) iff Mµ |= (α1) and M
µ |= (α2)

• Mµ |= (β(β1, β2)) iff Mµ |= (β1) or M
µ |= (β2)

• Mµ |= γ(ϕ) iff Mµ |= (γ(t)) for all t ∈ U

• Mµ |= (δ(ϕ) iff Mµ |= (δ(t)) for some t ∈ U

Proof.

Definition 4.1.32 (Literals in Signed Formulas). Let ϕ(F)p be a signed formula of po-
larity p. We say that F is a literal in ϕ(F)p if F has a polarity, but none of its subterms.

45

CHAPTER 4. FOUNDATIONS

4.2 Higher-Order Unification

Unification is the process to find a substitution σ that makes two given input terms s and
t syntactically equal, i.e., sσ = tσ. If such a substitution exists, the substitution is called
a unifier of s and t. While first-order unification is decidable and all unifiable terms have a
unique most general unifier, unification in the higher-order context is much more difficult.
Already the second order case has been shown to be undecidable by Goldfarb [Gol81].
In the even more general higher-order case, unification is undecidable and lacks most
general unifiers (see [BS94] for a survey). In the sequel, we present a version of the
transformation system PT for higher-order preunification of Snyder and Gallier [SG89],
which works sufficiently well in practice. As usual, we assume all terms to be in βη long
form, that is, of the form

λx1 . . . xn.f(u1 . . . up) (4.3)

We use the standard terminology and call f the head of the term. If the head of a term
is a constant or one of the variables x1, . . . , xn, it is called rigid , otherwise it is called
flexible. Moreover, we denote a unification problem between s and t by s =? t, and make
use of the convenient notation to denote a list of syntactic objects s1, . . . , sn where n ≥ 0
by sn. n-fold abstraction and application is written as λxn.s and a(sn), representing the
terms λx1 . . . λxn.s and (. . . (a s1) . . . sn), respectively.

Preunification differs from unification by the handling of so-called flex-flex pairs, which
are treated as constraints and not attempted to be solved. The important insight is that
flex-flex pairs

λx.P (. . .) = λx.P ′(. . .) (4.4)

are guaranteed to have at least one unifier of the form

{P 7→ λxm.a, P
′ 7→ λxn.a} (4.5)

This shrinks the search space, as flex-flex pairs might have an infinite number of unifiers.
Rigid-rigid pairs are solved as in the first order case. What remains are flex-rigid pairs.
There are two possible strategies, projection and imitation. In the case of projection, the
head of the rigid term occurs within the bound variables. For example, the flex-rigid pair
F (a) =? a can be solved using the projection F 7→ λx.x. In the second case, the idea is to
partially substitute for the flexible variable the function of the rigid term. For example,
the flex-rigid pair F (a) =? a can be solved using imitation F 7→ λx.a.

Deletion:

{t =? t} ∪ S ⇒ S (4.6)

Decomposition:

{λxk.v(tn) =? λxk.v(t′n)} ∪ S ⇒ λxk.tn =? λxk.t′n ∪ S (4.7)

Elimination:

{F =? t} ∪ S ⇒ ΘS (4.8)

provided that F /∈ FV(t) and Θ = {F 7→ t}

46

4.3. SUMMARY

Projection:

{λxk.F (tn) =? λxk.v(t
′
m)} ∪ S ⇒ {λxk.Θti(Hj(tn)) =

? λxk.v(Θt′m)} ∪ΘS (4.9)

where Θ = {F 7→ λxn.xi(Hj(xn))} and Hi new

Imitation:

{λxk.F (tn) =? λxk.f(t′m)} ∪ S ⇒ {λxk.Hm(Θtn) =? λxk.Θt′m} ∪ΘS (4.10)

where Θ = {F 7→ λxn.f(Hm(xn))} and Hi new

Example 4.2.1. The following example has an infinite number of preunifiers. We show
only a single derivation:

{F (f(a)) =? f(F (a))} (4.11)

⇒Imitf(G(f(a))) =? f(f(G(a)));F 7→ λx.f(G(x)) (4.12)

⇒DecG(f(a)) =? f(G(a));F 7→ λx.f(G(x)) (4.13)

⇒Projf(a) =? f(a);F 7→ λx.f(G(x)), G 7→ λx.x (4.14)

4.3 Summary

In this chapter we have formally introduced the syntax and semantics of classical higher-
order logic which we will use as foundation within this thesis. We have also presented the
typing and unification algorithms that are used within the underlying implementation.
We also introduced the uniform notation, which will later be used to characterize the deep
application of inference rules.

47

5
Core Proof Theory

We shall present the Core calculus that has been developed by Autexier in his PhD thesis
([Aut03]) and which we will use as underlying calculus. Core’s proof theory is a meta
proof theory and supports a variety of logics. Even though the subsequent results can
easily be generalized to all logics supported by the Core framework, we restrict our self
to the case of higher-order logic, as it alleviates the subsequent presentation considerably.

The Core calculus relies on an extension of extensional expansion proofs and is based
on the idea to construct a proof by transforming parts of a given formula until the trivial
formula true is obtained. The formula represents the conjecture to be proven together with
the underlying background theory in which the proof attempt takes place. Extensional
expansion proofs are extensions of extensional expansion trees(see [Pfe87] for details) and
support equivalences, equations, the atoms true and false, and overcome the restriction
that the scope of a negation is just one literal. Moreover, they include a rule to dynamically
increase the multiplicities of meta-variables on the fly.

A main feature of the Core calculus is that the logical context of any part of a formula
can be statically determined by its structure, formalized in the notion of replacement rules .
As replacement rules can be applied to any subformula, proof transformation is possible
without decomposing the formula, as is the case in the sequent calculus.

Internally, a Core proof state consists of two complementary parts: an indexed for-
mula tree for the initial conjecture (including the theory), and a free variable copy of
the indexed formula tree, called free variable indexed formula tree. The former is used
to check the admissibility of substitutions, while the latter is actively transformed by the
Core calculus rules. Before presenting the calculus in detail, let us state the main result
of the calculus:

Theorem 5.0.1 (Soundness and Completeness of the Core [Aut03]). The Core calculus
is sound and complete.

5.1 Indexed Formula Trees

Following [Aut03], we define indexed formula trees in two steps: First, we define the
so-called initial indexed formula tree, which is the formula tree initially obtained from a

49

CHAPTER 5. CORE PROOF THEORY

given formula. In a second step, we then add nodes that represent the introduction of
Leibniz’ equality, extensionality introduction as well as the introduction of cut.

Definition 5.1.1 (Initial Indexed Formula Tree). We define initial indexed formula trees
inductively over the structure of formulas. Each node of the tree has a formula as label,
a polarity, and a uniform type. All nodes, except for the root node, have also secondary
uniform types, which is the uniform type of their parent nodes.

1. If Ap is a signed atom of polarity p and without uniform type, then Q = Ap
· is

an initial indexed formula tree of polarity p and no uniform type, which is indi-
cated by the subscript ·. Those literal nodes are leaves of indexed formula trees and
Label(Q) := A.

2. If ǫ(s, t)p is a signed formula of polarity p and uniform type ǫ, then Q = ǫ(s, t)pǫ is
an initial indexed formula tree of polarity p and uniform type ǫ. They are also leaves
of indexed formula trees and Label(Q) := ǫ(s, t).

3. Let Q′ be an initial indexed formula tree of polarity p and Label(Q′) = ϕ and
α−p(ϕp) a signed formula with the opposite polarity −p. Then

Q =
α(ϕ)−pα

Q′

is an initial indexed formula tree with Label(Q) := α(ϕ), of polarity −p and uniform
type α. The secondary type of Q′ is α1.

4. Let Q1, Q2 be initial indexed formula trees with respective polarities p1 and p2, and
assume a signed formula αp(Label(Q1)

p1 ,Label(Q2)
p2) of polarity p. Then

Q =
α(Label(Q1),Label(Q2))

p
α

Q1 Q2

is an initial indexed formula tree with Label(Q) := α(Label(Q1),Label(Q2), polar-
ity p, and uniform type α. The secondary types of Q1 and Q2 are α1 and α2.

5. Let Q1, Q2 be initial indexed formula trees with respective polarities p1 and p2, and
assume a signed formula βp(Label(Q1)

p1 ,Label(Q2)
p2) of polarity p. Then

Q =
β(Label(Q1),Label(Q2))

p
β

Q1 Q2

is an initial indexed formula tree with Label(Q) := β(Label(Q1),Label(Q2), of
polarity p and uniform type β. The secondary types of Q1 and Q2 are β1 and β2.

6. Let γpxϕ(x) be a signed formula of polarity p, and Qi, 1 ≤ i ≤ n initial indexed
formula trees with Label(Qi) = ϕ(Xi) where the Xi are new (meta) variables. Then

Q =
γpxϕ(x)pγ

Q1 . . . Qn

50

5.1. INDEXED FORMULA TREES

is an initial indexed formula tree with Label(Q) := γpxϕ(x), of polarity p and
uniform type γ. All the Qi then have secondary type γ0. The multiplicity of Q is n.
For each 1 ≤ i ≤ n we say that Qi is the binding node for Xi. We also call a
meta-variable Xi a γ-variable.

7. Let δpxϕ(x) be a signed formula of polarity p, and Q′ an initial indexed formula
trees with Label(Q′) = ϕ(x) where x is a new parameter. Then

Q =
δpxϕ(x)pδ

Q′

is an initial indexed formula tree with Label(Q) := δpxϕ(x), of polarity p and
uniform type δ. The secondary type of Q′ is δ0.
We say that Q′ is the binding position for x. We also call a parameter x a δ-variable.

Example 5.1.2. Consider the following formula

(∃δ∀ǫ.|x− a| < δ ⇒ |f(x)− f(a)| < ǫ) ⇒ ∃∀ǫ′.|f(x)− f(a)| < ǫ (5.1)

whose initial indexed formula tree is shown below:

(∃δ∀ǫ.|x− a| < δ ⇒ |f(x)− f(a)| < ǫ) ⇒ (∀ǫ′.|f(x)− f(a)| < ǫ′)+α

(∃δ∀ǫ.|x− a| < δ ⇒ |f(x)− f(a)| < ǫ)−δ

(∀ǫ.|x− a| < δ ⇒ |f(x)− f(a)| < ǫ)−γ

(|x− a| < δ ⇒ |f(x)− f(a)| < ǫ)−β

|x− a| < δ+◦ |f(x)− f(a)| < ǫ−◦

(∀ǫ′.|f(x)− f(a)| < ǫ′)+δ

(|f(x)− f(a)| < ǫ′)+◦

Semantically, the validity of indexed formula trees is defined via the notion of a path,
which reflects the satisfiability of formulas with respect to its constituents.

Definition 5.1.3 (Paths). Let Q be an indexed formula tree. Then a path in Q is a
sequence ≪ Q1, . . . , Qn ≫ of α-related nodes in Q. The sets P(Q) of paths through Q is
the smallest set containing {≪ Q≫} and which is closed under the following operations:

α-Decomposition: If Q′ is a node of primary type α and subtrees Q1, Q2, and P ∪ {≪
Γ, Q′ ≫} ∈ P(Q), then P ∪ {≪ Γ, Q1, Q2 ≫} ∈ P(Q).

β-Decomposition: If Q′ is a node of primary type β and subtrees Q1, Q2, and P ∪ {≪
Γ, Q′ ≫} ∈ P(Q), then both P ∪ {≪ Γ, Q1 ≫} ∈ P(Q) and P ∪ {≪ Γ, Q2 ≫} ∈
P(Q).

γ-Decomposition: If Q′ is a node of primary type γ and subtrees Q1, . . . , Qn, and P∪{≪
Γ, Q′ ≫} ∈ P(Q), then P ∪ {≪ Γ, Q1, . . . , Qn ≫} ∈ P(Q).

δ-Decomposition: If Q′ is a node of primary type δ and subtree Q′, and P ∪{≪ Γ, Q′ ≫
} ∈ P(Q), then P ∪ {≪ Γ, Q′ ≫} ∈ P(Q).

51

CHAPTER 5. CORE PROOF THEORY

A common operation is to replace meta-variables by actual terms within a proof. The
“occurs-in-check” is realized as an acyclicity check of a directed graph obtained from the
structure of the indexed formula tree and additional edges between binding nodes of the
instantiated meta variable and its occurring parameters. This check corresponds to the
eigenvariable condition in the sequent calculus and ensures that eigenvariables have to be
introduced before they are assigned to meta-variables. A similar realization can be found
in [KO99].

Definition 5.1.4 (Structural Ordering). Let Q be an indexed formula tree. The structural
ordering ≺Q is a binary relation among the nodes in Q defined by: Q1 ≺Q Q2 iff Q1

dominates Q2 in Q.

Definition 5.1.5 (Quantifier Ordering). Let Q be an indexed formula tree and σ an
(idempotent) substitution for meta-variables bound on γ0-type positions in Q by terms
containing only meta-variables and parameters bound in Q. The quantifier ordering ≺V

induced by σ is the binary relation defined by: Q0 ≺V Q1 iff there is an X ∈ dom(σ)
bound on Q1 and there occurs in σ(X) a parameter bound on Q0.

Combining both relations results in the reduction relation, which needs to be acyclic
for a substitution σ in order to be applicable.

Definition 5.1.6 (Reduction-Relation ⊳). Let Q be an indexed formula tree and σ be a
variable substitution. The reduction relation ⊳ is the transitive closure of the union of ≺Q

and ≺V , i.e. ⊳ := (≺Q ∪ ≺V)
+.

Definition 5.1.7 (Admissible Substitutions). Let Q be an indexed formula tree, σ a
substitution, and ⊳ the respective reduction relation. σ is admissible, if and only if

⊳ (:= (≺Q ∪ ≺V)
+) (5.2)

is irreflexive.

Example 5.1.8. Consider the formula (∃xι.∀yι.p(x) ⇒ p(y), which is invalid (e.g., con-
sider p to be the even predicate and let x, y range over the natural numbers). Thus, it
should not be possible to instantiate x with y, which would close the proof. The indexed
formula tree is shown below:

(∃xι.∀yι.p(x) ⇒ p(y))+γ

(∀yι.p(x) ⇒ p(y))+δ

(p(x) ⇒ p(y))+α

p(x)−◦ p(y)+◦

We label the nodes top down and from left to right by n1, . . . , n4. The quantifier ordering
is induced by the substitution σ = {x 7→ y} is n2 → n1, which results, together with the
structural ordering induced by the tree, in the following graph, which is cyclic. Hence the
substitution is not admissible.

n1

n2

n3 n4

52

5.1. INDEXED FORMULA TREES

5.1.1 Instantiations

Core provides a rule to apply admissible substitutions to indexed formula trees.

Definition 5.1.9 (Instantiation of Indexed Formula Trees). Let Q be an indexed formula
tree and X a γ-variable that occurs free in Label(Q). The instantiation of X by t in Q
is defined as

• if Q is a leaf node, then we replace Q by an initial indexed formula tree for
{t/X}(Label(Q)).

• Otherwise, apply {t/X} to the label of Q, and recursively apply it to the subnodes
of Q.

Definition 5.1.10 (Substitution Application on Indexed Formula Trees). Let Q be an
indexed formula tree, σ its actual substitution, and σ′ a new substitution. If σ′ is applicable
on Q with σ, then we apply σ′ to Q. The result of the substitution application is the
(instantiated) indexed formula tree together with the new substitution σ′ ◦ σ.
Example 5.1.11. Take as an example the indexed formula tree for the positive formula

(∀pι→o.∀qι→o.∃rι→o.∀xι.(p(x) ∨ q(x)) ⇒ r(x))+.

The initial indexed formula tree is viewed on the left-hand side of Figure 5.1 and the
actual substitution is the empty substitution. Instantiation of the γ-variable Rι→o with
λyι.p(y)∨ q(y) results in the indexed formula tree on the right-hand side below. Note how
the leaf node R(x)◦+ in the initial indexed formula tree is replaced by an initial indexed
formula tree for the positive βη-normalized formula ({λyι.P (y) ∨Q(y)/R}R(x)))+.

∀p∀q∃r∀x(p(x) ∨ q(x)) ⇒ r(x)+δ

∀r∃r∀x(p(x) ∨ q(x)) ⇒ r(x)+δ

∃r∀x(p(x) ∨ q(x)) ⇒ r(x)+γ

∀x(p(x) ∨ q(x)) ⇒ R(x)+δ

(p(x) ∨ q(x)) ⇒ R(x)+α

(p(x) ∨ q(x))β−

p(x)◦− q(x)◦−

R(x)◦+

∀p∀q∃r∀x(p(x) ∨ q(x)) ⇒ r(x)+δ

∀r∃r∀x(p(x) ∨ q(x)) ⇒ r(x)+δ

∃r∀x(p(x) ∨ q(x)) ⇒ r(x)+γ

∀x(p(x) ∨ q(x)) ⇒ p(x) ∨ q(x)+δ

(p(x) ∨ q(x)) ⇒ p(x) ∨ q(x)+α

(p(x) ∨ q(x))β−

p(x)◦− q(x)◦−

p(x) ∨ q(x)α+

p(x)◦+ q(x)◦+

Figure 5.1: Indexed formula tree before and after the application of the instantiation
rule

5.1.2 Core Expansion Rules

Core comes along with three rules to handle equality and equivalences: Leibniz equality,
functional extensionality, and an expansion rule for equivalences. These rules introduce
new nodes in the indexed formula tree as described below:

53

CHAPTER 5. CORE PROOF THEORY

Leibniz’ Equality

Generally, extensionality refers to the principle to judge objects to be equal if they have
the same external properties. The rule for Leibniz equality states that two terms are
equal iff they share the same properties, i.e.,

x =τ y ≡ ∀P : τ → o.P x⇒ P y (5.3)

It can be applied to terms of the form (s ⇔ t)p and (s = t)p with p ∈ {+,−} and
introduces the right-hand side of (5.3).

Definition 5.1.12 (Leibniz’ Equality Introduction). Let Qe be a leaf node in some in-
dexed formula of polarity p, uniform type e ∈ {ǫ, ζ}, such that Label(Qe) = ǫ(sτ , tτ) or
Label(Qe) = ζ(sτ , tτ). Further let QL be an initial indexed formula tree for the signed
formula (∀Pτ→oP (s) ⇒ P (t))p. Then we can replace Qe by

QLeibniz =
Label(Qe)

p
α

Qe QL

We call the new node a Leibniz node.

Functional Extensionality

Functional extensionality states that two functions that are equal have equal results for
all possible inputs. The rule requires a specific locality to ensure its soundness, namely γ-
locality (resp. δ-locality). The underlying condition is that it is only possible to abstract
over meta-variables bound in some γ-type node (δ-type node) and that it must be possible
to move its quantifier in front of ǫ(s(X), t(X)) (ζ(s(x), t(x))).

Definition 5.1.13 (Local Variables). Given an indexed formula tree Q and a node Q′

inside Q whose label contains a free variable x. If x is bound in some γ-type node in Q,
then x is γ-local for Q′ iff Q′ is the binding position for x or Q′ has a direct parent node
Q′′ such that

• Q′′ is of primary type β, x does not occur in the label of the sibling of Q′, and x is
γ-local for Q′′, or

• Q′ is of either primary type α or γ and x is γ-local for Q′′.

The dual property of a δ-local variable x for some Q′ is defined for variables bound in a
δ-type node and holds iff Q′ is the binding node for x or Q′ has a direct parent node Q′′

such that

• Q′′ is of type α, x does not occur in the label of the sibling of Q′, and x is δ-local
for Q′′, or

• Q′′ is of either type β or δ and x is δ-local for Q′′.

Making use of this definition, the extensionality introduction rule can now be stated
as follows:

54

5.1. INDEXED FORMULA TREES

Definition 5.1.14 (Extensionality Introduction). Let Qe be a leaf in some indexed for-

mula of polarity p, uniform type e ∈ {ǫ, ζ}, such that Label(Qe) =
ǫ

ζ (s, t). Let further be
x a variable that is local for Qe, and QExt be an initial indexed formula tree for the signed
formula (λx.s = λx.t)p. Then we can replace Qe by

QExt−I =
Label(Qe)

p
α

Qe QExt

We call the new node an Extensionality introduction node.

Boolean Extensionality

The rule of Boolean extensionality replaces positive equations and equivalences over for-
mulas Ao and B0 into ((A ⇒ B) ∧ (B ⇒ A))+. As a result, polarities and uniform types
can be assigned to subformulas, having the effect that subsequent resolution replacement
rules can also modify the subformulas.

Definition 5.1.15 (Boolean ζ-Expansion). Let Qζ be a leaf node in some indexed formula
tree of positive polarity, uniform type ζ, and label ζ(A,B), where A and B are of type
o. Let further be QE be an initial indexed formula tree for the signed formula ((A ⇒
B) ∧ (B ⇒ A))+. Then we can replace Qζ by

QζExpansion =
Label(Qζ)

+
α

Qζ QE

We call the new node a ζ-expansion node.

5.1.3 Increasing Multiplicities

It may become necessary to create multiple instances of a subformula to be able to con-
struct a proof. For example, in the sequent calculus, two copies of the subformula ∀x.Q(x)
are needed to construct a proof of ∀x.Q(x) ⇒ Q(a) ∧ Q(b). The number of copies is
known as multiplicity , and the problem of finding this number is what makes first-order
logic undecidable (although semidecidable). Many automatic provers which are based on
tableau or the connection method work by performing an iterative depth-first search on
the maximal number of allowed multiplicities. Core provides a special rule to dynami-
cally increase the multiplicity of a given subformula, which is beneficial in the interactive
setting where the multiplicity cannot be fixed in advance. Essentially, the rule copies
parts of the indexed formula tree, thereby taking modifications by extensionality rules
into account. To understand the rule, observe the following:

• Increasing the multiplicity of one quantifier may require to increase the multiplicity
of others

• It is sufficient to increase only the multiplicities of the quantifiers that are smallest
with respect to the structural ordering, as the multiplicity of the quantifiers below
are increased implicitly.

The following two definitions capture the minimal set of nodes that need to be copied
when increasing the multiplicity.

55

CHAPTER 5. CORE PROOF THEORY

Definition 5.1.16 (Convex Set of Subtrees). Let Q be an indexed formula tree with
admissible substitution σ, K a set of independent1 subtrees of Q.

Then K is convex with respect to σ iff for all Q ∈ K and for all γ-, δ-, -variables x
bound in Q we have: if x occurs in some instance σ(y) for some y, then there exists some
Q′ ∈ K in which y is bound.

Definition 5.1.17 (Determining Nodes to Increase Multiplicities). Let Q be an indexed
formula tree, and σ an admissible substitution. Let Qm be a node of secondary type γ0.
The subtrees to copy in order to increase the multiplicity of Qm’s parent are given by the
predicate µ(Qm) that is inductively defined:

µ(Qm) = {Qm} ∪
(⋃

Q′|Qm≺Q′ µ(Q′)
)
∪
(⋃

Q′∈InstQ(Qm) µ(Q
′)
)

where InstQ(Qm) is the set of binding nodes of variables x, such that y occurs in σ(x)
and y is bound on Qm. If Qm is not a binding node, then InstQ(Qm) = ∅. We denote by
µ(Qm)min the subset of the minimal nodes with respect to ⊳ of µ(Qm).

Being able to determine the minimal set of nodes that need to be copied allows the
definition of the following rule to dynamically increase the multiplicity:

Definition 5.1.18 (Multiplicity Increase). Let Q be an indexed formula tree with actual
admissible substitution σ. Furthermore let Qm be a node of secondary type γ0. In order
to increase the multiplicity of Qm’s parent we determine the set µ(Qm)min . For each
Q′ ∈ µ(Qm)min

1. we copy Q′ to obtain Q′′ together with a variable renaming ρ and an isomorphic
mapping from Q′ to Q′′. Subsequently we add Q′′ to the parent node of Q′;

2. we extend the variable substitutions of σ by

{ρ(σQ(x))/ρ(x) | x ∈ dom(ρ)}

5.2 Free Variable Indexed Formula Trees

A free variable indexed formula tree is defined on top of the underlying indexed formula
tree. It is a free variable representation of the indexed formula tree which is transformed
by the calculus rules and used to represent the proof state to the user. Initially, the
free variable indexed formula tree is a representation of the initial indexed formula tree
without quantifier:

Definition 5.2.1 (Initial Free Variable Indexed Formula Trees). We define initial free
variable indexed formula trees R inductively over the structure of some given indexed
formula tree Q. Each node of the tree has a formula as label, a polarity, a uniform type,
and possibly the indexed formula tree node for which it is a working copy.

1. If Q = Ap
◦ is a literal node, then R = p

◦AQ is a free variable indexed formula tree of
the same label, polarity and uniform type than Q and a reference to Q. They are
leaves of free variable indexed formula trees.

1i.e. no nested subtrees.

56

5.2. FREE VARIABLE INDEXED FORMULA TREES

2. If Q = ǫ(s, t)pǫ , then R = p
ǫǫ(s, t)Q is a free variable indexed formula tree. They are

leaves of free variable indexed formula trees.

3. If

Q =
α(Label(Q′))pα

Q′

is an indexed formula tree and R′ is a free variable indexed formula tree for Q′, then

R =
p
αα(Label(R

′))

R′

is a free variable indexed formula tree for Q.

4. If

Q =
α(Label(Q1),Label(Q2))

p
α

Q1 Q2

is an indexed formula tree, R1 and R2 are free variable indexed formula trees for Q1

and Q2 respectively, then

R =

p
αα(Label(R1),Label(R2))

R1 R2

is a free variable indexed formula tree for Q.

5. If

Q =
β(Label(Q1),Label(Q2))

p
β

Q1 Q2

is an indexed formula tree, R1 and R2 are free variable indexed formula trees for Q1

and Q2 respectively, then

R =

p
ββ(Label(R1),Label(R2))

R1 R2

is a free variable indexed formula tree for Q.

6. If

Q =
γpxϕ(x)pγ

Q1 . . . Qn

is an indexed formula tree and R1, . . . , Rn are free variable indexed formula trees for
Q1, . . . , Qn respectively, then let R′1 := R1, and

R′i+1 :=

p
αα(Label(R

′
i),Label(Ri+1))

R′i Ri+1

for 1 ≤ i ≤ (n − 1). Then R := R′n is a free variable indexed formula tree for Q.
Note that the R′i do not have a reference to Q.

57

CHAPTER 5. CORE PROOF THEORY

7. If

Q =
δpxϕ(x)pδ

Q′

is an indexed formula tree and R is a free variable indexed formula tree for Q′, then
R is also a free variable indexed formula tree for Q.

Example 5.2.2. For the initial indexed formula tree of example 5.1.2, the initial free
variable indexed formula tree looks as follows:

(|x− a| < δ ⇒ |f(x)− f(a)| < ǫ) ⇒ ǫ′.|f(x)− f(a)| < ǫ′)+α

(|x− a| < δ ⇒ |f(x)− f(a)| < ǫ)−β

|x− a| < δ+◦ |f(x)− f(a)| < ǫ−◦

(|f(x)− f(a)| < ǫ′)+◦

Definition 5.2.3 (Equality Free Variable Indexed Formula Trees). Let R, R′ be two free
variable indexed formula trees. We say that R and R′ are α-equal iff their labels are equal
up to the renaming of bound variables.

A free variable indexed formula tree is proved if it has been transformed to trivially
valid formula. Formally, this is captured by the following definition:

Definition 5.2.4 (Proved and Disproved Free Variable Indexed Formula Trees). Let R
be a literal free variable indexed formula tree. Then

• R is proved, iff it has either negative polarity and its label is false, or it has positive
polarity and its label is true, or it is of primary type a ζ and the label is ζ(t, t).

• R is disproved, iff either it has positive polarity and its label is false, or it has
negative polarity and its label is true, or it is of primary type ǫ and the label is
ǫ(t, t).

Let R be a free variable indexed formula tree. R is proved (resp. disproved), iff

• R is a proved (resp. disproved) literal free variable indexed formula tree,

• or R is of primary type α (resp. β) and some subtree is proved (resp. disproved),

• or R is of primary type β (resp. α) and all subtrees are proved (resp. disproved),

Again, the underlying notation is the notion of paths, which carries over from indexed
formula trees:

Definition 5.2.5 (Paths in Free Variable Indexed Formula Trees). Let R be a free variable
indexed formula tree. A path in R is a sequence ≪ R1, . . . , Rn ≫ of α-related nodes in
R. The sets P(R) of paths through R is the smallest set containing {≪ R ≫} and which
is closed under the following operations:

α-Decomposition: If R′ is a node of primary type α and subtrees R1, R2, and P ∪ {≪
Γ, R′ ≫} ∈ P(R), then P ∪ {≪ Γ, R1, R2 ≫} ∈ P(R).

58

5.2. FREE VARIABLE INDEXED FORMULA TREES

β-Decomposition: If R′ is a node of primary type β and subtrees R1, R2, and P ∪ {≪
Γ, R′ ≫} ∈ P(R), then both P ∪ {≪ Γ, R1 ≫} ∈ P(R) and P ∪ {≪ Γ, R2 ≫} ∈
P(R).

We are now in the position of defining a Core proof state, which consists of an indexed
formula tree, its free variable working copy and an actual substitution:

Definition 5.2.6 (Proof State, Soundness & Safeness). Let Q an indexed formula tree,
σ a substitution, and let R be a free variable indexed formula tree. Then a proof state is
denoted by [Q, σ ⊲R]. A proof step is a transformation of some proof state [Q, σ ⊲R] into
another proof state [Q′, σ′ ⊲ R′], which is denoted as [Q, σ ⊲ R] 7−→ [Q′, σ′ ⊲ R′].

Such a proof step is sound iff σ is admissible with respect to Q and there is a satisfiable
path in R then σ′ is admissible with respect to Q′ and there is a satisfiable path in R′.

A proof step is safe iff σ′ is admissible with respect to Q′ and there is an satisfiable
path in R′ then σ is admissible with respect to Q and there is an satisfiable path in R.

Subsequently, we introduce the Core calculus rules which modify the proof state,
which consist of the following twelve rules: contraction and weakening, simplification,
Leibniz equality, functional and Boolean extensionality, instantiation, increase of mul-
tiplicities, rewriting and resolution replacement rules, and the cut rule. All rules are
proven to be sound in [Aut03]. Within our setting, the resolution replacement rules are
of particular interest.

5.2.1 Replacement Rules

As we have seen in Section 4.1.4, uniform notation allows us to determine the logical
context of a subformula by determining the set of all formulas which are α-related to the
subformula. From the context, so-called replacement rules of the form u → 〈v1, . . . , vn〉
can be derived, which allow the replacement of a subtree denoted by u by a newly gen-
erated subtree β(v1, . . . , vn). Core provides two kinds of replacement rules: resolution
replacement rules and rewriting replacement rules. Resolution replacement rules are rules
where the left-hand side is a subformula with a polarity. Rewrite replacement rules stem
from negative equalities and negative equivalences.

Resolution Replacement Rules

In order to formalize the notion of a replacement rule, we first define the conditions of
some subtree as the formal characterization of the β-related formulas of some node.

Definition 5.2.7 (Weakening of Free Variable Indexed Formula Trees). Let R be a free
variable indexed formula tree. The set W(R) of weakened free variable indexed formula
trees for R is defined recursively over the structure of R:

W(R) = {R} iff R is a literal node (5.4)

W(αp(R1, R2)) = {αp(Rw
1 , R

w
2) | Rw

i ∈ W(Ri), i = 1, 2} (5.5)

∪W(R1) ∪W(R2) (5.6)

W(βp(R1, R2)) = {βp(Rw
1 , R

w
2) | Rw

i ∈ W(Ri), i = 1, 2} (5.7)

Definition 5.2.8 (Node Conditions). Let R, c be nodes in some free variable indexed
formula tree, such that c is a parent node of R. Let R1, . . . , Rn be all maximal nodes
that are below c and β-related to R. Then the conditions of R are given by the set
Cc
R := W(R1)× . . .×W(Rn).

59

CHAPTER 5. CORE PROOF THEORY

Definition 5.2.9 (Admissible Resolution Replacement Rules). Let R0, R be nodes in
some free variable indexed formula tree and σ the actual overall substitution. Then R0 →
〈R1, . . . , Rn〉 is an admissible resolution replacement rule for R, iff

1. R0 and R have opposite polarities and are α-related by a node c,

2. and (R1, . . . , Rn) ∈ Cc
R0
.

Definition 5.2.10 (Resolution Replacement Rule Application). Let [Q, σ ⊲R] be a proof
state, a a node in R, and u → 〈v′1, . . . , v′n〉 (n ≥ 0) an admissible resolution replacement
rule for a (i.e. v′i ∈ W(vi), vi β-related to u) such that u and a are connectable, i.e.
if they are equal and have opposite polarity. The application of u → 〈v′1, . . . , v′n〉 to a is
defined as follows:

• For each v′i, we determine the node pi which governs a and and β-insert v′i on pi.

• subsequently, we replace the subtree a by an initial free variable indexed formula tree
for true+, if a has positive polarity, or otherwise for false−.

Example 5.2.11. Consider the formula

([
(A−1 ∧α B−1)

− ∧α ([A+
2 ∧β B+

2]
+ ⇒β C−1)

−
]− ⇒α C+

2

)+

(5.8)

from which we can generate the replacement rule C−1 → 〈A+
2 , B

+
2 〉 for C+

2 . We can
apply this replacement rule to rewrite 5.8 to

([
(A−1 ∧α B−1)

− ∧α ([A+
2 ∧β B+

2]
+ ⇒β C−1)

−
]− ⇒α A+

2 ∧ B+
2

)+

(5.9)

From this formula we can generate the replacement rule 〈(A1 ∧B1)
− → true+〉 and trans-

form 5.9 to

([
(A−1 ∧α B−1)

− ∧α ([A+
2 ∧β B+

2]
+ ⇒β C−1)

−
]− ⇒α true+

)+

(5.10)

Rewriting Replacement Rules

Definition 5.2.12 (Admissible Rewriting Replacement Rules). Let R0, R be nodes in
some free variable indexed formula tree, R0 of primary type ǫ and label ǫ(s, t), and σ
the actual overall substitution. Then s → 〈t, R1, . . . , Rn〉 and t → 〈s, R1, . . . , Rn〉 are
admissible rewriting replacement rules for R, iff

1. R0 and R are α-related by a node c,

2. and it holds that (R1, . . . , Rn) ∈ Cc
R0
.

Definition 5.2.13 (Rewriting Replacement Rule Application On Nodes). Let [Q, σ ⊲ R]
be a proof state, a a node in R of polarity p and let u → 〈v, v′1, . . . , v′n〉 (n ≥ 0) be an
admissible rewriting replacement rule for a, where u and v are the left- and right-hand
sides of an ǫ-type position v0. The application of u → 〈v, v′1, . . . , v′n〉 to a is defined as
follows:

1. Apply the Leibniz’ equality introduction rule to v0 to obtain

β−(P (Label(v))p, P (Label(u))−p),

60

5.2. FREE VARIABLE INDEXED FORMULA TREES

2. Instantiate P by λx.x to obtain β−(Label(v)p,Label(u)−p), which results in the
resolution replacement rule

Label(u)−p → 〈Label(v)p, v1, . . . , vn〉.

3. Apply Label(u)−p → 〈Label(v)p, v1, . . . , vn〉 to a.
Definition 5.2.14 (Rewriting Replacement Rule Application Inside Literal Nodes). Let
[Q, σ ⊲ R] be a proof state, a a literal node of label ϕ in R and of polarity p, π a valid
subterm occurrence inside Label(a), and let u → 〈v, v′1, . . . , v′n〉 (n ≥ 0) be an admissible
rewriting replacement rule for a, where u and v are the left- and right-hand sides of an
ǫ-type position v0 of label ǫ−(s, t). The application of u → 〈v, v′1, . . . , v′n〉 on a at π is
defined as follows:

• Let x1, . . . , xn be the variables that are free in ϕ|π, but not in ϕ. Let further be σ′ a
substitution such that σ′(s) = σ′(ϕ|π) and xi 6∈ dom(σ′), 1 ≤ i ≤ n.

• Let D := {X ∈ dom(σ′) | ∃xi.xi ∈ σ′(X)} be the variables that are instantiated
with a term in which occurs one of the xi. Then σ′ is partitioned into two disjunct
substitutions defined by

σ′1 := σ′|D and σ′2 := σ′|dom(σ′)\D

• Apply the extensionality introduction rule on v0 for the variables in D to obtain v′0
of label λy1. . . . λyns = λy1. . . . λyn.t.

If this fails the rule application fails.

• Otherwise apply the Leibniz’ equality introduction on v′0 to obtain the formula

γpPβp(P (λy1. . . . λyn.s)
−p, P (λy1. . . . λyn.t)

p).

This results in the resolution replacement rule

P (λy1 . . . λyns)
−p → 〈P (λy1 . . . λynt)p, v1, . . . , vn〉.

• Apply the substitution {λf.ϕ|π←f(σ′

1
(yn),...,σ′

1
(y1))/P} ◦ σ′2.

• Apply the (instantiated) resolution replacement rule.

Because the definition is rather technical and involves several steps we illustrate the
rewriting below binders by means of an example.

Example 5.2.15. Suppose the following definition of the operator sum:

sum : (nat → nat) → nat → nat (5.11)

sumf 0 = 0 (5.12)

sumf suc(k) = f suc(k) + sum f k (5.13)

For example, having f = λx.x, the definition works as follows:

sum f suc(suc(0)) = f 2 + sum f suc(0) (5.14)

= f 2 + f 1 + sum f 0 (5.15)

= f 2 + f 1 + 0 (5.16)

We will write sum f in the more intuitive form as
∑n

i=1 f . Moreover, we suppose to

have the rewrite rule x+ 0 = x, which can then be used to rewrite
∑n

i=1 i+ 0 = n(n+1)
2

to
∑n

i=1 i =
n(n+1)

2
. For our example, the indexed formula tree is shown below.

61

CHAPTER 5. CORE PROOF THEORY

∀x.x+ 0 = x⇒ ∑n
i=1 i+ 0 = n(n+1)

2

∀x.x+ 0 = x

x+ 0 = x

x+ 0 x

∑n
i=1 i+ 0 = n(n+1)

2

∑n
i=1 i+ 0 n(n+1)

2
binding node

We consider the substitution {x 7→ i}. The variables which are free in i + 0 but not free
in the overall node are i, thus x1 = i and D = {x}. Moreover, x is γ-local. Therefore,
extensionality introduction is applicable and we introduce a new node that contains λx.x+
0 = λx.x. This results in the following indexed formula tree:

∀x.x+ 0 = x⇒ ∑n
i=1 i+ 0 = n(n+1)

2

∀x.x+ 0 = x

α

x+ 0 = x

x+ 0 x

λx.x+ 0 = λx.x

λx.x+ 0 λx.x

∑n
i=1 i+ 0 = n(n+1)

2

∑n
i=1 i+ 0 n(n+1)

2

However, in general the locality condition is a very strong condition. As a consequence,
conditional rewrites such as x 6= 0 ⇒ x ·x−1 = 1 cannot directly be applied below binders
as rewrite replacement rules, as in this case x is not γ-local. Generally, these implicative
rewrites are of the form

A1 ∧ . . . ∧ An ⇒ s = t (5.17)

or equivalently
A1 ⇒ . . .⇒ An ⇒ s = t (5.18)

where Ai are of type o. Possible solutions are the use of a choice operator or the use of
an if-then-else construct.

5.2.2 Contraction, Weakening and Cut

Similar to the sequent calculus, Core provides a contraction and a weakening rule to
copy a formula or to remove assumptions from the proof state. Beside the standard use
of the cut rule, this rule is used to introduce new variables to the proof state, which can
arise as result of higher-order unification.

Definition 5.2.16 (Contraction Rule). Let [Q, σ ⊲ R] be a proof state, Rc a subtree of
polarity p in R, and R′c a copy of Rc. The application of the contraction rule results in
the proof state [Q, σ ⊲ R′], where R′ is obtained from R by replacing the subtree Rc by

p
αα(Label(Rc),Label(R

′
c))

Rc R′c

62

5.2. FREE VARIABLE INDEXED FORMULA TREES

Definition 5.2.17 (Weakening Rule). Let [Q, σ ⊲ R] be a proof state, Rw a subtree in
R, and R′w ∈ W(Rw). The application of the weakening rule results in a proof state
[Q, σ ⊲ R′], where R′ is obtained from R by replacing the subtree Rw by R′w.

Definition 5.2.18 (Cut Rule). Let [Q, σ ⊲ R] be a proof state, and let R′ be a subtree of
R with polarity p and label ϕ, and A a formula. Assume further, that Q′ is the smallest
subtree of Q that contains all subtrees referenced in R′. The cut over A on R′ results
in a new proof state [Q∗, σ∗ ⊲ R∗], where Q∗ and σ∗ result from the cut over A on Q′ in
Q. From there two free variable indexed formula trees RAp and RA−p of respective signed
labels Ap and A−p are constructed from the initial indexed formula trees for Ap and A−p.
Finally R∗ is obtained from R by replacing the subtree R′ with the subtree

p
ββ

p(αp(Ap, ϕp), αp(A−p, ϕp))

p
αα

p(Ap, ϕp)

RAp R′

p
αα

p(A−p, ϕp)

RA−p R′′

where R′′ is a copy of R′.

5.2.3 Simplification

The simplification rule simplifies a formula by removing solved branches from the free
variable indexed formula tree.

Definition 5.2.19 (Simplification Rule). Let [Q, σ ⊲ R] be a proof state, and let R′ be a
subtree of R. The simplification rule consists of

• if R′ is proved, replace R by an initial free variable indexed formula tree for true+ if
the polarity of R is positive, and otherwise by an initial free variable indexed formula
tree for false−,

• if R′ is disproved, replace R by an initial free variable indexed formula tree for false−

if the polarity of R is positive, and otherwise by an initial free variable indexed
formula tree for true+,

• if R′ a β-type node β(Rp1
1 , R

p2
2)p and not proved, but either R1 or R2 is proved, then

– replace R′ by Ri, if Ri is the non-proven subtree and p = pi, or

– replace R′ by α(Rpi
i)

p, if Ri is the non-proven subtree and p 6= pi

• if R′ an α-type node α(Rp1
1 , R

p2
2)p and not disproved, but either R1 or R2 is disproved,

then

– replace R′ by Ri, if Ri is the non-disproven subtree and p = pi, or

– replace R′ by α(Rpi
i)

p, if Ri is the non-disproven subtree and p 6= pi

• Otherwise to leave R unchanged.

63

CHAPTER 5. CORE PROOF THEORY

5.2.4 Extensionality Rules

The extensionality rules are just variants for the free variable indexed formula tree.

Definition 5.2.20 (Leibniz’ Equality Introduction Rule). Let [Q, σ ⊲R] be a proof state,
Re an ǫ- or ζ-type subtree in R, Qe its associated subtree in Q of polarity p and label
ǫ

ζ (s, t), and Q′e an initial indexed formula tree for (∀P � P (s) ⇒ P (t))p. The application
of the Leibniz’ Equality Introduction rule on Re results in a proof state [Q′, σ⊲R′]. Thereby
Q′ is the result of applying the Leibniz’ equality introduction rule on Qe which consisted
in replacing Qe by

QLeibniz =
Label(Qe)

p
α

Qe Q′e

Furthermore R′ is the result of replacing all literal nodes RL in R that are annotated by
Qe with

p
αα(Label(RL),Label(R

′
L))

RL R′L

where R′L is an initial free variable indexed formula tree for Q′e.

Moreover, it supports the standard (extensional) definition of functional equality,
which says that two functions are (extensionally) equal, if, given the same input, they
always produce the same result2.

f = g ≡ ∀x.f(x) = g(x) (5.19)

Definition 5.2.21 (Extensionality Introduction Rule). Let [Q, σ ⊲ R] be a proof state,
Re an ǫ- or ζ-type subtree in R, Qe its associated subtree in Q of polarity p and label
ǫ

ζ (s, t) with local variable x, and Q′e an initial indexed formula tree for
ǫ

ζ (λx � s, λx � t).
The application of the extensionality introduction rule on Re results in a proof state
[Q′, σ ⊲R′]. Thereby Q′ is the result of applying the extensionality introduction rule on Qe

which consisted in replacing Qe by

QExt =
Label(Qe)

p
α

Qe Q′e

Furthermore R′ is the result of replacing all literal nodes RL in R that are annotated by
Qe with

p
αα(Label(RL),Label(R

′
L))

RL R′L

where R′L is an initial free variable indexed formula tree for Q′e.

Finally, there is a boolean expansion rule that replaces A⇔ B by A⇒ B ∧ B ⇒ A:

2As a consequence, for example, the two functions f(x) = 2x+ 2 and g(x) = 2(x+ 1) are equal, even
though they are defined differently.

64

5.2. FREE VARIABLE INDEXED FORMULA TREES

Definition 5.2.22 (Boolean ζ-Expansion Rule). Let [Q, σ ⊲ R] be a proof state, Rζ a
ζ-type subtree in R, and Qζ its associated subtree in Q of label ζ(Ao, Bo). The application
of the boolean ζ-expansion rule on Rζ results in a proof state [Q′, σ ⊲ R′], where Q′ is the
result of applying the boolean ζ-expansion rule on Qζ which introduces an initial indexed
formula tree QE for ((A ⇒ B) ∧ (B ⇒ A))+. Furthermore, R′ is obtained by replacing
all literal nodes RL of R annotated by Qζ by

p
αα(Label(RL),Label(R

′
L))

RL R′L

where R′L is an initial free variable indexed formula tree for QE.

5.2.5 Instantiation

Definition 5.2.23 (Instantiation Rule). Let [Q, σ ⊲ R] be a proof state, and σ′ an sub-
stitution such that σ′ ◦ σ is admissible. The instantiation rule results in a proof state
[Q′, σ′ ◦σ⊲R′] where Q′ results from Q as defined in Definition (5.1.9) and R′ results from
R by applying the substitution to the non-literal nodes and by replacing all literal nodes
in R with associated literal node QL in Q that have been replaced in Q′ by some Qσ′

L with
an initial free variable indexed formula tree for Qσ′

L .

5.2.6 Increase of Multiplicities

Definition 5.2.24 (Increase of Multiplicities). Let [Q, σ⊲R] be a proof state, and Q a set
of subtrees from Q of which to increase the multiplicities. The new proof state [Q′, σ′ ⊲R′]
is obtained by

• increasing the multiplicities in Q according to Definition (5.1.18) which results in
Q′, a variable renaming θ and a mapping ι on subtrees of the indexed formula tree
Q′.

• Let RM be the maximal subtrees that have an associated node of type ν0 in dom(ι)
and RL the maximal subtrees that contain only literal nodes in dom(ι) and that do
not occur in RM . For each subtree R0 ∈ RM ∪RL we α-insert a copy of R0 that has
been renamed with respect to θ and ι.

5.2.7 Schütte’s Rule

In addition to the twelve basic calculus rules, Autexier shows in [Aut03] that the Schütte
decomposition rule (see [Sch77] for details) is admissible within the Core calculus in a
generalized form. Written as an inference this rule has the following form:

ϕ(ApA)p ϕ(BpB)p

ϕ(β(ApA , BpB))p
β-Decompose

(5.20)

In the above equation, ϕ is any higher-order formula of type o → o and of the form
λxoψ, such that x occurs exactly once with a defined polarity in ψp, for any p ∈ {+,−}.
In [Sch77] Schütte’s definition of this rule is restricted to situations where ϕ contains
no β-type formulas. However, Autexier shows in [Aut03] that the rule is sound for the
general case and defines a corresponding rule for Core. The general idea of the rule is as
follows:

65

CHAPTER 5. CORE PROOF THEORY

∗

β

β1 β2

−→

∗

β1

∗

β2

Note that the Schütte rule internally makes use of the cut rule and also transforms
the indexed formula tree.

5.3 Two Example Proofs

To illustrate the style of reasoning supported by the Core calculus, we give two example
proofs. The first proof illustrates reasoning with assertions, whereas the second proof
relies almost entirely on equational reasoning.

5.3.1 Simple Set Theory

Consider the simple theorem
∀A,B.A ∪ B = B ∪ A (5.21)

in the Core calculus, assuming the definitions

∀A,B.A = B ⇔ A ⊂ B ∧ B ⊂ A (5.22)

∀A,B.A ⊂ B ⇔ ∀x.x ∈ A⇒ x ∈ B (5.23)

∀A,B, x.x ∈ A ∪ B ⇔ x ∈ A ∨ x ∈ B (5.24)

The textbook proof looks as follows:

Textbook Proof:

“⊂”: We show A ∪ B ⊂ B ∪ A

1. Assume x ∈ A ∪ B
2. Thus x ∈ A ∨ x ∈ B

Case x ∈ A:

(a) It follows that x ∈ B ∨ A
(b) It follows that x ∈ B ∪ A

Case x ∈ B:

(a) It follows that x ∈ B ∨ A
(b) It follows that x ∈ B ∪ A

“⊃”: analogously.

Within Core, the initial proof state is given by

(5.22) ∧ (5.23) ∧ (5.24) ⇒ (5.21) (5.25)

Instead of considering the proof state as a whole, we identify (5.22) . . . (5.24) to repre-
sent the available assertions, and (5.21) as the conjecture to be shown. Before starting

66

5.3. TWO EXAMPLE PROOFS

the actual proof attempt, we preprocess the assumptions to make subsequent resolution
replacement rules possible. Alternatively, it is possible to apply rewrite replacement rules
directly. However, we refrain from doing so, as rewrite replacement rules are mapped back
to resolution replacement rules.

The preprocessing consists of isolating one direction of the equivalence, i.e., going from
(A⇔ B)− to (A⇒ B)− by the following sequence of Core calculus rules:

1. apply Leibniz equality to (A ⇔ B)− to obtain (∀P.P (A) ⇒ P (B))− (as well as a
copy of (A⇔ B)− in α-relation)

2. instantiate P by λx.x, resulting in (A⇒ B)− via β-reduction.

3. weaken the parent of the node with label (A⇒ B)− to remove the copy

The process is illustrated in detail for the assertion (5.22) in Figure 5.23.
Similarly, the other assertions are preprocessed, resulting in the following assertions:

∀A,B.
(
(A ⊂ B)+ ∧β (B ⊂ A)+)+ ⇒β (A = B)−

)−
(5.26)

∀A,B.∀x.
(
(x ∈ A)− ⇒ (x ∈ B)+ ⇒β (A ⊂ B)−

)−
(5.27)

∀A,B.∀x.
(
((x ∈ A)+ ∨α (x ∈ B)+)+ ⇒β (x ∈ A ∪ B)−

)−
(5.28)

Note that for all assertions, the other direction of the equivalence can be obtained in a
similar way; however, for the simple proof above we only need

(∀A,B.∀x.(x ∈ A ∪ B)+ ⇒β (x ∈ A ∨β x ∈ B)−)− (5.29)

The structure of the resulting formula tree is

(5.26) ∧ (5.27) ∧ (5.24) ⇒ (5.21) (5.30)

The result of preprocessing the assertions is that more subformulas have polarities and
can therefore be used for transformations via resolution replacement rules. However, as
a single assertion may be needed several times, as for example the definition of ∪ in the
example proof above, we will need a second operation to copy that assertion. Fortunately,
we can make use of Core’s rule to increase the multiplicity; in our case this usually results
in an α-insertion of a copy of the assertion, as assertions are usually universally quantified
at top-level. In principle, increasing of the multiplicity of an assertion works as follows:

• Let Q be the subtree of the indexed formula tree containing the assertion. Moreover,
let Q be the set of all nodes within Q that are minimal with respect to the structural
ordering ≺Q and are of secondary type γ0.

• For each Q′ ∈ Q increase the multiplicity of Q′. Note that the only substitutions
stemming from the application of the Leibniz equality might be present. As these
substitutions do not involve δ-variables, InstQ(Q

′′) = ∅ for all nodes Q′′ within Q,
and therefore µ(Q′) = {Q′} for all Q′ ∈ Q. Moreover, all Q′ ∈ Q are therefore
convex.

Again, we illustrate the operation using the assertion (5.22). Figure 5.3 shows the
indexed formula tree before and after the increase of the multiplicities. The minimal
γ-node that needs to be copied corresponds to the ∀A quantifier, and the corresponding
subtree contains the complete assertion. The subtree is copied, the variables renamed and

67

CHAPTER 5. CORE PROOF THEORY

(∀A,B.A = B ⇔ A ⊂ B ∧B ⊂ A) ⇒ C+
α

(∀A,B.A = B ⇔ A ⊂ B ∧ B ⊂ A)−γ

(∀B.A = B ⇔ A ⊂ B ∧ B ⊂ A)−γ

(A = B ⇔ A ⊂ B ∧ B ⊂ A)−ǫ

A = B (A ⊂ B ∧ B ⊂ A)

C+

(a) Indexed formula tree before the application of Leibniz’ equality

(∀A,B.A = B ⇔ A ⊂ B ∧ B ⊂ A) ⇒ C+
α

(∀A,B.A = B ⇔ A ⊂ B ∧ B ⊂ A)−γ

(∀B.A = B ⇔ A ⊂ B ∧ B ⊂ A)−γ

(A = B ⇔ A ⊂ B ∧B ⊂ A) ∧ (∀P.P (A ⊂ B ∧ B ⊂ A) ⇒ A = B)

(A = B ⇔ A ⊂ B ∧ B ⊂ A)−ǫ

A = B (A ⊂ B ∧ B ⊂ A)

(∀P.P (A ⊂ B ∧ B ⊂ A) ⇒ A = B)−

(P (A ⊂ B ∧ B ⊂ A) ⇒ A = B)−

(P (A ⊂ B ∧ B ⊂ A))− A = B+
◦

C+

(b) Indexed formula tree after the application of Leibniz’ equality, before weakening

(∀A,B.A = B ⇔ A ⊂ B ∧ B ⊂ A) ⇒ C+
α

(∀A,B.A = B ⇔ A ⊂ B ∧B ⊂ A)−γ

(∀B.A = B ⇔ A ⊂ B ∧ B ⊂ A)−γ

(∀P.P (A ⊂ B ∧ B ⊂ A) ⇒ A = B)−

(P (A ⊂ B ∧ B ⊂ A) ⇒ A = B)−

(A ⊂ B ∧ B ⊂ A)−

(A ⊂ B)− (B ⊂ A)−

A = B+
◦

C+

(c) Indexed formula tree after weakening and instantiation

Figure 5.2: Preprocessing of the assertion (5.22)

68

5.3. TWO EXAMPLE PROOFS

(∀A,B.A = B ⇔ A ⊂ B ∧ B ⊂ A) ⇒ C+
α

(∀A,B.A = B ⇔ A ⊂ B ∧B ⊂ A)−γ

(∀B.A = B ⇔ A ⊂ B ∧B ⊂ A)−γ

(A = B ⇔ A ⊂ B ∧ B ⊂ A)−ǫ

A = B (A ⊂ B ∧B ⊂ A)

. . .

(a) Indexed formula tree before increasing the multiplicity

((∀A,B.A = B ⇔ A ⊂ B ∧ B ⊂ A) ∧ (∀A,B.A = B ⇔ A ⊂ B ∧B ⊂ A)) ⇒ C+
α

(∀A,B.A = B ⇔ A ⊂ B ∧B ⊂ A) ∧ (∀A,B.A = B ⇔ A ⊂ B ∧ B ⊂ A)−γ

(∀A,B.A = B ⇔ A ⊂ B ∧ B ⊂ A)

(∀B.A = B ⇔ A ⊂ B ∧B ⊂ A)−γ

(A = B ⇔ A ⊂ B ∧ B ⊂ A)−ǫ

A = B (A ⊂ B ∧B ⊂ A)

(∀A,B.A = B ⇔ A ⊂ B ∧B ⊂ A)

(∀B.A = B ⇔ A ⊂ B ∧ B ⊂ A)−γ

(A = B ⇔ A ⊂ B ∧ B ⊂ A)−ǫ

A = B (A ⊂ B ∧ B ⊂ A)

. . .

(b) Indexed formula tree after increasing the multiplicity

Figure 5.3: Increasing the multiplicity of the assertion (5.22)

69

CHAPTER 5. CORE PROOF THEORY

the substitution P 7→ λx.x propagated. Therefore, our previous preprocessing is not lost
and a new copy of the preprocessed assertion available.

Now we are prepared to show the first direction of the proof, relying only on resolution
replacement rule applications of a special form.

Formal Proof:

After preprocessing and copying the assertion (5.26) which will be used in the first proof
step, the free variable indexed formula tree looks schematically as follows:

α+

A′ ⊂ B′ ∧ B′ ⊂ A′ ⇒ A′ = B′

A′ ⊂ B′ ∧B′ ⊂ A′+β

A′ ⊂ B′+◦ B′ ⊂ A′+◦

A′ = B′−ǫ

A′0◦ B′0◦

(5.22). . .(5.28) A ∪B = B ∪ A+
ǫ

A ∪ B0
◦ B ∪ A0

◦

We observe that A′ = B′− and (A ∪ B = B ∪ A)+ have opposite polarity and are con-
nectable via the substitution A′ 7→ A∪B,B′ 7→ B∪A. Applying the substitution and then
a resolution replacement rule A∪B = B ∪A→ 〈A∪B ⊂ B ∪A+, (B ∪A ⊂ A)+〉, before
invoking the simplification rule results in the following free variable indexed formula tree:

α+

((x ∈ A′ ⇒ x ∈ B′) ⇒ A′ ⊂ B′)−β

(x ∈ A′ ⇒ x ∈ B′)+

x ∈ A′−◦ x ∈ B′+◦

A′ ⊂ B′−◦

. . . β+

(A ∪B ⊂ B ∪ A)+ (B ∪ A ⊂ A ∪ B)+

As before, we apply the substitution A′ 7→ A ∪ B,B′ 7→ B ∪ A and then a resolution
replacement rule A ∪B ⊂ B ∪A→ 〈x ∈ A ∪B ⇒ x ∈ B ∪A+〉, apply the simplification
rule and preparing the next assertion results in the following free variable indexed formula
tree.

α+

x ∈ A ∨B ⇒ x ∈ A ∪B−β

x ∈ A ∨ x ∈ B+

x ∈ A′−◦ x ∈ B′+◦

x ∈ A ∪ B−◦

. . . β+

x ∈ A ∪ B ⇒ x ∈ B ∪ A+

x ∈ A ∪ B− x ∈ B ∪ A+

. . .+

3We only show the indexed formula tree, as the free variable indexed formula tree can easily be
obtained from it

70

5.3. TWO EXAMPLE PROOFS

α+

(x ∈ A ∪ B+ ⇒β (x ∈ A)− ∨α x ∈ B)−β

x ∈ A ∪ B+
◦ x ∈ A ∨ x ∈ B−

x ∈ A′−◦ x ∈ B′−◦

. . . β+

x ∈ A ∪ B ⇒ x ∈ B ∨ A+

x ∈ A ∪ B− x ∈ B ∨ A+

x ∈ A x ∈ B

. . .+

α+

. . . β+

x ∈ A ∪ B ⇒ x ∈ B ∨ A+

x ∈ A ∨ B−

x ∈ A x ∈ B

x ∈ B ∨ A+

x ∈ A x ∈ B

. . .+

The case distinction of the textbook proof can either be modeled using Schütte’s β-
decomposition rule, or we can use of the following lemma, which is provable in Core:

∀A′o, B′o, C ′o.((A′ ⇒ C ′)+ ∧β (B′ ⇒ C ′)+) ⇒β ((A′ ∨ B′) ⇒ C ′)− (5.31)

We take the second option, because it shows more clearly howCore can be used as a meta-
framework. The lemma together with our current subgoal has the following structure:

α

β

β

A⇒ C B ⇒ C

α

A ∨ B C

α

x ∈ A ∨ x ∈ B x ∈ B ∨ A

Application of the lemma results in the following free variable indexed formula tree,
in which the first subgoal can trivially be closed:

α+

. . . β+

x ∈ A ∨B ⇒ x ∈ B ∨ A+

x ∈ A ∨ B−

x ∈ A x ∈ B

((x ∈ A⇒ x ∈ A ∨ x ∈ B) ∧ (x ∈ B ⇒ x ∈ A ∨ x ∈ B))

(x ∈ A⇒ (x ∈ A ∨ x ∈ B)

(x ∈ A) (x ∈ A ∨ x ∈ B)

x ∈ A x ∈ B

(x ∈ B ⇒ x ∈ A ∨ x ∈ B)

(x ∈ B) (x ∈ A ∨ x ∈ B)

x ∈ A x ∈ B

. . .+

71

CHAPTER 5. CORE PROOF THEORY

5.3.2 Equational Reasoning

We now present a proof of the theorem about sums of natural numbers: ∀n∑n
i=1 i

3 =
(
∑n

i=1 i)
2. The proof works by induction and relies on equational reasoning.

Textbook Proof (from [Aut03] p. 96):

of ∀n∑n
i=1 i

3 = (
∑n

i=1 i)
2. The proof is by induction over n:

Base Case n = 0:

1. We have to show
∑0

i=1 i
3 = (

∑0
i=1 i)

2.

2. By definition of
∑

we obtain 0 = 0

Induction Step n→ n+ 1: The induction hypothesis is
∑n

i=1 i
3 = (

∑n
i=1 i)

2.

1. We have
∑n+1

i=1 i
3 = (

∑n+1
i=1 i)

2.

2. By definition of
∑

we obtain (n+ 1)3 +
∑n

i=1 i
3 = ((n+ 1) +

∑n
i=1 i)

2.

3. By (a + b)2 = a2 + 2ab + b2 we obtain (n + 1)3 +
∑n

i=1 i
3 = (n + 1)2 + 2(n +

1)(
∑n

i=1 i) + (
∑n

i=1 i)
2.

4. By Ind. Hyp. it reduces to (n+ 1)3 = (n+ 1)2 + 2(n+ 1)(
∑n

i=1 i).

5. By
∑n

i=1 =
n(n+1)

2
we obtain (n+ 1)3 = (n+ 1)2 + 2(n+ 1)n(n+1)

2

6. And finally (n+ 1)3 = (n+ 1)3

Formal Proof

For the formal proof we assume the definition of the operator sum as used in Exam-
ple 5.2.15. Moreover, we assume the following assertions to keep the proof short:

∀p.(p(0) ∧ ∀y.p(y) ⇒ p(s(y))) ⇒ ∀x.p(x) (5.32)

∀n,m.
s(m)∑

i=1

in = s(m)n +
m∑

i=1

in (5.33)

∀a, b.(a+ b)2 = a2 + 2ba+ b2 (5.34)

∀a, b, c.a = b⇒ a+ c = b+ c (5.35)

∀n.
n∑

i=1

i1 =
ns(n)

2
(5.36)

∀m.2m
2

= m (5.37)

∀q.s(q)3 = s(q)2 + (q(s(q)s(q))) (5.38)

0 = 02 (5.39)

To keep the proof readable, we only show the part of the proof tree which corresponds
to the goal formula. Note that the complete formula tree is much larger. In particular,
it contains each of the assertions. Moreover, the assertions need to be copied for each
assertion application. The proof is a slight modification of the proof given in [Aut03] p.
96.

72

5.4. SUMMARY

In the first step, we apply the induction axiom for natural numbers and obtain

0∑

i=1

i3 =

(
0∑

i=1

i

)2

∧∀n. ∧
n∑

i=1

i3 =

(
n∑

i=1

i

)2

⇒
s(n)∑

i=1

i3 =

s(n)∑

i=1

i

2

(5.40)

We apply twice the definition of
∑

which results in

0 = 0∧∀n.
n∑

i=1

i3 =

(
n∑

i=1

i

)2

⇒
s(n)∑

i=1

i3 =

s(n)∑

i=1

i

2

(5.41)

Applying the definition of
∑

twice results in

0 = 0∧∀n.
n∑

i=1

i3 =

(
n∑

i=1

i

)2

⇒ (s(n))3 +
n∑

i=1

i3 =

(
s(n) +

n∑

i=1

i

)2

(5.42)

By (a+ b)2 = a2 + 2ab+ b2 we obtain

0 = 0∧∀n.
n∑

i=1

i3 =

(
n∑

i=1

i

)2

⇒ (s(n))3 +
n∑

i=1

i3 = s(n)2 + 2s(n)

(
n∑

i=1

i

)
+

(
n∑

i=1

i

)2

(5.43)

Applying the induction hypothesis
∑n

i=1 i
3 = (

∑n
i=1 i)

2 and subsequent simplification by
(a+ b = c+ b) ⇔ (a = c) we obtain

0 = 0∧∀n.
n∑

i=1

i3 =

(
n∑

i=1

i

)2

⇒ (s(n))3 = (s(n))2 + 2(n+ 1)

(
n∑

i=1

i

)
(5.44)

Applying
∑n

i=1 =
n(n+1)

2
to
∑n

i=1 i results in

∀n.n = 0 ⇒ 0 = 0∧∀n.
n∑

i=1

i3 =

(
n∑

i=1

i

)2

⇒ (s(n))3 = (s(n))2 + 2(s(n))(
ns(n)

2
) (5.45)

which after some further simple rearrangements results in

0 = 0∧∀n.
n∑

i=1

i3 =

(
n∑

i=1

i

)2

⇒ s(n)3 = s(n)3 (5.46)

A subsequent simple simplification shows that now the proof is completed.

5.4 Summary

In this chapter we introduced Autexier’s Core calculus on which our work will be based.
Thereby, we instantiated Core’s meta theory to higher-order logic to ease the technical
presentation considerably. We gave two example proofs to illustrate the style of reasoning
supported by Core and highlighted the differences between informal presentation of
these proofs and the corresponding formal versions in Core’s proof theory. Moreover, we
sketched how a Core proof state can be organized to ease the application of assertions
by dividing the proof state into two parts: one part corresponding to the assertions and
one part corresponding to the conjecture to be shown. We will follow this approach in
the next chapter. Finally, we illustrated how an assertion application can be mapped to
a sequence of Core calculus rule applications.

73

6
The Core calculus and the Assertion

Level

Almost all interactive theorem provers are based on the sequent calculus or natural de-
duction. This is because proofs in these calculi are considered to be more human oriented
and are therefore better suited for proof communication between man and machine. In
particular, they provide the intuitive notion of a subgoal which allows for a convenient
presentation of the state of the current proof process. In contrast, machine oriented cal-
culi, such as resolution (see for example [Gab00] p. 2 for a discussion), are designed for
efficiency, at the cost that the resulting proofs are very different in their structure in com-
parison to human proofs. Moreover, given a partial derivation, it is even more difficult
for a mathematician to get a sense of the current state of the proof: is a proof state
still provable, is it difficult to solve it in principle, or how many steps are approximately
needed to close the goal.

However, compared to other calculi, the degree of automation is rather low in the
sequent calculus. One reason for this is that the sequent calculus has to follow the logical
structure of the formula. In particular, formulas have to be decomposed in order to
get access to intermediate subformulas, with the consequence that the resulting proof
trees are redundant to some degree. In contrast, matrix based calculi do not require the
decomposition of formulas, but rely on the notion of a connection, resulting in a compact
representation of the proof state and very efficient search procedures. However, this comes
at the cost that proofs are no longer readable (see e.g. [ABI+96] p. 325). Moreover, the
definition of search strategies/tactics on top of matrix methods is very difficult.

Core’s proof theory, which has been introduced in the previous chapter, can be seen
as a hybrid approach: The initial free variable indexed formula tree can be understood
as a matrix representation of the original conjecture. However, instead of searching for
a complete set of connections, the free variable indexed formula tree is transformed with
the goal to produce the trivially valid subgoal true by sound and complete contextual
reasoning. Core provides uniform notation to determine the context of an arbitrary
subformula statically and to modify subformulas by the application of replacement rules.
Therefore, there is no need to follow the logical connectives and to decompose formulas,
as needed in the sequent calculus. However, there are the following disadvantages: (i)

75

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

The complete theory as well as the goal formula need to be encoded within a single
indexed formula tree, which, as a consequence, can become very large. Presenting an
unstructured indexed formula tree in the presence of large theories is therefore not an
option. (ii) Replacements in an unstructured indexed formula tree are always global;
therefore the computation of the effect of a replacement is expensive. (iii) The need to
talk about positions and their interrelation makes it difficult to define proof strategies on
top of the calculus.

In this section, we define an assertion level interface on top of the Core calculus,
combining the features of Core and the sequent calculus. The interface hides the internal
representation of the proof state as an indexed formula tree and provides a sequent-style
interface instead. The interface is based on sequents and inferences to transform these
sequents. As in the sequent calculus, search procedures can now conveniently be defined
on top of inferences. However, in contrast to the classical sequent calculus, the number
of inferences is not static, but grows with the number of theorems that are proven.

The main idea is to divide the indexed formula tree into two parts: a theory part,
which contains the available assertions, and a conjecture part, containing the conjecture
the user attempts to prove. However, only the latter is presented to the user, as illustrated
in the diagram below:

α

assertions conjecture

This reduces the size of the (shown) proof state dramatically. In addition, we also obtain
computational benefits by imposing a special structure on the indexed formula tree. De-
ciding whether an assertion is applicable with respect to the current (local) proof state
of the conjecture becomes a local property: The assertion itself and the subgoal to which
it is applied are sufficient to compute the modification of the subgoal. Moreover, the
multiplicities for assertions are automatically handled by the assertion level interface.

6.1 Windows and Inference Representation

To be able to represent a subgoal in the sequent style as a single formula together with a
list of its assumptions, we follow the idea of window inference (see [RS93]) and introduce
the notion of a task as a set of windows. Window inference was originally introduced as
a mechanism to focus on specific parts of a formula by transforming the formula relative
to its context and finally unfocusing the part of the formula. Window inferencing in the
same style has been defined on top of the Core calculus in [Aut03], where the main
advantage is that windows do not introduce proof obligations that have to be discharged.

Before introducing the terminology of a window, we illustrate the concept by an ex-
ample.

Example 6.1.1. Let us reconsider the proof given in Section 5.3 of the conjecture A∪B ⊂
B∪A after the application of set extensionality and the definition of subset. The resulting
indexed formula tree is shown below.

76

6.1. WINDOWS AND INFERENCE REPRESENTATION

α+

A− β+

(x ∈ A ∪ B ⇒ x ∈ B ∪ A)+α

(x ∈ A ∪ B)−◦ (x ∈ B ∪ A)+◦

(x ∈ B ∪ A⇒ x ∈ A ∪ B)+α

(x ∈ B ∪ A)−◦ (x ∈ A ∪ B)+◦

The part of the indexed formula tree containing the assertions is shown on the left and
folded in the subtree A, and on the right we see the current proof state. A representation
in the style of the sequent calculus can be obtained by marking special nodes of the formula
tree by windows, which are indicated by boxes above. Provided that all parts of a subtree
R are covered by a given set of windows – we will call such a set spanning with respect
to R – it is possible to use this set to represent the proof state corresponding to R in a
convenient form: A sequent is given by a set of α-related windows, where a window with
negative polarity corresponds to a formula in the antecedent and a window with positive
polarity to a formula in the succedent of the sequent. β-nodes above windows introduce
multiple sequents. For our example, we get the following two sequents

x ∈ A ∪ B ⊢ x ∈ B ∪ A (6.1)

x ∈ B ∪ A ⊢ x ∈ A ∪B (6.2)

Putting the subgoals together, we obtain a so-called agenda, which is a set of sequents
together with an overall substitution σ.

〈(6.1), (6.2); {}〉 (6.3)

In the sequel we define the notion of windows for subtrees of free variable indexed
formula trees, which may denote any subtree of R. The target domain of some window
for R is defined as follows:

Definition 6.1.2 (Substructures of free variable indexed formula trees). Let R be a free
variable indexed formula tree. The substructures of R are all subtrees of R. We denote
that set by S(R). Those S ∈ S(R) that are leaf nodes annotated by some π are called
inner substructures.

Notation 6.1.3. As usual, each node in the tree can be uniquely identified by a path from
the root node to this node. We represent such a path by a sequence of natural numbers
and use ǫ to refer to the root node of the tree.

Based on substructures, we model all windows of a formula tree as a partial mapping
from identifiers to such substructures.

Definition 6.1.4 (Windows). Let R be a free variable indexed formula tree, W an enu-
merable set, and f : W →֒ S(R) a partial function. We say that f is a window structure
for R and each n ∈ dom(f) is a window that denotes the subtree f(n). The polarity, uni-
form type and label of n are those of f(n), if f(n) is a subtree. Otherwise f(n) := Rπ and
n has undefined polarity (·) and uniform type (◦), and its label is Label(R)|π. The win-
dows in some substructure S with respect to f , denoted by Win(S, f) are all n ∈ dom(f)
such that f(n) ∈ S(S).

We denote by (S, f) the combination of a substructure with a window structure f for
S, and say that S is annotated by f . We say that f is spanning for S iff any literal node
of S is contained in a subtree denoted by one of the windows of f .

77

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

Example 6.1.5. Consider the indexed formula tree of example 6.1.1, in which windows
are depicted by boxes. The window structure is spanning for the task part, i.e., the subtree
rooted at the β+ node, but is not spanning for the complete indexed formula tree, as there
are literal nodes L inside A with Win(L, f) = ∅.

While proving a conjecture, it will be necessary to replace some substructure of the
indexed formula tree by another substructure. To be able to transfer annotations from
the original tree to the tree resulting from the replacement, we identify corresponding
substructures of both trees. Indeed, given a substructure S ′ of S which is to be replaced
by a substructure S ′′, it is possible to define a mapping ι that identifies the corresponding
parts which are not affected by the replacement. It is defined as follows:

Definition 6.1.6 (Replacement of Substructures). Let S, S ′ be substructures of some free
variable indexed formula tree, S ′ ∈ S(S), and S ′′ a substructure of another free variable
indexed formula tree. Then we denote by (S|S′←S′′ , ι) the replacement of S ′ with S ′′ in S
together with a partial mapping ι : S(S) \ S(S ′) →֒ S(S|S′←S′′) which is defined by

• If S ′ is a subtree and S ′′ is a subtree then it denotes the standard replacement of S ′

with S ′′; ι is the mapping of the substructures of S not in S ′ to their corresponding
substructures in S|S′←S′′.

• If S ′ := R′π and S ′′ := R′′π, and if the labels of R′ and R′′ are equal up to the subterms
denoted by π, then S|S′←S′′ denotes the replacement of R′ by R′′; ι is the mapping
of the substructures of S that are not in S ′ to their corresponding substructures in
S|S′←S′′.

• Otherwise the replacement is undefined.

Similar to the case above, we can replace a substructure S ′ of an annotated substruc-
ture (S, f) by an annotated substructure (S ′′, f ′), thereby using ι as defined above to
transfer the windows into the resulting formula tree:

Definition 6.1.7 (Replacement of Annotated Substructures). Let (S, f), (S ′′, f ′) be an-
notated substructures, for S, and S ′ a substructure of S. The replacement (S, f)|S′←(S′′,f ′)

of S ′ by (S ′′, f ′) in (S, f) is defined iff (S|S′←S′′ , ι) is defined and (dom(f) \Win(S ′, f))∩
dom(f ′) = ∅ holds. If it is defined, the replacement results in (S∗, f ∗) where S∗ := S|S′←S′′

and f ∗ is defined by

• If either S ′ 6= S, or S ′ := S then

f ∗(n) :=

ι(f(n)) if n ∈ dom(f) \Win(S ′, f)
f ′(n) if n ∈ dom(f ′)
undefined otherwise

• Otherwise, if S ′ = S and there is no n ∈ dom(f ′) with f ′(n) = S ′′, then assume
n0 6∈ dom(f ′) in

f ∗(n) :=

f ′(n) if n ∈ dom(f ′)
S ′′ if n = n0

undefined otherwise

Following Example 6.1.1, we now use windows to define the notion of a sequent. To be
a sequent, a set of windows must satisfy the property that the windows cover the complete
subtree, and the individual windows must be α-related to each other. We thus arrive at
the following definition:

78

6.1. WINDOWS AND INFERENCE REPRESENTATION

Definition 6.1.8 (Sequent). Let R be a free variable indexed formula tree, f be a window
structure for R. Moreover, let w1, . . . , wn windows, such that w1, . . . , wi (1 ≤ i ≤ n) have
negative polarity and wi+1, . . . , wn have positive polarity. Let further R′ be the smallest
subtree that contains all subtrees denoted by w1, . . . , wn. Then w1, . . . , wi ⊢ wi+1, . . . , wn

is a sequent with respect to R′ iff

1. all wi are α-related between each other, and

2. there is no subtree in R′ that is β-related to any wi.

We say that a sequent w1, . . . , wi ⊢ wi+1, . . . , wn is proved iff at least one of the wi denotes
a subtree that is proved, i.e., is either true+, false−, or ζ(s, s).

Notation 6.1.9. In the sequel, we agree to denote a sequent w1, . . . , wi ⊢ wi+1, . . . , wn also
by simply writing the list of window w1, . . . , wi, wi+1, . . . , wn, since the sequent-structure
is uniquely determined up to permutations of windows by the polarities of the windows.
Furthermore, we may write ϕp1

1 , . . . , ϕ
pn
n to denote a sequent composed of n windows, each

denoting a subtree of label ϕi and polarity pi.

It is natural to generalize the notion of a single sequent to a set of sequents to be able
to express splittings as in the sequent calculus.

Definition 6.1.10 (Sequential). Let S1, . . . , Sn be a set of sequents. For each i (1 ≤
i ≤ n) let Ri denote the smallest subtree that contains all windows corresponding to the
sequent Si. We say that S1, . . . , Sn are sequential iff the Ri are β-related among each
other, as shown in the picture below:

β

R1 . . . Rn

We are now in the position to define the notion of indexed task trees and their free
variable counterpart. Indexed task trees (respectively free variable indexed task trees)
are indexed formula trees (respectively free variable indexed formula trees) that have the
specific form α(A, G), where A is a set of assertions and G is a formula to be proved,
together with a window structure which identifies sequents in the subtree corresponding
to G. As for indexed formula trees, we define task trees in two steps: First, we define the
task tree obtained from a set of assertions A and a conjecture G, which we call initial
indexed task tree. We subsequently define operations to transform both trees.

Definition 6.1.11 (Initial Indexed Task Tree, Free Variable Indexed Task Tree, Task
Window Proof State). Let A be a set of assertions and let G be a conjecture to be proved.
Then the initial indexed task tree for A and G is the indexed formula tree of the formula

[
∧

A∈A

A⇒ G

]
(6.4)

The initial free variable indexed task tree is the initial free variable indexed formula tree
of indexed task tree.

Due to its initialization, the free variable indexed task tree obeys the following struc-
tural property:

79

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

Theorem 6.1.12 (Structural Property of the Initial Indexed Task Tree). Let A be a set
of assertions and let G be a conjecture to be proved. The initial indexed task tree for A
and G has the following form:

α

α

α

A1 A2

An

G

In particular, for any A ∈ A, there are no β-related formulas on the path from the node
labeled with A to the root node of the free variable indexed task tree.

Proof. By induction on n = |A|.

Notation 6.1.13. We denote the (free variable) indexed task tree for assertions A and
a goal G by α(A, G). Moreover, we do not differentiate between a node labeled with a
formula A and the formula itself if the context is clear.

Corollary 6.1.14 (Locality of β-related nodes). Let α(A, G) be an initial free variable
indexed task tree and A ∈ A be an assertion. Moreover, let n ∈ S(A), and let n′ ∈
S(α(A, G)). If n′ is β-related to n, then n′ ∈ S(A).

Proof. If n′ is not in S(A), then the least node that governs both n and n′ must be of
type α due to Theorem 6.1.12.

We now introduce the notion of a task proof state on top of the concepts defined so
far. The overall goal is to arrive at the intuitive notion of an agenda, which contains
exactly all proof obligations that need to be discharged to close the overall conjecture,
but completely hides the underlying concepts of the formula trees. That is, from a user’s
perspective, a proof state looks like a proof state in the sequent calculus. However, as we
will see later, the transformations provided by the Core calculus are much more general
and will allow the construction of shorter proofs.

Definition 6.1.15 ((Initial) Task Proof State). Let A be a set of assertions and let G be
a conjecture to be proved. The task proof state consists of the following components:

• the indexed task tree Q=α(A, G)

• the corresponding free variable representation of α(A, G)

• a substitution σ

• a window structure f for G with a set of sequents S1, . . . , Sn.

It is denoted by [Q; σ; (α(A, G), f) � {S1, . . . , Sn}]. The initial task proof state is given
by the initial indexed task tree, the initial free variable indexed task tree, the empty sub-
stitution, and the window structure f : W →֒ S(α(A, G)) with dom(f) = {c} and

f(n) :=

G n = c

undefined otherwise
(6.5)

80

6.1. WINDOWS AND INFERENCE REPRESENTATION

To emphasize the difference to the sequent calculus we call the sequents tasks. [Q; σ; (α(A, G), f)�
{S1, . . . , Sn}] is consistent, if f consists of a set of sequents that are spanning for G and
the sequents are sequential. A task proof state is proved iff all tasks of that task proof
state are proved.

Hiding the task tree and its free variable counterpart, we arrive at the definition of an
agenda.

Definition 6.1.16. Let Q, σ � (α(A, G), f) be a consistent task proof state with tasks
T1, . . . , Tn, one of which is marked by · and called current task. The list of tasks together
with the substitution σ is called agenda and denoted by

〈T1, . . . , Tn; σ〉 (6.6)

Example 6.1.17. For the first example from Section 5.3, the initial proof state is

α

A A ∪ B = B ∪ A
The initial task is A ∪B = B ∪ A. The initial agenda is

〈A ∪B = B ∪ A; {}〉 (6.7)

Let us stress here the close connection between a task proof state [Q; σ;R�{S1, . . . , Sn}]
and the corresponding Core proof state [Q, σ � R] (where R = α(A, G)). In particular,
any transformation

[Q, σ �R] 7→ [Q′, σ′ �R′] (6.8)

can be mapped to a transformation

[Q; σ; (R, f) � {S1, . . . , Sn}] 7→ [Q′; σ; (R′, f ′) � {S ′1, . . . , S ′m}] (6.9)

provided that the window structure f is adapted accordingly, and vice versa.

Theorem 6.1.18 (Consistency of initial task proof state). The initial task proof state is
consistent.

Proof. There is only one window w+
1 with positive polarity which points to the initial

conjecture G. Therefore, all conditions in 6.1.8 are trivially satisfied; moreover, w1 is
spanning for G.

Theorem 6.1.19 (Accuracy of the Definition). Definition 6.1.15 is accurate.

Proof. The intuition in the above definition is that a task proof state is proven if the
underlying Core proof state can be shown. This is indeed the case: A proven task proof
state is of the form [Q; σ; (R, f) � {S1, . . . , Sn}], where Si = wi1, . . . , wini

such that some
wij1 is True+, False−, or ζ(s, s).

α

A β

α

w11 . . . w1m1

. . . α

wn1 . . . wnmn

81

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

Consequently, we have proved the subtree corresponding to wi. Therefore, applying the
simplification rule (see Definition 5.2.19) to the root of the free variable indexed formula
tree results in the free variable indexed formula tree true+.

6.2 Representing Assertions

Given an initial task proof state [Q; σ; (R, f)� {S1, . . . , Sn}], we are now concerned with
defining transformations on it. These transformations are of the form

[Q; σ; (R, f) � {S1, . . . , Sn}] 7→ [Q′; σ; (R′, f ′) � {S ′1, . . . , S ′m, S2, . . . , Sn}] (6.10)

and will consist of assertion applications. Instead of representing assertions as individual
formulas, we will present them in the computational form of inference rules. While the
standard form of inferences in the sequent calculus is like

Γ, A ⊢ ∆ Γ, B ⊢ ∆

Γ, A ∨ B ⊢ ∆
(6.11)

this representation is no longer intuitive when relaxing the condition that inferences can
only be applied at top-level. Therefore, we use an ND-style representation, where each
inference consists of a set of premises P1, . . . , Pn and a set of conclusions C1, . . . , Cm. Each
premise has attached a possibly empty set of hypothesis Hi, as depicted below:

[H1]
...
P1 . . .

[Hm]
...
Pm

C1 . . . Cn

(6.12)

Intuitively, such an inference corresponds to the assertion

[(H1 ⇒ P1) ∧ . . . ∧ (Hm ⇒ Pm)] ⇒ (C1 ∧ . . . ∧ Cn) (6.13)

In general, any assertion can be transformed to an inference of the form (6.12). The
form of these inferences has the advantage that it gives an assertion a richer structure,
as it divides the formula into premises and conclusions. Based on this structure, further
control information and search algorithms can conveniently be defined (see Chapter 9 for
details).

Before presenting a general algorithm that computes the inference form for a given
assertion, we illustrate the correspondence between inferences and assertions by several
examples. Similar to sequents, we will consider special window structures on the free
variable tree corresponding to the assertion. Let us note that assertions denote known
facts and therefore have negative polarity.

Example 6.2.1. The following examples show an assertion together with polarities and
uniform types on the left, as well as the corresponding inference representation on the
right. To be able to differentiate between γ and δ-variables, we denote the former by upper-
case letters and the latter by lower case letters. Subformulas corresponding to premises
and conclusions are identified by windows wi.

(x ∈ A ∩ B)+︸ ︷︷ ︸

w+

1

⇒β
(
(x ∈ A)− ∧α (x ∈ B)−

)−

︸ ︷︷ ︸
w−

2

−

x ∈ A ∩ B
x ∈ A x ∈ B

(6.14)

82

6.2. REPRESENTING ASSERTIONS

(
(x ∈ A)− ⇒α (x ∈ B)+

)+

︸ ︷︷ ︸
w+

1

⇒β (A ⊂ B)−︸ ︷︷ ︸
w−

2

[x ∈ A]
...

x ∈ B

A ⊂ B
(6.15)

(
A− ⇒α C+

)+

︸ ︷︷ ︸
w+

1

∧β
(
B− ⇒α C+

)+

︸ ︷︷ ︸
w+

2

+

⇒β

(
A+ ∨α B+

)+

︸ ︷︷ ︸
w+

3

⇒β C−︸︷︷︸
w−

4

−

−

[A]
...
C

[B]
...
C A ∨ B
C

(6.16)

(A

+
︸︷︷︸
w+

1

∧β (B+ ∨α C+)︸ ︷︷ ︸
w+

2

)+ ⇒β (A− ∧α B− ∨β A− ∧α C−)−︸ ︷︷ ︸
w−

3

−

A (B ∨ C)
A ∧ B ∨ A ∧ C (6.17)

The inference representation of an inference can stepwise be computed by an algorithm,
which is shown in Figure 6.1. In each step, it refines the set of premises, the hypotheses
corresponding to each premise, or the set of conclusions of the assertion that is considered.
Each premise, conclusion, or hypothesis corresponds to a particular node of the free
variable indexed formula tree of the assertion and is marked by a window.

