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Abstract

Lexical ambiguity is a frequent phenomenon that can occur not only for words but

also on the phrase level. Natural language processing systems need to efficiently

deal with these ambiguities in various tasks, however, we often encounter such

system failures in real applications. This thesis studies several complex phenomena

related to word/phrase ambiguity at the level of text and proposes computational

models to tackle these phenomena.

Throughout the thesis, we address a number of lexical ambiguity phenomena

varying across the sense granularity line. We start with the idiom detection task,

in which candidate senses are constrained to‘literal’ and ‘idiomatic’. Then, we

move on to the more general case of detecting figurative expressions. In this task,

target phrases are not lexicalized but rather bear nonliteral semantic meanings.

Similar to the idiom task, this one has two candidate sense categories (‘literal’

and ‘nonliteral’). Next, we consider a more complicated situation where words

often have more than two candidate senses and the sense boundaries are fuzzier,

namely word sense disambiguation (WSD). Finally, we discuss another lexical

ambiguity problem in which the sense inventory is not explicitly specified, word

sense induction (WSI).

Computationally, we propose novel models that outperform state-of-the-art sys-

tems. We start with a supervised model in which we study a number of semantic

relatedness features combined with linguistically informed features such as local/-

global context, part-of-speech tags, syntactic structure, named entities and sentence

markers. While experimental results show that the supervised model can effectively

detect idiomatic expressions, we further improve the work by proposing an unsu-

pervised bootstrapping model which does not rely on human annotated data but

performs at a comparative level to the supervised model. Moving on to accommo-

date other lexical ambiguity phenomena, we propose a Gaussian Mixture Model



that can be used not only for detecting idiomatic expressions but also for extracting

unlexicalized figurative expressions from raw corpora automatically. Aiming at

modeling multiple sense disambiguation tasks within a uniform framework, we

propose a probabilistic model (topic model), which encodes human knowledge

as sense priors via paraphrases of gold-standard sense inventories, to effectively

perform on the idiom task as well as two WSD tasks. Dealing with WSI, we

find state-of-the-art WSI research is hindered by the deficiencies of evaluation

measures that are in favor of either very fine-grained or very coarse-grained cluster

output. We argue that the information theoretic V-Measure is a promising approach

to pursue in the future but should be based on more precise entropy estimators,

supported by evidence from the entropy bias analysis, simulation experiments, and

stochastic predictions. We evaluate all our proposed models against state-of-the-art

systems on standard test data sets, and we show that our approaches advance the

state-of-the-art.



Zusammenfassung

Lexikalische Mehrdeutigkeit ist ein häufiges Phänomen, das nicht nur auf Wort, son-

dern auch auf phrasaler Ebene auftreten kann. Systeme zur Verarbeitung natürlicher

Sprache müssen diese Mehrdeutigkeiten in verschiedenen Aufgaben effizient be-

wältigen, doch in realen Anwendungen erweisen sich solche Systeme oft als fehler-

haft. Ziel dieser Dissertation ist es verschiedene komplexe Phänomene lexikalischer

und insbesondere phrasaler Mehrdeutigkeit zu erforschen und algorithmische Mod-

elle zur Verarbeitung dieser Phänomene vorzuschlagen.

In dieser Dissertation beschäftigen wir uns durchgehend mit einer Reihe von

Phänomenen lexikalischer Ambiguität, die in der Granularität der Sinnunterschiede

variieren: Wir beginnen mit der Aufgabe Redewendungen zu erkennen, in der

die möglichen Bedeutungen auf ‘wörtlich’ und ‘idiomatisch’ beschränkt sind;

dann fahren wir mit einem allgemeineren Fall fort in dem die Zielphrasen keine

feststehenden Redewendungen sind, aber im Kontext eine übertragene Bedeutung

haben. Wir definieren hier die Aufgabe bildhafte Ausdrücke zu erkennen als

Disambiguierungs-Problem in der es, ähnlich wie in der Redewendungs-Aufgabe,

zwei mögliche Bedeutungskategorien gibt (‘wörtlich’ und ‘nicht-wörtlich’).

Als nächstes betrachten wir eine kompliziertere Situation, in der Wörter oft mehr

als zwei mögliche Bedeutungen haben und die Grenzen zwischen diesen Sinnen

unschärfer sind, nämlich Wort-Bedeutungs-Unterscheidung (Word Sense Disam-

biguation, WSD); Schließlich diskutieren wir ein weiteres Problem lexikalischer

Mehrdeutigkeit, in dem das Bedeutungsinventar nicht bereits ausdrücklich gegeben

ist, d.h. Wort-Bedeutungs-Induktion (Word Sense Induction, WSI).

Auf algorithmischer Seite schlagen wir Modelle vor, die Systeme auf dem aktuellen

Stand der Technik übertreffen. Wir beginnen mit einem überwachten Modell,

in dem wir eine Reihe von Merkmalen basierend auf semantischer Ähnlichkeit

mit linguistisch fundierten Merkmalen wie lokalem/globalem Kontext, Wortarten,



syntaktischer Struktur, Eigennamen und Satzzeichen kombinieren. Ausgehend

von experimentellen Ergebnissen die zeigen, dass das überwachte Modell effektiv

idiomatische Ausdrücke erkennen kann, verbessern wir unsere Arbeit indem wir ein

unüberwachtes Bootstrapping-Modell präsentieren, das nicht auf manuell annotierte

Daten angewiesen ist aber ähnlich gut funktioniert wie das überwachte Modell. Um

weitere Phänomene lexikalischer Mehrdeutigkeit zu behandeln, schlagen wir des

weiteren ein Gauss’sches Mischmodell vor, das nicht nur zur Erkennung von Re-

dewendungen verwendet werden kann, sondern auch dazu effektiv und automatisch

neue produktive bildhafte Ausdrücke aus unverarbeiteten Corpora zu extrahieren.

Mit dem Ziel mehrere Aufgaben zur Disambiguierung innerhalb eines einheitlichen

Systems zu modellieren, schlagen wir ein statistisches Modell (Topic-Modell) vor,

um sowohl die Aufgabestellung der Redewendungs-Erkennung als auch die WSD-

Probleme effektiv zu bearbeiten. Die A-priori-Wahrscheinlichkeiten dieses Modells

kodieren menschliches Wissen, wozu es Gold-Standard-Bedeutungslexika benutzt.

Bezüglich WSI stellen wir fest, dass der Stand der WSI-Forschung durch inade-

quate Evaluationsmaße behindert wird, die entweder sehr feinkörnige oder sehr

grobkörnige Cluster-Ergebnisse bevorzugen. Wir behaupten, dass das Information-

stheoretische ‘V-Measure’ ein vielversprechender Ansatz ist, der zukünftig verfolgt

werden könnte, der jedoch mit präzieseren Entropie-Schätzern, unterstützt von Bele-

gen aus der Entropie-Trend-Analyse, Simulationxexperimenten und stochastische

Vorhersagen, aufbauen sollte.

Wir evaluieren alle unsere vorgeschlagenen Modelle auf standardisierten Testdaten

und vergleichen sie mit anderen Systemen auf dem aktuellen Forschungsstand, und

wir zeigen dass unsere Ansätze den aktuellen Forschungsstand voranbringen.
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1

Introduction

We start this thesis by discussing an interesting lexical phenomenon that we noticed by compar-

ing different cultural environments. Given a picture of a full moon, what comes to ones mind?

In folklore and tradition, full moon is often associated with temporary insomnia, epilepsy, and

various magical phenomena such as lycanthropy (Kelly et al., 1986). In contrast, the Chinese

phrase满月 (full moon) is often associated with family, love and share, which are frequently

reflected in poems, e.g., “但愿人久长，千里共婵娟 (wish us a long life so as to share the

beauty of this graceful full-moon light, even thousands miles apart)”, “满月如璧 (the jade like

full moon)”, or cultural events, e.g., the Moon Festival (August 15th of the Lunar Calendar), a

traditional Chinese festival for family members getting together, sharing memory and thoughts,

and eating Mooncake. In fact, this association divergence is also captured by search engine

results. When the English query keywords full moon are input to Google Image Search1, pictures

containing werewolf are among the top hits.2, whereas images, illustrating the Chinese legend

嫦娥 (the Princess of the Moon) giving blessing to people on a full moon night, are among the

typical associated pictures for the Chinese keywords. Actually, Chinese folk stories interpret

the shadow of the mountains which are clearly visible on a full moon night as the figures of the

Princess of the Moon and her pet玉兔.

As it is suggested by this example, the complexity of wording meaning is often revealed in

cross-linguistic analysis, where usually implicit assumptions and connotations are made explicit.

Therefore, computational modeling of word meaning are faced with huge challenges. This thesis

1See http://www.google.com/imghp
2For copyright reasons, we cannot show these pictures here.
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1. INTRODUCTION

considers several complex phenomena related to word meaning at the level of text, and propose

computational models to tackle these phenomena.

1.1 Motivation

In this section, we discuss practical factors that motivate our work. Lexical ambiguity1 is a

frequent phenomenon that can occur not only for words (Example 1.12) but also on the phrase

level (Example 1.2) in natural language. For instance, the word plant can mean “factory”

(Example 1.1a), whereas it can also mean “a living organism” (Example 1.1b). While the

English phrase playing with fire is often used idiomatically, which means to take part in a

dangerous or risky undertaking3 (Example 1.2a), it may also be used literally in some cases

(Example 1.2b). Actually, in our study we find that 34 instances out of all 566 occurrences of

play with fire in the English Gigaword4 corpus are used literally (6%).

(1.1) (a) Germany’s coalition government has announced a reversal of policy that will

see all the country’s nuclear power plants phased out by 2022.

(b) As of 2010, there are thought to be 300-315 thousand species of plants, of which

the great majority, some 260-290 thousand, are seed plants.

(1.2) (a) Dissanayake said that Kumaratunga was “playing with fire” after she accused

military’s top brass of interfering in the peace process.

(b) Grilling outdoors is much more than just another dry-heat cooking method. It’s

the chance to play with fire, satisfying a primal urge to stir around in coals.

From the application side, Natural Language Processing (NLP) systems should effectively

deal with lexical ambiguity in various tasks. However, we often encounter failures of such

systems: Example 1.3 is an output by a machine translation system YAHOO! BABEL FISH5,

where the English idiomatic expression spilled the beans, which means “revealed the secret”, is

falsely literally translated into German.

1Throughout the thesis, we adopt a broad sense of lexical item, including both words and multi-word expressions
(MWEs).

2Examples in this chapter are from real corpora.
3Defined by online dictionary http://www.thefreedictionary.com/play+with+fire
4See Section 2.1 for the description of the English Gigaword corpus
5See http://babelfish.yahoo.com/. The result was from the translation system in December 2008.
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1.2 Thesis Overview

(1.3) (a) The government agent spilled the beans on the secret dossier.

(b) Der Regierungsbeauftragte verschüttete die Bohnen auf dem geheimen Dossier.

The frequent appearance of lexical ambiguity in natural language and the inefficiency of

NLP systems dealing with such ambiguity call for advancement in the study of this topic. In

this thesis, we aim to deal with the various lexical ambiguity phenomena from a computational

modeling perspective and advance the state-of-the-art research.

1.2 Thesis Overview

We present several closely-related pieces of work in this thesis, varying along two lines: (i)

The sense granularity line leads to research on different lexical ambiguity phenomena. As the

chapters move forward, we aim at studying more complicated sense granularity problems. (ii)

From a computational modeling point of view, we use more advanced models to improve the

performance of state-of-the-art methods and reduce human annotation effort.

Sense Granularity Line We study four main types of tasks in this thesis: the distinction of

‘literal’/‘idiomatic’ occurrences of potentially idiomatic expressions (Chapter 3 and 4), novel

figurative expression detection (Chapter 5), Word Sense Disambiguation (WSD) (Chapter 6),

and Word Sense Induction (WSI) (Chapter 7). We also combine the idiom task with the novel

figurative expression task together and name the category as ‘literal’/‘idiomatic’ MWE detection.

The reason is that the two tasks are very similar in that both of them deal with whether a target

expression is used literally or not, although the type of expressions that the two tasks study are

different from each other.

In the ‘literal’ or ‘nonliteral’ MWE detection task, the problem is defined in a binary classifi-

cation framework. In most of the cases, the literal and nonliteral readings are well separated (e.g.,

Figure 1.11). As the semantics of the two readings are often clearly distinguishable from each

other (e.g., spill the beans as “spill the beans onto the floor” v.s. spill the beans as “revealing the

secret”), our computational models are able to achieve high performance on this type of tasks

(see Chapter 3 and 4).

In contrast, more fine-grained sense categories are introduced in the WSD task. There are

10 different sense categories for the word bank as a noun in WordNet 2.1 (see Appendix A for a

1Figure 1.1, 1.2 and 1.3 are only for demonstration purpose. They do not reflect any true distribution of instances.
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1. INTRODUCTION

“You can't retire. 
You know too 
much. You might 
talk.”

“The beans 
are all over 
the table.”

Figure 1.1: A demonstration example of a boundary of literal/nonliteral expressions. The ‘literal’
and ‘nonliteral’ readings of the phrase spill the beans.

complete set of sense category definitions for bank as defined in WordNet 2.1). If we project

those categories in a coordinate plane, we are faced with much more complicated decision

boundaries (e.g, Figure 1.2). The task of WSD poses a challenge due to the complexity of the

sense inventories as well as the fact that some senses are difficult to tell apart in certain contexts

(e.g., A: “I need a loan.” B: “go to the bank.”, bank as ‘bank building’ v.s. bank as ‘financial

institution’ ).

WSI is even more challenging in that the sense inventories are not predefined. In WSI,

instances are represented as clusters without the number of clusters being specified. For example,

we draw decision boundaries of five categories in Figure 1.3 but this partition can be easily

challenged by other types of decision boundaries if the system is required to output a cluster

number other than five. In Chapter 7 we find that the study of WSI is negatively affected by

the deficiencies of evaluation measures. Therefore, our study focuses on improving the current

bottleneck (evaluation measures), and we believe that an advancement in WSI evaluation will

eventually enhance the future development of this topic.

Statistical Modeling Line We investigate increasingly advanced models to reduce annota-

tion effort (Chapter 4), increase the model performance (Chapter 5, 6), or boost the model

performance with a minimum amount of extra knowledge (Chapter 6).

We develop a supervised model in Chapter 3, where we study different features and their

combinations and evaluate the performance. Chapter 4 is built on top of the work of the previous

4



1.2 Thesis Overview

bank%1:06:00::

bank%1:17:02::

bank%1:06:01::

bank%
1:17:00::

ba
nk
%
1:
21
:0
0:
:

bank%1:21:01::

ban
k%
1:0
4:0
0::

bank%
1:17:

01::

bank%1:14:01::

ba
nk
%
1:
14
:0
0:
:

Figure 1.2: A demonstration example of decision boundaries of WSD. Different senses are repre-
sented by sense keys from WordNet 2.1, example word bank.

chapter, aiming to reduce the human annotation effort involved in labeling the gold standard

instances. It proposes a bootstrapping model which utilizes two component classifiers from

previous work. Although fully unsupervised, it maintains a performance comparable to the

supervised approach. Chapter 6 introduces a probabilistic model (topic model) which encodes

human knowledge as sense priors via paraphrase information. Experimental results show that

while this additional information costs very little human work, it largely boosts the performance.

Furthermore, the models developed in Chapter 6 can model multiple related tasks within one

framework, which further reduces efforts involved.

The Gaussian Mixture Model (GMM) model proposed in Chapter 5 shares a number of

semantic relatedness features with the models in Chapter 3 and Chapter 4. We demonstrate that

similar features for related tasks may work for different statistical modeling approaches, thus

effective selection of features is important. This GMM framework, which is partially built up

on top of the supervised model features, can be effectively utilized to discover new nonliteral

expressions.

We outline some problems of the V-Measure for WSI evaluation by carrying out entropy

simulation experiments in Chapter 7, and propose alternative entropy estimators which can better

serve the task. Furthermore, we adopt a novel approach, stochastic prediction, to accommodate

weighted cluster output to the evaluation methodology.

The individual chapters are arranged as follows:
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Figure 1.3: A demonstration example of decision boundaries of WSI. Different data examples are
represented as circles, the number of senses is underspecified.

Chapter 3 proposes lexical cohesion based features, which is a continuation of our previous

research (Li, 2008). The experiments show that lexical cohesion based features can be effectively

utilized for idiom detection. Furthermore, these features can be complemented by bag-of-words

features and more sophisticated linguistically informed features such as syntactic features,

named entity features and sentence-marker features.

Chapter 4 aims to improve on the work of Chapter 3 by making the process fully unsu-

pervised. We propose a bootstrapping framework based on two component classifiers from

previous work, one unsupervised classifier (Li, 2008; Sporleder and Li, 2009) and one super-

vised classifier (Chapter 3). The bootstrapping framework is initialized by choosing the most

confident examples from the unsupervised classifier and using them as the initial training set of

the supervised classifier. Then the supervised classifier predicts label on the remaining examples,

and the most confident examples are selected and added to the training set of the supervised

classifier in the next round. The process iterates as the training set of the supervised classifier

enlarges and the size of the unlabeled set shrinks, and it is terminated after a predefined number

of iterations. We show that this strategy achieves very competitive results, even compared to the

supervised strategy on the idiom detection task.

Chapter 5 While the previous two chapters focus on lexicalized idiomatic expression

detection, Chapter 5 extends this topic further to unlexicalized figurative expressions (e.g., spill

the beans v.s. take the sock out of your mouth). We propose a Gaussian Mixture Model (GMM)

6
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for detecting novel figurative phrases in context. We evaluate our model on a small annotated

dataset and show that this model outperforms a number of baseline systems. The parameters of

the model can be estimated in an unsupervised way using the EM algorithm. Performance can

be further improved by estimating the parameters from a small annotated data set.

Chapter 6 deals with not only two-sense ambiguity phenomena (the idiom detection task in

Chapter 3 and 4 and the figurative expression detection task in Chapter 5), but also multiple-

sense ambiguity phenomena (i.e., WSD). It models the two different types of tasks in a uniform

framework, and presents a probabilistic model which chooses the best sense based on the

conditional probability of sense paraphrases given a context. A topic model is introduced to

decompose this conditional probability into two conditional probabilities with latent variables.

We further propose three different instantiations of the model with different degrees of resource

availability. The proposed models are tested on three different tasks: coarse-grained WSD,

fine-grained WSD, and idiom detection. In all three cases, the models outperform state-of-the-art

systems either quantitatively or statistically significantly.

Chapter 7 studies a sense ambiguity problem when the sense inventory is not predefined

(WSI). We find that state-of-the-art WSI research is hindered by the deficiencies of evaluation,

lacking a fair platform for comparison among different systems. We make two main findings:

1) The state-of-the-art supervised evaluation approach is strongly biased towards fine-grained

sense category clusterings; 2) State-of-the-art unsupervised WSI evaluation approaches are in

favor of either coarse-grained output (F-Measure) or fine-grained output (Entropy approach such

as V-Measure). We discover that the entropy based evaluation approach uses a biased entropy

estimator which leads to unreliable scoring, and propose alternative estimators to replace the

state-of-the-art WSI evaluation entropy estimator. Furthermore, we also propose a solution to

alleviate the entropy bias problem by constraining the number of clusters based on example size

and number of gold-standard classes.

1.3 Main Contributions

In this thesis, we study various lexical ambiguity phenomena in natural language, and propose

different computational models to tackle those problems. We show these models advance

the state of the art. In our study of WSI, where sense categories are not explicitly defined

but implicitly induced, we find that the state-of-the-art research in this field suffers from the

ineffectiveness of the evaluation. We propose new evaluation approaches in Chapter 7, which,

7
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we believe, will eventually lead to the advancement of WSI research. The detailed contributions

of the thesis is as the follows:

Sense Granularity Line (different lexical ambiguity phenomena):

• We study the WSD problem and advance state-of-the-art.

• We propose computational models for a less well-studied problem, token-based idiom

detection.

• We also study unlexicalized figurative expressions, and show that our methods can extract

novel expressions from raw corpus automatically.

• Moving on to the more challenging problem of WSI, we propose alternative evaluation

approaches, which, in our opinion, will eventually eliminate a major obstacle of this

research topic.

Statistical Modeling Line:

• We undertake detailed feature engineering of a supervised model on the idiom detection

task, which leads to improvements over state-of-the-art approaches.

• We propose a new bootstrapping model which reduces the human effort necessary for the

supervised model, while maintaining a performance comparable to the supervised one.

• We propose a Gaussian Mixture Model which can be used to effectively discover new

figurative expressions, an advancement of the work of idiom detection in the previous

two chapters.

• We propose topic models which are based on Bayesian probabilistic theory to model

WSD and idiom detection task within a uniform framework as long as sense paraphrases

of different sense inventories are available. These models outperform state-of-the-art

approaches.

• We show that the state-of-the-art WSI evaluation is not reliable. We propose alternative

optimized strategies on the WSI evaluation based on the studies of entropy estimation

simulation and stochastic prediction. Results show that our alternative strategies are

favorable over state-of-the-art approaches.

8



1.4 Published Work

1.4 Published Work

Part of the thesis has been published in previous conference papers: Chapter 3 is based on Li

and Sporleder (2010a); Chapter 4 is based on Li and Sporleder (2009); Chapter 5 is based on Li

and Sporleder (2010b); and Chapter 6 is based on Li et al. (2010). The work of Chapter 7 is

done by joint supervision of Ivan Titov and Caroline Sporleder. It has been submitted to the

journal Computational Linguistics under review.
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2

Corpora and Resources

In this section, we introduce the corpora that we use for our experimental evaluation. We use

four types of corpora: the Idiom Corpus (Chapter 3, 4 and 6), the Figurative Expression Corpus

(Chapter 5), the Word Sense Disambiguation Corpora (Chapter 6) and the Word Sense Induction

Corpora (Chapter 7).

The Idiom Corpus (UdSic) and the Figurative Expression Corpus (UdSfec) were constructed

by ourselves. The Word Sense Disambiguation Corpora are from the SemEval 20071 shared

task. We use datasets from two shared tasks: the Coarse-grained English All-Words Task

(Navigli et al., 2007) for the coarse-grained word sense disambiguation evaluation and the

English All-Words Task (Pradhan et al., 2007) for the fine-grained word sense disambiguation.

The Word Sense Induction Corpora are from the SemEval 2007 and the SemEval 2010 2 shared

tasks: The first dataset is from the SemEval 2007 Evaluation of Word Sense Induction and

Discrimination Systems (Agirre and Soroa, 2007); and the second dataset is from the SemEval

2010 Word Sense Induction and Disambiguation (Manandhar et al., 2010).

2.1 The Idiom Corpus: UdSic

We start by giving a detailed description of the UdSic corpus. The corpus contains 3964

records of 17 potential idiomatic expressions which were extracted from the Gigaword corpus

(Table 2.1). All the records were annotated as idiomatic or non-idiomatic. The inter-annotator

agreement on a small sample of doubly annotated examples was 97% and the kappa score

1See http://nlp.cs.swarthmore.edu/semeval/
2See http://semeval2.fbk.eu/
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2. CORPORA AND RESOURCES

expression literal idiomatic all

back the wrong horse 0 25 25
bite off more than one can chew 2 142 144
bite one’s tongue 16 150 166
blow one’s own trumpet 0 9 9
bounce off the wall* 39 7 46
break the ice 20 521 541
drop the ball* 688 215 903
get one’s feet wet 17 140 157
pass the buck 7 255 262
play with fire 34 532 566
pull the trigger* 11 4 15
rock the boat 8 470 478
set in stone 9 272 281
spill the beans 3 172 175
sweep under the carpet 0 9 9
swim against the tide 1 125 126
tear one’s hair out 7 54 61
all 862 3102 3964

Table 2.1: Idiom statistics (* indicates expressions for which the literal usage is more common than
the idiomatic one)

0.7 (Cohen, 1960). For more details on this dataset, please refer to our previous papers (Li,

2008; Sporleder and Li, 2009). In this section, we introduce a follow-up of the previous corpus

construction work. We construct a XML version of this corpus which integrates part-of-speech,

lemma, dependency syntax, named entity and ID information. In the rest of this section, we

show details of these corpus preprocessing work.

2.1.1 The Gigaword Corpus

The English Gigaword Corpus (Graff and Cieri, 2003) is produced and maintained by Linguistic

Data Consortium (LDC). According to the LDC catalog, there are four distinct international En-

glish newswire collections in the corpus: Agence France Press English Service (afe), Associate

Press Wordstream English Service (apw), the New York Times Newswire Service (nyt), and

the Xinhua News Agency English Service (xie). This corpus covers a broad selection of topics,

including politics, business, sports, entertainment among others.

12
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2.1.2 Corpus Preprocessing

In our preprocessing step, the part-of-speech (POS) tag and lemmatization are done by RASP;

the dependency parsing is done by MaltParser; and the named entity tagging is done by the

Standford NE tagger. As a result of the incompatibility of the POS tags between RASP

and MaltParser Trained Model, we apply MXPOST tagger to re-tag the corpus before using

MaltParser.

RASP (Briscoe et al., 2006) is a parsing system for English. It is derived from potions of

the ALvey NLP Tools1. It has multiple components such as a tokenizer (sentence boundary

detection and tokenization), tagger (POS tagging), morphology analyzer (morphological anal-

ysis and generation) and parser (output the grammatical relations). RASP uses CLAWS C2

tagset (Jurafsky and Martin, 2000). We choose RASP because of the morphological analysis

functionality, convenient for computing our lexical features. The lemmatization function outputs

the lemma form, and the generation function generates different inflected forms of a lemma.

MXPOST tagger (Ratnaparkhi, 1996) is a POS tagger based on maximum entropy model.

We use the Java implementation of the tagger published by the author. Unlike the RASP tagger,

MXPOST uses the Penn Treebank part-of-speech tagset (Marcus et al., 1993), which allows us

to tag our data in a format that can be accepted by the pre-trained MaltParser model.

