
Models and Methods for

Web Archive Crawling

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Dimitar Denev

Max-Planck-Institut für Informatik

Saarbrücken

2012

ii

Dekan der

Naturwissenschaftlich-Technischen

Fakultät I Univ.-Prof. Mark Groves

Vorsitzender der Prüfungskommission Prof. Dr. Manfred Pinkal

Berichterstatter Prof. Dr.-Ing. Gerhard Weikum

Berichterstatter Prof. Dr. Ralf Schenkel

Beisitzer Dr.-Ing. Fabian Suchanek

Tag des Promotionskollquiums 20.08.2012

iv

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter

Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form

in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

(Dimitar Denev)

vi

To my parents, Stanka and Velin Denevi

viii

Acknowledgment
I would like to express my sincere gratitude to my advisor, Prof. Dr.-Ing. Gerhard

Weikum. This work would not have been possible without his steadfast support. I would

like to thank him for his scientific guidance, insightful comments, exemplary leadership.

His optimistic attitude, unwavering encouragement, and good humour kept my spirits up

in every moment during the past four years. I would like to also thank Dr. Ralf Schenkel

for the kindness he always showed to me and for accepting my request to review the

thesis.

I am deeply indebted to my co-advisors Dr. Marc Spaniol and Dr. Arturas Mazeika.

Marc earned my high appreciation with his creative ideas and readiness always to lend

me a helping hand. Arturas was involved in most of the details of the work. His ambition

and determination were key factors for the successful publication of our joint research.

Finally, I thank all my friends in MPI and Saarbrücken (especially my officemates

Bilyana and Shady) for the stimulating discussions and the memorable moments we

enjoyed together.

x

Abstract

Web archives offer a rich and plentiful source of information to researchers, analysts,

and legal experts. For this purpose, they gather Web sites as the sites change over time.

In order to keep up to high standards of data quality, Web archives have to collect all

versions of the Web sites. Due to limited resuources and technical constraints this is not

possible. Therefore, Web archives consist of versions archived at various time points

without guarantee for mutual consistency.

This thesis presents a model for assessing the data quality in Web archives as well as

a family of crawling strategies yielding high-quality captures. We distinguish between

single-visit crawling strategies for exploratory and visit-revisit crawling strategies for

evidentiary purposes. Single-visit strategies download every page exactly once aiming

for an “undistorted” capture of the ever-changing Web. We express the quality of such

the resulting capture with the “blur” quality measure. In contrast, visit-revisit strategies

download every page twice. The initial downloads of all pages form the visit phase of

the crawling strategy. The second downloads are grouped together in the revisit phase.

These two phases enable us to check which pages changed during the crawling process.

Thus, we can identify the pages that are consistent with each other. The quality of the

visit-revisit captures is expressed by the “coherence” measure.

Quality-conscious strategies are based on predictions of the change behaviour of

individual pages. We model the Web site dynamics by Poisson processes with page-

specific change rates. Furthermore, we show that these rates can be statistically predicted.

Finally, we propose visualization techniques for exploring the quality of the resulting

Web archives.

A fully functional prototype demonstrates the practical viability of our approach.

xi

xii

Kurzfassung

Ein Webarchiv ist eine umfassende Informationsquelle für eine Vielzahl von Anwendern,

wie etwa Forscher, Analysten und Juristen. Zu diesem Zweck enthält es Repliken

von Webseiten, die sich typischerweise im Laufe der Zeit geändert haben. Um ein

möglichst umfassendes und qualitativ hochwertiges Archiv zu erhalten, sollten daher - im

Idealfall - alle Versionen der Webseiten archiviert worden sein. Dies ist allerdings sowohl

aufgrund mangelnder Ressourcen als auch technischer Rahmenbedingungen nicht einmal

annähernd möglich. Das Archiv besteht daher aus zahlreichen zu unterschiedlichen

Zeitpunkten erstellten “Mosaiksteinen”, die mehr oder minder gut zueinander passen.

Diese Dissertation führt ein Modell zur Beurteilung der Datenqualität eines We-

barchives ein und untersucht Archivierungsstrategien zur Optimierung der Datenqualität.

Zu diesem Zweck wurden im Rahmen der Arbeit “Einzel-” und “Doppelarchivierungsstrate-

gien” entwickelt. Bei der Einzelarchivierungsstrategie werden die Inhalte für jede zu

erstellende Replik genau einmal gespeichert, wobei versucht wird, das Abbild des sich

kontinuierlich verändernden Webs möglichst “unverzerrt” zu archivieren. Die Qualität

einer solchen Einzelarchivierungsstrategie kann dabei durch den Grad der “Verzerrung”

(engl. “blur”) gemessen werden. Bei einer Doppelarchivierungsstrategie hingegen werden

die Inhalte pro Replik genau zweimal besucht. Dazu teilt man den Archivierungsvor-

gang in eine “Besuchs-” und “Kontrollphase” ein. Durch die Aufteilung in die zuvor

genannten Phasen ist es dann möglich festzustellen, welche Inhalte sich im Laufe des

Archivierungsprozess geändert haben. Dies ermöglicht exakt festzustellen, ob und welche

Inhalte zueinander passen. Die Güte einer Doppelarchivierungsstrategie wird dazu mittels

der durch sie erzielten “Kohärenz” (engl. “coherence”) gemessen.

Die Archivierungsstrategien basieren auf Vorhersagen über das Änderungsverhal-

ten der zur archivierenden Inhalte, die als Poissonprozesse mit inhaltsspezifischen Än-

derungsraten modelliert wurden. Weiterhin wird gezeigt, dass diese Änderungsraten

statistisch bestimmt werden können. Abschließend werden Visualisierungstechniken für

die Qualitätsanalyse des resultierenden Webarchivs vorgestellt. Ein voll funktionsfähiger

Prototyp demonstriert die Praxistauglichkeit unseres Ansatzes.

xiii

xiv

Summary

Web archives undertake the impossible-on-first-glance task to prevent information on the

Web from disappearing. With the help of large-scale Web crawlers, they capture Web

sites and save the snapshots.

Exploring Web archives can help sociologists, politologists, and media analysts reflect

on the zeitgeist of the past decades. For example, a comprehensive Web archive of sites

following election campaigns reveals the issues and the problems that societies face. Also,

Web archives as evidence can be invaluable to experts on intellectual property (IP, e.g.,

at patent offices) and compliance with Internet legislation (e.g., for consumer services).

When a company is accused of violating IP rights (regarding inventions or trademarks),

it may want to prove the existence of certain phrases on its Web pages as of a certain

timepoint in the past. Conversely, an Internet-fraud investigation may aim at proving the

absence of certain phrases (e.g., proper pricing statements or rights of withdrawal) on

a Web site. Such scenarios entail that Web archives need to be maintained with a high

standard of data quality.

However, during a site crawl, pages may undergo changes which hinder both ex-

ploratory and evidentiary usages of Web archives. To understand fully this issue and

develop methods for quality-conscious Web archiving, several challenging research prob-

lems must be addressed first. In this thesis, we propose solutions dealing with each of the

problems as follows.

• Web archiving model. Currently, there are no Web archiving models which

cover the data quality of Web archives. While the existing approaches focus on

the organization of the physical storage and the exploration of the captured Web

content, no effort until now has been made in investigating the quality of Web

archives. In this thesis, we a propose a model with two quality measures — blur

and coherence — that express the credibility of Web archives for exploratory and

evidentiary purposes.

• Quality-conscious crawling strategies. The majority of Web archives employ

xv

breadth-first crawling strategy. The user can modify only the scope of the crawl

in terms of domain, topic, and depth. Strategies that optimize for freshness might

also be used. The freshness metric, however, is not a reliable attestation for the

exploratory or the evidentiary usage of the Web archive. We devise crawling

strategies that aim to optimize our archive quality measures. For exploratory usage

of the archive we suggest a family of single-visit strategies. For evidentiary usage

which require deterministic quality guarantees we introduce visit-revisit crawl

strategies that visit pages twice: a first visit to fetch the page and a later revisit to

validate that the page has not changed.

• Change prediction. Crawling strategies order page visits primarily based on

change prediction. The diversity of the change behaviour of Web pages hinders

the development of a change model which is both universal and precise. We need

to strike a balance between. To do this, we model Web site dynamics by Poisson

processes with page-specific change rates. Furthermore, we show that these rates

can be statistically predicted based on page types (e.g., MIME types), depths within

the site (e.g., distance to site index pages), and URLs (e.g., manually edited user

homepages vs. pages generated by content management systems). If we do not have

enough training data, we substitute it with the change rates given by the available

sitemaps.

• Data quality exploration. Exploring the data quality of the Web archive is es-

sential for the continuous improvement of the Web archive. Visualizations of the

changed pages help archivists modify the scope of future crawls in a way that

increases the quality of the capture. In spite the existence of many techniques

for graphical analytics and the development of user interfaces to Web archives,

nothing until now has been done to bring them together for the purpose of Web

archive quality. To address this, we present visualization techniques for exploring

the quality of the Web archives. With the help of area plots, scatter plots, and graph

visualizations, the user gains insights on the data quality of the archives and the

change behaviour of the Web pages. Then, she is able to fine-tune future crawls for

improved quality.

xvi

Zusammenfassung

Die Webarchivierung unternimmt den auf den ersten Blick unmöglichen Versuch Inhalte

des Web vor dem Verschwinden zu bewahren, indem sie periodisch Repliken von Webin-

halten erstellt. Ein umfassendes Webarchiv spiegelt somit den Zeitgeist einer gesamten

Epoche wider und ermöglicht etwa Soziologen, Politologen oder Medienanalysten um-

fassende Studien. So lassen sich etwa Aussagen politischer Parteien über die Zeit hinweg

untersuchen und kontrastieren. Ferner kann ein Webarchiv einen unschätzbaren Wert in

Patentfragen oder bei der Verletzung von geistigen Eigentumsrechten darstellen. Dazu ist

es bei einem Rechtsstreit zumeist erforderlich die Verletzung rechtlicher Vorgaben (z.B.

ungültige AGBs, Plagiarismusvorwürfe oder urheberrechtsverletztende Inhalte) durch

eine Replik einer bestimmten Webseite zu einem konkreten Zeitpunkt nachzuweisen.

Diese Anforderungen führen dazu, dass Webarchive mit hohen Qualitätsstandards er-

forderlich sind.

Besonders problematisch für die Qualität eines Archivs ist jedoch, dass sich Webinhalte

während des Archivierungsvorgangs verändern können. Aus diesem Grund leistet diese

Arbeit die folgenden Beiträge zur Steigerung der Datenqualität in Webarchiven:

• Webarchivierungsmodell. Derzeit gibt es kein Modell, das die Datenqualität

eines Webarchivs beschreibt. Während der Fokus bestehender Ansätze auf der

Organisation des physikalischen Speichers lag, wurden keine Anstrengungen unter-

nommen die eigentliche Qualität des Webarchivs zu untersuchen. In dieser Arbeit

wird daher ein Modell mit zwei Qualitätsmaßen, “Verzerrung” (engl. “blur”) und

“Kohärenz” (engl. “coherence”), eingeführt.

• Qualitätsorientierte Archivierungstrategien. Der Standardansatz zur Webarchivierung

beruht auf einer der Breitensuche verwandten Archivierungsstrategie. Dieser

Ansatz führt jedoch nicht dazu, ein möglichst “unverzerrtes” oder gar “kohärentes”

Webarchiv zu erhalten. Daher werden “Einzel-” und “Doppelarchivierungsstrate-

gien” zur Erstellung einzelner Repliken des Archivs eingeführt. Die Einzelarchivierungsstrate-

xvii

gie dient dazu die “Verzerrung” zu minimieren. Dahingegen wird die Doppelarchivierungsstrate-

gie dazu verwendet die “Kohärenz” zu maximieren.

• Änderungsvorhersage. Die zur Qualitätsoptimierung entwicklten Archivierungsstrate-

gien basieren auf Vorhersagen über das Änderungsverhalten der zur archivierenden

Inhalte. Die Vorhersage dieser Änderungen ist von vielen äußeren Faktoren beein-

flusst und nur schwer exakt zu bestimmen. Dennoch lassen sich gute Annäherungen

durch die Modellierung als Poissonprozess mit inhaltsspezifischen Änderungsraten

erzielen. Diese beruhen u.a. auf dem MIME-Typ, der Tiefe der Seite im Bezug auf

die Indexseite und Struktur der URLs (z.B. manuell oder automatisch erstellt).

• Visuelle Datenqualitätsuntersuchung. Die Bewertung der Datenqualität eines

Webarchives ist unabdingbar um eine kontinuierliche Verbesserung des Archives zu

erzielen. Die Visualisierung des Änderungsverhaltens von Webinhalten unterstützt

dabei den Archivar beim Planen zukünftiger Archivierungsprozesse. Zu diesem

Zweck werden Visualisierungstechniken in Form von Area-Plots, Scatter-Plots und

Graphvisualisierungen präsentiert.

xviii

Contents

1. Introduction 1
1.1. Archives and Web Archiving . 1

1.2. Quality of Web archives . 2

1.3. Research Challenges . 4

1.4. Contributions . 5

1.5. Thesis Outline . 8

2. Related Work 9
2.1. Web Archiving . 9

2.2. Web Dynamics . 16

2.3. Web Crawling . 22

2.4. Visualization of Changes in Web Archives 28

3. Web Archiving Model 29
3.1. Introduction . 29

3.2. Concepts . 30

3.3. Model of Changes . 33

3.4. Datasets . 34

3.5. Summary . 35

4. Single Visit Crawling Strategies 37
4.1. Introduction . 37

4.2. Blur . 38

4.3. SHARC-Offline Strategy . 40

4.3.1. Optimal Download Schedule 40

4.3.2. SHARC-Offline Algorithm . 43

4.3.3. General Observation Interval 43

4.4. SHARC-Online Strategy . 44

xix

Contents

4.4.1. Discovery of the Web Graph 44

4.4.2. SHARC-Online Strategy by Example 45

4.4.3. Formalization of SHARC-Online 46

4.4.4. SHARC-Online Algorithm . 48

4.4.5. Worst Case Analysis . 49

4.5. Experimental Evaluation . 51

4.5.1. Methods under Comparison 51

4.5.2. Quality Metrics . 52

4.5.3. Datasets . 53

4.5.4. Blur Experiments with Real-World Datasets 54

4.5.5. Sensitivity Studies . 55

4.6. Summary . 57

5. Visit Revisit Crawling Strategies 59
5.1. Introduction . 59

5.2. SHARC-Revisits . 60

5.3. SHARC-Threshold . 62

5.4. SHARC-Intervals . 65

5.4.1. SHARC-Intervals Offline Algorithm 66

5.4.2. Shrinking a Schedule . 67

5.4.3. SHARC-Intervals Online Algorithm 69

5.4.4. Estimation of the Threshold Parameter 72

5.5. SHARC-Selective . 72

5.6. Experimental Evaluation . 77

5.6.1. Methods under Comparison 78

5.6.2. Datasets . 79

5.6.3. Coherence Experiments with with Real-World Datasets 80

5.6.4. Live Experiments with Sitemaps 82

5.6.5. Sensitivity Studies . 82

5.7. Summary . 85

6. Prediction of Changes 87
6.1. Sitemaps . 87

6.2. Estimation of Change Rates from Previous Crawls 89

6.3. Prediction of Change Rates with Classifiers 89

xx

Contents

6.4. Evaluation . 90

7. Prototype Implementation 93
7.1. Prototype Architecture . 93

7.2. Data Extraction and Preparation . 96

7.3. Conclusions . 100

8. Visual Analysis 101
8.1. Introduction . 101

8.2. Datasets and Change Detection . 102

8.3. Time Series Analysis with Area Plots 103

8.4. Change Analysis with Scatterplots . 104

8.5. Change Analysis with Graph Visualization 105

8.6. Conclusions . 111

9. Conclusions 113

Bibliography 115

A. Prototype Implementation 127

B. Visual Analysis 129

List of Figures 131

List of Tables 133

List of Algorithms 135

List of Algorithms 135

xxi

Contents

xxii

Chapter 1.

Introduction

1.1. Archives and Web Archiving

Throughout history, collective memory has been the backbone of cultural and societal de-

velopment. With the advance of technology, it has taken various forms: from inscriptions

and papyrus to printed books and video records. These media preserved the accumulated

knowledge and transmitted it to the next generations. Archives and libraries ensured that

artefacts with high cultural and evidentiary value are safeguarded against the will of time.

Nowadays, archives and libraries face new challenges in their endeavour to preserve

knowledge in the long term. They undertake the impossible-on-first-glance task to

prevent information on the Web from disappearing. With the help of large-scale Web

crawlers, they capture Web sites and save the snapshots in Web archives. National

libraries (e.g., www.loc.gov, www.webarchive.org.uk, netarkivet.dk, www.bnf.
fr, www.webarchiv.cz, etc) and organizations like the Internet Archive (archive.org)

and the European Archive (europarchive.org) take decisive steps in this direction. At

the same time they must guarantee that Web archives can serve the same purposes as

traditional archives do, namely exploratory and evidentiary purposes.

Exploring Web archives can help sociologists, politologists, and media analysts reflect

on the zeitgeist of the past decades. For example, a comprehensive Web archive of sites

following election campaigns reveals the issues and the problems that societies face. One

can draw conclusions about the existing attitudes and the proposed solutions. By looking

back at the choices taken in the past, one sees their positive and negative effects in the

present. Thus, people can make informed decisions what policy and which politicians to

support.

Also, Web archives as evidence can be invaluable to experts on intellectual property

1

www.loc.gov
www.webarchive.org.uk
netarkivet.dk
www.bnf.fr
www.bnf.fr
www.webarchiv.cz
archive.org
europarchive.org

Chapter 1. Introduction

(IP, e.g., at patent offices) and compliance with Internet legislation (e.g., for consumer

services). For example, when a company is accused of violating IP rights (regarding

inventions or trademarks), it may want to prove the existence of certain phrases on its Web

pages as of a certain timepoint in the past. Conversely, an Internet-fraud investigation

may aim at proving the absence of certain phrases (e.g., proper pricing statements or

rights of withdrawal) on a Web site. Clearly, these scenarios entail that Web archives

need to be maintained with a high standard of data quality.

1.2. Quality of Web archives

One can argue that the quality of the Web archive depends on the selected Web sites or

the frequency of Web site revisits. Clearly, high-quality Web sites and frequent crawls

improve the overall archive quality. These decisions, however, are up to the archive

curators and no matter what they decide, insufficient quality inherent from the existing

Web crawling approaches will have negative impact.

Web crawling practice. Research in Web crawling received a boost from the rapid

development of search engines. Web crawling is essential for search engines to build an

index of the Web. However, crawling for archiving substantially differs from crawling

performed by major search providers. Search engines aim at broad coverage of the

Web, target the most important pages, and schedule revisits of the pages based on their

individual freshness and importance. It may even be sufficient to see the href anchor in

order to index a page without ever visiting the page itself. In contrast, archive curators

are interested in a complete capture of a site either at reasonably regular time points

(weekly, monthly, quarterly) or in aftermaths (natural disasters, political scandals, research

projects).

Data quality issues. During a site crawl, pages may undergo changes which hinder

both the exploratory and evidentiary usage of Web archives. Changes during crawling

result in a blurred snapshot of the site. We borrow the terms blur from photography to

denote the quality of the snapshot. Similarly to photography, the longer the exposure time

(timespan of the entire site crawl), the higher the risk of blurring the capture (archiving

pages in different states of the site). In contrast, if the site’s pages did not change at all

(or changed insignificantly) during the crawl, we say that the pages are sharp and the

2

1.2. Quality of Web archives

snapshot is coherent (or almost coherent). Avoiding blurred captures is important for the

quality assurance of the Web archive and its professional usage. Ideally, a user should get

mutually consistent pages. In case mutual consistency of pages cannot be fully assured,

there should at least be guarantees about data quality.

Data quality for exploratory usage. Consider an analyst who studies a politician’s

behavior and success during an election campaign, based on weekly or daily crawls

of the corresponding party’s Web site (which may include user-provided contents in

associated wikis or blogs). Suppose one page of the site covers a television debate with

the politician, pointing to other pages with “opinion barometers” for the politician and her

opponents in the debate. Each of these “barometer pages” in turn points to recent public

appearances of the featured politician. As these pages frequently change, the archived

snapshot contains page versions as of different timepoints. Now, already an incoherence

by a few hours difference between the captures of these interrelated pages can lead to

misinterpretations and wrong conclusions by the analyst. For example, the analyst may

see a brilliant performance of the politician on the debate page, then follow the pointer to

a barometer page with unfavorable public opinions, simply because the barometer was

captured earlier.

Data quality for evidentiary usage. As a real-life case in point, an archive of a

Web site was disapproved as evidence in a lawsuit about intellectual property rights [80]

because the judge considered the archive as having insufficient quality and no guarantees

about the consistency of its content. In such cases, a strategy for getting coherent site

captures or precisely stating the level of consistency would make a big difference.

Naïve crawling strategy. The simplest strategy to obtain a coherent capture of a

Web site and avoid anomalies would be to freeze the entire site during the crawl period.

This naïve approach is impractical as an external crawler cannot prevent the site from

posting new information on its pages or changing its link structure. On the contrary, the

politeness etiquette for Internet robots forces the crawler to pause between subsequent

HTTP requests, so that the entire capturing of a medium-sized site (e.g., a university)

may take many hours or several days. Long crawl duration is an issue for search-engine

crawlers, too, but it is more severe for archive crawlers as they cannot stop a breadth-first

site exploration once they have seen enough href anchors. So, slow but complete site

crawls drastically increase the risk of blurred captures.

3

Chapter 1. Introduction

Alternative naïve crawling strategy. An alternative strategy that may come to mind

would be to repeat a crawl that fails to yield a coherent capture and keep repeating it until

eventually a blur-free snapshot can be obtained. But these repetitions are an unacceptably

high price for data quality as the crawler operates with limited resources (servers and

network bandwidth) and needs to carefully assign these to as many different Web sites as

possible.

Sitemaps. Website masters can help to make archiving easier by providing additional

information about the site: its structure, its typical change patterns, hints about where

and when changes occur, and so on. The recently introduced sitemaps protocol [85] can

provide a list of URLs and metadata about page (or sub-directory-level) modifications

so that crawlers can more intelligently process the site. However, sitemaps alone are

merely hints that can guide a crawl strategy (e.g., towards pages with high likelihood of

having changed so that, for example, a search-engine robot should obtain a fresh version).

Sitemaps are not a solution for ensuring data quality.

1.3. Research Challenges

While the issue of Web-archive quality is obvious, it is unclear how to formalize the

problem and address it technically. In order to understand completely this issue, we must

address the challenges we list next.

Web archiving model. Currently, there are no Web archiving models which cover the

data quality of the Web archives. While the existing approaches focus on the organization

of the physical storage and the exploration of the captured Web content, no effort has

been made in defining quality measures. The relation between the structure of the Web

archive and its credibilty as a source of information is not yet explored.

Quality-conscious crawling strategies. The lack of quality metrics results in lack

of quality-conscious crawling strategies. Instead, the Web archives employ breadth-first

crawling strategy. The user can modify only the scope of the crawl in terms of domain,

topic, and depth. Strategies that optimze for freshness might also be used. The freshness

metric, however, is not a reliable attestation for the exploratory or the evidentiary usage

of the Web archive. Novel strategies optimizing for archive quality are necessary.

4

1.4. Contributions

Change prediction. Crawling strategies order page visits primarily based on change

prediction. The diversity of the change behaviour of Web pages hinders the development

of a change model which is both universal and precise. We need to strike a balance. On one

hand, any quality metric, which depends on page changes, is expressed mathematically

using a universal change model with few parameters. On the other hand, any crawling

strategy must take into account specific change behaviours like periodicities or nearly

continuous changes in a Web site, so that the resulting capture is of high quality.

Data quality exploration. Exploring the data quality of the Web archive is essential

for the continuous improvement of the Web archive. Visualizations of the changed pages

help the archivists to modify the scope of the future crawls in a way which increases the

quality of the capture. In spite the existence of many techniques for graphical analytics

and the development of user interfaces to Web archives, nothing until now has been done

to bring them together for the purpose of Web archive quality.

1.4. Contributions

In this thesis, we address the points highlighted in the previous section and present a

framework for quality assurance of Web archives, coined SHARC for Sharp Archiving

of Web-Site Captures. It consists of a model of quality properties as well as a suite of

algorithms for crawling that allow us to assess and optimize site-capturing strategies. We

summarize the contributions as follows:

1. Quality Metrics: Our SHARC framework introduces two measures of data quality

for site captures:

• Blur is a stochastic notion that reflects the expected number of page changes

that a time-travel access to a site capture would accidentally see, instead of

the ideal view of a instantaneously captured, “sharp” site. We assume that

the timepoints to which analysts will later refer for snapshot analysis are

uniformly distributed over time, hence the stochastic approach. The blur

quality measure was published in the proceedings of the 35th International

Conference on Very Large Data Bases (VLDB ’10) [33].

• Coherence is a deterministic quality measure that counts the number of un-

changed and thus coherently captured pages in a site snapshot. Here “un-

changed” denotes pages that are definitely known to be invariant throughout

5

Chapter 1. Introduction

some time window, ideally the entire crawl. The setting allows us to guaran-

tee mutual consistency across several pages in a snapshot that are logically

interrelated (e.g., a television debate and the “barometer” pages about the

participating politicians). The coherence quality measure was published first

in the proceedings of the 3rd Workshop on Information Credibility on the

Web (WICOW ’09) [92] and further developed in [33, 34].

2. Crawling Strategies: We devise crawl strategies that aim to optimize our archive

quality measures. While stochastic guarantees like blur are good enough for

explorative use of the archive (while keeping crawl costs low), access that aims

to prove or disprove claims about interrelated contents in site snapshots needs

deterministic guarantees like coherence and would accept higher crawl costs. For

explorative use of the archive it is sufficient to visit each page once. The order of

the downloads is a degree of freedom for the crawl scheduler. For deterministic

guarantees we introduce crawl strategies that visit pages twice: a first visit to fetch

the page and a later revisit to validate that the page has not changed. The order of

visiting and revisiting pages is a degree of freedom for the crawl scheduler. For

very large Web sites, it is unrealistic to obtain a coherent capture for the entire site.

In this case, we opt for smaller subsites of interrelated pages and derive these via

the sitemaps protocol. SHARC provides a suite of novel algorithms for archive

crawling:

• SHARC-Offline assumes a-priori knowledge of all URLs and their specific

change rates, and arranges downloads in an organ-pipe manner with the hottest

pages in the middle. It minimizes blur and provides stochastic guarantees

about data quality.

• SHARC-Online drops these assumptions and operates with an estimate of

the number of pages on the site but without prior knowledge of any URLs

other than the crawl’s entry point. The algorithm aims to approximate the

organ-pipe shape, but can lead to suboptimal schedules.

• SHARC-Revisits visits pages twice aiming to minimize the stochastic blur and

allowing change detection during the crawl.

• SHARC-Intervals, similarly to SHARC-Revisits, visits pages twice aiming to

minimize the coherence. The algorithm computes a confidence interval for

each page and schedules the visits and the revisits in way that the visit-revisit

6

1.4. Contributions

interval of a page does not exceed the corresponding confidence interval.

• SHARC-Threshold is visit-revisit strategy alternative to SHARC-Intervals.

The algorithm uses change rates of Web pages to arranges the visits and revis-

its. A user-specified parameter helps the algorithm determine continuously

changing pages (very hot pages) and adjusts the scheduling of visits and

revisits so that the other, not so hot, pages have a higher chance of getting

coherently captured.

• SHARC-Selective is an improvement over SHARC-Threshold. It automatically

detects very hot pages and updates the download schedule.

The strategies that minimize the blur (SHARC-Offline, SHARC-Online, SHARC-

Revisits) were introduced in the already mentioned publication [33]. The SHARC-

Intervals strategy was published in the proceedings of the 10th International Web

Archiving Workshop (IWAW ’10) [61] under the name SOLAR. The SHARC-

Selective was described in the special issue of VLDB Journal “Best papers of

VLDB 2009” in April 2011 [34]. This strategy is an improved version of SHARC-

Threshold described in [92].

3. Change Predictions: The SHARC framework needs estimates for the frequencies

at which changes occur in a Web site. In line with the prior literature [3, 26, 75],

we model site changes by Poisson processes with page-specific change rates. We

show that these rates can be statistically predicted based on page types (e.g., MIME

types), depths within the site (e.g., distance to site index pages), and URLs (e.g.,

manually edited user homepages vs. pages generated by content management

systems). If we do not have enough training data, we substitute it with the change

rates given by the available sitemaps. We presented evaluation of our predictors in

[34].

4. Integrated Prototype: We designed and implemented a prototype of the SHARC

framework based on the Heritrix Web crawler [65]. The source code of the prototype

is available online in the source repository of the Living Web Archives project 1.

The prototype has been used in practice for Web archiving by the partners in the

project.

1http://code.google.com/p/liwa-technologies/

7

Chapter 1. Introduction

5. Visual Analysis of Data Quality: We present visualization techniques for explor-

ing the quality of the Web archives. With the help of area plots, scatter plots graph

visualization, the user gains insights on the data quality of the archives and the

change behaviour of the Web pages. This helps for fine-tuning future crawls for

improved quality. We published our initial findings in the proceedings of the 9th

International Web Archiving Workshop (IWAW ’09) [93].

Our experimental studies are carried out with both synthetically generated Web sites

and repeated crawls of different-sized domains including mpi-inf.mpg.de (MPII),

dmoz.org (DMOZ), and sites from the .uk.gov collection (UKGOV). For change pre-

diction we use standard machine learning algorithms such as Naive-Bayes and C4.5

classifiers. The experiments demonstrate the practical viability of our approach and the

advantages of our algorithms compared to more traditional crawl strategies.

1.5. Thesis Outline

The thesis is organized as follows. Chapter 2 reviews related work and the state of the

art in Web archiving. Chapter 3 introduces our computational model for Web archiving

and site capturing. Chapters 4 and 5 present our single-visit and visit-revisit strategies.

Chapter 6 describes our approach for change prediction. Chapter 7 presents our system

architecture and a prototype implementation based on the open-source archive crawler

Heritrix. Chapter 8 discusses visualization techniques for exploring and analyzing data

quality of Web archives. We conclude the thesis with a summary and highlights of future

research directions in Chapter 9.

8

mpi-inf.mpg.de
dmoz.org

Chapter 2.