Initially, an assertion A is put into a window using the init rule (more precisely the free
variable indexed formula tree corresponding to the assertion). The window is annotated
with a subscript C indicating that it corresponds to a conclusion of the inference that is
obtained when the algorithm terminates. Windows that are annotated with P correspond
to premises of the inference, while windows annotated with H correspond to hypotheses
of premises. The init rule is only allowed once during the initialization of the algorithm.
prem-i introduces a new premise to a conclusion C if it is of the form A ⇒ B and only
a single conclusion has been derived so far. The latter restriction is due to the fact that
we want all premises to be β-related to all conclusions and the conclusions α-related to
each other. split-c splits a conclusion of the form A ∧ B, thereby introducing multiple
conclusions. For backward application this has the advantage that the subformulas can be
independently matched, which corresponds to ∧ commutativity. split-p splits premises as
long as their corresponding set of hypotheses is empty. split-h decomposes a conjunctive
hypothesis into two hypothesis. Finally, hyp-i introduces a new hypothesis to a premise,
if the premise is of the form A⇒ B.

For convenience, we introduce the following terminology:

Notation 6.2.2. Let (S, f) be an annotated substructure and let S ′ be a substructure of
S with label ϕ(A,B), such that there exists an n ∈ dom(f) with f(n) = S ′. We use the
following notation to express the replacement of the window n by two windows n′ and n′′

that point to the direct substructures with label A and B of S:

A B

ϕ(A,B)
(6.18)

83

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

The replacement is further controlled by annotations on the windows. A window w con-
taining the formula ϕ which is annotated with an annotation A is denoted by ϕ

A
.

Definition 6.2.3 (Premise Node, Conclusion Node). Let A be an assertion and let A′ be
the result of applying the rules of Figure 6.1 to A−.

• The nodes of A that are annotated with n
P
in A′ are called proper premise nodes

of A.

• The nodes of A that are annotated with n
H

in A′ are called hypotheses of A. The
hypotheses corresponding to a proper premise pi are denoted by Hyps(pi).

• The maximal node with respect to ≺ that contains pi and all its hypotheses is denoted
by nodeP (Pi) and called complete premise node.

• The nodes of A that are annotated n
C
are called conclusions of A.

A−
C

A−
init

·
C
= 1

A+
P

B−
C

(A⇒ B)−
C

prem-i
A−

C
B−

C

(A ∧ B)−
C

split-c

Hyps(A ∧B) = ∅
A+

P
B+

P

(A ∧ B)+
P

split-p
A−

H
B−

H

(A ∧ B)−
H

split-h

A−
H
⇒ B+

P

(A⇒ B)+
P

hyp-i

Figure 6.1: Inference Rules

Remark 6.2.4. A conclusion (A ∨ B)− is not processed any further. One possibility
would be to generate two inferences, one with conclusion A and additional premise ¬B
and vice versa. Similarly, we do not split a hypothesis (A∨B)−. Note that it would also be
possible to introduce a case split automatically (possibly transforming the assertion using
the Schütte rule, see Section 5.2.7 for details).

Theorem 6.2.5. For any assertion A, the algorithm specified in Figure 6.1 has the fol-
lowing properties:

(i) it terminates with a unique result.

(ii) the resulting window structure is spanning for A .

(iii) all conclusion windows have negative polarity and are α-related to each other .

(iv) all premise windows have positive polarity and are β-related to each other and β-
related to all conclusions.

(v) all hypotheses have negative polarity and are α-related to their corresponding premise.

84

6.2. REPRESENTING ASSERTIONS

(vi) Let c be the node that is maximal with respect to ≺ and contains all conclusions.
Let R1, . . . , Rn be all maximal nodes that are below the root node and β-related to c.
Moreover, let P1, . . . , Pn denote the proper premises of the assertion A. Then

β(R1, . . . , Rn) = Label(nodeP (P1)) ∧ . . . ∧ Label(nodeP (Pn)) (6.19)

Proof. First, we prove (i). Let n be a node of the free variable indexed formula tree. We
define the weight of n as

|n| :=

1 +

∑
n′∈childs(n) |n′| if childs(n) 6= ∅

1 otherwise
(6.20)

Moreover, let f be a window structure. The weight of f is defined as

|f | :=
∑

l∈dom(f)

|f(l)| (6.21)

As |f | is bounded below and each application of a rule – except the Init rule which is
only applied once – decreases |f |, the algorithm terminates. Moreover, as there are no
critical pairs, the result is unique.

Let us now consider the properties (ii)-(vi). Obviously, all these properties hold ini-
tially, as A has negative polarity and there is only one n ∈ dom(f) that points to the root
node of the assertion A, i.e., f(n) = Q with Label(Q) = A. It is sufficient to show that
each rule application preserves these properties. The result then follows by induction over
the length of the derivation. We show exemplarily the proof of property (vi):

Property (vi): Let A′ denote the situation after n rule applications to A , i.e., A →n

A′. By induction hypothesis, we can assume that (6.19) holds. We perform a case
distinction on the next rule which is applied:

prem-i: Let C denote the unique conclusion to which prem-i is applied to and
which has the form A ⇒ B. By induction hypothesis, we know that (6.19)
holds for C. Applying the rule prem-i to A⇒ B results in the new conclusion
B. The maximal nodes that are below the root node and β-related to B
are those of C with the additional node A which has become a new premise.
Therefore, (6.19) holds in A →n+1 A′′.

split-c: No premise or hypothesis is changed. Moreover, the maximal node with
respect to ≺ that contains all conclusions remains the same. Therefore, (6.19)

holds in A →n+1 A′′, provided that it held in A →n A′.

split-p: Let P1, . . . , Pn denote the set of premises before the application of the rule,
i.e., in the state A →n A′. By induction hypothesis, (6.19) holds in A′. Let

A
split-p−→ A′′. Without loss of generality, we can assume that split-p is applied

to Pn. Then, the premises in A′′ are P1, . . . , Pn−1, Q1, Q2 with Q1 ∧Q2 = Pn.

split-h,hyp-i: The splitting or introduction of hypotheses does not change the set
of premises.

85

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

Example 6.2.6. The following example shows the derivation of the inference rule (6.16)
as a sequence of the window transformation steps shown in Figure 6.1.

[(
(A− ⇒α C+)

+ ∧β (B− ⇒α C+)
+
)+ ⇒β

(
(A+ ∨α B+)

+ ⇒β C−
)−]−

C

(6.22)

→
[(

(A− ⇒α C+)
+ ∧β (B− ⇒α C+)

+
)+

P

⇒β
(
(A+ ∨α B+)

+ ⇒β C−
)−

C

]−
(6.23)

→
[(

(A− ⇒α C+)
+

P
∧β (B− ⇒α C+)

+

P

)+

⇒β
(
(A+ ∨α B+)

+

P
⇒β C−

C

)−]−

(6.24)

→
[((

A−
H
⇒α C+

P

)+
∧β

(
B−

H
⇒α C+

P

)+)+

⇒β
(
(A+ ∨α B+)

+

P
⇒β C−

C

)−]−

(6.25)

This gives rise to the following definition:

Definition 6.2.7 (Inference Representation of Assertions). Let A be an assertion with
premise nodes {p1, . . . , pn} =: P and conclusion nodes {c1, . . . , cm} =: C. Let L =
{l1, . . . , ln+m} be disjoint labels. Then I : L → 〈P ∪ C〉 is an inference.

We write
[Hyps(p1)]

...
l1 : p1 . . .

[Hyps(pn)]
...

ln : pn

ln+1 : c1 . . . ln+m : cm
(6.26)

p1, . . . , pn are called premises of the inference, c1, . . . , cn conclusions of the inference, and
Hyps(pi) the hypothesis corresponding to the premise pi.

Notation 6.2.8. Given an inference I and a premise label p we write I(p) to denote the
complete premise node corresponding to p, i.e., the node that includes the proper premise
and all hypotheses. The notation is borrowed from topology where S denotes the closure
of S.

6.2.1 Preprocessing

To get more natural inferences, two preprocessing steps are necessary. Consider a proper
definition, such as the definition of subset:

∀A,B.A ⊂ B ⇔ ∀x.x ∈ A⇒ x ∈ B (6.27)

which cannot be further processed, as we cannot assign polarities underneath the equiva-
lence. This can be solved either by transforming the assertion before inserting it into the
indexed formula tree, or by applying the Leibniz equality to obtain both directions of the
equivalence

∀A,B.A ⊂ B ⇒ ∀x.x ∈ A⇒ x ∈ B (6.28)

∀A,B.∀x.x ∈ A⇒ x ∈ B ⇒ A ⊂ B (6.29)

For equivalences, we also keep the original formula to obtain a rewrite rule, as shown in
Section 6.6.

86

6.3. ASSERTION APPLICATION

The second optimization deals with assertions that have been fused together using a
conjunction, such as

[∀x.even(x) ∨ odd(x)] ∧ [∀x.odd(x) ⇒ ¬even(x)] (6.30)

which corresponds to the two assertions

∀x.even(x) ∨ odd(x) (6.31)

∀x.odd(x) ⇒ ¬even(x) (6.32)

Those can be detected by the property that the subformulas do not share any context.
Again, they can be handled either within the framework, or within a preprocessing step.
Note however that such assertions usually do not occur in practice.

Another preprocessing, that can be performed independently of the actual proof
search, is the preprocessing of quantifiers. Baaz and Leitsch [BL94] have shown that
prenexing a formula, i.e., pulling the quantifiers out, makes its proof longer, as intro-
duced Skolem functions might get additional arguments. Therefore, quantifiers should be
pulled in, which can be achieved by a simplification phase before the actual proof starts,
using the following set of rewrite systems:

(∀x.P (x) ∧Q) ≡ (∀x.P (x)) ∧Q if x /∈ FV(Q) (6.33)

(∀x.P (x) ∨Q) ≡ (∀x.P (x)) ∨Q if x /∈ FV(Q) (6.34)

(∃x.P (x) ∧Q) ≡ ∃x.P (x) ∧Q if x /∈ FV(Q) (6.35)

(∃x.P (x) ∨Q) ≡ ∃x.P (x) ∨Q if x /∈ FV(Q) (6.36)

In the sequel, we will assume that assertions are always preprocessed.

6.3 Assertion Application

As we have seen in the previous section, inferences are just another representation of
assertions. In this form, each assertion consists of multiple premises and conclusions,
augmented by a possibly empty set of hypotheses for each premise (see Definition (6.2.7)).
Each of these premises, conclusions, and hypotheses can be identified with a specific node
in the free variable task tree.

When applying an inference to transform a given task, we typically try to instantiate
some of its formal arguments, i.e., try to find corresponding subformulas in a task and
a substitution σ which makes the formula in the task and the formula corresponding to
the formal argument of the inference equal. Thereby additional conditions which result
from the deep access to subformulas have to be respected, such as restricting matching
candidates for premises to subformulas with negative polarity.

From an abstract point of view to determine how a single inference can be applied can
be understood as a classical retrieval problems of candidate terms from a given query term
or subject term satisfying a specific relationship. Such problems occur frequently in the
setting of automated theorem proving, and powerful indexing techniques have been devel-
oped to support efficient retrieval. However, in contrast to the standard approach, we have
to solve a simultaneous unification/matching problem, as several premises/conclusions are
usually instantiated. Such a problem is known in the context of hyperresolution, where
one also has to solve the problem of simultaneous retrieval of unifiable terms. Instead
of matching/unifying all inference nodes simultaneously, a reasonable strategy consists of

87

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

matching one inference node at a time, starting from an inference where no node has been
matched. This has been done for example in Vampire [RV99].

We follow a similar approach and introduce the notion of partial argument instanti-
ations (PAI), which is an adaptation of the notion from [BS01b] to the new inferences
presented here and makes the instantiation process explicit. The idea is as follows: We
start with a PAI which maps all elements of the inference to ⊥. Subsequently, this partial
argument instantiation is updated by instantiating a previously uninstantiated argument
of the inference, resulting in a new PAI. We say that the new PAI is an partial argument
instantiation update with respect to the previous PAI.

Let us now start with the development of the formal framework. First, we introduce
the notion of a task position, which represents the matching candidates of a specific
proof task, i.e., nodes of the task tree that are labeled with formulas. The corresponding
positions are split into three sets, according to the polarities that can arise.

Definition 6.3.1 (Task Position). Let T = w1, . . . , wn be a task. The task positions of
T , denoted by Pos, are defined to be the following set:

Pos(T) =
n⋃

i=1

S(wi) (6.37)

Moreover, we define the following three subsets:

Pos(T)+ = {t ∈ Pos(T) | pol(t) = +} (6.38)

Pos(T)− = {t ∈ Pos(T) | pol(t) = −} (6.39)

Pos(T)◦ = {t ∈ Pos(T) | pol(t) = ◦} (6.40)

(6.41)

Example 6.3.2. The task

A−,
(
B− ∧α C−

)− ⊢α D+ (6.42)

has the following task positions:

• Pos(T) = {A,B,C,B ∧ C,D}

• Pos(T)− = {A,B,C,B ∧ C}

• Pos(T)+ = {D}

• Pos(T)0 = ∅
Remark 6.3.3. Note that it is not allowed to match above windows, even though the labels
of the corresponding nodes principally denote admissible matching positions. In particular,
nodes with labels A,B which do occur in two different windows cannot be matched against
A ∧ B, even if their parent node has label A ∧ B.

Based on the notion of a task position, we now define the notion of an inference
substitution with respect to an inference I and a task T . An inference substitution
consists of two components: a partial mapping σN : L →֒ Pos(T) that identifies a task
position for a formal argument l ∈ L, and a substitution σ. Intuitively, an instantiated
argument l ∈ L identifies two nodes in the free variable task tree – one corresponding to
the node of the inference, and one corresponding to a node of the task – that are made
equal under σ:

σN (l)σ = I(l)σ (6.43)

88

6.3. ASSERTION APPLICATION

Definition 6.3.4 (Inference Substitution). Let I be an inference with names L for
premises and conclusions and let T be a task. An inference substitution wrt. T is a
pair σI = 〈σN , σ〉 consisting of a mapping σN : L →֒ Pos(T) and a substitution σ. Given
an inference substitution, its domain is defined as

dom(σI) := {l ∈ L | σN (l) 6= ⊥} (6.44)

Given an inference and a corresponding inference substitution, its application will be
modeled by a sequence of resolution replacement rules within theCore calculus (the exact
details are explained in the next section). Thereby, each underlying resolution replacement
rule application is subject to several conditions on the underlying free variable task tree.
The essence of the following definition, which looks rather technical at a first glance, is
to lift these conditions to the level of inferences, thereby taking the structural properties
of task trees into account (c.f. Theorem 6.1.12). That is, once an inference substitution
satisfies the specified conditions, all induced resolution replacement rules are admissible.

Definition 6.3.5 (Partial Argument Instantiation). Let σI be an inference substitution
with respect to an inference I some task T . We say that σI is a partial argument instan-
tiation iff

(i) σ is an admissible substitution.

(ii) for all l ∈ dom(σI) it holds

• if l denotes a premise, then σI(l) ∈ Pos−(T) and Label(σI(l))σ = Label(l)σ.
Moreover, for any conclusion c σI(c) and σI(l) are α-related.

• if l denotes a conclusion, then σI(l) ∈ Pos+(T) and Label(σI(l))σ = Label(l)σ.

• for two conclusion labels l, l′ ∈ dom(σI), σI(l) and σI(l
′) are strictly β-related

to each other.

Moreover, we require

(iii) no position is contained within another position, i.e., for all l, l′ ∈ dom(σT
I) it holds

that l 6≺ l′.

(iv) for two premise labels l, l′ ∈ dom(σT
I), it holds that σ

T
I (l) and σ

T
I (l
′) are α-related to

each other.

A PAI σI is called empty, iff dom(σI) = ∅.

Let us explain the additional conditions (iii) and (iv), which are not needed to ensure
the correctness of the inference application, before giving an example of a PAI. The
condition (iv) corresponds to the intuition of not using assertions from different branches
simultaneously, as the following example illustrates:

Example 6.3.6. Consider the inference conj-I

conj-I
p1 : A p2 : B

c1 : A ∧ B (6.45)

and the task T [
A− ∨β B−

]− ⊢
[
A+ ∧β B+

]+
(6.46)

89

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

Suppose that the conclusion has been matched against the formula A ∧ B. Without the
condition, we could subsequently both match p1 and p2 in (6.46), thereby introducing the
proof obligations (¬B)+ and (¬A)+. Finally, condition (iii) ensures that all contraction
steps need to be performed explicitly. Consider again the inference conj-i shown above
and the task

A− ⊢ B+ (6.47)

Without the condition (iii), we can apply conj-i in forwards direction to deduce A ∧ A,
which is not possible with the restriction.

Let us now illustrate the concept of a PAI:

Example 6.3.7. Consider the task

[
(A ⊂ B)+ ⇒β (f(A) ⊂ f(B))−

]− ⊢ Auto(f,G)+ ⇒α f(Ker(f,G)) ⊂ G+ (6.48)

and the inference
p1 : U ⊂ V p2 : V ⊂ W

c : U ⊂ W
Trans⊂

(6.49)

For premises, the nodes corresponding to the following formulas are candidates for the
instantiation process:

{f(A) ⊂ f(B), Auto(f,G)} (6.50)

Similarly, for the conclusion of the inference the following nodes are candidates:

{f(Ker(f,G)) ⊂ G,A ⊂ B} (6.51)

Using the substitution

σ = {U 7→ f(ker(f,G)),W 7→ G,A 7→ ker(f,G), V 7→ f(G)} (6.52)

the task reads as

ker(f,G) ⊂ B ⇒ (f(ker(f,G)) ⊂ f(B)) ⊢ Auto(f,G) ⇒ f(Ker(f,G)) ⊂ G (6.53)

and the inference as
f(ker(f,G)) ⊂ f(G) f(G) ⊂ G

f(ker(f,G)) ⊂ G
(6.54)

Therefore, we can both instantiate the first premise and the conclusion of the inference,
obtaining the following PAI which consists of σ and the inference substitution

σL : {p1, p2, c} → Pos(T); σL(x) =

f(ker(f,G)) ⊂ f(B) x = p1

⊥ x = p2

Ker(f,G) ⊂ B x = c

(6.55)

The matching process is illustrated in Figure 6.2, which shows the free variable task tree.
In the figure, solid boxes indicate the corresponding positions within the task tree. The
dashed boxes correspond to proof obligations that will be introduced when applying the
inference. The inference substitution (6.55) is admissible, because

(i) σ is admissible

90

6.3. ASSERTION APPLICATION

α

β

β

U ⊂ V + V ⊂ W+

(U ⊂ W)−

α

β

A ⊂ B f(A) ⊂ f(B)−

α

Auto(f,G)− f(Ker(f,G)) ⊂ G+

Figure 6.2: Initial free variable indexed formula tree for our example

(ii) • σI(p1) has negative polarity and is α-related to σI(c) via the right child of the
root node; moreover, σI(p1)σ = I(p1)σ

• σI(c) has positive polarity; moreover, σI(c)σ = I(c)σ
• there is only one conclusion

(iii) the task positions do not overlap

(iv) there is only one instantiated premise, so all instantiated premises are α-related to
each other

Notation 6.3.8. From now on, we will denote partial argument instantiations with respect
to an inference I and a task T by paiTI .

Motivated by the above example, we now introduce the notion of a partial argument
instantiation update to make the stepwise search process of a PAI explicit. The intuition
of a PAI update for a given PAI is that at least one new task position has been added to
the PAI. Formally, this is captured by the following definition:

Definition 6.3.9 (Partial Argument Instantiation Update). Let I be an inference, T be
a task, paiTI , pai

′
I
T be partial argument instantiations for I with respect to T . Then pai′I

T

is a partial argument update of paiTI iff

• paiTI (l) = paiTI (l) for all l ∈ dom(paiTI).

• there is at least one formal argument of I in dom(pai′I
T) \ dom(paiTI).

Example 6.3.10. Let us illustrate the above definition using the inference and task from
Example 6.3.7 by showing one possible sequence of PAI updates leading from the empty
PAI to the one shown in (6.55).

−→ σL(x) =

⊥ x = p1

⊥ x = p2

Ker(f,G) ⊂ B x = c

−→ σL(x) =

f(ker(f,G)) ⊂ f(B) x = p1

⊥ x = p2

Ker(f,G) ⊂ B x = c

The instantiation process can also be shown schematically by abstracting over the con-
crete statements, resulting in a so-called PAI-status. This allows the computation of all
possible status updates statically. For the inference (6.49), the corresponding graph is
shown in Figure 6.3, where the rounded boxes correspond to PAIs and indicate the instan-
tiated arguments. The squared boxes indicate the argument that is added when following
the edge.

91

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

∅

⊕P1 〈P1〉
⊕C 〈P1, C〉 ⊕P2

⊕P2

⊕P2 〈P2〉
⊕P1 [〈P1, P2〉] ⊕C 〈P1, P2, C〉

⊕C

⊕C 〈C〉
⊕P2 〈C,P2〉 ⊕P1

⊕P1

Figure 6.3: Possible status updates for the inference (6.49)

To be able to describe the effects of the application of an inference, let us introduce
three main directions in which an inference can be applied: forwards, backwards, and
close. Intuitively, an inference is applied in forwards direction if it introduces new facts,
in backwards direction if it reduces a goal to new subgoals, and in close direction if it
closes the goal.

Definition 6.3.11 (Applicable Inference, Forward/Backward/Close Direction). Let I be
an inference, T be a task and paiTI a partial argument instantiation. paiTI is applicable iff
one of the following conditions hold:

(i) for all conclusions c, paiTI (c) 6= ⊥

(ii) there is a premise p such that paiTI (p) 6= ⊥.

We classify paiTI to the following directions: paiTI is called

• forward partial argument instantiation if for all c ∈ C it holds that paiTI (c) = ⊥
and there is some p ∈ P such that paiTI (p) 6= ⊥.

• backward partial argument instantiation if there exists a c ∈ C such that paiTI (c) 6=
⊥.

• closing partial argument instantiation if all premises and all conclusions are instan-
tiated.

In the following, we describe the application of such an inference to a given proof state
and show how a given task is transformed. We will define two transformations, dependent
on whether the inference is applied forwards or backwards.

6.4 Assertions: Backward Application

When applying an inference in the backward direction, all conclusions of the inference
need to be instantiated. These conclusions are then replaced by some new subgoals
resulting from the application of the inference. Internally, the application of an inference
is reduced to a sequence of resolution replacement rules in the Core calculus. As this
application intuitively consumes some parts of the free task tree, the multiplicities of the
involved quantifiers of the inference are additionally increased, such that the inference can

92

6.4. ASSERTIONS: BACKWARD APPLICATION

be applied several times. Finally, the consumed part is removed from the indexed formula
tree using weakening. To get an intuitive understanding of the underlying operations, let
us illustrate the induced resolution replacement rules by means of an example.

Example 6.4.1. We have already seen in Example 6.3.7 how the inference Trans- ⊂
can be instantiated by unifying the conclusion with the subformula f(Ker(f,G)) ⊂ G and
the first premise with the subformula f(A) ⊂ f(B). Applying the inference reduces the
task

A ⊂ B ⇒ f(A) ⊂ f(B) ⊢ Auto(f,G) ⇒ f(ker(f,G)) ⊂ G (6.56)

in one step to

A ⊂ B ⇒ (f(A) ⊂ f(B)) ⊢ Auto(f,G) ⇒ (Ker(f,G) ⊂ B ∧ f(B) ⊂ G) (6.57)

which can be proved immediately using the definitions of Auto and Ker, instantiating B
with G.

The modified task (6.57) is obtained by the application of two resolution replacement
rules, each of which is induced by an instantiated premise/conclusion. More precisely, we
consider the two node positions of the free variable task tree corresponding to the inference
node and the task node of the instantiated formal argument. For the conclusion, this pair
consists of the inference node (U ⊂ W) and the task node f(ker(f,G)) ⊂ G. The require-
ments of Definition 6.3.5 guarantee that this indeed induces a resolution replacement rule,
which allows the replacement of the task node with the conditions of the conclusion node
of the inference:

U ⊂ W− → 〈(U ⊂ V ∧ V ⊂ W)+〉 (6.58)

which is composed of the two premises and equals β(U ⊂ V +, V ⊂ W+) (c.f. Theorem
6.2.5). Under the instantiation, the rule becomes

(f(Ker(f,G)) ⊂ G)+ → 〈(f(Ker(f,G)) ⊂ V ∧ V ⊂ G)+〉 (6.59)

Similarly, the instantiated premise induces a resolution replacement rule. However,
for backward inferences, the resolution replacement rule belonging to the conclusion of the
inference is applied first, as indicated in the subsequent picture by ➀:

α

β

β

U ⊂ V + V ⊂ W+

(U ⊂ W)−

α

β

A ⊂ B f(A) ⊂ f(B)−

α

Auto(f,G)− f(Ker(f,G)) ⊂ G+

➀

To enable the application of the resolution replacement rule, the involved labels must be
equal. Therefore, we have to apply the substitution σ before applying the resolution re-
placement rule. Afterwards, the replacement can be carried out and results in the following
free variable task tree:

93

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

α

I α

β

ker(f,G) ⊂ B+ f(ker(f,G)) ⊂ f(B)−

α

Auto(f,G)− β

f(ker(f,G)) ⊂ f(B)+ f(B) ⊂ G+

As shown above, all premise nodes of the inference have been transferred to the task
part of the free variable task tree. More precisely, it is possible to define a mapping ζP
that identifies for each premise of the inference a substructure of the replaced conclusion:
In the figure above, f(ker(f,G)) ⊂ f(B) corresponds to the first premise, and f(B) ⊂
G corresponds to the second premise. The next step, indicated by ➁, consists of the
application of the resolution replacement rule induced by the instantiated premise. The
replacement takes place between the task position of the premise, i.e., paiTI (l), and the
transferred premise node, i.e., ζP (I(l)), as indicated below:

α

I α

β

ker(f,G) ⊂ B+ f(ker(f,G)) ⊂ f(B)−

α

Auto(f,G)− β

f(ker(f,G)) ⊂ f(B)+ f(B) ⊂ G+
➁

ζP (I(p1))
This already produces the overall result of the inference application, namely the task (6.57),
which corresponds to the following task tree:

α

I α

β

ker(f,G) ⊂ B+ f(ker(f,G)) ⊂ f(B)−

α

Auto(f,G)− β

ker(f,G) ⊂ B+ f(B) ⊂ G+

As some of the free variables of the inference tree have been instantiated, the inference
tree is of no further use and is removed by the application of the weakening rule (see
Definition 5.2.17 for details).

The process depicted above can be generalized to arbitrary inferences, for which it
works as follows:

1. Increase the multiplicity of all involved meta-variables of the inference.

94

6.4. ASSERTIONS: BACKWARD APPLICATION

2. Apply the resolution replacement rule to the conclusion of the inference, i.e., the
replacement rule between the nodes

I(c), paiTI (c) (6.60)

where paiTI (c) is replaced.

3. For each instantiated premise p apply its induced resolution replacement rule, i.e.,
the replacement rule between the nodes

paiTI (p), ζP (I(p)) (6.61)

where ζP (I(p)) is replaced.

4. Weaken the formula to clean the task tree.

Notice that the recipe above involves only a single conclusion, while we have defined
inferences more generally to also support multiple conclusions. However, as we will show
below, it is sufficient to consider a single conclusion, because it is possible to reduce the
multi-conclusion case to the single-conclusion case. To that end, we consider an inference
with two conclusions c1 and c2, and a task with corresponding formulas c′1 and c′2 which
are possibly embedded in some other β-related nodes c̃1, . . . , c̃n:

α
A β

c̃1 β
c′1 β

c̃2 β
c′2 c̃3

The idea is to use commutativity of ∧ to transform the goal as indicated above and to
replace both conclusions simultaneously. On the free variable task tree, the commutativity
of ∧ corresponds to a permutation of β-nodes:

Theorem 6.4.2. Let Q be a free variable indexed formula tree of the form β(C1, . . . , CN).
Then Q is provable iff the permutation Q′ = β(π(C1 . . . , CN)) is provable.

Proof. Clear, as this kind of permutation does not change the set of paths.

For an arbitrary number of conclusions, the result follows inductively. Therefore, we
subsequently assume only a single conclusion C of inferences in the subsequent presenta-
tion. We then proceed in three steps: First, we define the overall effect of the backward
application of a paiTI . We then show how the result is modeled by a sequence of resolution
replacement rules. Finally, we show that the adaptations of the windows yield a consistent
proof state.

To be able to define the proof state transformation for an arbitrary PAI, it is convenient
to describe the proof obligation induced by a single premise, independent of whether it
has been instantiated or not. In the first case, conditions may arise due to conditions
induced by the replacement rule application. As replacement rules induced by instantiated
premises are applied after the replacement rule induced by the conclusion, these conditions
are between two task positions of the current task, namely the modified conclusion and
the task position of the premise.

95

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

Definition 6.4.3 (Premise Conditions). Let w1, . . . , wn ⊢ wn+1, . . . , wm be a task, let π+

be a task position with positive polarity, and let π− be a task position with negative polarity
that is α-related to π+ via some node R. Then the conditions of π− with respect to π+,
denoted by POBP (π

−, π+), are the formulas corresponding to the labels of nodes between
π− and R that are β-related to π+ and maximal with respect to ≺.

Example 6.4.4. The premise conditions of f(A) ⊂ f(B) with respect to the goal
f(ker(f,G)) ⊂ G in task (6.48) are 〈(A ⊂ B)+〉.

If a premise is not instantiated, the proof obligation is due to the induced replacement
rule of the conclusion and consists of the premise formula modified by the inference
substitution σ. Putting both observations together, we are able to characterize the new
proof obligation of a single premise with respect to a task and an inference as follows:

Definition 6.4.5 (Backward Inference Conditions). Let I be an inference with premise
labels p1, . . . , pn, T be a task, and paiTI be a partial argument instantiation with respect to
I and T . Let ζP : L → S(R) be the mapping which identifies for each premise its position
in the task tree1. For each label l denoting a premise, the conditions of l are defined as
follows:

POBbw(l) =

Label(I(l))σ if paiTI (l) = ⊥
β(POBP (pai

T
I (l), ζP (I(l))) otherwise

(6.62)

The overall conditions of the paiTI are then given by

n∧

i=1

POBbw(pi) (6.63)

Note that the inference conditions for the instantiated premises can be statically de-
termined from the task T . However, in contrast to the Core proof theory they obey a
locality property, as they are determined by only inspecting the window containing the
corresponding position, whereas in the case of Core they are determined by the node c
that governs the connectable nodes.

Definition 6.4.6 (Backward Inference Rule Application). Let I be an inference, T be a
task of the task tree (S, f), and paiTI be a backward PAI with respect to I and T . The
effect of applying the PAI consists of replacing the conclusion paiTI (c) by (6.63), i.e.,

S|paiT
I
(c)←(S′,f ′) (6.64)

where S ′ denotes the substructure for (6.63), and f ′ is defined as follows:

• If paiTI (c) is a succedent formula, i.e., there is a n ∈ dom(f) with f(n) = paiTI (c)

– if |Prems(I)| = 1 and Hyps(p1) 6= ∅

f ′(n) :=

ζP (pai
T
I (p) for exactly one n ∈ dom(f ′)

ζP (pai
T
I (h)) for each hyp h and for exactly one n ∈ dom(f ′)

undefined otherwise

(6.65)

1The mapping is induced by the application of the resolution replacement rule induced by the conclu-
sion

96

6.4. ASSERTIONS: BACKWARD APPLICATION

– otherwise
f ′(n) = paiTI (c) (6.66)

for exactly one n ∈ dom(f ′).

• Otherwise f ′(n) undefined for all n ∈ dom(f ′).

The replacement defined above replaces the goal by new subgoals and adapts the
windows of the free variable task tree. During this process, there are several design
choices of how to add new windows. We found it convenient to make the goal structure
as small as possible. That is, instead of introducing a new goal A ⇒ B, we introduce a
new hypothesis (new window) for A, and a new goal B (another window). Note that this
corresponds to some kind of proof normalization in ND by the application of ⇒I rules.
However, this is only possible if the modified subformula is the maximal formula of the
window that contains it, i.e., a top-level subgoal in the task representation.

Example 6.4.7. Consider the inference

[x ∈ U]
...

x ∈ V

U ⊂ V
Def⊂

(6.67)

and the task
⊢ A ∩ B ⊂ B ∩ A (6.68)

Applying the inference (6.67) transforms the task into

x ∈ A ∩ B ⊢ x ∈ B ∩ A (6.69)

as the goal is at top-level. In contrast, the same inference applied to

⊢ A ∩B ⊂ B ∩ A ∧ B ∩ A ⊂ A ∩ B (6.70)

is transformed to

⊢ (x ∈ A ∩ B ⇒ x ∈ B ∩ A) ∧ B ∩ A ⊂ A ∩ B (6.71)

We show subsequently that the effect of paiTI can be modeled by a sequence of res-
olution replacement rules. However, before proving the main theorem, we state some
intermediate lemmas.

Lemma 6.4.8. Let I be an inference with premises p1, . . . , pn, T be a task and paiTI be a
backward PAI. The conclusion replacement rule induced by paiTI is admissible and results
in the modified task

paiTI (c) →
n∧

i=1

Label(I(pi))σ (6.72)

Proof. Recall that I(c) denotes the node corresponding to the conclusion of the infer-
ence, and that paiTI (c) denotes the node corresponding to the node of the task (see Defini-
tion (6.3.5)). Then I(c) has negative polarity and paiTI (c) has positive polarity. Moreover,
both positions are α-related via the root node r of the free variable indexed formula tree.
This induces an admissible resolution replacement rule

I(c) → 〈R1, . . . , Rn〉 (6.73)

97

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

where R1, . . . , Rn are the nodes that are below r and β-related to I(c). Moreover,

Label(I(c))σ = Label(paiTI (c))σ (6.74)

therefore I(c) and paiTI (c) are connectable. To determine the concrete form of R1, . . . , Rn,
by Lemma 6.1.14 it is sufficient to consider the inference tree corresponding to the assertion
representing the inference I to determine R1, . . . , Rn. By Theorem 6.2.5, all Ri correspond
to a single premise or a conjunction of premises and have positive polarity. β-insertion
therefore results in replacing the subtree of paiTI (c) by the subtree with label

 ∧

p∈Prems(I)

Label(I(p))

 σ ∧ true+ (6.75)

which can be simplified by means of the simplification rule (see Definition (5.2.19)) to
∧

p∈Prems(I)

Label(I(p))σ (6.76)

After applying the resolution replacement rule induced by the conclusion, the replaced
conclusion is of the form (6.76). In particular, for each premise of the inference we can
identify a corresponding position in the task tree, which we denote by ζP (I(p)). We
subsequently apply all induced premise resolution replacement rules, that is, resolution
replacement rules between the following positions:

paiTI (p), ζP (I(p)) (6.77)

This results in (6.64) of Definition 6.4.6.

Lemma 6.4.9. All induced premise resolution replacement rules are admissible. Applica-
tion of all induced premise resolution replacement rules transforms (6.76) to the conditions
of (6.63).

Proof. We show by induction on the number |inst(P)| of instantiated premises that the
application of all induced resolution replacement rules transforms (6.76) to the conjunction
of all proof obligations, i.e.,

∧

p∈Prems(I)

Label(I(p) →
∧

p∈Prems(I)

POBbw(p) (6.78)

Let us first note that none of the premise positions is destroyed by the application of
previous replacement rule, as the task positions are not overlapping due to condition (iii)
of Definition (6.3.5).

Base Case: If |inst(P)| = 0, then POBbw(p) = Label(I(p)) and (6.76) has already the
desired form.

Step Case: Let us now assume that |inst(P)| = n. Let P1, . . . , Pn−1 denote the first
n− 1 instantiated premises. By induction hypothesis,

∧

p∈Prems(I)

Label(I(p)) =
∧

p∈Prems(I)\p′

Label(I(p)) ∧ Label(I(p′)) (6.79)

=
∧

p∈Prems(I)\p′

POBbw(p) ∧ Label(I(p′)) (6.80)

98

6.4. ASSERTIONS: BACKWARD APPLICATION

p′ induces an admissible resolution replacement rule ζP (I(p′)) → 〈R1, . . . , Rn〉 which
can be applied to the node ζP (I(p′)). This is because ζP (I(p′)) and paiTI (p′) have
opposite polarity and their labels are equal under the substitution σ. Moreover,
they are α-related: If they are contained in the same window, this is ensured by
Definition (6.3.5) and the conditions are the β-related formulas. Otherwise, they are
α-related by the Definition (6.1.8) of a sequent. Therefore, ζP (I(p′)) and paiTI (p′)
are connectable. The conditions of the replacement rule are POBP (I(p′), paiTI (p′)).
Therefore the application of the rule results in

POBP (I(p′), paiTI (p′)) ∧ true (6.81)

which can be simplified by means of the simplification rule (see Definition (5.2.19))
to

POBP (I(p′), paiTI (p′)) (6.82)

Lemma 6.4.10. The modified task proof state is consistent.

Proof. We have to show that the modified task is still a sequent. There are two cases to
consider, depending on whether the replaced conclusion formula is a sequent formula or
not.

Case 1: If the replaced conclusion is not a sequent formula, the substructures do not
change during the application. As the task proof state was consistent before the
application of the rule, the sequential property does also hold after the replacement
of the substructure.

Case 2: If the replaced conclusion is a sequent formula, f ′ is constructed according to
(6.65)/(6.66), respectively.

In both situations, the new windows are spanning for paiTI (c). Therefore, the combination
of f ,f ′ is spanning. Moreover, as all new windows are α-related to each other, the task
state is sequential.

Theorem 6.4.11 (Correctness of Backward Rule Application). Let I be an inference,
T be a task and paiTI be a backward PAI. Then paiTI is admissible in the Core calculus.
Moreover, the resulting proof state is consistent.

Proof. By Lemma (6.4.8), Lemma (6.4.9), and Lemma (6.4.10)

Discussion: We have shown that how assertion applications can conveniently modeled
within the Core framework by a sequence of resolution replacement rules. Due to the
imposed structure of the indexed task tree, the effect of the transformation can be deter-
mined locally by analyzing the inference and the task only. However, there is the question
of whether the particular choice of this sequence is optimal with respect to the size of
the induced proof obligations. This is because each instantiated formal argument of the
inference induces two resolution replacement rules. In particular, we could also apply the
resolution replacement rules induced by the premises first (from right to left) – intuitively
this would correspond to a specialization of the inference –, and then apply the resolution
replacement rule induced by the instantiated conclusion.

In the case that all premises are instantiated in other windows than the conclusion,
both transformation yield the same result. This illustrates that our mechanism removes

99

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

some of the redundancy of the search space. In the case that a premise is matched inside
the window of a conclusion, we can show that the proof obligations introduced by our
method are smaller than in the second possibility mentioned above. Intuitively, this is
because we only have to collect once the expensive proof obligations arising from the
conclusion resolution replacement rule that connects the inference part and the task part.
To see that this is advantageous, consider the following task, where the formula Q is used
as premise for the goal R:

⊢ P+ ∧
(
Q− ⇒ R+

)+
(6.83)

Applying the premise resolution rule first induces a proof obligation ¬P , which is omitted
in our case.

6.4.1 Generation of New Premises and Task Splitting

So far, the proof state is always represented by a single task together with its context. This
is in contrast to the standard sequent calculus, where the so-called β-rules, such as ∧R,
introduce several goals that need to be solved simultaneously2. While our formulation
does not require such a splitting, we want to be able to model this situation within
our approach, as it might have advantages for the interactive setting: When splitting a
composed goal, the individual subgoals are smaller than the composed goal, and their
contexts can locally be modified. Such a situation is in particular beneficial in the case
that both subgoals do not share meta-variables. In this case, both goals can be solved
independently from each other. Let us consider a simple example:

Example 6.4.12. The application of set extensionality to the task

A ∪ B = B ∪ A (6.84)

results in the new task

⊢ A ∪B ⊂ B ∪ A ∧ B ∪ A ⊂ A ∪ B (6.85)

However, it would be desirable to obtain two tasks instead:

⊢ A ∪ B ⊂ B ∪ A (6.86)

⊢ B ∪ A ⊂ A ∪ B (6.87)

Within our framework, the main difference between (6.85) and (6.86) is that the
window structure covering (6.85) is replaced by two window structures resulting in the
two tasks shown in (6.86). It is this replacement which introduces a new sequent.

However, when performing this operation, we have to guarantee that each sequent
satisfies the required properties of Definition 6.1.8 and that the sequents are sequential
(see Definition 6.1.10). Particularly, in the presence of assumptions, subsequent operations
might be necessary, as replacing a single window for a formula A∧B by two windows for
A, respectively B, introduces two windows that are β-related to each other, contradicting
the requirement of Definition 6.1.8.

The above problem can be solved by reallocating certain nodes in the free task tree,
as shown below:

2Note that substitutions can still have a global effect in the presence of meta-variables

100

6.5. ASSERTIONS: FORWARD APPLICATION

∗

β

β1 β2

~α −→

α

∗

β1 ~α

∗

β2 ~α

This corresponds exactly to the application of Schütte’s decomposition rule (see Section
5.2.7), which is admissible in the Core calculus. Of course, for n subgoals, resulting from
n premises, we can apply the Schütte rule n− 1 times. Note that the rule also copies all
the windows in the appropriate manner in order to obtain the two new sequents.

Definition 6.4.13 (Backward Inference Rule Application, Splitting). Let I be an infer-
ence with n premises, T be a task of the task tree (S, f), and paiTI be a PAI with respect
to I and T , where k premises are instantiated. The effect of applying the PAI consists of
replacing the task by n new subtasks T ′1, . . . , T

′
n, where each subtask has the form

T |paiT
I
(c)←POBbw(pi)

(6.88)

Theorem 6.4.14. The backward application splitting rule is sound. The proof state re-
sulting from the application of the backward splitting rule is consistent.

Proof. As Theorem (6.4.11), then apply Schütte’s decomposition rule n− 1 times.

6.5 Assertions: Forward Application

In the case of forward application, none of the conclusions of the inference has been
instantiated, but at least for one premise p it holds that paiI(p) 6= ⊥. The expected
effect of the application of such an inference – at least when applied at top-level – is the
derivation of a new fact, given by the conclusion of the inference, together with additional
subgoals for the uninstantiated premises. While our inference mechanism will be much
more general, it is our design goal to obtain the usual transformation described above when
restricting the premise positions to top-level formulas in the antecedent of the sequent.

Similar to the case of backward application, the correctness of the transformation will
be modeled by a sequence of resolution replacement rules, and as before, proof obliga-
tions arise due to uninstantiated premises or because of the deep access to subformulas.
One minor difference is the fact that we do not want a premise to be removed during
the application. We therefore distinguish one special premise among the instantiated
premises, called major premise, which takes over the role of the conclusion and which
is copied by the application of the contraction rule. The remaining premises are called
minor premises . Before considering the technical details of the transformation, let us
illustrate the transformation by means of an example.

Example 6.5.1. We consider the inference

p1 : A ⊂ B p2 : x ∈ A

c : x ∈ B
Def-⊂

(6.89)

and the task
S ⊂ T ⇒ P(S) ⊂ P(T), x ∈ P(S) ⊢ G (6.90)

101

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

An application of the inference Def-subset with p1 instantiated with P(S) ⊂ P(T) and
p2 instantiated with x ∈ P(S) transforms the task in one step to

S ⊂ T ⇒ (x ∈ P(T) ∧ P(S) ⊂ P(T)) , x ∈ P(S) ⊢ G (6.91)

provided that p1 is the major premise. In the case that p2 is the major premise, the result
is

S ⊂ T ⇒ P(S) ⊂ P(T), S ⊂ T ⇒ x ∈ P(T), x ∈ P(S) ⊢ G (6.92)

Note that because of the different insertion position, the condition S ⊂ T is copied. We
focus on the first possibility and show the sequence resulting in the transformation in
detail:

α

β

A ⊂ B+ β

x ∈ A+ x ∈ B−

α

α

β

S ⊂ T+ P(S) ⊂ P(T)−

x ∈ P(S)−

G+

➀

α

β

A ⊂ B+ β

x ∈ A+ x ∈ B−

α

α

β

S ⊂ T+ α

P(S) ⊂ P(T)− P(S) ⊂ P(T)−

x ∈ P(S)−

G+

➁

α

β

A ⊂ B+ β

x ∈ A+ x ∈ B−

α

α

β

S ⊂ T+ α

β

x ∈ P(S)+ x ∈ P(T)−

P(S) ⊂ P(T)−

x ∈ P(S)−

G+

➂

ζP (I(p1))
ζP (I(c))

First, the major premise is contracted, as indicated by ➀. In a second step (➁), the
replacement rule induced by the major premise is applied. As shown above, all premise
nodes of the inference – except the major premise – as well as all conclusions (dashed
box) have been transferred to the task part of the free variable task tree. As in the case of
backward application, this induces a mapping ζP that identifies a substructure of the re-
placed premise for each minor premise of the inference and all conclusions. This mapping
is then used to apply all replacement rules induced by the minor premises, as indicated by
➂. For convenience, it is useful to denote the left copy of the major premise p (after the
application of the contraction rule) by ζP (pai

T
I (p)).

For arbitrary inferences, the process depicted above can be generalized as follows:

102

6.5. ASSERTIONS: FORWARD APPLICATION

1. Increase the multiplicity of all involved meta-variables of the inference.

2. Apply the contraction rule to the instantiated major premise, i.e., to paiTI (p). Denote
the left copy by ζP (pai

T
I (p)).

3. Apply the resolution replacement rule induced by the major premise p of the infer-
ence, i.e., the replacement rule between the nodes

I(p), ζP (paiTI (p)) (6.93)

where ζP (pai
T
I (p)) is replaced. This results in the transfer of all minor premises

p1, . . . , pn as well as the conclusions c1, . . . , cn of the inference to ζP (pai
T
I (p). Denote

them by
ζP (I(p1)), . . . , ζP (I(pn))3 and ζP (I(c)) (for the combined conclusions).

4. For each instantiated minor premise pi (1 ≤ i ≤ n) apply its induced resolution
replacement rule, i.e., the replacement rule between the nodes

paiTI (pi), ζP (I(pi)) (6.94)

where ζP (I(p′)) is replaced.

5. Weaken the formula to clean the task tree.

As in the backward case, we can take advantage of the structural properties of task
trees and define the proof obligation of a single premise locally. The overall proof obliga-
tions are then composed by the proof obligations of the minor premises.

Definition 6.5.2 (Forward Inference Conditions). Let I be an inference with premise
labels p1, . . . , pn, T be a task, and paiTI be a forward partial argument instantiation with
respect to I and T . For each label l denoting a minor premise, the conditions of l are
then defined as follows:

POBfw(l) =

Label(I(l))σ if paiTI (l) = ⊥
POBP (pai

T
I (l), pai

T
I (p))σ else

(6.95)

The overall conditions of the paiTI are then given by

n∧

i=1

POBfw(pi) (6.96)

Therefore, the positions paiTI do not change.

Remark 6.5.3. (i) In Definition 6.5.2, the proof obligations of an instantiated minor
premise l are defined with respect to the major premise p as POBP (pai

T
I (l), pai

T
I (p)).

The arising conditions are exactly the same as POBP (pai
T
I (l), ζP (pai

T
I (p)), but the

former definition is more elegant as it avoids the use of ζP .

(ii) The application of the contraction rule to the task position corresponding to the
major premise paiTI (p) does not change the other positions, as task positions are
non-overlapping (see Definition 6.3.5).

3As in the backward case, we use the notion p to denote “closure” of a premise, i.e., the premise
together with its hypotheses, see Notation 6.2.8

103

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

To clarify the definition, we illustrate it by means of an example.

Example 6.5.4. In Example 6.5.1 with p1 as major premise, there is only one minor
premise, namely p2, which is also instantiated. Therefore, POBfw(p2) is given by the
proof obligations between the task position of p1, i.e., pai

T
I (p1) and paiTI (p2). The node

that governs both positions is the one indicated by the dashed box; let us call the node a.
As there are no β formulas on the path from paiTI (p2) to a, there are no proof obligations,
i.e., POBfw(p2) = true.

α

β

A ⊂ B+ β

x ∈ A+ x ∈ B−

α

α

β

S ⊂ T+ P(S) ⊂ P(T)−

x ∈ P(S)−

G+

The overall effect of the forward application can now be defined as the replacement
of the left copy of the major premise, i.e., ζP (pai

T
I (p)), by the overall proof obligation

(see Definition 6.5.2). The windows are adapted as follows: If the major premise does not
denote a top-level formula, that is, it does not correspond to a substructure corresponding
to a window, nothing needs to be changed: There is a parent node covered by a window,
and the parent node will still be covered after the replacement. As the window structure
was spanning before, it will be spanning after the replacement. In the other case, where the
major premise denotes a top-level formula, the windows need to be adapted: The original
window covering the major premise is removed, and two new windows are inserted, one
corresponding to the new fact, and one corresponding to the copy of the replaced fact.

Definition 6.5.5 (Forward Inference Rule Application). Let I be an inference with major
premise p and minor premises p1, . . . , pn, T be a task of the task tree (S, f), and paiTI be
a forward PAI with respect to I and T . Moreover, let c denote the node that is maximal
with respect to ≺ and contains all conclusions. The effect of applying the PAI consists of
replacing the task position corresponding to the major premise by a copy of it and the new
fact including its induced proof obligations, i.e.,

S|paiT
I
(p)←(S

′
,f

′
) (6.97)

where S ′ is the substructure of the formula tree corresponding to the formula

α(β(
n∧

i=1

POBfw(pi),Label(I(c)),Label(paiTI (p)) (6.98)

and f ′ is defined as follows:

• If paiTI (p) is an antecedent formula, i.e., there is an m ∈ dom(f) with f(m) =
paiTI (p),

f ′(n) :=

s1 if n = m

s2 if n = m′

undefined otherwise

(6.99)

where s1 and s2 denote the immediate substructures of f(m).

104

6.5. ASSERTIONS: FORWARD APPLICATION

• Otherwise f ′(n) undefined for all n ∈ dom(f ′).

Example 6.5.6. The overall effect of a forward application of an inference has already
been illustrated in Example 6.5.1. In the example, the node corresponding to P(S) ⊂ P(T)
is replaced by a new formula tree, which is composed of the following parts

• the proof obligations from p2, i.e., true.

• the conclusion of the inference, i.e., x ∈ P(T) = Label(I(c)).

• a copy of the major premise, i.e., P(S) ⊂ P(T) = Label(paiTI (p)).

The window structure is not changed, as there is no window pointing to the node P(S) ⊂
P(T).

We show subsequently that the effect of the application of paiTI can be modeled by a
sequence of resolution replacement rules. We proceed stepwise and characterize first the
structure of the task tree after the application of the contraction rule and the replacement
rule induced by the major premise.

Theorem 6.5.7. Let I be an inference with minor premises p1, . . . , pn and major premise
p. Moreover, let c denote the inference node that is maximal with respect to ≺ and
contains all conclusions, T be a task and paiTI be a forward PAI. After the application of
the contraction rule to paiTI (p), the replacement rule induced by the major premise paiTI
is admissible. The overall replacement of both steps is

paiTI (p) → α(β(
n∧

i=1

Label(I(pi)),Label(I(c))),Label(paiTI (p)))σ (6.100)

Before giving the proof of this theorem, let us clarify the involved notation by means
of an example.

Example 6.5.8. Let us again consider Example 6.5.1. After the application of the con-
traction rule, we are in the situation depicted top right in the picture on page 102. Ap-
plication of the replacement rule induced by the major premise results in the β-insertion
of all nodes on the path to the root node that are maximal and β-related to A ⊂ B. In
the example, this is the single node x ∈ A ⇒ x ∈ B. The theorem characterizes this
proof obligation on a finer level, namely as conjunction of all minor premises (including
their hypotheses), i.e., x ∈ A for our example, and the conclusion x ∈ B in our example.
Indeed, β(x ∈ A+, x ∈ B−) = x ∈ A⇒ x ∈ B.

Proof. Let Rc denote the node in the task tree corresponding to paiTI (p). According to
Definition 5.2.16, the contraction rule is applicable and results in the replacement of Rc

by

α(Label(Rc),Label(R
′
c))

Rc R′c

(6.101)

where R′c is a copy of Rc. Due to condition (iii) of Definition 6.3.5, the task positions of the
minor premises are not affected. We subsequently work on Rc to perform the replacement.
The replacement rule induced by p is between the Rc and I(p). Note that I(p) has positive
polarity, while Rc inherits the polarity of paiTI (p), which is negative. Moreover, both nodes
are α-related via the root node of the task tree due to Theorem 6.1.12 and equal under

105

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

σ. Therefore, the replacement rule is admissible. Let n1, . . . , nm denote the maximal
nodes from I(p) to the root node that are β-related to paiTI (p). The application of the
PAI results in β-insertion of n1, . . . , nm. According to Theorem 6.2.5, the premises are
β-related to each other and β-related to all conclusions and all nodes covered. Therefore,
β(n1, . . . , nm) = β(p1, . . . , pn, c). Consequently, Rc is replaced by

(
β(

n∧

i=1

Label(I(pi)),Label(c)) ∧ true

)
σ (6.102)

which, by the application of the simplification rule (see Definition 5.2.19) is simplified to

β(
n∧

i=1

Label(I(pi)),Label(c))σ (6.103)

Consequently, the overall replacement is (6.100).

We now show that replacement rules induced by the minor premises are admissible
and result in the proof state as specified in Definition 6.5.5. As a result, each instantiated
minor premise is replaced by their induced proof obligations.

Example 6.5.9. Let us again consider Example 6.5.1. After the application of the con-
traction rule and the replacement rule induced by the major premise, we are in the situation
depicted at the bottom in the picture of page 102. Application of the induced replacement
rule for p2 results in the replacement of x ∈ P(S) by true.

Theorem 6.5.10. All induced premise resolution replacement rules are admissible. Ap-
plication of all induced premise resolution replacement rules transforms (6.100) to the
conditions of (6.98), i.e.,

α(β(
n∧

i=1

Label(I(pi)),Label(c)),Label(paiTI (p)))σ

→ α(β(
n∧

i=1

POBfw(pi),Label(c)),Label(pai
T
I (p)))σ

(6.104)

Proof. The proof is done by induction over the number of instantiated minor premises
|inst(P)|. It is sufficient to consider the replacement

n∧

i=1

Label(I(pi)) → (
n∧

i=1

POBfw(pi)) (6.105)

as all replacements occur within Label(I(pi)).
Base Case: If |inst(P)| = 0, then POBfw(pi) = Label(I(pi)) and (6.100) has already

the desired form.

Step Case: Let us now assume that |inst(P)| = n. Let p1, . . . , pn−1 denote the first
n− 1 minor premises. By induction hypothesis, we can assume that the first n− 1
replacement rules are admissible. Therefore, we have

n∧

i=1

Label(I(pi)) =
n−1∧

i=1

Label(I(pi)) ∧ pn (6.106)

→ (
n−1∧

i=1

POBfw(pi)) ∧ pn (6.107)

106

6.5. ASSERTIONS: FORWARD APPLICATION

pn induces a resolution replacement rule between ζP (I(pn)) and paiTI (pn). Both have
opposite polarity. Moreover, they are α-related due to Definition 6.3.5 and therefore
connectable via the substitution σ. The conditions of the replacement rule are
POBP (ζP (I(pn)), paiTI (pn)). Therefore the application of the rule results in

(
n−1∧

i=1

POBfw(pi)) ∧ POBP (ζP (I(pn)), paiTI (pn)) =
n∧

i=1

POBfw(pi) (6.108)

What remains to be shown is that the resulting task proof state is consistent.

Lemma 6.5.11. The modified task proof state is consistent.

Proof. We have to show that the modified task is still a sequent. There are two cases to
consider, depending on whether the replaced conclusion formula is a sequent formula or
not.

Case 1: If the replaced conclusion is not a sequent formula, the substructures do not
change during the application. As the task proof state was consistent before the
application of the rule, the sequential property does also hold after the replacement
of the substructure.

Case 2: If the replaced conclusion is a sequent formula, f ′ is constructed according to
(6.99) respectively.

In both situations, the new windows are spanning for paiTI (c). Therefore, the combination
of f ,f ′ is spanning. Moreover, as all new windows are α-related to each other, the task
state is sequential.

Putting our observations together, we obtain the correctness result of the forward appli-
cation.

Theorem 6.5.12 (Correctness of Forward Rule Application). Let I be an inference, T
be a task and paiTI be a forward PAI. Then the effect of paiTI can be modeled by a sequence
of Core inference rules. Moreover, the resulting proof state is consistent.

Proof. By Theorem (6.5.7), Theorem (6.5.10), and Lemma (6.5.11)

Discussion: The transformation defined above contains an explicit choice point, namely
the selection of the major premise (see Example 6.5.1), upon which the resulting proof
state depends. The choice point emerges as soon as more than one premise of a given
inference is instantiated, because the only condition the major premise has to satisfy
is that the corresponding premise is instantiated in the PAI. Therefore, one may ask
whether and to what extent the choice matters. To answer this, one must understand
that the major premise specifies the position at which the new fact, including the condition
upon which it depends, is inserted. It is important to note that the conditions themselves
depend on this position and might be reduced in the case that several premises are matched
within the same sequent formula. As an example, consider the following situation:

A ⊢ P ∧ (Q⇒ R) (6.109)

107

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

and imagine an inference that allows the derivation of the fact B given the facts A and
Q. Selecting A as major premise results in the task

A,¬P ⇒ B ⊢ P ∧ (Q⇒ R) (6.110)

whereas using Q as major premise results in

A ⊢ P ∧ ((Q ∧ B) ⇒ R) (6.111)

Intuitively, in the second case the new fact is locally derived for the subgoal R, while in
the former case it is derived for all available goals. As a consequence, the condition ¬P
needs not to be introduced.

Despite the presence of situations as illustrated above, let us note that it is common
in practice to restrict the candidates for premises to those subformulas which do not
introduce proof obligations. In this case, the choice of the major premise does not matter.

6.6 Application of Rewrite Rules

Application of rewrite rules is directly supported by the Core framework using rewrite
replacement rules (see Section 5.2.1). Each ǫ-node, i.e., negative node of the form s = t
or s ⇔ t, gives rise to a rewrite replacement rule. Rewriting can be performed in two
directions: forwards, that is, replacing an instance of s by t, or backwards, that is,
replacing an instance of t by s. In contrast to resolution replacement rules, rewrite
replacement rules can also be applied inside literal nodes to modify a subterm of a literal
node. We will subsequently define an abstract interface for rewriting with equality and
equivalences.

Within Core, the application of rewrite replacement rules splits into two cases, de-
pending on whether the replacement occurs inside a literal node or whether the complete
node is replaced. In case an equation or equivalence ǫ(s, t) is used to rewrite a node,
Leibniz’ equality introduction is used to obtain s⇒ t or t⇒ s of opposite polarity to the
node that shall be rewritten. The case is then identical to the application of a normal
inference as defined in the previous section, using the backward application in the case
that the node to be rewritten has positive polarity, and forward application otherwise
(with major premise s⇒ t).

In case that the replacement occurs inside of a literal node, the rewrite replacement rule
is modeled as a sequence of extensionality introduction, Leibniz equality, and a resolution
replacement rule, as illustrated in Example 5.2.15 on page 61. As for the case of rewriting
nodes, the preparatory Core rules construct a formula of the form ϕ[s] ⇒ ϕ[t], which is
then finally applied by means of a resolution replacement rule. Therefore, this case can
also be handled by the previously introduced mechanism for inferences. Of course, the
rewrite rule is only applicable in the case that the preparatory steps can be executed.

Remark 6.6.1. If no binders are involved, this is always possible. In the case that a term
below a λ-binder is to be rewritten, the extensionality introduction rule might fail. Let π
denote the label of the literal node which shall be rewritten at position π and let x1, . . . , xn
denote the variables that are free in ϕ|π but not in ϕ (these are exactly the variables that
are captured by a λ). Let σ′ be the substitution for which σ′(s) = σ′(ϕ|π). First, σ′ must
not capture bound variables, i.e., xi /∈ dom(σ′) for 1 ≤ i ≤ n. Second, the variables
within the domain of σ′ that are related to the bound variables, i.e., those x ∈ dom(σ′)
for which xi ∈ σ′(x) for some i, must be γ-local in order for the extensionality rule to

108

6.7. RELATED WORK

be applicable (see Definition 5.1.14). This means that no condition involves one of the
variable (see Definition 5.1.13). This is intuitively clear, as we cannot, for example, verify
the condition x 6= 0 within the term λx.(x+1)(x+1)−1. If desired, a possible work-around
is the introduction of a if-then-else construct, which puts the condition inside the binder
(see [Aut03] p. 88 for a discussion), but so far we have not experienced a case where this
is desired.

6.7 Related Work

The assertion application framework developed within this chapter provides the possibility
for sound reasoning with assertions in a sequent style, combined with the feature that the
assertions can be applied deeply inside formulas. The application of an assertion can be
seen as a combination of several deduction steps into one, which is the common feature
of so-called hyper calculi (see [Häh01]). This has usually the following two advantages:
(i) proof search becomes faster, and more importantly (ii) some intermediate results are
not computed in the first place, leading to a considerably smaller search space.

As the Core calculus on which our work is based is relatively new and not widely
known yet, we compare in this section the assertion mechanism with developments in the
sequent calculus and natural deduction. Let us note that the algorithm that computes
the inference representation (Section 6.2) can easily be transferred to the sequent calculus
or natural deduction: Each window transition corresponds to a decomposition rule and
the computation of an inference to the computation of its normal form. However, the
deep inference feature requires additional work.

6.7.1 LeanTAP

LeanTAP [BP95, Fit97] implements a complete and sound theorem prover for classical
first-order logic based on free-variable semantic tableaux. It follows the paradigm of lean
deduction, resulting in very small, yet efficient Prolog implementation that consists only

of a few lines of code. The ideas of LeanTAP have been the starting point to automate

proof search in Isabelle, as described in [Pau99]. In a nutshell, LeanTAP is based on
the following principles:

• Given a formula to be proved, it is preprocessed to a Skolemized negation normal
form. As a result, the number of cases that need to be considered in the main loop
are reduced.

• For each branch, LeanTAP maintains a current formula to be expanded, a queue of
yet unexpanded formulas, and a list of literals that have so far been discovered on
the branch.

• A branch can be closed if two complementary literals are found on the branch. In
this case, the closing substitution is applied to the other branches. However, even if
a branch can be closed, the alternatives to close that branch have to be considered
further for completeness.

• A formula is completely expanded on a branch. The underlying idea is to produce
literals to close a branch as fast as possible. For γ-formulas, a single instance is
generated and further expanded, but the original γ-formula is put at the end of the

109

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

list of unexpanded literals. This guarantees a fair treatment of the formulas on a
branch and that sufficiently many instances are generated.

• To obtain a complete method, an additional variable VarLim restricts the number
of allowed instances of γ-variables on a branch. If no proof could be found within
the limit VarLim, VarLim is increased and the proof search started again.

Even though LeanTAP does not derive new inference rules during its processing, its proof
strategy comes already very close to the application of assertions, as an assertion is fully
decomposed once it has been selected on the current branch. However, intermediate facts
resulting from a decomposition are not removed, but added to the set of unexpanded
formulas. While this is unproblematic for α-formulas, for which the decomposition is
just postponed, in the case of γ-formulas the number of formulas on a branch increases
rather quickly, as each decomposition introduces a new copy. In particular, a formula
∀x, y.P (x, y) introduces a copy of itself, and the decomposition a copy of ∀y.P (X, y),
which is not necessarily needed, as it can also be constructed from the original formula.

Deep inference is not supported by LeanTAP .

6.7.2 Focusing

Focusing , which was originally developed in the context of classical linear logic [And92],
is a technique that removes inessential nondeterminism from the proof search. It is based
on the observation that invertible rules can always be applied eagerly in any order in
a backward proof without loosing completeness. For example, the goal A ⇒ B can
always be decomposed to prove B under the additional assumption A. Therefore, it is
reasonable to chain together invertible rules. Interestingly, a similar result holds for non-
invertible rules: As long as the top-level connective is not invertible, we can continue the
decomposition of the formula, making a choice at each step.

To take advantage of this observation, formulas are refined to polarized formulas ,
where each formula has a polarity4. A connective is positive if its left rule is invertible,
and negative, if its right rule is invertible. Note that while in linear logic the polarity of
a connective is uniquely determined, this property does not hold in intuitionistic logic.
Proof search is then organized in two phases: an inversion phase and a focusing phase,
which are alternating. In the inversion phase, which is the first phase, all invertible rules
are applied, both on the left and right, where a specific order is forced to avoid choice,
even though the concrete order does not matter. This phase eventually ends with a so-
called neutral sequent , and represents the switch to the focusing phase. The focusing
phase selects a proposition (from the left or from the right) that obtains a focus. The
focused proposition is then decomposed until it becomes atomic or changes its polarity,
in which case the inversion phase is started again.

As mentioned above, the result of the inversion phase is a neutral sequent in which the
next formula to be focused on has to be selected. Such a phase is called block or dipole
in the literature and goes from a neutral sequent to neutral sequents. It can be used to
derive big-step rules that go from stable sequents to stable sequents as follows: Given
a proposition to be focused on, and call its subformulas that could appear in neutral
sequents syntactic connectives . Then, each block can be considered as the application of
a left or right rule for a synthetic connective. Up to now, deep inference has not been
combined with the focusing approach.

4Note that polarized formulas differ from signed formulas

110

6.7. RELATED WORK

6.7.3 Prawitz, Supernatural Deduction, Superdeduction

The idea of extending the natural deduction calculus or the sequent calculus by new
deduction rules is not new. In [Pra65] Prawitz already defines deduction rules that allow
the replacement of atomic propositions P by the formula Q if the axiom ∀~xP ⇔ Q exists
in the current context and proves the admissibility of cuts5, provided that P does not
occur in Q. In the literature, these rules are known as folding and unfolding rules (called
λ-introduction and λ-elimination by Prawitz). In the context of set theory, this can be
used to replace the axiom ∀x, y.(x ∈ P(y) ⇔ ∀z(z ∈ x⇒ z ∈ y) by two rules

Γ ⊢ ∀z.(z ∈ x⇒ z ∈ y)

Γ ⊢ x ∈ P(y)
fold

Γ ⊢ x ∈ P(y)

Γ ⊢ ∀z.(z ∈ x⇒ z ∈ y)
unfold

An overall discussion including links to investigations with respect to specific theories can
be found in [Dow09].

The idea of Prawitz has been extended to supernatural deduction [Wac05b] and su-
perdeduction [BHK07a], which allows the derivation of new rules from propositional
rewrite rules, i.e., formulas of the form ∀~x.P ⇔ Q where P is an atomic proposition
and where Q is immediately decomposed (in contrast to Prawitz) and for which cuts are
also admissible.

Both approaches are restricted to closed, universally quantified equations or equiva-
lences and the premises and conclusions of the derived inference rules are restricted to
atomic formulas. Moreover, there is no possibility to apply inference rules deeply inside.
On the other hand, our focus so far was less on proof theoretic properties, such as cut
elimination, which is an interesting topic for future work. A promising approach to obtain
such a result would be to follow the ideas of [BK07].

6.7.4 Deduction Modulo

Rather than externalizing theory knowledge into new derived rules, deduction modulo
[DHK98] allows the internalization of theory knowledge by integrating deduction with
respect to some standard calculus like for example sequent calculus and term rewriting
systems. It extends the calculus rules by an equivalence relation provided by a background
theory to check the equality of formulas and terms during the application of the calculus
rules. Like superdeduction, this approach is restricted to formulas that give rise to rewrite
rules (though extensions exist to accommodate forward- and backward-chaining).

6.7.5 Relationship to Hyperresolution and SLD Resolution

Hyperresolution is a complete strategy for resolution employed in the Otter [Kal01] family
of theorem provers. The general idea is to combine several resolution steps in one big step.
Hyperresolution comes in two flavors, a positive and negative variant; we describe positive
hyperresolution6. This is done by dividing the available clauses into two sets: (i) Nucleii ,
containing one ore more negative literals, and (ii) electrons , containing no negative literals
(i.e., positive clause). Resolution occurs between one or more electrons and one nucleus,
where one electron clause is used for each negative literal in the nucleus, resulting in

5The notion of a cut is extended in a way that a sequence of a fold rule followed by an unfold rule is
considered to be a cut

6Positive hyperresolution is obtained by replacing negative by positive and vice versa in the subsequent
presentation

111

CHAPTER 6. THE CORE CALCULUS AND THE ASSERTION LEVEL

a new electron. Thus, one hyperresolution step corresponds to several resolution steps.
Similarly, hyper tableau [BFN96] is a form of clausal tableau in which all negative literals
in a clause are resolved away in a single inference step.

Compared to hyperresolution, there are two similarities. First, a single inference
application (in the sequent calculus) itself represents a hyper-step, as it combines several
deduction rules in a single step. Second, given an inference, we can instantiate several
premises resulting in several resolution replacement rules.

Note that the process of deriving an inference rule for an assertion A can be seen as a
conversion of A to disjunctive normal form: When putting all literals in the antecedent,
each branch corresponds to exactly one clause. However, in the special case that each
branch contains only a single formula, the disjunction of all branches yields a single clause.
This is the case if the assertion is for example of the form A1∧ . . .∧Am ⇒ C, in which the
result is a Horn clause {¬A1, . . . ,¬Am, C}. Hyperresolution would resolve each negative
literal, that is, each Ai with a positive clause. Within our setting, an inference rule is
always applied within a single branch, and the instances are all found within the sequent,
which is not normal yet. However, the introduction of a negative literal can be understood
as the introduction of a new proof obligation. Therefore, we can understand the process
as the restriction of the available assumptions to those positions that do not introduce
proof obligations.

We have seen in the case above that under specific circumstances an assertion is
converted to a single clause. Let us consider n goals of the form ⊢ Li which correspond to a
single clause {¬L1, . . . ,¬Ln}. The application of an inference in backward direction to one
literal Li replaces that goal by A1∧. . .∧Am, which, when fully decomposed, result inm new
branches A1, . . . , Am, i.e., the new clause ¬L1, . . . ,¬Li−1,¬Li+1, . . . ,¬Ln,¬A1, . . . ,¬An.
Consequently, we obtain a new clause where Li has been replaced by A1, . . . , Am, which
is similar to SLD resolution.

6.7.6 Imps

The Imps system [FGT93a, FGT93b] is close to Prawitz’ ideas. In Imps, so-called macetes
are generated from definitions and theorems, which are special simplifiers to manipulate
expressions by applying theorems. Given a formula ∀x1 : σ1, . . . , ∀xn : σn.ϕ, where ϕ is
not a universal formula, conditional rewrite rules that are determined by the structure
of ϕ are extracted. Macetes can be combined to compound macetes using a language
similar to tacticals. Macetes only work with pure universal formulas in prenex normal
form and require the formulas to be given in the right format; the conditions are not
further decomposed and equations (and equivalences) are only applied from left to right.
Moreover, they are used within the interactive setting and have not been investigated
from a theoretical point of view.

6.7.7 Muscadet

Muscadet [Pas01] is a knowledge based theorem prover based on natural deduction that
aims to imitate methods as used by humans. It is based on rules and metarules which
are applied to facts and objects. Facts result from the initial theorem to be proved or
are added by rules. The rules comprise natural deduction rules or are generated from
definitions and theorems by metarules. An example of a logical rule is “If the conclusion
is H ⇒ C, then add the hypothesis H and the new conclusion is C”. However, instead
of directly adding the hypothesis H, the hypothesis is further processed by splitting H

112

6.8. SUMMARY

in the case that H is a conjunction. Metarules are rules that are used to construct new
rules from facts. For example, the rule “If there are hypotheses A ⊂ B and X ∈ A,
then add the hypothesis X ∈ B” is automatically build from the definition of subset.
Interestingly, no meta-variables are used, and the rule is restricted to situations where all
facts are present in the proof state. Instead, the available objects are scanned to control
the forward exploration: If there is an object A∪B and a hypothesis x ∈ A, then add the
hypothesis x ∈ A ∪ B. There is no backtracking. Rules cannot be applied deeply inside
formulas.

In practice, Muscadet performs very well in the domain of set theory (see [Pas02]).
Similar to our approach, this is due to the goal-directed proof search based on generated
inference rules. However, let us point out that there is no formal investigation of the
underlying principles, and the output generated by the system is hardly readable.

6.7.8 Theorema

Similar toMuscadet, Theorema [BJD98] maintains available facts in a knowledge base.
Each formula of the knowledge base is thereby transformed into one or more rewrite rules,
which are classified into two categories: Rewrite rules for goal reduction, and rewrite rules
for knowledge expansion. It is only possible to generate a rewrite rule if the right-hand side
of the rule does not contain free variables. Implicational rewrite rules, which are rewrite
rules of the form ∀~x.A⇒ B, can also be applied to subformulas based on a classification
of the subformulas by polarities. There are no proof theoretical investigations of this
approach.

Compared with Theorema, our inferences are more general, as they do not require
the formulas to be of a specific form; in particular we do not require the absence of
free variables in the right-hand side of the rule. While deep replacement is possible in
Theorema, it is not possible to match several formulas deeply inside, such as the axiom
rule which requires the instantiation of both its premise and its conclusion. It is exactly
this rule which reduces the size of the proof (see Section 13).

6.8 Summary

In this chapter we defined an assertion-level interface on top of the Core calculus which
supports proof search directly at the assertion level (Contribution A1(i), Section 1.1).
The general idea was to impose a certain structure and invariants on a Core proof state
such that it essentially looks like a sequent calculus without quantifiers together with
transformation rules in the form of inferences which are automatically computed from the
available assertions. This results in a familiar representation of the proof state while guar-
anteeing the correctness of the transformations and keeping the technical details hidden
from the user. By mapping inference rule applications to transformations on the indexed
formula tree, inference rules (and thus assertions) can not only be applied to top-level for-
mulas as known from the sequent calculus, but also to subformulas (Contribution A1(iii),
Section 1.1). In particular, by taking advantage of the additional structural properties
of the proof state it became possible to define the application of an assertion locally to
a sequent (a particular subtree of the indexed formula tree) rather than considering the
complete indexed formula tree.

113

7
Proof Theory

In this chapter, we characterize assertion level proofs for the standard sequent calculus
in first order logic and study their proof theoretic properties. Interestingly, we can see
assertion level reasoning as a special search strategy of the sequent calculus, in which a
selected formula is fully decomposed and intermediate copies that arise when instantiating
γ-rules are discarded. This search strategy sees a decomposition of a formula as a macro
operator and caches it for efficiency, resulting in the inference rules.

7.1 Formal Characterization of Assertion Applications

The main feature of the application of an assertion A is that A is completely decomposed
and intermediate γ-formulas are not copied. In other words, the assertion is completely
used. To formalize that observation, we introduce the concept of A-active derivations to
denote those derivations where only rule applications with principal formula A or one of
its subformulas are applied. Each assertion can be applied arbitrarily often; thus it is
allowed to perform contraction steps on A.

Definition 7.1.1 (A-Active/Passive Derivations). Let L,L′ be multisets of formulas and
D a derivation (possibly with open goals) for the sequent Γ, L ⊢ L′,∆. The derivation D
is (L,L′)-active, if it contains only calculus rules having a formula from L or L′ or one
of their subformulas as principal formula. Conversely, we say D is (L,L′)-passive if it
contains no calculus rule that has some formula from L or L′ or one of their subformulas
as principal formula. If L = {A} and L′ = ∅ (respectively if L′ = {A} and L = ∅) then
we agree to say D is A-active if it is (L,L′)-active and A-passive if it is (L,L′)-passive.

A derivation D that is A-active is called maximal, if it cannot be extended to a deriva-
tion D′ that is A-active.

We illustrate the concept of being A-active by means of an example:

Example 7.1.2. The following derivation is not A-active, where A = (G⇒ F) ⇒ H.
This is because on the right branch the rule ⇒R is applied to a F ⇒ H, which is not a

115

CHAPTER 7. PROOF THEORY

subformula of (G⇒ f) ⇒ H.

⇒L (A)

⇒R (B)
H,F ⊢ H

H ⊢ F ⇒ H

F ⊢ G⇒ F,H

⊢ G⇒ F, F ⇒ H
⇒R (B)

(G⇒ F) ⇒ H
︸ ︷︷ ︸

A

⊢ F ⇒ H︸ ︷︷ ︸
B

However, the following derivation is A-active:

⇒L (A)
H ⊢ F ⇒ H

G ⊢ F, F ⇒ H

⊢ G⇒ F , F ⇒ H
⇒R (A)

(G⇒ F) ⇒ H
︸ ︷︷ ︸

A

⊢ F ⇒ H︸ ︷︷ ︸
B

This allows us to classify those derivations in the sequent calculus which have this
special form as assertion level derivations .

Definition 7.1.3 (Assertion Level Derivation). Let A1, . . . , An be assertions and Π be
a derivation of Γ, A1, . . . , An ⊢ ∆. Π is said to be an assertion level derivation if the
following conditions hold:

• No contraction step is applied to a subformula of one of the Ai.

• Every rule application on one of the Ai is of the form

D1 . . . Dn

D0Γ, Ai ⊢ ∆
Γ, Ai ⊢ ∆

where the D0 is Ai-active and D1, . . . , Dn are Ai-passive.

It is called atomic assertion level derivation if D0 is maximal.

7.2 Soundness and Completeness

As assertion level derivations are just particular sequent calculus derivations, it is clear
that assertion level derivations are sound. However, as some restrictions are imposed on
the structure of the derivations, it is natural to ask whether such derivations do exist in
general, and if not, whether there are subclasses for which they do exist. This question
will be explored subsequently.

There cannot be a decision procedure for first-order logic. This is because of the γ-rules
which allow the introduction of an arbitrary witness term t. To simplify the subsequent
completeness proof, we will make the following simplifications:

Deterministic Expansion Strategy: To obtain a simple, yet complete method, our
strategy will be to make the expansion of formulas deterministic, that is, (i) to determine
which formula to expand next (ii) to determine the instance to be used in the application
of a γ-rule.

116

7.2. SOUNDNESS AND COMPLETENESS

Work with Block Tableaux: Instead of working with sequents, it is technically easier
to work just with sequences of signed formulas. That is, a sequent γ1, . . . , γn ⊢ δ1, . . . , δm
will be represented as the sequence Tγ1, . . . , Tγn, F δ1 , . . . , F δm. Therefore, we will switch
to tableau systems, more specifically to block tableaus, which directly simulate the sequent
calculus and vice versa. We then show a completeness proof for systematic block tableaus,
which is then transferred to systematic assertion level block tableaus.

Skolemize away Existential Quantifiers: We assume all formulas to be in Skolem
normal form, that is, all existential quantifiers have been removed from the formula. This
is not a serious restriction, as such a form can be computed for each formula automatically
as a preprocessing step. Moreover, if desired, we can easily add further rules to our tableau
procedure to perform skolemization at runtime.

7.2.1 Sequent Calculus and Block Tableau Systems

In an analytic tableau, each node of the tableau is labelled with a single formula. In
contrast, in a block tableau a node is labelled with a set of formulas, corresponding to
the proof nodes of an analytic tableau which still need to be considered for expansion.
Therefore, a block tableau can be simulated by an analytic tableau and vice versa. More-
over, a block tableau can be seen to be just a different notation for a Gentzen system,
as illustrated in Table 7.1. Note however that it is common to view the tableau method
as a proof by contradiction, while the sequent calculus is understood to be a direct proof
method. Figure 7.1 shows both an analytic tableau and a block tableau.

Remark 7.2.1. It is common for tableau to grow downwards, while sequents usually grow
upwards. Moreover, for tableau systems we separate different extensions (and-branching)
by a vertical bar.

p⇒ q
r ∨ ¬q
¬r
p

¬p
×

q

r
×

¬q
×

(a) Analytic Tableau

p⇒ q, r ∨ ¬q,¬r, p
¬p, r ∨ ¬q,¬r, p

×
q, r ∨ ¬q,¬r, p

q, r,¬r, p
×

q,¬q,¬r, p
×

(b) Block Tableau

Figure 7.1: Analytic vs. Block tableau for p⇒ q, r ∨ ¬q,¬r, p

7.2.2 Systematic Block Tableau

In this section, we introduce a systematic block tableau and show its completeness. The
systematic block tableau is one of the simplest possible tableau formulations which is
still complete. Due to its inefficiency it is only interesting for theoretical investigations.
Our presentation is close to that of Smullyan [Smu68]; however, we use a (systematic)
block tableau instead of a (systematic) analytic tableau. In a systematic block tableau,
there is no nondeterminism during the proof search. This is achieved by (i) providing
a mechanism to select the next formula to be expanded (ii) providing a mechanism to
determine the closed term to be used for the quantifier rules. It can be shown that in the

117

CHAPTER 7. PROOF THEORY

Block Tableau Rules Sequent Calculus Rules
T -rule F -rule L-rule R-rule

S, T (A ∧B)

S, TA, TB

S, F (A ∧B)

S, FA | S, FB

Γ, A,B ⊢ ∆

Γ, A ∧B ⊢ ∆
∧L

Γ ⊢ A,∆ Γ ⊢ B,∆

Γ ⊢ A ∧B,∆
∧R

S, T (A ∨B)

S, TA | S, TB

S, F (A ∨B)

S, FA, FB

Γ, A ⊢ ∆ Γ, B ⊢ ∆

Γ, A ∨B ⊢ ∆
∨L

Γ ⊢ A,B,∆

Γ ⊢ A ∨B,∆
∨R

S, T (A⇒ B)

S, FA | S, TB

S, F (A⇒ B)

S, TA, FB

Γ ⊢ A,∆ Γ, B ⊢ ∆

Γ, A⇒ B ⊢ ∆
⇒L

Γ, A ⊢ ∆

Γ ⊢ A⇒ B,∆
⇒R

S, (T¬A)

S, FA

S, F (¬A)

S, TA

Γ ⊢ A,∆

Γ,¬A ⊢ ∆
¬L

Γ, A ⊢ ∆

Γ,¬A,∆
¬R

S, T (∀x.A)

S, TA[t/x], T (∀x.A)

S, F (∀x.A)

S, FA[c/x], F (∀x.A)

Γ, A[t/x], ∀x.A ⊢ ∆

Γ, ∀x.A ⊢ ∆
∀L Γ ⊢ A[c/x],∆

Γ ⊢ ∀x.A,∆
∀R

S, T (∃x.A)

S, TA[c/x], T (∃x.A)

S, F (∃x.A)

S, FA[t/x], F (∃x.A)

Γ ⊢ A[t/x], ∃x.A,∆

Γ ⊢ ∃x.A,∆
∃L Γ, A[c/x] ⊢ ∆

Γ,∃x.A ⊢ ∆
∃R

Table 7.1: Correspondence block tableau and sequent calculus

case that the method produces an infinite branch, the original formula set was satisfiable,
provided a fair strategy is chosen, that is, a strategy that does not prefer certain formulas
of the branch.

This is due to Hintikka’s Lemma, which states that every Hintikka set is satisfiable.
Before stating Hintikka’s Lemma, we need some additional definition.

Definition 7.2.2 (Herbrand Universe, Herbrand Interpretation). Let S be a set of for-
mulas of a language L. Let SC denote the set of constants occurring in S. The constant
base of S is SC if SC is non-empty, and the singleton set {a} if SC = ∅. The function
base SF of S is the set of function symbols occurring in S with arities > 0. Then the
Herbrand universe of S is the set of terms defined inductively as follows.

1. Every element of the constant base of S is in the Herbrand universe of S.

2. If t1, . . . , tn are in the Herbrand universe of S and f is an n-ary function symbol in
the function base of S, then the term f(t1, . . . , tn) is in the Herbrand universe of S.

A Herbrand interpretation for S is an interpretation I with the following properties:

1. I maps every constant in SC to itself.

2. I maps every function symbol f in SF with arity n > 0 to the n-ary function that
maps every n-tuple of terms 〈t1, . . . , tn〉 ∈ Un to the term f(t1, . . . , tn).

Definition 7.2.3 (Downward saturated set). Let S be a set of first order sentences and
U the Herbrand universe of S. The set S is called downward saturated provided

1. if S contains an α, then it contains all its α-subformulas

2. if S contains a β, then it contains at least one of its β-formulas

3. if S contains a γ, then it contains all γ(t) with t ∈ U

4. if S contains a δ, then it contains a δ(c) with c being a constant in U .

118

7.2. SOUNDNESS AND COMPLETENESS

Definition 7.2.4 (Hintikka set). A Hintikka set is a downward saturated set which does
not contain an atomic formula and its negation.

Lemma 7.2.5 (Hintikka’s Lemma). Every Hintikka set is satisfiable.

Proof. Let S be a Hintikka set. Let H be the set of ground literals in S. As H does not
contain a literal L and its negation, it defines a Herbrand interpretation H. We show by
induction over the structure of the formula that H maps every element of S to the truth
value ⊤ (true). If F is atomic and F ∈ S, then H(F) = ⊤ by construction. Suppose now
that F is non-atomic.

1. F is of type α. By definition 7.2.3, every αi ∈ S. By induction hypothesis, H(αi) =
⊤. Thus, by Lemma 4.1.31 H(F) = ⊤.

2. F is of type β. By definition 7.2.3, some βi ∈ S. By induction hypothesis, H(βi) =
⊤. Thus, by Lemma 4.1.31 H(F) = ⊤.

3. F is of type γ. By definition 7.2.3, H(t) = ⊤ for any t ∈ U . Since U is the universe
of H and because H is a Herbrand interpretation, for all variable assignments A
HA(F ′) = H(F ′[x/A(x)]) = ⊤. Therefore, H(F) = ⊤.

4. F is of type δ. By definition 7.2.3, H(F [x/c]) = ⊤ for some constant c ∈ T .
Therefore, H(F) = ⊤.

For the node selection we always select the leftmost leaf of minimal depth. The
problem of instantiating quantifiers is solved by using a complete ordering on the set
of closed terms and enumerating all possible instances in a systematic way, thereby not
preferring any formula. This can be achieved by treating the set of unexpanded formulas
in a priority queue, always selecting the first formula from the queue, inserting new copies
at the end of the queue, and always producing the next instance with respect to the
ordering. Thus, an unfair treatment as shown in Example 7.2.6 is no longer possible, and
all possible terms are generated.

Example 7.2.6. The following example shows the effect of an unfair treatment of for-
mulas: Even though the formula is unsatisfiable, an infinite branch is generated.

...

P (a), P (b), ∀x.P (x), Q ∧ ¬Q
P (a), ∀x.P (x), Q ∧ ¬Q

∀x.P (x), Q ∧ ¬Q

To generate all possible instances in a systematic way, we attach a number to each for-
mula. Intuitively, this number keeps track of which instances have already been generated
in order to always generate new instances. Taking these modifications into account allows
the definition of the initial systematic block tableau for a given finite set S of formulas
as well as all systematic block tableau we can obtain from it by expansion. To be able to
express the systematic expansion strategy we use sequences instead of sets of formulas.

