
OctopusDB: Flexible and Scalable

Storage Management for Arbitrary

Database Engines

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Alekh Jindal

Saarbrücken

July 10, 2012

i

Dekan der
Naturwissenschaftlich-Technischen
Fakultät I Prof. Dr. Mark Groves

Vorsitzender der Prüfungskommission Prof. Dr. Sebastian Hack
Berichterstatter Prof. Dr. Jens Dittrich
Berichterstatter Prof. Dr. Gerhard Weikum
Berichterstatter Prof. Dr. Anastasia Ailamaki

Beisitzer Dr. Jorge Quiané
Tag des Promotionskollquiums 24.08.2012

ii

iii

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus an-

deren Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe der

Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in gle-

icher oder ähnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades

vorgelegt.

Ort, Datum

(Unterschrift)

iv

v

To my mother and father

vi

vii

Acknowledgements

Jens Dittrich has been my guiding force over the last two and a half years. He has a
unique disruptive style of doing research, which has fascinated me tremendously. Under
his supervision, I had the opportunity to work on some very exciting problems. I have
learned many things from him including questioning earlier assumptions, doing things
differently each time, and aiming for no less than the very best. All these made this
thesis an enjoyable research experience for me. His high standards for quality were truly
inspiring and he was a pillar of continuous motivation and never ending support all
along. It has been a great learning curve working with him and I would like to thank
him for everything.

I have deep high regards for Jorge Quiané. He has been my mentor and friend. I have
worked with him on several projects and I highly appreciate his team player and hard
working attitude. He has always given me the confidence to take bigger leaps. And his
insightful feedback and detailed comments were of great help all along. I would like to
express him my sincere gratitude for his kindness and support.

I would like thank the reviewers Prof. Gerhard Weikum and Prof. Anastasia Ailamaki
for kindly agreeing to review this thesis, and for their remarks and feedback. I have
profound admiration for both of them and it is an honor to have them on the examination
board of this thesis. Prof. Gerhard Weikum has also often given me professional advice
from the depth of his experiences. Talking to him has always widened my scope of
thinking and I would like to thank him for giving me his valuable time. I would also like
to thank Prof. Sebastian Hack for agreeing to chair my defense as well as for agreeing
to be my scientific companion during this thesis.

The research work presented in this thesis was partly supported by the funding from
Multimodal Computing and Interaction (M2CI) Cluster of Excellence. The remaining
financial support came from German Ministry of Education and Science. I am thankful
to them for their support.

I am also extremely thankful to our secretarial staff, Angelika Scholl-Danopoulos, for
helping me with the administrative issues throughout my work.

I would like to thank Jörg Schad for helping me with the german translation of the
abstract. I would also thank Stefan Richter for revising the german translation and for
proof-reading certain parts of this thesis.

I made some great friends here in Germany and I am thankful to them for the great
time I had outside work. Jörg Schad has been a great friend, pulling me into all kinds of
sports here. Mohammad and Jana have been great people to spend the weekend with.
And Sharath has always been around, smiling and cheerful.

Finally, I would like to thank my family — my parents who have been a great source of
inspiration and purpose for me, my sister who has tremendous faith in me, and my wife
who is truly my better half.

Above all, God has been gracious to me and I am grateful for the luck that he has
bestowed upon me.

viii

ix

Abstract

We live in a dynamic age with the economy, the technology, and the people around us
changing faster than ever before. Consequently, the data management needs in our mod-
ern world are much different than those envisioned by the early database inventors in the
70s. Today, enterprises face the challenge of managing ever-growing dataset sizes with
dynamically changing query workloads. As a result, modern data managing systems,
including relational as well as big data management systems, can no longer afford to be
carved-in-stone solutions. Instead, data managing systems must inherently provide flex-
ible data management techniques in order to cope with the constantly changing business
needs. The current practice to deal with changing query workloads is to have a different
specialized product for each workload type, e.g. row stores for OLTP workload, column
stores for OLAP workload, streaming systems for streaming workload, and scan-oriented
systems for shared query processing. However, this means that the enterprises have to
now glue different data managing products together and copy data from one product to
another, in order to support several query workloads. This has the additional penalty of
managing a zoo of data managing systems in the first place, which is tedious, expensive,
as well as counter-productive for modern enterprises.

This thesis presents an alternative approach to supporting several query workloads in
a data managing system. We observe that each specialized database product has a
different data store, indicating that different query workloads work well with different
data layouts. Therefore, a key requirement for supporting several query workloads is
to support several data layouts. Therefore, in this thesis, we study ways to inject
different data layouts into existing (and familiar) data managing systems. The goal is
to develop a flexible storage layer which can support several query workloads in a single
data managing system. We present a set of non-invasive techniques, coined Trojan
Techniques, to inject different data layouts into a data managing system. The core idea
of Trojan Techniques is to drop the assumption of having one fixed data store per data
managing system. Trojan Techniques are non-invasive in the sense that they do not
make heavy untenable changes to the system. Rather, they affect the data managing
system from inside, almost at the core. As a result, Trojan Techniques bring significant
improvements in query performance. It is interesting to note that in our approach we
follow a design pattern that has been used in other non-invasive research works as well,
such as PAX, fractal prefetching B+-trees, and RowCol.

We propose four Trojan Techniques. First, Trojan Indexes add an additional index ac-
cess path in Hadoop MapReduce. Second, Trojan Joins allow for co-partitioned joins in
Hadoop MapReduce. Third, Trojan Layouts allow for row, column, or column-grouped
layouts in Hadoop MapReduce. Together, these three techniques provide a highly flex-
ible data storage layer for Hadoop MapReduce. Our final proposal, Trojan Columns,
introduces columnar functionality in row-oriented relational databases, including closed
source commercial databases, thus bridging the gap between row and column oriented
databases. Our experimental results show that Trojan Techniques can improve the
performance of Hadoop MapReduce by a factor of up to 18, and that of a top-notch
commercial database product by a factor of up to 17.

xi

Zusammenfassung

Wir leben in einer dynamischen Zeit, in der sich Wirtschaft, Technologie und Gesellschaft
schneller verändern als jemals zuvor. Folglich unterscheiden sich die Anforderungen an
Datenverarbeitung heute sehr von dem, was sich die Pioniere dieses Forschungsgebiets in
den 70er Jahren ursprünglich ausgemalt hatten. Heutzutage sehen sich Firmen mit der
Herausforderung konfrontiert, stark fluktuierende Anfragelasten über einer stetig wach-
sender Datenmengen zu bewältigen. Daher können es sich moderne Datenbanksysteme,
sowohl relationale als auch Big Data Systeme, nicht mehr leisten, wie starre, in Stein
gemeißelte Lösungen zu funktionieren. Stattdessen sollten moderne Datenbanksysteme
von Grunde auf für flexible Datenverwaltung konzipiert werden, um mit sich ständig
ändernden Anforderungen Schritt halten zu können. Die gegenwärtige Praxis im Um-
gang mit häufig wechselnden Anfragemustern besteht allerdings noch darin, jeweils un-
terschiedliche, spezialisierte Lösungen für die verschiedenen Anfragetypen zu nutzen -
zum Beispiel zeilenorientierte Systeme für OLTP Anfragen, spaltenorientierte Systeme
für OLAP Anfragen, Data Stream Management Systeme für kontinuierliche Datenströme
und Scan-basierte Systeme für die Bearbeitung von vielen gleichzeitigen Anfragen. Lei-
der setzt dieses Vorgehen aber voraus, dass die Unternehmen es schaffen die verschieden-
sten Systeme irgendwie miteinander zu verknüpfen und einen Datenaustausch zwischen
ihnen zu gewährleisten. Ein zusätzlicher Nachteil ist, dass hierbei oft ein ganzes Sorti-
ment von Datenbankprodukten eingerichtet und gepflegt werden muss, was sowohl zeit-
als auch kostenintensiv und damit letztlich aufwendig ist.

Diese Dissertation präsentiert eine alternative Lösung, um wechselnde Anfragemuster
effizient mit einem einzigen Datenverwaltungssystem zu unterstützen. Aus der Beobach-
tung, dass jedes spezielle Datenbankprodukt unterschiedliche Ansätze zur Daten-speicherung
nutzt, folgern wir, dass verschiedene Anfragen jeweils auf bestimmten Datenlayouts ef-
fizienter beantwortet werden können als auf anderen. Deshalb ist eine zentrale An-
forderung zur effizienten Verarbeitung unterschiedlicher Anfragetypen mit nur einem
System, dass dieses System verschiedene Datenlayouts unterstützen muss. Dazu unter-
suchen wir in dieser Arbeit Möglichkeiten, um verschiedene Datenlayouts nachträglich
in bestehende (und bekannte) Datenbanksysteme einzuschleusen. Das Ziel hierbei ist
die Entwicklung einer flexiblen Speicherschicht, die verschiedenste Anfragen in einem
einzigen Datenbanksystem unterstützen kann. Wir haben hierzu eine Reihe von nicht-
invasiven Techniken, auch Trojanische Techniken genannt, entwickelt, mit denen sich
verschiedene Datenlayouts nachträglich in existierende Systeme einschleusen lassen. Die
Grundidee hinter diesen Trojanischen Techniken ist es, die Annahme, dass jedes Daten-
banksystem nur eine festgelegte Art der Datenspeicherung haben kann, fallen zu lassen.
Die Trojanischen Techniken erfordern nur minimale Änderungen am ursprünglichen
Datenbanksystem, sondern beeinflussen dessen Verhalten von innen heraus. Der Ein-
satz Trojanischen Techniken kann die Anfragegeschwindigkeit erheblich steigern. Wir
folgen mit diesem Ansatz einem Entwurfsmuster, das auch in anderen nichtinvasiven
Forschungsprojekten wie PAX, fpB+-Bäume und RowCol verwendet wurde.

Wir stellen in dieser Arbeit vier verschiedene Trojanische Techniken vor. Als erstes
zeigen wir, wie Trojanische Indexe die Integration eines Index in Hadoop MapReduce
ermöglichen. Ergänzt wird dies durch Trojanische Joins, welche kopartitionierte Joins in
Hadoop MapReduce ermöglichen. Danach zeigen wir, wie Trojanische Layouts Hadoop
MapReduce um zeilen-, spalten- und gruppierte spaltenorientierte Datenlayouts erweit-
ern. Zusammen bilden diese Techniken eine flexible Speicherschicht für das Hadoop
MapReduce Framework. Unsere vierte Technik, Trojanische Spalten, erlaubt es uns,
spaltenorientierte Datenverarbeitung nachträglich in zeilenbasierten Datenbanksysteme
einzuführen und lässt sich sogar auf kommerzielle closed-source Produkten anwenden.
Wir schließen damit die Lücke zwischen zeilen- und spaltenorientierten Datenbanksyste-
men. In unseren Experimenten zeigen wir, dass die Trojanischen Techniken die Leistung
des Hadoop MapReduce Frameworks um das bis zu 18fache und die Geschwindigkeit
einer aktuellen kommerziellen Datenbank um das 17fache erhöhen können.

xiii

Contents

Acknowledgements viii

Abstract x

Zusammenfassung xii

1 Introduction 1
1.1 Motivation . 1
1.2 Techniques for Dynamic Workloads . 2

1.2.1 Physical Database Design & Tuning 2
1.2.2 Different Workload, Different System 3
1.2.3 Trojan Techniques . 4

1.3 Hadoop MapReduce Overview . 5
1.4 Thesis Statement . 7
1.5 Contributions . 8

1.5.1 OctopusDB Vision . 8
1.5.2 Trojan Indexes and Joins . 8
1.5.3 Trojan Layouts . 9
1.5.4 Trojan Columns . 10
1.5.5 Publications, Patents, Grants, Awards 10

2 Towards A One Size Fits All Database Architecture 13
2.1 Introduction . 14

2.1.1 Background . 14
2.1.2 Motivation . 14
2.1.3 Problem Statement . 15
2.1.4 Research Challenges . 15

2.1.4.1 Different Storage Layouts under a single umbrella 16
2.1.4.2 Automatic Adaptive Bifurcation instead of administered

Eventual Integration . 16
2.1.4.3 Simplicity Vs Optimization 17

2.1.5 Our Approach . 17
2.2 OctopusDB Overview . 18

2.2.1 Data Model . 18
2.2.2 The Primary Log Store . 18

xiv

Contents xv

2.2.3 System Components and Interface 19
2.2.4 Algorithms . 20

2.3 Storage Views . 21
2.3.1 Log SV . 23
2.3.2 Row, Col, and other SVs . 24
2.3.3 Index SV . 25

2.4 Holistic SV Optimizer . 26
2.4.1 Overview . 26
2.4.2 Cost Model . 26
2.4.3 Adaptive SV Optimization . 28

2.5 Purging and Checkpointing . 31
2.6 Recovery . 32
2.7 Transactions and Isolation . 33
2.8 Experimental Evidence . 35

2.8.1 Workload-aware SV Selection . 35
2.8.2 Outperforming Traditional Systems 35
2.8.3 Automatic Adaptation . 37

2.9 Related Work . 38
2.10 Conclusion . 41

3 Indexing and Join Techniques for Large Scale Data Management 43
3.1 Introduction . 43

3.1.1 Background . 43
3.1.2 Research Challenge . 44
3.1.3 Our Solution . 44
3.1.4 Contributions . 45

3.2 From Relational Algebra to MapReduce and Back 45
3.2.1 Mapping Relational Operators to MapReduce 46
3.2.2 Unary operators . 46
3.2.3 Binary Operators . 47
3.2.4 Extended Operators . 49
3.2.5 Relational DAGs . 49
3.2.6 Mapping MapReduce to Relational Algebra 50

3.3 Hadoop as a Physical Query Execution Plan 51
3.3.1 The Hadoop Plan . 51
3.3.2 Discussion . 53

3.4 Trojan Index . 54
3.4.1 Index Creation . 54
3.4.2 Query Processing . 56

3.5 Trojan Join . 58
3.5.1 Data Co-Partitioning . 59
3.5.2 Query Processing . 59
3.5.3 Trojan Index over Co-Partitioned Data 61

3.6 Experiments . 61
3.6.1 System Setup . 61
3.6.2 Benchmark Setup . 62
3.6.3 Analytical Tasks . 64

Contents xvi

3.6.3.1 Data Loading . 64
3.6.3.2 Selection Task . 64
3.6.3.3 Join Task . 65

3.6.4 Fault-Tolerance . 65
3.6.5 Additional Benchmark Results . 66

3.6.5.1 Large and Small Aggregation Task 66
3.6.5.2 UDF Aggregation Task 67

3.7 Discussion & Conclusion . 69

4 Data Layouts for Large Scale Data Management 71
4.1 Introduction . 71

4.1.1 Background and Motivation . 72
4.1.2 Our Approach and Research Challenges 74
4.1.3 Contributions . 75

4.2 Overview . 75
4.3 Interestingness-based Column Grouping Algorithm 77

4.3.1 Column Group Interestingness . 78
4.3.2 Column Group Packing as 0-1 Knapsack

Problem . 80
4.4 Per-Replica Trojan Layout . 82

4.4.1 Layout Aware Replication . 84
4.4.2 Layout Creation . 85
4.4.3 Query Processing . 86
4.4.4 Scheduling Policies . 87

4.5 Experimental Evaluation . 88
4.5.1 Testbed . 88
4.5.2 Datasets and Benchmarks . 88
4.5.3 Benchmarks Queries . 89
4.5.4 Layout Details . 89
4.5.5 Experiment Methodology . 92
4.5.6 Per-Replica Trojan Layout Performance 92
4.5.7 Comparing Scheduling Policies . 94
4.5.8 Data Loading . 95
4.5.9 Comparison with HYRISE . 96
4.5.10 Grouping Algorithm Performance and Scalability 96

4.6 Related Work . 97
4.7 Conclusion . 99

5 Column-oriented Storage for Relational Data Management 101
5.1 Introduction . 101

5.1.1 Background . 101
5.1.2 Problem . 102
5.1.3 Research Challenges . 102
5.1.4 Our Idea . 103
5.1.5 Contributions . 103

5.2 The UDF Storage Layer . 104
5.2.1 Background . 104

Contents xvii

5.2.2 Why UDFs as the Storage Layer? 104
5.2.3 Mapping Relations to Tables . 105

5.3 Trojan Columns . 105
5.3.1 Data Storage . 106
5.3.2 Data Access . 108
5.3.3 Handling Inserts and Updates . 108

5.4 Query Processing . 108
5.4.1 Operator Pushdown . 108

5.4.1.1 Scan Pushdown . 109
5.4.1.2 Projection Pushdown . 110
5.4.1.3 Selection Pushdown . 110
5.4.1.4 Aggregation Pushdown 111
5.4.1.5 Dealing with Join Queries 112
5.4.1.6 Where does operator pushdown lead to? 113

5.4.2 Query Rewriting . 113
5.5 Implementation Details . 114

5.5.1 DBMS X Table UDF Interface . 114
5.5.2 DBMS X Call Level Interface (CLI) 116

5.6 Experiments . 117
5.6.1 Setup . 117
5.6.2 Baselines . 117
5.6.3 Methodology . 118
5.6.4 Trojan Columns on TPC-H queries 118

5.6.4.1 Experiment 1: TPC-H dataset load times 118
5.6.4.2 Experiment 2: TPC-H query times 119
5.6.4.3 Experiment 3: read-UDF costs 121

5.6.5 Trojan Columns on micro-benchmarks 121
5.6.5.1 Experiment 4: Varying selections and projections over a

single table. 121
5.6.5.2 Experiment 5: Simplified TPC-H queries. 122

5.6.6 Trojan Columns vs Column Stores 123
5.6.6.1 Experiment 6: Trojan Columns vs PostgreSQL Column . 123
5.6.6.2 PostgreSQL Column Implementation Effort 124

5.6.7 Additional Results . 124
5.6.7.1 Effect of Compression . 124
5.6.7.2 Query cost break-down 125
5.6.7.3 Stored Procedures . 126
5.6.7.4 C-Table Evaluation . 126

5.7 Discussion . 126
5.8 Conclusion . 128

6 Conclusion 131
6.1 Summary . 131
6.2 Future Work . 133

List of Figures 137

Contents xviii

List of Tables 139

List of Algorithms 141

Bibliography 143

xix

Chapter 1

Introduction

1.1 Motivation

We live in a dynamic age. Whether it is economy, technology, or people, the world around
us is changing faster than ever before. Consequently, the data management needs in our
modern world are much different than those envisioned by the early database inventors
in the 70s. In our modern world, we are witnessing businesses which are flexible and
scale-up quickly, and user behaviors which are rapidly changing and harder to predict.
For example, Facebook grew into almost a 100 billion dollar company in just 8 years,
all along transforming the way people communicate socially. Such rapid growth leads
to the task of managing ever-growing dataset sizes with dynamically changing data
access/update patterns (query workloads). As a result, today, data managing systems,
including relational as well as big data management systems, can no longer afford to
be carved-in-stone solutions offered by businesses to users. Instead, the data managing
systems must provide inherently flexible data management techniques in order to cope
with the constantly changing business needs.

To deal with ever growing dataset sizes, MapReduce has emerged as a popular data
processing framework recently. MapReduce allows businesses to process their data at
massive scales. However, MapReduce systems, such as Hadoop, have a fixed data pro-
cessing pipeline with a hard-coded physical query execution plan. This means that
all queries are executed in exactly the same manner and the system cannot adapt to
different or changing workloads. In other words, even though we achieve scalability,
we loose heavily on performance. Traditional databases (relational row-stores), on the
other hand, offer very good query performance. To do so, they rely on physical design
tools. The current practice is to tune the database (either automatically or with the
help of an administrator) every time it sees different data or a different query workload.
However, traditional databases are optimized for a specific workload, e.g. OLTP, OLAP,
data streams, scan-oriented processing etc, at the core. As a result, they have several
hard-coded decisions, such as a fixed data store, which cannot be changed using a physi-
cal design tool. Therefore, traditional databases cannot handle mixed or changing query
workloads very well.

To deal with different query workloads, the current practice is to have a different spe-
cialized database product or an ad-hoc system for each workload type, e.g. row stores for
OLTP workload, column stores for OLAP workload, streaming systems for streaming

1

Chapter 1. Introduction 2

workload, scan-oriented systems for shared query processing. Thus, in order to sup-
port mixed and changing query workloads, an enterprise user has to now glue different
database products together and copy data from one product to another. As an example,
complex ETL-style data pipelines are used to copy data from different sources into a
data warehouse for reporting applications. This has the additional penalty of manag-
ing a zoo of database systems in the first place. Moreover, both traditional as well as
specialized database products are not capable of handling massive dataset sizes.

This thesis takes an alternative approach to support several query workloads in a data
managing system. We observe that each specialized database product has a different data
store, indicating that different query workloads work well with different data layouts.
Therefore, a key requirement for efficiently supporting several query workloads is to
support several data layouts (physical data representation). Obviously, we do not want
to create a zoo of systems, nor to overwhelm the user with a highly complex one-size-
fits-all data managing system. Instead, we want to discover ways to inject different
data layouts into existing (and familiar) data managing systems. Thus, the goal of this
thesis is to develop a flexible storage layer which can support several query workloads
in a single data managing system. We present a set of non-invasive techniques, coined
Trojan Techniques1, to inject different data layouts into an existing data managing
system, which could be a relational data management system or a MapReduce data
processing system.

In the following, first we discuss the techniques to handle dynamic query workloads in
Section 1.2. Then, we present an overview of recent advances in Hadoop MapReduce in
Section 1.3. We list the contributions made in this dissertation in Section 1.5.

1.2 Techniques for Dynamic Workloads

1.2.1 Physical Database Design & Tuning

Physical database designs have been researched heavily in the past [9, 10, 19, 21, 43,
84, 95, 100, 134]. As a consequence, nowadays, most DBMSs offer design advisory
tools [8, 12, 135]. These tools help DBAs in defining indexes, e.g. [29], as well as
horizontal and/or vertical partitions, e.g. [9, 60]. The idea of these tools is to analyze
the workload at a given point in time and suggest different physical designs. These
suggestions are computed by a what-if analysis. What-if analysis explores the possible
physical designs. However, just finding the right set of partitions is NP-hard [109].
Therefore the search space must be pruned using suitable heuristics, i.e. typically some
greedy-strategy [10]. The cost of each candidate configuration is then estimated using
an existing cost-based optimizer, i.e. the optimizer is tricked into believing that the
candidate configuration already exists. Eventually, a suitable partitioning strategy is
proposed to the DBA who then has to re-partition the existing database accordingly.

The traditional physical database design described above is an offline process. The
DBA will only reconsider the current physical design at certain points in time. This

1The term “Trojan” may mean many things such as an automobile, a singing group, a record label, a
person from Villarrobledo (Spain), a computer virus, or the nuclear Power Plant in Oregon. However, in
this thesis, by “Trojan” we refer to the Trojan Horse way of affecting deep changes inside, while leaving
everything from the outside intact. Still, in contrast to Trojan Horse and Trojan viruses, the Trojans
introduced in this thesis are good ones and injected into the different systems to improve these systems.

Chapter 1. Introduction 3

is problematic. Assume the workload changes over time, e.g. changes in the workload
due to new database applications, an increasing dataset size, or an increasing number of
queries. In these situations the existing physical design decisions should be revisited to
improve query times. This might involve a human — the DBA — to trigger an advisory
tool with the most recent query logs and eventually decide the new physical design.
Involving a DBA is especially problematic if the database system has to handle bursts
and peaks. For instance consider (i) a ticket system selling 10 million Rolling Stones
tickets within three days; (ii) an online store such as Amazon selling much higher volumes
before christmas; or (iii) an OLAP system having to cope with new query patterns. In
these types of applications it is not acceptable for users to wait for the DBA and the
advisory tool to reconfigure the system. If the system stalls due to a peak workload, the
application provider may loose a lot of money [128].

To address the above concerns, several online and continuous physical design tuning
techniques have been proposed in recent times [20, 111]. For instance, dynamic ma-
terialized views [134] materialize the frequently accessed rows dynamically. Similarly,
database cracking [63, 71–74] and adaptive merging [58, 59] have emerged as two ma-
jor technologies for adaptive indexing. Likewise, AutoStore [79] applies online vertical
partitioning to cope with dynamically changing query workloads.

The above approaches to physical database design still have several practical problems
in dealing with changing or mixed query workloads. This is because even though, theo-
retically, DBMSs have a clear separation between the logical and the physical database
design, physical data independence is not entirely true in practice [9]. As a result, ex-
isting database stores encapsulate just the data layouts, while further physical database
tunings like partitioning are implemented on top by the query layer. This mixes the
logical and physical design and affects the database administrators, the application pro-
grammers as well as the query workload performance. For example, in order to partition
a table vertically, a database administrator needs to create and load multiple tables —
one for each partition — in the database store. To change the vertical partitioning, the
administrator needs to either create new partition tables or modify the existing ones. At
query time, internally, the database system needs to retrieve data from multiple tables,
typically using join operators. The basic problem here is that the database system is
not aware of the multiple tables being just different vertical partitions of the same log-
ical table. Similarly, a recent technique mimics a column store within a row store [18].
However, again, it works at the schema level and thus it is not efficient.

1.2.2 Different Workload, Different System

Several papers have claimed that one size does not fit all, i.e. we cannot have a single
system for different query workloads. It started with [53] who noted that DBMSs do
not work well for decision support system (DSS)-type workloads. This work lead to
one of the first column-oriented data warehouses: SybaseIQ [121]. Later on, other au-
thors supported the idea of different types of database systems for different markets as
well [115, 117]. This split the landscape into several different data management systems
such as Online Transaction Processing (transactional row-store), Online Analytical Pro-
cessing (read-only column-store) and Data Stream Management System (continuous win-
dow queries on unbounded streams) which originated from append-only databases [122].
As a result, today, we have a plethora of data management systems, each tailored to a

Chapter 1. Introduction 4

specific use-case application. These include column stores e.g. Vectorwise [129], stream-
ing systems e.g. StreamBase [120], key-value stores e.g. BerkeleyDB [14], document stores
e.g. MongoDB [91], graph databases e.g. Neo4j [96], object databases e.g. ObjectDB [98],
OLTP-OLAP hybrid databases e.g. [82], array databases e.g. SciDB [112], in-memory
databases e.g. VoltDB [130], scan-oriented systems e.g. QPipe [65], and databases on
flash devices e.g. Hyder [15].

With the above approach, we created a range of niche database products, each suited for
a different application. For an enterprise, this means that a change in query workload
typically leads to a change in the database product. Thus, in order to cope with different
query workloads, the enterprise ends up managing a zoo of database products. This can
be very tedious, expensive, as well as unproductive for the enterprise.

1.2.3 Trojan Techniques

In this thesis, we introduce Trojan Techniques for data management. The core idea
of Trojan Techniques is to challenge the assumption of a fixed data store in a data
managing system, which could be a relational database or Hadoop MapReduce or any
other data management system. Instead, Trojan Techniques create arbitrary physical
representations of data (such as layouts and indexes), termed Storage Views, into an
existing data managing system i.e. without coding a new system from scratch. This
is done by identifying and injecting a number of user defined functions (UDFs) into a
given data managing system. Trojan Techniques use these UDFs as a mapping from
logical data view to its arbitrary physical representation. The data managing systems
call back these UDFs during query processing. As a result, Trojan Techniques bring
significant improvements in query performance. Note that UDFs have been there since
long, not just in data managing systems, but also in operating systems, middleware, and
programming runtime environments. However, Trojan Techniques exploit the UDFs in a
novel way — to develop flexible storage layer in existing data managing systems. Finally,
Trojan Techniques are Trojan in the sense that they do not make heavy untenable
changes into the system (i.e. non-invasive) and yet they affect the data managing system
from inside, right at the core. It is interesting to note that in our approach we follow a
design pattern that has been used in other non-invasive research works as well:

• PAX [11] reorganized the internal layout of a page without changing the outside
DBMS.

• fractal prefetching B+-trees [32] changed the internal representation of a B+-tree
node without changing its implementation.

• and RowCol [18] emulates column stores without changing the underlying row
store.

Trojan Techniques are a part of a bigger vision of a highly flexible data managing
system [48]. That vision, aptly coined OctopusDB2 because of the inherent system

2An octopus may adapt to its surroundings using a camouflage unmatched by any other
species on earth: it may change both the color and the texture of its skin. Additionally,
some octopus species may even mimic movements and shape thus impersonating other species,
e.g. http://marinebio.org/species.asp?id=260

Chapter 1. Introduction 5

flexibility, envisages to store data as a logical journal of data operations in the begin-
ning. Thereafter, depending on the workload, OctopusDB creates arbitrary physical
representations (Storage Views) of that journal. As a result of this flexible data storage
layer, OctopusDB can mimic a variety of systems and efficiently support dynamic query
workloads.Trojan Techniques are the first steps towards this vision. We do not claim to
be building a fully functional one-size-fits-all database system using Trojan Techniques.
However, by building flexible storage layers in existing data managing systems, we do
push the boundaries of one-size-fits-all reality. Note that even though the OctopusDB
vision was proposed in the context of relational databases, in this thesis we focus more
on implementing this vision in Hadoop MapReduce. This is because Hadoop MapRe-
duce was in a much more nascent state at the beginning of this thesis and hence the
impact was much more visible. Still, Trojan Techniques could be applied to other data
managing systems by adapting them to the system specific UDF interfaces. In order to
prove the general applicability of Trojan Techniques, we present one Trojan Technique
in relational databases as well. To understand why Trojan Techniques are well suited for
Hadoop MapReduce, let us walk through the research advances in Hadoop MapReduce
in chronological order below.

1.3 Hadoop MapReduce Overview

Google invented MapReduce as a framework for large scale data analysis in 2004 [46].
MapReduce is inspired from the functional programming concepts of the 60s. Using
MapReduce, developers can describe their analysis tasks simply by using two functions:
map and reduce. Everything else including parallelization, replication, and failover will
then be handled by the MapReduce framework. Thus, MapReduce allows even non-
expert users to run complex analytical tasks on very large clusters and clouds, without
having to know about DBMS technology like SQL, data partitioning synchronization,
load distribution, failure handling, indexing, data schemas, and so on. This is in sharp
contrast to parallel DBMSs (PDBMS) which require advanced knowledge from the user-
side on database management, data models, and query processing in general, as well
as on the specific product in particular. As a result, MapReduce has become very
popular and has attained considerable influence in recent times. Google’s MapReduce
implementation is not freely available. However, an open source implementation of
MapReduce, called Hadoop [62], is freely available and is used by companies such as
Yahoo!, Facebook, IBM, Adobe, AOL, A9, Last.fm, eBay, LinkedIn, Twitter, and The
New York Times.

On one hand, the ease-of-use and massive scalability made Hadoop MapReduce ex-
tremely popular. On the other hand, however, researchers soon realized that the per-
formance of Hadoop often does not match the one of a well-configured parallel DBMS.
An experimental study published in 2009 compared Hadoop MapReduce with parallel
DBMSs [101]. The study showed that parallel DBMSs outperform Hadoop MapRe-
duce by a large factor in a variety of analytical tasks. Supporting this claim, a follow-
up work in 2009 combined the techniques from DBMSs and Hadoop MapReduce [5].
The resulting system, called HadoopDB (later spin-off as Hadapt [61]), essentially com-
bines Hadoop’s data distribution framework with local DBMSs to form a shared-nothing
DBMS. However, HadoopDB has severe drawbacks since it: (i) forces users to install
and configure a parallel DBMS, which is a complex process, (ii) changes the interface
to SQL, replacing the simple programming model of Hadoop, (iii) uses ACID-compliant

Chapter 1. Introduction 6

DBMS engines, even though only the indexing and join processing techniques of the
local DBMSs are useful for read-only, MapReduce-style analysis, and (iv) requires deep
changes in the Hadoop framework.

In 2010, Hadoop++ [49] was proposed to overcome the drawbacks of HadoopDB. This
was the first work to show that the performance of Hadoop MapReduce can match
that of parallel DBMS, if database techniques such as indexing and join processing are
applied in Hadoop MapReduce as well. In fact, Hadoop++ even showed that Hadoop
MapReduce and parallel DBMS are two sides of the same medal; the difference being the
hard-coded physical query execution plan in Hadoop MapReduce. In order to add flex-
ibility to Hadoop’s physical query execution plan, Hadoop++ allows for two additional
data processing techniques: (i) indexed data access, and (ii) co-partitioned join pro-
cessing. This is done by changing the physical representation of data blocks in Hadoop
MapReduce: indexed data blocks in order to have index data access and co-partitioned
data blocks in order to have co-partitioned joins. Thus, a flexibility in the Hadoop
MapReduce storage layer leads to a flexibility in Hadoop MapReduce physical query
execution plans. Hadoop++ [49] changed the perception of (inefficient) performance of
Hadoop MapReduce. As a result, the focus shifted from parallel DBMSs back to core
Hadoop.

Following Hadoop++, several subsequent works in 2011 looked at creating different
data layouts in Hadoop [52, 68, 80]. Essentially, they all challenged the strict-row-layout
assumption in Hadoop MapReduce. This is because with row layout the input data
has to be read entirely, even if only some portion of it is required. RCFile [68] solves
this problem by storing data in PAX layout. RCFile divides each HDFS data block
into row-groups (equivalent to data pages in PAX) and stores data within each row-
group in column-oriented fashion. Another approach stores each HDFS data block in
column-oriented fashion [52]. To do so, this approach stores each column of a HDFS
data block in a different file. Furthermore, in order to support efficient querying, the
files belonging to the same HDFS data block are co-located, i.e. they are stored on the
same data node. Trojan Layouts [80] pushes data layouts to even greater flexibility in
Hadoop MapReduce. Trojan Layouts stores each HDFS data block replica in a different
data layout. Trojan Layouts allow for row, column, and even column-grouped layouts.
This means that at query time, the incoming query can choose the best available layout.
As a result, the physical query execution plan is now even more flexible in Hadoop
MapReduce.

There is still a lot of ongoing work to push the flexibility of data layouts in Hadoop
MapReduce to the extreme. One such recent work, HAIL [50], a follow-up of Hadoop++,
pushes indexing to the extreme. HAIL is also inspired from Trojan Layouts in that it
does not create just a single index. Instead, HAIL utilizes the idle CPU ticks in the
Hadoop MapReduce pipeline to aggressively create as many indexes, each for a different
data block replica, as possible when uploading the data itself. This has several important
consequences. First, several indexes are available at query time for incoming MapReduce
jobs. As a result, there is a higher likelihood for doing an index scan, which is much
faster than full scan. Second, there is no prepare time to create the indexes, as in
Hadoop++. Instead, indexes are readily available as soon as the data is uploaded.
Finally, since HAIL integrates index creation tightly with the Hadoop upload pipeline,
the index creation overheads are negligible in the overall data upload costs. As a result,
the indexes are created almost for free, i.e. no additional creation costs. This is in sharp
contrast to Hadoop++, which has very dominant index creation costs. Such aggressive

Chapter 1. Introduction 7

techniques are indeed believed to make Hadoop physical query execution plans even
more flexible in the future.

1.4 Thesis Statement

Statement. This thesis shows that it is possible to build data managing systems which
are not tied to a fixed data store and can create arbitrary physical representations of
data. Our experimental results demonstrate that such a flexible storage layer allows us
to achieve much better performance over a set of analytical workloads.

Summary. To support the above thesis statement, we proceed as follows.

We first present OctopusDB, a data managing system with a completely flexible data
storage layer. OctopusDB is a vision for a one-size-fits-all data managing system —
a unified system which can support several query workloads. For this, OctopusDB
introduces the concept of Storage Views — an abstraction for any physical representation
of data. OctopusDB collects all data in a central log and can create arbitrary storage
views on that log. As a result, OctopusDB can mimic a variety of data managing systems
including row stores, column stores, streaming systems, scan-oriented systems, etc.

We then present Trojan Techniques, a novel mechanism to introduce storage layer flex-
ibility into an existing data managing system. Trojan Techniques are the first steps
towards the OctopusDB vision. Trojan Techniques allow for injecting additional storage
views such as layouts and indexes into an existing data managing system. To do so,
Trojan Techniques exploit user defined functions (UDFs), provided by almost all data
managing systems, to affect the data storage and access from inside. In this thesis, we
focus on solving the data analytics problems using MapReduce, which is the de facto
standard for large scale data processing. We demonstrate Trojan Techniques on Hadoop
MapReduce, the most popular open source implementation of MapReduce paradigm.
We take the default row-oriented storage of Hadoop MapReduce and inject several ad-
ditional storage views, including indexes, co-partitions, vertical partitions, and PAX
to support a variety of analytical workloads. All this without changing the Hadoop
MapReduce pipeline and only minor changes to user queries (MapReduce jobs). In ad-
dition to Hadoop MapReduce, we also demonstrate Trojan Techniques in one top-notch
commercial database system.

Overall, Trojan Techniques look to achieve significant advances in data management
technology. These include: (i) Storage layer flexibility. With Trojan Techniques, a
data managing system is not tied to a fixed data store anymore. Instead, users can
inject additional storage views and support several query workloads. This will lead
to saving costs, including licensing and administration costs, of maintaining a zoo of
data managing systems. (ii) Plug and play storage views. Trojan Techniques inject
additional storage views seamlessly and on demand into a data managing system. This
makes Trojan Techniques very easy to use and manage. (iii) Boosting performance of
existing data managing systems. Trojan Techniques can be applied to existing data
managing systems, i.e. there is no need for a complete system rewrite. This saves a
lot of money and effort, and creates a win-win situation: flexible storage layer and yet
the data managing system remains unchanged. (iv) True physical data independence.
Unfortunately, physical data independence still remains elusive in modern data managing
systems. Trojan Techniques look to change this by decoupling the storage layer from

Chapter 1. Introduction 8

Trojan Data Managing Description
Technique System
Trojan Index Hadoop MapReduce indexed data layouts per-HDFS block
Trojan Join Hadoop MapReduce co-partitioned data layouts per-HDFS block
Trojan Layouts Hadoop MapReduce row, PAX, column-grouped layouts per-HDFS

block replica
Trojan Columns Row-oriented RDBMS column layouts per horizontal data segments

Table 1.1: Overview of Trojan Techniques

the query execution layer. As a consequence, the storage views can be research and
developed independently and then injected using Trojan Techniques.

1.5 Contributions

In this thesis, we present our OctopusDB vision for flexible data storage (Chapter 2) and
four Trojan Techniques implementing our vision: Trojan Indexes and Joins (Chapter 3),
Trojan Layouts (Chapter 4), and Trojan Columns (Chapter 5). Table 1.1 summarizes
these four Trojan Techniques. The contributions of this thesis are as follows.

1.5.1 OctopusDB Vision

First of all, we present the broad vision of our one-size-fits-all database system, coined
OctopusDB. Traditional databases have a fixed store (row, column) to store the data.
Additionally, they maintain a log recording database operations to support recovery.
OctopusDB turns this model upside down: it maintains only the logical log, which is
lightweight having no maintenance requirement in the first place and may optionally
build additional data structures, called storage views on top. This radical shift in design
allows OctopusDB to have a highly flexible data storage layer and to mimic a variety of
systems.

There could be several ways to realize our OctopusDB vision of flexible data storage
layer. In this thesis, we focus on Trojan Techniques to approach this vision. Another
way would be to do a complete system rewrite. This is currently underway as a separate
work in our group.

We discuss OctopusDB vision and architecture in Chapter 2.

1.5.2 Trojan Indexes and Joins

To put things in perspective, in the following we go back to year 2010, at the very
beginning of this thesis.

Hadoop MapReduce has an inflexible data processing pipeline to analyze large datasets.
Therefore, Hadoop MapReduce is an ideal candidate to start off with Trojan Techniques.
The biggest problem of Hadoop MapReduce is the scan-only MapReduce job execution,
even for highly selective queries such as those in [101]. This is inspite of decades of
database research having proved indexes to be very useful for selective queries. However,

Chapter 1. Introduction 9

given the massively parallel data storage and query execution in Hadoop, creating global
indexes in Hadoop MapReduce is not trivial. This is because we have to take care of data
(and index) distribution, replication, fault tolerance, load balancing, and index fetching
at query time. To solve this, we introduce Trojan Indexes in Hadoop MapReduce.
Trojan Indexes are per-HDFS-block indexes which are embedded within the HDFS data
block itself. As a result, Trojan Indexes are seamlessly integrated within the Hadoop
MapReduce framework. From the users perspective, Trojan Indexes are very easy to
create as well as to query.

Another major problem in Hadoop MapReduce is data shuffling. Hadoop shuffles the
data from all nodes in order to collect the same keys on the same nodes. This process
is especially problematic when joining two tables. Hadoop’s shuffle phase performs
the cross product of two tables across all nodes in order to join them. Obviously,
this is very expensive for large datasets. We learn from distributed databases that
co-grouping is very useful when performing joins in a distributed system. However,
massive parallelization and the hard-coded data processing pipeline in Hadoop makes
co-grouping non-trivial for the user. To solve this, we introduce Trojan Joins in Hadoop
MapReduce. Trojan Joins co-group two tables per-HDFS-block. Using Trojan Joins,
each HDFS block now contains data from two tables in the same join-key range. As a
result, the user can now perform a join without transferring any data across the network.
Trojan Indexes and Trojan Joins can be freely combined or used in any MapReduce sub-
query.

We present Hadoop++ as a system implementing Trojan Indexes and Trojan Joins in
Chapter 3.

1.5.3 Trojan Layouts

Even after Hadoop++, data layouts still remained inflexible in Hadoop MapReduce.
Below let us see the state of Hadoop MapReduce immediately after Hadoop++.

Hadoop MapReduce stores all data strictly in row layout. This means that all data
has to be accessed even if only some of the attributes in each tuple are needed. This
is a significant overhead given that MapReduce jobs are I/O intensive. To address this
issue, we introduce Trojan Layouts in Hadoop. Trojan Layouts allow for row, column,
or column grouped layouts in Hadoop. Furthermore, Trojan Layouts are per-HDFS-
block, thereby keeping all of Hadoop’s data distribution, replication, failover, and load
balancing intact. However, the most striking feature of Trojan Layouts is that it exploits
default data replication in Hadoop MapReduce and keeps each replica in a different data
layout. This means that with default replication factor of 3, we have 3 different data
layouts for free. This has significant impact on query performance, since now each
query can choose the best of the three available data layouts. Of course, we have to now
introduce novel algorithms to find the data layouts for each replica in the first place.
Also, we have to tweak the scheduler to take into account both data locality as well as
the data layout, when scheduling map tasks.

We detail Trojan Layouts in Hadoop MapReduce framework in Chapter 4.

Chapter 1. Introduction 10

1.5.4 Trojan Columns

Finally, we look at the use of Trojan Techniques in relational databases. One major prob-
lem in relational databases is that they are strictly row-oriented and thus perform poorly
on OLAP-style workloads. The first thought is to apply full vertical partitioning [83] in
order to mimic columnar behavior in row-oriented databases. Other techniques, such as
RowCol [18], have also been proposed to impose columnar behavior on them. However,
all these approaches work at the schema level, incur expensive table joins, and hence
very inefficient [3]. To solve this, we introduce Trojan Columns in relational databases.
Trojan Columns introduce columnar functionality in row-oriented relational databases
from inside. As a result, at query time, only the required data is read at the storage
layer itself. Additionally, Trojan Columns applies several column store features such as
compression and late projection. Trojan Columns are plug-and-play and work even with
closed source commercial databases.

We show Trojan Columns in action in a commercial database system in Chapter 5.

1.5.5 Publications, Patents, Grants, Awards

Some of the material in this thesis has been previously published in different versions in
international conferences and international patents.

• Chapter 2 — OctopusDB Vision

Publications:

[48] Jens Dittrich, Alekh Jindal.
Towards a One Size Fits All Database Architecture.
CIDR 2011, Outrageous Ideas and Vision Track, Asilomar, USA.

Best Outrageous Ideas and Vision Paper Award, CIDR 2011.

[78] Alekh Jindal.
The Mimicking Octopus: Towards a one-size-fits-all Database Architecture.
VLDB 2010 PhD Workshop, Singapore.

Patent:

A method for storing and accessing data in a database system (LU 91726 and
WO2012032184).

• Chapter 3 — Trojan Indexes and Trojan Joins

Publication:

[49] Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay
Setty, and Jörg Schad.
Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even
Noticing).
VLDB 2010, Singapore.

Chapter 1. Introduction 11

• Chapter 4 — Trojan Data Layouts

Publication:

[80] Alekh Jindal, Jorge-Arnulfo Quiane-Ruiz, Jens Dittrich.
Trojan Data Layouts: Right Shoes for a Running Elephant.
ACM SOCC 2011, Portugal.

Patent:

Replicated data storage system and methods (filed Internationally by Saarland
University).

• Chapter 5 — Trojan Columns

Grant:

German Ministry of Education and Science (BMBF) Validation of Innovation Po-
tential (VIP) Grant for OctopusDB covering 1.1 million Euros.

12

Chapter 2

Towards A One Size Fits All
Database Architecture

Modern enterprises need to pick the right DBMSs e.g. OLTP, OLAP, streaming systems,
scan-oriented systems among others, each tailored to a specific use-case application, for
their data managing problems. This makes using specialized solutions for each appli-
cation costly due to licensing fees, integration overhead and DBA costs. Additionally,
it is tedious to integrate these specialized solutions together. Alternatively, enterprises
use a single specialized DBMS for all applications and thereby compromise heavily on
performance. Furthermore, a particular DBMS (e.g. row store) cannot adapt and change
into a different DBMS (e.g. streaming system), as the workload changes, even though
much of the code and technology is replicated anyways.

In this chapter, we discuss building a new type of database system which fits several
use-cases while reducing costs, boosting performance, and improving the ease-of-use at
the same time (Section 2.1). We present the research challenges in building such a
system. We believe that by dropping the assumption of a fixed store, as in traditional
systems like row store and column store, and instead having a flexible storage scheme
we can realize much better performance without compromising the cost. We outline
OctopusDB as our plan for such a system and discuss how it can mimic several existing
as well as newer systems (Section 2.2). To do so, we present the concept of storage view
as an abstraction of all storage layouts in OctopusDB (Section 2.3). We discuss how the
heterogenous optimization problems in OctopusDB can be reduced to a single problem:
storage view selection; and describe how a Holistic Storage View Optimizer can deal with
it (Section 2.4). For completeness, we also describe how OctopusDB supports several
core database features, including purging, checkpointing, recovery, transactions, and
isolation (Sections 2.5, 2.6, and 2.7). Finally, we present simulation results to justify
our core idea and experimental evidence on our initial prototype to demonstrate our
approach (Section 2.8).

13

Chapter 2. Towards A One Size Fits All Database Architecture 14

2.1 Introduction

2.1.1 Background

Database management systems started off as monolithic systems. However, database
engineers soon started tuning their performance for specific applications. Consequently,
currently we are witnessing a split of data management systems into several special-
ized solutions [115, 117] e.g. OLTP for transactional queries, OLAP for read-only com-
plex reporting queries, DSMS (data stream management systems) for continuous win-
dow queries, and search engines for read-only keyword queries. It started in the mid-
nineties [53] when the database engineers understood that the DBMSs of that time
were ill-equipped to cope with the size of the datasets and complexity of OLAP-queries.
Therefore a separate type of system was forked from the one size fits all DBMS code
line [54]. That system is based on a column store and became one of the most popular
and successful approaches for OLAP; products include SAP BI Accelerator, InfiniDB
and Paraccel. At the same time other types of systems were forked including DSMS
(data stream management systems) [122]; products include StreamBase. In addition,
search engines developed into a separate community sometimes re-inventing DBMS tech-
nology. Yet these people are unwilling to use DBMS systems as a backend [118]. As a
result, we have one specialized system per use-case application.

2.1.2 Motivation

A typical enterprise, today, employs a variety of data managing applications, and hence
a variety of DBMSs. For instance, a banking enterprise uses an OLTP system for real
time transactions, OLAP system for business intelligence and analytics and Streaming
system for stock trading. Additionally, in many cases applications need to adapt to new
requirements or evolve over time and usage; possibly requiring a switch to a different
DBMS for optimal performance. For instance, in the banking enterprise the stock data
prior to a time window may be pushed into a Archival system. These heterogenous sys-
tems, however, need to be integrated by copying data from one database to another using
complex ETL-style data pipelines. Moreover, these specialized systems have their spe-
cialized vendors and DBAs, thereby incurring further licensing and maintenance costs.
Obviously, all of this leads to extra costs in terms of development costs, maintenance
costs, and DBA costs. So rather than making the world of data management easier, we
have created a zoo of systems that sometimes has the opposite effect: it makes life of a
company harder and more costly. We agree that for companies who invest a lot into con-
necting the different species in their zoo, it will eventually lead to a well-integrated and
efficient overall system. Still, we believe that the zoo-keeping costs are non-trivial, espe-
cially for small to medium-sized business. We also believe that adapting such a zoo to
new requirements, changing workload, or new types of applications may be prohibitive.