Related Work

In this chapter we present existing models in topics related to the thesis. We start with

Web archiving, then focus on the dynamics of the Web, proceed with Web crawling and

finish with the visualization of changes in Web archives.

2.1. Web Archiving

Masanès [59] presents a systematic view on the current issues in Web archiving. Three of

them are closely related to our work: ranking mechanisms for Web pages, the scale of the

Web, and guidelines for crawling that prevent possible conflict between Web site owners

and Web archives.

Ranking Mechanisms

A ranking mechanism is essential for setting priorities to Web pages during archiving,

especially, when the archiving institution has limitations on its resources (bandwidth,

physical storage, or time). Some solutions come from the Web Search field where

estimating page importance is crucial. The estimations may be based on the Webgraph,

the page content, the user behaviour or any combination of the above.

The Webgraph is a directed graph representing the World Wide Web. The nodes of the

graph correspond to all the pages in the Web. Pages p and p are connected by a directed

edge if there is a hyperlink from p to p. PageRank [15] and HITS [52] algorithms are

the first algorithms to analyze the Webgraph structure for page importance.

PageRank is a recursive algorithm that assigns a weight to a page p based on the number

and the weights of the pages pointing to p. The weight corresponds to the probability

that a “random surfer” reaches p. A random surfer is a person who follows at random an

9

Chapter 2. Related Work

outgoing link every time she visits a page. Mathematically, this can be expressed by the

following formula:

PageRank(p) =
∑

p ′∈In(p)

PageRank(p ′)
|Out(p ′)|

,

where p and p ′ are pages, PageRank(p) is the PageRank value of p, In(p) is the set of

incoming links to p, and Out(p) is the set of outgoing links from p. The formula does

not take into account that at each step the person may follow an outgoing link or jump at

a random page by typing the URL or using her bookmarks. To accommodate for that, the

formula is modified by introducing a damping factor d which is the probability that the

person follows an outgoing link. The modified formula is below:

PageRank(p) =
−d

N
+d

∑
p ′∈In(p)

PageRank(p ′)
|Out(p ′)|

,

where N is the total number of Web pages and d is the damping factor. It is typically

assumed that d = . [15].

When used in practice, PageRank often results in a “rich-get-richer” phenomenon:

popular pages become even more popular at expense of the less popular pages. This is a

problem for new pages which do not get enough visibility. Cho et al. [28] address the

problem by introducing the measure page quality Q. They express the page quality of a

page p as a function of the PageRank and its increase in time:

Q(p, t) =C
PageRank(p, t)−PageRank(p, t)

(t− t)PageRank(p, t)
+PageRank(p, t),

where t and t are sequential time points, C is a constant reflecting the popularity of the

page among the Web users.

An alternative to PageRank is the Hyperlink-Induced Topic Search (HITS) algorithm

[52], commonly known as Hubs and Authorities algorithm. The algorithm is based on

the observation during the early years of Internet that some Web pages (hubs) served as

directories for pages with authoritative information (authorities). A good hub is a page

pointing to many authoritative pages and conversely, a good authority is a page pointed

by many hubs.

The algorithm assigns two values to a page p: a hub score Hub(p) and an authority

score Auth(p). The initial values are Hub(p) =  and Auth(p) = ,∀p. The algorithm

10

2.1. Web Archiving

iteratively updates the scores until convergence:

Hub(p) =
∑

p ′∈Out(p)

Auth(p ′)

Auth(p) =
∑

p ′∈In(p)

Hub(p ′).

The scores are then normalized to ensure convergence.

The aforementioned approaches use the Webgraph to estimate page importance. Al-

though important, the Webgraph is not the only source for that. User behaviour also gives

insights which pages are important and which pages are not.

Liu et al. [58] estimate page importance from users’ browsing history and the time

spent on individual pages. The authors build a directed graph whose edges are the

transitions that took place. Then, they use the graph for a basis of a continuous-time

Markov process. Finally, they compute the importance of the pages as the stationary

probability distribution of the Markov process.

Similarly to [28], Dong et al. [36] aim at ranking the most recent pages on top. They

use a learning-to-rank algorithm (GBrank [101]) in combination with regular ranking

models. Features divided in four classes capture the recency of Web pages:

• timestamp features: count of timestamps, first timestamp, minimal timestamp,

maximal timestamp, mean timestamp, standard deviation;

• linktime features: count of links, earliest link, latest link, mean linktime, standard

deviation of the link times;

• WebBuzz features: web buzz intensity and time of the buzz;

• page classification features: news page confidence, blog page confidence, page

quality confidence.

The combination between the recency ranking and the regular ranking may be done in

two ways: either use the output score of the regular ranking as an additional feature, or

learn over the complete training data of the regular ranking.

In another study, Bendersky et al. [13] rank the Web pages according to their readability.

They express the readability of the page with a list of features grouped according to three

factors:

• content clarity and presentation: number of terms on the page, average length

of the terms, fraction of anchor text, entropy, ratio between stopwords and non-

stopwords;

11

Chapter 2. Related Work

• provision of useful links: fraction of anchor text;

• ease of navigation: number of terms in the title of the page, depth of the URL,

fraction of the text in the tables..

The features bring about a shift towards page quality in any ranking mechanism.

The previous study reflects to a large extent the textual quality of the Web page, the

visual appeal of the pages is not considered. Wu et al.[98] suggest an approach which

focuses on the page aesthetics. For that purpose, they break up the page into a tree of

visual blocks and text nodes. Then, they model the artistic value of the Web page based

on four factors, each with a corresponding list of features:

• layout of the page: number of layout blocks, aspect ratio, number of leaf nodes;

• layout of the textual blocks: number of text leaf nodes, fraction of the text nodes,

character density;

• classical visual properties: hue, brightness, saturation, colourfulness;

• image complexity: ratio of the image size to the size of the whole page.

The visual properties of Web pages can also influence the Web archiving process as Ben

Saad and Gançarski [81] demonstrate. They too break up the Web pages in visual blocks

and schedule page downloads based on the change patterns of each visual block.

Quite often, though, due to requirements of the archiving institution, human input is

necessary. This ensures the quality of an Web archive. The Archive-It service 1 from of

Internet Archive is one of the most popular services of this kind. The service enables

curators to select pages for archival. The curators enter domain, capture frequency and

scope through a Web interface. The Archive-It service archives the designated Web sites,

stores the archive collections, and provides Web interface for searching and browsing.

There are as well similar commercial archive services 2,3,4,5,6.

Anand et al. [5] suggest a distributed platform for human-assisted Web archiving. They

exploit the “wisdom of the crowd“ phenomenon. Assuming that Web users visit mostly

1http://www.archive-it.org
2http://aleph-archives.com/
3http://archivethe.net/
4http://www.hanzoarchives.com/
5http://www.iterasi.com/
6http://www.website-archive.com/

12

2.1. Web Archiving

important pages, their goal is to archive users’ browsing history. The proposed prototype

includes a Web browser plugin that stores Web pages at every visit.

Web site owners may also specify the importance of their pages. The Sitemap protocol

[85] gives them that possibility. Sitemaps are XML files that contain URLs pointing to

other sitemaps (see Figure 2.1) or a list of URLs available at the site (see Figure 2.2).

A sitemap file consists of a list of URLs with the following metadata (cf. Figure 2.2):

• loc is a mandatory field indicating the URL of a Web page.

• lastmod is an optional field indicating the last modified date and time of the page.

• changefreq is an optional field indicating the typical frequency of change. Valid

values include: always, hourly, daily, weekly, monthly, yearly, never. This informa-

tion can be mapped onto (ranges of) change rates for the page-specific parameter

of the Poisson-process model.

• priority is an optional field indicating the relative importance or weight of the page

on the Web site.

Currently, approximately 35 million Web sites publish sitemaps, providing metadata

for several billion URLs. Top domains using sitemaps are in .com, .net, .cn, .org, .jp, .de,

.cz, .ru, .uk, .nl domains including www.cnn.com, www.nytimes.com, www.bbc.co.uk,

www.dw-world.de [85].
< s i t e m a p i n d e x xmlns= " h t t p : / /www. s i t e m a p s . o rg / schemas / s i t e m a p / 0 . 9 ">
< s i t e m a p >

< l o c > h t t p : / /www. cnn . com / s i t e m a p _ s p e c i a l s . xml< / l o c >
< l a s t m o d >2007−04−18 T12:05:20 −04 : 0 0 < / l a s t m o d >

< / s i t e m a p >
< s i t e m a p >

< l o c > h t t p : / /www. cnn . com / s i t e m a p _ e l e c t i o n s . xml< / l o c >
< l a s t m o d >2008−01−08 T20:17:50 −05 : 0 0 < / l a s t m o d >

< / s i t e m a p >

Listing 2.1: Example of Sitemap with Sitemap Indexes

13

www.cnn.com
www.nytimes.com
www.bbc.co.uk
www.dw-world.de

Chapter 2. Related Work

< u r l s e t xmlns= " h t t p : / /www. s i t e m a p s . o rg / schemas / s i t e m a p / 0 . 9 ">
< u r l >

< l o c > h t t p : / /www. dw−world . de< / l o c >
< l a s t m o d >2009−02−11< / l a s t m o d >
< c h a n g e f r e q > h o u r l y < / c h a n g e f r e q >
< p r i o r i t y > 1 . 0 < / p r i o r i t y >

< / u r l >
< u r l >

< l o c > h t t p : / /www. dw−world . de / dw / 0 , , 2 6 5 , 0 0 . h tml < / l o c >
< l a s t m o d >2008−11−11< / l a s t m o d >
< c h a n g e f r e q > h o u r l y < / c h a n g e f r e q >
< p r i o r i t y > 1 . 0 < / p r i o r i t y >

< / u r l >
< / u r l s e t >

Listing 2.2: Example of Sitemap with URLs

Sitemaps as well as rest of the methods assume that an individual page with high

importance increases the quality of the collection (Web archive or Web index).

In this thesis, the focus is not on the individual Web pages but on the Web archive

as a whole. The goal is achieve mutual consistency of all pages. If this is not possible

we aim at minimizing the incoherence. In this case, the most important pages are those

which change most frequently. Notable exception are extremely hot pages that are almost

continuously changing. If necessary, we can plug in any of the existing importance

measures as a weighting factor in our quality metrics.

Scale of the Web

The size of the Web is the next important issue for Web archives. Here, we present the

extent to which Web archives scale up.

Currently, the biggest archive of the Web is the WayBack Machine 7. As of 2009,

the WayBack Machine contained 30 billion pages amounting to 2PB with growth rate

100TB/month. 8 A quick calculation shows that its current size is at least 5.5PB with more

than 70 billion pages. The crawls are supplied by Alexa Internet. Alexa crawls 1.6 GB

per day, each snapshot takes approximately two months to complete, currently containing

4.5 billion pages from over 16 million sites 9. Although these are big numbers, they are

7http://archive.org/web/web.php
8http://www.computerworld.com/s/article/9130081/

Internet_Archive_to_unveil_massive_Wayback_Machine_data_center?
taxonomyId=12&intsrc=kc_top&taxonomyName=hardware

9http://www.alexa.com/company/technology

14

2.1. Web Archiving

by far surpassed by the  unique URLs Google reported in 2008 10. Additionally, if

we take into account the numerous popular platforms for user generated content (social

networks for example), it is clear that a snapshot of the whole Web is impossible.

However, it is attainable to define a scope of the Web archive and then aim for a

complete snapshot. Gomes et al. [42] report 42 Web archiving initiatives. 80% of them

focus exclusively on content related to a country (Australia [68], Republic of Korea [71],

Portugal [41] and many others), national region (North Carolina [6], Catalonia [69],

Tasmania [72]) or an institution (UK Government [7], German parliament [19], Harvard

University [55]). The remaining archives focus either on a group of countries (Latin

America [73], Pacific Islands [70]) or on specific topics (human rights [54]).

All of these archives have a predefined scope and are interested in all Web page in that

scope. Therefore, in the thesis, we assume that the completeness of a snapshot is required

given a predefined scope.

Guidelines for Crawling

Finally, we discuss the potential conflicts between Web sites and Web archives. We

identify two possible problems: first, the owner of the Web site may forbid certain Web

pages from being archived and second a Web crawler may cause server overload with too

frequent HTTP requests.

The first problem is addressed by the Standard for Robots Exclusion [53]. It has two

standard directives:

• User-agent refers to the Web crawler(s) which must adhere to the provided crawling

instructions, wildcard symbol (*) includes all Web crawlers.

• Disallow restricts the access to certain pages in the Web site.

The standard allows the Web site owners to specify in a robots.txt file which Web pages

are allowed for crawling and which are not. Example 2.3 shows a simple robots.txt file

which disallows crawling private Web pages.
User−a g e n t : *
D i s a l l o w : / p r i v a t e /

Listing 2.3: Example of robots.txt

10http://googleblog.blogspot.de/2008/07/we-knew-web-was-big.html

15

Chapter 2. Related Work

An extension of the standard with an additional directive Crawl-delay makes it possible

for Web site oweners to require a politeness delay between two successive HTTP requests.

Example 2.4 shows a robots.txt file that requires delay of 10 seconds between two HTTP

requests.
User−a g e n t : *
Crawl−d e l a y : 10

Listing 2.4: Example of robots.txt with Crawl Delay

If no delay is specified, the Web crawler based on its politeness policy decides how

long the delay should be. Web crawlers differ in their politeness policy: some use 15

seconds [8], other 10 [25], or even 1 second [35]. The Mercator Web crawler [47] adapts

its politeness delay based on the number of previous requests to a Web server. Similarly,

The Heritrix Web crawler [65] has a self-adapting politeness policy with a default value

for the delay. The default value is specified by the user (Web archive engineer) and is

generally observed.

In our prototype implementation we adapt the politeness policy of Heritrix, since this

crawler is the de facto standard for Web archiving. We set 0.5 seconds politeness delay

for the Web site of our institute11 and 3 seconds for other Web sites.

In this section we discussed importance metrics as a ranking mechanism, Web archiving

initiatives as examples for dealing with the growing size of the Web, and politness

guidelines as means for avoiding potential problems between Web site owners and

Web archivists. Now we continue with an overview of the dynamics of the Web, more

specifically the models of Web page changes.

2.2. Web Dynamics

Changes of the Web pages pose a severe problem for Web archivists. If pages change

during the crawl, the Web archive degrades in quality. The problem has been identified

more than a decade ago. The earliest example is from Brügger [17] from the year 2000:

During the Olympics in Sydney in 2000, I wanted to save the website of

the Danish newspaper Jyllands Posten. I began at the first level, the front

page, on which I could read that the Danish badminton player Camilla Martin

would play in the finals a half hour later. My computer took about an hour to

11http://www.mpi-inf.mpg.de

16

2.2. Web Dynamics

save this first level, after which time I wanted to download the second level,

“Olympics 2000“. But on the front page of this section, I could already read

the result of the badminton finals (she lost).

The same author elaborates further on the problem in his later work [18]. He correctly

identifies two problems. The first problem is the assignment of all archived Web pages (a

capture) to the same timepoint. The second problem is the need for comparison of two

archived versions of the same Web page in order to assess the quality of the Web archive.

To our knowledge, we are the first to address these issues [92, 33, 34]. Chapter 3 puts

forward a Web archiving model which takes into account the two problems. The model

distinguishes two cases. In the first case, the model maps a capture with all Web pages to

an interval assuming that the users of the archive are interested with the same probability

in every time point in the interval. Based on this assumption, the model suggests the

blur metric as a stochastic estimate of the quality of the capture. In the second case, the

model maps all invariant pages from the capture to the same timepoint. This is possible

by introducing a second download for every page to check if the page changed or not.

The quality in this case is measured by the coherence metrics. Saad et al.[82, 83, 11]

propose an alternative model which strives for coherence with a single download per page.

However, the authors assume the availability of the complete history of changes which is

not realistic.

Given the importance of the changes for Web archives, we must know or at least predict

when changes happen.

The easiest way would be to let Web site owners inform about changes. HTTP [40]

and Sitemap [85] protocols provide mechanisms for that.

HTTP-based Web servers deliver Web pages as responses to GET or POST method

requests. Web crawlers usually use the GET method requests to download pages (the

POST method requests are common only for Deep Web crawlers). As a response, the

Web server can either deliver the Web page or infrom the crawler that the page has not

changed, i.e. send a HTTP 304 Not Modified status. This is conditional GET mechanism

that arises in two cases:

• ETag/If-None-Match transaction. At the first visit of a Web page, the Web server

sends a ETag value, placed in the ETag header of the HTTP response. From then on,

the Web crawler may send back the same ETag value in the If-None-Match header

of the HTTP request. Listing 2.5 and Listing 2.6 are examples for the useage of the

two header fields.

17

Chapter 2. Related Work

• If-Modified-Since header. The Web crawler sends a timestamp in the If-Modified-

Since header of the HTTP request. The Web server delivers the Web page only the

page has changed since the specified date. Listing 2.7 shows a an example value

for the If-Modified-Since header.

ETag : "874897 f4ca7c876b7e "

Listing 2.5: ETag Header of an HTTP Response

I f −None−Match : "874897 f4ca7c876b7e "

Listing 2.6: If-None-Match Header of an HTTP Request

I f −Modifed−S i n c e : Thu , 26 Apr 2012 2 1 : 0 3 : 2 9 CET

Listing 2.7: If-Modified-Since Header of an HTTP Request

The conditional GET mechanism is very useful for decreasing network traffic and

reducing the load on the Web servers. We implement the conditional GET in our prototype.

However, HTTP protocol does not help predicting changes. The protocol requires HTTP

requests from Web crawlers in order to inform for changes.

In contrast to the HTTP protocol, sitemaps can improve change prediction. As men-

tioned before, the changefreq field contains the change frequencies of Web pages. The

changefreq field can have one of the following values always, hourly, daily, weekly,

monthly, never. However, not all Web sites have adopted the protocol. Even the existing

sitemaps may not provide exact information. Still, sitemaps with correct change frequen-

cies are very useful. They help improve the quality of Web archives. Therefore, our

prototype supports the Sitemap protocol.

In any case, we need more reliable mechanisms for predicting changes. The only

way how we can do that is to build a prediction model based on history of changes. We

distinguish two directions: prediction of changes with a stochastic process and prediction

of changes with change patterns. The choice depends on the time granularity of the

history.

Change patterns are appropriate if it is possible to build a histogram of changes on an

hourly basis [87, 11].

Sia et al. [87] show that patterns repeat daily due to the daily periodicity of human

activity. They gather the posting history of 5166 blogs and group the posts of each

blog in a histogram with 24 bins, each bin corresponding to an hour between  and .

After applying K-means clustering algorithm, the authors identify 12 clusters of similar

18

2.2. Web Dynamics

histograms. The peaks of posting acitvity differ among clusters. Some clusters exhibit

peak of activity during the morning, others during the afternoon.

In a similar fashion, Ben Saad and Grančarski collect change patters of Web pages.

They too create aggregate the changes of each Web page in a histogram with 24 bins.

Interestingly, they distinguish between work days, weekends, and holidays. Thus, three

histograms correspond to the change patterns of each page. The Web pages are crawled

from the Web site of the French National TV12. In order to gather enough data for the

patterns, the authors select 100 Web pages that are crawled every hour during one month.

If a fine grained history is not readily at hand, the changes of a page p are typically

modeled with a homogeneous Poisson process [14, 24]. The process has an average

change rate parameter λ and the distribution of the number of changes of the page p per

time unit ∆ is

P[number of changes of p in ∆ is k] =
e−λ∆

(
∆λ

)k

k!
.

The change rate λ is estimated from the observed changes of the page p. Intuitively, if

X is the number of the observed changes and T the time interval the observations took

place, then the estimated change rate λ̂ is

λ̂ =
X
T
.

Cho and Garcia-Molina [24] show that this estimator reports smaller values for the

change rate if the number of the observations is smaller than the number of changes. To

tackle this issue, they propose two improved estimators based on the properties of the

Poisson process. The first estimator assumes that the Web page is accessed n times in

regular time interval ∆ . If the properties of the Poisson process are applied directly, the

resulting estimator 
∆

log
(

n−X
n

)
has a mathematical singularity for X = n (every access

to the page detects a change). Therefore, the authors add a constant (.) in the definition

of a smoothed form of the estimator. Then the estimator has the following form:

λ̂ =−


∆
log

(n−X +.

n+.

)
.

The second estimator deals with irregular accesses to Web pages. It is not a closed-

form expression, instead it is an algorithm that finds the value for λ with the maximum

likelihood given the observations of both intervals with change and without change.

12http://www.francetv.fr/

19

Chapter 2. Related Work

Mathematically, the estimator finds out such λ that maximizes the probability

X∏
i=

(− e−λ∆i) ·
n−X∏
j=

(e−λ∆ j),

where ∆i is the i-th interval with a change and ∆ j is the j-th interval without a change.

Independenly from Cho and Garcia-Molina, Matloff [60] reaches to similar solutions

for the change rate estimator. The author as well suggests two estimators, but both

of them for the case with regular access intervals. The first estimator is identical to

the estimator proposed by Cho and Garcia-Molina (without the additional constant).

As discussed before, the estimator has a mathematical singularity. The author as well

proposes an alternative estimator without a closed-form expression which is a solution of

an exponential equation.

In later studies [87, 89] non-homogeneous Poisson process was proposed as well. In

this case, the change rate λ becomes a function of time λ (t). Sia et al. [87] use histograms

of daily changes to define the function λ (t). Singh [89] suggests the Weibull distribution

for the estimation of λ (t) assuming that time interval of observations can be split into

intervals where λ (t) is monotonous:

λ (t) =
β

η

(t
η

)β−
,

where β and η are parameters which can be estimated with the maximum likelihood

estimator of the Weibull distribution.

In this thesis, we decide for a homogeneous Poisson process. It is a general model that

describes well enough the change behaviour of any Web page. It achieves high accuracy

with relatively little training data. In contrast, detecting periodic change patterns requires

constant monitoring of all Web pages. At the same time, periodic change patterns focus

on the daily distribution of changes. This information does not change the preferance

for download positions closer to the middle of the crawl. The estimation of the number

of changes per day is more important than the time distribution of changes during a day.

This holds especially for crawls which span several days or even weeks. They rely on

estimation of the change rates of the Web pages for the scheduling the downloads.

Since we do not always possess the history of all Web pages, we can not estimate the

change rates for all pages. Then we can substitute the estimator with machine learning

techniques. This is possible because of the correlations between various properties of the

Web page and its change frequency. Douglis et al. [37] have been the first to observe

20

2.2. Web Dynamics

such correlations. Their list of features includes page type, page size, top-level domain,

and number of references. Later Fetterly et al. [39] include number of words in list of

possible features.

Tan et al. [95] use an extensive list of features which can be broken down into several

categories:

• Content features: page type, page size, number of words, number of images,

number of tables, and 10 features representing the textual content of the page;

• URL features: top-level domain, depth in the hierarchy, words in the URL;

• Linkage features: PageRank, number of inlinks, number of outlinks, number of

email addresses;

• Dynamic content features: change of any of the following: the content, the

number of images, the number of tables, and the page size;

• Dynamic linkage features: change of any of the following: PageRank, the number

of the inlinks, and the number of the outlinks of the email addresses.

They apply the Repeated Bisection Clustering algorithm [50] to obtain hierarchical

clusters of pages which change in a similar manner. The same authors later extend their

study to [94] they extend the list of features with ranking features that describe users’

behaviour taken from query logs.

Chen et al. [21] take a different direction. They identify association rules (positive and

negative) based on the hierarchical structure of the Web site. They focus on the negative

association rules, i.e. they look for Web pages that rarely change together.

In this section we reviewed various approaches for identifying changes in Web pages.

We covered mechanisms for cooperation with the Web sites, prediction models based

on Poisson processes and histograms as well as machine learning techniques with Web

pages specific features. Most of them are used in incremental crawling strategies and

aim at predicting changes at a specific timepoint. This helps the crawler decide whether

to download a Web page or not. In contrast, we are interested in predicting changes in

a time interval, so that a complete download schedule can be prepared. Web crawling

strategies as part of the Web crawlers are discussed in detail in the next section.

21

Chapter 2. Related Work

2.3. Web Crawling

Web crawlers are computer programs that visit and download Web pages in an automatic

manner. The crawler starts the process with a specified set of URLs or seeds. Figure 2.1

shows a typical architecture of an Web crawler. A Web crawler consist of a downloader,

a queue, a scheduler, and a storage. The downloader or the fetcher retrieves Web pages

from the Web most often with the HTTP protocol, although other protocols, like FTP

for example, may be also used. After a download of a page, new URLs are placed in the

queue of URLs. The scheduler rearranges the URLs in the queue based on the download

strategy of the crawler and the next URLs are fed into the downloader.

Figure 2.1.: Typical Web Crawler Architecture

This generic architecture of Web crawlers is the basis for Heritrix [65] — an extensible

crawler used by various archiving institutions and national libraries. By default, Heritrix

crawls sites in the breadth-first order of discovery. Heritrix is highly extensible in scope

restriction, protocol based fetching, resource usage, and scheduling. Since our prototype

is based on Heritrix, we give more detail on the Heritrix crawler in Chapter 7.

In the rest of the section, we focus on the various download strategies which Web

crawlers employ. Olston and Najork[74] identify two types of crawls - batch crawls and

incremental crawls.

22

2.3. Web Crawling

Batch Crawls

Batch crawls are crawls with a single download per page, limited in time, and executed in

regular intervals. Such crawls’ aim is coverage. If pages have weights, the goal is highest

weighted coverage. This is normally the case with search engines. The most common

weight is PageRank [76].

Najork and Wiener [66] demonstrate that breadth-first strategy yields best results in

regard with coverage. The strategy downoads the Web pages in the order of their discovery

following the FIFO principle. Since pages with high PageRank have a greater chance for

discovery, they are visited early in the crawl. This is crucial when the crawl is limited in

time and resources.

Cho and Schonfeld [29] reformulate the problem of coverage by introducing the

RankMass measure. The RankMass of a set of Web pages D is the sum of the PageRank

of each page from D:

RankMass(D) =
∑
p∈D

PageRank(p).

The coverage problem becomes an optimization problem: given the size N, find out the

set D with the maximum RankMass. The authors suggest an algorithm that predicts the

PageRank for each discovered URL and downloads the URL with the highest prediction.

Similarly, the OPIC algorithm [1] predicts pages’ popularity on-the-fly during crawling

and chooses the page with the highest popularity.

Zheng et al. [100] improve the coverage of important pages by carefully selecting a set

of seeds. They use a graph-based algorithm which chooses such Web pages for seeds,

that have least distance to important Web pages.

Web archives, in constrast, consider every page equally important as long as the page

belongs to a predefined scope. The scope can be defined by a top-level domain, a set

of Web sites, or a topic. Batch crawls start with an initial set of seeds. Normally, the

seeds are home pages of Web sites. One can either specify them manually or use links

from Web directories, such as the Open Directory13. In case all relevant pages have equal

weights, Masanès [59] distinguishes two cases: extensive and intensive crawling.

Extensive crawls aim at the top level pages from various Web sites. This is the case

for focused and topical crawling. Both focused and topical crawlers download pages

relevant to a user-defined set of topics. They classify discovered URLs during the crawl

and decide whether to follow the link or not.
13http://dmoz.org

23

Chapter 2. Related Work

According to Menczer [56] the difference between the focused and the topical crawlers

is in the training of the classifier. Focused crawlers train the classifier before the start

of the crawl based on a large set of labeled examples for each topic. For example, Web

directories provide a taxonomy of topics and corresponding examples. Topical crawlers,

on the other hand, train their classfier during the crawl. They start with a limited set of

labled examples and/or a short description of the topic, for example a keyword query.

Chakrabarti et al.[20] are the first to introduce focused crawling. Their crawler uses a

text classifier pre-trained with labeled examples from any existing Web directory. The

classifier is refined with a user-specified set of Web pages, for example bookmarks. This

enables the crawler to suggest relevant topics to the user who either approves or discards

the topics. Once the set of relevant topics is fixed, the crawler starts visiting Web pages

and discovering new URLs. The decision whether the crawler visits a newly discovered

Web page depends on the relevance of the parent Web page. In thit regard, the authors

suggest two approaches: hard rules and soft rules. If hard rules are applied, the classifier

chooses one topic for each visited Web page. If the topic is relevant, then the crawler

follows all outgoing links in the page. If soft rules are applied, the crawler maintains a

relevance score for each URL and stores it in a priority queue. Additionally, hub and

authority scores are computed and pages with high hub scores are promoted in the queue.

This ensures the download of Web pages that have links to authoritative sources.

An early forerunner of a topical crawler is proposed by Cho et al. [27]. The crawler

does not support a classifier, instead it performs a simple check to determine if a newly

discovered URL is relevant or not. The crawler follows a link in a visited Web page, only

if the anchor text of the link contains a pre-defined keyword.

In contrast, the BINGO! system [90, 91] is a sophisticated solution for topical crawling.

The system’s input is a small hierarchy of categories with example URLs as seeds. User’s

bookmarks serve this purpose very well. The crawler has a set of binary classifiers

(support vector machines) with one classifier per category. Since the initial training

data is scarce, the BINGO! system periodically alternates between learning phase and

harvesting phase. During the learning phase, the crawler retrains its classifiers with

previously captured Web pages as training data. This phase also includes automatic

discovery of topic-specific terms, which are afterwards used as features. During the

harvesting phase, the crawler applies breadth-first strategy, starting from Web pages with

high hub scores.

A different paradigm for topical crawling is InfoSpider [63, 64]. It consists of on a

number of distributed agents which interact with the environment (follow links in the

24

2.3. Web Crawling

Web). The agents are modeled like living organisms: they are born with initial amount of

energy, learn, adapt, reproduce, and eventually die. Each interaction (following a link on

the Web) has an energy cost and reward value (the relevance of the link to the topic). The

agents exploit link topology and text similarity [62] to find the similar pages on-the-fly.

Aggarwal et al. [4] proposed adaptive algorithms to improve the results of the topical

crawlers.

Intensive crawls aim at all pages in one or several Web sites, for example deep Web

crawls [67, 99] and crawls of top-level domains [9]. Deep Web crawls try to access

information hidden in databases behind Web servers. They identify Web sites with

graphical interfaces for queries [10], populate the fields and fire HTTP POST requests to

the Web server. (For comparison, the extensive crawlers send GET requests). As access

to full content is not always possible, Masanès [59] recommends cooperation with the

Web site owners for supplementing the crawls.

Incremental Crawls

Incremental crawls are continuous. At every iteration, they decide either to a download a

new page or to a revisit an old page. This depends on the purpose of the crawl. Olston

and Najork identify two goals: maintaining fresh snapshots of the Web and capturing

as many updates as possible. Search engines employ crawls which strive for freshness.