MaltParser 2 (Nivre et al., 2006) is a statistical dependency parser. First it uses training data

from a treebank to induce a model, and then utilizes this model to parse new input data. The

parser itself is language independent. Furthermore, it is independent of the dependency tagset

and the POS tagset. However, the pre-trained MaltParser model is only available in the Penn

Treebank part-of-speech tagset (Marcus et al., 1993). The MaltParser developers converted the

Penn Treebank data to dependency trees using the Standford Parser (Marneffe et al., 2006), so

the pre-trained model outputs the Standford typed dependencies. Our preprocessed data uses

the Standford typed dependencies.

1See http://www.cl.cam.ac.uk/Research/NL/anlt.html
2See http://maltparser.org/index.html

13

http://www.cl.cam.ac.uk/Research/NL/anlt.html
http://maltparser.org/index.html
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Stanford NER (Finkel et al., 2005) is a Java implementation of a Named Entity Tagger. This

tagger adopts a Conditional Random Field (CRF) (Lafferty et al., 2001) sequence model. We use

the version that contains three named entity classes (PERSON, ORGANIZATION, LOCATION)

for English.

2.1.3 Data Format

We use a XML format, which consists of six nested elements, to store the preprocessed corpus.

• “corpus” element is the outermost element. The “id” property of this element records

the name of the corpus.

• “record” element is nested under element “corpus”, which has five distinct properties:

“id” records the unique identity of the record within the corpus; “idiom” records the base

form (dictionary form) of the idiom that this record contains (e.g., break the ice, spill the

beans); “file” records the original Gigaword file that the record is extracted from (e.g.,

emphafe199407); “label” is the gold-standard human annotation which says whether the

target expression is used literally or non-literally (e.g., l or n); “sid” records the id number

of the record within the same idiom. (e.g., record containing break the ice with sid=”2”

means that it is the second record of the break the ice idiom set.)

• “paragraph” element is nested under element “record”. The “id” property records the

paragraph number as well as the record number. For instance, id=”2-3” means that the

current paragraph is the third paragraph of the second record.

• “sentence” element is nested under element “paragraph”. Like the “id” property of

the “paragraph” element, the “sentence id” records the position of the sentence. As an

example, id=”2-3-1” means that the current sentence is the first sentence of the third

paragraph of the second record.

• “word” element is nested under “sentence” element. It contains seven properties: “id”

records the position of the word within the sentence; “text” is the original word; “pos”

is the part-of-speech tag by RASP; “lem” is the lemma of the word analyzed by RASP;

“parent” is the id of dependency parent parsed by MaltParser; “deprel” is the dependency

relation between this word and its parent; “ne” is the named entity tag of the word tagged

by the Standford NER.

14
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• “iform” element is nested under “word” element. It records different inflected forms of

the word. In this corpus, we use the inflected forms of two types of words: Noun and Verb.

For verbs, we record four types of inflected forms1: present participles (e.g., wanting),

past tense (e.g., wanted), past participles (e.g., wanted) and third-person present-tense

form (e.g., wants). For nouns, we record two type of inflected forms: singular (e.g., box)

and plural (e.g., boxes).

2.2 Figurative Expression Corpus: UdSfec

In addition to the study of idiomatic expression, we also extend the topic to the study of general

figurative (unlexicalized expressions) expressions. In this section, we describe the corpus used

in figurative expression task described in Chapter 5.

2.2.1 Corpus Construction

We extract all the phrases with the POS pattern V+det+N1 from the UdSic corpus (a subset of

the Gigaword Corpus). We allow various inflected forms of verbs and nouns. Out of the total

7502 extractions, we randomly select a subset of 500 examples and label them manually as

literal or figurative.

2.2.2 Corpus Annotation

To determine how well our model deals with different types of figurative usage, we distinguish

four phenomena and define four labels (nsa, nsu, nw, l) for our annotation scheme.

Phrase level figurative means that the whole phrase is used figuratively. This category can be

further divided into two subcategories: ambiguous figurative (nsa) and unambiguous figurative

(nsu).

Ambiguous figurative (nsa) This category contains all the phrases that can have both ‘literal’

and ‘nonliteral’ readings. For instance, it is possible that an expression like “burning the bridge”

takes on a literal meaning, while, a literal interpretation of the expression “trip the light fantastic”

1Those four types can cover the major varieties of the surface form of verbs. In our application, we focus on
different surface forms of a same lemma.

1“V” is verb; “det” is determiner; “N” is noun.

15



2. CORPORA AND RESOURCES

does not make sense. Examples of this category extracted from the Gigaword Corpus are listed

as the follows:

(2.1) If Green were making his comments about a team he used to work for, you would

say he was burning his bridges behind him; what he’s doing, instead, is almost like

burning the bridge while he’s still on it.

(2.2) In later years, I would come to understand that many successful revolutionaries

enjoyed the fruits of success, and their status and were unwilling to give up either.

Free elections would be permanently postponed and oppression equal to (or greater

than) previous dictators would become part of the system.

(2.3) Dole showcased his legendary dry wit in a move that seemed designed to help

soften the edges of steady attacks on the president he hopes to defeat in his third and

final bid for the White house.

(2.4) Dr . Joy: Take the sock out of your mouth and create a brand-new relationship with

your mom. Your mother is belittling you, literally trying to make you little, so she

will still be the mom and you will still be the child. It’s the only relationship she

knows how to navigate with you. That’s why it’s up to you to change.

(2.5) Do not worry about Donald. You can go home and bet the ranch that he will be bigger

and stronger than ever. Donald always wins.

Unambiguous figurative (nsu) This category contains expressions that can only have id-

iomatic reading. The literal reading violets grammatical rules, selectional constraints or common

knowledge. (See Examples 2.6 and 2.7)

(2.6) McGwire’s answer to Sosa has been swift. Is it this easy for Mcgwire? Some,

including Sosa, have suggested that McGwire has the edge in controlling the pace of

this race because the cardinals are out of the playoffs. No pressure, no holding back.

Mcgwire can relax and swing freely.

(2.7) Trip the light fantastic is an extravagant way of referring to dancing, a phrase rather

more common years ago than it is now.
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2.2 Figurative Expression Corpus: UdSfec

Token level figurative (nw) is also called Weak Figurative. The label token-level figurative

(nw) is used when part of the phrase is used figuratively (e.g., sparrow in (2.8)). Often it

is difficult to determine whether a word is still used in a ‘literal’ sense (e.g., lexicalized in a

dictionry) or whether it is used figuratively. Since we are interested in improving the performance

of NLP applications such as MT, we take a pragmatic approach and classify usages as ‘figurative’

if they are not lexicalized, i.e., if the specific sense is not listed in a dictionary.1 For example,

we would classify summit in the meeting sense as ’literal’ (l), and for the same reason, we treat

steer in Example 2.9 and jack in Example 2.10 as literal.

(2.8) During the Iraq war, he was a sparrow; he didn’t condone the bloodshed but wasn’t

bothered enough to go out and protest.

Literal (l) All the cases which are clearly of literal usage. As discussed in the nw case,

we also annotated sense lexicalized expressions as literal (e.g., “steer the industry”, “jack the

price”).

(2.9) But the main point is that by taking leadership Intel has filled a serious void. IBM, of

course, originally defined the PC standard, but during the course of the 1980s, as it

lost market share to what were then called IBM compatibles, or clones. It lost the

clout to steer the industry in new directions. Compaq tried, notably with its Eisa card

standard, but few of its jealous rivals were willing to follow.

(2.10) The cartel would love to jack the price higher; That’s what cartels do, by managing

supply to jigger up demand. But some oil-producing country always finds the tempta-

tion too great, and begins to cheat on production quotas, flooding the market, driving

prices down. I mean, would you like to be in a position where you had to trust an

oil-producing nation not to get grabby?

In summary, Phrase-level figurative means that the whole phrase is used figuratively. We

further divide this class into expressions which are potentially ambiguous between literal

and figurative usages (nsa), e.g., spill the beans, and those that are unambiguously figurative

irrespective of the context (nsu), e.g., trip the light fantastic. The latter can, theoretically, be

detected by dictionary look-up, while the former have to be detected in context. The label

token-level figurative (nw) is used when part of the phrase is used figuratively.
1We use http://www.askoxford.com.
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2. CORPORA AND RESOURCES

2.2.3 Discussion and Statistics

In our annotation, we noticed that some target expressions are actually named entities (e.g.,

movie name, event name, music or band name, etc., see Example 2.11 and 2.12). “Inherit

the Wind” is actually a name of the movie. We also find that there are a certain number of

conventional domain specific phrases: In Example 2.13, the target expression “loading the

bases” is a technical term in the sport of baseball.1 We treat both named entities and domain

conventional phrases as ‘figurative’ in our practice.

(2.11) MGM salted Kelly’s song-and-dance movie career with a few dramatic roles, "Living

in a Big Way" (1947), "The Three Musketeer’s" (1948), "It’s a Big Country" (1951)

and "Inherit the Wind" (1960).

(2.12) Part of the problem for Lockheed Martin, which two years ago won a fierce com-

petition for a $900 million NASA contract to build an experimental reusable rocket

called the x-33, may be that the company simply bit off more than it could chew,

with a project that would ultimately require it to assume all the costs of commercial

development even though many observers think the company has little incentive or

commitment to do so.

(2.13) Pettitte battled through the middle innings before finally crumbling in the sixth,

walking Alex Ochoa to lead off. Pat Meares and Ortiz singled, loading the bases.

Pettitte got a force play at home and a short fly out to right, and it seemed he would

escape the inning.

In all, we annotated 500 records in total, of which, 7.3% of the instances were annotated

as ‘nsa’, 1.9% as ‘nsu’, 9.2% as ‘nw’ and 81.5% as ‘l’. A randomly selected sample set (100

instances) was annotated independently by a second annotator. The kappa score (Cohen, 1960)

is 0.84, which suggest that the annotations are reliable.

2.3 Word Sense Disambiguation Corpora

As introduced in the introduction chapter, our studies also cover various WSD phenomena. The

corpora described in this section are used for the WSD task Chapter 6. We introduce two WSD

corpora: one is for the fine-grained WSD; and the other is for the coarse-grained WSD.
1In baseball, the phrase “loading the bases” refer to the event of causing the bases to become loaded.
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2.4 Word Sense Induction Corpora

2.3.1 SemEval 2007 Fine-grained WSD Dataset

The fine-grained WSD dataset is provided by Pradhan et al. (2007) for the Semeval 2007 Task-17

(English Fine-grained All-words Task). This dataset is a subset of the set from Task-07. It

comprises the three WSJ articles from Navigli et al. (2007). A total of 465 lemmas were selected

as instances from about 3500 words of text. There are 10 instances marked as ‘U’ (undecided

sense tag). Of the remaining 455 instances, 159 are nouns and 296 are verbs. The sense inventory

is from WordNet 2.1.

The organizers do not supply the part-of-speech and lemma information of the target

instances. In order to avoid the wrong predictions caused by tagging or lemmatization errors,

we manually corrected any bad tags and lemmas for the target instances. This was done by

comparing the predicted sense keys and the gold standard sense keys. We only checked instances

for which the POS-tags in the predicted sense keys are not consistent with those in the gold

standard. This is the case for around 20 instances.

2.3.2 SemEval 2007 Coarse-grained WSD Dataset

The coarse-grained WSD dataset is from the Semeval 2007 Task-07 benchmark dataset released

by Navigli et al. (2007). As reported in the paper, the dataset consists of 5377 words of running

text from five different articles: the first three were obtained from the WSJ corpus, the fourth was

the Wikipedia entry for computer programming, and the fifth was an excerpt of Amy Steedman’s

Knights of the Art, biographies of Italian painters. The proportion of the non news text, the last

two articles, constitutes 51.87% of the whole testing set. In total, this corpus consists of 1108

nouns, 591 verbs, 362 adjectives, and 208 adverbs. The data were annotated with coarse-grained

senses which were obtained by clustering senses from the WordNet 2.1 sense inventory based

on the procedure proposed by Navigli (2006).

2.4 Word Sense Induction Corpora

We also conduct research on Word Sense Induction which is a subsequent work of Word Sense

Disambiguation. As described in the introduction section, WSI faces with evaluations which

hinders the research in this field. In this section, we describe two datasets from the SemEval

shared tasks that we use for the study of the evaluation problems of WSI.

19



2. CORPORA AND RESOURCES

2.4.1 SemEval 2007 WSI Dataset

The SemEval 2007 WSI dataset is from task-02 “Evaluation Word Sense Induction and Discrim-

ination Systems” (Agirre and Soroa, 2007). It is borrowed from the SemEval 2007 “English

lexical sample subtask” of task-17 (Pradhan et al., 2007). The texts are taken from the Wall

Street Journal and Brown corpora. All the instances are human annotated with OntoNotes senses

(Hovy et al., 2006). There are 100 target words in this dataset (65 verbs and 35 nouns). The

sense tags are removed from the training corpus. All the training and testing examples are

combined together. This results a total number of 27,132 instances (17,649 nouns and 12,200

verbs).

2.4.2 SemEval 2010 WSI Dataset

The second WSI dataset is from the SemEval 2010 “Word Sense Induction” task (Manandhar

and Klapaftis, 2009). All the instances of the dataset are taken from OntoNotes. Each instance

consists of a maximum of three sentences. The source of those texts are mainly newswires such

as the Wall Street Journal, CNN and BBC. There are 100 target words in this dataset (50 nouns

and 50 verbs). The organizers supply a test set containing 8,915 manually annotated examples.

In the gold annotation, the average number of sense clusters is 5.6.

2.5 Wikipedia Dump

In addition to the evaluation datasets described in the last few sections, we also use a Wikipedia

Dump (Roth and Klakow, 2010)1 for our topic estimation experiments (Chapter 6). This dataset,

which consists of 320,000 articles,2 is significantly larger than other standard NLP corpora (e.g.,

BNC or Gigaword). All markup from the Wikipedia dump was stripped off using the same filter

as the ESA implementation (Sorg and Cimiano, 2008), and stopwords were filtered out using the

Snowball (Porter, October 2001) stopword list. In addition, words with a Wikipedia document

frequency of one were filtered out. The lemmatized version of the corpus consists of 299,825

lexical units.

1The version is from the English snapshot of 2009-07-13.
2All articles of fewer than 100 words were discarded.
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3

A Supervised Model to Disambiguate
Idiomatic Expressions

We start with the problem token-based idiom detection (given a potentially idiomatic phrase in

context, decide whether it is used literally or idiomatically), in which the lexicalized phrases

(dictionary form) have two possible senses ‘literal’ or ‘idiomatic’. In this chapter, we investigate

supervised models for this task. We are specifically interested in which types of features (e.g.,

semantic relatedness features, local context, global context, syntactic properties and other

linguistic indicators) perform best and more specifically which features generalize across idioms.

We compare the results with state-of-the-art together for this task.

3.1 Introduction

Nonliteral expressions are a major challenge in NLP because they are (i) fairly frequent and (ii)

often behave idiosyncratically. Apart from typically being semantically more or less opaque,

they can also disobey grammatical constraints (e.g., by and large, lie in wait). Hence, idiomatic

expressions are not only a problem for semantic analysis but can also have a negative effect on

other NLP applications (Sag et al., 2001), such as parsing (Baldwin et al., 2004).

To process nonliteral language correctly, NLP systems need to recognize such expressions

automatically. While there has been a significant body of work on idiom (and more generally

multi-word expression) detection (see Section 3.5), until recently most approaches have focused

on a type-based classification, dividing expressions into “idiomatic” or “not idiomatic” irre-

spective of their actual use in a discourse context. However, while some expressions, such as
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3. A SUPERVISED MODEL TO DISAMBIGUATE IDIOMATIC EXPRESSIONS

by and large, always have a non-compositional, idiomatic meaning, many other expressions,

such as break the ice or spill the beans, can be used literally as well as idiomatically and for

some expressions, such as drop the ball, the literal usage can even dominate in some domains

(e.g., sports). Consequently, those expressions have to be disambiguated in context (token-based

classification). See Examples 3.1 and 3.2 for concrete examples of idiomatic phrases being used

literally.

(3.1) Dad had to break the ice on the chicken troughs so that they could get water.

(3.2) Somehow I always end up spilling the beans all over the floor and looking foolish

when the clerk comes to sweep them up.

In this chapter, we investigate how well models for distinguishing literal and nonliteral use

can be learned from annotated examples. We explore different types of features, such as the

local and global context, syntactic properties of the local context, the form of the expression

itself and properties relating to the semantic relatedness structure of the discourse. We show

that several feature types work well for this task. However, some features can generalize across

specific idioms, for instance features which compute how well an idiom “fits” its surrounding

context under a literal or nonliteral interpretation. This property is an advantage because such

features are not restricted to training data for a specific target expression but can also benefit

from data for other idioms. This is important because, while idioms as a general linguistic

class are relatively frequent, instances of each particular idiom are much more difficult to find

in sufficient numbers. The situation is exacerbated by the fact the distributions of literal vs.

nonliteral usage tend to be highly skewed, with one usage (often the nonliteral one) being much

more frequent than the other. Finding sufficient examples of the minority class can then be

difficult, even if instances are extracted from large corpora.

We show that it is possible to circumvent this problem by employing a generic feature space

that looks at the cohesive ties between the potential idiom and its surrounding discourse. Such

features generalize well across different expressions and lead to acceptable performance even

on expressions unseen in the training set.

3.2 Modeling Semantic Relatedness

In this section, we introduce how we model semantic relatedness, which is the basis of the

semantic relatedness induced features (relW, relS and connect., described in Section 3.3). As
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3.2 Modeling Semantic Relatedness

modeling semantic relatedness is a very active research area in computational linguistics, various

similarity measures have bee proposed in previous studies (Chen et al., 2006; Herdağdelen et al.,

2009; Pedersen et al., 2004; Rubenstein and Goodenough, 1965). We chose a measure called

Normalized Google Distance (NGD) Cilibrasi and Vitanyi (2007), which computes relatedness

on the basis of page counts returned by a search engine.1 It is defined as follows:

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)
log M −min{log f(x), log f(y)}

(3.3)

where x and y are the two words whose association strength is computed (e.g., fire and coal),

f(x) is the page count returned by the search engine for x (and likewise for f(y) and y), f(x, y)

is the page count returned when querying for “x AND y”, (i.e., the number of pages that contain

both, x and y), and M is the number of web pages indexed by the search engine. The basic idea

is that the more often two terms occur together, relative to their overall occurrence, the more

closely they are related.

In two previous experiments (Li, 2008), NGD is shown to be highly correlated to semantic

relatedness rated by humans on the German data set from Technische Universität Darmstadt
2 and on the English dataset the WordSimilarity-353 Test Collection 3. In the next section, we

describe a new experiment in which we compare the NGD value with ‘literal’/‘nonliteral’ lexical

chains identified by human annotators. We find that the NGD value generally agrees well with

human intuition, which further justifies our decision to use NGD as a semantic relatedness

measure for extracting semantic relatedness based features for our supervised model.

3.2.1 Comparing NGD with Human Annotation

We use the annotated dataset from Sporleder et al. (to appear), in which two annotators annotated

the lexical chain words in texts that indicate the ‘literal’ or ‘idiomatic’ use of potential idiomatic

expressions.4 We compare NGD value with the human annotation to check whether human

judged chain words correlate with a high semantic relatedness value predicted by our automatic

semantic relatedness modeling approach (low NGD).

1We employ Yahoo! rather than Google since we found that it returns more stable counts.
2Available from http://www.ukp.tu-darmstadt.de/data/semantic-relatedness/; All

subjects in the experiments were native speaker of German, they were asked to rate the word pairs by similar-
ity on a scale of 0-4.

3Available from the computer science department of Technion - Israel Institute of Technology: http://www.
cs.technion.ac.il/~gabr/resources/data/wordsim353/

4The annotation was adjudicated by an American English native speaker.
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3.2 Modeling Semantic Relatedness

In our automatic approach, the semantic relatedness of the literal chain words are modeled

by the NGD between the word and the component words in the expression (e.g., boat for ‘literal’

rock the boat), while the relatedness of the nonliteral chain words is modeled by the NGD be-

tween the word and the idiomatic paraphrase (idiom definition. e.g., the paraphrase of idiomatic

rock the boat is upset conventions, break norms, cause trouble.). The relatedness of a literal

chain word wl with the literal phrase rock the boat, for instance, would be NGD(wl, ‘boat′),

whereas the relatedness of a nonliteral chain word wnon with the nonliteral phrase rock the boat

would be the NGD(wnon, ‘upset conventions OR break norms OR cause trouble′).1

As examples, Figures 3.1a and 3.1b plot the NGD for a given word against its position in

the text. This allows us to see how different words are related to the meaning of the target

expression within the context. The position of the target expression in the text is marked by

a (blue) vertical line. Words that are marked as semantically related by human annotators are

indicated by a (green) circle. Figure 3.1a shows the results for a literal example of rock the boat,

while Figure 3.1b shows the results for a nonliteral example of the same idiom. The original

texts of the plots are in the appendix (see Appendix ?? for the literal example, and Appendix ??

for the idiomatic example).

We find that human annotations agree quite well with the NGD values, as words marked by

humans tend to be located at local minimal in the graph. NGD is able to identify semantically

related words marked by humans. This general pattern is observable for both the idiomatic and

the literal meaning. Therefore, we demonstrate that modeling semantic relatedness by NGD is

an effective strategy.

We also find that the NGD value of the associated words (marked by humans) in the literal

examples is lower than in the nonliteral examples. While most of the associated words in the

literal cases have an NGD value of around 0.5, most of the words in the nonliteral cases have an

NGD value of around 0.8 (see Figure 3.1). Our further study suggests that idiomatic readings

tend to appear in rather diverse contexts. For instance, rock the boat can mean cause trouble or

upset conventions. It is more likely that words such as accusation, attack, conflict co-occur with

the first reading, while words such as counterculture, rebels, change, norm co-occur with second

reading. The diversity of nuances to the idiomatic meaning leads to a scattered distribution of

the idiomatic meaning across many different context words. As a result, the nonliteral NGD

is generally high (i.e., words tend to be rated as not very similar to the idiomatic meaning). It

1Computationally, we represent the paraphrases by using the OR logic operator to connect all the possible
paraphrases when sending a query to the search engine.
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3. A SUPERVISED MODEL TO DISAMBIGUATE IDIOMATIC EXPRESSIONS

actually closely resembles human intuition, as humans also rate semantic related links with

idiomatic meanings as relatively weak. A further supporting argument is that results also

show that human judges tend to annotate more words in the literal example than the nonliteral

example (see Figure 3.1a and Figure 3.1b). We also find that there is also more disagreement in

the nonliteral annotation compared with literal annotation. In all, our study suggests that the

nonliteral semantic relatedness is not only more difficult to identify for the automatic method

but also for human judges. As a result, we decide only include literal semantic related features

in our supervised model as nonliteral semantic related features are more difficult to capture and

including them is more likely to introduce noise to later stage procedures.

3.3 Features of Idiomatic and Literal Usage

In this study we are particularly interested in which features work well for the task of distin-

guishing literal and idiomatic language uses. The few previous studies have mainly looked at the

lexical context in which and expression occurs (Birke and Sarkar, 2006; Katz and Giesbrecht,

2006). However, other properties of the syntactic and semantic features might also be useful.

We distinguish these features into different groups and discuss them in the following sections.

3.3.1 Discourse Cohesion (dc)

We start this section by a brief description of the cohesion-graph approach proposed by Li

(2008); Sporleder and Li (2009), on which our Discourse Cohesion feature extraction is build up.

This model exploits the fact that words in a coherent discourse exhibit lexical cohesion (Halliday

and Hasan, 1976), i.e. concepts referred to in sentences are typically related to other concepts

mentioned elsewhere in the discourse. Given a suitable measure of semantic relatedness, it

is possible to compute the strength of such cohesive ties between pairs of words. While the

component words of literally used expressions tend to exhibit lexical cohesion with their context,

the words of nonliterally used expressions do not. For example, in (3.4) the expression play

with fire is used literally and the word fire is related to surrounding words like grilling, dry-heat,

cooking, and coals. In (3.5), however play with fire is used nonliterally and cohesive ties between

play or fire and the context are absent.

(3.4) Grilling outdoors is much more than just another dry-heat cooking method. It’s the

chance to play with fire, satisfying a primal urge to stir around in coals .

26



3.3 Features of Idiomatic and Literal Usage

Figure 3.2: Idiom instances represented in the discourse connectivity feature space, y = x is
decision boundary by the cohesion graph, c(G′) is the average connectivity of the discourse, c(G)
is the average connectivity between the idiom component words and the context.

(3.5) And PLO chairman Yasser Arafat has accused Israel of playing with fire by support-

ing HAMAS in its infancy.

To determine the strength of cohesive links, the unsupervised model builds a graph structure

(called cohesion graph) in which all pairs of content words in the context are connected by an

edge which is weighted by the pair’s semantic relatedness. Then the connectivity of the graph is

computed, defined as the average edge weight. If the connectivity increases when the component

words of the idiom are removed, then there are no strong cohesive ties between the expression

and the context and the example is labelled as ‘nonliteral’, otherwise it is labelled as ‘literal’.

We implement two semantic relatedness discourse cohesion features, discourse connec-

tivity and related score , which take into account the cohesive structure of an expression in

context. These features look at the lexical semantic relatedness between an expression and the

surrounding context, so they are more likely to generalize across different idioms.
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3. A SUPERVISED MODEL TO DISAMBIGUATE IDIOMATIC EXPRESSIONS

Discourse Connectivity (connect.) In the cohesion graph approach, the decision boundary is

defined by:

∆c = c(G)− c(G′
) (3.6)

where, c(G) is the average connectivity between the idiom component words and the context;

c(G
′
) is the average connectivity of the discourse. The idiom component words are likely be

related to the context in the literal cases, so ∆c > 0 can be used to identify literal examples.

We conduct an experiment to visualize this process, in which all the idiom data instance are

represented by the two discourse connectivity features (see Figure 3.2). The decision boundary

of the graph classifier can be represented as the line x = y. However, a further research step can

take these two values of connectivity as features for a supervised learning model and find more

sophisticated classification boundaries (e.g., nonlinear boundary).