Definition 7.2.7 (Systematic Block Tableau). Let ξ be a mapping from N0 onto the set of
ground terms and let S be a finite sequence of closed first order formulas. The systematic
block tableau sequence of S w.r.t. ξ is the following sequence T of tableau for S:

119

CHAPTER 7. PROOF THEORY

• The one-node tableau T0 with root S where each formula is labeled with the number
0 is an element of T .

• If Tn is the n-th element in T , let N be the leftmost leaf node of Tn which is not
atomically closed, i.e. does not contain complementary literals. N has the form
l1, . . . , ln, G1, . . . , Gm where li are literals and all Gi are non-literals (i.e. G1 is the
leftmost formula which is not a literal). Now expand N as follows:

1. if G1 is of type α, extend N by the node

l1, . . . , ln, α1, α2, G2, . . . , Gm (7.1)

where αi have label 0.

2. if G1 is of type β, extend N by the following two branches:

l1, . . . , ln, β1, G2, . . . , Gm | l1, . . . , ln, β2, G2, . . . , Gm (7.2)

where βi have label 0 and | indicates branching.
3. if G1 is of type γ, then extend N by the node

l1, . . . , ln, γ(ξ(k)), G2, . . . , Gm, G1 (7.3)

where k is the label of G1, γ(ξ(k)) has label 0 and the new copy of G1 has label
k + 1.

4. if G1 is of type δ, then extend N by the node

l1, . . . , ln, δ(c), G2, . . . , Gm (7.4)

where c is the smallest constant modulo ξ not occurring in T .

Notation 7.2.8. Let N be a node of a systematic block tableau. We call the label of N
the block of the node N .

Figure 7.2 shows an example of a systematic block tableau with ξ(0) = a, ξ(1) = b and
ξ(2) = c. While being inefficient, all instances needed to close the branches are eventually
constructed. The systematic block tableau has the following property:

Lemma 7.2.9 (Fairness of Systematic Block Tableau). Let B be an open branch of a
saturated systematic block tableau, N be a node of B and F be a non-atomic formula of
the block of N . Then there exists a node N ′ below N at which F is selected for expansion,
i.e., is the first non-atomic formula of the block corresponding to N . In particular, if F
is of type γ, then F occurs infinitely many often as first formula on the branch B.

Proof. Let N be of the form

L1, . . . , Lm, G1, . . . , Gm, F,Gm+1, . . . , Gk (7.5)

where Gi are non-atomic. The proof is by induction on the sum k of the rank of the
L1, . . . , Lm, G1, . . . , Gm.

Base Case: If k = 0, then F is a literal and nothing is to show.

120

7.2. SOUNDNESS AND COMPLETENESS

P (c, a),¬P (a, a), P (c, a), ∀z.¬P (z, a) ∨ ¬P (z, b), ∀y.P (c, y)
P (c, a),¬P (a, a), ∀y.P (c, y), ∀z.¬P (z, a) ∨ ¬P (z, b)

...

P (c, a),¬P (a, b), P (c, b),¬P (b, a) ∨ ¬P (b, b), ∀y.P (c, y), ∀z.¬P (z, a) ∨ ¬P (z, b)
P (c, a),¬P (a, b), P (c, b), ∀z.¬P (z, a) ∨ ¬P (z, b), ∀y.P (c, y)

P (c, a),¬P (a, b), ∀y.P (c, y), ∀z.¬P (z, a) ∨ ¬P (z, b)
········

P (c, a),¬P (a, a) ∨ ¬P (a, b), ∀y.P (c, y), ∀z.¬P (z, a) ∨ ¬P (z, b)
P (c, a), ∀z.¬P (z, a) ∨ ¬P (z, b), ∀y.P (c, y)

∀y.P (c, y), ∀z.¬P (z, a) ∨ ¬P (z, b)
∃x.∀y.P (x, y), ∀z.¬P (z, a) ∨ ¬P (z, b)

(∃x.∀y.P (x, y)) ∧ (∀z.¬P (z, a) ∨ ¬P (z, b))

Figure 7.2: Systematic Block Tableau (written upside down)

Step Case: If k = n, G1 is expanded. We perform a case distinction on G1.

1. G1 is of type α: According to Definition 7.2.7 the successor node of N is of the form
(7.1), where

∑m
i=1 rk(Gi) = k − 1, for which the induction hypothesis is applicable.

2. G1 is of type β: According to Definition 7.2.7 the successor nodes of N are of the
form (7.2), and in both branches

∑m
i=1 rk(Gi) = k − 1 and one of them is open.

Thus the assertion holds by induction hypothesis.

3. G1 is of type γ: According to Definition 7.2.7 the successor node of N is of the form
(7.3) and we have

∑m
i=1 rk(Gi) = k−1. Thus the induction hypothesis is applicable.

4. G1 is of type δ: According to Definition 7.2.7 the successor node of N is of the (7.4)
and we have

∑m
i=1 rk(Gi) = k − 1. Thus the induction hypothesis is applicable.

Definition 7.2.10 (Saturated systematic block tableau). Let T be a systematic block
tableau sequence for a set of first order formulas S. With T ∗ we denote the smallest tree
containing all tableau T as initial segments; T ∗ is called a saturated systematic block
tableau for S.

Lemma 7.2.11. For any open branch B of a saturated systematic block tableau for S,
the set of formulas on B is a Hintikka set.

Proof. By case distinction over the structure of F . Let F be a formula on an open branch
B.

Base Case: If F is atomic, ¬F is not on B, as B would otherwise be closed.

121

CHAPTER 7. PROOF THEORY

Step Case:

1. F is of type α: There exists a node N on B at which F is the first non-atomic
formula of the block of N . Then by construction, both α1 and α2 occur at B.

2. F is of type β: There exists a node N on B at which F is the first non-atomic
formula of the block of N . Then by construction, βj occurs on B for some j ∈ 1, 2.

3. F is of type γ. Let t ∈ U . By construction, F occurs infinitely many often as
first non-atomic formula in a block on B. Moreover, by construction of ξ there is a
k ∈ N0 such that ξ(k) = t. Therefore, γ(t) on B.

4. F is of type δ: By construction, there exists exactly one t ∈ U such that δ(t) is on
B.

Lemma 7.2.12 (Systematic Block Tableau Completeness). If S is an unsatisfiable set of
first-order sentences, then there exists a finite atomically closed systematic block tableau
for S.

Proof. Let T be a saturated systematic tableau for S. Assume that T contains an atomi-
cally open branch B. In this case, there exists a Hintikka set for the set of formulas S ′ on
B (Lemma 7.2.11), and therefore a model for S ′ (Lemma 7.2.5). As S ⊂ S ′, this would
also be a model for S, contradicting the assumption. Hence, every branch of T must be
atomically closed.

As each closed branch is finite and the branching of any tableau is finite, T must be
finite.

Remark 7.2.13. The completeness proof above reveals the following properties of sys-
tematic assertion level tableau:

• The completeness proof also works when allowing for non-atomic closures, i.e., to
close a branch when two formulas F and ¬F occur on a branch.

• It is sufficient that a single branch of the tableau forms a Hintikka set. Therefore,
selecting always the leftmost non-closed leaf for expansion does not destroy the com-
pleteness proof. This way, one would obtain a proof procedure similar to the prover

LeanTAP 1

7.2.3 Systematic Assertion Level Tableau

In this section, we define a special calculus which is close to the assertion level and show
its completeness. The main difference to the systematic block tableau defined above is
that several decomposition steps are performed in a row, but only a copy of the top-level
formula is kept. This will give us exactly our assertion level derivations, where each such
sequence can be replaced by a derived rule. Due to the fact that formulas have been
skolemized beforehand, there are no issues concerning the δ-rule. However, let us point
out that if the skolemization is performed at runtime, a liberalized version of the δ-rule
(see [BHS93]) is needed, as the following example illustrates.

1without the free variables

122

7.2. SOUNDNESS AND COMPLETENESS

Example 7.2.14. The following example illustrates the importance of the liberalization
of the δ-rule. Because we do not keep intermediate formulas, the following proof cannot
be performed at the assertion level without the liberalization of the δ-rule

P (c, a), ∀y.P (c, y) ⊢ P (c, a)
∀y.P (c, y) ⊢ P (c, a)

P (c, b), ∀y.P (c, y) ⊢ P (c, b)
∀y.P (c, y) ⊢ P (c, b)

∀y.P (c, y) ⊢ P (c, a) ∧ P (c, b)
∀y.P (c, y) ⊢ ∃z.P (z, a) ∧ P (z, b)

∃x.∀y.P (x, y) ⊢ ∃z.P (z, a) ∧ P (z, b)

Removing the intermediate formula ∀y.P (c, y) requires the expansion of the formula
∃x.∀y.P (x, y) twice. However, in order to close both branches the same parameter for
x is needed. The liberalized δ-rule allows for the following proof2:

P (c, a) ⊢ P (?z, a)
∀y.P (c, y) ⊢ P (?z, a)

∃x.∀y.P (x, y) ⊢ P (?z, a)

P (c, b) ⊢ P (?z, b)
∀y.P (c, y) ⊢ P (?z, b)

∃x.∀y.P (x, y) ⊢ P (?z, b)
∃x.∀y.P (x, y) ⊢ P (?z, a) ∧ P (?z, b)
∃x.∀y.P (x, y) ⊢ ∃z.P (z, a) ∧ P (z, b)

In particular, the liberalized δ-rule ensures that a single parameter is used for the same
formula.

Even with skolemized formulas, there is still the problem of producing all possible
instances for the γ-rules of a branch in a systematic way. Suppose first the case that all
quantifiers are at top-level. In this case, a suitable enumeration of all possible terms can
be achieved by the use of the Cantor pairing function3.

Definition 7.2.15 (Cantor Pairing Function).

π(k) : Nk
0 → N0, π

(1)(x) = x, π(n)(x) = π(π(n−1)(k1, . . . , kn−1), kn) (7.6)

where

π(k1, k2) =
1

2
(k1 + k2)(k1 + k2 + 1) + k2 (7.7)

The Cantor pairing function visits all points of the N
k in a systematic way, as illus-

trated in Figure 7.3 for the case k = 2. The Cantor pairing function is invertible:

Theorem 7.2.16 (Invertibility). The Cantor pairing function is invertible. Its inverse is
given by the function (

π(k)
)−1

: N → N
k (7.8)

The ith component of the inverse is denoted by

π
(k)
i : N → N (7.9)

2Note that instead of using the meta-variable, we can also directly use c as the skolem constant is
local to the formula

3as in the proof of reducing the denumerability of N2

0
to the denumerability of N0

123

CHAPTER 7. PROOF THEORY

0

1

2

3

0 1 2 3

b b b b

b b b

b b

b

b

Figure 7.3: Illustration of the Cantor pairing function for k = 2

which is defined by

π
(k)
i = pr

(k)
i ◦

(
π(k)

)−1
(7.10)

where is the ith projection: pr
(k)
i (x1, . . . , xk) = xi.

For the systematic assertion level tableau, each formula on the tableau is labeled with
an integer. In addition, there are distinguished formulas, called focused formula, denoted
by F , which are never duplicated and need to be fully processed before another formula on
the branch can be expanded. The only purpose of the focus is to avoid to copy the formula
in the case of γ formulas. The more complex enumeration of terms is incorporated by
labeling focused formulas with a triple (i, j, k). Intuitively, i corresponds to the number
instances that have already been produced for a given assertion, j−1 to the quantifiers that
have already been processed while the formula was in the focus, and k the overall number
of the γ-quantifiers of the assertion which keeps unchanged during the processing. The
purpose of the last two components is to select the corresponding enumeration function
and projection. We illustrate the enumeration process with an example:

Example 7.2.17. Figure 7.3 illustrates the systematic enumeration of all pairs of integers
graphically, as generated by the Cantor pairing function.

k1 k2 π(k1, k2)
(
π(2)

)−1
(π(k1, k2))

0 0 0 (0, 0)
1 0 1 (1, 0)
0 1 2 (0, 1)
2 0 3 (1, 1)

(
π(2)

)−1
: (0, 0), (1, 0), (0, 1), (2, 0). For a formula ∀x.∀y.P (x, y) this results in the

following derivation under the ordering ξ(0) = a, ξ(1) = b:

∀x.∀y.P (x, y)
∀x.∀y.P (x, y), ∀x.∀y.P (x, y)
∀y.P (a, y), ∀x.∀y.P (x, y)
P (a, a), ∀x.∀y.P (x, y)

P (a, a), ∀x.∀y.P (x, y), ∀x.∀y.P (x, y)
P (a, a), ∀x.∀y.P (x, y), ∀x.∀y.P (x, y)
P (b, a), ∀y.P (a, y), ∀x.∀y.P (x, y)

(0,1,2)

(0,2,2)

(0,3,2)

(1,1,2)

(1,2,2)

(1,3,2)

Definition 7.2.18 (Systematic Assertion Level Tableau). Let ξ be a mapping from N0

onto the set of ground terms and let S be a finite sequence of closed first order formulas.

124

7.2. SOUNDNESS AND COMPLETENESS

The systematic assertion level tableau sequence of S w.r.t. π is the following sequence T
of tableau for S:

• The one-node tableau T0 with root S where each formula is labeled with the number
0 is an element of T .

• If Tn is the n-th element in T , let N be the leftmost leaf of Tn which is not atomically
closed, i.e. does not contain complementary literals.

– If no formula attached to N is focused, i.e.,

N = l1, . . . , ln, G1, . . . , Gm (7.11)

focus the leftmost non-literal by expanding the node N to

l1, . . . , ln, G1, G2, . . . , Gn, G1 (7.12)

where G1 gets the label (i, 1, k) if G1 has label i, where k denotes the number
of γ-quantifiers in G1. In addition, add a copy of the formula G1 at the end of
the sequence and assign the label i + 1 to it. If all formulas are literals, then
stop.

– Otherwise the block attached to N is of the form

l1, . . . , ln, G1, G2, . . . , Gm (7.13)

where li are literals (i.e. G1 is the leftmost formula which is not a literal). Now
expand N as follows:

1. if G1 is of type α with label (i, j, k), extend N by the node

l1, . . . , ln, α1, α2, G2, . . . , Gn (7.14)

where both αi have label (i, j, k).

2. if G1 is of type β with label (i, j, k), extend N by the following two branches:

l1, . . . , ln, β1, G2, . . . , Gm | l1, . . . , ln, β2, G2, . . . , Gm (7.15)

where βi have label (i, j, k).

3. if G1 is of type γ, then extend N by the node

l1, . . . , ln, γ(ξ(π
(j)
i (k))), G2, . . . , Gm (7.16)

where (i, j, k) is the label of G1, γ(ξ(π
(j)
i (k))) has label (i, j + 1, k).

4. if G1 is of type δ, then extend N by the node

l1, . . . , ln, δ(c), G2, . . . , Gm (7.17)

where c is the skolem constant corresponding to the formula δ.

Remove all foci on literal formulas.

Figure 7.4 summarizes the rules graphically, where the context Γ is used to collect literal
formulas. Moreover, we allow the instantiation with any ground term t in the γ-rule, but
require that all terms are eventually generated.

125

CHAPTER 7. PROOF THEORY

Γ;α, S

α1, α2, S

Γ; β, S

Γ; β1, S | Γ; β2, S
Γ; γ, S

Γ; γ(t)
for any ground term t

Γ; δ, S

Γ; δ(fδ), S

Γ; s1, S

Γ, s1;S
s1 atomic,¬s1 /∈ Γ

Γ; s1, S
s1 atomic,¬s1 ∈ Γ

Γ; s1, S

Γ; s1, S, s1

Figure 7.4: Assertion Level Tableau

Definition 7.2.19 (Saturated systematic assertion level tableau). Let T be a systematic
block tableau sequence for a set of first order formulas S. With T ∗ we denote the smallest
tree containing all tableau T as initial segments; T ∗ is called a saturated systematic
assertion level tableau for S.

As before, we can show that each assertion is considered infinitely many often in an
open branch:

Lemma 7.2.20 (Fairness Systematic Assertion Level Tableau). Let B be an open branch
of a saturated systematic assertion level tableau and. Let N be a node of B and F be
a non-atomic formula of the block of N . Then the assertion corresponding to F occurs
infinitely many often as first formula on the branch B.

Proof. For the case that F is unfocused, the proof is similar to the proof of Lemma 7.2.9.
The interesting case is that F is already focused. Then consider the first focus step above
N , which focuses a formula F ′. F is a subformula of F ′ and N contains a copy of F ′, and
F ′ is copied by the focusing step.

What remains to be shown to be able to reuse the completeness argument of the block
tableau is to show that there is an open branch that is a Hintikka set. In the case of a
systematic assertion level tableau, this is also the case if all quantifiers are at top-level,
which can always be achieved by transformation rules and in which the completeness
proof from the previous section can be reused. However, for general assertions, this needs
not necessarily be the case, as the following example shows:

Example 7.2.21. Consider the proof attempt of a formula δ using the assertion φ :=
(∀x.Q(x)) ∨ (∀z.P (z)), as shown below. Every branch is open. However, by selecting the
left branch at the first branching, the right branch at the second branch, and then always
the left branch for subsequent branchings we obtain an open branch which is not a Hintikka
set, as it contains ∀z.P (z) but not all instances of it.

...

Q(a), ∀x.Q(x), ϕ ⊢ δ

...

Q(a), ∀z.P (z), ϕ ⊢ δ
Q(a), ∀x.Q(x) ∨ ∀z.P (z), ϕ ⊢ δ

Q(a), ϕ ⊢ δ
∀x.Q(x), ϕ ⊢ δ

...

P (a), ϕ ⊢ δ
∀z.P (z), ϕ ⊢ δ

∀x.Q(x) ∨ ∀z.P (z), ϕ ⊢ δ
∀x.Q(x) ∨ ∀z.P (z) ⊢ δ

However, this can be repaired under the following condition:

126

7.2. SOUNDNESS AND COMPLETENESS

Definition 7.2.22 (Assertion). Let F be a formula. Then F is called assertion if it does
not contain a subformula of type β that contains a γ quantifier.

Remark 7.2.23. Note that all formulas can always be transformed to an equivalent form
in which they satisfy the assertion property.

Lemma 7.2.24. For any open branch B of a saturated systematic assertion level tableau
for S, where each s ∈ S is an assertion. Then the set of formulas on B is a Hintikka set.

Proof. Let B be an open branch on which F occurs, say on node N . Without loss of
generality we can assume that F is the first focused formula on N (Lemma 7.2.20).

1. F is of type α. If F is the first focused formula, then its successor N ′ is of the form
(7.14), and both αi occur on N

′.

2. F is of type β. If F is the first focused formula, then its successor N ′ is of the form
(7.14), and either β1 or β2 occurs on N ′.

3. F is of type δ. If F is the first focused formula, then its successor N ′ is of the form
(7.17) and δ(c) is on B for some c.

4. F is of type γ. Then the assertion F ′ corresponding to F occurs infinitely many
often on B. Moreover, as no γ-formulas are β-related, they always appear on the
same branch.

Theorem 7.2.25 (Completeness of Systematic Assertion Level Tableau). If S is an
unsatisfiable set of assertions. Then there exists a finite atomically closed systematic
assertion level tableau for S.

Proof. As the proof of Theorem 7.2.12.

By construction, a systematic assertion level tableau automatically constructs an as-
sertion level derivation.

Theorem 7.2.26 (Assertion Level Derivation). Let S1, . . . , Sn be assertions and G be a
conjecture to be shown. Let Π be a systematic assertion level derivation for ¬G,S1, . . . , Sn.
Then Π is an assertion level derivation.

Proof. By induction over the length of the derivation.

Moreover, it is now easy to replace each focused derivation by a rule application of
the corresponding assertion. While the goal in the presentation above is also treated like
an assertion, it is also possible to restrict the focusing to assumptions and to treat the
goal separately and to switch between assertion applications and rule applications on the
remaining formulas. As long as fairness is guaranteed, our considerations above remain
valid.

Remark 7.2.27. Each focused derivation can be seen as the application of a new inference
rule to which it corresponds. Within our setting above, we required an assertion to be
always decomposed completely. This way we obtain a maximal caching of such derivations
in inferences. Note however that stopping the decomposition earlier does not destroy
completeness, as long as the formulas are further decomposed later.

127

CHAPTER 7. PROOF THEORY

We now want to go one step further and consider the typical case that a consistent
theory of assertions is given, where consistency is defined as follows:

Definition 7.2.28 (Consistency). Let Γ be a set of formulas. Γ is called consistent if
there is no formula ϕ such that Γ ⊢ ϕ and Γ ⊢ ¬ϕ.

The question we want to explore next is whether we can further restrict the application
of assertions. The following theorem establishes a connection between a goal literal G and
a consistent set of formulas Γ:

Theorem 7.2.29 (Existence of positive subformulas). Let Γ be a consistent set of for-
mulas, let G be a literal and let Γ ⊢ G be provable. Then there exists a positive occurrence
of G in Γ.

Proof. Let Π1 be a proof of Γ ⊢ G. Every axiom in Π1 is of the form Γ, A ⊢ A,∆ for
some proposition A. Suppose that Γ does not contain a positive occurrence of G. Let Π2

be a partial derivation involving formulas of Γ followed by the application of the axiom
rule. As G does not occur as positive occurrence of G, Π2 will not generate the literal G
on the left-hand side of the sequent. Thus G is not used within the axiom rule. We can
therefore obtain a proof Π′ in which all occurrences of G on the right-hand side have been
replaced by ¬G. However, this contradicts the assumption that Γ is consistent.

The property means always an inference rule where some conclusion is instantiated is
applicable, i.e., that we can require that at least one inference node is instantiated.

7.3 Summary

In this chapter we gave a proof theoretic characterization of assertion level derivations
by introducing the notion of a systematic assertion level tableau and showed soundness
and completeness with respect to first order logic (Contribution A1(ii), Section 1.1). The
relation between assertion level derivations and block tableaux has not been studied before
and shows that for the first order fragment redundancy can be avoided by committing to
assertion level operations. Moreover, it identifies the assertion level to be a rather calculus
independent layer.

128

Part III

Proof Plans and Proof Strategies

129

8
Proof Plans

The organization of the proof search on top of a calculus is an essential task in the design
of a powerful theorem proving system. To combine interaction and automation into a
synergetic interplay and to bridge the gap between abstract level proof explanation and
low-level proof verification, we provide an abstract proof data structure to maintain a
proof attempt, including possible alternatives, called a proof plan. Alternatives can be
both horizontal and vertical : Horizontal alternatives correspond to different reductions of
a proof state, while vertical alternatives correspond to a subproof of a step at a different
level of granularity. The explicit support of hierarchies, gaps and their refinement, as well
as the information how to refine gaps, and the handling of meta-variables are the features
that distinguish proof plans from other proof representations.

To communicate proof plans to the user, we exploit the relationship between proof
plans and declarative proof scripts by the possibility to render a particular alternative
of a proof plan as a declarative proof script. Similarly, we use underspecified declarative
proof scripts as input representation for proof plans and show how they can be refined
automatically.

Our proof language combines features of Mizar and Isar, with the difference that
meta-variables are supported. This has the advantage that also proof plans that have been
generated automatically can be translated into proof scripts. Moreover, we will extend
the language later to support the specification of reasoning procedures and annotated
inferences as a means to extend and adapt the power of the underlying system at runtime.
This will result in a declarative proof language that fully supports the document-centric
approach.

8.1 Textbook Proofs, Proof Plans, and Declarative

Proofs

Before turning to the details of our approach, let us motivate the concepts by the cor-
respondence between textbook proofs, proof plans, and declarative proof scripts. The
following example is a textbook proof reproduced from [BS82]:

Theorem 8.1.1. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

131

CHAPTER 8. PROOF PLANS

Proof. Let x be an element of A ∩ (B ∪C), then x ∈ A and x ∈ B ∪C. This means that
x ∈ A, and either x ∈ B or x ∈ C. Hence we either have (i) x ∈ A and x ∈ B, or we have
(ii)x ∈ A and x ∈ C. Therefore, either x ∈ A∩B or x ∈ A∩C, so x ∈ (A∩B)∪ (A∩C).
This shows that A ∩ (B ∪ C) is a subset of (A ∩ B) ∪ (A ∩ C). Conversely, let y be
an element of (A ∩ B) ∪ (A ∩ C). Then, either (iii) y ∈ A ∩ B, or (iv) y ∈ A ∩ C. It
follows that y ∈ A, and either y ∈ B or y ∈ C. Therefore, y ∈ A and y ∈ B ∪ C so that
y ∈ A∩ (B∪C). Hence (A∩B)∪ (A∩C) is a subset of A∩ (B∪C). In view of Definition
1.1.1, we conclude that the sets A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C) are equal.

From a formal point of view, the proof consists of a sequence of statements that are
hierarchically structured. For example, the main statement A∩(B∪C) = (A∩B)∪(A∩C)
is proved in two blocks, one for each set inclusion. Within a declarative proof language,
these hierarchical structures are made explicit. Indeed, it is not difficult to translate this
textbook proof to a (partial) declarative proof script, as shown on the left in Figure 8.1.
Within the figure, the hierarchical structure is visualized by indentation. The partiality
of the proof script results from the fact that information that is needed for a (formal)
verification is still missing, even though the proof is already very detailed. This leads to
the notion of a proof sketch (see [Wie04]) or a proof plan1. Here, we want to understand a
proof plan as a data structure that supports the representation of proof outlines including
gaps, as well as their mechanization, that is their refinement . Proof plans are directed,
acyclic graphs, consisting of nodes representing the current context, and justifications,
representing proof commands . Thus, declarative proof scripts can be seen as a particular
rendering of a proof plan. In particular, it is easy to generate a proof plan from a
declarative proof script. Figure 8.1 shows on the right the proof plan corresponding to
the example proof script. In the proof plan, each hierarchy corresponds to a tree in a
forest, which are linked together via forest edges (indicated by the dotted lines). Note that
it would also be possible to represent a proof script as a single tree; however, we found
the separate management of independent blocks in independent trees convenient. Even
though proof plans and proof scripts are quite similar, let us stress the main advantages
of proof plans over proof scripts:

• In a proof plan, the available context is made explicit.

• In a proof plan, each proof state is enriched with additional contextual information,
such as labels for terms, or annotations such as needed for Rippling [BBHI03].

• The verification of reductions can be postponed, resulting in proof gaps. This allows
the integration of external systems, such as computer algebra systems.

• Proof plans can represent multiple proof attempts in parallel, as well as on different
levels of granularity. Thus, it is possible to represent the initial proof plan as well
as its expanded form which can all be verified within one data structure.

• Proof plans support asynchronous proof checking.

In this sense, a proof plan is used for processing of declarative proof scripts, while a
declarative proof script is used as input and output representation. Let us point out
that by exploiting the relationship between declarative proof scripts and proof plans, it

1Note that within the interactive setting, the proof plan is not generated automatically by a proof
planner, but manually written by a human. Historically, proof plans were developed before declarative
proof scripts.

132

8.2. PROOF PLANS

theorem A∩ (B ∪C) = (A∩B)∪ (A∩C)

proof

assume x ∈ A ∩ (B ∪ C)
x ∈ A ∧ (x ∈ B ∨ x ∈ C)
(x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)
(x ∈ A ∩B) ∨ (x ∈ A ∩ C)

thus x ∈ (A ∩B) ∪ (A ∩ C)
A ∩ (B ∪ C) ⊂ (A ∩B) ∪ (A ∩ C)
assume y ∈ (A ∩B) ∪ (A ∩ C).
y ∈ A ∩B ∨ y ∈ A ∩ C.
y ∈ A ∧ (y ∈ B ∨ y ∈ C)
y ∈ A ∧ y ∈ B ∪ C

thus y ∈ A ∩ (B ∪ C)
(A ∩B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C)

qed by Definition 1.1.1

Γ ⊢ ∆

have

ϕ ⊢ ∆

have

Γ1 ⊢ ∆

have

Γ3 ⊢ ∆

qed

Γ ⊢ ∆

assume

ϕ ⊢ ∆

have

Γ1 ⊢ ∆

assume

Γ2 ⊢ ∆

have

Γ3 ⊢ ∆

qed

Γ ⊢ ∆

have

ϕ ⊢ ∆

have

Γ1 ⊢ ∆

have

Γ3 ⊢ ∆

qed

Figure 8.1: Partial declarative proof script obtained from the textbook proof

will become possible to synthesize declarative proof scripts from proof plans that have
been constructed automatically. This is in particular useful in combination with our
abstract assertion level reasoning, as the individual proof steps will be of an appropriate
granularity, keeping the proof scripts readable.

8.2 Proof Plans

As basic representation of proof plans we use the proof data structure PDS (see [ABD+06,
Die06] for details). The basic ideas are:

• Each conjectured lemma gets its own proof tree.

• In this proof forest, each lemma can be applied in each proof tree; either as a lemma
in the narrower sense, or as an induction hypothesis in a possibly mutual induction
process, see [Wir04].

• Inside its own tree, the lemma is a goal to be proved reductively. A reduction step
reduces a goal to a conjunction of sub-goals w.r.t. a justification.

• Several reduction steps applied to the same goal result in alternative proof attempts,
which either represent different proof ideas or the same proof idea with different
granularity (or detailedness).

Each PDS-tree is essentially a directed acyclic graph (dag) whose nodes are labeled
with tasks. It has two sorts of links: justification hyper-links that represent some relation
of a task node to its sub-task nodes, and hierarchical edges that point from justifications to
other justifications which they refine. This definition allows for alternative justifications
and alternative hierarchical edges.

Outgoing justifications of a node n, which are not connected by hierarchical edges,
are OR-alternatives and represent alternative ways to tackle the same problem contained
in n. They describe the horizontal structure of a proof. Horizontal OR-alternatives are
motivated by the fact that we want to support proof search algorithms that explore several

133

CHAPTER 8. PROOF PLANS

n1

j1 subproblems

j2 subproblems

j3 subproblems

j4 subproblems

j5 subproblems

h

h

h

(a) PDS-node with all outgoing partially hierarchi-
cally ordered justifications, and j1, j4 in the set of
alternatives. Justifications are depicted as boxes.

n1

j1 subproblems

j4 subproblems

(b) PDS-node in the PDS-view obtained for
the selected set of alternatives j1, j4.

Figure 8.2: An example PDS and one of its PDS-views

alternatives in parallel, such as a resource bounded BFS-search, and to return all solutions
that can be found within a given depth.

Hierarchical edges are used to construct the vertical structure of a proof. A proof
may be first conceived at a high level of abstraction and then expanded to a finer level
of granularity. Vice versa, abstraction means the process of successively contracting fine-
grained proof steps to more abstract proof steps. For instance, in Figure 8.2(a), the edge
from j2 to j1 indicates that j2 refines j1. The hierarchical edges distinguish between upper
layer proof steps and their refinements at a more granular layer.

The structuring mechanism described above provides very rich and powerful means
to represent and maintain the proof attempts during the search for the final proof. In
particular, it supports two ways of OR alternatives, both alternative refinements at the
vertical level (in the case that there are several possibilities to unpack an abstract proof
idea such as finding a distinctive property to show that two structures are not isomorphic),
as well as alternative refinements at the horizontal level (for example, when different
theorems can be applied to the same task). In fact, such multidimensional proof attempts
may easily become too complex for a human user, but since the user does not have to work
simultaneously on different granularities of a proof, elaborate functionalities to access only
selected parts of a PDS are helpful. They are required, for instance, for the user-oriented
presentation of a PDS, in which the user should be able to focus only on those parts of
the PDS he is currently working on. At any time, the user can choose to see more details
of some proof step or, on the contrary, he may want to see a coarse structure when he is
lost in details and cannot see the wood for the trees.

One such functionality is a PDS-view that extracts from a given PDS only the hor-
izontal structure of the represented proof attempts, but with all its OR-alternatives. As
an example consider the PDS fragments in Figure 8.2. Based on a PDS-view it is then
easy to iterate over all alternatives.

The node n1 in the fragment on the left has two alternative proof attempts with different
granularities. The fragment on the right gives a PDS-view which results from selection
of a certain granularity for each alternative proof attempt, respectively. The set of alter-
natives may be selected by the user to define the granularity on which he currently wants
to inspect the proof. The resulting PDS-view is a slice plane through the hierarchical
PDS and is – from a technical point of view – also a PDS, but without hierarchies, that

134

8.2. PROOF PLANS

is without hierarchical edges.

8.2.1 Handling Meta-Variables

Within the setting of automated proof search, meta-variables have been introduced to
postpone choices of witness terms. This is also the case within our setting, in which
γ-nodes introduce free variables in the free variable indexed task tree whose instantiation
can be postponed.

As free variables are rigid, we need several different instances of a universally quantified
variable to close a branch. Essentially, there are three main questions: (i) how many
instances are needed to be able to close all branches, (ii) when to instantiate a variable,
and (iii) how to propagate instantiations. Note that propagating a substitution that closes
one branch might destroy the possibility to close another branch, and hence needs to be
undone later. The following example illustrates the problem:

⊢ X = c,X = d

⊢ X = c ∨X = d X = d

X = c ∨X = d ∧X = d

⊢ ∃x.(x = c ∨ x = d) ∧ x = d

Closing first the left branch and propagating the substitution X 7→ c destroys the possi-
bility to find a solution, unless backtracking is performed. To illustrate the need of several
instances to close a proof attempt, consider the following example:

p(X) ⊢ p(a) p(X) ⊢ p(b)
⊢ p(X) ⇒ p(a) ∧ p(b)

⊢ ∀x.(p(x) ⇒ p(a) ∧ p(b))

Even though there exist some approaches which do not use free variables, such as
[OS88, Smu68], the use of free variables in the automation of sequent calculi can be seen
to be standard nowadays. Note that while the approaches without free variables require
the correct guessing of the instances, they have the advantage that they do not require
backtracking.

When using free variables, there are two possibilities how to work with free variables,
which can be described as “unify as you go” and “unify at the end”.

Unify as you go (direct closure): In this kind of construction, whenever a closure is
made that requires a binding of one or more free variables, the substitution is applied to all
occurrences in the proof tree of those newly bound variables. This guarantees consistency
of the bindings. Only one binding may be made to any free variable. Of course, choosing
a wrong instantiation requires backtracking.

Unify at the end (delayed closure): In this construction, it is noted when a branch
can close and what the corresponding binding is, but no propagation takes place. When
every branch has such a potential closure the possible substitutions are combined. If
they do not unify then alternative closures in one or more branches are sought. The
disadvantage of this approach is that the prover might spend time on expanding a branch
before detecting an inconsistency.

135

CHAPTER 8. PROOF PLANS

Direct Closure Approaches

A lean search procedure for tableau with free variables has been described in [BP95],
which is still the basis of the tableau prover being used in Isabelle (see [Pau99] for
details). The prover uses iterative deepening on the number of free variables occurring in
a branch and backtracking to obtain completeness. Substitutions are propagated among
all branches of the tableau.

Delayed Closure Approaches

Several approaches have been proposed to overcome the need for backtracking in direct
closure approaches. In the disconnection calculus [Bil96], copies of the literals with new
variables are generated and the substitution is applied on the copies. A similar approach
is taken in [BEF00]. However, both approaches work only for clausal form. A variant
which works also for non-clausal forms is given by Beckert [Bec03]. The idea is to apply a
reconstruction step after propagating a substitution, which reintroduces literals that were
destroyed by the substitution. However, the techniques are rather complicated and it is
not known whether an implementation has been attempted.

Fitting introduces the delayed closure approach and presents a basic implementation
of it (see [Fit96]). At each step, the proof procedure tries to find a substitution closing all
open branches simultaneously. Similarly, the evidence algorithm [DLM99] tries to close
all branches simultaneously after each step. The disadvantage of this approach is that
work to test for a closure might be duplicated.

Theorema uses a method called solution lifting [KJ01] to handle meta-variables.
The general idea is to represent an ongoing proof attempt (including meta-variables) as
an AND-OR tree, called pre-proof , and to attach substitutions locally to each node of
the pre-proof. The local substitutions are lifted bottom up in the pre-proof by combining
compatible substitutions, hoping to obtain an admissible substitution for the root node of
the pre-proof. In this case, the proof is completed. If two substitutions are not compatible,
the proof tree must be expanded somewhere under this node to obtain a new substitution.
Such an expansion is always possible, as applying a substitution automatically introduces
a new alternative in which the variables are uninstantiated. To avoid the use of the same
substitution on the new branch, a restriction in the form of a disunification constraint is
attached to the node that forbids previously used substitutions. This technique avoids
backtracking and deletion of partially constructed solutions.

A similar approach, called incremental closure, has been described by Giese [Gie02],
in which the closure is also computed in an incremental fashion. To that end, possible
closures are locally computed for each node and represented as unification constraints and
propagated upwards in the proof tree (taking some optimizations into account). Unifica-
tion constraints are a universal technique for avoiding the global application of substitu-
tions by decorating formulas with unification constraints. A unification constraint C is a
conjunction of syntactic equalities between terms or formulae, written as

s1 ≡ t1 ∧ . . . ∧ sk ≡ tk (8.1)

where the symbol ≡ is used for syntactic equality in the constraint language to avoid
confusion with the standard equality =. The same technique is used to lift the ground
simplification rules to the level of free variables. However, this time the constraints are
attached locally to the formula, resulting in a constrained formula Φ ≪ C, meaning that
Φ can be derived under the condition C. The constraints are taken into account when
testing for closure, which is only possible if the combined constraint is satisfiable. For

136

8.2. PROOF PLANS

example, the goal pX ≪ X ≡ Z,¬pa ≪ Z ≡ B cannot be closed, as the first constraint
requires σ(Z) = σ(X) = a, while the second constraint requires σ(Z) = b. To avoid that
already simplified formulas are simplified again, disunification constraints are used. For
simplification rules, a similar mechanism has been developed by Peltier, which attaches
constraints in the form of syntactic equalities [Pel97, Pel99].

Extensions: In [Rüm08], Rümmer presents an extension of the incremental closure
approach which does not only handle unification constraints, but arbitrary equality con-
straints in the fragment of Peano arithmetic (PA). The calculus is based on constrained
sequents Γ ⊢ ∆ ⇓ C which are sequents attached with a constraint C (in PA). Constraints
are either unification constraints or introduced by the following rule

∗
Γ,Φ1, . . . ,Φn ⊢ Ψ1 . . .Ψm,∆ ⇓ ¬Φ1 ∨ . . . ∨ ¬Φn ∨Ψ1 . . . ∨Ψm

Close
(8.2)

in which Φi,Ψi do not contain uninterpreted predicates. As a consequence, the constraint
resulting from a proof is always a formula in Presburger arithmetic. The idea is that
closing the branch introduces the constraints C as indicated by the rule. A constrained
sequent is identified with the formula

∧
Γ ∧ C ⇒ ∨

∆. For the real numbers, a similar
approach is taken by Platzer [Pla08], who embeds algebraic constraints over the reals in
tableau calculi and uses an external quantifier elimination procedure to solve them.

General Discussion of our Choice

The representation of an ongoing proof attempt is essential for both the interactive and
the automated proof search. However, the two worlds are usually conflictive: Efficient
representations for the automated setting are often not suitable for the interactive setting.
Similarly, while postponing choice points such as the introduction of constrained formulas
might be valuable in a fully automatic setting, it may also lead to proof states which
are difficult to understand. Therefore, constrained formulas are not an option within our
setting.

The main advantage of propagating substitution is that this might enable further
simplification steps which reduce both the length and number of branches in the proof
tree (see e.g. [Mas98] for a discussion), while introducing backtrack points, which is a non-
local operation. In our implementation, we apply a global substitution to the complete
proof tree and propagate it along its refinements. This is the usual operation a user
expects within an interactive setting; moreover, it is directly supported by the underlying
calculus.

The PDS supports the operation of removing a proof step, including instantiation
steps. As instantiations are propagated along all branches, proof steps are generally
global operations. This poses the question of which other steps (on other branches) need
to be deleted when deleting a single proof step. Instead of using a chronological notion of
dependency which would delete all steps that have been performed after the step that is to
be deleted, we use a more sophisticated dependency notion that does not delete the steps
that are not affected when propagating a variable binding. For example, if a meta-variable
x is instantiated, proof steps on other branches that do not involve the meta-variable x
are not deleted. In particular, the deletion of a step is local to the current branch if no
binding is propagated at all.

Note that while propagating substitutions globally, it is still possible to implement
a delayed closure approach based on our data structure by postponing the application

137

CHAPTER 8. PROOF PLANS

of a substitution. However, more sophisticated approaches, such as solution lifting or
variants, are currently not supported. This is because such a mechanism would complicate
the notion of a PDS-view and make the implementation, as well as the translation of a
PDS to a declarative proof script, more complicated. In particular, the proof generated
by the decision procedure to check whether the constraints can be solved is not directly
presentable to the user, contradicting our focus on a human-readable proof presentation.

8.3 A Declarative Proof Language

Declarative proof languages, such as Mizar or Isar, have been developed as a means
to present and store a proof in a human-readable format. In this section, we develop
a declarative proof language for Ωmega as an input and output presentation for proof
plans. This has the advantage that gaps and their refinements are naturally supported,
and that the checking itself is postponed and does therefore not stop at the position where
a step cannot be justified. Before turning to our concrete language design, let us state
the general requirements of a declarative proof language and discuss design choices.

• Readability: The proof script should contain enough explicit information to un-
derstand the proof without running the proof assistant.

• Conciseness: The proofs should be as short as possible to avoid unnecessary typing.

• Continuous Checking It is desirable to continue proof checking after an interme-
diate step could not be verified or parsed.

• Maintainability: The language should be implemented independently of the un-
derlying prover.

• Automation & Extendability The language should allow for an efficient automa-
tion and provide facilities to extend the automation facilities of the prover.

• Underspecification The language should feature underspecified proof steps in the
style of textbook proofs.

• Simplicity The language should be simple to learn.

Let us point out that even though existing declarative proof languages are quite simi-
lar, the language designer has several options, in particular when considering automation
versus simplicity. On the one hand, it is desirable to have only very few language con-
structs to keep the language as simple as possible. This comprises both the number of
proof commands, as well as the complexity of the justification hints, i.e., information de-
scribing how to close a proof step. Two extremes are the proof language Declare, which
comes along with only three constructs (see [Sym99]) that support forward reasoning, or
the system Sad, which provides no justification hints at all. On the other hand, this
substantially complicates the verification process and reduces the efficiency of the proof
checker. This is because in a forward proof, which is the style of most textbook proofs,
the number of available assumptions grows with each step. Therefore, proof languages
usually provide a mechanism to label formulas and to indicate the assumptions to be
used to close a gap. It is also common to provide specific proof commands to refer to the
previous fact without having to introduce a label, such as Isar’s commands moreover

138

8.3. A DECLARATIVE PROOF LANGUAGE

and ultimately to collect facts to be used in the statement that follows ultimately. Of
course, this makes the language more complex and more difficult to learn.

Similarly, there is the question whether one wants to support justification hints that
go beyond the specification of assumptions, such as the specification of a tactic to be used
to close a gap. Again, this makes the language more complex, but increases the freedom
and allows the automation of gaps that cannot be automated otherwise.

In addition, there is the question when and how to process a specific proof command
internally, which directly influences the structure of the input proof scripts. Consider for
example a command assume to introduce a specific assumption. In Mizar (see [TB85]),
the command is directly executed on the current proof state and essentially corresponds
to the natural deduction rule ⇒I . That is, it is expected that the goal is of the form
Γ ⊢ A ⇒ B, and the result of the transformation is a goal of the form Γ, A ⊢ B. To be
more general, the theory of semantic correlates is used to be able to go from Γ ⊢ A to
Γ,¬A ⊢ ⊥. Let us point out here that the command modifies the goal and introduces
a new assumption and that for a successful processing the shape of the goal needs to
have a particular form. Alternatively, it is possible to process an assumption lazily, i.e.,
to introduce a new lemma ⊢ A ⇒ B when a proof command assume A . . . thus B
is issued, and to check the connection to the current goal either afterwards or not at
all. This has the advantage that only the conclusion needs to match the current goal;
therefore, the resulting processing is more general and allows the user to write more
general scripts. However, it has the disadvantage that the decomposition step is not
performed automatically. A third possibility is to introduce a new fact ¬A ∨A using the
law of excluded middle, performing a case split afterwards and requiring to close the first
case automatically.

Concerning the simplicity of the language, there is the question whether to support
both the forward and backward style of proof, as it is possible to convert a backward proof
into a forward proof and vice versa. Moreover, there is the choice whether to introduce
abbreviating language constructs that avoid explicit labeling.

Finally, there are design choices concerning the concrete syntax of the proof language,
which influence the complexity and efficiency of the underlying parser and error recovery
from parsing errors. For example, Isabelle/Isar distinguishes between inner syntax for
formulas and outer syntax for the theory structure and Isar. This requires special markers
for the inner syntax – formulas need to be written in quotes – but has the advantage that
the syntax can be parsed independently of each other. Similarly, Mizar requires the user
to terminate a command using a semicolon. As before, the semicolon is an additional
character to simplify the parsing and allows the further processing after an error.

8.3.1 Realization of the Language

Figure 8.1 showed an example of our proof language. In the context of the above discus-
sion, our choices are:

• We explicitly support labels and justification hints in the form of by and from. The
former refers to a strategy expression, e.g., the invocation of a tactic, and the latter
allows the reference of labels that have been introduced before. Justification hints
are optional, that is, can be left out by the user, and the order of the labels does
not influence the checking process.

• We support both the forward and the backward style of proof. This will be im-
portant, as we will extend the proof language to specify proof strategies, which are

139

CHAPTER 8. PROOF PLANS

<document> ::= <theory>+
<theory> ::= theory <name> (imports <names>)? <theoryitem>+
<theoryitem> ::= <typedecl> | <definition> | <axiom> | <theorem> | <const>
<typedecl> ::= newtype <name>
<definition> ::= definition <name> <parserinfo>? < formula>
<const> ::= const < formula> <parserinfo>?
<axiom> ::= theorem <name> < formula>
<theorem> ::= theorem <name> < formula> <proof>?
<parserinfo> ::= [<pinfos>]
<pinfos> ::= <pinfo> | <pinfo> , <pinfos>
<pinfo> ::= left | right | infixr | infixl | prec = <number>

Figure 8.3: Ωmega theory language

sometimes expressed in a backward style more easily.

• To keep the language as simple as possible, we do not introduce further language
constructs that avoid the explicit labeling of formulas, except special constructs to
support reasoning chains involving binary operators, as needed for equality reasoning
or inequality chains.

• Assumptions are lazily processed and no connection to the proof state is required.
This provides maximal freedom in the structure of the proof scripts.

• We avoid special symbols to simplify parsing. Error recovery starts with the next
keyword or after the next newline character of the proof script.

• To keep the language simple to type, we follow the idea in Mizar and do not
introduce a proof command for forward steps.

• To support asynchronous checking and error recovery, we transform the proof script
to a proof plan, which makes the proof obligations explicit in the form of expansion
tasks.

To show the extendability of our language, we will extend the language in Chapter 10
such that proof strategies can also be specified within the proof document.

Basic Theory Management

Proofs are constructed within the context of a mathematical theory, which consists of a
signature of types and constants, and axioms. Consequently, we provide constructs to
declare new types, definitions, and axioms. Each theory extends the base theory, which
provides two base types for Booleans o and individuals ι, and a type constructor → to
define function types. All other types are introduced by type definitions. Moreover, the
base theory defines the usual logical connectives. Figure 8.3 shows the abstract syntax
of Ωmega’s theory language. Definitions introduce new constants based on the existing
theory and dynamically extend the parsing facilities of the formula parser. Therefore,
they can be attached with parsing information, such as the precedence of the introduced
symbol, its associativity, and whether it is written infix, prefix, or postfix. An example
of a simple theory is shown in Figure 8.4.

140

8.3. A DECLARATIVE PROOF LANGUAGE

theory simplesets

const in::i->i->o[prec=200,infixl]

definition subsetdef[prec=210,infixl]

!A,B. A subset B <=> (!x. x in A => x in B)

definition setequaldef !A,B. A=B <=> (A subset B /\ B subset

A)

definition intersectiondef[prec=230,infixl]

!A,B. x in A intersection B <=> x in A /\ x in B

definition uniondef[prec=220, infixl]

!A,B,x. x in A union B <=> x in A \/ x in B

Figure 8.4: Theory Simple Sets

Within a theory, theorems can be stated and proved using the proof language, whose
abstract syntax is shown in Figure 8.5. We subsequently explain each of the constructs
in detail and show how it modifies the current proof plan. Since we do not require
justification hints at all and allow for arbitrarily large gaps, the verification of a single
proof step can become time consuming. In the worst case a complete proof search has to
be performed. To obtain adequate response times a given step is worked off in two phases:
First, we perform a quick test, where we assume that the given step can be justified by
the prover by a single inference application. This can be tested by a simple matching
algorithm. If the test succeeds the step is sound, as the inference application is proved to
be correct. Only if the quick test fails, a more comprehensive proof search is started. This
mechanism tries to find the missing information needed to justify the step by performing
a heuristically guided resource bounded search. If it is not able to find a derivation within
the given bound, a failure is reported and further user interaction is necessary. Let us
point out that our approach means that a given proof script can be checked efficiently
provided that it contains enough information.

Justifications

We distinguish two kinds of justifications, atomic justifications and nonatomic justifi-
cations . Atomic justifications are the simplest kind of justification and consist of a

<proof> ::= proof <steps> qed
<steps> ::= (<ostep> <steps>)|<cstep>
<ostep> ::= <set>|<assume>|<have>|<cases>|<goal>|<consider>
<cstep> ::= (<goal>)+ |ǫ
<by> ::= (by <name>)? | <proof>
< from> ::= (from < label> (, < label>)∗)?
<sform> ::= < form> | . <binop> < form>
<assume> ::= assume < form> <steps> thus < form> <by> < from>
<have> ::= have? <sform> | <by> < from>
<cases> ::= (case < form> { <proof> })+ <by> < from>
<goal> ::= subgoal < form> < from> <by>
<set> ::= set <var>=< form> (, <var>=< form>)∗

<consider>::= consider < form> <by> < from>

Figure 8.5: Ωmega proof script language

141

CHAPTER 8. PROOF PLANS

by annotation and/or a from justification. The by specifies an inference or tactic which
shall be used to close the corresponding proof obligation. The from construct acts as fil-
ter on the current context Γ and specifies the assumptions to be used for the verification
(i.e., all other assumptions are removed by weakening). Given a proof obligation δ and a
context Γ containing derived facts and assumptions, a justification

from l1, . . . , ln by exp (8.3)

generates the proof obligation

l1, . . . , ln ⊢ δ if n > 0

Γ ⊢ δ otherwise
(8.4)

Complex justifications consist of an entire proof that is enclosed by the keywords
proof and qed derives the specified fact. Subproofs introduce hierarchies in the proof
plan and represent the specified fact at a lower granularity level. Note that there are two
possibilities to introduce hierarchies in the proof plan: (i) by creating a new proof tree
containing the more detailed proof and connecting it to the more abstract proof via a
forest edge, and (ii) by inserting the more detailed proof in the same proof tree using a
hierarchical edge. We have implemented the second approach.

Forward Steps

Forward steps are the steps that occur most frequently in declarative proof scripts. They
derive a new formula ϕ, possibly labeled with label l, from the current proof context. To
keep the proof scripts short, we do not assign a keyword to those steps and classify them
internally as have steps. That is, given a proof state Γ ⊢ ∆, the proof command

a+ 0 = 0 + a (8.5)

results in the new proof situation Γ, a+ 0 = 0 + a ⊢ ∆.

Quick Test: The quick test tries to justify the new fact by the application of the
inference name to term positions in the formulas with labels l1, . . . , ln in the current task.
As the result of an inference application is already known before the application of the
inference, we can take advantage of this information to further restrict possible bindings.
In the case that the quick test fails, the justification needs to be expanded, as shown by
the dashed arrow below. Otherwise, the step is marked as correct.

Γ ⊢ ∆

have l : ϕ

Γ, l : ϕ ⊢ ∆

Γ ⊢ ϕ

Assume

Given a context Γ ⊢ ∆, the command

assume l1 : ϕ1 and . . . and ln : ϕn thus ψ (8.6)

142

8.3. A DECLARATIVE PROOF LANGUAGE

starts a new proof tree, in which the current context is enriched by the assumption
l1 : ϕ1, . . . , ln : ϕn:

Γ, ϕ1, . . . , ϕn ⊢ ψ (8.7)

For assumptions, there is no quick test, even though it would be possible to integrate
a similar functionality as in Mizar in case a connection to the current goal can be
established. Subsequent operations corresponding to the assumptions are executed on
the new proof tree. Thus, the modification of the overall proof plan is as follows:

Γ ⊢ ∆

assume l1 : ϕ1 and . . . and ln : ϕn . . . thus ψ

Γ, l1 : ϕ1 ∧ . . . ∧ ln : ϕn ⇒ ψ ⊢ ∆

Γ, l1 : ϕ1, . . . , ln : ϕn ⊢ ψ

In the proof plan, ϕ denotes the closure of ϕ over new variables that were introduced
by the assumptions.

Cases

The command

case ϕ1

thus ψ
...

case ϕn

thus ψ

(8.8)

introduces a case distinction over n cases. It reduces the task to n new subtasks, where
each subtask has an additional assumption corresponding to the case. The proof obligation
associated with the proof command is the condition that the case distinction is exhaustive.
All cases must derive the same fact ψ.

Γ ⊢ ∆

cases c1 . . . cn

Γ, c1 ⊢ ∆ . . . Γ, cn ⊢ ∆

Γ ⊢ c1 ∨ . . . ∨ cn

Quick Test: The quick test tries to close the proof obligation that the case distinction is
exhaustive by checking whether there is an axiom or assumption of the form c1 ∨ . . .∨ cn
(possibly permuted). In the case that the quick test fails, the proof plan is modified
as shown below, where the dashed line indicates the proof tree that is introduced when
expanding the justification.

143

CHAPTER 8. PROOF PLANS

Abbreviations and Instantiations

An abbreviation let a=t introduces the variable a as an abbreviation for the term t,
provided that a does not already occur as a variable in the context. The abbreviation is
stored as an additional assumption. The role of abbreviations is to increase the readability
of a proof script by reducing its size. Adding an equation a = t with a fresh variable a as
premise is conservative in the sense that a proof using the new variable a can be converted
in a proof without a by just substituting all occurrences of a by t. Similarly, the command
set a=t is defined and instantiates an unbound meta-variable in the proof state with the
given term t.

Γ ⊢ ∆

let a = t

Γ, a = t ⊢ ∆

Γ ⊢ ∆

set a = t

Γ, a = t ⊢ ∆

There are no quick tests for the let and the set command.

Subgoals:

Given a context Γ ⊢ ∆, the command

subgoal ϕ1
...

subgoal ϕn

(8.9)

The command subgoals reduces a goal of a given task to n subgoals, each of which is
represented as a new task. In case a goal is reduced to a single subgoal, a ; is used
as syntactic sugar to avoid the need to start a new subproof. New assumptions can be
introduced using the using construct.

Quick Test: This checks if there is an inference that matches the current goal and has
n premises, each of which unifies with one of the specified subgoals.

Γ ⊢ ∆

subgoals s1 . . . sn

Γ ⊢ s1 . . . Γ ⊢ sn

Γ ⊢ s1 . . . sn ⇒ ∆

If there is no inference introducing the subgoals specified by the user within a single
step the repair strategy tries to further reduce the goal in the current task, thus introducing
further subgoals, until all specified subgoals are found. If a subgoal matches a specified
goal, it is not further refined. If all subgoals are found by a sequence of proof steps, these
steps are abstracted to a single justification.

144

8.3. A DECLARATIVE PROOF LANGUAGE

Existential Assumptions

The construct consider provides a means to introduce an existential variable based on an
existential assumption. It thus corresponds to existential elimination in natural deduction.

Γ ⊢ ∆

consider a with ϕ

Γ, ϕ[a] ⊢ ∆

Γ ⊢ ∃x.ϕ

Quick Test: The quick test checks whether the existential formula occurs as an as-
sumption in the current sequent or is available as an axiom in the current theory.

Qed:

The command qed is used to indicate that a task is solved.

Γ ⊢ ∆

qed

Γ ⊢ ϕ

Quick Test: The quick test checks whether the goal formula ϕ occurs in the context,
or whether the symbol false occurs at top-level on the left hand side of the task, or the
symbol true occurs at top-level on the right-hand side of a task. A task can also be closed
if the inference name is applied and all its premises and conclusions are matched to term
positions in the current task.

Equational Reasoning and Binary Relations

In addition to reasoning with assertions, many mathematical proofs involve computations
in the form of chains of equalities or inequalities. To simulate such equality chains,
we provide an abbreviation “.” in terms that corresponds to the right-hand side of the
previous command, which needs to be a binary predicate. Consider for example the
following proof, whose corresponding proof script is shown in Figure 8.6.

Theorem. Every linear function f(x) = ax + b(a, b ∈ R, a 6= 0) is continuous at every
point x0.

Proof. The claim to be shown is that for every ǫ > 0 there is a δ > 0 such that whenever
|x− x0| < δ, then |f(x)− f(x0)| < ǫ. Now, since

|f(x)− f(x0)| = |ax+ b− (ax0 + b)| (8.10)

= |ax− ax0| (8.11)

= |a| · |x− x0| (8.12)

it is clear that |x − x0| < ǫ/(|a|) implies |f(x) − f(x0)| < |a| · ǫ/(|a|) = ǫ. Hence, for all
ǫ > 0, δ = ǫ/|a| > 0 is the number fulfilling the claim.

145

CHAPTER 8. PROOF PLANS

theorem ∃a, b.a 6= 0 ∧ f(x) = ax+ b⇒ cont(f, x0)
proof

|f(x)− f(x0)| = |ax+ b− (ax0 + b)|
. = |ax− ax0|
. = |a| · |x− x0|
assume |x− x0| < ǫ/(|a|)

|f(x)− f(x0)| < |a| · ǫ/(|a|)
. = ǫ

thus |f(x)− f(x0)| < ǫ
assume ǫ > 0

let δ = ǫ/|a|
δ > 0

thus ∃δ.δ > 0 ∧ |x− x0| < δ ⇒ |f(x)− f(x0)| < ǫ
qed

Figure 8.6: Realization of the example proof in the proof language

8.4 From Assertion Level proofs to Declarative Proof

Scripts

Given a proof plan, we shall show now how we can extract a declarative proof script from
it, independently of how the proof plan was generated. In particular, this will allow us to
generate a declarative proof script for proofs that have been generated automatically. Note
that this is usually not attempted in other proof assistants because of the detailedness
of the underlying calculus. For example, in Isabelle, there “is currently no way to
transform internal system-level representations of Isabelle proofs back to Isar text” (see
[Wen99b], p. 11). However, within our setting, the assertion level builds the lowest layer
of abstraction, and a presentation is therefore reasonable. Indeed, the assertion level was
motivated and developed originally for a human oriented proof presentation. However,
let us point out that even though the assertion level proofs are rather abstract, one might
want to transform the generated proof slightly for the presentation purpose, as the way a
proof is found is often different from the way it is presented in a textbook:

In general it is not practical to write the entire thought process that goes into a
proof, for this requires too much time, effort, and space. Rather, a highly con-
densed version is usually presented and often makes little or no references to
the backward process. [...] There are several reasons why reading a condensed
proof is challenging:

1. The steps of the proof are not always presented in the same order in which
they were performed when the proof was found.

2. The names of the techniques are often omitted.

3. Several steps of the proof are often combined into a single statement with
little or no explanation.

(from [Sol05] p. 13-15)

In the sequel, we present an algorithm that transforms a proof tree into a declarative
proof script, thereby taking into account that backward steps are often converted into
forward steps. Indeed, forward style proofs are usually more natural than backward style

146

8.4. FROM ASSERTION LEVEL PROOFS TO DECLARATIVE PROOF SCRIPTS

proofs (see for example [Wen99a]). Note however that our translation represents just one
possibility and that other translating/rendering functions can easily be defined.

The second aspect, namely “condensing” of proof scripts is not considered here (except
for a trivial case) and can be seen as a research field in its own right. One possibility, which
has been worked out, is the use of expert knowledge for the classification task (see [SB09a,
SB09c, SB09b, Sch10]). Interestingly, the expert knowledge can even automatically be
extracted from annotated proof examples via machine learning techniques.

Let us recall that an assertion level step reduces a task T to a set of subtasks T ′1, . . . , T
′
n.

We can analyze such a reduction in order to compute a corresponding proof command
corresponding to that step. We assume a function label which returns the set of those
labels which are used in premises and conclusions of the proof operator and “. ” if none
of them has a label.

Definition 8.4.1 (Task Difference). Let T, T ′ be sequents. The difference between T and
T ′ is defined as follows:

diff (T, T ′) = 〈{ϕ ∈ Γ′|ϕ /∈ Γ}, {ξ ∈ ∆′|ξ /∈ ∆}〉 (8.13)

Based on the task differences of a reduction step, it is possible to define a translation
function GJ·K which takes a task T (more precisely a node of the task tree) as input and
returns a proof script. To make the classification of proof steps explicit, we explicitly
label forward steps by have. To keep the proof script natural, we assume single conclu-
sion sequents. This can be achieved in classical logic by modifying inference rules that
introduce a multiple conclusion by a variant that introduces negated assumptions and a
single new conclusion.

The translation function GJ·K is defined with the following cases:

Non branching rules:

• The step solves the goal. In this case, the empty string ǫ is inserted and the proof
is completed.

GJT K = ǫ provided that succ(T) = ∅ (8.14)

• The step introduces a new subgoal and leaves the assumptions unchanged. In this
case, the backward step is converted to a forward step and the translation function
recursively invoked on the subproof. An example is shown below:

...

Γ ⊢ X ⊂ A

Γ ⊢ X ∈ P(A)

have L1:X ⊂ A
proof
...

qed

have L2:X ∈ P(A)

Formally:

GJT K = have L1 : ϕ proof GJT1K qed have ξ from L1

provided that T = Γ ⊢ ξ, succ(T) = {T1},diff (T, T1) = 〈∅, {ϕ}〉 (8.15)

• The step introduces new assumptions, but leaves the goal unchanged. In this case,
each new assumption gives rise to a new proof step that is classified as have. The
translation function is recursively invoked on the successor task. Note that it would

147

CHAPTER 8. PROOF PLANS

also be possible to extend a forward step such that several assumptions can be intro-
duced simultaneously, in analog to the assume construct. This would be a solution
if one would be interested in an invariant that a single proof step always corresponds
to a single proof command. However, we found the proof scripts resulting with the
first option more natural.

Γ, x ∈ A, x ∈ B ⊢ ϕ
Γ, A ∩ B ⊢ ϕ

have L1:x ∈ A
have L2:x ∈ B
...

Formally:

GJT K = have L1 : ϕ . . . have Ln : ϕn GJT1K

provided that; succ(T) = {T1},diff (T, T1) = 〈{ϕ1, . . . , ϕn}, ∅〉 (8.16)

• The step introduces a subgoal together with new assumptions. In this case, the step
is mapped to an assume step, whose inner part is provided by the recursive call of
the translation function.

Γ, x ∈ A ⊢ x ∈ B

Γ ⊢ A ⊂ B

assume L1:x ∈ A
...

thus L2:x ∈ B

Formally:

GJT K = assume L1 : ϕ1 and . . . and Ln : ϕn GJT1K thus Ln+1ψ

provided that; succ(T) = {T1},diff (T, T1) = 〈{ϕ1, . . . , ϕn}, {ψ}〉 (8.17)

Let us remark that for non-branching rules all possibilities are covered.

Branching rules:

For branching rules, we consider the following cases:

• The step reduces the goal to several subgoals with new assumptions, but the subgoals
are identical. This is for example the case when using the assertion

Γ, x ∈ A ⊢ ϕ Γ, x ∈ B ⊢ ϕ
Γ, x ∈ A ∪ B ⊢ ϕ

case L1:x ∈ A
...

case L2:x ∈ B
...

thus ϕ
Formally:

GJT K =case L1 : ϕ11 and . . . and ϕ1m1
GJT1K thus φ

...

case Ln : ϕn1 and . . . and ϕnmn
GJTnK thus φ

provided that succ(T) = T1, . . . , Tn, n > 1

diff (T, Ti) = 〈ϕi1, . . . , ϕimi
}, {ψ}〉 (8.18)

148

8.4. FROM ASSERTION LEVEL PROOFS TO DECLARATIVE PROOF SCRIPTS

T1

=R

T2

⊂R

T4

∩R

T6

∩L

T10

AX

T7

∩L

T11

AX

T3

⊂R

T5

∩R

T8

∩L

T12

AX

T9

∩L

T13

AX

T1: ⊢ A ∩ B = B ∩ A
T2: ⊢ A ∩ B ⊂ B ∩ A
T3: ⊢ B ∩ A ⊂ A ∩ B
T4: x ∈ A ∩B ⊢ x ∈ B ∩ A
T5: x ∈ B ∩ A ⊢ x ∈ A ∩ B
T6: x ∈ A ∩B ⊢ x ∈ A
T7: x ∈ A ∩B ⊢ x ∈ B
T8: x ∈ B ∩ A ⊢ x ∈ B
T9: x ∈ B ∩ A ⊢ x ∈ A
T10: x ∈ A, x ∈ B ⊢ x ∈ A
T11: x ∈ A, x ∈ B ⊢ x ∈ B
T12: x ∈ A, x ∈ B ⊢ x ∈ B
T13: x ∈ A, x ∈ B ⊢ x ∈ A

Figure 8.7: An automatically generated proof tree

• Otherwise we consider each difference separately and reduce it either to an assump-
tion or to a forward step, according to the non-branching rules.

Γ ⊢ x ∈ A Γ ⊢ x ∈ B

Γ ⊢ x ∈ A ∩ B

have L1:x ∈ A
have L2:x ∈ B
have L3:x ∈ A ∩B from L1,L2

Formally

GJT K = L1 : GJT1K . . . Ln : GJTnK have ψ fromL1, . . . , Ln

provided that succ(T) = T1, . . . , Tn (8.19)

Simplifications

Moreover, we use the following simplification rule to remove one step subproofs (which
we consider to be simple):

have L1:A

proof

have L2:B from

N

qed

−→ have L1:A from N

Note that this step corresponds to the use of the close-direction of the assertion instead
of a forward direction followed by the axiom rule. Thus, when allowed and preferred during
the proof search, the above transformation is not necessary.

149

CHAPTER 8. PROOF PLANS

Theorem SET013+4: A ∩B = B ∩A
proof

L1: A ∩B ⊂ B ∩A
proof

assume L2: X ∈ A ∩B
L3: X ∈ B from L2

L6: X ∈ A from L2

thus X ∈ B ∩A
qed

L9: B ∩A ⊂ A ∩B
proof

assume L10: X ∈ B ∩A
L11: X ∈ A from L10

L14: X ∈ B from L10

thus X ∈ A ∩B
qed

A ∩B = B ∩A from L1,L9

qed

Figure 8.8: Resulting declarative proof script for TPTP problem SET013+4

8.4.1 Examples

To get a feeling for the structure of the generated proof scripts, we give two examples of
declarative proof scripts that have been automatically generated. Consider the generated
proof tree, shown in Figure 8.7, proving the TPTP problem SET013+4 produced by the
assertion level prover (which will be presented in Chapter 12).

The generated proof script is shown in Figure 8.8. Similarly, producing the proof from
the proof of problem SET015+4, we obtain the proof script shown in Figure 8.9. Notice
the handling of the disjunction in the subproof of L3: Instead of introducing two literals
on the right-hand side, the first literal is negated and moved to the left-hand side of the
sequent. The same operation is performed in the subproof of L7.

Let us remark that our approach can easily be extended to the case where quantifiers
are explicitly contained in formulas. Then, one would refine the non-branching rules of
GJ·K to include a command corresponding to ∀I , such as fix.

8.5 Related Work

Central to the work described in this section is the notion of a proof plan and its relation
to a declarative proof script. As possible choices to support meta-variables have already
been discussed in Section 8.2.1, we focus here on the more general picture.

8.5.1 Underspecified Proof Scripts

For Mizar, Wiedjik introduces the notion of a proof sketch, which is a declarative proof
script with gaps: “A formal proof sketch is a completely correct Mizar text, apart from
errors *4 and *1. These errors say that reasoning steps are not justified” (see [Wie04]
page 3). Several systems have been developed that try to automatically close such gaps,
such as Mizar, Nqthm [BM88], the Spl system [Zam99], the Sad system [VLP07], the
Naproche [KCKS09] system, the Scunak system [Bro06], as well as Tutch [ACP01].

150

8.5. RELATED WORK

Theorem SET014+4 A ∪B = B ∪A
proof

L1: A ∪B ⊂ B ∪A
proof

assume L2: X ∈ A ∪B
L3: X ∈ B ∨X ∈ A
proof

assume L4: X /∈ B
case X ∈ A
thus X ∈ A
case X ∈ B
thus X ∈ A

thus X ∈ A
qed

thus X ∈ B ∪A from L3

qed

L5: B ∪A ⊂ A ∪B
proof

assume L6: X ∈ B ∪A
L7: X ∈ A ∨X ∈ B
proof

assume L8: X /∈ A
case X ∈ B
thus X ∈ B
case X ∈ A
thus X ∈ B

thus X ∈ B
qed

hence X ∈ A ∪B from L7

thus X ∈ A ∪B
qed

hence A ∪B = B ∪A from L1,L5

qed

Figure 8.9: Declarative proof script generated for the TPTP problem SET015+4

Here, a structure which can be understood as a proof plan is constructed from a textbook
proof, rather than automatically generated by a proof planner. However, the proof plan
is not always explicit in the form of a data structure.

The relationship between explicit proof plans and proof sketches was already exploited
in the previous Ωmega system, which provided the island tactic “to insert arbitrarily large
gaps in the proof” (from [SBF+03] page 18). These were later justified by expanding the
island step. However, the relationship to declarative proof languages to specify island
steps was not exploited.

Isaplanner [DJ07], a proof planner built on top of Isabelle, exploits the connec-
tion between proof plans and declarative proof scripts even further. A key feature of
Isaplanner is that proof plans are equivalent to proof scripts. More specifically, proof
plans are build by abstract elements that correspond to Isar commands and that have
been lifted to the abstract level of proof plans. Abstract elements have a name, such as
apply, the arguments corresponding to the element, an execution function, and a pretty
printer. Among others, Isaplanner provides the abstract element gap, which takes as

151

CHAPTER 8. PROOF PLANS

optional argument a proof planning technique to close the gap, and an execution function
that skips the proof using an oracle. Proof plans are constructed based on reasoning
techniques that are executed on reasoning states. A reasoning state contains contextual
information, such as Rippling annotations, as well as a continuation describing the next
reasoning technique to be applied. In contrast to Isabelle, Isaplanner supports meta-
variables that occur in assumptions, which are not allowed when writing proofs in Isar.
This is possible by giving stable references to assumptions, goals and meta-variables in
the form unique names. Internally, Isaplanner stores meta-variables in a table which
is indexed by their unique name and which holds the names of goals, assumptions and
other meta-variables in which they occur. It is important to note that only tactics that
have been lifted to the level of reasoning techniques can be used to construct a proof plan,
in particular, it is not possible to reconstruct a proof plan/proof script from an internal
proof.

8.5.2 Proof Script Extraction

There exist also several approaches to present a machine-found proof in a user friendly
way [Hua96, Fie01]. In [Sac10] a language is presented to automatically generate declar-
ative proofs from proof terms. While this allows the presentation of proofs which have
been found automatically, the resulting proofs are very detailed. Within our setting, the
quality of the proofs benefit from the abstract structure of the generated proof tree, which
is at the assertion level (or even above). The importance of the source proof for proof
presentation has already been recognized by Felty and Miller twenty years ago: “Since
the mechanism for translating a proof tree into text is simple, much of the challenge in
constructing natural text can be transferred to constructing proof trees: to first generate
good text, generate good proof terms” (see [FM88] p. 4).

8.5.3 Declarative Proof Languages

The Automath project [dB70] was the first significant attempt to formalize mathemat-
ics and to use a computer to check its correctness. Automath was a pure proof checker
with a rather cryptic input language that did not provide tools for proof automation.
Subsequently, several research projects dealt with its proof automation as well as increas-
ing the readability of the input text. While the derivatives of Automath, Mathematical
Vernacular[dB94], weak type theory [Ned02], orMathlang [KMW04] are close to natural
language, many other (formal) proof languages similar to ours have been developed. We
subsequently compare our proof language with both the Mizar and the Isar language,
which are probably most similar to our language.

Mizar: Mizar was the first proof assistant that implements what is today known as
the declarative style of proof. Mizar is a batch proof assistant that is not interactive.
Rather, a file is loaded and error messages written in the body of the input text. In
particular, Mizar continues to check after a step could not be justified. To justify a
step, Mizar invokes an internal first order prover that works with normal forms. This
means that a direct back-translation of the generated proof is not possible. Moreover, the
automation facilities of the system cannot be extended by the user. In contrast to our
approach, Mizar does not construct a proof plan representation, but checks the steps
immediately. Parallel checking is currently not implemented in Mizar.

152

8.6. SUMMARY

Isar: In Isar, a proof consists of a claim followed by a proof according to Isar’s formal
syntax. Similar to our language, Isar provides justification hints in the form of two
constructs by and from. This means that the automation facilities can be extended by
the user. However, in contrast to our approach, the order of facts is used to speed up
the checking process. Gaps are not natively supported by Isar, and the checking cannot
be continued after the first error, even though this could be realized easily. In contrast
to our approach, Isar does not feature meta-variables. Moreover, it is not possible to
translate back an internal proof to a declarative proof script, which is a key feature of our
approach.

8.6 Summary

In this chapter we introduced a declarative proof language and illustrated the connection
between declarative proof scripts and proof plans: We showed how a declarative proof
script can be used to construct an initial proof plan, which is subsequently refined to obtain
a formal proof. Conversely, we showed how a declarative proof script can be extracted
from a proof plan by means of a PDS-view that selects one specific proof alternative
(Contribution A1(vi), Section 1.1). While this extraction process might generally produce
proofs that are too detailed, we showed that proofs at the assertion levels are well-suited
for such a translation due to their abstract granularity.

153

9
Heuristic Control and Compilation of

Inferences

Deep inference deduction systems remove the restriction that inference rules can only
be applied to top-level formulas and instead they allow their application to subformulas,
just as in most rewriting systems. This has the advantage that shorter proofs can be
constructed, but comes along with some disadvantages: (i) The branching factor increases.
(ii) The complexity of the matching process increases, as more matching candidates need
to be considered. (iii) The number of redundancies in the search space increases, as there
are more possibilities to derive a particular statement. (iv) The resulting proof steps
might become difficult to understand.

Therefore, for practical applications one has to consider the tradeoff between shorter
proofs and higher nondeterminism in the search space and hence needs a better control
over the depth of the inference application. In this section, we introduce a specification
language to attach user defined control information to inferences to restrict their applica-
bility and to influence their effects. The annotations enable a high-level and fine-grained
though declarative control of the internal search procedure, supporting the full range
from top level inference to full deep inference, as well as anything in between. In order
to obtain reasonably efficient proof search procedures comparable to built-in procedures,
compilation techniques for inferences are developed. Moreover, compilation provides an
additional abstraction layer which can easily be extended and optimized.

9.1 Dynamic Effects and User-Defined Constraints

Generally, a single inference can be applied in many ways (see Chapter 6), but not all of
them will necessarily contribute to the goal of the current proof. Rather, efficient (and
controlled) search is achieved by choosing an appropriate subset of the many application
directions, as well as by providing mechanisms to avoid redundancies in the search space.

The problem of controlling the application of inferences has already been studied in the
context of proof planning methods in the previous Ωmega system (see for example [MS99a,
Ker98] for a detailed description). Premises and conclusions of methods were annotated
with ⊕ and ⊖ to indicate a subset to be matched for the method to be applicable.

155

CHAPTER 9. HEURISTIC CONTROL AND COMPILATION OF INFERENCES

Moreover, facts marked by ⊖ were removed from the proof state to avoid redundancies.
The remaining choice points were controlled by control rules.

Another view is to consider the application of a set of inferences as a classical retrieval
problems of candidate terms from a given query term or subject term satisfying a specific
relationship. Indexing data structures have been developed to support such operations
efficiently for automated reasoning. However, within our setting, there are the following
differences with respect to this:

• The instantiation of a single inference can be seen as a simultaneous unification/-
matching problem, as several premises/conclusions can be instantiated. Simulta-
neous matching/unification has been studied for hyperresolution, where one has to
solve the problem of simultaneous retrieval of unifiable terms. Instead of matching
all inference nodes simultaneously, a reasonable strategy is to match one inference
node at a time, starting from an inference where no node has been matched. This
has been done for example in Vampire [RV99], where the retrieval problem for n
terms is reduced to n retrieval problems of one term. Techniques for simultaneous
unification are usually much more complicated than for a single term and known as
multiterm indexing (see [RSV01]).

• In addition to the unifier, the proof obligations that arise from negative positions
need to be determined. These proof obligations are dynamic and context dependent.

• Instead of using one static relation that expresses the relationship the candidate
terms have to satisfy, we want to support arbitrary, user-defined constraints that
are locally defined with respect to an inference node.

• Additional search control, such as backtracking or deletion of a formula after its use
are tasks that have to be accomplished independently of the retrieval.

Finally, we can see the deep application of a rule as a general form of rewriting. To that
end, let us consider the application of a single resolution replacement rule in more detail.
We observe that its effect corresponds to the result of a tree replacement. Thus, the overall
process, matching and execution, can be split into two operations, namely (i) to find all
possible matches within a tree, and (ii) to select a candidate on which a particular action
is performed. These two operations are known in the rewriting community as tree pattern
matching and reduction strategy. In the context of rewriting, traversal functions provide
a simple mechanism to make the selection of the redex explicit and the overall rewriting
strategy configurable. Moreover, efficiency at runtime is often obtained by compiling
patterns to programs (see for example [BM06, vdBHKO02, Vit96, MK98, MRV01]), which
results in significant speed-ups of the execution time as compared to interpreters.

We will follow this approach in the sequel. First, we introduce a language to anno-
tate inferences with control information. We then show how annotated inferences can be
compiled to programs which are then executed. Compilation will speed up the matching
process, in particular because it avoids the passing of bindings, and because we can opti-
mize programs such that control information is only locally evaluated. From a conceptual
point of view, speaking about programs will introduce a convenient abstraction layer.

Compilation is the technique of our choice, because it allows the incorporation of
user-defined constraints in a convenient way. Moreover, we are especially interested in
applications in which the set of patterns, given, e.g., by a strategy, remains fixed, and
we can therefore distinguish between preprocessing time and matching time. Minimizing
matching time is the first priority, as preprocessing can often be done once and for all

156

9.1. DYNAMIC EFFECTS AND USER-DEFINED CONSTRAINTS

and the result be stored in a separate file. Exploiting the idea to reduce a simultaneous
matching problem to a sequence of subsequent matching problems, we can extend this to
inferences that require several matches. Using this relationship allows us to adapt known
techniques to our setting.

Before defining the annotation language, we present some examples of the search
restrictions we want to be able to express.

Restriction of the Application Directions

Suppose the current task is to show

A ⊆ B, x ∈ B ⇒ x ∈ A ⊢ A = B (9.1)

and we are given the inference rule

P1 : A ⊆ B P2 : B ⊆ A

C : A = B
(9.2)

originating from the assertion A = B ⇔ A ⊆ B ∧ B ⊆ A.
Suppose further that the proof requires to unfold the definitions in the goal first and

then to use logical arguments to finish the proof. With respect to the strategic goal, only
those application directions of this inference make sense, in which the conclusion C is
instantiated, i.e., the following four PAIs: {P1, P2, C}, {P1, C}, {P2, C}, {C}.

Instead of always enumerating all desired inference applications, it is often simpler
to specify a subset of premises and conclusions that must or must not be instantiated,
for example, to use only those directions which do not introduce new meta-variables. In
addition to stating a main direction for the inference, such as forward , backward , and
close, we want also to specify for a single inference node whether it must be instantiated
or not. Note that this kind of restriction is static, i.e., the question whether a certain
direction is allowed or not does not depend on the current proof situation, but is decided
in advance. An example is given below, where we use the * to indicate that a particular
inference node must be instantiated:

P1 : A ⊆ B P2 : B ⊆ A

C : A = B{*} (9.3)

Contraction/Weakening of Assumptions

In addition to the specification of a set of application directions, we want to be able to
specify whether a used formula should be removed from the proof state after the appli-
cation of the inference. For example, when unfolding a definition, it is often reasonable
to remove the unexpanded definition from the proof state (i) to avoid loops, and (ii) to
avoid unnecessary matching attempts. Consider for example the task

x ∈ A ∪ B ⊢ x ∈ B ∪ A (9.4)

Expanding the definition in the antecedent adds the new premise x ∈ A ∨ x ∈ B. There
is no need to keep the fact x ∈ A ∪B, as the task is provable iff

x ∈ A ∨ x ∈ B ⊢ x ∈ B ∪ A (9.5)

157

CHAPTER 9. HEURISTIC CONTROL AND COMPILATION OF INFERENCES

is provable. However, as an alternative, consider the task

A ⊂ B, x ∈ A, y ∈ A ⊢ x ∈ B ∧ y ∈ B (9.6)

and the inference

⊆
P1 : U ⊆ V P2 : x ∈ U

C : x ∈ V
x new for U and V

(9.7)

which we want to apply in the forward direction. Without performing a manual contrac-
tion step on A ⊂ B, it is not reasonable to remove the fact A ⊂ B, as we may need several
forward instances of it to derive all necessary facts.

We use the annotation - to indicate that a used fact is to be removed:

x ∈ A ∪ B{-}
x ∈ A ∨ x ∈ B

(9.8)

Avoiding redundancies is a key step to implement efficient automated theorem provers.
In clausal-based theorem provers, this is connected to the question to delete clauses under
certain circumstances. Intuitively, clauses can be deleted if they are tautologies or if they
are subsumed by other clauses.

Backtracking Behavior

Another kind of redundancy that can occur is due to derivations which are rotational
variants of each other and derive the same fact. In the case of backtracking, there is no
benefit to explore these alternatives, as they would lead to the same result and trigger
backtracking again. Consider the task

Γ, x ∈ A ∪ B, x ∈ B ∪ C ⊢ ∆ (9.9)

Expanding the first occurrence of ∪ and then the second occurrence has the same effect as
expanding first the second and then the first. When computing all possibilities to apply the
definition of ∪, both alternatives are computed and the second stored for backtracking.
Note that in large proofs many such rotations are possible and should be eliminated.
This is possible by providing a possibility to control the number of alternatives that are
computed when instantiating the inference. In the example above, it is reasonable not to
compute every alternative, as the above transformations are equivalence transformations.
Similarly, if we consider for example a confluent terminating rewrite system and have
found an applicable rewrite rule at a preferred position, it is usually reasonable to apply
the rule directly instead of looking for further applicable rules, since backtracking is never
required for such systems of rules.

Order of the Query Terms

When reducing the inference-matching/unification problem to a sequence of individual
matching problems, the order in which the query is executed matters. Consider for ex-
ample the inference

x ∈ A{∗} A ⊂ B{∗}
x ∈ B

(9.10)

and the task
x ∈ U, y ∈ V ⊢ x ∈ U ∩ V (9.11)

158

9.1. DYNAMIC EFFECTS AND USER-DEFINED CONSTRAINTS

Starting the query with A ⊂ B immediately stops the overall query because a suitable
partner cannot be found in the sequent. Therefore, in this example, search can be avoided
when using a particular order. Generally, it is often better to match large terms first, as
they are more unlikely to be found in a given task. Moreover, they constrain subsequent
queries in the case of overlapping variables. Instead of providing annotations to influence
this order, we keep its significance in mind and aim at an automatic solution for it.

Deep vs. Shallow Inference

Extending the application of an inference from top level formulas to subformulas increases
the number of candidate terms a premise/conclusion can be matched against. This in-
creases the branching factor, but might also result in proof steps which are difficult to
understand. Depending on the setting, it is therefore desirable to have a finer control on
this matching process. To be able to cover the full range from shallow inference to deep
inference, we provide the annotation [·] to enable deep inference, respectively to switch it
off. Consider the task

⊢ x ∈ A ∪ B ∨ x ∈ B ∪ A (9.12)

and the two inferences

x ∈ A ∨ x ∈ B

x ∈ A ∪ B
x ∈ A ∨ x ∈ B

[x ∈ A ∪ B]

While the premises and conclusion of the first inference can only be matched against
the top-level formulas of the sequent, the conclusion of the second inference carries the
annotation [·], which enables the deep matching. Therefore, only the second of both
inference can be applied.

Absolute Position Restrictions

Another restriction controls the candidate formulas which can be used for the matching.
For heuristic considerations, this is essential: The right hand side of the sequent indicates
the main goal we are trying to solve and thus represents important information which we
might want to exploit within a proof strategy. Treating all positive subformulas as goal
is not an option for strategic proof search. Consider for example the sequent

(
S+ ∧Q+

)+ ⇒
(
P− ∧Q−

)−
,
(
A+ ∧B−

)+ ⇒ S− ⊢
(
P+ ∧Q+

)+
(9.13)

To obtain a goal directed search strategy, one should give the positive goal formula (P+∧
Q+) a preference over other positive formulas. This has already been realized e.g. by
Sieg [SB98, SRL+06, Sie09] and is used by the intercallation calculus : The intercallation
calculus is a restriction of natural deduction, where normality of the proof is enforced by
applying the elimination rules only on the left to premises and the introduction rules only
on the right to the goal. In the first case one really tries to extract a goal formula by
a sequence of E-rules from an assumption in which it is contained as a strictly positive
subformula.

This feature is distinctive and makes search efficient, but it is in a certain sense
just a natural systematization and logical deepening of the familiar forward and
backward argumentation. (from [Sie09] p. 11)

159

CHAPTER 9. HEURISTIC CONTROL AND COMPILATION OF INFERENCES

Therefore, we provide the possibility to restrict candidate terms of a premise/conclusion
by a declarative sequent matcher:

[P]

P{⊢ ∗} (9.14)

Dynamic Position Restrictions

We cannot only impose absolute position restrictions, as above, but also dynamic position
restrictions. Consider the following proof situation

(
S−(1) ∧

(
Q+ ⇒ S−(2)

))− ⇒ S+
(3) (9.15)

where (1), (2), and (3) denote the occurrences and deep axiom rule

[P]

[P]
(9.16)

There are two negative occurrences of S (S(1) and S(2)) as well as a positive occurrence of
S (S(3)). Thus, there are two application possibilities of the deep axiom rule. However,
they differ as follows: While the use of S(1) is for free, the use of S(2) introduces the proof
obligation P . The difference is due to their relative position to S+

(3): While for S(1) there
is no β-formula on the path to S(3), there is one when considering S(2), giving rise to
the proof obligation. Therefore, we provide an annotation nopob that restricts premise
candidates to those which do not introduce new proof obligations, as indicated below:

[P]{nopob}
[P]

(9.17)

Meta-level Restrictions

Often, a simple static analysis helps to drastically reduce the number of choice points. In
the context of rewriting, it is often possible to orient an equation with respect to a given
ordering and performing rewriting only in one direction. However, it is easy to construct
examples of equations which cannot be directed.