Web archives aim at capturing as many updates as possible.

Freshness F(p, t) of a page p can be defined either as a binary or as a continuous metric.

The binary definition considers a page p at time point t fresh if its captured version is

identical to its live version:

F(p, t) =

{
 if the captured version of p is the same as the live version,

 otherwise

The freshness metrics extends to a set S of Web pages p, . . . , pn as the average freshness

of all pages:

F(S, t) =


n

∑
i=

F(pi, t).

Crawling strtegies for fresh snapshots typically maximize the freshness averaged over

time f̄ (S):

F̄(S) = lim
t→∞ 

t

t∫


F(S, t)t.

25

Chapter 2. Related Work

They optimize the freshness by assigning a revisit frequency f for each page p. Typically,

it is assumed that a page changes according to a Poisson process with an average change

rate λ [30, 14, 24, 23]. Cho and Garcia-Molina [25] investigate the relation between the

revisit frequency and the change rate. They show that crawling strategies with uniform

download frequency perform better in terms of freshness than crawling strategies where

the revisit frequency of a page is proportional to the page’s change rate.

An optimal strategy is proposed as well. This strategy has a counter-intuitive property:

pages which change almost continuously are never revisited (f = ). Such pages do not

contribute to the overall freshness, since they become stale at the very next moment after

their revisit. Therefore, it makes sense to revisit other pages that will remain fresh for

longer periods of time.

In the same article, the authors introduce a continuous model for freshness, namely

age A(p, t). The age A(p, t) is the amount of time since the time tc of first change of p

after its last download:

A(p, t) =

{
 if the captured version of p is the same as the live version,

t − tc otherwise

Analogically to the definition of the freshness metrics, the definition of the age extends to

a set S of Web pages:

A(S, t) =


n

∑
i=

A(pi, t).

The crawling strategies with focus on the age, assign revisit the Web pages such that

the time-averaged age is minimized. In this case, the revisits frequencies of the Web

pages are proportional to their change rates.

Olston and Pandey [75] suggest a different strategy which takes into account long-lived

and ephemeral content. Their model of content change consists of three types behaviour:

• static behaviour: the content stays the same,

• churn behaviour: the content is overwritten,

• scroll behaviour: new content is appended.

To characterize the change behaviour of the Web pages, the authors split Web pages

into k-gram fragments on word level (shingles [16]). Shingles with long lifetime mark

scroll behaviour, while short-lived shingles mark churn behaviour.

26

2.3. Web Crawling

In the paper, revisits of pages with scroll behaviour are prefered to revisits of pages with

churn behaviour. It is assumed that two versions of a page with scroll change behaviour

will have higher Jaccard distance than two versions of a page with churn behaviour, given

that a set of shingles S(p) is a valid representation of the page p. The Jaccard distance

Jδ (A,B) between two sets A and B is defined as:

Jδ (A,B) = −
|A∩B|
|A∪B|

.

The authors introduce the divergence D(p) metrics which defined as the Jaccard distance

between the live version of p and its last captured version. In a similar fashion to Cho and

Garcia-Molina [25], Olston and Pandey propose a strategy which optimizes for divergence

averaged over time.

Continuous crawls which maximize the number of updates are more suitable for Web

archiving. The best strategy is to allocate revisits to pages proportionally to their change

rate. Pandey et al. [78] add weights to pages and propose a crawling strategy that

distributes m revisits to n pages (m >> n) aiming at least missed changes. However, this

problem is NP-hard and an already existing approximation algorithm is applied for revisit

allocation.

In a follow up work Pandey et al. [77] introduce the concept of timeliness which

describes the acceptable delay in capturing changes: the higher the timeliness, the shorter

the acceptable delay. This is expressed mathematically by the urgency function which is

defined according to the user requirements. Three alternative definitions are proposed in

the paper:

• uniform urgency: the urgency is constant, independent of the time (timeliness is

low);

• exponential decay: the urgency decreases exponentially with the time (timeliness

is high);

• sliding window: the urgency is  for a predefined interval, then drops to  (timeli-

ness is high, but allows for a grace period).

According to this model, revisits of pages with high urgency are prioritized. The authors

claim that an optimal algorithm is too expensive and suggest an approximation algorithm.

All of the described metrics and strategies have been implemented in the context

of Web search engines. In the context of Web archiving, Sigurdsson [88] presents

27

Chapter 2. Related Work

the technical challenges and implementation issues on enabling Heritrix to support

incremental crawling.

In the thesis, we combine features of both batch and incremental crawls. With respect

to the number of downloads, our crawls are intensive batch crawls. Single-visit strategies

download every page once, visit-revisit strategies download the pages twice, and com-

pleteness is a must. The blur and coherence metrics share similarities with binary and

continuous freshness. Freshness, however, is defined for incremental crawls only. Batch

crawls lack quality metrics which take into account the changes of the Web pages. The

notaions blur and coherence introduced in this thesis address that problem.

2.4. Visualization of Changes in Web Archives

Visual clues of changes in Web archives provide better intuition for changes than math-

ematical models. We can split the available visualization tools into two groups: tools

focusing on the changes inside the pages and tools focusing on the changes of the graph.

The first group includes Zoetrope [2], Vi-Diff [79], WebCQ [57], and a history browser

[49]. All of them detect changes in the Web pages and highlight them during presentation.

These tools analyze both the text and the DOM structure of a Web page. WebCQ provides

a tabular summary of the changes of a page. Vi-Diff and the history browser make sure

that the link navigation is meaningful. Zoetrope supports timeline visualization of the

changes of selected Web pages.

The second group consists of WEEV [22], WebRelievo [96], and TimeSlices [48].

They display images of the whole graph at different time points. WEEV and WebRelievo

put the images next to each other, while TimeSlices arranges the images in a 3D enabling

the user to zoom in and zoom out. However, the huge number of displayed hyperlinks

reduces the visibility and interpretability.

Lately, graphical interfaces to Web archives have been adopted in areas like spam

detection and knowledge harvesting. Benczur et al. [12] enable archivists to denote

suspicious Web pages from an Web archive as spam. Later, these Web pages are used

as training data for spam detection [38]. Wang et al. [97] use Web archives to identify,

disambiguate and visualize temporal facts. Their graphical interface focuses on the

entities and the relations found in the archive.

28

Chapter 3.

Web Archiving Model

3.1. Introduction

Web archives, very much like traditional archives and libraries, provide excellent material

for both researchers and professionals. On one hand, sociologists, politologists, media

analysts may be able to detect global trends in the development of the information society.

On the other hand, experts on intellectual property and compliance may be able to

prove or disprove claims based on archived Web sites. The potential of Web archives is

already recognized: many national libraries es (e.g., www.loc.gov, www.webarchive.
org.uk, netarkivet.dk, www.bnf.fr, www.webarchiv.cz, etc) and organizations

like the Internet Archive (archive.org) and the European Archive (europarchive.
org) take active roles in preserving the Web. However, the changing nature of the Web

poses new challenges to the archiving institutions. We may be tempted to assume that a

Web archive is an exact image of a Web site as of some time point in the past. In practice,

however, archiving an entire Web site takes time during which many pages change. The

changes affect the mutual consistency of the pages and makes interpreting the archive

difficult. A real-life example is a lawsuit about intellectual property rights [80]. The judge

disproved a Web archive as evidence in court due to the lack of quality. A traditional

archive would have been approved as evidence. To close the gap between Web archives

and traditional archives, we must maintain Web archives with a high standard of data

quality.

While the issue of Web-archive quality is obvious, it is unclear how to formalize the

problem and address it technically. This chapter presents a model which enables quality

assurance of Web archives. The model includes several properties of the archive and the

archiving process: the archive’s organization, the access to the archive, and the types

29

www.loc.gov
www.webarchive.org.uk
www.webarchive.org.uk
netarkivet.dk
www.bnf.fr
www.webarchiv.cz
archive.org
europarchive.org
europarchive.org

Chapter 3. Web Archiving Model

of crawling strategies. Together, these properties allow us to define quality metrics and

improve the crawling strategies accordingly. We organize the model, the quality metrics,

and the crawling strategies in the SHARC framework for data quality in Web archiving.

3.2. Concepts

Organization of Web Archives

Web archives consist of series of captures. These are periodic versions of a Web site.

A crawler produces a capture by downloading all pages of the site. Every crawler has

a crawling strategy which determines the number and the order of the downloads. The

interval between the first and the last download is called capture interval. The captures

in Web archives correspond to a time interval, in contrast to the records in traditional

archives which correspond to a time point. Although, we would like to have snapshots

of the Web site for every time point, this is practically impossible. To tackle this issue,

we propose two alternatives approaches for organization of the Web archive. In the first

approach, the Web archive maximizes the number of captures, but gives only stochastic

guarantees about its quality. In the second approach, the Web archive gives deterministic

guarantees for quality by reducing in half the number of captures.

If the number of captures is more important than the quality guarantees, we use single-

visit crawling strategies. They are the fastest possible strategies which at the same time

ensure completeness of the captures. These strategies are suitable for archiving news Web

sites which change often and need many captures to cover all changes. In contrast, a Web

archive of Web sites of governmental institutions requires credibility. Quality guarantees

are crucial. In this case, we use visit-revisit crawling strategies. They double the time of

the crawl but precisely detect all changed Web pages.

In both approaches, the crawler must observe the politeness requirements of a site, with

pauses of several seconds or even a minute between successive HTTP requests. Thus, an

entire site capture may span several days. (The crawler may crawl many sites in parallel

for high throughput.) When a new site crawl starts, we may assume that the URLs of all

pages are known upfront. This assumption is realistic if a previous crawl exists or the

Web site suppports the Sitemap protocol [85]. If none of the above is available, then, we

assume that at least one entry page is known from which the crawl can explore the site’s

page graph. We may assume that the total number of pages in a site can be estimated at

the start of the crawl, based on site properties such as domain name or attributes obtained

30

3.2. Concepts

by the HTTP reply when fetching the site’s entry page.

Note that pages may change during a crawl. The longer the crawl duration, the more

likely it is that a non-negligible fraction of the site’s pages change once or several times.

Figure 3.1 illustrates this situation for single-visit crawls and Figure 3.2 illustrates the

situation for visit-revisit crawls. The time points when a page is downloaded are marked

by a bullet, the time points when a page changes are marked by a cross. Note that a

capture with a visit-revisit crawl needs almost doubles the downloads. Both figures show

two crawls, each yielding a separate capture that will be stored in the Web archive for

later retrieval by analysts and other users.

Change Page Capture Coherent Page (no Blur) Blurred Page

time

pages

p
p
p
p
p
p

t t t t t t

Capture Interval

t t t t t t

Capture Interval

T

Observation Interval Observation Interval

(a) Blur for Time Travel Query T

time

pages

p
p
p
p
p
p

t t t t t t

Capture Interval

t t t t t t

Capture Interval

T

Observation Interval Observation Interval

(b) Blur for Time Travel Query T

Figure 3.1.: Coherent vs. Blurred Pages with Single-Visit Crawling

Change Page Capture Coherent Page Incoherent Page
pages

p
p
p
p
p
p

tv
 tv

 tr
tv

 tr
tv

 tr
tv

 tr
 tr



Capture Interval

tv
 tv

 tr
tv

 tr
tv

 tr
tv

 tr
 tr



Capture Interval
tv,r


Reference Time

tv,r


Reference Time

Figure 3.2.: Coherent vs. Incoherent Pages with Visit-Revisit Crawling

31

Chapter 3. Web Archiving Model

Access to Web Archives

In these settings, a Web archive is accessed by time-travel queries, asking for the site as of

a given time point of interest to the user. Figure 3.1 shows two such requests, denoted by

vertical arrows, for time points T and T which fall before the capture (Figure 3.1a) and

within the interval between page-capturing time points t and t (Figure 3.1b). The archive

may not have versions of the pages as of the exact requested time. The user’s request

for time T is then mapped either to the most recent available capture whose timestamp

does not exceed T or to the nearest capture in the past or future (whichever is closer to T).

This mapping defines for each capture an observation interval: the capture is returned

for all time-travel queries that fall into the same observation interval. Figure 3.1 shows a

possible choice for the observation intervals of the two captures. Observation intervals

based on the most recent available capture correspond to the simplest standard semantics

in temporal database systems [86]. Observation intervals based on the closest capture

(preceding or following the user’s time target) may appear non-standard, but make sense

in our Web archive setting because the user’s time point of interest may often be fuzzy

or a crude estimate for exploration purposes. For example, when a sociologist wants to

investigate opinions of a social group on a particular topic using the content of a site as of

May 2001 (which could technically be interpreted as mid May, i.e., May 15, if a real time

point is needed), she may be equally happy with a capture from April 28 or June 3 if the

site was not captured during May.

Crawling Strategies

For individual time-travel queries some of the pages are “blurred” and some are “incoher-

ent”. By blur we refer to the magnitude of change in the time span between the query

timestamp and the time of the actual page capture. The farther the two points are apart

and the more the page changes (on average), the more blurred the page would appear to

the user. For example, if the time-travel request is for May 15, a page that was captured

on May 10 would appear less blurred than a page that was captured on May 1 or May

31. We will formalize this measure in Chapter 4. By incoherence we refer to the entire

site’s page changes between the query timestamp and the page capture. If some page has

changed between these two time points, it may appear incoherent with respect to other

pages. Conversely, if we manage to capture a set of potentially interrelated pages such

that there is no change at all between their capturing points and the timestamp of user

32

3.3. Model of Changes

request, then this set would be perfectly coherent. The pages jointly appear as if they

were instantaneously captured in the very same state of the Web site. Pages without any

changes in the critical time span are coherent and indicated by solid lines (Figure 3.1 and

Figure 3.2). We will formalize the notion of coherence in Chapter 5.

In the SHARC framework, we want to either minimize the blur or maximize the

coherence of captures. Each of these two goals requires additional information.

To minimize the blur, we need the timestamps of the time-travel queries of all archive

users. As we can not know the timestamps at the time of the crawl, we assume that they

are uniformly distributed in the observation interval. Hence, we will aim for a stochastic

notion of archive quality.

To maximize the coherence, we need to know exactly which pages changed. Thus, we

visit each page twice, where the second visit serves to check for changes. This visit-revisit

approach is illustrated in Figure 3.2. The figure shows a strategy where all the revisits of

pages follow all visits. Even if the HTTP protocol information does not reliably indicate

whether a page is modified or not, we can now easily compare two versions of the same

page and test for invariance (perhaps ignoring insignificant changes such as banner ads

or auto-generated footers). If for a given set of pages (ideally the entire site), none

shows any changes between visit and revisit, then this entire set is coherent - as if it were

instantaneously captured in the middle of the crawl – denoted as “reference time” in the

figure. In the thesis, we will consider only strategies with this two-phase structure: all

revisits following all visits. Note, however, that the order in which individual pages are

visited in each phase is an important degree of freedom in optimizing the crawl schedule.

Single-visit strategies have lower crawl cost than visit-revisit strategies and are good

enough to minimize the stochastic notion of blur. However, an archive user cannot be

sure if an individual page is coherent or not (i.e., did not or did change between query

timestamp and page capture). This uncertainty is not a problem for exploratory usage of

the archive. However, in use cases where we need to be sure that an archived snapshot

reflects a Web site as of a specific time in the past (e.g., for legal purposes), we need to

employ the visit-revisit method.

3.3. Model of Changes

In devising suitable strategies for scheduling the visits of a site’s pages, we need to have

some information about how often, and perhaps even when, a page typically changes.

33

Chapter 3. Web Archiving Model

To this end, we employ statistical prediction models. Following the state of the art

[24, 26, 89, 51], we assume that pages undergo changes according to a Poisson process

with change rate λ .

The number of changes of the page p per time unit ∆ is distributed according to a

Poisson distribution with parameter λ :

P[number of changes of p in ∆ is k] =
e−λ∆

(
∆λ

)k

k!
.

It is equivalent to postulate that the time between two successive changes of page p is

exponentially distributed with parameter λ :

P[time between changes of p is less than ∆] = − e−λ∆ .

We can then train a classifier or regression model to predict the specific rate of a page,

based on features of the page: its MIME type, depth in the site graph relative to the

entry point, URL string, and so on. The classifier allows us to predict the probability or

“risk” that there will be a change of a page in the time span between capturing it and a

time-travel access, and also the expected number of changes in that interval or a quantile

for the number of changes. Chapter 6 is dedicated to our change prediction model.

3.4. Datasets

In the next chapters we describe the single-visit and the visit-revisit strategies on the

Web archiving model. Since in the both cases we evaluate the strategies over the same

real-world datasets we introduce the datasets in this chapter.

The real-world datasets consist of repeated crawls of different-sized domains including

mpi-inf.mpg.de (MPII), dmoz.org (DMOZ), and sites from the .uk.gov collection

(UKGOV). They are summarized in Table 3.1. The datasets span long periods (a year or

longer) and consist of captures (weekly or even daily) of entire sites. The MPII dataset

is a Web archive of an academic Web site (Max Planck Institute for Informatics), the

UKGOV dataset consists of a number of governmental Web sites (UK government), the

DMOZ dataset is a Web directory.

The MPII dataset constitutes crawls of our Web server. The “home” Web server allowed

us to crawl it frequently and aggressively (without respecting the politeness delays). We

crawled it on daily basis for one year. The DMOZ dataset represents a large Web site with

7 subsites (topic categories) that change frequently and subsites that change infrequently.

34

mpi-inf.mpg.de
dmoz.org

3.5. Summary

Every day we crawled one of the subsites. In a week’s time we got a complete capture

with all 7 subsites. The UKGOV dataset spans two years and 7 months and is, to the

best of our knowledge, the most comprehensive, freely available Web archive reference

collection.

Dataset Abbreviation Web Site Periodicity Time Range Pages Changing Pages

MPII MPII mpi-inf.mpg.de daily 08.09–07.10 72,071 1,356

DMOZ DMOZ dmoz.org weekly 10.09–07.10 177,446 50,855

UKGOV MOD mod.uk weekly 08.03–02.06 10,047 5,988

UKGOV DFID dfid.gov.uk weekly 08.03–02.06 2,186 1,131

UKGOV ARMY army.mod.uk weekly 08.03–02.06 37,330 15,259

UKGOV RAF raf.mod.uk weekly 08.03–02.06 27,836 4,286

UKGOV DH dh.gov.uk weekly 08.03–02.06 15,884 12,203

Table 3.1.: Datasets

3.5. Summary

In this chapter we have presented a Web archiving model which takes into account the

archive’s organization, the access to the archive, and the types of crawling strategies. We

have introduced concepts which describe the aforementioned properties. This allowed us

to reason about the quality of the archive and to define the blur and the coherence metrics

for measuring the quality. In Chapter 4 and Chapter 5 we formalize the definitions and

design strategies optimizing these metrics.

35

Chapter 3. Web Archiving Model

36

Chapter 4.

Single Visit Crawling Strategies

4.1. Introduction

In this chapter, we establish the stochastic metric blur for a given sites capture and

develop the SHARC-Offline and SHARC-Online crawling strategies. Both strategies

produce download schedules which aim at reducing the blur. SHARC-Offline assumes

that all URLs of the pages in the Web site are known in advance. Thus, the strategy is

able to prepares a complete download schedule before the start of the crawl. However,

this is not a feasible solution in realistic run-time settings. Rather, the strategy a useful

baseline for developing practically viable algorithms and assessing their quality. In

contrast to SHARC-Offline, SHARC-Online is a crawling strategy that can be applied

in real-life settings. SHARC-Online starts with a limited number of seeds (entry points

to the Web site). During the crawl, the strategy discovers the URLs of other pages in

the Web site. SHARC-Online updates its download schedule after every download, such

that the schedule resembles SHARC-Offline. Still, this entails increase of the blur of

the capture. Two factors influence the increase of the blur: the crawl duration and the

distribution of the change rates among the Web pages. We investigate analyitically both

factors. At the end of the chapter, we show experimentally that SHARC-Offline and

SHARC-Online indeed increase the quality of the captures in comparison to the standard

crawling strategies for Web archiving. First, though, we introduce the notation used

throughout the chapter as well as an example Web site for illustrating the concepts and

the algorithms we developed.

We assume that the Web archive consists of Web pages p, . . . , pn, which change

according to the Poisson distribution with change rates λ, . . . ,λn (the mean number of

changes in a time unit). For ease of presentation, we assume that the identifiers (subscripts)

37

Chapter 4. Single Visit Crawling Strategies

Page Change Rate λ

p 0

p 1

p 2

p 3

p 4

p 5

(a) Change Rates

p

p

p p

p

p

(b) Web Graph

Figure 4.1.: Example of a Web Site with Change Rates

of the pages are chosen so that λ ≤ ·· · ≤ λn. We denote the least frequently changing

page p as the coldest page, and the most frequently changing page pn as the hottest page.

We assume that the download timepoints of the pages are equidistant with politeness

delay ∆ in between the downloads (the most typical scenario). To simplify mathematical

expressions, we assume that the crawl starts at time 0 and the observation interval

coincides with the capture interval: [os,oe] = [cs,ce] = [,n∆]. Later, in Section 4.3.3, we

generalize the equations and omit the assumption.

Figure 4.1 presents an example that we use throughout the chapter. Change rate λ = 

means virtually no changes for p. Strictly mathematically this is not possible, since

Poisson model requires λ > . Here we assume a negligible small change rate  < ε� .

4.2. Blur

The blur of a page and the blur of an entire site capture are key measures for assessing

the quality of a single-visit Web archive.

Definition 4.1 (BLUR). Let pi be a Web page captured at time ti. The blur of the

page is the expected number of changes between ti and query time t, averaged through

observation interval [,n∆]:

B(pi, ti,n,∆) =


n∆

∫n∆


λi · |t − ti|dt =

λiω(ti,n,∆)

n∆
, (4.1)

where

ω(ti,n,∆) = ti − tin∆ +
(n∆)


. (4.2)

38

4.2. Blur

is the download schedule penalty.

Let P = (p, . . . , pn) be Web pages captured at times T = (t, t, . . . , tn). The blur of the

archived capture is the sum of the blur values of the individual pages:

B(P,T,n,∆) =


n∆

n∑
i=

λiω(ti,n,∆). (4.3)

The blur indicates how many expected changes the explorer of the archive sees if she

visits all the pages in the archive. We define the average blur as the average number of

the expected changes explorer sees per page:

B̄(P,T,n,∆) =


n(n+)∆

n∑
i=

λiω(ti,n,∆). (4.4)

The blur of a Web page in the capture is the product of its change rate and ω(ti,n,∆).

ω(ti,n,∆) depends on the download time and the length of the capture interval n∆ and

does not depend on the page. Therefore ω(ti,n,∆) can be interpreted as the penalty of

downloading page pi at time ti.

Example 4.1 (Blur) Consider the Web site in Figure 4.1 with download time ti for page

pi (for example page p is downloaded at time t = ). The blur of p is

B(p,,,) =
 · (− · ·+( ·)/)

 ·
= ..

Similarly B(p,,,) = , B(p,,,) = ., B(p,,,) = ., B(p,,,) = .,

B(p,,,) = .. The blur of the archive is

B(P,T,,) = +.+.+.+.+.= .

The average blur per page is B̄(P,T,,)≈ ..

Properties of the download schedule penalty allow us to reason about the lower and the

upper bounds of the blur of a capture and the impact of the length of the delay intervals.

Theorem 4.1 (LOWER AND UPPER BOUNDS) The lower bound of the blur is n∆



∑n
i=λi

and the upper bound is n∆



∑n
i=λi.

n∆



n∑
i=

λi < B(P,T,n,∆)<
n∆



n∑
i=

λi. (4.5)

39

Chapter 4. Single Visit Crawling Strategies

Proof of Theorem 4.1 The proof of the bounds follows from substituting the schedule

penalty in the blur formula with its minimum and its maximum. Let us recall that the

schedule penalty is a quadratic function with minimum equal to (n∆)

 and maximum equal

to (n∆)

 in the interval [,n∆]. �

One can interpret the lower bound of the blur as the blur of a fictitious crawl with

coherent snapshots at every download time point. The blur is not  since the time-travel

queries may happen between two download points and changes still may occur. The

interpretation of the upper bound is similar. The upper bound is the blur of a fictitious

crawl which at each download time point has snapshots as “blurred” as possible.

Theorem 4.2 (PROPERTIES OF THE SCHEDULE PENALTY) The blur is proportional to

download delay ∆ , i.e.,

B(P,T,n,∆) = ∆B(P,T,n,). (4.6)

Proof of Theorem 4.2
The proof follows from the definitions of schedule penalty, blur, and quadratic function

of penalty. �

4.3. SHARC-Offline Strategy

4.3.1. Optimal Download Schedule

Different download schedules result in different values of blur. We now investigate

the optimal download schedule for archiving. Mathematically, for the given Web site

p, . . . , pn we will identify the optimal schedule t, . . . , tn, (a permutation of ,∆ , . . . ,n∆)

that minimizes the blur of the archive (cf. Equation (4.3)). In particular, we show that the

pages that change most should be downloaded in the middle of the crawl.

Example 4.2 (OPTIMAL DOWNLOAD SCHEDULE.) Consider again Example 4.1. The

optimal download schedule is t =  and t =  (the outermost points of the interval)

for the coldest (least changing) pages p and p, t =  and t =  (the next outermost

points) for the second and third least changing pages p and p, followed by t =  and

t =  for the hottest pages p and p. The blur of the capture with optimal download

schedule is B(P,T ′,,) = ..

Figure 4.2 illustrates the optimal download schedule where the change rate of the

scheduled download is visualized as a line of length proportional to the change rate. The

40

4.3. SHARC-Offline Strategy

visualization resembles an organ-pipes arrangement with the highest pipes allocated in

middle.

Theorem 4.3 (OPTIMAL DOWNLOAD SCHEDULE) Let p,

p, . . . , pn be the Web site such that λ ≤ λ ≤ ·· · ≤ λn. Then the optimal download

schedule t, . . . , tn is defined by the following equation:

ti =

 i
 if i is even,

n− i−
 otherwise.

(4.7)

for i = ,, . . . ,n.

p


0
p


2

p


4

p


5

p


3

p


1

Figure 4.2.: Organ-Pipes Arrangement

Proof of Theorem 4.3
The proof of Theorem 4.3 is based on three

observations:

(i) λi are ordered increasingly: λi ≤ λi+,

(ii) Equation (4.7) orders ω(ti,n,∆) decreas-

ingly: ω(ti,n,∆)≥ ω(ti,n,∆),

(iii) Equation (4.3) is minimized when λi are

ordered decreasingly and ω(ti,n,∆) are

ordered increasingly.

λi are scheduled increasingly because of the assumption of the theorem, and therefore

case (i) is true.

Function ω(t,n,∆) is quadratic in t, with its minimum at tmin = (n∆)/. Equation (4.7)

schedules tis in such a way that ω(tn,n,∆) is smallest. The greater the index i, the closer

to the middle ti is allocated. Therefore ω(ti,n,∆) are scheduled decreasingly and Case

(ii) is true.

The proof of Case (iii) is given in Lemma 4.1 below. �

Lemma 4.1 Let λ ≤ λ ≤ ·· · ≤ λn and ω(t,n,∆)≥ω(t,n,∆)≥ ·· · ≥ω(tn,n,∆). Let

j, . . . , jn be a permutation of , . . . ,n. Then

n∑
m=

λmω(tm,n,∆)≤
n∑

m=

λimω(t jm ,n,∆). (4.8)

41

Chapter 4. Single Visit Crawling Strategies

Proof of Lemma 4.1
Indeed, let i, . . . , in be the optimal permutation of , . . . ,n such that (λi, . . . ,λin) and

(ω(t j ,n,∆), . . . ,ω(t jn,n,∆)) minimize the right hand side of Equation (4.8).
The largest element of λ s must be multiplied by the smallest element of ω(til), otherwise

the solution is not optimal. We prove this step by contradiction. Let

(λi , . . . , λik , . . . , λil , . . . , λin)

(ω(t j ,n,∆), . . . , ω(t jk ,n,∆), . . . , ω(t jl ,n,∆), . . . , ω(t jn ,n,∆))

be the optimal schedule, however λik = λ (the smallest among all λis) and ω(t jl ,n,∆) =

ω(t,n,∆) (the largest among all ω(ti,n,∆)s). Then we can show that the by swapping

λik with λil (or alternatively ω(tik ,n,∆) with ω(til ,n,∆)) we can further decrease the sum

in Equation (4.8). Indeed, the sum without the swap is:∑
m=,...,n
m 6=l,m6=k

λimω(t jm,n,∆)+λω(t jk ,n,∆)+λil ω(t,n,∆) (4.9)

The sum with the swap is:∑
m=,...,n
m 6=l,m 6=k

λimω(t jm ,n,∆)+λω(t,n,∆)+λik ω(t jl ,n,∆) (4.10)

Since the first sums in Equations (4.9) and (4.10) are the same we reach the contradiction

if we prove that

λω(t jk ,n,∆) + λil ω(t,n,∆) > λω(t,n,∆) + λikω(t jl ,n,∆). (4.11)

The left hand side (LHS) of Equation (4.11) is:

LHS = λω(t jk ,n,∆)+λil ω(t,n,∆)

= λ

(
ω(t,n,∆)+

(
ω(t jk ,n,∆)−ω(t,n,∆)

))
+λil ω(t,n,∆)

= λω(t,n,∆)+
(
λil +(λ−λil)

)
×
(
ω(t jk ,n,∆)−ω(t,n,∆)

)
+λil ω(t,n,∆)

= λω(t,n,∆)+λil ω(t jk ,n,∆)+
(
λil −λ

)(
ω(t,n,∆)−ω(t jk ,n,∆)

)
= RHS+ strictly positive number,

since λ is the smallest among λis and ω(t,n,∆) is the largest among ω(t j,n,∆)s.

The proof of lemma follows with the help of mathematical induction. The induction

basis is trivial. The optimal solution for n reduces to the optimal solution for n− 

elements, since the λ must be multiplied with ω(t) in the optimal solution. �

42

4.3. SHARC-Offline Strategy

4.3.2. SHARC-Offline Algorithm

Algorithm 1 depicts the algorithm of SHARC-Offline. Since all the pages are known and

sorted in advance we need to scan all the pages only once to schedule the downloads.

The pages with even indexes are scheduled increasingly according to their change rates

on the left hand side of the organ-pipe, while the pages with odd indexes are scheduled

decreasingly on the right hand side of the organ-pipe.