Based on this idea, we implement two features which look at the cohesion graph of an

instance. We encode the connectivity of the graph (i) when the target expression is included

and (ii) when it is excluded. The cohesion graph classifier uses the difference between these

two values to make its prediction. By encoding the absolute connectivity values as features we

enable the supervised classifier to make use of this information to model more complicated

decision boundaries.

Relatedness Score (relS) The feature set implements the relatedness score which encodes

the scores for the 100 most highly weighted edges in the cohesion graph (ranked by NGD).1

If these scores are high, there are cohesive links with the discourse and the target expression

is likely to be used literally. For instance, the top one related score feature in the literal case

(Example 3.7) is the related score between ice and water. In contrast, the top one related score

in the idiomatic case (Example 3.8) is the related score between ice and games. The related

score is higher in the literal case than in the idiomatic case.

(3.7) The water would break the ice surface with its ccumulated energy.

(3.8) We played a couple of party games to break the ice.

1We only used the 100 highest ranked edges because we are looking at a specific context here rather than the
contexts of the literal or nonliteral class overall. Since the contexts we use are only five paragraphs long, recording
the 100 strongest edges seems sufficient.
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3.3 Features of Idiomatic and Literal Usage

3.3.2 Global Lexical Context (glc)

That intuition that lexical context may be a good indicator for the usage of an expression is

indicated by examples such as (4.1) and (3.10), which suggest that literal and nonliteral usages

of a specific idiom co-occur with different sets of words. For instance, nonliteral uses of break

the ice (4.1) tend to occur with words like discuss, bilateral or relations, while literal usages

(3.10) predictably occur with, among others, frozen, cold or water. What we look at here is

the global lexical context of an expression, i.e., taking into account previous and following

sentences. We specifically look for words which are either correlated (in a wide sense) to the

literal or the nonliteral sense of the target expression. The presence or absence of such words is

indicator of how the expression is used in a context.

(3.9) “Gujral will meet Sharif on Monday and discuss bilateral relations,” the Press Trust

of India added. The minister said Sharif and Gujral would be able to “break the ice”

over Kashmir.

(3.10) Meanwhile in Germany, the cold penetrated Cologne cathedral, where worshippers

had to break the ice on the frozen holy water in the font.

In all, we implement two sets of features which encode the global lexical context: salient

words and related words. The former feature uses a variant of tf.idf to identify words that are

particularly salient for ‘literal’ or ‘idiomatic’ usages. The latter feature identifies words which

are most strongly semantically related to the component words of the target expression.

Salient Words (salW) This feature aims to identify words which are particularly salient for

literal usage. We use a frequency-based definition of salience and compute the literal saliency

score for each word in a five-paragraph context around the target expression:

sallit(w) =
ilit(w)× log flit(w)

inonlit(w)× log fnonlit(w)
(3.11)

where sallit(w) is the saliency score of the word w for the class lit; flit(w) is the token

frequency of the word w for literally used expressions; ilit(w) is inverse number of instances
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3. A SUPERVISED MODEL TO DISAMBIGUATE IDIOMATIC EXPRESSIONS

of the target expressions classified as lit which co-occur with word w (and mutatis mutandis

nonlit for target expressions labelled as nonliteral).1

Words with a high sallit occur much more frequently with literal usages than with nonliteral

ones. Conversely, words with a low sallit should be more indicative of the nonliteral class.

However, we found that, in practice, the measure is better at picking out indicative words for

the literal class; nonliteral usages tend to co-occur with a wide range of words. For example,

among the highest scoring words for break the ice we find thick, bucket, cold, water, reservoir

etc. While we do find words like relations, diplomacy, discussions among the lowest scoring

terms (i.e., terms indicative of the nonliteral class), we also find a lot of noise (ask, month). The

effect is even more pronounced for other expressions (like drop the ball) which tend to be used

idiomatically in a wider variety of situations (drop the ball on a ban of chemical weapons, drop

the ball on debt reduction etc.).

We implement the saliency score in our model by encoding for the 300 highest scoring

words whether the word is present in the context of a given example and how frequently it

occurs.1 Note that this feature (as well as the next one) can be computed in a per-idiom or a

generic fashion. In the former case, we would encode the top 300 words separately for each

idiom in the training set, in the latter across all idioms (with the consequence that more frequent

idioms in the training set contribute to more positions in the feature vector).

Furthermore, we also find there are cases in which several idioms co-occur within the same

instance, as the writers convey a stylish writing style (e.g., irony) by excessively usage of idioms.

Consequently, global lexical context features may also generalize across idioms to some extend.

Related Words (relW) This feature set is a variant of the previous one. Here we score the

words not based on their saliency but we determine the semantic relatedness between the noun

in the idiomatic expression and each word in the global context, using the Normalized Google

Distance mentioned in Section 3.2. We encode the 300 top-scoring words. While the related

words feature is less prone to overestimation of accidental co-occurrence than the saliency

1Our definition of sallit bears similarities with the well known tf.idf score. We include both the term
frequencies (flit) and the instance frequencies (ilit) in the formula because we believe both are important. However,
the instance frequency is more informative and less sensitive to noise because it indicates that expression classified as
’literal’ consistently co-occurs with the word in question. Therefore we weight down the effect of the term frequency
by taking its log.

1We also experimented with different feature dimensions besides 300 but did not find a big difference in
performance.
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feature, it has the disadvantage of conflating different word senses. For example, among the

highest scoring words for ice are cold, melt, snow, skate, hockey but also cream, vanilla, dessert.

3.3.3 Local Lexical Context (locCont)

In addition to the global context, the local lexical context, i.e., the words preceding and following

the target expression, also provide important information. Some very frequent local clues are

words such as literally or metaphorically speaking. Unfortunately, such clues are not only very

rare (we only found a handful in nearly 4,000 annotated examples) but also not always reliable.

For instance, it is not difficult to find examples like (3.12) and (3.13) where the word literally is

used even though the idiom clearly has a nonliteral meaning.

(3.12) In the documentary the producer literally spills the beans on the real deal behind the

movie production.

(3.13) The new philosophy is blatantly permissive and literally passes the buck to the

House’s other committees.

We also find more local cues examples on idiom specific level. For example, the word just

before get ones feet wet often indicates nonliteral (see Example 3.14). As another example, the

occurrence of the prepositions over or between after break the ice often indicate ‘nonliteral’ (see

Example 4.1 and 3.15). Although such cues are not perfect they often make one usage more

likely than the other. Unlike the semantically based global cues, many local clues are more

rooted in syntax, i.e., local cues work because specific constructions tend to be more frequent

for one class than the other.

(3.14) The wiki includes a page of tasks suitable for those just getting their feet wet.

(3.15) Would the visit of the minister help break the ice between India and Pakistan?

Another type of local cues involve selectional preferences. For instance, idiomatic class is

very likely if the subject of the verb phrase play with fire is a country (Example 3.16) or if the

phrase break the ice is followed by a with-PP whose NP refers to a person (Example 3.17).

(3.16) Dudayev repeated his frequent warnings that Russia was playing with fire.

(3.17) Edwards usually manages to break the ice with the taciturn monarch.
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may:

visit:SUB

the:NMOD of:NMOD

minister:PMOD

the:NMOD

break the ice:VMOD

between:VMOD

...

Figure 3.3: Dependency tree for a nonliteral example of break the ice (The visit of the minister may
break the ice between India and Pakistan.)

Based on those observations, we encode words occurring in a ten word window around the

target expression, five pre-target words and five post-target words, as the locCont features.

3.3.4 Syntactic Structure (allSyn)

To encode syntactic features, we first select the head node (heaSyn) of the target expression from

the dependency tree (e.g., break in Figure 3.3). Then, we select further features by the parent

node (parSyn), the sibling nodes (sibSyn) and the children nodes (chiSyn) of the head node

(heaSyn). Altogether, these nodes include the following categories of syntactic information:

Dependency Relation of the Verb Phrase The whole idiomatic expression used as an object

of a preposition is indicative of idiomatic usage (see Example 3.18). This property is captured

by the heaSyn node.

(3.18) Ross headed back last week to Washington to brief president Bill Clinton on the

Hebron talks after achieving a breakthrough in breaking the ice in the Hebron talks

by arranging an Arafat-Netanyahu summit .

Modal Verbs usually appear in the parent position of the head verb (parSyn). Modals can be

an indicator of idiomatic usage such as may in Figure 3.3. In contrast, the modal had to is an

indicator that break the ice is used literally (Figure 3.4).
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had-to:

Dad:SUB break:VMOD

ice:OBJ

the:NMOD on:NMOD

troughs:PMOD

the:NMOD chicken:NMOD

Figure 3.4: Dependency tree for a literal example of break the ice (Dad had to break the ice on the
chicken troughs.)

Subjects also provide clues about the usage of an expression (e.g., disobey selectional pref-

erences). For instance, visit as a subject of the verb phrase break the ice is an indicator of

idiomatic usage (see Figure 3.3). As another example, subjects typically appear in the children

position of the head verb, while, in unconventionally cases (idiomatic), they may appear in the

sibling position (as Figure 3.3).

Verb Subcat We further encode the arguments of the head verb of the target expression. These

arguments can be, for example, additional PPs. This feature encodes syntactic constraints and

aims to model selectional restrictions. The subcategorisation frames often differ from each

other in the two cases, e.g., nonliteral expressions often tend to have shorter argument lists than

literal ones. For instance, the subcat frame <PP-on, PP-for> intuitively seems more likely for

literal usages of the expression drop the ball (Example 3.19) than for nonliteral ones, for which

<PP-on> is more likely (Example 3.20). In our experiments, the children nodes of the head

node (chiSyn) encode the subcategorisation frames.

(3.19) US defender Alexi Lalas twice went close to forcing an equaliser , first with a glancing

equaliser from a Paul Caligiuri free kick and then from a Wynalda corner when Prunea

dropped the ball [on the ground] only [for Tibor Selyme to kick frantically clear].

(3.20) “Clinton dropped the ball [on this],” said John Parachini.
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Modifiers of the verb are also indicative of the ‘literal’ or ‘idiomatic’ usage. Take 3.21 as

an example, the fact that the phrase get one’s feet wet is modified by the adverb just suggests

a idiomatic use. Similar to the verb subcat, modifiers are often appear in the children node

position in the dependency tree (chiSyn).

(3.21) The wiki includes a page of tasks suitable for those just getting their feet wet.

Coordinated Verb Which verbs are coordinated with the target expression, if any, also

provides cues for the intended interpretation. For example, in (3.22), the fact that break the ice

is coordinated with another verb fall suggests that the phrase is used literally. The coordinated

verb may appear at the sibling, children, or another position of the head verb depending on

the dependency parser. We use MaltParser, which tends to output the coordinated verbs in the

children position of the first verb.

(3.22) They may break the ice and fall through.

3.3.5 Other Features

Named Entities (ne) Diab and Bhutada (2009) find that NE-features are useful for idiom

detection task and they use a commercial NE-tagger with 19 classes in their experiments. We

also find NEs are indicative by out preliminary data study. For instance (3.16), a country name

as subject of the phrase break the ice often indicates idiomatic usage. We use the Stanford

NE tagger (Finkel et al., 2005), and encode three named entity classes (“person”, “location”,

“organization”) as NE features.

Indicative Terms (iTerm) Words like literally, proverbially are often indicative of literal or

idiomatic usages as well. We encode the frequencies of such terms as iTerm features.

Scare Quotes (quote) feature encodes whether the idiom is marked off by scare quotes, as it

often indicates nonliteral usages (3.23).

(3.23) Do consider “getting your feet wet” online, using some of the technology that is now

available to us.
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3.4 Experiments

In the previous section we discuss different features for idiom disambiguation task. To determine

which of these features work best for the task and which ones generalize across different idioms,

we carry out three experiments. In the first one (Section 3.4.1) we train one model for each idiom

(see Chapter 2) and test the effectiveness of each feature type individually as well as different

feature combinations. In the second experiment (Section 3.4.2), we train one generic model for

all idioms and determine how the performance of this model differs from the idiom-specific

models. Specifically we want to know whether the model would benefit from the additional

training data available by combining information from several idioms. Finally (Section 3.4.3),

we test the generic model on unseen idioms to determine whether these can be classified based

on generic properties even if training data for the target expressions have not been seen.

3.4.1 Idiom Specific Models

The first question we want to answer is how difficult token-based idiom classification is and

which of the features defined in the previous section work well for this task. We implement a

specific classifier for each of the idioms in the data set. We train models for different feature

combinations and for each individual feature. Because the data set is not very big we decide to

run these experiments in 10-fold stratified cross-validation mode. We use the SVM classifier

(SMO) from Weka.1

Table 3.1 shows the results. We report the precision (Prec.), recall (Rec.) and F-Score for

the literal class, as well as the accuracy. Note that due to the imbalance in the data set, accuracy

is not a very informative measure here; a classifier always predicting the majority class would

already obtain a relatively high accuracy. The literal F-Score obtained for individual idioms

varies from 38.10% for bite one’s tongue to 96.10% for bounce of the wall. However, the data

sets for the different idioms are relatively small and it is impossible to say whether performance

differences on individual idioms are accidental, or due to differences in training set size or due

to some inherent difficulty of the individual idiom. Thus we chose not to report the performance

of our models on individual idioms but on the whole data set for which the numbers are much

more reliable. The final performance confusion matrix is the sum over all individual idiom

confusion matrices.

1http://www.cs.waikato.ac.nz/ml/weka/
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Avg. literal Avg.
feature Prec. Rec. F-Score Acc.

all 89.84 77.06 82.96 93.36

glc+dc 90.42 76.44 82.85 93.36

allSyn 76.30 86.13 80.92 91.48
heaSyn 76.64 85.77 80.95 91.53
parSyn 76.43 88.34 81.96 91.84
chiSyn 76.49 88.22 81.94 91.84
sibSyn 76.27 88.34 81.86 91.78

locCont 76.51 88.34 82.00 91.86

ne 76.49 88.22 81.94 91.84
iTerm 76.51 88.34 82.00 91.86
quote 76.51 88.34 82.00 91.86

Basemaj 76.71 88.34 82.00 91.86

Table 3.1: Performance of idiom-specific models (averaged over different idioms), 10-fold stratified
cross-validation.

The Baseline (Basemaj) is built based on predicting the majority class for each expression.

This means predicting literal for the expressions which consist of more literal examples and

nonliteral for the expressions consisting of more nonliteral examples. We notice the baseline

gets a fairly high performance (Acc.=91.86%).

The results show that the expressions can be classified relatively reliably by the proposed

features. The performance beats the majority baseline statistically significantly (p = 0.01,

χ2 test). The most effective feature combination is the semantic relatedness features and the

global context (glc+dc). We notice that parSyn, chiSyn, locCont, iTerm and quote features are

too sparse. These individual features cannot guide the classifier. Therefore, the classifier only

predicts the majority class which results in a performance similar to the baseline. Some of the

syntactic features are less sparse and they achieve different results from the baseline classifier,

however, the performances of these features are actually worse than the baseline. This may

be due to the relatively small training size in each idiom specific model. When adding those

features together with statistical-based features (glc+dc), the performance of the literal class can

be improved slightly. However, we donnot observe any performance increase on the accuracy.
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Avg. literal Avg.
feature Prec. Rec. F-Score Acc.

all 89.59 65.77 73.22 89.90

glc+dc 82.53 60.86 70.06 89.08

allSyn 50.83 59.88 54.99 79.42
heaSyn 50.57 59.88 54.83 79.29
sibSyn 33.33 0.86 1.67 78.83

ne 62.45 20.00 30.30 80.69
iTerm 40.00 0.25 0.49 78.99
Basemaj – – – 79.01

Table 3.2: Performance of the generic model (averaged over different idioms), 10-fold stratified
cross-validation.

3.4.2 Generic Models

Having verified that literal and idiomatic usages can be distinguished with some success by

training expression-specific models, we carry out a second experiment in which we merge the

data sets for different expressions and train one generic model. We want to see whether a generic

model, which has access to more training data, performs better and whether some features, e.g.,

the cohesion features profit more from this. The experiment was again run in 10-fold stratified

cross-validation mode (using 10% from each idiom in the test set in each fold).

Table 3.2 shows the results. The baseline classifier always predict the majority class

‘nonliteral’. Note that the result of this baseline is different from the majority baseline in the

idiom specific model. In the idiom specific model, there are three expressions (i.e., bounce off

the wall, drop the ball, pull the trigger) for which the majority class is ‘literal’.

Unsurprisingly, the F-Score and accuracy of the combined feature set drops a bit. However,

the performance still statistically significantly beats the majority baseline classifier (p << 0.01,

χ2 test). Similar to previous observation, the statistical-based features (glc+dc) work the best,

while the syntactic features are also helpful. However, the parSyn, chiSyn, locCont, and quote

features are very sparse and, as in the idiom-specific experiments, the performances of these

features are similar to the majority baseline classifier. We exclude them from the Table 3.2.

The numbers show that the syntactic features help more in this model compared with the

idiom-specific model. When including these features, literal F-Score increases by 3.16% while

accuracy increases by 0.9%. It seems that the syntactic features benefit from the increased
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Avg. literal Avg.
feature Prec. Rec. F-Score Acc.

all 96.70 81.65 88.54 95.41

glc+dc 96.93 77.00 85.83 94.48

allSyn 52.54 58.77 55.48 79.52
heaSyn 51.35 59.47 55.11 78.96
sibSyn 55.56 2.32 4.46 78.38

ne 61.89 19.05 29.13 79.87
iTerm 66.67 0.7 1.38 78.36
Basemaj – – – 79.01

Table 3.3: Performance of the generic model on unseen idioms (cross validation, instances from
each idiom are chosen as test set for each fold)

training set. This is evidence that these features can generalize across idioms. For instance, the

phrase “The US” on the subject position may be not only indicative of the idiomatic usage of

break the ice, but also of idiomatic usage of drop the ball.

We find that the indicative terms are rare in our corpus. This is the reason why the recall

rate of the indicative terms is very low (0.25%). The indicative terms are not very predictive of

literal or nonliteral usage, since the precision rate is also relatively low (40%), which means

those words can be used in both literal and nonliteral cases.

3.4.3 Unseen Idioms

In our final experiment, we test whether a generic model can also be applied to completely new

expressions, i.e., expressions for which no instances have been seen in the training set. Such a

behaviour would be desirable for practical purposes as it is unrealistic to label training data for

each idiom the model might possibly encounter in a text. To test whether the generic model does

indeed generalize to unseen expressions, we test it on all instances of a given expression while

training on the rest of the expressions in the dataset. That is, we use a modified cross-validation

setting, in which each fold contains instances from one expression in the test set. Since our

dataset contains 13 expressions, we run a 13-fold cross validation. The final confusion matrix is

the sum over each confusion matrix in each round.

The results are shown in Table 3.3. Similar to the generic model, we find that the cohesion

features and syntactic features do generalize across expressions. Statistical features (glc+dc)
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literal F-S. Acc.
feature Spe. Gen. Spe. Gen.

all 86.85 91.79 80.67 88.37
glc+dc 86.75 88.84 80.67 84.61
allSyn 85.71 71.94 75.28 61.13
heaSyn 85.79 71.94 75.39 61.13

Table 3.4: Comparing the performance of the idiom drop the ball on the idiom specific model (Spe.)
and generic model (Gen.)

perform well in this experiment. When including more linguistically orientated features, the

performance can be further increased by nearly 1%. In line with former observations, the sparse

features mentioned in the former two experiments (parSyn, chiSyn, locCont and quote) also do

not work for this experiments. We also exclude them from the table.

One interesting finding of this model is that the F-Score is higher than for the “generic

model”. This is counter-intuitive, since in the generic model, each idiom in the testing set has

examples in the training set, thus, we might expect the performance to be better due to the

fact that instances from the same expression appearing in the training set are more informative

compared with instances from different idioms. Further analysis reveal that there are some

expressions for which it may actually be beneficial to train on other expressions by the features

of common properties (e.g., semantic relatedness features).

Table 3.4 shows the comparison of the performance of drop the ball on the idiom specific

model and the generic model on unseen idioms. It can be seen that the statistical features

(glc+dc) work better for the model that is trained on the instances from other idioms than the

model which is trained on the instances of the target expression itself. We find this is due to

the fact that drop the ball is especially difficult to classify with the discourse cohesion features

(dc). The literal cases are often found in a context containing words, such as fault, mistake,

fail, and miss, which are often used to describe a scenario in a baseball game,1 while, on the

other hand, those context words are also closely semantically related to the idiomatic reading of

drop the ball. This means the classifier can be mislead by the cohesion features of the literal

instances of this idiom in the training set, as they exhibit strong idiomatic cohesive links with the

target expression. When excluding drop the ball from the training set, the cohesive links in the

1The corpus contains many sports news text.
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training data are less noisy. Thus, the performance increases. Unsurprisingly, the performance

of syntactic features works better for the idiom specific model compared with the unseen idiom

model.

3.5 Related Work

Until recently, most studies on idiom classification focus on type-based extraction (detect idioms

on the type level). Type-based methods frequently exploit the fact that idioms have a number

of properties which differentiate them from other expressions. For example, they often exhibit

a degreee of syntactic and lexical fixedness. Some idioms, for instance, do not allow internal

modifiers (*kick the black bucket) or passivisation (*the bucket was kicked). They also typically

only allow very limited lexical variation (*kick the barrel, *hit the bucket). Many approaches for

identifying idioms focus on one of these two aspects. For instance, measures that compute the

association strength between the elements of an expression have been employed to determine

its degree of compositionality (Fazly and Stevenson, 2006; Lin, 1999) (see also Villavicencio

et al. (2007) for an overview and a comparison of different measures). Other approaches use

Latent Semantic Analysis (LSA) to determine the similarity between a potential idiom and its

components (Baldwin et al., 2003). Low similarity is supposed to indicate low compositionality.

Bannard (2007) looks at the syntactic fixedness of idiomatic expressions, i.e., how likely they

are to take modifiers or be passivised, and compares this to what would be expected based

on the observed behaviour of the component words. Fazly and Stevenson (2006) combine

information about syntactic and lexical fixedness (i.e., estimated degree of compositionality)

into one measure.

Sofar there are only comparably few studies on token-based classification (given a potentially

idiomatic phrase in context, decide whether it is used literally or idiomatically). Hashimoto et al.

(2006) present a rule-based system in which lexico-syntactic features of different idioms are hard-

coded in a lexicon and then used to distinguish literal and nonliteral usages. The features encode

information about the passivisation, argument movement, and the ability of the target expression

to be negated or modified. Later on, they extend their features (e.g., collocations) inspired

by other word sense disambiguation tasks and gain performance (Hashimoto and Kawahara,

2008). Katz and Giesbrecht (2006) compute meaning vectors for literal and nonliteral examples

in the training set and then classify test instances based on the closeness of their meaning

vectors to those of the training examples. This approach is later extended by Diab and Krishna
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(2009), which takes a larger context into account (e.g., the whole paragraph), and includes

prepositions and determiners in addition to the previous content words. Cook et al. (2007) and

Fazly et al. (2009) take a different approach, which crucially relies on the concept of canonical

form (CForm). It is assumed that for each idiom there is a fixed form (or a small set of those)

corresponding to the syntactic pattern(s) in which the idiom normally occurs (Riehemann,

2001).1 The canonical form allows for inflectional variation of the head verb but not for other

variations (such as nominal inflection, choice of determiner etc.). In their work, canonical forms

are determined automatically using a statistical, frequency-based measure. Birke and Sarkar

(2006) model literal vs. nonliteral classification as a word sense disambiguation task and use a

clustering algorithm which compares test instances to two seed sets (one with literal and one

with nonliteral expressions), and assign the label of the closest set. Li (2008) and (Sporleder

and Li, 2009) propose another unsupervised method which detects the presence or absence of

cohesive links between the component words of the idiom and the surrounding discourse. If

such links can be found the expression is classified as literal otherwise as nonliteral. Boukobza

and Rappoport (2009) experiment with a supervised classifier which takes into account various

surface features such as word co-occurrence.

3.6 Summary

In this chapter, we focus on developing a supervised approach to model a two sense category

lexical ambiguity problem, i.e., token-based idiom detection. For this task, the classes are fairly

imbalanced, with one class (typically the nonliteral interpretation) being much more frequent

than the other. This causes problems for training data generation. For idiom specific classifiers,

it is difficult to obtain large data sets even when extracting from large corpora and it is even

more difficult to find sufficient examples of the minority class. In order to address this problem,

we look for features which can generalize across idioms.

We find that statistical features based on semantic relatedness and global context work best

for distinguishing literal and nonliteral readings. More specifically, the most effective four

individual features that we discovered are Salient Words, Related Words, Relatedness Score

and Discourse Connectivity. Those most effective features are further used by our successive

work in the next two chapters. We find that certain linguistically motivated features can further

boost the performance. However, those linguistic features are more likely to suffer from data

1This is also the form in which an idiom is usually listed in a dictionary.
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sparseness, as a result, they often only predict the majority class if used on their own. We also

find that some of the features that we designed generalize well across idioms. The cohesion

features have the best generalization ability, while syntactic features can generalize to some

extent.

42



4

A Bootstrapping Model to
Disambiguate Idiomatic Expressions

In the last chapter, we adopt a supervised model for the token-based idiom detection task.

We experiment with statistically and linguistically informed features and determine the most

effective feature combination (salW, relW, relS and conncetivity). The proposed supervised

model outperforms a state-of-the-art model, however, the drawback of this model is that it is

supervised and large amount of human annotation work is inevitable. In this chapter, we aim to

reduce the human annotation effort by introducing an unsupervised model while maintaining a

comparable high performance. More specifically, the unsupervised classifier proposed in this

chapter is a bootstrapping model which relies on two component classifiers from previous work:

the cohesion graph classifier and the supervised model.

4.1 Introduction

Li (2008); Sporleder and Li (2009) describe a cohesion graph method that exploits the presence

or absence of cohesive ties between the component words of a potential idiom and its context

to distinguish between literal and non-literal use. If strong ties can be found the expression is

classified as literal otherwise as non-literal. While this approach often works fairly well, it has

the disadvantage that it focuses exclusively on lexical cohesion, other statistical and linguistic

cues that might influence the classification decision are disregarded. In their experimental result,

they report a (literal) F-Score of 58.26%.