Moreover, one technology (e.g. row stores, column stores etc.) per system does not
always deliver the best performance. For example, consider a university database with
Student and Lecture tables. Now for a query workload requesting students based on
lecture types, credit points or instructor, we need to access only few attributes from
the Lectures table but most (or all) attributes from Student table. For such a use-
case scenario it makes sense to store the Student table in a row store and the Lecture
table in a column store, thereby deriving the maximum performance. However, such a

Chapter 2. Towards A One Size Fits All Database Architecture 15

configuration is not possible to achieve in traditional per-application database systems,
except in Fractured Mirrors [106]. Fractured Mirrors, however, has an exorbitant update
cost. Moreover, as students graduate and hence do not attend lectures anymore, their
details are not fetched by our query workload. Therefore, to improve performance it
might make sense to partition the cold data (graduated students) in the Student table
into a column store, utilizing compression, and the hot data (current students) into a
row store. Again, such a configuration is impossible to achieve in a single traditional
database system.

Furthermore, we analyzed the TPC-H benchmark to illustrate how the use-case scenario
and the workload could determine the right DBMS technology. For each query in the
benchmark we marked the attributes referenced by it in each of the 8 relations. Our
analysis revealed that each relation has a different attribute access pattern such that
some attributes are referenced more than others while some attributes are not referenced
at all e.g. retailprice, comment in PART relation. Furthermore, several groups of
attributes are co-referenced in the same queries. Thus, a single type of store (row,
column) may not suit all relations. For instance, relations LINEITEM, NATION and REGION
have several attributes referenced in the same queries and therefore a row store could be
more suited. On the other hand, relations PART, SUPPLIER, CUSTOMER and ORDER have
only few attributes referenced and hence column store would be the better choice. This
analysis hints for a more holistic approach to database storage design.

2.1.3 Problem Statement

In this section we discuss the problem we focus on and describe our overall goal. As
highlighted in the previous section: (1) A single specialized DBMS may not deliver the
best performance for all applications, (2) Modern enterprises, anyway, end up having a
zoo of database systems, (3) It is tedious to stitch together (complex ETL-style data
pipelines) and costly to maintain (development, licensing, DBA costs) different database
systems, and (4) Optimal performance over changing workloads, in a single or a zoo of
DBMSs, remains an issue. Therefore, we need a one-size-fits-all database system which
automatically adapts to different use-case scenarios and betters performance at the same
time. We state our research goal as follows:

Research Goal. A one-size-fits-all database system which caters well to all existing
and newer data management use-cases and adapts automatically to initial configuration
as well as to changing workload; all with improved performance, lowered cost and better
maintainability at the same time.

2.1.4 Research Challenges

Below we discuss the major research challenges associated with our research problem.

Chapter 2. Towards A One Size Fits All Database Architecture 16

2.1.4.1 Different Storage Layouts under a single umbrella

Row stores are typically used in transactional processing systems (OLTP). Column stores
on the other hand make heavy use of compression and are used in read-oriented work-
loads. Many people argue that these are completely different systems [3]. Furthermore,
streaming systems may not have any store at all. The one-size-fits-all system needs
to cater the different storage layouts for different use-case scenarios. Additionally, the
system need to adapt and interchange the storage layouts to changing workoads. The
challenge, therefore, is to have a flexible storage scheme by bringing the different layouts
into a single system. This brings to the fore three additional issues that we have to care
about.

First, layout selection and maintenance is a major concern with having different layouts
in a single system. This is because with changing workloads, the system needs to au-
tomatically decide the most appropriate layouts to create, maintain them with future
updates and finally decide upon when, if at all, to discard them altogether. Second,
query processing across different storage layouts is another important issue. Ideally, we
would want the query processor to abstract much of the functionality across different
layouts. At the same time, we would not want to completely miss out the storage layout
specific optimizations e.g. compression in column stores.

Finally, apart from row and column layouts of the full table, the system can also create
other sub-structures to boost performance. For instance, it can crack the table, not
only horizontally as in [71] but also vertically, depending upon which part of it is ac-
cessed by the incoming queries; partition the tables horizontally or vertically in case of a
definitive workload information; or create materialized views on any subset of the data.
The challenge is to automatically create and manage this inventory of storage layouts.
Furthermore, all layouts discussed so far store data in rectangular fashion. It would
be interesting to even consider non-rectangular storage layouts for the given data. The
underlying idea in a one-size-fits-all system remains the same: relax the fixed layout
assumption. The unlimited possibilities thereafter offer unique research challenges.

2.1.4.2 Automatic Adaptive Bifurcation instead of administered Eventual
Integration

Currently, companies having several types of database systems spend a lot of time and
effort to eventually integrate them together. As pointed before, these costs are non-
trivial for small to medium sized companies. Furthermore, the integrated system is
less adaptive to a change in workload followed by a consequent addition or removal
of a database system. Therefore, starting with a bag of database systems in the first
place might end up with a loosely integrated system which is difficult to manage and
expensive to maintain. Instead, since much of the code and technology of different
DBMSs is anyways replicated, we can start with a single system for all applications.

The challenge, therefore, is to adaptively bifurcate the system into specialized technology
(row, column etc.) depending upon the workload. The system needs to continuously
monitor the workload and reassess its configuration. This makes sense because (1) we
have a tightly integrated system (2) we abstract much of the code and technology and
fork out only the necessary one, and (3) the system is fairly simple initially and is later

Chapter 2. Towards A One Size Fits All Database Architecture 17

adapted to be only as much complex as needed. We discuss the last point in more detail
below.

2.1.4.3 Simplicity Vs Optimization

Simplicity is an important consideration while designing database systems. In several
cases too much of optimization in a database system is an overkill. For example, the ma-
terialized views created for each operator output in MonetDB [17] can be detrimental for
changing workloads. Simplicity pays off in terms of performance and house-keeping. The
challenge, therefore, is to strike the right balance between simplicity and optimization
in the single system. Of course, simplicity might be traded for performance by incor-
porating more complex optimizations as the workload gets more sophisticated. But the
key is to avoid any overkill.

Another aspect of simplicity is to support several use-cases in the minimal configuration,
i.e. the system should first try to mimic as many specialized systems as possible before
upgrading the configuration. This is necessary because changing configuration could be
an overkill as well as expensive. Other people have also tried to develop systems which
mimic more than one system. For example, [18] tries to mimic a column store in a row
store. The challenge, however, is to determine the limiting point for the mimic.

Finally, a database system which is always initialized in the most rudimentary config-
uration might be quite slow till it adapts to the initial workload. Depending upon the
adaptability speed, this slow start can be quite expensive. Additionally, we may incur
the startup cost always, even when the system is reset or the data is ported to another
instance. Instead, the system should be able to set its initial configuration, depending
upon the initial workload, in order to derive the maximum performance straightaway.
The challenge again lies in deciding how much of the simplicity should be lost at the
very outset.

2.1.5 Our Approach

We take a radically new approach: we propose a single type of database system coined
OctopusDB1 that is able to mimic the behavior of the different species in the zoo. In
addition, OctopusDB is also able to mimic fictional species, e.g. mermaids, centaurs; as
well as new species, e.g. “old elephants” having the fast legs of a young “fox” [88].

Core Idea. The core idea of our system is to drop the assumption that a database
system is developed around a central store (be it a row, column, or a any hybrid store
such as PAX [11] or fractured mirrors [106]). OctopusDB does not have a fixed store.
In OctopusDB all data is collected in a central log, i.e., all insert and update-operations
create logical log-entries in that log. Based on that log we may then define several
types of optional Storage Views. A Storage View (SV) represents all or part of the log
in a different (or the same) physical layout. For instance, we may define a Row SV
representing all or part of the data from the log in a row store. That Row SV, however,

1An octopus may adapt to its surroundings using a camouflage unmatched by any other
species on earth: it may change both the color and the texture of its skin. Additionally,
some octopus species may even mimic movements and shape thus impersonating other species,
e.g. http://marinebio.org/species.asp?id=260

Chapter 2. Towards A One Size Fits All Database Architecture 18

is just one possible storage view. It may dynamically be replaced by a Col SV if it better
suits the workload. We might even keep one part of a table, e.g. old entries that are not
updated, in a Col SV, and another part in a Row SV, e.g. entries that are still being
updated. This emulates a hybrid of OLTP and OLAP. In addition, we may also replace
some of the “tables” by streaming windows, e.g. we emulate a data stream management
systems. Furthermore, we may model combinations of continuous and store (=archival)
queries which has been researched heavily in the past years [47]. In OctopusDB all of
this is done transparently and solely based on the workload — and not based on some
static decision for a concrete database product and hence a concrete storage layout.

In summary, the storage view concept allows us to model several important data man-
aging concepts using a single abstraction only: both types of queries (point-in-time and
continuous queries); different database stores (row-, col-, hybrid, etc.); and also the
traditional query views (dynamic or materialized).

This has another interesting consequence: the query optimization, view maintenance,
index selection, as well as the store selection problems suddenly become a single problem:
storage view selection. OctopusDB treats all four problems inside a single holistic storage
view optimizer which we are introducing with this chapter.

Contributions. We make the following contributions:

(1.) We propose a new unified database architecture called OctopusDB.
(2.) We introduce the concept of Storage Views (SV). We identify different types of SVs
and describe how to create and use them.
(3.) We present a holistic storage view optimizer for OctopusDB. We present techniques
for operator Log-Pushdown, adaptive partial SVs, and stream transformations.
(4.) We present cost models for querying, updating, and transforming SVs.
(5.) We show results of a simulation as well as an experiment with a prototype of
OctopusDB demonstrating the viability and efficiency of our approach.

2.2 OctopusDB Overview

2.2.1 Data Model

The data items managed by OctopusDB are tuples ti = (a1, .., an(i)), 0 ≤ i ≤ N where
attributes a1, . . . , an(i) may be of any type. The number of attributes for tuple i is given
by n(i). Each tuple is associated to a bag and a key. The bag is used to define subsets
of the tuples, e.g. tables, partitions, collections. key identifies a tuple inside a bag. For
simplicity, we assume a relational model throughout this chapter. Therefore all tuples
having the same bag share the same set of attributes (=schema). However, in general
this need not be the case: a tuple may specify only some attributes not specified by
other tuples with the same bag-identifier.

2.2.2 The Primary Log Store

OctopusDB does not keep a row-, column- or any other store by default. All calls
to the system interface are simply recorded in a sequential log, called primary log,

Chapter 2. Towards A One Size Fits All Database Architecture 19

Storage View StorePrimary Log Store

Log SV

Storage View Catalog

API

Purging & Checkpointing

Recovery Manager

Holistic SV Optimizer

Transaction Manager

Result

Query Catalog

tickets.customer_id
!
customer.* ())"

a1=x1..an=xn(
customer.id

Figure 2.1: Initial, Non-Optimized OctopusDB for the Running Example (compare
Figures 2.2 and 2.3)

creating appropriate logical log records. The primary log is itself an SV. OctopusDB
stores its log persistently on durable storage (hard disk or SSD) following the write-
ahead logging-protocol (WAL). For efficiency reasons we may keep a copy of the log
in main memory, however this is no requirement. Each call to the system interface of
OctopusDB internally creates a log record with an associated log sequence number lsn.
As in traditional DBMSs no two log records may have the same lsn, therefore entries
to the log are serialized. For the moment, all log records are logical and represent a
new state defined by an operation2. Therefore, in contrast to ARIES, our log records
do not represent changes that have been or should be applied to the database store.
Our log simply contains the event history of operations without specifying how these
events map to a particular store3. Thus, the format of our log record is (lsn, <method>,
<parameters>) where <method> denotes the method of the system interface called and
<parameters> denotes the parameters passed.

2.2.3 System Components and Interface

Figure 2.1 shows the main components of OctopusDB. The system contains components
similar to the ones known from traditional DBMSs (transaction manager, query opti-
mizer, etc.). The most striking difference is the primary log store as well as the storage
view store.

OctopusDB has a simple yet powerful interface containing the following methods:

registerSV(String svID, Type svType<, additionalPar>): creates and registers
an SV of type svType having a unique identifier svID. Additional parameters may be
passed to the SV.
registerQuery(String queryID, Query Q<, callback>): registers a query having
a unique identifier queryID. An additional callback function may be passed.
snapshot(String outputSVID, String queryID): computes the result of the query
and materializes it into the output SV.
maintain(String ouputSVID, String queryID): Same as snapshot, however, future
updates will be reflected in outputSVID.
drop(String ID): Drops a query or SV from the system.

2In addition, transitional log records may be used, e.g. a = a + 42.
3The major performance advantage of ARIES is that it is using physical logging for REDO, i.e. in-

tertwining a particular store with the log is a feature of ARIES. However, this feature may also be
implemented in OctopusDB without giving up the logical primary log. See Section 2.6 for details.

Chapter 2. Towards A One Size Fits All Database Architecture 20

query(Query Q)→ Iterator it: Queries and/or modifies data in OctopusDB as spec-
ified in Q.
iterate(String ID) → Iterator it: Returns an iterator over the contents of the given
query or SV.

Query definitions may be either a relational algebra expression as suggested in [31],
SQL, or Pig Latin [99]. We will assume a relational algebra expression throughout this
chapter.

2.2.4 Algorithms

Let us now see the algorithms to implement the OctopusDB interface in one specific in-
stance. Algorithm 2.1 shows the registerSV algorithm in OctopusDB. It simply creates
a SV and puts it in the StorageViewCatalog. Algorithm 2.2 shows registerQuery al-
gorithm. Apart from putting the query in the QueryCatalog (Line 1), we check whether
a callback is provided (Line 2) i.e. the query is maintained. If yes, we retrieve the input
SVs appropriate for this query (Line 4). Finally we add the input SV IDs, the query
and the callback to be maintained in the StorageViewCatalog (Line 6).

Algorithm 2.1: registerSV
Input: String svID, Type svType<, additionalPar>
StorageView sv = CreateStorageView(svType<, additionalPar>);1
StorageViewCatalog.putSV(svID,sv);2
LogRecord newLR = new RegisterSVLogRecord(svID, svType<, additionalPar>);3
this.getPrimaryLog().append(newLR);4

Algorithm 2.2: registerQuery
Input: String queryID, Query Q<, callback>
QueryCatalog.putSV(queryID,Q);1
if callback != NULL then2

// maintained query:3
StorageView[] inputSVs = QueryOptimizer.getInputSVs(Q);4
String[] inputSVIDs = StorageViewCatalog.getSVIDs(inputSVs);5
StorageViewCatalog.maintain(inputSVIDs, queryID, callback);6

end7
LogRecord newLR = new RegisterQueryLogRecord(queryID, Q<, callback>);8
this.getPrimaryLog().append(newLR);9

Algorithm 2.3 shows the snapshot algorithm of OctopusDB. For efficiency reasons SV
implementations may also provide ordered iterators like iterateBackwards(String
ID) which is exploited in this algorithm. First, we retrieve the Query and the Stor-
ageView from the Query and StorageView catalog (Lines 1–2). Next, we fetch the input
SVs appropriate for the given query (Line 3). The system checks whether the query is
a selection or a projection query (Line 4). If yes, it sources the selected or projected
tuples, respectively, to the output SV (Lines 5-12). Otherwise, the system invokes the
query optimizer to retrieve the cheapest plan and executes it (Lines 15–16). In any case
the system creates and inserts a snapshot log record into the primary log (Lines 18–19).
If OctopusDB receives any further updates, the output SV will not be maintained, i.e.,
this method creates a snapshot of the data.

Algorithm 2.4 shows the maintain algorithm. The only difference from snapshot algo-
rithm is that we add the input SV IDs, the query and the output SV ID to be maintained
in the StorageViewCatalog (Line 3).

Chapter 2. Towards A One Size Fits All Database Architecture 21

Algorithm 2.3: snapshot
Input: String outputSVID, String queryID
Query Q = QueryCatalog.getQuery(queryID);1
StorageView outputSV = StorageViewCatalog.getSV(outputSVID);2
StorageView[] inputSVs = QueryOptimizer.getInputSVs(Q);3
if Q == σP or Q == πA then4

// single input:5
Iterator it = inputSVs[0].iterateBackwards(queryID);6
it.open();7
while it.hasNext() do8

LogRecord next = it.next();9
Source(outputSV, next);10

end11
it.close();12

else13
// composing query:14
PhysicalPlan plan = QueryOptimizer.getPlan(inputSVs,Q);15
plan.execute(outputSV);16

end17
LogRecord newLR = new SnapshotLogRecord(outputSVID, queryID);18
this.getPrimaryLog().append(newLR);19

Algorithm 2.4: maintain
Input: String outputSVID, String queryID
// same as snapshot:1
String[] inputSVIDs = StorageViewCatalog.getSVIDs(inputSVs);2
StorageViewCatalog.maintain(inputSVIDs, queryID, outputSVID);3
LogRecord newLR = new MaintainLogRecord(outputSVID, queryID);4
this.getPrimaryLog().append(newLR);5

Algorithm 2.5: drop
Input: String ID
if StorageViewCatalog.contains(ID) then1

StorageViewCatalog.remove(ID);2
else if QueryCatalog.contains(ID) then3

QueryCatalog.remove(ID);4
else5

// invalid ID:6
end7
LogRecord newLR = new DropLogRecord(ID);8
this.getPrimaryLog().append(newLR);9

Algorithm 2.5 shows the drop algorithm. We check whether the input ID is present
in the Query or the SV catalog and remove the respective query or SV. Algorithm 2.6
shows the query algorithm of OctopusDB. We check whether the query is a select query
(Line 1). If yes, we get the input SVs for the query (Line 3) and return an iterator
over the query result (Lines 4–11). Otherwise, we first put the incoming query into
the log (Lines 14–16) and then source the log record to all maintained SVs recursively
(Lines 17–20). Algorithm 2.7 shows the iterate algorithm of OctopusDB. We check
whether the ID is in QueryCatalog (Line 1). If yes, we get the input SVs for the query
(Line 4) and return an iterator over the query result (Lines 5–12). Otherwise, if the
StorageViewCatalog contains the ID then we return the SV iterator (Lines 14–16).

2.3 Storage Views

Storage Views (SVs) allow us to define arbitrary physical representations on the log.
The main idea of a SV is to store the entire or a subset of the log or any other SV using

Chapter 2. Towards A One Size Fits All Database Architecture 22

Algorithm 2.6: query
Input : Query Q
Output: Iterator if Q is SELECT query
if Q == SELECT then1

// select query:2
StorageView[] inputSVs = QueryOptimizer.getInputSVs(Q);3
if Q == σP or Q == πA then4

// single input:5
return inputSVs[0].iterate(queryID);6

else7
// composing query:8
PhysicalPlan plan = QueryOptimizer.getPlan(inputSVs,Q);9
return plan.execute();10

end11

else12
// modify query:13
LogRecord newLR = new QueryLogRecord(Q);14
LogSV log = this.getPrimaryLog();15
log.append(newLR);16
StorageView[] maintainedSVs = StorageViewCatalog.getMaintainedSVs(log);17
foreach sv in maintainedSVs do18

SourceRecursive(sv, newLR);19
end20

end21

Algorithm 2.7: iterate
Input : String ID
Output: Iterator
if QueryCatalog.contains(ID) then1

// iterate over query result:2
Query Q = QueryCatalog.getQuery(queryID);3
StorageView[] inputSVs = QueryOptimizer.getInputSVs(Q);4
if Q == σP or Q == πA then5

// single input:6
return inputSVs[0].iterate(queryID);7

else8
// composing query:9
PhysicalPlan plan = QueryOptimizer.getPlan(inputSVs,Q);10
return plan.execute();11

end12

else if StorageViewCatalog.contains(ID) then13
// iterate over storage view:14
StorageView sv = StorageViewCatalog.getSV(ID);15
return sv.iterate(null);16

else17
// invalid ID:18

end19
LogRecord newLR = new DropLogRecord(ID);20
this.getPrimaryLog().append(newLR);21

a different physical layout. SVs always materialize their data. In general we create a
network of SV dependencies with the goal to balance update and query processing costs.
The dependency graph between different SVs is called the SV lattice. It is similar to the
one used in materialized view maintenance (e.g. in data warehouses). However, the SV
lattice is more general as it is not restricted to queries only but also has to consider the
underlying storage layout. The interface to a SV contains the following private methods:

iterate(String queryID)→ Iterator it: Returns the result of the given query as an
unordered iterator it. The query must be restricted to data covered by this SV.
iterationCost(String queryID)→ Cost c: returns the estimated cost c of the given
query. In other words, it estimates the cost of iterate(String queryID).

Chapter 2. Towards A One Size Fits All Database Architecture 23

transformationCost(Type svType)→ Cost c: returns the estimated cost c for
transforming this SV into svType.

The latter two methods estimate local costs within a SV. These local costs are then used
by the optimizer to make a global cost estimate. Note that even though this interface
resembles the one of a key-value store, OctopusDB is not restricted to key-access. We
showed examples for these in Section 2.4.

Running Example. Consider a flight-booking system with a table TICKETS containing
data on flight tickets; CUSTOMERS containing data on customer. Queries select tickets
using predicates on different attribute subsets of TICKETS. For all selected tickets we re-
trieve all attribute values of matching customers. We assume that TICKETS is frequently
updated. Thus, index maintenance on TICKETS is too expensive. This is a real-world
example as proposed in [128]. This scenario calls for having a column layout on TICKETS
and a row layout on CUSTOMERS. However, this flexible layout is not supported by current
DBMSs. The update rate also precludes using fractured mirrors.

Figure 2.1 shows a non-optimized OctopusDB instance for the Running Example. Ini-
tially, the SV store does not contain any SVs; it only contains a single registered join
query. It would be evaluated by scanning the primary log. We will optimize this Running
Example in detail in the following.

2.3.1 Log SV

We start with the most simple type of SV: the Log SV. The primary log store of Octo-
pusDB simply contains a single Log SV. However, Log SVs may also be used in other
places. In the following we will gradually enrich the SV graph of Figure 2.1. In the first
step we will partition the data into different SVs based on their bag identifiers.

registerSV("ticketsLog", LogSV);

registerSV("customersLog", LogSV);

registerQuery("customersOnly", σbag=customers);

registerQuery("ticketsOnly", σbag=tickets);

maintain("ticketsLog", "ticketsOnly");

maintain("customersLog", "customersOnly");

This results in the SV lattice as depicted in Figure 2.2(b). We observe that the join query
is not connected to the primary log anymore but to the two new Log SVs. Thus, the
decision how to connect new queries and how to snapshot or maintain SVs is fully up to
the system. As the primary log does not discard entries having the same (bag,key)-pair,
both ticketLog and customersLog contain different versions for the same (bag,key)-
pair. We group these entries and only keep the most recent one.

registerQuery("custRecent", γrecent(Γbag,key(customersOnly)));

registerQuery("tickRecent", γrecent(Γbag,key(ticketsOnly)));

maintain("ticketsLog", "tickRecent");

maintain("customersLog", "custRecent");

This results in the SV lattice as depicted in Figure 2.2(c). Both ticketLog and
customerLog now only contain the most recent (bag,key)-pairs.

Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id
!
customer.* ())"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove different versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more efficient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$
id,rid

$price,rid

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
different physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Chapter 2. Towards A One Size Fits All Database Architecture 25

SV.

registerSV("tickets", ColSV);

registerSV("customers", RowSV);

maintain("tickets", "ticketsOnly");

maintain("customers", "customersOnly");

drop("ticketsLog");

drop("customersLog");

Figure 2.2(d) shows the resulting SV lattice. In summary, tickets is kept in the same
layout as done by a traditional DBMS using a column store. In contrast, customers
is kept in the same layout as done by a traditional DBMS using a row store. Thus,
OctopusDB mimics different stores for those tables. Obviously OctopusDB could use a
different layout for each “table” being registered. In addition, we could also create a Row
SV and a Col SV on the same input SV thus easily mimicking fractured mirrors [106].
However, our system can do much more.

Per-partition SVs. Assume that some of the rows in tickets are accessed more
often than others. For instance, queries might only be interested in tickets not older
than 7 days. In this case we could easily split tickets into two SVs ticketsCold and
ticketsHot as shown in Figure 2.2(e).

registerSV("ticketsCold", ColSV);

registerSV("ticketsHot", ColSV);

registerQuery("tickRecentHot",σtime≥now−7days(tickRecent));

registerQuery("tickRecentCold",σtime<now−7days(tickRecent));

maintain("ticketsCold", "tickRecentCold");

maintain("ticketsHot", "tickRecentHot");

drop("tickets");

This basically creates two horizontal partitions using a range partitioning on time. It
also faintly resembles buffer management: a DB buffer may keep the hot data on a
different physical device (main memory) than the cold data (disk). Again, one of the
core ideas of OctopusDB is to make all these decisions optional and automatable.

2.3.3 Index SV

We may also use any type of index in OctopusDB including B+-trees, hash indexes,
bitmaps, cache-optimized-trees, R-trees, inverted indexes, and so forth. This is because
indexes are just another type of SV. The Index SV typically uses a subset of the exist-
ing attributes to build indexes. In this case an index lookup will point to data in an
underlying SV, e.g. a Row SV. The index may also create a covering index by copying
all attributes to avoid those lookups. Alternatively, a clustered index may be created by
rearranging the order of tuples in the underlying SV. The index may also be build on
only parts of a table thus mimicking partial indexing [114]. Obviously, adding indexes
improves query performance for selective queries. On the downside update costs increase
as all existing indexes affected by an update have to be maintained. Thus the decision

Chapter 2. Towards A One Size Fits All Database Architecture 26

whether to create an index (or any other SV) will be affected by the query/update pat-
tern of the particular workload. For instance, in our running example, we can build
indexes on customer ids and hot tickets as follows.

registerSV("ticketsHotIndex", IndexSV, uncl, key=price);

registerSV("customersIndex", IndexSV, cl, key=id);

registerQuery("tickI1", πprice,rid(ticketRecentHot));

registerQuery("custI2", πID,rid(custRecent));

maintain("ticketsHotIndex", "tickI1");

maintain("customersIndex", "custI2");

2.4 Holistic SV Optimizer

2.4.1 Overview

In general, each class of SV may implement its own access algorithms optimized for the
particular storage structure. For instance, a Row SV may use row-wise compression
and row-oriented iteration, e.g. [70]. In contrast, a Col SV may implement column-
oriented compression and vectorized iteration [17]. Additionally, OctopusDB may push
down selections, projections, or entire subplans to the respective SVs. The SVs may then
locally use their own optimizer to optimize subplans. This has the advantage, that query
processing techniques optimized for a specific store may be leveraged. Outside those
SVs OctopusDB’s Holistic Storage View Optimizer then implements any appropriate
techniques to:

(1.) speed-up query processing, i.e. pick the most promising physical execution plan to
compute a query;
(2.) apply updates to any SV in the SV store, i.e. pick the best update method like a
batch-oriented differential update or log-structured merge-trees;
(3.) decide on the SVs to create and keep in the SV store, i.e. whether to materialize a
new SV or drop an existing one;
(4.) combine results spanning several SVs, e.g. to join data from a row, a column store,
and a streaming window.

As mentioned above all these tasks may be generalized into a single task: SV selection.
Therefore, OctopusDB allows us to handle these problems using a single holistic SV
optimizer. In the following we sketch some of the features of our optimizer.

2.4.2 Cost Model

The holistic SV optimizer needs a cost model to perform the above mentioned optimiza-
tions. We present cost models for SV querying (scan and index), SV updating (scan
and index), and SV transformation below. We consider Log, Row, Col, and Index SV.
Table 4.2 describes the symbols used in our cost models.

Query Cost. Table 2.1 shows the query cost models for Log, Row, Col, and Index SVs.
We express each of the cost functions as a summation of random and sequential I/O

Chapter 2. Towards A One Size Fits All Database Architecture 27

costs. We consider the scan operation to be I/O-bound and hence neglect CPU costs.
Notice that the scan operations for Row and Col SVs are buffered reads, i.e. OctopusDB
reads as many tuples from a SV as can fit in the memory assigned to it. We need
buffered reading for Col SV, because we need to join individual attributes to re-construct
the tuple; for Row SV we also consider the additional random I/O costs when reading
multiple relations competing for the same hard disk, e.g. for join processing.

Symbol Meaning Model

Clog
scan(N) Log SV scan cost

&PN
i=1 colsize(logi)

m

’
· Cr +

&PN
i=1 colsize(logi)

p

’
/BW

Crow
scan(N) Row SV scan cost

‰
N·
P

Ai∈A colsize(Ai)

m

ı
· Cr +

‰
N·
P

Ai∈A colsize(Ai)

p

ı
/BW

Ccol
scan(N, S) Col SV scan cost

P
Ai∈S

„‰
N·
P

Ai∈S colsize(Ai)

m

ı
· Cr +

l
N·colsize(Ai)

p

m
/BW

«
Cindex

lookup(N) Index lookup cost Cr · dlogF (N · (colsize(key) + pointerSize)/p)e
Crow cl.index

scan (N, sel) Uncl. Index Row SV scan cost Cindex
lookup(N) + Crow

scan(dsel ·Ne)
Ccol. cl.index

scan (N, S, sel) Uncl. Index Col SV scan cost Cindex
lookup(N) + Ccol

scan(dsel ·Ne, S)

Crow uncl.index
scan (N, sel) Cl. Index Row SV scan cost Cindex

lookup + dsel ·Ne · (Cr + p/BW)

Ccol. uncl.index
scan (N, S, sel) Uncl. Index Col SV scan cost Cindex

lookup + dsel ·Ne · |S| · (Cr + p/BW)

Table 2.1: Storage View Query Cost model

Symbol Meaning Model

C
log
update(Nu) Log SV update cost Clog

scan(Nu)

Crow
update(N, Nu) Row SV update cost min

“
Cr +

l
N
Nc

m
· Crow

scan(2 ·Nc),
l

N
Nc

m
· Crow

scan(Nc) + Nu · (Cr + p/BW)
”

Ccol
update(N, Nu, S) Col SV update cost min

“
Cr +

l
N
Nc

m
· Ccol

scan(2 ·Nc),
l

N
Nc

m
· Ccol

scan(Nc) + Nu · |S| · (Cr + p/BW
”

Cindex
split (d) Index split cost

“Pd
i=1

`
psplit

´i” · Cr

Crow cl.index
update (N, Nu, d) Cl. Index Row SV update cost Cindex

lookup(N) + 2 · Crow
scan(Nu) + Cindex

split (d)

Ccol. cl.index
update (N, Nu, S, d) Cl. Index Col SV update cost Cindex

lookup(N) + 2 · Ccol
scan(Nu, S) + Cindex

split (d)

Crow uncl.index
update (N, Nu, d) Uncl. Index Row SV update cost Cindex

lookup + Nu · (Cr + p/BW) + Cindex
split (d)

Ccol. uncl.index
update (N, Nu, S, d) Uncl. Index Col SV update cost Cindex

lookup + Nu · |S| · (Cr + p/BW) + Cindex
split (d)

Table 2.2: Storage View Update Cost model

Symbol Meaning Unit

N number of rows in table
Nc number of rows in a table chunk
BW sequential bandwidth of hard disk Pages/sec
Cr costs for a random access sec
p size of a page Byte
pointerSize size of a pointer in an index Byte
F fan-out of index node

= 1 +
j

pageSize−2·pointerSize
2·colsize(key)

k
d depth of an index tree

=
l
logF

“l
N·(colsize(key)+pointerSize)

pageSize

m”m
sel query selectivity
m available main memory Byte
A set of all attributes in table
key indexed attribute
colsize(Ai) size of a value of attribute i Byte
S set of selected attributes
psplit probability of a leaf split

Table 2.3: Symbols used in cost models

SV Transformation Cost

Log SV → Row SV Clog
scan(N) + Crow

scan(N)

Log SV → Col SV Clog
scan(N) + Ccol

scan(N,A)

Row SV ↔ Col SV Crow
scan(N) + Ccol

scan(N,A)

Row SV → Index SV Crow
scan(N) +

“
F d+1−1

F−1

”
· Cr

Col SV → Index SV Ccol
scan(N, {key,rowID}) +

“
F d+1−1

F−1

”
· Cr

Table 2.4: Storage View Transformation Cost model

Chapter 2. Towards A One Size Fits All Database Architecture 28

Update Cost. All updates to OctopusDB are done in the Primary Log and OctopusDB
later propagates them recursively to the subsequent SVs using any appropriate mainte-
nance algorithm. Therefore, update costs are a crucial factor when determining which
SVs to keep. Table 2.2 shows our update cost model for Log, Row, Col, and Index SVs.
For Row and Col SVs, we assume that either the tuples are scanned and updated in
chunks of Nc; or each update triggers a random-I/O. We take the minimum cost among
these two options as the update cost (as done by a cost-based optimizer). For updates
in Index SVs, we also consider the costs to split leaves or nodes in the index structure
(C index

split). We model the probability of having a node/leaf split at a level as exponentially
proportional to the depth of the level in the index tree.

For each call to registerSV or registerQuery, OctopusDB stores the reference to
output SV or Query in the SV or Query Catalog respectively. Again, the holistic SV
optimizer is responsible for propagating updates from the primary log to all SVs re-
cursively. There are several ways, e.g. lazy updates, to do such SV maintenance. We
believe that existing works from materialized views could be adapted in OctopusDB
for SV maintenance. However, OctopusDB poses several new challenges, e.g. how to
compute the optimal number of stores. This also has to consider the amount of overlap
among stores, i.e. to avoid extensive update costs for redundant data representations.

Transformation Cost. Finally, we also model the costs to transform one type of SV
to another in Table 2.4. We consider transformation as a query scan on the input SV
followed by a update scan on the output SV. For Index SV, only the index attributes and
rowID need to be read; the index tree needs to be built on those attributes only. The
transformation cost model can be used by the holistic SV optimizer when considering
to transform one SV to another, e.g. whether to transform a Row SV into a Col SV.
Transformation cost is the price that OctopusDB has to pay while the benefit could be
the reduced scan costs i.e. the difference between the iteration costs of the old and new
SVs, or reduced update cost. As SVs are fully optional, OctopusDB may balance the
two cost factors based on a given workload.

The three cost models discussed above form the backbone of the holistic SV optimizer.
Based on these cost models the holistic SV optimizer can create, maintain, scan, trans-
form, or delete any SV. Additionally, it can re-structure the SV lattice to derive maxi-
mum performance. We discuss several optimizations in the following.

2.4.3 Adaptive SV Optimization

Here we discuss adaptive SV optimizations in OctopusDB.

SV Rearrangement. The holistic SV optimizer can rearrange the SV lattice in order
to balance query and update costs. This implies that the SV optimizer decides how to
connect the tail of an arrow to the existing SV lattice. One particular advantage of
using a holistic optimizer is that the query operators can be pushed down through the
entire SV store — even beyond the primary log.

Operator Log-Pushdown. Figure 2.3(a) shows an example with four registered
queries. All queries are computed based on two SVs only: a Col SV and Row SV.
In this situation, the optimizer may decide to push down some of the selections and pro-
jections as follows: (1) we examine the projections of all registered queries and compute
the union set of attributes, e.g. πprice,customer id and πname,email id. (2) we push these

Chapter 2. Towards A One Size Fits All Database Architecture 29

Col SV

Row SV

Log SV

Result 2

!
bag=customers

"
bag,keyrecent

#
(())

!
bag=tickets"

bag,key
recent
(())

Result 3

$
price)!

class=E(Result 1

$
email Result 4

tickets.customer_id

$
id ())!

class=E, a1=x1(
customer.id

tickets.customer_id$
name ())
!
class=E, a2=x2

(
customer.id

Primary
Log Store

(a) Operator Log-Pushdown: before

Col SV

Row SVLog SV

Result 2

Result 3

!
price

Result 1

!
email Result 4

"bag=customers|
(bag=tickets &
tickets.class=E)

"
bag=customers

#
bag,keyrecent

$ (())! name,
email, id

(

"
bag=tickets#

bag,key
recent$ ((

))
!price,

customer_id
(

tickets.customer_id

!
id ())"

a1=x1(
customer.id

tickets.customer_id!
name ())
"

a1=x1
(

customer.id

Primary Log Store

(b) Operator Log-Pushdown: after

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$ id,rid

$price,rid

count(*)>=5 customer_id

"
#

(
)

tickets.customer_id

$
customer.* ())!

a1=x1..an=xn(
customer.id

Frequent Fliers
(Adaptive Partial Index)

customer.id

tickets.customer_id

(c) Adaptive Partial SVs

Primary
Log Store

!"#
bag=ticketsbag,keyrecent!

time > now-300
(())))(#

CHEAPEST
(

!"#
bag=customers

bag,key
recent

!
registered_time > now-600 (())))

(
customers.id

tickets.customer_id

Col SV

Index
SV

Result

New Customers getting
Cheapest Tickets in last
5 mins. (Data Stream)

(d) Stream Transformation

Figure 2.3: Workload adaption optimizations of OctopusDB for the Running Example

projections down the lattice until the primary log. Similarly, for selections we (1) com-
pute a conjunctive selection, e.g. σbag=customers|(bag=tickets&tickets.class=E) and (2) push it
even beyond the primary log. Figure 2.3(b) shows the resulting SV lattice. This means
that any incoming log record will be checked even before putting it into the Log SV in
the primary log. Tuples not matching will be discarded and thus we save time writing
them to the primary log. Obviously, similarly to a store pushdown, as soon as a new
query comes in, the conjunctive selection may have to be adapted. Otherwise we would
discard too much. However in OLTP or reporting (not OLAP) workloads are often
known [118] and thus a log and pushdown may be an option.

Adaptive Partial SVs. The holistic SV optimizer can inject additional SVs to speed-
up query processing. Those SVs should be created for those parts of the data that is
frequently queried. For instance, it does not make sense to build an index for an entire
relation if only parts of that relation are queries. This observation lead to a technique
called partial indexing [114]. However, that technique can be extended to create a partial
store adapting dynamically to the current workload. Figure 2.2(e) already showed an
example for static SV partitioning. Figure 2.3(c) shows an example for adaptive partial
SVs. In this example a Frequent Fliers Index SV is used. We use a join query
selecting those customers having at least five tickets over the past week. Index SV
Frequent Fliers will only index those customers. As soon as a customer does not

Chapter 2. Towards A One Size Fits All Database Architecture 30

Use-Case Storage view definition
(traditional systems) type example query

row store Row SV any
column store Col SV any
PAX PAX SV any
fractured mirrors Row SV

same query for both
and Col SV

column groups Row SV πa1,...,ak

and Col SV πak+1,...,am

index Index SV any
indexed row store Index SV(Row SV) any
indexed column store Index SV(Col SV) any
read-optimized in-
dexed column store

Index SV(Col SV) σt<now()−1day

+ differential write-
optimized row store

Row SV σt≥now()−1day

partial index Index SV σ420≤ak≤42000

projection index Col SV πak

partial projection in-
dex

Index SV(Col SV) πak (σ420≤ak≤42000)

DSMS Index SV σt≥now()−5min

DSMS Index SV σt≥now()−5min

+ archive and Col SV σt<now()−5min

snapshot any any
replicated row store Row SV

same query for both
Row SV

query any any
dynamic view any any
materialized view any any

Use-Case Storage view definition
(new system) type example query

OLTP Row SV σt≥now()−1day

+ OLAP Col SV σt<now()−1day

DSMS Index SV σt≥now()−5min

+ OLTP Row SV σt<now()−5min

DSMS Index SV σt≥now()−5min

+ archive OLTP Row SV σnow()−1day≤t<now()−5min

+ archive OLAP Col SV σt<now()−1day

other hybrid any combination any
of the above

Table 2.5: Use-Cases of OctopusDB

qualify as a frequent flier anymore, its entry will be dropped from the index. Vice versa,
if customers qualify, they will be added to the index dynamically.

Stream Transformation. In OctopusDB, any incoming log record corresponds to an
event or item in a data stream system. For applications having continuous queries, we
may only select a window of interest over the unbounded stream of log records i.e. the
primary logical log in OctopusDB. This means the “database store” simply consists of
several windows of interest. No other (older) data needs to be kept. OctopusDB can
mimic this as follows: (1) do not use a Log SV for the Primary Log Store. (2) route all
incoming log records to all relevant queries, (3) push possible updates up the SV lattice.
In other words, we are reducing the stream processing problem to a SV maintenance
problem. Figure 2.3(d) shows an example. In the Running Example, suppose the query
workload changes to the following query: find new customers (registered within last 10
minutes) having booked the cheapest tickets in the last 5 minutes. For this we need
to run a join on two windows. Whenever the contents of one of the windows changes,
we may have to update the result to the join. However, this is nothing different from
SV maintenance. Thus OctopusDB may use any known technique for updating query

Chapter 2. Towards A One Size Fits All Database Architecture 31

results including push-based query DAGs or batch-oriented (out-of-order) updates [87].
Notice that any update to the join result is passed outside by providing an appropriate
callback functon to registerQuery when registering the join. For any update on the
join, callback will be called offering an iterator with the changed result tuples or an
iterator of the complete new result.

Other Use-Cases. By creating the right SVs OctopusDB can mimic a variety of
system. Furthermore, by combining different SVs OctopusDB can emulate newer hybrid
systems, for instance combinations of continuous and store (=archival) queries which
has been researched heavily in the past years [47]. Table 2.5 lists several use-cases for
OctopusDB.

2.5 Purging and Checkpointing

Even given large amounts of main memory and external storage to keep the log, even-
tually the log may become too large to compute query results efficiently. This will only
happen if the update rate is too high or the database has been up for a while and col-
lected a long log of change operations. In this situation we need to shrink the size of
the log. There are several options:

(1.) purge: Replace log records for data that is not of interest anymore. Here ‘interest’
is defined by the application, e.g. changes older than two years are irrelevant for most
OLTP apps.
(2.) compress: Compress the log. This saves storage space using zip, dictionary com-
pression, etc.. However, this does not decrease the number of log records. The log may
still be too large.
(3.) checkpoint: Replace parts of the log by any storage view. This means, we write a
begin checkpoint log record to the log. Then we create a storage view for all log records
older than the begin checkpoint log record. We write the contents of the storage view
to the log or other stable storage. When finished we write an end checkpoint log record.
Then we purge all log records older than the begin checkpoint log record. The storage
views used for checkpointing are never changed and therefore should be optimized for
reading. Depending on the storage view we use for a checkpoint, we obtain the following
different strategies:

(a) archive: Use a RowSV or ColSV. This means we keep all data but put it to a row
store or col store for faster access.

(b) aggregate: Use an aggregated SV, i.e. aggregate part of the log. We may aggregate
on any attribute. We could also aggregate over time, e.g. keep only one change
per week could be of particular interest or even completely key-consolidate the
checkpoint.

(c) re-checkpoint: Replace an existing checkpoint in the log with a derived check-
point. For instance, assume we wrote an archive checkpoint using Row SV before.
Later on we might decide that it consumes too much storage space, so we decide
to replace it by an aggregated checkpoint. Like that we could devise a system
that keeps an aggregated archive for everything older than 5 years, plus a detailed
archive for everything younger than five years and older than one year, plus a log
for everything younger than a year. If necessary, all incoming queries will be routed
to all three SVs.

Chapter 2. Towards A One Size Fits All Database Architecture 32

The final strategy is dependent on storage cost (which are low nowadays) and query
cost. Note again that in this type of a system there is a gradual transition from a
streaming system (use input log records for continuous query processing when they
arrive and then purge them) to an OLTP system (keep fine-granular data forever and
curate it) and then to an OLAP system (create aggregated snapshots of the data). The
beauty of OctopusDB architecture is: first, OctopusDB could allow for all three types
of analyses inside a single system without the need to stitch three different database
systems together. Second, OctopusDB could allow for a gradual transition among the
three types. This is hard to achieve with three separate systems.

2.6 Recovery

Logical Recovery. Recovery highly depends on the purging strategy used. So let’s first
assume that no data was purged or checkpointed. Recall that OctopusDB keeps at least
one copy of the log on durable storage. Then, recovery is rather simple: we simply copy
the log from durable storage to main memory. When that copy is finished, OctopusDB
is fully recovered and may accept new queries. In the background OctopusDB will then
re-create all storage views that existed before the crash. Note that the recovery process
does not have to put any information on the progress information into the log, e.g. like
compensation log records in ARIES [90]. This substantially simplifies the code base
of our system. Now assume that OctopusDB crashes during recovery. There are two
cases: (1) crash during log copying: OctopusDB simply reads the log at restart anyway,
no extra logic required, (2) crash during storage view rebuilt: again we could simply
rebuild all storage views. As an alternative we could keep track of storage views that
were recreated. As soon as a storage view is persisted on durable media, we write an
extra SV created log record to the log containing a checksum of the persisted storage
view (following WAL). During recovery we may then skip recreation of this storage view
if the checksum of the materialized storage view corresponds to the checksum in the
log. Again, the latter option is just an add-on to speed-up recovery but not required for
correctness. Given the bandwidth of current external storage, e.g. 100 of MB/s for single
hard drives up to 500 MB/s for PCI-attached flash storage like FusionIO’s iodrive [55],
it might not pay off to implement this option.

So let’s assume that the log is not complete anymore and was purged or checkpointed
using any strategy as described in Section 2.5. In this case we need to analyze the
log as follows: we read the log sequentially starting from the oldest entry. We collect
all begin checkpoint log records and put them into a checkpoint set. If for any begin
checkpoint log record, we find an end checkpoint log record, we remove the corresponding
checkpoint from the set. If after reading the log checkpoint is empty, we proceed as if
no log purging or checkpointing has ever happened. Otherwise we copy the log to main
memory, however ignore all checkpoints missing an end checkpoint log record. After
copying this partial log, OctopusDB is recovered. After that, in the background we
re-create all checkpoints that did not have an end checkpoint log record.

ARIES-style Physiological Recovery. One might argue that OctopusDB’s recov-
ery algorithm gives away some performance by not using page-oriented (physiological)
REDO as in ARIES4. One of the major performance advantages of ARIES stems from
this idea. However, OctopusDB could easily be extended to keep physiological redo

4Note that UNDO is logical in ARIES anyway.

Chapter 2. Towards A One Size Fits All Database Architecture 33

information as well. The trick is to write physiological REDO information for each SV
separately. For instance, assume we want to implement a Row SV. Then we keep an
extra log with physiological REDO information inside the implementation of Row SV. If
we have to recover Row SV, we simply perform redo based on that internal log. UNDO
may still be performed using the global logical log. Conceptually, this algorithm then
does not differ from ARIES anymore. Hence, we expect the same performance charac-
teristics. But clearly, we will collect more experimental evidence as soon as our system
matures.

2.7 Transactions and Isolation

In the following we will discuss how to support concurrent execution of transactions
in OctopusDB. Some recent work claimed that for a pure OLTP-main memory system
concurrent transactions may not be required anyway. This is due to the fact that the
useful amount of work of a transaction in an OLTP-system may typically be less than
a millisecond. Then a serial execution of transactions might not hurt performance too
much. However, the exact workload has to be known in advance. See Section 2.2
of [118] for details. Here, we do not make these assumptions. Concurrent execution of
transactions could be supported in OctopusDB by extending its system interface with
three methods:

beginTA()→ taID: starts a transaction and returns a system-generated transaction
ID.
commitTA(taID)→ bool: commits transaction having taID. Returns true if success-
ful, false otherwise.
abortTA(taID)→ bool: aborts transaction having taID. Returns true if successful,
false otherwise.

Furthermore, we extend the methods of OctopusDB’s system interface (Section 2.2.3)
to receive an additional taID parameter. Thus, every call to the system (as well as its
corresponding log record) is associated to a taID and we may define arbitrary transaction
sequences. For instance, two concurrent transactions could call OctopusDB’s system
interface as shown in Table 2.6.

ts Transaction 42 Transaction 43
1 beginTA()→ 42
2 snapshot(myView, myQuery)
3 beginTA()→ 43
4 query(INSERT <42, “students”,

11,<“joe”, 22>>)
5 commitTA(42)→ OK
6 query(INSERT <43, “students”,

12, <“jim”, 33>>)
7 abortTA(43)→ OK

Table 2.6: Sample execution of two concurrent transactions

Now let’s discuss how to achieve ACID in OctopusDB. As in DBMSs, Consistency
may be guaranteed by validating a set of integrity constraints at commit time5. The
Isolation algorithm of OctopusDB is a variant of optimistic concurrency control. Its

5Note that one of the world’s most popular open source databases, MySQL 5.1 based on the default
MyISAM storage engine, completely ignores integrity constraints.

Chapter 2. Towards A One Size Fits All Database Architecture 34

core idea is to append all changes (uncommitted or committed) to the log but only
to propagate committed data to any derived storage view. Thus at all times derived
storage views contain a consistent snapshot of committed data only. Uncommitted
transactions are only allowed to read committed data either by retrieving it from the log
or any derived storage view. All uncommitted transactions are allowed to write any data
object they desire by adding log records to the log, but: the latter modifications are not
yet propagated to the derived storage views. In addition, we also collect the unique IDs
of databases objects read by transactions. This means, whenever a transaction issues a
snapshot call, we retrieve the contents of that view, project it to (bag,key), and put
it into the log associated with a read timestamp. Like this, we have all information
at hand we require to run a textbook-style optimistic concurrency control algorithm,
e.g. Section 17.6 in [105]. Now, let’s assume we want to commit a transaction. To do
so we call Algorithm 2.8.