Algorithm 1 SHARC-Offline
Require: sorted pages p, . . ., pn

Ensure: download schedule pD
 , . . ., pD

n

for i =  to n do
if i is even then

pD
i = pi/

else
pD

i = pn−(i−)/

end if
end for

4.3.3. General Observation Interval

In this section we generalize the notion of blur and the optimal download schedule for

the case when the observation interval [os,oe] does not coincide with the capture interval.

Then the blur of a page is

B(pi, ti,n,∆) =


oe −os

∫oe

os

λi · |t − ti|dt =
λiω(ti,os,oe)

oe −os
,

where

ω(ti,os,oe) = ti − ti(os +oe)+
os +oe



is the generalized download schedule penalty and the blur of the archived capture is the

sum of the blur values of the individual pages (cf. Equation (4.3)).

Theorem 4.3 schedules the hottest pages in the middle of the capture interval (point

n∆/). In case the observation interval does not coincide with the capture interval and

there are no restrictions for the start of the capture interval we should schedule the most

changing pages around the middle of the observation interval (point (os + oe)/). We

formalize it in the following theorem.

43

Chapter 4. Single Visit Crawling Strategies

Theorem 4.4 Let t, . . . , tn be the optimal download schedule for Web site with [,n∆]

observation interval. Then

ti +
oe +os −n∆



is the optimal download position for page pi with [os,oe] observation interval.

When the observation interval and the capture intervals are fixed, the hottest pages

should be allocated as close as possible to the middle point of the observation interval.

4.4. SHARC-Online Strategy

The SHARC-Offline strategy assumes that all URLs of the Web site are known in advance.

In this section, we relax the assumption and develop SHARC-Online, an archive crawl

optimization strategy with no or limited knowledge of the Web site. Starting with a given

set of seeds SHARC-Online incrementally extracts the URLs of other pages from the

downloaded pages and schedules the pages for download so the blur is minimal. We

organize this section as follows. First, we explain the incremental detection of the Web

site structure and discuss most common crawl strategies in Section 4.4.1. We develop

the SHARC-Online strategy by example in Section 4.4.2. Finally, we formally define

the SHARC-Online strategy and present the algorithm of the strategy in Sections 4.4.3

and 4.4.4.

4.4.1. Discovery of the Web Graph

Typically, crawlers do not know the URLs of the pages in a crawled site. Archive crawlers

start with the download of a given set of URLs (seeds of the crawl), extract the URLs of

the downloaded pages, and continue the process until all the documents are downloaded

and no new URLs are detected. At any iteration the crawler keeps Downloaded-Detected

lists (DD-lists) of URLs. The downloaded list of URLs consists of all URLs that are

already crawled, while the detected list comprises the extracted from the downloaded

pages but not yet downloaded URLs. Different crawl strategies schedule the URLs in a

different manner. Below, we demonstrate the most popular crawl strategies: Depth-First

(DFS) and Breadth-First (BFS) on the example Web graph in Figure 4.1.

Table 4.1a depicts the detection and downloads of Web pages of the Depth-First strategy.

The strategy starts with the seed page p and inserts it into the detected part of the DD-list

(cf. p in the iteration I =  in Table 4.1a). Then, it downloads the page (p is moved

44

4.4. SHARC-Online Strategy

to the downloaded part of the DD-list, cf. I =  in the table), parses the HTML page,

and inserts detected URLs p, p into the detected part of the DD-lists. The Depth-First

strategy inserts newly detected pages at the beginning of the detected list, thus the newly

detected pages have higher priority for download (cf. iteration I =  in the table). In

contrast, Breadth-First strategy appends newly discovered pages, assigning a higher

priority for early detected pages (cf. Table 4.1).

I DD-list

Downloaded |Detected

0 |p
1 p |p, p
2 p, p |p, p, p
3 p, p, p |p, p
4 p, p, p, p |p
5 p, p, p, p, p |p
6 p, p, p, p, p, p |

(a) Depth-First Crawl Strategy (DFS)

I DD-list

Downloaded |Detected

0 |p
1 p |p, p
2 p, p |p, p, p
3 p, p, p |p, p, p
4 p, p, p, p |p, p
5 p, p, p, p, p |p
6 p, p, p, p, p, p |

(b) Breadth-First Crawl Strategy (BFS)

Table 4.1.: Popular Crawl Strategies

4.4.2. SHARC-Online Strategy by Example

At any given iteration, the crawler does not know all pages but only the pages of the

Web site in the DD-list. Our SHARC-Online strategy optimizes the download and

detection of the Web pages incrementally. Given the (estimated) size of the Web site,

the SHARC-Online produces a download schedule that resembles the organ-pipe order

of the SHARC-Offline strategy. Due to the limited knowledge of the detected pages the

algorithm has three phases: ascending, middle, and descending phases.

Table 4.2 illustrates the SHARC-Online strategy for the running example. The SHARC-

Online crawl starts with p page as a seed and the estimated number of pages in the

site n+= . The crawl downloads page p and detects another two pages p, p. The

algorithm is in its ascending phase, and therefore it schedules the downloads in increasing

schedule of the change rate λi. In the I =  iteration the algorithm downloads p and

detects additional pages p and p. The number of detected and downloaded pages

45

Chapter 4. Single Visit Crawling Strategies

I DD-list

Downloaded |Detected

0 |p
1 p |p, p
2 p, p |p, p, p
3 p, p, p |p, p
4 p, p, p, p |p
5 p, p, p, p, p |p
6 p, p, p, p, p, p |

Table 4.2.: SHARC-Online Crawl Strategy

exceeds the middle of the interval and the algorithm switches to the middle phase to

preserve the middle of the organ-pipes arrangement. The algorithm downloads p and

p in the middle phase. Then the number of downloaded pages exceeds the middle the

algorithm finishes in the descending phase with the downloads of p and p.

4.4.3. Formalization of SHARC-Online

The SHARC-Online strategy maintains the list of detected pages (pE
 , pE

 , . . . , pE
nE−

)

(sorted in ascending order according to the change rates), the number of downloaded

pages nD, the number of detected pages nE , and an approximated overall number of the

pages n+. The SHARC-Online strategy expresses the next page to be downloaded pD
nD

in terms of these three variables.

Ascending Phase. The ascending phase resembles the beginning of the organ-pipes

and is applied when the number of downloaded and detected pages is below the estimated

middle point of the crawl. During this phase the algorithm implements the coldest-first

strategy. Equation (4.12) formalizes the ascending strategy.

pD
nD = pE

 . (4.12)

The ascending strategy is executed as long as the number of downloaded and detected

pages is less than half of the size of the site:

nD +nE ≤ n+


. (4.13)

46

4.4. SHARC-Online Strategy

Example 4.3 (ASCENDING PHASE.) Consider I =  step in Table 4.2. The number

of downloaded pages nD = , the number of detected pages nE = , and the list of

detected pages sorted in ascending order according to the λ s is (pE
 , pE

) = (p, p)

Let us assume that the estimated number of pages in the crawl is n+  = . Since

nD + nE = +  ≤  = n+
 , therefore the algorithm is in the ascending phase and the

next download element is pD
 = pE

 = p.

Middle Phase. The middle phase schedules the next download so the symmetry around

the middle of the organ-pipes is preserved as much as possible. For each downloaded

page on the ascending part, we reserve an appropriate page on the descending part of the

organ-pipes. The strategy is applied when the overall number of downloaded and detected

pages exceeds the half of the number of the pages, but the number of downloaded pages

has not yet reached the middle of the crawl. Equation (4.14) formalizes the phase:

pD
nD =

pE
nD if nD < nE ,

pE
nE−

otherwise.
(4.14)

Equation (4.15) formalizes the conditions when the middle phase is applied:

nD +nE >
n+


, nD ≤ n+


. (4.15)

Example 4.4 (MIDDLE PHASE.) Let us continue Example 4.3 with step I = . The

number of downloaded pages nD = , the number of detected pages nE = , and the list

of detected pages sorted in ascending order according to the λ s is:

(pE
 , pE

 , pE
) = (p, p, p).

Since

nD +nE = + > =
n+


and nD =  < =

n+


,

the algorithm is in its middle phase and the next download element is

pD
 = pE

 = p.

Descending Phase. The descending phase resembles the ending of the organ-pipes

and is applied when the number of downloaded pages is more than the half of the

(estimated) number of pages. During this phase, the algorithm implements the hottest-first

strategy. Equation (4.16) formalizes the descending strategy:

pD
nD = pE

nE−. (4.16)

47

Chapter 4. Single Visit Crawling Strategies

The descending phase is executed as soon as the number of downloaded pages exceeds

the middle of the organ-pipes arrangement and until all detected URLs are downloaded:

nD >
n+


, nE 6= . (4.17)

Example 4.5 (Descending Phase) Let us continue Example 4.4 with step I = . The

number of downloaded pages nD =  and the number of detected pages nE = . Since

nD = > = n+
 , the algorithm is in its descending phase and the next download element

is pD
 = pE

 = p.

4.4.4. SHARC-Online Algorithm

Algorithm 2 depicts the SHARC-Online algorithm. At each iteration the algorithm

inspects the sizes of downloaded and detected lists, identifies whether the algorithm is in

the ascending, middle or descending phase, and computes the index of the page for the

next download. The computation of the index is a direct match to Equations 4.12, 4.14,

and 4.16.

Algorithm 2 SHARC-Online

Require: sorted seeds (p, . . . , pm), estimated size of the crawl n

Ensure: download schedule (pD
 , . . . , pD

n)

PD = (pD
 , . . . , pD

nD) = (), nD = 

PE = (pE
 , . . . , pE

nE) = (p, . . . , pm),nE = m

while PE 6= /0 do
if nD +nE ≤ (n+)/ then

pos = 

else if nD ≤ (n+)/ then
pos = nD < nE?nD : nE −

else
pos = nE

end if
append(PD, pE

pos), remove(PE , pE
pos)

add(PE ,urls(pE
pos))

nD ++, nE −−, nE = nE + |urls(pE
pos)|

end while

48

4.4. SHARC-Online Strategy

p

1

p

2

p

3

p

4

p

5

p

5

p

4

p

3

p

2

p

1

(a) SHARC-Offline

p

5

p

4

p

1

p

2

p

3

p

3

p

2

p

1

p

4

p

5

(b) Worst Case with k = 

Figure 4.3.: Example of Worst Case Blur Scenario with n =  and k = 

4.4.5. Worst Case Analysis

In this section we investigate in detail the increase of the blur of the SHARC-Online

strategy. According to Theorem 4.1 the increase of the blur of SHARC-Online compared

to SHARC-Offline can not exceed more than 100%. In order to get tighter bounds,

we analyze the worst case scenario for SHARC-Online. In SHARC-Offline the hottest

pages are scheduled in the middle of the crawl interval. Since SHARC-Online does

not possess the full knowledge about the URLs of the site, it may download pages at

positions different from those of the SHARC-Offline strategy. To analyze the complexity

of the task, we assume that SHARC-Online can schedule (n+)−k downloads optimally.

However, k downloads do not follow the SHARC-Offline (k-misplacements). The worst

k-misplacements happen if we placed the k hottest pages in the k outermost positions.

Example 4.6 illustrates this case:

Example 4.6 (WORST CASE BLUR.) Consider a Web site of n+  =  pages with

λ = λ = , λ = λ = , λ = λ = , λ = λ = , λ = λ = . Let k =  be the

number of pages that do not follow the SHARC-Offline strategy. The optimal SHARC-

Offline strategy of this site is illustrated in Figure 4.3a with the worst case scenario in

Figure 4.3b.

The highest schedule penalty positions in the crawl are the first and the last download

slots: ω(,,) = ω(,,) = ., and downloads of the hottest pages (p and p
with λ = λ = ) at these positions maximizes the blur of the archive. The next two

highest schedule penalty positions are ω(,,) = ω(,,) = . and the next

hottest pages p and p are scheduled there. The remaining positions are scheduled

according to SHARC-Offline strategy resulting in an organ-pipes-like middle part of the

download schedule.

49

Chapter 4. Single Visit Crawling Strategies

The increase of the blur for the worst case scenario is

(−)ω(,,)+(−)ω(,,)−(−)ω(,,)

−(−)ω(,,)−(−)ω(,,) = .

Since now the blur of the SHARC-Offline is  ·
∑

i= i(i) = , the relative increase of

the blur of the worst case is /≈ %.

The following theorem states the increased blur of the worst case scenario with k-

misplacements. For simplicity, we assume that the number of pages n+ and the number

of misplacements k are even numbers.

Theorem 4.5 (WORST CASE INCREASE) Let the number of pages in the site n+ be

even with such change rates of the pages: λ = λ ≤ λ = λ ≤ ·· · ≤ λn− = λn. Let k be

the even number of pages that can be misplaced in the optimal SHARC-Offline strategy

and ∆ be the delay between two downloads. In the worst case the blur of the crawl

increases by:



k/−∑
i=

(λn−i − λi)ω(i∆ ,n,∆) − 

(n+−k)/∑
i=

(λk+i − λi)ω
((k


+ i

)
∆ ,n,∆

)
. (4.18)

Proof of Theorem 4.5
The proof follows from similar arguments as in Theorem 4.3. �

The actual increase in the blur that SHARC-Online exhibits over SHARC-Offline

depends on the characteristics of the Web site, especially on the size of the site (number

of pages) and the skew in the distribution of the pages’ change rates.

Skew has the larger impact, as illustrated in Figure 4.4a. Here we modeled the skew

with λi− = λi = /iskew, i = , . . . ,n/, n = . The increase of the skew by one

increases the blur by an order of magnitude. The misplacement of the hottest pages incurs

the highest amount of additional blur (see the steep increase for k =0–10 in Figure 4.4a).

As the more and more pages are misplaced (k = , . . . ,) the increase slows down.

Increasing the size n+  of the Web site, illustrated in Figure 4.4b, leads to high

additional blur for small n (cf. n =  and n =  in the figure), while further increasing

the number of pages changes the resulting blur only slightly (n =  and n =  in the

figure).

In the next section we compare SHARC-Online against other crawling strategies on

both real-world and synthetic datasets.

50

4.5. Experimental Evaluation

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

B
lu

r
In

cr
ea

se
, %

Number of Misplacements k

skew=1
skew=2
skew=3

(a) Skew Varies

n

k   

00% 00% 00% 00%

20% 28% 34% 36%

40% 48% 60% 63%

60% 60% 79% 83%

80% 64% 89% 95%

100 % 64% 92% 99%

(b) n Varies

Figure 4.4.: Worst Case Blur for Different Values of Skew and Size

4.5. Experimental Evaluation

We evaluated the SHARC-Online against the SHARC-Offline baseline and a selected set

of competitors. We first present the competitors under comparison in Section 4.5.1. The

experiments were designed so that we could use the exact history of changes as a reference

for computing the actual blur of the captures. This metric is defined in Section 4.5.2.

Datasets on which the SHARC-Online is evaluated are described in Section 4.5.3. Our

main experimental findings on the blur are presented in Section 4.5.4. Finally, we present

sensitivity studies in Section 4.5.5 where we vary the Web site properties like the size,

change skew, and crawl duration.

4.5.1. Methods under Comparison

We experimentally evaluate our own techniques — SHARC-Offline, SHARC-Online —

against a variety of baseline strategies: Breadth-first search (BFS) and Depth-first search

(DFS) (most typical techniques by archive crawlers), Hottest-first (HF), Hottest-last (HL)

(most promising simple crawlers, where heat refers to change rates of pages), and the

method of Olston and Pandey (OP) [75] (the best freshness-optimized crawling strategy).

SHARC-Offline requires the knowledge of all URLs of the site in advance. The setup of

our experiments allowed us to study this idealized strategy as a reference. In practice, it

is unrealistic to assume such knowledge, and SHARC-Online will be used instead. The

BFS and DFS strategies schedule downloads based on the graph structure of the site

51

Chapter 4. Single Visit Crawling Strategies

as it is dynamically traversed by the crawler (the crawl tree). BFS stores the detected

URLs in a FIFO queue, while DFS stores the detected URLs in a stack. HF and HL

download the hottest and the coldest page from the list of detected pages. All online

strategies (SHARC-Online, BFS, DFS, HF, HL) are dynamic and work incrementally: in

each iteration we schedule only one page (from among the so far detected pages). The

OP strategy sorts the pages in each iteration according to the values of the utility function

Upi(i) and downloads the one with the highest value. The utility function Upi(i) assumes

knowledge of the full change history. This assumption is not practical. We give these

optimistic performance numbers for comparison.

For incorporating change rate estimates, we include two versions: the change rate is

given either by the oracle or by a predictor. Chapter 6 describes in detail the predictors

and the features used for training. A random sample of 10% of the size of each Web site

was used to train the predictors.

4.5.2. Quality Metrics

We use the actual blur (Equation (4.19)) to assess single-visit strategies.

The intuition behind the actual blur is the same as the one behind the stochastic blur

(Definitions 4.1: the average number of changes that an explorer of the archive will

encounter. The stochastic blur uses change rates λi while the actual blur uses the history

of actual timepoints of changes (h, . . . ,hm). In combination with the download time t of

page p and the observation interval [os,oe], this allows us to define the actual blur of p:

B(p) =


oe −os

(∑
os≤h j≤t

(h j −os)+
∑

t<h j≤oe

(oe −h j)
)
. (4.19)

The actual blur B of an entire site capture with pages (p, . . . , pn) is the sum of the actual

blur values of all pages:

B(p, . . . , pn) =

n∑
i=

B(pi).

The actual blur with revisits can be defined similarly. Let tv be the visit and tr be the

revisit time of page p. Then the actual blur with revisits for observation interval [os,oe]

52

4.5. Experimental Evaluation

is:

B(p) =


oe −os

(∑
os<h j≤tv

(h j −os)+
∑

tv<h j≤ tv+tr


(
tv + tr


−h j)

+
∑

tv+tr
 <h j≤tr

(h j −
tv + tr


+
∑

tr<h j≤oe

(oe −h j)
)
. (4.20)

The intuition behind this formula is that for each page that should be accessed as of

observation time t, we can choose either the version as of the visit time or the version as

of the revisit time, whichever is closer to t.

The actual blur with revisits of a site capture with pages (p, . . . , pn) is the sum of the

corresponding values of all pages:

B(p, . . . , pn) =

n∑
i=

B(pi).

The OP utility function Up can be expressed in terms of actual blur. Up is the actual

blur of page p in interval [os,oe] given that the page is downloaded at oe: Up = B(p) =


oe−os

∑m
j=(h j − os). The utility function gives a higher priority to pages with late

changes.

4.5.3. Datasets

We tested our methods on the real-world datasets introduced in Chapter 3 and also on

synthetically generated Web sites for systematic variation of site properties.

The real-world datasets consist of Web archives of an academic Web site (MPII), a Web

directory (DMOZ) and five governmental Web sites (UKGOV). We split the UKGOV

dataset into five parts: MOD, DFID, ARMY, RAF, and DH. Recalling the information

in Table 3.1, DMOZ is the largest dataset with over 177 000 Web pages, while DH is

the smallest with around 2 000 Web pages. The MPII dataset consists of daily crawls,

the other datasets of weekly crawls. They are used for our main experiments about blur,

presented in Section 4.5.4.

We used the available datasets to simulate crawls and evaluate the SHARC-Offline

and SHARC-Online strategies. As a stress test for politeness-aware archive crawling,

we artificially slowed down the crawls so that they would take as long as the entire time

period covered by the dataset. This is done by replaying crawls from our stored data with

virtual time. Obviously, slowing down a crawl so that it would take months or even a

53

Chapter 4. Single Visit Crawling Strategies

whole year is quite extreme and does not correspond to what you would do in reality.

But this way we impose a large number of page changes on each crawl and turn our

experiments into more informative stress-test studies.

The synthetic datasets simulate changes according to the Poisson process and are used

in sensitivity experiments (see Section 4.5.5). The change rates are modeled with a

skewed distribution: λi = /((i+)skew). The Web graph of a synthetic site is generated

to form a tree with n pages; each page pi has outdegree children. The default values are

skew = ., outdegree = , and n = ,. To correlate site structure with skewed

change rates, we generated Web sites in two flavors. The first flavor has the the hottest

page at the root of the site tree, and the pages are gradually “cooling down” towards the

leaves (denoted by “Cold Leaves” in Tables 4.4–4.6). The second flavor consists of sites

where the root is coldest, and the pages are gradually “heating up” towards the leaves

(denoted by “Hot Leaves” in the captions).

4.5.4. Blur Experiments with Real-World Datasets

The results of the experiments on blur with single-visit strategies over real-world datasets

are shown in Table 4.3. The best values for each dataset are highlighted in boldface.

SHARC-Offline outperforms all competitors by a large margin. SHARC-Online with

change-rate oracle performs nearly as well as the optimal SHARC-Offline method. Its

additional burden, compared to SHARC-Offline, is that it needs to incrementally detect

the pages of a Web site. The experiments show that the penalty of this page-discovery

process is low.

SHARC-Online with predicted change rates leads a more pronounced increase of the

blur metric. Obviously, estimation errors about which pages are hot and which ones

are not so hot have a notable influence on the overall quality of a site capture. As a

consequence, SHARC-Online may even be slightly inferior to more traditional baselines

on some data, but it wins by a large margin for most datasets. Note that the traditional

baselines used a change-rate oracle; so the slight losses of SHARC-Online are mostly

due to the facts that the opponents had better a priori knowledge about changes.

Overall, this experiment showed that our blur-optimizing strategies do indeed provide

what our theory suggested: they clearly improve the quality of site captures for web

archiving.

54

4.5. Experimental Evaluation

SHARC HF HL BFS DFS OP

Offline Online Online

Site Oracle Oracle Predicted Oracle Oracle Oracle

MPII 0.12 0.13 0.16 0.26 0.15 0.24 0.15 0.18

DMOZ 0.18 0.19 0.23 0.24 0.31 0.25 0.25 0.24

MOD 2.14 2.16 2.17 2.48 2.98 2.41 2.46 3.15

DFID 2.11 2.17 2.17 3.35 2.20 2.51 2.19 2.17

ARMY 1.23 1.26 1.29 1.55 1.65 1.56 1.45 1.81

RAF 0.11 0.11 0.14 0.14 0.15 0.14 0.15 0.15

DH 2.82 2.83 2.94 4.00 3.08 3.08 3.08 3.27

Table 4.3.: Average Blur per Page

4.5.5. Sensitivity Studies

In this subsection, we studied the sensitivity of our crawl strategies with regard to the

scale (size) of a Web site, the skew in the change rate distribution of a site’s pages, and

the politeness-driven duration of the crawl. As we wanted to vary these parameters

systematically, we performed these experiments with synthetically generated Web sites.

Scalability. Tables 4.4a and 4.4b show blur results for Web sites with hotter pages closer

to the root and hotter pages closer to the leaves, respectively. While SHARC-Online

is only slightly worse than SHARC-Offline in Table 4.4b, the difference between the

strategies is more prominent in Table 4.4a. This difference appears because we discover

cold pages much later in Table 4.4b, and misguide the schedule for page downloads by

seeing mostly hot pages early on.

SHARC HF HL BFS DFS OP

Size Offline Online

 · 1.21 1.70 1.75 2.26 2.00 1.80 2.28

 · 1.25 1.75 1.80 2.38 2.07 1.83 2.42

 · 1.27 1.77 1.82 2.44 2.13 1.87 2.48

 · 1.30 1.81 1.86 2.52 2.18 2.00 2.56

 · 1.31 1.83 1.87 2.55 2.19 2.01 2.59

(a) Cold Leaves

SHARC HF HL BFS DFS OP

Size Offline Online

 · 1.19 1.21 2.24 1.44 1.28 1.22 2.25

 · 1.25 1.26 2.39 1.53 1.92 1.81 2.42

 · 1.26 1.27 2.43 1.55 1.36 1.30 2.47

 · 1.29 1.30 2.52 1.60 1.39 1.96 2.56

 · 1.31 1.31 2.55 1.61 2.21 1.94 2.59

(a) Hot Leaves

Table 4.4.: Scalability: Average Blur per Page

55

Chapter 4. Single Visit Crawling Strategies

Slow- SHARC HF HL BFS DFS OP

down Offline Online

1 1.20 1.68 1.97 2.25 2.21 1.78 2.28

2 2.41 3.38 3.96 4.50 4.36 3.46 4.41

3 3.58 5.02 5.89 6.70 6.48 5.07 6.54

4 4.79 6.72 7.88 8.98 8.81 7.28 8.77

5 5.99 8.38 9.83 11.21 10.77 8.58 10.95

10 12.00 16.83 19.75 22.48 21.62 16.75 22.00

(a) Cold Leaves

Slow- SHARC HF HL BFS DFS OP

down Offline Online

1 1.20 1.22 2.27 2.10 1.86 1.85 2.27

2 2.39 2.42 4.48 4.17 2.47 2.46 4.40

3 3.60 3.65 6.73 6.25 3.92 4.02 6.56

4 4.80 4.86 8.99 8.37 7.55 7.47 8.77

5 5.98 6.07 11.19 10.42 8.29 8.24 10.94

10 12.01 12.18 22.47 20.92 17.67 18.79 22.03

(a) Hot Leaves

Table 4.5.: Crawl Duration: Average Blur per Page

SHARC-Online consistently outperforms all baseline opponents. Schedules of HF for

the dataset with cold leaves and HL for the hot leaves are very similar to the schedule of

SHARC-Online. Consequently, HF and HL perform almost as well as SHARC-Online in

some cases, but strongly deteriorate in the other cases. Moreover, they are much more

sensitive to the size of a Web site. The sensitivity comes from the strong influence of the

different sizes on the number of leaves and consequently on the placement of the hot and

cold pages in the schedule.

Crawl Duration. In this experiment we increased the politeness delay by a specified

slow-down factor. Tables 4.5a and 4.5b show the resulting blur values. For all strategies

the capture interval increases, and in turn, the blur increases as well. For short captures all

competitors perform similarly, as crawling is almost “instantaneous”. For longer captures,

our SHARC strategies become increasingly advantageous over the competitors.

SHARC-Online outperforms all other online strategies. The only exception is the DFS

strategy for the longest crawl and the dataset with cold leaves. The specific placement of

the changes in the tree of the Web site made the schedule of the DFS slightly closer to

the schedule of SHARC-Offline. However, as the placement of the hot pages changes

(Table 4.5b) the cold pages are discovered earlier and SHARC-Online substantially

outperforms DFS.

Skew. Skew controls how uniformly the changes are distributed among the pages.

High skew allocates most of the changes to very few pages, while low skew keeps the

changes uniformly distributed. In absolute numbers, this results in high blur for low

skew and low blur for high skew for all strategies. Table 4.6a shows the results for this

sensitivity study with the single-visit strategies aiming at low blur. Relative to the baseline

56

4.6. Summary

opponents, the SHARC strategies cope best with high skew. Their relative gains increase

with increasing skew.

SHARC HF HL BFS DFS OP

Skew Offline Online

0.50 60.49 67.00 73.53 73.84 71.79 67.63 69.23

1.00 2.57 3.35 3.99 4.40 4.29 3.54 4.20

1.50 0.61 0.88 1.08 1.21 1.18 1.00 1.22

2.00 0.37 0.58 0.70 0.74 0.74 0.63 0.74

(a) Cold Leaves

SHARC HF HL BFS DFS OP

Skew Offline Online

0.50 60.38 62.38 73.71 72.02 69.01 69.56 69.23

1.00 2.55 2.61 4.39 4.17 3.10 3.15 4.16

1.50 0.62 0.62 1.22 1.16 1.06 1.11 1.22

2.00 0.38 0.38 0.75 0.71 0.38 0.38 0.75

(b) Hot Leaves

Table 4.6.: Skew: Average Blur per Page

4.6. Summary

In this chapter we defined the blur quality measure for Web archives. It is a stochastic

measure appropriate for explorative use of Web archives. The properties of the blur

allowed us to design SHARC-Offline — a theoretically optimal crawling strategy. Since

the strategy requires full knowledge of the Web site in advance which is not always

available, we introduced SHARC-Online — a crawling strategy which resembles SHARC-

Offline but learns the Web site on-the-fly. We investigated the factors which influence

the performance of the crawling strategies. Furthermore, we showed that the both of the

strategies outperform the established crawling strategies in terms of quality of the resulting

captures. Since the blur measure is stochastic, it does not give deterministic guarantees

on the Web archive quality. For that purpose, in the next chapter, we define coherence

- a deterministic measure quality measure and develop the visit-revisit strategies which

maximize the coherence.

57

Chapter 4. Single Visit Crawling Strategies

58

Chapter 5.

Visit Revisit Crawling Strategies

5.1. Introduction

In this chapter we investigate the crawling strategies which tell exactly which pages

changed. These strategies download each page twice, where the second download (the

revisit) serves to check for changes. All the revisits follow all the visits. This approach

allows us to reason deterministically about the state of the archive as of the middle point

of the crawl, which we call the reference timepoint. The coherence of an entire site

capture at the reference time pint is the number of coherent pages. A page is coherent if

its versions at visit time and revisit time are identical.

Definition 5.1 (COHERENCE.) A page in a site capture is coherent if it did not change

between its visit and revisit. The coherence of a site capture is the number of pages in the

archived capture that did not change between their visit and revisit timepoints.

We investigate three approaches for visit-revisit crawling. First, the archive crawls for

the least blurred capture. Second, the archive crawls for the capture with maximum hope-

ful pages. Finally, the archive crawls for the capture with highest expected coherence. In

the next sections we cover the each approach, its underlying model and respective down-

load strategy or strategies. Section 5.2 defines blur for a capture with revisits and presents

the SHARC-Revisits download strategy which minimizes the blur. Section 5.3 introduces

the concepts of hopeful and hopeless pages as well as the SHARC-Threshold strategy

which maximizes the number of hopeful pages in a download schedule. Section 5.4

presents the SHARC-Intervals strategy which is an alternative to SHARC-Threshold. It

makes use of confidence intervals to increase the number of hopeful pages. Section 5.5

formally defines the expected coherence of a schedule and develops the SHARC-Selective

59

Chapter 5. Visit Revisit Crawling Strategies

download strategy which maximizes the expected coherence.

5.2. SHARC-Revisits

In this section we extend the definition of blur for captures with vistis and revisits.

Given Web pages p, p, . . . , pn and the change rates λ ≤ λ ≤ ·· · ≤ λn the task is to

find the timepoints (download slots) for the initial visits tv
, t

v
, . . . , t

v
n and for the revisits

tr
, t

r
, . . . , t

r
n such that the blur of the site capture is minimized. Since the archive now

consists of two versions of the page we return the version of the page that is closer to the

given query time t (cf. min{|tv
i − t |, |tr

i − t |} in the definition below).