In contrast, the supervised classifier described in Chapter 3 explores more statistical and
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linguistic features compared with the cohesion graph method. With further assistance by the

human annotation data, it achieves a (literal) F-Score of 73.22%, statistically significantly

outperforming the cohesion graph approach (p << 0.01, χ2 test). However, the disadvantage is

that it is supervised which needs extra human annotation work compared to the cohesion graph

based approach.

In this chapter we show that it is plausible to combine the two classifiers into one framework

which takes the advantages from both sides: unsupervised and high performance. We propose

a bootstrapping approach, in which the cohesion graph classifier and the supervised classifier

serve as component classifiers. We use the unsupervised classifier to label a sub-set of the test

data with high confidence. This sub-set is then passed on as training data to the supervised

classifier, which then labels the remainder of the data set. This process goes on iteratively as

more and more instances are selected to the training set and predicted by the bootstrapping

framework. Compared to the cohesion graph approach, this approach has the advantage that

a larger feature set can be exploited. This is beneficial for examples, in which the cohesive

ties are relatively weak but which contain other linguistic cues for literal or non-literal use.

Compared to the supervised model, this approach has the advantage that it does not need any

human annotated data.

4.2 Component Classifiers

In this section, we introduce two component classifiers on which the bootstrapping model is

built up: one unsupervised classifier and one supervised classifier.

4.2.1 Unsupervised Classifier

As our unsupervised classifier, we use the cohesion graph (Li, 2008; Sporleder and Li, 2009)

(see Section 3.3.1 for a short description). We hypothesize that the unsupervised classifier gives

us relatively good results for some examples. For instance, in (3.4) there are several strong cues

which suggest that play with fire is used literally. However, because the unsupervised classifier

only looks at lexical cohesion, it misses many other clues which could help distinguish literal

and non-literal usages. For example, if break the ice is followed by the prepositions between or

over as in example (4.1), it is more likely to be used idiomatically (at least in the news domain).
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(4.1) "Gujral will meet Sharif on Monday and discuss bilateral relations," the Press Trust

of India added. The minister said Sharif and Gujral would be able to break the ice

over Kashmir.

Furthermore, idiomatic usages also exhibit cohesion with their context but the cohesive

ties are with the non-literal meaning of the expression. For example, in news texts, break the

ice in its figurative meaning often co-occurs with discuss, relations, talks or diplomacy (see

(4.1)). Due to the reasons described in Section 3.2 we do not have effective way to model these

idiomatic cohesive links. However if we label data we can train a supervised classifier to learn

these and other contextual clues. The trained classifier may then be able to correctly classify

examples which were misclassified by the unsupervised classifier, i.e., examples in which the

cohesive ties are weak but where other clues exist which indicate how the expression is used.

For example, in (4.2) there is weak cohesive evidence for a literal use of break the ice,

due to the semantic relatedness between ice and water. However, there are stronger cues for

non-literal usage, such as the preposition between and the presence of words like diplomats and

talks, which are indicative of idiomatic usage. Examples like this are likely to be misclassified

by the unsupervised model; a supervised classifier, on the other hand, has a better chance to pick

up on such additional cues and predict the correct label.

(4.2) Next week the two diplomats will meet in an attempt to break the ice between the

two nations. A crucial issue in the talks will be the long-running water dispute.

4.2.2 Supervised Classifier

For the supervised classifier, we use the one described in Chapter 3. We select the most effective

four features (salW, relW, relS, and connect.)1, which encode both lexical cohesion and word

co-occurrence information.2 We use SVM implemented as the LIBSVM package.3

1Refer to Chapter 3 for descriptions of these four features.
2As described in the last chapter, we also experiment with linguistically more informed features, such as the

presence of named entities in the local context of the expression, and properties of the subject or co-ordinated verbs,
but we find that these features do not lead to a better performance of the supervised classifier. Thus, we decide to
only include the most effective four features for computation efficiency.

3Available from: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ We used the default parameters.
We choose this package, because the Java API can be easily integrated in our boostrapping code.
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4.3 Bootstrapping

The bootstrapping process starts with the unsupervised classifier labeling a small initial training

set, which, consequently, is used to train the supervised classifier. The supervised classifier

applies the trained model to the rest of the data and predicts the labels. Then we select the most

confident examples from the prediction to argument the training size of the supervised classifier

in the next round. The whole process goes iteratively as more and more confident examples are

included in the training set, and it stops after predefined number of iterations is reached. To

ensure that the training set does not contain too much noise, we only add those examples about

which the unsupervised classifier is most confident. We thus need to address two questions: (i)

how to define a confidence function for the bootstrapping, and (ii) how to set the confidence

threshold governing what proportion of the data set is used for training the supervised classifier

in the next round.

As the unsupervised classifier bases its decision on the difference in connectivity between

including or excluding the component words of the idiom in the cohesion graph, one possible

choice for a confidence function is the difference in connectivity; i.e., the higher the difference,

the higher the confidence of the classifier in the predicted label. The confidence threshold could

be selected on the basis of the unsupervised classifier’s performance on a development set. Note

that when choosing such a threshold there is usually a trade-off between the size of the training

set and the amount of noise in it: the lower the threshold, the larger and the noisier the training

set. Ideally we would like a reasonably-sized training set which is also relatively noise-free, i.e.,

does not contain too many wrongly labeled examples. One way to achieve this is to start with a

relatively small training set and then expand it gradually.

A potential problem for the supervised classifier is that our data set is relatively imbalanced,

with the non-literal class being four times as frequent as the literal class. Supervised classifiers

often have problems with imbalanced data and tend to be overly biased towards the majority

class (see, e.g., Japkowicz and Stephen (2002)). To overcome this problem, we experiment with

boosting the literal class with additional examples.1

Figure 4.1 describes the whole bootstrapping process by showing different components and

how they connect with each other. The main two components of the bootstrapping consist of

two parts: i) the iterative training module, and ii) the boosting literal class module. We discuss

them in the next two sections.
1Throughout this paper, we use the term ’boosting’ in a non-technical sense.

46



4.3 Bootstrapping

Iterative Training

Unlabeled 
Corpus

Cohesion Graph
Methods Agree

&&
Confidence > T

Training Set Unlabeled Set

SVM

Evaluation

Labeled Set

Yes

Auto Labeled 
Literal

No

Boosting Literal 
Class

Figure 4.1: The bootstrapping classifier.

4.3.1 Iteratively Enlarging the Training Set

A typical method for increasing the training set is to go through several iterations of enlargement

and re-training.1 We adopt a conservative enlargement strategy: we only consider instances

on whose labels both classifiers agree and we use the confidence function of the unsupervised

classifier to determine which of these examples to add to the training set. The motivation for

this is that we hypothesize that the supervised classifier does not have a very good performance

initially, as it is trained on a very small data set. As a consequence its confidence function may

also not be very accurate. On the other hand, we know from previous work that the unsupervised

1In our case re-training also involves re-computing the ranked lists of salient and related words. As the process
goes on the classifier will be able to discover more and more useful cue words and encode them in the feature vector.
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classifier has a reasonably good performance. So while we give the supervised classifier a

veto-right, we do not allow it to select new training data by itself or overturn classifications

made by the unsupervised classifier.

A similar strategy was employed by Ng and Cardie (2003) in a self-training set-up. However,

while they use an ensemble of supervised classifiers, which they re-train after each iteration, we

can only re-train the second classifier; the first one, being unsupervised, will never change its

prediction. Hence it does not make sense to go through a large number of iterations; the more

iterations we go through, the closer the performance of the combined classifier will be to that of

the unsupervised one because that classifier will label a larger and larger proportion of the data.

However, going through a few iterations allows us to slowly enlarge the training set and thereby

gradually improve the performance of the supervised classifier.

In each iteration, we select 10% of the remaining examples to be added to the training set.1

We could simply add those 10% of the data about which the unsupervised classifier is most

confident, but if the classifier was more confident about one class than about the other, we would

risk obtaining a severely imbalanced training set. Hence, we decided to separate examples

classified as ‘literal’ from those classified as ‘non-literal’ and add the top 10% from each set.

Provided the automatic classification is reasonably accurate, this ensures that the distribution of

classes in the training set is roughly similar to that in the overall data set at least at the early

stages of the bootstrapping.

4.3.2 Boosting the Literal Class

As the process goes on, we are still likely to introduce more and more imbalance in the training

set. This is due to the fact that the supervised classifier is likely to have some bias towards the

majority class (and our experiments in Section 4.4.1 suggest that this is indeed the case). Hence,

as the bootstrapping process goes on, potentially more and more examples will be labeled as

‘non-literal’ and if we always select the top 10% of these, our training set will gradually become

more imbalanced. This is a well-known problem for bootstrapping approaches (Le et al., 2006;

?). We could counteract this by selecting a higher proportion of examples labeled as ‘literal’.

However given that the number of literal examples in our data set is relatively small, we would

soon deplete our literal instance pool and moreover, because we would be forced to add less

110% is the number used for evaluating the final bootstrapping classifier. Before that, we also experiment with
different confidence thresholds. The results are reported in Section 4.4.2.
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confidently labeled examples for the literal class, we are likely to introduce more noise in the

training set.

A better option is to boost the literal class with external examples. To do this we exploit

the fact that non-canonical forms of idioms are highly likely to be used literally. Given that our

data set only contains canonical forms (see Sporleder and Li (2009)), we automatically extract

non-canonical form variants and label them as ‘literal’. To generate possible variants, we either

(i) change the number of the noun (e.g., rock the boat becomes rock the boats), (ii) change

the determiner (e.g., rock a boat), or (iii) replace the verb or noun by one of its synonyms,

hypernyms, or siblings from WordNet (e.g., rock the ship). While this strategy does not give us

additional literal examples for all idioms, for example we were not able to find non-canonical

form occurrences of sweep under the carpet in the Gigaword corpus, for most idioms we

were able to generate additional examples. Note that this data set is potentially noisy as not

all non-canonical form examples are used literally. However, when checking a small sample

manually, we find that only very small percentage (<< 1%) was mis-labelled.

To reduce the classifier bias when enlarging the training set, we add additional literal

examples during each iteration to ensure that the class distribution does not deviate too much

from the distribution originally predicted by the unsupervised classifier.1 The examples to be

added are selected randomly but we try to ensure that each idiom is represented. When reporting

the results, we disregard these additional external examples.

4.4 Experiments

We carry out three different experiments: (i) In Section 4.4.1 we investigate the performance

of the individual features of the supervised classifier; (ii) In Section 4.4.2 we test how the

confidence function influence the performance of the classifiers; and (iii) In the last Section

4.4.3 we look more closely at the behaviour of the bootstrapping classifier.

4.4.1 Feature Analysis for the Supervised Classifier

In the first experiment, we investigate the performance of the different features of the supervised

classifier (Table 4.1). For each set, we trained a separate classifier and tested it in 10-fold cross-

validation mode. We also tested the performance of the first three features combined (salient

1We are assuming that the true distribution is not known and use the predictions of the unsupervised classifier to
approximate the true distribution.
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Avg. literal (%) Avg. (%)
Feature Prec. Rec. F-Score Acc.

salW 77.10 56.10 65.00 86.83
relW 78.00 43.20 55.60 84.99
relS 74.90 37.50 50.00 83.68
connectivity 78.30 2.10 4.10 78.58
salW+relW+relS 82.90 63.50 71.90 89.20

all 85.80 66.60 75.00 90.34

Table 4.1: Performance of different feature sets, 10-fold cross-validation

and related words and relatedness score) as we wanted to know whether their combination leads

to performance gains over the individual classifiers. Moreover, testing these three features in

combination allows us to assess the contribution of the connectivity feature, which is most

closely related to the unsupervised classifier. We report the accuracy, and because our data are

fairly imbalanced, also the F-Score for the minority class (‘literal’).

It can be seen that the salient words (salW) feature has the highest performance of the

individual features, both in terms of accuracy and in terms of literal F-Score, followed by related

words (relW), and relatedness score (relS). Intuitively, it is plausible that the saliency feature

performs quite well as it can also pick up on linguistic indicators of idiom usage that do not have

anything to do with lexical cohesion. However, a combination of the first three features leads

to an even better performance, suggesting that the features do indeed model different aspects

of the data. The performance of the connectivity feature is also interesting: while it does not

perform very well on its own, as it over-predicts the non-literal class, it noticeably increases the

performance of the model when combined with the other features, suggesting that it picks up on

complementary information.

4.4.2 Effects of the Confidence Threshold

The performance of the methods depends on finding a good confidence threshold for the

bootstrapping. To determine how sensitive our method is to this parameter we ran experiments

in which we vary the confidence threshold in 200 steps from 0.005 to 1 and record the results.

Figure 4.2 represents the performance of the unsupervised examples on the top percent

confident predictions. As shown in the figure, the performance goes down as less confident

examples are included. The exception cases are the first 5-6%. However, those exceptions
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Figure 4.2: Performance of the unsupervised classifier on top percent confident examples. F-
Score(n) is the F-Score of the nonliteral class, F-Score(l) is the F-Score of the literal class, Acc. is
accuracy, C1 is the unsupervised classifier.

occur on a very small sample size (top 5% contains about 200 examples). The curve is more

informative at the part where the instance size is relatively big (percentage > 10%). Table 4.2

shows the details of the output of the top confident examples by the cohesion graph classifier.

The accuracy (Acc.) of the top 5 confident predictions is 92.93%, while it is 89.13% for the

top 30% confident examples. This experiment shows that the selected confidence function is a

good indicator of the true label, which justifies our decision to choose the discourse connectivity

difference as the confidence function for the bootstrapping model.

Figure 4.3a shows the performance of the supervised classifier if trained on the output of the

unsupervised classifier. It can be seen that this classifier’s performance initially goes up as there

are more number of instance in the training set. Then, the performance drops. If 90% of the data

are labeled by the unsupervised classifier, the performance of the supervised calssifier on the

remaining 10% drops to less than 40% (literal F-Score). With a higher confidence threshold, the

supervised classifier benefits from more training data but these benefits seem to be more than

outweighed by the increased noise in the examples labels so that the overall performance drops.

Additionally it can also be that the examples not confidently predicted by the unsupervised

classifier are simply the most difficult ones, and with an increasing confidence threshold this

leaves fewer and fewer of the easier examples for the supervised classifier.
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TopConf.(%) outputn outputl Pre. Rec. Fβ=1 Acc.

5
labeln 137 13 99.28 91.33 95.14 92.93
labell 1 47 78.33 97.92 87.04

20
labeln 547 66 99.09 89.23 93.91 91.04
labell 5 174 72.50 97.21 83.05

30
labeln 809 110 97.71 88.03 92.62 89.14
labell 19 250 69.44 92.94 79.49

Table 4.2: Performance of the top confident examples. TopConf. is the top percentage predictions;
outputn is the number of examples predicted as “nonliteral”; outputl is the number of examples
predicted as “literal”; labeln represents labelled as “nonliteral” in the gold standard; Pre. is precision;
Rec. is recall; F is F-Score; Acc. is accuracy.

For comparison, Figure 4.3b and 4.3c show the performance of the supervised classifier

that would be obtained with gold standard labels from the unsupervised one. This curve goes

up initially (see Figure 4.3b), then stays at around the same level for while, and in the end

drops (Figure 4.3c). This suggest that the second stage classifier actually reaches its peak after

seeing about 15% of the training data. Increasing the training set further does not seem to lead

to improvements. For the performance of the last 10%, the performance actually drops even

if it uses more than 90% examples as training data. Remember that those last 10% are the

examples that are the least confident by the unsupervised examples. This further suggest that

the unsupervised and supervised classifier agree on the difficult cases.1

Finally, Figure 4.4 shows the overall performance of directly combining the two classifiers

(also can be seen as bootstrapping with only one iteration). As seen from the Figure, the

performance of the combined classifier reaches to its peek when around 8% of the examples

are labeled by the unsupervised classifier and the rest 92% are labeled by the supervised

classifier (trained on the 8% labeled previous). Further increase the size of the training set of the

supervised classifier does not lead to improvement, as more and more noise data are introduced

in the training data. This study suggest that our bootstrapping model should find a right strategy

to balance the training size and label errors in the training set. In practice, we experimented with

different combinations, the final results reported of the bootstrapping model are based on the

optimal combination.

1This is actually not supervising, as the two classifiers share the similar feature, semantic relatedness.
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Figure 4.3: Performance of the supervised classifier trained on top % confident examples output by
the unsupervised classifier (with/without label correction), bootstrapping one iteration. F-Score(n)
is the F-Score of the nonliteral class, F-Score(l) is the F-Score of the literal class, Acc. is Accuracy,
c2 (supervised classifier).

4.4.3 Testing the Bootstrapping Classifier

We experiment with different variants of the bootstrapping classifier. The results are shown

in Table 4.3. In particular, we look at: (i) combining the two classifiers without training set

enlargement or boosting of the literal class (combined), (ii) boosting the literal class with

200 automatically labelled non-canonical form examples (combined+boost), (iii) enlarging

the training set by iteration (combined+it), and (iv) enlarging the training set by iteration and

boosting the literal class after each iteration (combined+boost+it). The table shows the literal

precision, recall and F-Score of the combined model (both classifiers) on the complete data set
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Figure 4.4: Performance of directly combining the two classifiers based on different confidence
threshold. F-Score(n) is the F-Score of the nonliteral class, F-Score(l) is the F-Score of the literal
class, Acc. is Accuracy, c1 (unsupervised classifier), c12 (bootstrapping classifier).

(excluding the extra literal examples). Note that the results for the set-ups involving iterative

training set enlargement are optimistic: since we do not have a separate development set, we

report the optimal performance achieved during the first seven iterations. In a real set-up,

when the optimal number of iterations is chosen on the basis of a separate data set, the results

may be lower. The table also shows the majority class baseline (Basemaj), and the overall

performance of the unsupervised model (unsup) and the supervised model when trained in

10-fold cross-validation mode (super 10CV).

It can be seen that the combined classifier is 8% more accurate than both the majority

baseline and the unsupervised classifier. This amounts to an error reduction of over 35% (the

difference is statistically significant, χ2 test, p << 0.01). While the F-Score of the unboosted

combined classifier is comparable to that of the unsupervised one, boosting the literal class leads

to a 7% increase, due to a significantly increased recall, with no significant drop in accuracy.

These results show that complementing the unsupervised classifier with a supervised one, can

lead to tangible performance gains. Note that the accuracy of the combined classifier, which

uses no manually labelled training data, is only 4% below that of a fully supervised classifier; in

other words, we do not lose much by starting with an automatically labelled data set. Iterative

enlargement of the training set can lead to further improvements, especially when combined
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Model Precl Recl F-Scorel Acc.

Basemaj - - - 78.25

unsup. 50.04 69.72 58.26 78.38

combined 83.86 45.82 59.26 86.30
combined+boost 70.26 62.76 66.30 86.13
combined+it∗ 85.68 46.52 60.30 86.68
combined+boost+it∗ 71.86 66.36 69.00 87.03

super. 10CV 85.80 66.60 75.00 90.34

Table 4.3: Results for different classifiers; ∗ indicates best performance (optimistic)

with boosting to reduce the classifier bias.
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Figure 4.5: Accuracy and literal F-Score on complete data set after different iterations with boosting
of the literal class, ‘combined’ is the bootstrapping model.

To get a better idea of the effect of training set enlargement, we plot the accuracy and F-

Score of the bootstrapping classifier for a given number of iterations with boosting (Figure 4.5)

and without (Figure 4.6). It can be seen that enlargement has a noticeable positive effect if

combined with boosting. If the literal class is not boosted, the increasing bias of the classifier

seems to outweigh most of the positive effects from the enlarged training set. Figure 4.5
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Figure 4.6: Accuracy and literal F-Score on complete data set after different iterations without
boosting of the literal class, ‘combined’ is the bootstrapping model.

also shows that the best performance is obtained after a relatively small number of iterations

(namely two), as expected.1 With more iterations the performance decreases again. However, it

decays relatively gracefully and even after seven iterations, when more than 40% of the data are

included in the training set, the bootstrapping classifier still achieves an overall performance that

is significantly above that of the unsupervised classifier (84.28% accuracy compared to 78.38%,

significant at p << 0.01). Hence, the bootstrapping classifier seems not to be very sensitive to

the exact number of iterations and performs reasonably well even if the number of iterations is

sub-optimal.

Figure 4.7 shows how the training set increases as the process goes on2 and how the number

of mis-classifications in the training set develops. Interestingly, when going from the first to the

second iteration the training set nearly doubles (from 396 to 669 instances), while the proportion

of errors is also reduced by a third (from 7% to 5%). Hence, the training set does not only grow

but the proportion of noise in it decreases, too. This shows that our conservative enlargement

strategy is fairly successful in selecting correctly labeled examples. Only at later stages, when

1Note that this also depends on the confidence threshold. For example, if a threshold of 5% is chosen, more
iterations may be required for optimal performance.

2Again, we disregard the extra literal examples here.
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Figure 4.7: Training set size and error in training set at different iterations

the classifier bias takes over, does the proportion of noise increase again.

4.5 Related Work

Bootstrapping is process in which a handful of labeled instances are used to initially train

a classifier. Then, the classifier is applied to the rest of the data set to predict the labels.

Consequently, those labeled examples are selected to be trustworthy or untrustworthy by certain

confidence criteria, in which the trustworthy examples are included in the labeled set in the next

round. The process goes on iteratively until certain stopping criteria is fulfilled (e.g., enough

instances are labeled).

Bootstrapping is adopted in various lexical semantics tasks. Yarowsky (1995) is one of the

first few well-known bootstrapping algorithms in this field. The work proposes a bootstrapping

approach for Word Sense Disambiguation. This process relies on an initial small size training

data which is used for training a supervised classifier. Then, the supervised classifier labels more

instances which, according to two selection criteria (one sense per collocation and one sense

per discourse), can be selected to be included in the labeled set in the next round. The process

iteratively goes on as more and more instances are labeled. The paper reports the proposed

procedure outperforms the previous supervised methods. Later on, Abney (2004) analyze the
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Yarowsky paper from a mathematically point. He formulates the optimizing objective function

of the bootstrapping algorithm, and proposes a number of variants of the Yarowsky algorithm

which are optimize on different objective functions. Subsequent research in this area includes

the work by Mihalcea and Moldovan (2001), which relies on WordNet and a sense tagged corpus

as the initial set, and tags new instances based on their relation to the already disambiguated

set. This work reports an accuracy of 92%. Further in this direction, bootstrapping is shown

to be effective in bilingual word sense disambiguation by Li and Li (2004). The approach

builds a bootstrapping process which utilizes information from bilingual corpus and achieves a

significant improvement over the state-of-the-art monolingual bootstrapping. Bootstrapping is

also used for lexicon acquisition task (Riloff and Shepherd, 1997).

In addition to these lexical NLP tasks, bootstrapping is also adopted in various other NLP

tasks. Mcclosky et al. (2006) propose a self-training bootstrapping framework for parsing. They

report improvement over the previous best result on Wall Street Journal corpus. Blum and

Mitchell (1998) propose a co-training framework in which two distinct views on the same dataset

can help argument the training set. They successfully utilize this approach to classify web pages.

Bellare et al. (2007) propose a lightly-supervised co-training model to extract entity attributes

from texts. It is also shown that bootstrapping is effective in Named Entity classification task

(Collins and Singer, 1999).

4.6 Summary

In this chapter, we aim to reduce the human annotation effort of the previous chapter by proposing

a bootstrapping classification approach for distinguishing literal and non-literal use of idiomatic

expressions. Our approach relies on two component classifiers: an unsupervised classifier which

exploits information about the cohesive structure of the discourse, and a supervised classifier.

The latter can make use of a range of features and therefore base its classification decision

on additional properties of the discourse, besides lexical cohesion. We showed that such a

hybrid classifier can lead to a significant reduction of classification errors. Its performance can

be improved further by iteratively increasing the training set in a bootstrapping loop and by

adding additional examples of the literal class, which is typically the minority class. We find

that such examples can be obtained automatically by extracting non-canonical variants of the

target idioms from an unlabeled corpus.
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Future work should look at alternative strategies to score the confidence function in the

bootstrapping process. While this is already pretty good, a more sophisticated confidence

strategy to select instance included in the training set of the next iteration may lead to further

improvement.
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5

A Gaussian Mixture Model on
Figurative Expression Detection

The idiom task described in the previous two chapters is constrained to idiomatic phrases that

are lexicalized and can be found in dictionaries (e.g., break the ice, play with fire). However,

it is also very often the case that certain words or phrases are used nonliterally but they are

not lexicalized (e.g., take the sock out of your mouth in Example 5.1, and sparrow in Example

5.21). In this chapter, we cover another aspects of the study of nonliteral phrases: detect general

nonliteral expressions or novel variants of idioms in running texts (token-based unlexicalized

figurative expression detection).

(5.1) Take the sock out of your mouth and create a brand-new relationship with your mom.

(5.2) During the Iraq war, he was a sparrow; he didn’t condone the bloodshed but wasn’t

bothered enough to go out and protest.

We focus our study on general figurative expressions which may not be listed in idiom

dictionaries but can be used nonliterally in certain contexts. We propose an unsupervised

Gaussian Mixture Model to detect those figurative expressions in context. Furthermore, as the

idiom task can be seen as a special case of detecting general figurative expression, we also run

the GMM on the idiom dataset, and compare the performance of the two to get more insights of

the common and distinct aspects of the two related tasks.

1We refer the reader to more example usages of this category to Section 2.2.
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5.1 Introduction

Figurative language employs words in a way that deviates from their normal meaning. It includes

idiomatic usage, metaphor, metonymy or other types of creative language. Being able to detect

figurative language is important for a number of NLP applications, e.g., machine translation.

Simple dictionary look-up would not work for truly creative, one-off usages (unlexicalized

usages); these can neither be found in a dictionary nor can they be detected by standard idiom

extraction methods, which apply statistical measures to accumulated corpus evidence for an

expression to assess its ‘idiomaticity’. An example of a fairly creative usage is shown as

Example 5.1 which is a variation of the idiom put a sock in.