Example 9.1.1. A simple example is a permutative axiom like the commutativity of
addition

x+ y = y + x (9.18)

Other equations which cannot be directed are equations which do not have the same vari-
ables on the left and right-hand side, such as

f(x) = g(y) (9.19)

Rather than disallowing these equations, a possible solution consists of moving the
reduction test to runtime by allowing the application of rewrites only if the instance can
be oriented. For example, using the lexicographic path ordering, the following instance
of (9.18) can be directed:

x+ f(x) = f(x) + x (9.20)

Performing the check at runtime allows the use of the equation in both directions, however,
at the cost of the additional check. This technique is known as ordered rewriting , which
can be seen as a special case of constrained rewriting .

160

9.1. DYNAMIC EFFECTS AND USER-DEFINED CONSTRAINTS

Individual Matching

The most basic and at the same time most expensive operation when searching for PAIs
is unification. Hence it is crucial to be able to influence unification as best one can.
In general, we are in a higher order setting, and higher-order unification will be needed.
However, there might be situations in which we are only interested in first order unifiers or
even in first order matchers. Consider the following inference representing the induction
axiom for natural numbers,

P1 : P (0)

[P (y)]
...

P2 : P (s(y))

C : P (x)
(9.21)

and suppose that the proof situation is to show

x+ y = y + x (9.22)

Higher-order unification produces the following unifiers for P :

P 7→ λz.z = y + x

P 7→ λz.z + y = y + z

P 7→ λz.z + y = y + x

P 7→ λz.x+ z = z + x

P 7→ λz.x+ z = y + x

P 7→ λz.x+ y = z

P 7→ λz.x+ y = z + x

P 7→ λz.x+ y = y + z

Only the second and the forth solutions are desired; all the other unifiers do not contribute
to the solution, even though they are syntactically correct. The solution here is to define
a special matcher, taking a formula Φ and producing for each δ-variable vδ in Φ the unifier

P 7→ λz.Φ[z/vδ]

We can also imagine to define a unification algorithm for theory unification (see [BS01a])
or even to cooperate with a computer algebra system to generate a unifier/matcher.
There is also the interesting field of so-called algebraic matching algorithms which allow
for algebraic manipulations of terms to match terms and provide results such as x =

√
2.

Preference Redex

We would also like to express preferences among positions to further control the order
in which the search space is unfolded. From the area of rewriting different reduction
strategies are known and implemented by the choice of the traversal order. Examples
are leftmost/rightmost, innermost/outermost, innermost parallel, and outermost parallel
rewriting. These result in different derivations, as illustrated below:

square(3 + 4) → square(7) → 7 ∗ 7 → 49 (9.23)

square(3 + 4) → 3 + 4 ∗ 3 + 4 → 7 ∗ 3 + 4 → 7 ∗ 7 → 49 (9.24)

We want to support a similar functionalities to control matching of inference nodes.

161

CHAPTER 9. HEURISTIC CONTROL AND COMPILATION OF INFERENCES

9.2 Annotated Inferences

We will now define a declarative syntax for inferences that allows the specification of
inferences as well as restrictions on the search process. Figure 9.1 shows the declarative
syntax to describe inferences:

< inference> ::= (<name> <eqinf> | < inf>) (where <cond>)?
< inf> ::= <prems> ==> <con>+
<eqinf> ::= <prems> <term> == <term>
<prems> ::= <prem> | <prem> ; <prems>
<prem> ::= ([< forms>] ..)? < form>
<con> ::= < form> | [< form>]
<termnode>::= <term>
<cond> ::= <pred>+
< form> ::= <name>: <term>
< form> ::= < form> | < form> , < forms>

Figure 9.1: Basic syntax to define inferences

Having the general form of inferences from Figure 9.1 in mind, the syntax is best
explained by examples. We adopt the usual convention to use capital letters to denote
meta-variables and lower-case letters to match constants of the domain, existing variables
or new Eigenvariables.

• axiom: P ==> P specifies the axiom rule;

• implI: [F] .. P:G ==> C:F => G specifies an inference with a conclusion F => G

named C and a single premise G named P and hypotheses F;

• NatInduction: base:P(0) [P(y)] .. step:P(suc(y)) ==> P(x) where new(y)

specifies the induction rule for natural numbers naming the cases base and step

respectively and requiring the Eigenvariable condition for y.

Please note that each inference corresponds to a formula in Core’s indexed formula
tree. This means that quantifiers for free variables need to be reconstructed before the
insertion of the formula. Eigenvariables are introduced by a condition new(x;y1, . . . , yn),
indicating that x is an Eigenvariable that must be new with respect to y1, . . . , yn, i.e., must
not occur in y1, . . . , yn. In the case that the inference is generated from an axiom, such a
specification is not necessary, as all conditions are already determined by the axiom.

Let us now extend the basic inference language by further annotations, as shown in
Figure 9.2. The basic language is the same, but premises and conclusions are replaced by
annotated versions <aprem> and <acon>, respectively.

In order to enable the application of an inference, candidates for premises, respectively
the conclusion are searched in a sequent. By default, for a premise or conclusion, we search
inside all formulas of the sequent for subformulas that unify with the given formula. The
annotations < annot > controlling that search are thus attached to each premise and
conclusion, respectively, and allow to specify (i) whether or not a partner subformula
must be found and how it is identified (<occ>), (ii) if candidates should be searched in
subformulas and how the search traverses the formulas (<traversal>), and (iii) when the
search for a partner shall be aborted (<abort>). More specifically * and - for a premise
or conclusion indicate that a partner must be found for it; in case of * the matching

162

9.2. ANNOTATED INFERENCES

<aprem> ::= <aform> | [< form>] .. <aform>
<aform> ::= < form> {<annots>}? | [< form>] {<deepannots>}?
<deepannots> ::= <annots>? {<restrict>}?
<restrict> ::= only-left | only-right
<annots> ::= <annot> | <annot>, <annots>
<annot> ::= <traversal> | <occ> | <abort> | nopob |<pred> | <pos>
<occ> ::= check=<alg> | + | ! | -
<abort> ::= abort=<abort>
<traversal> ::= < lazyall> | < lazyinnerouter> | <first>
< lazyall> ::= <direction>,< lazyprogress>
< lazyinnerouter> ::= < innerouter>,< lazyprogress>
<first> ::= < innerouter>, < leftright>
<direction> ::= Down | Up
< innerouter> ::= innermost | outermost
< lazyprogress> ::= LazyLeft | LazyRight
< leftright> ::= leftmost | rightmost
<pos> ::= < formulas> (,*)? |- < formulas> (,*)?

Figure 9.2: Syntax for Annotated Inferences

formula is kept upon inference application while - requires the matched formula to be
replaced. For instance, the alternatively annotated inferences

implI1: [F] .. P:G ==> C:F => G {*}

implI2: [F] .. P:G ==> C:F => G {-}

both require to match F => G but only the second also requires to remove it upon appli-
cation. As an effect they give result respectively in the following derivations:

Γ, F ⊢ G,F ⇒ G,∆

Γ ⊢ F ⇒ G,∆
implI1

Γ, F ⊢ G,∆
Γ ⊢ F ⇒ G,∆

implI2

Finally, the annotation ! indicates that a node must not be instantiated. In order to
identify a partner formula, higher-order unification is used in general. To restrict this for
instance to HO-matching but also to more specific algorithms, the keyword check allows
the restriction to a specific algorithm.

Furthermore, without brackets around the premise/conclusion the partner is searched
at top-level among the formulas in the sequent. For a bracketed premise or conclusion
[F] the subformulas are searched as well. For instance the annotated inference axiom

is only matched against the top-level formulas, while axiom1: [F] ==> F allows for the
following derivation

Γ, F ⇒ G ⊢ F,∆
Γ, F ⇒ G ⊢ G,∆ axiom1

The next class of annotations specifies how the formula is traversed when looking
for subformulas. By default the list of all candidate subformulas is returned. Alterna-
tively one can specify a combination of outermost or innermost, in addition with either
leftmost or rightmost that the search should stop when the first is found: this can for
instance be used to specify inferences to be used for a simplification using a leftmost,
innermost strategy. The idea is as follows: A general term traversal can be modelled

163

CHAPTER 9. HEURISTIC CONTROL AND COMPILATION OF INFERENCES

by the basic functions visit which performs an action on the current node (which can
succeed or fail), and traverse(n), which recursively invokes the traversal function on
the nth child node of the current node. A complete term traversal is achieved by visiting
all tree nodes in a certain visiting order . By reordering the basic functions we obtain
different traversal strategies. There are also more sophisticated traversal strategies such
as the level-order traversal, traversing a tree level by level, which require an additional
queue to store the elements and which we therefore do not consider as a basic strategy.

Based on ideas of van den Brand [vdBKV03], we allow for different choices according
to the traversal cube shown in Figure 9.3: On the first axis, we distinguish procedures
that traverse the nodes of a tree bottom up and those that traverse a tree top-down. On
the second axis, we classify traversal functions according to those that break the traversal
on success and those that traverse the complete tree. On the third axis we distinguish
methods that traverse the tree from left to right and those that traverse the tree from
right to left. The backtracking behaviour is not represented in the cube.

left-right
right-left

top-down

bottom-up

break
cont

Figure 9.3: “Traversal Cube”: Principal ways of traversing a tree

In general, one does not always want to compute all partners eagerly, as this might
not be efficient. Therefore, we provide the keywords LazyLeft and LazyRight to specify
if the formula is traversed from left to right or vice versa. In order to incrementally get
all candidates, one can in addition specify in which order they should come: Down prefers
outer formulas over inner formulas and Up the other way round. In order to not enumerate
all candidates, the keywords innermost and outermost must be used to indicate the
preference. In either case, the search algorithm returns a candidate subformula along with
a substitution and a continuation to be used for the next candidate. That continuation
is used for backtracking during the candidate search process as well as outside: if the
candidate search for other required premises fails because of the used substitution, the
search process uses the continuation to get the next possible candidate. If the overall
inference application succeeds, the collected continuations can be saved by the strategy
process and be used in case the strategy wants to backtrack.

9.3 Inference Programs

Inference application programs are LISP expressions and build the target language of the
compilation process. They are built upon the underlying term data structures including
basic functions such as testing for term equality, or replacing a term at a specific position
by another term, which we call atomar programs. Based on these atomar programs, more
complex programs can be built by composing atomar programs. To keep the presentation
simple, we decided to give a rather high-level description of the concepts of the compilation
process by showing how to decompose the overall process to small tasks which can be
implemented easily. The basic ideas of the compilation process are as follows:

164

9.3. INFERENCE PROGRAMS

• Given an inference, the overall instantiation process is linearized to a sequence of
instantiations.

• Each inference node is compiled to a condition, which traverses formulas of the
proof state, evaluates conditions on the formulas and calls an action on success.
The action is either the final modification of the proof state, or the invocation of a
subsequent instantiation function.

• A traversal function for an inference node is composed of a traversal function for
the sequent and a traversal function for formulas.

• An instantiation either fails, or returns a nonempty list of results including a contin-
uation that represents parts of the search space that have not yet been considered
and can be invoked to produce further results lazily.

• The objective of the compilation process is that each term is only traversed once.
Therefore, proof obligations are already collected during the term traversal. Simi-
larly, polarities of subformulas are maintained.

• Optimizations are included to minimize argument passing.

The overall construction plan of an inference is modelled by an inference graph, as
shown in Figure 9.4 (see [Die06] for a formal definition), which models the dependen-
cies between different inference nodes. The nodes of this graph represent all possible
PAI-statuses1, and edges between these nodes represent all possible partial argument in-
stantiation updates, which intuitively correspond to intermediate states of the program
and possible paths that can be followed.

To keep the resulting program small and efficient, we “simplify” the construction
plan as follows: Given an inference, let AD denote a subset of all admissible application
directions. Those nodes are marked in the graph bold and play a special role during the
compilation process: The final program we want to synthesize must provide a means to
reach these nodes from the root node. To obtain a minimal program satisfying these
constraints, we employ a single-source shortest path algorithm to compute a minimal set
of edges E such that all nodes in AD are reachable from the empty PAI-status using the
selected edges in E (see [Die06] for details). Those edges that are not contained in E are
removed.

Consider for example an inference with premises P1, P2 and a conclusion C. Suppose
further that the set AD = {〈C〉, 〈C,P1〉, 〈C,P1, P2〉, 〈P1, C〉} of application directions is
given, for which a possible solution is shown in Figure 9.4. The bold edges correspond to
the edges that have been selected in E . This solution is now used as follows: Compile the
condition corresponding to the conclusion C, store the solutions, and process them further
as follows: compile the conditions corresponding to P2 and execute the corresponding
program on all solutions of C. Compile the condition corresponding to P1, invoke it
on all solutions on C, store these solutions, try to further solutions by compiling the
conditions corresponding to P2 and invoke them on the solutions 〈P1, C〉.

Of course, it is also possible to compile several inferences in parallel and to minimize
the resulting program by sharing nodes of the graph. One could even go further and
extend the sharing to substrings of individual formulas, which is not done in the current
implementation.

1A PAI status is an equivalence class on partial argument instantiations given by the arguments of
the inference that are instantiated

165

CHAPTER 9. HEURISTIC CONTROL AND COMPILATION OF INFERENCES

〈∅〉

⊕P1 〈P1〉
⊕C 〈P1, C〉 ⊕P2

⊕P2

⊕P2 〈P2〉
⊕P1 〈P1, P2〉 ⊕C 〈P1, P2, C〉

⊕C

⊕C 〈C〉
⊕P2 〈C,P2〉 ⊕P1

⊕P1

Figure 9.4: Minimal set making all marked nodes reachable

function description shape of resulting program
J·K : node → env → LISP× env main compilation seq → [[seq]]
J·Ka : node → env → LISP× env compile action [[seq]]
J·Kc : node → env → LISP× env compile term condition [[seq]] → form → [[seq]]
J·Kt : node → env → LISP× env compile traversal seq → (form → [[seq]]) →

[[seq]]
J·Kj : node → env → LISP× env compile join [[seq]] → [[seq]] → [[seq]]

Table 9.1: Compilation functions

Table 9.1 shows the main compilation functions the overall compilation process is
based upon and describes the shape of the programs that they generate. These work as
follows:

• The main compilation function J·K takes a node of an inference graph, as well as an
environment σ, as input, and returns a LISP program that can be invoked on a se-
quent object and returns a list of alternatives, each corresponding to one possibility
to apply the inference. Each possibility is given by a list of sequents, indicating the
replacement of the input sequent by the sequents of the alternative. The environ-
ment σ is used to keep the relation between program variables and term or object
variables. For example, when processing an inference node n, a program variable
n1 is generated, over which the term can be accessed, as well as npol and ntaf to
access polarity and position of the node.

Note that the resulting program can easily be lifted to the level of agendas by either
traversing the open sequents of a given agenda or selecting the first sequent by
default.

• The compilation function J·Ka constructs a program that returns a list of possible
reductions based on the parameters and positions contained in the environment, i.e.,
performs the induced resolution replacement rules and possibly β-decompositions to
construct new sequents according to the theoretical foundations derived in Chapter
6.

• The compilation function J·Kc constructs a program of the form λa.if . . . then a else
⊥ which checks whether a specific condition holds, e.g., whether a given formula is
unifiable with the formula scheme of an inference node, and executes the specified
action a in this case. If the condition does not succeed, a failure ⊥ is returned.

• The compilation function J·Kt constructs a traversal function of the form λa � λo �
traverse o a that takes an action a as input, traverses a sequent or term o ac-

166

9.3. INFERENCE PROGRAMS

cording to the specification of an inference node and invokes the action a on the
sub-objects. Polarities and proof obligations are automatically maintained by the
traversal function.

• The compilation function J·Kj joins the results of different actions together. As the
binary version can easily be lifted to the n-ary case, we allow the invocation of J·Kj
with arbitrarily many individual results as input.

Let us now sketch the compilation process with an inference graph as input. For this
purpose, we introduce the following notation: we denote a node of the inference graph
containing a PAI-status by n, the argument that is added by arg(n) which is empty for
the initial node, and the immediate successor nodes of n that are also PAI-status denoted
by succ(n).

Case 1: Terminal Node

In case that succ(n) = ∅, we compile the condition of arg(n), as well as the action resulting
from applying the inference with the given instantiation. The resulting program is then
executed by traversing the sequent and the terms according to the specification contained
in the inference node.

JnK σ = let
(cond, σ1) = Jarg(n)Kc σ

(trav, σ2) = Jarg(n)Kt σ1
(action, σ3) = JnKa σ2

in
(λ seq �trav seq action, σ3)

(9.25)

Case 2: Unmarked Nonterminal Node

In case that succ(n) 6= ∅, there are two cases. If the node is not marked, i.e., represents
an application direction that is not in the set AD, we compile the condition contained in
the current node. Moreover, for each successor s1, . . . , sm of n we invoke the compilation
function recursively (each results in a list of results plus a continuation), and concatenate
the results.

JnK σ = let
(cond, σ1) = Jarg(n)Kc σ

(trav, σ2) = Jarg(n)Kt σ1
(a1, σ3) = Js1Kσ2

...
(an, σm+2) = JsmK σm+1

(join, σm+3) = JnKj σm+2

in
(λ seq � trav seq (join a1 . . . am) , σm+3)

(9.26)

Case 3: Marked Nonterminal Node

In case that succ(n) 6= ∅ and the node is marked, i.e., represents an application direction
of the set AD, we compile the condition contained in the current node, and invoke the

167

CHAPTER 9. HEURISTIC CONTROL AND COMPILATION OF INFERENCES

compilation function recursively on each successor s1, . . . , sm. In addition, we compile the
action a0 that constructs new solutions based on the current PAI-status and concatenate
all results.

JnK σ = let
(cond, σ1) = Jarg(n)Kc σ

(trav, σ2) = Jarg(n)Kt σ1
(a0, σ3) = JnKa σ2
(a1, σ4) = Js1Kσ3

...
(am, σm+3) = JsmK σm+2

(join, σm+4) = JnKj σm+3

in
(λ seq � trav seq (join a0 a1 . . . am) , σn+4)

(9.27)

The remaining functions can either be implemented manually as library functions – in
this case it is the job of the compiler to select the appropriate function and provide the
arguments correctly – or they can be composed out of primitives. We have implemented
the first approach, as this reduces compile time and allows the incorporation of imple-
mentation tricks that cannot be performed automatically. Let us now discuss further
optimizations.

9.3.1 Explicit Matching Automata

The condition compiler J·Kc generates the part of the program that checks whether a given
input formula satisfies the relation indicated by the argument check, which is usually
unification or matching. To further reduce the costs of matching, we provide a possibility
to automatically construct a term-specific matching automaton, which is then compiled
into the underlying programming language. The idea is to speed up the matching process
by factorizing patterns, avoiding parameter passing, and to replace generic algorithms by
specific instances. Such ideas have already been studied for term rewriting systems (see
for example [HO82, Grä91, RR92, NWE97, Chr93]). Note that the overall program that
is constructed can be seen as a matching automaton for a list of inferences. While the
resulting program is reasonably efficient, further improvements can be incorporated.

We use a variant of discrimination nets (see for example [Chr93]), which are reasonably
efficient and relatively easy to implement. Discrimination nets are a variant of the trie
data structure. Scanning a pattern set from left to right, a tree is formed. At each point
where two symbols differ a new branch is added to the tree. Instead of restricting the
approach to linear patterns or using a placeholder ∗ for variables, we perform variable
checks immediately. We give an example: Suppose the patterns (A ∧ (B ∨ C)), A ∧ A
and A ∨ B are given. The abstract automaton, sharing common parts, is shown on
the left of Figure 9.5. It is then easy to extract a program from this automaton, as
shown on the right of Figure 9.5. Moreover, it is immediately clear how to add further
constraints by strengthening the conditions at specific places, or how to add additional
context information.

Let us again stress the fact that the constructed program uses only a few basic func-
tions. Efficiency comes from sharing parts, but also from the fact that no substitutions
need explicitly maintained and passed around in form of list structures. To that end, we
systematically store subterms in variables (see the let constructs above where |i accesses
the i-th subterm) and make use of these bindings during term construction.

168

9.3. INFERENCE PROGRAMS

s2

s0 s1 s3

s4 s5

∧

∨

1 = 2

∨

1 = 2

lambda term
if (term-fn term = ∧)
then
let
term1 = term|1
term2 = term|2

in
if (term-fn term = ∨)
then
let
term11 = term|1
term12 = term|2

in
〈action-s2〉

else
if (term1 = term2)
then
〈action-s3〉

end if
else
if (term-fn term = ∨)
then
let
term1 = term|1
term2 = term|2

in
if (term1 = term2)
then
〈action-s5〉

end if
end if

end if
end if

Figure 9.5: Matching automaton and synthesized program

169

CHAPTER 9. HEURISTIC CONTROL AND COMPILATION OF INFERENCES

9.3.2 Pruning

In case deep matching is activated, the standard procedure consists of traversing the
complete formula and visiting all its subformulas. Our implementation uses the following
optimization rules which interrupt the traversal when specific conditions hold:

• If a previous instantiation program succeeded on a specific substructure, all sub-
sequent instantiation programs must stop the traversal once this substructure is
reached. This is due to condition (iii) of Definition 6.3.5, which prohibits the use of
overlapping subformulas.

• If a previous instantiation program succeeded on a specific substructure f |t of a se-
quent formula f and this formula is traversed by a subsequent premise instantiation
program, then at β-nodes we prune subtrees that are not on the path to f |t. This is
because all substructures in that tree are not α-related to the already instantiated
premise (see condition (iv) of Definition 6.3.5).

• If a previous instantiation program for a conclusion succeeded on a specific substruc-
ture f |t of a sequent formula f , subsequent instantiation programs for conclusions
need only to consider the same sequent formula, more specifically siblings of the
instantiated conclusion. This is because of (ii) of Definition 6.3.5.

• We abort a traversal eagerly when the condition nopob is specified at a β-node when
traversing a formula different from the conclusion.

As a simple example, consider the formula

[(
A+ ∧β B+

)+ ⇒β
(
C− ∧α D−

)−]− ∧α E− (9.28)

Once the conclusion has been instantiated with A+, the subtree (C− ∧α D−)
−
needs not to

be considered, as all of its subformulas are β-related to A+. Moreover, when instantiating
an additional conclusion, the only remaining candidate is B+.

9.3.3 Implementation Note on Traversal Functions

Traversal of formulas of a sequent or subformulas of a formula can be seen as a simple form
of iteration. When performing the iteration lazily, one particular requirement is to allow
the interruption of an iteration, and the resumption on a previous state of the iteration,
as needed in case of backtracking. Such data structures are known as persistent data
structures (see [DSST89]). Persistent data structures are data structures which always
preserve the previous version of themselves when thay are modified.

Within our setting, two data structures are of interest, depending on whether the
traversal is only used to collect further information, or whether we also want to perform
a replacement of the traversed structure. The data structures are known as backtracking
iterators (see [Fil06]) and Huet’s zipper [Hue97], which can also be combined. The basic
idea is simple: Avoid to traverse a term several times.

The idea of the zipper is to perform the traversal of a node including a subsequent
replacement at a position efficiently. To that end, the zipper maintains the path from
the root node of the tree to the visited node, such that the construction of the object
resulting from the replacement is possible without having to traverse the term again.

The idea of backtracking iterators is to store visited nodes that have not yet been
processed in a cache and use this cache in case further nodes need to be explored. The

170

9.4. DISCUSSION

backtrack information can then be composed from the current position and the cache that
has been constructed.

For a reference implementation and an evaluation of the performance we refer to
[Fil06].

9.4 Discussion

Our approach combines and extends many techniques of knowledge-based proof planning,
rewriting and automated reasoning (hyperresolution) to obtain a generic inference com-
piler that supports the generation of efficient source code. This approach has several
advantages over the standard approach which encodes such heuristics in the program-
ming language of the prover: (i) It introduces a new abstraction layer that allows the
development of optimizations independently of the specification of the search strategies.
(ii) Special language constructs are provided for typical problems that arise within the
proof search. (iii) The compiler can perform optimizations that are too complex for a man-
ual implementation. One disadvantage of the approach is that the compiler must touch
critical parts of the actual system to achieve maximal efficiency. This can be avoided by
compiling with respect to a trusted kernel – resulting in less efficient code – or by requiring
a small proof checker to check the constructed proof after it has been found. Another
approach is to prove the correctness of the compiler, which is a highly time consuming
task. As before, the required costs can be reduced by reducing the target language to
a minimum. Indeed, in the context of rewriting (see [VB98]), it has been shown how to
model term traversal strategies based on a fixed point operator, sequential composition,
and an operator that applies a program at the root node of a tree. In contrast, we make
use of library functions that have been written once and for all, which has a positive effect
on the compilation time.

9.5 Related Work

Ωmega’s Methods and Control Rules

The effects of proof planning methods of the proof planner Multi of the old Ωmega
system can be specified by annotations ⊕,⊖, and ⊗. Moreover, control rules allow the
specification of preferences at choice points. Inspired by that approach, we support similar,
however more elaborated and expressive features. Our language is fully embedded in the
proof language and it is compiled (and optimized), resulting in efficient and optimized
code. In particular, it is possible to evaluate heuristic information locally, in contrast
to a global control rule interpreter that has to evaluate all control rules of a specific
kind at a given choice point. Moreover, our language goes beyond that of Multi: We
allow the specification of sequent positions and backtracking behavior locally with respect
to an inference. Moreover, we provide specific constructs to control the deep inference
paradigm, which is not supported by Multi.

Rewriting

The deep inference system KSg [GG04, BG07] has been implemented on top of the rewrite
system Maude [Kah08] and Tom [KMR05], using techniques developed in the field of
term rewriting. The system KSg is much closer to rewriting than our system, as a rule
application consists of a single match, followed by a single replacement. In contrast to

171

CHAPTER 9. HEURISTIC CONTROL AND COMPILATION OF INFERENCES

our approach, the system KSg does not feature derived rules, nor does it support the
specification of search restrictions.

Several methods have been developed to efficiently compile pattern matching [War84,
BM72, Aug85, Car84, FM01, Grä91, BM06, vdBHKO02, Vit96, MK98, MRV01]; more-
over, strategy languages have been developed to specify different rewriting strategies (see
e.g. [LV97, VB98, BKKR01]). Indeed, our approach to compile conditions to a matching
automaton in an underlying programming language and to provide a language to control
the search is inspired from this approach.

9.6 Summary

In this chapter we motivated several constraints on inference applications and developed
a specification language to annotate inferences with user-defined search space restrictions
that are required for efficient proof search (Contribution A2(i), Section 1.1). We then
described how the simultaneous unification problem that arises when applying an inference
can be reduced to a sequence of individual unification problems by building a matching
automaton. Due to compilation techniques, our approach keeps the flexibility known from
knowledge-based proof planning, but is at the same time also very efficient.

172

10
Reasoning at the Strategy Level:

Proof Strategies

Formal proofs provide a very high degree of confidence in the correctness of a theorem,
as each deduction is reduced to a sequence of primitive inference rules of a small trusted
kernel. To raise the interaction level to a more abstract level, however, most interactive
theorem provers provide the notion of a tactic, which is an algorithm in a meta language
(usually ML) that constructs a piece of object level proof. Tactics are developed bottom
up and can be put together using tacticals to obtain more complex tactics. The idea of
a tactic is to reduce the number of user interactions by providing a tool that automates
frequently occurring tasks and thus to obtain shorter proof scripts.

Similar to tactics, proof planning provides the notion of a method as an abstract proof
operator, which originally was an annotated tactic. Methods encode heuristic knowledge
in the form of “methods, procedures, and tricks of the trade, which have been used success-
fully by the great mathematicians over the years” as advocated by Bledsoe (see [Ble86]).
They can be used within an automated setting by a proof planner (see Section 2.3 for
details) and aim to avoid the combinatorial explosion of the search space as well as to
provide an explanation of a proof. From a practical point of view, the main differences
between methods and tactics are that (i) methods have access to and manipulate contex-
tual information, and (ii) can postpone the verification of specific subgoals, enabling a
top-down approach of proof search.

As already discussed in Section 2.2.2, both the specification of tactics and methods is
difficult in state of the art proof assistants, as they require the use of the programming
language of the proof assistant1 and knowledge about its internal interfaces. Following
the document-centric approach (see Section 2.2.2), it is desirable that a user can write
such a tactic/method on the fly without leaving the document and even without leaving
the proof. This would allow the non-expert user to specify proof strategies by himself, as
well as to formulate highly specialized tactics to automate small parts of the proof.

In this chapter, we introduce an intermediate language which permits the user to
implement new proof techniques in a compact way within the proof document. Our goal
is to provide a uniform framework that captures both the bottom-up style of classical

1An exception is the proof assistant Coq which provides an intermediate tactic language Ltac

173

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

tactics, as well as the top-down style used in proof methods. Moreover, we want the proof
operators to be available in both an interactive as well as an automated setting. We call
the resulting algorithms proof strategies .

The overall design of the language is to cover the full spectrum from declarative
proof strategies – i.e., strategies which make intermediate proof states explicit but are
less precise about the logical justification of the step – to procedural strategies – i.e.,
strategies that completely hide all internal states but focus on the application of specific
proof operators in a specific order. More precisely, the key points of the language design
are summarized below:

Intermediate Tactic Language: Instead of using the power of the programming lan-
guage the proof assistant is implemented in, our goal consists of introducing a new in-
termediate language which is independent of the underlying programming language. The
language is intended to provide a simple to use tactic language layer to bridge the gap
between the predefined proof operators and the programming language of the proof as-
sistant. In particular, the language hides the implementation details of data structures
for proof states, tactics, and the concrete implementation of backtracking. The new layer
of abstraction can be seen in analogy to what has been done by introducing declarative
proof languages and is motivated by the following reasons:

• A restricted language is easier to learn and therefore supports the user in writing
his own tactics.

• Tactics can be formulated within the proof document. Therefore, they are also
suited to automate small or very specific parts of a proof.

• A separate language can easily be extended and allows the change of internals and
optimizations without breaking the functionality of proof search procedures.

• The semantics of the language can be described in terms of reasoning states, includ-
ing the management of the search space.

We believe that declarative tactic languages offer similar advantages as declarative proof
languages, namely robustness and readability, and that the trend towards declarative
proof languages will carry on with declarative tactic languages. Ideally, the language is
independent of both the underlying logic and the prover being used. This way, the tactic
language can be connected to a prover either by providing the primitives of the tactic lan-
guage within the prover or by providing a new compilation function that maps the tactic
language to the primitives that are supported by the prover. An intermediate language
is therefore a first step towards exchanging reasoning procedures between different proof
assistants.

It is clear that such a restricted intermediate language will not be sufficient to express
all possible tactics. For that reason, the language must be extensible, and we provide the
possibility to inject parts of the programming language.

Support of Knowledge Filtering: Within proof assistants, it is common to organize
the mathematical knowledge in modularized structured theories. Structured theories are
not only designed to allow the reuse of mathematical knowledge within different contexts,
but also to express a certain hierarchy on the defined concepts to organize the proof
search. For example, after constructing the theory of reals, one abstracts over the concrete

174

construction using, e.g., Cauchy sequents, and works with the concept of a real number
and the properties derived for it.

To be able to take advantage of the theory structure and to make the selection of
knowledge explicit, we provide a query mechanism that works on the proof context as
well as on the theory. Thus, we explicitly support the cycle “select - process - search”.
Note that by the introduction of queries/filters, tactics become dynamic objects that
depend on the context. We call such adaptive tactics theory-aware. This comes from the
insight that restricting the number of proof operators drastically reduces the search space
and allows for a more efficient solution computation, provided that the filter is not too
strict (see [RS98], [MP09] for related work on relevance filtering). Moreover, it has been
shown that relevance filtering is particularly important in the context of filling gaps in
declarative proofs automatically (see [CKKS10]).

Local Search: Within our language, each strategy defines its own local search space
including possible backtracking points. It is a particular design choice that the result of
a strategy needs not to be unique, and that further solutions are explicitly maintained in
the form of a continuation.

Automatic Operationalization of Knowledge: During the actual proof search pro-
cess, the mathematical theory knowledge is operationalized: For example, a theorem
expressing the equality of two terms can be transformed into a rewrite rule, an assertion
can be translated into an inference, or a set of rewrite rules can be completed to obtain
a confluent term rewriting system. Given a set of knowledge items resulting from exe-
cuting a structured query, our language provides constructors to operationalize them by
restricting their applicability.

Compact Proof State Patterns: Heuristic decisions are often driven by or based
on a specific shape of the goal state, which can often be described by syntactic patterns.
Therefore, our language comes along with a rich facility to declaratively specify conditions
on terms, sequents, and proof states. Our pattern language provides notation for reasoning
on subformulas, as well as dynamic patterns in the form of an ellipsis construct. Providing
such patterns allows the specification of conditions in a compact way and to guide the
proof search accordingly. In addition, such patterns can be used to mingle the procedural
and declarative style by specifying a desired goal state as pattern (declarative) and to use
a procedural algorithm to reach this state by a resource-bounded forward exploration.

First Class Support of Declarative Proofs: It is widely accepted that declarative
proofs are more readable than their procedural counterparts while being more tedious to
write. For example, in the Isabelle reference manual [Pau08], it is noted that

properly written Isar proofs become accessible to a broader audience than un-
structured tactic scripts (which typically only provide operational information
for the machine). Writing human-readable proof texts certainly requires some
additional efforts by the writer to achieve a good presentation, both of formal
and informal parts of the text. On the other hand, human-readable formal
texts gain some value in their own right, independently of the mechanic proof-
checking process.

(see [Pau08] page 2). Similarly, Corbineau remarks that before the introduction of declar-
ative proof languages,

175

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

a formal proof was merely a computer program. With this in mind, think of a
person reading somebody else’s formal proof, or even one of his/her own proofs
but after a couple of months. Similarly to what happens with source code, this
person will have a lot of trouble understanding what is going on with the proof
unless he/she has a very good memory or the proof is thoroughly documented.

(see [Cor07] page 1). Nevertheless, current state of the art proof assistants do not provide
sufficient support to automate the declarative style of proof, in the sense that there is
no or only little support to generate declarative proofs automatically (see Table 10.1 for
an overview). Except the Isaplanner project (see [Dix05]), the only approaches that
exist are translation based (see Section 8) and usually result in proof scripts that are too
detailed, as they do not provide facilities to express and control stylistic choices2. More
importantly, they do not allow the representation of proof search knowledge based on
refinement in the style of proof planning methods.

As a result, many users still prefer the procedural style of proof – at least during proof
construction – and manually rewrite it to the declarative style after a procedural proof
was found. Therefore, our language explicitly supports the declarative style of proof in the
form of so-called declarative tactics, which are analogously defined to procedural tactics,
but whose justification is given in the form of a (partial) declarative proof script that still
may need to be refined further.

Isabelle3 Coq Hol HOL Light Acl2 Matita Mizar Pvs
proc. PL X X X X X X × X

decl. PL X X X X × X X ×
intermediate
TL

× X × × × × × ×

decl. PL
support

X × × × × × × ×

proc. →
decl.

× × × X × X × ×

Table 10.1: Proof Support of the declarative style

Efficiency: While the main focus of our work is to provide mechanisms to express proof
strategies in a compact and convenient format, let us point out that automation speed
has an direct impact on the level of reasoning: If the proof search is slow, more control
knowledge is needed to prune the search space, resulting in less general methods. There-
fore, efficiency is a major concern within our implementation. We rely on compilation
techniques, which result in more efficient code compared to their interpreted counterparts.

We proceed by first introducing a declarative language for the specification of proce-
dural tactics, before we introduce declarative tactics in a second step. We conclude with
a detailed discussion of related work.

2such as leaving out steps that are considered to be trivial.

176

10.1. A DECLARATIVE LANGUAGE FOR PROCEDURAL STRATEGIES

10.1 A Declarative Language for Procedural Strate-

gies

To get a flavor of how the proof search can be organized, we consider the following very
simple example from Presburger arithmetic.

Example 10.1.1. We consider the proof of the theorem

x+ 0 = x (10.1)

in Presburger arithmetic where addition is defined recursively on the first argument. After
applying induction on x, we arrive at the step case with the goal

x+ 0 = x ⊢ suc(x+ 0) = suc(x) (10.2)

Trying to apply the induction hypothesis x + 0 = x, we get the following alternative
applications:

suc(x+ 0) = suc(x) → suc((x+ 0) + 0) = suc(x) (10.3)

suc(x+ 0) = suc(x) → suc(x+ (0 + 0)) = suc(x) (10.4)

suc(x+ 0) = suc(x) → suc(x+ 0) + 0 = suc(x) (10.5)

suc(x+ 0) = suc(x) → suc(x+ 0) = suc(x) + 0 (10.6)

suc(x+ 0) = suc(x) → suc(x+ 0) = suc(x+ 0) (10.7)

suc(x+ 0) = suc(x) → suc(x) = suc(x) (10.8)

Neglecting for a moment the well known solutions for this problem, a naive solution
consists of producing all possible inference applications, selecting one to be applied and
to store the others for backtracking. However, the very simple example above illustrates
that this solution is too inefficient, and that further techniques to restrict the search are
needed:

• Without imposing any restriction, a single inference rule might be applicable in
many situations, leading to a combinatorial explosion of the search space. Having
several inferences in the context, the problem gets even worse.

• Suppose that we choose the right rule application in our example, e.g., (10.7) (al-
ternatively (10.8) also leads to the solution). This means that all the work for pro-
ducing (10.3)-(10.6) was unnecessary. A more efficient approach consists of lazily
unfolding the next possible step, and storing information for further unfolding the
search space in case of backtracking.

• Often, a simple static analysis helps to drastically reduce the number of choice
points. Reconsidering Example 10.1.1, a standard technique is to direct the equa-
tion; thus turning it into a rewrite rule. A standard idea is to allow only rewrites
which make the original term “simpler”, in our case to apply the equation only from
left to right. Technically, this can be done by the introduction of a term ordering
>. Directing the equation in Example 10.1.1 reduces the choice points to (10.8).

• Often, we are in the convenient situation that we know that certain backtrack points
are not needed. For example, it does not matter in which order we rewrite non-
overlapping subterms in the above example. When using a confluent term rewriting

177

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

system, due to meta properties, we know that backtracking will never be needed.
Maintaining backtrack information in such a situation is not needed and inefficient.
Even if backtracking is needed, controlling the backtracking points explicitly might
avoid redundancies in the search and is therefore crucial.

All these points are directly supported by our tactic language. We give an overall
overview of the language by means of several examples.

A Simple Inversion Strategy

Listing 1 shows a simple inversion strategy for propositional logic which decomposes the
goal according to its structure. To that end, it tries to apply corresponding inference
rules to the goal in the specified order using the apply! operator. The apply! operator
applies the first operator that is applicable, and keeps the backtrack points provided by
the operator. However, it does not add new backtrack points. This means that if andi
succeeds, impi and (apply ore1, ore2) are not tried. In contrast, the operator apply
explicitly keeps backtrack points. That is, even if ore1 succeeds, the alternative ore2 is
kept for backtracking.

apply! andi, impi, (apply ore1, ore2)

Listing 1: A simple inversion strategy

Simplification Using Rewriting

Listing 2 shows a simplification strategy that repeatedly rewrites the proof state until no
further rewrite rule can be applied. In contrast to the inversion strategy, which was static,
the simplification strategy is dynamic: It explicitly contains a query that selects available
equations and tries to direct them using a lexicographic path ordering. The ordering
function itself is implemented as a library function in the underlying programming lan-
guage and linked in the where clause of the query. Note that our language abstracts over
implementation details, such as efficient data structures like discrimination nets [Chr93].

strategy simplify

repeat

apply (use select lhs=rhs from current

where (greaterlpo lhs rhs) as forward

union

use select lhs=rhs from current

where (greaterlpo rhs lhs) as backward)

Listing 2: A simplification tactic based on rewriting

Considering the strategy language in more detail we observe that the above strategy
expression consists of two parts. The inner part, built by a select expression, selects a set
of proof operators. The outer part specifies a search strategy to perform the actual search.
In our example, the select query expresses that only the knowledge from the current
theory is used. repeat is an iterator, which applies its argument as long as possible, but
does not perform any backtracking. backward and forward are keywords to restrict
the applicability of the selected knowledge to one particular direction, for equations this
means either left to right or right to left.

178

10.1. A DECLARATIVE LANGUAGE FOR PROCEDURAL STRATEGIES

A Simple Induction Strategy

Listing 3 shows a simple induction strategy that first applies an induction scheme and
subsequently a simplification tactic to the base case and rippling to the step case. The
tactic illustrates how to build complex strategies using so-called strategicals, here thens-
elect, which selects a goal and applies a strategy to it. Strategicals express how to further
process proof states resulting from the first strategy application. Instead of relying on a
certain order of the produced subgoals, our strategy uses a declarative matcher to select
the corresponding goal. By doing so, it becomes independent of this order, which is a
typical problem in standard implementations of tactic languages. Such implementations
break if the induction scheme suddenly produces the step case before the base case or if
it produces multiple step and base cases when only one of each was expected.

strategy Induction

apply natinduct as backward

thenselect

cases

* |- P 0 -> Simplification

default -> Rippling

Listing 3: An induction tactic

Forward Exploration

Listing 4 shows a tactic that performs a forward exploration to derive a formula formula
which is a parameter4 of the tactic. Possible goal states that shall be derived are specified
in form of a declarative condition on the goal state *,[formula]- |- *, which evaluates
to true if formula occurs as a negative subformula on the left-hand side of the sequent.
The solve construct expresses that the complete search space including all alternatives
must be traversed. top(1).theorems selects the theorems that have been proved in the
current theory and all theories the theory directly imports from. To guarantee termina-
tion of the strategy, a dynamic backtrack condition is installed using the backtrack-if
command, triggering backtracking if a certain depth is reached.

strategy fact

solve

using select * from top(1).theorems as

forward

until *,[formula]- |- *

backtrack-if (> depth 5)

Listing 4: A tactic that uses forward exploration to derive a fact given as parameter

10.1.1 Syntax

We now describe the syntax of the language in detail. The language is arranged in two
levels, a query language to access the mathematical knowledge, and a strategy language
which makes extensive use of these queries and annotates the result of a query with further

4Free variables of the tactic need to be passed as parameters.

179

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

control information to build a proof strategy. Table 10.2 summarizes the language in a
BNF like notation.

Note that the language explicitly supports the use of library functions of the underlying
programming language, as indicated by < function call>. This keeps the language simple
but extensible.

Organization of Knowledge in Development Graphs

The knowledge of the Ωmega system is organized in theories that are built on top of
each other by importing knowledge from lower theories via theory morphisms. This
organization is based on the notion of a development graph (see [AHMS02] for details).

Each theory in the development graph contains standard information like the signa-
ture of its mathematical concepts and corresponding axioms, lemmas and theorems. In
addition to these notions, the development graph allows the specification of other kinds
of knowledge, which are not necessarily affecting the semantics of a theory but which,
for instance, provide valuable information for the proof procedures. An example is an
ordering information for the function symbols in the signature of a theory, which can
be exploited by simplification procedures. Knowledge can either manually be added to
a knowledge kind, or automatically be classified by classification functions. For exam-
ple, one either specifies an axiom to be a definition, or relies on predefined heuristics for
definition detection.

Each knowledge item is attached to a specific theory and is visible in all theories that
link to this theory. The links can use morphisms to transform the structures from the
source theory, therefore the knowledge items are also transformed along these morphisms.
For instance, a morphism that renames a function f into a function g transforms an
ordering information that f > h (for some function h of the signature) into the ordering
information g > h. The default behavior for knowledge transformations is simply to
transform all terms which occur inside the knowledge item.

The select Statement

The select statement is used to select knowledge from a specified theory, for example,
the local axioms. It consists of three parts, a selector part, a from part, and a where
part.

The From Part. The from part specifies the knowledge source and the theory
of the development graph from which the knowledge is retrieved. The theory and the
corresponding knowledge source can be accessed by their names. Moreover, we support a
number of predefined keywords, e.g., to access the current theory, or the base theory. An
overview of the available keywords is shown in Table 10.3.

From a global perspective, one can divide the knowledge into two parts: direct knowl-
edge, and indirect knowledge. Direct knowledge is knowledge which has the form of a
proof operator, i.e., an inference or a proof strategy, or can be converted to such, such as
an axiom. For that purpose knowledge transformation functions need to be specified. For
example the function which transforms a name to an axiom simply returns the first axiom
which has the specified name. The transformation function from formulas to inferences
determines exactly those inferences which were synthesized from the specified formula.

Indirect knowledge is knowledge which cannot be converted to a proof operator, but
which can be used to control the search or the knowledge selection process at choice
points. An example for indirect knowledge is a symbol ordering. It cannot be converted

180

10.1. A DECLARATIVE LANGUAGE FOR PROCEDURAL STRATEGIES

<select> ::= select <selector> from <source> <wherecond>?
| <select> union <select>
| (<select>)

<selector> ::= *
| <term>
| (name,)∗ name

<source> ::= theoryname
| theoryname.knowledge

< infexpr> ::= use <select> < infcond>? <wherecond>?
| < infexpr> union < infexpr>
| < infexpr> intersection < infexpr>
| < infexpr> difference < infexpr>
| (< infexpr>)

< infcond> ::= as < infdirection>
<wherecond> ::= where < function call>
< infdirection> ::= forward | backward | close

<stratexpr> ::= < infexpr>
| (<stratexpr>)
| apply | apply! <stratexpr>+

| solve <stratexpr>
| repeat <stratexpr> <untilcond>?
| try <stratexpr>
| <stratexpr> then <stratexpr>
| name
| <stratexpr> backtrack-if <cond>
| cases <case>+ end;
| <stratexpr> thenselect <stratexpr>

<case> ::= <cond> -> <stratexpr>

<untilcond> ::= until <cond>

<cond> ::= <matcher>
| < function call>

<defstrat> ::= strategy name <stratexpr> end;

<matcher> ::= <matchhead> <matchcond>?
<matchhead> ::= <sequent> | var
<matchcond> ::= where < function call>
<sequent> ::= (<termpattern>,)∗ <termpattern> |- <termpattern>
<termpattern> ::= <namedterm> | [<namedterm>] <termqualifier>?
<termqualifier>::= + | -
<namedterm> ::= <term> | name:<term> | *

Table 10.2: Syntax of the procedural strategy language

181

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

all all theories reachable from the current context
current only the local knowledge of the current theory
base only the underlying logic
top(n) only the theories reachable from the current theory in n steps
“name” only the local knowledge of the theory given by name

axioms the axioms
theorems already proved theorems
formulas axioms and proved theorems
definitions axioms which were classified as definitions
inferences inferences, user defined and derived from axioms
local.inferences inferences that are local to a task
strategies user defined strategies
knowledge stands for any knowledge

Table 10.3: Available source keywords

to a proof operator, however, it can indirectly be used to restrict the applicability of the
proof operators.

Note that new knowledge kinds can easily be added to the development graph and are
directly available in the query language.

The Selector Part. The selector part works on the knowledge kind specified in the
from part and can be used to further narrow down the set of knowledge items returned by
the query. In the simplest case, the selector part consists of a single * and all knowledge
items are returned. The selector part may also consist of a set of names, in which case
only those knowledge items are returned for which there is a name in the specified list
of names. Finally there is the possibility to specify a term pattern. In this case only
those knowledge items which correspond to a formula that matches the given term are
returned. The term shares the variables with the proof context in which the query is
evaluated. Free variables are interpreted as meta-variables to be instantiated by the
query. These instantiated variables are passed to the where part and can be used there
for the specification of additional constraints. We found out that it is convenient for the
matching to remove all leading quantifiers of formulas corresponding to knowledge items.

The Where Part. The where part can be used to specify additional constraints
the knowledge items of the query have to satisfy. A variable binding which stems from a
pattern matching in the selector part is available for evaluation of the expression in the
where part. Listing 5 shows an example of a select expression consisting of a selector
part, a from part, and a where part. The query returns those axioms from the current
theory which are equations (after removing the leading quantifiers) lhs = rhs and binds
the left-hand side of the equation to the variable lhs, and the right-hand side of the
equation to the variable rhs. In the where part, it is checked whether lhs is greater than
rhs using the LPO with the symbol ordering stored in the development graph as measure
for the terms.

select lhs=rhs from current.axioms where (greaterlpo

lhs rhs)

Listing 5: Example of a select expression which binds variables lhs and rhs for the
specification of additional constraints

182

10.1. A DECLARATIVE LANGUAGE FOR PROCEDURAL STRATEGIES

The use Statement

The use statement can be invoked directly after a select statement and performs two tasks:
(1) Knowledge items are transformed to proof operators using the installed transformation
functions. If no conversion is possible, the user is informed that the query cannot be
correctly interpreted. (2) The obtained proof operators are augmented by further control
information. For inferences there is the possibility to restrict their application direction
using the as keyword. Backward restricts the applicability of inferences to those where
all conclusions are instantiated, forward to those where no conclusions are instantiated,
and close to those where all premises and conclusions are instantiated.

Moreover, the automation API can be accessed via the underlying programming lan-
guage inside a where condition. In contrast to the situation in the select expression, the
where condition in a use expression is evaluated at runtime after the instantiation of the
proof operator for a concrete task. This allows for example the proof strategy to check
whether the instances of a rewrite rule can be directed if the rule itself cannot, as is the
case for permutative rewrite rules5. Note that a where condition can be attached to both
the select expression and the use expression, and thus allows for ambiguous formulations
as shown in Listing 6:

use select . . . from . . . where c

Listing 6: Ambiguous use of a where

Such expressions are internally disambiguated by operator precedence which assigns
the where construct to the closest expression, that is, the select. If the user wants to
attach a where condition to the use expression, the select statement must be enclosed
in brackets.

Several use statements can be combined by means of standard list operators. Cur-
rently, we support concatenation of the results of two use constructs with the union
operator, an intersection operator which returns only those inferences which are re-
turned by both use expressions, and a difference operator, which returns only those
inferences which are contained in the first but not in the second result list. Note that
equality of inferences includes equality of their annotations.

Strategy Constructors

The final step in the specification of a proof strategy consists of augmenting the specified
list of proof operators by control information needed for their execution. Essentially, this
consists of a specification of a condition for success and termination. Moreover, there
is the possibility to specify a condition for failure, i.e., to directly invoke backtracking.
An overview of the strategy constructors is shown in Table 10.4. These constructors are
classified into the three categories selector, iterator and combinator.

Selectors. A list of given proof operators augmented by control information can be
instantiated, resulting in a list of PAIs satisfying a specified set of constraints. Selector
expressions determine how the PAIs are produced, and which PAI to choose among the
set of produced PAIs. For example, the apply selector starts to instantiate the proof
operators and applies the first which is applicable and satisfies the specified constraints.
Another constructor is the cases constructor. It consists of a list of condition action pairs,

5An equation is a permutative rewrite rule if the left-hand side and right-hand side are the same up
to renaming of variables.

183

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

apply selector applies the first proof operator that succeeds, keeps re-
maining proof operators for backtracking.

apply! selector applies the first proof operator that succeeds, does not
store backtracking information.

solve iterator applies the strategy until it fails or a solution is found.
repeat iterator applies the strategy until it is not applicable anymore or

until the condition evaluates to true.
try combinator applies the strategy and doesn’t fail if the strategy fails.
then combinator applies the first strategy and then the second strategy.

Fails if the first strategy fails. If the second strategy fails
then the first strategy backtracks internally and the sec-
ond strategy is invoked again.

backtrack-if combinator adds a backtrack event specified in condition to the strat-
egy.

cases selector inspects a task and triggers a strategy application if the
condition is met.

thenselect combinator executes a strategy and applies a second strategy to each
of the resulting tasks

Table 10.4: Strategy constructors with corresponding classification

where the condition is encoded in the form of a matcher or a function call. It executes
the first action whose condition is satisfied. Similar to the matching in select-expressions
bound variables are passed to subsequent expressions.

cases

* |- ∼x -> apply use select Contradiction from

base.inferences

default -> apply use select same from

base.inferences;

Listing 7: The cases construct

Listing 7 shows a simple example using the cases selector. The matcher ∗|− ∼ x
encodes the condition that the goal of the current task is a negated formula. In this
case, proof by contradiction is performed. As default case the inference “same”, which
essentially tries to simplify the goal by a subformula of an assumption which unifies with
a subformula of a goal, is applied. To allow the formulation of shorter strategy expres-
sions, several shorthand notations are implemented. For example, use and select can be
omitted in situations where the context is clear, resulting in the simplified strategy shown
in Listing 8.

cases

* |- ∼x -> apply Contradiction

default -> apply same;

Listing 8: Shorthand notation

Iterators. An iterator encodes a loop together with a default backtracking behavior.
So far, we support two iterators, solve and repeat. Solve tries to close the task to which

184

10.1. A DECLARATIVE LANGUAGE FOR PROCEDURAL STRATEGIES

it was applied to by repeatedly applying the specified proof operators. If none of them is
applicable, it fails or backtracks. Repeat applies the specified proof operators until none
of them is applicable anymore. Additionally, a termination condition can be specified
using the until keyword.

Combinators. Combinators combine strategy expressions. We support four strategy
combinators, try, then, backtrack-if, and thenselect. Whereas the first two have
their standard meaning, the latter need further explanation. Backtrack-if adds a failure
condition to an event store and thus explicitly invokes backtracking. Thenselect splits
the tasks resulting from a strategy application and applies another strategy to each of
them, as already shown in Listing 3.

Matcher. Matcher are either defined on terms, sequents, or proof states. In addition
to match top-level formulas, we also allow the matching of subformulas. This is in par-
ticular useful because we allow the application of inferences deeply inside formulas. We
use the notation [term] to say that term can be a subterm. Moreover, we support the
restriction of subformulas to specific polarities (see [Wal90]), where we use + to indicate
a subformula with positive polarity (intuitively a goal to be shown) and - to indicate a
subformula with negative polarity (intuitively a hypothesis).

10.1.2 Semantics of the Query Language

To illustrate the semantics of our query language we consider the evaluation of the fol-
lowing use expression:

use (select sel from source where condition) where condition (10.9)

Our evaluation algorithm works on a list of so-called configurations and processes the
query in four steps. A configuration is a pair 〈E ‖ i〉 consisting of an environment E and
an object i, which is possibly a list. In this case we write [i1, . . . , im] to denote a list
of items i1, . . . , im; [] denotes the empty list. The environment E maintains information
needed to evaluate the query, such as the name of the current theory or variable bindings.
Given an environment E and a variable x, we write E(x) for the value of the variable
x, which is ⊥ if the variable is unbound. Moreover, we write E , x 7→ i to denote the
change from environment E to the environment E ′ in which x gets assigned the value i.
For a substitution σ = {x1 7→ t1, . . . , xn 7→ tn} we write E , σ to indicate the environment
E , x1 7→ t1, . . . , xn 7→ tn, where already existing bindings are updated.

Having introduced the notion of a configuration, we can now describe the evaluation
of expression (10.9), which proceeds as follows:

First, the from part is evaluated, resulting in a list of all knowledge items found in the
source. The select part can then filter the resulting list by pattern matching and provides
a variable binding for the evaluation of the where condition. Finally the knowledge items
are converted to proof operators.

The semantics of the query language is shown in Figure 10.1. We use ∪ to denote the
append operator for lists, prep match(i) to prepare an item for the matching process, and
match(pattern, term) to invoke the matching process. We will explain the semantics by
means of an example.

Consider the theory of Presburger arithmetic shown in Figure 10.2, where type nat

= 0 | suc(nat) defines a new inductive type for natural numbers. As running example
we consider the evaluation of the statement

use select lhs = rhs from current.formulas where (greaterlpo lhs rhs) as forward
(10.10)

185

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

〈E ‖ []〉 : from src→ 〈E ‖ [i1, . . . , in]〉
〈E ‖ []〉 : select sel from src where cond→ select sel 〈E ‖ [i1, . . . , in]〉 where cond

〈E , item 7→ i1 ‖ i1〉 : where cond→ res1 . . . 〈E , item 7→ in ‖ in〉 : where cond→ resn

〈E ‖ []〉 : select ∗ 〈E ‖ [i1, . . . , in]〉 where cond→ ∪n
i=1resi

〈E , item 7→ i1 ‖ i1〉 : match pattern where cond→ res1
...

〈E , item 7→ in ‖ in〉 : match pattern where cond→ resn

〈E ‖ []〉 : select pattern 〈E ‖ [i1, . . . , in]〉 where cond→ ∪n
i=1resi

〈E ‖ i〉 : prep match(i) → term 〈E ‖ i〉 : match(pattern, term) → σ

〈E ‖ i〉 : match pattern where cond→ 〈E ∪ σ ‖ i〉where cond

〈E ‖ i〉 : prep match(i) → term 〈E ‖ i〉 : match(pattern, term) → ⊥
〈E ‖ i〉 : match pattern where cond→ []

〈E ‖ i〉 : where cond→ [i]
If E |= cond〈E ‖ i〉 : where cond→ []

If E 6|= cond

Figure 10.1: Semantics for select expressions

type nat = 0 | suc(nat)

definition +:nat→nat→ nat, infixl

∀x. 0 + x = x

∀x,y.suc(x) + y = suc(x + y)

Figure 10.2: Theory Presburger

within the theory “Presburge Axioms”. Evaluating the query within the theory “Pres-
burger Axioms” and a given environment E means to evaluate the query with respect to
the following, so-called initial configuration:

〈E , current 7→ Presburger Axioms ‖ []〉 (10.11)

Step 1: Evaluation of the from part. As the query is evaluated in the context of
the theory “Presburger Axioms”, current is bound to Presburger Axioms. According
to our semantics, the from part (first rule) evaluates to a configuration consisting of
an environment E and a list of items [i1, . . . , in]. In our case, the items are exactly all
formulas of the theory “Presburger Axioms” and also contain the axioms for the data
type. Thus we obtain the following configuration6:

6Note that axioms for induction, injectivity, and case distinctions are generated automatically by
declaring an inductive data type

186

10.1. A DECLARATIVE LANGUAGE FOR PROCEDURAL STRATEGIES

〈E , current 7→ Presburger Axioms ‖ [∀x.0 + x = x, ∀x, y.suc(x) + y = suc(x+ y),
∀P. P (0) ∧ (∀x.P (x) ⇒ P (suc(x))) ⇒ ∀x.P (x),
∀x, y. suc(x) = suc(y) ⇔ x = y,
∀x. 0 6= suc(x)]〉

(10.12)

Step 2: Evaluation of the select part. In the second step, the select part, which
is either ∗ or a term pattern within the term language of the theory, is evaluated with
respect to the result from the previous step. For each variant there is a corresponding
rule in Figure 10.1.

In the first case, the use of ∗, each of the items returned by the select expression
is passed to the evaluation of the where part, where for each item the environment is
enriched by the built-in variable item which is bound to the current item. This way the
item can be accessed in the where part. That is, the expression “where cond” is actually
“where λ item. cond”.

In the latter case, where a term in the language of the theory is used to specify a
pattern, all returned items have to match the pattern given by the term. Moreover, the
bindings obtained by the matching are added to the environment. As in the previous case,
each item is separately processed, and the individual results combined using the append
operator ∪. In contrast to the previous rule, only those items satisfying the matching
condition are passed for further evaluation. The matching process itself is encoded in
the basic function match, which either fails or returns a substitution σ. In the latter,
case the variable binding of the substitution σ is added to the environment E , such that
the binding is available for processing in the where part. In order for an item to be
processable by match, the item is preprocessed by prep match.

In our running example, the select part is evaluated with respect to the data (10.12).
As the selector is a pattern lhs = rhs, the data is preprocessed, resulting in

[〈current 7→ Presburger Axioms, item 7→ 0 + x = x ‖ ∀x.0 + x = x〉
〈current 7→ Presburger Axioms, item 7→ suc(x) + y = suc(x+ y) ‖

∀x, y.suc(x) + y = suc(x+ y)〉
〈current 7→ Presburger Axioms, item 7→ P (0) ∧ (∀x.P (x) ⇒ P (suc(x))) ⇒ ∀x.P (x) ‖

∀P.P (0) ∧ (∀x.P (x) ⇒ P (suc(x))) ⇒ ∀x.P (x)〉
〈current 7→ Presburger Axioms, item 7→ suc(x) = suc(y) ⇔ x = y ‖

∀x, y.suc(x) = suc(y) ⇔ x = y〉
〈current 7→ Presburger Axioms, item 7→ 0 6= suc(x) ‖ ∀x.0 6= suc(x)〉]

(10.13)
For each configuration its item is matched against the term lhs = rhs. For the first two
items the matching succeeds with the matcher

σ1 = {lhs 7→ 0 + x, rhs 7→ x} (10.14)

and

σ2 = {lhs 7→ suc(x) + y, rhs 7→ suc(x+ y)}, (10.15)

respectively. For the other items, matching fails. We thus obtain the following result:

187

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

[〈current 7→ Presburger Axioms, lhs 7→ 0 + x, rhs 7→ x, item 7→ 0 + x = x ‖
∀x.0 + x = x〉

〈current 7→ Presburger Axioms, lhs 7→ suc(x) + y, rhs 7→ suc(x+ y),
item 7→ suc(x) + y = suc(x+ y) ‖
∀x, y.suc(x) + y = suc(x+ y)〉]

(10.16)

Step 3: Evaluation of the where part. Finally, the condition encoded in the where
part of the query is evaluated with respect of the updated environment E . There are two
rules: If the condition is satisfied in the environment E , a singleton list containing the
given item is returned. We use lists to allow for a simple collection process (appending
using the ∪ operator). If the condition is not satisfied in E , the empty list is returned.
Note that the where part can be left out. This case is internally handled by adding the
condition true which always succeeds.

In our example, the condition checks whether the term bound to the variable lhs is
greater than the term bound to the variable rhs with respect to the lexicographic path
ordering maintained by the theory, which is based on the symbol ordering induced by the
definitions. As the condition is satisfied for all items, we get the following list as overall
evaluation result of the select statement:

[∀x.0 + x = x, ∀x, y.suc(x) + y = suc(x+ y)] (10.17)

Step 4: Evaluation of the use part. Finally, the formulas returned by (10.17) are
transformed to inferences by means of the use construct. In our example, the use con-
struct is enriched by the annotation as forward, meaning that the resulting inferences
are only allowed to be applied in this particular direction. As there is no where construct
attached to the use construct, no conditions need to be added to the inferences. Thus,
we obtain the following rewrite rules as final result:

0 + x→ x (10.18)

suc(x) + y → suc(x+ y) (10.19)

10.1.3 Semantics of Strategy Constructors

In this section, we give a semantics for the evaluation of our language constructs, based
on the notion of an agenda and an inference (see Chapter 6). In order to come close
to an implementation, we give a deterministic algorithm which explicitly keeps track of
possible choices which have not yet been considered. Instead of explicitly producing all
choices at each step, it is more efficient to implicitly maintain these choices in the form of
a continuation, which is most easily understood as a program producing the next choice
on demand. If executed, a continuation either fails, or returns a new choice, i.e., a new
state, together with a new continuation.

During the evaluation of combined expressions, it will be necessary to combine contin-
uations of its subexpressions to get a continuation of the overall expression. We will see
that we can also use our language constructs for that. Therefore, we define our evaluation
mechanism to work not only for strategies, but more generally for arbitrary programs.
Indeed, a strategy is a special program.

188

10.1. A DECLARATIVE LANGUAGE FOR PROCEDURAL STRATEGIES

We now present the semantics of the evaluation mechanism, which works on configu-
rations

〈A ‖ C ‖ p〉 (10.20)

consisting of an agenda A, an event store C, containing dynamic backtrack conditions,
and a program p. As introduced in Chapter 6, an agenda is a set of tasks, where each task
represents a subproblem to be solved. Thus, ∅ represents an agenda where all subproblems
have been solved. We denote with ǫ a fully executed program as well as the empty event
store. For a better understanding of the evaluation, it is a good idea to focus on the first
and third component of the configuration first, as these are modified in each step. The
second component, the event store C, is only modified by the backtrack− if command.

Given a strategy expression exp and an agenda A, the initial configuration is given by

〈A ‖ ǫ ‖ exp〉 (10.21)

Intuitively, the goal of the evaluation algorithm is to execute the program exp and
thereby producing a proof object for the problem contained in the agenda A. This is
obtained by executing exp, which results either in a failure, indicated by ⊥, or in a pair

〈A′ ‖ C ‖ ǫ〉 : c (10.22)

Intuitively, c contains the part of the search space which has not yet been traversed and
can be used to produce alternative proofs for the problem represented by agenda A.

There are two programs which can directly be executed, namely an inference and a
continuation. Following the ideas of Elan [BKKR01], we call both primal strategies.
Instead of directly returning the result of the execution, we additionally check whether
the solution triggers a backtrack event of the event store C. If so, the result is discarded
and the continuation is recursively evaluated in order to get a new configuration which
does not trigger the backtrack event. If this is not possible or the program failed in the
first place, the failure is returned. Thus we get the following three rules:

Primal Strategies:

〈A ‖ C ‖ p〉 → 〈A′ ‖ C ‖ ǫ〉 : c If ∀φ ∈ C.A′ 6|= φ

〈A ‖ C ‖ p〉 → ⊥

〈A ‖ C ‖ p〉 → 〈A′ ‖ C ‖ ǫ〉 : c 〈⋆ ‖ ⋆ ‖ c〉 → res

〈A ‖ C ‖ p〉 → res
If ∃φ ∈ C.A′ |= φ

In the rule above, 〈⋆ ‖ ⋆ ‖ c〉 emphasizes that the execution of c is independent of the
current context, as c restores the context by itself.

To get an intuitive understanding of the concept and the functioning of continuations,
consider the inference I, representing the rewrite rule X + 0 → X7, and the agenda A
containing only a single task {⊢ suc(x+0) = suc(x)+0}. Its initial configuration is given
by

〈{⊢ suc(x+ 0) = suc(x) + 0} ‖ C ‖ I〉 (10.23)

7we use an upper case X to emphasize the fact that X is a meta-variable that can be instantiated

189

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

Note that there are two possibilities to apply the rewrite rule X+0 → X by binding X to
x, respectively to suc(x). Rather than producing one successor agenda for each possible
match, the execution of I results in the pair

〈{⊢ suc(x) = suc(x) + 0} ‖ C ‖ ǫ〉 : c (10.24)

where c contains the information of how to further evaluate I, implicitly keeping track of
all remaining alternatives. In our example, the evaluation of c in any context thus yields

〈{⊢ {suc(x) + 0 = suc(x)} ‖ C ‖ ǫ〉 : c′ (10.25)

where c′ provides no further results, i.e., 〈A ‖ C ‖ c′〉 → ⊥ for any context A, C.
Note that any configuration 〈A ‖ C ‖ p〉, where p is a strategy or a continuation, is

also a continuation as it evaluates to a new configuration-continuation pair.

Backtrack If:
The backtrack− if combinator installs a backtrack condition in the event store C and
leaves the other components of the configuration unchanged. This condition is used in
primal strategy expressions to check whether the result has a desired form.

〈A ‖ C ∪ {φ} ‖ s〉 → ⊥
〈A ‖ C ‖ backtrack− if φ s〉 → ⊥

〈A ‖ C ∪ {φ} ‖ s〉 → 〈A′ ‖ C ∪ {φ} ‖ p〉 : c
〈A ‖ C ‖ backtrack− if φ s〉 → 〈A′ ‖ C ‖ p〉 : c

Apply:
As apply operates on lists of arguments, we inductively define its evaluation. In the base
case apply gets a single program p (think of a strategy s) as input. The program is
executed and the result returned.

〈A ‖ C ‖ p〉 → res

〈A ‖ C ‖ apply p〉 → res

Note that res is either a configuration continuation pair or the symbol ⊥ representing
failure.

In the step case, apply evaluates its first argument. If the execution succeeds, i.e.,
results in a new configuration 〈A′ ‖ C ‖ ǫ〉 and a continuation c, the new configuration is
returned and a new continuation c′ built by extending c by apply p2 . . . pn, performed
by the operator @. If the execution fails, the operator recursively calls itself with the
remaining arguments. We first give the rules of the @ operator before continuing with
apply.

〈⋆ ‖ ⋆ ‖ c1〉 → ⊥ 〈⋆ ‖ ⋆ ‖ c2〉 → res

〈⋆ ‖ ⋆ ‖ c1@c2〉 → res

〈⋆ ‖ ⋆ ‖ c1〉 → 〈A ‖ C ‖ ǫ〉 : c′1
〈⋆ ‖ ⋆ ‖ c1@c2〉 → 〈A ‖ C ‖ ǫ〉 : c′1@c2

〈A ‖ C ‖ p1〉 → 〈A′ ‖ C ‖ p1〉 : c
〈A ‖ C ‖ apply p1 . . . pn〉 → 〈A′ ‖ C ‖ p1〉 : c@〈A ‖ C ‖ (apply p2 . . . pn)〉

〈A ‖ C ‖ p1〉 → ⊥ 〈A ‖ C ‖ apply p2 . . . pn〉 → res

〈A ‖ C ‖ apply p1 . . . pn〉 → res

190

10.1. A DECLARATIVE LANGUAGE FOR PROCEDURAL STRATEGIES

As before, we give a simple example to illustrate the concatenation of continuations.
Consider the evaluation of the configuration

〈{⊢ suc(x) + 0 = 0 + suc(x)} ‖ ǫ ‖ apply I1 I2 I3 . . . In〉 (10.26)

where I1, I2, I3 represent the rewrite rules x + 0 → 0 + x (x constant), X + 0 → X,X +
suc(Y) → suc(X + Y), respectively. First, apply tries to apply I1, which fails. I2 can be
applied, resulting in

〈{⊢ suc(x) + 0 = suc(0 + x)} ‖ ǫ ‖ ǫ〉 : c (10.27)

where c stores all possibilities to apply I3, . . . , In to the task. We can graphically represent
this as follows:

⊢ suc(x) + 0 = 0 + suc(x)

⊥ ⊢ suc(x) = 0 + suc(x) ⊢ suc(x) + 0 = suc(0 + x) . . .

continuation

The variant apply! is similar to apply, but does not keep backtrack points:

〈A ‖ C ‖ p〉 → res

〈A ‖ C ‖ apply! p〉 → res

〈A ‖ C ‖ p1〉 → 〈A′ ‖ C ‖ p1〉 : c
〈A ‖ C ‖ apply! p1 . . . pn〉 → 〈A′ ‖ C ‖ p1〉 : c

〈A ‖ C ‖ p1〉 → ⊥ 〈A ‖ C ‖ apply! p2 . . . pn〉 → res

〈A ‖ C ‖ apply! p1 . . . pn〉 → res

Try:
Given an agenda, the expression try s is evaluated by first evaluating the strategy s.
If the execution of s fails, the original agenda is returned, otherwise the result of the
evaluation.

〈A ‖ C ‖ p〉 → ⊥
〈A ‖ C ‖ try p〉 → 〈A ‖ C ‖ ǫ〉 : ⊥

〈A ‖ C ‖ p〉 → 〈A′ ‖ C ‖ ǫ〉 : c
〈A ‖ C ‖ try p〉 → 〈A′ ‖ C ‖ ǫ〉 : c

Then:
The expression p1 then p2 first evaluates p1. If p1 fails, then p1 then p2 fails. Otherwise
p2 is executed on the result of p1 and the new continuation is built. Failure of p2 on the
result of p1 triggers the computation of a new result in p1.

〈A ‖ C ‖ p1〉 → ⊥
〈A ‖ C ‖ p1 then p2〉 → ⊥

〈A ‖ C ‖ p1〉 → 〈A′ ‖ C ‖ ǫ〉 : c1 〈A′ ‖ C ‖ p2〉 → 〈A′′ ‖ C ‖ ǫ〉 : c2
〈A ‖ C ‖ p1 then p2〉 → 〈A′′ ‖ C ‖ ǫ〉 : 〈A ‖ C ‖ c1 then p2〉@c2

〈A ‖ C ‖ p1〉 → 〈A′ ‖ C ‖ ǫ〉 : c 〈A′ ‖ C ‖ p2〉 → ⊥ 〈⋆ ‖ ⋆ ‖ c then p2〉 → res

〈A ‖ C ‖ p1 then p2〉 → res

191

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

As illustrating example let I1, I2, I3 represent the inferences from above and let the
following expression be given:

〈{T0} ‖ ǫ ‖ (apply I2 I1) then (apply I2)〉 (10.28)

where

T0 :suc(0 + x) = suc(x) + 0 T1 :suc(0 + x) = suc(x) (10.29)

T2 : = suc(x+ 0) = suc(x) + 0 T3 :suc(x) = suc(x) + 0 (10.30)

First, I2 is evaluated, resulting in the task T1 and the continuation to apply apply I1 on
T0. On T1, I2 is evaluated, which fails. Consequently, the continuation is unfolded, and
I1 evaluated on T0, resulting in T2 and the empty continuation. apply I2 is called again,
resulting in T3, and the empty continuation.

Solve:
The expression solve s applies s repeatedly to an agenda A until all tasks of A have been
solved, or all possibilities have been tried out without success, in which case a failure is
returned.

〈A ‖ C ‖ p〉 → 〈∅ ‖ C ‖ ǫ〉 : c
〈A ‖ C ‖ solve p〉 → 〈∅ ‖ C ‖ ǫ〉 : c

〈A ‖ C ‖ p〉 → ⊥
〈A ‖ C ‖ solve p〉 → ⊥

〈A ‖ C ‖ p〉 → 〈A′ ‖ C ‖ ǫ〉 : c1 〈A′ ‖ C ‖ solve p〉 → 〈∅ ‖ C ‖ ǫ〉 : c2
〈A ‖ C ‖ solve p〉 → 〈∅ ‖ C ‖ ǫ〉 : (c2@c1)

〈A ‖ C ‖ p〉 → 〈A′ ‖ C ‖ ǫ〉 : c1 〈A′ ‖ C ‖ solve p〉 → ⊥ 〈⋆ ‖ ⋆ ‖ c1 then solve p〉 → res

〈A ‖ C ‖ solve p〉 → res

As an example consider the evaluation of the configuration

〈⊢ suc(x) + 0 = 0 + suc(x) ‖ ǫ ‖ solve (apply I1 I2 I3)〉 (10.31)

which essentially works as follows:

〈{⊢ suc(x) + 0 = 0 + suc(x)} ‖ ǫ ‖ solve (apply I1 I2 I3)〉 (10.32)

→〈{⊢ suc(x) = 0 + suc(x)} ‖ ǫ ‖ solve (apply I1 I2 I3)〉 : c1 (10.33)

→〈{⊢ suc(x) = suc(0 + x)} ‖ ǫ ‖ solve (apply I1 I2 I3)〉 : c2 (10.34)

→〈{⊢ suc(x) = suc(x+ 0)} ‖ ǫ ‖ solve (apply I1 I2 I3)〉 : c3 (10.35)

→〈∅ ‖ ǫ ‖ ǫ〉 : c4 (10.36)

→〈∅ ‖ ǫ ‖ ǫ〉 : c4@c3@c2@c1 (10.37)

The first three steps recursively trigger the evaluation of a solve expression, finally, all
continuations are step by step combined.

Repeat:
The repeat construct is similar to the solve construct with the difference that the pro-
gram p is applied to each task of the initial agenda until it cannot be applied any further
or the task meets a specified condition, which can be given in the until construct. We

192

10.1. A DECLARATIVE LANGUAGE FOR PROCEDURAL STRATEGIES

will subsume the case where the until is not explicitly given by implicitly assuming the
condition φ = false. For a better understanding it is useful to think of the repeat con-
struct to perform a simplification. Note that for efficiency the operator does not support
backtracking. As a consequence the backtrack− if operator does not affect directly the
evaluation of the repeat construct but only the strategies on a deeper level.

〈{} ‖ C ‖ repeat p until φ〉 → 〈{} ‖ C ‖ ǫ〉 : ⊥

〈{T1} ‖ C ‖ p〉 → ⊥ 〈{T2, . . . , Tn} ‖ C ‖ repeat p until φ〉 → 〈A ‖ C ‖ ǫ〉 : c
〈{T1, . . . , Tn} ‖ C ‖ repeat p until φ〉 → 〈{T1} ∪ A ‖ C ‖ ǫ〉 : ⊥

〈{T1} ‖ C ‖ p〉 → 〈{T ′1, . . . , T ′m} ‖ C ‖ ǫ〉 : c
{T ′1} |= φ . . . {T ′i−1} |= φ

〈{T ′i , . . . , T ′m, T2, . . . , Tn} ‖ C ‖
repeat p until φ〉 → 〈A ‖ C ‖ ǫ〉 : c′

〈{T1, . . . , Tn} ‖ C ‖ repeat p until φ〉 → 〈{T ′1, . . . , T ′i−1} ∪ A ‖ C ‖ ǫ〉 : ⊥
Note that the use of the try combinator directly under the repeat constructor without

a condition always leads to infinite loops.

Cases:
The cases construct checks whether the currently selected task has a specific form by
(1) syntactic matching and (2) invoking a Lisp function in the environment provided by
the matcher. If so, a specific action is triggered. Otherwise, the next case is checked.
Note that the default matcher always matches. If we want the cases construct always
to succeed, we can introduce a case otherwise → Id, where Id stands for the identity
strategy.

〈A ‖ C ‖ cases ; 〉 → ⊥
A 6|= φ1 〈A ‖ C ‖ cases φ2 → p2 . . . φn → pn; 〉 → res

〈A ‖ C ‖ cases φ1 → p1 . . . φn → pn; 〉 → res

A |= φ1 〈A ‖ C ‖ p1〉 → ⊥ 〈A ‖ C ‖ cases φ2 → p2 . . . φn → pn; 〉 → res

〈A ‖ C ‖ cases φ1 → p1 . . . φn → pn; 〉 → res

A |= φ1 〈A ‖ C ‖ p1〉 → 〈A′ ‖ C ‖ ǫ〉 : c
〈A ‖ C ‖ cases φ1 → p1 . . . φn → pn; 〉 → 〈A′ ‖ C ‖ ǫ〉 : c@(cases φ2 → p2 . . . φn → pn;)

Thenselect:
The thenselect operator is used to split the result A′ of a strategy execution p1 on an
agenda A, and to apply a specified second strategy p2 to each of the tasks of A′. After
the separate execution of p2 on each of the tasks of A′ the resulting agendas have to be
combined to an overall result agenda. Note that it can be the case that the agendas cannot
be combined if shared meta-variables have been instantiated differently. To simplify
matters we assume that this check is performed when combining the agendas using ∪.

The thenselect operator is internally defined by a combination of the already intro-
duced then operator and an internal operator split which does the mentioned splitting
and recombination of the results:

p1 thenselect p2 ≡ p1 then (split p2) (10.38)

193

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

The split operator is recursively defined over the agenda to which it is applied.

〈{} ‖ C ‖ split p〉 → 〈{} ‖ C ‖ ǫ〉 : ⊥
〈{T1} ‖ C ‖ p〉 → ⊥

〈{T1, . . . , Tn} ‖ C ‖ split p〉 → ⊥

〈{T1} ‖ C ‖ p〉 → 〈A ‖ C ‖ ǫ〉 : c 〈{T2, . . . , Tn} ‖ C ‖ split p〉 → ⊥
〈{T1, . . . , Tn} ‖ C ‖ split p〉 → ⊥

〈{T1} ‖ C ‖ p〉 → 〈A ‖ C ‖ ǫ〉 : c 〈{T2, . . . , Tn} ‖ C ‖ split p〉 → 〈A′ ‖ C ‖ ǫ〉 : c′
〈{T1, . . . , Tn} ‖ C ‖ split p〉 → 〈A ∪ A′ ‖ C ‖ ǫ〉
: (A ∪ c′)@(c ∪ eval(〈{T2, . . . , Tn} ‖ C ‖ split p〉))

The first three rules are simple and handle the atomic case and the case of failure. The last
rule represents the interesting case in which results from the base case and the recursive
case have to be combined. The underlying idea is as follows: First, compute a solution
A for the first task T1, and a solution A′ for the remaining tasks T2, . . . , Tn, and combine
both agendas to obtain the first combined solution A ∪A′. The remaining solutions that
need to be considered are A combined with all solutions for T2, . . . , Tn encoded in c′, as
well as a new solution for T1 (given by c), combined with all solutions that can now be
computed for T2, . . . , Tn (note that these might be different due to different substitutions),
encoded by eval(〈{T2, . . . , Tn} ‖ C ‖ split p〉).

10.1.4 Discussion

Our main goal in defining a new tactic language for the specification of procedural strate-
gies was the introduction of a small intermediate language which is independent of the
underlying programming language of the prover and which allows for the specification of
tactics within the proof document, while being extendable at the same time. The latter
goal is achieved by allowing the invocation of library functions from the intermediate
language. Of course, this poses the questions whether the first goal could be met at all,
and whether such an interface represents a good design choice.

We believe that there are essentially two design choices: (1) a simple limited language
that provides external mechanisms for its extension as our language, or (2) the design of a
general language which is as complex as a full programming language. This insight comes
from our previous investigations in the context of proof planning, where the goal to provide
a fixed language to encode preconditions of methods failed, as analyzed in [DJP06]: “It
was envisioned that the language for preconditions would reach a fix point, but it turned
out that new domains need new types of preconditions.”. Our experiences indicate that
this interface needs only to be used to a very limited extent, and that the main part of
the tactics is formulated within the proof document, which proved to be very convenient
from our perspective (see Chapter 14). Additional conditions are optionally defined on
terms or on sequents within the underlying programming language and therefore require
only a very limited knowledge about the internal data structures.

The strategy language itself is compact and due to its small number of constructs
easy to learn. The main idea was to see the specification process of a proof strategy as a
two-staged process, consisting of (1) the selection of proof operators and (2) augmenta-
tion of these proof operators with control knowledge. The selection process is inspired by
the query languages SQL, OQL and XPath, which are standard for querying structured
knowledge such as relational/object-oriented data bases or XML. Indeed, we see the de-
velopment graph as an object-oriented hierarchical data base, object-oriented in the sense

194

10.2. A DECLARATIVE LANGUAGE FOR DECLARATIVE STRATEGIES

that the different knowledge kinds correspond to different classes and the theories serve
as a hierarchical structuring mechanism. Our query mechanism makes the knowledge
selection process explicit, and therefore, also allows for reasoning about it. It has been
analyzed that this is not the case in current proof planners, but highly desirable (see
[DJP06] p. 7).

One main goal of our approach was to give a precise semantics to the language con-
structs and to describe their behavior in terms of the proof state, and backtracking be-
havior. Further parameters can easily be incorporated to the language, for example, the
search mode used within the solve construct. Indeed, depth first search and breadth
first search have been implemented already within this language. The event store C pro-
vides a convenient means to exchange control information between different tactics and
can be used not only for backtrack conditions, but more generally for any kind of con-
trol information, such as the restriction of the applicability of proof operators to specific
positions.

10.2 A Declarative Language for Declarative Strate-

gies

This section introduces the notion of a declarative strategy by analogy to procedural
strategies as a means to automate the declarative style of proof. The overall idea is to
replace the procedural justification of procedural strategies by a declarative proof script
which is inserted into the proof document after the strategy has been executed. As a
starting point, it is useful to consider the simplest form of a procedural strategy, which
when being executed performs a macro transformation of a proof state and justifies it by
a sequence of procedural commands at a lower level, e.g., a sequence of kernel commands.
The kernel commands present a partial proof of the overall conjecture.

By analogy, we want to understand a declarative strategy to be such a macro oper-
ator, which – in contrast to a procedural strategy – is justified by a declarative proof
script, i.e., a structured sequence of commands in a declarative proof language, which
may just be partial. To meet the requirement to support the document-centric approach,
we additionally require a declarative tactic to be specified on top of the declarative proof
language.

Let us point out that due to the nature of a declarative proof language, declarative
strategies provide two different forms to express partial proof scripts: Similar to procedural
strategies, a declarative strategy transforms a goal to (simpler) goals. As these goals still
need to be solved, the generated justification is only partial. While the transformation
is fully specified within the procedural style, the declarative style allows the author of
the tactic to be unspecific about the exact transformation. Therefore, additional proof
obligations can arise due to gaps justifying intermediate statements of the script, for
example, if the parameters by or from are not specified. Similar to proof methods in proof
planning, these proof obligations require an expansion which can naturally be postponed.

Before introducing the details of the new language, let us further develop the basic
underlying ideas and motivate it by several examples.

Towards A Declarative Induction Tactic

Consider the problem of showing the commutativity of addition in Presburger arithmetic,
that is, a+b = b+a. Starting by induction over one variable, two possible proof attempts

195

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

in the declarative style are shown in Listing 9. Note that both proofs are partial, as they
contain unjustified statements. They can thus be seen as a proof sketch or a proof plan.

theorem natcomplus: (a::nat) +

(b::nat) = b+a

proof

subgoals

subgoal 0 + b = b + 0

subgoal Suc a + b = b + Suc a

using IH:a+b=b+a

qed by (induct a)

qed

theorem natcomplus: (a::nat) +

(b::nat) = b+a

proof

subgoals

subgoal a + 0 = 0 + a

subgoal a + Suc b = Suc b + a

using IH: a+b=b+a

qed by (induct b)

qed

Listing 9: Declarative proof with gap resulting by induction over a, respectively b

We want to automate the transformation of the initial conjecture to one of the proof
states shown in Listing 9 by means of a declarative tactic. To that end, three steps are
necessary: First, we need the control information over which variable the induction has
to be performed. Note that there are two possibilities of how this information can be
obtained: The first possibility is to pass the desired induction variable as a parameter
to the strategy. The second possibility is to automatically compute all variables over
which an induction can be performed and to select the most promising one, for example,
by preferring those in recursion position. While the first possibility is usually preferred
in an interactive setting, the second is needed for full automation. Depending on the
selected induction variable, we either obtain the left or the right variant of the proof
script. Analyzing both target scripts, it is immediately clear that a static proof script is
not sufficient, as the concrete statements depend both on the considered problem, as well
as on the parameter of the induction variable. However, the proof commands are the same
in both situations. Therefore, the second step towards the declarative strategies consists
in abstracting over the concrete statements of the target script and to replace them by
schematic variables. This way, we obtain a more general schematic proof script, which
uses the schematic variables as placeholders for the concrete statements that are inserted
at runtime. The abstraction process results in a proof script which can be instantiated to
both variants by instantiating the corresponding variables accordingly.

Finally, we have to provide a mechanism to instantiate the schematic variables of the
schematic proof script at runtime by dynamically accessing the proof state. Similar to the
original idea of proof planning methods, our solution consists of attaching a precondition
to the strategy in the form of a declarative matcher and to use this precondition to compute
the concrete shape of the statements of the proof script. At runtime, the declarative
precondition is matched against the proof state, thereby making the relevant parts of the
proof state explicit and providing variable bindings which can then be used in the body
of the tactic.