Definition 5.2 (BLUR OF PAGE WITH REVISITS.) Let pi be a Web page with visit time

tv
i and revisit time tr

i . The blur of page pi is

B(pi, tv
i , t

r
i ,n,∆) =



(n+)∆

∫n∆+


λi min{|tv

i − t |, |tr
i − t |}

=


(n+)∆
λi

(∫(tv
i +tr

i)/


|tv

i − t | dt +
∫(n+)∆

(tv
i +tr

i)/

|tr
i − t | dt

)
=



(n+)∆
λiω(tv

i , t
r
i ,n,∆), (5.1)

where

ω(tv
i , t

r
i ,n,∆) = (tv

i)
 −

(tv
i + tr

i)



+ (tr

i)
 − tr

i (n + )∆ +
(n+)∆ 


(5.2)

is the download schedule penalty for downloads with revisits. The blur of an archived

capture with revisits is the sum of the blur values of the individual pages:

B(P,T v,T r,n,∆) =

n∑
i=

B(pi, tv
i , t

r
i ,n,∆), (5.3)

where T v = (tv
, . . . , t

v
n) are the visit and T r = (tr

, . . . , t
r
n) are the revisit times of pages

P = (p, . . . , pn). The average blur is B̄(P,T v,T r,n,∆) = /n
∑n

i=B(pi, tv
i , t

r
i ,n,∆).

Example 5.1 (BLUR WITH REVISITS.) Consider the Web site in Figure 4.1 with tv
 =

, tv
 = , . . . , tv

 =  visit and tr
 = , tr

 = , . . . , tr
 =  revisit times. The blur of page p

60

5.2. SHARC-Revisits

is

B(p,,,,) =
 ·ω(,,,)

 ·+
= −

(+)


+

−( ·+)+
( ·+)


= /. (5.4)

Similarly, B(p,,,,) = , B(p,,,,) = /, B(p,,,,) = /,

B(p,,,,) = /, B(p,,,,) = /, and the blur of the archive is

B(P,T v,T r,,) = +



+



+



+



+



≈ ..

The derivation of the optimal visits tv
, . . . , t

v
n and revisits tr

, . . . , t
r
n for minimum blur is

similar to the analysis of the optimal download schedule without revisits (cf. Theorem 4.3).

Again, we need to schedule pages in ascending order of λ values and descending order

of download schedule penalties ω(pi, tv
i , t

r
i ,n,∆), so that the product of these factors

minimizes the overall sum in Equation 5.1. Similarly to the download schedule penalty

without revisits, the penalty with revisits is always an elliptic paraboloid w.r.t. tv
i , t

r
i , with

one minimum (cf. Figure 5.1a). Equation 5.1 suggests the following strategy towards

minimizing blur. We schedule the visit and revisit of the hottest page in the download

slots with the smallest penalty (tv
, t

r
) (cf. Figure 5.1b). Then we mark all points (tv

, t)

and (s, tr
) as invalid and search the next valid position with smallest penalty, and so on.

This strategy results in visit-revisits forming a diagonal line in the visit-revisit plane (cf.

filled circles in Figure 5.1a).

The strategy is greedy: at each step we aim to assign the hottest change rate at the lowest

penalty position. While the strategy yielded an optimum in the single-visit case, this is

not necessarily the optimum for the visit-revisit case. To obtain an optimum schedule we

would need to scan all possible parabola of visits-revisits in the elliptic paraboloid and

check for which the sum of the factors of change rates and penalty positions yield the

smallest blur.

Definition 5.3 (SHARC-REVISITS.) Let P = (p, . . . , pn) be the Web site such that

λ ≤ ·· · ≤ λn. The pair

(tv
i , t

r
i) =

(i
 ,n++ i

) if i is even and

(n− i−
 ,n+− i−

) otherwise

defines the greedy strategy for the visit and revisit times of page pi.

61

Chapter 5. Visit Revisit Crawling Strategies

visits

Penalty

re
vi
sit
s

(a) Penalty

tr0

tv0

R
ev
is
it
s

0

20

10

0

1020 Visits tv1

tr1

(b) Greedy Approach

Figure 5.1.: Optimization of Crawling with Revisits

Example 5.2 (SHARC-REVISITS) Let us continue Example 5.1. The greedy visit and

revisit times for pages p, . . . , p are (tv
, t

r
) = (,), (tv

, t
r
) = (,), (tv

, t
r
) = (,),

(tv
, t

r
) = (,), (tv

, t
r
) = (,), (tv

, t
r
) = (,). The blur of the greedy schedule is

approximately 22.59.

5.3. SHARC-Threshold

Visit-revisit strategies schedule all visits before the revisits so that intervals between visit

and revisit have a non-empty intersection. With this approach, the ideal outcome would

be that all pages are mutually coherent if they individually did not change between their

visits and revisits. Section 5.2 developed a strategy which minimized the blur but did not

maximize the coherence. In this section we are looking for a strategy which schedules

the visits and the revisits in such way that the coherence increases. This is equivalent to

find the best order of visit-revisit intervals.

Two extreme choices of visit-revisit intervals are equidistant schedule where all inter-

vals have the same lengths, as shown in Figure 5.2a, and pyramid-like schedule, shown

in Figure 5.2b, where the intervals are centered around a the reference timepoint. Allo-

cation of pages (change rates) to the intervals is the degree of freedom of the strategies.

Intuitively, one could allocate the hottest pages to the shortest intervals greedily max-

imizing each page expected coherence. However, in certain cases it is better to “give

up” extremely hot (hopeless) pages, by assigning them to longer visit-revisit intervals so

62

5.3. SHARC-Threshold

λi Change Rate Page Capture Visit-revisit Interval

Pages
p

λ

tv,r


λ

tv
 tr



p

λ

tv
 tr



p

λ

tv
 tr



p

λ

tv
 tr



p

λ

tv
 tr



p

(a) Equidistant

λ

tv,r


p
Pages

λ

tv
 tr



p

λ

tv
 tr



p

λ

tv
 tr



p

λ

tv
 tr



p

λ

tv
 tr



p

(b) Pyramid

Figure 5.2.: Shapes of Schedules

that other (hopeful) pages get shorter visit-revisit intervals and, therefore, have higher

chances of getting coherently captured. In the current and in the following sections we

investigate two alternative strategies to identify hopeless pages: SHARC-Threshold and

SHARC-Intervals. We start with SHARC-Threshold.

Definition 5.4 (SHARC-THRESHOLD STRATEGY) Let p, . . . , pn be the Web site with

λ ≤ ·· · ≤ λn. Let τ be the threshold parameter. The following defines the visit-revisit

intervals iteratively.

Let p be the hottest page at iteration i such that the probability P[p is coherent in[(n−

i)∆ ,(n+ i+)∆]] = −exp{−((n− i)+)∆λ } is greater than τ then page p is hopeful

and its visit-revisit interval is

[(n− i)∆ ,(n+ i+)∆],

otherwise the page is declared hopeless and is postponed until the end.

Let ph
, . . . , ph

k be the set of hopeless pages such that λ h
 ≤ ·· · ≤ λ h

k . Then the visit-revisit

interval of ph
i is [(k− i)∆ ,(n−− k+ i)∆]

Theorem 5.1 (AVERAGE NUMBER OF COHERENT PAGES)

Let pp
 , . . . , pp

l and ph
, . . . , ph

k be the hopeful and hopeless pages. Let the changes of the

pages be distributed according to the independent Poisson processes with λ
p
 ≤ ·· · ≤ λ

p
k

and λ h
 ≤ ·· · ≤ λ h

l . Let [k+ i+ ,l + k+ − i] be the visit-revisit interval of pp
i and

[k− j,l + k+ j+] be the visit-revisit interval of ph
j of the SHARC-Threshold schedule.

Then the average number of coherent pages is

63

Chapter 5. Visit Revisit Crawling Strategies

tv,r


p
Pages

tv
 tr



p
tv
 tr



p

tv
 tr



p

tv
 tr



p

tv
 tr



p

(a) All Pages are Hopeful

tv,r


p
Pages

tv
 tr



p
tv
 tr



p

tv
 tr



p

tv
 tr



p

tv
 tr



p

(b) p is Hopeless

Figure 5.3.: SHARC-Threshold

l∑
i=

e
−λ

p
i

(
(l−i)+)

)
∆

+

k∑
j=

e
−λ h

j

(
(l+ j)+)

)
∆

.

Proof of Theorem 5.1 The proof follows from the properties of the Poisson process. �

Figure 5.3 illustrates the difference between schedules with hopeless pages and sched-

ules without. Consider the pages from Figure 4.1: pages p to p with ascending change

rates. Figure 5.3a shows the schedule if none of the pages is hopeless. Each page gets

visit-revisit intervals according to its change rate - the higher the change rate, the shorter

the interval. Figure 5.3a shows the schedule if p is hopeless. In that case p gets the

longest interval. In return, the intervals of the other pages get shorter.

To apply the SHARC-Threshold in practice, we have to choose an appropriate value

for the threshold parameter τ . Intuitively, the threshold must be high enough to guarantee

that hopeful pages are indeed coherent. Following this argument, we can set τ = ..

Experiments with synthetic datasets with varying change rate distributions (cf. Table 5.1)

show that for skewed distributions the best value for τ is .. In datasets with less

skewed change rate distributions, a low value for τ achieves better results. Under the

assumption that Web sites resemble datasets with skewed distribution of change rates

(few frequently changing pages and lots of static pages), we set τ = ..

SHARC-Threshold with varying values for τ

Skew τ = . τ = . τ = . τ = . τ = . τ = . τ = . τ = . τ = . τ = .

1.00 8619 7439 7097 7108 7164 7202 7248 7266 7260 7257

1.50 1291 1239 1188 1125 1045 961 848 723 549 519
2.00 235 221 210 197 187 162 144 129 100 78

Table 5.1.: SHARC-Threshold Incoherence with Varying τ

64

5.4. SHARC-Intervals

5.4. SHARC-Intervals

An alternative to the pyramid-like schedules is a schedule where the visit-revisit intervals

are computed in advance for each page based on their change rates. In this chapter we

present the SHARC-Intervals strategy which follows the aforementioned principle.

SHARC-Intervals aims to maximize the number of coherent pages in a site capture

by judicious scheduling of visit-revisit intervals based on estimated confidence intervals

for the absence of changes in a page (explained below). Figure 5.4 illustrates this by

example. The algorithm considers the lengths I= (I, . . . , In) of the confidence intervals

(the numbers on the right end of the intervals in Figure 5.4a) to schedule the visits tv
, . . . , t

v
n

and revisits tr
, . . . , t

r
n so that (i) tv

i and tr
i get unique positions, except for one page for

which visit and revisit collapse onto the same timepoint, (ii) there is at least a minimum

politeness delay ∆ between any two, and (iii) the pair tv
i , t

r
i forms an interval of length less

than or equal to Ii. An equivalence relation between scheduling of pages and scheduling

of confidence intervals immediately follows Condition (iii).

p 
p 
p 
p 
p 
p 
p 

(a) Input

0

tv,r


5

tv
 tr



5

tv
 tr



5

tv
 tr



6

tv
 tr



9
tv
 tr



12

tv
 tr



(b) Schedule

Figure 5.4.: Scheduling of Confidence Intervals

Conditions (i) and (ii) arise from the politeness etiquette and must be obeyed by any

schedule. Violation of Condition (iii) would entail that a page has a high risk of being

changed between its visit and revisit. We can always shorten the timespan between visit

and revisit (if the other conditions can still be ensured), but should avoid making it too

long. We may face a situation, though, where some pages have very short confidence

intervals or the appropriate download slots are already used to schedule other pages.

Then these pages are identified as hopeless, and will arrive at a (still large) fraction of

the site for which coherence is statistically guaranteed. Figure 5.4b shows the output

by SHARC-Intervals for the input in Figure 5.4a. Here SHARC-Intervals successfully

schedules six intervals: five intervals (pages p, . . . , p) are of maximal length, interval of

65

Chapter 5. Visit Revisit Crawling Strategies

page p is shortened, and page p is hopeless.

The lengths Ii of the confidence intervals can be computed by the commonly used

Poisson model for changes of the Web. Given the average change rate λi of page pi the

probability that page pi does not change in an interval of length Ii is

P(no change of pi in interval of length Ii) =
e−λiIi(λiIi)



!
.

If we require that this probability is above a threshold τ (e.g., 90%), then the length of

the confidence interval becomes

Ii = λ
−
i logτ

−. (5.5)

For brevity, we will omit the word “confidence” and call the confidence intervals just

intervals and the lengths of the confidence intervals as just “lengths”.

For simplicity, we focus on a discretized version of the problem: we assume that

all intervals are of integer lengths (I ⊂ Z+∪ ), and the delay between two download

positions is exactly ∆ . To simplify mathematical equations we set ∆ to 1.

5.4.1. SHARC-Intervals Offline Algorithm

The offline algorithm takes the lengths I as input and arranges the largest possible number

of non-hopeless intervals. The start and end points of the intervals get unique visit and

revisit positions. The offline SHARC-Intervals schedules the revisit positions first and the

visit positions fall out automatically.

Definition 5.5 (SCHEDULE, HOPELESS AND HOPEFUL PAGES.) Let I = (I, . . . , In)

be the lengths of intervals. Let V = (tv
, . . . , t

v
n) (i = , . . . ,n) be the positions of visits

and R= (tr
, . . . , t

r
n) (i = , . . . ,n) be the positions of revisits such that: (i) all download

positions are unique: tv
i 6= tv

j for all i 6= j, i, j ∈ {, . . . ,n}; tv
i 6= tr

j for all i, j ∈ {, . . . ,n}

except one pair (tv
l , t

r
l), for which tv

l = tr
l = n, and (ii) all intervals are scheduled: ∪i{tv

i }=

{,, . . . ,n} and ∪i{tr
i }= {n,n+, . . . ,n}.

Then V and R is a schedule of I. Length Ii in schedule V and R is hopeless if the

corresponding visit-revisit pair is longer than the length: tr
i − tv

i > Ii. Otherwise the

interval Ii is hopeful. Correspondingly, we call the page pi hopeless or hopeful too.

Example 5.3 (SCHEDULE, HOPELESS AND HOPEFUL

PAGES.) Assume that the lengths are as in Figure 5.4a. Then tv
 = tr

 = , tv
 = , tr

 = ,

66

5.4. SHARC-Intervals

tv
 = , tr

 = , tv
 = , tr

 =  tv
 = , tr

 = , (hopeful pages), tv
 = , tr

 =  and tv
 =

, tr
 =  (hopeless pages) is a schedule of the intervals. The schedule is illustrated in

Figure 5.5a.

0

tv,r


p
2p

tv
 tr



5p

tv
 tr



5p

tv
 tr



9p
tv
 tr



12p

tv
 tr



9p

tv
 tr



(a) Offline SHARC-Intervals

0

tv,r


5

tv
 tr



5

tv
 tr



5

tv
 tr



6

tv
 tr



9
tv
 tr



12

tv
 tr



(b) Alternative Schedule with Minimal Number of
Hopeless Pages

Figure 5.5.: SHARC-Intervals Schedules

Given all intervals in advance, the offline SHARC-Intervals algorithm schedules the

pages based on the following principles: First, the algorithm is greedy. It schedules

short intervals first in ascending order of length, since there is less leeway for them.

Second, the scheduling is iterative: given i− scheduled hopeful pages, the algorithm

looks for a visit-revisit interval with maximum length not exceeding the length if the i-th

interval. Third, if no visit-revisit pair can be found in the i-th planning step the page is

declared hopeless. All hopeless pages are scheduled at the end (after all hopeful pages),

in descending order of their interval lengths. Pseudocode for the offline SHARC-Intervals

is given in Algorithm 3.

5.4.2. Shrinking a Schedule

During the iterative construction of the offline SHARC-Intervals, we always use the full

lengths of the pages’ confidence intervals. That is, the lengths are never shortened for

possibly achieving higher number of hopeful pages in later iterations. This may produce

a much wider schedule than necessary (cf. Figure 5.6), or it may schedule some hopeless

pages on visit-revisit positions in between the hopeful ones (cf. page p in Figure 5.6a).

In both cases we can improve the schedule. We can exchange the visit positions of hopeful

pages with visit positions of hopeless pages if the hopeless pages are visited after the

hopeful ones. Thus, the visit-revisit intervals of the hopeful pages get shorter in contrast

67

Chapter 5. Visit Revisit Crawling Strategies

Algorithm 3 Offline SHARC-Intervals
Require: lengths sorted descending: I, . . . , In

Ensure: visit-revisit schedule: V and R
list of hopeless pages: H
Initialize the schedule V= R= ()

Initialize the list of hopeless pages H= /0

Initialize the list of visit positions LV = {,, . . . ,n−}

Initialize the list of revisit positions LR = {n+,n+, . . . ,n}

for i = , . . . ,n do . // Identify and schedule hopeful pages

find visit v ∈ LV and revisit r ∈ LR, such that r− v≤ |Ii| and is maximal

if v and r exist then
V= V⊕ v R= R⊕ r

LV = LV \ v LR = LR \ r

else
H=H⊕ Ii

end if
end for
Sort H ascending . // Schedule hopeless pages

for all h ∈H do
Find largest v ∈= LV and smallest r ∈ LR

V= V⊕ v R= R⊕ r

LV = LV \ v LR = LR \ r

end for

68

5.4. SHARC-Intervals

to the visit-revisit intervals of the hopeless pages which get longer. This increases the

chance for coherence of the hopeful pages.

0

tv,r


p
2p

tv
 tr



5p

tv
 tr



5p

tv
 tr



9p
tv
 tr



12p

tv
 tr



9p

tv
 tr



(a) Shrinking the Offline SHARC-Intervals

0

tv,r


p
2p

tv
 tr



5p

tv
 tr



5p

tv
 tr



8p
tv
 tr



12p

tv
 tr



10p

tv
 tr



(b) Shrunk Download Schedule

Figure 5.6.: Shortening of Intervals

Example 5.4 (SHRINKING OF A SCHEDULE.) Consider pages p and p from the

schedule in Figure 5.6a. Pages p and p have visit-revisit intervals of length , although

p is hopeless and p is hopeful. If we exchange their visit positions, p gets visit-revisit

interval of length  and page p gets visit-revisit interval of length  as illustrated in

Figure 5.6b.

5.4.3. SHARC-Intervals Online Algorithm

Here, we present an online version of SHARC-Intervals. Similarly to Section 4.4.4, we

build a download schedule iteratively as we discover pages on the Web site. We still

assume that the interval lengths can be predicted for each page, using a previously trained

predictor based on page type and other features.

The offline version of SHARC-Intervals aims to place pages with short intervals close

to the reference point. The online algorithm has a similar rationale, but has the handicap

that it learns about interval lengths only as it detects new pages. This entails difficulties,

since the online algorithm has to schedule the visits sequentially. For example, the online

algorithm chooses the second visit, only after executing the first. In contrast, the offline

algorithm first schedules all visits and afterwards executes them.

The online SHARC-Intervals starts with a set of seeds and aims to schedule the longest

available interval. Selection of the longest interval gives as much room as possible for

scheduling of shorter intervals around the reference point. If the longest interval is not

possible to schedule, due to unavailable revisit position, we continue with the second

69

Chapter 5. Visit Revisit Crawling Strategies

p
13

p

13

p
13

p

11

p

9

p

6

p
4

p
3

p
0

(a) Web Site

p
tv,r


13p

tv
 tr



13p

tv
 tr



13p

tv
 tr



9p

tv
 tr



6p

tv
 tr



11p

tv
 tr



3p

tv
 tr



10p

tv
 tr



(b) Online Schedule before Shrinking

p
tv,r


13p

tv
 tr



13p

tv
 tr



13p

tv
 tr



8p

tv
 tr



6p

tv
 tr



7p

tv
 tr



3p

tv
 tr



9p

tv
 tr



(c) Online Scheduling after Shrinking

Figure 5.7.: Online Example

longest interval. If no schedulable interval exists we schedule the shortest interval and

declare it to be hopeless. The revisit positions of the hopeless pages are assigned at

the end of all pages in reverse order. Once all pages are visited, we shrink the revisits.

Individual steps of the algorithm are given in Algorithm 4.

Example 5.5 (ONLINE SCHEDULE.) Consider the Web Site as in Figure 5.7a (here the

lengths of the intervals are pointed out in the bottom part of the nodes) and the seed p.

SHARC-Intervals online downloads the seed and discovers pages p and p. p has the

longest interval, and therefore is scheduled and downloaded next. The list of detected

pages increases to IE = (p, p, p, p). Next p, and afterwards p are the longest and

schedulable pages, and therefore they are scheduled and visited. Now the next longest

page is p (of length 11), however it is not possible to schedule a revisit for the page, and

p is scheduled and visited instead. Pages p and p follow in a similar fashion. Since no

page can be scheduled at this point, the shortest interval (page p) is visited and declared

hopeless. Eventually, p is visited and the visit part of the algorithm is completed. Now

we shrink the revisits (the shortest intervals are shrunk having the highest priority). This

way, pages p (from length 9 to 8), p (from length 11 to 7), and p (from length 10 to 9)

70

5.4. SHARC-Intervals

Algorithm 4 Online SHARC-Intervals
Require: Set of seeds ps

, . . . , ps
m

Number of pages in site n

Confidence threshold τ

Ensure: Downloaded sequence (pD
 , . . . , pD

n)

Initialize the detected lengths sorted descending IE = (Is
, . . . , I

s
m)

Initialize the revisits R= ()

Initialize current visit position v =−n

while IE 6= /0 do
for all Ii ∈ IE do

Let r = v+ Ii

if r >  and r /∈ R then . //page pi is hopeful

Select page p = pi for download

Exit the foreach loop

end if
end for
if no page was downloaded in the foreach loop then . //page p j is hopeless

Let I j ∈ IE be the shortest interval

Select page p = p j for download

end if
Download p

Update detected pages IE = IE ∪ ID(pi)

if r >  and r /∈ R then
Use the revisit position R= R∪ r

end if
end while
shrink(R)

Schedule revisits of hopeless pages in reverse order

71

Chapter 5. Visit Revisit Crawling Strategies

get shorter intervals.

5.4.4. Estimation of the Threshold Parameter

Similarly to SHARC-Threshold, SHARC-Intervals is applicable in practice only after

setting the threshold parameter τ . Using the same settings as in Section 5.3, we estimate

the best value for τ . On three synthetic datasets with different change rate distribution,

SHARC-Intervals achieves best values for τ = . and τ = . (cf. Table 5.2). Therefor,

we select τ = . for the experimental evaluation of SHARC-Intervals.

SHARC-Intervals with varying values for τ

Skew τ = . τ = . τ = . τ = . τ = . τ = . τ = . τ = . τ = . τ = .

1.00 8726 8574 8212 7831 7539 7358 7293 7273 7266 7257
1.50 1320 1291 1261 1212 1126 1047 970 874 745 790

2.00 240 231 221 211 195 176 165 130 104 86

Table 5.2.: SHARC-Intervals Incoherence with Varying τ

5.5. SHARC-Selective

Although SHARC-Threshold and SHARC-Intervals strategies improve the coherence

of the captures, both strategies require a threshold parameter τ: either to determine the

hopeless pages (SHARC-Threshold) or to compute the confidence intervals (SHARC-

Intervals). The threshold parameter introduces an additional level of complexity and

makes mathematical analysis of the strategies more difficult. In this section we introduce

a the SHARC-Selective strategy which schedules visits and revisits without the need for

a user defined parameter.

SHARC-Selective builds on the pyramid-like schedule of SHARC-Threshold (cf.

Figure 5.2b). An alternative strategy without user defined parameters is to to try out all

possible schedules of visit-revisit intervals (
(
(n+)

) in total) and opt for the strategy

that has the highest expected coherence. The complexity of such a strategy makes it

impractical. Focusing only on the family of visit-revisit schedules reduces the complexity

of the task. Moreover, the expected coherence is higher for pyramid-like compared to

equidistant schedule with equal change rates of the pages are the same. In addition, the

mathematical basis of the SHARC-Selective strategy allows the formal definition of the

hopeless pages.

72

5.5. SHARC-Selective

In summary, SHARC-Selective employs three principles:

1. Visit-revisit intervals form a pyramid.

2. Greedily assign the hottest hopeful pages to the shortest intervals.

3. Greedily assign the hottest hopeless pages to the longest intervals.

We organize the section in the following. First, we define the expected coherence

of a schedule. Second, we show that for the same change rates pyramid is better than

equidistant schedule. Third, we define the hopeless pages, and give the SHARC-Selective

offline and online algorithms.

Expected coherence of a schedule is the key concept to define hopeless page and

SHARC-Selective schedule.

Definition 5.6 (EXPECTED COHERENCE OF A SCHEDULE.) Let λi, . . . ,λk be the change

rates scheduled so the lengths of their visit-revisit intervals are Ii, . . . , Ik. Then the expected

coherence is

EC
(
(λi, Ii),(λi+, Ii+), . . . ,(λk, Ik)

)
= e−λiIi + · · · + e−λkIk .

Example 5.6 (EXPECTED COHERENCE OF A SCHEDULE.) Consider the schedule in

Figure 5.8a. There the change rates ., ., ., ., . are scheduled on the

intervals ,,,, (hottest to shortest), and the expected coherence is

EC
(
(.,),(.,),(.,),(.,),(.,)

)
= e−.·+ e−.·+ e−.·+ e−.·+ e−.· ≈ ..

Therefore, expected coherence is 2.22 pages (out of maximum five coherent pages).

Pyramid is better than equidistant schedule in terms of expected coherence for the

case when all pages have the same change rates. Below we formalize this result.

Theorem 5.2 (PYRAMID IS BETTER THAN EQUIDISTANT.) Let λ= · · ·= λn = λ . Then

the expected coherence is higher for the pyramid schedule compared to the equidistant

schedule for large enough n (n≥ +/(eλ∆ −)).

73

Chapter 5. Visit Revisit Crawling Strategies

Proof of Theorem 5.2 The proof is by induction. Assume that the theorem is true for the

schedules of length n:

expected-coherence(pyramid(n))

= EC
(
(λ ,) . . . ,(λ ,(n−)

)
= + e−λ∆ + e−λ∆ + . . .e−(n−)λ∆

≥ +(n−)e−nλ∆ = EC
(
(λ ,n) . . . ,(λ ,n)

)
= expected-coherence(equidist(n)).

We need to prove that

expected-coherence(pyramid(n+)) ≥ expected-coherence(equidist(n+)).

Since

expected-coherence(pyramid(n+1)) =

expected-coherence(pyramid(n))+ e−nλ∆

and

expected-coherence(equidist(n)) =

expected-coherence(equidist(n-1))+ne−(n+)λ∆ −(n−)e−nλ∆ ,

it suffices to show that

e−nλ∆ ≥ ne−(n+)λ∆ −(n−)e−nλ∆ .

This follows from the fact that

ne−(n+)λ∆ ≤ (n−)e−nλ∆ . (5.6)

Indeed, taking the logarithm of both sides in Equation (5.6):

log(n)−(n+)λ∆ ≤ log(n−)−nλ∆ ⇔
log(n)− log(n−)≤ λ∆ ,

which is true for all large enough n. �

A hopeless page is such an extremely hot page that it pays off to sacrifice the page

and assign a long visit-revisit interval to it in order for the other pages to receive shorter

intervals and increase the overall expected coherence of the capture.

74

5.5. SHARC-Selective

.

tv
 tr



.

tv
 tr



.

tv
 tr



.

tv
 tr



.

tv,r


(a) Hottest to Shortest

.

tv
 tr



.

tv
 tr



.

tv
 tr



.

tv
 tr



.

tv,r


(b) λ = . is Hopeless

Figure 5.8.: Example with Hopeless Pages

Definition 5.7 (HOPELESS PAGE.) Let λi≤ ·· · ≤ λk be the change rates and Ii < · · ·< Ik

be the lengths of the visit revisit intervals. Page pi is hopeless (change rate λi is hopeless)

if and only if

EC
(
(λk, Ii),(λk−, Ii+), . . . ,(λi, Ik)

)
= e−λkIi + e−λk−Ii+ + · · ·+ e−λiIk

≤ e−λk+Ii + e−λk+Ii+ · · ·+ e−λiIk− + e−λkIk

= EC
(
(λk−, Ii),(λk−, Ii+), . . . ,(λi, Ik−),(λk, Ik)

)
.

Otherwise we call page pi (change rate λi) hopeful.

Example 5.7 (HOPELESS PAGE.) Let λ = .,λ = .,λ = .,λ = . and

I = , I = , I = , I =  (cf. Example 5.6). Then change rate λ is hopeless. In order

to verify this statement we need to compare

EC
(
(.,),(.,),(.,),(.,)

)
≈ .

(expected coherence for schedule in Figure 5.8a) with

EC
(
(.,),(.,),(.,),(.,)

)
≈ .

(the expected coherence for schedule in Figure 5.8b). Since . < ., therefore λ is

hopeless.

Algorithms. The SHARC-Selective (offline) employs the three principles to schedule

the pages: (i) pyramid intervals, (ii) hottest hopeful pages to shortest interval, and (iii)

hottest hopeless pages to the longest intervals.

75

Chapter 5. Visit Revisit Crawling Strategies

.

tv
 tr



.

tv
 tr



.

tv
 tr



.

tv
 tr



.

tv,r


Figure 5.9.: SHARC-Selective Schedule for Change Rates in Figure 5.8a

Example 5.8 (SHARC-SELECTIVE.) Let us continue Examples 5.6 and 5.7.

Any page allocated the zero-length interval is always hopeful. Therefore λ = . is

hopeful and allocated at the zero-length interval. This completes the first iteration.

Example 5.6 shows that λ = . is a hopeless page for change rates (λ,λ,λ,λ) =

(.,.,.,.) and intervals (I, I, I, I) = (,,,) and is allocated for inter-

val I = . This completes the second iteration.

Since

EC
(
(λ, I),(λ, I),(λ, I)

)
≈ . < . ≈ EC

(
(λ, I),(λ, I),(λ, I)

)
(5.7)

therefore λ is also hopeless and is scheduled for the second largest interval I. This

completes the third iteration.

Since

EC
(
(λ, I),(λ, I)

)
≈ . > . ≈ EC

(
(λ, I),(λ, I)

)
, (5.8)

λ is a hopeful change rate, and is allocated for the shortest interval I. This allocates

the last (hopeful) change rate λ to I. The schedule is illustrated in Figure 5.9.