In this chapter, we propose a method for detecting figurative language in context. As we

use context information rather than corpus statistics, our approach works also for truly creative

usages.

5.2 A Gaussian Mixture Model

We model the problem by using Gaussian Mixture Model (GMM). We assume that the literal

(l) and non-literal (n) instances are generated by two different Gaussians (literal and nonliteral

Gaussians). The token-based detection task is to compare which Gaussian has the higher

probability of generating a specific instance.

The Gaussian mixture model is defined as:

p(x) =
∑

c∈{l,n}

wc ×N(x|µc,Σc) (5.3)

where, c is the category of the Gaussian (literal or nonliteral), µc is the Gaussian mean, Σc is

the Gaussian covariance matrix, and wc is the Gaussian weight.

Our method is based on the insight that figurative language exhibits less semantic cohesive

ties with the context than literal language (see Chapter 3 and 4 for more details). We use

Normalized Google Distance to model semantic relatedness (?) and represent the instances by

five types of semantic relatedness features x = (x1, x2, x3, x4, x5):

• x1 is the average relatedness between the target expression and context words,

x1 =
2

|T | × |C|
∑

(wi,cj)∈T×C

relatedness(wi, cj) (5.4)
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where wi is a component word of the target expression (T); cj is one of the context words

(C); |T | is the total number of words in the target expression, and |C| is the total number

of words in the context. The term 2
|T |×|C| is the normalization factor, which is the total

number of relatedness pairs between target component words and context words.

• x2 is the average semantic relatedness in the context of the target expression,

x2 =
1(
|C|
2

) ∑
(ci,cj)∈C×C,i6=j

relatedness(ci, cj) (5.5)

• x3 is the difference between the average semantic relatedness between the target ex-

pression and the context words and the average semantic relatedness of the context,

x3 = x1− x2 (5.6)

It is an indicator of how strongly the target expression is semantically related to the

discourse context.

• x4 is the same feature used for predicting literal or idiomatic use by the cohesion graph

based method (see Chapter 3),

x4 =
{

1 if x3 < 0
0 else

(5.7)

• x5 is a high dimensional vector which represents the top relatedness scores between the

component words of the target expression and the context (also called related score, see

Chapter 4),

x5(k) = max
(wi,cj)∈T×C

(k, {relatedness(wi, cj)}) (5.8)

where the function max(k,A) is defined to choose the kth highest element from the set

A. We set k to be 100 in our experiment.

The detection task is done by a Bayes decision rule, which chooses the category by maxi-

mizing the probability of fitting the data into the different Gaussian components (see Equation

5.9). The instance is predicted as figurative if it fits into the nonliteral Gaussian better, and literal

if it fits into the literal Gaussian better.

c(x) = arg max
i∈{l,n}

{wi ×N(x|µi,Σi)} (5.9)
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Model Class Precision Recall F-Score Accuracy

Co-Graph
n 90.55 80.66 85.32

78.38
l 50.04 69.72 58.26

GMM
n 90.69 80.66 85.38

78.39
l 50.17 70.15 58.50

Table 5.1: Results on the idiom data set, n(on-literal) is the union of the predefined three sub-classes
(nsu, nsa, nw), l(iteral).

5.3 Experiments

In this section, we describe two types of experiments: In Section 5.3.1, we describe the

experiments of estimating the Gaussian components by EM algorithm as there is no training

data; and in Section 5.3.2, we describe the experiments by estimating the GMM from the

labeled data set, the idiom data set (UdSic, see Section 2.1). In both settings, we evaluate our

experimental results on the UdSfec (Section 2.2) testing set.

5.3.1 GMM Estimated by EM

We use a MatLab package (Calinon, 2009; Calinon et al., 2007) for estimating the GMM model.

The GMM is trained by the EM algorithm. The priors of Gaussian components, means and

covariance of each components, are initialized by the k-means clustering algorithm (Hartigan,

1975). We run EM on the combination of the UdSic and UdSfec corpus.

To determine whether the GMM is able to perform token-based idiom classification1, we

applied it to the idiom data set. The results (see Table 5.1) show that the GMM can distinguish

usages quite well and gains equally good results as the cohesion graph method (Co-Graph) (Li,

2008; Sporleder and Li, 2009). In addition, this method can deal with unobserved occurrences

of non-literal language.

Table 5.2 shows the results on the figurative expression data set. We build two baselines. The

first baseline (Baseline*) predicts ‘idiomatic’ and ‘literal’ based on a uniform random distribution

(the chance of predicting ‘literal’ is the same as the chance of predicting ‘idiomatic’.). The

second baseline (Baseline) predicts ‘idiomatic’ and ‘literal’ according to a biased probability

which is based on the distribution in the annotated set. GMM shows the performance on the

whole data set. We also split the test set into three different subsets to determine how the GMM

1Token-based idiom classification is quite similar to figurative expression detection.
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Model Class Precision Recall F-Score Accuracy

Baseline*
n 17.87 49.33 26.24

50.83
l 82.41 51.15 63.12

Baseline
n 21.79 22.67 22.22

71.87
l 83.19 82.47 82.83

Co-Graph
n 37.29 84.62 51.76

70.92
l 95.12 67.83 79.19

GMM
n 40.71 73.08 52.29

75.41
l 92.58 75.94 83.44

GMM{nsu,l}
n 8.79 1.00 16.16

76.49
l 1.00 75.94 86.33

GMM{nsa,l}
n 22.43 77.42 34.78

76.06
l 97.40 75.94 85.34

GMM{nw,l}
n 23.15 64.10 34.01

74.74
l 94.93 75.94 84.38

GMM’
n 22.40 35.90 27.59

65.25
l 83.22 71.88 77.14

Table 5.2: Results on the figurative expression data set, Gaussian component parameters estimated
by EM

performs on distinguishing literal usage from the different types of figurative usage (Section

2.2): GMM{nsu, l}, GMM{nsa, l}, GMM{nw, l}. We also run an experiment to test how the EM

estimation is sensitive to the size of the data. The GMM’ is the result of running EM purely on

the test set (UdSfec).

The unsupervised GMM model beats the baselines and achieves good results on the UdSfec

data set. It also outperforms the Co-Graph approach, which suggests that the statistical model,
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GMM, is more likely to boost the performance by capturing statistical properties of the data

for more difficult cases (idioms v.s. general figurative usages), compared with the Co-Graph

approach.

We also find that GMM is the best at distinguishing unambiguous phrase level figurative

usage (nsu, see Section 2.2 for details). The performance on the subset {nsu, l} is the highest of

all the subset combinations. GMM correctly label all the figurative instances in this experiment

(literal precision is 1, and non-literal recall is 1). The reason is that figurative expressions in this

category are least likely to exhibit cohesive ties with their surrounding context (e.g. Shall we

go trip the light fantastic?). In contrast, the most difficult subset is {nw, l}. The performance

on this subset is the lowest of all. The reason is that the expressions are only partially used

figuratively. While some component words of the expression break the cohesion tie with its

surrounding context, other component words may maintain this lexical cohesion. As a result,

the mixed cohesion features make it more difficult for GMM to decide between figurative and

literal in this experiment. Furthermore, we also find out that more experimental data is good for

running EM, as the performance of GMM’ is very poor (65.25% v.s. 75.41%) when there are

only small number of instances available.

In conclusion, the model is not only able to classify idiomatic expressions but also to detect

new figurative expressions. However, the performance on the second data set is worse compared

with running the same model on the idiom data set. This is because the V+NP data set contains

more difficult examples, e.g., expressions which are only partially figurative (e.g., Example 2.8).

One would expect the literal part of the expression to exhibit cohesive ties with the context,

hence the cohesion based features may fail to detect this type of figurative usage. Consequently

the performance of the GMM is lower for figuratively used words (‘nw’) than for idioms (‘nsa’,

‘nsu’). However, even for figurative words cases (‘nw’) the model still obtains a relatively high

accuracy.

5.3.2 GMM Estimated from Annotated Data

In a second experiment, we test how well the GMM performs when utilizing the annotated

idiom data set to estimate the two Gaussian components instead of using EM. We give equal

weights to the two Gaussian components and predict the label on the UdSfec data set by fixing

the mixture model which is estimated from the UdSic training set (GMM+f). This method

further improves the performance compared to the unsupervised approach (Table 5.3).
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Model Class Precision Recall F-Score Accuracy

GMM+f
n 42.22 73.08 53.52

76.60
l 92.71 77.39 84.36

GMM+f+s
n 41.38 54.55 47.06

83.44
l 92.54 87.94 90.18

Table 5.3: Results on the figurative expression data set, Gaussian component parameters estimated
by annotated data

We also experiment with setting a threshold and abstaining from making a prediction when

the probability of an instance belonging to the Gaussian is below the threshold (GMM+f+s).

Table 5.3 shows the performance when only evaluating on the subset for which a classification

was made. It can be seen that the accuracy and the overall performance on the literal class

improve, but the precision for the non-literal class remains relatively low, i.e., many literal

instances are still misclassified as ’non-literal’. One reason for this may be that there are a few

instances containing named entities, which exhibit weak cohesive ties with the context even if

though they are used literally (see Section 2.2.3 for examples). Using a named-entity tagger

before applying the GMM might solve the problem.

Finally, Table 5.4 shows the result when using different idioms to generate the nonliteral

Gaussian. The literal Gaussian can be generated from the automatically obtained literal examples

by the Boosting the Literal Class process from Chapter 4. We found the estimation of the GMM

is not sensitive to idioms; our model is robust and can use any existing idiom data to discover new

figurative expressions (due to shared cohesion structure properties). Furthermore, Table 5.4 also

shows that the GMM does not need a large amount of annotated data for parameter estimation. 1

A few hundred instances are sufficient. In our experiments, we find the performance keep stable

after 600 instances (randomized) are added to the training set.

5.4 Related Work

There have been many studies on figurative language detection (Birke and Sarkar, 2006; Fazly

et al., 2009; Katz and Giesbrecht, 2006; Lin, 1999). Most studies on the detection of figurative

1GMM parameter estimation needs two parameters: Gaussian mean and Gaussian covariance. It is relatively
simple compared with most supervised machine learning model in which, usually, a large number of parameters
need to be estimated. This is why a relatively small number of instances is enough to estimate the corresponding
Gaussian component.
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Idiom Class Precision Recall F-Score Accuracy

bite one’s tongue n 40.79 79.49 53.91
74.94

(166) l 94.10 73.91 82.79

break the ice n 39.05 52.56 44.81
76.12

(541) l 88.36 81.45 84.77

pass the buck n 41.01 73.08 52.53
75.65

(262) l 92.61 76.23 83.62

Table 5.4: Results on the figurative expression dataset, Gaussian component parameters estimated
on different idioms.

language focus on one of three aspects: type-based extraction (detect idioms on the type level),

token-based classification (given a potentially idiomatic phrase in context, decide whether

it is used idiomatically), token-based detection (detect figurative expressions which are not

lexicalized in running text).

We have disscussed typed-based idiom extraction and token-based idiom classification

studies in Chapter 3 and 4. In this chapter, we focus on the third category: token-based detection.

There has been relatively little work on token-based detection so far. Fazly et al. (2009) view it as

a two stage task which is the combination of type-based extraction and token-based classification.

They detect idiom types by using statistical methods that model the general idiomaticity of an

expression and then combine this with a simple second-stage process that detects whether the

target expression is used figuratively, based on whether the expression occurs in dictionary form.

However, modeling token-based detection as a combination of type-based extraction and

token-based classification has some drawbacks. First, type-based approaches typically compute

statistics from multiple occurrences of a target expression, hence they cannot be applied to

novel usages. Second, these methods were developed to detect figuratively used multi-word

expressions (MWEs) and do not work for figuratively used individual words, like sparrow in

example (2.8). Ideally, one would like to have a generic model that can detect any type of

figurative usage in a given context. The model we propose in this chapter is one step in this

direction.
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5.5 Summary

In this chapter, we aim to not only detect lexicalized figurative expressions but also general

unlexicalized figurative expressions. We describe a GMM based approach, which is tested both

for distinguishing literal and non-literal usages of a potential idiomatic expression in context

and discovering new unlexicalized figurative expressions.

The components of the GMM can be effectively estimated using the EM algorithm. The

performance can be further improved when employing an annotated data set for parameter

estimation. Our results show that the estimation of Gaussian components are not idiom-

dependent. Furthermore, a small annotated data set is enough to obtain good results. In our

experiment, we define three types of figurative expressions. Our model works the best for the

unambiguous phrase figurative usage (nsu), as this category often violents grammatical rules or

selectional constraints, and exhibits the least lexical cohesion with the surrounding context. The

ambiguous phrase level figurative usage (nsa) is more difficult as it can be used both literally

and figuratively (e.g.: burn the bridge). The token level weak figurative usage (nw) is the most

difficult category as it is only partially used figuratively. The literally used component words of

such expression make the prediction of our GMM model difficult.

One task which we donnot address is detecting the boundaries of a figurative expression,

i.e., determining whether it is the whole V+NP expression that is used figuratively or only part

of it. We leave this problem to future research.
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6

Topic Models of Sense Ambiguity

The idiom task discussed in Chapter 3 and 4 and the figurative expression task discussed in

Chapters 5 can both be seen as lexical ambiguity problems with two sense categories (‘literal’

v.s. ‘nonliteral’). A more complicated form of sense categories is word sense disambiguation

(WSD), where a word may have a number of senses. More concrete examples are discussed in

the introduction chapter (e.g., Figure 1.2). The fact that word senses have fuzzier boundaries,

compared to the ‘literal’/‘nonliteral’ expression detection task, poses a new challenge for com-

putational modeling. Human annotation agreement studies also suggest that WSD annotation

reaches lower agreement than for the idiom ‘literal’/‘nonliteral’ classification task. According

to a study conducted by Ng et al. (1999) on WordNet word sense annotation, the average kappa

statistic for 5339 instances of 53 nouns is 0.463, whereas the kappa score on the idiom UdSic

corpus is 0.700 (Section 2.1).

While being closely related to the idiom and figurative expression detection tasks, WSD

poses new challenges in that there exist more candidate sense categories, and the sense bound-

aries are not as clear (particularly for the fine-grained WSD task).

In this chapter, we aim to deal with these extra challenges by encoding extra human

knowledge as probabilistic priors into a Bayesian probabilistic framework. Furthermore, we also

aim at developing a uniform framework for both tasks (WSD and ‘literal’/‘nonliteral’ expression

detection), as they share the common property that candidate sense categories can be represented

by sense paraphrases (since the sense inventory is given). We evaluate our framework on both

tasks. We use the UdSic corpus (Section 2.1) for the idiom task and the WSD corpus (Section

2.3) for the word sense disambiguation task.
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6.1 Introduction

Word sense disambiguation (WSD) is the task of automatically determining the correct sense for

a target word given the context in which it occurs. WSD is an important problem in NLP and

an essential preprocessing step for many applications, including machine translation, question

answering and information extraction. However, WSD is a difficult task, and despite the fact

that it has been the focus of much research over the years, state-of-the-art systems are still often

not good enough for real-world applications. One major factor that makes WSD difficult is

a relative lack of manually annotated corpora, which hampers the performance of supervised

systems.

To address this problem, there has been a significant amount of work on unsupervised

WSD that does not require manually sense-disambiguated training data (see McCarthy (2009)

for an overview). Recently, several researchers have experimented with topic models (Boyd-

Graber and Blei, 2007; Boyd-Graber et al., 2007; Brody and Lapata, 2009; Cai et al., 2007) for

sense disambiguation and induction. Topic models are generative probabilistic models of text

corpora in which each document is modelled as a mixture over (latent) topics, which are in turn

represented by a distribution over words.

Previous approaches using topic models for sense disambiguation either embed topic features

in a supervised model (Cai et al., 2007) or rely heavily on the structure of hierarchical lexicons

such as WordNet (Boyd-Graber et al., 2007). In this paper, we propose a novel framework which

is fairly resource-poor in that it requires only 1) a large unlabelled corpus from which to estimate

the topics distributions, and 2) paraphrases for the possible target senses. The paraphrases can

be user-supplied or can be taken from existing resources.

We approach the sense disambiguation task by choosing the best sense based on the con-

ditional probability of sense paraphrases given a context. We propose three models which

are suitable for different situations: Model I requires knowledge of the prior distribution over

senses and directly maximizes the conditional probability of a sense given the context; Model II

maximizes this conditional probability by maximizing the cosine value of two topic-document

vectors (one for the sense and one for the context). We apply these models to coarse- and

fine-grained WSD and find that they outperform comparable systems for both tasks.

We also test our framework on the related task of idiom detection, which involves distin-

guishing literal and nonliteral usages of potentially ambiguous expressions such as rock the boat.

For this task, we propose a third model. Model III calculates the probability of a sense given a
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context according to the component words of the sense paraphrase. Specifically, it chooses the

sense type which maximizes the probability (given the context) of the paraphrase component

word with the highest likelihood of occurring in that context. This model also outperforms

state-of-the-art systems.

6.2 The Sense Disambiguation Model

6.2.1 Topic Model

As described in PLSA (Hofmann, 1999), the starting point of topic models is to decompose the

conditional word-document probability distribution p(w|d) into two different distributions: the

word-topic distribution p(w|z), and the topic-document distribution p(z|d) (see Equation 6.1).

This allows each semantic topic z to be represented as a multinominal distribution of words

p(w|z), and each document d to be represented as a multinominal distribution of semantic topics

p(z|d). The model introduces a conditional independence assumption that document d and word

w are independent conditioned on the hidden variable, topic z.

p(w|d) =
∑
z

p(z|d)p(w|z) (6.1)

LDA adds Dirichlet hyper-parameters to this framework (Blei et al., 2003). Graphical model

representations of PLSA and LDA are represented as Figure 6.1.

The inference of the two distributions given an observed corpus can be done through

Gibbs Sampling (Geman and Geman, 1987; Griffiths and Steyvers, 2004). For each turn of

the sampling, each word in each document is assigned a semantic topic based on the current

word-topic distribution and topic-document distribution. The resulting topic assignments are

then used to re-estimate a new word-topic distribution and topic-document distribution for the

next turn. This process repeats until a sufficient number of iterations is reached. To avoid

statistical coincidence, the final estimation of the distributions is made by the average of the

final few rounds.

6.2.2 The Sense Disambiguation Model

Assigning the correct sense s to a target word w occurring in a context c involves finding the

sense which maximizes the conditional probability of senses given a context:

s = arg max
si

p(si|c) (6.2)
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d z w
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(a) PLSA
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(b) LDA

Figure 6.1: Generative processes of PLSA and LDA. d is document; z is topic; w is word; M is
the number of documents in the corpus; N is the number of words within document; α and β are
hyper-parameters.

In our models, we represent a sense (si) as a collection of ‘paraphrases’ that capture (some

aspect of) the meaning of the sense. These paraphrases can be taken from an existing resource

such as WordNet (Miller, 1995) or supplied by the user (see Section 6.3).

This conditional probability is decomposed by incorporating a hidden variable, topic z,

introduced by the topic model. We propose three variations of the basic model, depending

on how much background information is available (knowledge of the prior sense distribution

available and type of sense paraphrases used). In Model I and Model II, the sense paraphrases

are obtained from WordNet, and both the context and the sense paraphrases are treated as

documents dc, ds.

WordNet is a fairly rich resource which provides detailed information about word senses

(glosses, example sentences, synsets, semantic relations between senses, etc.). Sometimes such

detailed information may not be available, for instance for languages for which such a resource

does not exist or for expressions that are not very well covered in WordNet, such as idioms.

For those situations, we propose another model, Model III, in which contexts are treated as

documents while sense paraphrases are treated as sequences of independent words.

Model I directly maximizes the conditional probability of the sense given the context, where

the sense is modeled as a ‘paraphrase document’ ds and the context as a ‘context document’ dc.

The conditional probability of the sense given the context p(ds|dc) can be rewritten as a joint

probability divided by a normalization factor:

p(ds|dc) =
p(ds, dc)
p(dc)

(6.3)

This joint probability can be rewritten as a generative process by introducing a hidden

variable z. We make the conditional independence assumption that, conditioned on the topic z,
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a paraphrase document ds is generated independently of the specific context document dc:

p(ds, dc) =
∑
z

p(ds)p(z|ds)p(dc|z) (6.4)

We apply the same process to the conditional probability p(dc|z). It can be rewritten as:

p(dc|z) =
p(dc)p(z|dc)

p(z)
(6.5)

Now, the disambiguation model p(ds|dc) can be rewritten as a prior p(ds) times a topic

function:

p(ds|dc) = p(ds)
∑
z

p(z|dc)p(z|ds)
p(z)

(6.6)

We assume p(z) is a uniform distribution, thus p(z) is a constant. Therefore, Equation 6.6

can be rewritten as:

p(ds|dc) ∝ p(ds)
∑
z

p(z|dc)p(z|ds) (6.7)

Model I:

arg max
dsi

p(dsi)
∑
z

p(z|dc)p(z|dsi) (6.8)

Model I has the disadvantage that it requires information about the prior distribution of

senses p(ds), which is not always available. We use sense frequency information from WordNet

to estimate the prior sense distribution, although it must be kept in mind that, depending on the

genre of the texts, it is possible that the distribution of senses in the testing corpus may diverge

greatly from the WordNet-based estimation. If there is no means for estimating the prior sense

distribution of an experimental corpus, generally a uniform distribution is assumed to fulfill the

maximum entropy principle (Park and Bera, 2009). However, this assumption does not hold, as

the true distribution of word senses is often highly skewed (McCarthy, 2009).

To overcome this problem, we propose Model II, which indirectly maximizes the sense-

context probability by maximizing the cosine value of two document vectors that encode the

document-topic frequencies from sampling, v(z|dc) and v(z|ds). The document vectors are

represented by topics [t1, t2, . . ., tn], where ti represents the number of times that the tokens in

this document are assigned to a certain topic.
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Model II:

arg max
dsi

cos(v(z|dc), v(z|dsi)) (6.9)

If the prior distribution of senses is known, Model I is the best choice. However, Model II

has to be chosen instead when this knowledge is not available. In our experiments, we test the

performance of both models (see Section 6.4).

Sometimes the sense paraphrases are very short, therefore it is difficult to reliably estimate

p(z|ds). In order to solve this problem, we treat the sense paraphrase ds as a ‘query’, a concept

which is used in information retrieval. Song and Croft (1999) propose an information retrieval

model which takes the conditional probability of the query given the document as a product

of all the conditional probabilities of words in the query. The assumption is that the query is

generated by a collection of conditionally independent words.

We make the same assumption here. However, instead of taking the product of all the

conditional probabilities of words given the document, we take the maximum. There are two

reasons for this: (i) taking the product may penalize longer paraphrases since the product of

probabilities decreases as there are more words; (ii) we do not want to model the probability of

generating specific paraphrases, but rather the probability of generating a sense, which might

only be represented by one or two words in the paraphrases (e.g., the potentially idiomatic

phrase ‘rock the boat’ can be paraphrased as ‘break the norm’ or ‘cause trouble’. A similar

topic distribution to that of the individual words ‘norm’ or ‘trouble’ would be strong supporting

evidence of the corresponding idiomatic reading.). We propose,

Model III:

arg max
qsj

max
wi∈qsj

∑
z

p(wi|z)p(z|dc) (6.10)

where qs is a collection of words contained in the sense paraphrases.

6.2.3 Inference

Here the inference problem boils down to how to estimate the word-topic distribution p(w|z) and

topic-document distribution p(z|d). As mentioned earlier, this problem can be done by Gibbs

Sampling, which can be described as a two-step iteration process: 1) In the topic assignment

step, each word in the document is assigned a semantic topic. The probability of a word being

assigned to a topic conditioned on other variables p(zj |wi, d, z−j , w−i) is estimated by the

product of the probability of generating a topic given a document p(zj |d), and the probability of
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generating a word given a topic p(wi|zj). 2) In the Estimation step, the topic assignments from

the first stage are used to re-estimate the topic-word distribution and word-topic distribution,

which, in turn, change the topic assignments in the next iteration.

Sampling (Gibbs):

p(zj |wi, d, z−j , w−i) ∝ p(wi|zj) ∗ p(zj |d) (6.11)

Probability Estimation:

p(zj |d) =

∑
wk∈d

f(wk, zj) + α∑
dn

∑
wm∈dn

f(wm, zj) + Tα
(6.12)

p(wi|zj) =
f(wi, zj) + β∑

wk

f(wk, zj) +Wβ
(6.13)

where p(zj |wi, d, z−j , w−i) is the the ith word wi in document d is assigned with topic zj ;

p(wi|zj) is the probability of word wi given topic zj ; p(zj |d) is the probability of a topic zj
given a document d; f(wk, zj) is the number of times that word wk is assigned with topic zj ; α

and β are Dirichlet hyper-parameters; T is the topic size; W is the vocabulary size.

In our experiment, one possible way to run inference is to combine the context documents

and sense paraphrases into a corpus and run Gibbs sampling on top of this. The problem with

this approach is that the test set and sense paraphrase set are relatively small, and topic models

running on a small corpus are less likely to capture rich semantic topics. One simple explanation

is that a small corpus usually has a relatively small vocabulary, which is less representative of

topics, i.e., p(w|z) cannot be estimated reliably.

In order to overcome this problem, we infer the word-topic distribution from a very large

corpus (Wikipedia dump, see Section 6.3). All of the following inference experiments on the

test corpus are based on the assumption that the word-topic distribution p(w|z) is the same

as the one estimated from the Wikipedia dump. Inference of topic-document distributions for

context and sense paraphrases is done by fixing the word-topic distribution as a constant.

6.3 Experimental Setup

We evaluate our models on three different tasks: coarse-grained WSD, fine-grained WSD and

literal vs. nonliteral sense detection. In this section we discuss our experimental set-up, and
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POS Paraphrase reference synsets

N hyponyms, instance hyponyms, member holonyms, substance holonyms, part
holonyms, member meronyms, part meronyms, substance meronyms, attributes,
topic members, region members, usage members, topics, regions, usages

V Troponyms, entailments, outcomes, phrases, verb groups, topics, regions, us-
ages, sentence frames

A similar, pertainym, attributes, related, topics, regions, usages

R pertainyms, topics, regions, usages

Table 6.1: Selected reference synsets from WordNet that were used for different parts-of-speech to
obtain word sense paraphrase. N(noun), V(verb), A(adj), R(adv).

how we choose sense paraphrases and instance contexts.