Algorithm 2.8: commitTA
Input : Integer taID
Output: bool
LogRecord newLR = new WantsToCommitLR(taID,ts) ;1
this.getPrimaryLog().append(newLR);2
if this.getPrimaryLog().validate(taID) then3

LogRecord newLR = new CommitLR(taID,ts) ;4
this.getPrimaryLog().append(newLR);5
Iterator itSV = StorageViewCatalog.entries();6
itSV.open();7
while itSV.hasNext() do8

StorageView nextSV = itSV.next();9
Iterator itLR = lthis.getPrimaryLog().iterate(P:= lr.taID=taID);10
itLR.open();11
while itLR.hasNext() do12

LogRecord nextLR = itLR.next();13
Source(nextSV, nextLR);14

end15
itLR.close();16

end17
itSV.close();18
return true;19

else20
LogRecord newLR = new AbortLR(taID) ;21
this.getPrimaryLog().append(newLR);22
return false;23

end24

We first put a special WantsToCommitLR into the log (Lines 1–2). Then we run the
validation phase of optimistic concurrency control (Line 3). If validation was successful,
we insert a CommitLR into the log (Line 4). Then we propagate the changes introduced
by this transaction to all storage views (Lines 6–18). If validation fails, we create an
AbortLR and insert into the log (Lines 21–22).

Using this algorithm Atomicity is trivial as only transactions having a commit log record
or are reflected in a storage view need to be considered by other operations. The same
holds for Durability : as mentioned above, OctopusDB follows WAL anyway. Therefore
all log records are durable. Note again that our log does neither need undo, redo,
before or after images of pages, nor compensation log records to achieve idempotency.
These issues only occur if log records are condensed into a store in the first place as in
current DBMSs. In contrast, in OctopusDB storage view creation and maintenance is a
secondary process.

Chapter 2. Towards A One Size Fits All Database Architecture 35

Notice that the propagation process of Lines 6–18 is a possible synchronization bottle-
neck similar to standard view maintenance in current DBMSs, i.e. all (storage) views
have to be brought to the same consistent state. It could be interesting to improve this
to enable eventual or timeline consistency among storage views, i.e. trade consistency for
performance. Several papers have argued for weaker forms of consistency, e.g. eventual
consistency [102] or PNUTS’ timeline consistency model [39]. We believe that these algo-
rithms could also be adapted to improve storage view maintenance in a single database.
Again, this chapter only opens the book for OctopusDB. We will explore this in more
detail in future work.

2.8 Experimental Evidence

2.8.1 Workload-aware SV Selection

In this simulation we compare several SVs over varying workloads and show the effec-
tiveness of each on a per relation basis. Furthermore, we demonstrate that it makes
sense to have several SVs in OctopusDB as compared to a fixed store (row, column) in
traditional databases. Figures 2.4(a) and 2.4(b) show the SVs with cheapest query and
update costs respectively, in Picasso style diagrams, over varying selectivity and refer-
enced attributes. We use the cost models shown in Tables 2.1 and 2.2 to compute the
query and update costs for each SV. For each selectivity-attributes pair, we depict the
cheapest SV by a square of size proportional to the fraction of its cost to the maximum
cost in the entire space. In both the figures we can observe four distinct regions over the
selectivity-attributes space, in which row, column, indexed row, and indexed column,
respectively, are the cheapest SVs. Specifically, as expected, we observe that less num-
ber of referenced attributes favor column SVs compared to row SVs. In addition, high
selectivity favors index SVs compared to unindexed ones.

2.8.2 Outperforming Traditional Systems

The goal of this simulation is to compare OctopusDB with several existing database
systems. We consider Row Store, Column Store, Index Row Store, Indexed Column
Store, Fractured Mirrors and Indexed Fractured Mirrors to compare with OctopusDB.
The workload consists of equal number of scan and update queries on Tickets and
Customers relations in the Running Example. Table 2.7 shows the workload parameters.
Figure 2.5 shows the overall performance of different systems in terms of the overall
workload time. We can see from the figure that OctopusDB outperforms traditional
database system by a factor of up to 5. Furthermore, we break down the workload time
into query and update costs. We observe that OctopusDB outperforms all other systems
in terms of update costs while only Indexed Fractured Mirrors match OctopusDB in
terms of query costs. Indexed Fractured Mirrors, however, has prohibitive update costs.

The reason for better performance of OctopusDB compared to traditional systems is the
flexible SV management in OctopusDB depending upon the workload. The Tickets and
Customers relations in the above workload are marked in Figures 2.4(a) and2.4(b) for
the scan and update queries respectively. From the figures, we observe that a column
SV on Tickets and an Indexed Row SV on Customers provide the cheapest costs. Such

Chapter 2. Towards A One Size Fits All Database Architecture 36

5

10

15

20

0.0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1.0

950 738 659 645 632 619 607 595 584 573 562 551 541 531 524 533 548 563

950 738 596 496 477 466 454 443 433 423 413 404 395 386 377 369 361 354 346 339 332 326 319 316 316 316 316 316 316 316 316 316 316 316 316 316 316 316 322 332 342

950 738 596 496 421 366 356 346 336 327 319 310 302 295 287 280 273 267 260 254 248 242 237 231 226 221 216 212 212 212 212 212 212 212 212 212 212 212 217 224 232

950 738 596 496 421 362 316 278 270 262 254 246 239 232 226 220 214 208 202 197 191 186 182 177 172 168 164 159 155 152 150 150 150 150 150 150 150 150 153 159 165

950 738 596 496 421 362 316 278 246 219 206 200 193 187 181 176 170 165 160 155 151 146 142 138 134 130 126 122 119 115 112 109 108 108 108 108 108 108 111 116 1215
950 738 596 496 421 362 316 278 246 219 197 177 159 153 147 142 137 133 128 124 120 116 112 108 105 101 98 94 91 88 85 82 80 78 78 78 78 78 81 85 90

950 738 596 496 421 362 316 278 246 219 197 177 159 144 130 118 112 108 103 99 96 92 89 85 82 79 76 73 70 67 65 62 59 57 56 56 56 56 58 62 66

950 738 596 496 421 362 316 278 246 219 197 177 159 144 130 118 107 97 88 80 76 73 70 67 64 61 58 55 53 50 48 46 43 41 39 39 39 39 41 44 47

950 738 596 496 421 362 316 278 246 219 197 177 159 144 130 118 107 97 88 80 73 66 59 53 49 46 44 41 39 37 34 32 30 28 26 25 25 25 27 30 33

950 738 596 496 421 362 316 278 246 219 197 177 159 144 130 118 107 97 88 80 73 66 59 53 48 43 38 34 29 25 23 21 19 17 16 14 13 13 15 18 2110
950 738 596 496 421 362 316 278 246 219 197 177 159 144 130 118 107 97 88 80 73 66 59 53 48 43 38 34 29 25 22 18 15 12 9 6 4 4 6 8 11

994 773 626 521 443 382 333 294 261 233 209 188 170 154 140 127 116 106 96 88 80 73 66 60 54 49 44 39 35 31 27 23 20 17 13 11 8 7 7 9 11

994 773 626 521 443 382 333 294 261 233 209 188 170 154 140 127 116 106 96 88 80 73 66 60 54 49 44 39 35 31 27 23 20 17 13 11 8 7 7 9 11

1079 840 681 569 484 419 367 324 288 258 233 210 191 174 158 145 133 121 111 102 94 86 79 72 66 60 55 50 45 41 37 33 29 26 22 19 16 15 15 17 19

1163 907 737 616 526 456 400 354 316 284 256 233 212 193 177 162 149 137 126 117 108 99 92 84 78 72 66 61 56 51 46 42 38 34 31 28 24 22 23 25 2715
1247 974 793 664 568 493 433 385 344 310 280 255 232 213 195 180 166 153 142 131 121 112 104 97 90 83 77 71 66 61 56 52 47 43 40 36 33 30 31 33 35

1331 1041 849 712 610 530 467 415 372 335 304 277 253 232 214 197 182 169 157 145 135 126 117 109 101 95 88 82 76 71 66 61 57 52 48 45 41 38 38 41 43

1415 1108 905 760 651 567 500 445 399 361 328 299 274 252 232 215 199 185 172 160 149 139 130 121 113 106 99 93 87 81 76 71 66 61 57 53 49 46 46 48 51

1500 1175 960 807 693 604 533 475 427 386 352 321 295 272 251 232 216 201 187 174 163 152 143 134 125 117 110 103 97 91 85 80 75 70 66 62 58 54 54 56 59

1584 1243 1016 855 735 641 567 506 455 412 375 343 316 291 269 250 232 216 202 189 177 166 155 146 137 129 121 114 107 101 95 90 84 79 75 70 66 62 62 64 6720

0.0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1.0

Figure 1: plan space picasso-style diagram for one table, N=100,000, number of attributes=40; x axis: varying selectivity from 0.0
to 1.0; y-axis: varying number of referenced attributes r; color depicts best plan; ”red”=col scan, ”orange”=row scan, ”yellow”=col
index scan, ”green”=row index scan; above: box filling area displays expected execution costs of best plan compared to most expensive
best plan for all parameters, min costs=0.005, max costs=0.16; below: color and number displays overhead of worst plan over best
plan in percentage; maximum overhead for picking wrong plan=4,950% for sel = 0.0 and r = 20 LABEL AXES ACTUALLY THIS
IS A BETTER VISUALIZATION THAN IN THE ORIGINAL PICASSO PAPER: THEY NEEDED 3D TO SHOW COSTS; THE
DID NOT COMPARE PLANS IN THE SPACE; WE COULD SELL THIS AS A LITTLE CONTRIBUTION

are: Step 1: Construct Attribute Affinity Matrix from Attribute
Usage Matrix. Step 2: Construct Affinity Graph corresponding
to Attribute Affinity Matrix. Step 3: Form a linearly connected

spanning tree and generate all meaningful fragments in one
iteration by considering a cycle as a fragment. O(n2) algorithm.

3

Row Column Indexed Row Indexed Column

#
 R

ef
er

en
ce

d
 A

tt
ri

b
u
te

s

Selectivity (Fraction of Data)

Customers

Tickets

(a) Query Costs

5

10

15

20

0.0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1.0

980 881 798 728 669 617 572 532 519 515 512 508 505 501 498 495 491 488 485 482 479 475 472 469 466 463 460 457 454 452 449 446 443 440 438 437 437 437 437 437 437

980 881 798 728 669 617 572 532 497 465 436 411 387 366 347 329 320 318 315 313 310 308 306 303 301 299 297 294 292 290 288 286 284 282 280 279 279 279 279 279 279

980 881 798 728 669 617 572 532 497 465 436 411 387 366 347 329 312 297 282 269 257 245 234 224 215 209 207 205 203 202 200 198 197 195 193 193 193 193 193 193 193

980 881 798 728 669 617 572 532 497 465 436 411 387 366 347 329 312 297 282 269 257 245 234 224 215 206 197 189 181 174 167 161 155 149 143 139 139 139 139 139 139

980 881 798 728 669 617 572 532 497 465 436 411 387 366 347 329 312 297 282 269 257 245 234 224 215 206 197 189 181 174 167 161 155 149 143 138 132 127 123 118 1145
980 881 798 728 669 617 572 532 497 465 436 411 387 366 347 329 312 297 282 269 257 245 234 224 215 206 197 189 181 174 167 161 155 149 143 138 132 127 123 118 114

980 881 798 728 669 617 572 532 497 465 436 411 387 366 347 329 312 297 282 269 257 245 234 224 215 206 197 189 181 174 167 161 155 149 143 138 132 127 123 118 114

980 881 798 728 669 617 572 532 497 465 436 411 387 366 347 329 312 297 282 269 257 245 234 224 215 206 197 189 181 174 167 161 155 149 143 138 132 127 123 118 114

980 881 798 728 669 617 572 532 497 465 436 411 387 366 347 329 312 297 282 269 257 245 234 224 215 206 197 189 181 174 167 161 155 149 143 138 132 127 123 118 114

980 881 798 728 669 617 572 532 497 465 436 411 387 366 347 329 312 297 282 269 257 245 234 224 215 206 197 189 181 174 167 161 155 149 143 138 132 127 123 118 11410
980 881 798 728 669 617 572 532 497 465 436 411 387 366 347 329 312 297 282 269 257 245 234 224 215 206 197 189 181 174 167 161 155 149 143 138 132 127 123 118 114

1024 921 835 762 700 646 599 557 521 488 458 431 407 385 365 346 329 313 298 284 271 259 248 237 227 218 209 201 193 185 178 171 165 159 153 148 144 140 137 133 130

1024 921 835 762 700 646 599 557 521 488 458 431 407 385 365 346 329 313 298 284 271 259 248 237 227 218 209 201 193 185 178 171 165 159 153 148 144 140 137 133 130

1108 997 904 826 759 702 651 607 567 532 500 471 445 421 399 379 361 344 328 313 299 286 274 263 252 242 232 223 215 207 199 192 185 178 172 166 162 158 154 150 147

1192 1073 974 891 819 757 703 656 613 576 542 511 483 457 434 413 393 374 357 341 327 313 300 288 276 266 255 246 237 228 220 212 204 197 191 185 180 176 172 168 16415
1276 1149 1044 955 879 813 755 705 660 619 583 551 521 494 469 446 425 405 387 370 354 340 326 313 301 289 278 268 258 249 240 232 224 217 209 204 199 194 190 185 181

1360 1225 1114 1019 939 869 808 754 706 663 625 590 559 530 503 479 457 436 417 399 382 367 352 338 325 313 301 291 280 270 261 252 244 236 228 222 217 212 207 203 198

1443 1302 1183 1084 998 924 860 803 752 707 667 630 596 566 538 512 489 467 446 428 410 393 378 363 350 337 325 313 302 292 282 273 264 255 247 241 235 230 225 220 215

1527 1378 1253 1148 1058 980 912 852 799 751 708 670 634 602 573 546 521 498 476 456 438 420 404 388 374 360 348 335 324 313 303 293 283 275 266 259 253 248 242 237 233

1611 1454 1323 1212 1118 1036 964 901 845 795 750 709 672 638 607 579 553 528 506 485 465 447 430 414 399 384 371 358 346 334 323 313 303 294 285 278 271 266 260 255 25020

0.0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1.0

Figure 1: plan space picasso-style diagram for one table, N=100,000, number of attributes=40; x axis: varying selectivity from 0.0
to 1.0; y-axis: varying number of referenced attributes r; color depicts best plan; ”red”=col scan, ”orange”=row scan, ”yellow”=col
index scan, ”green”=row index scan; above: box filling area displays expected execution costs of best plan compared to most expensive
best plan for all parameters, min costs=0.005, max costs=0.16; below: color and number displays overhead of worst plan over best
plan in percentage; maximum overhead for picking wrong plan=4,950% for sel = 0.0 and r = 20 LABEL AXES ACTUALLY THIS
IS A BETTER VISUALIZATION THAN IN THE ORIGINAL PICASSO PAPER: THEY NEEDED 3D TO SHOW COSTS; THE
DID NOT COMPARE PLANS IN THE SPACE; WE COULD SELL THIS AS A LITTLE CONTRIBUTION

are: Step 1: Construct Attribute Affinity Matrix from Attribute
Usage Matrix. Step 2: Construct Affinity Graph corresponding
to Attribute Affinity Matrix. Step 3: Form a linearly connected

spanning tree and generate all meaningful fragments in one
iteration by considering a cycle as a fragment. O(n2) algorithm.

3

Row Column Indexed Row Indexed Column

#
 R

ef
er

en
ce

d
 A

tt
ri

b
u
te

s

Selectivity (Fraction of Data)

Customers

Tickets

(b) Update Costs

Figure 2.4: Query and Update Costs over varying Workload

 0

 0.2

 0.4

 0.6

 0.8

 1

Row Store
Column Store

Indexed Row Store

Indexed Column Store

Fractured Mirrors

Indexed Fractured Mirrors

OctopusDB

wo
rk

lo
ad

 ti
m

e
 [s

ec
on

ds
]

Query Costs Update Costs

Figure 2.5: Workload costs for different systems

a SV configuration is impossible to achieve in a conventional database system, whereas
OctopusDB can easily cope with it by creating the appropriate SVs.

Chapter 2. Towards A One Size Fits All Database Architecture 37

Parameter Tickets Customers

N 100,000 20,000
Nc 50,000 50,000
BW 100 MB/sec 100 MB/sec
Crandom 0.005 sec 0.005 sec
pageSize 4 KB 4 KB
pointerSize 4 Bytes 4 Bytes
sel 0.9 0.1
m 100 MB 100 MB
|A| 20 20
keySize 4 Bytes 4 Bytes
colsize(Ai) 8 Bytes 8 Bytes
|S| 4 20
psplit 1% 1%

Table 2.7: Parameters used in the Simulations

2.8.3 Automatic Adaptation

In this experiment we show how OctopusDB may automatically adapt SVs to a query
response time requirement. We assume that the user specified that workload should not
take longer than 0.1 sec.

System and Setup. Our current prototype of OctopusDB is implemented in Java 1.6.
All experiments were executed on a medium-sized computing node. We used a single
Intel Xeon Quadcore, 2.66Ghz (E5430) with 16GB of main memory. The operating
system was Linux 2.6.27.7-9-xen. In order to have a realistic scenario, we assumed all
data and storage views to fit into main memory. Note again, that OctopusDB is not
limited to main memory scenarios but could also be run as an external memory system.
We use Tickets and Customers records having 20 attributes each for our experiment.
For each measurement, the workload contains a batch of 40 randomly picked scan and
update queries in the ratio 1:3. We pick the search attribute for scan queries using
zipfian distribution with a skewness factor of 4; scan queries have a selectivity of 0.01.

Experiment. We configured OctopusDB to use Log SV only and gradually increase
the number of log records. We monitor a window of 5 latest measurements and take the
average. If the average is above 0.1sec, we switch to a more efficient SV. Figure 2.6 shows
the results. We observe that for up to 33,000 log records, the requirement is met by Log
SV. Then, OctopusDB switches to Bag-partitioned Log SVs for Tickets and Customers
relations. This works fine until 76,000 log records. Here, OctopusDB switches Tickets
Log SV to Key-Consolidated Log SV. Again at 103,000 log records OctopusDB Key-
Consolidates the Customer Log SV. This works fine until 127,000 log records where we
switch Tickets to Column SV. At 200,000 log records, we switch Customers to Row SV.
Finally, we switch Tickets and Customers to Indexed SVs at 206,000 and 211,000 log
records respectively.

This experiment demonstrates that through a wide range of database sizes, scan-based
methods, be it a log, a partitioned log, a key-consolidated log, a row store, or a column
store may be enough to serve a workload. Only for larger database sizes we have to use
indexing. Note that Indexed SV may also be used to create indexes only on a subset of
attributes. This is useful if some attributes are queried more often than others.

Chapter 2. Towards A One Size Fits All Database Architecture 38

Primary Log SV

Bag-partitioned Log SV

Bag-partitioned Log SV

Key-consolidated Log SV Column SV Indexed SV

Key-consolidated Log SV Row SV Indexed SV

0

 0.001

 0.01

 0.1

 1

 0 50000 100000 150000 200000 250000

w
o

rk
lo

a
d

 t
im

e
 [

s
e

c
]

time [# log records]

Tickets+Customers
Tickets

Customers
Transform Tickets

Transform Customers
Cost Threshold

Figure 2.6: OctopusDB: automatic adaption of SVs for TICKETS and CUSTOMERS
to query time requirement of 0.1sec when scaling database size. The figure shows the
evolvement of workload time for both relations, the sum, as well as the SV transforma-

tion costs.

2.9 Related Work

Traditional DBMS Landscape. Several papers have claimed that one size does
not fit all. It started with [53] who noted that DBMSs do not work well for DSS-
type workloads. This work lead to one of the first column-oriented data warehouses:
SybaseIQ. Later on, other authors supported the idea of different types of database
systems for different markets as well [115, 117]. This split the landscape into at least
four different systems: SearchEngines (read-only inverted index), OLTP (transactional
row-store), OLAP (read-only column-store) and DSMS (continuous window queries on
unbounded streams) which originated from append-only databases [122]. However, the
major difference of OLTP and OLAP are different access patterns and missing ACID
semantics in OLAP. Furthermore, it is somewhat easier to use compression in column
stores, see [4] for a comprehensive tutorial. However, a recent paper has argued that
column stores may be efficiently emulated on row stores as well [18]. In any case,
note that OctopusDB may make use of the existing optimizations for column stores
and/or row stores. The advantage of OctopusDB is that we are not restricted to a
particular store and workload. In addition, as we show in this chapter, the boundary
of OLTP/OLAP and DSMS may also be removed into a unified OctopusDB system.
Furthermore, there have been several efficient approaches already to implementing search
engines as an application on top of an OLTP database [69, 123]. Thus, given these and
other recent advancements, it is questionable whether search engines will survive as a
separate code base.

Lightweight Systems. Recently, a paper claimed that even in the traditional OLTP
market existing DBMSs can be beaten by a large factor [81, 118]. This approach, HStore,
is basically a stripped down version of an OLTP row-store. Again, this stripped down
system could be emulated in OctopusDB as well. Thus, HStore is orthogonal to what
we propose. Another line of systems has recently appeared exploring array-oriented
systems for scientific applications [41]. Their major difference is an array data model
with additional scientific operators. We believe that OctopusDB could also be extended
to offer an Array Storage View. However, that discussion is beyond the scope of this
chapter.

Chapter 2. Towards A One Size Fits All Database Architecture 39

Scanning Systems. Due to the dramatic changes in hardware (random access is hardly
becoming better, sequential access is improving by up to 50% per year), index access
pays of less and less. Therefore several authors have proposed to drop indexed-based
query plans entirely and resort to scanning. [70] proposes techniques to reduce the
scanning costs on modern hardware architectures. [107] proposed per-tuple constant-
time processing on a row-store. [136] examines shared-scans, i.e. multiple query results
are computed using a single scan. This idea is extended in [128] to so-called clock-scans,
i.e. continuously running shared scans. Finally, [23] proposed to compute multiple star
queries simultaneously using a static shared operator pipeline and a clock scan as its
input. All these techniques show the viability of scan-based plans and we believe that
all those techniques may be integrated into OctopusDB. Still we believe that a system
should be able to offer index access for highly selective queries as well. OctopusDB offers
this option.

Rodent store [42] allows DBAs to declare the database store using an algebra. We
agree with the authors of [42] that currently considerable functionality is duplicated as
row-stores and column-stores are two separate lines of development that share however
considerable common technology. However, Rodent Store still assumes that there has
to be a store. Furthermore, it simply provides an abstract way to declare a store in an
OLTP or OLAP-style system. No unified approach with streaming systems is provided
as it is the case for OctopusDB. In addition, no updateable storage view mechanism is
present in Rodent Store. Another key assumption in Rodent Store is that the database
administrators will manually specify the storage algebra for each database. This is in
sharp contrast to OctopusDB, which automatically adapts itself to the incoming query
workload. Alternatively, Rodent Store also provides a storage design optimizer to recom-
mend the storage representation for a given query workload. OctopusDB, on the other
hand, does not assumes a static query workload. Rather, OctopusDB automatically
adapts the storage views to continuously changing query workloads. Still we believe
that the storage algebra concept in Rodent Store is an elegant way to express physical
layouts. We could reuse this concept in OctopusDB to internally map a storage view to
its on-disk representation.

On similar lines as Rodent Store, GMAP [127] presents a DDL for defining physical
structures (similarly to [42]). However, in contrast to OctopusDB, GMAP does nei-
ther handle unification with streaming systems, automatic store selection and adaption,
recovery, nor union queries.

Cracked databases, e.g. [71], break database tables into pieces by piggy-backing index-
reorganization requests to individual queries, i.e. queries are interpreted as hints to break
the database into pieces. Therefore cracked databases have similarities with partial
indexing [114] and adaptive indexing [51], i.e. dynamic adjustment of index granularity
to a given workload. Furthermore in contrast to OctopusDB, cracked databases assume
a column-store (the authors mention that it could work on a row-store as well). In
contrast, we do not assume a fixed store. In addition, in cracked databases the store
may not be exchanged as it is the case in OctopusDB. Therefore cracked databases
are orthogonal to what we propose. At the core, cracked databases maintain only a
single adaptive storage structure (cracker columns) and adapt only to selection query
predicates. On the other hand, OctopusDB can have several storage views and can
adapt to any arbitrary query sub-expressions, such as selection, projections, joins etc.
Furthermore, database cracking can take several thousand queries before it optimizes

Chapter 2. Towards A One Size Fits All Database Architecture 40

the data fully, i.e. builds the cracker index fully [58]. OctopusDB does not have such a
constraint. It can create an index storage view much more quickly. More recent work on
cracking [74] has proposed to merge database cracking with adaptive merging [58, 59],
in order to quickly achieve query performance comparable to a full index. However,
database cracking still imposes a high overhead for the first few queries because of the
large parts of the data being shuffled and reorganized. OctopusDB on the other hand
keeps a light weight logical log to start with. Later it creates additional storage structures
as and when required. Still, as part of future work it might be interesting to extend
some of the cracking ideas to work on our more general storage view architecture.

Materialized views are arbitrary query results stored on disk [35]. There has been a
lot of research on answering queries using materialized views [7, 36, 57, 103]. However,
materialized view creation is an expensive one time process, typically with the help of a
database administrator. Instead, OctopusDB automatically creates ad hoc storage views
to continuously adapt to the query workload. Furthermore, with materialized views,
the database administrator only decides what (query results) to store. However, with
storage views, OctopusDB decides both what and how (layout) to store. A recent work,
dynamic materialized views [134], materializes the frequently accessed rows dynamically.
However, the data is still stored in the standard row layout.

Log-structured databases, such as Hyder [15] and Rose [113], store data as a log.
Hyder runs on a cluster of servers with data-sharing architectures, i.e. having shared
access to a large pool of storage. As a result, Hyder achieves scale-out without parti-
tioning the data. Hyder also has an index structure, a search tree, which is marshaled
into the log. It supports both read and write operations on indexed log records. Simi-
larly, Rose uses log structured merged trees to provide better write and scan throughput
than B-trees. However, both Hyder and Rose do not consider storage structures other
than the log. OctopusDB goes much beyond these systems in the sense that it supports
arbitrary physical representations of data, the log being just one instance of it.

Extensible databases such as Exodus [25], Shore [26], and Genesis [13] enable features
to be added or removed from a general purpose DBMS in order to match the needs
of a target application more closely. For example, Exodus (later succeeded as Shore)
provided a flexible API for building an object-oriented database systems. However,
it is limited to file, B+tree, and R*tree storage structures. OctopusDB, on the other
hand, is not limited to a set of storage structures; it can create any arbitrary physical
representations of data. The Genesis project recognized the need for supporting new
storage structures in order to handle a variety of database applications. To do so, Genesis
takes a building block approach to DBMS construction: it provides software modules
which can be composed differently to produce different (customized) DBMSs. In contrast
to Genesis, OctopusDB is not recomposed from scratch each time it sees a different
workload. Rather, OctopusDB adapts to the workload over a period of time. On similar
lines as Genesis, MySQL [94] has a pluggable storage engine architecture, which allows
users to choose from the several available storage engines for their application. Each
storage engine is optimized for a specific application, e.g. InnoDB for OLTP, MyISAM for
read intensive web scale-out, NDB for high-availability clustering, and Archive storage
engine for data archiving. However, at any given time, MySQL allows for only a single
storage engine. In contrast, OctopusDB can make use of several storage views.

Chapter 2. Towards A One Size Fits All Database Architecture 41

Finally, self-tuning DBMSs [30] have looked at ways to automate index selection. We
believe that some of these techniques may be extended to support OctopusDB. At the
same time we believe that automatic storage view selection in OctopusDB is a hard
problem justifying a separate research study.

2.10 Conclusion

This chapter has proposed a unified database architecture which could support several
types of workloads. The primary storage structure of OctopusDB is a logical log. All
other storage structures are just secondary storage views on this log. Storage views
include row stores, column stores, indexes, but also windows on unbounded streams.
With OctopusDB we are inverting the traditional development of a DBMS: previously
there always was a specific store which was an irrevocable design-decision, built-in into
the DBMS. On top of that, an ARIES-style [90] log-based recovery was implemented
to guarantee atomicity and durability. In this chapter, we took exactly the opposite
approach: we started with the log (which is totally disconnected from any store) and if
necessary, we define optional SVs on that log suited for a particular workload.

We have presented several use-cases for OctopusDB. We have also provided a cost model
for querying, updating, and transforming SVs. A simulation and experiment with a
prototype of OctopusDB demonstrated the feasibility and efficiency of our idea. That
experiment also showed that OctopusDB may pick an SV adapting automatically to
a given workload to fulfill a query response time guarantee. OctopusDB has several
advantages: it unifies existing architectures into a single system, it has a simple interface,
and it reduces administration overhead. Several things may be explored in more detail
including some algorithmic details.

42

Chapter 3

Indexing and Join Techniques for
Large Scale Data Management

MapReduce is a computing paradigm that has gained a lot of attention in recent years
from industry and research. Unlike parallel DBMSs, MapReduce allows non-expert users
to run complex analytical tasks over very large data sets on very large clusters and clouds.
However, this comes at a price: MapReduce processes tasks in a scan-oriented fashion.
Hence, the performance of Hadoop — an open-source implementation of MapReduce —
often does not match the one of a well-configured parallel DBMS. In this chapter we
propose a new type of system named Hadoop++: it boosts task performance without
changing the Hadoop framework at all (Hadoop does not even ‘notice it’). To reach
this goal, rather than changing a working system (Hadoop), we inject our technology
at the right places through UDFs only and affect Hadoop from inside. This has three
important consequences: First, Hadoop++ significantly outperforms Hadoop. Second,
any future changes of Hadoop may directly be used with Hadoop++ without rewriting
any glue code. Third, Hadoop++ does not need to change the Hadoop interface. Our
experiments show the superiority of Hadoop++ over both Hadoop and HadoopDB for
tasks related to indexing and join processing.

3.1 Introduction

3.1.1 Background

Over the past three years MapReduce has attained considerable interest from both the
database and systems research community [5, 6, 22, 27, 34, 37, 38, 56, 76, 92, 99, 101,
119, 124, 132].

There is an ongoing debate on the advantages and disadvantages of MapReduce versus
parallel DBMSs [44, 46]. Especially, the slow task execution times of MapReduce are
frequently criticized. For instance, [101] showed that shared-nothing DBMSs outperform
MapReduce by a large factor in a variety of tasks.

Recently, some DBMS vendors have started to integrate MapReduce front-ends into
their systems including Aster, Greenplum, and Vertica. However, these systems do not
change the underlying execution system: they simply provide a MapReduce front-end to

43

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 44

a DBMS. Thus these systems are still databases. The same holds for a recent proposal
from VLDB 2009 [5]: HadoopDB. It combines techniques from DBMSs, Hive [124], and
Hadoop. In summary, HadoopDB can be viewed as a data distribution framework to
combine local DBMSs to form a shared-nothing DBMS. The results in [5] however show
that HadoopDB improves task processing times of Hadoop by a large factor to match
the ones of a shared-nothing DBMS.

3.1.2 Research Challenge

The approach followed by HadoopDB has severe drawbacks. First, it forces users to
use DBMSs. Installing and configuring a parallel DBMS, however, is a complex pro-
cess and a reason why users moved away from DBMS in the first place [101]. Second,
HadoopDB changes the interface to SQL. Again, one of the reasons of the popularity
of MapReduce/Hadoop is the simplicity of its programming model. This is not true for
HadoopDB. In fact, HadoopDB can be viewed as just another parallel DBMS. Third,
HadoopDB locally uses ACID-compliant DBMS engines. However, only the indexing
and join processing techniques of the local DBMSs are useful for read-only, MapReduce-
style analysis. Fourth, HadoopDB requires deep changes to glue together the Hadoop
and Hive frameworks. For instance, in HadoopDB local stores are replaced by local
DBMSs. Furthermore, these DBMSs are created outside Hadoop’s distributed file sys-
tem thus superseding the distribution mechanism of Hadoop. We believe that managing
these changes is non-trivial if any of the underlying Hadoop or Hive changes1.

Consequently, the research challenge we tackle in this chapter is as follows: is it possible
to build a system that: (1) keeps the interface of MapReduce/Hadoop, (2) approaches
parallel DBMSs in performance, and (3) does not change the underlying Hadoop frame-
work?

3.1.3 Our Solution

Overview. Our solution to this problem is a new type of system: Hadoop++. Hadoop++
operates exactly as MapReduce by passing the same key-value tuples to the map and
reduce functions. Similar to HadoopDB, Hadoop++ also allows us: (i) to perform
index accesses whenever a MapReduce job can exploit the use of indexes, and (ii) to co-
partition data so as to allow map tasks to compute joins results locally at query time.
However, we show that in terms of query processing Hadoop++ matches and sometimes
improves the query runtimes of HadoopDB. The beauty of our approach is that we
achieve this without changing the underlying Hadoop framework at all, i.e. without using
a SQL interface and without using local DBMSs as underlying engines. We believe that
this non-intrusive approach fits well with the simplicity philosophy of Hadoop.

Hadoop++ changes the internal layout of a split — a large horizontal partition of the
data — and/or feeds Hadoop with appropriate UDFs. However, Hadoop++ does not
change anything in the Hadoop framework.

1A simple example of this was the upgrade from Hadoop 0.19 to 0.20 which affected principal Hadoop
APIs.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 45

3.1.4 Contributions

In this chapter we make the following contributions:

(1.) MapReduce Expressiveness. We show that MapReduce and parallel DBMS
have the same expressiveness. To demonstrate this, we extend standard relational al-
gebra by a multimap operator mapping an input item to a set of output items. We
show that any task specified in MapReduce can be expressed by a query in extended
relational algebra. After that, we also show that any relational algebra plan may be
expressed in MapReduce. As a consequence, we conclude that both technologies have
the same expressiveness. (Section 3.2)
(2.) The Hadoop Plan. We demonstrate that Hadoop is nothing but a hard-coded,
operator-free, physical query execution plan where ten User Defined Functions block,
split, itemize, mem, map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query processing pipeline explicit
and represent it as a DB-style physical query execution plan (The Hadoop Plan). As a
consequence, we are then able to reason on that plan. (Section 3.3)
(3.) Trojan Index. We provide a non-invasive, DBMS-independent indexing technique
coined Trojan Index. A Trojan Index enriches logical input splits by bulkloaded read-
optimized indexes. Trojan Indexes are created at data load time and thus have no
penalty at query time. Notice, that in contrast to HadoopDB we neither change nor
replace the Hadoop framework at all to integrate our index, i.e. the Hadoop framework
is not aware of the Trojan Index. We achieve this by providing appropriate UDFs.
(Section 3.4)
(4.) Trojan Join. We provide a non-invasive, DBMS-independent join technique
coined Trojan Join. Trojan join allows us to co-partition the data at data load time.
Similarly to Trojan Indexes, Trojan Joins do neither require a DBMS nor SQL to do
so. Trojan Index and Trojan Join may be combined to create arbitrarily indexed and
co-partitioned data inside the same split. (Section 3.5)
(5.) Experimental comparison. To provide a fair experimental comparison, we im-
plemented all Trojan-techniques on top of Hadoop and coin the result Hadoop++. We
benchmark Hadoop++ against Hadoop as well as HadoopDB as proposed at VLDB
2009 [5]. As in [5] we used the benchmark from SIGMOD 2009 [101]. All experiments
are run on Amazon’s EC2 Cloud. Our results confirm that Hadoop++ outperforms
Hadoop and even HadoopDB for index and join-based tasks. (Section 5.6)

3.2 From Relational Algebra to MapReduce and Back

The goal of this section is to show that MapReduce and DBMSs have the same expres-
siveness. We show that any relational algebra expression can be expressed in MapRe-
duce. Vice versa any MapReduce task may be expressed in extended relational algebra.
We extend standard relational algebra by a multimap operator mapping an input item
to a set of output items. As a consequence, we conclude that both technologies have the
same expressiveness.

This is a formal argument and does not imply that plans have to be created physically
like this. First, we show how to map relational algebra operators to MapReduce (§ 3.2.1
to 3.2.5). Then, we show how to map any MapReduce program to relational algebra
(§ 3.2.6).

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 46

3.2.1 Mapping Relational Operators to MapReduce

We assume as inputs two relational input data sets T and S containing items that are
termed records. The schema of T is denoted sch(T) = (a1, .., act), sch(S) = (b1, .., bcs)
respectively where a1, .., act and b1, .., bcs are attributes of any domain. In case no schema
is known for the data, the schema simply consists of a single attribute containing the
byte content of the item to process. In the remainder of this chapter we assume that
input data sets are split into records according to the above definition. The subset of
attributes in sch(T) representing the key is named kT ⊆sch(T). The remaining attributes
sch(T) \ kT representing the value are named vT , hence sch(T) = kT ⊕ vT . This also
holds for S and we use vS and kS accordingly. Inputs and outputs to relational operators
are assumed to be duplicate-free sequences, i.e. duplicates are removed unless specified
otherwise (e.g. unionall). map is called for each input record. Key and value are passed
as separate parameters and a sequence of intermediate (key, value)-pairs is returned:

map(key k, value v) 7→ [(ik1, iv1), . . . , (ikm(k,v), ivm(k,v))].

The number of intermediate output records m(k, v) ≥ 0 may vary for different k and v.
Similarly, reduce is called for each distinct intermediate key ik. The set of intermediate
values ivs having that intermediate key is passed to reduce:

reduce(key ik, vset ivs) 7→ [ov1, .., ovr(ik,ivs)]

Thus each reduce function produces a sequence of output values ov1, .., ovr(ik,ivs) Again
the number of output values r(ik, ivs) ≥ 0 may vary for different inputs. In many
applications the output contains a single value only, i.e. r(ik, ivs) = 1 ∀ ik, ivs.

3.2.2 Unary operators

In the following we will show how to express relational algebra operators using MapRe-
duce. We use Z⇒ to denote how to map the left-hand side operator to a MapReduce job.
The most simple operator is π. It can be expressed in MapReduce as follows:

Projection (π).

πai1 ,..,ain
(T) Z⇒

(
map(key k, value v) 7→ [(prjai1 ,..,ain

(k ⊕ v), 1)]

reduce(key ik, vset ivs) 7→ [(ik)]

Here⊕ denotes that two attributes sets are concatenated to a new schema. prj() projects
a single record to attributes ai1 , .., ain . Thus π is realized in map by concatenating the
attributes of the key and the value, projecting to the desired attributes, and outputting
the resulting records as the intermediate key. As value we output “1”. reduce then
simply outputs the intermediate key. Recall, that reduce is only called once for each
intermediate key. Thus our definition of reduce removes all duplicates. Note that the
rename operator ρ may be defined analogously to π.

The selection operator may be expressed as follows.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 47

Selection (σ).

σP (T) Z⇒

8><>:map(key k, value v) 7→
(

[(k ⊕ v, 1)] if P (k ⊕ v),

none else.

reduce(key ik, vset ivs) 7→ [(ik)]

Here map examines each input record and passes it to the selection predicate P . If P
holds, [(k ⊕ v, 1)] is output. Otherwise nothing is output. reduce simply outputs the
intermediate key.

Grouping (Γ). We differentiate between grouping and aggregation. Grouping forms
groups of records belonging together. For instance, assume an input T with sch(T) =
{a1, a2} and T = {(3, 2), (2, 1), (1, 3), (2, 2), (3, 4), (1, 7)}. If we group T , we obtain
Γa1(T) = {(3, {2, 4}), (1, {3, 7}), (2, {2, 1})}. Only an additional aggregation would
transform each group in a2 into a new value. Hence, grouping may be applied with-
out aggregation.

Γa1,..,an (T) Z⇒

8><>:
map(key k, value v) 7→
[(prjai1 ,..,ain

(k ⊕ v), prjsch(T)\{ai1 ,..,ain}
(k ⊕ v))]

reduce(key ik, vset ivs) 7→ [(ik ⊕ ivs)]

This means map concatenates attributes of the key and the value and projects them to the
grouping attributes. These attributes are used as the intermediate key. All remaining
attributes form the intermediate value. reduce then outputs a single record for each
distinct intermediate key plus the set of values having that key.

Aggregation (γ). Aggregation can be done by applying an aggregation function
agg([iv1, . . . , ivn]) 7→ v in reduce. If those values were formed by a previous group-
ing operator, we obtain the desired result:

γagg(T) Z⇒
(
map(key k, value v) 7→ [(k, v)]

reduce(key ik, vset ivs) 7→ [(ik ⊕ agg(ivs))]

Another alternative is to combine both grouping and aggregation into a single MapRe-
duce task:

γagg
“

Γai1 ,..,ain
(T)
”

Z⇒

8><>:
map(key k, value v) 7→
[(prjai1 ,..,ain

(k ⊕ v), prjsch(T)\{ai1 ,..,ain}
(k ⊕ v))]

reduce(key ik, vset ivs) 7→ [(ik ⊕ agg(ivs))]

This means, we simply modify reduce to apply agg() to the output valueset. Note
that agg() may be any aggregate including trivial ones such as MIN, MAX, SUM, AVG, and
DISTINCT.

3.2.3 Binary Operators

MapReduce operates on a single input only. This means that a binary operator cannot
be modeled by considering two input files. Therefore, in the following we consider the
two inputs to be contained in a single file and denote this as T |S. When discussing
individual operators we denote this as T |S, i.e., T is processed before S. We use a
function input(k⊕v) 7→ {T |S} to determine whether k⊕v belongs to T or S. Technically,
this function may be implemented by attaching some metadata bit signaling its input to

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 48

each record. Recall that the precondition for union, intersect, and difference is sch(T)
= sch(S).

Union (∪). T ∪ S Z⇒ γdistinct
`
Γsch(T)(T |S)

´
.

This means, we express union as a grouping plus a following duplicate removal on inter-
mediate values. This works as both input sets are already contained in the same input
file.

Difference (\).

T \ S Z⇒

8>>><>>>:
map(key k, value v) 7→ [(k ⊕ v, 1)]

reduce(key ik, vset ivs) 7→(
[(ik)] if |ivs| = 1 ∧ input(ik) = T ,

none else.

This means, in map we consider all attributes to be intermediate keys. reduce tests
whether the size of the intermediate valueset ivs contains only a single “1” and ik
belongs to input T . Only if this holds, we output ik. Otherwise nothing is output.

Intersection (∩). Obviously intersection may be expressed as T \(T \S) resulting in two
MapReduce tasks. However, intersection can also be expressed in a single MapReduce
job:

T ∩ S Z⇒

8>>><>>>:
map(key k, value v) 7→ [(k ⊕ v, 1)]

reduce(key ik, vset ivs) 7→(
[(ik)] if |ivs| = 2,

none else.

This mapping is similar to difference, however we only output a record, if ivs contains
two “1”s. As both input sets are duplicate free, this may only hold if the record is
contained in both input sets.

Cross Product (×). Let hT () be a hash-function defined on the key kT of sch(T). Let
D > 0 be a constant. Then the cross product is defined as

T × S Z⇒

8>>>>>>>>>>>><>>>>>>>>>>>>:

map(key k, value v) 7→(
[(hT (k) mod D, k ⊕ v)] if input(k ⊕ v) = T ,

[(0, k ⊕ v), .., (D − 1, k ⊕ v)] if input(k ⊕ v) = S.

reduce(key ik, vset ivs) 7→h
crossproduct(Tik, S) |
Tik = {iv | iv ∈ ivs ∧ input(iv) = T},
S = {iv | iv ∈ ivs ∧ input(iv) = S}

i

Here map creates a disjoint partitioning on input T by assigning each record from T a
number in 0, .., D− 1. The records from S are replicated by outputting D intermediate
records covering all intermediate keys from 0, .., D−1. The purpose of this partitioning is
to allow for D reduce function calls and thus a concurrent execution on different nodes2.
Inside a reduce call the input set ivs is split into two subsets Tik and S. On these sets
we then compute the cross product using the local function crossproduct.

2Note that hT is orthogonal to the partitioning function sh (§3.3). The former hashes records to
reduce functions, the latter hashes reduce functions to reduce tasks.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 49

Join (./). Joins may be expressed as σPJ(T × S) resulting in two MapReduce tasks
where one is based on a cross product. Obviously this does not scale for large input sets.
We therefore show below a more efficient variant.

T ./PJ(T,S) S Z⇒

8>>>>>>>>>>>><>>>>>>>>>>>>:

map(key k, value v) 7→(
[(prjai

(k ⊕ v), k ⊕ v)] if input(k ⊕ v) = T ,

[(prjbj
(k ⊕ v), k ⊕ v)] if input(k ⊕ v) = S.

reduce(key ik, vset ivs) 7→h
crossproduct(Tik, Sik) |
Tik = {iv | iv ∈ ivs ∧ input(iv) = T},
Sik = {iv | iv ∈ ivs ∧ input(iv) = S}

i

This means that map re-partitions both inputs T and S into co-partitions Tik and Sik
where the join attributes inside a copartition have the same value. It then suffices to call
crossproduct for these copartitions. Note that this is similar to a standard relational
sort-merge join in the following way: it has to perform a nested-loop, i.e. cross product,
on the records having the same value for their join attribute. Also note that for those
cases where the join attribute is skewed in a way that the input becomes too large to
fit into main memory, the call to crossproduct may perform a block-based nested-loop
join similar to DBMSs.

3.2.4 Extended Operators

We discuss an additional operator that does not effect the expressiveness of MapReduce
but is useful in the following discussion.

Sort.

sortai1 ,..,ain
(T) Z⇒

8><>:
map(key k, value v) 7→
[(prjai1 ,..,ain

(k ⊕ v), prjsch(T)\{ai1 ,..,ain}
(k ⊕ v))]

reduce(key ik, vset ivs) 7→ [{ik} × ivs]

This mapping rule is somewhat surprising as neither map nor reduce perform an actual
sort operation. The correctness of this mapping rule is guaranteed as the MapReduce
and Hadoop frameworks preserve interesting orders [45]. Finally, let us stress that all
other operators (e.g. division, and outer-joins) may be composed by the above operators.

3.2.5 Relational DAGs

So far we have considered single operators and provided rules to map them to MapReduce
jobs. However, relational algebra expressions typically consist of multiple operators
forming a Directed Acyclic Graph (DAG). These DAGs may be mapped to a cascade
of MapReduce jobs by applying our rewrite rules recursively. Outputs of subplans are
simply considered input files to the next operator. Thus each operator triggers a separate
MapReduce job. For instance, T ./ (S ./ U) is computed by executing a MapReduce
job of §3.5 for S and U and then executing another MapReduce job on the result and T .
Obviously these plans are far from optimal and may be improved in several ways. An
upcoming paper discusses how to compute multi-way joins [6]. However those joins do
not use co-partitioning as Trojan Join. As discussed above this has severe performance
penalties. Therefore it would be interesting to extend our Trojan Join to multiway-joins.
We will research this idea as part of future work.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 50

3.2.6 Mapping MapReduce to Relational Algebra

The main idea of MapReduce is to perform an aggregation based on two user-defined
functions. The purpose of the first function (map) is to define the items and grouping key,
the purpose of the second function (reduce) is to define the aggregation function and
the output format. One peculiarity here is that both functions may return a sequence
of records. To express this we require a special operator that however is straightforward
to integrate into an existing relational algebra: a multimap operator.

multimap operator. mmapf(T) 7→ T ′. For each input item t ∈ T this operator applies
a function f(t) generating zero, one, or multiple output items. All output items have
the same schema sch(T ′). Function f takes as its argument the entire tuple t, however
the attributes of t may be passed as different arguments.

Using this operator we are able to define the backmapping rule for any MapReduce job
as follows:

MapReduce Given an input set T and two UDFs, map and reduce, any MapReduce
task can be expressed in relational algebra as:

MRmap,reduce(T) Z⇒ mmapreduce

(
Γik
(
mmapmap(T)

))
.

This means, logically any MapReduce job can be expressed as a multimap operator
mmapmap followed by a grouping on the intermediate key ik and a mmapmap using reduce.
Notice that the main difference of γ and mmapreduce is that the former creates exactly one
output value for an input group whereas the latter may create 0, 1, or multiple output
values for an input group. Thus, in general mmapreduce may aggregate the input value
set similarly to γ, but it does not have to.