Algorithm 5 presents the SHARC-Selective offline algorithm. We check the page

whether it is hopeless or hopeful, appending it to the corresponding queue. Once all

hopeless pages H and hopeful pages F are identified, we visit all the hopeless pages H to

allocate the the longest intervals to H. Then hopeful page follow and get shorter intervals

The revisits are in the reverse order.

SHARC-Selective offline schedules the pages from hottest to coldest around the middle

point of the crawl. Consequently, the first Web page in the visit-revisit schedule is either

the first detected hopeless page or the coldest page if there are no hopeless pages.

To turn the offline strategy into an online strategy, instead of scanning the pages from

hottest to coldest, we scan from the coldest page to the hottest one. The strategy detects

76

5.6. Experimental Evaluation

Algorithm 5 SHARC-Selective Offline
Require: sorted pages p, . . ., pn

sorted intervals I, . . . , In

Ensure: visit-revisit schedule pv
, . . ., pv

n, pr
, . . ., pr

n

hopeless pages H hopeful pages F
Initialize hopeless pages H= ()

Initialize hopeful pages F= ()

for i = ,, . . . ,n do
if EC

(
(λn−i, I|F|), . . . ,(λ, In−|H|))

)
≥ EC

(
(λn−i−, I|F|), . . . ,(λn−, In−|H|))

)
then

F= F∪ pi

else
H=H∪ pi

end if
end for
visit H; visit F

on-the-fly new Web pages and schedules the visits of the hopeless pages as early as

possible (so these pages get the longest available visit-revisit intervals). This is shown

in Algorithm 6. We start with the set of seeds and identify hopeful and hopeless pages.

If there are hopeless pages we download the hottest hopeless page so it gets the longest

visit-revisit interval. Otherwise, we download the coldest hopeful page (we are at the

bottom of the pyramid). Then we detect new pages, and again identify the hopeful and

hopeless pages. The process is continued until all pages are downloaded. The algorithm

concludes with downloads of all pages according to their scheduled revisits.

5.6. Experimental Evaluation

In this section, we present the evaluation of our visit-revisit strategies against a selected

set of competitors. The section has a similar structure as the experimental section in

Chapter ?? We introduce the competitors and give arguments for our choice of SHARC-

Selective as a representative for the SHARC visit-revisit strategies in Section 5.6.1. In

Section5.6.2 we briefly summarize the datasets on which we performed the experiments.

The main experiments on coherence with real-world datastes are described in Section 5.6.3.

We also execute live crawls with SHARC-Selective on a prototype which we developed.

77

Chapter 5. Visit Revisit Crawling Strategies

Algorithm 6 SHARC-Selective Online
Require: sorted seeds (p, . . . , pm)

predicted Web size n

Ensure: visit-revisit sequence (pv
, . . . , pv

n, pr
, . . . , pr

n)

(H,F)=sharcxi (p, . . . , pm,m, . . . ,n)

while F 6= /0 and H 6= /0 do
if H 6= /0 then

Download the hottest p ∈H
H=H\ p

else
Download the coldest p ∈ F
F= F\ p

end if
D = urls(p)∪F∪H
(H,F) = sharcxi(D,|D|, . . . ,n)

end while
revisit the pages in the opposite order

The results are presented in Section 5.6.4. Finally, in Section 5.6.5 we perform sensitivity

studies where we systematically the properties of the synthetic datastes like size, change

skew, and crawl duration. As in Chapter 4, the experiments were designed so that we

could use the exact history of changes as a reference for computing the coherence of the

captures.

5.6.1. Methods under Comparison

We evaluate the online version of SHARC-Selective against the offline variant which

we use as a baseline and against the competitor strategies we introduced in Chapter 4:

Breadth-first search (BFS), Depth-first search (DFS), Hottest-first (HF), and Hottest-last

(HL). Since we evaluate visit-revisit strategies we extend the baseline strategies with

revisits. We include two version of the revisits - FIFO (first-in-first-out) or LIFO (last-in-

first-out). In practice, this means that the FIFO strategies schedule the revisits the same

way as the revisits, while the LIFO strategies schedule the revisits in reverse order. BFS

and DFS schedule the revisits based on the graph structure, while Hottest-first and Hottest-

last schedule the revisits based on the change rates. Thus, we consider Hottest-last LIFO

78

5.6. Experimental Evaluation

as baseline of the competitor strategies, since its schedule is similar to SHARC-Selective

but without the hopeless pages.

We prefered SHARC-Selective to SHARC-Threshold and SHARC-Intervals for the

evaluation since an earlier investigation on a older version of the MPII dataset (cf.

Table 5.3) showed that SHARC-Threshold and SHARC-Intervals configured with the

best value for the threshold parameter τ performed at most as good as Hottest-last LIFO.

Moreover, SHARC-Threshold consistently outperformed SHARC-Intervals. Table 5.4

contains the results of the investigation. These results led to the design of SHARC-

Selective which is based on the pyramid-like schedule of SHARC-Threshold but without

the need of a threshold parameter τ . SHARC-Selective automatically adjusts its schedule

such that the expected coherence is maximized.

Dataset Web Site Periodicity Pages Changing Pages

MPII mpi-inf.mpg.de daily 72394 687

Table 5.3.: Earlier Version of the MPII Dataset

Thresholds τ = . τ = . τ = . τ = . τ = . τ = . τ = . τ = . τ = .

Hottest-Last LIFO 3 3 3 3 3 3 3 3 3
SHARC-Intervals 221 214 214 215 215 71 71 3 54

SHARC-Threshold 172 155 136 114 96 79 57 28 3

Table 5.4.: Incoherence with Oracle with Varying τ on MPII

5.6.2. Datasets

We tested our methods on the real-world datasets introduced in Chapter 3, on the live

Web sites with sitemaps summarized in Table 5.5, and also on synthetically generated

Web sites for systematic variation of site properties.

The real-world datasets are MPII (an academic Web site), DMOZ (a Web directory),

and MOD, DFID, ARMY, RAF, and DH (all of them governmental Web sites). The size

varies from around 2 000 Web pages (DH) to over 177 000 (DMOZ). We use the datasets

in the main experiments on coherence (cf. Section 5.6.3). The experiments are performed

with artificially slowed down crawls that cover the whole time periods of the datasets.

Experiments with live crawls were executed as well (cf. Section 5.6.4).

79

Chapter 5. Visit Revisit Crawling Strategies

Dataset Web Site Pages

DeutscheWelle dw-world.de 5309

Intereconomia intereconomia.com 2948

EuroNews fr.euronews.net 672

Table 5.5.: Live Web Sites with Sitemaps

For the sensitivity studies we used the same synthetic datasets as in Chapter 4. We

simulate changes according to the Poisson process. The change rates are assigned

according to a skewed distribution: λi = /((i+)skew). The Web graph is a tree with n

pages. The outdegree of each page pi is constant outdegree. Here are the default values

of the parameters: skew = ., outdegree = , and n = ,. We keep both “Cold

Leaves” and “Hot Leaves” flavours of the tree. The “Cold Leaves” tree has the hottest

page as root and then “cools down”, leaving the coldest pages on the leaves. The “Hot

Leaves” tree follows the reverse pattern: coldest page is the root of the tree and pages

“heat up” towards the leaves.

5.6.3. Coherence Experiments with with Real-World Datasets

Similarly to Chapter 4, we estimate change rate estimates with either an oracle or a

predictor. In the experiments we measure and report the actual incoherence: the number

of pages that changed during their visit-revisit intervals. So just like with blur, the lower

the reported numbers are the better it is for Web archive quality.

We simulated artificially slowed down crawls on the datasets so that they would take as

long as the entire time period covered by the dataset. Although not realistic, this setting

helps get more informative stress-test results.

The results of the experiments on incoherence with visit-revisit strategies over real-

world datasets are shown in Table 5.6 with change rate oracle and Table 5.7 with change

rate predictors, respectively.

For the tests with change rate oracle, the SHARC-Selective strategies outperformed

all baseline opponents by a substantial margin. SHARC-Selective offline exhibits inco-

herence values that are lower than those of the competitors by more than a factor of 3.

SHARC-Selective online did not perform quite as well as its offline counterpart, but it is

not much worse and still much better than all online competitors. On one specific dataset,

SHARC-Selective online outperformed the offline variant, but it is due to “random” effects

80

5.6. Experimental Evaluation

SHARC-Selective SHARC HF HF HL HL BFS BFS DFS DFS

Site Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

MPII 145 453 837 1013 1252 751 508 935 1091 908 726

DMOZ 15914 25206 34233 37405 42240 33413 31720 35672 36176 34357 33048

MOD 4449 4701 5803 5903 5769 5766 5452 5840 5475 5767 4890

DFID 959 987 1113 1110 1115 1109 1104 1097 1038 1079 1049

ARMY 10947 12479 14052 13865 14528 14008 13901 14104 13996 14172 13120

RAF 2120 3284 4096 3487 4243 4077 3676 3242 3192 4006 3941

DH 11376 11368 11589 11514 11494 11546 11457 11625 11483 11625 11482

Table 5.6.: Incoherence with Oracle of Change Rates

SHARC-Selective SHARC HF HF HL HL

Site Offline Online Revisits FIFO LIFO FIFO LIFO

MPII 558 504 720 835 931 808 504
DMOZ 26016 31847 34098 36553 38396 34447 31847

MOD 4516 5089 5776 5867 5662 5748 5262

DFID 961 985 1076 1102 1076 1088 1054

ARMY 11774 12876 14305 14290 14245 14113 13796

RAF 3520 3745 3891 4030 3615 3914 3745

DH 11360 11305 11545 11596 11517 11681 11612

Table 5.7.: Incoherence with Predictor

regarding lucky situations by the order in which pages are detected. SHARC-Revisits

is designed to minimize the blur metric (not shown here), and performed moderately on

incoherence. The flexibility that the SHARC-Selective strategies have in dealing with

hopeless pages pays off well and leads to the highest gains on sites with a large number

of changing pages like DMOZ, MOD, DH, and ARMY.

When all methods are limited to the realistic case of relying on a change rate predictor,

the SHARC-Selective strategies again win by a substantial margin, as shown in Table 5.7.

We did no longer include the BFS and DFS strategies in this comparison, as they were

already clear losers in the experiments with change rate oracle. For some datasets,

SHARC-Selective online even performed better than the offline variant. The explanation

lies in the nature of the corresponding Web sites. For example, the MPII dataset is very

skewed: there are about 1,000 pages, out of 70,000, with very high change rates, while the

other 69,000 hardly ever changed. This reduced the quality of the change rate predictor

81

Chapter 5. Visit Revisit Crawling Strategies

and led to suboptimal behavior. SHARC-Selective online, our natural candidate for

deployment in a real system, performed very well across the suite of datasets: usually not

much worse than the offline variant, and sometimes even better.

Compared to the previous experiment with change rate oracle (see Table 5.6), the

incoherence values of the predictor-based methods increased considerably. Although

our predictors generally provided decent accuracy, there is room for improvement in this

regard.

5.6.4. Live Experiments with Sitemaps

We also performed live measurements (as opposed to experiments replayed from stored

data about former crawls) on a number of sites, using our prototype based on the Heritrix

crawler. Here we focused on sites which publish sitemaps, and we limit ourselves to

the three most interesting competitors because each strategy requires a separate crawl in

real-time. Running more simultaneous crawls on the same Web site would influence the

crawls themselves, and running different strategies sequentially would make their results

incomparable as they no longer see the same state of the site.

We crawled selected subsites of dw-world.de (5309 pages in total), intereconomia.
com (2948 pages), and fr.euronews.net (672 pages) defined by available sitemaps.

The results are shown in Table 5.8. SHARC-Selective clearly wins for all sites.

SHARC HL DFS

Site Selective LIFO LIFO

DeutcheWelle 3655 3705 3712

Intereconomia 2704 2723 2721

EuroNews 643 657 658

Table 5.8.: Incoherence with Sitemaps and Heritrix Crawler

5.6.5. Sensitivity Studies

Similarly to the evaluation of the blur-minimizing strategies, we studied the effects

on SHARC-Selective from the scale (size) of a Web site, the skew in the change rate

distribution of a site’s pages, and the politeness-driven duration of the crawl.

82

dw-world.de
intereconomia.com
intereconomia.com
fr.euronews.net

5.6. Experimental Evaluation

Scalability. In this experiment we vary the size of the Web site. Tables 5.9 and 5.10

show results for the incoherence measure with visit-revisit strategies. SHARC-Selective

strategies outperform all competitors, with increasing gains as the size of the site increased.

SHARC-Selective online produces schedules identical to those of the offline variant for

hot pages near the root (Table 5.9), as it detects these pages early. For the dual case of

hot pages near the leaves (Table 5.10), SHARC-Selective online lost against its offline

counterpart, but still outperformed all other opponents by a large margin.

SHARC-Selective SHARC HF HF HL HL BFS BFS DFS DFS

Size Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

 · 3075 3075 4104 4184 4140 4177 3079 4170 3719 4163 3995

 · 11940 11940 17327 17394 17959 17397 12100 17368 16072 17418 16366

 · 21378 21378 32051 32142 33705 32110 21533 32015 29033 32129 29395

Table 5.9.: Scalability: Incoherence (Cold Leaves)

SHARC-Selective SHARC HF HF HL HL BFS BFS DFS DFS

Size Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

 · 3019 3039 4143 4140 4057 4165 3238 4136 3785 4175 3999

 · 11830 11997 17377 17321 17925 17330 12364 17288 16582 17366 15397

 · 21417 21630 32295 32050 33776 32313 22165 32028 30618 32181 29664

Table 5.10.: Scalability: Incoherence (Hot Leaves)

Crawl Duration. To increase the crawl duration we multiply the politeness delay by

a slow-down factor. For visit-revisit strategies aiming at low incoherence, the results

are shown in Tables 5.11 and 5.12. The SHARC-Selective methods outperform all

competitors. The online method is very close to the offline variant, and sometimes even

better (see Table 5.11). This is due to “random” effects: early discovery of hopeless (very

hot) pages resulted in almost identical schedules for online and offline methods. But for

the dual case with hot pages closer to leaves (Table 5.12), the offline strategy consistently

outperforms the online variant as the latter discovers hopeless pages much later and thus

places them in suboptimal slots.

Skew. The skew parameter determines the distribution of changes are among the pages.

If the skew is high most of the changes go to very few pages. Conversely, low skew

83

Chapter 5. Visit Revisit Crawling Strategies

Slow- SHARC-Selective SHARC HF HF HL HL BFS BFS DFS DFS

down Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

1 3058 3058 4215 4172 4118 4212 3062 4176 3931 4222 3695

2 4608 4607 5865 5875 5359 5857 4919 5811 5317 5887 5542

3 5672 5673 6945 7009 6193 6984 6301 6984 6215 6975 6336

4 6255 6286 7695 7678 6646 7711 7287 7701 6814 7703 6842

5 6721 6753 8207 8214 7009 8224 7985 8224 7221 8195 7414

10 7906 7903 9443 9419 8003 9432 9488 9415 8561 9425 8619

Table 5.11.: Crawl Duration: Incoherence (Cold Leaves)

Slow- SHARC-Selective SHARC HF HF HL HL BFS BFS DFS DFS

down Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

1 3002 3006 4102 4115 4083 4150 3216 4091 3735 4170 4006

2 4547 4859 5778 5767 5281 5741 5288 5733 5598 5818 5305

3 5552 6387 6835 6894 6066 6833 6774 6896 6531 6887 6260

4 6221 6466 7697 7689 6696 7688 7816 7690 6856 7681 6953

5 6744 6847 8208 8215 7092 8210 8541 8222 7379 8195 7634

10 7959 8075 9431 9436 8118 9414 9760 9403 8708 9446 8309

Table 5.12.: Crawl Duration: Incoherence (Hot Leaves)

distributes the changes uniformly. Tables 5.13 and 5.14 show the result of the study with

visit-revisit strategies aiming at low incoherence. SHARC-Selective offline is the best

strategy and SHARC-Selective online is second best. For large skew values (skew > )

and hot pages closer to leaves, the online method does not differ from the offline variant,

since very few pages are very hot and their late discovery by the online crawler does not

influence the schedule anymore.

SHARC-Selective SHARC HF HF HL HL BFS BFS DFS DFS

Skew Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

1.00 7061 7073 8518 8517 7257 8504 8110 8540 7623 8509 7567

1.50 365 367 1064 1037 1308 1060 710 1056 1119 1035 935

2.00 11 35 169 174 246 176 210 178 223 170 175

Table 5.13.: Skew: Incoherence (Cold Leaves)

84

5.7. Summary

SHARC-Selective SHARC HF HF HL HL BFS BFS DFS DFS

Skew Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

1.00 7012 7151 8455 8479 7283 8475 8587 8516 7790 8486 7316

1.50 355 355 1018 1010 1237 1033 362 1035 714 1022 1157

2.00 20 20 182 174 225 171 22 177 186 181 169

Table 5.14.: Skew: Incoherence (Hot Leaves)

5.7. Summary

In this chapter we defined the coherence quality measure for Web archives. It is a

deterministic measure appropriate for legal use of Web archives. For deterministic

guarantees we introduced crawl strategies that visit pages twice: a first visit to fetch

the page and a later revisit to validate that the page has not changed. We developed

four distinctive strategies: SHARC-Revisits, SHARC-Threshold, SHARC-Intervals,

and SHARC-Selective. SHARC-Revisits simultaneously gives deterministic guarantees

for the capture and minimizes the capture’s blur. The other three strategies aim at

maximizing the coherence. The main difference is that SHARC-Selective does not need

user defined parameters to schedule the pages for download. The only requirement for

good performance of SHARC-Selective is an adequate estimation of the change rates

of the Web pages. The next chapter covers the change prediction mechanisms that we

employ.

85

Chapter 5. Visit Revisit Crawling Strategies

86

Chapter 6.

Prediction of Changes

In this thesis, we assume that each Web page changes according to a Poisson process

with an average change rate λ . This model is a simple, yet powerful tool to measure

and improve Web archive quality. The concepts of blur and coherence introduced in

Chapter 3 are mathematically expressed using the properties of the Poisson process. The

model is also the basis of the algorithms for download schedules yielding high-quality

Web archives. The insights from the analysis of the algorithms (organ-pipe schedule have

lowest blur and hopeless pages may improve coherence) are applicable in the design of

algorithms based on other change prediction models like periodicity and burstiness.

Decent change rate estimation is the crucial requirement for the application of the

strategies proposed in Chapters 4 and 5. Change rates can be determined from three

sources: 1) extracted from sitemaps, 2) estimated from previous crawls of a site, 3)

predicted by machine learning methods (classifiers or regression models) based on easily

observable features. We discuss all these issues below in turn.

6.1. Sitemaps

Sitemaps are an easy way for webmasters to inform robots about pages on their sites that

are available at the Web site for crawling. Recalling the background information provided

in Chapter 2, sitemaps are XML files that contain URLs pointing to other sitemaps or

a list of URLs available at the site. The compressed size of the sitemap is limited to

10MB and can contain up to 50K URLs. These limitations are introduced so that the Web

server does not need to serve very large files. If a sitemap exceeds the limit, then multiple

sitemap files and a sitemap index file must be created. However, it has become practice

that webmasters create several sitemaps even for small Web sites, grouping the URLs into

87

Chapter 6. Prediction of Changes

conceptual partitions of interrelated URLs on a site, sub-sites so to speak. Our framework

can harness information about sub-sites that site owners want to be crawled and archived

as coherently as possible.

A sitemap file consists of a list of URLs with metadata indicating the time of last

modification, the change frequency, and the priority of the URLs. The corresponding

fields in the sitemap file are lastmod, changefreq, and priority. The changefreq field

may have the following values always, hourly, daily, weekly, monthly, yearly, never. In

our implementation, however, we work with numerical values instead of categorical ones.

We map every category to a constant which describes the change behaviour of the pages

in the sitemap.

If our time unit is  minute, then a straightforward mapping would map  to the always

category, / to the hourly category and so on. Such a mapping implies that pages on

average change once in a time interval of a certain length (hour, day, week, month, year).

This is very restrictive, since a page may change twice a day or four times a week. We

propose a mapping scheme which takes into consideration that the change rate categories

in the sitemaps are only rough estimates and the actual change rates of the Web pages

may vary.

The mapping scheme defines a range of change rates for a category with an associated

time interval of a certain length. Then the average change rate in the range is taken as the

change rate that corresponds to the category. The change rates are such that the probabilty

that a page changes in the associated time interval is greater than a threshold parameter.

The formal definition follows:

Definition 6.1 (CHANGE RATES OF SITEMAP CATEGORIES) Let C,C, . . . ,Cn be

change rate categories. Let C,C, . . . ,Cn− be associated with time intervals of length

T,T, . . .Tn− such that Ti < Ti+ for ≤ i < n. Let τ be a threshold parameter. Then the

change rates λ,λ, . . .λn corresponding to C,C, . . . ,Cn are defined as

λi =


 for i = ,
Ti−+Ti
Ti−Ti

logτ− for  < i < n,


Ti−
logτ− for i = n.

In order to assign change rate to every change rate category of the Sitemap protocol,

we associate the always category with a time interval with the length of the politeness

delay ∆ . We set τ = ., since it gives us strong confidence that a page changes at least

once in a time interval indicated by its change rate category.

88

6.2. Estimation of Change Rates from Previous Crawls

Although sitemaps become increasingly popular and publish information about the

change frequency of the Web pages, estimating change rates from previous crawls is still

prefered.

6.2. Estimation of Change Rates from Previous
Crawls

We estimate change rates of Web pages with the so called oracle of change rates. We call

it an oracle, since it needs to know the full history of changes. This is in contrast to a

change rate predictor (see the next section) where the change history is known only for a

sample of pages and is used to learn a prediction model.

We use the standard maximum likelihood estimator (MLE) for a Poisson distribution

to estimate the change rate λ . Given a smaple of n observations x, . . . ,xn the MLE is

defined as

λ̂ =


n

n∑
i=

xi.

We postulate that the history of timepoints of changes of a page p for a time period

T is available. Given a politenes delay ∆ such that T = n∆ , we split the time period T

into n equal intervals of length ∆ . The observation xi represents the number of changes

observed in the i-th interval. Then the estimation of the change rate of p is given by the

MLE, under the assumption that the changes of p follow a Poisson process.

In practice not all Web pages may have history of changes. In the next section, we

demonstrate that it is possible to predict the change rates of a newly discovered Web page

based on features extracted from the URL and the content of the Web page.

6.3. Prediction of Change Rates with Classifiers

The predictor of change rates uses Naive Bayes and the C4.5 decision-tree classifiers

to predict change rates from given features of a page. We also tried linear regression,

but the due to the large number of non-changing pages the predicted change rates were

overwhelmingly close to zero. These initial results and the choice of categorical features,

especially in the online case, influenced our decision to use classifiers.

Since classifiers work with categorical output data (labeled classes), we discretize the

change rates using equal-frequency binning [46] with ten bins. Equal-frequency binning

89

Chapter 6. Prediction of Changes

aims to partition the domain of change rates into bins (intervals) so that each bin contains

the same (or nearly the same) number of observations (individual pages) from the dataset.

As for the features of the pages, we have investigated two different sets: features that are

only available in online settings (the Web page itself is not available, but only its URL

and its metadata) and offline settings (where the Web page is available as well):

• online features: features from the URL string:

– the domain name

– the MIME type – the type of the Web pages, it is available in the HTTP

response from the server,

– the depth of the URL path – the number of slashes in the URL,

– the number of characters in the URL,

– the first three word-segments of the URL path, a word-segement in a URL is

the substring between two slashes,

– boolean flags indicating presence or absence of special symbols in the URL:

tilde(∼), underline(_), question mark(?), semi-column(;), column(:), comma(,),

and percentage sign (%) .

• offline features: all online features and the following additional features:

– the number of day since the last change,

– the number of images in the Web page,

– the number of tables in the Web page,

– the number of outlinks from the Web page,

– the number of inlinks to the Web page.

6.4. Evaluation

We tested the classifiers on the available Web archive and the sitemap datasets.

Although we already introduced the datasets in earlier chapters, for the purpose of

clarity we describe them again. The Web archive datasets are periodic Web archives of an

academic Web site (MPII), a Web directory (DMOZ), and governmental Web sites (MOD,

DFID, ARMY, RAF, DH). The sitemap datasets (DeutscheWelle, Intercomnia, EuroNews)

90

6.4. Evaluation

are based on the sitemaps published by three news agencies. Tables 6.1 and 6.2 summarize

the size of the datasets.

Dataset Web Site Pages Changing Pages

MPII mpi-inf.mpg.de 72,071 1,356

DMOZ dmoz.org 177,446 50,855

MOD mod.uk 10,047 5,988

DFID dfid.gov.uk 2,186 1,131

ARMY army.mod.uk 37,330 15,259

RAF raf.mod.uk 27,836 4,286

DH dh.gov.uk 15,884 12,203

Table 6.1.: Web Aarchive Datasets

Dataset Web Site Pages

DeutscheWelle dw-world.de 5309

Intercomnia intereconomia.com 2948

EuroNews fr.euronews.net 672

Table 6.2.: Sitemap Datsets

The methodology we use for evaluation is 10-fold crossvalidation. We split every

dataset into 10 folds. We select 9 folds for training and one for testing. We repeat this

procedure 10 times, such that every fold serves as test data. The reported precision is the

average value of all 10 test iterations.

The results are shown in Table 6.3.

The change rate predictors are indeed practically viable. Not surprisingly, the overall

winners use offline features, but the online-features predictors are also fairly accurate.

C4.5 is slightly more accurate than the Naive Bayesian classifier (see Table 6.3);

therefore we use C4.5 in our main experiments presented in Section 4.5. For most

datasets the classifier achieved about 70% accuracy. However, even when the classifier is

only 40% accurate, the mispredicted change rates are typically close to the actual values

and still useful for the scheduling algorithms. This is because we are using ten bins and

when we do not classify the change rate into the correct bin (for example the bin with

91

Chapter 6. Prediction of Changes

Dataset Online Features Offline Features

Bayesian C4.5 Bayesian C4.5

MPII 90.857 97.951 97.502 97.951
DMOZ 27.398 43.520 48.670 43.753
MOD 79.379 85.995 80.794 86.886
DFID 70.653 67.437 74.020 71.256

ARMY 78.423 80.660 79.312 82.406
RAF 85.848 86.561 89.453 91.902
DH 37.011 41.658 41.798 46.002

Table 6.3.: Classification Precision for Web Archive Datasets

hourly change rates) it is often assigned to an adjacent bin (e.g., the bin of daily changing

rates).

We also tested the classifiers for sites with the sitemap datasets. The setup of the

experiment is similar to the previous setting; however, we did not need to discretize the

change rates, because change frequency is already a categorical attribute in sitemaps (see

sitemap example at the beginning of the section). As input features of pages, we have

used the domain name, MIME type, depth within the URL path, and number of days

since the last update.

As in the previous experimetn, we applied 10-fold crossvalidation. The datasets were

split into 10 folds, 9 were used for training and one for testing. We took the averge

precision of the 10 different test runs. The results of cross-validation are shown in Figure

6.4. Change rate predictors for sitemaps are extremely precise.

Dataset Naive Bayesian C4.5

DeutscheWelle 100.00 99.981

Intereconomia 98.464 99.889
EuroNews 99.977 99.977

Table 6.4.: Classification Precision for Sitemap Datasets

92

Chapter 7.

Prototype Implementation

We designed and implemented a prototype based on the Heritrix Web crawler [65]. The

source code of the prototype is available online 1 as a module in the Living Web Archives

project. In this chapter, we describe the prototype’s architecture, algorithms, and data

structures.

7.1. Prototype Architecture

The Heritrix Web crawler is a Web crawler designed especially for the task of Web archiv-

ing. It is the crawler of choice in various archiving institutions and high-profile libraries

(Bibliothèque nationale de France2, CiteSeerX3, Smithsonian Institution Archives4).

Three factors have contributed most for its wide adoption. First, it is an open-source

project. developed by Internet Archive with contributions and support from other in-

stitutions. Second, it is addresses the special needs of Web archives. In a joint effort,

twelve national libraries together with the Internet Archive collected a list of detailed

requirements for an Web archiving crawler [44]. Heritrix has been developed with these

requirements in mind. Finally, Heritrix’s architecture allows for easy customization.

Figure 7.1 shows the architecture of Heritrix. The basic units of the crawler are the

crawl jobs, the crawl controller and the configuration interfaces.

Users interact with Heritrix by providing crawl configurations. Users can do that

either through a Web-based interface or through an application programming interface.

1http://code.google.com/p/liwa-technologies/
2http://www.bnf.fr/
3http://citeseerx.ist.psu.edu/
4http://siarchives.si.edu/

93

Chapter 7. Prototype Implementation

Figure 7.1.: Heritrix Architecture

Providing these two options of interaction, the Heritrix Web crawler can be used both as

a standalone application or as a separate module in a bigger system.

The configuration files include parameters of a crawl such as seeds, scope, size, duration,

politeness delay, broadband restrictions as well as definitions of data structures and other

modules like database connectivity, download strategies, and protocol support. For each

configuration file, the crawl controller creates, starts, and monitors a crawl jobs.

A crawl job manages the execution of a crawl. It consists of two main modules: a

processor chains and a frontier.

A processor chain is a sequence of objects (processors) which handle a detected URL

in a fixed order. Heritrix comes with a default processor chain. If there is a need, one

can modify the processor chain by adding or removing processors. The default processor

chain consists of preprocessor, fetcher, link extractor, writer, and postprocessor. The

preprocess determines if a URL belongs to the scope of the crawl. The scope definition

may contain restrictions on various properties of the URL (domain, MIME type, hierarchy

94

7.1. Prototype Architecture

depth, etc.). If the URL is selected for download, it is passed to the fetcher. The fetcher

selects the appropriate protocol for download (HTTP, FTP, DNS, etc.) and downloads the

URL. The content of the URL is passed to the link extractor which parses the content and

extracts outlinks. The link extractor finds outlinks not only in HTML files, but also in

JavaScript, CSS or PDF files. The URLs of the outlinks are stored in the frontier. After

extracting the outlinks, the writer saves the page content in ARC [31] or WARC[32] files.

Finally, the postprocessor updates system variables in Heritrix signaling that the processor

chain is ready to handle a new URL.