Sense Paraphrases For word sense disambiguation tasks, the paraphrases of the sense keys

are represented by information from WordNet 2.1. (Miller, 1995). To obtain the paraphrases,

we use the word forms, glosses and example sentences of the synset itself and a set of selected

reference synsets (i.e., synsets linked to the target synset by specific semantic relations, see Table

6.1).1 For instance, the Instance Hyponyms reference synset is defined as “specific (usually

real-word) instance of this type”. An example “Instance Hyponyms” of the word river is

Mississippi river. We excluded the ‘hypernym reference synsets’, since information common to

all of the child synsets may confuse the disambiguation process.

For the literal vs. nonliteral sense detection task, we selected the paraphrases of the nonliteral

meaning from several online idiom dictionaries. For the literal senses, we used 2-3 manually

selected words with which we tried to capture (aspects of) the literal meaning of the expression.2

For instance, the literal paraphrases that we chose for ‘break the ice’ were ice, water and snow.3

The paraphrases are shorter for the idiom task than for the WSD task, because the meaning

descriptions from the idiom dictionaries are shorter than what we get from WordNet. In the

latter case, each sense can be represented by its synset as well as its reference synsets.

1An example of the word sense paraphrases is in the Appendix A.1).
2Note that we use the word ‘paraphrase’ in a fairly wide sense in this paper. Sometimes it is not possible

to obtain exact paraphrases. This applies especially to the task of distinguishing literal from nonliteral senses of
multi-word expressions. In this case we take as paraphrases some key words which capture salient aspects of the
meaning.

3The complete sense paraphrases of the idioms are represented in the appendix (Table A.2).
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Instance Context We experimented with different context sizes for the disambiguation task.

The five different context settings that we used for the WSD tasks are: collocations (1w),

±5-word window (5w), ±10-word window (10w), current sentence, and whole text. Because

the idiom corpus also includes explicitly marked paragraph boundaries, we included ‘paragraph’

as a sixth type of context size for the idiom sense detection task.

6.4 Experiments

As mentioned above, we test our proposed sense disambiguation framework on three tasks. We

start by describing the sampling experiments for estimating the word-topic distribution from

the Wikipedia dump. We used the package provided by Wang et al. (2009) with the suggested

Dirichlet hyper-parameters.1 In order to avoid statistical instability, the final result is averaged

over the last 50 iterations. We did four rounds of sampling with 1000, 500, 250, and 125

topics respectively. The final word-topic distribution is a normalized concatenate of the four

distributions estimated in each round. In average, the sampling program run on the Wikipedia

dump consumed 20G memory, and each round took about one week on a single AMD Dual-Core

1000MHZ processor.

6.4.1 Coarse-Grained WSD

In this section we first describe the landscape of similar systems against which we compare

our models, then present the results of the comparison. The systems that participated in

the SemEval-2007 coarse-grained WSD task (Task-07) can be divided into three categories,

depending on whether training data is needed and whether other types of background knowledge

are required: What we call Type I includes all the systems that need annotated training data. All

the participating systems that have the mark TR fall into this category (see Navigli et al. (2007)

for the marks TR,MFS). Type II consists of systems that do not need training data but require

prior knowledge of the sense distribution (estimated sense frequency). All the participating

systems that have the mark MFS belong to this category. Systems that need neither training data

nor prior sense distribution knowledge are categorized as Type III.

We make this distinction based on two principles: (i) the cost of building a system; (ii)

the portability of the established resource. Type III is the cheapest type of system to build,

while Type I and Type II both need extra resources. Type II has an advantage over Type I

1 They were set as: α = 50
#topics

and β = 0.01.
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System Noun Verb Adj Adv All

UoR-SSI 84.12 78.34 85.36 88.46 83.21

NUS-PT 82.31 78.51 85.64 89.42 82.50
UPV-WSD 79.33 72.76 84.53 81.52 78.63∗

TKB-UO 70.76 62.61 78.73 74.04 70.21′

MII–ref 78.16 70.39 79.56 81.25 76.64
MII+ref 80.05 70.73 82.04 82.21 78.14′

MI+ref 79.96 75.47 83.98 86.06 79.99∗

BLmfs 77.44 75.30 84.25 87.50 78.99∗

Table 6.2: Model performance (F-score) on the coarse-grained dataset (context=sentence). Per-
formance on different part-of-speech tags. For our model, (+ref/-ref) indicates whether we use
reference synsets.

since the prior knowledge of the sense distribution can be estimated from annotated corpora

(e.g.: SemCor, Senseval). In contrast, training data in Type I may be system specific (e.g.:

different input format, different annotation guidelines). McCarthy (2009) also addresses the

issue of performance and cost by comparing supervised word sense disambiguation systems

with unsupervised ones.

We exclude the system provided by one of the organizers (UoR-SSI) from our categorization.

The reason is that although this system is claimed to be unsupervised, and it performs better

than all the participating systems (including the supervised systems) in the SemEval-2007

shared task, it still needs to incorporate a lot of prior knowledge, specifically information about

co-occurrences between different word senses, which was obtained from a number of resources

(SSI+LKB) including: (i) SemCor (manually annotated); (ii) LDC-DSO (partly manually

annotated); (iii) collocation dictionaries which are then disambiguated semi-automatically. Even

though the system is not “trained”, it needs a lot of information which is largely dependent on

manually annotated data, so it does not fit neatly into the categories Type II or Type III either.

Table 6.2 lists the best participating systems of each type in the SemEval-2007 task (Type

I: NUS-PT (Chan et al., 2007); Type II: UPV-WSD (Buscaldi and Rosso, 2007); Type III:

TKB-UO (Anaya-Sánchez et al., 2007)). Our Model I belongs to Type II, and our Model II

belongs to Type III.

Table 6.2 compares the performance of our models with the Semeval-2007 participating
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systems. We only compare the F-score, since all the compared systems have an attempted rate1

of 1.0, which makes both the precision and recall rates the same as the F-score. We focus on

comparisons between our models and the best SemEval-2007 participating systems within the

same type. Model I is compared with UPV-WSD, and Model II is compared with TKB-UO.

In addition, we also compare our system with the most frequent sense baseline which was not

outperformed by any of the systems of Type II and Type III in the SemEval-2007 task.

Comparison on Type III is marked with ′, while comparison on Type II is marked with ∗. We

find that Model II performs statistically significantly better than the best participating system of

the same type TKB-UO (p<<0.01, χ2 test). When encoded with the prior knowledge of sense

distribution, Model I outperforms by 1.36% the best Type II system UPV-WSD, although the

difference is not statistically significant. Furthermore, Model I also quantitatively outperforms

the most frequent sense baseline BLmfs, which, as mentioned above, was not beat by any

participating systems that do not use training data.

We also find that our model works best for nouns. The unsupervised Type III model Model

II achieves better results than the most frequent sense baseline on nouns, but not on other

parts-of-speech. This is in line with results obtained by previous systems (Boyd-Graber and Blei,

2008; Cai et al., 2007; Griffiths et al., 2005). While the performance on verbs can be increased

to outperform the most frequent sense baseline by including the prior sense probability, the

performance on adjectives and adverbs remains below the most frequent sense baseline. We

think that there are three reasons for this: first, adjectives and adverbs have fewer reference

synsets for paraphrases compared with nouns and verbs (see Table 6.1); second, adjectives and

adverbs tend to convey less key semantic content in the document, so they are more difficult to

capture with the topic model; and third, adjectives and adverbs are a small portion of the test set,

so their performances are statistically unstable. For example, if ‘already’ appears 10 times out

of 20 adverb instances, a system may get bad results on adverbs only because of its failure to

disambiguate the word ‘already’.

Paraphrase analysis Table 6.2 also shows the effect of different ways of choosing sense

paraphrases. MII+ref is the result of including the reference synsets, while MII-ref excludes

the reference synsets. As can be seen from the table, including all reference synsets in sense

1Attempted rate is defined as the total number of disambiguated output instances divided by the total number of
input instances.
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Context Ate. Pre. Rec. F1

±1w 91.67 75.05 68.80 71.79
±5w 99.29 77.14 76.60 76.87
±10w 100 77.92 77.92 77.92
text 100 76.86 76.86 76.86

sent. 100 78.14 78.14 78.14

Table 6.3: Model II performance on different context sizes. attempted rate (Ate.), precision (Pre.),
recall (Rec.), F-score (F1).

System F-score

RACAI 52.7 ±4.5

BLmfs 55.91±4.5
MI+ref 56.99±4.5

Table 6.4: Model performance (F-score) for the fine-grained word sense disambiguation task.

paraphrases increases performance. Longer paraphrases contain more information, and they are

statistically more stable for inference.

We find that nouns get the greatest performance boost from including reference synsets, as

they have the largest number of different types of synsets. We also find the ‘similar’ reference

synset for adjectives to be very useful. Performance on adjectives increases by 2.75% when

including this reference synset.

Context analysis In order to study how the context influences the performance, we experiment

with Model II on different context sizes (see Table 6.3). We find sentence context is the best

size for this disambiguation task. Using a smaller context not only reduces the precision, but

also reduces the recall rate, which is caused by the all-zero topic assignment by the topic model

for documents only containing words that are not in the vocabulary. As a result, the model is

unable to disambiguate. The context based on the whole text (article) does not perform well

either, possibly because using the full text folds in too much noisy information.
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6.4.2 Fine-grained WSD

We saw in the previous section that our framework performs well on coarse-grained WSD.

Fine-grained WSD, however, is a more difficult task. To determine whether our framework is

also able to detect subtler sense distinctions, we tested Model I on the English all-words subtask

of SemEval-2007 Task-17 (see Table 6.4).

We find that Model I performs better than both the best unsupervised system, RACAI (Ion

and Tufiş, 2007) and the most frequent sense baseline (BLmfs), although these differences are

not statistically significant due to the small size of the available test data (465).

6.4.3 Idiom Sense Disambiguation

In the previous section, we provided the results of applying our framework to coarse- and

fine-grained word sense disambiguation tasks. For both tasks, our models outperform the

state-of-the-art systems of the same type either quantitatively or statistically significantly. In

this section, we apply Model III to another sense disambiguation task, namely distinguishing

literal and nonliteral senses of ambiguous expressions.

WordNet has a relatively low coverage for idiomatic expressions. In order to represent

non-literal senses, we replace the paraphrases obtained automatically from WordNet by words

selected manually from online idiom dictionaries (for the nonliteral sense) and by linguistic

introspection (for the literal sense). We then compare the topic distributions of literal and

nonliteral senses.

As the paraphrases obtained from the idiom dictionary are very short, we treat the paraphrase

as a sequence of independent words instead of as a document and apply Model III (see Section

6.2). Table 6.5 shows the results of our proposed model compared with state-of-the-art systems.

We find that the system significantly outperforms the majority baseline (p<<0.01, χ2 test) and

the cohesion-graph based approach proposed by Sporleder and Li (2009) (p<<0.01, χ2 test).

The system also outperforms the bootstrapping system by Li and Sporleder (2009), although

not statistically significantly. This shows how a limited amount of human knowledge (e.g.,

paraphrases) can be added to an unsupervised system for a strong boost in performance ( Model

III compared with the cohesion-graph and the bootstrapping approaches).

For obvious reasons, this approach is sensitive to the quality of the paraphrases. The

paraphrases chosen to characterise (aspects of) the meaning of a sense should be non-ambiguous

between the literal or idiomatic meaning. For instance, ‘fire’ is not a good choice for a paraphrase
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System Precl Recl Fl Acc.

Basemaj - - - 78.25
co-graph 50.04 69.72 58.26 78.38
boot. 71.86 66.36 69.00 87.03

Model III 67.05 81.07 73.40 87.24

Table 6.5: Performance on the literal or nonliteral sense disambiguation task on idioms. literal
precision (Precl), literal recall (Recl), literal F-score (Fl), accuracy(Acc.).

of the literal reading of ‘play with fire’, since this word can be interpreted literally as ‘fire’ or

metaphorically as ‘something dangerous’. The verb component word ‘play’ is a better literal

paraphrase.

For the same reason, this approach works well for expressions of which the literal and

nonliteral readings are well separated (i.e., occur in different contexts), while the performance

drops for expressions whose literal and idiomatic readings can appear in a similar context. We

test the performance on individual idioms on the five most frequent idioms in our corpus1 (see

Table 6.6). We find that ‘drop the ball’ is a difficult case. The words ‘fault’, ‘mistake’, ‘fail’

or ‘miss’ can be used as the nonliteral paraphrases. However, it is also highly likely that these

words are used to describe a scenario in a baseball game, in which ‘drop the ball’ is used literally.

In contrast, the performance on ‘rock the boat’ is much better, since the nonliteral reading of the

phrases ‘break the norm’ or ‘cause trouble’ are less likely to be linked with the literal reading

‘boat’. This may also be because ‘boat’ is not often used metaphorically in the corpus.

As the topic distribution of nouns and verbs exhibit different properties, topic comparisons

across parts-of-speech do not make sense. We make the topic distributions comparable by

making sure each type of paraphrase contains the same sets of parts-of-speech. For instance, we

do not permit combinations of literal paraphrases which only consist of nouns and nonliteral

paraphrases which only consist of verbs.

6.5 Related Work

There is a large body of work on WSD, covering supervised, unsupervised (word sense induc-

tion) and knowledge-based approaches (see McCarthy (2009) for an overview). While most

1We tested only on the most frequent idioms in order to avoid statistically unreliable observations.
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Idiom Acc.

drop the ball 75.86
play with fire 91.17
break the ice 87.43
rock the boat 95.82
set in stone 89.39

Table 6.6: Performance on individual idioms.

supervised approaches treat the task as a classification task and use hand-labelled corpora as

training data, most unsupervised systems automatically group word tokens into similar groups

using clustering algorithms, and then assign labels to each sense cluster. Knowledge-based

approaches exploit information contained in existing resources. They can be combined with

supervised machine-learning models to assemble semi-supervised approaches.

Recently, a number of systems have been proposed that make use of topic models for sense

disambiguation. Cai et al. (2007), for example, use LDA to capture global context. They compute

topic models from a large unlabelled corpus and include them as features in a supervised system.

Boyd-Graber and Blei (2007) propose an unsupervised approach that integrates McCarthy et al.

(2004) method for finding predominant word senses into a topic modelling framework. In

addition to generating a topic from the document’s topic distribution and sampling a word from

that topic, the enhanced model also generates a distributional neighbour for the chosen word

and then assigns a sense based on the word, its neighbour and the topic. Boyd-Graber and Blei

(2007) test their method on WSD and information retrieval tasks and find that it can lead to

modest improvements over state-of-the-art results.

In another unsupervised system, Boyd-Graber et al. (2007) enhance the basic LDA algorithm

by incorporating WordNet senses as an additional latent variable. Instead of generating words

directly from a topic, each topic is associated with a random walk through the WordNet hierarchy

which generates the observed word. Topics and synsets are then inferred together. While Boyd-

Graber et al. (2007) show that this method can lead to improvements in accuracy, they also

find that idiosyncracies in the hierarchical structure of WordNet can harm performance. This

is a general problem for methods which use hierarchical lexicons to model semantic distance

(Budanitsky and Hirst, 2006). In our approach, we circumvent this problem by exploiting

paraphrase information for the target senses rather than relying on the structure of WordNet as a
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whole.

Topic models have also been applied to the related task of word sense induction. Brody and

Lapata (2009) propose a method that integrates a number of different linguistic features into

a single generative model. Topic models have also been previously considered for metaphor

extraction and estimating the frequency of metaphors (Bethard et al., 2009; Klebanov et al.,

2009) (related to our experiments tested on the idiom dataset).

6.6 Summary

In this chapter, we model sense disambiguation on words (multiple sense categories problem)

and idiomatic expressions (binary ‘literal’/‘nonliteral’ problem) in one uniform topic model

framework. Consequently, we propose three sub-models. The basic idea of these models is to

compare the topic distribution of a target instance with the candidate sense paraphrases and

choose the most probable one. While Model I and Model III model the problem in a probabilistic

way, Model II uses a vector space model by comparing the cosine values of two topic vectors.

Model II and Model III are completely unsupervised, while Model I needs the prior sense

distribution. Model I and Model II treat the sense paraphrases as documents, while Model III

treats the sense paraphrases as a collection of independent words.

We test the proposed models on three tasks. We apply Model I and Model II to the WSD

tasks due to the availability of more paraphrase information. Model III is applied to the idiom

detection task since the paraphrases from the idiom dictionary are smaller. We find that all

models outperform comparable state-of-the-art systems either quantitatively or statistically

significantly.

By testing our framework on three different sense disambiguation tasks, we show that

the framework can be used flexibly in different application tasks. The system also points out

a promising way of solving the granularity problem of word sense disambiguation, as new

application tasks which need different sense granularities can utilize this framework when new

paraphrases of sense clusters are available. In addition, this system can also be used in a larger

context such as sentiment detection (positive or negative).
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From Disambiguation to Induction:
the Evaluation Bottleneck

We have discussed various lexical ambiguity problems in the previous chapters. We started with

the idiom detection task in which candidate senses are constrained to‘literal’ and ‘idiomatic’

(Chapter 3 and 4). Then in Chapter 5 we moved on to a more general case in which target

phrases are not lexicalized but they bear special semantic meanings (e.g., metaphor, metonymy).

We define it as a general figurative expression detection task which, similar to the idiom task,

has two candidate sense categories (‘literal’ and ‘nonliteral’). In Chapter 6, we considered a

more complicated situation in which words often have more than two candidate senses and the

sense boundaries are fuzzier, which is known as WSD. In this chapter we discuss another lexical

ambiguity problem in which the sense inventory is not explicitly specified, known as word sense

induction (WSI).

WSI research is hindered by deficiencies of commonly used evaluation measures. As shown

in the SemEval 2010 WSI shared task, simple baselines tend to win over state-of-the-art systems

(e.g., the most-frequent-sense baseline wins under the paired F-Score; the one-cluster-per-

instance wins under the V-Measure). With this in mind, in this chapter we focus on improved

evaluation measures which would eliminate the obstacles of WSI research and bring promising

research perspectives to this topic.

We first give an introduction to WSI and discuss why WSI evaluation is a difficult task. Then,

we give an overview of different evaluation approaches and list some well-known problems

of those evaluation approaches. In Section 7.3 and 7.4, we discuss two new findings from our

research:
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1. The state-of-the-art supervised evaluation approach has problems: backoff to the most-

frequent-baseline, bias towards fine-grained output, and sensitivity to training-test split.

2. The entropy estimation of the state-of-the-art unsupervised evaluation (V-Measure) is

biased, and the bias can be alleviated by using alternative entropy estimators.

Furthermore, we also demonstrate that WSI evaluation can be more effective if the task

setup constrains systems to output a limited number of clusters based on test set size and the

number of gold standard senses. The reason is that entropy bias tends to be sensitive to the ratio

of cluster number to class number and sample (instance) size. We also show the bias can be

significantly reduced if the number of clusters is restricted to be less than a certain threshold

defined by number of gold classes and the number of instances. At the end of this chapter, we

provide a concrete strategy for restricting the number of clusters.

7.1 Introduction

Word sense induction (WSI) differs from word sense disambiguation (WSD) in that induction

systems are not equipped with knowledge of a sense inventory. Senses have to be induced

automatically in an unsupervised fashion on the basis of corpus evidence (Purandare and

Pedersen, 2004; Schütze, 1998). The independence of a fixed sense inventory is one of the main

advantages of WSI. Fixed inventories assume some kind of ground truth of senses for a given

target word. However, lexicographers find it typically difficult to agree on a fixed sense inventory

or even on the ideal level of sense granularity. In fact, inventories of different granularities

may be necessary for different domains and applications. Moreover, some researchers argue

that graded representations of word meaning better reflect linguistic realities than rigid sense

inventories (Cruse, 2000). Since WSI approaches induce their own sense inventories they can

automatically adapt to the target domain. They may thus be beneficial for applications such as

information retrieval and machine translation, which have been shown to benefit from induced

senses (Véronis, 2004; Vickrey et al., 2005).

However, the fact that WSI systems do not rely on fixed inventories also makes it notoriously

difficult to evaluate and compare the performance of different approaches. Ideally, it should

be possible to compare systems even if the induced inventories are of different granularity.

However, most existing evaluation methods tend to be biased towards either very coarse-grained

or very fine-grained clusterings. In this chapter, we look at different evaluation approaches that
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have been used for WSI shared tasks (Agirre and Soroa, 2007; Manandhar et al., 2010), discuss

their weaknesses and outline alternative solutions for future research.

7.2 Overview of Evaluation Approaches

There exist two main evaluation schemes, both of which assume ground truth in the form of a

fixed inventory of gold standard senses and evaluate the system by comparing the set of induced

senses (clusters) to the set of gold standard sense annotations in the test data (classes). The

first scheme, called unsupervised evaluation, employs standard cluster evaluation methods. The

induced senses, which are represented as clusters of usages of the target word, are compared

to sets of examples in the gold standard and then evaluated using measures which assess the

quality of the clustering such as F-Score (Agirre and Soroa, 2007), paired F-Score (Manandhar

et al., 2010), Entropy (Zhao and Karypis, 2005), Purity (Zhao and Karypis, 2005), or normalized

mutual information also known as V-Measure (Rosenberg and Hirschberg, 2007; Strehl and

Gosh, 2002). While unsupervised evaluation directly compares two different partitions of target

word uses (produced by the WSI system on the one hand and the manual annotation on the other

hand), supervised evaluation (Agirre and Soroa, 2007) uses annotated data to map the induced

sense clusters to gold standard sense classes and then uses this mapping to tag the test data. The

tagging produced can then be evaluated using standard supervised evaluation measures such as

accuracy. To compute the mapping, the evaluation data are split into a mapping set, which is

used to determine the best mapping of clusters to classes, and a test set, which is subsequently

tagged according to this mapping.

F-Score Measure (Agirre and Soroa, 2007) defines the F-Score of a sense class cr as the

maximum F-Score attained at any cluster ki by mapping1:

F (cr) = max
ki

f(cr, ki) (7.1)

This strategy allows each sense class to be mapped to any cluster which suggests one cluster

may be mapped to multiple sense classes. This many-to-one mapping from classes to clusters

is biased towards coarse-grained output (e.g., the most-frequent-sense baseline). As examples,

the most-frequent-sense baseline achieves the best performances in both SemEval 2007 and

SemEval 2010 shared tasks under F-Score evaluation.
1In this chapter, we use c to denote gold classes and k to denote system output clusters.
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F-Score measure restricts the maximum number of mapped clusters to be the number of

gold sense classes. Thus, a system would be penalized if it outputs more clusters than gold

classes, as extra clusters would not have a chance to be mapped to the gold sense classes, i.e,

the F-Score measure penalizes fine-grained output (Rosenberg and Hirschberg, 2007). As an

example, the best supervised system of SemEval10, UoY, which generates an average of 11.54

clusters is only ranked 16th by F-Score evaluation.

Entropy Measure (Zhao and Karypis, 2005) considers how instances from gold sense classes

are distributed within each cluster. This approach measures the entropy of the probability of

sense classes conditioned on clusters p(c|k): the lower the entropy is, the better the system is

ranked. This approach evaluates how an induced cluster entails a gold sense class but ignores

how a gold sense class entails a cluster. Therefore, it allows many-to-one mapping from clusters

to classes, which in turn encourages fine-grained output. One example is the one-cluster-per-

instance baseline, which achieves the best results in the SemEval 2007 shared task under the

Entropy measure (entropy 0).

Purity Measure (Zhao and Karypis, 2005) considers the extent to which each cluster contains

objects from primarily one class: a larger purity value means better clustering algorithm.

Exhibiting an opposite problem of the Entropy measure, it only measures how cluster entails

class, and consequently, encourages fine-grained output by allowing one-to-many mapping from

classes to clusters (the best system of the Semeval 2007 WSI task is the one-instance-per-cluster

baseline with a purity of 100%).

The problems of the F-Score, Entropy and Purity evaluation measures have been addressed

in the most recent SemEval shared task: SemEval 2010 abandoned the Entropy and Purity

measures, and replaced the F-Score measure by an improved version paired F-Score (Artiles

et al., 2009). However, as far as we know there have been no studies on the effectiveness of the

two remaining approaches that were also adopted by SemEval 2010 (supervised evaluation and

V-Measure). In the next two sections, we show our new findings concerning the problems of

these two approaches.
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7.3 Finding 1: The State-of-the-Art Supervised Evaluation Favors
Fine-grained Output

We start this section by discussing three phenomena from the SemEval 2010 shared task

evaluation: 1) The supervised evaluation seems to compress the results of all the systems into

a narrow band that converges around the most-frequent-sense result (Pedersen, 2010). 2) The

best system under the supervised evaluation measure (UoY (Korkontzelos and Manandhar,

2010)) generates an average number of 11.54 clusters, which is twice as many as the gold

standard annotation (average 5.6 sense clusters).1 3) The ranking inconsistency behavior: The

80-20 training and test split (80% for training, and 20% for testing) evaluation strategy does not

completely comply with the 60-40 split under the supervised evaluation.

In order to illustrate this evaluation issue, we first give a brief introduction to the supervised

evaluation approach proposed by Agirre et al. (2006). In this approach, a mapping matrix

(M)ij = p(cj |ki) that relates hubs ki (induced clusters) and senses cj (gold standard class)

is built based on the conditional probability of a word having sense j given that it has been

assigned hub i. This conditional probability can be calculated by the counts of sense cj being

assigned hub ki in the training set. For example, if a co-occurrence matrix is as the left side of

Example 7.2, then the mapping matrix M would be generated by normalizing the row vector,

resulting in the matrix on the right-hand side of Formula 7.2.
c1 c2

k1 1 0
k2 1 1
k3 0 1

→


c1 c2
k1 1 0
k2 0.5 0.5
k3 0 1

 (7.2)

Given a test instance with the hub assignment as k = (k1, ..., km), the sense score vector is

calculated by multiplying the hub vector by M, i.e., c = k′ ×M . The sense class of the test

instance is decided by the maximum sense score. In our study we find three problems with this

proposed approach:

1. The evaluation model backs off to the most-frequent-sense baseline. Suppose that we

have a naive system which always outputs 3 hubs with equal weights to any input instance.