(3, 3) (3, 4)

(2, 1) (2, 2) (1⊕ {7} ⊕ 7)

(1, 6) mmapmap (1, 7) Γa1 (2, {2, 1}) mmapreduce (1⊕ {7, 3} ⊕ 10)

(2, 0) −→ (2, 1) −→ (1, {7, 3}) −→ (3⊕ {4} ⊕ 4)

(3, 1) (3, 2) (3, {2, 4}) (3⊕ {2, 4} ⊕ 6)

(1, 2) (1, 3)

Figure 3.1: MapReduce processing in relational algebra

Figure 3.1 shows an example for an input set T having six tuples, sch(T) = (a1, a2)
where kT = [a1] and vT = [a2]. The map function increases all values by one, i.e. map :=
[k, v+1]. The results are then grouped (Γa1) and fed into reduce which creates all subsets
of value sets having a sum greater three, i.e. reduce := [ik⊕ vset′⊕ sum(vset′) | vset′ ⊆
vset ∧ sum(vset′) > 3]. Each output value is the concatenation of the intermediate key,
the subset and its sum. For instance, for tuple (2, {2, 1}) all subsets have a sum smaller
or equal three. Thus no output is produced. For (1, {7, 3}) two subsets {7} and {7, 3}
have a sum greater than three. Thus two output tuples (1⊕{7}⊕7) and (1⊕{7, 3}⊕10)
are produced. Similarly for (3, {2, 4}) two output tuples are produced.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 51

3.3 Hadoop as a Physical Query Execution Plan

In this section we examine how Hadoop computes a MapReduce task. We have an-
alyzed Yahoo!’s Hadoop version 0.19. Note that Hadoop uses a hard-coded execution
pipeline. No operator-model is used. However Hadoop’s query execution strategy may
be expressed as a physical operator DAG. To our knowledge, this thesis is the first to
do so in that detail and we term it The Hadoop Plan. Based on this we then reason on
The Hadoop Plan.

3.3.1 The Hadoop Plan

The Hadoop Plan is shaped by three user-defined parameters M , R, and P setting the
number of mappers, reducers, and data nodes, respectively [45]. An example for a plan
with four mappers (M = 4), two reducers (R = 2), and four data nodes (P = 4) is
shown in Figure 3.2. We observe, that The Hadoop Plan consists of a subplan L () and
P subplans H1–H4 () which correspond to the inital load phase (HDFS) into Hadoop’s
distributed file system. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first load the data into
the distributed file system. This is done by partitioning the input T horizontally into
disjoint subsets T1, . . . , Tb. See the physical partitioning operator PPart in subplan L.
In the example b = 6, i.e. we obtain subsets T1, . . . , T6. These subsets are called blocks.
The partitioning function block partitions the input T based on the block size. Each
block is then replicated (Replicate). The default number of replicas used by Hadoop
is 3, but this may be configured. For presentation reasons, in the example we replicate
each block only once. The figure shows 4 different data nodes with subplans H1–H4.
Replicas are stored on different nodes in the network (Fetch and Store). Hadoop tries
to store replicas of the same block on different nodes.

Map Phase. In the map phase each map subplan M1–M4 reads a subset of the data
called a split3 from HDFS. A split is a logical concept typically comprising one or more
blocks. This assignment is defined by UDF split. In the example, the split assigned
to M1 consists of two blocks which may both be retrieved from subplan H1. Subplan
M1 unions the input blocks T1 and T5 and breaks them into records (RecRead). The
latter operator uses a UDF itemize that defines how a split is divided into items.
Then subplan M1 calls map on each item and passes the output to a PPart operator.
This operator divides the output into so-called spills based on a partitioning UDF mem.
By default mem creates spills of size 80% of the available main memory. Each spill is
logically partitioned (LPart) into different regions containing data belonging to different
reducers. For each tuple a shuffle UDF sh determines its reducer4. We use � to visualize
the logically partitioned stream. In the example — as we have only two reducers — the
stream is partitioned into two substreams only. Each logical partition is then sorted
(Sort) respecting the sort order defined by UDF cmp. After that the data is grouped

3Not to be confused with spills. See below. We use the terminology introduced in [45].
4By default MapReduce (and also Hadoop) implement UDF sh using a hash partitioning on the

intermediate key [45].

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 52

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T ′1

. . .

R2

T ′2

D
at

a
L

oa
d

Ph
as

e
M

ap
Ph

as
e

Sh
uffl

e
Ph

as
e

R
ed

uc
e

Ph
as

e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1–H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks different. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 53

creates less output data than other subplans (here: M1). In this case all intermediate
data may be kept in main memory in that subplan. In any case all output data will be
completely materialized on local disk (Store).

Shuffle Phase. The shuffle phase redistributes data using a partitioning UDF sh. This
is done as follows: each reducer subplan (R1 and R2 in the example) fetches the data
from the mapper subplans, i.e. each reduce subplan has a Fetch operator for each mapper
subplan. Hence, in this example we have 2 × 4 = 8 Fetch operators (see for instance
R1). For each mapper subplan there is a PPart operator with R outgoing arrows →.
This means, the streams do not represent logical partitions anymore but are physically
partitioned (see for instance M1). The reducer subplans retrieve the input files entirely
from the mapper subplans and try to store them in main memory in a Buffer before
continuing the plan. Note that the retrieval of the input to the reduce phase is entirely
blocking. If the input data does not fit into main memory, those files will be stored on
disk in the reducer subplans. For instance, in R1, the input data from M1 and M2 is
buffered on disk, whereas the input from M3 and M4 is directly merged (Merge) and
then stored. After that the input from M1 and M2 and the merged input from M3 and
M4 is read from disk and merged. Note that if the input to a reducer is already locally
available at the reducer node, Fetch may be skipped. This may only happen if the
previous mapper subplan was executed on the same node. Also notice that PPart uses
the same shuffle UDF sh as used inside a mapper subplan.

Reduce Phase. Only after a single output stream can be produced, the actual reduce
phase starts. The result of the Merge is grouped (SortGrp) and for each group MMap
calls reduce. Finally, the result is stored on disk (Store). The MapReduce framework
does not provide a single result output file but keeps one output file per reducer. Thus
the result of MapReduce is the union of those files. Notice that all UDFs are optional
except map. In case reduce was not specified, the reduce and shuffle phases may be
skipped.

3.3.2 Discussion
(1.) In general, by using a hard-coded, operator-free, query-execution pipeline, Hadoop
makes it impossible to use other more efficient plans (possibly computed depending on
current workload, data distribution, etc.)
(2.) At the mapper side, a full-table scan is used as the only access method on the input
data. No index access is provided.
(3.) Grouping is implemented by sorting.
(4.) Several MMap operators executing combine() functions (which usually perform the
same as a reduce() function [45]) are inserted into the merge tree. This is an imple-
mentation of early duplicate removal and aggregation [16, 131]. For merges with less
than three input spills no early aggregation is performed.
(5.) The Hadoop Plan is highly customizable by exchanging one of the ten UDFs block,
split, itemize, mem, map, sh, cmp, grp, combine, and reduce.

In summary, one could consider The Hadoop Plan a distributed external merge sort
where the run (=spill) generation and first level merge is executed in the mapper sub-
plan. Higher level and final merges are executed in the reducer subplans. The sort
operation is mainly performed to be able to do a sort-based grouping — but this in-
teresting order may also be exploited for applications bulkloading indexes (e.g. inverted

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 54

lists or B+-trees). The initial horizontal partitioning into disjoint, equally-sized subsets
resembles the strategy followed by shared-nothing DBMSs: in a first phase, the different
subsets can be processed fully independently. In a second phase, intermediate results
are horizontally repartitioned among the different reducers and then merged into the
final result sets.

3.4 Trojan Index

The Hadoop Plan as shown in Figure 3.2 uses a Scan operator to read data from disk.
Currently, Hadoop does not provide index access due to the lack of a priori knowledge
of schema and the MapReduce jobs being executed. In contrast, DBMSs require users
to specify the schema; indexes may then be added on demand. However, if we know
the schema and the anticipated MapReduce jobs, we may create appropriate indexes in
Hadoop as well.

Trojan Index is our solution to integrate indexing capability into Hadoop. The salient
features of our approach are as follows:

(1.) No External Library or Engine: Trojan Index integrates indexing capability na-
tively into Hadoop without imposing a distributed SQL-query engine on top of it.
(2.) Non-Invasive: We do not change the existing Hadoop framework. Our index struc-
ture is implemented by providing the right UDFs.
(3.) Optional Access Path: Trojan Index provides an optional index access path which
can be used for selective MapReduce jobs. The scan access path can still be used for
other MapReduce jobs.
(4.) Seamless Splitting : Data indexing adds an index overhead (∼ 8MB for 1GB of
indexed data) for each data split. The new logical split includes the data as well as the
index. Our approach takes care of automatically splitting indexed data at logical split
boundaries. Still data and indexes may be kept in different physical objects, e.g. if the
index is not required for a particular task.
(5.) Partial Index : Trojan Index need not be built on the entire split; it can be built
on any contiguous subset of the split as well. This is helpful when indexing one out of
several relations, co-grouped in the same split.
(6.) Multiple Indexes: Several Trojan Indexes can be built on the same split. However,
only one of them can be the primary index. During query processing, an appropriate
index can be chosen for data access.

We illustrate the core idea of Trojan Index in Figure 3.3. For each split of data (SData T)
a covering index (Trojan Index) is built. Additionally, a header (H) is added. It contains
indexed data size, index size, first key, last key and number of records. Finally, a split
footer (F) is used to identify the split boundary. A user can configure the split size
(SData T) while loading the data. We discuss the Trojan Index creation and subsequent
query processing below.

3.4.1 Index Creation

Trojan Index is a covering index consisting of a sparse directory over the sorted split
data. This directory is represented using a cache-conscious CSS-tree [108] with the leaf

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 55

SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 3.3: Indexed Data Layout

pointers pointing to pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:

Index.

Indexai (T) Z⇒

8>>><>>>:
map(key k, value v) 7→
[(getSplitID()⊕ prjai

(k ⊕ v), k ⊕ v)]

reduce(key ik, vset ivs) 7→
[(ivs⊕ indexBuilderai (ivs))]

Here, prjai
denotes a projection to attribute ai and ⊕ denotes that two attribute sets are

concatenated to a new schema. Figure 3.4(a) shows the MapReduce plan corresponding
to the indexing operation defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into splits as shown in the
figure. The itemize.next() function reads {offset,record}-pairs and the map emits
{splitID+a,record} as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the index attribute; record
is a value containing all attributes of the record.

We need to re-partition the composite keys emitted from the mappers such that the
reducers receive almost the same amount of data. We do this by supplying a hash
partitioning function (UDF sh in The Hadoop Plan) that re-partitions records by hashing
only on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) 7→ k.splitID % numPartitions (3.1)

To construct a clustered Trojan Index, the data needs to be sorted on the index attribute
a. For this we exploit the interesting orders created by the MapReduce framework [45].
This is faster than performing a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the second part (the
index attribute a) of the composite key.

cmp(key k1, key k2) 7→ compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to preserve the split in each reducer
call. For this we provide a grouping function (UDF grp) that groups tuples based on
the split identifier portion of the composite key.

grp(key k1, key k2) 7→ compare(k1.splitID , k2.splitID) (3.2)

reduce, shown in Figure 3.4(a), has a local indexBuilder function. which builds the
Trojan Index on the index attribute of the sorted data. reduce emits the set of values
concatenated with the Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 56

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial differences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more difficult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into different
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword ⊕ postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.

T

PhysPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

H2

...

H3 Fetch Fetch Fetch

Store Store Store

Scan

H4

...

M1 Union

RecReaditem

MMapmap

PhysPartmem

LogPartsh LogPartsh LogPartsh

Sort Sort Sort

SortGrp SortGrp SortGrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Merge

SortGrp

MMapcombine

Store

PhysPartsh

M2

...

M3

RecReaditem

MMapmap

LogPartsh

Sort

SortGrp

MMapcombine

Store

PhysPartsh

M4

...

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Merge

SortGrp

MMapreduce

R1 Store

T ′1

...

R2

T ′2

lo
ad

ph
as

e
(H

FS
)

m
ap

ph
as

e
sh

uffl
e

ph
as

e
re

du
ce

ph
as

e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

3. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

FIX TEXT TO INCLUDE RECORD READER OPERATOR
FIX TEXT TO CONSIDER SIMPLIFIED FIGURE
DID WE INTRODUCE ALL OPERATORS?
In this section we examine how Hadoop computes a MapRe-

duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two

3

IndexScan IndexScan

Map

Reduce

Distributed
File System

Distributed
File System

{offset, record}

{splitID+a, record}
Index

Builder

Input Splits
of Relation T

Map

Reduce

{offset, record}

{a/b, record}

Distributed
File System Input Splits

of Relation S
Input Splits

of Relation T

Distributed
File System

DataSet

... ...

Indexed Co-Partitioned Split i

SData T SData SHt Hs FTrojan Index Hi
SData T SData SHt Hs F

DataSet

... ...

Rearranged Co-Partitioned Split i

SData T H F... ...

DataSet

Indexed Split i

Trojan Index SData Tk SData Sk F

DataSet

... ...

Co-Partitioned Split i

co-group j co-group j+1

Ht Hs Ht HsSData Tk+1 SData Sk+1

(a) Indexing

Map

Reduce

{offset, record}

{joinvalue, record}

Distributed
File System Input Splits

of Relation S
Input Splits

of Relation T

Distributed
File System

(b) Co-partitioning

Figure 3.4: MapReduce Plans

Algorithm 3.1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long offset = file.getLength();6
while offset > 0 do7

in.seek(offset-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
offset -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,offset);12
FileSplit newSplit = CreateSplit(path,offset,splitSize,blocks);13
splits.add(newSplit);14

end15

end16
return splits;17

3.4.2 Query Processing

Consider a query q referencing an indexed dataset T . We identify the split boundaries
using footer F and create a map task for each split. Algorithm 3.1 shows the split
UDF that we provide for creating the splits. For a given job, we retrieve and iterate
over all data files (Lines 2–3). For each file we retrieve its path and the input stream
(Lines 4–5). The input stream is used to seek and read the split footers, i.e. we do not
scan the entire data here. We start looking for footers from the end (Lines 6–8) and
retrieve the split size from them (Lines 9–10). We set the offset to the beginning of the
split (Line 11) and use it to retrieve block locations (Line 12) and to create a logical
split (Line 13). We add the newly created split to the list of logical splits (Line 14) and
repeat the process until all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 57

Algorithm 3.2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int offset;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type == POINT CONTAINED then9

Index i = ReadIndex(split);10
offset = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
offset = splitStart;13

else14
// NOT CONTAINED, skip the split;15
offset = splitEnd;16

end17
Seek(offset);18

Algorithm 3.3: Trojan Index itemize.next UDF
Input : KeyType key, ValueType value
Output: has more records

if offset < splitEnd then1
Record nextRecord = ReadNextRecord(split);2
offset += nextRecord.size();3
if nextRecord.key < highKey then4

SetKeyValue(key, value, nextRecord);5
return true;6

end7

end8
return false;9

Algorithm 3.2 shows the itemize UDF that we provide for index scan. We read the
low and the high selection keys (Lines 1–2) from the job configuration and the split
boundary offsets (Lines 3–4) from the split configuration. Thereafter, we first read the
index header (Line 5) and evaluate the overlap type (Line 6) i.e. the portion of the split
data relevant to the query. Only if the split contains the low key (Line 8), we read the
index (Line 9) and compute the low key offset within the split (Line 10). Otherwise, if
the split contains the high key or the selection range spans the split (Line 11), we set the
offset to the beginning of the split (Line 12); else we skip the split entirely (Lines 13–
15). Finally, we seek the offset within the split (Line 17) to start reading data record
by record. Algorithm 3.3 shows the method to get the next record from the data split.
We check if the split offset is within the end of split (Line 1) and index key value of the
next record is less than the high key (Line 3). If yes, we set the key and the value to be
fed to the mapper and return true (Lines 4-5), indicating there could be more records.
Else, we return false (Line 8).

Note that the use of the Trojan Index is optional and depends upon the query predicate.
Thus, both full and index scan are possible over the same data. In addition, indexes and
data may be kept in separate physical blocks, i.e. UDF split may compose physical
blocks into logical splits suited for a particular task.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 58

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial differences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more difficult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into different
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword ⊕ postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.

T

PhysPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

H2

...

H3 Fetch Fetch Fetch

Store Store Store

Scan

H4

...

M1 Union

RecReaditem

MMapmap

PhysPartmem

LogPartsh LogPartsh LogPartsh

Sort Sort Sort

SortGrp SortGrp SortGrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Merge

SortGrp

MMapcombine

Store

PhysPartsh

M2

...

M3

RecReaditem

MMapmap

LogPartsh

Sort

SortGrp

MMapcombine

Store

PhysPartsh

M4

...

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Merge

SortGrp

MMapreduce

R1 Store

T ′1

...

R2

T ′2

lo
ad

ph
as

e
(H

FS
)

m
ap

ph
as

e
sh

uffl
e

ph
as

e
re

du
ce

ph
as

e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

3. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

FIX TEXT TO INCLUDE RECORD READER OPERATOR
FIX TEXT TO CONSIDER SIMPLIFIED FIGURE
DID WE INTRODUCE ALL OPERATORS?
In this section we examine how Hadoop computes a MapRe-

duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two

3

IndexScan IndexScan

Map

Reduce

Distributed
File System

Distributed
File System

{offset, record}

{splitID+a, record}
Index

Builder

Input Splits
of Relation T

Map

Reduce

{offset, record}

{a/b, record}

Distributed
File System Input Splits

of Relation S
Input Splits

of Relation T

Distributed
File System

DataSet

... ...

Indexed Co-Partitioned Split i

SData T SData SHt Hs FTrojan Index Hi
SData T SData SHt Hs F

DataSet

... ...

Rearranged Co-Partitioned Split i

SData T H F... ...

DataSet

Indexed Split i

Trojan Index SData Tk SData Sk F

DataSet

... ...

Co-Partitioned Split i

co-group j co-group j+1

Ht Hs Ht HsSData Tk+1 SData Sk+1

Figure 3.5: Co-partitioned Data Layout

3.5 Trojan Join

Efficient join processing is one of the most important features of DBMSs. In MapReduce,
two datasets are usually joined using re-partitioning: partitioning records by join key
in the map phase and grouping records with the same key in the reduce phase. The
reducer joins the records in each key-based group. This re-partitioned join corresponds
to the join detailed in Section 3.2.3. Yang et al. [34] proposed to extend MapReduce by
a third Merge phase. The Merge phase is a join operator which follows the reduce phase
and gets sorted results from it. Afrate and Ullman [6] proposed techniques to perform
multiway joins in a single MapReduce job. However, all of the above approaches perform
the join operation in the reduce phase and hence transfer a large amount of data trough
the network — which is a potential bottleneck. Moreover, these approaches do not
exploit any schema-knowledge, which is often available in advance for many relational-
style tasks. Furthermore, join conditions in a schema are very unlikely to change — the
set of tables requested in a join query may however change.

Trojan Join is our solution to support more effective join processing in Hadoop. We
assume that we know the schema and the expected workload, similar to DBMS and
HadoopDB. The core idea is to co-partition the data at load time — i.e. given two
input relations, we apply the same partitioning function on the join attributes of both
the relations at data loading time — and place the co-group pairs, having the same
join key from the two relations, on the same split and hence on the same node. As
a result, joins are now processed locally within each node at query time — a feature
that is also explored by SQL-DBMSs. Moreover, we are free to group the data on any
attribute other than the join attribute in the same MapReduce job. The salient features
of Trojan Join are as follows:

(1.) Non-Invasive. We do not change the existing Hadoop framework. We only change
the internal representation of a data split.
(2.) Seamless Splitting. When co-grouping the data, we create three headers per data
split: two for indicating the boundaries of data belonging to different relations; one for
indicating the boundaries of the logical split. Trojan Join automatically splits data at
logical split boundaries that are opaque to the user.
(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to join relations in the
map phase itself exploiting co-partitioned data. This avoids the shuffle phase, which is
typically quite costly from the network traffic perspective.
(4.) Trojan Index Compatibility. Trojan indexes may freely be combined with Trojan
Joins. We detail this aspect in Section 3.5.3.

We illustrate the data layout for Trojan Join in Figure 3.5. Each split is separated by
split footer (F) and contains data from two relations T S (depicted green and blue in
Figure 3.5). We use two headers Ht and Hs, one for each relation, to indicate the size of

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 59

each co-partition6. Given an equi-join predicate PJ(T, S) = (T.ai = S.bj), the Trojan
Join proceeds in two phases: the data co-partitioning and query processing phases.

3.5.1 Data Co-Partitioning

Trojan Join co-partitions two relations in order to perform join queries using map tasks
only. Formally, we can express co-partitioning as:

CoPartitionai,bj
(T, S) Z⇒

8>>><>>>:
map(key k, value v) 7→(

[(prjai
(k ⊕ v), k ⊕ v)] if input(k ⊕ v) = T ,

[(prjbj
(k ⊕ v), k ⊕ v)] if input(k ⊕ v) = S.

reduce(key ik, vset ivs) 7→ [({ik} × ivs)]

Here, the helper input() function identifies whether an input record belongs to T or S.
Figure 3.4(b) shows the MapReduce plan for co-partitioning the data. This works as
follows. The MapReduce client partitions the data of both relations into splits as shown
in the figure. For each record in an input split, itemize.next() receives the offset as
key and the record as value and map emits {joinvalue, record} as key-value pairs.
Here joinvalue is the key having value either ai or bj depending on the lineage; record
contains all attributes of the record. For re-partitioning, sorting and grouping the key-
value pairs we use the entire key i.e. we use the default sh, cmp, and grp UDFs. As
a result, each call to reduce receives the set of records having the same join attribute
value. The final output of reduce is a virtual split containing several co-groups as shown
in Figure 4.

3.5.2 Query Processing

A Trojan Join between relations T and S can be expressed as the re-partitioned join
operator shown in Section 3.2.3 replacing map with an identity function. Though join
processing in this manner is a considerable improvement, we still need to shuffle the
data. However, we actually do not need the shuffle phase as relations T and S were
already co-partitioned. Therefore, we present an optimized variant of this join which
requires only a single map without a reduce. Hence, Hadoop++ may skip both the

6Notice that one can also store each relation in separate physical blocks just like a DBMS. Extending
our approach to this is straightforward: we simply need to provide a UDF split. This also holds for
our Trojan Index proposal.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 60

Algorithm 3.4: Trojan Join itemize.next UDF
Input : KeyType key, ValueType value
Output: has more records

if offset < splitEnd then1
if offset == nextHeaderOffset then2

Header header = ReadHeader(split);3
offset += header.size();4
nextHeaderOffset = offset + header.getSplitSize();5

end6
Record nextRecord = ReadNextRecord(split);7
offset += nextRecord.size();8
SetKeyValue(key, value, nextRecord);9
return true;10

end11
return false;12

shuffle and the reduce phase. The map function in Trojan Join is shown below:

T ./PJ(T,S) S Z⇒

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

set β = ∅; key lk = null;

map(key k, value v) 7→8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

if (lk != k) {
if !first incoming pair(k, v) {
output :

h
crossproduct(T ′lk, S

′
lk) |

T ′lk = {(prjai
(k ⊕ v), k ⊕ v) | (k ⊕ v) ∈ β ∧ if input(k ⊕ v) = T},

S′lk = {(prjbj
(k ⊕ v), k ⊕ v) | (k ⊕ v) ∈ β ∧ if input(k ⊕ v) = S}

i
}
β = {k ⊕ v}, lk = k

}
else {
output : none

β = β ∪ {k ⊕ v}
}

To process a join query, our approach automatically splits the required data by identi-
fying the split boundaries — using the footer F — and creates a map task for each split.
For this, we supply a split UDF that identifies such boundaries (see Algorithm 3.1).
We also supply a UDF itemize that allows mappers to skip headers in input splits. Al-
gorithm 3.4 shows how UDF itemize computes the next key-value pairs (‘items’). Here
offset, splitEnd, and header are global variables defined in the itemize.initialize
function (similar to Algorithm 3.2). We check if the split offset is contained in this
split (Line 1). If yes, we check if the current offset points to a header (Line 2) so as
to skip the header (Lines 3–5). We then set the key and the value to be fed to map and
return true (Lines 7–10), indicating there could be more records. In case the offset is
not within the end of split, we return false (Line 12). This indicates that there are no
more records.

The map function shown before starts by initializing a co-group with the first (k, v)-pair.
Thereafter, it keeps collecting in β the records belonging to the same co-group i.e. the
same join attribute values. A different join attribute value indicates the beginning of
the next co-group in the data. Here, we make two assumptions: first, records with the
same join attribute value arrive contiguously, which is realistic since the relations are co-
grouped; second, in contrast to previous MapReduce jobs, the map function maintains
a state (β, lk) to identify the co-group boundaries within a split. When a new co-group
starts, the map function classifies the records in β into relations T ′ and S′ based on their
lineage and performs the cross product between them by calling the local crossproduct

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 61

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial differences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more difficult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into different
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword ⊕ postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.

T

PhysPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

H2

...

H3 Fetch Fetch Fetch

Store Store Store

Scan

H4

...

M1 Union

RecReaditem

MMapmap

PhysPartmem

LogPartsh LogPartsh LogPartsh

Sort Sort Sort

SortGrp SortGrp SortGrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Merge

SortGrp

MMapcombine

Store

PhysPartsh

M2

...

M3

RecReaditem

MMapmap

LogPartsh

Sort

SortGrp

MMapcombine

Store

PhysPartsh

M4

...

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Merge

SortGrp

MMapreduce

R1 Store

T ′1

...

R2

T ′2

lo
ad

ph
as

e
(H

FS
)

m
ap

ph
as

e
sh

uffl
e

ph
as

e
re

du
ce

ph
as

e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

3. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

FIX TEXT TO INCLUDE RECORD READER OPERATOR
FIX TEXT TO CONSIDER SIMPLIFIED FIGURE
DID WE INTRODUCE ALL OPERATORS?
In this section we examine how Hadoop computes a MapRe-

duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two

3

IndexScan IndexScan

Map

Reduce

Distributed
File System

Distributed
File System

{offset, record}

{splitID+a, record}
Index

Builder

Input Splits
of Relation T

Map

Reduce

{offset, record}

{a/b, record}

Distributed
File System Input Splits

of Relation S
Input Splits

of Relation T

Distributed
File System

DataSet

... ...

Indexed Co-Partitioned Split i

SData T SData SHt Hs FTrojan Index Hi
SData T SData SHt Hs F

DataSet

... ...

Rearranged Co-Partitioned Split i

SData T H F... ...

DataSet

Indexed Split i

Trojan Index
SData Tk SData Sk F

DataSet

... ...

Co-Partitioned Split i

co-group j co-group j+1

Ht Hs Ht HsSData Tk+1 SData Sk+1

Figure 3.6: Indexed Co-partitioned Data Layout

function. The result is emitted and β is reset to start collecting records for the next co-
group. This process is repeated until there is no more incoming (k, v)-pair. To perform
the cross product on the last co-group, the map injects an end-of-split record after
the last record in each data split marking the end of that split. The reduce may then
output the join result over the last co-group. Notice that the final result of all of these
co-partitioned joins is exactly the same as the result produced by the re-partitioned join.

3.5.3 Trojan Index over Co-Partitioned Data

We can also build indexes on co-partitioned data. Trojan Join may be combined with
both unclustered and clustered Trojan Indexes. For instance, we can build an unclus-
tered Trojan Index over any attribute without changing the co-grouped data layout. Al-
ternatively, we can build a clustered Trojan Index by internally sorting the co-partitioned
data based on the index attribute. The internal sorting process is required only when
the index attribute is different from the join attribute. For example, assume relations
T and S are co-partitioned and suppose we want to build a clustered Trojan Index over
a given attribute of relation T . To achieve this, we run the indexing MapReduce job
as described in Section 3.4.1. This job sorts the records from T based on the index
attribute and stores them contiguously within the split. The resulting data layout is
illustrated in Figure 3.6. Each split is separated by a split footer (F) and has a header
per relation (Ht and Hs), indicating the size of each co-partition. In addition, a clus-
tered Trojan Index and its header (Hi) is stored after the indexed relation (T) in the
split. At query time, we supply the UDF itemize function as before. However, we set
the constructor of itemize function as in Algorithm 3.3 in order to provide index scan.
Adapting Trojan Join processing for indexed data is straightforward.

3.6 Experiments

We evaluate the performance of Hadoop++ (i.e. Hadoop including Trojan Index and
Trojan Join) and compare it with Hadoop and HadoopDB. Our main goal in the ex-
periments is to show that we can reach similar or better performance than Hadoop and
HadoopDB without relying on local DBMSs. We also show in §3.6.4 that Hadoop++
still inherits Hadoop’s fault-tolerance performance.

3.6.1 System Setup

Hadoop. For our experiments, we realized the following changes to the default config-
uration settings: (1) we stored data into the Hadoop Distributed File Systems (HDFS)
using 256MB data blocks, (2) we allowed each task tracker to run with a maximum heap

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 62

size of 1024MB, (3) we increased the sort buffer to 200MB, (4) Hadoop was allowed to
reuse the task JVM executor instead of restarting a new process per task, (5) we used
100 concurrent threads for merging intermediate results, (6) we allowed a node to con-
currently run two map tasks and a single reduce task, and (7) we set HDFS replication
to 1 as done in [5].

Hadoop++ is an improved version of Hadoop that incorporates support for index-
scans and co-partitioning as discussed in §3.4 and §3.5. We use the same configuration
settings as for Hadoop, but we allow it to read data in binary format, except for one
of our benchmarks (UDF task). A binary record is composed of the data itself and a
header containing the lineage of the record and the offset of each attribute.

HadoopDB is a hybrid system combining Hadoop, HBase, and single instance DBMSs,
e.g. Postgres, into a system somewhat similar to a PDBMS. We use PostgreSQL 8.4 as
local database and increase the memory for shared buffers to 512 MB and the working
memory to 1 GB. As in [5], we do not use PostgreSQL’s data compression feature, we
set data replication to 1 as done in [5].

3.6.2 Benchmark Setup

We ran all our experiments on Amazon EC2 large instances in US-east location. Each
large instance has 4 EC2 compute units (2 virtual cores), 7.5 GB of main memory,
850 GB of disk storage and runs 64-bit platform Linux Fedora 8 OS. Throughout our
performance study we realized that performance on EC2 may vary. We analyse this
variance in detail in an accompanying paper [110]. Here we executed each of the tasks
three times and report the average of the trials. We discard these assumptions to evaluate
fault-tolerance in §3.6.4. We report only those trial results where all nodes are available
and operating correctly. To factor out variance, we also ran the benchmark on a physical
10-node cluster where we obtained comparable results7. On EC2 we scale the number
of virtual nodes: 10, 50, and 100. We compared the performance of Hadoop++ against
Hadoop and HadoopDB. We used Hadoop 0.19.1 running on Java 1.6 for all these three
systems. We evaluated two variants of Hadoop++ that only differ in the size of the input
splits (256 MB and 1 GB8). For HadoopDB, we created databases exactly as in [5].

We used the benchmark and data generator proposed in [101] and used in the HadoopDB
paper [5]. We selected those tasks relevant to indexing and join processing. For com-
pleteness, we also report results of the other tasks in Section 3.6.5. The benchmark
creates three tables: (1) Documents containing HTML documents, each of them having
links to other pages following a Zipfian distribution. (2) Rankings containing references
to Documents, (3) UserVisits referencing Rankings. Both Rankings and UserVisits con-
tain several randomly generated attribute values. The sizes of Rankings and UserVisits
are 1 GB (18M tuples) and 20 GB (155M tuples) per node, respectively. Please refer
to [101] for details.

7With a single exception: on the physical cluster for the selection task Hadoop++(1GB) was still
faster than HadoopDB, but Hadoop++(256MB) was slightly slower than HadoopDB.

8Unfortunately, we could not use split sizes beyond 1GB due to a bug [67] in Hadoop’s distributed
file system. We believe however that runtimes using Trojan Join would improve even further.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 63

 0

 10000

 20000

 30000

 40000

 50000

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

(I)ndex Creation
(C)o-Partitioning
Data (L)oading

L

C

I

L

C

I

L

C

I

L

C

I

L

C

I

L

C

I

(a) Data loading, partitioning, and indexing

 0

 20

 40

 60

 80

 100

 120

 140

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

HadoopDB Chunks

Hadoop++(256MB)
Hadoop++(1GB)

(b) Selection Task

 0

 500

 1000

 1500

 2000

 2500

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

(c) Join Task

Figure 3.7: Benchmark Results related to Indexing and Join Processing

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 64

3.6.3 Analytical Tasks

3.6.3.1 Data Loading

As in [5] we show the times for loading UserVisits only; the time to load the small
Rankings is negligible. Hadoop just copies UserVisits (20GB per node) from local hard
disks into HDFS, while Hadoop++ and HadoopDB partition it by destinationURL and
index it on visitDate. Figure 3.7(a) shows the load times for UserVisits. For Hadoop++
we show the different loading phases: The data loading into HDFS including conversion
from textual to binary representation, followed by the co-partioning phase (§ 3.5.1), and
index creation (§ 3.4.1). We observe that Hadoop++(256MB) has similar performance as
HadoopDB; Hadoop++(1GB), however, is slightly slower. We believe this is because the
loading process is CPU-bound, thereby causing map tasks to slow down when processing
large input splits. However, this difference is negligible, as these costs happen at data
load time. This means these costs have to be paid only once. Users may then run an
unlimited number of tasks against the data. The trade-off we observe is similar to the
one seen in any DBMS: the more we invest at data load time, the more we might gain
at query time. Thus, the more queries benefit from that initial investment, the higher
the overall gain. Overall, we conclude that Hadoop++ scales well with the number of
nodes.

3.6.3.2 Selection Task

This task performs a selection predicate on pageRank in Rankings. We use the same
selectivity as in [5, 101], i.e. 36,000 tuples per node by setting the pageRank threshold to
10. We describe the SQL queries and MapReduce jobs used for the selection task below.

SQL query. HadoopDB performs the selection task by executing this SQL statement:
SELECT pageURL, pageRank FROM Rankings WHERE pageRank>10;

MapReduce jobs. Hadoop performs the same MapReduce job as in [5]. In contrast to
Hadoop, Hadoop++ uses a MapReduce job composed of a single map function receiving
only those (key, value)-pairs whose pageRank is above 10. This is because Hadoop++
makes use of the Trojan Index.

For this task, we run two variants of HadoopDB similar to the authors of HadoopDB [5].
In the first variant, each node contains the entire 1 GB Rankings in a single local
database. In the second variant each node contains twenty partitions of 50 MB each
in separate local databases (HadoopDB Chunks). Figure 3.7(b) illustrates the selec-
tion task results for all systems. We observe that Hadoop++ outperforms Hadoop and
HadoopDB Chunks by up to factor 7, and HadoopDB by up to factor 1.5. We also
observe that Hadoop++(1GB) performs better than Hadoop++(256MB). This is be-
cause Hadoop++(1GB) has much fewer map tasks to execute and hence less scheduling
overhead. Furthermore, its index coverage is greater. This allows it to get more data at
once. These results demonstrate the superiority of Hadoop++ over the other systems
for selection tasks.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 65

3.6.3.3 Join Task

This task computes the average pageRank of those pages visited by the sourceIP address
that has generated the most adRevenue during the week of January 15-22, 2000. This
task requires each system to read two different data sets (Rankings and UserVisits) and
join them. The number of records in UserVisits that satisfy the selection predicate is
∼134,000. We describe the SQL queries and MapReduce jobs used to perform the join
tasks below.

SQL query. HadoopDB pushes the following SQL statement to the local databases. It
computes partial aggregates in the local DBMSs and then requires a single reduce task
for the final aggregation:

SELECT sourceIP, COUNT(pageRank),

SUM(pageRank), SUM(adRevenue)

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL AND UV.visitDate BETWEEN

Date(’2000-01-15’) AND Date(’2000-01-22’)

GROUP BY UV.sourceIP;

MapReduce jobs. While Hadoop uses three MapReduce jobs as explained in [101],
Hadoop++ uses a single MapReduce job that implements the co-partitioned join oper-
ator explained in §3.5. This works as follows. First, the selection predicate on visitDate
is applied and only matching UserVisits records are passed to the map function. For
Rankings, all records are passed to the map function. The map function, in turn, per-
forms the join operation and outputs only those results that satisfy the join predicate.
Notice that the map function can perform the join operation locally because data in
input splits is composed of co-groups from Rankings and UserVisits. Then, a combine
performs pre-aggregation before shuffling. Finally, a single reduce task performs the
final aggregation.

Figure 3.7(c) illustrates results for each system when performing this join task. Again,
we observe that Hadoop++ outperforms Hadoop by up to factor 20. This is because
Hadoop++ performs an index-scan over UserVisits to speed up the selection predicate
and because Rankings and UserVisits were co-grouped at loading time. More impor-
tantly, our results show that Hadoop++(1GB) outperforms HadoopDB by up to factor
1.6. This is not the case for Hadoop++(256MB), because it has less relevant data per
input split to join and more map tasks to process. Again, as discussed in §3.6.3.1, these
gains are possible, as we trade query performance with additional effort at data load
time, see Figure 3.7(a).

3.6.4 Fault-Tolerance

In this section we show results of two fault-tolerance experiment which are similar to
the one done in [5]. We perform the node failures experiment as follows: we set the
expiry interval, i.e. the maximum time between two heartbeats, to 60 seconds. We
chose a node randomly and kill it after 50% percent of work progress. We perform the
straggler nodes experiment as follows: we run a concurrent I/O-intensive process on a
randomly chosen node so as to make it a straggler node. We define the slowdown as
in [5], slowdown = (n−f)

n ∗ 100, where n is the query execution time without failures

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 66

 0

 5

 10

 15

 20

 25

 30

 35

 40

node failures straggler nodes

sl
ow

do
w

n
[p

er
ce

nt
]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

Figure 3.8: Fault Tolerance.

and f is the execution time with a node failure. For both series of tests, we set HDFS
replication to 2.
Figure 3.8 shows the results. As expected, we observe that Hadoop++(256MB) has the
same performance as Hadoop. However, we can see that while increasing the size of input
splits from 256 MB to 1 GB, Hadoop++ slows down. This is because Hadoop++(1GB)
has 4 times more data to process per input split, and hence it takes more time to
finish any lost task. Hence, we observe a natural trade-off between performance and
fault-tolerance: By increasing the input split size, Hadoop++ has better performance
but it is less fault-tolerant and vice-versa. We observe that Hadoop++ is slower than
HadoopDB for the node failures experiments. This is because Hadoop++ needs to
copy data from replica nodes while HadoopDB pushes work to replica nodes and thus
requires less network traffic. For the straggler nodes experiment however, Hadoop++
significantly outperforms HadoopDB. This is because HadoopDB sometimes pushes tasks
to straggler nodes rather than replica nodes. This slows down its speculative execution.

3.6.5 Additional Benchmark Results

Here we list results for the other tasks defined in the bechmark of [101]. For the grep
task, Hadoop++ executes exactly the same code as Hadoop. Therefore runtimes are not
effected (and not shown). For the other tasks — even though they are neither related to
indexing nor join processing — we still see an improvement of Hadoop++ over Hadoop.
We discuss this briefly in the following.

3.6.5.1 Large and Small Aggregation Task

These tasks computes the total sum of adRevenue grouped by sourceIP in UserVisits.
Large Aggregation Task uses all characters of sourceIP as grouping key; it computes 2.5
millions groups. In contrast, Small Aggregation Task uses the first seven characters of
sourceIP as grouping key; it computes 2, 000 groups. We describe the SQL queries and
MapReduce jobs used to perform the aggregation tasks below.

SQL queries. The SQL queries used by HadoopDB to perform the large (Q1) and small
(Q2) aggregation tasks are as follows:

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 67

(Q1) SELECT sourceIP, SUM(adRevenue)

FROM UserVisits GROUP BY sourceIP;

(Q2) SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)

FROM UserVisits GROUP BY SUBSTR(sourceIP, 1, 7);

MapReduce jobs. For Hadoop and Hadoop++, we use a similar MapReduce job as
introduced in [101], but without the final MapReduce job to produce a single file. The
only difference between Hadoop’s and Hadoop++’s plan is that Hadoop reads data in
text format while Hadoop++ reads it in binary format.

Figures 3.9(a) and 3.9(b) summarize the results for this task. We observe that for
both tasks (small and large and aggregation) Hadoop++ outperforms Hadoop because
it reads data in binary format and, hence, it can read sourceIP and adRevenue without
reading other attributes. Furthermore, we can observe that Hadoop++ is slower than
HadoopDB, because Postgres applies a hash aggregation while Hadoop++ uses a sort-
based-aggregation. However, the performance of Hadoop++ and HadoopDB is in the
same ballpark even though HadoopDB emulates a non-compressed PDBMS and even
though the improvements of Hadoop++ are not related to aggregate computation.

3.6.5.2 UDF Aggregation Task

We also consider an aggregation query that parses each HTML document in Documents,
using a UDF9, which extracts the inlinks and counts the number of unique pages refer-
encing a URL.

When loading HTML documents into HDFS for Hadoop and Hadoop++, we proceed as
in [5, 101], i.e. we concatenate several documents into larger ones in order to avoid mem-
ory problems with the HDFS’ server when dealing with a large number of documents.
In contrast, HadoopDB stores each HTML document separately in relation Documents.
We describe the SQL queries and MapReduce jobs used to perform the UDF aggregation
task below.

SQL queries. HadoopDB uses: SELECT url, contents FROM Documents;

Notice that this query allows HadoopDB to get the contents of HTML documents.
Thereafter, it has to perform the UDF part using an identical MapReduce job as Hadoop.

MapReduce jobs. Hadoop and Hadoop++ use a MapReduce job whose map function
receives HTML documents split by their lines. For each incoming line, the map function
uses a regular expression to find all URLs and outputs an integer 1 for each URL found.
Finally, a reduce function aggregates all values having the same URL. As a result, this
MapReduce job computes the number of references for each URL.

Figure 3.9(c) shows results for this task. We see the best variant of Hadoop++ is at least
as good or better than HadoopDB. This is because Hadoop++ processes concatenated
HTML documents as described above. Compared to Hadoop, Hadoop++(256MB) has
similar performance. However, overall, neither HadoopDB nor Hadoop++ can improve
over the Hadoop for this particular task.

9Not to be confused with the ten UDFs provided by Hadoop as explained above.

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 68

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10 nodes 50 nodes 100 nodes

ru
nt

im
e

 [s
ec

on
ds

]

Hadoop
Hadoop++(256MB)

Hadoop++(1GB)
HadoopDB

(a) Large Aggregation Task

 0

 500

 1000

 1500

 2000

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

(b) Small Aggregation Task

 0

 500

 1000

 1500

 2000

 2500

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

(c) UDF Aggregation Task

Figure 3.9: Additional Task Results not related to Indexing and Join Processing

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 69

3.7 Discussion & Conclusion

This chapter has proposed new index and join techniques: Trojan Index and Trojan Join,
to improve runtimes of MapReduce jobs. Our techniques are non-invasive, i.e. they do
to require us to change the underlying Hadoop framework. We simply need to provide
appropriate user-defined functions (and not only the two functions map and reduce). The
beauty of this approach is that we can incorporate such techniques to any Hadoop version
with no effort. We exploited this during our experiments when moving from Hadoop
0.20.1 to Hadoop 0.19.0 (used by HadoopDB) for fairness reasons. We implemented our
Trojan techniques on top of Hadoop and named the resulting system Hadoop++.

The experimental results demonstrate that Hadoop++ outperforms Hadoop. Further-
more, for tasks related to indexing and join processing Hadoop++ outperforms HadoopDB
– without requiring a DBMS or deep changes in Hadoop’s execution framework or in-
terface. We also observe that as we increase the split size, Hadoop++ further improves
for both selection and join tasks. This is because the index coverage also increases.
Performance of fault-tolerance, however, decreases with larger splits as it requires more
time to recompute lost tasks. This symbolizes a tradeoff between runtime and fault
tolerance of MapReduce jobs.

An important lesson learned from this chapter is that most of the performance benefits
stem from exploiting schema knowledge on the dataset and anticipating the query work-
load at data load time. Only if this schema knowledge is available, DBMSs, HadoopDB
as well as Hadoop++ may improve over Hadoop. But again: there is no need to use a
DBMS for this. Schema knowledge and anticipated query workload may be exploited in
any data processing system.

In terms of Hadoop++’s interface we believe that we do not have to change the program-
ming interface to SQL: standard MapReduce jobs — unaware of possible indexes and
join conditions — may be analyzed [22] and then rewritten to use the Trojan techniques
proposed in this chapter.

With Trojan Index and Trojan Join, Hadoop++ introduces indexed and co-partitioned
storage views, apart from the default row storage view, in Hadoop MapReduce. As a
result of this greater flexibility in the storage layer, Hadoop++ allows for efficient index
and join processing, in addition to standard scan-oriented processing.

70

Chapter 4

Data Layouts for Large Scale
Data Management

MapReduce is becoming ubiquitous in large-scale data analysis. Several recent works
have shown that the performance of Hadoop MapReduce could be improved, for instance,
by creating indexes in a non-invasive manner. However, they ignore the impact of the
data layout used inside data blocks of Hadoop Distributed File System (HDFS). In
this chapter, we analyze different data layouts in detail in the context of MapReduce
and argue that Row, Column, and PAX layouts can lead to poor system performance.
We propose a new data layout, coined Trojan Layout, that internally organizes data
blocks into attribute groups according to the workload in order to improve data access
times. A salient feature of Trojan Layout is that it fully preserves the fault-tolerance
properties of MapReduce. We implement our Trojan Layout idea in HDFS 0.20.3 and
call the resulting system Trojan HDFS. We exploit the fact that HDFS stores multiple
replicas of each data block on different computing nodes. Trojan HDFS automatically
creates a different Trojan Layout per replica to better fit the workload. As a result, we
are able to schedule incoming MapReduce jobs to data block replicas with the most
suitable Trojan Layout. We evaluate our approach using three real-world workloads.
We compare Trojan Layouts against Hadoop using Row and PAX layouts. The results
demonstrate that Trojan Layout allows MapReduce jobs to read their input data up to
4.8 times faster than Row layout (3.3 times faster on average and 1.1 times slower in
the worst case); and up to 3.5 times faster than PAX layout (1.6 times faster on average
and no improvement in the worst case).

4.1 Introduction

Analyzing terabytes of data on a daily basis is a common task for many enterprises
such as Google, Facebook, and Yahoo!. With this trend, MapReduce [46] is quickly
becoming the de facto standard for large-scale analysis in industry. However, it has
been shown that MapReduce suffers from very slow execution times in analytical queries
compared to DBMSs [101]. Several recent works have improved the performance of
MapReduce. Figure 4.1 illustrates the research focus of some of these research works.
For instance, Pig Latin by Olston et al. proposed a new interface to execute MapReduce
jobs [99] (top-left box in Figure 4.1); other researchers proposed HadoopToSQL [77]

71

Chapter 4. Data Layouts for Large Scale Data Management 72

customer orders lineitem

!

"

SCAN

!

"

SCAN

!

"

SCAN

c_mktsegment=SEG o_orderdate=DATE l_shipdate=”DATE”

c_custkey=o_custkey

o_orderkey=l_orderkey

[T
h
is

 p
ap

er
]

[H
ad

o
o
p
+

+
]

MapReduce
Code Analyzer

map (Key k, Value v) {
. . .

}

reduce (Key ik, Value[] ivs) {
. . .

}

MapReduce Job Query Plan of the MapReduce Job

[H
ad

o
o
o
p
To

SQ
L
]

[M
an

im
al

]
[P

ig
 L

at
in

]

Figure 4.1: Example of some research works in MapReduce.

and Manimal [22] to automatically analyze the code of MapReduce jobs in order to
produce more efficient query plans (bottom-left box); we recently proposed Hadoop++,
a new system that improves the performance of MapReduce jobs by injecting code into
the MapReduce query plans [49] (top-right box). Many other works have focused on
improving MapReduce in other aspects [75, 85, 93, 97, 104]. However, none of these
works considers the impact of data layouts, per distributed file system (DFS) data
block, on the data read performance of MapReduce jobs. This chapter fills this gap: we
analyze the different data layouts in detail. The red part in Figure 4.1 illustrates the
focus of this chapter.

4.1.1 Background and Motivation

Traditional Layouts in MapReduce. Currently, MapReduce processes input data
blocks in a strictly row-oriented fashion. Thus, all tuple attributes have to be read from
disk even if only some of them are relevant to process a given task. The disadvantage of
a row-oriented layout has been thoroughly researched in the context of column stores [3,
4, 28, 106, 116]. However, in a distributed system a column store has severe drawbacks
as the data blocks for different columns may reside on different nodes. Thus, whenever a
query references more than one attribute, columns have to be sent through the network in
order to merge different attributes values into a row (tuple reconstruction). For instance,
consider a table AccessLog containing access log-records of a web server. Assume the
following simple SQL-query:

SELECT url, sourceip FROM AccessLog
WHERE url LIKE ‘%.edu%’;

To process this query MapReduce needs to either: (1) fetch and scan all columns,
join them to reconstruct tuples containing attribute values for both url and sourceip,
and then filter those tuples to only return the ones containing “.edu” in their url; or
(2) scan column url, collect the tuple-IDs of matching tuples and match them to retrieve
the sourceip value of each tuple. The latter process is called late materialization [2].
In either case, the problem is that the attributes referenced after the SELECT clause
have to be fetched over the network in many cases. This can significantly decrease the
performance of MapReduce jobs.