Two possible realizations are shown in Listing 10. Both strategies consist of two
parts: A meta-level precondition, marked with a shaded background, and a schematic
proof script. Within the programming language, which is used in the where clause of the
expression, we use double quotes to refer to expressions in the strategy language.

The simple example illustrates already the main features of our approach:

• Declarative strategies can be used both in an interactive as well as in an automated
setting. Within the interactive setting, declarative strategies are manually executed
as procedural strategies. However, in contrast to the procedural approach, the result

196

10.2. A DECLARATIVE LANGUAGE FOR DECLARATIVE STRATEGIES

strategy natinduct

case * ⊢ P x

where (isinductvar "x")

->

proof

subgoals by (induct x)

subgoal P 0

subgoal P (suc x) using IH: P

x

end

qed

strategy natinduct

cases * ⊢ P x

where (isinductvar "x")

->

proof

L1: P 0

L2: assume P x thus P (suc

x)

P x from L1,L2 by(induct x)

qed

Listing 10: Declarative induction tactic in backward and forward style

of a strategy application is not only a new proof state, but also a declarative proof
script, which is inserted at the point where the strategy has been invoked. This
way, one obtains a readable result without the need of having to write the complete
procedural proof script.

• The by parameter can be used to specify a particular proof strategy to be used for
the expansion of a resulting proof obligation. Thus, it expresses the future in the
form of a continuation.

• Stylistic choices, such as whether to prefer forward or backward style, as well as the
granularity of the resulting proof script are explicitly controlled within the strategy.
This is in contrast to translation based approaches, where such a control is only
indirectly possible. Moreover, formulas can explicitly be named and the names be
used to refer to these formulas.

• Declarative strategies can be expressed with the proof document as an extension of
a declarative proof language. They are thus in the spirit of the document-centric
approach.

Integration of a Computer Algebra System

One important feature of Ωmega’s previous proof planner is the use of external computer
algebra systems to have additional proof support for algebraic computation (see [KKS98]
for details). This is because all algorithms that have been implemented in the CAS
are directly available within the proof assistant without the need to reimplement them.
Proof planning methods showed particularly useful to realize the integration of external
computations, as they allowed the direct integration of the computation and to postpone
its verification to a later time. We subsequently show how such an integration can be
realized within our declarative strategy language: As noted before, schematic variables
can be used as placeholder for arbitrary terms, in particular terms generated by an oracle
without justification.

Listing 11 shows a declarative tactic that employs a CAS to transform a goal of the
form abs(GOALLHS)<GOALRHS to abs(Y)<GOALRHS, where Y is the factorization of GOALLHS.
To that end, GOALLHS is translated to the syntax of the CAS Maxima, and the result of
the factorization translated back and bound to the schematic variable Y. If this succeeds,
the script specified in the proof . . . qed block is instantiated and inserted. Moreover, the
following proof plan is inserted in the document: (1) show the equality between Y (the

197

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

strategy maximafactorabs

cases

* ⊢ ((abs(GOALLHS)) < GOALRHS) ->

proof

subgoal abs(Y) < GOALRHS by

proof

L2:(Y = GOALLHS) by abeliandecide

L3: abs(Y) = abs(GOALLHS) by (f=abs in arg cong)

from L2

trivial from L3

qed

qed

with Y = (maxima-factor "GOALLHS")

Listing 11: Call of a CAS to factor a subterm of the goal formula

factorization provided by the CAS) and GOALLHS, (2) use the fact that functions yield
the same value on the same arguments. Note that the same tactic is also expressible in a
forward style by relying on assume and that all labels in the proof script are generated
at runtime and are renamed if already present in the context.

Factorization is a typical example for a computation for which checking of a solution
is much simpler than finding it: Given a term and its factorization, we only need to
multiply out the factors of the factorization and to compare the result with the original
term, possibly rearranging the subterms.

Complex Estimate

Finally, let us show how more complicated heuristics can be expressed in the declarative
style. To that end, we consider one of the so-called limit heuristics which were originally
proposed as a challenge by W. Bledsoe:

“When trying to use a hypothesis of the type

|A| < E ′

(and possibly other hypothesis) to establish a conclusion of the type

|B| < E

first try to find a substitution σ which will allow Bσ to be expressed as a non-
trivial combination of A, (B = K ·A+ L), and then try to establish the three
new conclusions

1. (|K| < M)σ for some M

2. (|A| < (E/(2 ·M))σ

3. (|L| < E/2)

Such a procedure is valid because if we can indeed find such a σ and prove A,

198

10.2. A DECLARATIVE LANGUAGE FOR DECLARATIVE STRATEGIES

B, and C, then we would have

|B|σ = |K · A+ L|σ
≤ (|K| · |A|+ |L|)σ
< M · E/(2 ·M) + E/2

= E

Of course, this is based on the triangle inequality, and uses the fact that 1/2+
1/2 = 1, M · 1/M = 1 for M > 0.” (see [BBH72] page 13)

This strategy was also used in the proof planner Multi and realized in the method
ComplexEstimate (see [Mel98b] for the first implementation of this idea), which relied on
a computer algebra system to find the linear combination. In the previous Ωmega system,
the method was realized by 113 lines of Lisp code, even though it could be expressed more
concisely using frames, as shown in Listing 12.

Method: ComplexEstimate
premises L1, ⊕L2,⊕L3,⊕L4
conclusions ⊖L17
appl. cond. ∃σ.GetSubst(a, b) = σ and ∃k, l.CASsplit(aσ, b) = (k, l)

proof schema

L1. ∆ ⊢ |a| < ǫ1 (assumption)
L2. ∆ ⊢ |k| ≤ M (open)
L3. ∆ ⊢ |aσ| < ǫ/(2 ∗M) (open)
L4. ∆ ⊢ |l| < ǫ/2 (open)
L5. ∆ ⊢ b = b (ax)
L6. ∆ ⊢ b = k ∗ aσ + l (CAS;L5)
L7. ∆ ⊢ 0 <M (open)
L8. ∆ ⊢ |b| ≤ |k ∗ aσ|+ |l| (triang;L6)
L9. ∆ ⊢ |b| ≤ |k| ∗ |aσ|+ |l| (Mval;L8)
L10. ∆ ⊢ |k| ∗ |aσ|+ |l| ≤M ∗ |aσ|+ |l| (mult≤;L2)
L11. ∆ ⊢ |b| ≤M ∗ |aσ|+ |l| (trans≤;L9,L10)
L12. ∆ ⊢M ∗ |aσ| < M ∗ ǫ/(2 ∗M) (mult<;L3)
L13. ∆ ⊢M ∗ |aσ|+ |l| < M ∗ ǫ/(2 ∗M) + |l| (add<;L12)
L14. ∆ |b| < M ∗ ǫ/(2 ∗M) + |l| (trans<;L11,L13)
L15. ∆ ⊢M∗ǫ/(2∗M)+|l| < M∗ǫ/(2∗M)+ǫ/2 (add<;L4)
L16. ∆ ⊢ |b| < M ∗ ǫ/(2 ∗M) + ǫ/2 (trans<;L14,L15)
L17. ∆ ⊢ |b| < ǫ (fix; L6,L7,L1

L2,L3,L4)

Listing 12: Abstract representation of the method ComplexEstimate

Let us remark that even though the frame representation of Listing 12 is declarative,
it cannot easily be understood by non-experts. This is because the representation is
totally flat and the dependencies between the different proof lines can only be resolved by
following the labels and their links. This also explains why minor imperfections have not
been recognized: The proof lines L5 and L7 are not needed, as they are not used within
the proof schema. Moreover, L7 is implied by L2, which can only be closed if M > 0.
Let us point out that the implementation relies on many other (manually encoded) proof
methods, namely exactly those mentioned in the rightmost column of Listing 12.

Subsequently, we show the reimplementation of the method within the new proof
language in Listing 13, in which we furthermore add the line |b| ≤ |k ∗ a+ l|. Within the

199

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

strategy ComplexEstimate

cases

|a| < e1,* ⊢ |b| < ǫ
where (not (terms-are.equal "k" "0"))

with σ in (findaddsubst "a" "b")

(k,l) = (maxima-divide "b" (substapply σ
"a")) ->

proof

put σ
L2: |k| ≤M
L3: |a| < ǫ/(2 ∗M)
L4: |l| < ǫ/2
L17: |b| < ǫ
proof

b = k ∗ a+ l by CAS

|b| ≤ |k ∗ a+ l| by abs

.≤ |k ∗ a|+ |l| by triang

.≤ |k| ∗ |a|+ |l| by Mval

.≤M ∗ |a|+ |l| from L2 by trans≤

.< M ∗ ǫ/(2 ∗M) + |l| from L3 by trans≤

.=ǫ/2 + |l| by arith

.<ǫ/2 + ǫ/2 from L4 by trans<

.=ǫ
qed

qed

Listing 13: ComplexEstimate in the new strategy language

new strategy language, the heuristic can be expressed in a concise way: It consists only of
24 lines of code in a declarative proof language, compared to 113 lines of Lisp code of the
old method. Moreover, due to the automatic management of the contextual information
and the hierarchical structure imposed by the proof language, the method is much more
readable. In particular, the inequality chain can easily be understood due to the support
of inequality reasoning in the proof language.

10.2.1 Syntax of the Basic Language

Let us now turn to the concrete syntax of the declarative strategy language. As men-
tioned above, declarative proof strategies are defined in an extension of the declarative
proof language. The extended language provides additional constructs to specify the ap-
plicability of the strategy and provides mechanisms to bind schematic variables, as well
as to evaluate meta-level conditions. The grammar of the basic language is shown in
Figure 10.3.

Similar to the procedural strategy language, it comes along with a case construct and
matching facilities to relate schematic variables with a given proof state and to restrict
the applicability of the strategy. Syntactic conditions can be extended by meta-level re-
strictions in the form of a where construct. As the matching might not be unique, a
matcher explicitly introduces choice points during the proof search process. The declara-
tive proof language is linked in by the non-terminal <proof> (see Section 8.3). Moreover,
the formula parser is linked in using the non-terminal < form>. Let us stress here that
we support underspecified proof scripts, which are obtained by leaving out by, from or

200

10.2. A DECLARATIVE LANGUAGE FOR DECLARATIVE STRATEGIES

<defstrat> ::= strategy <name> <stratexp>
<stratexp> ::= cases (<matcher> <stratexp>)+ ;

| <proof> (with <assignments>)?
<matcher> ::= <matchhead> <whereexp>?

(with <assignments>)?
<whereexp> ::= where <prog>
<matchhead> ::= <sequent> | var
<sequent> ::= <termpatterns> (,*)? ⊢ <termpattern>
<termpatterns> ::= <termpattern> (, <termpattern>)*
<termpattern> ::= < form> | [<term>] (<termqualifier>)?
<termqualifier> ::= + | − | <var>
<assignments> ::= < lhs> <assignop> <prog>
<assignop> ::= = | in
< lhs> ::= < form> | (< form> (< ,> < form>)+)

Figure 10.3: Basic Tactic Language

both.
Schematic variables that are not matched in the precondition can explicitly be com-

puted within the language construct with. Currently, the language provides two assign-
ment operators, a deterministic assignment =, and a non-deterministic operator in that
chooses from a list of possible values. As we cannot expect to provide a fixed language
to express meta-level conditions and to perform meta-level analysis (e.g., the extraction
of the admissible induction variables as in Listing 10), a reasonable strategy is to link-in
the underlying programming language of the prover here, indicated in the grammar by
<prog>.

Parameter Passing

For strategies it is often convenient to pass control information in the form of arguments
when calling the tactic. In the introductory example (see Listing 9), we invoked the tactic
induct with the argument “x” indicating the induction position. A similar mechanism
is desirable in the case of declarative tactics. In our language, arguments are treated
as schematic variables. If a schematic variable occurs in the proof script, but is neither
used in the case construct nor bound within the with environment, it corresponds to a
required argument. Schematic variables that are computed within the tactic can be passed
as optional arguments. In such a case, the passed argument overwrites the computed
argument. We provide the common syntax var=value in tactic.

10.2.2 Semantics

Figure 10.4 shows the semantics of our language constructs by showing how to expand
a declarative tactic to a declarative proof script. To keep the presentation simple, we
omit the explicit management of backtracking points in the form of a continuation and
present the semantics of the language by a non-deterministic expansion mechanism. The
expansion mechanism works on configurations 〈PS; Γ; exp〉, where PS denotes the current
proof state, and Γ a context, which is initially empty and keeps track of bindings for
schematic variables. exp denotes the expression to be expanded. Configurations evaluate
either to a proof script, denoted by the relation →֒, or to an environment, denoted by the

201

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

relation →. We use the notation Γ ∪ a = b to denote the update of Γ with the binding
a = b, and the symbol ⊥ to denote failure. To keep the rules simple, some rules are
non-deterministic. In the actual implementation, of course, all results are lazily produced
and stored for backtracking, as explained in the previous section. instance(Γ, S) denotes
the instantiation of the schematic proof S by replacing the schematic variables with their
values in Γ. It is only applicable if all schematic variables of S are bound. We use eval to
evaluate a Lisp expression < prog>; the sequent matching is abstracted in the function
match (which is also non-deterministic).

To enhance readability, we have grouped corresponding rules together. The first group
describes the expansion of the case construct, which returns the result of the first case
that succeeds. An individual case is either a proof script (second group), or of the form
<matchhead (where exp)?> (third group). The value of schematic variables is computed
within the with construct (see the last group) which uses eval to evaluate expressions of
the underlying programming language. Sequent matching works by first invoking the
matcher on the current proof state and then evaluating the additional condition.

10.2.3 Extension of the Basic Language by Dynamic Patterns

The declarative tactic language presented above is already sufficient to encode a variety
of common patterns of reasoning. However, compared to its procedural counterpart, it
is more restricted, as dynamic structures cannot be modeled. As a matter of fact, there
exist powerful procedural strategies using for example the constructs of loops, such as
simplification, which are per se difficult to express declaratively, as we cannot expect to
determine their result unless we execute it. This is not problematic in general, as we
can always invoke a procedural strategy within the by construct of the declarative lan-
guage. However, there are also situations where it is highly desirable to capture dynamic
structures at the declarative level and to express a dynamic proof pattern subsequently.
Dynamic patterns have been designed to cover dynamic structures, such as finite sums,
factorizations, and to make the involved sums/factors available in the context. They can
be used both in a precondition of a case construct, but also to destructure the result of
an external computation within a with. This way, it is possible to recover the structure
of a result given by an external computation, such as a factorization, and to express how
to process their results further in the form of a continuation. For example, all we know
about the result term of factorization in Figure 11 is that it is of the form Y. Using a
dynamic pattern, we obtain back the number of the factors and can trigger an action for
each of the factors. To be able to iterate over the resulting term list, an iteration concept
foreach is introduced. Note that while schematic variables keep the number of proof lines
fixed and abstract over the concrete statements, dynamic patterns in combination with
iteration allow for dynamic proof scripts.

We give two examples. Consider the following problem which is taken from [JKK+05].
Given the goal

3 + f(x) + g(x, y) = x+ g(x, y) + h(y, x)

we want to write a tactic that cancels common summands to obtain

3 + f(x) = x+ h(y, x)

The example is a typical instance for a situation in which the goal state has a rather
simple dynamic structure, i.e., a finite sum of terms, and a dynamic destructuring of it is
sufficient to compute a desired successor goal state, i.e., a proof state where all common

202

10.2. A DECLARATIVE LANGUAGE FOR DECLARATIVE STRATEGIES

〈PS; Γ; c1〉 →֒ ⊥ 〈PS; Γ; case c2 . . . cn〉 →֒ S

〈PS; Γ; case c1 . . . cn〉 →֒ S 〈PS; Γ; case ǫ〉 →֒ ⊥

〈PS; Γ; c1〉 →֒ S

〈PS; Γ; case c1 . . . cn〉 →֒ S
S 6= ⊥

〈PS; Γ; ass〉 → ⊥
〈PS; Γ; proof with ass〉 →֒ ⊥

〈PS; Γ; ass〉 → Γ′ 〈PS; Γ′; proof〉 →֒ S

〈PS; Γ; proof with ass〉 →֒ S
S 6= ⊥

〈PS; Γ; proof〉 →֒ instance(Γ, proof)

〈PS; Γ;matcher〉 → ⊥
〈PS; Γ;matcher stratexp〉 → ⊥

〈PS; Γ;matcher〉 → Γ′ 〈PS; Γ′; stratexp〉 →֒ S

〈PS; Γ;matcher stratexp〉 →֒ S

〈PS; Γ;matchhead〉 → match(matchhead, PS)

〈PS; Γ;matchhead〉 → ⊥
〈PS; Γ;matchhead where exp〉 → ⊥

〈PS; Γ;matchhead〉 → Γ′ 〈PS; Γ′;where exp〉 → ⊥
〈PS; Γ;matchhead where exp〉 → ⊥

〈PS; Γ;matchhead〉 → Γ′ 〈PS; Γ;where exp〉 → Γ′′

〈PS; Γ;matchhead where exp〉 → Γ′′

〈PS; Γ; ass〉 → Γ′ 〈PS; Γ′; eval(c)〉 → ⊤
〈PS; Γ;where c with ass〉 → Γ′

〈PS; Γ; ass〉 → ⊥
〈PS; Γ;where c with ass〉 → ⊥

〈PS; Γ; ass〉 → Γ′ 〈PS; Γ′; eval(c)〉 → ⊥
〈PS; Γ;where c with ass〉 → ⊥

〈PS; Γ; c〉 → ⊤
〈PS; Γ;where c〉 → Γ

〈PS; Γ; eval(prog)〉 → c 〈PS; Γ ∪ lhs = c; ass′〉 → Γ′

〈PS; Γ; lhs = prog ass′〉 → Γ′
c 6= ⊥

〈PS; Γ; eval(prog)〉 → [c1, . . . , cn] 〈PS; Γ ∪ lhs = ci; ass〉′ → Γ′

〈PS; Γ; lhs in prog ass′〉 → Γ′
n ≥ 1 ∧ 1 ≤ i ≤ n

〈PS; Γ; eval(prog)〉 → ⊥
〈PS; Γ; lhs assignop prog ass′〉 → ⊥

〈PS; Γ; eval(prog)〉 → c 〈PS; Γ ∪ lhs = c; ass′〉 → ⊥
〈PS; Γ; lhs = prog ass′〉 → ⊥ c 6= ⊥

Figure 10.4: Expansion Rules for a Declarative Tactic

203

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

summands have been canceled. Interestingly, even though the structure is dynamic, syn-
tactic patterns are commonly used in mathematical practice to capture such a structure,
by making use of ellipses (dot notation). In our example, a dynamic number of summands
can be expressed by the pattern A 1 + ...+ A N. Internally, patterns are implemented
by subsequently invoking the matcher for pattern A until it fails, taking the associativity
of the binary operator into account, resulting in a list of matches which are stored in an
internal variable A.

strategy cancelsum

cases * |- A 1 + .. + A N = B 1 + .. + B M

proof

L1: C 1 + .. + C N = D 1 + .. + D M

A 1 + .. + A N = B 1 + .. + B M from L1 qed

with

foreach I in 1..N where (not (member ‘‘A I’’ ‘‘B’’)) C I

= A I

foreach I in 1..M where (not (member ‘‘B I’’ ‘‘A’’)) D I

= B I

Listing 14: Illustrating dynamic patterns

Listing 14 shows a strategy that uses dynamic pattern matching constructs A 1 + ..

+ A N and B 1 + .. + B M to capture the finite sum. Internally, such structures are
destructured, and its members stored in a corresponding list A and B. Based on these lists,
new dynamic constructs C and D are constructed, which correspond to filtered versions of
A and B, respectively. The filtered lists have the same length than the original lists, but
contain error elements at those positions at which the filter function failed. During term
construction, the failure elements are removed.

As second example, we consider an extension of the declarative strategy maximafac-

torabs in the context of the so-called limit domain. One heuristic of the limit domain
to bound factors is to reduce the problem that the product βγ is arbitrarily small to the
problem of showing that β is arbitrarily small and γ can be bounded. This heuristic is
called factor bounding and described (in [Bee98], p. 77f) as follows :

“The following rule is stated for simplicity using only two factors, but the rule
is implemented for a product of any number of factors.

Γ, |α| < δ ⊢ γ < M Γ, |α| < δ| ⊢ |β| < ǫ/(M + 1)

Γ, |α| < δ ⊢ |βγ| < ǫ

When this rule is implemented, we take M to be a fresh meta-variable, and
forbid to M all the variables that are forbidden to δ. In the present implemen-
tation, the rule is used only when δ is a meta-variable.”

While factorization has already been considered in Listing 11, dynamic patterns allow us
to further analyze the result of the factorization and to express the factor bounding as
the continuation of a successful factorization.

The grammar for the extended language constructs is shown in Figure 10.5. Binary
patterns (<binoppat>) can be used in places where previously only < form> was allowed.
Proof steps (< step>) are extended by the < foreachstep> construct, and assignments
by the foreach assignment (< foreachass>). These extensions will allow us to specify a
variant of the factorbound method in a convenient way (see Listing 15).

204

10.2. A DECLARATIVE LANGUAGE FOR DECLARATIVE STRATEGIES

<binoppat> ::= <pattern> <binop> .. <binop> <pattern>
< listaccess> ::= (< listterm> | <var>) (<var> | <number>)
< listterm> ::= < listdel> .. < listdel>
< listdel> ::= <var> | <number> | <pattern>
<pattern> ::= <binoppat> | < listaccess> | < from>
< foreachexp> ::= foreach <var> in < listterm>

(where cond)?
< foreachstep> ::= < foreachexp> <steps> end
< foreachass> ::= < foreachexp> <var> <var>=<prog>

Figure 10.5: Dynamic matching constructs

Expression Meaning
A 1 + .. + A N finite sum with N summands
abs(A 1) * .. * abs(A N) product with N factors of the form abs()

(X 1 + Y 1) * .. * (X N + Y N) product of terms of binary sums
1 .. 5 list [1,2,3,4,5]
abs(A 1) .. abs(A N) list with N terms of the form abs()

Figure 10.6: Patterns using ellipses

Ellipses.

So far our constructs for matching and constructing terms are static in the sense that
their actual form was already determined at compile time. For example, a pattern of
the form lhs = rhs checks whether the input formula is an equality and binds its first
argument to lhs and its right argument to rhs. Dynamic Patterns on the contrary are
patterns that capture dynamic structures, such as all elements of a finite list. We support
a simple dynamic pattern, an ellipsis for binary operators, written A op . . . op A′, which
acts like a Kleene star, as well as a list pattern which is similar except that < op > is
omitted. Internally, such dynamic patterns are represented as lists, whose length is stored
in an additional variable. To individually access the lists, we provide an accessor function
. That is, A n denotes the n-th element in the list A. If n is a variable, then n is called
access variable. In the current implementation, patterns are restricted to simple patterns,
which are patterns that unify under a substitution σ whose domain consists only of access
variables. Patterns can be used both in conditions, as left-hand side of assignments, as
well as in proof script terms. Some examples are shown in Figure 10.6.

The foreach construct

The foreach construct provides a simple form of iteration over a list of values obtained
from a dynamic pattern. It can be used to construct statements in the proof script
language as well as to construct a list of schematic variables. Its expansion rules are
shown in Figure 10.7, grouped into the expansion rules to expand foreach within a proof
script, and the expansion rules to expand foreach in assignments. Note that in case of
assignments a list containing all produced values is constructed, which has always the
length of the list over which it is iterated. In the case that the condition evaluates to ⊥
a term false is inserted at the corresponding position.

205

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

strategy factorbound

cases

abs(LHS)<RHS,* ⊢ abs(GOALLHS) < GOALRHS

where (and (variable-eigenvar.is "GOALRHS")

(metavar-is "RHS")

(some #’(lambda (x) (term= "LHS" "x")) "Y 1 .. Y N"))

with Y 1 * .. * Y N = (maxima-factor "GOALLHS")

j = (termposition "LHS" "Y 1 .. Y N")

->

proof

L1: GOALLHS= Y 1 * .. * Y N by abeliandecide

foreach i in 1..N where (not (= "j" "i"))

Y j <= MV j by linearbound

end

L2: abs(GOALLHS)=abs(Y 1 * .. * Y N) from L1

.<= abs(Y 1) * .. * abs(Y N)

.< MV 1 * .. * MV N

.<= GOALRHS

qed

with foreach i in 1..N

M i = (if (= "i" "j") "RHS" (make-metavar (term-type "RHS")))

Listing 15: Dynamic pattern matching and proof script generation

Illustration of the Strategy

We now illustrate our new strategy by means of an example. We consider the problem of
proving limx→3

x2−5
x−2

= 4. After expanding the definition of lim, the proof state consists

of the two goals ǫ > 0, |x − 3| <?δ ⊢ |x2−5
x−2

− 4| < ǫ and ǫ > 0 ⊢?δ > 0. The declarative
proof script is shown at the top of Listing 16, where the declarative tactic factorbound

(see Figure 15) is not yet processed.

Processing the factorbound-statement expands it and results in the following steps:

1. The pattern of the cases condition is matched, yielding the following binding:
{LHS 7→ x− 3, RHS 7→?δ, GOALLHS 7→ x2−5

x−2
− 4, GOALRHS 7→ ǫ}

2. To be able to evaluate the where condition, the first with part is evaluated. This
results in the following factorization: Y1 ∗ . . . ∗ Yn = (x − 3) ∗ (1

x−2
) ∗ (x − 1).

Internally, a list Y = [(x − 3), (1
x−2

), (x − 1)] is generated, n is bound to 3. In the
next assignment, j is bound to 1 by looking up x− 3 in the list of factors.

3. The conditions of the where part evaluates to true

4. The with part of the proof is evaluated, generating a list M = [?δ, ?MV 1, ?MV 2]
of length 3.

5. The proof part is expanded and inserted, resulting in the proof script shown at the
bottom in Figure 16.

206

10.2. A DECLARATIVE LANGUAGE FOR DECLARATIVE STRATEGIES

〈PS; Γ; listterm〉 → [e1, . . . , en]
〈PS; Γ;
iterate var in [e1, . . . , en] (where c)?exp →֒ S

〈PS; Γ; foreach var in listterm (where c)? exp end 〉 →֒ S

〈PS; Γ; iterate var in [](where c)? exp end 〉 →֒ ǫ

〈PS; Γ ∪ var = e1; exp〉 →֒ S1 〈PS; Γ; iterate var in [e2, . . . , en] exp〉 →֒ S2

〈PS; Γ; iterate var in [e1, . . . , en] exp〉 →֒ S1 S2

〈PS; Γ ∪ var = e1; exp〉 →֒ S1
〈PS; Γ ∪ var = e1; c〉 → ⊤ 〈PS; Γ; iterate var in [e2, . . . , en] where c exp〉 →֒ S2

〈PS; Γ; iterate var in [e1, . . . , en] where c exp〉 →֒ S1 S2

〈PS; Γ ∪ var = e1; c〉 → ⊥ 〈PS; Γ; iterate var in [e2, . . . , en] where c exp〉 →֒ S2

〈PS; Γ; iterate var in [e1, . . . , en] where c exp〉 →֒ S2

〈PS; Γ; listterm〉 → [e1, . . . , en]
〈PS; Γ; iterate ass in [e1, . . . , en] (where c)?prog〉 → Γ′

〈PS; Γ; foreach var in listterm (where c)? name var = prog︸ ︷︷ ︸
=:ass

〉 → Γ′

〈PS; Γ ∪ var = e1; ass〉 → Γ′

〈PS; Γ ∪ var = e1; c〉 → ⊤
〈PS; Γ′\(var = e1); iterate var in [e2, . . . , en] where c ass〉 → Γ′′

〈PS; Γ; iterate var in [e1, . . . , en] where c ass〉 → Γ′′

〈PS; Γ ∪ var = e1; c〉 → ⊥ 〈PS; Γ; iterate var in [e2, . . . , en] where c ass〉 → Γ′

〈PS; Γ; iterate var in [e1, . . . , en] where c ass〉 → Γ′

Figure 10.7: Expansion of the foreach construct

10.2.4 Discussion

While it has been recognized that the declarative style of a proof has many advantages
over the procedural style, current state of the art proof assistants do not provide tools that
generate declarative proof scripts or parts of them automatically. Instead, the complete
proof script must be written manually by the user. The general techniques developed in
this section provide new foundational ideas to overcome this deficiency. This contributes
both to the community of interactive theorem proving and the community of proof plan-
ning, as they can both be used in an interactive, as well as in an automatic setting. We
have shown how to automate the declarative style of proof by introducing the notion of
a declarative strategy, which is defined as an extension of a declarative proof language
and combines the advantages of the procedural and declarative style of proof. As a con-
sequence, proof strategies can be specified within the proof document in a language that
the user is already familiar with. Stylistic choices, such as the granularity of the resulting

207

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

theorem th1: limx→3
x2−5
x−2 = 4

proof

subgoals

subgoal |x2−5
x−2 − 4| < ǫ using A1:ǫ > 0 and A2:|x− 3| <?δ by factorbound

subgoal ?δ > 0 using ǫ > 0
end by limdefbw

qed

theorem th1: limx→3
x2−5
x−2 = 4

proof

subgoals

subgoal |x2−5
x−2 − 4| < ǫ using A1:ǫ > 0 and A2:|x− 3| <?δ

proof

L1:x2−5
x−2 − 4 = (x− 3) ∗ (1

x−2) ∗ (x− 1) by abeliandecide

|x− 1| ≤?MV 1 by linearbound

| 1
x−2 | ≤?MV 2 by linearbound

L2: |x2−5
x−2 − 4| ≤ |(x− 3) ∗ (1

x−2) ∗ (x− 1)| from L1

. ≤ |x− 3| ∗ | 1
x−2 | ∗ |x− 1|

. <?δ∗?MV 1∗?MV 2

. ≤ ǫ
qed

subgoal ?δ > 0 using ǫ > 0
end by limdefbw

qed

Listing 16: Declarative proof script of the example before and after processing the call
of the declarative tactic factorbound

proof scripts, naming of important formulas that are expected to play a major role in
the subsequent proof, or the choice between forward and backward steps can easily be
expressed within the language. Therefore, declarative strategies contain additional infor-
mation that cannot easily be expressed within the procedural strategies. Moreover, they
allow for a new kind of subgoal resulting from the refinement of proof steps. As a conse-
quence, they are particularly suited to express abstract proof plans, which, for the first
time in the literature, is expressed as a partially specified declarative proof script with a
precise semantics. Of course, this does not mean that all strategies must be declarative:
It is the combination of declarative and procedural strategies which makes the approach
powerful.

From a proof planning perspective, we have established a new format to encode com-
mon patterns of reasoning in the form of declarative strategies, which is a main issue when
trying to automate human problem solving behavior. In particular, declarative strategies
provide a major means for global search control in the spirit of proof planning. The fact
that the majority of the knowledge is declaratively encoded in an intermediate language
within the proof document is a major step to increase the usability of proof planners by
users, as well as to provide a possibility to evaluate proof planning systems, as all knowl-
edge becomes explicit. We have shown how it is possible to capture dynamic structures
in the declarative style in the form of dynamic patterns, and how to express a dynamic
continuation subsequently. At the same time, we support local control knowledge to be
incorporated. From a conceptual point of view, the separation of the strategy language
from the programming language plays an essential role in the overall design of our sys-
tem. It provides benefits both for the maintenance of proof planning systems, but also

208

10.3. RELATED WORK

for the runtime behavior, as optimizations can easily be incorporated and local decisions
are treated locally. A key design of the language is to provide general constructs and
combinators to encode common patterns of reasoning, while providing a possibility to
encode local heuristics locally in the underlying programming language.

10.3 Related Work

To the best of our knowledge, no equivalent tactic language exists that combines all our
features of our approach. In particular, there is no tactic language supports queries that
take advantage of the theory structure. To allow for a detailed comparison with existing
approaches, we therefore consider the following three components of our language sepa-
rately: The query language used within procedural strategies, the declarative language to
encode procedural strategies, and finally, the declarative language to encode declarative
strategies.

10.3.1 Math Search and Mathematical Knowledge Retrieval

The need for querying mathematical repositories came up when they became large and
their maintenance important. Searching and retrieving of mathematical knowledge in
these data bases has been studied for several proof assistants. We subsequently present a
selection of related approaches that appear to be the most important ones.

MML Query

MML Query [BR03] addresses the problem of querying knowledge from the Mizar Math-
ematical Library (MML) and to present this knowledge in a readable format to the user
in the form of a hyperlinked HTML document. Similar to our approach, the knowledge is
classified into different categories, such as articles, definitions, theorems, function symbols,
but also notations, which is currently not supported within our approach. The language
is essentially based on extracting information from terms, such as their function symbols,
and comparing the result with a desired outcome. While this is also possible within our
language, pattern matching and the use of the resulting binding within the query is not
supported in MML. Rather, predefined accessors are provided, such as the right-hand side
of a definition, which can easily be defined in the form of a declarative pattern within our
language. Distances between articles or theories are not considered within MML Query.

MoMM

MoMM [Urb06] is a tool for the fast retrieval of matching theorems from MML. It is used
to (i) find theorems in the data base that complete a partial justification, i.e., complete
a proof command ϕ by A1, A2 to ϕ by A1, A2, Th, and (ii) to check whether a proved
theorem exists already in a more general form in the library. To that end, theorems and
partial justifications are translated to clauses and a subsumption check is invoked. If it
succeeds, a message is issued to the user, who in turn can complete the justification or
remove the less general theorem from the library. Within our work, the functionality
(i) can be achieved by querying all inferences that close the given proof situation, the
process including the completion of the statement could even be automated. In contrast,
queries in Mizar cannot be used within the proof checker, and the proof checker cannot
be extended by user-defined strategies. Let us point out here that our proof scripts are

209

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

more structured than those in Mizar, as we have arguments from to specify a context,
and by to specify a strategy/inference, while in Mizar only a single construct by to
collect facts and assumptions is used. The selection of subsuming theorems within the
library ((ii)) has not yet been considered within our context, as our language is intended
to support proof development rather than maintenance of the library. Due to the size
of our libraries, we do not use sophisticated indexing techniques, which however, could
easily be integrated within our framework as an optimization.

LSI-based Search in Alcor

In the context of the Alcor [Cai05] user interface for Mizar, the technique of latent
semantic indexing (LSI) has been applied (see [CG07]). Even though it is acknowledged by
the authors that the success of the approach is difficult to judge and further refinements are
needed, we list the approach here, because it represents an interesting approach that might
become more relevant in the future. The main advantage of LSI over other approaches is
that similar documents can be found, even if the concrete terms of the query do not occur
in the document. Given a set of documents and a set of terms, LSI works by computing
a matrix ∆, in which the entry aij corresponds to the relevance of term j in document
i. Using the singular value decomposition, the similarities between a query term and a
document can now be computed in a vector space of smaller (user defined) dimension.
For an overview of LSI see [Ros00].

HELM, Whelp and Matita

Whelp [AGC+04] was developed as a semantic search engine for the Coq library in the
context of HELM [APCS01], a project which aims to combine Semantic Web techniques
with formal mathematics. It supports four kinds of queries, “match <pattern>” to dis-
plays the result of seeking for all statements that match the specified pattern, “instance
<pattern>” to display all statements that are instances of pattern, “hint” to retrieve
statements that can be applied to a given goal, and “elim” to retrieve induction principles
for a given type. Whelp does not provide language features to take the theory hierarchy
into account, nor does it allow the use of variable bindings from the pattern matching
in a meta-level condition. The proof assistant Matita [ACTZ07] uses the Whelp search
engine in its automation realized by a tactic called “auto” to find a subset of theorems
worth consideration according to the current context.

The Coq system itself provides only limited searching functionality such as the com-
mands Search, SearchAbout and SearchPattern [BC04]. Similar to our approach, syntactic
patterns can be specified. However, as for Whelp, meta-level conditions that use variable
bindings from the selector part are not supported. Moreover, the language cannot be used
within tactic expressions. Previous retrieval of lemmas was based on type isomorphisms
[Del99], where the general idea was to use the type as search pattern and to carry out
comparisons modulo a certain equivalence.

10.3.2 Procedural Tactics

Almost all proof systems provide constructs to perform search in the form of procedural
tactics in the tradition of the LCF system. One major point in which their implemen-
tations differ is the handling of meta-variables and whether only a single goal or the
complete context are accessible. A related discussion can be found in [ARC09]. The
main focus in our work is on the intermediate language to feature the document-centric

210

10.3. RELATED WORK

approach of mathematics, which is only supported within Coq’s tactic language Ltac,
but has also been realized in the context of term rewriting systems, such as Elan, Aps,
Maude, or Stratego.

Compared with existing work, one main feature of our approach is that the strategies
can be specified within the proof document. The query language, which is a major
component of our language, is non standard and gives a new dimension and perspective
in the specification of tactic languages. We consider the theory environment in which the
proof construction takes place as a data base and provide an explicit query mechanism
to retrieve knowledge items from this environment, in particular proof operators. The
retrieved knowledge items can be annotated with additional control information such as
matching conditions. Building proof strategies on top of this query mechanism allows
the specification of the proof operators to be used within a proof strategy based on
their properties. This way, proof strategies automatically adapt to new contexts when
the theory changes. Moreover, the possibility to explicitly provide a backtrack context
which can individually be enriched by further backtrack conditions seems to be new. We
also give a precise semantics of the language, which is not the standard in the context
of tactic languages. Similarly to our approach, a non-deterministic meta-interpreter for
proof methods has been given in the context of λClam [RSG98]. Finally, the specification
of meta-level goals in an extensible language are not supported.

Ltac:

Regarding intermediate tactic languages, our approach is similar to Coq’s Ltac [Del02],
which is an intermediate language intended to deal with small parts of proofs the user
may like to automate locally. However, there is no formalization of the semantics of Ltac.

Ltac introduces conveniences of higher-level programming languages to the tactic script
language which are independent from the underlying programming language and is similar
in spirit to our aims. More specifically, Ltac provides pattern matching against the current
goal, and our syntax for sequent patterns |- is inspired from it. Ltac also supports to
match subterms and our syntax [t] is also the same here, except that we also allow
to impose the polarity of the subformula supposed to match by [t]+ or [t]-. A real
extension of our language are the means to bind results of arbitrary computations to
local script variables as well as the pattern syntax with ellipsis, which probably could be
included in Ltac. The query mechanism, and thus the possibility to adapt to the context in
which the tactic is executed, is not present in Ltac. Finally, there is no language construct
to trigger conditional backtracking.

Aps, Elan, Maude, and Stratego:

Several strategy languages exist for rewriting systems. The general idea is to provide
a language to specify a class of derivations the user is interested in by controlling the
rule applications. For example, most languages provide constructs to describe preferred
application position of rewrite rules, such as bottom-up, top-down, leftmost-innermost or
leftmost-outermost. Depending on the language, these are either defined by a combination
of low-level primitives or build-in primitives. On a second layer, the languages provide
constructs to express choice and sequencing, and recursion. Prominent examples are
Aps [Let93], Elan [BK97, BKKR01], Maude [MOMV05], and Stratego [Vis01].

Similar to our work, these systems provide a declarative tactic language which is
independent of the underlying implementation language of the system. Choice, sequencing
and recursion operators are standard and thus comparable to our language. However,

211

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

these languages stay at the term level and do not provide constructs for sequents or
subgoal selection.

λClam and Isaplanner:

In [Ric02] Richardson and Smaill present a non-deterministic meta-interpreter which gives
a semantics to methodical expressions in the context of the λClam system [RSG98].
Similar to tacticals, methodicals combine methods, which are abstractions from tactics
and are the planning operators within proof planning [Bun88]. Their meta-interpreter
works by stepwise unfolding a continuation, keeping track of the methodical expression to
be evaluated. In [Ric02] the language of methodicals is extended and a nondeterministic
variant presented, where choice points are pushed on a stack. Note that methodicals
are not allowed to backtrack. Similarly, each reasoning state in Isaplanner [Dix05],
which is a descendant of λClam, contains a continuation representing the next reasoning
technique to be applied, expressing in a sense the future of the evaluation.

In contrast to this work, we use continuations exclusively to maintain backtrack points,
rather than to interpret our language constructs. Moreover, we provide a language con-
struct to enrich proof strategies with backtrack conditions. Backtracking is then controlled
locally by the strategy. Only if the local strategy is not able to deal with the failure, the
failure information is passed back to the invoking strategy, which in turn has to react to
the failure. Moreover, as the backtrack conditions are passed down to more local strate-
gies, solutions which would be discarded by the top-level strategy are directly discarded
when being produced. Rather than interpreting the language, we rely on compilation
techniques to speed up the execution time.

10.3.3 Declarative Tactics

As mentioned in the introduction, very little research has been done on the automation
of the declarative style of proof. Besides the translation based approaches, which we have
discussed in Section 8.5, only Isaplanner directly produces declarative proof scripts.
Considering our dynamic matching constructs, a similar functionality is supported by
Acl2, however, in a procedural style.

Isaplanner

Closely related to our work is Isaplanner [Dix05]. Isaplanner generates proof plans
and uses Isar to represent them, that is, it also generates declarative proofs. It provides
a “gap” command to represent open subgoals together with the annotation of a technique
how to close such a gap. Compared to our approach, the main difference is that reasoning
techniques are written as ML functions, whereas we use the underlying declarative proof
language to specify the tactic. Moreover, our proof language differs from Isar by allowing
meta-variables, which are not supported by Isar, despite being supported by Isabelle.

Proof Methods in Ωmega

In the previous version of Ωmega, so-called proof methods were declaratively repre-
sented by proof schemas. Proof schemas were partial proofs in a natural deduction style
(see [HKC98]). In contrast to our approach, methods were implemented directly in the
programming language, no declarative proof language was used. Moreover, there was no
possibility to pass control information in the form of a continuation.

212

10.4. SUMMARY

ACL2

The matching part in case constructs of our tactic language is related to the extended
meta-functions in ACL2 [JKK+05] which allow to access the current goal clause. The
ACL2 meta-functions need to be proved correct in order to be usable by the ACL2 rea-
soner. From an LCF point of view, this is a way to include derived reasoning steps in the
kernel proof rules, thus extending the kernel rules. In contrast to this our approach re-
mains entirely in the LCF tradition since the declarative strategies generate proof scripts,
which still need to be evaluated by the underlying (LCF-based) proof script interpreter.
The possibility to perform arbitrary computations and bind the results to a term pat-
tern, like the call to maxima-factor in the strategy factorbound is close to ACL2’s
bind-free, which takes an arbitrary binding list and adds it to the local context. This is
also possible with our pattern approach by writing X 1 .. X N, which has the advantage
that the names of the local variables can be specified by the writer of the strategy. It
would be possible to accommodate the bind-free-style in the pattern syntax, but so
far we have not encountered situations where this was required. Moreover, the examples
presented in [JKK+05] also bind only one variable.

Mixed Initiative/Advisable Planning

Mixed initiative planning systems are systems in which humans and machines collaborate
in the development and management of plans. The idea is that by synthesizing the
strength of both men and machine to build plans more quickly, or more reliable plans, or
to be able to create plans which could not be found without the interaction of a human
user. Most systems support interaction for certain low-level operations, such as ordering
goals for expansion, selecting operators to apply, choosing instantiations for planning
variables [DT95, Wil93]. However, only an interaction at a higher abstraction level really
allows the human to efficiently cooperate with the planner. Sometimes, this style is called
advisable planning [Mye96], because the human gives only hints or sketches of how to solve
a given problem. Our approach falls into this category, as underspecified proof sketches
can be seen as an advice to the underlying proving system. By using declarative tactics,
this knowledge can even be stored and be made applicable in an automated setting. We
refrain from giving a detailed comparison with advisable planning systems here, as we
share only similar ideas at an abstract level.

10.4 Summary

In this chapter we introduced a strategy language to express generic and specialized rea-
soning procedures. Our language is independent of the underlying programming language
and allows the specification of proof strategies within the proof document (Contribution
A2(ii), Section 1.1), thus featuring the document centric approach which is not supported
by most proof assistants today. Moreover, it allows the user to express reasoning pat-
terns both in a bottom-up style as known from classical tactics, but also in a top-down
style as known from proof planning. Rich features to describe and classify proof states
in a declarative way as well as language constructs to control the search space including
their precise semantics have been defined. Finally, we introduced the new notion of a
declarative strategies, which takes advantage of the close correspondence of declarative
proof scripts and proof plans and supports the automatic generation of declarative proof
scripts.

213

CHAPTER 10. REASONING AT THE STRATEGY LEVEL: PROOF STRATEGIES

214

Part IV

Applications

215

11
Using Assertion Level for Tutoring

In this section, we describe the integration of Ωmega within a tutor system to re-
construct and verify proof steps uttered by students, as studied within the Dialog
project [BFG+03, BHKK+07a]. Thereby, we address the problem of how to deal with
ambiguous and underspecified proof steps, such as partial subgoals, which typically occur
within this scenario. Moreover, we sketch how our approach can be extended to detect
and analyze student errors and how to generate hints that can be given to the student on
demand.

11.1 Motivation and Context

Computer-based learning systems are increasingly popular since they allow for indepen-
dent learning and individualized instruction. The research and development of intelligent
tutoring systems (ITS) is a rapidly growing area and these systems are huge integrated
tools that combine domain specific knowledge, pedagogical methods, student models as
well as intelligent, user-adaptive tutoring components. However, although there exist
strong tools for teaching mathematics and to a certain extent mathematical computa-
tions, there are hardly any training modules for theorem proving in these tools. Only a
few attempts have been made to build dynamic proof tutoring systems.

The reason is that unlike for other kinds of mathematical exercises it is not sufficient
for an ITS to provide feedback only on the solution of a problem, i.e., on a full proof.
Rather, the ITS must provide feedback on intermediate stages of the proof, but in contrast
to other teaching domains, it is common for a proof problem to have different solutions.
Consequently, the standard ITS technique of pre-authoring solutions (including problem-
and situation-specific hints) are unsuited – if not unfeasible. Rather, there is a need for
dynamic techniques that allow the assessment of the student’s proof steps on a case-by-
case basis and to generate the appropriate feedback. For tutoring theorem proving, the
feedback can take the form of confirming correct steps, drawing the student’s attention to
errors, and offering domain specific hints when the student gets stuck. Thus the envisioned
scenario for tutoring theorem proving is that the student is free to build any valid proof
of the theorem at hand, and each proof step is analyzed in the context of the partial proof
constructed so far. In case the tutor is asked to give a hint, the hint is generated in the

217

CHAPTER 11. USING ASSERTION LEVEL FOR TUTORING

context of the current proof and is therefore exactly tailored to the situation in which the
hint was requested. Note that this approach is compatible with the so-called buggy rule
approach [BV80], in which typical errors are modeled by so-called buggy rules which also
detect typical student errors.

The framework in which our research has been carried out is the Dialog project
[BFG+03, BHKK+07a], which had the final goal of natural tutorial dialog between a
student and a mathematical assistance system. In our scenario, we suppose a student
is taking an interactive course in some mathematical field within a web-based learning
environment, such as ActiveMath [MS05], the system developed at the DFKI by Er-
ica Melis and her research group. ActiveMath is a generic web-based learning system
that dynamically generates interactive (mathematical) courses adapted to the student’s
goals, preferences, capabilities, and knowledge. It comes with several desirable features
such as: user modeling, user-adapted content selection, sequencing, and presentation;
support of active and explorative learning by external tools; use of (mathematical) prob-
lem solving methods, and reusability of the encoded content as well as interoperability
between systems, which can be accessed within the architecture ofDialog. The Active-
Math learning environment is equipped with user modeling and monitoring facilities and
maintains a dynamically updated student model (SM) containing information about the
axioms, definitions, theorems (hence the assertions) and the proof techniques the student
has studied and mastered so far. We also assume an idealized student model (ISM) set
up by the author of each learning unit, which specifies the mathematical material that a
student ideally should know after studying the unit.

In the course of a tutorial session in Dialog, the student’s task is to build a proof
by performing natural language utterances which may contain proof steps. These are
dynamically evaluated in order to generate feedback and hints. The typical workflow of
such a dialog move is depicted in Figure 11.1. The student’s input, which may contain
natural language, is analyzed to get a formal representation of the proof step. This step
in turn is given to the domain reasoner, which tries to reconstruct and thus verify it.
The reconstruction is further analyzed, and a didactic teaching module decides on and
generates feedback in an abstract form. Finally, this abstract feedback is translated into
natural language and shown to the student.

student utterance annotated step Proofs

NL Feedback Feedback

NL analysis Checking

Analysis

NL generation

Figure 11.1: Workflow of a dialog move

In the following, we focus on the mathematical domain reasoning. The analysis of
the student’s natural language utterances itself is a very challenging area which we will
not consider here (see [BHKK+07b] for details on the problem). Instead, we assume the
existence of an NLP module that can deliver the formula that the student intended to
utter, together with a proof step type containing information about the context of the
formula, such as whether the formula is intended to represent a new goal or fact. For
possible approaches to such an analysis we refer to [HW05, Wag10, WBH+09]. Note
that this does not necessarily mean that the obtained information is unambiguous and

218

11.2. A CORPUS OF MATHEMATICAL TUTORIAL DIALOGS

complete. The more likely and, from our point of view, more interesting case is that the
proof step statement is incomplete, in the sense that information necessary to construct
a formal proof has been left out. This comprises not only information about how many
or what steps were employed, or which of the assumptions or derived formulas were used,
but also relevant subgoals which the student wants to tackle later on and which are not
mentioned. From a formal point of view, the latter are the most difficult to handle, as
they make a statement logically incorrect and therefore need a special treatment.

Note that an incomplete proof step is not necessarily a faulty proof step: when writing
proofs, humans typically omit information they consider unimportant or trivial. Simply
noting that a proof step is false or incomplete is an inadequate basis to generate useful
hints for the student. Moreover, it is desirable to provide feedback for the step immedi-
ately. It has been shown that immediate feedback has a positive effect on the performance
of the student [HT07, MRM+95]. Anderson observes a declined learning rate as a conse-
quence of deferred feedback [ABB93].

11.2 A Corpus of Mathematical Tutorial Dialogs

Our approach to the verification of proof steps is motivated by phenomena found in two
corpora of tutorial dialogs, collected in two studies between students and experienced
mathematics teachers following the Wizard-of-Oz paradigm [Kel83]. The goal of the
experiments was to collect data on the use of natural and mathematical language in
a tutorial interaction and on the behavior of students and tutors with respect to the
theorem proving task. While the first experiment focused on linguistic aspects, the second
experiment investigated mathematical domain reasoning tasks and linguistic phenomena
in tutorial dialogs. Due to its focus on domain reasoning, its more comprehensive corpus
and its higher actuality, we use the second experiment as a basis for the evaluation of our
algorithm.

11.2.1 Corpus of the Second Experiment

After having seen some preparatory material introducing the theory of binary relations,
students were asked to solve four exercises in a session with the tutorial system. The
collected corpus contains the data of 37 subjects. The thirty-seven experiment sessions
include a total of 1917 dialog turns (980 by the wizards and 937 by the students). The
students tried maximally four different exercises each. However, since the duration of the
experiment session was limited to two hours, some students did not have the opportunity
to do all exercises. The fourth exercise was considered a “challenge exercise”, and therefore
it was expected that only some students would attempt it. On average, each student
attempted 2.7 exercises (i.e., we have collected a total of 100 exercise-subdialogs). Tutors
rated each proof step with respect to correctness, granularity (or proof step size) and
relevance to the current task.

Figure 11.2 shows several fragments of tutorial sessions in which the student has been
instructed to prove the theorem (R ◦ S)−1 = (S−1 ◦ R−1), where R and S are relations.
In the figure, S refers to a student turn and T to a tutor turn.

The approach taken by the student in the first example (Figure 11.2(a)) is to apply
set extensionality and then to show that the subset relation holds in both directions. The
student begins in utterance S1 by directly introducing a pair (x, y) in the set (R ◦ S)−1.
This is rated as correct by the tutor, who recognizes that the student wants to prove

219

CHAPTER 11. USING ASSERTION LEVEL FOR TUTORING

S1: Let (x, y) ∈ (R ◦ S)−1.

T1: Good. correct

S2: It follows that (y, x) ∈ (R ◦ S).
T2: That’s correct. correct

S3: Therefore ∃z ∈M : (y, z) ∈ R ∧ (z, x) ∈ S.

T3: Yes, that’s right. correct

S4: This implies: ∃z ∈ M : (z, y) ∈ R−1 ∧
(x, z) ∈ S−1.

T4: Your deduction is correct. You are on a good

way. correct

S5: It follows: (x, y) ∈ S−1 ◦R−1.

T5: Yes. Therefore it is shown that every ele-

ment from (R ◦ S)−1 already lies in S−1 ◦
R−1. correct

S6: Now let (x, y) ∈ S−1 ◦R−1.

T6: O.k. correct

S7: ⇒ ∃z ∈M : (x, z) ∈ S−1 ∧ (z, y) ∈ R−1.

T7: Yes. correct

S8: ⇒ ∃z ∈M : (z, x) ∈ S ∧ (y, z) ∈ R.

T8: This deduction is also correct. correct

S9: ⇒ (y, x) ∈ R ◦ S.
T9: This deduction is again correct. correct

S10:⇒ (x, y) ∈ (S ◦R)−1.

T10:Congratulations! With this you have shown

both inclusions. Your solution is now com-

plete. correct

(a) One sample proof dialog for the exercise (R◦S)−1 = S−1◦R−1 from the 2005 Wizard-of-Oz experiments
(reproduced from [BDSA07]).

S8: let (x, y) ∈ (R ◦ S)−1

T9: correct

S10: hence (y, x) ∈ (S ◦R)
T11: incorrect

(b) Example of a faulty proof step

S8a: we consider the subgoals

(R ◦ S)−1 ⊂ S−1 ◦R−1

and (R ◦ S)−1 ⊃ S−1 ◦R−1

S8b: first, we consider the

subgoal (R ◦ S)−1 ⊂ S−1 ◦R−1

(c) Example of backward steps

Figure 11.2: Examples of tutorial dialogs from the corpus

both directions separately and that the introduction of the pair (x, y) is useful due to the
definition of subset. The student continues the proof and finally solves the exercise.

Figure 11.2(b) shows a variant of the proof approach shown in (Figure 11.2(a)) con-
taining a faulty step. Whereas the first step is the same as in the previous proof, the
student interchanges S and R in the second step.

Two alternative ways that the student could have started the same exercise are shown
on the right in Figure 11.2(c). In S8a the student explicitly splits the proof into two
subgoals with an application of set extensionality. In S8b the same rule is applied, but
only one of the two resulting subgoals is explicitly presented.

11.2.2 Phenomena Observed in the Corpus

We analyzed those utterances from the corpus which contain contributions to the theorem
proving task. We were able to identify a number of general phenomena which must be
accounted for in order to correctly verify (or reject) the proof steps that students perform
and to maintain correct consistent representations of the proofs they are building.

Underspecification Some subset of the complete description of a proof step is often
left unstated. Utterance S8b in Figure 11.2(c) is an example of a number of different
types of this underspecification which appear throughout the corpus. The proof step in
S8b includes the application of set extensionality, but the rule is not stated explicitly, nor
are the arising subgoals specified. The student also does not specify which of the resulting
subgoals he is now proving and the existence of the other subgoal. Further, the number
of steps needed to reach this proof state is not given. Part of the task of analyzing such
steps is to instantiate the missing information so that the formal proof object is complete.

220

11.2. A CORPUS OF MATHEMATICAL TUTORIAL DIALOGS

Incomplete Information Proof steps can, in addition to issues of underspecification,
be missing information which is necessary for their verification by formal means. For
instance the utterance S8 in Figure 11.2(b) is clearly a contribution to the proof, but
since the step only introduces a new variable binding, there is no assertion whose truth
value can be checked. However, anticipating that the student is using the definition of
subset A ⊂ B ⇔ x ∈ A ⇒ x ∈ B allows us to determine that the new variable binding
is indeed useful. Utterance S8b is also a correct contribution, but the second subgoal is
not stated. However, this second subgoal is necessary to verify that proving the subset
relation is part of justifying the equality of the sets, since one subgoal alone does not
imply the set equality which is to be shown.

These examples are evidence that verification in this scenario is not simply a matter
of logical correctness, but must take into account for instance proof context.

Ambiguity Ambiguity pervades all levels of the analysis of the natural language and
mathematical expressions that students use. Even in fully specified proof steps an element
of ambiguity can remain. For example in any proof step which follows S8a, we cannot
know which subgoal the student has decided to work on. Also, when students state
formulas without natural language expressions, such as “hence” or “conjecture”, it is
not clear whether the formula is a newly derived fact or a newly introduced conjecture.
Again, this type of ambiguity can only be resolved in the context of the current proof,
and when resolution is not possible, it does not mean that the proof step is incorrect, but
the ambiguity must be propagated. This must be done by maintaining multiple parallel
interpretations, which are retained until enough information has been provided by the
proof context to decide whether they are still consistent. Note that we do not argue
that the tutor should accept ambiguous proof steps in general, but that the ability to
identify how such a step fits into the current proof context is certainly beneficial in order
to produce feedback.

11.2.3 Proof Step Types and Interface

The corpus shows that proof steps are embedded in utterances which carry information
about the type of the proof step which is important for its verification, such as the phrase
“we consider the subgoal” in utterance S8b in Figure 11.2(c). With the background in the
field of declarative proof script languages it is a natural choice to embed a single utterance
in such a language and to use it as a vehicle to interchange information between the NL
analysis module and the domain reasoner. Note that proof languages already provide the
possibility to indicate which assertions are to be used within the verification as well as
the places to which the assertions are applied to. However, while we can make use of
representations developed within the field of interactive theorem proving, the processing
of a proof step within the setting of tutorial dialog differs from the processing in a pure
verification setting with respect to the following points:

• In a pure verification setting, it is sufficient to verify a step. The verification itself
is usually not of interest and needs not to be further processed. In contrast, in a
tutorial setting we need to consider several, if not all, possible proofs of the given
step (and relate them to the knowledge of the student) and need to further analyze
the verification.

• In a pure verification setting, we can assume the user to be an expert in the problem
domain as well as in the field of formal reasoning. This has several influences on

221

CHAPTER 11. USING ASSERTION LEVEL FOR TUTORING

the processing model: (i) inputs can be expected to be correct and just need to be
checked, (ii) steps can lazily be verified until a (sub)proof is completed, (iii) feedback
is limited to checkable and not checkable.

In contrast, in a tutorial setting, the user is neither a domain expert nor an expert
in formal reasoning. The underlying mechanisms need to be hidden from the user,
direct and comprehensive feedback has to be provided at each step. Therefore, it is
for example a requirement to anticipate why the assumption is made, in contrast to
a lazy checking once the conclusion has been obtained.

• In a pure verification setting, we can assume the user to indicate when the proof of
a subgoal is finished (as usually done by so-called proof step markers in the proof
language). However, in the tutorial setting this information is implicit. Similarly,
we must be able to perform backward steps where some of the new proof obligations
have not yet been shown.

The types of proof step we consider are let, which introduces new variables, hence,
which indicates a forward reasoning step, subgoal, which indicates a reduction of a goal to
subgoals, assume to make an assumption necessary to conduct a proof by contradiction,
and conjecture to state a lemma. We additionally use trivial to claim that a proof goal
has been closed and back to undo a proof step. Using these steps, we can model the
example dialog shown in Figure 11.2(a) as shown in Figure 11.3.

s1: let (x, y) ∈ (R ◦ S)−1
s2: hence (y, x) ∈ (R ◦ S)
s3: hence ∃z ∈M : (y, z) ∈ R ∧ (z, x) ∈ S
s4: hence ∃z ∈M : (z, y) ∈ R−1 ∧ (x, z) ∈ S−1

s5: hence (x, y) ∈ S−1 ◦R−1
s6: let (x, y) ∈ S−1 ◦R−1
s7: hence ∃z ∈M : (x, z) ∈ S−1 ∧ (z, y) ∈ R−1

s8: hence ∃z ∈M : (z, x) ∈ S ∧ (y, z) ∈ R
s9: hence (y, x) ∈ R ◦ S
s10: hence (x, y) ∈ (S ◦R)−1

Figure 11.3: Sequence of proof step input for the Ωmega-Tutor generated from the
above example dialog.

11.3 Mental Proof States

After having fixed the representation for the input of a students utterance, the next step
in the workflow consists of verifying/rejecting the utterance of the student, based on the
previous development of the proof. Therefore, the possible states the student might be in
need to be represented and maintained. We call such a state mental proof state (MPS).

Initially, the MPS is unique and consists of the exercise given to the student. Given a
proof step s, the general idea of the reconstruction algorithm is to determine all possible
successor states which are consistent with the utterance s. Let us stress again that due
to ambiguity and underspecification several consistent successor states are possible (as in
the case of statement S8b shown in Figure 11.2(c)). Therefore, the verification algorithm
works on a list of MPS rather than on a single one.

222

11.3. MENTAL PROOF STATES

11.3.1 Representing the Possible MPS

As the PDS does already provide mechanisms to simultaneously represent several proof
attempts in parallel, it is natural to also use it to represent all of the possible MPS
the student might be in. More specifically, each agenda (see Chapter 6) determines one
possible MPS. Given a problem and a theory, the inferences are automatically constructed
from the formulas I and the initial PDS is constructed. The initial PDS consists of one
initial task T = Γ ⊢ ∆ where Γ contains the assumptions of the problem and ∆ is the proof
problem to be shown. The initial MPS is determined by the initial agenda, containing
only the initial task: A = 〈T ; ∅〉. The set of all consistent MPS is denoted by A.

Before explaining the checking algorithm in detail, we show the formalization of the
underlying theory in Figure 11.4.

theory woz2;

newtype relation;

newtype object;

define ∈:object× relation → o;
define (,):object× object → object;

define ⊂:relation× relation → o;
∀R,S.(R ⊂ S) ⇔ ∀x, y.(x, y) ∈ R⇒ (x, y) ∈ S);

define ∩:relation× relation → relation;

∀R,S, x, y.(x, y) ∈ (R ∩ S) ⇔ ((x, y) ∈ R ∧ (x, y) ∈ S);
define ∪:relation× relation → relation;

∀R,S, x, y.((x, y) ∈ (R ∪ S)) ⇔ ((x, y) ∈ R ∨ (x, y) ∈ S);
define −1:relation → relation;

∀R, x, y.((x, y) ∈ (R−1)) ⇔ (y, x) ∈ R);
define ◦:relation× relation → relation;

∀R,S, x, y.((x, y) ∈ R ◦ S) ⇔ ∃z.((x, z) ∈ R ∧ (z, y) ∈ S);
define trans:relation → o;

∀R.trans(R) ⇔ ∀x, y, z.(((x, y) ∈ R) ∧ ((y, z) ∈ R)) ⇒ ((x, z) ∈ R);
axiom "setr=" ∀A : relation, B : relation.A = B ⇔ ((A ⊂ B) ∧ (B ⊂ A));
conjecture "distributivity of composition over union"

∀R,S, T.((R ∪ S) ◦ T) = (R ◦ T) ∪ (S ◦ T);
conjecture "exercise w" ∀R,S.(R ◦ S)−1 = S−1 ◦R−1;
conjecture "velleman4-p179-3" ∀R.trans(R) ⇔ R ◦R ⊂ R;

Figure 11.4: Formalization of the background theory

11.3.2 Updating the MPS

Given a set of possible MPS A and a preprocessed utterance s, we must determine all pos-
sible successor states which are consistent with the utterance s. For the sake of simplicity
we only show how to determine the successor states of a single MPS A ∈ A, denoted by
ϕ(A). Combining the result for each A ∈ A gives the complete set of successor states.
If no agenda can provide a consistent successor state, i.e.,∪A∈Aϕ(A) = ∅, the step is
classified to be incorrect.

Given a proof step s to be checked and an agenda A ∈ A, ϕ(A) is determined in
four steps: (i) A depth limited BFS search is performed, in which the current task of
the agenda, denoted by current (A), is expanded1 (including some control knowledge to

1Note that without restriction we can assume that current (A) 6= ⊥ in (i) (otherwise we transform

223

CHAPTER 11. USING ASSERTION LEVEL FOR TUTORING

strategy tutor-let

repeat

with depthlimit=5, mode=bfs, level

using

select * from current as backward |-*

until [fact]^-{nopobs},*|-*

where (every #’(lambda (var) (eigenvar-is var)) (freevars fact))

(a) Checking of let steps

strategy tutor-hence

repeat

with depthlimit=5, mode=bfs, level

using

select * from current as forward *|-

until [fact]^-{nopobs},*|-*

(b) Checking of hence steps

Figure 11.5: Tutor strategies for hence and let

cut off irrelevant branches of the search space), resulting in a set of successor nodes, (ii)
from this, consistent successor nodes are selected and partial agendas are created from
them, (iii) the partial agendas are completed, and finally (iv) the PDS is cleaned. The
overall result is a confirmation of whether the step could be verified, along with the side-
effect that the PDS has been updated to contain exactly the possible MPS resulting from
performing the step. We now illustrate each step of the algorithm schematically.

. . .
. . .

.
. . .

. . .

Step (i) The node current (A) is expanded using a depth
limited BFS search. The depth limiter specifies how many
assertion steps2 the student is allowed to perform implicitly.
Intuitively we can think of this bound as reflecting the expe-
rience of the student, consequently it should be based on a
student model. Another possibility is to have a fixed bound
and to express the experience of the student only by available facts in the model. The
bound is needed to guarantee termination of the verification algorithm, which might oth-
erwise not terminate.

. . .
. . .

.
. . .

. . .

Step (ii) Whereas step (i), (iii), and (iv) are independent
of the proof step type c, step (ii) differs for each c. Therefore
we introduce a filter function Θc to filter consistent successor
states for each type c. We apply this filter function Θc to get
those successor states which possibly represent the student’s
MPS after applying the utterance. Note that in general there
may be several successor states satisfying Θc. To further re-
strict the consistent successor nodes only those with minimal distance to the expansion
node are stored. The filters are expressed within the strategy language as solution con-
ditions of the repeat construct. For the types introduced in Section 11.2.3 we define the
following filters:

the A into a set of agendas representing all possibilities to select a task in A).
2Note that the correspondence of student steps to calculus steps may vary for each calculus.

224

11.3. MENTAL PROOF STATES

let A node is classified by Θlet to be consistent if its corresponding task contains f as
a subformula with negative polarity, no conditions and the free variables of f have
been introduced. A negative subformula f of a formula F has no conditions if the
decomposition of F to obtain f in the sequent calculus introduces no branching and
f occurs on the left-hand side of the resulting sequent. The corresponding strategy
is shown in Figure 11.5(a).

hence A node is classified by Θhence to be consistent if its corresponding task contains
the introduced fact as a subformula with negative polarity and no conditions. The
search is restricted in the sense that only new facts are derived during the expansion
of the agenda. The corresponding strategy is shown in Figure 11.5(b).

subgoals Given the input subgoals s1 . . . sn the subgoal filter tries to find successor
nodes s1, . . . , sn in different branches such that each si occurs as a positive subfor-
mula in si. During the expansion, only reduction steps are allowed, i.e., steps that
reduce the current goal. The corresponding strategy is shown in Figure 11.6(b).

assume Assume works similarly to let, additionally it checks for proof by contradiction
(positive subformula ¬f) or contrapositive (positive subformula f). The correspond-
ing strategy is shown in Figure 11.6(a).

conjecture Conjecture starts a new proof tree and tries to prove the conjecture using
the currently available knowledge. If the conjecture could be proved, it is inserted
into the knowledge base and hence available for the main proof.

done Done is used to indicate that the proof is completed. It checks whether the current
goal(s) can be closed. The corresponding strategy is shown in Figure 11.7.

. . .
. . .

.
. . .

. . .

Step (iii) The agendas obtained from step (ii) can be partial,
i.e., not all subgoals that must be solved are in the agenda.
Such situations occur if the prover reduces a task to more
than one subtask, but the Θc does not select a node from
each branch. In this case, it is reasonable to assume that the
user will prove the arising subtasks later. In particular, he has
not performed any actions on the missing subtasks. Hence,
we extend the partial agenda by the tasks introduced by the reduction. We extend the
agenda as shown on the right. An example for this situation is step S8b in Figure 11.2:
The student specifies only one subgoal (R ◦S)−1 ⊂ S−1 ◦R−1, but to be logically correct,
the subgoal S−1 ◦ R−1 ⊂ (R ◦ S)−1 must also be proved. It is the latter subgoal that is
collected and inserted in the agenda.

Step (iv) Usually there will be many nodes which are generated by the
search but are rejected by the filter. All these nodes are removed from the
PDS, resulting in the proof state shown on the right.

225

CHAPTER 11. USING ASSERTION LEVEL FOR TUTORING

strategy tutor-assume

case ass of ¬ϕ ->

repeat

with depthlimit=5, mode=bfs, level

using

select * from current as backward *|-

until (or "[¬ϕ]^-{nopobs}"
"[ϕ]^+,*|-*")
"[¬ϕ]^+,*|-*")

default ->

repeat

with depthlimit=5, mode=bfs, level

using

select * from current as backward *|-

until (or "[ass]^-{nopobs}"

"[ass]^+,*|-*")

(a) Checking of assume steps

strategy tutor-subgoal

repeat

with depthlimit=5, mode=bfs, level,partial

task-solved=[subgoal]^+,*|-*

where (member subgoal subgoals)

using

select * from current as backward *|-

until (every #’(lambda (subgoal) (exists-solution subgoal solutions))

subgoals)

(b) Checking of subgoal steps

Figure 11.6: Checking strategies for tutoring

11.4 Example Verification

In order to illustrate how the verification algorithm works, we will step through the verifi-
cation of utterance S1 from Figure 11.2(a), beginning with the initial MPS and finishing
with the MPS extended by the proof step. The initial MPS is {〈⊢ (R ◦ S)−1 = S−1 ◦R−1
; ∅〉} and the proof step to be verified is let (x, y) ∈ (R ◦ S)−1.

Having expanded the current task (step (i), shown in Figure 11.8), we apply the filter
Θlet to find the set of newly-created tasks which are consistent with the given proof step.
Of the tasks in the tree, only the node containing the task Tk passes, since the formula
in the proof step appears on the left-hand side of the sequent. Now that we have found
the consistent successor tasks, we must complete all partial agendas (step (iii)). Because
the decomposition of the task T0 introduced a subgoal split, the task Tj must be proved
in addition to Tk. The resulting agenda is therefore {〈Tk, Tj ; ∅〉}, that is, Tk is now the
current task, and Tj is still to be proved. Finally in step (iv), we prune the nodes which
were rejected by the filter, resulting in the proof state shown in Figure 11.9. This becomes
the initial state for the verification of the student’s next proof step.

This example has illustrated the verification algorithm for a single agenda with a single
successor state. For ambiguous steps, that is steps which result in more than one successor
task after the filter in step (ii), we simply create a new agenda for each successor, and
maintain these in the set of agendas A. Step (iii) is done separately for each new agenda,

226

11.4. EXAMPLE VERIFICATION

strategy tutor-done

repeat

with depthlimit=5, mode=bfs, level

using

select * from current as close

union

select standard-simplify from base

until (is-solved agenda)

Figure 11.7: Checking of done

and only those nodes which do not occur in any agenda are pruned in step (iv). An
example of such an ambiguity is the verification of proof step S8a. Here two successor
agendas are created, {〈Ti, Tj ; ∅〉} and {〈Ti, Tj ; ∅〉}, differing only in which of the two tasks
is the current task.

For the case in which the current proof state already contains multiple agendas, the
entire verification process is carried out for each in turn. This is the point at which
ambiguities introduced in previous steps can be resolved: those agendas which do not
lead to successor states are deleted, and those which have successors are maintained. For
example, each proof step following S8a will belong to either the left or right branch of
the proof only, and will have no successor tasks in the other branch. Thus the agenda in
which the “wrong” current task had been chosen will be deleted.

11.4.1 A Note on the Search

To verify a step s uttered by the student a heuristic search is performed. Thereby, all MPS
are expanded, expecting to find a proof state that is consistent with the utterance s. In the
context of AI planning, one often differs between forward and backward planning. Forward
planning corresponds to an algorithm that expands the initial state (and subsequently
derived states) until one of the derived states contains the goal. In contrast, backward
planning starts with the goal state, which is usually only partially specified, and reduces
it to a set of new goal states by finding planning operators that achieve the goal and
trying to satisfy their preconditions.

With respect to this terminology, our search is a forward search in which the actions
are inferences and the states are agendas. We rely on a forward search due to the following
reasons:

• A given utterance s contains only very little information about the concrete shape of
the goal state. Given for example the statement let s, the only fact that is known is
that s occurs as an assumption in one of the successor tasks. Backward search would
correspond to the process of considering all inferences that introduce an assumption

T0 : ⊢ (R ◦ S)−1 = S−1 ◦R−1

Ti : ⊢ (R ◦ S)−1 ⊆ S−1 ◦R−1

Tk : (x, y) ∈ (R ◦ S)−1 ⊢ (x, y) ∈ S−1 ◦R−1 . . . Tl

Tj : ⊢ (R ◦ S)−1 ⊇ S−1 ◦R−1

Tm
. . . Tn

Figure 11.8: The expanded task after step (i) of verification (abbreviated).

227

CHAPTER 11. USING ASSERTION LEVEL FOR TUTORING

T0 : ⊢ (R ◦ S)−1 = S−1 ◦R−1

Ti : ⊢ (R ◦ S)−1 ⊆ S−1 ◦R−1

Tk : (x, y) ∈ (R ◦ S)−1 ⊢ (x, y) ∈ S−1 ◦R−1

Tj : ⊢ (R ◦ S)−1 ⊇ S−1 ◦R−1

Figure 11.9: The resulting proof state after verification.

that unifies with s. As the corresponding inference substitution can only partially
be derived, this approach introduces unknowns in the form of meta-variables which
are difficult to handle in a backward search and make many inferences applicable.
By relying on a forward search, this problem can be avoided.

• During the search, an invariant is that an agenda always represents a valid proof
state. By expanding a given proof state only by valid actions, it is guaranteed that
only reachable and consistent proof states are generated.

• The search algorithm can easily be formulated, and the resulting PDS can easily
be analyzed by subsequent modules (such as granularity and relevance).

• Faulty proof steps would lead to spurious states, for which we do not expect correct
inferences to be applicable.

There is the preconception that forward search is less efficient than backward search.
Note however that from a theoretical point of view the source of inefficiency is similar:
While a forward search might generate states which do not reach the goal, a backward
search might introduce states that cannot be reached from the initial state. Moreover,
if there is only very little information about the goal state, this approach might not be
applicable, as it is the case within our setting. Even in the context of classical planning,
forward state-space search has become a popular approach in AI planning within years.
This is due to the development of domain independent heuristics, leading to state-of-the-
art performance in many problem domains, including the classical Strips domain [Hof01],
optimal planning [HHH07], temporal metric planning [MBD03], nondeterministic plan-
ning [BKS06] to name a few.

Note further that even though our approach is based on forward search, it allows for
a variety of further optimizations, which have not been taken into account in the current
implementation:

• In the current implementation, there is no cycle checking or multiple-path pruning.
Cycle checking means that a path can be pruned if a state is generated which is
already on the path of the node. While we do not expect cycles when working
backwards from the goal, they are naturally generated when applying inferences in
forward direction (hence steps). Multiple-path pruning generalizes and subsumes a
cycle check. It allows the pruning of a new state if it has already been found before.

• The branching factor could further be refined by heuristics. For example, a rea-
sonable assumption is that new Eigenvariables are only explicitly introduced by
let statements. Thus, we could restrict the actions during forward exploration to
those not introducing new variables. Note that such a heuristic would still be domain
independent.

228

11.5. EVALUATION

(x, y) ∈ S−1 ◦R−1 ⊢ ”—”
Ax

(z, y) ∈ R−1 ∧ (x, z) ∈ S−1 ⊢ ”—”
Def◦

(y, z) ∈ R ∧ (x, z) ∈ S−1 ⊢ ”—”
Def−1

(y, z) ∈ R ∧ (z, x) ∈ S ⊢ ”—”
Def−1

(y, x) ∈ (R ◦ S) ⊢ ”—”
Def◦

(x, y) ∈ (R ◦ S)−1 ⊢ (x, y) ∈ S−1 ◦R−1
Def−1

(R ◦ S)−1 ⊂ S−1 ◦R−1
Def ⊂

(x, y) ∈ (R ◦ S)−1 ⊢ ”—”
Ax

(y, x) ∈ (R ◦ S) ⊢ ”—”
Def−1

(z, x) ∈ S ∧ (y, z) ∈ R ⊢ ”—”
Def◦

(x, z) ∈ S−1 ∧ (y, z) ∈ R ⊢ ”—”
Def−1

(x, z) ∈ S−1 ∧ (z, y) ∈ R−1 ⊢ ”—”
Def−1

(x, y) ∈ S−1 ◦R−1 ⊢ (x, y) ∈ (R ◦ S)−1
Def◦

S−1 ◦R−1 ⊂ (R ◦ S)−1
Def ⊂

⊢ (R ◦ S)−1 = S−1 ◦R−1
Def =

Figure 11.10: Annotated Ωmega assertion level proof for the example dialog.

• It seems natural to integrate domain dependent (but still complete) heuristics on
demand. For example, it appears reasonable to analyze the structure of the given
formula and to choose an appropriate specialized checking strategy accordingly.

• The structure of the generated nodes is not yet taken into account. A possible
extension is to make use of reachability heuristics and to estimate the costs to the
goal, e.g., by making use of symbol distances, or to perform a more sophisticated
difference analysis such as rippling.

• At each step, we can divide the set of available inferences into two categories: Those
that can possibly introduce the desired fact or goal and those which cannot. The
former can be determined by a static analysis, as they must unify/match with
the fact or the subgoal. Such an analysis could lead to a two step exploration,
only applying the inferences of the second category if no consistent state could be
generated by the inferences of the first category.

11.5 Evaluation

We have evaluated our verification module with 17 tutorial dialogs taken from the Wizard-
of-Oz corpus described in Section 11.2.1, containing a total of 144 proof steps. The steps
within a single dialog are passed to the verification module sequentially until a step that
is labelled as correct cannot be verified (using a proof search depth of four), in which case
we move on to the next dialog. We then compared the results of the automated proof
step analysis with the original correctness judgements given by the tutors.

Table 11.1 shows the result of running the algorithm on the corpus. Of the 116 correct
steps, 113 (97.4%) were correctly verified and we correctly classify 141 out of the 144 steps
(97.9%) as correct or wrong. For the remaining three steps the verification fails. This is
due to our restriction of the search space to either forward or backward search (at the
assertion level) for efficiency reasons. These steps are not captured by the current filter
functions because they require a mixture of both. It would be straightforward to allow
such a mixture, and we could easily implement a new filter function which would capture
these steps. However, we feel that these steps are exceptions and decided for the more
efficient variant. All steps in the example dialog (c.f. Figure 11.10) are correctly classified
as valid by our verification module (used with proof depth four) in less than 0.01 time on
a standard PC.

The main reason for the efficiency and the simplicity of our algorithm lies in the
fact that we directly search at the assertion level. Consequently, a small search depth is

229

CHAPTER 11. USING ASSERTION LEVEL FOR TUTORING

correctly rejected: 28/28
correctly accepted: 113/116
wrongly accepted: 0/144
not verified: 3/144

Table 11.1: Evaluation of the algorithm

sufficient to verify a correct proof step. Indeed, a search depth of four already suffices to
obtain the results shown above. In the example illustrated in Figure 11.10, it is even the
case that a depth limit of 2 would suffice to find the reconstruction. The nine student steps
(dark boxes) correspond to 14 reconstruction steps, which shows the close correspondence
between the reconstruction and the original input. Here, the formulas given by the student
are shaded. The number of assertion level steps required (13, excluding the automatic
Close steps) is still comparable to the number of proof steps as uttered by the student in
the original dialog (10), which provides evidence that the Ωmega assertion level proof is
at a suitable level of granularity. In particular this allows for a further analysis of proof
given by the student.

11.6 Possible Extensions

In the sequel, we discuss two extensions which are essential for a tutor system, namely
error detection and the generation of hints . We show how these extensions can easily be
integrated within our framework.

11.6.1 Error Detection

During a tutorial session, not all student steps are correct. A first kind of error, which is
easy to detect and to analyze, is a syntax error. Such errors can already be resolved by
error correcting parsers [SA99]. Similarly, type errors, such as using conjunction instead
of intersection on sets, are easy to find. However, there are also semantic errors, which
are much harder to detect and analyze. Suppose that in the verification phase no MPS
consistent with the filter corresponding to the input proof step can be derived within the
given bound. There are two possible causes: (i) The step was logically correct, but needs
more than n deduction steps to be verified, (ii) the step was wrong. So far, the verification
component can only provide the information that it was unable to verify the proof step.

In the sequel, we discuss three approaches which can simply be integrated into our
framework and which provide further information.

The Buggy Rule Approach

A frequent approach to detect student errors consists of analyzing common mistakes
and formulate so-called buggy rules [BV80]. Such an approach is for example taken in
LispIts [FAR84], Buggy [BB78], Slopert [Zin06], AlgeBrain [SRA99], and Active-
Math [Mel05]. The general idea is to extend the inferences I of the current theory by
inferences If representing typical errors in the domain. The approach fits in our frame-
work (without any further work) as follows:

When the filter Θc does not find any consistent successor states in step (ii) of verifica-
tion, the prover attempts to verify the proof step using the extended set of rules I ∪ If .

230

11.6. POSSIBLE EXTENSIONS

If this is successful then the student has made a mistake, and the prover can report the
concrete error.

For example, in the case of utterance S10 in Figure 11.2(b), the prover will not find
any consistent successor states for the call hence(s, r) ∈ R◦S starting from the proof state
generated by let(s, r) ∈ (R ◦ S)−1. However by adding either the inference (x, y) = (y, x)
or (x, y) ∈ R ⇔ (x, y) ∈ R−1 to the set of rules, consistent successor nodes can be found.
The tutorial environment can then check in the proof object which inference from If has
been used, and offer suitable feedback.

Although it is sometimes possible to collect common student mistakes by buggy rules,
the approach has two disadvantages: Buggy rules are usually labor-intensive to specify,
and they cannot deal with unforeseen misconceptions. Moreover, they are also cases in
which the student’s input representation is not correct. In such cases, the errors need to
be detected within the parser grammar or by type inference, that is, before the actual
reconstruction starts.

Integration of Model Generators

A variety of tools has been developed for finding finite models of first order logic (FOL)
formulas, such as Paradox [CS03], Finder [Sla94], Sem [ZZ95], Mace4 [McC03], Fal-
con [Zha96], Satchmo [ABEG95], and Fmset [BH98], to name a few. Given for example
the theory of groups and the assertion that all groups are commutative, they are able to
produce a counter-model of the assertion, i.e., a non-commutative group. This is done by
providing an interpretation for the involved function symbols which makes the assertion
false, which can be understood as a group table. Similarly, counter-models can be gener-
ated for other theories, such as the theory of binary relations. Note that in contrast to
the verification of a proof step, the counter-model provides us the information that the
given step is wrong. The approach requires a simple syntax translation of the current
proof state and the theory in the format of the model finder.

Similarity Measures and Weak Filters

Another possibility is to keep relying on the forward search and comparing the utterance
to the generated proof states, thereby trying to identify a proof state containing an asser-
tion that comes very close to the utterance. This can naively be done by weakening the
filter functions, for example by allowing for non-admissible substitutions3. More generally,
we can compute the distance between two formulas in a systematic way by computing the
tree distance between the formulas. Already in 1979, the nowadays generally accepted
similarity measure for trees, the so called tree-edit distance metric (ted), has been intro-
duced by Tai [Tai79] and a relative efficient algorithm proposed by Klein [Kle98]. An
overview of current literature about tree edit distance functions and several variants can
be found in [Bil05]. For the case of algebraic manipulations, some first attempts towards
the realization of similar ideas (in a much less systematic way) have been made in [Bou07]
and [PJ06].

11.6.2 Generating Hints

In a number of situations, for example after repeated student errors, the tutor can decide
to offer a hint to the student a long period of silence, or upon a direct request. When

3This is already sufficient to detect errors like those in utterance S10.

231

CHAPTER 11. USING ASSERTION LEVEL FOR TUTORING

T T1 T4 T5 T

T2 T3

Work-Backward Work-Forward Close-by-Logic

Def ⊂

Close-by-Definition

Figure 11.11: Hierarchical proof plan completing the proof of task T1

applying a socratic strategy, a tutor gives hints through which students achieve self-
explanation rather than simply providing answers. Students are encouraged to think for
themselves and construct their own solution to the task at hand rather than relying on a
solution presented to them by the tutor.

In [HMAE96] it has been shown that the content of hints is context sensitive, i.e.,
depends on all interactions performed so far. A natural extension of our dynamic analysis
approach is to also dynamically generate hints once the student gets stuck. This can
be done by completing the proof the student has started and subsequently generating
suitable hints from the resulting solution. Hints generated in this fashion respect the steps
previously entered by the student and thus contribute to the socratic teaching method.

In keeping with the socratic approach to tutoring, the student should receive hints
which are initially as abstract as possible. This leaves the student to perform the actual
concrete steps that the hint has requested, leading to better knowledge construction. If
the student is still stuck, subsequent hints should refer to smaller subtasks of the proof,
becoming increasingly close to the fully-specified assertion level step. In the sequel, we
show how this idea can naturally be realized by relying on the hierarchical structure
of the completed proof in the form of the PDS. The following example illustrates the
mechanism:

Example 11.6.1. Within the running example, suppose that the student starts the proof
applying the definition of set equality, yielding two subtasks

T1 :(R ◦ S)−1 ⊂ S−1 ◦R−1 (11.1)

T ′1 :S
−1 ◦R−1 ⊂ (R ◦ S)−1 (11.2)

and requests a hint for the task T1. A possible completion of the proof, encoded in the
strategy “Close-by-Definition”, consists of expanding all definitions and then using logi-
cal reasoning to complete the proof. “Close-by-Definition” relies on three sub-strategies,
“Work-Forward”, “Work-Backward” and “Close-by-Logic”. “Work-Forward” works on
the assumptions of the current task and mainly expands definitions. “Work-Backward”
tries to simplify the current goal by applying definitions. “Close-by-Logic” applies logical
reasoning, such as performing case splits, to close the task it was applied to.

The resulting hierarchical proof object represented in the PDS is shown schematically
in Figure 11.11. The task T1 has three outgoing edges, the topmost two corresponding to a
strategy application and the lowermost corresponding to an inference application, respec-
tively. Internally the edges are ordered with respect to their granularity. In the example the
most abstract outgoing edge of T1 is the edge labeled with “Close-by-Definition”, followed
by the edge labeled with “Work-Backward”, both representing strategy applications. The
edge with the most fine-grained granularity is the edge labeled with “Def ⊂” and represents
an inference application.

232

11.7. DISCUSSION

A PDS-view extracts from a given PDS a proof at a specific level of granularity by
selecting one proof step, i.e., one outgoing edge, for each node. Thus a PDS-view is a
part of the PDS without hierarchies.