All detected and not yet downloaded URLs are stored in the frontier. The frontier

maintains different queues for URLs from each Web site. This is done to achieve high

throughput without overloading the remote servers. When the process chain is ready for a

new URL, the frontier picks up a URL from the queue corresponding to the least queried

Web server and feeds the process chain. However, the order of the URLs in the queue is

fixed. This limitation of Heritrix does not allow embedding a scheduling algorithm inside

the frontier. Instead, the scheduling takes place in the crawl controller. Figure 7.2 shows

the architecture of our SHARC prototype and its relation to Heritrix.

The prototype has two main modules: scheduler and database. The scheduler dis-

patches pages for downloading, driven by configurable options for the selected download

strategy. In the original Heritrix crawler, the scheduling is based on a breadth-first strat-

egy; search engines, on the other hand, employ techniques that optimize for freshness,

importance of pages, and scope (news, blogs, Deep Web).

In this prototype, we implement visit-revisit schedules. It allows testing for content

changes right after the crawl has completed. Several visit-revisit strategies are supported

including SHARC-Selective. The scheduler creates a download schedule for visits and

revisits of URLs according to the selected strategy. The URLs are inserted in the queues

of the frontier in the prescribed order. Each URL is passed to the processor chain and

subsequently crawled. To make the crawling more efficient, we configure Heritrix to use

conditional GET requests that make use of the contents’ ETags. As a result, the revisit

phase becomes faster by simultaneously reducing bandwidth as well as server load. All

crawls are then made accessible as a set of distinct visit-revisit pairs. The visits and the

revisits are stored and indexed in a database (PostgreSQL in our case).

While we reused most of the modules of Heritrix and we also added three more

modules to Heritrix (the shaded region in Figure 7.2).The sitemaps and the seeds modules

provide a list of URLs for the crawl. The seeds module loads the URLs from exisiting

Web archives. The sitemap module gets the URLs from a set of specified sitemaps.

95

Chapter 7. Prototype Implementation

Figure 7.2.: SHARC Architecture

Additionally, this module supplies the change frequencies of the Web pages as given in

the sitemaps. In case no sitemaps are used, the scheduler receives the change rates from

the change rate module.

The change rate module either estimates change rates from previous crawls of a site

or predicts them by machine learning techniques. Chapter 6 gives more details on these

methods. Both the statistic for the change rate estimation and the training data for machine

learning algorithms come from our database of Web archives. Apart from storing archives

from Heritrix, we import ARC and WARC files to our database for better change rate

prediction and change analysis.

7.2. Data Extraction and Preparation

This section discusses data collection, extraction, and preparation issues for the under-

standing and prediction of changes in Web archives.

96

7.2. Data Extraction and Preparation

Different types of change analysis and prediction techniques may pose different re-

quirements for the input data. In the simplest case an analysis may require a single

instance of a site’s archived pages, while classifiers and more elaborated analysis may

investigate the dynamics of changes requiring a sequence of captures of one or multiple

sites including both page (content) and link (structure) information of the site(s). To

cope with the generality of the inputs we aim to reuse as much of the general database

management technologies as possible and push as much of data storage, retrieval, and

processing to the standard SQL DBMS level. In this section we outline how a database

schema should look like, and how to import and clean the data with standard SQL.

Database Schema

Essentially, the database schema (cf. Figure 7.3) consists of the pages relation (t_pages)

and links relation (t_links). The pages relation records information related to a page in

a Web site including its url, size, status code, and last modified timestamp. In addition,

we encode the url with url_id but record only the site_id. This allows us to quickly and

efficiently retrieve selections of the pages of specific site_id and crawl_id, check whether

the page has changed in two subsequent crawls, and perform efficient and effective data

cleaning (cf. Section 7.2). The payload of the page is stored in the content attribute

provided it did change compared to the previous crawl (cf. vs_page_id). Essentially, the

link information is recorded in t_links table. The pair attributes from_url_id to_url_id

identify all links from and to a page for a given crawl. The crawl order of the Web archive

can be accessed through the parent_page_id attribute in the t_pages table.

Data Import from WARC files

Data import from ARC and WARC files primarily consists of two tasks: loading the data

into the database, and reduplicating and cleaning the data.

ARC [31] and its successor WARC [32] are the established standard formats in Web

archiving. Each file is a sequence of records. A record consists of a header and a content

block. The header is a set of key-value pairs which are specific for every record type.

There are eight record types: warcinfo, response, request, metadata, revisit, conversion,

and continuation. The response record type is the one which stores archived pages and

the accompanying metadata. Listing 7.1 shows an example of a WARC response record,

taken from the WARC specification [32]. The headers provide information about the

97

Chapter 7. Prototype Implementation

Figure 7.3.: Database Schema

URL, the time of creation, and the content of the record. The content block is an exact

copy of a received HTTP response.

98

7.2. Data Extraction and Preparation

warc / 0 . 9 7583 r e s p o n s e h t t p : / / www. a r c h i v e . o rg / images / l ogo . j p g
20050708010101 message / h t t p
uu id : a4b26b6b−f918 −4136−af04−f859d75aebe5

IP−Address : 2 0 7 . 2 4 1 . 2 2 4 . 2 4 1
R e l a t e d−Record−ID : uu id : f569983a−ef8c −4e62−b347−295 b227c3e51
Checksum : sha1 : 2ZWC6JAT6KNXKD37F7MOEKXQMRY75YY4

HTTP / 1 . x 200 OK
Date : F r i , 08 J u l 2005 0 1 : 0 1 : 0 1 GMT
S e r v e r : Apache / 1 . 3 . 3 3 (Debian GNU/ Linux) PHP / 5 . 0 . 4 −0 . 3
Las t−Modi f i ed : Sun , 12 Jun 2005 0 0 : 3 1 : 0 1 GMT
Etag : "914480−1 b2e−42ab8245 "
Accept−Ranges : b y t e s
Conten t−Length : 6958
Keep−A l i v e : t i m e o u t =15 , max=100
C o n n e c t i o n : Keep−A l i v e
Conten t−Type : image / j p e g

[6958 b y t e s o f b i n a r y d a t a h e r e]

Listing 7.1: WARC example

Our prototype parses the records in a WARC or in an ARC file and maps the headers

to the database schema. Unfortunately, neither ARC nor WARC formats support link

information of the Web site. We obtain this information from the DAT files, conveniently

created by the Heritrix crawler [65] during the archival and URL extraction process.

If ARC and WARC files are available, then the link structure between the pages can

be recreated with the help of the URL extraction module of Heritrix from the archived

HTML pages.

Web archive data needs to be cleaned prior to any analysis. The most typical problem

here are multiple downloads of the same page/URL. This occurs due to several reasons:

some pages are downloaded many times to reflect the download policy of the Web site

(such as robots.txt), since some embedded material was not available at the time of

the download, or because pages might be re-downloaded by the archivist to improve

the quality of the coverage/quality of the site. Furthermore, pages can be downloaded

multiple times because of the pure formatting of the URLs of the pages: if the Web server

does not distinguish upper and lower case in URLs, the designers of the individual pages

tend to use different capitalizations of both the filenames and the subdirectories. Large

parts of the site be be revisited multiple times for this reason. Removal of duplicates and

cleansing is essential for such data, since different capitalization influences the number of

changed documents and complicates the analysis of the history of changes for a given

page.

99

Chapter 7. Prototype Implementation

SQL code for the removal of duplicates is given in the Appendix (cf. Listing A.1 for

details). The algorithm identifies the tuple with the largest timestamp (cf. Lines 3–4) in

all groups of pages with the same url (cf. Line 6), and filters out all other tuples (cf. Lines

7–10). Once the duplicates from the t_pages relation are removed, the duplicate links can

be removed by removing all tuples that are not referenced in the cleaned t_pages relation.

For convenience we store the cleaned data in t_pages_dd and t_links_dd relations (cf.

Lines 1 and 12).

Removing duplicates of formatting of the URLs can be done similarly (cf. Listing A.2

in the Appendix). All URLs need to be lowercased, grouped by the same URLs, and the

URL with the latest timestamp is taken. However such an approach involves many and

costly string comparisons. Instead, we establish the grouping on the ids of the URLs level

(cf. Lines 1–8), and compute the smallest values for each group (cf. Lines 10–33).

7.3. Conclusions

The prototype we developed was used in practice for Web archiving by our partners in

the Living Web Archives project. This proved the applicability of the proposed Web

archiving model and crawling strategies. Furthermore, the data stored in the database

from both Web crawls and ARC/WARC files helped analyzing the changes of Web pages.

In the next chapter, we propose an approach for visual analysis of the coherence of

Web archives.

100

Chapter 8.

Visual Analysis

8.1. Introduction

The visual analysis of Web archives serves to examine the coherence of the archives and

to improve crawling strategies such that future crawl will be as coherent as possible.

According to our model Web archives may employ either single-visit strategies or visit-

revisit strategies to capture Web sites. We can compute only the coherence of visit-revisit

captures. Although coherence for single-visit captures is not formally defined, we can

still reason about it. If we pair two sequential single-visit captures, we can simulate visits

and revisits. In a series of single-visit captures, this helps to identify site captures which

are potentially of lower quality than the average.

Visual analysis of Web archives not only makes possible estimating the coherence of

single-visit captures but also gives insights for adjustment of the crawling strategies. If

changed Web pages are clustered in a subsite of the Web site, then the archivist may

decide to crawl this particular subsite separately. Conversely, if a subsite contains only

pages which did not change and are unlikely to change, the archivist may exclude the

subsite from the next crawls.

For the aforementioned purposes, we suggest three techniques for visual analysis of

changes in site captures:

• time series analysis of changes with area plots,

• analysis of changes with scatterplots,

• analysis of changes with graph visualization.

The first technique identifies single-visit captures with potentially low quality. The

101

Chapter 8. Visual Analysis

other two techniques discover correlations among the types and the locations of the

changed page in visit-revisit captures or in pairs of single-visit captures.

We choose single-visit captures of the Web site sabre.mod.uk from the UKGOV

dataset and a visit-revisit capture from the MPII dataset to demonstrate the visualization

techniques on both single-visit captures and visit-revisit captures.

The chapter is organized in the following way. Section 8.2 introduces the mechanisms

for change detection in single-visit and visit-revisit captures. Sections 8.3–8.5 present

the three visualization techniques and analyze the coherence in the selected site captures.

Finally, Section 8.6 summarizes the chapter.

8.2. Datasets and Change Detection

In this section we describe the datasets selected for the visual analysis and the mechanisms

to identify page changes.

We select single-visit captures of the Web site sabre.mod.uk from the UKGOV

dataset and a visit-revisit capture from the MPII dataset.

The archive of the sabre.mod.uk Web site consists of 130 weekly single-visit captures.

Altogether there are  pages,  are HTML pages,  are images, and the rest

are PDF files. Note, that the captures do not necessarily contain all the pages, since some

pages are added and other removed during the timespan of the captures. We use this

Web archive to demonstrate how archivists can reason about the coherence of single-visit

captures by using of area plots and then visually compare coherent captures with less

coherent ones.

The visit-revisit capture from the MPII dataset contains  pages each one with a

visit and a revisit. If the page has been removed between the visit and the revisit we store

the HTTP response from the Web server indicating that the page is not online anymore.

We use this capture to demonstrate how archivits can identify subsites of the Web site for

separate crawls or for exclusion from next crawls. To this end, we use graph visualization

which we discuss in detail in Section 8.5.

We detect changes in captured Web pages using one of the following techniques:

conditional GET requests, comparison of fingerprints of two versions of a Web page, or

computing the similarity between two versions with shingles.

Checking for changes with conditional GET requests takes place during the crawl.

When the crawler requests for a page, it may send a fingerprint of an already captured

102

8.3. Time Series Analysis with Area Plots

version of the Web page. The Web server will deliver the page only if the page has

changed after its previous download. If there are no changes, the crawler will store only

the HTTP response from the server without actually downloading the Web page. However,

the conditional GET mechanism is optional according to the HTTP protocol [40] and not

all Web servers may support it. In this case, we check for changes in a Web page using a

two captured versions of it.

Since byte-wise comparison between two versions of the same page may be time-

consuming, we compare the fingerprints of the two versions. At every visit, the crawler

gets not only the current content of the page, but also a 16-byte long fingerprint generated

by the MD5 Message-Digest Algorithm [45]. Any change in the content of the page

will be mirrored in the fingerprint. Sometimes, however, we consider two pages with

negligible differences as identical. For example, it is reasonable to consider two versions

of a Web page identical if the only difference is a timestamp indicating the retrieval time.

In this case, we compute the similarity of versions using shingles [16].

Shingles are n-gram fragments on word level. If a set of shingles represents each

version of a Web page, then the similarity between two versions is the Jaccard distance

between the corresponding sets of shingles. To compute of the shingles we consider

only the text content of the Web pages. This ensures that flash contents change at every

visit of the page (like advertisement banners or visit counters) are filtered out. Since we

want to take into account all other changes, we work with -grams and a high similarity

threshold (.). The temporal shingling [84] introduced by Schenkel can be also applied

if visits of the Web pages are frequent enough (every two minutes).

Once we have detected the changes in the Web pages, we can proceed with the visual

analysis of the site captures.

8.3. Time Series Analysis with Area Plots

We use time series analysis to detect captures with potentially low coherence. Area plots

visualize the difference between every two subsequent captures of the same Web site. The

magnitude of the difference indicates possible incoherence of the earlier capture.

he series of the area plots (cf. Figures 8.1a– 8.1c) can be used to get an overview of the

percentage of change in the captures of the sabre.mod.uk Web site as the time passes.

The X axis shows the id of the crawl (which increases with time), while the Y axis shows

the number of changed/unchanged/new/deleted pages. We draw separate figures for links

103

Chapter 8. Visual Analysis

(a) Links (b) HTML pages (c) Images

Figure 8.1.: Crawl sequence analysis of www.sabre.mod.uk site

(cf. Figure 8.1a), HTML pages (cf. Figure 8.1b), images (cf. Figure 8.1c).

Archivists can look for captures that contain significant number of changes. For

example, one can see that there are significant changes in the Web site in captures 52

and 93. Also the Web site itself greatly shrank over time. In that respect, the area plots

of links and HTML pages are helpful, while the area plot of images does not show the

decreasing trend.

Computation of area graphs can be expressed in pure SQL and optimized by the query

optimizer (cf. Listing B.1 in the Appendix) resulting in the overall O(n logn) or better

complexity.

8.4. Change Analysis with Scatterplots

Three-dimensional scatterplots visualize changes in a capture revealing corelations among

the changed pages. The visualization also helps to take a deeper look at the captures with

lower quality than average. Archivists can see where problems may arise and to what

extend the capture is applicable for their purposes.

Figures 8.2- 8.3 show scatterplot visualizations for the sabre.mod.uk site. We selected

captures 53 and 54 as examples. We have detected that the Capture 53 has many changes

while the next one contains fewer changes and is therefore more coherent. The scatterplots

give reveal details about the difference in quality between the two captures.

The scatterplot visualizations map the mime-type, the first-order subdirectory of the

and the URL of the page to the X, Y, and Z axes of the three-dimensional cube, while the

color shows whether the change took place (new pages are colored red, changed pages

are colored yellow, while the green color depicts unchanged pages). The archivist should

look for patterns of changed and added pages. For example from Figure 8.2 one can see

104

8.5. Change Analysis with Graph Visualization

that there are a few changes in the HTML files in the output and textonly subdirectories

(the yellow points in the figure) and a whole new subdirectory of files are added into the

Web archive (the red points at the top of the visualization). The changes of the pages (cf.

the four yellow points) indicate the dependencies between the pages: if a page changes

in the output directory then the corresponding page will change in the textonly directory.

The newly added pages show that the Web site underwent significant changes in terms

of structure, though content-wise the site did not vary much. Very few additional pages

were introduced in Capture 54 indicating a high quality of the archive.

Figure 8.2.: Change analysis of Capture 53

Computation of the visualization is similar to the one of the Areal Plots (cf. Section 8.3).

8.5. Change Analysis with Graph Visualization

Visualization of site captures not only can reveal patterns of changes like in the previous

section but also identify internal subsites in the Web sites.

105

Chapter 8. Visual Analysis

Figure 8.3.: Change analysis of Capture 54

Many big Web sites have internal subsites which follow specific change patterns.

Knowing this in advance will help archivists plan better future crawls, for example they

may specify that pages whose URLs are of certain pattern will be crawled separately

or even be skipped from crawling. The site hierarchy inferred from URLs of the Web

pages or sitemaps provided by the site owners are good indicators for internal structures.

However, there are questions which we can not answer using only URLs or sitemaps.

For example: Do the directories output and textonly of the Web site sabre.mod.uk (cf.

Figure 8.2) form a separate subsite or not? Looking only at the URLs of the Web pages

we will not consider the pages related. If we see that these pages change in a similar

fashion we may decide otherwise. We want to bring such patterns to the attention of

the archivists so that they make informed decision about the scope of the next crawls

balancing between the coverage and the coherence of the captures.

In this section we present an approach how to visualize captures as graphs and how

to analyze them for possible internal structures. From the huge amout of information

106

8.5. Change Analysis with Graph Visualization

available from the capture we filter out and display only the information about the changes

in the capture. By choosing graph representation we make sure that the changed pages

are in close proximity so patterns can emerge. For that purpose, we choose a (spanning)

tree representation derived from the crawler’s path within the site.

Visualizing the spanning tree gives insights about the position and the nature of the

changes in the Web contents compared with a previous crawl. However, the spanning

tree usually is large in size and infeasible for many visualization tools. To overcome that

problem and to focus on changes, we compress the tree and visualize only its relevant

components.

Algorithm 7 collapseNode
Require: Node node

node.collapsing=true

if hasLinkChange(node) then
node.color=red

node.collapsing=false

else if hasContentChange(node) then
node.color=yellow

node.collapsing=false

else
node.color=green

for all children of node do
collapseNode(child)

if child.collapsing=false then
node.collapsing=false

else
node.collapsingSize=child.collapsingSize+1

end if
end for

end if

107

Chapter 8. Visual Analysis

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" s t a n d a l o n e =" no " ?>
<graphml xmlns=" h t t p : / / graphml . g r a p h d r a w i n g . o rg / xmlns / graphml " x m l n s : x s i =" h t t p : / /www. w3

. org / 2 0 0 1 / XMLSchema− i n s t a n c e " xmlns :y =" h t t p : / /www. yworks . com / xml / graphml "
x s i : s c h e m a L o c a t i o n =" h t t p : / / graphml . g r a p h d r a w i n g . o rg / xmlns / graphml h t t p : / /www. yworks
. com / xml / schema / graphml / 1 . 0 / ygraphml . xsd ">

. . .
< g raph e d g e d e f a u l t =" d i r e c t e d " i d =" G229 ">

<node i d =" h t t p : / /www. mpi− i n f . mpg . de / i n d e x . h tml ">
< d a t a key=" d0 ">

<y:ShapeNode>
<y:Geometry wid th =" 10 .003 " h e i g h t =" 10 .003 " / >
< y : F i l l c o l o r =" #00 FF00 " t r a n s p a r e n t =" f a l s e " / >
< y :Shape t y p e =" e l l i p s e " / >

< / y:ShapeNode>
< / d a t a >
< d a t a key=" d1 "> h t t p : / /www. mpi− i n f . mpg . de / i n d e x . h tml OK< / d a t a >

< / node>
. . .
<edge s o u r c e =" h t t p : / /www. mpi− i n f . mpg . de / i n d e x . h tml " t a r g e t =" dns:www . mpi− i n f . mpg . de " / >
. . .

< / g raph >
< / graphml >

Listing 8.1: Coherence defect graphML-file (excerpt)

In the first step, we analyze the nodes of the spanning tree and “flag” them according to

their status: green if they are unchanged (coherent), yellow in case of text changes only,

red in case of link changes, and, finally, black if a page is missing in the revisit phase or

in the subsequent crawl.

Afterwards, we apply a collapsing strategy (cf. Algorithm 7), which tags the nodes

in each fully coherent subtree as collapsible and marks the changed nodes and their

ancestors as non-collapsible. In the visualization step (cf. Algorithm 8) we draw the

non-collapsible nodes colored as detected. Additionally, for each collapsed subtree we

draw a node proportional in size to the number of the nodes in the subtree and connect

this node to the parent of the subtree.

For a graphical representation, the previously computed compressed tree representation

is exported into a graphML-file (cf. Listing 8.1). The graphML [43] format is an XML-

based standard and a file format for graphs. It describes the structural properties of the

nodes and applied in many graph related software applications (yFiles1, visone2).

We chose a visit-revisit capture from our MPII dataset to demonstrate the advantages

of the graph visualization. We export the data into graphML format and visualize it with

1http://www.yworks.com/
2http://www.visone.info

108

8.5. Change Analysis with Graph Visualization

Algorithm 8 drawNode
Require: Node node

paintNode(node)

for all children of node do
if child.collapsing= f alse then

drawNode(child)

paintEdge(node,child)

end if
end for
if node.collapsingSize >  then

create node collapsedChild with size node.collapsingSize and green color

paintNode(collapsedChild)

paintEdge(node,collapsedChild)

end if

a compliant software.

Figure 8.4 depicts a sample visualization of an mpi-inf.mpg.de capture (

pages). We observe that the majority of changed pages are clustered in two subtrees.

The two clusters with changed pages consist of Web pages from two internal content

management systems employed by different departments of our institute. The content

management systems provide templates for both content and link structure. This explains

the patterns visible on the figure. The first cluster, most of the changes form triples with

two changed pages and a unchanged one. The two changed pages are on higher level in

the subtree than the unchanged page. In the second cluster, the pattern is different. The

pages again form triples, but this time with two unchanged pages and a changed page

between them. An archivist provided with such information about a capture may decide

to crawl these pages separately from the rest or may relax her requirements on changes,

so that the changes from content management systems do not affect the quality of the

capture.

At the same time, nodes much bigger in size than the rest represent many unchanged

pages. The largest node represents almost one third of all pages , the second largest

node represents  pages. Both of the nodes contain teaching material for courses from

last semesters. The material is archived and the Web pages are not expected to change.

Given such knowledge, the archivist may decide that future crawls do not visit these

pages. By reducing by a third the number of pages in the capture, the chances to capture

109

mpi-inf.mpg.de

Chapter 8. Visual Analysis

Figure 8.4.: Graph visualization of a visit-revisit capture of mpi-inf.mpg.de

110

8.6. Conclusions

the other pages increases.

8.6. Conclusions

In this chapter, we presented visualization techniques which complement our approach on

Web archive quality. We extend the coherence analysis to single-visit captures, identify

change patterns, and discover subsites supported by content management systems.

In Chapter 3 we defined coherence as a quality measure for visit-revisit captures. Here,

we demonstrated how to reason about coherence in single-visit captures using area plots

of series of captures. Furthermore, we investigated the change patterns with the help

of scatterplots. Finally, the visualization of a capture as a tree (the spanning tree of the

crawl) clustered together Web pages from content management systems.

111

Chapter 8. Visual Analysis

112

Chapter 9.

Conclusions

Data quality is crucial for the future exploitation of Web archives. Similarly to traditional

archives, Web archive applications cover both exploratory and evidentiary usage. We

developed a comprehensive model for Web archiving that encompasses both cases. An

appropriate quality measure was defined for each case: blur for exploratory usage,

coherence for evidentiary usage. We proposed a framework of quality-conscious crawling

strategies which optimize for either of the measures. The family of single-visit strategies

minimizes the blur and the family of visit-revisit strategies maximizes the coherence. The

experimental evaluation of the strategies confirmed that they outperform their competitors.

Since the download order of the pages depends on the change behaviour of the Web pages,

we adopted the Poisson process with page-specific change rates for modeling the changes.

Furthermore, we showed that these rates can be statistically predicted based on various

page properties. A prototype built on top of the Heritrix Web crawler demonstrated

the applicability of the developed strategies. Finally, we proposed three visualization

techniques to highlight the changes in a site capture. Thus, an archivist is able to refine

the scope of future crawls in order to get high-quality captures.

Future extensions of the model and the strategies presented in this thesis can go into

various directions. First, we can include automatic detection of subsites. For that purpose,

we suggested several visualization techniques to the user. However, an automatic subsite

detection will speed up scope refinement resulting in captures of higher quality. We could

detect subsites from sitemaps, Web site hierarchies, or change patterns.

Another possible direction is to assign priorities to Web pages. This will be a minor

change to our mathematical model. If we interpret the priority as the probability that

an archived Web page will be in the result set of a time-travel query, then the priority

will be a factor modifying the blur or the coherence of the page. A challenging task,

113

Chapter 9. Conclusions

however, is to assign the priorities. Certainly, sitemaps provide specific values but they

do not necessarily reflect the preferences of the Web site visitors. Furthermore, users’

interests change with time. For example, the general public will not be interested in a

specialized Web site commenting the strategic decisions of a businessperson. However, if

this businessperson runs for the office of a country’s president, all her previous decisions

and statements will be put under heavy scrutiny. As a result the priority of the specialized

Web site will increase dramatically. How to include such shifts in the society interests in

the Web archiving model is an open question.

Continuous crawling is yet another option for future development. In this case, our

Web archiving model have to be completely revised. A Web archive is not a series of

periodic captures anymore. Results of time-travel queries will be expressed in different

terms, not as site captures. Both blur and coherence will have different mathematical

definitions.

The last direction we point out is benchmarking. A benchmarking dataset would steer

further research towards the best practices in Web archiving. However, designing a

benchmarking dataset would entail coordination with the Web archiving institutions and

the Web content publishers.

114

Bibliography

[1] Serge Abiteboul, Mihai Preda, and Gregory Cobena. Adaptive on-line page

importance computation. In Proceedings of the 12th international conference on

World Wide Web, WWW ’03, pages 280–290, New York, NY, USA, 2003. ACM.

[2] Eytan Adar, Mira Dontcheva, James Fogarty, and Daniel S. Weld. Zoetrope:

interacting with the ephemeral Web. In Proceedings of the 21st annual ACM

symposium on User interface software and technology, UIST ’08, pages 239–248,

New York, NY, USA, 2008. ACM.

[3] Eytan Adar, Jaime Teevan, Susan T. Dumais, and Jonathan L. Elsas. The Web

changes everything: understanding the dynamics of Web content. In Proceedings

of the 2nd ACM international conference on Web search and data mining, WSDM

’09, pages 282–291, New York, NY, USA, 2009. ACM.

[4] Charu C. Aggarwal, Fatima Al-Garawi, and Philip S. Yu. Intelligent crawling

on the World Wide Web with arbitrary predicates. In Proceedings of the 10th

international conference on World Wide Web, WWW ’01, pages 96–105, New

York, NY, USA, 2001. ACM.

[5] Avishek Anand, Srikanta Bedathur, Klaus Berberich, Ralf Schenkel, and Christos

Tryfonopoulos. EverLast: A distributed architecture for preserving the Web. In

Proceedings of the 9th ACM/IEEE joint conference on Digital libraries, JCDL’09,

pages 331–340, Austin, Texas, 2009. ACM.

[6] North Carolina State Archives and State Library of North Carolina. North Carolina

State Government Web site archives. http://webarchives.ncdcr.gov/, April

2012.

[7] The National Archives. UK Government Web archive. http://www.
nationalarchives.gov.uk/webarchive/, April 2012.

115

http://webarchives.ncdcr.gov/
http://www.nationalarchives.gov.uk/webarchive/
http://www.nationalarchives.gov.uk/webarchive/

Bibliography

[8] Ricardo Baeza-Yates and Carlos Castillo. Balancing volume, quality and freshness

in Web crawling. In Ajith Abraham, Javier Ruiz-del-Solar, and Mario Köppen,

editors, Soft Computing Systems - Design, Management and Applications, Frontiers

in Artificial Intelligence and Applications, pages 565–572. IOS Press, 2002.

[9] Ricardo Baeza-Yates, Carlos Castillo, Mauricio Marin, and Andrea Rodriguez.

Crawling a country: better strategies than breadth-first for Web page ordering. In

Special interest tracks and posters of the 14th international conference on World

Wide Web, WWW ’05, pages 864–872, New York, NY, USA, 2005. ACM.

[10] Luciano Barbosa and Juliana Freire. An adaptive crawler for locating hidden-Web

entry points. In Proceedings of the 16th international conference on World Wide

Web, WWW ’07, pages 441–450, New York, NY, USA, 2007. ACM.

[11] Myriam Ben Saad and Stéphane Gançarski. Archiving the Web using page changes

patterns: a case study. In Proceedings of the 11th annual international ACM/IEEE

joint conference on Digital libraries, JCDL ’11, pages 113–122, New York, NY,

USA, 2011. ACM.

[12] András A. Benczúr, Dávid Siklósi, Jácint Szabó, István Biró, Zsolt Fekete, Miklós

Kurucz, Attila Pereszlényi, Simon Racz, and Adrienn Szabo. In Proceedings of

the 8th international Web archiving workshop, IWAW ’08.

[13] Michael Bendersky, W. Bruce Croft, and Yanlei Diao. Quality-biased ranking of

Web documents. In Proceedings of the 4th ACM international conference on Web

search and data mining, WSDM ’11, pages 95–104, New York, NY, USA, 2011.

ACM.

[14] Brian E. Brewington and George Cybenko. Keeping up with the changing Web.

Computer, 33(5):52–58, May 2000.

[15] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web

search engine. In Proceedings of the 7th international conference on World Wide

Web, WWW ’98, pages 107–117, Amsterdam, The Netherlands, The Netherlands,

1998. Elsevier Science Publishers B. V.

[16] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.

Syntactic clustering of the Web. In Selected papers from the 6th international

116

Bibliography

conference on World Wide Web, WWW ’97, pages 1157–1166, Essex, UK, 1997.

Elsevier Science Publishers Ltd.

[17] Niels Brügger. Archiving Web sites: general considerations and strategies. The

Centre for Internet Research, 2005.

[18] Niels Brügger. The archived Web site and Web site philology: a new type of

historical document? Nordicom Review, 29(2):151–171, 2008.

[19] Deutscher Bundestag. Deutscher Bundestag: Web-Archiv. http://webarchiv.
bundestag.de/cgi/kurz.php, April 2012.

[20] Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused crawling:

A new approach to topic-specific Web resource discovery. Computer Networks,

31(11-16):1623–1640, 1999.

[21] Ling Chen, Sourav S. Bhowmick, and Wolfgang Nejdl. NEAR-Miner: mining

evolution associations of Web site directories for efficient maintenance of Web

archives. Proceedings of the VLDB Endowment, 2(1):1150–1161, August 2009.

[22] Ed H. Chi, James Pitkow, Jock Mackinlay, Peter Pirolli, Rich Gossweiler, and

Stuart K. Card. Visualizing the evolution of Web ecologies. In Proceedings of

the SIGCHI conference on Human factors in computing systems, CHI ’98, pages

400–407, New York, NY, USA, 1998. ACM Press/Addison-Wesley Publishing Co.