Hybrid Layout in MapReduce. For these reasons a clever optimization is to use a
hybrid layout of columns and rows. The idea is to keep the same data on a block as we

Chapter 4. Data Layouts for Large Scale Data Management 73

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30

Da
ta

 A
cc

es
s

Co
st

 [s
ec

]

Number of Referenced Attributes (Out of 30)

Trojan Layout
Row Layout

Column Layout
PAX Layout

Optimal Layout

Figure 4.2: Data access costs for different data layouts in Hadoop.

would keep in a row layout. However, in contrast to a row layout, inside a block data
is organized into a column layout. This approach is termed PAX (partition across) and
was first proposed in the context of page organization in a DBMS [11]. Recently, it was
also introduced in MapReduce [33, 125]. Using PAX in MapReduce has big advantages:
(1) tuple reconstruction does not trigger expensive fetches over the network, as all data
values belonging to a tuple are locally available inside a block, (2) the execution pipeline
does not have to be changed at all to implement complex tuple reconstructing joins, and
(3) as data blocks are typically large, about 256 MB, the subpage containing data for
a specific attribute is very large. For instance, assuming a table having 30 attributes of
equal size, each subpage still contains 8.5 MB of data! As a result, reading a subpage
amounts to a sequential scan of 8.5 MB of data, which is typically very fast on disk.
To process the SQL query mentioned above, it is then sufficient to read the subpage
containing data for attribute url only. Then, for the qualifying tuples, we only need
to access data from the subpages containing the sourceip. For this, we may scan that
subpage entirely or elevator-scan the subpage skipping some parts in the scan. In either
case, we do not trigger any network requests to fetch missing attributes. All data is
local within the data block.

Different Layout Performance in MapReduce. Figure 4.2 shows the comparison
of the estimated access cost of running a MapReduce job on each of the Row, Column,
and PAX Layouts. Additionally, we consider the Optimal Layout, which co-locates all
attributes referenced by any incoming query into a single column group. We use a query
referencing a single input table of 30 attributes. Our cost model considers random and
sequential I/O, network, and even the scheduling decisions made by the MapReduce
scheduler (see Tables 4.1 and 4.2 for details of the cost model and this simulation). The
results in Figure 4.2 show that Column Layout is not competitive compared to PAX
Layout in MapReduce in a distributed setting. This is due to the high costs for fetching
missing attribute values over the network as explained above. We also observe that PAX
Layout is better than Row Layout for up to 17 (out of 30) referenced attributes. Beyond
that, PAX Layout is worse than Row Layout, because the number of individual seeks in
PAX adds considerable random I/O due to buffered reads of the individual subpages.
In addition, tuple reconstruction in PAX adds considerable CPU costs. Even if PAX
Layout seems to perform well in many cases, we observe that there exists a big gap
between PAX Layout and Optimal Layout. This is because the Optimal Layout always

Chapter 4. Data Layouts for Large Scale Data Management 74

groups all referenced attributes together, thereby requiring fewer seeks and no tuple
reconstruction. Therefore, it is quite important for the performance of applications to
pack as many referenced attributes as possible co-located together.

4.1.2 Our Approach and Research Challenges

In this chapter, we propose a new approach coined Trojan Layout. Like PAX, Trojan
Layout keeps the same data inside a block. However, in contrast to PAX, we allow for
any internal data layout inside a block. The possible improvement of Trojan Layouts
over PAX is depicted by the red space in Figure 4.2. Interestingly, we already see an
improvement of ∼270% over Column Layout and of ∼20% over Pax Layout for five
referenced attributes.

Additionally, we exploit the existing data block replication in Hadoop DFS (HDFS) to
create different Trojan Layouts on a per-replica basis. This means that rather than
keeping all data block replicas in the same layout, we use different Trojan Layouts
for each replica. Each replica is optimized for a different subclass of queries. As a
result, every incoming query can be scheduled to the most suitable data block replica.
In a special case this would efficiently mimic fractured mirrors [106], which maintain
two copies of the data: one in Row Layout and other in Column Layout. The reader
may think that this is also possible in HDFS by using pure Row and Column Layouts.
However, doing so would significantly impact the fault-tolerance properties of HDFS,
because a data block replica would not contain the same data in Row Layout as in
Column Layout. Therefore, complex mechanisms would be required to identify, track,
and reconstruct lost data block replicas.

The idea of Trojan Layouts triggers a number of interesting research challenges. First,
we have to cluster a given workload into query groups based on their access pattern in
order to better exploit different data block replicas. Second, we need to invent efficient
algorithms to determine the right Trojan Layout for each data block replica. Although
some existing work from vertical partitioning may be leveraged [9, 60, 64], these algo-
rithms have issues. They have to be extended to (i) improve the quality of vertical
partitioning, and (ii) support replicas of the same block in different layouts. Third,
we should not force users into manually defining data block layouts. If we did that,
we might eventually end up turning MapReduce into yet another DBMS, with a few
hundred different knobs to be properly set by a skilled (and expensive) database admin-
istrator. However, the ease-of-use and the low administration costs of MapReduce are
some of its biggest advantages over DBMSs.

Therefore, the main problem we tackle in this chapter is as follows. Given an incoming
query workload, we have to determine the right Trojan Layout for each data block
replica that: (i) approaches to optimal layouts in performance, (ii) keeps the interface
of MapReduce intact, and (iii) is zero-admin, which is extremely important for future
distributed systems as emphasized in the conclusion section of the ten-year best paper
award of Surajit Chaudhuri [30].

Chapter 4. Data Layouts for Large Scale Data Management 75

4.1.3 Contributions

Trojan Layouts are inspired by PAX in the sense that we only change the internal orga-
nization of a data block and not among data blocks. However, we considerably depart
from PAX as we can: (i) co-locate attributes together according to query workloads,
(ii) use different Trojan Layouts for different data block replicas, and (iii) in a special
case, mimic fractured mirrors: having the best from both PAX and Row Layouts. In
summary, we make the following key contributions:

1. We propose a column grouping algorithm in which we first (i) determine column
groups using a novel interestingness measure, which denotes how well a set of
attributes speeds up most or all queries in a workload; and then (ii) pack the
column groups in order to maximize the total interestingness of data blocks. We
use this algorithm as a basis to determine the Trojan Layout of data blocks in
HDFS. It is worth noting that even if we focus on MapReduce in this chapter, one
can use our column grouping algorithm in other domains as well.

2. We exploit default HDFS data replication to create a different Trojan Layout per
data block replica. For this, we first show how to apply our column grouping
algorithm for query grouping as well, i.e. for clustering queries in a workload
according to their access patterns. We then map each resulting query group to
one data block replica so as to compute the Trojan Layout for such a replica.

3. We present Trojan HDFS, a (per-replica) Trojan Layout aware HDFS. At data
upload time, Trojan HDFS automatically transforms data block replicas into
their corresponding Trojan Layouts; it hides all messy details from the user. There-
after, Trojan HDFS keeps track of Trojan Layouts for each data block replica.
With Trojan HDFS, neither the MapReduce processing pipeline nor the MapRe-
duce interface are changed at all.

4. We evaluate Trojan Layouts using three real-world workloads: TPC-H, Star Schema
Benchmark (SSB), and Sloan Digital Sky Survey (SDSS). The results demonstrate
that Trojan Layouts allow MapReduce jobs to read data up to a factor of 4.8 faster
than Row Layout and up to a factor of 3.5 faster than PAX Layout.

4.2 Overview

We propose Trojan Layouts as our solution to decrease the waiting time of data-intensive
jobs when accessing data from HDFS. The core idea of Trojan Layouts is to internally
organize data blocks into column groups according to the workload. Our approach has
three phases: (1) compute the Trojan Layout for each data block replica, (2) create the
computed Trojan Layouts in HDFS, and (3) access the existing Trojan Layouts. From
the user perspective, the data analysis workflow remains the same: upload the input
data and run the query workload exactly as before.

Given a query workload W , at upload time we determine the Trojan Layout for each
data block replica. We then store each data block replica in its respective Trojan Layout.
We illustrate the core idea of Trojan Layouts in Figure 4.3. A data block using a Trojan
Layout is composed of Header metadata and a set of column groups (see Replica 1 in

Chapter 4. Data Layouts for Large Scale Data Management 76

... B D A G H C E F

... A B H C D F E G

... H A B D E F C G

Data Block 42 Replica 2

Data Block 42 Replica 3Data Block 42 Replica 1

Query Workload W

data node 1

data node 3

data node 2

Column Group 1Pointers Column Group 2

Attributes

Header Data

job tracker

Q1 & Q3

Q4

Q2

Figure 4.3: Per-replica Trojan Layouts in HDFS.

data node 1). The header contains the number of attributes stored in a data block and
attribute pointers. An attribute pointer points to the beginning of the column group
that contains that attribute. For instance, in Replica 1, the first attribute pointer (the
red arrow) points to Column Group 2, which contains attribute A. The second attribute
pointer would then point to Column Group 1, and so on. Each column group in turn
contains a set of attributes in row-fashion, e.g. Column Group 1 in Replica 1 has tuples
containing attributes B and D.

At query time, we transparently adapt an incoming MapReduce job to query the data
block replica that minimizes the data access time. Then, we route the map tasks of
the MapReduce job to the data nodes storing such data block replicas. For example,
in Figure 4.3, the map tasks of Q4 are routed to data node 1, while the map tasks
of Q1 and Q3 are routed to data node 2 and those of Q2 are routed to data node 3.
Notice that in case the scheduler cannot route a map task to the best data block replica,
e.g. because the data node storing such a replica is busy, the scheduler transparently
fallbacks to other Trojan Layouts. An important feature of our approach is that we
keep the Hadoop MapReduce interface intact by providing the right itemize function in
the Hadoop plan [49]. As in normal MapReduce, users only care about map and reduce
functions.

The salient features of our approach are as follows:

• Invisibility. We create and access Trojan Layouts in a way that is invisible to
users.

• Non-Invasive. We do not change the outside HDFS unit, i.e. the data block,
but rather change the internal representation of a data block. As a result, we do
not require any change in the MapReduce processing pipeline for accessing Trojan
Layouts.

• Seamless Query Processing. We seamlessly wrap the input data to a given MapRe-
duce job. Obviously, we do this for the data block replica that minimizes the time
for reading required data.

• Rich DBMS features support. One can easily enrich Trojan Layouts with standard
DBMS optimizations, such as indexing, partitioning, and co-partitioning.

• Per-Replica Trojan Layout : We exploit existing data block replication in HDFS to
create a different Trojan Layout for each replica so as to better fit to the workload.

Chapter 4. Data Layouts for Large Scale Data Management 77

We provide the details on how we compute Trojan Layouts in Section 4.3. Then, in
Section 4.4, we describe how we enable HDFS to store each data block replica in a
different Trojan Layout in Trojan HDFS. In the same Section 4.4, we discuss how
we physically create Trojan Layouts. In addition, we discuss the query processing and
scheduling aspects of our approach.

4.3 Interestingness-based Column Grouping Algorithm

The core idea of Trojan layouts is to adapt the internal representation of data blocks,
while the outside view of data for the rest of the data processing pipeline remains the
same. This speeds up query execution. Since we focus on scan and projection operators
in the query plan, we restrict ourselves to attribute level data adaptation, i.e. group
sets of attributes together. Given a relation with attribute set A, we consider a column
group G ⊆ A as any subset of A. To understand the intuition behind column grouping,
let us consider the queries and their access pattern in Example 4.1 below.

Example 4.1. Access pattern of attributes A,B,C,D in queries Q1–Q10.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A 1 1 1 1 0 0 0 0 0 0
B 1 1 1 1 0 0 0 0 0 0
C 0 0 0 0 1 1 1 1 1 1
D 0 1 1 1 1 1 1 1 1 1

In the above table, if a query accesses an attribute, then the corresponding cell has value
1, otherwise it has value 0. Notice that attributes A and B are co-accessed in queries
Q1 to Q4 (in Q1 to Q4 of Example 4.1). Thus, column group {A,B} is interesting as
it can speedup queries Q1 to Q4. As another example, consider the queries and their
access pattern in Example 4.2 below.

Example 4.2. Access pattern of attributes M,N,O,P in queries Q11–Q20.

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

M 1 1 0 0 0 0 0 1 1 0
N 1 1 1 0 0 0 0 1 1 1
O 0 1 1 0 0 0 0 0 1 1
P 1 1 0 1 1 1 1 0 0 0

Observe that attributes M,N and N,O are co-accessed respectively in queries {Q11,Q12,Q18,Q19}
and {Q12,Q13,Q19,Q20} (in Example 4.2). This makes column group {M,N,O} an inter-
esting one. Thus, generally speaking, a column group is interesting if pairs of attributes
in the column group are co-accessed (e.g. M,N and N,O in Example 4.2), even though all
attributes in the column group may not be co-accessed. Consequently, in order to find
the most suitable internal representation of data in data blocks, we focus on two core
operations: (i) determining the interesting column groups, and (ii) packing them within
a data block such that the total interestingness of the data block is maximized. Note
that column group interestingness is directly linked to query workload performance,
since we consider a column group as interesting based on whether or not its attributes
are co-accessed in a query workload. Denoting a set of complete and disjoint column

Chapter 4. Data Layouts for Large Scale Data Management 78

groups as G′, where G′ is a subset of the set of all possible column groups G, we can
now describe the problem we address as follows:

Problem Statement. Given a column group interestingness function Intg(G)→ [0, 1],
find the complete and disjoint column group set G′ that maximizes the total interesting-
ness of a data block, i.e. max

(∑
∀G∈G′ Intg(G)

)
.

To approach the above problem, we first describe our novel column group interestingness
function and compare its effectiveness with prior approaches below. Thereafter, we map
the packing of column groups, which is an NP-hard problem [109], to a 0-1 Knapsack
problem and solve it using a branch and bound technique.

4.3.1 Column Group Interestingness

Intuitively, a column group is highly interesting if it speeds up most or all of the queries
in the workload. Thus, to formally define the interestingness of a column group, we first
consider the access costs of queries in query workload W . Let Path(Opt, Q) denote the
access path chosen by optimizer Opt for query Q and let BA(Q,Path(Opt, Q)) denote the
number of bytes of attribute A read by query Q when using access path Path(Opt, Q)1.
We denote the total bytes consumed by a query Q as its footprint FQ:

FQ =
∑
A∈A

BA(Q,Path(Opt, Q)).

Let us now understand which attributes contribute to the query footprint. For this, tra-
ditionally e.g. [9], one would use an attribute usage matrix U(Q,A) to indicate whether
or not an attribute A is referenced by query Q, i.e U(Q,A)=1, if Q references A, and
0 otherwise. However, U(Q,A) considers only the attribute occurrences (in Ex-
ample 4.1), even though attribute non-occurrences give equally important information:
they are crucial in determining whether one attribute should co-occur with another or
not. For instance, in Example 4.1, attributes C and D have common non-occurrence only
in query Q1 whereas for queries Q2–Q4 column group {C,D} will have redundant access
of C (). In contrast, attributes A and B have all non-occurrence in common (queries
Q5–Q10) and therefore column group {A,B} is more interesting. To capture this, we
generalize U(Q,A) using a binary variable x, which denotes the occurrence (x = 1) and
the non-occurrence (x = 0) of an attribute.

Ux(Q,A) =

{
U(Q,A) if x=1,
1− U(Q,A) if x=0.

Notice that the above usage matrix does not take into account the footprints (total byte
access) of queries in which they occur.

1The choice of the access path depends on the optimizer, which can choose either the index access
path or the table scan access path. For instance, the optimizer can come up with the access path reading
lesser number of bytes. Without any loss of generality, one can supply other Path(Opt, Q) functions to
our algorithm.

Chapter 4. Data Layouts for Large Scale Data Management 79

Example 4.3. footprint and attribute usage in queries Q1 to Q4.

Query footprint
Q1 10
Q2 20
Q3 30
Q4 40

Q1 Q2 Q3 Q4

A 1 1 0 0
B 0 0 1 1
C 0 1 0 1

For instance, in Example 4.3, attributes A,B,C have the same frequency in the work-
load. However, attributes A,C are co-referenced by the cheaper query Q2 (i.e. having
smaller footprint) whereas attributes B,C are co-referenced by more expensive query Q4

(i.e. having bigger footprint), thereby making B,C more likely to be together. Therefore,
we introduce the relative importance (RI) of attributes, which takes query footprints into
account. Intuitively, RIA is the fractional reading cost in the events when an attribute
A occurs as well as when it does not. We define RIA as follows:

RIA(x) =

∑
Q∈W FQ · Ux(Q,A)∑

Q∈W FQ
.

RIA is normalized by the total workload costs to make it comparable. Since we want
to co-locate attributes inside data blocks, we need to determine whether two attributes
should be stored together. Thus, we also define RIA,B(x, y) as the relative importance
of an attribute pair A,B in terms of the query workload cost.

RIA,B(x, y) =

∑
Q∈W FQ · Ux(Q,A) · Uy(Q,B)∑

Q∈W FQ
.

Now, to estimate the similarity between two attributes A and B over the range of values
of x and y, we measure their mutual dependence using the mutual information [89]
between them. We can compute the mutual information between two attributes using
their relative importances as follows:

MI(A,B) =
∑

x∈{0,1}

∑
y∈{0,1}

RIA,B(x, y) · log
(

RIA,B(x, y)
RIA(x) ·RIB(y)

)
.

Essentially, MI(A,B) measures the information (data access patterns) that attributes
A and B share. We normalize MI(A,B) by the minimum entropies of the two attributes
to normalize its range between 0 and 1, i.e. nMI(A,B) = MI(A,B)

min(H(A),H(B)) . Here, H(A)
and H(B) denote the entropy of attributes A and B. For an attribute A, we compute
its entropy as: H(A) =

∑
x∈{0,1}RIA(x) · log

(
1

RIA(x)

)
. Finally, we can define column

group interestingness.

Definition 4.1. Column Group Interestingness of a column group G is the average
normalized mutual information of any given attribute pair in G. Formally,

Intg(G) =

1

(|G|2) ·
∑

{A,B}∈G,A 6=B

nMI(A,B) |G| > 1,

1
|A|−1 ·

∑
A∈G,B∈A\G

1− nMI(A,B) |G| = 1.

Chapter 4. Data Layouts for Large Scale Data Management 80

�

Note that for column groups having a single attribute, we take the inverse of the mutual
information with any other attribute in A. In other words, we measure the benefit of
the attribute in the column group not occurring with any other attribute in A. Intg(G)
has values between 0 and 1. Higher interestingness indicates higher mutual dependence
within a column group.

By default, we would have to consider all column groups (O(2|A|)) within a data block. In
practice, we use the similar pruning method as in [9] in order to reduce the search space.
We experimentally determine the threshold interestingness value and discard all column
groups having interestingness below that threshold. A higher interestingness threshold
produces a smaller set of candidate column groups. This has two consequences: (i) the
search space for finding the best combination of column groups (introduced as column
group packing in Section 4.3.2) becomes smaller, and (ii) only the attributes appearing
in highly interesting column groups remain in the candidate set and are thus likely to be
grouped. All remaining attributes which do not appear in any of the highly interesting
column groups will end up in row layout. Apart from threshold based pruning, we
can perform further aggressive pruning, for column groups having same interestingness
value, in two ways: (i) keep the smallest column group to reduce redundant data read,
or (ii) keep the largest column group to reduce tuple reconstruction costs.

Comparison with CG-Cost [9]. It is important to note that, in contrast to [9],
our definition of interestingness produces superior interestingness measure, which we
illustrate as follows. The algorithm in [9] computes the interestingness (CG-Cost) for
column groups {A,B} and {C,D} in Example 4.1 as 0.4 and 0.6 respectively. Our algo-
rithm computes interestingness (Intg) as 1.0 and 0.23 respectively, which makes much
more sense since A and B always occur/not-occur together. Likewise, the algorithm
in [9] computes the interestingness for both column groups {M,N,O} and {M,P} in Ex-
ample 4.2 as 0.2. Our algorithm computes interestingness (Intg) as 0.278 and 0.005
respectively. Again, this makes more sense since {M,N} and {N,O} are pairwise similar
making group {M,N,O} more interesting.

4.3.2 Column Group Packing as 0-1 Knapsack
Problem

Once we have the candidate column groups along with their interestingness values,
our goal now is to pack these column groups into a data block such that the total
interestingness of all column groups in the data block is maximized. As mentioned
before, this is an NP-hard problem [109]. Thus, we map it to a 0-1 knapsack problem,
with an extra disjointness constraint, to solve it.

For a given column group G, let id(G) denote the group identifier (a numeric in binary
representation) such that its ith bit is set to 1 if G contains attribute i, it is set to
0 otherwise. Given m column groups, we have to find 0-1 variables x1, x2, ..., xm —
where xi is 1 if column group Gi is selected and 0 otherwise — such that the total
interestingness is maximized. Additionally, the sum of the group identifiers should be at
most id(A) and each of the groups should be disjoint. Formally, max

∑m
i=1 Intg(Gi) · xi

subject to:

Chapter 4. Data Layouts for Large Scale Data Management 81

{A,B}

{A,B} {A,D} {A,B} {C,D}

{A,B}
{C,D} {C}

{A,B}
{C,D} {E}

Bound

Bound

knapsack 1

knapsack 2 knapsack 3

knapsack 4 knapsack 5

Figure 4.4: Branch and Bound

Algorithm 4.1: Branch And Bound Knapsack:CGA.bbKnapsack
Input : item, benefit, weight, weightVector, itemBitMap
Output: Max benefit item vectors, each for #column-groups from 1 to A
if EndOfItemList(item) then1

k = NumItems(itemBitMap);2
if weight < MaxWeight then3

k = k+1;4
end5
if k > 0 and benefit > MaxBenefit(k) then6

CGA.SetMaxBenefit(k,benefit);7
CGA.SetMaxBenefitItemBitMap(k,itemBitMap);8

end9

else10
CGA.bbKnapsack(NextItemInList(item), benefit, weight, weightVector, itemBitMap);11
if (weight & ItemWeight(item))==0 and (weight + ItemWeight(item) ≤ MaxWeight) then12

CGA.bbKnapsack(NextItemInList(item), benefit+ItemBenefit(item), weight+ItemWeight(item),13
weightVector | ItemWeight(item), itemBitMap | ItemVector(item));

end14

end15

m∑
i=1

id(Gi) · xi ≤ id(A) (4.1)

xi + xj ≤ 1, ∀i, j s.t. i 6= j ∧ Gi ∩Gj 6= ∅. (4.2)

Here, (4.2) is an extra constraint to the standard 0-1 knapsack problem. Due to this
additional constraint we cannot reduce the problem to a sub-problem. This is because
the solution to the sub-problem may contain items which are not disjoint in the main
problem. Thus, we cannot use a dynamic programming algorithm to solve this problem.
However, constraint (4.2) allows us to pre-filter non-disjoint column groups. Therefore,
we can apply a branch and bound technique. The idea is to consider a column group
and its subsequent combinations with other column groups, only if it is disjoint with the
column groups currently in the knapsack. Figure 4.4 illustrates this idea. We observe
that column groups {A,D} and {C} bound any further branching of knapsack iterations.
Algorithm 4.1 shows the pseudo-code of this technique. The algorithm denotes a column
group as a knapsack item, its interestingness as the benefit, and its group identifier as
weight. In case we have explored all knapsack items, we check if we have a knapsack with
greater benefit than before (Lines 1-10). Else, we recursively call CG.bbKnapsack in two
cases: (i) without taking the current item into the knapsack (Line 12), and (ii) taking
the current item if it satisfies constraints (4.1) and (4.2) (Lines 13–15).

It is worth noting that our interestingness function does not consider the size of the
column group. However, for operators such as joins, the number and sizes of column

Chapter 4. Data Layouts for Large Scale Data Management 82

Algorithm 4.2: EnumerateAndGroup
Input : Items items
Output: Group[][] itemGroupings

Group [] candidates = GetSubsets(items);1
CGA.SetItemList(candidates);2
maxWeight = 0;3
for i=1 to size(candidates) do4

maxWeight = maxWeight | (1 << i);5
CGA.SetItemWeight(candidates[i], v(candidates[i]));6
CGA.SetItemBenefit(candidates[i], I(candidates[i]));7

end8
CGA.SetMaxWeight(maxWeight);9
Group [][] groupings = CGA.bbKnapsack(0,0,0,0,0);10
return groupings;11

groups would be quite important. Thus, we solve the above problem each for the number
of column groups ranging from 1 to |A|, as shown in Algorithm 4.2. We first generate
the column groups (Line 1) and add them to the item list (Line 2), then we set the
weight (group identifier) and benefit (interestingness) of each item (Lines 4–8). We
set maxWeight to the maximum item weight and call CG.bbKnapsack, which returns a
column group set each for the number of groups ranging from 1 to |A|. As the number
of solutions is equal to the number of attributes in the relation, it is now feasible to
compare and pick the best partitioning using a cost model, which we describe below.

Cost Model. We model the costs for full table scan access over four different layouts:
(i) Row Layout, (ii) Column Layout, (iii) PAX Layout, and (iv) Optimal Layout (which
contains, for each query, perfect column groupings within a data block). Table 4.1 shows
the cost model for these layouts and Table 4.2 lists the symbols used in our cost model.
Our cost model considers random and sequential I/Os to read data from HDFS, network
costs to transfer data blocks across data nodes, and even the scheduling decisions made
by MapReduce scheduler. For network costs, we compute the probability of not finding
any local data block copy and estimate the costs of transferring data from another node.
Note that the Row and PAX layouts have same network transfer costs. On the other
hand Column and PAX layouts have same random and sequential I/O costs, as Hadoop
performs a buffered read anyways. However, these two layouts have different network
costs. Table 4.2 also shows the default parameter values which we used in our simulation.

Our column grouping algorithm, along with column group pruning, works well for several
realistic datasets, e.g. for TPC-H tables (having a maximum of 16 attributes) and for
SSB tables (having a maximum of 17 attributes). However, finding the right Trojan
Layouts for scientific data sets (having hundreds of attributes), like SDSS, becomes a
difficult task to achieve. Luckily, HDFS replicates data blocks three times by default to
ensure the availability of data blocks. Thus, instead of using the same data layout for
all the three replicas, we create a different Trojan Layout per replica. This divide-and-
conquer approach significantly reduces the complexity of our column grouping algorithm.
We describe per-replica Trojan Layout in the following section.

4.4 Per-Replica Trojan Layout

In this section, we describe our novel per-replica Trojan Layouts. The core idea of per-
replica Trojan Layout is to first create query groups (using the same column grouping

Chapter 4. Data Layouts for Large Scale Data Management 83

Symbol Meaning Model

w # map phases (waves)
l

N·B
S·m·n

m
Crow

tr (S) transfer cost for row layout (1− p1r) S
BWnet

Crow
rand(S) rand I/O cost for row layout Crand · S

b

Crow
seq (S) seq I/O cost for row layout S

BWdisk

Copt
tr (S) transfer cost for optimal layout (1− p1r) S

BWnet

Copt
rand(S) rand I/O cost for optimal layout Crand · S·|A′|

b·|A|

Copt
seq (S) seq I/O cost for optimal layout

S·|A′|
BWdisk·|A|

Cpax
tr (S) transfer cost for PAX layout (1− p1r) S

BWnet

Cpax
rand(S) rand I/O cost for PAX layout Crand ·

l
S·|A′|
b·|A|

m
· |A′|

Cpax
seq (S) seq I/O cost for PAX layout

S·|A′|
BWdisk·|A|

Ccol
tr (S) transfer cost for column layout

h
1− p1r +

“
1− R

n

”
· (|A′| − 1)

i
S

BWnet

Ccol
rand(S) rand I/O cost for column layout Crand ·

l
S·|A′|
b·|A|

m
· |A′|

Ccol
seq(S) seq I/O cost for column layout

S·|A′|
BWdisk·|A|

Crow
scan scan cost for row layout

`
Crow

tr (S) + Crow
rand(S) + Crow

seq (S) + Cm
init

´
· w

Copt
scan scan cost for optimal layout

“
Copt

tr (S) + Copt
rand(S) + Copt

seq (S) + Cm
init

”
· w

Cpax
scan scan cost for PAX layout

`
Cpax

tr (S) + Cpax
rand(S) + Cpax

seq (S) + Cm
init

´
· w

Ccol
scan scan cost for column layout

`
Ccol

tr (S) + Ccol
rand(S) + Ccol

seq(S) + Cm
init

´
· w

Table 4.1: Full table scan access cost model for different layouts in Hadoop

Symbol Meaning Unit Default Value

N number of blocks 400
B block size bytes 256 MB
S split size bytes 256 MB
R replication factor 3
n number of nodes 50
m number of concurrent map tasks 2
Cm

init map initialization cost seconds 0.1 sec
Crand random seek cost seconds 0.005 sec
BWdisk disk bandwidth bytes/s 100 MB/s
BWnet network bandwidth bits/s 1 GBits/s
b buffer size bytes 512 KB
p1r probability of first replica being local 0.97
A attribute set {1,..,30}
A’ referenced attribute set {1},{1,2}..

Table 4.2: Cost Model Symbols

algorithm) and then create column groups for each query group separately. This serves
two purposes: (i) instead of creating a single layout for the entire workload, we create
multiple layouts, each specialized for a part of the workload, and (ii) query grouping can
significantly decrease the number of referenced attributes for each query group, which,
in turn, reduces the complexity of our column grouping algorithm. Algorithm 4.3 shows
the pseudo-code to compute per-replica Trojan Layouts in two steps:

(1.) Query Grouping. We first group queries in the workload based on their access
pattern. Notice that column grouping is orthogonal to query grouping. However, two
queries are similar if they access similar attributes just as two attributes are similar if
they are accessed by similar queries. In that respect, query grouping, or rather par-
titioning, is very similar to column grouping. Therefore, we use our column grouping
algorithm (Algorithm 4.2) for query grouping as well: we just interchange attributes
with queries (Line 1). To illustrate, in the attribute usage matrix of Example 4.1 in Sec-
tion 4.3, query group {Q1, Q2, Q3} has an interestingness of 0.49 whereas query group
{Q2, Q3, Q4}, having queries with more similar access pattern, has an interestingness of

Chapter 4. Data Layouts for Large Scale Data Management 84

Algorithm 4.3: PerReplicaEnumerateAndGroup
Input : Query[] queries, Attribute[] attributes, Int replicationFactor
Output: Group[][] perReplicaGroupings

Group [][] queryGroupings = EnumerateAndGroup(queries);1
Group [] queryGrouping = queryGroupings[replicationFactor];2
Group [][] perReplicaGroups;3
for i=1 to size(queryGrouping) do4

Attribute [] refAttributes = GetRef(queryGrouping[i]);5
Group [][] attrGroupings = EnumerateAndGroup(refAttributes);6
perReplicaGroups[i] = PickBestUsingCostModel(attrGroupings);7

end8
return perReplicaGroups;9

1.0. As a result of running Algorithm 4.2 for query grouping, we receive a collection of
query group sets that are complete and disjoint. Each query group set in the collection
contains a different number of query groups. We pick the query group set having as
many query groups as the replication factor (Line 2), thus mapping one query group
to one data block replica. However, we can as well map one query group to multiple
replicas, depending on the workload.

Recall that we perform query grouping in order to reduce the complexity of our column
grouping algorithm. However, if the number of queries increase then the complexity of
query grouping will increase as well. To deal with this, for large workloads, we apply
query grouping recursively as follows: (i) first we (independently) group consecutive
sets of p queries, (ii) then we XOR the queries in a query group to represent each query
group as a single combined query, (iii) now we again (independently) group consecutive
sets of p combined queries, (iv) we repeat this process till we have a single set of p or
less queries. Here p denotes the maximum number of queries which can be grouped in
reasonable time. Experimentally, we determine p to be less than or equal to 20.

(2.) Query Routing. Finally, for each query group, we get the referenced attributes
and build column groups on them (Lines 5–6 in Algorithm 4.2). We pick the best column
grouping among groupings of different size using a cost model2 (Line 7).

In the remainder of this section, we discuss how we support per-replica Trojan Layouts
in HDFS (Section 4.4.1); how we transform data blocks to a given Trojan Layout (Sec-
tion 4.4.2); how we access Trojan Layouts in Hadoop MapReduce jobs (Section 4.4.3);
and what scheduling policies we consider (Section 4.4.4).

4.4.1 Layout Aware Replication

We implemented a variant of HDFS, called Trojan HDFS, to introduce per-replica
Trojan Layouts into HDFS. Trojan HDFS differs from HDFS in two aspects:

(1.) The name node in Trojan HDFS keeps a catalog of the Trojan Layouts of all data
block replicas. Trojan HDFS exploits the fact that the name node maintains a triplet
of pointers for each data block replica3. It adds a fourth pointer to this structure, which
points to the Trojan Layout descriptor of the data block replica. Figure 4.5 illustrates

2See see Tables 4.1 and 4.2 for details of the cost model.
3In this triplet (i) the first pointer points to the metadata of the node storing the data block replica,

(ii) the second pointer points to the previous data block stored on the same data node, and (iii) the
third pointer points to the next data block stored on the same data node.

Chapter 4. Data Layouts for Large Scale Data Management 85

Replica 1

Replica 2

Replica 3

A B C D E F

A B C D E F

Trojan Layout 1

Trojan Layout 2

F B D E C A
Trojan Layout 3

CG1

CG1 CG2 CG3 CG4 CG5 CG6

CG1 CG2 CG3

BlockInfo (BI) for data block 42 Trojan Layout descriptors

BI36

BI41

BI21

CG = Column Group
DN = Data Node
BI = BlockInfo

Abbreviation:

BI42

BI50

BI51

BI43

DN7

DN1

DN2

Friday, April 29, 2011

Figure 4.5: Quadruplets for a data block in Trojan HDFS stored at the name node.
This structured is composed: (i) of a pointer to the data node (e.g. DN 7) storing a
replica (e.g. the first replica) of a data block (e.g. data block 42), (ii) of a pointer to the
previous data block (e.g. data block 21) stored on DN 7, (iii) of a pointer to the next
block (e.g. data block 51) stored on DN 7, and (iv) of a pointer to the Trojan Layout

descriptor for that data block replica (e.g. row-layout).

this quadruplet of pointers associated to a data block replica. Note that more than one
data block replica could point to the same Trojan Layout descriptor.
(2.) A data node in Trojan HDFS asks the name node for the Trojan Layout of each
data block replica stored locally. After receiving the Trojan Layout for a given data block
replica, a data node internally reorganizes the data of the data block replica according
to the received layout. There are two ways, for a data node, to do so: (i) reorganize a
data block as soon as the data block replica is copied locally, or (ii) reorganize a data
block after all replicas of the data block are copied to relevant data nodes. The reader
might think the first strategy to be better, since data nodes do not have to wait for
other replicas to be copied. However, this strategy generates contention between data
nodes for accessing data block replicas. This is because a data node would be accessing
a given local data block replica for transformation while another data node would be
trying to remotely copy the same data block replica for replication. This contention
will, in turn, significantly increase the data upload time. Therefore, in Trojan HDFS,
we apply the second strategy, i.e. data nodes start data block reorganizations after all
replicas are copied. We showed an example of the resulting internal organization of a
data block in Figure 4.3.

4.4.2 Layout Creation

We now focus on the process of uploading a file to Trojan HDFS. In a spirit similar to
databases physical design wizards, users have to run our Trojan Layout Wizard (TLW) to
come up with the Trojan Layouts for their data sets. For this, users feed the TLW with
the query workload, the schema of their data sets, and the replication factor they will
use to store their data sets. Given these inputs, TLW computes the per-replica Trojan
Layouts and returns a layout configuration file. The layout configuration file contains,
for each data set, a row having data set name and per-replica Trojan Layouts ids. As

Chapter 4. Data Layouts for Large Scale Data Management 86

cl
ie

n
t

n
o
d
e

data node 3data node 2data node 1

(1)
 & (5

a)

(3)

(5b)

(4)

(5c)
(6b)

(7b) (7c)Block 1 Block 1 Block 1 Block 1Block 1 Block 1(7a) Block 1

name node

(2)
 & (6

a)

Block 1

(6c)

Figure 4.6: Process to upload a file to Trojan HDFS

an example, the layout configuration file for TPC-H Customers, TPC-H Lineitem, SSB
LineOrder, and SDSS PhotoObj can be as follows:

TPC-H_Customers: Row | Column | Customer_column_grouped
TPC-H_Lineitem: Row | Column | Lineitem_column_grouped
SSB_LineOrder: Row | Column | LineOrder_column_grouped
SDSS_PhotoObj: Row | Column | PhotoObj_column_grouped

The layout ids (e.g. Customer column grouped) in the above layout configuration file is
mapped to actual attributes in a separate file. Users simply upload the layout configura-
tion file into a predefined directory in Trojan HDFS. At start up, the name node loads
the layout configuration file into main memory. After this, the users can upload their
data files into Trojan HDFS exactly as in standard HDFS. Internally, Trojan HDFS
takes care of storing data block replicas in their respective Trojan Layouts, hiding all
messy details from the users.

Figure 4.6 depicts the upload process with a replication factor of 3. For simplicity, we
assume in Figure 4.6 that the data set to upload contains only a single data block. The
idea is that as soon as all replicas of a data block are copied, the data nodes internally
reorganize replicas according to their assigned Trojan Layout. In detail, the uploading
process has the following steps: (1) the client node (e.g. data node 1) asks the name
node to register a data block (e.g. data block 1); (2) the name node returns the set of
data nodes to hold the three data block replicas (e.g. data nodes 1, 2, and 3); (3) after
storing data block 1 locally, data node 1 sends a replica to data node 2; (4) data node 2
stores data block 1 locally and sends a replica to data node 3, which in turn also stores
data block 1 locally; (5a)–(5c) each data node then informs the name node of the newly
received data block 1; (6a)–(6c) the name node returns the Trojan Layout corresponding
to the data block replica stored by each data node; (7a)–(7c) finally, each data node
transforms data block 1 into its respective Trojan Layout. In case a user uploads a data
set that is not in the layout configuration file, the name node asks the data nodes to
keep the data layout unchanged (typically row layout).

4.4.3 Query Processing

To process an incoming MapReduce job, we first identify which attributes need to be
read. We then use a cost model (Table 4.1) to automatically pick the best Trojan Layout
in Trojan HDFS for the MapReduce job. Then, we schedule map tasks to those data

Chapter 4. Data Layouts for Large Scale Data Management 87

Algorithm 4.4: Trojan Layout itemize.initialize UDF
Input: FileSplit split, Configuration job

Set ReferencedAttributes = job.getRefAtts();1
Global FileSplit split = split;2
Header h = ReadHeader(split);3
Set GroupedData, ReadGroups = ∅;4
Global StringBuilder attributeOrder = new StringBuilder ();5
foreach attribute in h.getAttributes() do6

if ReferencedAttributes.contains(attribute) then7
if !ReadGroups.contains(attribute.getStartOffset()) then8

GroupedData.add(new Group (split.readfully(attribute.getStartOffset(),9
attribute.getEndOffset())));
ReadGroups = attribute.getStartOffset() ;10

end11
attributeOrder.append (attribute.getPosition() + ”,”);12

end13

end14

nodes storing data block replicas in the best Trojan Layout (given by the cost model).
We provide an itemize UDF [49] to the map tasks so that they can read only the referenced
attributes and reconstruct tuples, all invisible to the users.

Algorithm 4.4 shows the itemize.initialize method for enabling a map task to trans-
parently read referenced attributes from data blocks and automatically reconstruct tu-
ples as expected by applications (MapReduce jobs). To do so, we first get the required
attributes from the job configuration (Line 1). Then, we read the header of a data
block (Lines 2–3). The header information allows us to know the column groups that
contains the referenced attributes (relevant column groups). We upload such relevant
column groups into main memory (Line 6–10). Additionally, we keep track of the posi-
tion of each referenced attribute so as to allow a map function to know how attributes
are ordered in a tuple (Line 12). Now, to feed tuples to the map function, we simply
iterate over each column group and check if a column group has more tuples. If so,
we reconstruct the tuple from relevant column groups and pass it to the map function.
Otherwise, we signal the end of tuples.

4.4.4 Scheduling Policies

By default, the Hadoop MapReduce scheduler tries to allocate map tasks to those data
nodes having any replicas of the requested data block locally. However, with per-replica
Trojan Layouts, scheduling map tasks to data nodes having different data block replicas
may have quite different performance. For example, a MapReduce job requiring one
attribute out of 16 would be a way faster to complete if the input data set is in column-
layout. Therefore, to query per-replica Trojan Layouts, we always schedule map tasks
to those nodes storing the best Trojan Layout (Best-Layout policy, for short). This
policy is reasonable because in practice, if map tasks are slightly delayed [133], only
1% of map tasks need to fetch the best layout anyways. Still, in case of contention, we
might end up delaying several map tasks with the Best-Layout scheduling policy. To
avoid this delay, there could be two more scheduling policies to allocate these map tasks:
(i) schedule map tasks to available nodes even if they do not store the best Trojan Layout;
later, map tasks fetch data blocks with the best layout (Fetch Best-Layout policy), and
(ii) schedule map tasks to those nodes storing the second best Trojan Layout; later, map
tasks read the local data blocks (2nd Best-Layout policy). Both Fetch Best-Layout
and 2nd Best-Layout scheduling policies avoid delaying map tasks. However, Fetch

Chapter 4. Data Layouts for Large Scale Data Management 88

Best-Layout policy now incurs networks costs to fetch the best layout whereas 2nd
Best-Layout policy affects the data access performance.

We experimentally compare these three scheduling policies in Section 4.5.7.

4.5 Experimental Evaluation

We implemented our ideas on top of HDFS 0.20.3. We evaluate the performance of
Trojan Layouts and compare it with Hadoop MapReduce 0.20.3 using Row Layout
(Hadoop-Row) and PAX Layout (Hadoop-PAX). We ran our experiments with two
main objectives in mind: (i) to show that the use of Trojan Layouts allows us to sig-
nificantly improve data access performance, and (ii) to evaluate the effectiveness of our
column grouping algorithm.

4.5.1 Testbed

We ran all our experiments on a physical 10-node cluster where each physical node runs
five virtual nodes, using Xen virtualization, i.e., resulting in a total of 50 virtual nodes.
Node virtualization is also used by Amazon to scale up its clusters. However, we showed
that Amazon EC2 suffers from high variance in performance [110]. Therefore, running
the experiments on our cluster allows us to get more stable results. Each physical node in
our cluster has one 2.66 GHz Quad Core Xeon running 64-bit platform Linux openSuse
11.1 OS, 4x4 GB main memory, 6x750 GB SATA hard disks, and three Gigabit network
cards. We set each virtual node to have a physical 750 GB hard disk and physical 3.2 GB
main memory. The physical nodes are connected with a Cisco Catalyst 3750E-48PD,
which uses two Gigabit Ethernet ports for each node in channel bonding mode. From
now on, we refer to virtual nodes as nodes for clarity. We used Hadoop 0.20.3 running
on Java 1.6 for all our experiments. We used Trojan HDFS to store input datasets,
recall that Trojan HDFS is a variant of HDFS that supports different data layouts
per-replica (see Section 4.4.2). We made the following three changes to the default HDFS
settings: (i) we store data into Trojan HDFS using 256MB data blocks as in [49], (ii)
we allow Hadoop to reuse the task JVM executor instead of restarting a new process per
task, and (iii) we allow a node to concurrently run two map tasks and a single reduce
task.

4.5.2 Datasets and Benchmarks

To better validate Trojan Layouts, we used three real-world datasets and benchmarks:
TPC-H, Star Schema Benchmark (SSB), and the Sloan Digital Sky Survey4 (SDSS).

TPC-H. We generated data for the Customers and LineItem tables using the TPC-H
DBGEN data generator tool. We used a scale factor of 1, 000 to generate 50 files of data,
which results into a total of 23.74 GB for the Customers table and into a total of 759
GB for the LineItem table. Since TPC-H Customers table appears in only eight queries
of the TPC-H benchmark, we consider only the first eight queries of all other tables as
well.

4For further details on SDSS visit: http://www.sdss.org/

Chapter 4. Data Layouts for Large Scale Data Management 89

SSB. We generated data for LineOrder table using the SSB DBGEN tool. We used a
scale factor of 1, 000 to generate 50 files of data, which results into a total of 600 GB in
total. We consider the first eight SSB queries, i.e. we use all three variants of the first
two queries and the first two variants of the third query.

SDSS. We used ∼50 GB of real-world data provided by SDSS for the PhotoObj table.
As for TPC-H and SSB, we consider the first eight relevant SDSS queries. Notice that
the PhotoObj table has 446 attributes in total. However, to be fair to Hadoop Row,
for all three systems we consider only those 46 attributes which are referenced by our
SDSS benchmark queries.

4.5.3 Benchmarks Queries

In this section we enumerate the workload queries used in our experiments (see Sec-
tion 5.6). For each of the four tables — TPC-H Customer, TPC-H Linitem, SSB
LineOrder, and SDSS PhotoObj — we pick those first eight queries, in their respec-
tive benchmarks, which touch at least one attribute from them. The reason for doing
this was that only eight TPC-H queries access any of the attributes in Customer table.
Hence, in order to be fair and have equal-sized workload for all datasets, we picked just
the first eight queries over the four datasets. Tables 4.3, 4.4, 4.5,and 4.6 below list the
queries which we use over the three layouts — Row Layout, PAX Layout, and Trojan
Layout — in our experiments.

Query Number Query Referenced Attributes

Q1 TPC-H Query 3 0,6
Q2 TPC-H Query 5 0,3
Q3 TPC-H Query 7 0,3
Q4 TPC-H Query 8 0,3
Q5 TPC-H Query 10 0,1,2,3,4,5,7
Q6 TPC-H Query 13 0
Q7 TPC-H Query 18 0,1
Q8 TPC-H Query 22 0,4,5

Table 4.3: TPC-H Customers Queries (#total attributes = 8)

Query Number Query Referenced Attributes

Q1 TPC-H Query 1 4,5,6,7,8,9,10
Q2 TPC-H Query 3 0,5,6,10
Q3 TPC-H Query 4 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
Q4 TPC-H Query 5 0,2,5,6
Q5 TPC-H Query 6 4,5,6,10
Q6 TPC-H Query 7 0,2,5,6,10
Q7 TPC-H Query 8 0,1,2,5,6
Q8 TPC-H Query 9 0,1,2,4,5,6

Table 4.4: TPC-H Lineitem Queries (#total attributes = 16)

4.5.4 Layout Details

In this section, we show and discuss the Trojan Layouts that we obtained from our
column grouping algorithm. Since we create Trojan data layouts per replica of a given
data block, let us first look at the query groupings generated for our experimental
datasets. Recall that we use the same algorithm for generating query groups as we use
for generating column groups i.e. we simply invert the attribute usage matrix. Figure 4.7

Chapter 4. Data Layouts for Large Scale Data Management 90

Query Number Query Referenced Attributes

Q1 SSB Query 1.1 5,8,9,11
Q2 SSB Query 1.2 5,8,9,11
Q3 SSB Query 1.3 5,8,9,11
Q4 SSB Query 2.1 3,4,5,12
Q5 SSB Query 2.2 3,4,5,12
Q6 SSB Query 2.3 3,4,5,12
Q7 SSB Query 3.1 2,4,5,12
Q8 SSB Query 3.2 2,4,5,12

Table 4.5: SSB LineOrder Queries (#total attributes = 17)

Query Query Referenced Attributes
Number

Q1 Basic SELECT-FROM-WHERE 0,1,2,3
Q2 Moving Asteroids 0,4,5
Q3 Using three tables 0,2,3,6,7,8,9,10,11,12,17

18,19,20,21,22,23,28,29
Q4 Selected neighbors in run 0,1,6,7,23,24,25,26,27,30

31,32,33,34,35,36,37,38
Q5 Gridded galaxy counts 2,3,37,39
Q6 Stars multiply measured 0,8,9,10,11,12,30,37

40,41,42,43,44
Q7 Spatial Queries with HTM functions 0,2,3
Q8 Checking if objects are in SDSS footprint 0,2,3

Table 4.6: SDSS PhotoObj Queries (#total attributes = 46)

shows the query groups for the first relevant eight queries on TPC-H Customer, TPC-
H Lineitem, SSB LineOrder, and SDSS PhotoObj datasets. Here, we assume three
replicas per data block and generate three query groups, one for each replica.