By selecting the edges “Work-Backward”, “Work-Forward”, and “Close-by-Logic”, we
obtain a flat graph connecting the nodes T1, T4, and T5. A more detailed proof-view can
be obtained by selecting the edge “Def ⊂” instead of “Work-Backward”. In this case the
previously single step leading from T1 to T4 is replaced by the subgraph via T2 and T3.

After completing the proof attempt, the resulting PDS can be used to generate several
hints for the proof situation the student is in. For the hint generation there are two
important dimensions to be considered: the vertical and the horizontal dimension. Once
the vertical dimension has been fixed by selecting an appropriate PDS-view, the resulting
flat proof of a specific granularity can be analyzed to extract a sequence of hints, for
example by analyzing any intermediate state between the student state and the goal,
such as the first step. The hint obtained in this way can then be verbalized and be shown
to the user. This decision is based on the current user model and particularly on its
mastery level for the corresponding concept: the higher this value the lower the level of
detail used to display the hint.

In the situation above, we assume to select exemplary the lowest level of granularity,
and the first proof state to extract a hint. This already allows the generation of three
hints, such as

• “Try to apply Def ⊂”

• “Try to apply Def ⊂ on (R ∪ S) ◦ T ⊂ (T−1 ◦ S−1)−1 ∪ (T−1 ◦R−1)−1”

• “By the application of Def ⊂ we obtain the new goal (x, y) ∈ (R∪S)◦T ⇒ (x, y) ∈
(T−1 ◦ S−1)−1 ∪ (T−1 ◦R−1)−1”

Selecting a more abstract level would result in hints like “Try to work backward from the
goal”, or “Try to apply definitions on the goal and assumptions”.

11.7 Discussion

It turned out to be very useful to search for the proof directly at the assertion level,
because it reduces the gap (and thus the search effort) between the informal proof steps
given by a student and the formal proof object reconstructed by the domain reasoner.
This is in contrast to the development of classical search based theorem provers and the
corresponding investigations of logical calculi, which are mainly driven by correctness,
completeness and efficiency issues. They do not operate on a “human-oriented level”,
but almost always on the “machine code” of some particular logical calculus, such as
resolution. Hence they are much more difficult to use to determine the general appro-
priateness of a proof step proposed by a learner in a tutorial context, even though this
is still possible (see [Gol73] for an approach).For instance, teachers of math may reject
a proof step even though it is logically correct as it may lack other desirable properties,
in particular, if the steps are of inappropriate size or just irrelevant. While there are
algorithms to transform low level proofs, such as resolution, to natural deduction or even
the assertion level, they cannot deal with incomplete information, such as underspecified
subgoals or assumptions. Note that by leaving out a subgoal, the resulting statement
becomes logically wrong and is thus not checkable. The possibility to be able to deal

233

CHAPTER 11. USING ASSERTION LEVEL FOR TUTORING

with such problems is thus a key novelty of our work. Due to its abstract level, the proof
object provides an understanding of the student step which in turn is useful for further
analysis of the step, such as granularity or relevance. Another motivation for high-level
reasoning is efficiency: Resolution of ambiguity and underspecification seems easier to be
conducted at the abstract rather than at the detailed level. This is because each choice
at the abstract level usually corresponds to several choices at a lower level. The use of
uninformed search techniques at the low level to analyze and reconstruct abstract steps
can thus quickly lead to unacceptable system response times for complex problems.

Also the compilation technique proved to be very useful. While in a previous version
the verification needed on average 1s for each proved student step with a search time of
several seconds for wrong steps, the speedup by a factor of more than thousand makes
the verification a push-button technology.

Finally, let us discuss the importance of the strategy language within our scenario. The
fact that the complex verification strategies could easily be specified within the language
in a compact way illustrates the power and flexible application areas of the developed
language. Beyond that, the developed strategy language provides an important means to
express domain knowledge, such as solution strategies, in a clean compact way, as well
as with a precise semantics. As it is mostly independent of the underlying programming
language, it can also be used by non experts.

11.8 Related Work

A classification and a detailed overview of relevant tutor systems has already been given
in Section 2.4.2. Within our context, we are mainly interested in systems that support
tutoring in logic or more abstract mathematics, and that are built on a solid logical
foundation. We subsequently compare our work with representatives of these categories.

Apros: The Apros project (see [SRL+06] for an overview) provides an integrated envi-
ronment for strategic proof search and tutoring in natural deduction calculi for predicate
logic. It consists of four modules: the proof generator which implements strategic proof
search based on the intercalation calculus, the proof lab, which builds the interface to
the students, the proof tutor, which generates hints for students that are stuck, and a
web-based course containing additional learning material. Proofs are represented in a
Fitch-style diagram and constructed by adding/removing steps to the diagram. This
means that the student enters stepwise the proof at the calculus level, and that the per-
formed steps can therefore immediately be checked. If a student requests a hint, the
proof generator initiates the construction of a complete proof, which the tutor analyzes
to extract a hint. The first hint provided at any point in the proof is a general strategic
one, and subsequent hints provide more concrete advice as to how to proceed. The last
hint in the sequence recommends that the student take a particular step in the proof
construction.

Compared withApros, which focuses on the teaching of one particular logical calculus
(without equality), the main difference with our approach is that we focus on the teaching
of more abstract assertion level proofs, which are rather independent of a particular logical
calculus. Proofs are essentially constructed in a declarative proof language in the form
of proof sketches. If the information provided by the student is complete and correct,
the verification is just a simple checking, as in the case of Apros. However, within
our setting, this is not the typical situation. Rather, it is common that the information

234

11.8. RELATED WORK

provided by the student is incomplete, as humans typically omit information they consider
unimportant or trivial. Therefore, reconstruction of the missing information is necessary,
as well as an analysis of the complexity of this information.

The generation of hints is similar to our approach in the sense that (i) it is dynamic
and based on a completion of the student’s proof attempt, and (ii) that it can be pro-
vided at several levels of granularity. However, we do not focus on a particular calculus,
neither on a fixed proof strategy. Therefore, our framework requires sophisticated theory
management, including the specification of domain-specific problem solving knowledge in
the form of assertions and proof strategies. Within our framework, this has been real-
ized using sophisticated knowledge representation techniques, which were developed in the
context of proof planning within the last decades. In addition, it requires a student model
to maintain the knowledge the student is supposed to know and to learn, as developed by
Schiller in [Sch10].

Epgy: The Epgy theorem proving environment aims to support “standard mathemat-
ical practice” both in how the final proofs look as well as the techniques students use to
produce them (see [SN04] p. 227). To verify the proof steps entered by a student, Epgy
relies on the CAS Maple and the ATPOtter. The system is domain independent in the
sense that the course authors can specify the theory in which a particular proof exercise
takes place. Proof construction works by selecting predefined rules and strategies from
a menu, such as definition expansion or proof by contradiction, or by entering formulas.
For computational transformations, a so-called derivation system is provided. Once a
statement is entered, the student selects a set of justifications that he thinks is sufficient
to verify the new statement. The assumptions together with the goal and implicit hidden
assumptions are then sent to Otter with a time limit of four to five seconds to verify
the proof step.

Compared to our approach, the main similarities are that the system aims at teaching
ordinary mathematical practice independent of a particular calculus. Moreover, it uses a
theorem prover as domain reasoner to dynamically verify statements entered by a student.
The authors acknowledge that the use of a classical ATP to verify proof steps has the
following drawbacks ([SN04] p. 253-254): (i) “One weakness of the Theorem Proving
Environment is that, like most computer-based learning tools, it does not easily assess
the elegance and efficiency of the student’s work”. (ii) “In the current version of the
Theorem Proving Environment, students are not given any information as to why an
inference has been rejected. Students are told generally that an inference may be rejected
because it represents too big a step of logic, because the justifications are insufficient to
imply the goal, or because the goal is simply unverifiable in the current setting. From
our standpoint, Otter’s output is typically not enough to decide which is the reason of
failure”.

In contrast, our approach relies on using the assertion level as a basis to verify state-
ments uttered by a student. This results in an abstract proof object, which can further be
analyzed, for example with respect to granularity, as done by Schiller [Sch10], or to extract
hints on how to proceed if the student gets stuck. In particular, the problem whether
specified assertions were used in the derivation can trivially be solved. We believe that
limiting the runtime of Otter does not reveal any information about the complexity of
a particular proof step. While it would also be possible to analyze the resulting proof
object, we believe that it is not at an appropriate level of granularity and does not reflect
a human-style of proof construction. Even for natural deduction calculi, a recent inves-
tigation [SBdV06] into the correspondence between human proofs and their counterparts

235

CHAPTER 11. USING ASSERTION LEVEL FOR TUTORING

in natural deduction points out a mismatch with respect to their granularity.
Moreover, our approach is more flexible with respect to the following aspects: (i)

Due to the use of a proof language, the student is more flexible in entering the solution.
(ii) It is compatible with the buggy rule approach. Note that this is not the case for
classical automated reasoners, in which an inconsistent theory makes everything provable.
In contrast, our approach allows for a full control over buggy rules, such as limiting
their application to a single step. (iii) Our approach supports incomplete information
such as a missing subgoal. Note that by leaving out such a subgoal, the resulting proof
obligation becomes unverifiable and can therefore not be supported by a classical ATP.
Finally, our approach is extensible and supports the specification of domain-dependent
proof strategies, as well as checking whether a particular step can be checked by a specified
proof strategy. This is not possible in the work cited above.

Tutch: Tutch (see [ACP01]) is a proof checker that was originally designed for natural
deduction proofs in propositional logic. However, it was later extended to also feature
constructive first order logic to support human oriented proof steps. To that end, a
simple proof language that allows steps at the assertion level was developed, as well as
proof strategies that allow for an efficient proof checking for proofs within that language.
This is similar to our approach, which also relies on a proof language as well as a dynamic
reconstruction of the proof steps. Because of these similarities, we focus on the details
of the proof language and the strategies to verify the proof steps. The proof language
features the following proof commands:

• The triv construct justifies a proposition that follows “trivially” by the application
of some logical rules or a local lemma. It is implemented by finishing, which applies
right rules as well as the rules ⊥L and ∧L. The right rules have been modified to
not modify the available assumptions: ⇒R does not introduce a new assumption A
when applied to a goal A ⇒ B, and parameters introduced by ∀R are not allowed
to be used as witnesses for an existential variable of an assumption. Within our
setting, this strategy corresponds to a repeated application of the axiom rule with the
restriction that the premise must be instantiated on the left-hand side of the sequent
(possibly deep), and conclusion must be instantiated on the right-hand side of the
sequent (possibly deep), and disallowing parameters of the goal in substitutions.

• The lemma command allows the application of a lemma that is either globally avail-
able or locally inside the current proof context to derive a new fact l. The specified
lemma or a formula of the current context is chosen. The fact l can be decomposed
using ⇒R and ∀R, or focusing can be applied to the selected lemma. Focusing de-
composes a formula by applying left rules, while preconditions arising due to ⇒L

are solved using the finishing strategy. The focusing strategy is designed to capture
the idea that in mathematical practice, one instantiates all universal quantifiers and
all preconditions at once when applying a lemma.

Compared to our approach, the lemma command corresponds to a forward step
as modeled by hence. However, our approach is more general as it allows sev-
eral lemmas to be applied at once to derive a new fact. Focusing corresponds to
the derivation of an inference rule, with the difference that the derivation can be
stopped at any time. In contrast, we decide in favor for a specific decomposition,
which is computed once and for all and then cached. This has the advantage that
the resulting proof becomes more abstract, and that it becomes possible to attach
control information to the resulting macro step.

236

11.9. SUMMARY

• The assume command introduces a new assumption to the proof context. It is
verified as follows:

(i) If the goal is of the form A ⇒ C and the assumption to be checked is A, it
adds the hypothesis A and introduces C as the new goal.

(ii) If the goal is of the form ∀x.A and the assumption is x, then it introduces x
as new parameter to the context.

For introducing assumptions, our approach is more flexible as it can also be used
if the goal is not an implication or universally quantified. As an example of this
situation consider the first step of Figure 11.2(a).

• The case syntax formalizes case distinction and existential elimination. For case
distinctions, the verification is divided into two phases: determining the split tree of
a formula the case distinction is over, and checking that the stated cases cover the
leaves of split tree. The split tree is the derivation obtained by repeatedly applying
∃L,∨L to the split formula A. Splitting ⊥ succeeds immediately.

In Tutch, all cases of the case distinction need to be specified to be able to process
the script. Missing a case is similar to missing a subgoal, both features are supported
by our approach. However, they give rise to proof alternatives which cannot be
maintained by Tutch.

11.9 Summary

In this chapter we demonstrated that the abstract nature of the assertion level provides
an efficient possibility to reconstruct ambiguous and incomplete student proof steps by a
simple depth bounded forward search that cannot be automated by pure logical means
(Evaluation E1, Section 1.1). A novelty of our work is that underspecified subgoals or
assumptions are supported in the student’s input. The underspecification is resolved
if possible and propagated to the next student move otherwise. Known approaches to
detect typical student errors can easily be integrated within our framework. Moreover,
our abstract proof reconstructions naturally provide the possibility to further analyze a
student step, e.g., to check its relevance or granularity, which is very difficult in other
calculi.

237

12
A Theorem Prover Operating at the

Assertion Level

To investigate the usefulness of proof search directly at the assertion level we take the
domain of naive set theory, because : (i) It has been noted in [McM91] that “set theory is
a notoriously difficult domain for automated reasoning programs”. In particular, classical
reasoners based on resolution typically suffer from the lack of goal directedness and reach
their limits due to the combinatorial explosion of the search space. Within set theory, this
explosion occurs rather quickly as the concepts such as set equality, the subset relation,
union and intersection are defined with respect to a single predicate membership. Even
worse, translating such axioms into clausal normal form can create quite many redundan-
cies in the search space, as well as obscure the logical structure of the formulas to some
extend, such that subsequent proof search becomes very difficult, if not impossible (see
for example [GS05]). As a consequence, even simple theorems can often not be proven
automatically. Therefore, there is a high potential for assertion level proof search within
this domain. (ii) In [HF96] Huang motivates proof presentation at the assertion level
with an example taken from set theory. Indeed, most problems in set theory can easily
be presented and naturally understood by students. (iii) There are many problems of
set theory available in the TPTP problem library [Sut09]. In contrast to purely logical
domains, the problems consist of a problem formulation and a set of axioms or definitions.
Moreover, within the domain there are several rather simple problems as well as problems
which cannot be solved by the majority of state of the art theorem provers.

12.1 The Problem Domain

The test problems we consider are universally quantified statements involving equality =,
inequality (6=), or the subset relation (⊂) between sets constructed with the set operations
union (∪), intersection (∩), set-difference (\), power set (P), sum (

⋃
), and product (

⋂
),

as well as the concept of the empty set ∅. All problems as well as the formalization
of the underlying concepts are taken from the TPTP library, which is a library of test
problems for automated theorem proving (ATP) systems. As a test bed we chose all
problems within the category which are in nonclausal form and which use the following

239

CHAPTER 12. A THEOREM PROVER OPERATING AT THE ASSERTION LEVEL

axiomatization (axiom set SET006+0.ax):

∀A,B.A ⊂ B ⇔ ∀x.x ∈ A⇒ x ∈ B (12.1)

∀A,B.A = B ⇔ A ⊂ B ∧ B ⊂ A (12.2)

∀X,A.X ∈ P(A) ⇔ X ⊂ A (12.3)

∀x,A,B.x ∈ A ∩ B ⇔ x ∈ A ∧ x ∈ B (12.4)

∀x,A,B.x ∈ A ∪ B ⇔ x ∈ A ∨ x ∈ B (12.5)

∀x.x /∈ ∅ (12.6)

∀b, A,E.b ∈ E\A⇔ b ∈ E ∧ b /∈ A (12.7)

∀X,A.X ∈
⋃
(A) ⇔ ∃Y.Y ∈ A ∧X ∈ Y (12.8)

∀X,A.X ∈
⋂
(A) ⇔ ∀Y.Y ∈ A⇒ X ∈ Y (12.9)

Moreover, we exclude problems that require proper equality handling (= is formalized as
predicate set equal). This way, we obtain 44 test problems, shown in Table 12.1. Each
entry of the table contains the name of the problem, a difficulty rating (taken from the
TPTP version 4.0.1), and the problem statement. The difficulty rating is a real number
in the range [0, 1], where 0.0 means that all state-of-the-art ATP systems can solve the
problem (the problem is easy), and 1.0 means no state-of-the-art ATP system can solve
the problem (the problem is hard).

Problem Diffi-

culty

Formalisation

SET002+4 0.48 ∀A.A ∪ A = A
SET012+4 0.65 ∀A.∀E.A ⊂ E ⇒ E\(E\A) = A
SET013+4 0.52 ∀A.∀B.A ∩B = B ∩ A
SET014+4 0.48 ∀A.∀X.∀Y.X ⊂ A ∧ Y ⊂ A⇔ X ∪ Y ⊂ A
SET015+4 0.52 ∀A.∀B.A ∪B = B ∪ A
SET019+4 0.00 ∀A.∀B.A ⊂ B ∧ B ⊂ A⇒ A = B
SET027+4 0.04 ∀A.∀B.∀C.A ⊂ B ∧ B ⊂ C ⇒ A ⊂ C
SET062+4 0.04 ∀A.∅ ⊂ A
SET063+4 0.22 ∀A.A ∩ ∅ = ∅
SET162+4 0.43 ∀A.A ∪ ∅ = A
SET199+4 0.52 ∀A.∀X.∀Y.A ⊂ X ∧ A ⊂ Y ⇔ A ⊂ X ∩ Y
SET143+4 0.83 ∀A.∀B.∀C.A ∩ B ∩ C = A ∩ B ∩ C
SET148+4 0.43 ∀A.A ∩ A = A
SET155+4 0.87 ∀A.∀B.∀E.A ⊂ E ∧ B ⊂ E ⇒ E\(A ∪ B) =

(E\A) ∩ (E\B)
SET156+4 0.87 ∀A.∀B.∀E.A ⊂ E ∧ B ⊂ E ⇒ E\(A ∩ B) =

(E\A) ∪ (E\B)
SET159+4 0.78 ∀A.∀B.∀C.A ∪ B ∪ C = A ∪ B ∪ C
SET169+4 0.87 ∀A.∀B.∀C.A ∩ (B ∪ C) = A ∩B ∪ A ∩ C
SET171+4 0.83 ∀A.∀B.∀C.A ∪ B ∩ C = (A ∪ B) ∩ (A ∪ C)
SET347+4 0.17

⋃
(∅) = ∅

SET355+4 0.17 ∀A.∀X.X ∈ A⇒ X ⊂ ⋃
(A)

SET358+4 0.96 ∀A.∀B.⋃(A) ∪ ⋃(B) =
⋃
(A ∪ B)

SET366+4 0.09 ∀A.∅ ∈ P(A)
SET372+4 0.96 ∀A.∀B.P(A ∩ B) = P(A) ∩ P(B)

240

12.2. THE SETTING

SET595+4 0.78 ∀A.∀E.A ⊂ E ⇒ (E\A) ∪ A = E
SET602+4 0.35 ∀E.E\E = ∅
SET603+4 0.48 ∀E.E\∅ = E
SET687+4 0.00 ∀A.A ⊂ A
SET689+4 0.09 ∀A.∀B.∀C.A ⊂ B ∧ B ⊂ C ∧ C ⊂ A ⇒ A =

C
SET690+4 0.91 ∀A.∀B.∀C.A∩B∪C = A∩(B∪C) ⇔ C ⊂ A
SET691+4 0.13 ∀A.A ⊂ ∅ ⇔ A = ∅
SET692+4 0.57 ∀A.∀B.A = A ∩ B ⇔ A ⊂ B
SET693+4 0.57 ∀A.∀B.A = A ∪ B ⇔ B ⊂ A
SET694+4 0.83 ∀A.∀B.P(A) ∪ P(B) ⊂ P(A ∪ B)
SET695+4 0.52 ∀A.∀B.∀E.A ⊂ E ∧ B ⊂ E ⇒ (A ⊂ B ⇔

E\B ⊂ E\A)
SET696+4 0.48 ∀A.∀E.A ⊂ E ⇒ (E\A) ∩ A = ∅
SET697+4 0.65 ∀A.∀B.∀E.A ⊂ E ∧ B ⊂ E ⇒ (A ⊂ B ⇔

A ∩ (E\B) = ∅)
SET698+4 0.87 ∀A.∀B.∀E.A ⊂ E ∧ B ⊂ E ⇒ (A ⊂ B ⇔

(E\A) ∪ B = E)
SET699+4 0.57 ∀A.∀B.∀E.A ⊂ E ∧ B ⊂ E ⇒ (A ⊂ B ⇔

A ∩ (E\B) ⊂ E\A)
SET700+4 0.52 ∀A.∀B.∀E.A ⊂ E ∧ B ⊂ E ⇒ (A ⊂ B ⇔

A ∩ (E\B) ⊂ B)
SET701+4 0.74 ∀A.∀B.∀C.∀E.A ⊂ E∧B ⊂ E ⇒ (A ⊂ B ⇔

A ∩ (E\B) ⊂ C ∩ (E\C))
SET702+4 0.61 ∀A.∀B.⋂(A) ∩ ⋂(B) ⊂ ⋂

(A ∩B)
SET704+4 0.26 ∀A.∀X.X ∈ A⇒ ⋂

(A) ⊂ X
SET705+4 0.04 ∀A.A ∈ P(A)
SET706+4 0.91 ∀A.∀B.∀C.C ⊂ B ∧ B ⊂ A ⇒ A\C =

(B\C) ∪ (A\B)

Table 12.1: Test problems from TPTP for the evaluation of the prover

12.2 The Setting

The search for a proof is directly performed on top of the assertion interface, with the
following parameters:

• The axiom rule (see 9.16) is restricted to literals. Application of the axiom rule
automatically generates alternatives for all possible closures as well as an alternative
where the literal is not used for closure.

• Literals that have been generated are maintained in a separate list to speed up the
proof search slightly by avoiding to check the applicability of expansion rules. Thus,
a proof state is a list whose elements have the following form:

l1, . . . , ln ⊲ Γ ⊢ ∆, ln+1, lm (12.10)

• All initial axioms of the theory are lifted to the level of inference rules.

241

CHAPTER 12. A THEOREM PROVER OPERATING AT THE ASSERTION LEVEL

• To avoid shifting of formulas that contain negations from Γ to ∆ we add rules to
expand negated occurrences of definitions. Note that these rules have exactly the
same effect as shifting the formula to the other side and applying the corresponding
rule.

• Free variables are introduced for unknowns, we use the δ+
+

(see [BHS93]): when
eliminating the universal quantification for some succedent formula ∀x.F , the rule
allows to take the same Skolem function for all formulas that are equal modulo
α-renaming to ∀x.F . Secondly, the arguments to the Skolem function are only all
free variables that actually occur in ∀x.F .

• Whenever possible, the goal formula is expanded. Otherwise, we expand the leftmost
literal in the antecedent, if this is not possible, we test the axiom rule and shift it
to the literal set otherwise.

• We use only rules that introduce terms that are smaller with respect to the symbol
ordering induced by the definitions, i.e., the defined concept needs to be instantiated.

• If an agenda cannot be closed, it is discarded and the next alternative is explored.

• For backward application, only the conclusion of the rule is instantiated.

For example, for the definition of subset, we use the following rules:

⊂1

[x ∈ A]
...

x ∈ B

A ⊂ B{∗} new(x) ⊂2

A ⊂ B{∗} x ∈ A

x ∈ B
⊂¬1

x ∈ A ¬x ∈ B

¬A ⊂ B{∗}

⊂¬2
¬A ⊂ B{−} x ∈ A

x /∈ B
new(x)

Let us stress the fact that formulas that introduce meta-variables must not be deleted to
guarantee that sufficiently many instances can be generated during the problem solving
process. Fairness is implemented by putting the formulas at the end of the antecedent
afterwards.

12.3 Benchmarks

The following table summarizes the results of running the assertion level prover as well as
a reference prover on an Intel(R) Core(TM)2 Duo CPU with 2.50GHz. In the experiments
we measure both the runtime as well as the number of clauses/sequents generated during
the proof attempt. We use the symbol ∞ to indicate that a prover was not able to find the
proof within a time limit of 300 seconds. Let us stress here that even if the number of the
generated sequents is very small in the case of the assertion level prover, this number does
not necessarily coincide with the proof length of the final proof. If several alternatives
need to be explored, the number of the actual proof is strictly smaller than this number.
As a reference point, we use the prover E [Sch02, Sch04], which is currently one of the
most efficient theorem provers based on a modified version of the superposition calculus
for equational clausal logic as described in [BG94].

242

12.3. BENCHMARKS

TPTP E 0.999-006 Longview2 Ωmega (fv,atom)

Problem Time [s] Clauses Time [s] #Seq.
SET002+4 7.628 416543 0.007 11
SET012+4 ∞ − 0.006 23
SET013+4 12.233 532208 0.005 17
SET014+4 ∞ − 0.007 53
SET015+4 9.161 468256 0.005 17
SET019+4 0.028 14 0.006 34
SET027+4 0.024 542 0.006 17
SET062+4 0.012 58 0.006 3
SET063+4 0.016 345 0.006 10
SET162+4 7.368 392258 0.005 11
SET199+4 ∞ − 0.006 50
SET143+4 ∞ − 0.006 33
SET148+4 12.577 543404 0.006 9
SET155+4 ∞ − 0.006 39
SET156+4 ∞ − 0.007 43
SET159+4 ∞ − 0.006 27
SET169+4 ∞ − 0.006 42
SET171+4 ∞ − 0.006 38
SET347+4 0.016 320 0.006 8
SET355+4 0.164 6560 0.006 10
SET358+4 ∞ − 0.007 82
SET366+4 0.020 65 0.005 4
SET372+4 ∞ − 0.006 56
SET595+4 ∞ − 0.006 22
SET602+4 0.016 344 0.005 10
SET603+4 11.401 510846 0.005 9
SET687+4 0.004 66 0.006 3
SET689+4 0.008 87 0.005 65
SET690+4 ∞ − 0.006 53
SET691+4 0.012 71 0.004 24
SET692+4 ∞ − 0.002 30
SET693+4 ∞ − 0.005 53
SET694+4 ∞ − 0.006 23
SET695+4 ∞ − 0.007 42
SET696+4 0.352 18504 0.005 16
SET697+4 0.556 17886 0.006 59
SET698+4 ∞ − 0.007 144
SET699+4 0.604 19768 0.007 46
SET700+4 0.020 522 0.006 39
SET701+4 0.640 18776 0.006 62
SET702+4 ∞ − 0.006 13
SET704+4 0.056 1650 0.006 11
SET705+4 0.004 65 0.006 4
SET706+4 ∞ − 0.006 70

243

CHAPTER 12. A THEOREM PROVER OPERATING AT THE ASSERTION LEVEL

12.4 Discussion

We see that our prover has a striking performance on the given problem domain. This is
remarkable, because the difficulty rankings indicate that several of the problems are very
hard to solve. For example, the problems SET358+4 and SET372+4 are both ranked
with 0.96. Moreover, it outperforms E with respect to runtime for most of the examples.
While the runtime is an indicator for the strength of the prover, what is equally impor-
tant within the interactive setting or the domain of tutoring is the number of generated
clauses/sequents. Indeed, we observe that the search space traversed by the assertion
level prover is much smaller than the search space traversed by the classical automated
theorem prover. This gives us an intuitive explanation for the efficient search behavior.
Let us stress here that the efficiency of the prover is only due to the organization of the
search space, as no advanced data structures have been used within the implementation.

Let us explain the reason for the efficiency on a technical level:

Goal-Directedness: The (automatic) lifting of formulas to inference rules induces a
goal directed proof search behavior. Without the use of inferences (and other heuristics),
an assertion is processed independent of the structure of the current goal. This is the case
in sequent and tableau systems, but also when basing the proof search on the connection
method. In contrast, an inference is only applicable if the goal state matches at least one
premise/conclusion. Moreover, instead of fixing the multiplicities beforehand, the use of
inferences adapts the multiplicities for the assertion automatically on demand, depending
on the shape of the current goal.

Without this goal-directedness, the decomposition of a formula can introduce unneces-
sary branching in the case that an assertion is expanded which is not needed subsequently.
This introduces a dependency on the input ordering of the formulas. In contrast, the
traversal of the proof search is completely determined by the structure of the goal, inde-
pendent of the order of the axioms. Moreover, unnecessary axioms can be added without
any impact on the proof search, as long as they do not match a goal formula. This is in
contrast to standard tableau methods which usually expand all formulas in round-robin
manner.

Avoiding Redundancy: In the domain of set theory, most of the axioms have the form
∀A1, . . . , An.F , that is several all-quantifiers occur in a row. Due to the handling at the
assertion level, intermediate subformulas generated by the decomposition of the formula
are not copied, reducing the number of formulas in the sequents and thus some kind of
redundancy. Note that in contrast, a proof search in the sequent calculus would require
to keep a copy of intermediate formulas to be able to adapt the multiplicity accordingly.

Inversion Principle: Within the theory of set theory, the inversion principle holds
for many inference rules. We say that a rule is invertible if the premises of the rule are
derivable iff the conclusion is. An example known from classical sequent calculus are the
rules ∧R and ∧L. Note that in the case of left rules we require that the principal formula
(A ∧B) of the rule to be deleted. Similarly, the handling of set equality and many other
rules obey the inversion principle. As a consequence, the search space can further be
restricted by deleting principal formulas after their use.

Reductive Behavior: The choice that new formulas need to be smaller with respect
to the ordering induced by the definitions has the effect that the problems are essentially

244

12.5. RELATED WORK

reduced to propositional problems.

Interestingly, our choices are sufficient to solve all considered problems within our prob-
lem domain. The underlying principle is that the rules allow for a saturation up to redun-
dancy as introduced by Bachmaier and Ganzinger in the context of resolution [BGML01].
The underlying idea is that a clause can be deleted if it is redundant with respect to
the other clauses, corresponding to invertibility of a rule. Recently, this approach has
been taken to the level of tableau calculi in [Gie06]. We are optimistic that this frame-
work allows for a proof theoretic investigation of the calculus, however, but leave this
investigation for further work.

12.5 Related Work

Muscadet: Muscadet is a prover that was initially designed to solve problems in set
theory, thereby imitating human problem solving behavior. It is “a knowledge-based sys-
tem [...] that uses methods which resemble those used by humans.” [Pas01]. Muscadet
uses a restricted version of forward chaining after the conclusion has been fully decom-
posed. Thereby it uses not only calculus rules of natural deduction, but also rules that
have either be put into the system or that have been generated by meta rules from ax-
ioms. Muscadet performs equally well on our test problems and can solve each of them
within 0.2s. This is because the rules generated by Muscadet are similar to those by our
prover. It is implemented in Prolog and makes use of the underlying highly optimized
data structures. The main differences to our approach are that (i) it does not support
meta-variables, (ii) does not create a human-readable output, (iii) is not as configurable
as our prover: The search strategy is hard-coded into the programming language. As the
search tree produced by Prolog is implicit, the solution as well as the search tree that has
been traversed cannot be analyzed. Moreover, the heuristics and inference mechanisms
have not been investigated from a theoretical point of view.

Theorema: ATheorema prover for Zermelo-Fraenkel set theory is presented in [Win06].
As for most provers in the context of the Theorema project, the set theory prover “aims
at generating automated proofs in human-like natural style” (see [Win06] p. 2). It is
shown that the set theory prover “generates proofs within a few seconds even for exam-
ples where other provers fail completely” (see [Win06] p. 23), with runtimes between 2.4
and 155.4 seconds on a 1500 Mhz CPU. As Mathematica is not open-source, we were
not able to evaluate the examples on our machine. Examples from the case study above
that were also proved by Theorema are: SET014 (3.2s), SET171 (4.0s), SET694 (5.5s),
SET698 (22.7s). Let us remark that the axioms corresponding to inference rules of the
provers have been removed manually from the problem description as they would allow
for redundant derivations which can also be obtained by the inference rules.

Let us now explain the architecture of the Theorema system: Proof search is or-
ganized by so-called special provers, which are sequential collection of inference rules.
These inference rules are implemented in the underlying programming language provided
by Mathematica. Given a set of special provers which are arranged in two levels, the
special provers from level 1 are tried left to right and the first applicable inference rule is
applied. If no such rule exists, all provers of the second level are tried, giving rise to alter-
natives. For set theory, four special provers have been developed: STP expands outermost
symbols in the goals, STKBR expands set-theoretic notions in the assumptions, STC
performs simplification by computation on finite sets, and STS applies special techniques

245

CHAPTER 12. A THEOREM PROVER OPERATING AT THE ASSERTION LEVEL

for instantiation of existential formulae in the proof goal. Together with TerminalND,
which detects terminal proof situations, they build the first level, and are arranged in
the following order: TerminalND, STKBR, STC, STP, STS. The second level is
constituted by BasicND and PND (for basic and general predicate reasoning), QR for
rewriting with quantified equalities, equivalences or implications in the knowledge base,
and CDP for the treatment of case distinctions. Let us remark that only STP, STKBR,
STC, and STS are set theory specific, the others are of a general nature.

As in our approach, Theorema relies on strategic knowledge to solve the problems
in set theory. It features higher-order logic and uses meta-variables to postpone the in-
stantiation of γ-variables. Moreover, it supports OR-alternatives during proof search.
The generated output is human-readable and the proof tree is explicitly modified by the
prover. The main difference to our approach is that the provers need to be hard-coded
within the programming language provided by Mathematica, while we offer an interme-
diate language to flexibly specify and modify search strategies. Theorema features the
implicational replacement theorem to provide some kind of deep application of inference
rules: If the knowledge base contains an assertion A ⇒ B, then B in the goal can be
replaced by A.

12.6 Summary

In this chapter we used the TPTP problem library to show that generic assertion level
reasoning is not only beneficial for proof presentation, but also for proof automation
(Contribution A1(iv), Section 1.1). Our testbed from the domain of set theory contains
difficult problems that cannot be solved by most state of the art reasoning systems.
Moreover, our experiments indicate that the structured use of assertions results in a goal-
directed search.

246

13
Statman Tautologies

What are the benefits we gain by relaxing the condition of the sequent calculus that
inference rules can only be applied at the top-level of formulas? We will see that deep
inference allows us to start a proof from subformulas, that is, from inside out. In contrast,
the sequent calculus requires a subformula to be extracted by applying decomposition
rules to the main formula, thereby spreading the context among different branches of the
proof tree. As decomposition of a goal in the sequent calculus essentially corresponds to
the computation of its clause normal form, this can result in a blowup in the number of
branches, and often results in a proof state that is not human-readable. Applicability of
the inference rules at any depth – as known from rewrite rules – enables shorter proofs
that are not available at the sequent calculus. However, at the same time, it also increases
the non-determinism in the proof search: with deep inference, the inference rules become
applicable at many more positions than in the sequent calculus. Let us point out that
it is generally easier to find a solution of a small depth in a search space with a high
branching factor than a solution of a high depth in a search space with a small branching
factor, which becomes apparent when comparing the numbers 210 and 102.

In this chapter, we study the so-called Statman tautologies in detail: While in the
sequent calculus (without cut), the proof size grows exponentially, the proof size with
our deep inference mechanism only grows quadratically. Thus, we obtain an exponential
speed-up. Even more interestingly, our annotation mechanism allows us to attach control
information in such a way that no search is performed at all. To that end, we introduce
the deep axiom rule

P : [Q]{nopobs, ∗}
C : [Q]{∗} (13.1)

and illustrate how this rule enables us to solve these tautologies – both in theory and
practice. Note that this is in contrast to other deep inference mechanisms, where it is
(i) not possible to attach such control information, and (ii) there are many choice points
that have to be considered when searching for a proof of a Statman tautology.

Let us now turn to the definition of the n-th Statman tautology Gn (n ≥ 1), which is

247

CHAPTER 13. STATMAN TAUTOLOGIES

defined as follows:

Fk =
k∧

j=1

(cj ∨ dj)

A1 = c1 B1 = d1

Ai+1 = Fi ⇒ ci+1 Bi+1 = Fi ⇒ di+1

Gn = ([[(A1 ∨B1) ∧ . . .] ∧ (An ∨ Bn)]) ⇒ (cn ∨ dn)

Recall that due to Statman’s theorem (see theorem (3.2.4)), the proof complexity is
exponential in the sequent calculus without cut. To get a better understanding of these
problems, we consider the cases n = 2 and n = 3 in more detail and show how the case
n = 3 can be reduced to the case of n = 2, using the axiom rule (13.1).

13.1 The cases n = 2 and n = 3

For n = 2, the problem is given by the following formula:

⊢
[
(c−1 ∨β d−1)

− ∧α
(
((c+1 ∨α d+1)

+ ⇒β c2)
− ∨β ((c+1 ∨α d+1)

+ ⇒β d−2)
−
)−]

⇒α (c2 ∨ d2)+ (13.2)

The formula is already annotated with uniform types and polarities to make its behavioral
structure apparent. Let us stress here the presence of the β-formulas, which give rise to
branching when decomposing the formula. However, by starting the proof from the inside
of the formula, we can avoid this branching and simplify the formula based on the axiom
rule stated above. Let us point out that this restricted version of the axiom rule does not
introduce proof obligations and can be understood as a form of simplification, as in each
step some occurrence of a positive formula is replaced by true.

In the case where n = 2, we can instantiate the conclusion C of the axiom rule with
(c1 ∨ d1), and find a position for the premise P that satisfies the conditions of the rule,
i.e., is in α-relation, such that no β-formulas appear on the path to its minimal common
parent node.

⊢
[
(c−1 ∨β d−1)

− ∧α
(
((c+1 ∨α d+1)

+ ⇒β c−2)
− ∨β ((c+1 ∨α d+1)

+ ⇒β d−2)
−
)−]

⇒α (c2 ∨ d2)+ (13.3)

Therefore, the application of the rule simplifies the task to

⊢
[
(c−1 ∨β d−1)

− ∧α (c+2 ∨α ((c+1 ∨α d+1)
+ ⇒β d−2))

]−
⇒α (c2 ∨ d2)+ (13.4)

where we have marked two complementary subformulas, indicating the next application
of the axiom rule, which yields

⊢
[
(c−1 ∨β d−1)

− ∧α (c+2 ∨α d+2)
]−

⇒α (c2 ∨ d2)+ (13.5)

which is equivalent to G1 (up to the name of the propositional constants) plus an addi-
tional assumption (c1 ∨ d1). Note that we have applied the axiom rule to a non-atomic
formula.

248

13.2. THE GENERAL CASE

Similarly, G3 can be reduced to G2 with an additional assumption by the following
sequence of axiom rule applications:

(c1 ∨ d1) ∧ [(c1 ∨ d1) ⇒ c2 ∨ (c1 ∨ d1) ⇒ d2]

∧ [[(c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ c3] ∨ [(c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ d3]]

⇒ (c3 ∨ d3) (13.6)

(c1 ∨ d1) ∧ [c2 ∨ (c1 ∨ d1) ⇒ d2]

∧ [[(c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ c3] ∨ [(c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ d3]]

⇒ (c3 ∨ d3) (13.7)

(c1 ∨ d1) ∧ [c2 ∨ d2]

∧
[[

(c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ c3
]
∨ [(c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ d3]

]

⇒ (c3 ∨ d3) (13.8)

(c1 ∨ d1) ∧ [c2 ∨ d2]

∧
[
[(c2 ∨ d2) ⇒ c3] ∨

[
(c1 ∨ d1) ∧ (c2 ∨ d2) ⇒ d3

]]

⇒ (c3 ∨ d3) (13.9)

(c1 ∨ d1) ∧ [c2 ∨ d2] ∧ [[(c2 ∨ d2) ⇒ c3] ∨ [(c2 ∨ d2) ⇒ d3]] ⇒ (c3 ∨ d3) (13.10)

which is equivalent to G2 (up to the name of the propositional constants) with the addi-
tional assumption (c1 ∨ d1).

The example shows how the deep application of the axiom rule avoids the blowup of the
problem in SK resulting from accessing the subformulas by applying the decomposition
rules, which can be seen as some form of normalization1.

13.2 The General Case

Let us now consider the general case Gn. We will prove that we can prove Gn in O(n2)
steps. We use the proof idea that has already been sketched above, namely to reduce Gn

to Gn−1 using the deep axiom rule.

Theorem 13.2.1. Given Gn, the size of the proof using the deep axiom rule (13.1) is
O(n2).

1Applying the SK rules to ⊢ A and collecting the branches leads to conjunctive normal form, whereas
applying the SK rules to A ⊢ results in a disjunctive normal form

249

CHAPTER 13. STATMAN TAUTOLOGIES

Proof. For the reduction of Gn to Gn−1, we have to consider the positive occurrences of
(c1 ∨ d1) in Gi+1. By construction, Gn has the form

Gn =
[([

(c−1 ∨β d−1)
− ∧α (A−2 ∨β B−2)

−
]
. . . ∧α (A−n ∨β B−n)

−
)− ⇒α (c+n ∨ d+n)+

]+
(13.11)

For i ≥ 2, each Ai as well as each Bi contains exactly one Fi−1 and therefore exactly one
occurrence of (c1 ∨ d1). As Ai and Bi have negative polarity, we have for n ≥ 2

Ai = (F+
i−1 ⇒β c−i)

− (13.12)

and
Bi = (F+

i−1 ⇒β d−i)
− (13.13)

Therefore, by the construction of Fi, all subformulas of Fi have positive polarity. Thus,
Gn contains 2(n − 1) positive occurrences of (c1 ∨ d1), thereby enabling 2(n − 1) axiom
rule applications, as (c1 ∨ d1) is α-related to Ai for i ≥ 2 via the smallest subformula
which contains both (c1 ∨ d1) and Ai, which is

[(
(c−1 ∨β d−1)

− ∧α (A−2 ∨β B−2)
−
)
. . . ∧

(
A−i ∨β B−i

)]
(13.14)

Moreover, as there is no β-formula this results in a rewrite rule (c1 ∨ d1)+ → 〈true+〉.
Notation 13.2.2. Let A be a formula with exactly one occurrence of the formula B+.
Then we denote with A\B the formula that is obtained by replacing B by true and applying
the following simplification rules:

A ∧ true → A true∧A→ A (13.15)

¬ true → false (13.16)

A ∨ true → true true∨A→ true (13.17)

true ⇒ A→ A A⇒ true → true (13.18)

Note that this replacement together with the subsequent application of the simplification
corresponds to the application of a resolution replacement rule that does not introduce any
proof obligations followed by the application of Core’s simplification rule.

Using notation 13.2.2, Gn can be reduced to

[(
(c−1 ∨β d−1)

− ∧α (A2\(c1 ∨ d1)− ∨β B2\(c1 ∨ d1)−)−
)

. . . ∧
(
A−n \(c1 ∨ d1) ∨β Bn\(c1 ∨ d1)−

)]
⇒ (cn ∨ dn) (13.19)

Note that for n ≥ 2

Ai\(c1 ∨ d1) = Fi−1\(c1 ∨ d1) ⇒ ci (13.20)

= F+1
i−2 ⇒ ci (13.21)

= A+1
i−1 (13.22)

where F+1
i−2 denotes Fi−2 where ci has been replaced by ci+1 and di by di+1. In summary,

we reduce Gn in n− 2 steps to the formula

[([
(c−1 ∨β d−1)

− ∧α (A+1
1
− ∨β B+1

1
−
)−
]
. . . ∧α (A+1

n−1
− ∨β B+1

n−1
−
)−
)−

⇒α (c+n ∨ d+n)+
]+

(13.23)

250

13.3. PRACTICAL EVALUATION

which is (modulo associativity) equivalent to

(c−1 ∨β d−1) ∧G+
n−1 (13.24)

Consequently, we need

1 +
n∑

i=2

2(i− 1) = n2 − n+ 1 (13.25)

axiom rule applications to solve Gn.

On the other hand, the sequent calculus rules for α-decomposition and β-decomposition
are admissible in the Core calculus (see [Aut03], p. 158). Therefore, propositional proofs
in the sequent calculus can easily be simulated within Core’s proof theory. Therefore,
proofs in the Core calculus have in the worst case the same complexity as their counter-
parts in the sequent calculus. Let us point out that the possibility to find shorter proofs
also introduces additional redundancy. The development of general techniques that avoid
some of this redundancy together with its theoretical properties is an interesting area for
future research but has not further been studied within this thesis. However, our experi-
ments in the next section will indicate that we can take advantage of the shorter proofs
in practice by relying on heuristics.

13.3 Practical Evaluation

Of course, the complexity result derived above is only a theoretical result, in the sense
that there exists a proof of size O(n2). In practice, there is the question of how difficult it
is to find this proof automatically. Therefore, we present empirical results based on two
different implementations. Both implementations use traversal functions which keep track
of the context and traverse the term structure to find two subformulas that unify and have
different polarities, as described in Chapter 9. Note that we do not have implemented
any indexing techniques, which could be used to speed up the traversal even more.

The first implementation is in Lisp and is purely functional. In particular, terms are
naively implemented without any structure sharing. As a consequence, equality between
two terms can only be decided by a complete term traversal. Hence, this could be even
more improved with this kind of standard technique. To be able to judge the possibilities
of our approach, we provide a second implementation, which is based on the program-
ming language C. While it is in principle possible to write very efficient Lisp programs
and for some benchmarks the runtimes are similar within both languages, a C implemen-
tation can be up to 10 times faster, depending on the problem2. Another advantage of
C is that many high performance libraries exists. One of them is the Aterm library (see
http://www.program-transformation.org/Tools/ATermLibrary) which has been de-
veloped for program transformation and which is used by our second implementation. The
Aterm library provides maximal term sharing and therefore reduces the storage needed
for the implementation. Most importantly, equality between two terms becomes check for
pointer equality and can therefore be decided very efficiently. As the number of matching
attempts is very high (as shown in 13.2) in our example, term-sharing pays off in prac-
tice. We compare our runtime with results from the prover E, which is a highly efficient
theorem prover based on paramodulation. We also compare the result with the model
finder Paradox, which performed surprisingly good on the problem. This is because

2see http://shootout.alioth.debian.org/u64q/benchmark.php for several benchmarks in both
languages

251

http://www.program-transformation.org/Tools/ATermLibrary
http://shootout.alioth.debian.org/u64q/benchmark.php

CHAPTER 13. STATMAN TAUTOLOGIES

Paradox implements sophisticated propagation techniques rather than transforming the
original input formula.

n

ti
m
e
[s
]

0 25 50 75 100

10

100

Eprover (sharing)

Deep Inference (no sharing)

Paradox

Deep Inference (sharing)

Figure 13.1: Runtime comparison for Statman tautologies

n

m
at
ch
in
g
at
te
m
p
ts
/s
te
p
s

0 25 50 75 100

102

104

106

proof length

matching attempts

Figure 13.2: Number of proof steps and matching attempts

The exact runtimes are shown in Table 13.1.
We have also compared our runtimes with the of state of the art SAT-solver ZChaff,

which is reasonable as the problem is propositional. The main problem of this comparison
is that the solver needs the problem in a CNF format as input. To convert the Statman
tautologies to CNF, we used the TPTP tools available from www.tptp.org. While the
final solution phase was not measurable (< 0.001 seconds), the conversion to clause normal
form was only possible for very small n on our local machine and took a considerable
amount of time, as summarized in Table 13.2. For n > 9 the program was not able to
perform the conversion due to stack overflow.

The example shows that there are situations in which it pays off to start proof search
inside out. It is very surprising that our implementation outperforms the machine oriented
calculi, even though our implementation has not even used all the tools of the trade.
The benefits come from the fact that we do not work with clausal normal form, nor is
the normal form introduced implicitly by decomposing the formulas. This allows for a
simplification without the introduction of new branches or case splitting.

252

www.tptp.org

13.4. RELATED WORK - THE SYSTEM KSG

n Eprover [s] Ωmega (c) [s] Paradox [s] C Impl. + Aterm [s]
1 0.019 0.0000 0.0
4 0.030 0.011
5 0.072 0.041
10 0.878 0.914 0.05
15 240.562 10.967 0.124
20 − 74.229 0.218 0.0
50 1.27 0.21
100 6.525 3.27

Table 13.1: Runtime Comparison for the Statman tautologies

n 1 2 3 4 5 6 7 8 9 10
time [s] 0.627 0.616 0.607 0.616 0.641 0.751 1.439 5.100 − −

Table 13.2: Time needed for conversion in clause normal form

On the other hand, the proofs that make use of deep inference are more difficult to
understand. This is already the case for the Statman tautologies shown above, even
though the axiom rule does not introduce any proof obligation. However, it is common
for interactive theorem proving to be a combination of automated and interactive steps,
and the possibility to perform powerful simplification steps will be beneficial.

13.4 Related Work - The System KSg

The proof complexity of the Statman tautologies has already been studied in the calculus
of structures [GG04, BG07]. Therefore, we give a detailed description of this approach
and compare it to our approach.

The calculus of structures is a proof theoretical formalism and can be seen as a general-
ization of the sequent calculus. The main notion is the notion of a structure, which unifies
the notion of a sequent and the notion of a formula. For propositional logic, structures
are defined as follows:

Definition 13.4.1 (KS). Propositional variables v and their negations v are atoms.
Atoms are denoted by a, b, The formulas of the language KS are generated by

S ::= f | t | a | [S, . . . , S]︸ ︷︷ ︸
>0

| (S, . . . , S)︸ ︷︷ ︸
>0

| S (13.26)

where f and t denote the units false and true, [S1, . . . , Sh] is a disjunction and (S1, . . . , Sh)
a conjunction. Formulas are denoted by S, P,Q,R, T, U, V and W . Formula contexts,
denoted by S{ }, are formulas with one occurrence of { }, the empty context or hole, that
does not appear in the scope of a negation. S{R} denotes the formula obtained by filling
the hole in S{ } with R. We drop the curly braces when they are redundant: for example,
S[R, T] is short for S{[R, T]}. A formula R is a subformula of a formula T if there is
a context S{ } such that S{R} is T . Formulas are syntactically equivalent modulo the

smallest equivalence relation induced by the equations shown in Figure 13.3. There, ~R, ~T
and ~U are finite sequences of formulas, ~T is non-empty.

The system KSg, which is proved to be sound and complete, provides the following

253

CHAPTER 13. STATMAN TAUTOLOGIES

Associativity

[~R, [~T], ~U] = [~R, ~T , ~U] (13.27)

(~R, (~T), ~U) = (~R, ~T , ~U) (13.28)

Units

(f, f) = f [f,R] = R (13.29)

[t, t] = t (t, R) = R (13.30)

Context Closure
If R = T then S{R} = S{T} and R = T

Commutativity

[R, T] = [T,R] (13.31)

(R, T) = (T,R) (13.32)

Negation

f = t (13.33)

t = f (13.34)

[R, T] = (R, T) (13.35)

(R, T) = [R, T] (13.36)

R = R (13.37)

Figure 13.3: Syntactic equivalence of formulas

inference rules for propositional logic:

i ↓
S{t}
S[R,R]

s
S([R, T], U)

S[(R,U), T]
w ↓

S{f}
S{R} c ↓

S[R,R]

S{R}

The identity rule i ↓ corresponds to the axiom rule and replaces two complementary literals
within a disjunction [·] by true. The switch rule s manages the disjunctive context of a
conjunction in order to bring the structures closer in a disjunction, with the goal to finally
apply the identity rule i ↓. Note that the rule s can be represented as

α

β

R U

T

→ β

α

R T

U

(13.38)

The weakening rule w ↓ and contraction c ↓ remove respectively duplicate a formula
within a structure.

For n = 3, we present the proof of the Statman tautology within the system KSg.

254

13.4. RELATED WORK - THE SYSTEM KSG

c ↓ (3×)

s

s

s

s

i ↓ (4×)

c ↓

s

s

i ↓ (2×)

i ↓
t

[(c1 d1) c1 d1]

[([[c2 d2] (c2 d2)] c1 [c2 d2] d1) c1 d1]

[(c2 d2) ([c2 d2]c1d1) [c2 d2]]c1 d1]

[(c2 d2) (c2 d2) ([c2 d2] c1 [c2 d2] d1) c1 d1]

[(c2 d2) ([c2 d2] c1 [c2 d2] d1) c1 d1]

[([[c3 d3] (c3 d3)] c2 [[c3 d3] (c3 d3)] d2) ([c3 d3] [c2 d2]c1 [c3 d3] [c2 d2]d1) c1 d1]

[(c3 d3) ([c3 d3] [c3 d3]c2 d2)([[c3 d3] (c3 d3)][c2 d2]c1[c2 d2]d1 [c3 d3]) c1 d1]

[(c3 d3) (c3 d3) ([c3 d3] [c3 d3]c2 d2)([c3 d3] [c2 d2] c1 [c3 d3] [c2 d2] d1) c1 d1]

[(c3 d3)(3×) (c3 d3) ([c3 d3] c2 d2 [c3 d3])([c3 d3] [c2 d2] c1 [c3 d3] [c2 d2] d1) c1 d1]

[(c3 d3) (3×) (c3 d3) ([c3 d3] c2 [c3 d3] d2) ([c3 d3] [c2 d2] c1 [c3 d3] [c2 d2] d1) c1 d1]

[(c3 d3) ([c3 d3] c2 [c3 d3] d2) ([c3 d3] [c2 d2] c1 [c3 d3] [c2 d2] d1) c1 d1]

(13.39)
Compared to our approach, the identity rule i ↓ is similar to our axiom rule, but more

restricted, as it requires the two subformulas to be within a conjunction. As a consequence,
it does never introduce a new proof obligation and replaces the corresponding structure
by true. Due to this restriction, the switch rule s needs to be applied to prepare the
application of i ↓.

To understand the details of the proof, we show here the first two switch steps in more
detail: Writing A for [c2 d2] and A for (c2, d2) the first fifth line from above reads as

A ∨ A︸︷︷︸
T

∨(A︸︷︷︸
R

∧ c1 ∧ A ∧ d1︸ ︷︷ ︸
U

) ∨ c1 ∨ d1 (13.40)

reducing to
A ∨ (A ∨ A) ∧ (c1 ∧ A ∧ d1) (13.41)

which is equivalent to
A︸︷︷︸
T

∨ (A ∨ A) ∧ c1 ∧ d1︸ ︷︷ ︸
U

∧ A︸︷︷︸
R

(13.42)

which reduces to
(A ∨ A) ∧ (A ∨ A) ∧ c1 ∧ d1 (13.43)

which is equivalent to
(A ∨ A) ∧ c1 ∧ (A ∨ A) ∧ d1 (13.44)

It has been shown that the nth Statman problem can be shown in O(n2) steps [BG07].
As before, the proof idea is to reduce the n-th Statman problem to the n − 1 Statman
problem and conclude the result by induction.

Theorem 13.4.2 ([BG07]). Given Gn, the size of the proof in KSg is O(n2).

More precisely, it is easy to show that the proof length in KSg is 3n2 + 2n. Both the
switch rule and the axiom rule i ↓ are admissible in the Core calculus. Most interestingly,
our deep axiom rule is more powerful than the corresponding rule in KSg. In particular, it
can directly be applied without further preprocessing steps, which are necessary in KSg.
Therefore, a control of the axiom rule is much simpler. We have shown that the restricted

255

CHAPTER 13. STATMAN TAUTOLOGIES

deep axiom rule is already sufficient to solve the problem, and that the problem gets
simpler after each application of this rule. This is not the case in KSg, where it is also
not possible to attach control information to the rules. However, let us note here that the
calculus of structures is mainly investigated from a theoretical point of view, while we are
mainly interested in practical applications.

13.5 Understanding Replacement Rules

As we have seen above, the deep axiom rule, which is a special kind of resolution replace-
ment rule, is very powerful. Therefore, it is natural to study the rule and its relation to
other approaches in more detail.

13.5.1 Directions of Replacement Rules

First, we observed that in our setting above, the replacement rules were always applied in
the direction from negative to positive formulas. However, in general, it is also possible
to apply the rule in another direction. Therefore, it is natural to ask whether a single
direction is sufficient to find all proofs. It turns out that this is not the case. The simplest
example is the propositional formula

((P− ∨β P−)− ⇒α P+)+ (13.45)

In the example, there are four possible resolution replacement rules applicable. Restricting
them to the direction to replace positive occurrences, two remain, which are of the form

P → 〈¬P 〉 (13.46)

which transform the problem to

((P− ∨β P−)− ⇒α (¬P)+)+ (13.47)

A similar situation occurs when proving Pierce’s law, shown in (13.48)

[
((P− ⇒α Q+)+ ⇒β P−)− ⇒α P+

]+
(13.48)

The same result holds when restricting the replacement rules to the other direction by
constructing a similar formula as the one above where positive and negative occurrences
are interchanged.

To overcome this problem, we can use Schütte’s decomposition rule to introduce a
case split, resulting in

P ⇒ P ∧ P ⇒ P (13.49)

which can be solved via the restricted replacement rules. Note that this is possible when-
ever a β-formula is present.

13.5.2 Deep Axiom Rule and Simplification

Another possiblity is to view the deep axiom rule – in particular in its restricted form
(13.1) – as some kind of simplification rule, as the restriction guarantees that no proof
obligations are introduced. In the case of propositional logic, which we will now consider
in more detail, the rule is even local, in the sense that no substitution possibly affects other

256

13.5. UNDERSTANDING REPLACEMENT RULES

parts of the indexed formula tree. In the context of tableau calculi, Massacci presents the
following simplification rule (see [Mas98] for details)

Φ,Ψ

Φ[Ψ],Ψ
(13.50)

and reports on significant speedups for some examples. The rule should be read top
down and allows the expansion of a tableau node n of the form Φ,Ψ ∪ G with the node
Φ[Ψ],Ψ ∪ G, where Φ[Ψ] denotes the formula in which all occurrences of Ψ, respectively
¬Ψ are replaced by true, respectively false and subsequently simplified. An example
derivation which uses the simplification rule is shown below:

A,B ∨ C ⊢ B ∨ C
A ⊢ B ∨ C ⇒ B ∨ C ⇒R

A ⊢ ((A⇒ B) ∨ (A⇒ C) ⇒ (D ⇒ A) ∧ (B ∨ C)) simp

⊢ A⇒ ((A⇒ B) ∨ (A⇒ C) ⇒ (D ⇒ A) ∧ (B ∨ C)) ⇒R

Simplification not only leads to shorter proofs, but also fewer and smaller counter-
models in the case that the conjecture is not valid, which is particularly useful in an
interactive setting to be able to locate and fix the error. The following derivation gives
an example:

P ⊢ R

P ⊢ Q P,P ⊢
P,Q⇒ P

P ⊢ ¬(Q⇒ P)

P ⊢ (R ∧ ¬(Q⇒ P)) P,Q ⊢
P, (R ∧ ¬(Q⇒ P) ⇒ Q) ⊢

(P ∧ (R ∧ ¬(Q⇒ P) ⇒ Q)) ⊢
⊢ ¬(P ∧ (R ∧ ¬(Q⇒ P) ⇒ Q))

Massacci shows that proof procedures using this rule can subsume a number of other
theorem proving techniques for propositional logic, such as the unit rule of DPLL [DLL62],
the βc rules of KE [DM94], the modus ponens and modus tollens in Harp [OS88], regu-
larity and hyper tableaux [BFN96].

Unit propagation in DPLL (which requires formulas to be in clause normal form)
triggers the deletion of all clauses that contain the literal l and removes l from all remaining
clauses. The βc rules are shown below (to be read bottom up)

S, β2, β1

S, β, β1

S, β1, β2

S, β, β2

and can also be understood as a form of simplification: Given a branching formula, e.g.,
A ∨ B, and the fact ¬A (respectively ¬B), one branch can directly be closed. Modus
ponens and modus tollens in Harp are used, e.g., to simplify the two facts A and A⇒ B
to A and B. For example, in Harp the following derivation is possible:

257

CHAPTER 13. STATMAN TAUTOLOGIES

A, (A⇒ B) ∨ (A⇒ C), D ⊢ A
A, (A⇒ B) ∨ (A⇒ C) ⊢ (D ⇒ A)

A, (A⇒ B) ⊢ B,C A, (A⇒ C) ⊢ B,C
A, (A⇒ B) ∨ (A⇒ C) ⊢ B,C

A, (A⇒ B) ∨ (A⇒ C) ⊢ (B ∨ C)
A, (A⇒ B) ∨ (A⇒ C) ⊢ (D ⇒ A) ∧ (B ∨ C)

A ⊢ ((A⇒ B) ∨ (A⇒ C) ⇒ (D ⇒ A) ∧ (B ∨ C))
⊢ A⇒ ((A⇒ B) ∨ (A⇒ C) ⇒ (D ⇒ A) ∧ (B ∨ C))

Resolution replacement rules (followed by simplification) are more general than the
simplification rule of Massacci. Within our framework, the simplification rule can be
modelled by the following annotated inference:

P{∗ ⊢}
[P]{∗ ⊢} (13.51)

Due to the restriction that matchings are not overlapping, the resulting resolution
replacement rule does not introduce any proof obligations and therefore behaves exactly
like Massaccis simplification rule. However, in addition to that, the rule

[P]{nopob}
[P]{∗ ⊢} (13.52)

can also simplify formulas in situations where the premise is not at top-level, but embedded
within a larger formula.

To lift this rule to the first order case with free variables, one possibility is to apply
the necessary substitution to the whole proof tree so that simplification becomes possible.
In the case that the instantiation does not lead to a proof, the prover must backtrack
and a different option is taken. Another possibility, as proposed by Giese (see [Gie01]
for details), consists of decorating formulas with unification constraints. A unification
constraint is a conjunction of syntactic equalities and avoids the global instantiation of
the free variable. For example, p(X) ≪ X ≡ Z denotes that the formula p(X) is only
available in a way that satisfies the constraint X ≡ Z. Using unification constraints, the
simplification rule can easily be lifted to the first order setting. A similar approach is
taken by Peltier [Gal97, Pel99], which attaches constraints in the form of equalities to
the formulas. This is in contrast to Giese, who separates the constraint language from
the actual formula syntax. Within our framework, whenever applying a substitution, it is
possible to increase the multiplicities of the involved meta-variables beforehand. Another
convenient possibility is to restrict its (automatic) application to the case of so-called
universal variables: These are variables for which arbitrary instances can be generated
without any costs, as for example in ∀x.P (x) ⊢ P (a) ∧ P (b).

13.5.3 Literal Extractions

Apros implements a strategic approach of proof search in natural deduction. Among
others, there is the so-called extraction strategy which is applicable if the goal occurs
as a negative subformula of an assumption and is not below a negation. In this case,
the idea is to apply a sequence of elimination rules to extract that occurrence, which
allows the closure of the current goal. The extraction possibly yields new subgoals which
subsequently need to be solved.

258

13.5. UNDERSTANDING REPLACEMENT RULES

The extraction strategy essentially corresponds to the application of the following
version of the axiom rule

[P]{∗ ⊢, topdown, stop = isnegation}
P{∗ ⊢}

The difference lies in the handling of disjunctions: If the goal G occurs as a subformula
of a disjunction, for example (A ∨ B[G])−, Apros applies disjunction elimination. This
results in a new subgoal G with additional assumption A. In contrast, the application
of a resolution replacement rule results in the proof obligation A− (giving rise to a new
subgoal ¬A), which is β-inserted at the position of G. This can be problematic, as the
following example illustrates:

A ∨ B,A⇒ B ⊢ B (13.53)

Extraction of B from the disjunction results in the new subgoal

A ∨ B,A,A⇒ B ⊢ B (13.54)

while the application of a resolution replacement rule results in the new subgoal

A ∨ B,A⇒ B ⊢ ¬A (13.55)

which is not provable (let A and B be true). Within the Core calculus, the situation
above requires the explicit introduction of the case split using Schütte’s decomposition
rule.

Similar to Apros, the extraction strategy has been implemented in form of so-called
auxiliary goal rules in the context of the SAD system [DLM99]. The main difference to
the approach taken in Apros is that a negation is automatically pushed to the literals
when decomposing a formula. In particular, an assumption ¬(A∧B) introduces two case
splits ¬A and ¬B. Therefore, SAD is able to handle subformulas in assumptions below
negations.

13.5.4 Matrix Calculi

Matrix or connection methods have been developed by Peter Andrews [And81] and also
by Wolfgang Bibel [Bib81, Bib87]. Influenced by the work of [Wal90], they have been
implemented for a variety of logics, such as intuitionistic logic, modal logics, and for
fragments of linear logic (see e.g. [KO99]).

Matrix based proof search procedures work on formula trees and try to find a spanning
set of connections , i.e., a set of α-related complementary literals such that each maximal
set of α-related formulas, called path, contains a connection from this set. Usually, the
initial multiplicities are fixed. In case no proof could be found, the multiplicities are
increased and proof search is started again. Let us point our here that Core also supports
the increase of multiplicities, but tries to transform the formula tree to either true+ or
false−. Moreover, the multiplicities can be increased at runtime without the need to
restart the search procedure. Considering the application of a replacement rule and the
insertion of a connection, we observe that both operations have similar preconditions:
the corresponding positions must have opposite polarities and their labels unifiable and
need to be α-related. However, while in the case of matrix calculi the α-relation is with
respect to the initial formula tree, in Core the α-relation needs to hold in the free

259

CHAPTER 13. STATMAN TAUTOLOGIES

variable formula tree. In particular, due to previous replacements it is possible to apply
a resolution replacement rule between literals that are β-related in the initial formula
tree. Considering the initial formula tree Q, there are therefore two kinds of connections:
those between nodes that are α-related in Q, and those that are β-related in Q. In the
literature, these links are known as c-links and d-links and have been used to define path
resolution and path dissolution (see [MR87a, MR87b]).

The main advantage of the connection method is its compactness, which allows for
the development of very efficient proof search methods, while making it at the same
time extremely difficult for humans to understand. The latter point concerns not only
the understanding of the proofs, but also the development of implementation details.
Nevertheless several systems based on the connection method have been developed, such
as Setheo [LSBB92], Leancop [Ott08], and TPS [ASDP90].

13.6 Summary

In this chapter we showed that the problem class of Statman tautologies, whose solution
requires O(2n) steps in the sequent calculus without cut, can be solved in O(n2) steps
within our calculus due to the deep inference feature (Contribution A1(v), Section 1.1).
We also showed that it is possible to find these shorter proofs in practice by constraining
the application of the deep axiom rule in a specific way. Interestingly, the class of Statman
tautologies can be solved without performing any backtracking, which suggests to see the
restricted axiom rule as a generalized simplification rule. We also pointed out that for
efficient search algorithms advanced data structures are necessary.

260

14
The Limit Domain

Let us now consider the so-called limit domain which consists of statements about the
limit and continuity of functions. It was proposed by Bledsoe [Ble90] as a challenge for
automated theorem proving, because they are relatively easy for students of mathematics
in the second year, however, extremely hard for automated reasoning: some problems
remained open even until today. The proofs typically involve ǫ-δ arguments and are
interesting because both logic and computation, including inequality reasoning and fac-
torizations have to be combined to find a solution to the given problem. There exist
several attempts in the literature that deal with the automation of this domain (see for
example [MS99b, Bee98, YBG+94, ST89, RL07, Mel98a, Mel98b, Hin94]. While it has
already been shown in [Mei03] that proof planning is in principle capable to solve many
problems of the limit domain which are out of the scope of traditional theorem provers, the
contribution of this chapter is to show that the mathematical knowledge can be concisely
represented in the proof document using the strategy language presented in Chapter 10.

14.1 Abstract Formalization

Instead of constructing the real numbers from scratch, we follow a more pragmatic ap-
proach and directly state the properties which uniquely define the real numbers as axioms.
We will also provide a facility to perform explicit calculations with numerical constants,
which is needed for many applications.

Definition 14.1.1 (Theory TR). The theory of reals TR is given by the following signature:

+ : R× R → R (addition) (14.1)

·R× R → R (multiplication) (14.2)

−− :R → R (addition-inv) (14.3)
−1 :R\{0} → R (multiplication-inv) (14.4)

<:R× R → B (less) (14.5)

261

CHAPTER 14. THE LIMIT DOMAIN

together with the following properties:

1 6= 0 (14.6)

∀x, y.x+ y = y + x (14.7)

∀x, y, z.x+ (y + z) = (x+ y) + z (14.8)

∀x.0 + x = x (14.9)

∀x.(−− x) + x = 0 (14.10)

∀x, y.xy = yx (14.11)

∀x, y, z.x(yz) = (xy)z (14.12)

∀x.1x = x (14.13)

∀x.x 6= 0 ⇒ x−1x = 1 (14.14)

∀x, y, z.x(y + z) = xy + xz (14.15)

∀x, y.x = y ∨ x < y ∨ y < x (14.16)

∀x.x 6< x (14.17)

∀y, z.y < z ⇒ ∀x.x+ y < x+ z (14.18)

∀x, y.0 < y ∧ 0 < y ⇒ 0 < xy (14.19)

as well as the supremum property

∀S.(∃x.x ∈ S) ∧ (∃M.∀x ∈ S.x ≤M

⇒ ∃m.(∀x ∈ S.x ≤ m) ∧ (∀m′.∀x ∈ S.x ≤ m′) ⇒ m ≤ m′ (14.20)

The supremum property states that any nonempty set of reals that is bounded above
has a least upper bound. It is this is the property which distinguishes the reals from
the rationals and makes the reals a complete metric space, meaning that every Cauchy
sequence of points in R has a limit that is also in R.

14.1.1 Performing Calculations

One major efficiency problem in the domain of the reals, but also in the domain of
integers and naturals, is the computation with actual numbers. While the above standard
formalization does only contain the numbers 0 and 1, it is convenient to extend the
signature by numeric constants such that a term x + x + x can be abbreviated to 3 · x.
One possibility is the use of the successor function, as in Peano arithmetic, shown in
Listing 17. However, this representation has the disadvantage that the time for the
computation of n ∗n grows exponentially, as shown in Figure 14.11. As computations are
often needed as intermediate steps, such an approach is not feasible. We therefore present
two approaches to make such computation more efficient. In the first variant, we make
use of the facilities provided by the strategy language and link the programming language
to do the computation. This results in a semi-formal theory: All results will only be
checked modulo the correctness of the computation of the programming language. The
second variant shows a fully formal way, based on the idea of a binary number system as
the representation of the numbers.

1The up- and downturns in the figure are due to garbage collection

262

14.1. ABSTRACT FORMALIZATION

inference addzero x+0 {*} == x

inference addsuc x+suc(y) {*} == suc(x+y)

inference mulzero x*0 {*} == 0

inference mulsuc x*suc(y) {*} == x+x*y

strategy simplify

repeat rewrite * using addzero, addsuc, mulzero, mulsuc

Listing 17: Formalization of Peano arithmetic

0

100

0 10 20 30 40

[s]

[n]

Figure 14.1: Time spent for computing n ∗ n in Peano arithmetic

Computations Inside the Programming Language

Listing 18 shows the semi-formal theory which uses the programming language to perform
the numerical computation. Numbers are represented by a function LINT, which takes
a single number as argument. The constant LINT is not needed, but acts as a marker
to indicate that an integer number is following, which simplifies the matching process
considerably. The resulting signature is infinite, as each number is represented as a
separate symbol. The beauty of this formalization is its simplicity: (i) The connection to
the programming language is very simple. (ii) After having specified the inferences, the full
power of the strategy framework is available. Such a formalization drastically reduces the
formalization costs and allows the rapid prototyping of the underlying concepts. Moreover,
it is sufficient within the domain of proof tutoring where a reduction to basic principles
is not needed.

inference addnum LINT(N) + LINT(M) {*}== LINT(O); {with O=(+ "N" "M")}

inference subnum LINT(N) + LINT(M) {*}== LINT(O); {with O=(- "N" "M")}

inference mulnum LINT(N) * LINT(M) {*}== LINT(O); {with O=(* "N" "M")}

strategy simplify

repeat

rewrite * using addnum, subnum, mulnum

Listing 18: Semi-formal computations: calculations inside the underlying programming
language

As a result, the time spent for numerical computations of even very big integers, such
as 10100 ∗ 10100 less 0.0001s.

263

CHAPTER 14. THE LIMIT DOMAIN

Binary Arithmetic

The general idea of this approach is to use a binary representation of numbers instead of
the successor representation. As an advantage, the size of the representation is no longer
linear in the size of the number. As this representation is not very human-readable, it is
usually hidden from the user by (i) a parser that parses numbers in the decimal system
and converts them into the binary system, (ii) a pretty printer which prints a number in
the binary system as decimal number. The approach is sufficiently fast to deal with large
numbers, and the resulting signature is finite.

To support binary arithmetic, we provide the following signature: Σ = {0, 1, suc, 0},
where 0 : nat, 0 : nat → nat represent the bit zero2, 1 : nat → nat represents the bit
one within a binary number, and suc : nat → nat represents the carry bit, which is used
during computations only. Using this representation, each binary number is represented
within the formal system by writing it from right to left. Prohibiting leading zeros gives
a unique representation.

Example 14.1.2. Thus the number 37 = 25 + 22 + 20 is expressed as

1(0(1(0(0(1(0)))))) (14.21)

As learned in school, two numbers can be added by writing them down one below the
other, and add them together starting from the right. This gives us the following rules,

0 + 0 → 0 (14.22)

0 + 1 → 1 (14.23)

1 + 0 → 1 (14.24)

1 + 1 → 0, carry 1 (14.25)

which are formalized as follows:

0(m) + 0(n) → 0(m+ n) (14.26)

0(m) + 1(n) → 1(m+ n) (14.27)

1(m) + 0(n) → 1(m+ n) (14.28)

1(m) + 1(n) → 0(suc(m+ n) (14.29)

suc(0) → 1(0) (14.30)

suc(0(m)) → 1(m) (14.31)

suc(1(m)) → 0(suc(m)) (14.32)

Similarly, multiplication and subtraction of positive numbers can be defined in an easy
way (see Listing 19 for the formalization). The extension to integers is standard except
the case for binary subtraction, where one needs the information which number has a
greater magnitude.

Discussion

We must be able to perform simple computations, such as 2 + 5 = 7, which naturally
arise as subtasks in many applications. While most approaches rely on rewriting, the
concrete representation is essential to make such computations efficient. An alternative

2The two variants correspond to the two cases that a zero is the rightmost number and the case that
a zero is “in the middle” of a number

264

14.1. ABSTRACT FORMALIZATION

inference suczero suc(0){*}== BIT1(0)

inference sucbit0 suc(BIT0(m)){*}== BIT1(m)

inference sucbit1 suc(BIT1(m)){*}== BIT0(suc(m))

inference addzerol 0 + m{*}== m

inference addzeror m + 0{*}== m

inference addbit0bit0 BIT0(m)+BIT0(n){*}== BIT0(m+n)

inference addbit0bit1 BIT0(m)+BIT1(n){*}== BIT1(m+n)

inference addbit1bit0 BIT1(m)+BIT0(n){*}== BIT1(m+n)

inference addbit1bit1 BIT1(m)+BIT1(n){*}== BIT0(suc(m+n))

inference multzeror m * 0{*}== 0

inference multzerol 0 * m{*}== 0

inference multbit0bit0 BIT0(m) * BIT0(n){*}== BIT0 (BIT0 (m * n))

inference multbit0bit1 BIT0(m) * BIT1(n){*}== BIT0(m)+BIT0(BIT0(m * n))

inference multbit1bit0 BIT1(m) * BIT0(n){*}== BIT0(n)+BIT0(BIT0(m * n))

inference multbit1bit1 BIT1(m) * BIT1(n){*}== BIT1(m)+BIT0(n)+BIT0(BIT0(m * n))

inference elimleadingzero BIT0(0){*}== 0

strategy addbinary

rewrite * using sucbin, addzerol, addzeror, addbit0bit0, addbit0bit1,

addbit1bit0, addbit1bit1

strategy multbinary

rewrite * using multzeror, multzerol, multbit0bit0, multbit0bit1,

multbit1bit0, multbit1bit1, elimleadingzero

strategy simplify

repeat rewrite * using addbinary, multbinary

Listing 19: Formalization of binary arithmetic

is to work in a semi-formal setting and to do the computation with the programming
language. In addition to efficiency during the proof development, no time consuming
theory development is necessary. Moreover, the computation can easily be expanded
later and verified.

In the previous Ωmega system, numbers were formalized using the successor repre-
sentation, which is clearly enough for problems dealing only with small numbers or no
numbers at all. By using annotated constants and annotated functions it was possible to
switch to an intermediate representation layer between the intuitive mathematical ver-
nacular and the formal system [PS02, PS06]. While this is similar to our approach, the
definition of annotated constants and functions working on them required deep knowledge
of the implementation of the underlying prover. Our strategy language provides a clean
interface between semi-formal representations and a fully formal representation. More-
over, following the document-centric approach, the operations can be specified within the
document. By specifying computations as rewrite rules, the full power of the strategy
framework is directly available.

The use of binary numbers can be seen to be standard in mathematical assistance
systems. It was introduced by Harrison [Har98]. An alternative way consists of sep-

265

CHAPTER 14. THE LIMIT DOMAIN

0
2
4
6
8
10
12
14

0 10 20 30 40

[s]

[n]

Figure 14.2: Time spent for computing 10n ∗ 10n in binary arithmetic

arating deduction and computation (at least the decidable part), as done in deduction
modulo [DHK03]. The idea is to define a congruence on propositions, such that 2 + 4
is congruent to 6 and to use the congruence relation within deductions, such that for
example reflexivity can directly be used to close the goal ⊢ 2 + 4 = 6.

In the context of algebraic specifications there is the notion of specification morphisms ,
which are signature morphisms between particular specifications such that the reduct
of each model of the target specification is a model of the source specification. Using
specification morphisms, it is possible to define a theory of natural numbers using the
successor representation and a theory of binary numbers and to relate them such that the
representations are exchangeable.

14.1.2 Integration of Computer Algebra Systems

Computer algebra systems (CAS) and theorem provers support practical mathematical
reasoning on a computer: While the former focuses on efficient representations and algo-
rithms to perform algebraic computation, the latter focuses on rigorous logical validation,
that is deduction. It is therefore important to let systems interact, either by importing
deductions into CAS or by importing algebraic computation into theorem provers and
verify them – this is often much easier than doing the computation itself.

Within recent years, the integration of CAS into theorem provers or vice versa has
intensely been studied by several research groups. For example, computer algebra sys-
tems have been integrated in Coq [DM05], Hol [HT93a, HT93b], Isabelle [BHC95],
HOL Light or Ωmega [KKS98]. On the other hand, theorem provers have been
made available inside or defined on top of a CAS. For example, Pvs can be accessed
from Maple [ADG+01], Theorema [BJD98, BJK+97] and Analytica [BCZ98] are
defined within Mathematica. A comprehensive description of the different possibilities
of connections is given in [Hom97, HC96]. Within a wider scope, OpenMath [CC99b,
CC99a] provides a general framework to connect different systems together. Similarly,
the Omrs project [GBC98] was initially developed as a framework for combining theorem
provers and later extended to combine theorem provers and computer algebra systems.

We follow the first approach, namely to import the computation of a CAS into a
theorem prover. In [HT93a], Harrison identifies three possible integration modes (i) to
completely trust the CAS, (ii) to trust the CAS partially, and (iii) to not trust the CAS
at all. The differences between these integration modes are as follows: When trusting
the CAS, the computation is integrated in the prover and not verified. Partially trusting
the CAS consists in accepting the result of the CAS during the interactive proof of the
proposition, but checking the results of the CAS when exporting the theorem to the

266

14.1. ABSTRACT FORMALIZATION

library. Finally, the last approach consists of using the CAS as oracle and to directly
verify the result inside the prover. Note that this remains beneficial provided that checking
the solution is much simpler than finding the solution. This is for example the case for
computing factorizations of an expression: Once the factorization has been computed,
checking whether the factorization equals the original term can easily be decided. We
explore this problem more precisely in the sequel.

14.1.3 A Decision Procedure for the Equality of Polynomials
over Rings

We often face the problem to show the equality between two terms t1 and t2, where each
ti is built from variables and constants by application of + and ·. For example, when
using a CAS to compute a factorization of t1, resulting in t2, we have to verify t1 = t2 as
we do not want to trust the CAS. To deal with such tasks, we present in the sequel an
algorithm to decide such an equality. The general idea is to reduce each ti to a unique
normal form, relying only on the ring axioms. If and only if both ti have the same normal
form, then they are equal.

Considering the equality axioms of a ring, the main problem for the normalization is
the fact that the theory contains equations which cannot be ordered into a rewrite rule,
such as the commutativity rule of the addition operator + and ∗. Several approaches
have been proposed in the literature to deal with that problem, such as special unification
algorithms [JK86, Sie89] or unfailing completion procedures [BDP89]. We follow the
approach taken in [MN90], called ordered rewriting . That is, rewrite rules which cannot
generally be ordered are only allowed to be used if the concrete instance can be ordered.
Thus, for the problematic equations, the problem of ordering the equations is moved from
compile time to runtime.

Before defining a strategy deciding the equality for such expressions, we concretize the
definitions needed within this chapter.

Definition 14.1.3 (Polynomial Expression). Let x1, . . . , xn ∈ V be variables and R be
a ring. The set of polynomial expressions over x1, . . . xn and the ring R, denoted by
R[x1, . . . , xn] is the smallest set satisfying the following conditions:

• xi ∈ R[x1, . . . , xn]

• If t ∈ R then t ∈ R[x1, . . . , xn]

• If p1, p2 ∈ R[x1, . . . , xn] and c ∈ R then

– p1 + p2 ∈ R[x1, . . . , xn] and

– p1 · p2 ∈ R[x1, . . . , xn]

– c · p1 ∈ R[x1, . . . , xn]

For univariate polynomial expressions , i.e., expressions that involve only one variable,
the normal form is obtained by expanding the polynomial and removing superfluous terms
such as x−x, resulting in a sum of products. The sum is then reordered and factors which
differ only in a constant are merged, resulting in the following linear combination

p =
n∑

i=1

cix
i
i (14.33)

267

CHAPTER 14. THE LIMIT DOMAIN

For multivariate polynomial expressions , which involve several variables, there are several
possible normal forms. The probably simplest is obtained by imposing an ordering ≺ on
the variables and sorting the factors accordingly.

Definition 14.1.4 (Monomial, Normal Form). Let R be a ring. A monomial is an
expression of the form

c
n∏

i=1

xeii (14.34)

where c ∈ R\{0} is called coefficient. Given a monomial m and an ordering ≺ on
x1, . . . , xn, m is called in normal form if xi ≺ xj for i < j.

Definition 14.1.5 (Normal Form Polynomial Expressions). Let t ∈ R[x1, . . . , xn] be a
polynomial expression and ≺ be an ordering on xi. Then t is called to be in normal form
if it has the following form

p =
k∑

i=1

ci
n∏

j=1

x
ei,j
j (14.35)

where

• each monomial is normal

• ∏n
j=1 x

ei,j
j ≺̂∏n

j=1 x
ek,j
j for i < k, where ≺̂ is an ordering over monomials induced by

≺.

In the sequel, we use the lexicographic ordering induced by ≺ for ≺̂.

Example 14.1.6. The normal form of the polynomial expression x(4+3(x−y+2)) under
the variable ordering x ≺ y is 3 ∗ x2 + 10x− 3xy.

The computation of a normal form can be performed automatically based on the above
observations. The procedure involves the following steps:

1. Multiplying out factors, moving unary minus to the top of the monomials and
removing binary minus

2. Sorting of the individual monomials

3. Rearranging and collecting monomials in the overall expression

Step 1: Factor out and basic simplification

The following rewrite system is terminating and confluent (see [Geh94]):

x+ 0 → x x+ (−x) → 0 (14.36)

−(0) → 0 −(−z) → z (14.37)

−(x+ y) → −(x) +−(y) x ∗ (y + z) → (x ∗ y) + (x ∗ z) (14.38)

x ∗ 1 → x (x+ y) ∗ z → x ∗ z + y ∗ z (14.39)

x ∗ 0 → 0 x ∗ (−z) → −(x ∗ z) (14.40)

It multiplies out all factors, moves the − sign to the front of the monomial, and performs
trivial simplifications. Thus, we obtain as a result a sum of unordered monomials. It
remains to order the sum and to collect monomials which differ only in their coefficients.
This is done in step 2:

Example 14.1.7. Performing step 1 of our decision procedure on x(4 + 3(x − y + 2))
results in the polynomial x · 4 + x · 3 · x+−x · 3 · y + x · 3 · 2

268

14.1. ABSTRACT FORMALIZATION

Step 2: Building Monomials

The goal of this step is twofold: (i) Sorting all numeric constants to the top and combining
them, and (ii) sorting the variables according to ≺. We perform each step separately. The
first step is realized by the rewrite system for multiplication of numbers enhanced by the
following rewrite rules:

(x ∗ y) ∗ z → x ∗ (y ∗ z) (14.41)

x ∗ y → y ∗ x if y ∈ Z and y ∈ V (14.42)

z ∗ (x ∗ y) → x ∗ (z ∗ y) if x ∈ Z and y ∈ V (14.43)

The sorting is performed by the following rewrite system

(x ∗ y) ∗ z → x ∗ (y ∗ z) (14.44)

x ∗ y → y ∗ x if x, y ∈ V and y ≺ x (14.45)

z ∗ (x ∗ y) → x ∗ (z ∗ y) if x, y ∈ V and x ≺ z (14.46)

As a result, the monomials have the form ci
∏n

j=1 x
ei,j
j or

∏n
j=1 x

ei,j
j , that is, they do not

necessarily have a numeric constant at the top. This is checked in a final step, in which
1 is added in front of a monomial if necessary. Both rewrite systems are confluent and
terminating.

Example 14.1.8. Applying step 2 of our decision procedure on the result of step 1, that
is, x · 4 + x · 3 · x+−x · 3 · y + x3 · 2, results in 4x+ 3xx+ (−3)xy + 6x.

Step 3: Sorting and Collecting

Finally, we have to sort and collect the monomials. This is done by the following rewrite
system:

(x+ y) + z → x+ (y + z) (14.47)

(c1 ∗m1) + (c2 ∗m2) → (c2 ∗m2) + c1 ∗m1 if m2 < m1 (14.48)

(c1 ∗m1) + (c2 ∗m2 + r) = c2 ∗m2 + (c1 ∗m1 +R) if m2 < m1 (14.49)

c1 ∗m+ c2 ∗m = (c1 + c2) ∗m (14.50)

Example 14.1.9. Performing step 3 on 4x + 3xx + (−3)xy + 6x yields the final result
10x+ 3xx− 3xy.

As before, the corresponding rewrite systems can naturally be formalized in our strat-
egy language. Moreover, once a decision procedure for polynomials over rings has been
designed, a natural step consists of extending this procedure to polynomial expressions
over fields, that is, to handle multiplicative inverses. This is done by eliminating all
inverses (by using (14.14)) and then invoking the decision procedure for rings. More
precisely, the extension works as follows:

• Perform the simplification step from the decision procedure for rings

• Move the inverses to the top of the monomials and collect them together.