[23] Junghoo Cho and Hector Garcia-Molina. The evolution of the Web and implications

for an incremental crawler. In Proceedings of the 26th international conference on

Very large data bases, VLDB ’00, pages 200–209, San Francisco, CA, USA, 2000.

Morgan Kaufmann Publishers Inc.

[24] Junghoo Cho and Hector Garcia-Molina. Synchronizing a database to improve

freshness. In Proceedings of the 19th ACM SIGMOD international conference on

Management of data, SIGMOD ’00, pages 117–128, New York, NY, USA, 2000.

ACM.

[25] Junghoo Cho and Hector Garcia-Molina. Effective page refresh policies for Web

crawlers. ACM Transactions on Database Systems, 28(4):390–426, December

2003.

117

 http://webarchiv.bundestag.de/cgi/kurz.php
 http://webarchiv.bundestag.de/cgi/kurz.php

Bibliography

[26] Junghoo Cho and Hector Garcia-Molina. Estimating frequency of change. ACM

Transactions on Internet Technology, 3(3):256–290, August 2003.

[27] Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling

through URL ordering. In Proceedings of the 7th international conference on

World Wide Web, WWW’ 98, pages 161–172, Amsterdam, The Netherlands, The

Netherlands, 1998. Elsevier Science Publishers B. V.

[28] Junghoo Cho, Sourashis Roy, and Robert E. Adams. Page quality: in search of an

unbiased Web ranking. In Proceedings of the 24th ACM SIGMOD international

conference on Management of data, SIGMOD ’05, pages 551–562, New York, NY,

USA, 2005. ACM.

[29] Junghoo Cho and Uri Schonfeld. RankMass crawler: a crawler with high per-

sonalized pagerank coverage guarantee. In Proceedings of the 33rd international

conference on Very large data bases, VLDB ’07, pages 375–386. VLDB Endow-

ment, 2007.

[30] Edward G. Coffman, Zhen Liu, and Richard R. Weber. Optimal robot scheduling

for Web search engines. Journal of Scheduling, 1(1):15–29, 1998.

[31] International Internet Preservation Consortium. ARC_IA, internet archive ARC file

format. http://www.digitalpreservation.gov/formats/fdd/fdd000235.
shtml.

[32] International Internet Preservation Consortium. WARC, Web archive file format.

http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml.

[33] Dimitar Denev, Arturas Mazeika, Marc Spaniol, and Gerhard Weikum. Sharc:

framework for quality-conscious Web archiving. Proceedings of the VLDB Endow-

ment, 2(1):586–597, August 2009.

[34] Dimitar Denev, Arturas Mazeika, Marc Spaniol, and Gerhard Weikum. The

SHARC framework for data quality in Web archiving. The VLDB Journal,

20(2):183–207, April 2011.

[35] Stephen Dill, Ravi Kumar, Kevin S. Mccurley, Sridhar Rajagopalan, D. Sivakumar,

and Andrew Tomkins. Self-similarity in the Web. ACM Transactions on Internet

Technology, 2(3):205–223, August 2002.

118

http://www.digitalpreservation.gov/formats/fdd/fdd000235.shtml
http://www.digitalpreservation.gov/formats/fdd/fdd000235.shtml
http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml

Bibliography

[36] Anlei Dong, Yi Chang, Zhaohui Zheng, Gilad Mishne, Jing Bai, Ruiqiang Zhang,

Karolina Buchner, Ciya Liao, and Fernando Diaz. Towards recency ranking in

Web search. In Proceedings of the third ACM international conference on Web

search and data mining, WSDM ’10, pages 11–20, New York, NY, USA, 2010.

ACM.

[37] Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey Mogul.

Rate of change and other metrics: a live study of the World Wide Web. In

Proceedings of the USENIX symposium on Internet technologies and systems,

USITS’97, pages 14–14, Berkeley, CA, USA, 1997. USENIX Association.

[38] Miklós Erdélyi, András A. Benczúr, Julien Masanés, and Dávid Siklósi. Web spam

filtering in internet archives. In Proceedings of the 5th international workshop

on Adversarial information retrieval on the Web, AIRWeb ’09, pages 17–20, New

York, NY, USA, 2009. ACM.

[39] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet Wiener. A large-scale

study of the evolution of Web pages. In Proceedings of the 12th international

conference on World Wide Web, WWW ’03, pages 669–678, New York, NY, USA,

2003. ACM.

[40] Roy Fielding, James Gettys, Jeffrey C. Mogul, Henrik Nielsen, Larry Masinter,

Paul J. Leach, and Tim Berners-Lee. RFC 2616: Hypertext Transfer Protocol –

HTTP/1.1. http://tools.ietf.org/html/rfc2616, 1999.

[41] Foundation for National Scientific Computing. Portuguese Web archive: search

the past. http://www.archive.pt/, April 2012.

[42] Daniel Gomes, João Miranda, and Manuel Costa. A survey on web archiving

initiatives. In Stefan Gradmann, Francesca Borri, Carlo Meghini, and Heiko

Schuldt, editors, Research and Advanced Technology for Digital Libraries, volume

6966 of Lecture Notes in Computer Science, pages 408–420. Springer Berlin /

Heidelberg, 2011. 10.1007/978-3-642-24469-8_41.

[43] GraphML Working Group. The graphML file format. http://graphml.
graphdrawing.org/, 2002.

[44] IIPC Access Working Group. Use cases for access to Internet archives. http:
//www.netpreserve.org/publications/iipc-r-003.pdf, 2006.

119

http://tools.ietf.org/html/rfc2616
http://www.archive.pt/
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
http://www.netpreserve.org/publications/iipc-r-003.pdf
http://www.netpreserve.org/publications/iipc-r-003.pdf

Bibliography

[45] Network Working Group. The MD5 Message-Digest Algorithm. http://tools.
ietf.org/html/rfc1321, 1992.

[46] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2005.

[47] Allan Heydon and Marc Najork. Mercator: A scalable, extensible Web crawler.

World Wide Web, 2(4):219–229, April 1999.

[48] Masahiko Itoh, Masashi Toyoda, and Masaru Kitsuregawa. An interactive vi-

sualization framework for time-series of Web graphs in a 3D environment. In

Proceedings of the 14th international conference on Information visualisation, IV

’10, pages 54–60, Washington, DC, USA, 2010. IEEE Computer Society.

[49] Adam Jatowt, Yukiko Kawai, Satoshi Nakamura, Yutaka Kidawara, and Katsumi

Tanaka. A browser for browsing the past Web. In Proceedings of the 15th

international conference on World Wide Web, WWW ’06, pages 877–878, New

York, NY, USA, 2006. ACM.

[50] George Karypis and Eui-Hong (Sam) Han. Fast supervised dimensionality re-

duction algorithm with applications to document categorization & retrieval. In

Proceedings of the 9th international conference on Information and knowledge

management, CIKM ’00, pages 12–19, New York, NY, USA, 2000. ACM.

[51] Sung Jin Kim and Sang Ho Lee. Estimating the change of Web pages. In Proceed-

ings of the 7th international conference on Computational Science, Part III, ICCS

’07, pages 798–805, Berlin, Heidelberg, 2007. Springer-Verlag.

[52] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of

the ACM, 46(5):604–632, September 1999.

[53] Martijn Koster. A standard for robot exclusion. http://www.robotstxt.org/
orig.html, 1994.

[54] Columbia University Libraries. Human rights Web archive. http://library.
columbia.edu/indiv/humanrights/hrwa.html, April 2012.

[55] Harvard University Library. Web archive collection service - Harvard University

Library. http://wax.lib.harvard.edu/collections/home.do, April 2012.

120

http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc1321
http://www.robotstxt.org/orig.html
http://www.robotstxt.org/orig.html
http://library.columbia.edu/indiv/humanrights/hrwa.html
http://library.columbia.edu/indiv/humanrights/hrwa.html
http://wax.lib.harvard.edu/collections/home.do

Bibliography

[56] Bing Liu and Filippo Menczer. Web crawling. In Web Data Mining, Data-Centric

Systems and Applications, pages 311–362. Springer Berlin Heidelberg, 2011.

[57] Ling Liu, Calton Pu, and Wei Tang. WebCQ-detecting and delivering information

changes on the Web. In Proceedings of the 9th international conference on

Information and knowledge management, CIKM ’00, pages 512–519, New York,

NY, USA, 2000. ACM.

[58] Yuting Liu, Bin Gao, Tie-Yan Liu, Ying Zhang, Zhiming Ma, Shuyuan He, and

Hang Li. Browserank: letting Web users vote for page importance. In Proceedings

of the 31st annual international ACM SIGIR conference on Research and develop-

ment in information retrieval, SIGIR ’08, pages 451–458, New York, NY, USA,

2008. ACM.

[59] Julien Masanès. Web archiving. Springer, 2006.

[60] Norman Matloff. Estimation of Internet file-access/modification rates from indirect

data. ACM Transactions on Modeling and Computer Simulation, 15(3):233–253,

July 2005.

[61] Arturas Mazeika, Dimitar Denev, Marc Spaniol, and Gerhard Weikum. The

SOLAR system for sharp Web archiving. In Julien Masanès, Andreas Rauber,

and Marc Spaniol, editors, Proceedings of the 10th international Web archiving

workshop, IWAW ’10, pages 24–30, 2010.

[62] Filippo Menczer. Lexical and semantic clustering by Web links. Journal of

the American Society for Information Science and Technology - Special issue:

Webometrics, 55(14):1261–1269, 2004.

[63] Filippo Menczer and Richard K. Belew. Adaptive retrieval agents: Internalizing

local context and scaling up to the Web. Machine Learning, 39(2/3):203–242,

2000.

[64] Filippo Menczer, Gautam Pant, and Padmini Srinivasan. Topical Web crawlers:

Evaluating adaptive algorithms. ACM Transactions on Internet Technology,

4(4):378–419, 2004.

[65] Gordon Mohr, Michael Stack, Igor Ranitovic, Dan Avery, and Michele Kimpton.

Introduction to Heritrix, an archival quality Web crawler. In Proceedings of the

4th international Web archiving workshop, IWAW ’04, 2004.

121

Bibliography

[66] Marc Najork and Janet L. Wiener. Breadth-first crawling yields high-quality pages.

In Proceedings of the 10th international conference on World Wide Web, WWW

’01, pages 114–118, New York, NY, USA, 2001. ACM.

[67] Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho. Downloading textual hidden

Web content through keyword queries. In Proceedings of the 5th ACM/IEEE-CS

joint conference on Digital libraries, JCDL ’05, pages 100–109, New York, NY,

USA, 2005. ACM.

[68] National Library of Australia. Pandora Archive - Preserving and accessing net-

worked documentary resources of Australia. http://pandora.nla.gov.au/,

April 2012.

[69] Library of Catalonia. PADICAT, Patrimoni Digital de Catalunya. http://www.
padicat.cat/, April 2012.

[70] University of Hawaii at Manoa Library. Web archiving project for the Pacific

Islands. http://library.manoa.hawaii.edu/research/archiveit/, April

2012.

[71] National Library of Korea. OASIS (Online Archiving and Searching Internet

Sources). http://www.oasis.go.kr/intro_new/intro_overview_e.jsp,

April 2012.

[72] State Library of Tasmania. Our digital island. http://odi.statelibrary.tas.
gov.au/, April 2012.

[73] University of Texas at Austin. Latin American Web archiving project, LAWAP.

http://lanic.utexas.edu/project/archives/, April 2012.

[74] Christopher Olston and Marc Najork. Web crawling. Foundations and Trends in

Information Retrieval, 4(3):175–246, 2010.

[75] Christopher Olston and Sandeep Pandey. Recrawl scheduling based on information

longevity. In Proceedings of the 17th international conference on World Wide Web,

WWW ’08, pages 437–446, New York, NY, USA, 2008. ACM.

[76] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank

citation ranking: Bringing order to the Web. Technical report, Stanford University,

1999.

122

http://pandora.nla.gov.au/
http://www.padicat.cat/
http://www.padicat.cat/
http://library.manoa.hawaii.edu/research/archiveit/
http://www.oasis.go.kr/intro_new/intro_overview_e.jsp
http://odi.statelibrary.tas.gov.au/
http://odi.statelibrary.tas.gov.au/
http://lanic.utexas.edu/project/archives/

Bibliography

[77] Sandeep Pandey, Kedar Dhamdhere, and Christopher Olston. WIC: a general-

purpose algorithm for monitoring Web information sources. In Proceedings of the

30th international conference on Very large data bases, VLDB ’04, pages 360–371.

VLDB Endowment, 2004.

[78] Sandeep Pandey, Krithi Ramamritham, and Soumen Chakrabarti. Monitoring

the dynamic Web to respond to continuous queries. In Proceedings of the 12th

international conference on World Wide Web, WWW ’03, pages 659–668, New

York, NY, USA, 2003. ACM.

[79] Zeynep Pehlivan, Myriam Ben-Saad, and Stéphane Gançarski. Vi-DIFF: under-

standing Web pages changes. In Proceedings of the 21st international conference

on Database and expert systems applications: Part I, DEXA ’10, pages 1–15,

Berlin, Heidelberg, 2010. Springer-Verlag.

[80] practice.com. Debunking the Wayback machine. http://practice.com/2008/
12/29/debunking-the-wayback-machine, 2008.

[81] Myriam Ben Saad and Stéphane Gançarski. Using visual pages analysis for

optimizing Web archiving. In Proceedings of the 2010 EDBT/ICDT Workshops,

EDBT ’10, pages 43:1–43:7, New York, NY, USA, 2010. ACM.

[82] Myriam Ben Saad and Stéphane Gançarski. Improving the quality of Web archives

through the importance of changes. In Proceedings of the 22nd international

conference on Database and expert systems applications - Volume Part I, DEXA’11,

pages 394–409, Berlin, Heidelberg, 2011. Springer-Verlag.

[83] Myriam Ben Saad, Zeynep Pehlivan, and Stéphane Gançarski. Coherence-oriented

crawling and navigation using patterns for Web archives. In Proceedings of the

15th international conference on Theory and practice of digital libraries: research

and advanced technology for digital libraries, TPDL’11, pages 421–433, Berlin,

Heidelberg, 2011. Springer-Verlag.

[84] Ralf Schenkel. Temporal shingling for version identification in Web archives.

In Proceedings of the 32nd European conference on Advances in information

retrieval, ECIR’2010, pages 508–519, Berlin, Heidelberg, 2010. Springer-Verlag.

123

http://practice.com/2008/12/29/debunking-the-wayback-machine
http://practice.com/2008/12/29/debunking-the-wayback-machine

Bibliography

[85] Uri Schonfeld and Narayanan Shivakumar. Sitemaps: above and beyond the crawl

of duty. In Proceedings of the 18th international conference on World wide web,

WWW ’09, pages 991–1000, New York, NY, USA, 2009. ACM.

[86] Arie Segev and Arie Shoshani. Logical modeling of temporal data. In Proceed-

ings of the 7th ACM SIGMOD international conference on Management of data,

SIGMOD ’87, pages 454–466, New York, NY, USA, 1987. ACM.

[87] Ka Cheung Sia, Junghoo Cho, and Hyun-Kyu Cho. Efficient monitoring algorithm

for fast news alerts. IEEE Transactions on Knowledge and Data Engineering,

19(7):950–961, July 2007.

[88] Kristinn Sigurdsson. Incremental crawling with Heritrix. In Proceedings of the

5th international Web archiving workshop, IWAW ’05, 2005.

[89] Sanasam Ranbir Singh. Estimating the rate of Web page updates. In Proceedings

of the 20th international joint conference on Artifical intelligence, IJCAI’07, pages

2874–2879, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[90] Sergej Sizov, Martin Theobald, Stefan Siersdorfer, and Gerhard Weikum. BINGO!:

Bookmark-induced gathering of information. In Proceedings of the 3rd Inter-

national Conference on Web information systems engineering, WISE ’02, pages

323–332, Washington, DC, USA, 2002. IEEE Computer Society.

[91] Sergej Sizov, Martin Theobald, Stefan Siersdorfer, Gerhard Weikum, Jens Graup-

mann, Michael Biwer, and Patrick Zimmer. The BINGO! system for information

portal generation and expert web search. In Proceedings of the 1st biennial confer-

ence on Innovative data systems research, CIDR ’03, pages 69–80, 2003.

[92] Marc Spaniol, Dimitar Denev, Arturas Mazeika, Gerhard Weikum, and Pierre

Senellart. Data quality in Web archiving. In Proceedings of the 3rd workshop on

Information credibility on the Web, WICOW ’09, pages 19–26, New York, NY,

USA, 2009. ACM.

[93] Marc Spaniol, Arturas Mazeika, Dimitar Denev, and Gerhard Weikum. ”catch

me if you can”: Visual analysis of coherence defects in web archiving. In Julien

Masanes, Andreas Rauber, and Marc Spaniol, editors, Proceedings of the 9th

international Web archiving workshop, IWAW ’09, pages 27–37, 2009.

124

Bibliography

[94] Qingzhao Tan and Prasenjit Mitra. Clustering-based incremental Web crawling.

ACM Transactions on Information Systems, 28(4):17:1–17:27, November 2010.

[95] Qingzhao Tan, Prasenjit Mitra, and C. Lee Giles. Designing clustering-based

Web crawling policies for search engine crawlers. In Proceedings of the 16th

ACM conference on Information and knowledge management, CIKM ’07, pages

535–544, New York, NY, USA, 2007. ACM.

[96] Masashi Toyoda and Masaru Kitsuregawa. A system for visualizing and analyzing

the evolution of the Web with a time series of graphs. In Proceedings of the 16th

ACM conference on Hypertext and hypermedia, HYPERTEXT ’05, pages 151–160,

New York, NY, USA, 2005. ACM.

[97] Yafang Wang, Mingjie Zhu, Lizhen Qu, Marc Spaniol, and Gerhard Weikum.

Timely yago: harvesting, querying, and visualizing temporal knowledge from

Wikipedia. In Proceedings of the 13th international conference on Extending

database technology, EDBT ’10, pages 697–700, New York, NY, USA, 2010.

ACM.

[98] Ou Wu, Yunfei Chen, Bing Li, and Weiming Hu. Evaluating the visual quality of

Web pages using a computational aesthetic approach. In Proceedings of the 4th

ACM international conference on Web search and data mining, WSDM ’11, pages

337–346, New York, NY, USA, 2011. ACM.

[99] Ping Wu, Ji-Rong Wen, Huan Liu, and Wei-Ying Ma. Query selection techniques

for efficient crawling of structured Web sources. In Proceedings of the 22nd

international conference on Data engineering, ICDE ’06, pages 47–, Washington,

DC, USA, 2006. IEEE Computer Society.

[100] Shuyi Zheng, Pavel Dmitriev, and C. Lee Giles. Graph-based seed selection for

Web-scale crawlers. In Proceedings of the 18th ACM conference on Information

and knowledge management, CIKM ’09, pages 1967–1970, New York, NY, USA,

2009. ACM.

[101] Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke Chen, and

Gordon Sun. A general boosting method and its application to learning ranking

functions for Web search. In Proceedings of the 21st annual conference on Neural

information processing systems, NIPS ’07, 2007.

125

Bibliography

126

Appendix A.

Prototype Implementation

1 c r e a t e t a b l e t _ p a g e s _ d d as
2 s e l e c t t _ p a g e s . * from (
3 s e l e c t c r a w l _ i d , u r l _ i d , max (v i s i t e d _ t i m e s t a m p)
4 as l a t e s t _ t i m e s t a m p
5 from t _ p a g e s
6 group by c r a w l _ i d , u r l _ i d) a s x , t _ p a g e s
7 where t _ p a g e s . c r a w l _ i d = x . c r a w l _ i d and
8 t _ p a g e s . u r l _ i d = x . u r l _ i d and
9 t _ p a g e s . v i s i t e d _ t i m e s t a m p

10 = x . l a t e s t _ t i m e s t a m p
11

12 c r e a t e t a b l e t _ l i n k s _ d d as
13 s e l e c t t _ l i n k s . *
14 from t_pages_dd , t _ l i n k s
15 where t _ p a g e s _ d d . u r l _ i d = t _ l i n k s . f r o m _ u r l _ i d and
16 t _ p a g e s _ d d . v i s i t e d _ t i m e s t a m p
17 = t _ l i n k s . v i s i t e d _ t i m e s t a m p

Listing A.1: Deduplication

127

Appendix A. Prototype Implementation

1 c r e a t e t a b l e c l ean_mapp ing as
2 s e l e c t d i r t y _ u r l . u r l _ i d as d i r t y _ u r l _ i d ,
3 c l e a n _ u r l . u r l _ i d as c l e a n _ u r l _ i d
4 from (
5 s e l e c t min (u r l _ i d) a s u r l _ i d , lower (u r l) a s u r l
6 from t _ u r l s group by lower (u r l)
7) a s c l e a n _ u r l , t _ u r l s a s d i r t y _ u r l
8 where c l e a n _ u r l . u r l = lower (d i r t y _ u r l . u r l) ;
9

10 c r e a t e t a b l e l o w e r _ u r l _ d d as
11 s e l e c t c r a w l _ i d ,
12 c lean_mapp ing . c l e a n _ u r l _ i d as u r l _ i d ,
13 l ower (min (u r l)) a s u r l , s i t e _ i d as s i t e _ i d ,
14 min (e t a g) a s e t ag ,
15 min (p a g e _ s i z e) a s p a g e _ s i z e ,
16 min (p a g e _ t y p e) a s page_ type ,
17 min (v i s i t e d _ t i m e s t a m p) as v i s i t e d _ t i m e s t a m p ,
18 min (checksum) as checksum ,
19 min (l a s t _ m o d i f i e d) a s l a s t _ m o d i f i e d ,
20 min (s t a t u s _ c o d e) a s s t a t u s _ c o d e ,
21 min (download_t ime) a s download_t ime ,
22 min (s i g 0) a s s ig0 , min (s i g 1) a s s ig1 ,
23 min (s i g 2) a s s ig2 , min (s i g 3) a s s ig3 ,
24 min (s i g 4) a s s ig4 , min (s i g 5) a s s ig5 ,
25 min (s i g 6) a s s ig6 , min (s i g 7) a s s ig7 ,
26 min (s i g 8) a s s ig8 , min (s i g 9) a s s ig9 ,
27 min (mime_id) a s mime_id ,
28 min (f i l e n a m e) as f i l e n a m e
29 from t_pages_dd , c l ean_mapp ing
30 where t _ p a g e s _ d d . u r l _ i d
31 = c lean_mapp ing . d i r t y _ u r l _ i d
32 group by t _ p a g e s _ d d . c r a w l _ i d , t _ p a g e s _ d d . s i t e _ i d ,
33 c lean_mapp ing . c l e a n _ u r l _ i d

Listing A.2: SQL for cleaning to lower urls

128

Appendix B.

Visual Analysis

1 s e l e c t XXX as c r a w l _ i d , s i t e _ i d ,
2 c o a l e s c e (d e l e t e d , 0) + c o a l e s c e (nnew , 0) +
3 c o a l e s c e (same , 0) + c o a l e s c e (changed , 0) a s n a l l ,
4 d e l e t e d , nnew , same , changed from (
5 s e l e c t s i t e _ i d ,
6 max (d e l e t e d) a s d e l e t e d , min (nnew) as nnew ,
7 min (same) as same , min (changed) as changed
8 from (
9 s e l e c t s i t e _ i d ,

10 c a s e when s t a t u s = ’ d e l e t e d ’ t h e n c o u n t
11 end as d e l e t e d ,
12 c a s e when s t a t u s = ’new ’ t h e n c o u n t end as nnew ,
13 c a s e when s t a t u s = ’ same ’ t h e n c o u n t end as same ,
14 c a s e when s t a t u s = ’ changed ’ t h e n c o u n t
15 end as changed from (
16 s e l e c t s s i t e _ i d as s i t e _ i d , s t a t u s ,
17 c o u n t (s i t e _ i d) from (
18 s e l e c t
19 c a s e
20 when nprev . s i t e _ i d i s n u l l
21 t h e n n c u r r . s i t e _ i d
22 e l s e nprev . s i t e _ i d
23 end as s s i t e _ i d ,
24 c a s e
25 when nprev . s i t e _ i d i s n u l l t h e n ’new ’
26 when n c u r r . s i t e _ i d i s n u l l t h e n ’ d e l e t e d ’
27 when nprev . new_check_sum
28 = n c u r r . new_check_sum t h e n ’ same ’
29 e l s e ’ changed ’
30 end as s t a t u s
31 from (
32 s e l e c t s i t e _ i d , u r l _ i d , new_check_sum
33 from nodes
34 where c r a w l _ i d = XXX−1
35) a s np rev
36 f u l l o u t e r j o i n (
37 s e l e c t s i t e _ i d , u r l _ i d , new_check_sum

129

Appendix B. Visual Analysis

38 from nodes
39 where c r a w l _ i d = XXX
40) a s n c u r r
41 on nprev . s i t e _ i d = n c u r r . s i t e _ i d and
42 nprev . u r l _ i d = n c u r r . u r l _ i d
43) a s c r a w l s _ w i t h _ s t a t u s
44 group by s s i t e _ i d , s t a t u s
45) a s c r o s s t a b _ m u l t i p l e _ r o w s
46) a s c r o s s t a b _ s i n g l e _ r o w
47 group by s i t e _ i d
48) a s a g g r e g a t e d

Listing B.1: SQL for area bars

130

List of Figures

2.1. Typical Web Crawler Architecture . 22

3.1. Coherent vs. Blurred Pages with Single-Visit Crawling 31

3.2. Coherent vs. Incoherent Pages with Visit-Revisit Crawling 31

4.1. Example of a Web Site with Change Rates 38

4.2. Organ-Pipes Arrangement . 41

4.3. Example of Worst Case Blur Scenario with n =  and k =  49

4.4. Worst Case Blur for Different Values of Skew and Size 51

5.1. Optimization of Crawling with Revisits 62

5.2. Shapes of Schedules . 63

5.3. SHARC-Threshold . 64

5.4. Scheduling of Confidence Intervals . 65

5.5. SHARC-Intervals Schedules . 67

5.6. Shortening of Intervals . 69

5.7. Online Example . 70

5.8. Example with Hopeless Pages . 75

5.9. SHARC-Selective Schedule for Change Rates in Figure 5.8a 76

7.1. Heritrix Architecture . 94

7.2. SHARC Architecture . 96

7.3. Database Schema . 98

8.1. Crawl sequence analysis of www.sabre.mod.uk site 104

8.2. Change analysis of Capture 53 . 105

8.3. Change analysis of Capture 54 . 106

8.4. Graph visualization of a visit-revisit capture of mpi-inf.mpg.de 110

131

List of Figures

132

List of Tables

3.1. Datasets . 35

4.1. Popular Crawl Strategies . 45

4.2. SHARC-Online Crawl Strategy . 46

4.3. Average Blur per Page . 55

4.4. Scalability: Average Blur per Page . 55

4.5. Crawl Duration: Average Blur per Page 56

4.6. Skew: Average Blur per Page . 57

5.1. SHARC-Threshold Incoherence with Varying τ 64

5.2. SHARC-Intervals Incoherence with Varying τ 72

5.3. Earlier Version of the MPII Dataset . 79

5.4. Incoherence with Oracle with Varying τ on MPII 79

5.5. Live Web Sites with Sitemaps . 80

5.6. Incoherence with Oracle of Change Rates 81

5.7. Incoherence with Predictor . 81

5.8. Incoherence with Sitemaps and Heritrix Crawler 82

5.9. Scalability: Incoherence (Cold Leaves) 83

5.10. Scalability: Incoherence (Hot Leaves) 83

5.11. Crawl Duration: Incoherence (Cold Leaves) 84

5.12. Crawl Duration: Incoherence (Hot Leaves) 84

5.13. Skew: Incoherence (Cold Leaves) . 84

5.14. Skew: Incoherence (Hot Leaves) . 85

6.1. Web Aarchive Datasets . 91

6.2. Sitemap Datsets . 91

6.3. Classification Precision for Web Archive Datasets 92

6.4. Classification Precision for Sitemap Datasets 92

133

List of Tables

134

List of Algorithms

1. SHARC-Offline . 43

2. SHARC-Online . 48

3. Offline SHARC-Intervals . 68

4. Online SHARC-Intervals . 71

5. SHARC-Selective Offline . 77

6. SHARC-Selective Online . 78

7. collapseNode . 107

8. drawNode . 109

135

	Introduction
	Archives and Web Archiving
	Quality of Web archives
	Research Challenges
	Contributions
	Thesis Outline

	Related Work
	Web Archiving
	Web Dynamics
	Web Crawling
	Visualization of Changes in Web Archives

	Web Archiving Model
	Introduction
	Concepts
	Model of Changes
	Datasets
	Summary

	Single Visit Crawling Strategies
	Introduction
	Blur
	SHARC-Offline Strategy
	Optimal Download Schedule
	SHARC-Offline Algorithm
	General Observation Interval

	SHARC-Online Strategy
	Discovery of the Web Graph
	SHARC-Online Strategy by Example
	Formalization of SHARC-Online
	SHARC-Online Algorithm
	Worst Case Analysis

	Experimental Evaluation
	Methods under Comparison
	Quality Metrics
	Datasets
	Blur Experiments with Real-World Datasets
	Sensitivity Studies

	Summary

	Visit Revisit Crawling Strategies
	Introduction
	SHARC-Revisits
	SHARC-Threshold
	SHARC-Intervals
	SHARC-Intervals Offline Algorithm
	Shrinking a Schedule
	SHARC-Intervals Online Algorithm
	Estimation of the Threshold Parameter

	SHARC-Selective
	Experimental Evaluation
	Methods under Comparison
	Datasets
	Coherence Experiments with with Real-World Datasets
	Live Experiments with Sitemaps
	Sensitivity Studies

	Summary

	Prediction of Changes
	Sitemaps
	Estimation of Change Rates from Previous Crawls
	Prediction of Change Rates with Classifiers
	Evaluation

	Prototype Implementation
	Prototype Architecture
	Data Extraction and Preparation
	Conclusions

	Visual Analysis
	Introduction
	Datasets and Change Detection
	Time Series Analysis with Area Plots
	Change Analysis with Scatterplots
	Change Analysis with Graph Visualization
	Conclusions

	Conclusions
	Bibliography
	Prototype Implementation
	Visual Analysis
	List of Figures
	List of Tables
	List of Algorithms
	List of Algorithms