Consider the case that there are 4 instances in the training set: 3 of c1, 1 of c2. The co-occurance

1 Furthermore, the UoY system has a tendency to output a large number of equally weighted classes for each
instance. For example, the system assigns 351 classes with equal weights to 11 instances (out of 31) of the noun
‘accounting’ in the test set.
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matrix which is based on the fraction counts would be as shown on the left side of Example

7.3. The normalized mapping matrix M is as the right side of Formula 7.3. Now if we have

a new test instance with the hub assignment k = (1
3 ,

1
3 ,

1
3), the sense score vector would be

c = k′ ×M = (3
4 ,

1
4). Thus, the system would output c1 as the mapped sense class. This naive

system gains performance by exploiting the distribution information in the training set.


c1 c2

k1 1 1
3

k2 1 1
3

k3 1 1
3

→


c1 c2
k1

3
4

1
4

k2
3
4

1
4

k3
3
4

1
4

 (7.3)

In general, any system would benefit from backing off to the distributions in the evaluation

training data. Actually, the sense score calculator (c = k′×M ) is eventually a process of mixing

two distributions: the system output hub distribution (represented by hub score k′) and the

sense distribution in the training data (represented by the mapping matrix M ). The consequence

is that system output is conflated with the most-frequent-sense (estimated from the training

data) baseline. This also explains why all the system performances fall into a narrow band that

converges around the most-frequent-sense result (Pedersen, 2007).

2. The evaluation is biased towards fine-grained output. Suppose we have a training set

which consists of 3 instances with the hub assignments as: k(I1)=(1, 0, 0), k(I2)=(0, 1, 0),

k(I3)=(0, 0, 1). The gold senses of these three examples are as I1 ∈ c1, and I2, I3 ∈ c2. The

mapping matrix based on this training set is as:

M =


c1 c2

k1 1 0
k2 0 1
k3 0 1


Now we have test instance with a hub output as k(It)=(0.4, 0.3, 0.3), and gold sense label

as It ∈ c2. We consider two cases:

• The system makes an early decision. It selects the hub with the highest weight as its final

output It ∈ k1. The output hub score would be k(It)=(1, 0, 0), and the final sense score

would be c = k(It)′ ×M = (1, 0). As c1 has a higher sense score, the evaluation system

would then choose c1 as the mapped sense.
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• The system makes a lazy decision, instead of selecting a single class at an early stage, it

presents the whole weighted induced cluster vector (0.4, 0.3, 0.3) to the evaluation model,

which would, in turn, use the mapping matrix estimated from the training data to map

the weighted hub output to a final sense output c = k′ ×M =(0.4, 0.6). In this case,

the system gets the instance correct (output mapped sense class as c2) by the backoff

knowledge in the mapping matrix.

Another view on this: the training phrase of the evaluation model can be seen as a feature

selection process, in which the most informative system output hubs are correlated to gold sense

classes. The system has the freedom to select the important hubs from the training data. If

a system only assigns one hub for each instance, it is the same as submitting a single feature

property to the evaluation model, which would have disadvantages compared to systems that

submit more properties (features). In the extreme case, one can submit a bigram co-ocurrence

matrix of the target word as the system hub output and let the evaluation model correlate this

output to the gold sense class by the mapping matrix. If the evaluation model has enough

trainning data, it can effectively learn the correlations and make predictions. What we compare

in such a setting is actually feature selection. Systems making decisions at an early stage lose

the advantage of utilizing the training data in the evaluation stage to tune the most powerful

features. As a result, this evaluation measure penalizes under-generation (e.g., only output one

most confident cluster), but encourages over-generation (e.g., output a large number of equally

weighted clusters).

3. Inconsistent behavior with respect to the training-test split. As in most machine learn-

ing applications, model quality increases with the size of the training set. This explains why the

80-20 training-test split gains better results than 60-40 split for all the top 10 systems. However,

the fact that the rankings produced by the two strategies are inconsistent, is another disadvantage

of the supervised evaluation. For instance, the system Duluth-WSI is ranked as the second in

the 80-20 split while it is only ranked as the fifth in the 60-40 split in SemEval 2010 WSI task

(Manandhar et al., 2010).

7.4 Finding 2: The Entropy Bias Problem of the V-Measure

In this section, we discuss the entropy estimator bias problem of the V-Measure WSI evaluation

approach by comparing different estimators and their influence on the evaluation scores. We
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also run two simulation experiments using uniform and Zipf distributions where we know the

true entropy. Our experiments show that standard Maximum Likelihood Estimator (MLE) is

very inaccurate in case of WSI evaluation where the number of clusters m is comparable to the

number of samples N . We also find that there exist better estimators and argue that they should

replace MLE for WSI evaluation.

7.4.1 Normalized Mutual Information (V-Measure)

Various efforts have been made to improve WSI evaluation. Information theoretic based

measures are one major type. The basic idea with these methods is to take the sense class

and system cluster as two random variables, and the evaluation measure evaluates how those

two random variables are related to each other. This type of evaluation methodology has been

adopted in general clustering algorithm evaluation (e.g. (Dom, 2001; Meila, 2007; Strehl and

Gosh, 2002)). However, specific usage in the WSI evaluation has only recently been adopted by

SemEval 2010 (Manandhar et al., 2010), in which Normalized Mutual Information ((Strehl and

Gosh, 2002)), also called V-Measure (Rosenberg and Hirschberg, 2007), is utilized.

The starting point of using information theoretic measures is to check how two random

variables, class c and class k, depend on each other. One natural choice is to use the Mutual

Information (MI),

I(c, k) = H(c) +H(k)−H(c, k) (7.4)

= H(c)−H(c|k) (7.5)

= H(k)−H(k|c) (7.6)

where H is defined in terms of Shannon’s entropy (Shannon and Weaver, 1998). If p denotes

the probability mass function, then entropy is calculated as:

H(x) = −
m∑
i=1

p(xi) log p(xi) (7.7)

In case of p(xi) = 0 for some i, the corresponding value is set to be 0, as lim
p→0+

p log p = 0. In

the MI definition, H(c), H(k) is the marginal variable entropy, H(c, k) is the joint entropy of

two variables, and H(c|k), H(k|c) is the conditional entropy.

Different Variations of such measures have also been proposed such as Variation of Infor-

mation Measure (Meila, 2007), V I(c, k) = H(c|k) +H(k|c), and Q0 Measure (Dom, 2001),

H(c|k). A common problem of these evaluation approaches is that they are not normalized,
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which makes the comparison of scores from different systems difficult. For instance, a system

which outputs a large number of clusters may have a larger MI value, as they may have a larger

marginal entropy compared with systems which output a small number of clusters.

Normalized Mutual Information (Rosenberg and Hirschberg, 2007; Strehl and Gosh, 2002)

aims to solve the above issue by using the harmonic mean of two normalized entropy parameters:

V (c, k) =
1

H(c)
I(c,k) + H(k)

I(c,k)

=
2I(c, k)

H(c) +H(k)
(7.8)

where I(c,k)
H(c) , I(c,k)H(k) is MI normalized by marginal entropy.

Our study on the V-Measure was motivated by the fact that the one-cluster-per-instance

baseline (1cl1inst) 1 in SemEval 2010 yields a V-Score of 31.7% which is significantly higher

than the top participating system (Hermit 16.2%). In our subsequent study, we find that the

V-Measure is positively biased as a result of the fact that the state-of-the-art WSI entropy

estimator, Maximum Likelihood Estimator (MLE), is heavily negatively biased when the sample

size is relatively small compared with the number of clusters (the case for WSI tasks such

as SemEval 2010). Furthermore, we also find that there exist better estimators (less biased),

namely the jackknifed (JK) estimator (Quenouille, 1956; Tukey, 1958) and the best-upper-bound

(BUB) estimator (Paninski, 2003), and they are shown to be more consistent than MLE in our

experiments (see Section 7.4.5).

In the next sections, we first discuss the entropy bias problem, then we list a few alternative

entropy estimators, and finally we briefly discuss and compare alternative estimators with the

ML estimator.

7.4.2 Entropy Estimation

Part I: Entropy Estimator Bias

The standard entropy is defined in terms of probabilities (see Equation 7.7), however, the

real probability mass function of the class/cluster variable is unknown in the WSI evaluation

case. As an estimation, the standard Maximum Likelihood (ML) estimator based on normalized

1This baseline assigns each instance to an individual cluster.
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empirical frequency is adopted (Equation 7.9).2

Ĥ = −
m∑
i=1

ni
N

log
ni
N

(7.9)

where ni is the number of instances in class/cluster i, m is the total number of classes/clusters,

and N is the total number of instances (i.e., the sample size).

Now, we use the ML estimator to analyze the SemEval 2010 one-cluster-per-instance

baseline (1cl1inst), which when averaged over all the 100 words significantly outperforms the

best participating system on the standard test set. We calculate a general case of this baseline as

in (7.10).

V-Measure Score of the 1cl1inst Baseline

Suppose the number of instances in the test set is N, then:

• The class entropy is Ĥ(c);

• The cluster entropy is,

Ĥ(k) = −
|k|∑
i=1

ni
N

log
ni
N

= −
N∑
i=1

1
N

log
1
N

= logN ;

• The joint entropy of the class and the cluster is,

Ĥ(c, k) = −
|c|∑
j=1

|k|∑
i=1

nij
N

log
nij
N

= −
N∑
i=1

1
N

log
1
N

= logN ;

Therefore, the V-Measure is estimated as:

V̂ (c, k) =
2Ĥ(c)

logN + Ĥ(c)
(7.10)

As the estimated value of the class entropy Ĥ(c) on a given test set is a constant, Equation

7.10 suggests that the estimated V-Measure score of the 1cl1inst baseline is inversely proportional

to the test set size (N). Therefore, the V-Measure score goes to 0 as the test size goes to infinity

N → +∞:

lim
N→+∞

V̂ (c, k) = lim
N→+∞

2Ĥ(c)
logN + Ĥ(c)

= 0 (7.11)

2We use ˆ to denote the estimated value.
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To summarize, Equation 7.10 suggests: i) The performance of the 1cl1inst baseline is

dependent on the test size; ii) The estimated V-Measure score constantly drops as the number of

the instances in the test set increases. Furthermore, the performance of the 1cl1inst baseline

reaches its worst point when the test set consists of infinite number of instances (see Equation

7.11). In other words, the V-Measure is positively biased; it overrates the 1cl1inst baseline on a

finite test set.

We conduct further studies and find that the V-Measure problem is caused by the bias

problem of the MLE. More specifically, the expected value of the entropy estimator on a finite

sample set is different from the real value, and it is also different from an expected value on a

larger test set generated from the same distribution. The bias problem has been noted in previous

work: (i) Miller (1955) suggests that the standard ML entropy estimator is negatively biased,

and he also points out that the discrepancy is proportional to the number of classes/clusters m

and inversely proportional to the sample size N ; (ii) Paninski (2003) further notes that the ML

estimators are extremely inaccurate when class/cluster size m is comparable with sample size

N .

Unfortunately, we face those exact conditions which influence the entropy estimator bias in

WSI evaluation: First, the probability mass of the class/cluster distribution is unknown, which

leads to the usage of empirical frequency counts in replacement of probabilities (where entropy

estimator bias is introduced). Second, The number of test instances per word is very small

compared with the number of classes, clusters or the combinations of the two (joint entropy).

This leads to imprecise estimation of

• the class marginal entropy Ĥ(c)

e.g., 10 gold sense classes v.s. 28 test instances (for target noun screen, SemEval 2010);

• the cluster marginal entropy Ĥ(k)

e.g., 351 clusters by UoY v.s. 31 test instances (noun accounting, SemEval 2010);

• the worst of all, the class and cluster joint entropy Ĥ(c, k)

e.g., 1755 class-cluster pairs by UoY v.s. 31 test instances (accounting, SemEval 2010).

Since the ML estimator introduces bigger errors to the joint entropy estimator Ĥ(c, k) than

to the marginal entropy estimator Ĥ(k) (i.e., the absolute value of the bias for the joint entropy

estimator exceeds the marginal entropy estimator), the V-Measure is positively biased (see

(Miller, 1955) for the relation between entropy bias and number of classes/samples). As the bias
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would be extremely high for systems predicting many clusters, the V-Measure problem is not

only for the 1cl1inst baseline but also for any system which outputs a large number of clusters.

Part II: Alternative Entropy Estimators

In this part, we first review the standard Maximum Likelihood estimator, and then introduce al-

ternative estimators which contain bias correction terms and can better serve the WSI evaluation

task.

1. Maximum Likelihood Estimator (MLE) (Strong et al., 1998) estimates the entropy of a

distribution p drawn on N samples as:

ĤMLE(pN ) = −
m∑
i=1

pN,i log pN,i (7.12)

whereN is the sample size;m is the number of classes; pN,i is the probability of observing

class i within the samples, and it is usually estimated by empirical frequency counts.

2. Miller-Madow’s Estimator (MM) (Miller, 1955) introduces a bias correction factor which

is based on the observation that MLE is negatively biased, and this bias increases as

the number of classes m grows and decreases as the number of samples N grows. As a

result, the Miller-Madow bias correction factor is defined as proportional to the number

of classes and inversely proportional to the number of samples.

ĤMM (pN ) = ĤMLE(pN ) +
m̂− 1

2N
(7.13)

where m̂ is the estimated number of classes.

3. Jackknifed Estimator (JK) (Quenouille, 1956; Tukey, 1958) also notes that the discrepancy

of the true entropy and the estimator varies as the sample size changes. Intuitively, the

discrepancy can also be utilized to correct bias: if an estimated value based on N samples

exceeds the estimated value from N-1 samples, then the estimator bias is big.

ĤJK(pN ) = NĤMLE(pN )− N − 1
N

N∑
j=1

ĤMLE(pN,−j) (7.14)

where pN,−j is all the samples excluding the jth one.
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4. “Best Upper Bounds” Estimator (BUB) (Paninski, 2003) defines the histogram order

statistics hj as the number of classes that appear j times in the samples (Equation 7.15),

and he notes that each entropy estimator Ĥ (ML)/Ĥ(MM)/Ĥ(JK) is a linear function of

the histogram order statistics (Equation 7.16), however, they are different in selecting the

coefficient aĤ,j,N . The BUB estimator sets the coefficient aĤBUB ,j,N
by optimizing the

best upper bounds and formulating it as a regularized least-squares problem. We refer

the reader to (Paninski, 2003) for details. In this thesis we focus on the application of the

BUB estimator to the WSI evaluation problem.

hj =
m∑
i=1

[[ni = j]], [[a = b]] =
{

1 if a=b
0 if a6= b

(7.15)

where ni is the number of times that class i appears in the sample.

Ĥj,N =
N∑
j=o

aĤ,j,Nhj (7.16)

Part III: Discussion

In general, the MM, JK and BUB estimators are more favorable than the ML estimator

as they add extra bias correction factors. Our first question is how well these different bias

correction estimators perform compared with each other.

The BUB estimator is considered to be particularly effective for situations in which the

sample size is comparable to the number of classesN ∼ m, or situations in which the distribution

that generates the samples is highly skewed (e.g., Zipf distribution). On the other hand, WSI

evaluation entropy estimation exhibits two special properties: 1) There are many systems

outputting a large number of induced clusters while the test instance size is relatively small.

2) Word sense distribution is highly skewed as the most frequent sense occurs predominantly

(McCarthy, 2009). Our second question is whether BUB is particularly suitable for WSI

evaluation.

In the experiment sections, we answer these two questions: First, we use uniform and Zipf

distributions to randomly generate 1000 samples; Then, we use different estimators discussed

in this section to run entropy estimation and compare them with the true entropy; Finally, we

discuss the performance of different estimators and their potential effects on WSI evaluation.
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7.4.3 Stochastic Predictions

As SemEval WSI organizers encouraged participants to output clusters with weighted coeffi-

cients for evaluation, two of the systems of SemEval 2010 actually submitted weighted results

(KCDC-PC-2 and UoY). The weight information was utilized for the supervised evaluation, but

it was discarded for the V-Measure evaluation. In fact, the V-Measure evaluation of SemEval

2010 only chose the highest weighted cluster as the final output and estimated the entropy

based on this single cluster output.1 In our study, however, we find weighted clusters contain

rich information that is worth exploring for evaluation, therefore, we develop an approach

to integrate weighted cluster output into the entropy estimators. We describe the stochastic

prediction process that we adopt to estimate the entropy of weighted clusters in this section.

As in the uniform representation of different entropy estimators (Equation 7.16), given a

specific estimator coefficient aĤ,j,N , we need to estimate the histogram order statistics hj (the

number of classes that appear j times in the samples). Due to the linearity of the estimator, we

can rewrite the expected value of the estimator E(Ĥ) by the expected value of the hj variable

times the constant matrix aĤ :

E(Ĥ) =
N∑
j=o

aĤE(hj) (7.17)

where E(hj) can be further rewritten as:

E(hj) =
m∑
i=1

P (ni = j,N) (7.18)

where P (ni = j,N) represents the probability of class i occurring j times in N samples.

The rest of the problem is to estimate P (ni = j,N), typical non-identical Bernoulli trials,

also known as the Poisson Binomial distribution (Wang, 1993). The problem is to estimate the

probability of having j successful trials of class i out of a total number of N trials. The direct

calculation of such P is intractable but there exist efficient recursive forms. We choose the one

proposed by Gail et al. (1981): The event that class i occurs j times out of N trials equals the

event that class i occurs j − 1 times out of the first N − 1 trials and it occurs again in the N th

trial. Alternatively, it also equals the event that class i occurs j times out of the first N − 1 trials

and it does not occur in the N th trial. The process is represented as:

P (ni = j,N) = P (ni = j − 1, N − 1)× p(N)
i

+ P (ni = j,N − 1)× p(N)

i
(7.19)

1Whenever there exists a tie, the first appeared cluster was chosen.
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where p(N)
i is the probability of observing class i in the N th trial, p(N)

i
is the probability of not

observing class i in the N th trial, p(N)

i
= 1− p(N)

i .
According to Equation 7.19, the estimation is a dynamic programming process (Bellman,

2010) in which the initial values are set to be:

• P (ni = 0, 0) = 1, the event of observing class i zero times out of zero samples is always true;

• P (ni = −1, 0) = 0, the event of observing class i minus one time out of zero samples is
impossible.

We then utilize those initial values to calculate subsequent numbers. For instance, P (ni =

0, 1), the probability of observing class i zero times out of one sample, can also be calculated as

the recursive process:

P (ni = 0, 1) = P (ni = −1, 0)× p(1)
i + P (ni = 0, 0)× (1− p(1)

i )

= 0× p(1)
i + 1× (1− p(1)

i )

= 1− p(1)
i (7.20)

The results P (ni = 0, 1) = 1 − p(1)
i suggests that the probability of observing class i zero

times out of one samples is the probability that the first sample is not from class i. This exactly

confirms our intuition.

Similarly, the probability of observing class i once out of one samples, P (ni = 1, 1), is the

same as the probability of the first sample belonging to class i (Equation 7.21).

P (ni = 1, 1) = P (ni = 0, 0)× p(1)
i + P (ni = 1, 0)× (1− p(1)

i )

= 1× p(1)
i + 0× (1− p(1)

i )

= p
(1)
i (7.21)

Now we instantiate Equation 7.19 with the concepts in WSI evaluation: N is the number

of instances in the evaluation test set; P (ni = j,N) is the probability that j out of N instances

belong to cluster i; p(N)
i is the normalized weight of cluster i assigned to the N th instance.

After the probability estimation of the histogram order statistics hj , we can use Equation 7.17

combined with aĤ from different entropy estimators (ML, MM, JK, BUB) to estimate the

entropy and apply V-Measure to rank the systems.
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7.4.4 Experiment 1: Simulations

We run simulation experiments on samples that are generated from uniform (Johnson, 1994)

and Zipf (Zipf, 1935) distributions of which we know the true entropies. We select uniform

distribution as it is the maximum entropy distribution among all discrete distributions supported

on this set and has been frequently adopted to various problems (Park and Bera, 2009). We select

Zipf distribution as it is very similar to the skewed long-tailed distribution of WSI (McCarthy,

2009), thus, the performance of entropy estimators on Zipf distribution is indicative of how well

they might perform on WSI evaluation.

The probability mass function of uniform distribution is p(mi) = 1
m , i.e., each class has an

equal probability of generating a sample. The true entropy of uniform distribution can be easily

calculated as ln(m).

Zipf’s distribution suggests that lower ranked classes (bigger k) occur very infrequently ,

and the probability mass function is defined as:

f(k; s,m) =
1

ksHm,s
, Hm,s =

m∑
i=1

1/is (7.22)

where f(k; s,m) is the number of classes of rank k; m is the number of classes; s is the

parameter characterizing the skew degree of the distribution.

The entropy of Zipf distribution is dependent on two parameters, the number of classes m

and the skew degree s. It can be calculated as:

E(Zipf(m, s)) = lnHm,s +
s

Hm,s

m∑
i=1

ln(i)
is

(7.23)

In the simulation experiments, we first use the probability mass function of the two distribu-

tions to randomly generate samples; Then, we use the samples to estimate the entropy based on

the 4 different entropy estimators discussed in the last section (ML, MM, JK, BUB); Finally, we

compare the estimated entropy with the true entropy (H). We set the number of classes m as 10

and vary the sample size N . We also average over 1000 rounds to make the simulation more

reliable when generating samples.

The uniform simulation experimental results are plotted in Figure 7.1. As we can see, the

standard Maximum Likelihood entropy estimator ML is negatively biased, and this bias tends to

be huge when the sample size N is small (N < 3). The bias reduces as more and more samples

are used. We can also see that all bias correction estimators (MM, JK, BUB) perform better
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Figure 7.1: The estimated (ML, MM, JK, BUB) and true entropy for discrete uniform distribution,
the number of classes is set to be m = 10, natural logarithm ln is adopted.

than the ML estimator. However, the MM estimator has a mild correction factor which does

not sufficiently correct the bias, especially when compared to the other two estimators (JK and

BUB). We also find that BUB has a more effective bias correction factor when the sample size

is very small, and it outperforms all the other estimators at the initial stage (N < 3). However,

this advantage is eliminated when the sample size grows as the JK estimator gains the best

performance (N > 4).

The Zipf distribution simulation experiments are plotted in Figure 7.2. When the skew

factor of the Zipf distribution is small (s = 1, 2), we observe similar patterns as the uniform

simulation: 1) JK and BUB are the two favorable estimators; 2) BUB performs the best when

the sample size is very small, and JK outperforms others when the sample size grows bigger.

When the distribution is more skewed (s = 3, 4), we find that BUB stably outperforms JK for

cases where N > 3, however, we notice some inconsistent behavior of BUB when the sample

size is very small (N < 3): BUB over-corrects the bias and leads to positive bias.1

In all, the standard ML estimator is unfavorable compared with estimators with bias correc-

tion factors. We show that the MM estimator has a very mild bias correction factor, while JK

and BUB estimators are likely to more sufficiently correct the bias. We also show that BUB

tends to perform better on a very skewed distribution on a relatively small number of samples,

but it has some inconsistent behavior on skewed distributions when sample size N is less than

1This inconsistency leads to some unexpected behavior of the BUB estimator on WSI evaluation experiments.
We come back to this problem in Section 7.4.5.
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Figure 7.2: The estimated (different entropy estimators) and true entropy of Zipf’s law, the number
of classes is set to be m = 10, natural logarithm ln is adopted.

three. Finally, we show that JK consistently achieves good performance on various different

distributions, clearly more favorable than ML/MM and more consistent than BUB (small sample

size for skewed distributions).

7.4.5 Experiment 2: Effects on WSI Evaluation

In this section, we discuss the effects on the SemEval 2010 WSI shared task by applying different

entropy estimators. The data set is described in Section 2.4. Overall, 26 systems participate in

the task and there are also three baselines: (1) MFS (most frequent sense) assigns every instance
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Figure 7.3: Discrepancy in entropy estimators (V-Measure) as function of the predicted number of
clusters. The dots in the figures represent different systems of SemEval 2010.

of a lemma to the same cluster; 2) 1cl1inst (one cluster per instance) assigns each instance to

an individual cluster; 3) Random (choose cluster randomly) assigns each instance to a random

cluster. In the shared task, systems were ranked according to different evaluation measures such

as F-Score, supervised, and V-Measure, however, we only focus on the study of the information

theoretic approach V-Measure, a measure based on entropy estimation.

As we have already discussed in Section 7.4.2 and 7.4.4, the number of clusters influences

the bias of the entropy estimation which consequently also affects the bias of the V-Measure.

Our first experiment is to check the discrepancy of the V-Measure of different estimators versus

the average number of clusters, ranging from 1.02 (Duluth-WSI-SVD) to 17.5 (KSU). The

results are shown in Figure 7.3. We find that the discrepancy between the improved estimators

(JK or BUB) and the standard ML estimator increases as the number of clusters grows. We also

find that the V-Measure discrepancy between ML and BUB is as high as 0.08 when the average

number of clusters is around 18 (KSU) (Figure 7.3b). These experimental results show that the

V-Measure based on ML estimator is unreliably positively biased; and furthermore, the bias

is correlated to the number of clusters: the more clusters a system outputs, the higher bias the

V-Measure has.

The second experiment is to determine how the ranking is affected by using different entropy

estimators. We plotted different ranking comparisons as in Figure 7.4 (JK v.s. ML, BUB v.s.
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Figure 7.4: Discrepancy in rankings by different entropy estimators. Circles in the figure represent
different systems, x axes is ranking by one estimator, y axes is the ranking by another estimator.