• Select an inverse x−1, multiply both sides of the equation with x, and perform the
simplification. Repeat until there are no more inverses.

269

CHAPTER 14. THE LIMIT DOMAIN

Discussion

In the previous Ωmega system, the Sapper module was used to translate the compu-
tation of a computer algebra system to a sequence of tactic expressions that eventually
verified the computation inside Ωmega’s logic [Sor00]. To that end, Sapper required the
CAS to deliver a trace of its computation. As no state-of-the art CAS provided such a
trace, we implemented our own computer algebra system µCAS. Similar to the approach
mentioned above, we also verify the computation performed by the CAS; however, we
do not require a trace of the computation and can therefore access any CAS without
further work. Instead, we provide a decision procedure which can easily be implemented
by relying on our strategy framework. The decision procedure can not only verify the
computation of the CAS, but also any other equality over rings.

A similar approach is taken in Coq, which provides the tactic Ring to decide equality
over rings (see [DM05] and [CfW04] for details). In contrast to our approach, the tactic
Ring is implemented using the reflection principle: Instead of working on concrete terms,
i.e., on terms of type R, terms are translated into a new (inductive) type for polyno-
mial expressions P, on which a simplification function S is defined. Moreover, a function
J·K : P → R is defined to translate polynomials back to their original form. Establishing
the theorem ∀p ∈ P.JS(p)K = JtK then allows the use of S within the concrete representa-
tion. Similarly, Harrison represents polynomials (for one variable) as lists and defines a
translation function from general algebraic expressions to polynomials and uses this form
to perform arithmetic on polynomials.

14.2 Strategies of the Limit Domain

To tackle the problems of the limit domain a variety of heuristics have been developed
within the last decades. In this section, we discuss several of these strategies and show
how they can be easily formulated by means of the strategy framework developed in
Chapter 10 and show how the Lim+ problem can be proved automatically.

The two important strategies, namely ComplexEstimate (see Listing 13 on page 206)
and Factorbound (see Listing 15 on page 206) have already been discussed and presented
in Chapter 10; we avoid a repetition here. Subsequently, we discuss the construction
of instances for meta-variables, as well as the strategy LinearBound, which is used as
a substrategy of the strategy Factorbound. Finally, we discuss a strategy Extract that
extracts a subformula of an assumption.

14.2.1 Constructing Instances

The idea of the construction method is to construct an instance for a meta-variable that
satisfies a set of constraints. Within the domain of the reals, we have to deal with a
continuous variable domain and non-linear constraints, which are difficult to solve in
general. However, it is often possible to reduce such non-linear constraints to linear
constraints based on heuristics.

Let us point out that within our setting, the ability to check the satisfiability of a set
of constraints is not sufficient: We have to come back with an instantiation and show
that the constructed object indeed satisfies all its requirements. Moreover, we want to
be able to generate a human-readable proof where the constructed objects are similar to
those that can be found in textbooks. This usually excludes generic decision procedures
because of the following reasons:

270

14.2. STRATEGIES OF THE LIMIT DOMAIN

• They are based on a fixed theory, e.g., linear real arithmetic (without any user
defined function symbols, such as

√·, min, cos, sin). This often results in large
conditional output representations which can be decided, but not directly be used
for instantiations. As an example, consider the solution of x ≤ z, y ≤ z for z, which
gives (x ≤ y ∧ z ≥ y) ∨ (x > y ∧ z ≥ x) or (x > 0 ∧ y > 0 ∧ z = ǫ1), depending on
the underlying implementation. Here, ǫ1 is a constant provided by the system that
denotes a positive value that is infinitesimal wrt. the considered field.

• Most methods are iterative methods that enlarge the constraint set at each step in
a mechanical way which is difficult to understand by humans because of their size.
Thus, these methods do not provide an explanation of the solution.

In contrast, we want to support user-defined functions and be able to extend the capabil-
ities of the construction method during the formalization of the theory. While there is in
general no generic method to realize the construction of such an object, we subsequently
present a heuristic method that works sufficiently well within the considered domain.
The underlying idea is to incrementally restrict the domain of instances within the proof
search, but not to commit a decision until all branches involving a specific meta-variable
can be closed simultaneously. In other words: We follow a delayed closure approach.
A similar approach was taken for proof planning in the previous Ωmega system, where
the constraint solver Cosie (see [ZM04] for an overview) was used to compute answer
constraints. Let us point out the main differences with respect to our approach:

• Constraints are not automatically passed to the constraint solver, but obtained by
a query on the open goals. Moreover, constraint solving is directly implemented
within the strategy language instead of an external program. This has the following
advantages:

(i) Constraint reasoning is not necessarily global, but can also be local with respect
to a branch or a specific variable.

(ii) There is no need to synchronize the constraint solver in the case of backtrack-
ing, which was necessary within the old architecture.

(iii) Constraint passing is not encoded in the proof plan, therefore, the resulting
plans are shorter and can directly be presented to the user.

(iv) The constraint language as well as the simplification procedures can be ex-
tended and adapted during the theory development.

Simplification of Goals based on Assumptions

In addition to simplify goals using ComplexEstimate, we make use of the transitivity of
<, which is expressed by the following theorem

a < b ∧ b ≤ c⇒ a < c (14.51)

in which we require both one assumption a < b and the goal a < c to be instantiated, with
the hope that the resulting new goal b ≤ c is simpler. If desired, we can employ a meta-
level check to compare the complexity of the involved terms, e.g., by a function simpler

that compares the number of the involved function symbols. A possible realization is
shown in Listing 20. Similar laws hold for > and ≥. However, for efficiency it is reasonable
to use either < or >, as a < b is equivalent to b > a.

271

CHAPTER 14. THE LIMIT DOMAIN

inference solveb a<b{*}; b ≤ c ==> a<c{*};{where (simpler "b"

"a")}
inference solveb a≤b{*}; b ≤ c ==> a≤c{*};{where (simpler "b"

"a")}
inference solveb a<b; b ≤ c{*} ==> a<c{*};{where (simpler "b"

"a")}
inference solveb a≤b; b ≤ c{*} ==> a≤c{*};{where (simpler "b"

"a")}

Listing 20: Simplification of goals during proof search

In the case of the Lim+ problem, the inference is for example used to reduce the goal
|x− a| < δ1 to δ ≤ δ1 based on the assumption |x− a| < δ. It is important to note that
one should give such a simplification higher preference than the axiom rule, which would
also be applicable and instantiate δ with δ1.

Finding Linear Bounds

It is often necessary to find linear upper and lower bounds for limit problems. To that
end, we design a strategy LinearBound, which was already used as a substrategy of the
strategy FactorBound. LinearBound is based on heuristics and aims at generating simple
constraints that can easily be solved. The strategy is based on the triangle inequality,
that is,

|x+ y| ≤ |x|+ |y| (14.52)

|x+ y| ≥ |y| − |x| (14.53)

The trick of the strategy is that the resulting condition is linear and can therefore easily
be processed. Moreover, this increases the chances that the answer constraint is compact
and simple.

Suppose we have an assumption |x− 3| < δ with the additional condition that δ > 0
(as usual for ǫ-δ proofs). In this case, we can easily compute a lower bound

|x− 1| = |x− 3 + 2|
(14.52)

≤ |x− 3|+ 2 < δ + 2 (14.54)

respectively an upper bound:

|x− 1| = |x− 3 + 2|
(14.53)

≥ 2− |x− 3| ≥ 2− δ (14.55)

The disadvantage is that the solution involves δ, i.e., subsequent transformations that are
based on this estimation become dependant on δ. However, refining the constraint by
imposing a further condition, e.g., δ < 1 allows us to get numerical values as bounds,
e.g., |x − 1| < 3 and |x − 1| > 1, which can easily be used in subsequent computations.
In particular, the additional condition can easily be collected when the min function is
available. The resulting strategy is shown in Listing 21.

272

14.2. STRATEGIES OF THE LIMIT DOMAIN

strategy linearbound

cases

(abs(X-A))< N,* |- (abs(X-B))<=MV where

(and (variable-metavar.is "N")

(variable-metavar.is "MV"))

with

R = (maxima-simplify "B-A")

FCONS = (maxima-simplify "1+abs(B-A)")

->

proof

N < 1

(abs(X-B)) = (abs(X-A+R))

.<= (abs(X-A))+(abs(R))

.<=1+(abs(R)) from L

put MV = FCONS

qed

Listing 21: Instantiation strategy for finding upper bounds

Constraint Simplification

Given a set of goal constraints, constraint simplification works by applying conditional
rewrite rules to the constraints with the goal to isolate meta-variables. Indeed, the sim-
plification rules of Cosie (see [ZM04] p. 84f) can easily be modeled within our strategy
language. Due to compilation, the resulting strategies are sufficiently efficient. However,
as the constraints may be scattered among the different branches of the search tree, it is
necessary to unify all goal constraints in a single conjunction and starting a new proof
tree.

14.2.2 The Extraction Strategy

It is common to alternate between forward and backward reasoning during proof search:
Work backwards as long as suitable inferences are available if backward reasoning is no
longer possible, start to work forwards from the assumptions, aiming at closing the given
goal. During the second phase, new goals might arise, for which backward reasoning is
started again. In the context of the limit domain, a common situation is that a certain
conditional assumption, e.g., an estimate that depends on certain conditions, is used to
simplify the current goal. Strategic reasoning allows us to trigger the unwrapping of a
condition on demand and solve the arising subgoals afterwards. Note that while it is also
often possible to rely on the deep axiom rule, a separate extraction of an assumption often
results in more readable proofs.

To support the extraction of a subformula of an assumption, we provide a strategy
Extract that takes a task position to be extracted as input, and applies elimination rules
to the formula until the subformula is extracted3. The strategy is provided as a library
function.

Example 14.2.1. Consider the task

Γ, ǫ > 0 ⇒ (δ > 0 ∧ (|x− a| < δ ⇒ |f(x)− l1| < ǫ)) ⊢ ∆ (14.56)

3Within the Core calculus, this means that only the windows are adapted

273

CHAPTER 14. THE LIMIT DOMAIN

Extraction of the subformula |f(x) − l1| < ǫ, i.e., applying elimination rules to unwrap
the assumption |f(x)− l1| < ǫ results in the following proof script:

proof

L1: ǫ > 0
L2: consider δ such that δ > 0∧(|x− a| < δ ⇒ |f(x)− l1| < ǫ) from

L1

L3: δ > 0 from L2

L4: |x− a| < δ ⇒ |f(x)− l1| < ǫ
L5: |x− a| < δ
L6: |f(x)− l1| < ǫ from L4,L5

qed

which is exactly the result of translating the following proof tree

Γ, ǫ > 0 ⇒ (δ > 0 ∧ (|x− a| < δ ⇒ |f(x)− l1| < ǫ)) ⊢ ∆

impE

Γ ⊢ ǫ > 0| Γ, (δ > 0 ∧ (|x− a| < δ ⇒ |f(x)− l1| < ǫ)) ⊢ ∆

andE

Γ, δ > 0, (|x− a| < δ ⇒ |f(x)− l1| < ǫ) ⊢ ∆

andE

Γδ > 0 ⊢ |x− a| < δ Γ, |f(x)− l1| < ǫ ⊢ ∆

14.2.3 Complex Estimate Revisited

In Chapter 10, we have already shown how to model the strategy ComplexEstimate
within our strategy framework. Here, we present a more general version. As before,
ComplexEstimate is applied to tasks whose goal is of the form |b| < ǫ and which have a
support formula |a| < ǫ′ where a occurs as linear combination in b. However, in contrast,
the version below uses forward reasoning, which is better suited for proof presentation,
and does not require the support formula |a| < ǫ to be at top-level. As a consequence, the
unwrapping of the subformula is controlled directly inside ComplexEstimate, and only
suitable formulas are extracted. The method is shown in Listing 22.

14.3 The Lim+ Problem

The so-called Lim+ problem is the problem to show that

lim
x→a

f(x) = l1, lim
x→a

g(x) = l2 ⊢ lim
x→a

f(x) + g(x) = l1 + l2 (14.57)

274

14.3. THE LIM+ PROBLEM

strategy ComplexEstimate

cases

[|a| < e1],* ⊢ |b| < ǫ
where (not (terms-are.equal "k" "0"))

with σ in (findaddsubst "a" "b")

(k,l) = (maxima-divide "b" (substapply σ
"a")) ->

proof

put σ
apply extract taf([|a| < e1])
L2: |k ∗ a| < ǫ

2
proof

put e1 =
ǫ
2k

|k| ∗ |a| < |k| ∗ e1
qed

L3: |l| < ǫ
2

L4: |b| = |k ∗ a+ l|
L5: . ≤ |k ∗ a|+ |l|
L6: . < ǫ

qed

Listing 22: Improved Variant of ComplexEstimate

After expanding the definitions of lim, the proof situation looks as follows:

T1 :ǫ1 > 0 ⇒ δ1 > 0 ∧ (|x1 − a| < δ1 ⇒ |f(x1)− l1| < ǫ1),

ǫ2 > 0 ⇒ δ2 > 0 ∧ (|x2 − a| < δ2 ⇒ |g(x2)− l2| < ǫ2)

ǫ > 0, |x− a| < δ ⊢ |f(x) + g(x)− (l1 + l2)| < ǫ (14.58)

T2 :ǫ1 > 0 ⇒ δ1 > 0 ∧ (|x1 − a| < δ1 ⇒ |f(x1)− l1| < ǫ1),

ǫ2 > 0 ⇒ δ2 > 0 ∧ (|x2 − a| < δ2 ⇒ |g(x2)− l2| < ǫ2),

ǫ > 0 ⊢ δ > 0

In this situation, the modified version of ComplexEstimate is applicable, using the sub-
stitution σ = {x1 7→ x}, and the specified proof fragment is executed: The substitution
σ is applied, and the formula |f(x) − l1| < ǫ1 is extracted. The extraction results in the
following new goals:

T3 :ǫ > 0

|x− a| < δ

ǫ2 > 0 ⇒ δ2 > 0 ∧ (|x2 − a| < δ2 ⇒ |g(x2)− l2| < ǫ2) ⊢ ǫ1 > 0 (14.59)

T4 :δ1 > 0,

ǫ > 0,

|x− a| < δ

ǫ2 > 0 ⇒ δ2 > 0 ∧ (|x2 − a| < δ2 ⇒ |g(x2)− l2| < ǫ2) ⊢ |x− a| < δ1 (14.60)

and an additional task T5 on which the execution of ComplexEstimate continues. T5 has
the following form:

275

CHAPTER 14. THE LIMIT DOMAIN

T5 :δ1 > 0,

ǫ > 0,

|x− a| < δ

ǫ2 > 0 ⇒ δ2 > 0 ∧ (|x2 − a| < δ2 ⇒ |g(x2)− l2| < ǫ2)

|f(x)− l1| < ǫ1 ⊢ |f(x) + g(x)− (l1 + l2)| < ǫ (14.61)

ComplexEstimate now inserts the body of the specified proof script and applies the
substitution ǫ1 7→ ǫ

2
. Moreover, it adds the new facts L2 to L6 as specified in the proof

strategy, which can all directly be closed except of L3, which is expanded to the following
task:

T6 :δ1 > 0,

ǫ > 0,

|x− a| < δ

ǫ2 > 0 ⇒ δ2 > 0 ∧ (|x2 − a| < δ2 ⇒ |g(x2)− l2| < ǫ2)

|f(x)− l1| < ǫ1 ⊢ |g(x)− l2| <
ǫ

2
(14.62)

To solve the remaining tasks, the goals are simplified based on the simplification rules
introduced above. T6 is reduced to the new task ǫ2 ≤ ǫ

2
, as well as in two conditions ǫ2 > 0

and |x− a| < δ2. Moreover, the goals |x− a| < δ1 and |x− a| < δ2 are reduced to δ ≤ δ1
respectively δ ≤ δ2. Solving the constraints in a new tree results in the conjunction

δ ≤ δ1 ∧ ǫ2 ≤
ǫ

2
∧ ǫ2 > 0 ∧ δ ≤ δ2 (14.63)

which can be solved by constraint simplification and results in the instantiations ǫ2 = ǫ
2

and δ = min{δ1, δ2}. The resulting proof script (showing only the most abstract granu-
larity level) is shown in Figure 14.3.

While the proof script shown above is already readable, there is still some potential
for improvement. In an actual textbook proof, the first two lines would probably not be
presented. Moreover, the fact L4 would only be derived once instead of twice, and both
assume blocks would probably be combined. Finally, 1 ∗ (f(x) − l1) would be replaced
by f(x) − l1. These are minor improvements which can relatively easy be performed
by transforming the generated script above or by incorporating the special cases in the
strategy ComplexEstimate.

14.4 Comparison with Multi and Discussion

While it has already been shown that the limit domain – in particular the Lim+ problem
– can be automated in principle based on proof planning with multiple strategies (see
[Mei04]), our approach represents a considerable advancement of the techniques devel-
oped in the work cited above with respect to efficiency, the control flow needed to solve
the problem, the specification costs for the design of the domain dependent knowledge,
the quality of the resulting proof plan, and finally the possibility to evaluate the whole
approach. Moreover, we have generalized many existing strategies, such as ComplexEsti-
mate, as well as integrated new strategies, including a decision procedure that allows the

276

14.4. COMPARISON WITH MULTI AND DISCUSSION

theorem th1: limx→a f(x) = l1 ∧ limx→a g(x) = l2 ⇒ limx→a f(x) + g(x) = l1 + l2
proof

have L1: ǫ
2 > 0 ⇒ δ1 > 0 ∧ (|x− a| < δ1 ⇒ |f(x)− l1| < ǫ

2
have L2: ǫ

2 > 0 ⇒ δ2 > 0 ∧ |x− a| < δ2 ⇒ |g(x)− l2| < ǫ
2

assume L3: ǫ > 0
have L4: ǫ

2 > 0
have L5: δ1 > 0
have L6: ǫ

2 > 0
have L7: δ2 > 0

thus min{δ1, δ2} > 0
assume ǫ > 0 and |x− a| < min{δ1, δ2}

have L8: ǫ
2 > 0

consider δ1 such that L9: δ1 > 0 ∧ (|x− a| < δ1 ⇒ |f(x)− l1| < ǫ) from L8

have L10: δ1 > 0 from L9

have L11: |x− a| < δ1
have L12: |f(x)− l1| < ǫ

2 from L11

have L13: |1 ∗ (f(x)− l1)| < ǫ
2

have L14: |g(x)− l2| < ǫ
2

have L15: |b| = |1 ∗ f(x)− l1 + g(x)− l2|
have L16: . ≤ |1 ∗ f(x)− l1|+ |g(x)− l2|
have L17: . < ǫ

thus |f(x) + g(x)− (l1 + l2)| < ǫ
qed

Figure 14.3: Proof script automatically generated for the lim+ problem

prover to close equality tasks over the reals automatically. This shows that it is relatively
easy to encode the knowledge that was used in the proof planer Multi in our strategy
language. Due to large amount this knowledge in Multi, only the major strategies were
formalized.

• The new strategy language allows the combination of several strategies based on
meta-level reasoning: If the assumptions contain an appropriate inequality that oc-
curs as linear combination in the goal, then (1) extract the inequality (which is a
variant of Multi’s strategy UnwrapHyp), before (2) using the extracted inequal-
ity in the goal. This has the significant advantage that the support formula is
unwrapped only if it is effectively needed in the subsequent proof, rather than un-
wrapping “promising supports” without any motivation. Moreover, the control flow
remains local to the overall strategy and need not to be temporarily stored (e.g.,
on a backboard or as an annotation). Eager instantiation of meta-variables during
the extraction process can directly be controlled within the strategy without further
meta-level reasoning, which simplifies the required control rules (such as Multi’s
InstIfDetermined), and makes the interruption of strategies, e.g., to unwrap a for-
mula or to propagate meta-variable instantiations, superfluous. Moreover, as the
instantiation of only a subset of the constraints is delayed, the constraint set that
needs to be managed becomes much smaller and therefore easier to solve.

Overall, at the most abstract level, the number of strategic actions is reduced
from twelve (see Figure 14.4) to UnfoldDefs, ComplexEstimate, Simplify, Solve-
Contraints, that is, only to four actions. Inferences corresponding to the methods
for unfolding the definitions of lim need no longer be specified manually. As the

277

CHAPTER 14. THE LIMIT DOMAIN

inferences already decompose the formula in the case of backward reasoning, the
method NormalizeLineTask, which achieves this goal in Multi, is no longer needed.
Moreover, the methods TellCS-B that sends constraints to the constraint solver and
the method Simplify-B that invokes a CAS to simplify a formula are no longer
needed. At the level of control rules, the control rule choose-unwrap-support and
eager-instantiate become superfluous. Let us point out that the new formalization
consists only of several hundred lines of code compared to the 17000 before. While
there is also control knowledge that is not necessary to solve the Lim+ problem, the
reduction from 117 to 34 lines of code in the case of ComplexEstimate shows the
significant benefit of the new strategy language.

• It becomes possible to evaluate the required techniques easily. For the Lim+ prob-
lem, these are:

– ComplexEstimate to determine a useful inequality in the assumptions, tech-
niques to unwrap it, and to rewrite the goal accordingly.

– The transitivity of equality to simplify a goal inequality using an existing sup-
port, based on the underlying idea to postpone the instantiation of a meta-
variable (the δ in the Lim+ proof) by simplifying it to linear inequalities.

– A strategy to simplify/solve simple inequalities such as ǫ
2
> 0 based on ǫ > 0,

which can be accomplished by rewriting.

– A domain specific strategy to simplify constraints (to combine the constraints
δ ≤ δ1 and δ ≤ δ2).

• Proof plans encode mathematical proofs rather than proofs including control in-
formation. In particular, the methods to manage the constraint solving, such as
TellCS-B, become superfluous. As a consequence, the resulting proof plan can eas-
ily be translated to a natural looking proof script.

• The constraint solver is specified by rewriting rules as a strategy. This has the ad-
vantage that the underlying knowledge is explicit and that no external constraint
solver satisfying the requirements for proof planning needs to be implemented from
scratch. Most importantly, the solver becomes extensible. This is highly valuable in
the interactive setting, as a rational instantiation often requires user-defined func-
tions, such as the min function above.

SolveInequality NormalizeLineTask Solveinequality

UnwrapHyp SolveInequality InstIfDetermined

SolveInequality UnwrapHyp SolveInequality

UnwrapHyp SolveInequality ComputeInstFromCS

Figure 14.4: Strategic Control Flow in Multi

278

14.5. RELATED WORK

14.5 Related Work

14.5.1 Bledsoe’s Imply and STR+VE prover

One of the first attempts towards automating elementary mathematical analysis and set
theory goes back to Bledsoe in the seventies and his theorem prover Imply [BBH72].
Bledsoe developed a strategy for proving inequalities [BH80] over the reals and introduced
the so-called limit-heuristic to reduce inequality goals. The STR+VE prover [Hin94]
proved the Lim+ problem and its variants. The original method ComplexEstimate is
inspired by Bledsoe’s limit heuristic. Our version further refines ComplexEstimate in the
following ways: (1) Control of the extraction process of a suitable support formula; (2)
Direct instantiation of some meta-variables, (3) Control of the shape of the resulting proof
script.

14.5.2 Weierstrass

In [Bee98], Beeson describes techniques implemented in his prover Weierstrass to au-
tomatically find ǫ-δ proofs in elementary analysis. Weierstrass is based on the sequent
calculus and performs a backward search to prove theorems. It uses meta-variables to
delay the choice for existential witnesses. Simplification of expressions is performed by so-
called operations, which are special algorithms to rewrite expressions to equal expressions
under certain side conditions. Side conditions are either inferred, checked, or assumed.

In addition to the factor-bounding heuristic which was already described above,Weier-
strass contains algorithms to find lower and upper bounds, a heuristic based on the mean
value theorem to prove inequalities, and uses a list of known inequalities to simplify the
goal, such as | sin x| < |x| for small x. Among others, Weierstrass can prove the
continuity of x3 and

√
x on closed intervals, and the uniform continuity of sin(x) and

cos(x).

While the proofs of the theorems produced by Weierstrass are presented in an
abstract way and many interesting heuristics are implemented, there is no general lan-
guage to express the reasoning techniques/heuristics used by the prover. Rather, they are
coded in the underlying programming language of the prover and only partially described
within research papers. Moreover, no detailed information about the formalization of the
background theory is given, which makes a detailed comparison difficult.

14.5.3 An Interactive Calculus Theorem-prover for Continuity
Properties

In [ST89] Suppes and Takahashi present an interactive calculus theorem prover for conti-
nuity properties, which is build on top of the CAS Reduce. Their focus is on the devel-
opment of interactive methods of theorem proving which are practical for students to use
with no programming background and without extensive mathematical background. The
environment provided by the authors allows the construction of proofs with gaps, which
are closed by a simple resolution theorem prover VE, or its special variant OE, which
assumes properties of ordered fields to close the gap. Moreover, the authors provide a
strategy M to prove simple algebraic theorems, such as x ∗ y = z ∧ y 6= 0 ⇒ x = z

y
. M

essentially applies decomposition rules to formulas to get sequents containing only literals
and uses then forward exploration to deduce facts from that literals. Functions such as
| · |,min and max are expanded using a list of theorems. Data and therefore also numbers

279

CHAPTER 14. THE LIMIT DOMAIN

are represented in Lisp without types and CAS Reduce is used for simplification without
justifying the results.

While their system did not allow the automatic construction of proofs for continuity
properties, it represents on of the first attempts to develop a prover for that domain and
to automate simple subtasks. From our perspective it is interesting to see the interactive
proof construction as a proof plan, whose gaps are closed by a several strategies provided
by the authors.

14.5.4 Theorema

The so-called PCS method (see [Buc01]) for analysis has been developed for the The-
orema system. The PCS method reduces proving in elementary analysis, in particular
formulas with alternating quantifiers on functions systematically to the solution of inequal-
ities over the real numbers. The PCS method is able to solve the Lim+ problem, provided
that appropriate lemmas are specified. Constraints are solved using Collins method for
quantifier elimination, which has the disadvantage that no textbook-like instantiations are
computed. Moreover, Theorema does not provide any functionality to specify control
knowledge within the proof document: A prover is a fixed combination of inference rules,
suitable for a particular class of proof situations (see [Dup00] for details), where fixed
means that the inference rules as well as the order in which they are applied are fixed.
The prover needs to be encoded in the programming language of Mathematica.

14.5.5 Oyster Clam

Oyster Clam succeeded in proving the Lim+ property using colored rippling (see [YBG+94,
Bun96] for details). Compared to our approach, the rippling heuristic is more general as
our strategies as it can also be applied to other domains. However, it requires a specific
axiomatization of the problem and an annotation of the goal and targets of the rippling
process. Moreover, the definitions were already unfolded in the original problem. Due to
the use of a CAS, our proof strategy depends less on the formalization. In addition, we
produce a readable declarative proof script.

14.6 Summary

In this chapter we showed how to express common patterns of reasoning of the limit
domain using the strategy language developed in the Chapter 10 (Evaluation E2, Section
1.1). Compared with a reference implementation of the previous proof planner Multi,
the specification costs of proof strategies measured in lines of code are reduced and the
readability and maintainability of the strategies increased. The possibility to specify proof
strategies within the proof document increases the usability of interactive theorem provers
and proof planners, but also provides a possibility to evaluate systems that are based on
heuristics, as all knowledge becomes explicit.

280

15
Integration Into a Scientific Text-Editor

In this chapter, we describe the integration of Ωmega into the scientific text-editor Tex-
macs (see [vdH01] for a description). Texmacs provides professional type-setting and
supports authoring with powerful macro definition facilities like those in LATEX, but the
user works on the final document (“What you see is what you get”, WYSIWYG). The
motivation was to enable the document-centric approach to formalizing and verifying
mathematics, that is, the development of mathematical documents in a publishable style,
which, in addition, are formally validated, resulting in certified mathematical documents .
To realize this overall goal, several people of our research group worked together on solu-
tions both for the proof assistant, as well as for the scientific text-editor. The development
started with [ABFL06], and resulted in a first prototype, called Plato [MW07]. The goal
of this section is to give an overall overview of the developed architecture in the context
of existing work and to discuss the changes in the architecture of the proof assistant to
accomplish the requirements of the scenario.

15.1 Historical Remarks and Design Goals

Early interactive theorem provers, such as LCF, operated with the prompt of the un-
derlying programming language based on a read-eval-print loop. Later, this interaction
mode was slightly improved by the introduction of a separate, prover-specific command
language in provers like Isabelle or Coq. A major advance towards user interfaces was
the development of the ProofGeneral interface [Asp00], which provides a prover inde-
pendent communication protocol between a so-called display, and a reasoner, via a central
component called broker. Within the display, the complete document is shown, which is
split into two parts: an already processed part which cannot further be edited, and an
editable region of unprocessed text. The pointer/focus that separates both regions can be
moved forwards, triggering the processing of the next command, or backwards, invoking
an undo operation within the prover. In this sense, the interface is still in the spirit of a
sequential, command-line based interaction model with two essential commands next and
backtrack. ProofGeneral has been ported to other editors/IDE-environments, such
as Eclipse (see [ALW07] and [JC08]), or NetBeans (see [Gas09]).

Considering the existing work, our main design goal was to consider the input docu-

281

CHAPTER 15. INTEGRATION INTO A SCIENTIFIC TEXT-EDITOR

ment as a first-class citizen with an internal state, without imposing any restrictions on
how the document is structured, how it is edited, and which language is used in the docu-
ment, at the expense of higher processing costs. More precisely, we support the following
features:

• Multi Focus Editing: The single focus approach is rather restrictive as it forbids
the user to edit parts of the document that have already been processed. Therefore,
we support a multi focus editing approach, where the user can edit any part of
the document. Backtracking and rechecking is automatically triggered by the proof
assistant.

• Unrestricted Input: The input language of the document is independent of the
syntax of the proof assistant. In particular, the user is not required to give justifi-
cation hints of how to discharge proof obligations arising from intermediate steps.
Moreover, we do not require the use of the language of the proof assistant within
our proof document.

• Incremental Proof Checking: Proof checking without any hints can become
complex and time consuming. Therefore, we rely on an incremental asynchronous
approach: The editor never waits for the verifier and editing is therefore always
possible. The prover checks the consistency of the document in the background
without explicit requests from the user. The prover itself has full control to schedule
the resulting proof scripts in any order, thereby exploiting parallelism.

• Continuous Proof Checking: We support the continuation of proof checking
after the first encountered error. While this is a main feature of declarative proof
languages, let us stress that this feature is not standard, e.g., it is not supported by
Isabelle.

• Partial Proof Steps: We support the processing of partial proof scripts.

Moreover, in addition to proof checking we provide additional services to support the
generation of documents. These include:

• Proof Script Generation: Instead of only checking user-written proofs, we sup-
port the automatic generation of declarative proof scripts (e.g., by declarative strate-
gies) which are inserted into the proof document.

• Granularity Change: One main feature of the PDS is the ability to maintain sub-
proofs at different levels of granularity simultaneously, including a so-called PDS-
view representing a complete proof at a specific granularity. Given a proof step at a
specific granularity, we support to switch to a higher/lower granularity on demand.

• Proof Command Completion: Given a partial cases construct, where some of the
cases are already given, or a partial subgoals command, where some of the subgoals
are given, we provide a facility to automatically complete the missing cases/subgoals
and to patch them into the document.

• Proof By Pointing: The idea in proof by pointing [BKT94] is that the mere ges-
ture of pointing at a subexpression in a subgoal is enough to synthesize appropriate
commands for the system. We feature this approach by context sensitive menus
that offer possible transformations at the position the user has clicked at.

282

15.2. ARCHITECTURE AND COMMUNICATION

15.2 Architecture and Communication

Figure 15.1 shows the overall architecture of our approach. It essentially consists of three
components: The text-editor, which is in our case Texmacs, the proof assistant Ωmega,
and a mediator that communicates with both the text-editor and the proof assistant.

i-th proof

∆-Analyzer

i-th proof plan

Scheduler

Thread1

...

Threadn

Proof Assistant

Document
Mediator

update

extraction

rendering

update

update

Figure 15.1: Architecture of the integration of a text-editor and a proof assistant via a
mediator

The roles of the components are:

Text-Editor: The text-editor is the front-end; it displays the mathematical document
together with status information and provides facilities to edit the document.

Mediator: The role of the mediator is to abstract from the concrete implementation of
the text-editor that is used to display the documents. It also abstracts from the concrete
input language in which the background theory is formalized. Moreover, it must preserve
the consistency between the text-editor and the proof assistance system. This is achieved
by providing facilities to extract the formal content from the document and sending it to
the proof assistant, as well as by translating new parts generated by the proof assistant
back to the text-editor. Additionally, services and feedback of the proof assistance system
are made available within the text-editor.

Proof Assistance System: The role of the proof assistance system is to maintain a
formal version of the document and to provide additional services on top of the formal
representation. In particular, this includes refinement of the extracted abstract proof
sketches to machine-checkable proof objects, detection and reporting of errors, and auto-
matic generation of human-readable proof scripts.

Let us now consider the interaction between these components by showing the initial
workflow, which is as follows: The user opens a theory file (possibly empty), which is
immediately uploaded by the text-editor and processed by the mediator. The mediator in
turn extracts a formal document, which is sent to the reasoner, which starts to discharge
proof obligations. Subsequently, the author changes the document either by writing new
parts or by invoking automated reasoning procedures. As an example, Figure 15.2 shows
an initial document about Simple Sets written in Texmacs. This theory defines two
base types and several set operators together with their axioms and notations. In general,

283

CHAPTER 15. INTEGRATION INTO A SCIENTIFIC TEXT-EDITOR

theories are built on top of other theories and may contain definitions, notations, axioms,
lemmas, theorems and proofs. Note that in the example set equality is written as an
axiom because equality is already defined in the base theory.

Figure 15.2: Example document in the text-editor Texmacs

Step 1: Document Extraction

To extract the formal content of the document, we use a controlled authoring language to
skip the burden of providing annotations, thus increasing the overall usability by dealing
with pure Texmacs documents. Let us note that the extraction process is not static, as
the author usually introduces new notation during the theory development, which needs
to be parsed at some point. Essentially, there are three options:

(i) The mediator parses the document completely and sends the information in a struc-
tured format to the proof assistant. The proof assistant in turn has only to check
the incoming information.

(ii) The mediator parses only an outer syntax of the document, e.g., the theory structure,
and sends the formulas to be parsed to the proof assistant.

(iii) The proof assistant parses the document completely and provides a structured ver-
sion of the document for the mediator.

Each scenario has its advantages and disadvantages in terms of efficiency, dependencies
being introduced, and implementation effort. For example, the proof assistant usually
provides already parsers for formulas and algorithms to analyze them, such as typing
algorithms. Moreover, these algorithms are not generic, but dependent on the logic the
proof assistant is based upon. On the other hand, by relying on the language of the used
proof assistant, it is difficult to support functionalities that are beyond its scope, such as
a more flexible input language.

To completely abstract from the concrete form of the input language of the text-editor
we decided in favor of (i). Let us note that the structure of documents in Texmacs
is considerably different from the document structure of Ωmega theory files and the
corresponding parsers needed to be written anyway. Moreover, we wanted to be able to

284

15.2. ARCHITECTURE AND COMMUNICATION

extend the document language independent of the language of the proof assistant, aiming
at supporting natural language eventually.

It turned out in the beginning that because of the dynamic behavior of a mathematical
theory a naive implementation of the initial parsing of the document using only a LALR
parser was to inefficient1. Therefore, we employ more sophisticated parsing algorithms,
such as combinator parsers and parsers that can dynamically be extended without being
recompiled, such as directly-executable variants of an Earley parser [AH01] or operator
precedence parsers. Essentially, the extraction process now works as follows: First of all,
the document is preprocessed and split into segments almost corresponding to sentences.
Then the following steps are incrementally performed for each segment: (1) the static
parts of the authoring language, i.e., the controlled phrase structure, are parsed using a
precompiled LALR(1) parser; (2) the dynamic parts of the authoring language, i.e., the
formulas and notations, are parsed using a theory-specific Earley parser; (3) the segment
is propagated to the proof assistance system. Note that the dynamic parts are always
strictly separated from the static parts in the document because they are written inside
a math mode macro.

For the example given above, the extracted theory is shown in Figure 15.3. For
convenience, we present it already in a syntax suitable for the proof assistant, even though
the internal representation of the mediator is slightly more complex. Note that notational
information is not propagated, but completely maintained by the mediator, which sends
already parsed formulas in an abstract syntax.

theory Simple Sets

newtype elem

newtype set

definition element ∈:elem*set->bool
definition subset ⊂:set*set->bool ∀U, V.U ⊂ V ⇔ (∀x.x ∈ U ⇒ x ∈
V)
axiom set equality ∀U, V.(U = V) ⇔ (U ⊂ V) ∧ (V ⊂ U)
definition union ∪:set*set->bool ∀U, V, x.x ∈ U ∪ V ⇔ x ∈ U ∨ x ∈ V

definition intersection ∩:set*set->bool ∀U, V, x.x ∈ U ∩ V ⇔ x ∈
U ∧ x ∈ V

Figure 15.3: Extracted document

The theory is uploaded to the proof assistant, which constructs the specified theory.
However, as the document does not contain any proof information, no verification process
is started.

Step 2: Modification of the Document

Let us now continue our example by adding a new theory to the document, as shown in
Figure 15.4(a). The new theory extends the previous theory by a theorem, for which a
partial proof is given. Being uploaded, the mediator analyzes the parts of the document
which have changed and recognizes the part that has been added. The new part is
extracted (see Figure 15.4(b)), and the update sent to the reasoner.

Let us remark that while it is reasonable for the mediator to analyze the changes
and to keep it as local as possible, it is the proof assistant that must actually perform

1In a first implementation, the processing of the above example took more than one minute.

285

CHAPTER 15. INTEGRATION INTO A SCIENTIFIC TEXT-EDITOR

(a) Added part of the document

theory Distributivity in Simple Sets imports

Simple Sets

theorem ∀A,B,C.A ∩ (B ∪ C) = (A ∩B ∪A ∩ C)
proof

assume x ∈ A ∩ (B ∪ C)
x ∈ A ∧ x ∈ (B ∪ C) by . from .

thus . by .

qed by .
(b) Example proof in abstract syntax

Figure 15.4: Extended proof document and extracted part

the changes, as it is the only instance that can provide the final correctness guarantee.
Moreover, while locality of changes is very desirable, management of change is currently
not supported by most of the interactive theorem provers. Within our reasoner, we
developed an interface to handle such differences. To keep the interface small, we limited
the differences to the reasonable level of proof steps and formulas, such that deep changes
in a formula are handled as a complete modification of the formula. The propagation of
changes is essential for this real-time application because complete re-transformation and
re-verification slows down the response time too much.

Step 3: Proof Checking and Status Updates

The reasoner updates its theory data structure, that is, starts a new theory and inserts
the theorem together with its partial proof in the form of a proof plan. The verification
is not started directly, but a corresponding expansion task maintained within the proof
plan. The expansions are performed asynchronously. Whenever a step could be verified,
a status update is sent to the mediator, which triggers the text-editor to mark the step
as being proved, indicated by a green color. For our example, this results in the proof
document shown in Figure 15.5.

Figure 15.5: Propagated Status Update inside the text-editor Texmacs.

286

15.2. ARCHITECTURE AND COMMUNICATION

15.2.1 Proof Script Generation, Granularity Change, and Com-
pletion

Whenever a part of the proof is changed by the proof assistant, it must be propagated back
to the mediator. In principle, the prover can construct arbitrary large parts and multiple
hierarchies during the repair phase, which need to be inserted to the proof document when
the user requests a more detailed variant of the proof. Proofs are always communicated
in the form of declarative proof scripts, which can always be extracted, even in the case
of procedural proofs (see Chapter 8). As default the most abstract proof hierarchy is
communicated as a proof script to the mediator. However, the mediator can ask for
a more detailed or a more abstract version of the proof script. Given a selected proof
hierarchy, each proof step has to be transformed into a command of the proof script
language.

15.2.2 Discussion

Usually, the author of a document writes many different proofs for different theorems in
different theories before the document is finished. This corresponds to multiple, parallel
proof attempts, which are maintained in Ωmega by the development graph, which is
also responsible to determine the assertions that are available for one particular proof
attempt. This functionality was not supported in the previous version of Ωmega. Having
that infrastructure in place was the key to turn the Ωmega system into a server that can
provide mathematical assistance services for multiple documents in parallel sessions.

The next step was to provide a facility to exchange proofs between the text-editor and
the reasoner. To that end, we developed a declarative proof language and mechanisms to
check the resulting proof obligations efficiently. A key step here was to map declarative
proof commands to proof plan constructors, which model the verification of a proof step
as proof refinement. Within proof plans, the execution of the refinement can be performed
independently of the change of the proof plan, resulting in an asynchronous proof checker.

Having a basic proof checker available, an issue is that the author changes his document
usually many times. Hence the proof assistance system has to be able to deal efficiently
with non-monotonic changes not only inside a theory but also within the proofs. For
instance, deleting an axiom from a theory should result in pruning or at least invalidating
proof steps in all proofs that relied on that axiom. Furthermore, if by such an action a
proof of some theorem is invalidated, then all other proof steps that used this theorem
must be flagged and invalidated in turn. While the immediate “solution”, i.e., to auto-
matically re-execute all proof procedures, works in principle – at least if it is performed
asynchronously – the local solution speeds up the rechecking and, as a consequence, an
updated version of the document is obtained more quickly. Moreover, based on the rela-
tion between assertions and inferences, as well as the dependency information from the
development graph, we could extend the management of change from theorems to the
validation of individual proof steps.

Concerning the different representations of a proof document, let us point out that
Ωmega stores a proof at different levels of granularity, which arise due to refinement
operations. In contrast, a document is displayed at one particular granularity at the side
of the text-editor. To consistently link the proof in the document with the respective part
of the much more elaborate proof representation PDS in Ωmega the development of the
notion of a “PDS view” (see Chapter 8) was essential.

To be able to change the granularity within the text-editor, it was necessary to in-

287

CHAPTER 15. INTEGRATION INTO A SCIENTIFIC TEXT-EDITOR

sert new proof parts that were generated by Ωmega to the text-editor. Therefore, we
developed mechanisms to convert procedural proofs to declarative proofs (see Chapter 8),
resulting in a clean communication format in the form of declarative proofs. Of course,
at some point, the resulting proofs may become too complex. A possible solution to this
problem is to use granularity analysis techniques, as developed by Schiller [Sch10].

Finally, within the setting of interactive theorem proving, a user wants not only to
specify proofs, but also proof strategies that extend the proof checker. To that end, we
developed an independent strategy language (see Chapter 10). The language can be used
within the proof document, and the conversion/compilation in the programming language
of the theorem prover performed within the proof assistant. Moreover, declarative strate-
gies (see Chapter 10.2) explicitly provide control over the granularity of the resulting
proof scripts. As a result, we developed the first proof assistant that fully supports the
document-centric approach to formalizing mathematics.

15.3 Related Work

Mizar: The most prominent system for the publication of machine checked mathematics
is Mizar [TB85] with one of the largest libraries of formalized mathematics. As we
have already compared the Mizar language with our proof language in Section 8.5,
we focus here on the overall workflow. Mizar works in batch mode, that is, the user
prepares an article, compiles it and loops both steps until there is no error reported. The
Mizar checker always processes the complete document, independent of errors it possibly
encounters. One such processing cycle essentially corresponds to the initial upload of the
proof document within our approach. In addition, we support changing the document
without the need to recheck the complete document. This is particularly useful within
our approach, as we support the automatic refinement of underspecified proofs, i.e., the
verification of proofs that contain gaps, which are not supported by Mizar. Moreover,
our proof checker is extensible by the possibility to specify proof strategies within the
proof document – a feature that is also not supported by Mizar. Finally, we provide
two facilities to automate the generation of declarative proof scripts, either by declarative
tactics or by converting procedural proofs to their declarative counterpart, as described
in Section 8.4.

ProofGeneral/Isabelle: ProofGeneral [Asp00] is a generic front-end for proof
assistants based on the text-editor Emacs. It provides a prover independent communica-
tion protocol between reasoners and displays and supports user interaction with a single
focus of attention. Given an initial proof document, the document is uploaded to the rea-
soner, which parses the document and provides back a structured version of the document.
Within the display, the unstructured version is then replaced by the structured version
using the protocol functions remove and newobj. Proof steps are processed by moving
the pointer forwards. Only unprocessed parts can be edited by the user. In such a case,
ProofGeneral determines the parts that have been changed/inserted, and requests the
reasoner to parse those parts in order to obtain a structured version of them. The check-
ing of a proof step is asynchronously performed by the reasoner. However, it stops at the
first error of the document, in which case the pointer of attention cannot be moved fur-
ther forwards. ProofGeneral is mainly used in the context of Isabelle, even though
other proof assistants, such as Phox, Lego or Coq, are supported as well. In addition
to verifying proof steps, Isabelle uses the counterexample-generator Nitpick [BN10] to
find counter models in the case that the conjecture is not provable.

288

15.3. RELATED WORK

Similar to our approach, ProofGeneral is based on a generic protocol to exchange
information between a text-editor (display) and a reasoner. However, in the case of
ProofGeneral, the input document must conform with the document format that is
supported by the underlying reasoner. This needs not necessarily be the case in our ap-
proach, at the cost that our mediator must implement its own parsing algorithms which
are not needed within ProofGeneral. Similar to our approach, ProofGeneral de-
termines changes of the document locally. However, this functionality can only be used
for parsing, but not for processing, which is always with respect to the current execution
point. Even though the underlying protocol provides the possibility to insert parts within
the proof script, this functionality has not yet been used by Isabelle’s automated rea-
soning procedures or Isaplanner. It is one essential feature that is supported within
our approach.

Matita: The Matita system “is meant to be first of all an interface between the user
and the mathematical library” (see [ACTZ07] p. 3). As such, it stores proofs and defined
concepts independently in a library, indexes it, and allows for efficient knowledge retrieval
from the library. Every time a new mathematical concept is created and saved by the
user it gets indexed, and becomes immediately visible in the library. To keep the library
consistent, a mathematical concept and those depending on it are invalidated when the
concept is changed or removed. The corresponding proofs need to be regenerated to verify
if they are still valid. Matita thus allows the change of theorems and concepts locally,
similar to our approach.

Sad: Sad [VLP07] is a system for the automated processing of formal mathematical
texts written in a special language called ForTheL ({For}mal {The}ory {L}anguage) or
in a traditional first-order language. Similar to our approach, the extraction of a formal
representation of the document is separated from its verification. ForTheL is intended to
be close to natural language. For example, the sentence “Let S be a set. A subset of S is
a set X such that every element of X is in S” is a correct sentence in ForTheL and trans-
lated to ∀S. aSet(S) ⇒ ∀x1. aSubsetOf(x1, S) ⇔ aSet(x1) ∧ ∀x2. aElementOf(x2, x1) ⇒
aElementOf(X2, S) based on grammar rules [a subset/subsets of x]2 that are added at
the beginning of the document. The result of the document extraction is a normalized
version of the input document, which can be seen to be similar to our structured proof
scripts. In a next step, the statements are reduced to goal statements and processed one
by one by a reasoner component, thereby being simplified in various ways: “to decom-
pose it to a number of smaller subtasks (e.g., to split a conjunctive goal or to perform a
case analysis), to filter the set of premises, to generate suitable instantiations of relevant
lemmas, to expand definitions, and so on” (see [LPV06] p. 563).

With respect to our approach, there are the following differences: (i) Even though
our parsing techniques are general (see [Wag10]), in the current implementation the input
language is not as close to natural language as the one of SAD, even though it could
probably be expressed within the framework without much work. (ii) SAD runs in batch
mode. Therefore, it does not provide any possibilities for reasoners to propagate back
information to the initial proof document, nor does it provide any tools to support in-
teractive proof construction. Rather, it is a proof checker that can handle large gaps.
Moreover, as it runs in batch-mode, it always expects complete documents as input. (iii)
The proving process is completely hidden in SAD. In particular, the user cannot control

2Equivalent forms of the same word are listed with slashes

289

CHAPTER 15. INTEGRATION INTO A SCIENTIFIC TEXT-EDITOR

the proof search process directly in the form of hints to restrict the available premises.
This also implies that there is no mechanism to name formulas. Also, there is no possi-
bility to extend the underlying reasoning procedures in form of user-defined tactics. (iv)
SAD is based on untyped first order logic. In contrast, we use a simply typed higher-order
logic.

Naproche: TheNaproche project [KCKS09] ({Na}tural language {Pro}of {Che}cking)
studies the semiformal language of mathematics (SFLM) as used in mathematical jour-
nals and textbooks with the goal of being able to extract their formal content into a first
order logic and check them subsequently. A Naproche text is structured by structure
markers: Axiom, Theorem, Lemma, Proof, Qed and Case. These markers determine the
macro structure of the document. The micro structure consists of statements and asser-
tions, which combine terms with natural language, such as in “For all x, y, if x ∈ y and
Ord(y) then Ord(x).”. The checking algorithm maintains a list of currently available facts
which are updated during the checking. The checking itself is performed by invoking a
classical first order reasoner. To keep the checking feasible, a premises selection algorithm
tries to select only the relevant premises for an obligations. The Naproche follows the
approach of the SAD project and therefore differs from our work in the same way.

LogiWeb: LogiWeb [Gru07] is a system that supports publication and storage of
machine checked mathematics, as well as scientific articles, and computer programs. We
focus on the part that deals with storage of machine checked mathematics, which was
originally designed to support map theory. Other logical foundations can be specified
as axiomatic theories in the Hilbert style, i.e., by a (large) set of axiom schemes and
a (small) set of inference rules. In addition to mathematical theories, documents can
contain specification of tactics as well as proofs. A proof consists of a sequence of proof
lines consisting of a label, an inference rule, and a formula that is justified by the rule.
In that sense, LogiWeb does not come along with a proof language in the traditional
sense. Even though the system is extensible by user-written tactics, let us point out
that there is no special tactic language. Rather, tactics are written in a general purpose
programming language provided by LogiWeb. An outstanding feature of LogiWeb is
its possibility to publish documents in a variety of formats, and access documents over
the Internet. To that end, it strictly separates the input from the output document
and provides several rendering facilities for an input document. Both input and output
language can be extended. LogiWeb works in batch mode, which differs from our work
in the points mentioned above. To support a distributed library, articles that have been
published cannot further be changed. Therefore, there is no need to consider the problem
of rechecking parts, as considered by our approach.

15.4 Summary

In this chapter we discussed the integration of Ωmega into the scientific text-editor Tex-
macs. While the developed architecture is mainly interesting from an implementational
point of view, our experiments demonstrate that it is reasonable to communicate changes
at the level of proof scripts. Moreover, our approach to translate proof scripts to proof
plans has resulted in the new multi-focus paradigm where the user can change any part
of the proof document.

290

Part V

Conclusion

291

16
Comparison with the previous Ωmega

system

At an abstract level, the organization of the search of the automated reasoning system de-
veloped for this thesis is in the tradition of knowledge based proof planning [MS99b] as im-
plemented by the previous Ωmega system [SBF+03] and its proof plannerMulti [MM05a].
However, the underlying logic, which was a variant of a higher-order natural deduction
calculus, was exchanged for the Core calculus. Moreover, many concepts have been en-
hanced in order to increase the usability and efficiency of the system. The goal of this
chapter is to take a step back and discuss the most important changes and their impact.

16.1 Logical Foundations

The most obvious difference between the systems is the exchange of the underlying logic
from a higher-order variant of natural deduction to the Core calculus. This exchange
required the adaptation of all reasoning procedures as well as the integration of external
systems. There are two motivations for it:

(i) The proofs developed by a mathematician and the proofs developed by a student in
a mathematical tutoring system are typically written at an argumentative level, i.e.,
as proofs at the assertion level with different types of underspecification. While so far
such assertion level proofs needed to be constructed from the underlying ND-calculus
proof, there was the educated guess that such proofs could be directly supported on
top of the Core calculus. Whether there are also practical benefits for automated
reasoning procedures was not known.

(ii) The necessity that abstract proof plans need eventually to be expanded to calculus
level proofs introduced certain constraints that had to be respected at the planning
level, which are summarized in [BMM+01] as follows:

• Proof planning is goal centered and therefore backward reasoning is preferred.
The proof construction in ND consist of an interplay of forward and backward
steps, the order of steps is important for a successful proof. A specific order

293

CHAPTER 16. COMPARISON WITH THE PREVIOUS ΩMEGA SYSTEM

of proof steps during the proof search can lead to artificial problems with the
eigenvariable condition and makes the management of hypotheses difficult. In
particular, it might require backtracking.

• The requirements of the ND-calculus influence the design of methods and the
heuristics to control the proof search. Hence, there is a danger that the moti-
vation to capture the reasoning of mathematicians becomes secondary.

It was expected that the less restrictive calculus Core would free the proof planning
level from these constraints and that it is possible to define an independent planning
layer on top of it.

Within the new system, the search for a proof is directly done at the assertion level
on top of the Core calculus. To that end, we introduced an assertion level interface
that hides the internal representation of the Core calculus and imposes further structure
on the proof search. This has both computational benefits as well as representational
benefits: Only the part of the proof state corresponding to the conjecture to be proved
is shown, while the underlying background theory is hidden from the proof state and
transformed to inferences. An inference application is mapped to a sequence of resolution
replacement rules, and the multiplicities of the involved quantifiers are automatically
adapted. Inferences are guaranteed to be correct and need not be expanded further.
Therefore, no logical constraints corresponding to the expansion of methods need to be
considered when defining strategic reasoning procedures on top of the inferences. Further
control information can conveniently be attached locally to inferences to further structure
the search space. Moreover, we could show the following:

• It is possible to translate assertion level proofs to declarative proof scripts, which
are extensively used within the interactive theorem proving community. Our exper-
iments confirm Huang’s insight that the assertion level provides a suitable basis for
proof presentation. It is important to point out that this feature is not supported
by state of the art interactive theorem provers, such as Isabelle.

• Using the assertion level as the logical basis for automated reasoning procedures is
beneficial for specific mathematical domains. Our experiments in Section 12 show
that a simple assertion level prover outperforms state of the art theorem provers in
the domain of set theory and can solve several problems that are out of the scope of
many automated theorem provers. This was not expected beforehand, in particular
because the used techniques are general purpose and rather domain independent.
Moreover, we could show that the assertion level is also useful for the verification/re-
construction of proof steps in the context of proof tutoring. The abstract nature of
the assertion level allows the formulation of a simple depth bounded breadth-first
search algorithm to verify the student steps efficiently. Moreover, ambiguities as
well as incomplete proof steps can be reconstructed, which is probably not possible
without further ado when relying on pure logical reasoning. The resulting proof
reconstructions obtained by the algorithm provide the basis for further analysis of
the student utterance, as studied by Schiller [Sch10] in the context of the Dialog
project.

Thus, there are several reasons why proof search at the assertion level is beneficial. How-
ever, was the change of the calculus inevitable? The answer is no, at least for assertion
level proof search without deep inference: In [AD09] we have shown that it is also possi-
ble to directly search at the assertion level within the framework of natural deduction or

294

16.1. LOGICAL FOUNDATIONS

sequent calculi by lifting assertions to the level of inference rules. Similar to the Core
interface, an assertion application corresponds to a sequence of reasoning steps in the
underlying calculus. The problem of permutability of proof steps (see [BMM+01]) in the
presence of meta-variables can be solved using a more liberalized δ-rule to reduce the
dependencies introduced by the Eigenvariable condition, as shown in the paper.

The insight that the assertion level can be supported by different calculi is indeed
interesting and it identifies the assertion level to be a rather calculus independent layer.
Nevertheless, the use of Core as underlying reasoning framework was beneficial because:

• Core supports contextual reasoning on subformulas. We have shown in Chapter 13
that this allows the construction of exponentially shorter proofs compared to the
sequent calculus without cut. Moreover, the possibility to reason on subformulas
had an extensive impact on the design of the strategy language, which now provides
first class support for subformula reasoning.

• Our theoretical and practical investigations increased the understanding of resolu-
tion replacement rules and its relation to simplification methods as used in tableau
systems.

• The uniform notation used byCore provides an abstraction from the actual formula
language and characterizes the relationship of subformulas based on their behavior
rather than based on their syntactic structure. As a result, proofs become invariant
under certain equivalence transformations, as discussed in Section 3.1.

• On the implementational level, the change of the underlying calculus has led to an
intermediate interface that makes the planning layer independent of the calculus.

However, we have also to admit that the design of an assertion level interface on top of
the Core calculus is a non-trivial task. This is because the unstructured representation
of the proof state as a single formula can result in large structures, in particular in the
presence of large theories. This has the following drawbacks:

• Large structures are rather unsuited for communication with a user.

• The generality of replacement rules results in a high non-determinism which needs
to be controlled within the automated reasoning procedures. Without further re-
strictions, the high redundancy leads to efficiency problems within the proof search
algorithms. Moreover, the application of replacement rules can become to complex
to be understood by a human. As inferences are based on these replacement rules,
this property is inherited by inferences.

• Transformations are always global with respect to the complete formula and difficult
to analyze.

It is the structuring mechanism on top of the calculus which allows for a local analysis
of the effects of an assertion application and for a translation of generated proofs to
declarative proof scripts. The locality properties lead to an efficient computation of the
effects of resolution replacement rules and allow the study of redundancy criterions and
heuristically motivated search space restrictions at the level of inference rules. Therefore,
reasoning procedures can cover the full range from deep inference to shallow inference and
be adapted to the needs of the underlying application.

295

CHAPTER 16. COMPARISON WITH THE PREVIOUS ΩMEGA SYSTEM

16.2 Knowledge Representation and Maintenance

In this section, we discuss several shortcomings of the previous Ωmega system with re-
spect to knowledge management, before highlighting the main enhancements to overcome
these problems.

16.2.1 Different Form of Knowledge

In Ωmega, several different forms of the same knowledge existed: In addition to the math-
ematical theory, the system provided tactics for interactive proof construction, methods,
control rules and strategies for proof planning, and agents for resource-bounded rea-
soning. While the knowledge representation techniques were general purpose from an
abstract point of view, their concrete specification needed to be given in the underlying
programming language of the proof system, which was Lisp. This approach has several
drawbacks:

Usability: The necessity to manually encode the mathematical knowledge in different
formats to be able to use the underlying system in its full functionality puts a substantial
burden on the user, which prevents its use by non-experts. The fact that the knowledge
needs to be encoded in the underlying programming language of the system makes the
situation even worse. An indicator of this burden can be taken from the limit domain,
which consisted of more than 17000 lines of manually written code for control rules,
strategies, methods, and agents. Moreover, as the knowledge was stored in a format that
was difficult to read, many proof methods were redundant, and it was difficult for a user
to find the method that was appropriate for a specific situation.

Evaluation: The programming language makes it sometimes difficult to judge the suc-
cess of proof planners, as it makes it difficult to easily perceive the knowledge encoded in
the proof planning operators: “The devil is in the detail, that is, it is always possible to
hide the crucial creative step (represented as a specific method or represented in the ob-
ject language by an appropriate lemma) and to pretend a level of generality that has not
actually been achieved. To evaluate a solution, all tactics, methods, theorems, lemmata
and definitions have to be made explicit.” (see [SBA06] p. 549).

Maintenance: Explicit different forms of the mathematical knowledge complicate its
maintenance and its development.

Flexibility vs. Efficiency: The separation of knowledge in methods, control rules, and
strategies allows the flexible design and combination of different algorithms. While the
generality is remarkable, it also introduces efficiency problems when being implemented
without further optimization: In general, there are many different types of choice points
within the proof search, and each choice point gives rise to a new type of control rule.
Every time such a choice point is reached, all available control rules need to be evaluated.
As control rules were interpreted in the previous Ωmega system, this process was rather
slow.

Semantics of Control: There is no semantics that specifies the interplay of several
control rules.

296

16.2. KNOWLEDGE REPRESENTATION AND MAINTENANCE

16.2.2 Methods: Original Idea and Practice

The original idea of knowledge based proof planning was to reason with complex proof
operators that imitate human problem solving behavior: “The representation of a proof,
at least while it is developed, consists of a sequence of complex operators, such as the
application of a homomorphism, the expansion of a definition, the application of a lemma,
some simplification, or the differentiation of a function. Each of these operators, called
methods, can in principle be expanded into a sequence of inference steps, say, of a natural
deduction (ND) calculus by a tactic.” (see [MS99b] p. 70). The following classification of
the existing methods shows that this goal could only partially be reached:

Methods as techniques: Complex-Estimate is a typical example for a method that
represents a domain specific mathematical reasoning technique for the domain of real
numbers. The goal of the method is to estimate the magnitude of the absolute value of
complex terms by representing it as a linear combination of an existing assumption, which
was computed by a CAS. To guarantee the correctness of this method, it needed to be
expanded. Methods like ComplexEstimate meet the original motivation.

Methods as assertions: Many methods correspond to a special application of a the-
orem: A classical example is a method that initiates a proof by induction, or methods
like Solve* that reduce a goal t1 < t2 with the help of an assumption t′1 < t′2, to a sub-
goal t′2σ < t2σ, provided that t1 and t′1 are unifiable by a substitution σ. Because this
method corresponds to the transitivity of <, the method can be guaranteed to be correct,
once transitivity of < has been shown. The additional information that is contained in
the method, but not within the theorem in its general form, is the requirement that the
conclusion as well as one premise needs to be instantiated. While the correctness differs
from above, it can also be seen to be a complex proof operator, at least when compared
with calculus rules.

Methods to encode logical low-level reasoning: Using natural deduction as the
underlying logical formalism, it was not possible to support the abstract reasoning process
without considering logical details. Therefore, there are methods that reflect calculus
level inference rules. As such, these methods were guaranteed to be correct. Examples
are methods for ∀I , ∃I ,∧I . While being necessary, these methods are not in the spirit of
the original motivation for proof planning.

Methods to encode control flow: Methods are also used to encode the control flow
that cannot be expressed otherwise. An example is the method SetFocus-B that high-
lights a subformula in an assumption to be extracted in a subsequent step, as well as
the TellCS to pass a constraint to the constraint solver. As these methods do not con-
tribute to the proof from a mathematical point of view, it is questionable whether these
operations meet the original motivation for a method.

16.2.3 Limitations of Strategic Reasoning in Multi

Cooperation of strategies: Strategies are not allowed to call other strategies in the
proof planner Multi, s. Therefore, cooperation between two strategies s1 and s2 was
only possible by stopping the strategy s1 during its execution, invoking s2, and finally

297

CHAPTER 16. COMPARISON WITH THE PREVIOUS ΩMEGA SYSTEM

reinvoking s1 after successful termination of s2. This mechanism was error-prone as it
required complicated data structures.

An example (see [Mei03] p. 154) is the interplay between the strategies SolveInequal-
ity, NormalizeLineTask, and UnwrapHyp for the limit domain. SolveInequality is a
strategy that is applicable to formulas which are inequalities or can be reduced to in-
equalities and comprise knowledge of how to solve such them. UnwrapHyp is a strategy
that uses various other methods such as ∧E and ⇒E to extract the subformula in the as-
sumption that has been highlighted using the method SetFocus-B. NormalizeLineTask
is a strategy that decomposes a goal involving quantifiers and connectives using methods
reflecting calculus rules such as ∀I , ∃I ,∧I .

On an abstract level, the cooperation works as follows: For complex goals that con-
tain inequalities as subformulas SolveInequality interrupts and places a demand for the
strategy NormalizeLineTask on the control blackboard. As a consequence, Multi se-
lects the specified strategy within the next step to decompose the complex goal, before
reinvoking the original strategy. Switching from SolveInequality to UnwrapHyp is trig-
gered when the goal cannot be solved by available assumptions. In this case, the method
SetFocus-B selects an inequality in an assumption. Subsequently, a control rule signals
SolveInequality to interrupt and to invoke UnwrapHyp.

Such a control flow has several drawbacks:

(i) Interruption and reinvokation of strategies is difficult to visualize. Indeed, this might
have been a reason why strategy applications were not represented in the PDS.
However, this information is needed for the generation of abstract declarative proof
scripts, as shown in Section 8.4.

(ii) From a technical point of view, interruption and reinvokation of a strategy requires
additional data structures to implement such a functionality, thus increasing the
complexity of the underlying implementation.

(iii) In Multi, the choice of which strategy to apply next is not predefined, but de-
termined by strategic meta-reasoning : After all applicable strategies have been de-
termined and corresponding job offers placed on the control blackboard, strategic
control rules are evaluated on the job-offers to determine the strategy to be applied
next. There is always only a single meta-reasoner and meta-reasoning is always
global.

Adaptability of strategies: In Multi, the methods and control rules that are used
by a strategy are fixed. This rigidity prevents strategies to adapt themselves to the
global context in which they are invoked. For example, after proving a specific theorem,
simplification should take the theorem into account, provided it is of the desired structure.

Limitations of Proof Plans: In the previous Ωmega system it is not possible to
explore or present two proof ideas in parallel.

16.2.4 Improved Knowledge Representation and Maintenance:
Document-Centric Proof Planning

From a conceptual point of view, there are the following main enhancements of proof
planning in Multi:

298

16.2. KNOWLEDGE REPRESENTATION AND MAINTENANCE

Full support of the document-centric approach: The central medium within which
proof search is organized is a proof document. It contains all relevant knowledge, such as
constants and types declarations, theorems including their proofs, and even proof search
procedures in the form of strategies. This has been achieved by the introduction of
a strategy language as an intermediate layer to bridge the gap between the reasoning
procedures and the programming language. This has the following advantages:

• The reasoning becomes rather independent of a particular implementation, and by
using the assertion level as a basis for the proof search even independent of the
underlying logic.

• The possibility to declaratively specify conditions on proof states in the form of
various patterns allows the user to characterize the proof situations in which a
strategy should be applied in a compact form. By relying on compilation techniques,
this allows for a generic specification of strategies and control information as before,
but additionally results in optimized Lisp code that can be executed efficiently. In
particular, heuristic decisions that are local to an inference are also evaluated locally.

• Having the document as single knowledge source makes the used knowledge explicit
and therefore allows for a better evaluation of the proof planning approach.

New Methodology: Within the new version of Ωmega, the basic proof operators are
inferences, which are always guaranteed to be correct and automatically synthesized from
domain assertions. As a consequence, there is no need to encode such methods manually,
which drastically increases the usability of the system1. Inferences can be annotated with
further control information to restrict their applicability and are automatically synthesized
from assertions. Compared to Multi, annotated inferences thus correspond to proof
planning methods for assertions. There are also inferences dealing with calculus steps,
such as the introduction of a case split. However, explicit decomposition of formulas at the
planning level is not needed due to the possibility to reason on subformulas. Moreover,
as no quantifiers are present, they do not have to be eliminated. The requirement of
methods to be correct avoids techniques such as ComplexEstimate to be formulated as
inference and introduces a clear separation between strategies and inferences. Methods
to encode control flow are abandoned; they are no longer necessary due to an improved
control flow.

Optimized Control Flow: Combination of different strategies is possible in a more
powerful way: strategies can invoke strategies and therefore cooperate in a hierarchical
fashion. As a consequence, no interruption/reinvokation of strategies is necessary for a
combination of different strategies. Moreover, within the same hierarchy, strategies can
be combined using the combinators of the strategy language or declarative proof scripts.
Therefore, it is possible to speak about the future of derivation, which cannot easily be
modeled with control rules. A simple example is an induction followed by a simplification,
or the complex strategy factorbound which we have designed in the context of the limit
domain.

1Even though not all knowledge encoded in the proof planner Multi has been transferred to the
new system, a formalization that can handle the LIM+ problem and contains the factorbound methods
consists only of several hundred lines compared to the 17000 lines before

299

CHAPTER 16. COMPARISON WITH THE PREVIOUS ΩMEGA SYSTEM

First class support of declarative proof scripts: We provide first class support for
declarative proof scripts: Proof scripts can interactively be developed within the proof
document, as for example in Mizar or Isabelle. In addition, there are two possibilities
to obtain such scripts from automated procedures: (i) Assertion level proofs as well as
procedural proofs can be translated to declarative proof scripts. (ii) Declarative proof
scripts are directly constructed by declarative strategies, which not only construct such
proofs, but are also specified in a declarative way.

Besides the key changes as stated above, there are the following two minor changes:

Support Of Proof Alternatives The representation of alternative proof attempts
within one proof object is supported by the new PDS. This functionality is extensively
used in the context of proof tutoring to represent ambiguities that could not be resolved
during the proof search, as described in Chapter 11. Moreover, it extends the system by
the possibility to support different search modes, such as e.g. breadth-first search, which
becomes useful when searching at the abstract assertion level and optimality guarantees
(with respect to the proof length) are needed, such as in the context of proof tutoring.

Explicit Knowledge Filtering To support such knowledge filtering explicitly, our new
strategy language supports the filtering of knowledge as an explicit step. As a consequence,
it is possible to define adaptive strategies, in particular, it also allows a strategy to take
advantage of the structure of the theory, such as to use only assertions defined within the
current theory and extend them if the proof cannot be found.

16.3 Integration of External Reasoners

Knowledge based proof planning has been shown to provide a natural framework for
the integration of external systems (see e.g. [KKS98]) . Because of its importance, we
subsequently discuss what kind of external systems were linked in the previous Ωmega
system, and whether the integration has been taken over to the new system.

Integration of Constraint Solvers

The previous Ωmega system is connected to the constraint solver Cosie [ZM04], which
is used to construct mathematical objects with theory-specific properties as witnesses for
free (existential) variables, as well as to detect inconsistencies of constraints to prune the
search. Cosie is able to solve inequalities and equations over the field of real numbers
by applying constraint simplification rules in the form of conditional rewriting rules. The
main reason for developing an individual constraint solver was the desire to support user-
defined functions, such as “min”, in answer constraints.

As in the previous Ωmega system, the new system postpones the instantiation of uni-
versally quantified variables until many or all conditions of the constraints are available
or until the constraints determine an instantiation. However, we either rely on already
existing implementations, such as the quantifier elimination methods for the reals imple-
mented in Qepcad [Bro03], Reduce or Mathematica, or specify simplification rules
within the proof document to support user defined functions. Indeed, all simplification
rules used by Cosie (see the appendix of [ZM04]) can easily be specified within the proof
document. This has the advantage that the constraint simplification is extensible during
the development of the theory, and that the constraint solving behavior can be made
explicit as a proof strategy within the document.

300

16.3. INTEGRATION OF EXTERNAL REASONERS

Integration of Computer Algebra Systems

The previous Ωmega system has been connected to computer algebra systems (CAS) via
the Sapper module (see [KKS98]). For such a connection, the main issue that arises in
practice is how to provide a correctness guarantee of a result that has been obtained by the
CAS. While in principle several CAS could easily be connected to Sapper, it turned out
that a “standard CAS could not be used for the integration, since such a system provides
answers, but no justifications [..]” (see [KKS98] p. 10-11). Consequently, a hand-crafted
CAS µCAS was developed that provided sufficiently rich explanation traces. While this
approach showed the feasibility of such an integration and the reconstruction of proofs
from traces, the requirement to implement a CAS manually overrides the advantage that
existing operational knowledge and systems can be integrated.

Within the new system, we have integrated the computer algebra system Maxima
and Reduce. The new approach is not to rely on traces, but on general strategies to
verify the answer. In the domain of reals, a factorization provided by the CAS is verified
by a decision procedure that has been encoded in the underlying strategy framework. The
main advantages are: (i) there is a guarantee that a solution can be checked, provided it
was correct; (ii) existing systems can be integrated without reimplementing the underlying
algorithms. Note that this approach is feasible in situations where checking a solution is
simpler than finding it, such as the equality between a factorization and its original form.

Another possibility in the spirit of µCAS would be to specify and verify the underlying
algorithms of a CAS once and for all within the theorem prover and using a reflection
principle.

Integration of Automated Theorem Provers

Within Multi, tasks can be sent off to the resolution based automated theorem provers
Otter, Bliksem, Spass, Protein, and to the equational provers Eqp and Waldmeis-
ter, and the resulting proof objects are translated back intro assertion level ND-proofs.
These are then integrated back into the PDS using the mediator Tramp [Mei00a], pro-
vided that no meta-variables were used. Up to now, none of these systems has been
integrated within the new architecture. The reason for this is that the Tramp system,
which is needed to perform the transformation of the proof object to an assertion level
proof is no longer maintained by its developer. However, conceptually, there is in princi-
pal no problem for such an integration, as the assertion level is directly supported by the
new Ωmega. Even more, the integration should become much simpler, as assertion level
proofs are first class objects within the new architecture and need not to be expanded to
ensure their correctness.

301

17
Conclusion and Future Work

In this thesis, we presented assertion level proof planning with compiled strategies. Our
objective was to make the mechanization of mathematics more natural by being able
to verify human-style proofs, as well as by providing tools to automatically construct
abstract proofs similar to those in a textbook. Thereby, we focused on a document-
centric approach, in which the proof document builds the central medium where tools
which assist the author are made available. We approached this goal from two directions:

• We lifted the underlying calculus to a more abstract level by installing the asser-
tion level as a theoretical basis for the proof search and combined it with the deep
inference paradigm. The motivation was the expectation that by reducing the gap
between formal calculus proofs and informal textbook proofs, verification of infor-
mal proofs as well as presentation of automatically generated calculus-level proofs
would become easier. Moreover, for proof tutoring, we had to face the result of
Schiller (see [Sch05]) that the number of calculus steps of a derivation in natural
deduction do not provide a reliable measure for the granularity of a proof step, i.e.,
the argumentative size of a proof step, which is an important measure for proof
granularity (see [Sch05]). It was expected that a more abstract calculus would be
more suitable for the automation of this task.

The results of this thesis are: It is possible to search for a proof directly at the
assertion level and to combine it with the deep inference feature. This results in
shorter proofs with smaller proof states which are therefore more readable. The
proofs can directly be translated to declarative proof scripts, which is only useful if
the underlying calculus is at an appropriate granularity. Moreover, our experiments
in the domain of set theory indicate that automated reasoning procedures benefit
from the abstract search at the assertion level. The implemented assertion level
prover outperforms state of the art theorem provers by speed and success. Similarly,
our results considering the class of Statman tautologies indicate that automated
reasoners can take advantage of the deep inference mechanism. In the domain
of proof tutoring, the abstract nature of the assertion level provides a possibility
to reconstruct ambiguous and incomplete student proof steps by a simple depth
bounded forward search that cannot be automated by pure logical means. Moreover,

303

CHAPTER 17. CONCLUSION AND FUTURE WORK

based on our work, Schiller has shown (see [Sch10] p. 146) that in the domain of set
theory a single assertion level step is judged by experts to be of appropriate step
size in ninety percent of the cases.

• We examined whether it is possible to separate the tactic language from the pro-
gramming language by extending proof documents to also contain specifications of
tactics. This is indeed possible: We designed an intermediate tactic language which
allows the declarative specification of procedural as well as declarative strategies.
Its main features are: (i) A query language to dynamically retrieve relevant knowl-
edge from structured theories, resulting in adaptive proof strategies ; (ii) Language
constructs to control the deep application of inferences; (iii) Horizontal as well as
vertical refinements of proof sketches being expressed in a declarative language;
(iv) Dynamic declarative proof scripts as declarative specification language of proof
plans; (v) Efficiency by compiling the control information to executable programs.
In particular, our language provides new foundational ideas to automate the declar-
ative style of proof. This represents a major step to overcome the main deficiency of
declarative proof scripts, namely that they are laborious to write. Our case studies
in the context of proof tutoring and the limit domain indicate the superiority of the
language over generic programming languages, as common patterns of reasoning
can be specified within the proof document, the specification costs are significantly
reduced measured in lines of code, and the resulting tactics are highly efficient. This
not only increases the usability of interactive theorem provers and proof planners,
but also provides a possibility to evaluate systems that are based on heuristics, as
all knowledge becomes explicit. Moreover, the separation of the strategy language
from the programming language brings benefits for the maintenance of systems, as
optimizations can easily be incorporated and the compiler can treat local decisions
locally. We strongly believe that our language provides a vehicle to teach common
patterns of reasoning, and that intermediate tactic languages open up a new per-
spective towards exchanging reasoning procedures between different proof assistants
in the long-term view.

17.1 Future Work

The achievements of this thesis point to several interesting directions for future work in
different areas: proof checking, proof automation, proof strategies, proof tutoring, and
fundamental research.

Proof Checking: We have seen that proof planning provides a suitable framework for
the implementation of proof checkers, as underspecified declarative proof scripts can easily
be translated to proof plans. Proof search can then be used to obtain a machine-checkable
proof by refinement. It would be interesting to incorporate further proof strategies that
support the automatic refinement of proof sketches, such as specific decision procedures,
as well as computer algebra systems. This also includes the integration of already exist-
ing theorem provers by reimplementing the Tramp system for the new calculus. Two
interesting case studies to evaluate these strategies would be to reconsider a formaliza-
tion of Landau’s book [Lan30], as in the Automath project, or to consider automatic
refinements of the proof sketches given in [Wie05].

Another promising aspect to speed up the processing within an interactive setting is the
integration of management of change at the level of proof scripts, as done by Schairer (see

304

17.1. FUTURE WORK

[Sch06]) at the level of proof trees. This seems particularly plausible taking the relation
between proof scripts and proof trees into account, as well as the close correspondence
between assertions and inferences. Further speed-ups could be achieved by parallelizing
the checking process.

Proof Automation: Our results indicate that proof search at the assertion level is
superior in areas where machine oriented provers suffer from a “lack of focus”. A natural
question is to what extent these techniques carry over to other domains. While the
developed techniques are of a general nature, further case studies are needed to investigate
the effectiveness of our techniques in other domains. Moreover, as the framework was
intended to be used within the interactive setting rather than to provide an efficient stand-
alone theorem prover, there are several opportunities to further improve the performance
of the prover. These include the use of term indexing techniques instead of traversal
functions for the matching process, the incorporation of techniques to avoid backtracking,
as well as the change of the underlying programming language.

Proof Strategies: We have shown that it is possible to design a strategy language
that is independent of the programming language of the proof assistant. This suggests
to provide compilation functions for existing proof assistants, such as Isabelle or HOL
Light. Aside from making a powerful strategy language available in systems that do
not provide an abstract strategy language, this would be a step towards the long-term
goal of sharing tactics/proof strategies between different proof assistants. Another next
step is to extend the underlying ideas to the specification language layer and to allow
the specification of tactics that generate or transform specifications, but also tactics that
transform both specifications and proof scripts in combination. Finally, it is attractive
to extend the notion of proof plans to heterogeneous proof plans, i.e., proof plans that
comprise subtasks in different logics and can make use of logic translations to solve a
given problem efficiently. An ideal environment to investigate these ideas is provided by
the Hets system (see for example [Mos02]), which provides an abstract framework for
the specification of logics and logic translations.

Proof Tutoring: We have shown that it is possible to reconstruct human proof steps
efficiently in the context of proof tutoring in the domain of set theory. In addition to
widening the application domain to other areas, such as Analysis, further work is necessary
to automate strategic teaching decisions based on our automatic reconstruction, as well
as to evaluate the system in a real classroom setting. This also includes the modeling of
typical failures, e.g., by buggy rules, which can easily be integrated within our framework.
An interesting task would be to try to recognize the strategy a student is following by
using techniques developed in the context of plan recognition and to lift the notion of a
buggy rule to the strategic level, i.e., to introduce buggy strategies.

Fundamental Research: Our results indicate the usefulness of the combination of as-
sertion level reasoning and deep inference. While the transfer of the assertion level to the
sequent calculus or natural deduction is immediate, the deep inference application requires
further work. The main step would be to simulate the application of a resolution replace-
ment rule in the sequent calculus, e.g., with a cut.Moreover, it is worthwhile to study
further proof theoretic properties within the sequent calculus, such as cut elimination in
the context of derived rules, as well as to provide a constructive method to transform a

305

CHAPTER 17. CONCLUSION AND FUTURE WORK

given derivation in the sequent calculus to an assertion level proof, making use of per-
mutation properties. Further investigations are also necessary to study completeness of
the calculus in the higher-order setting, e.g., by considering results from higher-order
tableaux. Another direction should be to minimize the logical kernel of the system.

306

Index

Symbols
α-conversion . 31
α-related . 35
β-conversion . 31
βη long normal form 30, 31
β-related . 35
η-conversion . 31
λ-terms. .30
Dialog project . 178
KSg . 208

A
abstraction . 30
admissible substitution 41
agenda . 65
ambiguity . 181
annotated constants 219
annotated functions 219
application . 30
assertion . 104
assertion level . xvii, 3
assertion level derivation 95
assertion level derivations 95
assertions .13
assignment . 33
atomic assertion level derivation 95
atomic justifications 116

B
backtracking iterators 140
backward . 129
base type . 29
base types . 29
block . 90
buggy rules . 189

C
candidate terms.70, 127
certified mathematical documents.232
close . 129
coefficient . 221
cognitive filter . 184
complete premise node.67

confluent . 8
connectable . 47
connection method. .8
connections .213
constant . 30
constrained rewriting 132
constrained sequents 112
convergent . 8
corpus . 180
current task . 65
cycle checking . 188

D
declarative style . 3, 9
deduction modulo.12, 219
dipole . 90
document-centric approach.11, 232
domain . 30
downward saturated . 97
Dynamic patterns . 166

E
Eigenvariable condition 35
electrons. .91
equational system. .8
error detection. .189
expansion . 14
extensional expansion proofs 38
extensional expansion trees 38
extensional general model33
extract . 131

F
fair strategy . 97
flexible . 36
focused formula . 101
Focusing. .90
focusing phase . 90
folding. .91
formula tree . 213
formulas . 30
forward. .129
frame. 33

307

INDEX

free variable indexed formula tree 38
boolean ζ-expansion 51
contraction . 49
cut . 50
disproved . 46
extensionality introduction 51
increase of multiplicity 52
instantiation . 51
Leibniz equality introduction.50
path . 46
proved . 46
simplification . 50
substructure . 62
weakening . 49

functional type . 29

G
generalization. .32
generic . 32

H
Herbrand interpretation 97
Herbrand universe . 97
hierarchical edges .109
hints . 189
horizontal . 107
Huet’s zipper . 140
hyper calculi .89
hyper tableau. .91

I
idempotent . 30
imitation . 36
incomplete information 181
incremental closure . 111
indexed formula tree . 38

ζ-expansion . 43
extensionality introduction 43
initial .38
Leibniz Equality . 42
path . 40
proof state . 46
proof step
safe . 46
sound. 46

quantifier ordering 40
reduction relation 40
sequent . 63
structural ordering 40
substitution. .41

window . 62
α . 69
β . 69

window proof state 64
indexed task tree

free variable . 64
indexed task tree

sequent . 63
task window proof state.64

individuals . 29
inference graph . 135
inference substitution 71
initial free variable indexed task tree . . . 64
initial indexed formula tree 38
initial indexed task tree 64
initial task proof state 65
interactive theorem provers 8
intercallation calculus 131
inversion phase . 90

J
justification hyper-links 109

K
Knuth-Bendix completion 8

L
lean deduction . 89
limit heuristics . 163
limit-heuristic . 230
literal . 36
local variable .42
local variable, δ- .42
local variable, γ- . 42

M
major premise . 82
matrix method . 213
maximal . 94
mental proof state . 182
methodicals . 14
methods . 14
minor premises . 82
model generator . 190
monomial . 221
monomorph . 32
multiple path pruning 188
multiplicity . 43
multiterm indexing . 128
multivariate polynomial expressions. . . .221

308

INDEX

N
neutral sequent . 90
node conditions . 47
nonatomic justifications 116
normal form . 8, 221
nucleus . 91

O
obvious inference . 13
obvious inferences . 13
ordered rewriting 132, 220
Otter . 91

P
PAI-status . 74
paramodulation . 8
partial argument instantiation

closing . 75
forward . 75

partial argument instantiation 72
backward . 75

partial argument instantiation update. . .71
path. .213
persistent data structures 140
polarized formulas . 90
polymorph. .32
pre-proof . 111
preunification .36
principal type . 31
procedural proofs . 3
procedural style. .9
projection . 36
proof commands . 108
proof critics . 14
proof plan . 14, 107, 108
proof planning methods 127
proof step markers. .182
proof step types . 181
proof strategies . 142
prover . 231

Q
query term. .70, 127

R
refinement . 108
replacement rule

rewriting . 46
replacement rule . 46

resolution . 46
replacement rules . 38

resolution . 8
resolution replacement rule

admissible . 47
node conditions . 47

rewrite resolution replacement rule47
rewrite rules . 8
rigid . 36

S
satisfiable. .33
saturated systematic assertion level tableau

103
saturated systematic block tableau.99
Schütte’s Rule . 52
semantic correlates . 114
semantics . 33
signature . 30
signed formula . 34
solution lifting . 111
spanning set . 213
specification morphisms 219
Statman tautologies . 27
subject term . 70, 127
substitution . 30
substructure

of a free variable indexed formula tree
62

subterm at term position 31
subterm ordering . 31
supernatural deduction 12
superposition . 8
syntactic connectives 90
systematic assertion level tableau 102
systematic block tableau 98

T
tableaux . 8
tactic language . 9
task position. .71
task proof state . 64
tasks . 65
term position . 31
term rewriting . 8
term rewriting system 8
terminating . 8
tree pattern matching 128
tree-edit distance metric 190
truth value . 29
type schemas . 31
type substitution . 32

309

INDEX

type variable . 29
types . 29

U
underspecification . 181
unfolding . 91
unification constraints 111
uniform types. .34
uniform notation . 34
univariate polynomial expressions220

V
valid. .33
variable. .30
vertical . 107
visiting order . 134

W
window inference . 13
witness term. .95
wizard of oz . 180

310

Bibliography

[ABB93] J. R. Anderson, F. S. Bellezza, and C. F. Boyle. The geometry tutor and
skill acquisition. In J. R. Anderson, editor, Rules of the Mind, chapter 8.
Erlbaum, 1993.

[ABB00] P. B. Andrews, M. Bishop, and C. E. Brown. System Description: TPS: A
Theorem Proving System for Type Theory. In D. McAllester, editor, Au-
tomated Deduction, CADE-17 (CADE-00) : 17th International conference
on Automated Deduction ; Pittsburgh, PA, USA, June 17-20, 2000, volume
1831 of Lecture notes in computer science, pages 164–169. Springer, 2000.

[ABD+06] S. Autexier, C. Benzmüller, D. Dietrich, A. Meier, and C.-P. Wirth. A
generic modular data structure for proof attempts alternating on ideas and
granularity. In Proc. of MKM, pages 126–142, Bremen, 2006. Springer.

[ABDS08] S. Autexier, C. Benzmüller, D. Dietrich, and J. Siekmann. Resource adap-
tive processes in automated reasoning systems. In Matthew Crocker and
J. Siekmann, editors, Resource Adaptive Cognitive Processes, LNAI, pages
389–423. Springer, 2008.