Dataset Replica 1 Replica 2 Replica 3

TPC-H Customer Q2, Q3, Q4 Q5 Q1, Q6, Q7, Q8

TPC-H Lineitem Q1 Q5 Q2, Q3, Q4, Q6, Q7, Q8

SSB LineOrder Q1, Q2, Q3 Q4, Q5, Q6 Q7, Q8

SDSS PhotoObj Q4 Q6 Q1, Q2, Q3, Q5, Q7, Q8

Table 4.7: Query Grouping

Note that two query groups in TPC-H Customer, TPC-H Lineitem, and SDSS PhotoObj
datasets as well as all three query groups in SSB LineOrder dataset match perfectly
with the attribute access pattern. This means there is no redundant attribute accessed
and there are no joins in tuple reconstruction. We map each query group to a replica
and then compute the column grouping for each replica separately.

Column Replica 1 Replica 2 Replica 3
Groups

CG1 1,2,4,5,6,7 6 2,3,7
CG2 0,3 0,1,2,3,4,5,7 0
CG3 1
CG4 4,5
CG5 6

Table 4.8: TPC-H Customer Column Groups. Green replicas have perfect Trojan
Layouts for the queries routed to them.

Tables 4.8, 4.9, 4.10, and 4.11 show the column groupings for the three data block
replicas of TPC-H Customer, TPC-H Lineitem, SSB LineOrder, and SDS PhotoObj
tables respectively. In these tables, we represent the attributes as integer (starting from
0) attribute IDs in the same sequence as they appear in their benchmark datasets.

Chapter 4. Data Layouts for Large Scale Data Management 91

Column Replica 1 Replica 2 Replica 3
Groups

CG1 0,1,2,3,11, 0,1,2,3,7,8,9 0,2,5,6,10
12,13,14,15 11,12,13,14,15

CG2 4,5,6,7,8,9,10 4,5,6,10 1,4
CG3 8,9,11
CG4 14,15
CG5 7,12
CG6 3,13

Table 4.9: TPC-H Lineitem Column Groups. Green replicas have perfect Trojan
Layouts for the queries routed to them.

Column Replica 1 Replica 2 Replica 3
Groups

CG1 0,1,2,3,4,6 0,1,2,6,7 0,1,3,6,7
7,10,12,13 8,9,10,11 8,9,10,11
14,15,16 13,14,15,16 13,14,15,16

CG2 5,8,9,11 3,4,5,12 2,4,5,12

Table 4.10: SSB LineOrder Column Groups. Green replicas have perfect Trojan
Layouts for the queries routed to them.

Column Replica 1 Replica 2 Replica 3
Groups

CG1 2,3,4,5,8,9 1,2,3,4,5,6,7,13 13,14,15,16,24
10,11,12,13,14 14,15,16,17,18 25,26,27,30,31
15,16,17,18,19 19,20,21,22,23 32,33,34,35,36
20,21,22,28,29 24,25,26,27,28 38,40,41,42,43
39,40,41,42,43 29,31,32,33,34 44,45

44,45 35,36,38,39,45
CG2 0,1,6,7,23,24 0,8,9,10,11,12 0,1,2,3

25,26,27,30,31 30,37,40,41,42
32,33,34,35,36 43,44

37,38
CG3 4,5
CG4 37,39
CG5 11,19
CG6 7,28
CG7 8,23
CG8 12,18
CG9 10,20
CG10 17,21
CG11 6,9
CG12 22,29

Table 4.11: SDSS PhotoObj Column Groups. Green replicas have perfect Trojan
Layouts for the queries routed to them.

For instance, in Table 4.8, attribute IDs 0 to 7 denote the eight attributes of TPC-H
Customer table. Note that each replica may have a different number of column groups,
e.g. SDSS PhotoObj has two column groups each in the first two replicas whereas it has
twelve column groups in the last replica (see Table 4.11). However, the union of columns
groups in each of the replicas contains all attributes present in the dataset. It is worth
to notice that at least two replicas (shown as green in Tables 4.8, 4.9, 4.10, and 4.11) of
each dataset perfectly fit the queries routed to them i.e. the queries do not access any
redundant attributes nor need any joins for tuple reconstruction.

Finally, observe that increasing the number of replicas allows us to create more variety
of column groupings and thus hence fit a heterogenous query workload better. In the
extreme case, we could maintain one replica, with perfect column grouping, for each

Chapter 4. Data Layouts for Large Scale Data Management 92

query in the workload. However, the downside is that such an arrangement incurs exor-
bitant storage costs. Nevertheless, the beauty of Trojan Layouts is that it exploits the
default replication in parallel data processing systems without touching the distributed
data storage configurations.

4.5.5 Experiment Methodology

We first evaluate how well Trojan Layouts allow MapReduce jobs to improve their perfor-
mance. In particular, we evaluate how well our approach exploits different data replicas
to fit a given workload. As this chapter focuses on scan and projection operators of
MapReduce jobs (see Figure 4.1), we implement map-phase-only MapReduce jobs for
all our benchmark queries. The reason to do so is that Trojan Layouts improve the per-
formance of MapReduce jobs by improving the way they read data from HDFS, which is
done in the map phase of MapReduce jobs. Furthermore, we do not analyze the MapRe-
duce job and assume that we know the data access pattern, i.e. the attributes accessed
by each query. Recent works in other aspects of MapReduce (shown in Figure 4.1)
have described how to extract these data access patterns from MapReduce jobs [22, 77].
We run each benchmark three times, measure the time it takes to read the required
data from disk — i.e. the elapsed time between the initialization and finalization of
the itemize UDF — and report the improvement factor of our approach based on the
average reading time of the trials.

4.5.6 Per-Replica Trojan Layout Performance

In this section, we evaluate the data access time improvement of Trojan Layouts over
Hadoop-Row and Hadoop-PAX. Let us first evaluate these three data layouts in terms
of redundant attributes reads and attribute joins for tuple reconstruction. For this, we
analyzed the query groupings and their Trojan Layouts (see Section 4.5.4 for layout
details) and we observed that in all datasets at least two query groups fit perfectly
to its corresponding Trojan Layout. Hence, per-replica Trojan Layouts significantly
reduce redundant attribute access as well as tuple reconstruction overhead. Table 4.12
summarizes this observation.

#Redundant Attributes Read #Joins in Tuple Reconstruction

HADOOP-ROW 525 0

HADOOP-PAX 0 139

Trojan Layout 14 20

Table 4.12: Per-replica Trojan Layout analysis

We observe that Trojan Layouts allow us to read ∼37 times less redundant attributes
than Hadoop-Row and to perform ∼ 7 times less attribute joins for reconstructing
tuples than Hadoop-PAX. Thus, Trojan Layouts provide for a good trade-off between
the number of redundant attributes and the number of joins in tuple reconstruction
(green cells). This is in contrast to Hadoop-Row and Hadoop-PAX, which are at the
two extremes (red cells).

Figure 4.7 illustrates the improvement of data access time when using Trojan Layouts
over Hadoop-Row and Hadoop-PAX. We observe that for those queries referencing

Chapter 4. Data Layouts for Large Scale Data Management 93

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r
TPC-H Queries

(a) TPC-H Customer

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

TPC-H Queries

(b) TPC-H LineItem

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

SSB Queries

(c) SSB LineOrder

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

SDSS Queries

(d) SDSS PhotoObj

Figure 4.7: Improvement of data access time when using Trojan Layouts over
Hadoop-Row and Hadoop-PAX.

few attributes, e.g. Q4 in LineItem and all queries in LineOrder, Trojan Layouts im-
prove Hadoop-Row up to factor of 4.8. Indeed, this is because Hadoop-Row reads a
large number of redundant attributes as shown in Table 4.12. In particular, we observe
that Hadoop-Row slightly outperforms Trojan Layouts only for Q3 in LineItem. This

Chapter 4. Data Layouts for Large Scale Data Management 94

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Fetch Best-Layout

2nd Best-Layout

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

TPC-H Queries

Best-Layout

Figure 4.8: Worst-case relative data access performance when using different schedul-
ing policies. We observe that the 2nd Best-Layout policy significantly hurts perfor-
mance for some queries, while the Fetch Best-Layout policy has an overhead of at
most 9% over the Best-Layout policy. Therefore, in practice, one should try to use
the best layout to perform queries even if data blocks has to be copied through the

network.

is because all attributes are referenced and Trojan Layouts have an extra tuple recon-
struction cost that Hadoop-Row does not have. On the other side, we observe that
for those queries referencing many attributes, e.g. Q1 in LineItem and Q4 in PhotoObj,
Trojan Layouts outperform Hadoop-PAX up to a factor of 3.5. The reason is that tuple
reconstruction cost in Hadoop-PAX increases as the number of referenced attributes
increases as well. Trojan Layouts amortize tuple reconstruction cost by co-locating
attributes in the same column groups. Furthermore, the results show that Trojan Lay-
outs never perform worse than Hadoop-PAX, having at least the same performance as
Hadoop-PAX in the worst case (e.g. Q6–Q8 in Customer).

Overall, our experimental results show that Trojan Layouts significantly outperform
Hadoop-Row as well as Hadoop-PAX. Our experimental results also support the
simulation results we presented in Figure 4.2.

4.5.7 Comparing Scheduling Policies

In the above experiments, we considered the Best-Layout scheduling policy (see Sec-
tion 4.4.4), which always allocates map tasks to those nodes storing the best Trojan
Layout for incoming map tasks. However, as discussed in Section 4.4.4, one could ap-
ply two other scheduling policies as well: the Fetch Best-Layout policy and the 2nd
Best-Layout policy. To understand which policy performs better, we measure their rel-
ative performance with respect to the Best-Layout policy over TPC-H Lineitem table.
We compute the relative performance of a given scheduling policy as the ratio of the
data access time of the given policy to the Best-Layout policy.

Figure 4.8 shows the results of these experiments. As expected, the Best-Layout pol-
icy performs better than the other two policies. However, we observe that the Fetch
Best-Layout policy performs almost as well as the Best-Layout policy. This is not the
case for the 2nd Best-Layout policy, which is slower by a factor of up to ∼3.8. This is
because map tasks end up reading all attributes from disk in many cases. Thus, we can
conclude that, when having data block replicas in different layouts, one should apply
only the Best-Layout and Fetch Best-Layout policies.

Chapter 4. Data Layouts for Large Scale Data Management 95

0

900

1800

2700

3600

4500

Customer LineItem LineOrder

1891

3345

82

1446

2044

77

T
im

e
 (
s
e
c
o

n
d

s
) HDFS Trojan HDFS

Relations(a) Using 50 virtual nodes.

0

400

800

1200

1600

2000

LineItem

1377
1266

HDFS 1 HDFS 2 HDFS 3 HDFS Average Trojan HDFS 1 Trojan HDFS 2 Trojan HDFS 3 Trojan HDFS Average

Customer

LineItem

LineOrder

PhotoObj

76 79 76 77 81 80 85 82

2040 2044 2048 2044 3350 3346 3340 3345.33333333333

1440 1452 1446 1446 1860 1858 1955 1891

0 0 0 0 0 0 0 0

0

900

1800

2700

3600

4500

Customer LineItem LineOrder

1891

3345

82

1446

2044

77

T
im

e
 (
s
e
c
o

n
d

s
) HDFS Trojan HDFS

Relations

HDFS 1 HDFS 2 HDFS 3 HDFS Average Trojan HDFS 1 Trojan HDFS 2 Trojan HDFS 3 Trojan HDFS Average

Customer

LineItem

LineOrder

PhotoObj

0 0 0 0 0 0 0 0

1265 1263 1271 1266.33333333333 1380 1374 1377 1377

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T
im

e
 (
s
e
c
o

n
d

s
) HDFS Trojan HDFS

(b) Using 10 physical nodes.

Figure 4.9: Comparison of Data Loading Times in Trojan and standard HDFS.

4.5.8 Data Loading

Now we compare and analyze the data load performance of Trojan HDFS with standard
HDFS. On a cluster of 50 virtual nodes, we consider the data load times of three data
sets from our benchmarks: TPC-H Customer, TPC-H Lineitem, and SSB LineOrder.
For each of these data sets, we load the data files on all data nodes in parallel, i.e. each
of the fifty nodes loads ∼ 470 MB of TPC-H Customer data (23.74 GB in total), ∼15
GB of TPC-H Lineitem data (759 GB in total), and 12 GB of SSB LineOrder data
(600 GB in total). We use the same command-line utility for both Trojan as well as
standard HDFS.

Figure 4.9(a) illustrates the results of loading these three data sets into Trojan and stan-
dard HDFS. As expected, standard HDFS is faster than Trojan HDFS because it simply
copies the data from local hard disks to the distributed file system. On the other hand,
Trojan HDFS parses the data sets into binary representation and formats them into
their Trojan Layout. However, from Figure 4.9(a), we see that the difference between
the loading times of Trojan and standard HDFS becomes significantly high for larger
tables, e.g. TPC-H Lineitem table. The reason for this overhead is that the Trojan
HDFS is CPU-intensive due to data parsing and layouts transformation. However, be-
cause of node virtualization more than 60% of the CPU resources are already consumed.
Furthermore, since each physical node of our cluster has a Quad-core processor (see
Section 4.5.1), each virtual node gets only ∼0.7 core. These two problems slow down
the data loading in Trojan HDFS considerably. Standard HDFS, on the other hand, is
I/O intensive and therefore does not get affected.

To actually verify our claims, we repeated the data loading experiments for Lineitem
using only the 10 physical nodes, i.e., without any node virtualization. However, we still
keep the amount of data per data node same. Figure 4.9(b) shows the loading times of
Trojan and standard HDFS. We observe that Trojan HDFS now compares very well

Chapter 4. Data Layouts for Large Scale Data Management 96

with standard HDFS. This is because the data nodes get much better CPU resources
by not sharing the Quad-core processors anymore.

In summary, we can say that with appropriate cluster settings, the data load time
overhead of Trojan HDFS is negligible. Furthermore, the one-time data load cost of
Trojan HDFS pays off as recurring speed-ups over several MapReduce jobs.

4.5.9 Comparison with HYRISE

In this section, we compare our column grouping algorithm with recently proposed
HYRISE [60] layout selection algorithm. HYRISE proposes a cost-based divide and
conquer technique for layout selection. It divides the set of candidate column groups
using a k-way partitioner and then applies brute force search for the best layout per
partition. Thereafter, it tries to merge column groups across partitions, before producing
the final layout. This approach effectively improves upon the complexity of prior column
grouping algorithms, e.g. [64]. However, it has two major problems: (i) there is little
column grouping quality control, and (ii) query grouping, and hence per-replica layouts,
is not possible.

In contrast, our interestingness-based column grouping algorithm takes the quality of col-
umn grouping into account. To illustrate this, we implemented HYRISE layout selection
algorithm. Table 4.13 shows the redundant attributes accessed and tuple reconstruction
joins in HYRISE and Trojan layouts.

#Redundant Attributes Read #Joins in Tuple Reconstruction

HYRISE Layout 2 64
Trojan Layout 14 20

Table 4.13: Quality Comparison of HYRISE and Trojan Layouts

We can see that even though HYRISE significantly reduces the redundant attributes
accessed, it still incurs a very high tuple reconstruction cost. In contrast, Trojan Lay-
out minimizes tuple reconstruction cost while allowing for additional (cheap) redundant
reads. To verify our claim, we ran our benchmark queries over HYRISE layout. In-
deed, our results showed over 14% improvement in total runtime of Trojan Layouts over
HYRISE layouts on TPC-H Lineitem, TPC-H Customer, and SSB LineOrder tables.
Similarly, Trojan Layouts have an improvement of 5.9% over HYRISE layouts on SDSS
PhotoObj table. Lower improvement on PhotoObj table is due to the large number
of attributes accessed by queries and the skewed query groups produced in our Trojan
Layout (2 groups of 1 query each, and 1 group of 6 queries).

4.5.10 Grouping Algorithm Performance and Scalability

We now focus on the effectiveness of our algorithm to group attributes inside a data
block.

Column Group Pruning. First of all, we show the effectiveness of our interestingness-
based column group pruning. Figure 4.10(a) shows the pruning performance over TPC-H
Customer, TPC-H LineItem, and SSB LineOrder. We observe that candidate column
groups get pruned progressively with the pruning threshold.

Chapter 4. Data Layouts for Large Scale Data Management 97

Pruning
Threshold

Customer Lineitem LineOrder PhotoObj

0.0 255 65535 131071

0.1 240 65105 56130

0.2 218 60869 12070

0.3 158 45123 2739

0.4 98 22450 904

0.5 48 8168 274

0.6 20 2465 119

10

100

1000

10000

100000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Pruning Threshold

Customer Lineitem LineOrder

{Q5,Q7,Q8}, {Q10}, {Q3,Q13,Q18,Q22}{Q5,Q7,Q8}, {Q10}, {Q3,Q13,Q18,Q22}{Q5,Q7,Q8}, {Q10}, {Q3,Q13,Q18,Q22}{Q5,Q7,Q8}, {Q10}, {Q3,Q13,Q18,Q22}

{Q1}, {Q6}, {Q3,Q4,Q5,Q7,Q8,Q9}{Q1}, {Q6}, {Q3,Q4,Q5,Q7,Q8,Q9}{Q1}, {Q6}, {Q3,Q4,Q5,Q7,Q8,Q9}{Q1}, {Q6}, {Q3,Q4,Q5,Q7,Q8,Q9}

{Q1.1,Q1.2,Q1.3}, {Q2.1,Q2.2,Q2.3}, {Q3.1,Q3.2}{Q1.1,Q1.2,Q1.3}, {Q2.1,Q2.2,Q2.3}, {Q3.1,Q3.2}{Q1.1,Q1.2,Q1.3}, {Q2.1,Q2.2,Q2.3}, {Q3.1,Q3.2}{Q1.1,Q1.2,Q1.3}, {Q2.1,Q2.2,Q2.3}, {Q3.1,Q3.2}{Q1.1,Q1.2,Q1.3}, {Q2.1,Q2.2,Q2.3}, {Q3.1,Q3.2}

{3,}, {5,}, {0,1,2,4,6,7,}, {3,}, {5,}, {0,1,2,4,6,7,}, {3,}, {5,}, {0,1,2,4,6,7,}, {3,}, {5,}, {0,1,2,4,6,7,},

Q5 Q1 Q1.1

Q7 Q6 Q1.2

Q8 Q3 Q1.3

Q10 Q4 Q2.1

Q3 Q5 Q2.2

Q13 Q7 Q2.3

Q18 Q8 Q3.1

Q22 Q9 Q3.2

3 1 4

1 1 6

3 3 2

1 1 6

TPC-H Customer

TPC-H Lineitem

SSB LineOrder

SDSS PhotoObj

Replica 1 Replica 2 Replica 3

Q5 Q7 Q8

Q1.1 Q1.2 Q1.3

Q1 Q6

Q10

Q2.1 Q2.2 Q2.3

Q3 Q13 Q18 Q22

Q3 Q4 Q5 Q7 Q8 Q9

Q3.1 Q3.2

Q4 Q6 Q1 Q2 Q3 Q5 Q7 Q8

#Redundant Attributes Read #Joins in Tuple Reconstruction

HADOOP-ROW 525 0

HADOOP-PAX 0 139

Trojan Layout 14 20

N
u
m

b
e
r

o
f

C
a
n
d

id
a
te

C
o

lu
m

n
 G

ro
u
p

s

(a) Pruning Effectiveness

3 128 63 63

4 32768 409 409

5 2147483648 3025 3025

6 9.22E+18 25587 25587

7 1.70E+38 239309 239309

8 5.79E+76 2427820 2427820

9 6.70E+153 26564041 26564041

10 8.99E+307 310590691 310590691

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

3 4 5 6 7 8 9 10

1

1E61

1E122

1E183

1E244

1E305

3 4 5 6 7 8 9 10

N
u
m

b
e
r

o
f

It
e
ra

ti
o

n
s

Number of Attributes

Without Disjointness Constraint

With Disjointness Constraint

(b) Knapsack Iterations

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

8 80 800 8000

1701791.67

169772.39

12849.81

47.97

Q
u
e
ry

 G
ro

u
p

in
g

 T
im

e
 (
m

s)

Number of Queries

(c) Query Grouping Scalability

Figure 4.10: Performance of our column grouping algorithm.

Number of Iterations. Next, we show the effect of adding the disjointness constraint
(Equation 4.2) to our knapsack formulation. Figure 4.10(b) compares the number of
iterations with and without the disjointness constraint. Recall that the disjointness
constraint prevented us from using dynamic programming algorithm. However, as we see
from the figure, the disjointness constraint significantly reduces the number of iterations
in our algorithm.

Query Workload Scalability. Finally, we show the scalability of our algorithm with
query workload. Recall that to deal with large number of queries, we apply our grouping
algorithm recursively, i.e. we first independently group sets of queries, then we indepen-
dently group sets of query groups, and so on. Figure 4.10(c) shows the time taken to
create query groups when scaling the number of queries. For instance, for 8, 000 queries,
the time taken to group the queries is around 28 minutes. This is acceptable, given that
grouping is an offline process. Thus, our algorithm scales well with query workload size.

4.6 Related Work

Column Layouts in Traditional Systems. As an alternative to traditional n-ary
storage model, Decomposition Storage Model (DSM) [40] was the earliest approach to
store data in a column-oriented layout, i.e. all values of an attribute stored together.
Later, researchers proposed PAX [11], a page-level column layout, to improve cache
performance. Finally, Column-Stores [4] reinvented DSM to significantly improve upon
storage requirements as well as query processing. However, all these approaches were
designed for single-node data processing systems and thus do not care about replication.
In a distributed setting, Fractured Mirrors [106] keeps two replicas of data: one in row

Chapter 4. Data Layouts for Large Scale Data Management 98

and the other in column layout. However, it has a fixed number of replicas (two) as well
as layouts (row and column). Trojan layouts, on the other hand, can work with any
number of replicas and can even create hybrid layouts. Still, in special cases, Trojan
layouts can mimic Fractured Mirrors.

Column Layouts in MapReduce. Row layouts in MapReduce could incur significant
overheads over large datasets. To deal with this, recent works such as Cheetah [33] and
ES2 [24] propose to use block-level PAX layouts in MapReduce. Similarly, a more
recent work [52] creates, for each horizontal range, a different physical file per attribute.
However, all these works create identical layouts for different replicas of a data block
and do not consider column grouping. In contrast, Trojan Layouts can create a different
layout per data block replica and also consider column grouping.

Column Grouped Layouts. Given a query workload, finding the optimal column
grouping (or vertical partitioning) is a NP-hard problem [109]. Thus, most of the works
on vertical partitioning, including the initial approach [95], Data Morphing [64], and
HYRISE [60] focus on heuristics to improve the runtime complexity but do not consider
the quality of column grouping. [9] considers the interestingness (CG-Cost) of candidate
column groups and prunes the ones below a certain threshold. However, CG-Cost has
several problems (discussed in Section 4.3.1). Our interestingness measure significantly
improves upon CG-Cost, thus enabling our column grouping algorithm to produce better
quality results. Furthermore, previous column grouping algorithms produce a single best
layout for the entire workload. However, in a parallel data processing system having
inherent data replication, different replicas could be mapped to different layouts. Our
column grouping algorithm makes this possible by producing a set of column-grouped
layouts, each of which are best suited for a different subset of the workload. With this,
we can later route an incoming query to a more specialized layout.

DBMS Stores with MapReduce. HadoopDB [5] replaces the HDFS storage in
MapReduce with a database. Thus, the data is now in the DBMS data layout (row
layout for row-oriented DBMS, column layout for column-oriented DBMS). However,
this involves severe changes to the Hadoop execution framework. Similarly, another
approache analyzes the map functions and translate them into SQL queries to be run
on a database [77]. These approaches are orthogonal to our Trojan philosophy: affect
Hadoop from inside in a non-invasive manner by injecting our technology at the right
places through UDFs only [49].

Multi-column Indexes. Multi-column indexes, e.g. in [29], are combined indexes over
multiple columns and thus store multiple columns together (column groups). However,
multi-column indexes are additional storage structures created on top of an underly-
ing table, whereas Trojan Layouts are the physical representations of the underlying
table itself. Furthermore, multi-column indexes consider only the indexable attributes,
i.e. attributes appearing in selection and join predicates, while Trojan Layouts considers
all accessed attributes. As a result, multi-column indexes reduce the number of rows
to access, whereas Trojan Layouts reduces the number of columns to access. Thus,
multi-column indexes are orthogonal to Trojan Layouts.

Materialized Views. Materialized views are persisted copies of arbitrary query re-
sults [35]. One could think of using materialized view design wizards from relational
databases, e.g. SQLServer, to achieve some of the optimizations presented in this chap-
ter. However, in order to apply these tools to Hadoop MapReduce, we would need

Chapter 4. Data Layouts for Large Scale Data Management 99

to extend them significantly. For instance, we need to take into account the default
data replication. Still, materialized views are additional storage structures and need
additional storage space as well as creation and query techniques. Trojan Layouts, on
the other hand, keeps the same data size and reuses the existing Hadoop MapReduce
pipeline.

4.7 Conclusion

MapReduce suffers from very slow execution times in some analytical tasks compared
to DBMSs. One of the reasons for this is that MapReduce processes input data blocks
in a strictly row-oriented fashion, which leads to full scans of the input data [101].

In this chapter we proposed Trojan Layouts, a new data layout that organizes data
inside data blocks according to the incoming workload. We followed the PAX principle
in that we did not change the outside view of data. However, we considerably depart
from PAX as we: (i) might co-locate attributes together according to query workloads,
(ii) may use different Trojan Layouts for different data block replicas, and (iii) may, in a
special case, mimic fractured mirrors: having the best from both PAX and Row Layouts.
We implemented our algorithms on top of HDFS 0.20.3. A salient feature of using per-
replica Trojan Layouts is that we can schedule incoming jobs to data block replicas
having the best Trojan Layout. With Trojan Layouts, we have the flexibility to choose a
different storage view for each data block replica in Hadoop MapReduce. As a result, we
can now have efficient column-oriented as well as arbitrary partial-projection-oriented
processing, in addition to standard row-oriented processing in Hadoop MapReduce.

We experimentally evaluated Trojan Layouts using three real-world benchmarks: TPC-
H, SSB, and SDSS, and compared its effectiveness against Hadoop using Row (Hadoop-
Row) and PAX (Hadoop-PAX) layouts. The results demonstrated that our approach
significantly outperforms both Hadoop-Row and Hadoop-PAX in all three bench-
marks: up to a factor of 4.8 for Hadoop-Row (3.3 times faster on average and 1.1
times slower in the worst case); and up to a factor of 3.5 for Hadoop-PAX (1.6 times
faster on average and no improvement in the worst case). Figure 4.11 illustrates how
the experimental runtimes of queries Q1 to Q8 varies with the number of referenced
attributes for TPC-H Customer table. In particular, the results showed that the per-

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 3 4 5 6 7

Da
ta

 A
cc

es
s

Co
st

 [s
ec

]

Number of Referenced Attributes (Out of 8)

Row Layout
PAX Layout

Trojan Layout

Figure 4.11: Simulation Validation for TPC-H Customer

formance of Hadoop-PAX decreases quickly as the number of referenced attributes
increases. This is not the case for Trojan Layouts. In other words, our experimental
results support the simulation results we presented in the introduction of this chapter
(see Figure 4.2).

Chapter 4. Data Layouts for Large Scale Data Management 100

As future work, we plan to adapt Trojan Layouts to changes in the workload. Several
strategies, such as piggy backing into ongoing MapReduce jobs, can be employed and
need to be investigated in more detail.

Chapter 5

Column-oriented Storage for
Relational Data Management

Column stores are becoming popular with modern enterprises. However, database ven-
dors offer column stores as a different database product all together. As a result there
is a all-or-none situation for column store features. To bridge the gap, a recent effort
introduced column store functionality in SQL server (row store) by making deep seated
changes in the database system. However, this approach is expensive in terms of time
and effort. In addition, it is limited to SQL server. In this chapter, we present Trojan
Columns, a novel technique for injecting column store functionality into a given row-
oriented commercial database system. Trojan Columns does not change the source code
of the database system. Instead, it uses UDFs as a pluggable storage layer to write and
read data. Furthermore, Trojan Columns is transparent to the user, i.e. the user does not
need to change his schema and his queries remain almost unchanged. We demonstrate
Trojan Columns on a row-oriented commercial database DBMS X, a closed source top
notch database system. We show experimental results from TPC-H benchmarks. Our
results reveal that Trojan Columns work very well with non-nested and high selectivity
queries. From our results on non-nested and high selectivity TPC-H queries, we see that
Trojan Columns can improve the performance of DBMS X by a factor of 9 in the best
case, a factor of 3.9 on average, and a factor of 2.5 in the worst case, without changing
the source code and with minimal user effort. On the other hand, for non-nested and low
selectivity TPC-H queries, our results showed that DBMS X slows down by a factor of 2
on average with Trojan Columns. We also ran experiments on simplified TPC-H queries,
as used in popular papers like [18, 116], and our results show that Trojan Columns can
improve the performance of DBMS X by a factor of 13 in the best case, a factor of 5.2
on average, and a factor of 3.9 slowdown in the worst case.

5.1 Introduction

5.1.1 Background

Row stores like Oracle and DB2 as well as column stores like Vertica, MonetDB, have,
in recent times, emerged as two major technologies in the commercial database market.
However, database vendors typically offer different database products for row and column

101

Chapter 5. Column-oriented Storage for Relational Data Management 102

stores respectively. This is a huge problem for customers since they have to make a
strategic decision on which (one or more) database products to use. Alternatively, in
recent times, several people have argued for the superiority of column stores over row
stores [1, 3, 66, 116]. As a result, several enterprise customers might choose to migrate
to a column store. However, this is an expensive process. It involves new licensing costs,
additional training for the administrators and developers, and migration effort from the
old to the new database product. For a customer, such change of faith from one database
product to another is a once-in-while process.

5.1.2 Problem

A recent approach integrated column store indexes into SQL Server [86]. In that ap-
proach, column store indexes store segments of columns as blobs in the standard row
store table. This, however, requires deep changes in all the layers of the database system,
including query processing and data storage enhancements. As a result, this is a consid-
erable effort for the vendors, and meanwhile the users have to wait for the next product
release. The above approach certainly helps SQL Server users, since they can still use
the rich DBMS features as well as the sophisticated query optimizer. But what about
the users of other database products, e.g. IBM DB2, Oracle? It is not clear whether they
can or are willing to emulate column stores as well. Users of these database products
will certainly ask this question.

In summary, the research problem we explore in this chapter is as follows. For any
proprietary closed source database product, is it possible to introduce column store
technology in it? All this without having access to the source code of the database
product.

5.1.3 Research Challenges

The above discussion brings several research challenges to the forefront, which we phrase
as hard hitting questions below:

(1.) Should the enterprise customers continue living with all-or-none situation for row
and column store features? Do they really have to make a binary decision between row
and column stores or can there be an alternative approach?
(2.) Can the enterprise customers try out a column store in their current database
product before actually migrating to one? What would be the performance gain when
emulating a column store?
(3.) Do the users have to rely on database vendors to integrate column store functional-
ity within the database system? Do they really have to wait till the next product release
or is it possible for users to start using column store functionality on demand?
(4.) Is it possible to emulate a column store in a given commercial row store database
system? Can we have a generic approach to simply inject column store functionality
into a given database system?

Chapter 5. Column-oriented Storage for Relational Data Management 103

5.1.4 Our Idea

Our idea is to use User Defined Functions (UDFs) as an access layer for data storage
and retrieval. To do so, we create and install certain UDFs within the database system
and exploit them whenever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs translate it into the
row layout for the query processor. This means we trick the database into believing that
the data is still stored in row fashion, even though it is not. It is like adding trojans
(but good ones) to the existing database in order to significantly boost its performance,
yet without trespassing the propriety code base. Finally, note that our approach is very
different from the two extremes of data stores: either having a different product for
different stores or doing deep seated changes in the database product. We do neither of
these, but still gain performance significantly. The major benefits of our approach are
as follows:

(1.) Injects column store functionality into existing closed source database products
e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user; instead, the changes
are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather, uses lightweight
UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-grouped layouts) by
inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no need to re-implement
state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

5.1.5 Contributions

Our main contributions are as follows:

(1.) We explore database UDFs as a novel way to supporting different data layouts
in a database system. The UDF approach introduces the novel functionality without
touching the source code of the database system, and yet it is completely transparent
to the outside user. (Section 5.2)
(2.) We present Trojan Columns: a radically different technique to inject column store
functionality into a given database system. Trojan Columns masks the database storage
layer and translates back and forth from the user row-view to the physical column-view
of data. All the while, the user view remains unchanged. (Section 5.3)
(3.) We present techniques to query Trojan Columns. We show how to push down one
or more operators in the query tree to the UDFs. We describe how to rewrite the user
queries in order to use the UDFs for data access. (Section 5.4)
(4.) We present details for implementing Trojan Columns in DBMS X, a commercial
closed source database system. Additionally, we also explore and contrast stored proce-
dures as an alternative to UDFs for Trojan Columns. (Section 5.5)
(5.) We present experimental results from DBMS X over TPC-H datasets and queries.
We compare our approach to C-Tables [18], a recent approach of emulating columns
stores in row stores, and demonstrate how Trojan Columns outperforms C-Tables. We

Chapter 5. Column-oriented Storage for Relational Data Management 104

investigate the pros and cons of Trojan Columns by varying several query and storage pa-
rameters. We also compare Trojan Columns with a native open source column-oriented
storage implementation in PostgreSQL. We discuss the benefits and the costs of native
column-oriented storage over Trojan Columns. (Section 5.6)

5.2 The UDF Storage Layer

5.2.1 Background

User defined functions (UDFs) provide a mechanism for a user to inject custom behavior
for data processing. In databases, a UDF is a piece of code written by a user to add
or extend the database system functionality. Typically database systems support three
kinds of UDFs based on their return types: (i) scalar value returning UDFs, e.g. a UDF
to compute the total number of vowels in a given string, (ii) row returning UDFs, e.g. a
UDF to compute the individual counts of each vowel in a given string, and (iii) table (of
rows) returning UDFs, e.g. a UDF to compute the individual vowel counts in 20 random
strings. The table returning UDFs are of particular interest to us and we exploit them
to customize the storage layer in a database. Below we discuss why.

5.2.2 Why UDFs as the Storage Layer?

Following are the reasons why UDFs are well suited to be used as a storage layer for
databases.

Plug-and-play. Current database products have hard-coded assumptions about the
data storage: a given database system assumes a given fixed data store. This makes
changing the storage layer all the more difficult, since we need to modify almost all
other components of the database system, including query parser, optimizer, and execu-
tor. Fortunately, UDFs provide plug-and-play functionality, i.e. we can inject the new
functionality without making any deep seated changes in the database system. The user
simply creates the UDFs once and can thereafter use them in his SQL statements over
and over again.

Tight integration. Other approaches, such as full vertical partitioning and C-Tables [18],
mimic column stores in row stores at the schema level. Schema level approaches are
loosely integrated within the database system and they incur redundant joins at query
time. Hence, as we will show, schema level approaches are highly performance inefficient.
On the other hand, even though UDFs are plug-and-play, they are tightly integrated
within the database system. They are executed at the server itself within the server pro-
cess. This avoids any networks costs and the execution is highly efficient. Furthermore,
the databases exposes several core functionalities, which can be reused, to the UDFs.
This allows for even more powerful and efficient use of UDFs. The tight integration
allows the UDF storage layer to be performance efficient.

Universal applicability. One of the most important advantages of UDFs is their
universal applicability. Almost every database product, e.g. IBM DB2, Microsoft SQL
Server, Oracle, provides interfaces for UDFs. These databases not only allow the users
to write UDFs in standard SQL, but also provide rich programming language support.

Chapter 5. Column-oriented Storage for Relational Data Management 105

UDF Storage Layer

Query Processor

Relations

Tables

File 1 File 2 File 3 File n....

Figure 5.1: The UDF Storage Layer

This means that the users can code the UDFs in languages such as C and Java. Thus,
an approach using UDFs is generic enough for widespread applicability.

SQL nesting. Finally, the UDFs thus created can be easily nested in SQL queries.
This is in contrast to stored procedures which need a CALL statement to be invoked.
At execution time, whenever the query executor finds a UDF in the query tree, it simply
loads and executes the corresponding code. This effectively means that a part of the
functionality in a given SQL query is provided by the UDF. As a consequence, we do
not need to change the entire query. Instead, we just add the functionality wherever
required. This is in contrast to both full vertical partitioning as well as RowCol, where
the user is forced to change his schema, incur complete query rewriting, and introduce
additional joins.

5.2.3 Mapping Relations to Tables

Let us now see how we map relations to tables when using UDF as a storage layer in
databases. Typically, in a row-oriented database system, the logical relation is mapped to
a physical row-oriented table, i.e. there is a one-to-one mapping. However, with the UDF
storage layer, as shown in Figure 5.1, the UDFs serve as the mapping between the logical
and the physical representation of data, i.e. the user can have any arbitrary physical
representation of his logical relation, similar to storage views in OctopusDB [48, 78].
Even though the UDF storage layer allows for any physical representation of data,
internally it still uses (exploits) the row store tables of the database to store data on
disk. We call these internal tables as physical tables. Note that in contrast to vertical
partitioning, the user, and in contrast to columns stores, the database internals (query
parser, optimizer, executor) still assume that the data is stored in the standard row
representation. Only at the data access layer, the UDFs intervene to instead map the
data to a different physical representation.

5.3 Trojan Columns

In this section, we present Trojan Columns: a novel way of injecting column store
functionality in a given row-oriented database system. Trojan Columns uses the UDF
storage layer to translate the logical row view from the user to the physical column
view on disk. The core philosophy of Trojan Columns is very similar to Trojan Index
and Joins in Hadoop++ [49, 80]: affect the changes from inside without changing the

Chapter 5. Column-oriented Storage for Relational Data Management 106

source code of the system. In the following, we describe how to create and query Trojan
Columns, as well as how to handle inserts and updates.

5.3.1 Data Storage

Trojan Columns maps logical relations to physical tables as follows. First, we horizon-
tally partition a given relation T into segments. Then, we store each attribute in a given
segment as a separate BLOB (binary large object) in physical table T trojan(segment ID,
attribute ID, blob data). To illustrate, consider the following entries of a Customer re-
lation.

Customer
ID name phone market segment
1 smith 2134 automobile
2 john 3425 household
3 kim 6756 furniture
4 joe 9878 building
5 mark 4312 building
6 steve 2435 automobile
7 jim 5766 household
8 ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are mapped to a different
row, the Trojan Columns leads to the following Customer trojan table:

Customer trojan
segment ID attribute ID blob data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market segment building, automobile, household, household

We store each entry in the blob data column of the above table as a BLOB, thus mim-
icking a column-oriented storage. Experimentally, we found much bigger segment sizes,
e.g. 10M rows, to be more suitable. The data storage idea for Trojan Columns is inspired
by SQL Server Column Indexes [86]. However, in practice, Trojan Columns is radically
different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead of native SQL support
in case of Column Indexes. This not only makes Trojan Columns plug-and-play, but
also allows us to customize the blob storage to user applications. For example, we
might prefer light weight compression (e.g. RLE) for read-intensive application and
higher compression ratio (e.g. Huffman) for archive application. Or, we could simply
let the database system apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise we might choose to sort the data within or even
across the blobs in any way, e.g. sort on attribute IDs. Essentially, we have full control
and flexibility to decide how the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Column Indexes not only
in data storage but also in data access. Similar to data storage, the access method is
plugged into a given database, instead of making deep changes in the data access layer
itself. Again, we have full control to decide, based on user application, how to access

Chapter 5. Column-oriented Storage for Relational Data Management 107

CustomerCustomerCustomerCustomer

ID name phone market_segment

1 smith 2134 automobile
2 john 3425 household

3 kim 6756 furniture

4 joe 9878 building

5 mark 4312 building

6 steve 2435 automobile

7 jim 5766 household

8 ian 8789 household

Customer_trojanCustomer_trojanCustomer_trojan

segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878

1 market_segment automobile, household, furniture, building

2 name mark, steve, jim, ian

2 phone 4312, 2435, 5766, 8789

2 market_segment building, automobile, household, household

Tuple
Iterator

Data
Parser

Data
Accessor

(e) Reconstruct
row tuples

(d) Parse blob data

(f) Fetch
blob data

(g)End of table

re
ad

-U
D

F

Tuple
Iterator

Data
Parser

Data
Accessor

(a) Convert row
tuples into blobs

(b) Store blob data

(c) Get next
row data

w
ri

te
-U

D
F

Physical Table

Logical tuples Logical tuples

Physical tuples Physical tuples

Logical Relation

Figure 5.2: Read and Write UDFs for Trojan Columns

the data. For example, for an airline company, we may choose to look for all possible
connections only for premium customers.

Third, Trojan Columns uses standard database tables to store the blob, instead of a
new index type in case of Column Indexes. The database uses its own physical storage
mechanism to persist the blob table on disk. In other words, Trojan Columns simply
provides a mechanism to decouple logical representation of relations from their physical
implementation, a.k.a physical data independence, which, unfortunately, still remains a
myth in several modern databases [127].

Finally, with Trojan Columns the database system is entirely agnostic of the column store
functionality injected within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that Trojan Columns
is database product independent, i.e. they can be plugged into any existing database
product.

The left side of Figure 5.2 shows the write-UDF to upload customer relation into Trojan
Columns. The write-UDF in the UDF storage layer has three components: tuple iterator,
data parser, data accessor. Let’s walk through each of them. The tuple iterator iterates
over the input logical tuples. The tuple iterator passes the logical tuples to the data
parser (step (a) in Figure 5.2) to convert them into Trojan Column representation. The
data parser passes the Trojan Column tuples to the data accessor (step (b) in Figure 5.2),
which stores them on disk. Finally, the data accessor signals the tuple iterator to read
the next set of logical tuples (step (c) in Figure 5.2).

Chapter 5. Column-oriented Storage for Relational Data Management 108

5.3.2 Data Access

Trojan Columns is stored without any native support from the database system. There-
fore, Trojan Columns must be accessed in a way such that the database system remains
oblivious to it. To do so, we use table returning UDFs to access Trojan Columns. The
right side of Figure 5.2 shows such a read-UDF. Again, the read-UDF has three compo-
nents: tuple iterator, data parser, data accessor. The data accessor accesses the required
blobs (if any) from the physical table and passes it on to the data parser (step (d) in
Figure 5.2). The data parser reconstructs the logical tuple from the physical blobs (step
(e) in Figure 5.2). Now in each UDF call, the tuple iterator checks if there are more
tuples to be passed from the data parser to the user. If yes, it simple passes the next
tuple to the user and returns. Otherwise, it asks the data accessor to access the next
blobs from the physical table (step (f) in Figure 5.2). When all blobs have been accessed
by the data accessor, i.e. no more logical tuples to output, the UDF returns end-of-table
(step (g) in Figure 5.2). Essentially, the table returning UDF acts as a data access path.

5.3.3 Handling Inserts and Updates

By design, column store functionality is suited for analytical workloads, which are typi-
cally read-only. Still, Trojan Columns handles inserts as follows: (1) maintain a temporal
row table to store the newly inserted records, (2) create an insert trigger to keep a count
of the number of rows inserted in the temporal row store, and (3) use write-UDF to
create and insert blobs into the physical table, once segment size number of rows have
been inserted into the standard row table. At query time, the read-UDF must also read
the temporal row table for newly inserted rows.

Note that the above strategy of a trigger and function call for every insert might be too
expensive for insert intensive applications. An alternate strategy could be to periodically
bulk load Trojan Columns from the base table. To handle updates, the update-UDF
first needs to determine the segment in which the update must be applied. Thereafter,
the update-UDF must read the affected blobs in that segment and write them back.

5.4 Query Processing

In the previous section, we described how to create Trojan Columns. In this section,
we describe how we process queries using Trojan Columns. Below, we first describe
operator pushdown as a technique to process Trojan Columns, and then we describe
how to rewrite the user queries.

5.4.1 Operator Pushdown

The core idea of querying Trojan Columns is to push a part of the query tree down to the
UDF. This means that a part of the query is processed by the UDF while the remaining
query is still processed by the standard database query executor. Let’s consider query 6
from the TPC-H benchmark [126] as a running example below. Figure 5.3(a) shows the
logical query plan for this query. Below, let’s see how we can push down one or more
operators in query 6 to a UDF.

Chapter 5. Column-oriented Storage for Relational Data Management 109

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(a) Standard plan

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(b) Scan pushdown

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(c) Select pushdown

Figure 5.3: Standard and UDF query plans for TPC-H Query 6.

5.4.1.1 Scan Pushdown

First of all, we need to push down the scan operator to the UDF. This is because we need
to interpret Trojan Columns correctly (and differently) at the leaf level. Suppose that
lineitem table in query 6 is stored as Trojan Columns. Figure 5.3(b) shows the query
plan with the UDF. As shown in the figure, the UDF now figures out which physical table
to read (the blob and not the row representation) for lineitem table. Also, the UDF
is responsible for interpreting the physical table, reconstructing the logical lineitem
tuples, and passing them on to the upper part of the query tree.

Algorithm 5.1 shows the pseudocode of scan UDF. The UDF takes the table name to
scan as input and outputs one row tuple in each call. The UDF first checks the type
of function call (Line 1). All databases have roughly three call types for table retuning
UDFs: (1) init – when the UDF is called for the first time, (2) next – when the UDF
is called second subsequent times, and (3) end – when the UDF is called after the last
row has been received. If the UDF call type is INIT, then the current segment points
to the first segment in the blob table, all blobs in the first segment are fetched, and the
current blob offset is reset (Lines 2–6). If the UDF call type is NEXT (Line 7), i.e. the
database system is asking for the next tuple to process, the scan UDF checks whether it
is already at the end of current blob (Line 8). If that is the case, the scan UDF moves
the segment pointer and fetches the corresponding blobs (Lines 9–10). If the current
blobs point to NULL (Line 12), i.e. no more blobs are available, the scan UDF returns
NULL, indicating end of data. If there is still more data, the scan UDF reconstructs
the next logical tuple from the blobs (Line 15), moves the blob offset forward (Line 16),
and returns the logical tuple to the database system (Line 17). If the UDF call type
is END, then the scan UDF simply closes the connections for accessing physical tables
and frees the memory (Lines 19–22).

Chapter 5. Column-oriented Storage for Relational Data Management 110

Algorithm 5.1: scanUDF
Input : tableName
Output: Logical tuple of table tableName

switch UDFCallType do1
case INIT2

currentSegment = 1;3
currentBlobs = fetchBlobs(currentSegment);4
currentBlobOffset = 0;5

end6
case NEXT7

if currentBlobOffset == SEGMENT SIZE then8
currentSegment++;9
currentBlobs = fetchBlobs(currentSegment);10

end11
if currentBlobs==NULL then12

return NULL ;13
end14
tuple = reconstructNextTuple(currentBlobs);15
currentBlobOffset++;16
return tuple;17

end18
case END19

closeConnections();20
freeMemory();21

end22

end23

5.4.1.2 Projection Pushdown

Along with the scan, we can also push down the projection operator to the UDF, i.e. pass
the projected attributes as parameters to the UDF. Therefore, the input in Algorithm 5.1
now changes as follows:

Input : tableName, projectionAttributes

The UDF returns only the projected attributes. Since the UDF return type is still the
complete row, all other attribute values are set to NULL. A consequence of pushing
projection down to the UDF is that the UDF now needs to fetch the blobs of only the
projected attributes. Thus, Algorithm 5.1 now fetches the blobs as follows:

currentBlobs = fetchBlobs(currentSegment, projectionAttributes);

Fetching blobs of only the projected attributes saves considerable I/O cost and improves
query performance. Except for the above two changes, Algorithm 5.1 remains unchanged
with projection pushdown.

5.4.1.3 Selection Pushdown

To push the selection down, we simply pass the selection predicate to the UDF, as shown
in Figure 5.3(c). The input to Algorithm 5.1 is now as follows:

Input : tableName, projectionAttributes, selectionPredicate

Chapter 5. Column-oriented Storage for Relational Data Management 111

The UDF is now responsible for evaluating the select predicate on each of the incoming
tuple. To do so, the UDF now only fetches the selection attributes first:

currentBlobs = fetchBlobs(currentSegment, selectionAttributes);

The UDF maintains separate pointers to projection attribute segments and blobs. These
pointers are initialized when the UDF call type is INIT:

projSegment = 0;
projBlobs = NULL;

Then, before returning the tuple, the UDF evaluates the selection predicate. If the
predicates satisfy then the UDF fetches the projection attribute blobs, if needed (cur-
rentProjSegment < currentSegment), and returns a tuple of the projected attributes.
If the selection predicates do not satisfy, then the UDF inspects the next selection at-
tribute values. This continues until either a qualifying tuple if found or end of data is
reached. In summary, Line 17 of Algorithm 5.1 is replaced with the following logic:

if (evalSelection(tuple, selectionPredicate))
if (projSegment < currentSegment)

projBlobs = fetchBlobs (projSegment, projectionAttributes);
return reconstructNextTuple (projBlobs);

else
goto NEXT;

end

Pushing down selection to the UDF has two advantages: (1) the number of UDF output
tuples, and consequently the number of UDF calls are reduced, and (2) we can perform
late materialization by fetching projection attributes only for segments having at least
one tuple qualifying the selection predicates. The first advantage saves the overhead in
each UDF call, while the second advantage saves I/O for projection attributes.