ML, and BUB v.s. JK). If two entropy estimators agree with each other then circles should

all fall on the diagonal line x = y, i.e., the ranking of one estimator is exact the same as that

of the other estimator. However, our experiments show that different estimators do not agree

with each other perfectly. We find that the JK and BUB estimators rank systems differently

from the ML estimator (Figure 7.4a and 7.4b), while, in contrast, the BUB estimator and the JK

estimator achieve better agreement as most of the circles are distributed around the diagonal line

(Figure 7.4c). The fact that the two bias correction estimators (JK, BUB) reach better agreement

compared with JK and ML, or BUB and ML, further supports one of the main arguments in this
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chapter that the standard ML estimator needs to be replaced by more precise estimators for WSI

evaluation.

System C#
ML MM JK BUB

sc. r# sc. r# sc. r# sc. r#

1cl1inst 89.1 31.6 1 29.5 1 27.4 1 -3.6 29
Hermit 10.8 16.2 2 13.1 4 10.7 4 11.0 2
UoY 11.5 15.7 4 14.3 2 13.1 2 11.4 1
KSU KDD 17.5 15.7 3 13.2 3 11.0 3 7.6 3
Duluth-WSI 4.1 9.0 5 6.9 5 5.7 5 5.6 5
Duluth-WSI-SVD 4.1 9.0 6 6.9 6 5.7 6 5.6 6
Duluth-R-110 9.7 8.6 7 4.7 16 1.9 20 3 17
Duluth-WSI-Co 2.5 7.9 8 6.4 7 5.7 7 5.7 4
KCDC-PCGD 2.9 7.8 9 6.3 8 5.5 8 5.2 7
KCDC-PC 2.9 7.5 10 6.2 9 5.4 9 5.0 8
KCDC-PC-2 2.9 7.1 11 5.7 12 4.9 12 4.5 13
Duluth-Mix-Narrow-Gap 2.4 6.9 15 5.5 14 4.8 14 4.8 9
KCDC-GD-2 2.8 6.9 14 5.7 11 4.9 11 4.6 12
KCDC-GD 2.8 6.9 12 5.8 10 5.0 10 4.6 11
Duluth-Mix-Narrow-PK2 2.7 6.8 16 5.4 15 4.6 15 4.6 10
Duluth-Mix-PK2 2.7 5.6 17 4.3 17 3.5 17 3.5 16
Duluth-R-15 5.0 5.3 18 2.4 20 0.7 24 1.3 22
Duluth-WSI-Co-Gap 1.6 4.8 19 4.1 18 3.8 16 4.1 15
Random 4.0 4.4 20 1.9 22 0.5 25 0.8 24
Duluth-R-13 3.0 3.6 21 1.5 25 0.5 26 0.7 25
Duluth-WSI-Gap 1.4 3.1 22 2.6 19 2.5 18 2.7 18
Duluth-Mix-Gap 1.6 3.0 23 2.3 21 1.9 19 2.0 19
Duluth-Mix-Uni-PK2 2.0 2.4 24 1.8 23 1.5 21 1.4 21
Duluth-R-12 2.0 2.3 25 0.8 27 0.2 27 0.3 28
KCDC-PT 1.5 1.9 26 1.6 24 1.4 22 1.5 20
Duluth-Mix-Uni-Gap 1.4 1.4 27 1.0 26 0.8 23 1.0 23
KCDC-GDC 2.8 6.9 13 5.7 13 4.8 13 4.5 14
MFS 1.0 0 29 0.0 29 0.0 28 0.5 27
Duluth-WSI-SVD-Gap 1.0 0.0 28 0.0 28 0.0 29 0.5 26
KCDC-PC-2* 2.9 5.7 - 7.2 - 2.3 - 2.2 -
UoY* 11.5 25.1 - 22.8 - 17.8 - 5.0 -

Table 7.1: The percentage V-measure computed with different estimators and the corresponding
rank. C# is the average number of clusters. ML is the maximum likelihood estimator. MM is the
Miller-Madow estimator. JK is the jackknifed estimator. BUB is the best upper bound estimator.
“sc.” is the score. “r#” is the rank. KCDC-PC-2* and UoY* are from stochastic prediction.
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In the last experiment, we give the details of the scores and rankings produced by different

estimators on the SemEval 2010 WSI task. The systems are presented in the order in which

they were given in the SemEval 2010 result table (Manandhar et al., 2010, see p. 66, Table

4).1 We show the results in Table 7.1, which contains the average number of clusters (C#), the

V-Measure score computed by different estimators (sc.) and the ranking produced by these

estimators (r#).

Table 7.1 shows that the ML estimator ranks the 1cl1inst baseline the best (a V-Measure

score of 31.6, significantly higher than any other system). The bias correction estimators (MM,

JK and BUB) score this baseline lower to different extent: While the MM and JK estimators

maintain a high score (MM 29.5, JK 27.4), the BUB estimator, which is specially designed for

cases in which the number of classes is comparable to sample size m ∼ N , reduces this bias

significantly and ranks the 1cl1inst baseline last. One surprising result that we noticed is that

the V-Measure score estimated by BUB on the 1cl1inst baseline is negative. We find that it is

caused by the fact that the BUB estimator over-corrects the negative bias and leads to positive

bias when the sample size is considerably smaller than the number of clusters for very skewed

distributions (See Figure 7.2d). In the 1cl1inst baseline case, the joint entropy of classes and

clusters H(c, k) faces this situation. As a result of the excessive positive bias estimated by the

BUB estimator on H(c, k), the V-Measure score is negatively biased to a minus value. However,

it is important to notice that for the vast majority of the systems there is agreement between the

JK and BUB estimators, whereas the ML estimator significantly overestimates the V-Measure.

This observation coupled with the observed behavior of the JK and BUB estimators in the

simulations suggests that JK and BUB are considerably more reliable than the state-of-the-art

ML estimator.

The bottom two systems of Table 7.1 (KCDC-PC-2* and UoY*) are computed from the

stochastic prediction as described in Section 7.4.3 (used for weighted cluster output)1. Note

that the comparison between the stochastic version and the unweighted version is unnecessary

(KCDC-PC-2 v.s. KCDC-PC-2*, UoY v.s. UoY*), since the unweighted version is quite

1The ranking produced by the ML estimator should mirror that of the official results. In some cases it does not,
e.g. system UoY was placed before KSU in the official results, while the ML estimator would predict the reverse
order. As the difference in V-measure is small, we attribute this discrepancy to rounding errors. Our ranking were
computed before rounding, and there were no ties. The system KCDC-GDC seems to be misplaced in the official
results list; according to V-measure it should be ranked higher.

1All the other systems did not submit weighted cluster output. We do not include the two stochastic predictions
in the ranking.
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different from the weighted one as it truncates the most weighted cluster even if there exists a

long tie (e.g., 10 clusters with the same weights). Although we did not include the weighted

version in the ranking of SemEval 2010 task as most systems did not submit weighted cluster

output, we believe the stochastic predictions proposed in this section would be very useful for

future WSI evaluation as weighted cluster output is a trend encouraged by the SemEval WSI

task organizers (Agirre and Soroa, 2007).

We also find that none of the estimators can reliably estimate the entropy when the sample

size compared with the number of classes/clusters (N/m) is very small (Figure 7.2). Specifically,

the bias is very big when the instance size is smaller than the number of classes N/m < 1. This

bias is consistently negative for ML/MM/JK, and it is negative for BUB on uniform distribution

and flat Zipf distributions (s = 1, 2) but positive on more skewed Zipf distributions (s = 3, 4).

When the sample size is relatively big compared to the number of classes (N/m > 1), all

estimators, while being consistently negatively biased, can fairly reliably estimate the entropy,

i.e., the estimated value is very close to the true entropy. Therefore, we propose that future WSI

evaluation should constrain the size of test instances to be more than the number of classes

N/m > 1. This is to say that the more samples are there in the test set the more clusters can

be output by those systems. Quantitatively, we apply the constraint on the marginal and joint

entropy estimation as follows:

1. Class marginal entropy estimation Ĥ(c): N
c > 1⇒ N > c.

i.e., test set size should be more than the number of gold classes.

2. Cluster marginal entropy estimation Ĥ(k): N
k > 1⇒ k < N .

i.e., the maximum number of clusters outputted by system should be less than test set size.

3. Class and cluster joint entropy estimation Ĥ(c, k): N
(c,k) = N

c×k > 1⇒ k < N
c .

i.e., the maximum number of clusters should be less than test size divided by the number

of gold classes.

To summarize, in this section we argue that future WSI tasks should use more precise

entropy estimators (JK and BUB), and furthermore, they should fulfill two principles in order to

adopt the information theoretic based V-Measure: First, they should supply a test set of which

the size is bigger than the number of gold classes N > c; Second, the maximum number of

clusters output by a system should be constrained to less than the test set size divided by the

number of gold classes k < N/c.
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7.4.6 Conclusion

In this section, we discuss the entropy bias problem of the information theoretic V-Measure

evaluation approach. We find that the state-of-the-art ML estimator is biased and conduct studies

on alternative entropy estimators with bias correction factors. We find two alternative estimators

(JK and BUB) perform very well in simulation experiments in which we compare the estimated

entropy against the true entropy of the uniform and Zipf distributions. We also find that there is

a general agreement between the JK and BUB estimator, while the discrepancy between JK and

ML, or BUB and ML, is high. We argue that the more precise estimators should replace the

standard ML estimator for future WSI evaluation tasks.

Furthermore, we notice that all the estimators, including the bias correction ones, are not

able to effectively deal with situations in which the number of instances is smaller than the

number of classes/clusters. We also find that the joint entropy estimation of class and cluster

pair (c, k) is the main bottleneck of the problem. We propose future WSI tasks should constrain

the number of clusters and test set size so that the total number of instances is always higher

than the number of classes/clusters/(class, cluster)pairs. More specifically, the test size should

be higher than the number of gold classes, and the maximum number of clusters allowed by

systems should be less than the instance size divided by the number of gold classes.

In addition, we propose a stochastic prediction measure of how to incorporate weighted

cluster output into the evaluation model. It is the first time, as far as we know, that weighted

class problem is addressed in the V-Measure evaluation. We believe this work would contribute

to the study of WSI because weighted cluster output is a natural approach to pursue in future

study.

7.5 Summary

In summary, this chapter studies a lexical ambiguity task in which the sense inventory is

underspecified (WSI). We find that state-of-the-art WSI research is hindered by the deficiencies

of the commonly used evaluation approaches. The work described in this chapter proposes

solutions to fix those evaluation problems and set a fairer platform for comparisons among

different approaches in future research.

We show that the state-of-the-art supervised WSI evaluation has three problems: (1) The

mapping matrix backs off the system result to the distribution in the training set, thereby
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compressing the results of all the systems into a narrow band that converges around the most-

frequent-sense baseline; (2) It encourages to over-generate a large number of clusters, as it

utilizes the information in the mapping matrix (from the training set) to tune the best linear

combination of clusters to map senses; (3) The ranking produced by such an evaluation measure

outputs inconsistent rankings as the training-test split varies.

Various unsupervised evaluation approaches have also been proposed but most of them fail

to distinguish the Semeval 2010 systems from the baselines. The Fscore, Entropy and Purity

approaches implicitly encode mapping schemes between senses and clusters, allowing either

one-to-many or many-to-one mapping. These mapping based approaches either encourage a very

coarse-grained (e.g., most-frequent-sense) or a very fine-grained (e.g., one-cluster-per-instance)

output.

The V-Measure avoids the mapping process, which is either explicitly or implicitly utilized

in the supervised measure and most of the unsupervised measures. It is essentially normalized

mutual information that measures the statistical dependency between the gold class variable

and the system cluster variable. In our study, we find that the entropy estimator is negatively

biased, which consequently leads to the positive bias of the V-Measure. Systems that output a

large number of clusters benefit from the entropy bias. As a result, the one-cluster-per-instance

baseline was ranked first in the SemEval 2010 WSI task. Further study suggests that there

exist more reliable entropy estimators with bias correction factors, which are shown to be more

effective than the standard ML estimator in our experiments. We argue that the more precise

estimators (JK and BUB) should replace ML for future WSI evaluation. We also show that

all the investigated entropy estimators are unreliable when the sample size is smaller than the

number of clusters. Therefore, we further suggest that WSI evaluation should constrain the

number of clusters allowed by system to be less than the test size divided by the number of

gold-standard classes.
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Conclusion

8.1 Summary

In this thesis, we have proposed computational approaches to model various lexical ambi-

guity phenomena in natural language, such as idiomatic expression detection (e.g., spill the

beans), novel figurative expression detection (e.g., take the sock out of your mouth), word

sense disambiguation (e.g., bank as “a financial institute”), and word sense induction (e.g.,

shake/clustern).

From the language phenomena point of view, we have presented our work on problems

of which the sense granularity change from more clearly distinguishable categorizations (e.g.,

in the idiom detection task, spill the beans ‘literal’ v.s. spill the beans ‘idiomatic’), to the

more fuzzy ones (e.g., in the fine-grained word sense disambiguation task, WordNet sense

‘bank%1:14:00::’ as “depository financial institution”, ‘bank%1:14:00::’ as “a financial in-

stitute”, ‘bank%1:17:01::’ as “a sloping land”, ‘bank%1:04:00::’ as “a flight maneuver”,

‘bank%1:06:00::’ as “bank building”, etc.), and to the underspecified ones (e.g., in the word

sense induction task, the sense inventory is undefined and the number of induced clusters is

underspecified, shake/cluster1, shake/cluster2, . . ., shake/clustern).

From a statistical modeling point of view, we have developed different models aiming at

finding the most efficient solution to a problem with the lowest cost. These advanced statistical

models reduce the annotation effort and improve performance. This can be demonstrated in

particular by the idiom detection task: i) We started with a supervised model which outperforms

state-of-the-art systems (Chapter 3). ii) In the next chapter, we improved the model to reduce

annotation work by providing a completely unsupervised model that adopts a bootstrapping

113



8. CONCLUSION

strategy, while maintaining a high performance. iii) Chapter 6 further improved the performance

by taking a more sophisticated statistical modeling approach which incorporates easily-obtained

human knowledge into the probability models. In addition, we experimented with modeling

different lexical phenomena within a common statistical framework such as the topic model used

for both idiom detection and WSD (Chapter 6). We find that our proposed models outperform

state-of-the-art systems.

The individual chapters are summarized as follows:

Chapter 3 proposes a supervised model to detect idiomatic expressions. We experiment

with various features, such as global context, local context, lexical cohesion based features,

syntactic features, named entity features and features exploit indicative lexical terms. We also

experiment with idiom specific models, generic models, and models that generalize over unseen

idioms. We find that the statistical type features, bag-of-words contexts and lexical cohesion

based features work the best for distinguishing idiomatic usages from literal readings. Certain

linguistic features further boost the performance. However, linguistic features are very sparse

and are not very useful when the distribution of the true label is heavily imbalanced (e.g.,

idiomatic usage occurs predominately). We also found that lexical cohesion features have the

best generalization ability, and they can be used to discover new idiomatic expressions.

Chapter 4 is built upon the work of the previous chapter. It aims at solving the same problem

using an unsupervised approach to reduce human annotation. We present a bootstrapping strategy

which is built on an unsupervised classifier and a supervised classifier. We show that such a

bootstrapping strategy leads to a very good performance even compared with the fully supervised

one. We also show that the performance can be further improved by iteratively increasing the

minority class instances (literal cases) in the bootstrapping loop. We propose a new method for

extracting minority class instances automatically by retrieving the non-canonical variant of the

target idioms from raw corpus data.

Chapter 5 extends the lexical phenomenon from idiomatic expressions to general figurative

expression (e.g., rock the boat v.s. take the sock out of your mouth). We propose a Gaussian

Mixture Model and find that the GMM, estimated using EM, can be utilized to effectively

discover new figurative expressions. We also find that the GMM performance can be further

improved by using a small annotated data set to estimate the Gaussian components, means and

covariances. Interestingly, we find that the estimation of the GMM is not dependent on the

precise form of the figurative expression, as shared lexical cohesion features can effectively

discover new figurative expressions.
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Chapter 6 deals with three types of lexical ambiguity phenomena: fine-grained word sense

disambiguation, coarse-grained word sense disambiguation, and idiomatic expression detection.

We model the three lexical phenomena in a uniform probability framework, which is based

on topic models. The basic idea of the framework is to represent senses by sense paraphrases,

and maximize the conditional probability of a sense paraphrase given an instance context. We

propose three instantiations of the model, and find that they beat the state-of-the-art systems in

all three disambiguation tasks.

Chapter 7 further extends the lexical sense disambiguation problem to the lexical sense

induction problem, in which the sense category is underspecified. Although such an idea points

out an interesting direction for future research, as sense category definition is such a difficult task

and often results in dispute among lexicographers, we found out that there are problems with

the state-of-the-art evaluation approaches. The two major approaches, supervised evaluation

and V-Measure evaluation, are both in favor of very fine-grained system output. Both of them

rank the one-cluster-per-instance baseline above all other systems. Further study suggests that

supervised evaluation is unreliable, as it uses the training set to tune the best linear combination

of clusters to map senses. For the V-Measure, we find the entropy estimator is biased. We

argue that more sophisticated entropy estimators (JK and BUB) should replace the standard ML

estimator for WSI evaluation in the future. We also argue that the WSI task should constrain the

maximum number of clusters allowed by system outputs, so that the entropy estimation can fall

on the range (sample size N versus class number m) that estimators can reliably perform.

8.2 Outlooks

Prior Knowledge & Statistical Modeling In Chapter 6, we have shown how to incorporate

human knowledge as probability priors into the statistical probabilistic model to boost the

performance. We think future research along this line is promising. We may utilize general

knowledge or domain specific knowledge to constrain the probabilistic framework, thereby

guiding the inference procedure to optimal output.

Feeding Distribution to Word Sense The state-of-the-art WSI research focuses on evaluating

the statistical dependency of system output clusters and gold sense classes (V-Measure). It

supplies entropy estimators with data samples (test set) to obtain the estimated marginal and

joint entropies. Alternatively, we could also use distributions to model those data samples and
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then directly calculate the mutual information of the distributions. A similar idea is used in

speech recognition (Killer et al., 2003). This approach can avoid the entropy bias problems

seen with estimators. However, what type of distributions to choose to model the marginal

class/cluster distribution, and the joint class and cluster pair distribution remain open problems

to be solved. Furthermore, we would also need to develop techniques to estimate the parameters

of the assumed class and cluster distributions. We leave those questions open to future research.

More Factors Influence Lexical Semantics While most of the current research has focused

on a more closed form of semantics (pre-defined, assumed to be static), there exists a dynamic

aspect of semantics that changes over time. For instance, the Chinese word 小姐 (Miss)

means noble young woman in ancient Chinese, while, in contrast, it often means prostitute

nowadays. A even more difficult problem occurs in cross-linguistic environments when there are

different semantic associations with the same lexical entry. Natural language applications such

as machine translation may face difficulties posed by such aspects. More challenges include

individualized lexical choices (e.g., forum/review corpora processing) and different granularity

mapping between concepts and vocabulary in different languages (e.g., how to translate if one

lexical entry in the source language does not exist in the target language).

Figurative Expression across Time Language changes across time. Metaphorically used

expressions can become more popular across time, and consequently, the metaphorical sense

of such expressions may be lexicalized (included in standard dictionaries). There often exist

fuzzy boundary cases of whether the entry has been lexicalized, i.e., dispute on whether certain

expressions are used literally or nonliterally often exists. Although this phenomenon has been

noted in linguistic studies, there is a general lack of computational studies on this. We think

using computational approaches to model nonliteral language (metaphor, metonymy, irony, etc.)

across the language evolution process is an interesting topic to explore in the future.
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Appendix A

Sense Paraphrase Examples

A.1 Word Sense Paraphrases (e.g., bank)

WN SenseKey Sense Paraphrase
bank%1:04:00:: bank. a flight maneuver; aircraft tips laterally about its lon-

gitudinal axis (especially in turning). “the plane went into a
steep bank”. vertical bank. a bank so steep that the plane’s
lateral axis approaches the vertical.

bank%1:06:00:: bank, bank building. a building in which the business of
banking transacted. “the bank is on the corner of Nassau and
Witherspoon”. vault, bank vault. a strongroom or compart-
ment (often made of steel) for safekeeping of valuables.

bank%1:06:01:: savings bank, coin bank, money box, bank. a container
(usually with a slot in the top) for keeping money at home.
“the coin bank was empty”. piggy bank, penny bank. a child’s
coin bank (often shaped like a pig).
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bank%1:14:00:: depository financial institution, bank, banking concern, bank-
ing company. a financial institution that accepts deposits
and channels the money into lending activities. “he cashed
a check at the bank”. “that bank holds the mortgage on my
home”. credit union, a cooperative depository financial insti-
tution whose members can obtain loans from their combined
savings. Federal Reserve Bank, reserve bank, one of 12 re-
gional banks that monitor and act as depositories for banks
in their region. agent bank, a bank that acts as an agent for a
foreign bank. commercial bank, full service bank. a financial
institution that accepts demand deposits and makes loans and
provides other services for the public. state bank, a bank char-
tered by a state rather than by the federal government. lead
bank, agent bank, a bank named by a lending syndicate of
several banks to protect their interests. member bank, a bank
that is a member of the Federal Reserve System. merchant
bank, acquirer. a credit card processing bank; merchants
receive credit for credit card receipts less a processing fee.
acquirer, a corporation gaining financial control over another
corporation or financial institution through a payment in cash
or an exchange of stock. thrift institution. a depository finan-
cial institution intended to encourage personal savings and
home buying. Home Loan Bank. one of 11 regional banks
that monitor and make short-term credit advances to thrift
institutions in their region. banking industry, banking system.
banks collectively.

bank%1:14:01:: bank. an arrangement of similar objects in a row or in tiers.
“he operated a bank of switches”.

bank%1:17:00:: bank. a long ridge or pile. “a huge bank of earth”. bluff. a
high steep bank (usually formed by river erosion). sandbank.
a submerged bank of sand near a shore or in a river; can be
exposed at low tide.

bank%1:17:01:: bank. sloping land (especially the slope beside a body of
water). “they pulled the canoe up on the bank”. “he sat on
the bank of the river and watched the currents”. riverbank,
riverside. the bank of a river. waterside. land bordering a
body of water.
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bank%1:17:02:: bank, cant, camber. a slope in the turn of a road or track; the
outside is higher than the inside in order to reduce the effects
of centrifugal force.

bank%1:21:00:: bank. a supply or stock held in reserve for future use (es-
pecially in emergencies). blood bank. a place for storing
whole blood or blood plasma. “the Red Cross created a blood
bank for emergencies”. eye bank. a place for storing and
preserving corneas that are obtained from human corpses
immediately after death; used for corneal transplantation to
patients with corneal defects. food bank. a place where food
is contributed and made available to those in need. “they set
up a food bank for the flood victims”. soil bank. land retired
from crop cultivation and planted with soil-building crops;
government subsidies are paid to farmers for their retired
land.

bank%1:21:01:: bank. the funds held by a gambling house or the dealer in
some gambling games. “he tried to break the bank at Monte
Carlo”.

bank%2:31:02:: trust, swear, rely, bank. have confidence or faith in. “We can
trust in God”. “Rely on your friends”. “bank on your good
education”. “I swear by my grandmother’s recipes”. credit.
have trust in; trust in the truth or veracity of. lean. rely on
for support. “We can lean on this man”. count, bet, depend,
look, calculate, reckon. have faith or confidence in. “you can
count on me to help you any time”. “Look to your friends for
support”. “You can bet on that!”. “Depend on your family in
times of crisis”.

bank%2:35:00:: bank. enclose with a bank. “bank roads”.

bank%2:35:01:: bank. cover with ashes so to control the rate of burning.
“bank a fire”.

bank%2:38:00:: bank. tip laterally. “the pilot had to bank the aircraft”.

bank%2:40:00:: deposit, bank. put into a bank account. “She deposits her
paycheck every month”. redeposit. deposit anew.

bank%2:40:01:: bank. be in the banking business. bank. act as the banker in
a game or in gambling.
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bank%2:40:02:: bank. do business with a bank or keep an account at a bank.
“Where do you bank in this town?”.

bank%2:40:03:: bank. act as the banker in a game or in gambling. be in the
banking business.

Table A.1: An example of sense paraphrase for the word “bank”. Texts are from the “word forms”,
“glossses” and “example sentence” fields from the sense synset and its reference synsets in WordNet
2.1.

A.2 Idiom Sense Paraphrases

Idiom Type Paraphrase
bite off more l bite, more, chew
than one can chew n to try to do too much; to take on or attempt more than

one is capable of doing.

back the wrong l back, wrong, horse
horse n give your support to the losing side in something.

blow ones own l blow, trumpet
trumpet n boast about talents and achievements.

bite ones tongue l bite, tongue
n refrain from speaking because it is socially or other-

wise better not to.

bounce off the l bounce, wall
wall n high strung, energetic, over excited.

break the ice l break, ice
n ease tensions, get people talking, facilitate commu-

nication. You get over any initial embarrassment or
shyness when you meet someone for the first time
and start conversing.

drop the ball l drop, ball
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n not doing the job or taking the responsibilities seri-
ously enough and let something go wrong.

get ones feet l get, feet, wet
wet n first experience, dabble, dabbling. To take a risk and

try something new.

pass the buck l buck
n avoid taking responsibility by saying that someone

else is responsible.

play with fire l play, fire
n risky behaviour, risky behavior, take risks, act danger-

ously. To put oneself in a precarious situation with a
high risk of getting harmed, particularly emotionally
or financially.

pull the trigger l pull, trigger
n to commit to a course of action.

rock the boat l rock, boat
n upset conventions, break norms, cause trouble, dis-

turb balance, destabilise a situation by making trou-
ble.

set in stone l set, stone
n it cannot be changed or altered.

spill the beans l spill, beans
n reveal a secret or confess to something.

sweep under the l sweep, carpet
carpet n to hide or ignore something.

swim against the l swim, tide
tide n to do something that is in opposition to the general

movement of things.

tear ones hair l tear, hair
out n to be greatly upset or distressed.

Table A.2: Idiom Sense Paraphrases
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