[ABDW08] S. Autexier, C. Benzmüller, D. Dietrich, and M. Wagner. Organi-
sation, transformation, and propagation of mathematical knowledge in
omega. Mathematics in Computer Science, pages 253–277, 2008. DOI
10.1007/s11786-008-0054-6.

[ABEG95] S. Abdennadher, F. Bry, N. Eisinger, and T. Geisler. The theorem prover
satchmo : strategies, heuristics and applications. In Jean-Jacques Chabrier,
editor, JFPLC, pages 349–355, 1995.

[ABFL06] S. Autexier, C. Benzmüller, A. Fiedler, and H. Lesourd. Integrating proof
assistants as reasoning and verification tools into a scientific wysiwig editor.
In David Aspinall and C. Lüth, editors, Proc. of UITP’05, ENTCS, pages
16–39, january 2006.

[ABI+96] P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi.
Tps: A theorem proving system for classical type theory. Journal of Auto-
mated Reasoning, 16:321–353, 1996.

[ABP+04] P. B. Andrews, C. E. Brown, F. Pfenning, M. Bishop, S. Issar, and H. Xi.
Etps: A system to help students write formal proofs. Journal of Automated
Reasoning, 32:75–92, 2004.

[ACP01] A. Abel, B. E. Chang, and F. Pfenning. Human-readable machine-verifiable
proofs for teaching constructive logic. In Uwe Egly, A. Fiedler, Helmut

311

BIBLIOGRAPHY

Horacek, and Stephan Schmitt, editors, Proc. of the Workshop on Proof
Transformations, Proof Presentations and Complexity of Proofs (PTP’01),
pages 33–48. Universitá degli studi di Siena, June 2001.

[ACTZ07] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. User inter-
action with the matita proof assistant. Journal of Automated Reasoning,
39(2):109–139, 2007.

[AD06] S. Autexier and D. Dietrich. Synthesizing proof planning methods and oants
agents from mathematical knowledge. In Jon Borwein and Bill Farmer,
editors, Proc. of MKM’06, volume 4108 of LNAI, pages 94–109. Springer,
august 2006.

[AD09] S. Autexier and D. Dietrich. Atomic metadeduction. In Bärbel Mertsching,
editor, Proc. 32nd Annual German Conference on Artificial Intelligence.
German Conference on Artificial Intelligence (KI-09), September 15-18,
Paderborn, Germany, pages 444–451. Springer, 9 2009.

[AD10a] S. Autexier and D. Dietrich. Recent developments in omega’s proof search
programming language. In Programming Languages for Mechanized Math-
ematics Systems, pages 52–59, 2010.

[AD10b] S. Autexier and D. Dietrich. A tactic language for declarative proofs. In
Kaufmann and Paulson [KP10], pages 99–114.

[ADG+01] A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and S. Owre.
Computer algebra meets automated theorem proving: Integrating Maple
and PVS. In Richard J. Boulton and Paul B. Jackson, editors, Theorem
Proving in Higher Order Logics, TPHOLs 2001, volume 2152 of Lecture
Notes in Computer Science, pages 27–42, Edinburgh, Scotland, September
2001. Springer-Verlag.

[ADL10] D. Aspinall, E. Denney, and C. Lüth. Tactics for hierarchical proofs. Math-
ematics in Computer Science, 3:309–330, M.h 2010.

[ADW10] S. Autexier, D. Dietrich, and M. Wagner. Proof search formalisms and
grammar formalisms in omega. In Workshop on Mathematically Intelligent
Proof Search. 2010.

[AF06] S. Autexier and A. Fiedler. Textbook proofs meet formal logic - the problem
of underspecification and granularity. In M. Kohlhase, editor, Proc. of
MKM’05, volume 3863 of LNAI, IUB Bremen, Germany, january 2006.
Springer.

[AGC+04] A. Asperti, F. Guidi, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. A
content based mathematical search engine: whelp. In In: Post-proceedings
of the Types 2004 International Conference, Vol. 3839 of LNCS, pages 17–
32. Springer-Verlag, 2004.

[AH77a] K. Appel and W. Haken. Every planar map is four-colorable, ii: Reducibil-
ity. Illinois J. Math, 21:491–567, 1977.

[AH77b] K. Appel and W. Haken. The solution of the four-color map problem. Sci.
Amer., 237:108–121, 1977.

312

BIBLIOGRAPHY

[AH97] M. Archer and C. Heitmeyer. Human-style theorem proving using PVS.
In Elsa Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics: 10th International Conference, TPHOLs ’97, volume 1275, pages
33–48, Murray Hill, NJ, 1997. Springer-Verlag.

[AH01] J. Aycock and R. N. Horspool. Directly-executable earley parsing. In Pro-
ceedings of the 10th International Conference on Compiler Construction,
CC ’01, pages 229–243, London, UK, 2001. Springer-Verlag.

[AHMS02] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The development
graph manager MAYA. In Hélène Kirchner and C. e Ringeissen, editors,
Proc. 9th International Conference on Algebraic Methodology And Software
Technology (AMAST’02), volume 2422 of LNCS, pages 495–501. Springer,
September 2002.

[ALW06] D. Aspinall, C. Lüth, and B. Wolff. Assisted proof document author-
ing. In M. Kohlhase, editor, Mathematical Knowledge Management MKM
2005, volume 3863 of Lecture Notes in Artificial Intelligence, pages 65–80.
Springer, 2006.

[ALW07] D. Aspinall, C. Lüth, and D. Winterstein. A framework for interactive
proof. In M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors,
Calculemus/MKM, volume 4573 of Lecture Notes in Computer Science,
pages 161–175. Springer, 2007.

[And72] P. B. Andrews. General models, descriptions, and choice in type theory.
The Journal of Symbolic Logic, 37:385–397, 1972.

[And80] P. B. Andrews. Transforming matings into natural deduction proofs. In
CADE, pages 375–393, 1980.

[And81] P. B. Andrews. Theorem proving via general matings. Journal of the ACM,
28:193–214, 1981.

[And91] P. B. Andrews. More on the problem of finding a mapping between clause
representation and natural deduction representation. J. Autom. Reasoning,
7(2):285–286, 1991.

[And92] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J.
Log. Comput., 2(3):297–347, 1992.

[AP92] F. Andersen and K. D. Petersen. Recursive boolean functions in HOL. In
M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley, editors, Proc. of the
1991 International Workshop on the HOL Theorem Proving System and its
Applications, Davis, August 1991, pages 367–377. IEEE Computer Society
Press, 1992.

[APCS01] A. Asperti, L. Padovani, C. Sacerdoti Coen, and I. Schena. Helm and the
semantic math-web. In Richard J. Boulton and Paul B. Jackson, editors,
TPHOLs, volume 2152 of Lecture Notes in Computer Science, pages 59–74.
Springer, 2001.

[ARC09] A. Asperti, W. Ricciotti, and C. Sacerdoti Coen. A new type for tactics.
In ACM SIGSAM PLMMS, pages 22–29, 2009.

313

BIBLIOGRAPHY

[ASDP90] P. B. Andrews, I. Sunil, N. Dan, and F. Pfenning. The TPS Theorem
Proving System. In Stickel [Sti90], pages 641–642.

[Asp00] D. Aspinall. Proof general: A generic tool for proof development. In Su-
sanne Graf and Michael I. Schwartzbach, editors, TACAS, volume 1785 of
Lecture Notes in Computer Science, pages 38–42. Springer, 2000.

[Aug85] L. Augustsson. Compiling pattern matching. In FPCA, pages 368–381,
1985.

[Aut03] S. Autexier. Hierarchical Contextual Reasoning. PhD thesis, Computer
Science Department, Saarland University, Saarbrücken, Germany, 2003.

[BB77] A. M. Ballantyne and W. W. Bledsoe. Automatic proofs of theorems in
analysis using nonstandard techniques. J. ACM, 24(3):353–374, 1977.

[BB78] J. S. Brown and R. R. Burton. Diagnostic models for procedural bugs in
basic mathematical skills. Cognitive Science, 2:155–191, 1978.

[BBH72] W. W. Bledsoe, R. S. Boyer, and W. H. Henneman. Computer proofs of
limit theorems. Artif. Intell., 3(1-3):27–60, 1972.

[BBHI03] A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-Level
Guidance for Mathematical Reasoning. Cambridge University Press, 2003.

[BBK04] C. Benzmüller, C. Brown, and M. Kohlhase. Higher-order semantics and
extensionality. Journal of Symbolic Logic, 69(4):1027–1088, 2004.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program De-
velopment — Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, 2004.

[BCZ98] A. Bauer, E. M. Clarke, and X. Zhao. Analytica - an experiment in com-
bining theorem proving and symbolic computation. Journal of Automated
Reasoning, 21(3):295–325, 1998.

[BDH+99] Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors.
Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs’99, Nice, France, September, 1999, Proceedings, volume 1690 of
Lecture Notes in Computer Science. Springer, 1999.

[BDP89] L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without fail-
ure. In A. H. Kaci and M. Nivat, editors, Resolution of Equations in Al-
gebraic Structures, volume 2: Rewriting Techniques, pages 1–30. Academic
Press, New York, 1989.

[BDSA07] C. Benzmüller, D. Dietrich, M. Schiller, and S. Autexier. Deep inference
for automated proof tutoring? In J. Hertzberg, M. Beetz, and R. Englert,
editors, KI 2007: Advances in Artificial Intelligence, 30th Annual German
Conference on AI, KI 2007, Osnabrück, Germany, September 10-13, 2007,
Proceedings, pages 435–439. Springer, 2007.

[BDW07] P. Brauner, G. Dowek, and B. Wack. Normalization in supernatural de-
duction and in deduction modulo. available at http://hal.inria.fr/ inria-
00141720, 2007.

314

BIBLIOGRAPHY

[Bec97] B. Beckert. Semantic tableaux with equality. J. Log. Comput., 7(1):39–58,
1997.

[Bec03] B. Beckert. Depth-first proof search without backtracking for free-variable
clausal tableaux. J. Symb. Comput., 36(1-2):117–138, 2003.

[Bee92] M. Beeson. Mathpert: Computer support for learning algebra, trig, and
calculus. In A. Voronkov, editor, LPAR, volume 624 of Lecture Notes in
Computer Science, pages 454–456. Springer, 1992.

[Bee98] M. Beeson. Automatic generation of epsilon-delta proofs of continuity. In
Calmet and Plaza [CP98], pages 67–83.

[BEF00] P. Baumgartner, N. Eisinger, and U. Furbach. A confluent connection
calculus. In Steffen Hölldobler, editor, Intellectics and Computational Logic,
volume 19 of Applied Logic Series, pages 3–26. Kluwer, 2000.

[Ben99] C. Benzmüller. Equality and Extensionality in Higher-Order Theorem Prov-
ing. PhD thesis, Department of Computer Science, Saarland University,
1999.

[Ber37] P. Bernays. A system of axiomatic set-theory. Journal of Symbolic Logic,
2:65–77, 1937.

[Bet65] E. W. Beth. The foundations of mathematics: a study in the philosophy
of science. Studies in logic and the foundations of mathematics. North-
holland, 2nd rev. ed. edition, 1965.

[BFG+03] C. Benzmüller, A. Fiedler, M. Gabsdil, H. Horacek, I. Kruijff-Korbayova,
M. Pinkal, J. Siekmann, D. Tsovaltzi, B. Quoc Vo, and M. Wolska. Tu-
torial dialogs on mathematical proofs. In Proc. of IJCAI-03 Workshop on
Knowledge Representation and Automated Reasoning for E-Learning Sys-
tems, pages 12–22, Acapulco, Mexico, 2003.

[BFN96] P. Baumgartner, U. Furbach, and I. Niemelä. Hyper tableaux. In José Júlio
Alferes, Lúıs Moniz Pereira, and Ewa Orlowska, editors, JELIA, volume
1126 of Lecture Notes in Computer Science, pages 1–17. Springer, 1996.

[BG94] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. J. Log. Comput., 4(3):217–247, 1994.

[BG07] P. Bruscoli and A. Guglielmi. On the proof complexity of deep inference.
In Proof, Computation, Complexity (PCC), pages 1–32, 2007.

[BGLS92] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodula-
tion and superposition. In Deepak Kapur, editor, Proc. of the CADE-11,
volume 607 of LNAI, pages 172–192, Saratoga Springs, NY, June 1992.
Springer.

[BGML01] L. Bachmair, H. Ganzinger, Second Readers D. Mcallester, and C. Lynch.
Resolution theorem proving, 2001.

[BGvW96] R. Back, J. Grundy, and J. von Wright. Structured calculational proof.
Formal Aspects of Computing, 9:9–467, 1996.

315

BIBLIOGRAPHY

[BH80] W. W. Bledsoe and L. M. Hines. Variable elimination and chaining in a
resolution-based prover for inequalities. In W. Bibel and R. A. Kowalski,
editors, CADE, volume 87 of Lecture Notes in Computer Science, pages
70–87. Springer, 1980.

[BH98] B. Benhamou and L. Henocque. Finite model search for equational theories
(fmset). In Calmet and Plaza [CP98], pages 84–93.

[BHC95] C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms: An
interface between isabelle and maple. In ISSAC, pages 150–157, 1995.

[BHK07a] P. Brauner, C. Houtmann, and C. Kirchner. Principles of superdeduction.
In LICS, pages 41–50. IEEE Computer Society, 2007.

[BHK07b] P. Brauner, C. Houtmann, and C. Kirchner. Superdeduction at work.
In Hubert Comon-Lundh, Claude Kirchner, and Hélène Kirchner, editors,
Rewriting, Computation and Proof, volume 4600 of Lecture Notes in Com-
puter Science, pages 132–166. Springer, 2007.

[BHKK+07a] C. Benzmüller, H. Horacek, I. Kruijff-Korbayova, M. Pinkal, J. Siekmann,
and M. Wolska. Natural Language Dialog with a Tutor System for Mathe-
matical Proofs. In Ruqian Lu, Jörg Siekmann, and Carsten Ullrich, editors,
Cognitive Systems, volume 4429 of LNAI. Springer, 2007.

[BHKK+07b] C. Benzmüller, H. Horacek, I. Kruijff-Korbayová, M. Pinkal, J. Siekmann,
and M. Wolska. Natural language dialog with a tutor system for mathe-
matical proofs. In Proc. of the 2005 joint Chinese-German conference on
Cognitive systems, pages 1–14, Berlin, Heidelberg, 2007. Springer-Verlag.

[BHL+06] C. Benzmüller, H. Horacek, H. Lesourd, I. Kruijff-Korbayova, M. Schiller,
and M. Wolska. A corpus of tutorial dialogs on theorem proving; the in-
fluence of the presentation of the study-material. In Proc. of International
Conference on Language Resources and Evaluation (LREC 2006), Genova,
Italy, 2006. ELDA.

[BHS93] B. Beckert, R. Hähnle, and P. H. Schmitt. The even more liberalized δ-
rule in free variable semantic tableaux. In G. Gottlob, A. Leitsch, and
D. Mundici, editors, Proceedings, 3rd Kurt Gödel Colloquium (KGC), Brno,
Czech Republic, LNCS 713, pages 108–119. Springer, August 1993.

[Bib81] W. Bibel. On matrices with connections. Journal of ACM, 28:633–645,
1981.

[Bib87] W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, 2 edition,
1987.

[Bil96] J.-P. Billon. The disconnection method - a confluent integration of uni-
fication in the analytic framework. In Pierangelo Miglioli, Ugo Moscato,
Daniele Mundici, and Mario Ornaghi, editors, TABLEAUX, volume 1071
of Lecture Notes in Computer Science, pages 110–126. Springer, 1996.

[Bil05] P. Bille. A survey on tree edit distance and related problems. Theor.
Comput. Sci., 337(1-3):217–239, 2005.

316

BIBLIOGRAPHY

[BJD98] B. Buchberger, T. Jebelean, and D.Vasaru. Theorema: A System for For-
mal Scientific Training in Natural Language Presentation. In , editor,
Proc. of Ed-Media 1998 (International Conference on Educational Mul-
timedia), pages 174–179, Freiburg, Germany, June 20-23 1998.

[BJK+97] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and
D. Vasaru. An Overview of the Theorema Project. In Proc. of Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC’97),
pages 384–391, Hawaii, 1997. ACM Press.

[BK97] P. Borovanský and H. Kirchner. Strategies of elan: meta-interpretation
and partial evaluation. In Proc. of International Workshop on Theory and
Practice of Algebraic Specifications ASF+SDF 97, Workshops in Comput-
ing, Amsterdam, The Netherlands, September 1997. Springer-Verlag.

[BK98] C. Benzmüller and M. Kohlhase. LEO – a higher-order theorem prover.
In Claude Kirchner and Hélène Kirchner, editors, Proc. of the 15th Inter-
national Conference on Automated Deduction (CADE-15), number 1421 in
LNAI, pages 139–143, Lindau, Germany, 1998. Springer.

[BK07] G. Burel and C. Kirchner. Cut elimination in deduction modulo by abstract
completion. In Sergei N. Artemov and Anil Nerode, editors, LFCS, volume
4514 of Lecture Notes in Computer Science, pages 115–131. Springer, 2007.

[BKKR01] P. Borovansky, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewriting
with strategies in ELAN: A functional semantics. International Journal of
Foundations of Computer Science, 12(1):69–95, 2001.

[BKS06] D. Bryce, S. Kambhampati, and D. E. Smith. Planning graph heuristics
for belief space search. J. Artif. Intell. Res. (JAIR), 26:35–99, 2006.

[BKT94] Y. Bertot, G. Kahn, and L. Théry. Proof by pointing. In M. Hagiya and
J. Mitchell, editors, Theoretical Aspects of Computer Software, volume 789
of Lecture Notes in Computer Science, pages 141–160. Springer Berlin /
Heidelberg, 1994.

[BL94] M. Baaz and A. Leitsch. On skolemization and proof complexity. Fundam.
Inform., 20(4):353–379, 1994.

[Ble86] W. W. Bledsoe. The use of analogy in automatic proof discovery. Technical
report, Microelectronics and Computer Technology Corporation, 1986.

[Ble90] W. W. Bledsoe. Challenge problems in elementary calculus. J. Autom.
Reasoning, 6(3):341–359, 1990.

[BM72] R. S. Boyer and J. S. Moore. The sharing of structure in theorem–proving
programs. In Machine Intelligence, chapter 7, pages 101–116. J. Wiley and
Sons, New York, 1972.

[BM88] R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic
Press, 1988.

[BM06] E. Balland and P.-E. Moreau. Optimizing pattern matching by program
transformation. Electronic Communications of the EASST, 2006.

317

BIBLIOGRAPHY

[BMM+01] C. Benzmüller, A. Meier, E. Melis, M. Pollet, and V. Sorge. Proof planning:
A fresh start? In Proc. of the IJCAR 2001 Workshop: Future Directions
in Automated Reasoning, pages 25–37, Siena, Italy, 2001.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[BN10] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In Kaufmann and
Paulson [KP10], pages 131–146.

[Boo47] G. Boole. The Mathematical Analysis of Logic, Being an Essay Toward a
Calculus of Deductive Reasoning. Macmillan, Cambridge, 1847.

[Boo58] G. Boole. The Laws Of Thought. Dover Publications,Inc., New York, dover
edition, 1958. originally published by Macmillan in 1854.

[Bou07] E. Bouwers. Improving automated feedback-building: A generic rule-
feedback generator. Master’s thesis, Utrecht University, 2007.

[BP95] B. Beckert and J. Posegga. leantap: Lean tableau-based deduction. J.
Autom. Reasoning, 15(3):339–358, 1995.

[BR03] G. Bancerek and P. Rudnicki. Information retrieval in mml. In Proc. of
MKM’03, pages 119–132, London, UK, 2003. Springer-Verlag.

[Bro03] C. W. Brown. Qepcad b: A program for computing with semi-algebraic
sets using cads. SIGSAM BULLETIN, 37:97–108, 2003.

[Bro06] C. E. Brown. Verifying and invalidating textbook proofs using scunak. In
Jonathan M. Borwein and William M. Farmer, editors, MKM, volume 4108
of Lecture Notes in Computer Science, pages 110–123. Springer, 2006.

[Bro11] C. Brown. Satallax. http://www.ps.uni-saarland.de/ cebrown/satallax/in-
dex.php, 2011.

[Bru73] N. G. De Bruijn. AUTOMATH - Ein Projekt zur Kontrolle von Mathe-
matik. In P. Braffort, editor, Proc. of the symposium APLASM, volume I,
Orsay, France, 1973. Talk given at Innsbrucker Mathematikertag, 1974.
German translation of “The AUTOMATHMathematics Checking Project”.

[BS82] R. Bartle and D. Sherbert. Introduction to Real Analysis. Wiley, 1982.

[BS94] F. Baader and J. Siekmann. Unification theory. In Dov M. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of logic in artificial intelli-
gence and logic programming, pages 41–125. Oxford University Press, Inc.,
New York, NY, USA, 1994.

[BS01a] F. Baader and W. Snyder. Unification theory. In Robinson and Voronkov
[RV01], pages 445–532.

[BS01b] C. Benzmüller and V. Sorge. Ω-Ants – an open approach at combining
interactive and automated theorem proving. In M. Kerber and M. Kohlhase,
editors, Proc. of Calculemus-2000, pages 81–97, St. Andrews, UK, 2001. AK
Peters.

318

BIBLIOGRAPHY

[BTPF08] C. Benzmüller, F. Theiss, L. Paulson, and A. Fietzke. LEO-II - a co-
operative automatic theorem prover for higher-order logic. In Alessandro
Armando, P. Baumgartner, and Gilles Dowek, editors, Automated Reason-
ing, 4th International Joint Conference, IJCAR 2008, Sydney, Australia,
August 12-15, 2008, Proceedings, volume 5195 of LNCS, pages 162–170.
Springer, 2008.

[Buc01] B. Buchberger. The pcs prover in theorema. In Computer Aided Systems
Theory - EUROCAST 2001-Revised Papers, pages 469–478, London, UK,
2001. Springer-Verlag.

[Bun88] A. Bundy. The use of explicit plans to guide inductive proofs. In Conference
on Automated Deduction, pages 111–120, 1988.

[Bun96] A. Bundy. Rippling: Greatest hits. Research paper, University of Edin-
burgh, 1996.

[Bun98] A. Bundy. A science of reasoning. Lecture Notes in Computer Science,
1397, 1998.

[Bun99] A. Bundy. A survey of automated deduction. In Artificial Intelligence
Today, pages 153–174. 1999.

[Bun02] A. Bundy. A critique of proof planning. In Computational Logic: Logic
Programming and Beyond, pages 160–177. Springer, 2002.

[BV80] J. S. Brown and K. VanLehn. Repair theory: A generative theory of bugs
in procedural skills. In Cognitive Science, volume 4, pages 379–426, 1980.

[BvHHS90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam
system. In Stickel [Sti90], pages 647–648.

[BvHHS91] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with
proof plans for induction. Journal of Automated Reasoning, 7(3):303–324,
1991.

[BW05] H. Barendregt and F. Wiedijk. The challenge of computer mathematics.
Philosophical transactions - Royal Society. Mathematical, physical and en-
gineering sciences, 363(1835):2351–2375, 2005.

[CAB+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-
mer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panan-
gaden, J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the
Nuprl Development System. Prentice-Hall, NJ, 1986.

[Cai05] P. Cairns. Alcor: A user interface for mizar. Mechanized Mathematics and
its Applications, 4:83–88, 2005.

[Car84] L. Cardelli. Compiling a functional language. In LISP and Functional
Programming, pages 208–217, 1984.

[CBSB96] F. Cantu, A. Bundy, A. Smaill, and D. A. Basin. Experiments in automat-
ing hardware verification using inductive proof planning. In Formal Methods
in Computer-Aided Design, First International Conference, volume 1166 of
LNCS, pages 94–108. FMCAD96, 1996.

319

BIBLIOGRAPHY

[CC99a] O. Caprotti and A. M. Cohen. Connecting proof checkers and computer
algebra using openmath. In Bertot et al. [BDH+99], pages 109–112.

[CC99b] O. Caprotti and A. M. Cohen. Integrating computational and deduction
systems using openmath. Electr. Notes Theor. Comput. Sci., 23(3):469–480,
1999.

[CDF+07] C. B. Callaway, M. Dzikovska, E. Farrow, M. Marques-Pita, C. Matheson,
and J. D. Moore. The beetle and beediff tutoring systems. In Proc. of the
2007 Workshop on Spoken Language Technology for Education (SLaTE),
Farmington, Pennsylvania, USA, September 2007.

[CfW04] L. Cruz-filipe and F. Wiedijk. A decision procedure for equational reasoning
in commutative algebraic structures, 2004.

[CG07] P. A. Cairns and J. Gow. Integrating searching and authoring in mizar. J.
Autom. Reasoning, 39(2):141–160, 2007.

[Chr93] J. Christian. Flatterms, discrimination nets, and fast term rewriting. Jour-
nal of Automated Reasoning, 10:95–113, 1993.

[Chu36] A. Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 1936.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. The Journal of
Symbolic Logic, 5:56–68, 1940.

[CKKS10] M. Cramer, P. Koepke, D. Kühlwein, and B. Schröder. Premise selection
in the naproche system. In Jürgen Giesl and Reiner Hähnle, editors, IJ-
CAR, volume 6173 of Lecture Notes in Computer Science, pages 434–440.
Springer, 2010.

[Coq03] Coq Development Team. The Coq Proof Assistant Reference Manual. IN-
RIA, 1999-2003. See http://coq.inria.fr/doc/main.html.

[Cor94] Intel Corporation. Statistical analysis of floating point flaw. White Paper,
1994.

[Cor07] P. Corbineau. A declarative language for the coq proof assistant. In Marino
Miculan, Ivan Scagnetto, and Furio Honsell, editors, TYPES, volume 4941
of Lecture Notes in Computer Science, pages 69–84. Springer, 2007.

[CP98] J. Calmet and J. A. Plaza, editors. Artificial Intelligence and Symbolic
Computation, International Conference AISC’98, Plattsburgh, New York,
USA, September 16-18, 1998, Proceedings, volume 1476 of Lecture Notes in
Computer Science. Springer, 1998.

[CS00] L. Cheikhrouhou and V. Sorge. PDS – a three-dimensional data struc-
ture for proof plans. In Proc. of the International Conference on Artificial
and Computational Intelligence for Decision, Control and Automation in
Engineering and Industrial Applications (ACIDCA 2000), pages 143–148,
march 2000.

320

http://coq.inria.fr/doc/main.html

BIBLIOGRAPHY

[CS03] K. Claessen and N. Sörensson. New techniques that improve mace-style
finite model finding. In Proc. of the CADE-19 Workshop: Model Compu-
tation - Principles, Algorithms, Applications, pages 427–442, 2003.

[Da97] B. I. Dahn and al. Integration of automated and interactive theorem proving
in ilf. In Proc. of CADE-14, pages 57–60, 1997.

[Dav81] M. Davis. Obvious logical inferences. In Proc. of the 7th IJCAI, pages
530–531, 1981.

[dB70] N. G. de Bruijn. The mathematical language AUTOMATH, its usage and
some of its extensions. In Symposium on Automatic Demonstration, pages
29–61, 1970.

[dB73] N. G. de Bruijn. AUTOMATH, A Language for Mathematics. Séminaire
de Mathématiques Superieures 52, Département de Mathématiques, Uni-
versité de Montréal, Montréal, Canada, 1973.

[dB94] N. G. de Bruijn. The mathematical vernacular, a language for mathematics
with typed sets. In R. P Nederpelt, J. H. Geuvers, and R. C. de Vrijer,
editors, Selected Papers on Automath, volume 133 of Studies in Logic and
the Foundations of Mathematics, pages 865 – 935. Elsevier, 1994.

[DB07] D. Dietrich and M. Buckley. Verification of proof steps for tutoring math-
ematical proofs. In Rosemary Luckin, Kenneth R. Koedinger, and Jim E.
Greer, editors, AIED, volume 158 of Frontiers in Artificial Intelligence and
Applications, pages 560–562. IOS Press, 2007.

[DB09] D. Dietrich and M. Buckley. Verification of human-level proof steps in math-
ematics education. Teaching Mathematics and Computer Science, 2009. In
print.

[DE98] M. D’Agostino and U. Endriss. WinKE: A Proof Assistant for Teaching
Logic. In Proc. of the First International Workshop on Labelled Deduction,
1998.

[Del99] D. Delahaye. Information retrieval in a coq proof library using type iso-
morphisms. In Thierry Coquand, Peter Dybjer, Bengt Nordström, and
Jan M. Smith, editors, TYPES, volume 1956 of Lecture Notes in Computer
Science, pages 131–147. Springer, 1999.

[Del02] D. Delahaye. A Proof Dedicated Meta-Language. In Proc. of Logical Frame-
works and Meta-Languages (LFM), Copenhagen (Denmark), volume 70 (2)
of ENTCS. Elsevier, July 2002.

[Den04a] L. Dennis. What is the difference between a method and a tactic? Blue
Book Note 1356, Edinburgh Dream Group, 2004.

[Den04b] L. Dennis. What is the difference between a method and a tactic ii, straying
into what is proof planning and why do we do it? Blue Book Note 1381,
Edinburgh Dream Group, 2004.

[DF06] L. Dixon and J. D. Fleuriot. A proof-centric approach to mathematical
assistants. J. Applied Logic, 4(4):505–532, 2006.

321

BIBLIOGRAPHY

[DHK98] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Rapport
de Recherche 3400, Institut National de Recherche en Informatique et en
Automatique, April 1998.

[DHK03] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. J.
Autom. Reasoning, 31(1):33–72, 2003.

[Die06] D. Dietrich. The task-layer of the Ωmega system. Diploma thesis, FR 6.2
Informatik, Universität des Saarlandes, Saarbrücken, Germany, 2006.

[Dix05] L. Dixon. A Proof Planning Framework for Isabelle. PhD thesis, University
of Edinburgh, 2005.

[DJ07] L. Dixon and M. Johansson. Isaplanner 2: A proof planner for isabelle,
2007.

[DJP06] L. A. Dennis, M. Jamnik, and M. Pollet. On the comparison of proof
planning systems: lambdaclam, omega and isaplanner. Electr. Notes Theor.
Comput. Sci., 151(1):93–110, 2006.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, July 1962.

[DLM99] A. Degtyarev, A. Lyaletski, and M. Morokhovets. Evidence algorithm and
sequent logical inference search. In LPAR ’99: Proc. of the 6th International
Conference on Logic Programming and Automated Reasoning, pages 44–61,
London, UK, 1999. Springer-Verlag.

[DLS00] J. D. Richardson D. Lacey and A. Smaill. Logic program synthesis in a
higher order domain. Computational Logic, 1861:87–100, 2000.

[DM94] M. D’Agostino and M. Mondadori. The taming of the cut. classical refuta-
tions with analytic cut. J. Log. Comput., 4(3):285–319, 1994.

[DM05] D. Delahaye and M. Mayero. Dealing with algebraic expressions over a field
in coq using maple. J. Symb. Comput., 39(5):569–592, 2005.

[dN99] H. de Nivelle. Bliksem 1.10 user manual. Technical report, Max-Planck-
Institut für Informatik, 1999.

[Dow09] G. Dowek. From proof theory to theories theory, 2009.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory.
J. ACM, 7(3):201–215, 1960.

[DP01] N. Dershowitz and D. A. Plaisted. Rewriting. In Robinson and Voronkov
[RV01], pages 535–610.

[DPT06] E. Denney, J. Power, and K. Tourlas. Hiproofs: A hierarchical notion of
proof tree. Electronic Notes in Theoretical Computer Science, 155:341 – 359,
2006. Proc. of the 21st Annual Conference on Mathematical Foundations
of Programming Semantics (MFPS XXI).

322

BIBLIOGRAPHY

[DS08] D. Dietrich and E. Schulz. Crstal: A declarative language for the en-
coding of proof techniques. In Workshop on Programming Languages for
Mechanized Mathematics Systems, pages 16–28, 2008.

[DS09] D. Dietrich and E. Schulz. Integrating structured queries into a tactic
language. JAL - Special issue on Programming Languages and Mechanized
Mathematics Systems, pages 1–32, 2009.

[DSST89] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data
structures persistent. J. Comput. Syst. Sci., 38(1):86–124, 1989.

[DSW08] D. Dietrich, E. Schulz, and M. Wagner. Authoring verified documents by in-
teractive proof construction and verification in text-editors. In S. Autexier,
J. Campbell, J. Rubio, V. Sorge, Masakazu Suzuki, and F. Wiedijk, edi-
tors, AISC/MKM/Calculemus, volume 5144 of Lecture Notes in Computer
Science, pages 398–414. Springer, 2008.

[DT95] B. Drabble and A. Tate. O-plan mixed initiative planning capabilities and
protocols. Technical report, University of Edinburgh, 1995.

[Dup00] D. Vasaru Dupre. Automated Theorem Proving by Integrating Proving,
Solving and Computing. PhD thesis, RISC, Johannes Kepler University of
Linz, 2000.

[FAR84] R. G. Farrell, J. R. Anderson, and B. J. Reiser. An interactive computer-
based tutor for lisp. In AAAI, pages 106–109, 1984.

[FF95] E. E. Feigenbaum and Julian Feldman, editors. Computers and Thought.
AAAI Press / The MIT Press, 1995.

[FGT92] W. M. Farmer, J. D. Guttman, and F. J. Thayer. Imps: System description.
In Deepak Kapur, editor, CADE, volume 607 of Lecture Notes in Computer
Science, pages 701–705. Springer, 1992.

[FGT93a] W. Farmer, J. Guttman, and F. J. Thayer. IMPS: An interactive mathe-
matical proof system. Journal of Automated Reasoning, 11, 1993.

[FGT93b] W. Farmer, J. Guttman, and F. J. Thayer. The imps user’s manual. Tech-
nical Report M-93B138, The MITRE Corporation, November 1993.

[Fie01] A. Fiedler. P.rex : An interactive proof explainer. In R. Goré, A. Leitsch,
and T. Nipkow, editors, Automated Reasoning: Proc. of IJCAR’01, number
2083 in LNAI, pages 416–420, Siena, Italy, 2001. Springer.

[Fil06] J.-C. Filliâtre. Backtracking iterators. In Proc. of the 2006 workshop on
ML, ML ’06, pages 55–62, New York, NY, USA, 2006. ACM.

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Proving / 2nd Edi-
tion. Springer-Verlag New York Inc., 1996. ISBN 0-387-94593-8.

[Fit97] M. Fitting. leantap revisited, 1997.

[FM88] A. Felty and D. Miller. Proof explanation and revision. Technical report,
University of Pennsylvania, 1988.

323

BIBLIOGRAPHY

[FM01] F. Le Fessant and L. Maranget. Optimizing pattern matching. In ICFP,
pages 26–37, 2001.

[Fra22] A. A. Fraenkel. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre.
Mathematische Annalen, 86:230–237, 1922.

[Fre79] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-
prache des reinen Denkens. Verlag Nebert, Halle, 1879.

[Gab00] D. M. Gabbay. Goal-Directed Proof Theory. Kluwer Academic Publishers,
2000.

[Gal97] D. Galmiche, editor. Automated Reasoning with Analytic Tableaux and
Related Methods, International Conference, TABLEAUX ’97, Pont-à-
Mousson, France, May 13-16, 1997, Proceedings, volume 1227 of Lecture
Notes in Computer Science. Springer, 1997.

[Gas09] H. Gast. Towards a modular extensible isabelle interface. In Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors,
TPHOLs, volume 5674 of Lecture Notes in Computer Science. Springer,
2009.

[GBC98] F. Giunchiglia, P. Bertoli, and A. Coglio. The omrs project: State of the
art, 1998.

[GBK08] S. Gruttmann, D. Böhm, and H. Kuchen. E-assessment of mathematical
proofs: Chances and challenges for students and tutors. In Proc. of the 2008
International Conference on Computer Science and Software Engineering,
Wuhan, China, December 12-14, 2008, volume 5, pages 612–615. IEEE
Computer Society, 2008.

[Geh94] W. Gehrke. Detailed catalogue of canonical term rewriting systems gener-
ated automatically, 1994.

[Gel59] H. Gelernter. Realization of a geometry-theorem proving machine. In
Proc. of an International Conference on Information Processing, pages 273–
282, Paris, France, 1959. reprinted in [SW83] and in [FF95].

[Gen69] G. Gentzen. The Collected Papers of Gerhard Gentzen (1934-1938). Edited
by Szabo, M. E., North Holland, Amsterdam, 1969.

[Geu09] H. Geuvers. Proof assistants: history, ideas and future. Sadahana, Special
Issue on Interactive Theorem Proving and Proof Checking, 34:3–25, 2009.

[GG04] A. Guglielmi and A. Guglielmi. Polynomial size deep-inference proofs in-
stead of exponential size shallow-inference proofs, 2004.

[Gie01] M. Giese. Incremental closure of free variable tableaux. In IJCAR ’01:
Proc. of the First International Joint Conference on Automated Reasoning,
pages 545–560, London, UK, 2001. Springer-Verlag.

[Gie02] M. Giese. Proof Search without Backtracking for Free Variable Tableaux.
PhD thesis, Fakultät für Informatik, Universität Karlsruhe, July 2002.

324

BIBLIOGRAPHY

[Gie06] M. Giese. Saturation up to redundancy for tableau and sequent calculi.
In Miki Hermann and Andrei Voronkov, editors, LPAR, volume 4246 of
Lecture Notes in Computer Science, pages 182–196. Springer, 2006.

[Gil60] P. C. Gilmore. A proof method for quantification theory: its justification
and realization. IBM J. Res. Dev., 4(1):28–35, 1960.

[GL97] J. Grundy and T. L̊angbacka. Recording hol proofs in a structured brows-
able format. In Michael Johnson, editor, AMAST, volume 1349 of Lecture
Notes in Computer Science, pages 567–571. Springer, 1997.

[GM06] H. Geuvers and L. Elie Mamane. A document-oriented coq plugin for tex-
macs, 2006.

[GMW79] M. J. Gordon, A. Milner, and C.P. Wadsworth. Edinburgh LCF: A Mecha-
nized Logic of Computation, volume 78 of LNCS. Springer Verlag Germany,
1979.

[Gol73] A. Goldberg. Computer assisted instruction: The application of theorem
proving to adaptive response analysis. PhD thesis, Stanford, 1973.

[Gol81] W. D. Goldfarb. The undecidability of the second-order unification prob-
lem. Theor. Comput. Sci., 13:225–230, 1981.

[Gor00] M. Gordon. From lcf to hol: a short history. In Gordon D. Plotkin, Colin
Stirling, and Mads Tofte, editors, Proof, Language, and Interaction, pages
169–186. The MIT Press, 2000.

[Grä91] A. Gräf. Left-to-right tree pattern matching. In Ronald V. Book, editor,
RTA, volume 488 of Lecture Notes in Computer Science, pages 323–334.
Springer, 1991.

[Gru07] K. Grue. The Layers of Logiweb. In M. Kauers, M. Kerber, R. Miner,
andW.Windsteiger, editors, Towards Mechanized Mathematical Assistants,
LNAI. Springer, June 2007.

[GS05] H. Ganzinger and J. Stuber. Superposition with equivalence reasoning and
delayed clause normal form transformation. Inf. Comput., 199(1-2):3–23,
2005.

[GUM+04] G. Goguadze, C. Ullrich, E. Melis, J. Siekmann, C. Gross, and R. Morales.
Leactivemath structure and metadata model. Technical report, Saarland
University, 2004.

[Häh01] R. Hähnle. Tableaux and related methods. In J. A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, pages 100–178.
Elsevier and MIT Press, 2001.

[Hal06] T. Hales. The kepler conjecture (eight years later)., 2006.

[Har96a] J. Harrison. Hol light: A tutorial introduction. In Formal Methods
in Computer-Aided Design (FMCAD’96), pages 265–269. Springer-Verlag,
1996.

325

BIBLIOGRAPHY

[Har96b] J. Harrison. A mizar mode for hol. In Joakim von Wright, Jim Grundy,
and John Harrison, editors, TPHOLs, volume 1125 of Lecture Notes in
Computer Science, pages 203–220. Springer, 1996.

[Har96c] J. Harrison. Proof style. In Eduardo Giménez and Christine Paulin-
Mohring, editors, TYPES, volume 1512 of Lecture Notes in Computer Sci-
ence, pages 154–172. Springer, 1996.

[Har98] J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag,
1998.

[Har06] J. Harrison. Formal verification in industry, 2006.

[Har09] J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cam-
bridge University Press, 2009.

[HC96] K. Homann and J. Calmet. Structures for symbolic mathematical reasoning
and computation. In J. Calmet and Carla Limongelli, editors, DISCO, vol-
ume 1128 of Lecture Notes in Computer Science, pages 216–227. Springer,
1996.

[Hen50] L. Henkin. Completeness in the theory of types. The Journal of Symbolic
Logic, 15:81–91, 1950.

[Her30] J. Herbrand. Recherches sur la theorie de la demonstration. The Journal
of Symbolic Logic, 15:81–91, 1930.

[HF96] X. Huang and A. Fiedler. Presenting machine-found proofs. In
Proc. CADE-13, LNAI 1104, pages 221–225. Springer Verlag, 1996.

[HHH07] M. Helmert, P. Haslum, and J. Hoffmann. Flexible abstraction heuristics
for optimal sequential planning. In Mark S. Boddy, Maria Fox, and Sylvie
Thiébaux, editors, ICAPS, pages 176–183. AAAI, 2007.

[Hin94] L. M. Hines. Str+ve and integers. In CADE-12: Proc. of the 12th Interna-
tional Conference on Automated Deduction, pages 416–430, London, UK,
1994. Springer-Verlag.

[HJL99] T. Hillenbrand, A. Jaeger, and B. Löchner. System description: Wald-
meister — improvements in performance and ease of use. In H. Ganzinger,
editor, Proc. of the 16th Conference on Automated Deduction, number 1632
in LNAI, pages 232–236. Springer, 1999.

[HK00] N. Heffernan and K. Koedinger. Building a 3rd generation ITS for sym-
bolization: Adding a Tutorial Model with Multiple Tutorial Strategies. In
Proc. of the ITS Workshop in Algebra Learning, 2000.

[HK02] N. T. Heffernan and K. R. Koedinger. An intelligent tutoring system in-
corporating a model of an experienced human tutor. In Stefano A. Cerri,
Guy Gouardères, and Fábio Paraguaçu, editors, Intelligent Tutoring Sys-
tems : 6th International Conference, ITS 2002, Biarritz, France and San
Sebastian, Spain, June 2-7, 2002. Proceedings., pages 149 – 157. Springer,
2002.

326

BIBLIOGRAPHY

[HKC98] X. Huang, M. Kerber, and L. Cheikhrouhou. Adaptation of declaratively
represented methods in proof planning. Annals of Mathematics and Artifi-
cial Intelligence, 23(3–4):299–320, 1998.

[HMAE96] G. D. Hume, J. A. Michael, R. A. Allen, and M. W. Evens. Hinting as a
tactic in one-on-one tutoring. Journal of the Learning Sciences, 5(1):23–47,
1996.

[HO82] C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. J. ACM,
29(1):68–95, 1982.

[Hof01] J. Hoffmann. Ff: The fast-forward planning system. AI Magazine, 22(3):57–
62, 2001.

[Hom97] K. Homann. Symbolisches Lösen mathematischer Probleme durch Kooper-
ation algorithmischer und logischer Systeme, volume 152 of DISKI. Infix
Verlag, St. Augustin, Germany, 1997.

[HT93a] J. Harrison and L. Théry. Extending the hol theorem prover with a com-
puter algebra system to reason about the reals. In Jeffrey J. Joyce and
Carl-Johan H. Seger, editors, HUG, volume 780 of Lecture Notes in Com-
puter Science, pages 174–184. Springer, 1993.

[HT93b] J. Harrison and L. Théry. Reasoning about the reals: The marriage of hol
and maple. In A. Voronkov, editor, LPAR, volume 698 of Lecture Notes in
Computer Science, pages 351–353. Springer, 1993.

[HT07] J. Hattie and H. Timperley. The power of feedback. Review of Educational
Research, 77(1):81–112, M.h 2007.

[Hua94a] X. Huang. Proverb - a system explaining machine-found proofs. In Proc. of
16th Annual Conference of the Cognitive Science Society, pages 427–432,
1994.

[Hua94b] X. Huang. Reconstructing proofs at the assertion level. In Alan Bundy,
editor, Proc. 12th CADE, pages 738–752. Springer-Verlag, 1994.

[Hua96] X. Huang. Human Oriented Proof Presentation: A Reconstructive Ap-
proach. Number 112 in DISKI. Infix, Sankt Augustin, Germany, 1996.

[Hua99] X. Huang. The presentation of proofs at the assertion level, 1999.

[Hue76] G. Huet. Résolution d’équations dans des langages d’ordre 1,2,...,ω. PhD
thesis, Université Paris VII, 1976.

[Hue97] G. P. Huet. The zipper. J. Funct. Program., 7(5):549–554, 1997.

[HW05] H. Horacek and M. Wolska. Interpretation of Mixed Language Input in a
Mathematics Tutoring System. In Proc. of AIED-05 Workshop on Mixed
Language Explanations in Learning Environments, pages 27–34, 2005.

[Ire92] A. Ireland. The use of planning critics in mechanizing inductive proofs. In
Logic Programming and Automated Reasoning, pages 178–189, 1992.

327

BIBLIOGRAPHY

[Ire96] A. Ireland. Productive use of failure in inductive proof. Journal of Auto-
mated Reasoning, 16(1-2):79–111, 1996.

[JC08] J. Kiniry J. Charles. A lightweight theorem prover interface for eclipse. In
User Interfaces for Theorem Proving, 2008.

[JK86] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a
set of equations. SIAM J. Comput., 15(4):1155–1194, 1986.

[JKK+05] W. A. Hunt Jr., M. Kaufmann, R. B. Krug, J. S. Moore, and E. Whitman
Smith. Meta reasoning in acl2. In Joe Hurd and Thomas F. Melham,
editors, TPHOLs, volume 3603 of Lecture Notes in Computer Science, pages
163–178. Springer, 2005.

[KA93] K. Koedinger and J. R. Anderson. Reifying implicit planning in geometry:
Guidelines for model-based intelligent tutoring system design. In S. P.
Lajoie and S. J. Derry, editors, Computers as Cognitive Tools, pages 15–46.
Routledge, 1993.

[KAB+04] E. Klieme, H. Avenarius, W. Blum, P. Döbrich, H. Gruber, M. Prenzel,
K. Reiss, K. Riquarts, J. Rost, H. Tenorth, and H. J. Vollmer. The devel-
opment of national educational standards - an expertise. Technical report,
Bundesministerium für Bildung und Forschung / German Federal Ministry
of Education and Research, 2004.

[KAE+10] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. seL4: Formal verification of an OS kernel. Communica-
tions of the ACM (CACM), 53(6):107–115, June 2010.

[Kah08] O. Kahramanogullar. Maude as a platform for designing and implementing
deep inference systems. Electronic Notes in Theoretical Computer Science,
219:35 – 50, 2008. Proc. of the Eighth International Workshop on Rule
Based Programming (RULE 2007).

[Kal01] J. A. Kalman. Automated Reasoning with OTTER. Rinton Press, Paramus,
NJ, 2001.

[KB70] D.E. Knuth and P. B. Bendix. Simple word problems in universal algebras.
In Computational Problems in Abstract Algebra, pages 263–297. Pergamon
Press, Oxford, 1970.

[KCKS09] D. Kühlwein, M. Cramer, P. Koepke, and B. Schröder. The naproche
system. In Intelligent Computer Mathematics. Springer, 2009.

[Kel83] J. F. Kelley. An empirical methodology for writing user-friendly natural
language computer applications. In Raoul N. Smith, Richard W. Pew, and
Ann Janda, editors, CHI ’83: Proc. of the SIGCHI conference on Human
Factors in Computing Systems, Boston, Massachusetts, United States, De-
cember 12-15, 1983, pages 193–196, New York, NY, USA, 1983. ACM.

[Ker98] M. Kerber. Proof planning: A practical approach to mechanized reason-
ing in mathematics. In W. Bibel and P. H. Schmitt, editors, Automated
Deduction - A Basis for Applications, pages 77–95, 1998.

328

BIBLIOGRAPHY

[KJ01] B. Konev and T. Jebelean. Solution Lifting Method for Handling Meta-
variables in Theorema. In S. Maruster, B. Buchberger, V. Negru, and
T. Jebelean, editors, Proc. of SYNASC01, pages 15–23, Timisoara, Roma-
nia, October 2001. Mirton.

[KKS98] M. Kerber, M. Kohlhase, and V. Sorge. Integrating computer algebra into
proof planning. J. Autom. Reasoning, 21(3):327–355, 1998.

[Kle98] P. N. Klein. Computing the edit-distance between unrooted ordered trees.
In Gianfranco Bilardi, Giuseppe F. Italiano, Andrea Pietracaprina, and
Geppino Pucci, editors, ESA, volume 1461 of Lecture Notes in Computer
Science, pages 91–102. Springer, 1998.

[KMR05] O. Kahramanogullari, P.-E. Moreau, and A. Reilles. Implementing deep in-
ference in tom. In In Structures and Deduction (SD 05), ICALP Workshop,
2005.

[KMW04] F. Kamareddine, M. Maarek, and J. B. Wells. Mathlang: Experience-
driven development of a new mathematical language. Electr. Notes Theor.
Comput. Sci., 93:138–160, 2004.

[KN04] F. Kamareddine and R. Nederpelt. A refinement of de bruijn’s formal
language of mathematics. Journal of Logic, Language and Information,
13(3):287–340, 2004.

[KO99] C. Kreitz and J. Otten. Connection-based theorem proving in classical and
non-classical logics. Journal of Universal Computer Science, 5(3):88–112,
1999.

[KP10] M. Kaufmann and L. C. Paulson, editors. Interactive Theorem Proving,
First International Conference, ITP 2010, Edinburgh, UK, July 11-14,
2010. Proceedings, volume 6172 of Lecture Notes in Computer Science.
Springer, 2010.

[KWHvR07] C. Kaliszyk, F. Wiedijk, M. Hendriks, and F. van Raamsdonk. Teaching
logic usign a state-of-the-art proof assistant. In H. Geuvers and P. Courtieu,
editors, Proc. of the International Workshop on Proof Assistants and Types
in Education, pages 33–48, 2007.

[Lam93] L. Lamport. How to write a proof, 1993.

[Lan30] E. Landau. Grundlagen der Analysis. Chelsea Publishing Company, 1930.

[Ler09] X. Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 52(7):107–115, 2009.

[Let93] A. A. Letichevsky. Development of rewriting strategies. In PLILP ’93:
Proc. of the 5th International Symposium on Programming Language Im-
plementation and Logic Programming, pages 378–390, London, UK, 1993.
Springer-Verlag.

[Lin89] C. Lingenfelder. Structuring computer generated proofs. In IJCAI, pages
378–383, 1989.

329

BIBLIOGRAPHY

[LLB02] S. Lukins, A. Levicki, and J. Burg. A tutorial program for propositional
logic with human/computer interactive learning. In Judith L. Gersting,
Henry MacKay Walker, and Scott Grissom, editors, SIGCSE, pages 381–
385. ACM, 2002.

[LMG94] R. Letz, K. Mayr, and C. Goller. Cotrolled integration of the cut rule into
connection tableaux calculi. J. Autom. Reasoning, 13(3):297–337, 1994.

[LPV06] A. V. Lyaletski, A. Paskevich, and K. Verchinine. Sad as a mathematical
assistant - how should we go from here to there? J. Applied Logic, 4(4):560–
591, 2006.

[LSBB92] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. Setheo: A high-performance
theorem prover. J. Autom. Reasoning, 8(2):183–212, 1992.

[LV97] S. P. Luttik and E. Visser. Specification of rewriting strategies. In 2nd
International Workshop on the Theory and Practice of Algebraic Speci-
fications (ASF+SDF’97), Electronic Workshops in Computing. Springer-
Verlag, 1997.

[Mas98] F. Massacci. Simplification: A general constraint propagation technique
for propositional and modal tableaux. In Harrie C. M. de Swart, editor,
TABLEAUX, volume 1397 of Lecture Notes in Computer Science, pages
217–231. Springer, 1998.

[MBD03] S. Kambhampati M. B. Do. Sapa: A scalable multi-objective heuristic
metric temporal planner. Journal of Artificial Intelligence Research, 20:1–
59, 2003.

[McC62] J. McCarthy. Computer programs for checking mathematical proofs. In
Recursive Function Theory, volume 5 of Proc. of Symposia in Pure Mathe-
matics, pages 219–227. AMS, Providence, Rhode Island, 1962.

[McC94] W. W. McCune. Otter 3.0 reference manual and guide. Technical Report
ANL-94-6, Argonne National Laboratory, Argonne, Illinois 60439, USA,
1994.

[McC97] W. McCune. Solution of the robbins problem. Journal of Automated Rea-
soning, 19:263–276, 1997.

[McC03] W. McCune. Mace4 reference manual and guide. CoRR, cs.SC/0310055,
2003.

[McD83] D. D. McDonald. Natural language generation as a computational problem.
In Brady and Berwick, editors, Computational Models of Discourse. MIT
Press, 1983.

[McM91] A. F. McMichael. Mechanization of analytic reasoning about sets. In AAAI,
pages 427–433, 1991.

[Mei00a] A. Meier. System description: Tramp - transformation of machine-found
proofs into natural deduction proofs at the assertion level. In Proc. of
the 17th International Conference on Automated Deduction, number 1831
in Lecture Notes in Artificial Intelligence, pages 460–464. Springer-Verlag,
2000.

330

BIBLIOGRAPHY

[Mei00b] A. Meier. Transformation of machine-found proofs into assertion level
proofs. Technical report, Saarland University, 2000.

[Mei03] A. Meier. Proof Planning with Multiple Strategies. Phd thesis, FR 6.2
Informatik, Saarland University, 2003.

[Mei04] A. Meier. Proof planning with multiple strategies. PhD thesis, University
of Saarland, FB Informatik, 2004.

[Mel98a] E. Melis. Ai-techniques in proof planning. In ECAI, pages 494–498, 1998.

[Mel98b] E. Melis. The “limit” domain. In AIPS, pages 199–207, 1998.

[Mel05] E. Melis. Design of erroneous examples for activemath. In Ch.-K. Looi and
G. McCalla, editors, Proc. of the 12th International Conference on Artificial
Intelligence in Education (AIED 2005)., volume 125, pages 451–458. IOS
Press, 2005.

[MFS02] E. Maclean, J. Fleuriot, and A. Smaill. Proof planning non-standard anal-
ysis. 7th International Symposium on AI and Mathematics, 2002.

[Mil84] D. Miller. Expansion tree proofs and their conversion to natural deduction
proofs. In Robert E. Shostak, editor, CADE, volume 170 of Lecture Notes
in Computer Science, pages 375–393. Springer, 1984.

[MK98] P.-E. Moreau and H. Kirchner. A compiler for rewrite programs in
associative-commutative theories. In Catuscia Palamidessi, Hugh Glaser,
and Karl Meinke, editors, PLILP/ALP, volume 1490 of Lecture Notes in
Computer Science, pages 230–249. Springer, 1998.

[MLK96] J Strother Moore, T. Lynch, and M. Kaufmann. A mechanically checked
proof of the correctness of the kernel of the amd5k86 floating-point division
algorithm. IEEE Transactions on Computers, 47, 1996.

[MM05a] A. Meier and E. Melis. Failure reasoning in multiple-strategy proof plan-
ning. Electr. Notes Theor. Comput. Sci., 125(2):67–90, 2005.

[MM05b] A. Meier and E. Melis. System description: Multi a multi-strategy proof
planner. In Robert Nieuwenhuis, editor, CADE, volume 3632 of Lecture
Notes in Computer Science, pages 250–254. Springer, 2005.

[MMS08] E. Melis, A. Meier, and J. H. Siekmann. Proof planning with multiple
strategies. Artif. Intell., 172(6-7):656–684, 2008.

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L-Zhang, and S. Malik. Chaff:
Engineering an efficient sat solver. In ANNUAL ACM IEEE DESIGN
AUTOMATION CONFERENCE, pages 530–535. ACM, 2001.

[MN90] U. Martin and T. Nipkow. Ordered rewriting and confluence. In Mark E.
Stickel, editor, CADE, volume 449 of Lecture Notes in Computer Science,
pages 366–380. Springer, 1990.

331

BIBLIOGRAPHY

[MOMV05] N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language
for Maude. In N. Mart́ı-Oliet, editor, Proc. Fifth International Workshop on
Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain, M.h
27 – April 4, 2004, volume 117 of Electronic Notes in Theoretical Computer
Science, pages 417–441. Elsevier, 2005.

[Mor47] A. De Morgan. Formal Logic. Taylor and Walton, 1847.

[Mos02] T. Mossakowski. Heterogeneous development graphs and heterogeneous
borrowing. In Proc. of FOSSACS’02, LNCS, pages 326–341. Springer, April
2002.

[MP09] J. Meng and L. C. Paulson. Lightweight relevance filtering for machine-
generated resolution problems. Journal of Applied Logic, 7(1):41–57, 2009.

[MPS02] A. Meier, M. Pollet, and V. Sorge. Comparing approaches to the exploration
of the domain of residue classes. Journal of Symbolic Computation Special
Issue on the Integration of Automated Reasoning and Computer Algebra
Systems, 34:287–306, 2002.

[MR87a] N. V. Murray and E. Rosenthal. Inference with path resolution and seman-
tic graphs. Journal of the Association of Computing Machinery, 34(2):225–
254, April 1987.

[MR87b] N. V. Murray and E. Rosenthal. Path dissolution: A strongly complete
inference rule. In Proc. of the 6th National Conference on Artificial Intelli-
gence, pages 161–166, Seattle, WA, July 12-17 1987.

[MR94] N. V. Murray and E. Rosenthal. On the computational intractabilityof
analytic tableau methods. Bulletin of the IGPL, 2(2):205–228, 1994.

[MRM+95] G. R. Morrison, Ross, S. M., M. Gopalakrishnan, and J. Casey. The effects
of feedback and incentives on achievement in computer-based instruction.
In Contemporary Educationalk Psychology, volume 20, pages 32–50, 1995.

[MRS01] D. McMath, M. Rozenfeld, and R. Sommer. A computer environment for
writing ordinary mathematical proofs. In LPAR ’01: Proc. of the Artificial
Intelligence on Logic for Programming, pages 507–516, London, UK, 2001.
Springer-Verlag.

[MRV01] P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern-matching compiler.
Electronic Notes in Theoretical Computer Science, 44(2):161 – 180, 2001.
LDTA’01, First Workshop on Language Descriptions, Tools and Applica-
tions (a Satellite Event of ETAPS 2001).

[MS99a] E. Melis and J. Siekmann. Concepts in proof planning. In Intellectics and
Computational Logic. Papers in Honor of Wolfgang Bibel, pages 249–264.
Kluwer, 1999.

[MS99b] E. Melis and J. H. Siekmann. Knowledge-based proof planning. Artif.
Intell., 115(1):65–105, 1999.

332

BIBLIOGRAPHY

[MS05] E. Melis and J. H. Siekmann. e-learning logic and mathematics: What we
have and what we need. In Sergei N. Artëmov, Howard Barringer, Artur S.
d’Avila Garcez, Lúıs C. Lamb, and John Woods, editors, We Will Show
Them! (2), pages 639–662. College Publications, 2005.

[MV05] N. Matsuda and K. VanLehn. Advanced geometry tutor: An intelligent
tutor that teaches proof-writing with construction. In Chee-Kit Looi, Gor-
don I. McCalla, Bert Bredeweg, and Joost Breuker, editors, AIED, volume
125 of Frontiers in Artificial Intelligence and Applications, pages 443–450.
IOS Press, 2005.

[MW07] C. Benzmüller M. Wagner, S. Autexier. Plato: A mediator between text-
editors and proof assistance systems. In C. Benzmüller S. Autexier, editor,
7th Workshop on User Interfaces for Theorem Provers (UITP’06), volume
174(2) of Electronic Notes on Theoretical Computer Science, pages 87–107.
Elsevier, april 2007.

[Mye96] K. Myers. Advisable planning systems, 1996.

[Ned02] R. Nederpelt. Weak type theory: A formal language for mathematics. Tech-
nical report, Eindhoven University of Technology, Department of Math. and
Comp. Sc., 2002.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[NR01] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem
proving, 2001.

[NSS57] A. Newell, J.C. Shaw, and H.A. Simon. Empirical exploration with the logic
theory machine. In Proceedings of the Western Joint Computer Conference,
Volume 15, pages 218–239, 1957.

[NWE97] N. Nedjah, C. D. Walter, and S. E. Eldridge. Optimal left-to-right pattern-
matching automata. In M. Hanus, J. Heering, and K. Meinke, editors,
ALP/HOA, volume 1298 of Lecture Notes in Computer Science, pages 273–
286. Springer, 1997.

[OS88] F. Oppacher and E. Suen. Harp: A tableau-based theorem prover. J.
Autom. Reasoning, 4(1):69–100, 1988.

[OS91] H. J. Ohlbach and J. H. Siekmann. The Markgraf Karl refutation procedure.
In Jean Luis Lassez and Gordon Plotkin, editors, Computational Logic,
Essays in Honor of Alan Robinson, pages 41–112. MIT Press, 1991.

[Ott08] J. Otten. leancop 2.0 and ileancop 1.2: High performance lean theo-
rem proving in classical and intuitionistic logic (system descriptions). In
Alessandro Armando, P. Baumgartner, and Gilles Dowek, editors, IJ-
CAR, volume 5195 of Lecture Notes in Computer Science, pages 283–291.
Springer, 2008.

[Pas01] D. Pastre. Muscadet 2.3: A knowledge-based theorem prover based on nat-
ural deduction. In R. Goré, A. Leitsch, and T. Nipkow, editors, Automated
Reasoning: Proc. of IJCAR’01, pages 685–689. Springer, 2001.

333

BIBLIOGRAPHY

[Pas02] D. Pastre. Strong and weak points of the muscadet theorem prover - ex-
amples from casc-jc. AI Commun., 15(2-3):147–160, 2002.

[Pau83] L. C. Paulson. A higher-order implementation of rewriting. Science of
Computer Programming, 3(2):119–149, 1983.

[Pau99] L. C. Paulson. A generic tableau prover and its integration with isabelle.
J. UCS, 5(3):73–87, 1999.

[Pau08] L. C. Paulson. The isabelle reference manual, 2008.

[Pel86] F. J. Pelletier. Thinker. In Jörg H. Siekmann, editor, CADE, volume 230
of Lecture Notes in Computer Science, pages 701–702. Springer, 1986.

[Pel97] Nicolas Peltier. Simplifying and generalizing formulae in tableaux. pruning
the search space and building models. In Galmiche [Gal97], pages 313–327.

[Pel98] F. Jeffry Pelletier. Automated natural deduction in thinker. Studia Logica,
60, 1998.

[Pel99] N. Peltier. Pruning the search space and extracting more models in
tableaux. Logic Journal of the IGPL, 7(2):217–251, 1999.

[Pfe87] F. Pfenning. Proof Transformation in Higher-Order Logic. Phd thesis,
Carnegie Mellon University, 1987.

[PJ06] H. Passier and J. Jeuring. Feedback in an interactive equation solver. Tech-
nical Report UU-CS-2006-021, Department of Information and Computing
Sciences, Utrecht University, 2006.

[Pla08] A. Platzer. Differential dynamic logic for hybrid systems. J. Autom. Rea-
soning, 41(2):143–189, 2008.

[Pra65] D. Prawitz. Natural deduction; a proof-theoretical study, volume 3 of Stock-
holm Studies in Philosophy. Almqvist and Wiksells, 1965.

[PS02] M. Pollet and V. Sorge. Integrating computational properties at the term
level. In Proc. of Calculemus, pages 78–83, 2002.

[PS06] M. Pollet and V. Sorge. Connecting logical representations and efficient
computations. Electr. Notes Theor. Comput. Sci., 151(1):127–142, 2006.

[RBGL07] V. Robinet, G. Bisson, M. B. Gordon, and B. Lemaire. Searching for student
intermediate mental steps. In Complete On-Line Proc. of the Workshop on
Data Mining for User Modeling, at the 11th International Conference on
User Modeling (UM 2007), Corfu, Greece, June 25, 2007, pages 101–105,
2007. http://www.educationaldatamining.org/UM2007/Robinet.pdf.

[Ric02] J. Richardson. A semantics for proof plans with applications to interactive
proof planning. In Lecture Notes in Computer Science, 2002.

[RL07] J. Ruan and Z. Lu. Automated generation of readable proofs for a class of
limits of sequences and functions. Symbolic Computation and Education,
2007.

334

http://www.educationaldatamining.org/UM2007/Robinet.pdf

BIBLIOGRAPHY

[Rob65] J. A. Robinson. A machine oriented logic based on the resolution principle.
JACM, 12:23–41, 1965.

[Rob00] J. A. Robinson. Proof = guarantee + explanation. In Intellectics and Com-
putational Logic (to Wolfgang Bibel on the occasion of his 60th birthday),
pages 277–294, Deventer, The Netherlands, The Netherlands, 2000. Kluwer,
B.V.

[Ros00] B. Rosario. Latent semantic indexing: An overview, 2000.

[RR92] R. Ramesh and I. V. Ramakrishnan. Nonlinear pattern matching in trees.
J. ACM, 39(2):295–316, 1992.

[RS93] P. D. Robinson and J. Staples. Formalizing a hierarchical structure of prac-
tical mathematical reasoning. Journal of Logic and Computation, 3(1):47–
61, 1993.

[RS98] W. Reif and G. Schellhorn. Theorem proving in large theories. In Proc.
FTP 97, pages 119–124. Kluwer Academic Publishers, 1998.

[RSG98] J. D. C. Richardson, A. Smaill, and I. M. Green. System description: proof
planning in higher-order logic with λ-clam. In Claude Kirchner and Hélène
Kirchner, editors, Proc. of the 15th International Conference on Automated
Deduction (CADE-98), volume 1421 of LNAI. Springer, 1998.

[RSV01] I. V. Ramakrishnan, R. C. Sekar, and A. Voronkov. Term indexing. In J. A.
Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
pages 1853–1964. Elsevier and MIT Press, 2001.

[Rud87] P. Rudnicki. Obvious inferences. J. Autom. Reasoning, 3(4):383–393, 1987.

[Rüm08] P. Rümmer. A constraint sequent calculus for first-order logic with linear in-
teger arithmetic. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov,
editors, LPAR, volume 5330 of Lecture Notes in Computer Science, pages
274–289. Springer, 2008.

[Rus03] B. Russell. Principles of Mathematics. Cambridge University Press, 1903.

[RV99] A. Riazanov and A. Voronkov. Vampire. In Harald Ganzinger, editor,
CADE, volume 1632 of Lecture Notes in Computer Science, pages 292–296.
Springer, 1999.

[RV01] J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reason-
ing (in 2 volumes). Elsevier and MIT Press, 2001.

[SA99] S. Doaitse Swierstra and Pablo R. Azero Alcocer. Fast, error correcting
parser combinators: A short tutorial. LNCS, 1725:111–129, 1999.

[Sac10] C. Sacerdoti-Coen. Declarative representation of proof terms. J. Autom.
Reasoning, 44(1-2):25–52, 2010.

[SB96] B. Sufrin and R. Bornat. User Interfaces for Generic Proof Assistants Part
I: Interpreting Gestures. In S. Aitken and P. Gray, editors, Proc. of User
Interfaces for Theorem Provers, 1996.

335

BIBLIOGRAPHY

[SB98] W. Sieg and J. Byrnes. Normal natural deduction proofs (in classical logic).
Studia Logica, 60(1):67–106, 1998.

[SB09a] M. Schiller and C. Benzmüller. Granularity-adaptive proof presentation.
Technical report, SEKI Working-Paper, 2009.

[SB09b] M. Schiller and C. Benzmüller. Presenting proofs with adapted granularity.
In Bärbel Mertsching, M.us Hund, and Zaheer Aziz, editors, KI 2009: Ad-
vances in Artificial Intelligence. KI-09, in Conjunction with 32nd Annual
German Conference on AI, Paderborn, Germany, Paderborn, Germany,
Germany, volume 5803, pages 289–279. Springer Verlag, 2009.

[SB09c] M. Schiller and C. Benzmüller. Proof granularity as an empirical prob-
lem? In Proc. Computer Science in Education (CSEDU), pages 350–354.
INSTICC Press, 2009.

[SBA06] J. Siekmann, C. Benzmüller, and S. Autexier. Computer supported math-
ematics with omega. Journal of Applied Logic, 4(4):533–559, 2006.

[SBdV06] M. Schiller, C. Benzmüller, and A. Van de Veire. Judging granularity for
automated mathematics teaching. In LPAR 2006 Short Papers Proceedings,
Phnom Pehn, Cambodia, 2006.

[SBF+03] J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, I. Normann, and M. Pol-
let. Proof development in omega: The irrationality of square root of 2. In
F. Kamareddine, editor, Thirty Five Years of Automating Mathematics,
Kluwer Applied Logic series (28), pages 271–314. Kluwer Academic Pub-
lishers, 2003. ISBN 1-4020-1656-5.

[Sch77] K. Schütte. Proof Theory. (Originaltitel: Beweistheorie), volume 255
of Die Grundlehren der mathematischen Wissenschaften. Springer,
Berlin;Heidelberg;New York, 1977.

[Sch97] J. Schumann. Automatic verification of cryptographic protocols with
SETHEO. In W. McCune, editor, Proc. of the 14th International Con-
ference on Automated deduction, volume 1249 of Lecture Notes in Artificial
Intelligence, pages 87–100, Berlin, July 13–17 1997. Springer.

[Sch02] S. Schulz. E - a brainiac theorem prover, 2002.

[Sch04] S. Schulz. System Description: E 0.81. In D. Basin and M. Rusinowitch,
editors, Proc. of the 2nd IJCAR, Cork, Ireland, volume 3097 of LNAI, pages
223–228. Springer, 2004.

[Sch05] M. Schiller. Mechanizing Proof Step Evaluation for Mathematics Tutoring -
the Case of Granularity. Diploma thesis, Saarland University, Saarbrücken,
Germany, 2005.

[Sch06] A. Schairer. Transformations of Specifications and Proofs to Support an
Evolutionary Formal Software Development,. PhD thesis, Saarland Univer-
sity, 2006.

[Sch09] W. Schreiner. The risc proofnavigator: a proving assistant for program
verification in the classroom. Formal Asp. Comput., 21(3):277–291, 2009.

336

BIBLIOGRAPHY

[Sch10] M. Schiller. Granularity Analysis for Tutoring Mathematical Proofs. PhD
thesis, Saarland University, 2010.

[SDB07] M. Schiller, D. Dietrich, and C. Benzmüller. Towards computer-assisted
proof tutoring. In JEM Workshop on identifying and supporting (scien-
tific) communities in education and research, Jacobs University Bremen,
Germany, 2007.

[SDB09] M. Schiller, D. Dietrich, and C. Benzmüller. Proof step analysis for proof
tutoring – a learning approach to granularity. Teaching Mathematics and
Computer Science, 2009. In print.

[SDM+65] N. A. Shanin, G. V. Davydov, S. Ju. Maslov, G. E. Minc, V. P. Orevkov,
and A. O. Slisenko. An algorithm for a machine scan of a natural log-
ical deduction in a propositional calculus. Translated in (Siekmann and
Wrightson 1983), pages 424–484, 1965.

[SG89] W. Snyder and J. Gallier. Higher-order unification revisited: Complete
sets of transformations. Journal of Symbolic Computation, 8(2):101–140,
July/August 1989.

[Sie89] J. H. Siekmann. Unification theory. Journal of Symbolic Computation,
7(3–4):207–274, March–April 1989.

[Sie09] W. Sieg. Searching for proofs (and uncovering capacities of the mathemat-
ical mind). to appear, 2009.

[Sla94] J. K. Slaney. Finder: Finite domain enumerator - system description. In
A. Bundy, editor, CADE, volume 814 of Lecture Notes in Computer Science,
pages 798–801. Springer, 1994.

[SMS96] J. Silva, P. Marques, and Karem A. Sakallah. Grasp—a new search al-
gorithm for satisfiability. In ICCAD ’96: Proc. of the 1996 IEEE/ACM
international conference on Computer-aided design, pages 220–227, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

[Smu68] R. M. Smullyan. First-Order Logic, volume 43 of Ergebnisse der Mathe-
matik. Springer-Verlag, Berlin, 1968.

[SN04] R. Sommer and G. Nuckols. A Proof Environment for Teaching Mathemat-
ics. Journal of Automated Reasoning, 32(3):227–258, 2004.

[Sol05] D. Solow. How to read and do proofs. Laurie Rosatone, 2005.

[Sor00] V. Sorge. Non-trivial symbolic computations in proof planning. In H. Kirch-
ner and C. Ringeissen, editors, FroCos, volume 1794 of Lecture Notes in
Computer Science, pages 121–135. Springer, 2000.

[SRA99] P. G. Fairweather Sherman R. Alpert, M. K. Singley. Deploying intelligent
tutors on the web: An architecture and an example. Int. J. Artif. Intell.
Ed., 10(2):183–197, 1999.

[SRL+06] W. Sieg, J. Ramsey, D. Lafon, D. McLaughlin, T. Gibson, and D. Perkins.
Apros, 2006.

337

BIBLIOGRAPHY

[SS94] W. Sieg and R. Scheines. Computer Environments for Proof Construction.
Interactive Learning Environments, 4(2):159–169, 1994.

[ST89] P. Suppes and S. Takahashi. An interactive calculus theorem-prover for
continuity properties. J. Symb. Comput., 7(6):573–590, 1989.

[Sta78] R. Statman. Bounds for proof search and speed-up in the predicate calculus.
Annals of Mathematical Logic, 15:225–287, 1978.

[Sti90] Mark E. Stickel, editor. Proc. CADE-10, volume 449 of LNAI. Springer
Verlag, July 1990.

[Sut09] G. Sutcliffe. The TPTP Problem Library and Associated Infrastruc-
ture: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning,
43(4):337–362, 2009.

[SW83] Jörg Siekmann and Graham Wrightson, editors. Automation of Reasoning
1: Classical Papers on Computational Logic 1957–1966, Symbolic Compu-
tation. Springer Verlag, 1983.

[Sym97] D. Syme. DECLARE: a prototype declarative proof system for higher order
logic. Technical Report UCAM-CL-TR-416, University of Cambridge, Com-
puter Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United
Kingdom, phone +44 1223 763500, February 1997.

[Sym99] D. Syme. Three tactic theorem proving. In Theorem Proving in Higher
Order Logics, TPHOLs ’99, pages 203–220. Springer, 1999.

[Tai79] K.-C. Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433,
1979.

[TB85] A. Trybulec and H. A. Blair. Computer assisted reasoning with mizar. In
IJCAI, pages 26–28, 1985.

[TCK95] L. Thery, Y. Coscoy, and G. Kahn. Extracting text from proofs. In Typed
Lambda Calculus and its Applications, pages 109–123. Springer-Verlag,
1995.

[Tur37] A. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. of the London Mathematical Society, 42:230–265,
1937. 43:544-546.

[Urb06] J. Urban. MoMM - fast interreduction and retrieval in large libraries of
formalized mathematics. International Journal on Artificial Intelligence
Tools, 15(1):109–130, 2006.

[Urq98] A. Urquhart. The complexity of propositional proofs. Bulletin of the
EATCS, 64, 1998.

[VB98] E. Visser and Z. Benaissa. A core language for rewriting. Electr. Notes
Theor. Comput. Sci., 15, 1998.

[VBA03] Q. B. Vo, C. Benzmüller, and S. Autexier. Assertion application in theorem
proving and proof planning. In Proc. of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 0–127. Kaufmann, 2003.

338

BIBLIOGRAPHY

[vdBHKO02] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling
language definitions: the asf+sdf compiler. ACM Trans. Program. Lang.
Syst., 24(4):334–368, 2002.

[vdBKV03] M. van den Brand, P. Klint, and J. J. Vinju. Term rewriting with traversal
functions. ACM Trans. Softw. Eng. Methodol., 12(2):152–190, 2003.

[vdH01] J. van der Hoeven. Gnu Texmacs: A free, structured, wysiwyg and tech-
nical text editor. Number 39-40 in Cahiers GUTenberg, May 2001.

[Vis01] E. Visser. Stratego: A language for program transformation based on
rewriting strategies. System description of Stratego 0.5. In A. Middeldorp,
editor, Rewriting Techniques and Applications (RTA 2001), volume 2051 of
Lecture Notes in Computer Science, pages 357–361. Springer-Verlag, May
2001.

[Vit96] M. Vittek. A compiler for nondeterministic term rewriting systems. In
Harald Ganzinger, editor, RTA, volume 1103 of Lecture Notes in Computer
Science, pages 154–167. Springer, 1996.

[VLP07] K. Verchinine, A. V. Lyaletski, and A. Paskevich. System for automated
deduction (sad): A tool for proof verification. In F. Pfenning, editor,
CADE, volume 4603 of Lecture Notes in Computer Science, pages 398–403.
Springer, 2007.

[vS00] B. von Sydow. Alfie, a proof editor for propositional logic, 2000.

[WAB+99] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen,
C. Theobalt, and D. Topic. System description: SPASS version 1.0.0. In
H. Ganzinger, editor, Proc. of the 16th Conference on Automated Deduc-
tion, number 1632 in LNAI, pages 378–382. Springer, 1999.

[Wac05a] B. Wack. Supernatural Deduction. Nancy 1, France. E-mail. PhD thesis,
LORIA & Université Henri Poincaré, 2005.

[Wac05b] B. Wack. Typage et déduction dans le calcul de réécriture. Thèse de doc-
torat, Université Henri Poincaré (Nancy 1), octobre 2005.

[Wag10] M. Wagner. Change-Oriented Architecture for Mathematical Authoring As-
sistance. PhD thesis, FR 6.2 Informatik, Universität des Saarlandes, 2010.

[Wal90] L. Wallen. Automated proof search in non-classical logics: efficient ma-
trix proof methods for modal and intuitionistic logics. MIT Press series in
artificial intelligence, 1990.

[War84] D. S. Warren. Efficient prolog memory management for flexible control
strategies. In Proc. of the 1984 Int. Symps. on Logic Programming, pages
198–202, 1984.

[WBH+09] M. Wolska, M. Buckley, H. Horacek, I. Kruijff-Korbayova, and M. Pinkal.
Linguistic processing in a mathematics tutoring system: Cooperative input
interpretation and dialogue modelling. In Matthew W. Crocker and J. Siek-
mann, editors, Resource-Adaptive Cognitive Processes, Cognitive Technolo-
gies, pages 267–289. Springer Berlin Heidelberg, 2009.

339

BIBLIOGRAPHY

[WBPB01] C. Webber, L. Bergia, S. Pesty, and N. Balacheff. The baghera project: a
multi-agent architecture for human learning. In Workshop - Multi-Agent
Architectures for Distributed Learning Environments. Proc. International
Conference on AI and Education, pages 12–17, 2001.

[Wen99a] M. Wenzel. Isar - a generic interpretative approach to readable formal proof
documents. In Bertot et al. [BDH+99], pages 167–184.

[Wen99b] M. Wenzel. Miscellaneous isabelle/isar examples for higher-order logic,
1999.

[Wie04] F. Wiedijk. Formal proof sketches. In Mario Coppo Stefano Berardi and
Ferruccio Damiani, editors, Types for Proofs and Programs: Third Inter-
national Workshop TYPES 2003, number 3085 in LNCS, pages 378–393,
Torino, 2004. Springer.

[Wie05] F. Wiedijk. Nine formal proof sketches. 2005.

[Wil93] D. E. Wilkins. Using the SIPE-2 planning System: A Manual for Version
4.3, 1993.

[Win06] W. Windsteiger. An automated prover for zermelo-fraenkel set theory in
heorema. J. Symb. Comput., 41(3-4):435–470, 2006.

[Wir04] C.-P. Wirth. Descente infinie + deduction. Logic Journal of the IGPL,
12(1):1–96, 2004.

[Wos90] L. Wos. The problem of finding a mapping between clause representation
and natural-deduction representation. J. Autom. Reasoning, 6(2):211–212,
1990.

[WR10] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge Uni-
versity Press, Cambridge, 1910.

[YBG+94] T. Yoshida, A. Bundy, I. Green, T. Walsh, and D. A. Basin. Coloured
rippling: An extension of a theorem proving heuristic. In ECAI, pages
85–89, 1994.

[Zam99] V. Zammit. On the implementation of an extensible declarative proof lan-
guage. In Bertot et al. [BDH+99], pages 185–202.

[Zer08] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. Math-
ematische Annalen, 65:261–281, 1908.

[Zha96] J. Zhang. Constructing finite algebras with falcon. J. Autom. Reasoning,
17(1):1–22, 1996.

[Zha97] H. Zhang. Sato: An efficient propositional prover. In W. McCune, editor,
Proc. of the 14th Conference on Automated Deduction, number 1249 in
LNAI. Springer, 1997.

[Zin06] C. Zinn. Supporting tutorial feedback to student help requests and errors in
symbolic differentiation. In Mitsuru Ikeda, Kevin D. Ashley, and Tak-Wai
Chan, editors, Intelligent Tutoring Systems, volume 4053 of Lecture Notes
in Computer Science, pages 349–359. Springer, 2006.

340

BIBLIOGRAPHY

[ZM04] J. Zimmer and E. Melis. Constraint solving for proof planning. Journal of
Automated Reasoning, 33(1):51–88, July 2004.

[ZZ95] J. Zhang and H. Zhang. Sem: a system for enumerating models. In IJCAI,
pages 298–303, 1995.

341

	Kurzzusammenfassung
	Abstract
	Acknowledgements
	Zusammenfassung
	Extended Abstract
	I Introduction
	Introduction
	Contributions
	Outline of the Thesis

	Historical Overview and State of the Art
	Classical Automated Theorem Proving
	Rewriting

	Interactive Theorem Proving and Proof Style
	Procedural vs. Declarative Proof
	Tactic Languages
	Deduction Modulo, Supernatural Deduction, and Superdeduction
	Proof Transformation and Presentation

	Proof Planning and Proof Refinement
	Practical Applications of Theorem Proving
	Verification of Software, Hardware, and Mathematics
	Tutoring Systems for Mathematics

	Summary

	II Assertion Level Proofs
	Assertion Level Proofs
	Examples of Assertion Applications
	Deep Application
	Summary

	Foundations
	Syntax, Semantics and Uniform Notation
	Syntax
	Type Inference – Algorithm W
	Semantics
	Uniform notation and Polarities

	Higher-Order Unification
	Summary

	Core Proof Theory
	Indexed Formula Trees
	Instantiations
	Core Expansion Rules
	Increasing Multiplicities

	Free Variable Indexed Formula Trees
	Replacement Rules
	Contraction, Weakening and Cut
	Simplification
	Extensionality Rules
	Instantiation
	Increase of Multiplicities
	Schütte's Rule

	Two Example Proofs
	Simple Set Theory
	Equational Reasoning

	Summary

	The Core calculus and the Assertion Level
	Windows and Inference Representation
	Representing Assertions
	Preprocessing

	Assertion Application
	Assertions: Backward Application
	Generation of New Premises and Task Splitting

	Assertions: Forward Application
	Application of Rewrite Rules
	Related Work
	LeanTAP
	Focusing
	Prawitz, Supernatural Deduction, Superdeduction
	Deduction Modulo
	Relationship to Hyperresolution and SLD Resolution
	Imps
	Muscadet
	Theorema

	Summary

	Proof Theory
	Formal Characterization of Assertion Applications
	Soundness and Completeness
	Sequent Calculus and Block Tableau Systems
	Systematic Block Tableau
	Systematic Assertion Level Tableau

	Summary

	III Proof Plans and Proof Strategies
	Proof Plans
	Textbook Proofs, Proof Plans, and Declarative Proofs
	Proof Plans
	Handling Meta-Variables

	A Declarative Proof Language
	Realization of the Language

	From Assertion Level proofs to Declarative Proof Scripts
	Examples

	Related Work
	Underspecified Proof Scripts
	Proof Script Extraction
	Declarative Proof Languages

	Summary

	Heuristic Control and Compilation of Inferences
	Dynamic Effects and User-Defined Constraints
	Annotated Inferences
	Inference Programs
	Explicit Matching Automata
	Pruning
	Implementation Note on Traversal Functions

	Discussion
	Related Work
	Summary

	Reasoning at the Strategy Level: Proof Strategies
	A Declarative Language for Procedural Strategies
	Syntax
	Semantics of the Query Language
	Semantics of Strategy Constructors
	Discussion

	A Declarative Language for Declarative Strategies
	Syntax of the Basic Language
	Semantics
	Extension of the Basic Language by Dynamic Patterns
	Discussion

	Related Work
	Math Search and Mathematical Knowledge Retrieval
	Procedural Tactics
	Declarative Tactics

	Summary

	IV Applications
	Using Assertion Level for Tutoring
	Motivation and Context
	A Corpus of Mathematical Tutorial Dialogs
	Corpus of the Second Experiment
	Phenomena Observed in the Corpus
	Proof Step Types and Interface

	Mental Proof States
	Representing the Possible MPS
	Updating the MPS

	Example Verification
	A Note on the Search

	Evaluation
	Possible Extensions
	Error Detection
	Generating Hints

	Discussion
	Related Work
	Summary

	A Theorem Prover Operating at the Assertion Level
	The Problem Domain
	The Setting
	Benchmarks
	Discussion
	Related Work
	Summary

	Statman Tautologies
	The cases n=2 and n=3
	The General Case
	Practical Evaluation
	Related Work - The System KSg
	Understanding Replacement Rules
	Directions of Replacement Rules
	Deep Axiom Rule and Simplification
	Literal Extractions
	Matrix Calculi

	Summary

	The Limit Domain
	Abstract Formalization
	Performing Calculations
	Integration of Computer Algebra Systems
	A Decision Procedure for the Equality of Polynomials over Rings

	Strategies of the Limit Domain
	Constructing Instances
	The Extraction Strategy
	Complex Estimate Revisited

	The Lim+ Problem
	Comparison with Multi and Discussion
	Related Work
	Bledsoe's Imply and STR+VE prover
	Weierstrass
	An Interactive Calculus Theorem-prover for Continuity Properties
	Theorema
	Oyster Clam

	Summary

	Integration Into a Scientific Text-Editor
	Historical Remarks and Design Goals
	Architecture and Communication
	Proof Script Generation, Granularity Change, and Completion
	Discussion

	Related Work
	Summary

	V Conclusion
	Comparison with the previous Omega system
	Logical Foundations
	Knowledge Representation and Maintenance
	Different Form of Knowledge
	Methods: Original Idea and Practice
	Limitations of Strategic Reasoning in Multi
	Improved Knowledge Representation and Maintenance

	Integration of External Reasoners

	Conclusion and Future Work
	Future Work