5.4.1.4 Aggregation Pushdown

We can even push down the aggregates (and group by) to the UDF. However, this will
involve one major change in Algorithm 5.1. The UDF must do the grouping and aggre-
gation before outputting any of the tuples. This means that the UDF must precompute
the results when the UDF call type is INIT, and simply return them when the UDF
call type is NEXT. Algorithm 5.2 shows the pseudocode of aggregation UDF. We can
see that when the UDF call type is INIT (Line 2), the UDF fetched the required blobs
and computes the aggregate (Lines 3–14). It also creates an iterator to iterate over the
resulting output (Line 15). When the UDF call type is NEXT (Line 17), the UDF checks
if there are more results in the output iterator (Line 18). If yes, the UDF returns the
next precomputed result. Otherwise, the UDF returns NULL, indicating end of data.
The cleanup when UDF call type is END remains unchanged. The major benefit of
pushing aggregation down the UDF is to dramatically reduce the number of UDF calls.

Chapter 5. Column-oriented Storage for Relational Data Management 112

Algorithm 5.2: aggregateUDF
Input : tableName, aggregateFunc
Output: Logical tuple of table tableName

switch UDFCallType do1
case INIT2

currentSegment = 1;3
currentBlobs = fetchBlobs(currentSegment);4
output = NULL ;5
while currentBlobs ! = NULL do6

currentBlobOffset = 0;7
while currentBlobOffset < SEGMENT SIZE do8

tuple = reconstructNextTuple(currentBlobs);9
aggregateFunc(tuple, output);10
currentBlobOffset++;11

end12
currentBlobs = fetchBlobs(currentSegment++);13

end14
outputIterator = iterator(output);15

end16
case NEXT17

if outputIterator.hasNext() then18
return outputIterator.next();19

else20
return NULL ;21

end22

end23
case END24

closeConnections();25
freeMemory();26

end27

end28

5.4.1.5 Dealing with Join Queries

So far we have considered single table queries, i.e. no join conditions. Now let us see
how joins are processed in the presence of Trojan Columns. For queries having join
conditions, we simply push down the scan, selection, and projection operators to the
UDF and let the database do the join. This works well because the output of UDF
can be processed by the database query executor. Figure 5.4 shows the UDF query
plan for TPC-H query 14. From the figure we see that the lineitem leaf is pushed
inside the UDF, while the join is still performed outside. Also note that the query plan
in Figure 5.4 accesses part table using the standard database access method. This is
because part is much smaller table and it does not pay off to use a UDF for it. Thus,
we see that UDFs can be seamlessly integrated into the query pipeline. This holds true
even for nested queries, e.g. TPC-H query 8.

Alternatively, instead of letting the database executor process the join, one could think
of even pushing down the join to the UDF. The UDF would then have to access two
physical tables and join them based on the join condition. The advantage would be
that we could have even lesser output tuples (depending on join selectivity). However,
the problem is that we will need to recode the physical join operators as well as the
optimizer logic to pick the physical join operator. Thus, we see the pros and cons of
pushing too many operators down the UDF. Exploring these in more detail will be part
of a future work.

Chapter 5. Column-oriented Storage for Relational Data Management 113

Result

shipdate, discount
extendedprice, partkey

shipdate BETWEEN
‘1995-09-01’ AND ‘1995-10-01’
σ
π

agg

100 * SUM(CASE
 WHEN type LIKE ‘PROMO%’
 THEN extendedprice*(1-discount)
 ELSE 0
END) / SUM(extendedprice*(1-discount))

γ

lineitem

SCANpart

SCAN

type,
partkey
π

partkey

Result

shipdate, discount
extendedprice, partkey

shipdate BETWEEN
‘1995-09-01’ AND ‘1995-10-01’
σ
π

agg

100 * SUM(CASE
 WHEN type LIKE ‘PROMO%’
 THEN extendedprice*(1-discount)
 ELSE 0
END) / SUM(extendedprice*(1-discount))

γ

lineitem

SCANpart

SCAN

type,
partkey
π

partkey aggregateUDF

Figure 5.4: Example UDF query plan for TPC-H query 14.

5.4.1.6 Where does operator pushdown lead to?

In the extreme case, we can push down the entire SQL query, i.e. all query operators,
down to the UDF. However, this means that the UDF is now responsible for deciding
how to execute a given query. In other words, the UDF must take care of query opti-
mization as well as execution, making it a micro-kernel for processing SQL queries. The
consequence is that the user must now recode all physical operators, cost models, as well
as the optimization logic. Obviously, this is very hard to do. Therefore, it is important
to strike the right balance when pushing down to the UDF. While too much is nasty,
too less kills performance. A general practice could be to push only the leaves to the
UDF and let the database handle the joins, unless they could be rewritten to selections.

5.4.2 Query Rewriting

Typically, there are two extremes of query rewriting with column stores: (1) complete
query rewriting, due a complete change in schema, e.g. C-Table [18] and standard vertical
partitioning, and (2) no query rewriting, if the column stores are natively implemented,
i.e. no schema change at all. Our approach finds the middle ground. At bare minimum,
we only rewrite the data access paths in the query, while keeping the rest of the query
unchanged. This means that we can simply specify a data access UDF, for accessing
Trojan Columns, in the FROM clause of the SQL statement. Note that we can use
Trojan Columns for any subquery, thereby having layouts (row or column) on a per-
table basis. In the following, let us see how to rewrite the SQL statements when using
Trojan Columns. Consider TPC-H query 6:

SELECT

SUM(l_extendedprice*l_discount) AS revenue

FROM

lineitem

WHERE

l_shipdate >= ’1994-01-01’ AND l_shipdate < ’1995-01-01’

AND l_discount BETWEEN 0.05 AND 0.07

AND l_quantity < 24;

Assume we have a scan UDF scanUDF(table name) to read the blob data and convert
them into logical tuples of table table name. The query with scan pushdown is as follows:

Chapter 5. Column-oriented Storage for Relational Data Management 114

SELECT

SUM(l_extendedprice*l_discount) AS revenue

FROM

scanUDF(’lineitem’)

WHERE

l_shipdate >= ’1994-01-01’ AND l_shipdate < ’1995-01-01’

AND l_discount BETWEEN 0.05 AND 0.07

AND l_quantity < 24;

If we further push down the selection and projections, using UDF selectUDF, query 6
is now as follows:

SELECT

SUM(l_extendedprice*l_discount) AS revenue

FROM

selectUDF(

‘lineitem’,

‘quantity,discount,extended price,price’,

‘l_discount in (0.05,0.07)

AND l_shipdate in (1994-01-01,1995-01-01)

AND l_quantity < 24’

)

In the extreme case, if we push everything inside the UDF, the query will simply be:
SELECT * FROM everythingInUDF(....);

Note that we expect the view mechanism in standard databases to take care of auto-
matically rewriting the incoming user queries to the ones using the UDF access path.
Further study on this will be a part of future work.

5.5 Implementation Details

In the previous section we presented the general idea of Trojan Columns. In this section,
we discuss the implementation details for Trojan Columns in DBMS X.

5.5.1 DBMS X Table UDF Interface

Interface. The table UDF interface in DBMS X is a C interface to write UDFs. In
general, the signature of UDF to query the Trojan Columns (with n attributes) looks as
follows.

void SQL_API_FN udf_name (

SQLUDF_CHAR* tableName,

SQLUDF_CHAR* projectionStr,

SQLUDF_CHAR* selectionStr,

SQLUDF_CHAR* groupbyStr,

SQLUDF_CHAR* logFile,

SQLUDF_RESULTTYPE1* RESULT1,

SQLUDF_RESULTTYPE2* RESULT2,

.

.

SQLUDF_RESULTTYPEn* RESULTn,

SQLUDF_SMALLINT* RESULT1_IND,

SQLUDF_SMALLINT* RESULT2_IND,

.

.

SQLUDF_SMALLINT* RESULTn_IND,

SQLUDF_TRAIL_ARGS_ALL // current UDF state

)

Chapter 5. Column-oriented Storage for Relational Data Management 115

The first 5 arguments are actually passed to the function by the user, when invoking
the UDF. The remaining arguments are not passed to the function by the user. They
are the result variables to which we write the result row. For each call, DBMS X maps
the memory of the result table to these pointers.

Scratch Pad. There is a specific memory area provided by DBMS X, which is called
the scratchpad. This memory area is kept alive during the individual calls to the UDF
and can be used to maintain a state between the calls. In our approach, all main data
structures are held inside of the scratchpad, since they are used in several phases.

Multi-threading. Apart from the main (output) thread, we maintain separate threads
for I/O and processing. This means that as soon as one of the buffers is free, the next
segment is already loaded into it. For each loaded attribute that is compressed, we
decompress it in a separate processing thread. The processing thread also performs
the selection and produces a selection vector, indicating which tuples qualify. Until the
processing thread performs the decompression and selection, the main (output) thread
waits. When the processing thread is finished, the main thread inspects the selection
vector. If a selected row is found in the vector, then the row data is immediately re-
turned. We keep the current position of the selection vector in the scratchpad to output
the next row in the subsequent UDF call. There are several wait/notify constructs neces-
sary to coordinate the segment loading with double buffering, selection and outputting.
In between the function calls, we keep alive the processing thread (together with the
decompression threads) in the scratchpad.

Communication with DBMS X. To communicate with DBMS X from inside the
UDFs, we use embedded SQL in C (SQC). As a result, the UDF program is not written
in pure C, but in a mixture of C and SQL. For example, it is possible to place statements
like “EXEC SQL FETCH . . . INTO ...” within the functions. These statements are used
to query the Trojan Columns blobs from the database. Anytime we query the database
with embedded SQL statements, we have to store the result of this query inside host
variables, which act as a connection bridge between DBMS X and our program. Host
variables have to be declared in a separate area and they support special datatypes,
corresponding to SQL types. Note that it is not possible to modify the database using
UDFs in DBMS X; only querying is allowed. Before installing, the SQC file must be
precompiled to create a standard pure C file. This file contains calls to internal DBMS X
functions that represents the SQL equivalents. We can then compile this file using a
standard C compiler and link it to the database.

Installation. Finally, we install the UDF to query Trojan Columns (with n attributes)
in DBMS X as follows.

CREATE FUNCTION udf_name(

tableName VARCHAR(128),

attributeStr VARCHAR(1000),

selectionStr VARCHAR(1000),

groupbyStr VARCHAR(1000),

timeFile VARCHAR(1000)

)

RETURNS TABLE (

attribute_1 TYPE1,

attribute_2 TYPE2,

.

.

attribute_n TYPEn,

)

SPECIFIC udf_name // internal UDF name

Chapter 5. Column-oriented Storage for Relational Data Management 116

EXTERNAL NAME ’ext_udf_name’ // UDF program name

LANGUAGE C

PARAMETER STYLE DBMS_X_SQL

NOT DETERMINISTIC

FENCED NOT THREADSAFE // different address space

READS SQL DATA

NO EXTERNAL ACTION

SCRATCHPAD 10000 // size in bytes

FINAL CALL // final call phase executed

DISALLOW PARALLEL; // single database partition

5.5.2 DBMS X Call Level Interface (CLI)

The table UDF interface in DBMS X has the limitation that the exact schema of rows
to return must be fixed at compile time. To overcome this, we developed a second
approach based on the DBMS X Call Level Interface (CLI) and Stored Procedures (SP).
CLI is a C/C++ interface that translates queries and data between an application and
a database. It allows us to create the queries for accessing the data dynamically at
runtime. Furthermore, as a CLI exists for many DBMSs, the routine is easily portable.
In DBMS X, the entry function for stored procedures looks as follows.

SQL_API_RC SQL_API_FN udf_name(

CHAR *tableName,

CHAR *projectionStr,

CHAR *selectionStr,

CHAR *logFile,

SQLINT16 *tableName_IND,

SQLINT16 *projectionStr_IND,

SQLINT16 *selectionStr_IND,

SQLINT16 *logFile_IND,

SQLUDF_TRAIL_ARGS // stored procedure state

)

Note that in contrast to table UDF interface, we do not need to specify the return
type for stored procedures. However, they are not able to return their results directly.
Instead, in contrast to UDFs, they allow write accesses to the database. We exploit this
to store the results of a query into a temporary table in the database. There it can be
queried by normal SQL or used as an intermediate result for further computation. This
means an existing user query cannot be translated one to one, but it must be split into
two calls: (1) a stored procedure call, and (2) a query for post-processing and returning
the results to the user. For example, for TPC-H query 14 the rewritten query first calls
the stored procedure to project and select the relevant data from lineitem. The final
query then joins part table with the result table, which is several orders of magnitude
smaller than the original lineitem table. So the final query is extremely cheap and the
overall costs are dominated by the stored procedure. The main advantage of CLI -SP
is that because of its highly dynamic interfaces, we don’t need to recompile the routine
for every query or table. We only have a single stored procedure that can be used in
arbitrary queries without more effort than rewriting the query. We install the stored
procedure for querying Trojan Columns as follows.

CREATE PROCEDURE sp_name(

IN name VARCHAR(128),

IN attr VARCHAR(512),

IN selPred VARCHAR(512),

IN logfile VARCHAR(128)

)

SPECIFIC sp_name

Chapter 5. Column-oriented Storage for Relational Data Management 117

DYNAMIC RESULT SETS 0 // do not return results

NOT DETERMINISTIC

LANGUAGE C

PARAMETER STYLE SQL

FENCED NOT THREADSAFE

MODIFIES SQL DATA

PROGRAM TYPE SUB // used as library

EXTERNAL NAME ’ext_sp_name’ // procedure program name

5.6 Experiments

We implemented Trojan Columns in DBMS X, a closed source commercial database sys-
tem. We ran experiments to see the performance improvements due to Trojan Columns
in DBMS X.

5.6.1 Setup

We ran all experiments on a single node with 3.3 GHz Dual Core i3 running 64-bit
platform Linux openSuse 12.1 OS, 4x4 GB main memory, 2 TB 5,400 rpm SATA hard
disk. We use cold file system caches for all our experiments and restart the database, in
order to clear database buffers, for every measurement. We repeat each measurement 3
times and report the average.

5.6.2 Baselines

Standard row store. Since Trojan Columns injects column store functionality into an
existing row store, we compare the improvements over the existing standard row store.

C-Tables implementation details. Additionally, we also compare our approach with
C-Tables [18], a recent approach to mimmic columns stores in row-oriented databases.
We tried to implement C-Tables as closely to the description in the paper as possible.
The main idea of C-Tables is “to extended the vertical partition approach to explicitly
enable the RLE encoding of tuple values”. For a given relation, we need to sort its
attributes before applying RLE encoding. However, the paper does not describe how
to order the attributes when sorting. Therefore we ran micro-benchmarks to determine
the best ordering. The results indicated that the most promising strategy is to order
the attributes by their cardinality, i.e. we sort on the lowest cardinality attribute first.
While creating C-Tables we also discovered that it does not make sense to create C-
Tables for every attribute. This is because the RLE encoding becomes lesser effective as
we move towards the rightmost attribute in the sort order. Thus, in our implementation
we create C-Tables only for attributes which result in smaller tables. For the remaining
attributes we simply create an uncompressed vertical partition. Finally, in [18], the
authors suggested to use pre-joined materialized views for C-Tables. However, we do
not create any pre-joined materialized views for any of the experiments since we want
to see the overall query costs, including possibly costly joins.

Chapter 5. Column-oriented Storage for Relational Data Management 118

5.6.3 Methodology

The aim of our experiments is to answer three questions:

(1.) What difference can Trojan Columns make on TPC-H queries? To answer this,
we study the impact of Trojan Columns on TPC-H queries. It is noteworthy here that
most of the major studies on column stores [1, 3, 66, 116] have used either modified or
simplified TPC-H benchmark. Still, we decided to use unmodified TPC-H benchmark
since we do not want to reduce the number of projected attributes nor use pre-joined
materialized views. We compare the query and upload performance of Trojan Columns
with CTables [18] and standard row. (Section 5.6.4.2).
(2.) How well does Trojan Columns work on micro-benchmarks? After seeing the im-
pact of Trojan Columns on TPC-H benchmark, we study the pros and cons of Trojan
Columns on a single table micro-benchmarks. We show how tuple and attribute selec-
tivity affects Trojan Columns. We also ran Trojan Columns over the simplified TPC-H
queries proposed in C-Store paper [116] and discuss the results. (Section 5.6.5).
(3.) Does implementing column stores natively make sense? Finally, we discuss how
much we could improve, in terms of I/O, if Trojan Columns was to be implemented
natively within the database system, instead of being plugged-in as UDFs. We present a
modified PostgreSQL implementation which implements Trojan Columns as a new access
method within the database system. We compare the I/O costs of Trojan Columns with
those of a native implementation in PostgreSQL, and discuss the costs and benefits of
doing so. (Section 5.6.6).

5.6.4 Trojan Columns on TPC-H queries

First of all, let us see what difference can Trojan Columns make on analytical workloads.
For this, we use TPC-H benchmark queries unmodified [126]. Since Trojan Columns
affects only the data access layer, we sub-divide TPC-H queries into two sets: nested
and non-nested queries. Furthermore, in order to see the impact of selectivity, we sub-
divide the sets of nested and non-nested queries into high and low selectivity ones.
Table 5.1 shows the four subsets of TPC-H queries thus produced.

Set ID Nested Selectivity Queries

1 no high Q1, Q6, Q12, Q14

2 no low Q3, Q5, Q10, Q19

3 yes high Q2, Q4, Q8, Q15

4 yes low remaining 9 queries

Table 5.1: TPC-H queries divided into four subsets

5.6.4.1 Experiment 1: TPC-H dataset load times

First let us see the creation times of Trojan Columns and C-Tables in comparison to
standard row in DBMS X. We started with TPC-H scale factor of 10, i.e. total size of
10GB. However, even after several hours C-Table did not finish uploading. This lead us
to scale down the dataset to factor 1, i.e. total size 1GB. Table 5.2 shows the upload
time for 3 TPC-H tables which use either of C-Table or Trojan Column in any of the
queries. For Standard Row we measure the time it takes to load data from files into the

Chapter 5. Column-oriented Storage for Relational Data Management 119

row store. For C-Table and Trojan Columns we measure the additional time to load
data from the row store into their representations. However note that Trojan Columns
could in principal also be loaded directly from outside files. For Trojan Columns, we
set segment size to 1M for lineitem, 500K for orders, and 100k for part tables. From
Table 5.2 we can see that the creation time for C-tables is up to 12 times slower than
row. On the other hand, Trojan Column creation time is better than the upload time
for standard row.

Table Standard Row C-Table Trojan Columns

lineitem 313 3,777 179
orders 64 706 47
part 14 124 14

Table 5.2: TPC-H load times (in seconds) for scale factor 1.

Table 5.3 shows the upload times for standard row and Trojan Columns with scale
factor 10. We do not show C-Table in the figure since since they were not competitive
for scale factor 10. For Trojan Columns we also scale the segment sizes by factor 10,
e.g. for lineitem we use segment size of 10M. From Table 5.3 we can see that, for
lineitem, Trojan Columns creation time is twice the standard row upload time. This
is because the data load UDF first reads the standard row table (I/O costs), converts it
into the blob representation (CPU costs), and finally inserts the blobs into the physical
table (again I/O costs). However, the Trojan Columns creation time is much better for
smaller tables like orders and part. Hence, in summary we conclude that the Trojan
Columns creation time is much better in comparison to C-Tables and has acceptable
overhead over the standard row store loading times.

Table Standard Row Trojan Columns

lineitem 771 1,451
orders 484 369
part 100 59

Table 5.3: TPC-H load times (in seconds) for scale factor 10.

5.6.4.2 Experiment 2: TPC-H query times

Table 5.4 shows the query times for standard row, C-Table, and Trojan Columns over
Set 1 of TPC-H queries, i.e. non-nested and highly selective queries.

Query Standard Row C-Table Trojan Columns

Q1 8.20 211.39 3.31
Q6 8.23 96.17 2.18
Q12 9.80 5457.37 5.07
Q14 8.61 335.55 4.41

Table 5.4: TPC-H query times (in seconds) for scale factor 1.

We see that for all four queries C-Tables perform worse than standard row. Furthermore,
C-Tables could be up to 500 times slower (for Q12) than standard row. In contrast,
Trojan Columns improves the runtime of all queries in Set 1, up to factor 3.8 (for Q6).
Thus, henceforth, we will not consider C-Tables and only use scale factor 10 in further
experiments.

Now let us see the same query Set 1 on scale factor 10. Figure 5.5 shows the results. We
can see that Trojan Columns outperforms standard row over all queries in query Set 1.

Chapter 5. Column-oriented Storage for Relational Data Management 120

The maximum improvement is by factor 9 for Q6, followed by factor 4 for Q1, factor 2.6
for Q14, and factor 2.5 for Q12. All this in the same database system (DBMS X) and
without touching the source code.

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

Figure 5.5: Unmodified TPC-H query Set 1 runtimes.

Next, let us see the query times for TPC-H query Sets 2 and 3. Tables 5.5 and 5.6 show
the results. We can see that, apart from Q19, Trojan Columns does not perform very
well with low selectivity queries of Set 3. This is because each call to the UDF interface
has some overhead: the lower the selectivity, the more function calls, the higher the
overhead. In principal, this overhead could be removed if the database storage interface
were available in LLVM bitcode. Then the UDF query could at runtime be dynamically
recompiled together with the DBMS storage layer to remove that boundary and bake
the UDF into the kernel. This remains an interesting avenue for future work.

Query Standard Row Trojan Columns

Q3 111.88 809.38
Q5 99.73 169.34
Q10 110.94 119.46
Q19 79.14 43.12

Table 5.5: TPC-H query Set 2 runtimes (in seconds).

Query Standard Row Trojan Columns

Q2 - -
Q4 110.76 -
Q8 97.38 97.66
Q15 80.51 66.91

Table 5.6: TPC-H query Set 3 runtimes (in seconds).

Trojan Columns performs similar or better than standard row for query Set 3 (nested
and high selectivity), as shown in Table 5.6. However, query nesting reduces the benefits
of using Trojan Columns. This is because Trojan Columns only improves the I/O costs,
which is just a fraction of the overall query costs. Apart from I/O, the remaining query
processing costs are still the same as those for standard row. Note that standard row
does not terminate for query Q2, since we do not consider indexes in our experiments.
Likewise, Trojan Columns does not terminate for both queries Q2 and Q4. This is
because the optimizer cannot correctly estimate the costs of UDFs. DBMS X allows for
providing UDF cost estimate hints to the optimizer. However, in the current version,
the optimizer still chooses nested loop joins instead of hash joins in the query plan —
we consider this a bug in DBMS X’s optimizer.

Chapter 5. Column-oriented Storage for Relational Data Management 121

5.6.4.3 Experiment 3: read-UDF costs

The focus of Trojan Columns in this chapter is to improve query I/O cost. However,
as mentioned in the previous section, I/O is just a fraction of the total query costs.
Since the database system is unaware of the column store inside, the query processing
costs remain the same outside the read-UDF. To better understand the impact of Trojan
Columns, let us now see the query times inside the subquery. To do so, we measure
the time to compute the subquery computed by the read-UDF using (1) Standard Row,
(2) Trojan Columns, and (3) reading a Materialized View perfectly matching the query
expression.

Q Standard
Row

Projected
View

Trojan
Columns

Standard
Row

Projected
View

Trojan
Columns

Table

Q1
Q6
Q12
Q14
Q3
Q5
Q10_o
Q10_l
Q19
Q2
Q4
Q8
Q15

76.730295686 27.42381835 19.293982609 3.9769029152 1.4213663869 230.19088706 82.27146 57.881947828 lineitem
77.589033799 21.787439044 8.6532381493 8.9664738749 2.5178365218 232.7671014 65.36232 25.959714448 lineitem

76.73051647 26.582446376 16.504629093 4.6490300412 1.610605499 230.19154941 79.747339128 49.513887278 lineitem
76.333567335 20.15226419 25.592795096 2.9826194071 0.7874194325 229.00070201 60.456792571 76.778385288 lineitem

0 0 0 5.1437565596 lineitem
0 0 0 order
0 0 0 order
0 0 0 lineitem
0 0 0

2.935810086 1.816512607 1.9092920003 8.807430258 5.449537821 5.727876001 part
15.286783871 5.1889663903 15.13420846 45.860351612 15.566899171 45.402625379 order

0 0 0 part
0 0 0 lineitem

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Materialized View
Trojan Columns

Figure 5.6: Query processing costs of TPC-H query Set 1 for read-UDFs. Trojan
Columns versus Materialized Views.

Figure 5.6 shows the results. We can see that Trojan Columns is significantly better
(factor 5 on average) than standard row. Furthermore, we also see that except for Q14

Trojan Columns actually outperforms Materialized Views by a factor of up to 2.5. This
is because Trojan Columns benefits from efficient column-oriented compression. Query
Q14 has the lowest selectivity (1.25%) in query Set 1, and therefore Trojan Columns does
not perform as well as Materialized Views. This is a very good result considering that
Materialized Views require 12GB of storage in this experiment, whereas Trojan Columns
only requires 5GB. Still, the performance of Trojan Columns is very close to Materi-
alized Views for Q14. Thus, we conclude that Trojan Columns provides considerable
improvements in terms of I/O costs.

5.6.5 Trojan Columns on micro-benchmarks

In this section, we evaluate Trojan Columns on two micro-benchmarks. The idea is to
see the impact of Trojan Columns on simpler queries. These type of queries have been
used in previous studies [1, 3, 66, 116].

5.6.5.1 Experiment 4: Varying selections and projections over a single ta-
ble.

Our first micro-benchmark consists of queries of the following form over the lineitem
table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem

WHERE l_partkey >= lowKey AND l_partkey < highKey;

Chapter 5. Column-oriented Storage for Relational Data Management 122

We vary the selectivity of the above query (by adjusting lowKey and highKey) as well as
the number of projected attributes. Figure 5.7 shows the improvement factor of Trojan
Columns over standard row when varying the number of referenced attributes from 1 to
16, and selectivity from 10−6 to 1.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 5.7: Trojan Columns improvement factor in DBMS X.

Figure 5.7 shows that Trojan Columns has the maximum improvement factor of over
17 (lower left region). Also, we see that for low selectivities (≥ 0.1) Trojan Columns
performs worse than standard row. This is because for these selectivities function call
overheads overshadow our performance improvements for low selectivities — as already
discussed in Section 5.6.4.2. However, overall even for medium sized selectivites the
performance gains of Trojan Columns are tremendous.

5.6.5.2 Experiment 5: Simplified TPC-H queries.

In our second micro-benchmark, we use the simplified TPC-H queries as proposed in the
C-Store paper [116], and also used by other researchers [18]. The simplified benchmark
made considerable changes over TPC-H: (1) it exploits prematerialized joins (D-tables)
for column store results only. Hence the column store does not have to compute a table-
join at query time. (2) It defined a Set of 7 much simpler queries than the original
TPC-H queries. The simplified queries have to touch only very few attributes, i.e. up
to 3 rather than up to 19. (3) it presorts the tables to allow for efficient sort-based
grouping and compression, (4) it simplifies the schema of the tables. We believe that
these kind of changes make benchmark results somewhat hard to interpret.

Therefore we neither pre-materialized joins nor pre-sort the data in our experiments;
we simply take the 7 simplified queries from [116] and leave everything else unchanged.
Table 5.7 shows the results. From the table we can see that Trojan Columns has an

Query Standard Row Trojan Columns Improvement Factor

Q1 76.61 5.76 13.30
Q2 76.77 6.49 11.84
Q3 77.95 9.20 8.47
Q4 96.50 135.28 0.71
Q5 91.37 78.72 1.16
Q6 100.35 137.73 0.73
Q7 121.74 472.83 0.26

Table 5.7: Simplified TPC-H query runtimes (in seconds).

improvement factor of 13.3, 11.84, and 8.47 over standard row for Q1, Q2, and Q3

Chapter 5. Column-oriented Storage for Relational Data Management 123

respectively. However, for queries Q4, Q6, and Q7, Trojan Columns performs worse
than standard row. This is because these queries have very low selectivity and, as seen
in the previous micro-benchmark, Trojan Columns does not pay off.

5.6.6 Trojan Columns vs Column Stores

5.6.6.1 Experiment 6: Trojan Columns vs PostgreSQL Column

One final question remains to be answered: what if we implement column store func-
tionality natively inside an existing row-oriented DBMS? That should be much more
efficient than using Trojan Columns as we can change every piece of source code, right?

As the source code for a commercial system was not available for us, we used PostgreSQL
and extended its storage layer to provide blob storage similar to Trojan Columns, how-
ever all implemented into the source code. It turned out that realizing this in PostgreSQL
was a major endeavor: it is quite easy to add new operators to PostgreSQL, however
changing the storage layer is not as easy due to considerable system-wide effetcs includ-
ing TOAST. We implemented PostgreSQL Column in PostgreSQL 9.0.1. We compare
PostgreSQL Column with an implementation of Trojan Columns in PostgreSQL (not
DBMS X as before). We use a synthetic dataset of 18 integer attributes (1 primary key,
1 selection key, 16 different skew-cardinality combinations). We vary the selectivity from
10−1 to 10−8 and the number of projected attributes from 2 to 18. Figure 5.8 shows the
results, i.e. the improvement of Trojan Columns over PostgreSQL Column.

Unsurprisingly, we observe that PostgreSQL Column is faster than Trojan Columns for
low selectivities. This is because PostgreSQL does not have the function call overhead.

However, contrary to our expectation, Trojan Columns is considerably faster than Post-
greSQL Column for medium to high selectivities! This result was quite surprising to
us. The reasons is PostgreSQL’s rowID organization: it collects 24 Bytes of metadata
for each row. We keep that metadata in a separate (virtual) blob. However, at query
time we need to read that metadata for every row due to interfacing issues with the
PostgreSQL code. Hence Trojan Columns benefits much more from fewer columns than
PostgreSQL Column. Hence the dark green area in the top left corner. These results
might look different for other commercial database systems. But again: those systems
are closed source and not publicly available.

Standard Row PostgreSQL Column Trojan Columns row1 row2 row3 ctable1 ctable2 ctable3 udf1 udf2 udf3
2 94.016706 48.0143973333333 21.52727866667 93338.736 95033.503 93677.879 48010.098 47770.589 48262.505 21426.063 21500.281 21655.492
3 93.93377533333 52.985243 22.13778933333 94277.702 93149.971 94373.653 52629.375 53049.306 53277.048 22071.153 22397.923 21944.292
4 94.34173666667 57.3121666666667 22.27649333333 94973.584 94337.757 93713.869 57632.094 57188.217 57116.189 22113.921 22107.423 22608.136
5 94.12575 64.3823496666667 22.55127366667 94073.698 94901.532 93402.020 61675.029 62454.825 69017.195 22418.242 22443.838 22791.741
6 93.88178266667 66.2539123333333 22.56275066667 94157.699 93185.931 94301.718 66065.928 66353.947 66341.862 22446.120 22710.728 22531.404
7 93.76982066667 70.972715 23.21682666667 94325.655 93245.906 93737.901 71488.585 70372.864 71056.696 23139.232 23272.910 23238.338
8 93.377932 74.9117 23.75329133333 93389.976 93089.874 93653.946 75039.573 75099.666 74595.861 23940.889 23580.750 23738.235
9 93.78173566667 79.4584553333333 24.10393433333 94205.614 93917.778 93221.815 79142.477 79646.458 79586.431 24142.346 23946.611 24222.846
10 93.18593933333 83.4826896666667 24.56549966667 93533.821 93041.974 92982.023 83585.209 83077.523 83785.337 24685.016 24436.957 24574.526
11 94.2857 88.2602736666667 25.30663366667 94313.671 93821.827 94721.602 88476.274 88500.208 87804.339 26228.680 24885.101 24806.120
12 93.38990566667 92.527217 25.627676 93269.921 93257.944 93641.852 92003.287 93023.086 92555.278 25353.755 25314.314 26214.959
13 93.969765 96.8781086666667 25.81643066667 93437.922 94841.506 93629.867 97245.983 96214.281 97174.062 25942.459 25990.712 25516.121
14 93.77785133333 101.26498 26.43575 93869.835 93797.904 93665.815 101492.905 101252.958 101049.077 26454.458 26401.570 26451.222
15 94.56958533333 105.451878333333 27.02618266667 95405.261 93905.810 94397.685 105043.947 105259.866 106051.822 27073.068 26949.553 27055.927
16 93.63783066667 108.551041 27.32859666667 93221.953 93449.917 94241.622 108775.003 108319.025 108559.095 27234.748 27237.573 27513.469
17 93.66178433333 114.609495 27.824314 93665.778 93701.826 93617.749 113945.635 114749.494 115133.356 27881.391 27880.983 27710.568
18 94.34568233333 122.047584 28.41118466667 93977.830 94589.613 94469.604 122547.401 121875.630 121719.721 28350.125 28519.936 28363.493

0

30

60

90

120

150

0 2 4 6 8 10 12 14 16 18 20

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row PostgreSQL Column
Trojan Columns

Standard Row PostgreSQL Column Trojan Columns row1 row2 row3 ctable1 ctable2 ctable3 udf1 udf2 udf3
1E-08 93.617825 44.799601 26.482334 94001.756 93401.874 93449.845 45563.152 44291.870 44543.781 26255.926 26037.411 27153.665
1E-07 93.685834 45.375047 26.86916833333 94097.741 93461.959 93497.802 44902.892 44639.321 46582.928 26529.170 27201.366 26876.969
1E-06 94.10964 44.8876216666667 26.91316 93689.760 94445.423 94193.737 44543.522 45635.519 44483.824 27009.024 27201.082 26529.374
1E-05 94.02918266667 44.227589 26.454245 94769.483 93977.743 93340.322 44267.662 44279.551 44135.554 26493.250 26145.439 26724.046
1E-04 93.47785966667 45.0714723333333 23.62688166667 93521.858 93605.835 93305.886 45347.046 45263.628 44603.743 23746.950 23578.952 23554.743
0.001 93.92568566667 44.9631806666667 24.511427 93857.680 93545.811 94373.566 45179.013 44663.412 45047.117 24478.856 24527.829 24527.596
0.01 93.53779366667 45.3995773333333 36.75820733333 93545.664 93569.838 93497.879 45275.357 45251.796 45671.579 36461.536 35847.598 37965.488
0.1 93.365873 51.3655323333333 153.8905336667 93365.887 93437.892 93293.840 51069.355 51825.580 51201.662 160844.846 149750.001 151076.754

0

50

100

150

200

1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row PostgreSQL Column
Trojan Columns

0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1
18
16
14
12
10
8
6
4
2

18637.248 18710.268 18846.8165 18856.1045 18895.459 20567.0675 36680.9495 189621.287
17969.212 17989.2175 18394.9975 18122.44 18223.742 19762.3135 33712.5125 166696.527
17257.613 17280.0435 17292.641 17439.0135 17707.5435 19096.731 31384.8905 160514.909
16696.255 16821.533 16642.966 16624.115 16907.239 18061.4175 29809.3235 144701.366
15922.126 16074.183 16123.6275 16084.3245 16372.703 17519.191 28224.982 127395.511
15491.5365 15404.55 15533.2235 15640.8055 15712.6665 16779.596 25911.8475 115668.474
14905.73 14839.4785 14787.6115 14990.6925 15089.9175 15951.915 23950.6405 103594.689
14680.7395 14759.4695 14689.936 14776.1195 14843.9025 15511.0925 22136.762 95269.354
14573.4465 14516.9835 14440.262 14505.396 14717.097 15130.0415 21073.3815 80480.2895

0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1
18
16
14
12
10
8
6
4
2

95551.8985 95493.3585 95408.5165 95222.5365 95366.248 95301.1505 99142.723 133617.015
90688.551 90445.773 90516.958 90348.2305 90566.9705 90556.459 93453.3305 120833.745
83908.321 83792.2125 83908.4775 83705.3535 83964.837 83953.667 86654.238 113113.075
77146.67 76683.34 76800.591 76769.75 77097.5675 76713.45 79067.9155 100628.56
69430.447 69319.202 69293.2865 69749.395 69326.3385 69324.49 71647.3955 90772.8595
61594.4015 61611.7325 61726.658 61708.736 61711.7635 61614.0075 63488.7945 80182.2875
54603.0885 54446.81 54275.5475 54344.7625 54241.3665 54238.8065 55611.0985 68405.1445
46788.375 46909.639 46874.6255 46776.891 46889.614 47014.3215 47701.272 56557.251
40676.072 39252.3265 39470.6415 39203.9885 39321.973 39385.886 39867.47 46312.877

18
16
14
12
10
8
6
4
2

4.12 4.10 4.07 4.07 4.06 3.73 2.09 0.40
4.27 4.26 4.17 4.23 4.21 3.88 2.27 0.46
4.44 4.44 4.44 4.40 4.33 4.02 2.44 0.48
4.59 4.56 4.61 4.61 4.54 4.25 2.57 0.53
4.82 4.77 4.76 4.77 4.68 4.38 2.72 0.60
4.95 4.98 4.94 4.90 4.88 4.57 2.96 0.66
5.15 5.17 5.19 5.12 5.08 4.81 3.20 0.74
5.22 5.20 5.22 5.19 5.17 4.94 3.46 0.81
5.26 5.28 5.31 5.29 5.21 5.07 3.64 0.95
1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01

18
16
14
12
10
8
6
4
2

0.80 0.80 0.80 0.81 0.80 0.80 0.77 0.57
0.85 0.85 0.85 0.85 0.85 0.85 0.82 0.63
0.91 0.92 0.91 0.92 0.91 0.91 0.89 0.68
0.99 1.00 1.00 1.00 0.99 1.00 0.97 0.76
1.10 1.11 1.11 1.10 1.11 1.11 1.07 0.84
1.25 1.24 1.24 1.24 1.24 1.24 1.21 0.96
1.40 1.41 1.41 1.41 1.41 1.41 1.38 1.12
1.64 1.63 1.64 1.64 1.64 1.63 1.61 1.36
1.89 1.95 1.94 1.96 1.95 1.95 1.92 1.66
1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

) 18
16
14
12
10
8
6
4
2

5.13 5.10 5.06 5.05 5.05 4.63 2.70 0.70
5.05 5.03 4.92 4.99 4.97 4.58 2.77 0.72
4.86 4.85 4.85 4.80 4.74 4.40 2.76 0.70
4.62 4.56 4.61 4.62 4.56 4.25 2.65 0.70
4.36 4.31 4.30 4.34 4.23 3.96 2.54 0.71
3.98 4.00 3.97 3.95 3.93 3.67 2.45 0.69
3.66 3.67 3.67 3.63 3.59 3.40 2.32 0.66
3.19 3.18 3.19 3.17 3.16 3.03 2.15 0.59
2.79 2.70 2.73 2.70 2.67 2.60 1.89 0.58
1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 5.8: Improvement of Trojan Column over PostgreSQL Column

Chapter 5. Column-oriented Storage for Relational Data Management 124

5.6.6.2 PostgreSQL Column Implementation Effort

PostgreSQL, while written in a modular fashion, is tightly coupled and contains a large
amount of assertions. This makes it very difficult to make deep seated changes in Post-
greSQL, such as in the access layer, since the chain of modifications result in much
more work than the implementation itself. A custom access layer must work seamlessly
with the query executor as well as with the database buffers. Thus integration required
a considerable amount of effort. For instance, it is necessary to first write tuples in
standard row format (to support inserts), and then to reprocess them into column for-
mat once enough data has been written. Also, additional columns need to be inserted
for metadata that needs to be kept for each tuple (24 bytes per tuple). Overall, the
lines added/changed amount to less than 200 (compared to about 1,300 lines overall).
However, the integration took more than twice the implementation effort. In total, Post-
greSQL Columns took about three man-months — and still it only supports insertions
and selections.

5.6.7 Additional Results

5.6.7.1 Effect of Compression

Now let us see the impact of compression on Trojan Columns. We play around with
four light weight compression techniques for column stores: delta, 7-bit, dictionary, and
run length encoding. We look at the cardinalities of each of the attributes, estimate the
expected compression ratio, and pick the compression method which gives the maximum
compression ratio. For dictionary compression, we also consider the expected dictionary
size. Since Trojan Columns works very well on query set 1, we focus on that in this
section. Also note that Trojan Columns is used only for lineitem table in query set
1, since other tables have no selection predicates and hence have very high function
calls overhead. We successively turn on four levels of compression on lineitem table as
follows:

Compression Level 0. no compression applied.
Compression Level 1. delta encoding enabled.
Compression Level 2. Level 1 + 7-bit encoding enabled.
Compression Level 3. Level 2 + dictionary compression enabled.
Compression Level 4. Level 3 + run length encoding enabled.

Table 5.8 shows the data load times for different compression levels.

Measurement Level 0 Level 1 Level 2 Level 3 Level 4

Upload Time (sec) 1636.44 1642.73 1610.59 1550.63 1451.39
Table Size (GB) 11.83 11.57 10.89 5.19 5.07

Table 5.8: Upload times and tables sizes with compression.

We can see that the upload time decreases with higher levels of compression. From
compression level 0, i.e. no compression, to compression level 4, the improvement in
upload time is 185 seconds. The reason for this is that while we spend more CPU cycle
to compress the data, we save on I/O when writing the data to disk. Figure 5.9 shows
the query times of query set 1 for different compression levels. We can see that the query
time improves up to compression level 4. For instance, for query 6, the improvement in

Chapter 5. Column-oriented Storage for Relational Data Management 125

Upload Time Table Size (GB) Table Size (B)
None Level 0
Delta Level 1
7-Bit Level 2
Dict Level 3
RLE Level 4

1636.44 11.825195313 1.2E+07
1642.731 11.574951172 1.2E+07
1610.594 10.88671875 1.1E+07
1550.625 5.193603516 5445888
1451.387 5.068603516 5314816

Standard
Row

Level 0 Level 1 Level 2 Level 3 Level 4 Level 0 Level 1 Level 2 Level 3 Level 4 Change Change %

Q1
Q6
Q12
Q14

76.730295686 23.354514912 23.584275232 23.783208354 18.643817526 19.29398260933 70.06354 70.75283 71.34963 55.93145 57.88195 4.060532303 17.386498149

77.589033799 17.058411369 17.067916075 17.252539129 8.19562614233 8.653238149333 51.17523 51.20375 51.75762 24.58688 25.95971 8.4051732197 49.27289557

92.486037647 49.816428293 48.986437944 49.049938783 36.849933414 37.33190539967 149.4493 146.9593 147.1498 110.5498 111.9957 12.484522893 25.061055802

81.207648846 37.825625443 37.287365012 37.361084394 30.711540826 30.78811436767 113.4769 111.8621 112.0833 92.13462 92.36434 7.037511075 18.605141336

0

28

56

84

112

140

Q1 Q6 Q12 Q14
Q

ue
ry

 T
im

e
(s

ec
)

Standard Row Trojan Columns (Level 0)
Trojan Columns (Level 1) Trojan Columns (Level 2)
Trojan Columns (Level 3) Trojan Columns (Level 4)

Figure 5.9: Effect of compression on query set 1.

runtime from compression level 0 to compression level 4 is 49%. However, the improve-
ment is not dramatic. The reason for this is that the overall query costs as well as the
UDF overheads dominate the improvements in I/O due to compression.

Table 5.9 shows the compression methods used for each of the lineitem attribute.
Except ExtendedPrice (too small compression ratio) and Comment (VARCHAR), we
apply compression on all lineitem attributes.

Attribute Compression Method Expected Compression Ratio

OrderKey Delta 4
PartKey 7-Bit 1.4
SuppKey 7-Bit 2

Linenumber 7-Bit 4
Quantity Dictionary 8

ExtendedPrice None -
Discount Dictionary 8

Tax Dictionary 8
ReturnFlag Run Length Encoding 1.42
LineStatus Run Length Encoding 3.63
ShipDate Dictionary 4.98

CommitDate Dictionary 4.98
ReceiptDate Dictionary 4.98
ShipInstruct Dictionary 25
ShipMode Dictionary 10
Comment None -

Table 5.9: Compression methods and the expected compression ratio for each
Lineitem attribute.

5.6.7.2 Query cost break-down

In order to understand where we can further improve the UDFs, we need to see its
cost breakdown. Figure 5.10(a) shows the breakdown of UDF processing time into four
costs: fetching data, decompressing data, processing (selections, grouping/aggregation),
and outputting the results. From the figure we can see that processing costs domi-
nate in query Q1 while outputting costs dominate in query Q14. However, fetching and
decompression are at the major costs for Q6 and Q12. To contrast the effect of compres-
sion, Figure 5.10(b) shows the cost breakdown for uncompressed data. We can see that
there are no decompression costs now, however the fetching costs go up significantly and
dominate most queries.

Chapter 5. Column-oriented Storage for Relational Data Management 126

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

6.600 4.480 12.353 0.001 23.434 48.839585487 146.51875646
5.547 3.486 2.482 0 11.515 27.51738229 82.552146869
3.948 4.190 2.614 8.587 19.339 78.384223458 235.15267037
6.356 3.085 1.692 18.703 29.836 55.935707906 167.80712372

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

20.520 0 12.656 0.001 0 33.177 19.293982609 48.839585487 146.51875646
15.672 0 2.459 0 0 18.131 8.6532381493 27.51738229 82.552146869
20.330 0 2.587 8.392 0 31.309 16.504629093 78.384223458 235.15267037
13.885 0 1.637 18.453 0 33.975 25.592795096 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1

Q6

Q12

Q14

9.470 10.003 11.210 0.011 30.694 48.839585487 146.51875646

7.572 6.866 1.310 0.012 15.76 27.51738229 82.552146869

6.732 9.658 2.093 6.335 24.818 78.384223458 235.15267037

18.565 4.970 1.383 19.638 44.556 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

(a) With compression

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

6.600 4.480 12.353 0.001 23.434 48.839585487 146.51875646
5.547 3.486 2.482 0 11.515 27.51738229 82.552146869
3.948 4.190 2.614 8.587 19.339 78.384223458 235.15267037
6.356 3.085 1.692 18.703 29.836 55.935707906 167.80712372

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

20.520 0 12.656 0.001 0 33.177 19.293982609 48.839585487 146.51875646
15.672 0 2.459 0 0 18.131 8.6532381493 27.51738229 82.552146869
20.330 0 2.587 8.392 0 31.309 16.504629093 78.384223458 235.15267037
13.885 0 1.637 18.453 0 33.975 25.592795096 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)
Fetch Decompress
Process Output

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1

Q6

Q12

Q14

9.470 10.003 11.210 0.011 30.694 48.839585487 146.51875646

7.572 6.866 1.310 0.012 15.76 27.51738229 82.552146869

6.732 9.658 2.093 6.335 24.818 78.384223458 235.15267037

18.565 4.970 1.383 19.638 44.556 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

(b) Without compression

Figure 5.10: Query cost breakdown (in seconds) for Trojan Columns over TPC-H
query set 1.

5.6.7.3 Stored Procedures

Figure 5.11 shows the runtimes of Trojan Columns using stored procedures (SP) for
TPC-H query set 1. We can see that except for query Q14, Trojan Columns using stored
procedures are very close to those Trojan Columns using UDFs. Stored procedures are
slow for Query Q14 because it produces a large number of output tuples. Since stored
procedures cannot return the results, they must write these output tuples into another
table.

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

Figure 5.11: Query times (in seconds) with stored procedures.

5.6.7.4 C-Table Evaluation

In order to investigate C-Table in more detail, we ran some micro-benchmarks on them.
We take three synthetic datasets. Each dataset contains integer attributes with the same
cardinality (10, 100, and 1000 respectively). For each dataset, we create C-Tables over
its attributes and vary the number of referenced attributes.

Figure 5.12 shows the results. We can see that for lower cardinalities C-Tables work very
well compared to standard row. For instance, for cardinality 10, C-Tables are better
than row for up to 6 referenced attributes. However, for higher cardinalities e.g. 1000,
C-Tables become bad pretty soon.

5.7 Discussion

Trojan Column Benefits. From the above experiments, we see that Trojan Columns
significantly improves the performance of DBMS X. This is because Trojan Columns

Chapter 5. Column-oriented Storage for Relational Data Management 127

Cardinality Row C-Tables
10 34.970995012 797.5526469

100 67.663774343 2538.5132185
1000 37.318241619 2947.36455

#Attributes 1 2 3 4 5 6 7 8 9 10
CTables: 0.806700924 1.062212219 1.148258234 1.288950746 2.718275768 14.116931317 104.13242082 277.93085639 520.7912971 1109.8817201
RowTime: 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332

#Attributes 1 2 3 4 5
CTables: 0.899413891 1.069284213 29.501207334 438.37360402 1948.4690628
RowTime: 22.552300534 22.552300534 22.552300534 22.552300534 22.552300534

#Attributes 1 2
CTables: 0.821990668 691.13050088
RowTime: 30.012339367 30.012339367

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2 3 4 5

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

Table Row C-Tables Trojan Columns
lineitem 313.4821 28888.57 179.446233
orders 64.99177 6394.601 47.2320079
part 14.50529 909.4416 14.2245235

Query Row C-Tables Trojan Columns
Q1 8.1957160983 3.3134700297 211.392690586 24.5871483 9.94041009 634.178072
Q6 8.2291799813 2.182174931 96.166507549 24.6875399 6.54652479 288.499523
Q12 9.7983991687 5.0690194677 5457.368314045 29.3951975 15.2070584 16372.1049
Q14 8.6118758027 4.4059389703 335.551381686333 25.8356274 13.2178169 1006.65415

(a) Cardinality = 10

Cardinality Row C-Tables
10 34.970995012 797.5526469

100 67.663774343 2538.5132185
1000 37.318241619 2947.36455

#Attributes 1 2 3 4 5 6 7 8 9 10
CTables: 0.806700924 1.062212219 1.148258234 1.288950746 2.718275768 14.116931317 104.13242082 277.93085639 520.7912971 1109.8817201
RowTime: 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332

#Attributes 1 2 3 4 5
CTables: 0.899413891 1.069284213 29.501207334 438.37360402 1948.4690628
RowTime: 22.552300534 22.552300534 22.552300534 22.552300534 22.552300534

#Attributes 1 2
CTables: 0.821990668 691.13050088
RowTime: 30.012339367 30.012339367

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2 3 4 5

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

Table Row C-Tables Trojan Columns
lineitem 313.4821 28888.57 179.446233
orders 64.99177 6394.601 47.2320079
part 14.50529 909.4416 14.2245235

Query Row C-Tables Trojan Columns
Q1 8.1957160983 3.3134700297 211.392690586 24.5871483 9.94041009 634.178072
Q6 8.2291799813 2.182174931 96.166507549 24.6875399 6.54652479 288.499523
Q12 9.7983991687 5.0690194677 5457.368314045 29.3951975 15.2070584 16372.1049
Q14 8.6118758027 4.4059389703 335.551381686333 25.8356274 13.2178169 1006.65415

(b) Cardinality = 100

Cardinality Row C-Tables
10 34.970995012 797.5526469

100 67.663774343 2538.5132185
1000 37.318241619 2947.36455

#Attributes 1 2 3 4 5 6 7 8 9 10
CTables: 0.806700924 1.062212219 1.148258234 1.288950746 2.718275768 14.116931317 104.13242082 277.93085639 520.7912971 1109.8817201
RowTime: 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332

#Attributes 1 2 3 4 5
CTables: 0.899413891 1.069284213 29.501207334 438.37360402 1948.4690628
RowTime: 22.552300534 22.552300534 22.552300534 22.552300534 22.552300534

#Attributes 1 2
CTables: 0.821990668 691.13050088
RowTime: 30.012339367 30.012339367

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2 3 4 5

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

Table Row C-Tables Trojan Columns
lineitem 313.4821 28888.57 179.446233
orders 64.99177 6394.601 47.2320079
part 14.50529 909.4416 14.2245235

Query Row C-Tables Trojan Columns
Q1 8.1957160983 3.3134700297 211.392690586 24.5871483 9.94041009 634.178072
Q6 8.2291799813 2.182174931 96.166507549 24.6875399 6.54652479 288.499523
Q12 9.7983991687 5.0690194677 5457.368314045 29.3951975 15.2070584 16372.1049
Q14 8.6118758027 4.4059389703 335.551381686333 25.8356274 13.2178169 1006.65415

(c) Cardinality = 1000

Figure 5.12: Comparing query times of CTable and standard row for different at-
tribute cardinalities.

can successfully emulate a column store without any overhead that typically exists in
full vertical partitioning or other schema level approaches. The main advantage of
Trojan Columns comes from improved I/O performance: we access only the referenced
attributes. In addition, we apply light-weight column-oriented compression schemes.
Furthermore, we push one or more SQL operators down to the UDF and evaluate them
directly directly on BLOB data.

In contrast, C-Tables work only for up to 3 attributes, unless the input datasets are pre-
joined. For a higher number of referenced attributes, the tuple reconstruction joins kill
the C-Table performance. This is not the case for Trojan Columns. In fact, as we saw
in the experiments, Trojan Columns is not at all affected by the number of referenced
attributes.

Trojan Column Limitations. We found that the major performance problem in
using table UDFs, for accessing Trojan Columns, is the additional overhead of function
calls. These function calls lead to a significant decrease in performance if many rows
are returned. For each row that is returned to the outside, DBMS X invokes one call of
the UDF and passes a large number of arguments to it. For a table like lineitem with
16 attributes, this means passing already 32 return variables (16 return variables + 16
indicators) to the function in each call, additional to the arguments passed by the user.
Thus low selectivity queries are a problem for Trojan Columns.

The UDFs which perform only projection and selection are very flexible and need only
the table schema to be generated. For example, we have one UDF for lineitem, and it
can perform all kinds of projections and selections on the table. This is possible since
the result schema of the query is always a subset of the lineitem schema. However, for
queries which also perform grouping and aggregation, we need to generate the UDFs for
each individual query. This is because the schema of the query result might not be a

Chapter 5. Column-oriented Storage for Relational Data Management 128

subset of the original table schema. Though manual, these adaptions can still be done
easily and quickly.

As future work, a main goal is to increase the flexibility of the approach. We are
planning to build generators and compilers (also in the form of UDFs), which create
and install all necessary functions for a given query or table and database product. This
is possible since only small adaptations are needed to tweak a function towards a query.
Another main problem we face at the moment is the additional overhead at the leaf
level caused by too many result rows. We could eliminate this problem in many cases,
if we could push the join operator into the UDF. This would also allow for performing
grouping/aggregation after the join and would lead to a significant decrease of function
call overhead.

Query Optimization Considerations

(a) Selectivity. At the moment, we decide whether or not to use Trojan Columns man-
ually. Ideally, however, we would like to hide this decision using a view, which is then
used in the query invoked by the user. The view should be able to switch between Trojan
Columns and the standard row store, depending on the query selectivity. Note that the
view needs to pass the projection and selection operators down to the UDF, in case it
chooses Trojan Columns.

(b) UDF cost estimates. DBMS X supports a mechanism to adjust the estimated cost
of a UDF in terms of the expected cardinality, i.e. it is possible to specify the number
of rows that the UDF might return. Unfortunately, this cardinality is static and has to
be set for each individual query. This cardinality information is then used in the access
plan calculation to find the best plan.

(c) Intermediate results. If a query materializes intermediate results on disk, then the
optimizer could consider using Trojan Columns for them, thus improving performance
higher up in the query tree.

5.8 Conclusion

In this chapter, we presented Trojan Columns, a radically different approach for injecting
column store technology into a closed source commercial row-oriented database system.
Trojan Columns does not make any changes to the source code of the database system,
but rather use UDFs as a pluggable storage layer for data read and write. Trojan
Columns can be easily integrated into an existing database system environment (without
even restarting the DBMS). As a result, Trojan Columns is transparent to the user,
i.e. the user continues using his existing database product with minimal changes to
his queries. We implemented Trojan Columns in DBMS X and show query runtimes
from unmodified TPC-H benchmark, simplified TPC-H queries (as proposed by other
researchers), as well as from single table micro-benchmarks. Our results show that
Trojan Columns improves the performance of DBMS X by up to a factor 9 (3.9 on
average, 2.5 in the worst case) for non-nested high selectivity queries of unmodified
TPC-H benchmark, by up to a factor 13 (5.2 on average, 3.9 slowdown in the worst
case) for simplified TPC-H queries, and by up to a factor 17 for high selectivity queries
on single table micro-benchmarks. All this without touching the source code of the
database system.

Chapter 5. Column-oriented Storage for Relational Data Management 129

With Trojan Columns, we have the flexibility to create a compressed column storage
view, in addition to the standard row storage view, in commercial row-oriented database
systems. As a result of this greater storage layer flexibility with Trojan Columns, we
can now have efficient OLAP performance in the OLTP efficient database system.

130

Chapter 6

Conclusion

Data managing needs in our modern world are changing faster than ever before. Gone
are the days of fixed query workloads. Today, enterprises typically face the challenge
of managing big datasets with dynamically changing query workloads. It is clear that
the enterprises cannot afford to have different data managing systems for different query
workloads. Otherwise, there is an additional penalty of managing a zoo of data managing
systems in the first place, which is tedious, expensive, as well as counter-productive for
modern enterprises. Instead, modern data managing systems must inherently provide
flexible data management techniques in order to cope with the constantly changing
business needs.

6.1 Summary

In this thesis, we introduced Trojan Techniques for data management. We observed that
each specialized database product has a different data store. This indicates that different
data layouts are suited for different query workloads. Therefore, a key requirement for
efficiently supporting several query workloads is to support several data layouts (physical
data representation). Trojan Techniques add additional data layouts to an existing data
management system without making heavy untenable changes to the system. At the
same time, Trojan Techniques brought significant improvements in query performance.

(1.) OctopusDB Vision. First we presented the long term vision and goal of our
research. Our vision is a unified data managing architecture for supporting several types
of workloads. The primary storage structure of such a system, coined OctopusDB, is
a logical log. All other storage structures are just secondary storage views on this
log. Storage views include row layout, column layout, indexes, but also windows on
unbounded streams. With OctopusDB we inverted the traditional development of a
DBMS: previously there always was a specific store which was an irrevocable design-
decision, built-in into the DBMS. On top of that, an ARIES-style [90] log-based recovery
was implemented to guarantee atomicity and durability. In our vision, we took exactly
the opposite approach: we started with the log (which is totally disconnected from
any store) and if necessary, we define optional SVs on that log suited for a particular
workload.

131

Chapter 6. Conclusion 132

The Trojan Techniques, introduced in this thesis, aim to develop the flexible storage
layer as envisioned in OctopusDB. Thus, Trojan Techniques are the first steps of the
bigger OctopusDB vision. Although we originally presented the OctopusDB vision in
the context of relational databases, it is more broad in scope and can be applied to any
data managing system. Therefore, in this thesis, we focus more on implementing this
vision in Hadoop MapReduce, given its recent popularity. Still, we presented one Trojan
Technique in relational databases as well.

(2.) Trojan Index and Joins. We started with Hadoop MapReduce and proposed
new index and join techniques: Trojan Index and Trojan Join, to improve runtimes
of MapReduce jobs. Our techniques are non-invasive, i.e. they do not require us to
change the underlying Hadoop framework. We simply need to provide appropriate user-
defined functions (and not only the two functions map and reduce). The beauty of this
approach is that we can incorporate such techniques to any Hadoop version with ease.
We exploited this during our experiments when moving from Hadoop 0.20.1 to Hadoop
0.19.0 (used by HadoopDB) for fairness reasons. We implemented our Trojan techniques
on top of Hadoop and named the resulting system Hadoop++. The experimental results
demonstrated that Hadoop++ outperforms Hadoop. Furthermore, for tasks related to
indexing and join processing Hadoop++ outperformed HadoopDB – without requiring
a DBMS or deep changes in Hadoop’s execution framework or interface.

With Trojan Index and Trojan Join, Hadoop++ introduces indexed and co-partitioned
storage views, apart from the default row storage view, in Hadoop MapReduce. As a
result of this greater flexibility in the storage layer, Hadoop++ allows for efficient index
and join processing, in addition to standard scan-oriented processing.

(3.) Trojan Layouts. After indexing and co-partitioning, we turned our attention to
data layouts in Hadoop MapReduce. We proposed Trojan Layouts, a new data layout
that organizes data inside HDFS data blocks according to the incoming workload. We
followed the PAX principle in that we did not change the outside view of data. However,
we considerably departed from PAX as we: (i) might co-locate attributes according to
query workloads, (ii) may use different Trojan Layouts for different data block replicas,
and (iii) may, in a special case, mimic fractured mirrors: having the best from both PAX
and Row Layouts. We implemented our algorithms on top of HDFS 0.20.3. A salient
feature of using per-replica Trojan Layouts is that we can schedule incoming jobs to data
block replicas having the best Trojan Layout. On TPC-H, SSB, and SDSS benchmarks,
Trojan Layouts outperformed the default row layout by up to a factor of 4.8 (3.3 times
faster on average and 1.1 times slower in the worst case); and PAX layout by up to a
factor of 3.5 (1.6 times faster on average and no improvement in the worst case).

With Trojan Layouts, we have the flexibility to choose a different storage view for each
data block replica in Hadoop MapReduce. This has important consequences since data
replication is intrinsic to Hadoop MapReduce, in order to provide fault-tolerance and
failover properties. We can now have a flexible storage layer with as many storage views
as the data replication factor. As a result of Trojan Layouts, we can now have efficient
column-oriented as well as arbitrary partial-projection-oriented processing, in addition
to standard row-oriented processing in Hadoop MapReduce.

(4.) Trojan Columns. Finally, we looked at relational data management systems. We
presented Trojan Columns, a radically different approach for injecting column store tech-
nology into a closed source commercial row-oriented database system. Trojan Columns
does not make any changes to the source code of the database system, but rather use
UDFs as a pluggable storage layer for data read and write. Trojan Columns can be easily

Chapter 6. Conclusion 133

integrated into an existing database system environment (without even restarting the
DBMS). As a result, Trojan Columns is transparent to the user, i.e. the user continues
using his existing database product with minimal changes to his queries. Our experimen-
tal results showed that Trojan Columns improves the performance of DBMS X by up to
a factor 9 (3.9 on average, 2.5 in the worst case) for non-nested high selectivity queries
of unmodified TPC-H benchmark, by up to a factor 13 (5.2 on average, 3.9 slowdown in
the worst case) for simplified TPC-H queries (as proposed by other researchers), and by
up to a factor 17 for high selectivity queries on single table micro-benchmarks. All this
without touching the source code of the database system.

With Trojan Columns, we have the flexibility to create a compressed column storage
view, in addition to the standard row storage view, in commercial row-oriented database
systems. As a result of this greater storage layer flexibility with Trojan Columns, we
can now have efficient OLAP performance in the OLTP efficient database system.

6.2 Future Work

Fully Flexible Storage Layer. Trojan Techniques presented in this thesis added
several new storage views in Hadoop MapReduce. Still, we are quite far from having a
fully flexible storage layer in Hadoop MapReduce. Ideally, we should be able to decide
the physical data representation on a per-HDFS-block basis, i.e. each HDFS data block
can have a different layout. Trojan Layouts piggy backs on the default replication factor
of 3 to create a different layout for each replica. However, we can create even more data
layouts, and hence achieve even better query performance, with a higher replication
factor. Thus, now the replication factor is given by not only the degree of fault tolerance
but also by the desired query performance. Furthermore, currently, Trojan Layouts
needs to replicate the data entirely in order to have a different storage view. However,
we could also replicate only parts of the data, within a data block, and store them
in a different physical representation. Similarly, we can also store any intermediate or
final result in any physical representation. Essentially, we want the storage layer to be
completely decoupled and fully flexible. Only then, we will fix a major flaw in current
data managing systems — absence of true physical data independence.

Trojan Techniques for Query Optimization. Trojan Techniques have three major
advantages: (i) they are implemented in the existing (and familiar) data managing
system, i.e. the user is not overwhelmed with yet another new data managing system,
(ii) they are plug and play, i.e. the administrators do not have to worry about configuring
or tuning them, and (iii) they are generic and can be used across several systems.
However, currently, Trojan Techniques focus on data access paths and physical data
design in existing data managing systems. As a result even though Trojan Techniques
provide for a highly flexible storage layer, existing query optimizers still cannot make
full use of that layer. Thus, as future work, we need to extend Trojan Techniques to
work with existing query optimizers. This means that we have to inject optimization
decisions, which exploit the underlying flexible storage layer and at the same time make
use of an existing query optimizer.

Considering OLTP and Other Applications. In this thesis, we focussed on OLAP/-
analytics applications. We started with the default row-oriented storage of Hadoop
MapReduce and introduced several Trojan Techniques, including indexes, joins, and

Chapter 6. Conclusion 134

layouts, to support analytical applications efficiently. We did the ground work for a
flexible storage layer, which would make it possible to support several kinds of work-
loads. Still, we are far from a one-size-fits-all data managing system. As a future work,
we need to extend Trojan Techniques to efficiently support OLTP, streaming, and other
demanding applications.

Putting Trojan Techniques Together. The Trojan Techniques presented in this
thesis were proposed in a variety of systems. Each Trojan Techniques was proposed
independently in order to understand and evaluate it in isolation. However, as future
work, we need to bring together all these techniques into a single data managing system.
The single system should examine the feasibility of Trojan indexes, joins, data layouts,
and columns and automatically adapt according to the incoming query workload.

135

136

List of Figures

2.1 Initial, Non-Optimized OctopusDB . 19
2.2 OctopusDB static optimizations for the Running Example 24
2.3 Workload adaption optimizations of OctopusDB for the Running Example 29
2.4 OctopusDB Query and Update Costs over varying Workload 36
2.5 Comparing workload costs of OctopusDB with different systems 36
2.6 OctopusDB: automatic adaption of SVs when scaling database size 38

3.1 MapReduce processing in relational algebra 50
3.2 The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical

query execution plan . 52
3.3 Trojan Indexed Data Layout . 55
3.4 MapReduce Plans for creating Trojan Indexes and Co-partitions 56
3.5 Co-partitioned Data Layout in Hadoop . 58
3.6 Trojan Indexed and Co-partitioned Data Layout 61
3.7 Benchmark Results related to Trojan Indexing and Join Processing 63
3.8 Hadoop++ Fault Tolerance . 66
3.9 Additional Task Results not related to Trojan Indexing and Join Processing 68

4.1 Example of some research works in MapReduce. 72
4.2 Data access costs for different data layouts in Hadoop. 73
4.3 Per-replica Trojan Layouts in HDFS. 76
4.4 Branch and Bound Knapsack . 81
4.5 Quadruplets for a data block in Trojan HDFS stored at the name node 85
4.6 Process to upload a file to Trojan HDFS 86
4.7 Improvement of data access time when using Trojan Layouts over Hadoop-

Row and Hadoop-PAX. 93
4.8 Worst-case relative data access performance when using different schedul-

ing policies with Trojan Layouts . 94
4.9 Comparison of Data Loading Times in Trojan and standard HDFS. . . . 95
4.10 Performance of our column grouping algorithm to compute Trojan Layouts 97
4.11 Simulation Validation of Trojan Layouts for TPC-H Customer 99

5.1 The UDF Storage Layer in Trojan Columns 105
5.2 Read and Write UDFs for Trojan Columns 107
5.3 Standard and Trojan Columns query plans for TPC-H Query 6 109
5.4 Example Trojan Layouts query plan for TPC-H query 14 113
5.5 Unmodified TPC-H query Set 1 runtimes for Standard Row and Trojan

Columns . 120
5.6 Trojan Columns versus Materialized Views 121

137

List of Figures 138

5.7 Trojan Columns improvement factor in DBMS X. 122
5.8 Improvement of Trojan Column over PostgreSQL Column 123
5.9 Effect of compression on Trojan Columns 125
5.10 Query cost breakdown (in seconds) for Trojan Columns over TPC-H query

set 1. 126
5.11 Trojan Columns query times with stored procedures 126
5.12 Comparing query times of CTable and standard row for different attribute

cardinalities. 127

List of Tables

1.1 Overview of Trojan Techniques . 8

2.1 Storage View Query Cost model . 27
2.2 Storage View Update Cost model . 27
2.3 Symbols used in Storage View Query and Update cost models 27
2.4 Storage View Transformation Cost model 27
2.5 Use-Cases of OctopusDB . 30
2.6 Sample execution of two concurrent transactions in OctopusDB 33
2.7 Parameters used in the OctopusDB Simulations 37

4.1 Full table scan access cost model for different layouts in Hadoop 83
4.2 Trojan Layout Cost Model Symbols . 83
4.3 Access Patterns of TPC-H Customers Queries 89
4.4 Access Patterns of TPC-H Lineitem Queries 89
4.5 Access Patterns of SSB LineOrder Queries 90
4.6 Accessing Patterns of SDSS PhotoObj Queries 90
4.7 Trojan Layouts Query Grouping . 90
4.8 Trojan Layout Column Groups for TPC-H Customer 90
4.9 Trojan Layout Column Groups for TPC-H Lineitem 91
4.10 Trojan Layout Column Groups for SSB LineOrder 91
4.11 Trojan Layout Column Groups for SDSS PhotoObj 91
4.12 Per-replica Trojan Layout analysis . 92
4.13 Quality Comparison of HYRISE and Trojan Layouts 96

5.1 TPC-H queries divided into four subsets 118
5.2 TPC-H load times (in seconds) for scale factor 1. 119
5.3 TPC-H load times in Trojan Columns for scale factor 10 119
5.4 TPC-H query times in Trojan Columns for scale factor 1 119
5.5 TPC-H query Set 2 runtimes for Trojan Columns 120
5.6 TPC-H query Set 3 runtimes for Trojan Columns 120
5.7 Simplified TPC-H query runtimes in Standard Row and Trojan Columns . 122
5.8 Upload times and tables sizes in Trojan Columns with compression 124
5.9 Compression methods and the expected compression ratio for each Lineitem

attribute. 125

139

140

List of Algorithms

2.1 OctopusDB: registerSV . 20

2.2 OctopusDB: registerQuery . 20

2.3 OctopusDB: snapshot . 21

2.4 OctopusDB: maintain . 21

2.5 OctopusDB: drop . 21

2.6 OctopusDB: query . 22

2.7 OctopusDB: iterate . 22

2.8 OctopusDB: commit . 34

3.1 Trojan Index/Trojan Join split UDF . 56

3.2 Trojan Index itemize.initialize UDF . 57

3.3 Trojan Index itemize.next UDF . 57

3.4 Trojan Join itemize.next UDF . 60

4.1 Branch And Bound Knapsack:CGA.bbKnapsack 81

4.2 Trojan Layouts: EnumerateAndGroup . 82

4.3 Trojan Layouts: PerReplicaEnumerateAndGroup 84

4.4 Trojan Layout itemize.initialize UDF . 87

5.1 Trojan Columns: scanUDF . 110

5.2 Trojan Columns: aggregateUDF . 112

141

142

Bibliography

[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. Integrating Compression
and Execution in Column-Oriented Database Systems. In SIGMOD, 2006.

[2] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel Madden. Mate-
rialization Strategies in a Column-Oriented DBMS. In ICDE, 2007.

[3] Daniel J. Abadi, Samuel Madden, and Nabil Hachem. Column-Stores vs. Row-
Stores: How Different Are They Really? In SIGMOD, 2008.

[4] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos. Column oriented
Database Systems (Tutorial). PVLDB, 2(2), 2009.

[5] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Avi Silberschatz, and
Alexander Rasin. HadoopDB: An Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads. PVLDB, 2(1), 2009.

[6] Foto N. Afrati and Jeffrey D. Ullman. Optimizing Joins in a Map-Reduce Envi-
ronment. In EDBT, 2010.

[7] Foto N. Afrati, Chen Li, and Jeffrey D. Ullman. Generating Efficient Plans for
Queries Using Views. In SIGMOD, 2001.

[8] Sanjay Agarwal, Lubor Kollár Surajit Chaudhuri, Arunprasad P. Marathe,
Vivek R. Narasayya, and Manoj Syamala. Database Tuning Advisor for Microsoft
SQL Server 2005. In VLDB, 2004.

[9] Sanjay Agrawal, Vivek R. Narasayya, and Beverly Yang. Integrating Vertical and
Horizontal Partitioning into Automated Physical Database Design. In SIGMOD,
2004.

[10] Sanjay Agrawal, Eric Chu, and Vivek R. Narasayya. Automatic Physical Design
Tuning: Workload as a Sequence. In SIGMOD, 2006.

[11] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis.
Weaving Relations for Cache Performance. In VLDB, 2001.

[12] Ioannis Alagiannis, Debabrata Dash, Karl Schnaitter, Anastasia Ailamaki, and
Neoklis Polyzotis. An Automated, Yet Interactive and Portable DB Designer. In
SIGMOD, 2010.

[13] Don S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell,
and T. E. Wise. GENESIS: An Extensible Database Management System. IEEE
TSE, 14(11), 1988.

[14] BerkeleyDB. http://www.oracle.com/technetwork/products/berkeleydb.

143

http://www.oracle.com/technetwork/products/berkeleydb

Bibliography 144

[15] Philip A. Bernstein, Colin W. Reid, and Sudipto Das. Hyder - A Transactional
Record Manager for Shared Flash. In CIDR, 2011.

[16] Dina Bitton and David J. DeWitt. Duplicate Record Elimination in Large Data
Files. ACM TODS, 8(2), 1983.

[17] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR, 2005.

[18] Nicolas Bruno. Teaching an Old Elephant New Tricks. In CIDR, 2009.

[19] Nicolas Bruno and Surajit Chaudhuri. Physical Design Refinement: The ’Merge-
Reduce’ Approach. In EDBT, 2006.

[20] Nicolas Bruno and Surajit Chaudhuri. An Online Approach to Physical Design
Tuning. In ICDE, 2007.

[21] Nicolas Bruno and Surajit Chaudhuri. Constrained Physical Design Tuning.
PVLDB, 1(1), 2008.

[22] Michael J. Cafarella and Christopher Ré. Manimal: Relational Optimization for
Data-Intensive Programs. In WebDB, 2010.

[23] George Candea, Neoklis Polyzotis, and Radek Vingralek. A Scalable, Predictable
Join Operator for Highly Concurrent Data Warehouses. In PVLDB, 2009.

[24] Yu Cao, Chun Chen, Fei Guo, Dawei Jiang, Yuting Lin, Beng Chin Ooi,
Hoang Tam Vo, Sai Wu, and Quanqing Xu. ES2: A Cloud Data Storage Sys-
tem for Supporting Both OLTP and OLAP. In ICDE, 2011.

[25] Michael J. Carey, David J. DeWitt, Joel E. Richardson, and Eugene J. Shekita.
Object and File Management in the EXODUS Extensible Database System. In
VLDB, 1986.

[26] Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall, Mark L.
McAuliffe, Jeffrey F. Naughton, Daniel T. Schuh, Marvin H. Solomon, C. K. Tan,
Odysseas G. Tsatalos, Seth J. White, and Michael J. Zwilling. Shoring Up Persis-
tent Applications. In SIGMOD, 1994.

[27] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Si-
mon Weaver, and Jingren Zhou. Scope: Easy and Efficient Parallel Processing of
Massive Data Sets. PVLDB, 1(2), 2008.

[28] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert Gruber.
Bigtable: A Distributed Storage System for Structured Data. In OSDI, 2006.

[29] Surajit Chaudhuri and Vivek R. Narasayya. An Efficient Cost-driven Index Selec-
tion Tool for Microsoft SQL Server. In VLDB, 1997.

[30] Surajit Chaudhuri and Vivek R. Narasayya. Self-Tuning Database Systems: A
Decade of Progress (Ten Year Best paper Award). In VLDB, 2007.

[31] Surajit Chaudhuri and Gerhard Weikum. Rethinking Database System Architec-
ture: Towards a Self-Tuning RISC-Style Database System. In VLDB, 2000.

Bibliography 145

[32] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gary Valentin. Fractal
Prefetching B+-Trees: Optimizing Both Cache and Disk Performance. In SIG-
MOD, 2002.

[33] Songting Chen. Cheetah: A High Performance, Custom Data Warehouse on Top
of MapReduce. PVLDB, 3(2), 2010.

[34] Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and Douglas Stott Parker Jr.
Map-Reduce-Merge: Simplified Relational Data Processing on Large Clusters. In
SIGMOD, 2007.

[35] Rada Chirkova, Alon Y. Halevy, and Dan Suciu. A formal perspective on the view
selection problem. VLDB Journal, 11(3), 2002.

[36] Rada Chirkova, Chen Li, and Jia Li. Answering Queries Using Materialized Views
with Minimum Size. VLDB Journal, 15(3), 2006.

[37] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph Hellerstein, and Caleb Welton.
Mad Skills: New Analysis Practices for Big Data. PVLDB, 2(2), 2009.

[38] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmele-
egy, and Russell Sears. MapReduce Online. In NSDI, 2010.

[39] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. PNUTS: Yahoo!’s hosted data serving platform. PVLDB, 1(2), 2008.

[40] George P. Copeland and Setrag N. Khoshafian. A decomposition storage model.
In SIGMOD, 1985.

[41] Philippe Cudré-Mauroux, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers, Roman
Simakov, Emad Soroush, Pavel Velikhov, Daniel L. Wang, Magdalena Balazinska,
Jacek Becla, David J. DeWitt, Bobbi Heath, David Maier, Samuel Madden, Jig-
nesh M. Patel, Michael Stonebraker, and Stanley B. Zdonik. A Demonstration of
SciDB: A Science-Oriented DBMS (Demo). In PVLDB, 2009.

[42] Philippe Cudré-Mauroux, Eugene Wu, and Samuel Madden. The Case for Ro-
dentStore: An Adaptive, Declarative Storage System. In CIDR, 2009.

[43] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. Schism: a
Workload-Driven Approach to Database Replication and Partitioning. In PVLDB,
2010.

[44] DBColumn on MapReduce. http://databasecolumn.vertica.com/2008/01/
mapreduce-a-major-step-back.html, 2008.

[45] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI, 2004.

[46] Jeffrey Dean and Sanjay Ghemawat. MapReduce: A Flexible Data Processing
Tool. CACM, 53(1), 2010.

[47] Nihal Dindar, Baris Guc, Patrick Lau, Asli Ozal, Merve Soner, and Nesime Tatbul.
DejaVu: declarative pattern matching over live and archived streams of events
(Demo). In SIGMOD, 2009.

http://databasecolumn.vertica.com/2008/01/mapreduce-a-major-step-back.html
http://databasecolumn.vertica.com/2008/01/mapreduce-a-major-step-back.html

Bibliography 146

[48] Jens Dittrich and Alekh Jindal. Towards a One Size Fits All Database Architec-
ture. In CIDR, 2011.

[49] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay
Setty, and Jörg Schad. Hadoop++: Making a Yellow Elephant Run Like a Cheetah
(Without It Even Noticing). PVLDB, 3(1), 2010.

[50] Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz, Stefan Richter, Stefan Schuh, Alekh
Jindal, and Jörg Schad. Only Aggressive Elephants are Fast Elephants. PVLDB,
5(9), 2012.

[51] Jens-Peter Dittrich, Peter M. Fischer, and Donald Kossmann. AGILE: adaptive
indexing for context-aware information filters. In SIGMOD, 2005.

[52] Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita, and Sandeep Tata. Column-
Oriented Storage Techniques for MapReduce. PVLDB, 4(7), 2011.

[53] Clark D. French. “One size fits all” database architectures do not work for DSS.
In SIGMOD, 1995.

[54] Clark D. French. Teaching an OLTP Database Kernel Advanced Data Warehous-
ing Techniques. In ICDE, 1997.

[55] Fusion-io. http://www.fusionio.com.

[56] Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan
Narayanam, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and
Utkarsh Srivastava. Building a HighLevel Dataflow System on Top of MapRe-
duce: The Pig Experience. PVLDB, 2(2), 2009.

[57] Jonathan Goldstein and Per-Åke Larson. Optimizing Queries Using Materialized
Views: A Practical, Scalable Solution. In SIGMOD, 2001.

[58] Goetz Graefe and Harumi A. Kuno. Self-selecting, self-tuning, incrementally op-
timized indexes. In EDBT, 2010.

[59] Goetz Graefe and Harumi A. Kuno. Adaptive indexing for relational keys. In
ICDE Workshops, 2010.

[60] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudré-
Mauroux, and Samuel Madden. HYRISE - A Main Memory Hybrid Storage En-
gine. PVLDB, 4(2), 2010.

[61] Hadapt. http://www.hadapt.com.

[62] Hadoop. http://hadoop.apache.org/mapreduce/.

[63] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap. Stochastic
Database Cracking: Towards Robust Adaptive Indexing in Main-Memory Column-
Stores. PVLDB, 5(6), 2012.

[64] Richard A. Hankins and Jignesh M. Patel. Data Morphing: An Adaptive, Cache-
Conscious Storage Technique. In VLDB, 2003.

[65] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. QPipe: A
Simultaneously Pipelined Relational Query Engine. In SIGMOD, 2005.

http://www.fusionio.com
http://www.hadapt.com
http://hadoop.apache.org/mapreduce/

Bibliography 147

[66] Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and Samuel Madden. Perfor-
mance Tradeoffs in Read-Optimized Databases. In VLDB, 2006.

[67] HDFS Bug. http://issues.apache.org/jira/browse/HDFS-96, 2009.

[68] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang,
and Zhiwei Xu. RCFile: A fast and space-efficient data placement structure in
MapReduce-based warehouse systems. In ICDE, 2011.

[69] Sandor Heman, Marcin Zukowski, Arjen P. de Vries, and Peter A. Boncz. Efficient
and Flexible Information Retrieval using MonetDB/X100. In CIDR, 2007.

[70] Allison L. Holloway, Vijayshankar Raman, Garret Swart, and David J. DeWitt.
How to Barter Bits for Chronons: Compression and Bandwidth Trade Offs for
Database Scans. In SIGMOD, 2007.

[71] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database Cracking. In
CIDR, 2007.

[72] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Updating a cracked
database. In SIGMOD, 2007.

[73] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Self-organizing tuple
reconstruction in column-stores. In SIGMOD, 2009.

[74] Stratos Idreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe. Merging
What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-Memory
Column-Stores. PVLDB, 4(9), 2011.

[75] Robert Ikeda and Jennifer Widom;. Provenance for Generalized Map and Reduce
Workflows. In CIDR, 2011.

[76] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed Data-Parallel Programs from Sequential Building Blocks. In EuroSys,
2007.

[77] Ming-Yee Iu and Willy Zwaenepoel. HadoopToSQL: A MapReduce Query Opti-
mizer. In EuroSys, 2010.

[78] Alekh Jindal. The Mimicking Octopus: Towards a one-size-fits-all Database Ar-
chitecture. In VLDB PhD Workshop, 2010.

[79] Alekh Jindal and Jens Dittrich. Relax and Let the Database do the Partitioning
Online. In BIRTE, 2011.

[80] Alekh Jindal, Jorge-Arnulfo Quiané-Ruiz, and Jens Dittrich. Trojan Data Layouts:
Right Shoes for a Running Elephant. In SOCC, 2011.

[81] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin,
Stanley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. H-Store: A High-Performance, Dis-
tributed Main Memory Transaction Processing System (Demo). In PVLDB, 2008.

[82] Alfons Kemper and Thomas Neumann. HyPer: A Hybrid OLTP&OLAP Main
Memory Database System Based on Virtual Memory Snapshots. In ICDE, 2011.

http://issues.apache.org/jira/browse/HDFS-96

Bibliography 148

[83] Setrag Khoshafian, George P. Copeland, Thomas Jagodis, Haran Boral, and
Patrick Valduriez. A Query Processing Strategy for the Decomposed Storage
Model. In ICDE, 1987.

[84] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B.
Zdonik. CORADD: Correlation Aware Database Designer for Materialized Views
and Indexes. In VLDB, 2010.

[85] Willis Lang and Jignesh M. Patel. Energy Management for MapReduce Clusters.
PVLDB, 3(1), 2010.

[86] Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price, Sriku-
mar Rangarajan, Aleksandras Surna, and Qingqing Zhou. SQL Server Column
Store Indexes. In SIGMOD, 2011.

[87] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-
son, and David Maier. Out-of-order processing: a new architecture for high-
performance stream systems. PVLDB, 1(1), 2008.

[88] Stefan Manegold, Martin L. Kersten, and Peter A. Boncz. Database Architecture
Evolution: Mammals Flourished long before Dinosaurs became Extinct. PVLDB,
2(2), 2009.

[89] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

[90] C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M.
Schwarz. ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. ACM TODS, 17(1),
1992.

[91] MongoDB. http://www.mongodb.org.

[92] Kristi Morton and Abe Friesen. KAMD: A Progress Estimator for MapReduce
Pipelines. In ICDE, 2010.

[93] Kristi Morton, Magdalena Balazinska, and Dan Grossman. ParaTimer: A Progress
Indicator for MapReduce DAGs. In SIGMOD, 2010.

[94] MySQL. http://www.mysql.com.

[95] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Vertical Par-
titioning Algorithms for Database Design. ACM TODS, 9(4), 1984.

[96] Neo4j. http://neo4j.org.

[97] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick
Koudas. MRShare: Sharing Across Multiple Queries in MapReduce. PVLDB, 3
(1), 2010.

[98] ObjectDB. http://www.objectdb.com.

[99] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-
drew Tomkins. Pig Latin: A Not-So-Foreign Language for Data Processing. In
SIGMOD, 2008.

http://www.mongodb.org
http://www.mysql.com
http://neo4j.org
http://www.objectdb.com

Bibliography 149

[100] Oguzhan Ozmen, Kenneth Salem, Jiri Schindler, and Steve Daniel. Workload-
Aware Storage Layout for Database Systems. In SIGMOD, 2010.

[101] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-
scale data analysis. In SIGMOD, 2009.

[102] Karin Petersen, Mike Spreitzer, Douglas B. Terry, Marvin Theimer, and Alan J.
Demers. Flexible Update Propagation for Weakly Consistent Replication. In
SOSP, 1997.

[103] Rachel Pottinger and Alon Halevy. MiniCon: A Scalable Algorithm for Answering
Queries Using Views. VLDB Journal, 10(2-3), 2001.

[104] Jorge-Arnulfo Quiané-Ruiz et al. RAFTing MapReduce: Fast Recovery on the
Raft. In ICDE, 2011.

[105] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill, 3rd edition, 2003.

[106] Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. A Case for Fractured
Mirrors. In VLDB, 2002.

[107] Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vijay Dialani,
Donald Kossmann, Inderpal Narang, and Richard Sidle. Constant-Time Query
Processing. In ICDE, 2008.

[108] Jun Rao and Kenneth A. Ross. Cache Conscious Indexing for Decision-Support
in Main Memory. In VLDB, 1999.

[109] Domenico Sacca and Gio Wiederhold. Database Partitioning in a Cluster of Pro-
cessors. ACM TODS, 10(1), 1985.

[110] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiane-Ruiz. Runtime Measure-
ments in the Cloud: Observing, Analyzing, and Reducing Variance. PVLDB, 3
(1), 2010.

[111] Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis. COLT: Con-
tinuous On-Line Database Tuning. In SIGMOD, 2006.

[112] SciDB. http://www.scidb.org.

[113] Russell Sears, Mark Callaghan, and Eric A. Brewer. Rose: Compressed, log-
structured replication. PVLDB, 1(1), 2008.

[114] Michael Stonebraker. The Case For Partial Indexes. SIGMOD Record, 18(4), 1989.

[115] Michael Stonebraker and Ugur Cetintemel. “One Size Fits All”: An Idea Whose
Time Has Come and Gone (Abstract). In ICDE, 2005.

[116] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J.
O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B. Zdonik. C-Store:
A Column-oriented DBMS. In VLDB, 2005.

http://www.scidb.org

Bibliography 150

[117] Michael Stonebraker, Chuck Bear, Ugur Çetintemel, Mitch Cherniack, Tingjian
Ge, Nabil Hachem, Stavros Harizopoulos, John Lifter, Jennie Rogers, and Stan-
ley B. Zdonik. One Size Fits All? Part 2: Benchmarking Studies. In CIDR,
2007.

[118] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. The End of an Architectural Era (It’s Time for
a Complete Rewrite). In VLDB, 2007.

[119] Michael Stonebraker, Daniel J. Abadi, David J. DeWitt, Samuel Madden, Erik
Paulson, Andrew Pavlo, and Alexander Rasin. MapReduce and Parallel DBMSs:
Friends or Foes? CACM, 53(1), 2010.

[120] StreamBase. http://www.streambase.com.

[121] Sybase IQ. http://www.sybase.com/products/datawarehousing/sybaseiq.

[122] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous Queries
over Append-Only Databases. In SIGMOD, 1992.

[123] Martin Theobald, Holger Bast, Debapriyo Majumdar, Ralf Schenkel, and Gerhard
Weikum. TopX: efficient and versatile top-k query processing for semistructured
data. VLDB Journal, 17(1), 2008.

[124] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive - A Ware-
housing Solution Over a Map-Reduce Framework. PVLDB, 2(2), 2009.

[125] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain,
Joydeep Sen Sarma, Raghotham Murthy, and Hao Liu. Data Warehousing and
Analytics Infrastructure at Facebook. In SIGMOD, 2010.

[126] TPC-H. http://www.tpc.org/tpch/.

[127] Odysseas G. Tsalos, Marvin H. Solomon, and Yannis E. Ioannidis. The GMAP:
A Versatile Tool for Physical Data Independence. In VLDB, 1994.

[128] Philipp Unterbrunner, Georgios Giannikis, Gustavo Alonso, Dietmar Fauser, and
Donald Kossmann. Predictable Performance for Unpredictable Workloads. In
PVLDB, 2009.

[129] Vectorwise. http://www.actian.com/products/vectorwise.

[130] VoltDB. http://voltdb.com.

[131] Paul Yan and Paul Larson. Data Reduction Through Early Grouping. In CAS-
CON, 1994.

[132] Christopher Yang, Christine Yen, Cerye Tan, and Samuel Madden. Osprey: Im-
plementing MapReduce-Style Fault Tolerance in a Shared-Nothing Distributed
Database. In ICDE, 2010.

[133] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling. In EuroSys, 2010.

http://www.streambase.com
http://www.sybase.com/products/datawarehousing/sybaseiq
http://www.tpc.org/tpch/
http://www.actian.com/products/vectorwise
http://voltdb.com

Bibliography 151

[134] Jingren Zhou, Per-Åke Larson, Jonathan Goldstein, and Luping Ding. Dynamic
Materialized Views. In ICDE, 2007.

[135] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam J. Storm,
Christian Garcia-Arellano, and Scott Fadden. DB2 Design Advisor: Integrated
Automatic Physical Database Design. In VLDB, 2004.

[136] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter A. Boncz. Cooperative
Scans: Dynamic Bandwidth Sharing in a DBMS. In VLDB, 2007.

	Acknowledgements
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Motivation
	1.2 Techniques for Dynamic Workloads
	1.2.1 Physical Database Design & Tuning
	1.2.2 Different Workload, Different System
	1.2.3 Trojan Techniques

	1.3 Hadoop MapReduce Overview
	1.4 Thesis Statement
	1.5 Contributions
	1.5.1 OctopusDB Vision
	1.5.2 Trojan Indexes and Joins
	1.5.3 Trojan Layouts
	1.5.4 Trojan Columns
	1.5.5 Publications, Patents, Grants, Awards

	2 Towards A One Size Fits All Database Architecture
	2.1 Introduction
	2.1.1 Background
	2.1.2 Motivation
	2.1.3 Problem Statement
	2.1.4 Research Challenges
	2.1.4.1 Different Storage Layouts under a single umbrella
	2.1.4.2 Automatic Adaptive Bifurcation instead of administered Eventual Integration
	2.1.4.3 Simplicity Vs Optimization

	2.1.5 Our Approach

	2.2 OctopusDB Overview
	2.2.1 Data Model
	2.2.2 The Primary Log Store
	2.2.3 System Components and Interface
	2.2.4 Algorithms

	2.3 Storage Views
	2.3.1 Log SV
	2.3.2 Row, Col, and other SVs
	2.3.3 Index SV

	2.4 Holistic SV Optimizer
	2.4.1 Overview
	2.4.2 Cost Model
	2.4.3 Adaptive SV Optimization

	2.5 Purging and Checkpointing
	2.6 Recovery
	2.7 Transactions and Isolation
	2.8 Experimental Evidence
	2.8.1 Workload-aware SV Selection
	2.8.2 Outperforming Traditional Systems
	2.8.3 Automatic Adaptation

	2.9 Related Work
	2.10 Conclusion

	3 Indexing and Join Techniques for Large Scale Data Management
	3.1 Introduction
	3.1.1 Background
	3.1.2 Research Challenge
	3.1.3 Our Solution
	3.1.4 Contributions

	3.2 From Relational Algebra to MapReduce and Back
	3.2.1 Mapping Relational Operators to MapReduce
	3.2.2 Unary operators
	3.2.3 Binary Operators
	3.2.4 Extended Operators
	3.2.5 Relational DAGs
	3.2.6 Mapping MapReduce to Relational Algebra

	3.3 Hadoop as a Physical Query Execution Plan
	3.3.1 The Hadoop Plan
	3.3.2 Discussion

	3.4 Trojan Index
	3.4.1 Index Creation
	3.4.2 Query Processing

	3.5 Trojan Join
	3.5.1 Data Co-Partitioning
	3.5.2 Query Processing
	3.5.3 Trojan Index over Co-Partitioned Data

	3.6 Experiments
	3.6.1 System Setup
	3.6.2 Benchmark Setup
	3.6.3 Analytical Tasks
	3.6.3.1 Data Loading
	3.6.3.2 Selection Task
	3.6.3.3 Join Task

	3.6.4 Fault-Tolerance
	3.6.5 Additional Benchmark Results
	3.6.5.1 Large and Small Aggregation Task
	3.6.5.2 UDF Aggregation Task

	3.7 Discussion & Conclusion

	4 Data Layouts for Large Scale Data Management
	4.1 Introduction
	4.1.1 Background and Motivation
	4.1.2 Our Approach and Research Challenges
	4.1.3 Contributions

	4.2 Overview
	4.3 Interestingness-based Column Grouping Algorithm
	4.3.1 Column Group Interestingness
	4.3.2 Column Group Packing as 0-1 Knapsack Problem

	4.4 Per-Replica Trojan Layout
	4.4.1 Layout Aware Replication
	4.4.2 Layout Creation
	4.4.3 Query Processing
	4.4.4 Scheduling Policies

	4.5 Experimental Evaluation
	4.5.1 Testbed
	4.5.2 Datasets and Benchmarks
	4.5.3 Benchmarks Queries
	4.5.4 Layout Details
	4.5.5 Experiment Methodology
	4.5.6 Per-Replica Trojan Layout Performance
	4.5.7 Comparing Scheduling Policies
	4.5.8 Data Loading
	4.5.9 Comparison with HYRISE
	4.5.10 Grouping Algorithm Performance and Scalability

	4.6 Related Work
	4.7 Conclusion

	5 Column-oriented Storage for Relational Data Management
	5.1 Introduction
	5.1.1 Background
	5.1.2 Problem
	5.1.3 Research Challenges
	5.1.4 Our Idea
	5.1.5 Contributions

	5.2 The UDF Storage Layer
	5.2.1 Background
	5.2.2 Why UDFs as the Storage Layer?
	5.2.3 Mapping Relations to Tables

	5.3 Trojan Columns
	5.3.1 Data Storage
	5.3.2 Data Access
	5.3.3 Handling Inserts and Updates

	5.4 Query Processing
	5.4.1 Operator Pushdown
	5.4.1.1 Scan Pushdown
	5.4.1.2 Projection Pushdown
	5.4.1.3 Selection Pushdown
	5.4.1.4 Aggregation Pushdown
	5.4.1.5 Dealing with Join Queries
	5.4.1.6 Where does operator pushdown lead to?

	5.4.2 Query Rewriting

	5.5 Implementation Details
	5.5.1 DBMS X Table UDF Interface
	5.5.2 DBMS X Call Level Interface (CLI)

	5.6 Experiments
	5.6.1 Setup
	5.6.2 Baselines
	5.6.3 Methodology
	5.6.4 Trojan Columns on TPC-H queries
	5.6.4.1 Experiment 1: TPC-H dataset load times
	5.6.4.2 Experiment 2: TPC-H query times
	5.6.4.3 Experiment 3: read-UDF costs

	5.6.5 Trojan Columns on micro-benchmarks
	5.6.5.1 Experiment 4: Varying selections and projections over a single table.
	5.6.5.2 Experiment 5: Simplified TPC-H queries.

	5.6.6 Trojan Columns vs Column Stores
	5.6.6.1 Experiment 6: Trojan Columns vs PostgreSQL Column
	5.6.6.2 PostgreSQL Column Implementation Effort

	5.6.7 Additional Results
	5.6.7.1 Effect of Compression
	5.6.7.2 Query cost break-down
	5.6.7.3 Stored Procedures
	5.6.7.4 C-Table Evaluation

	5.7 Discussion
	5.8 Conclusion

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

