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Abstract

Backward stochastic differential equations (BSDEs) are a powerful tool in financial
mathematics. Important examples are option pricing or portfolio selection problems.
In non-linear cases BSDEs are usually not solvable in closed form and approximation
becomes then inevitable. Several proposals for solving BSDEs numerically have been
published in recent years, including an analysis of the related approximation error.

The first part of this theses is devoted to the problem that a direct a-posteriori
evaluation of the L2-error between the true solution and some numerical solution
is usually impossible. Therefore, we present an a-posteriori criterion on the ap-
proximation error, which is computable in terms of the numerical solution only and
allows us to judge the numerical solution.

Secondly, we pick up the idea of Gobet, Lemor and Warin (Ann. Appl. Probab., 15,
2172 – 2202 (2005)) to generate numerical solutions by least-squares Monte Carlo. We
suggest to use function bases that form a system of martingales. A complete analysis
of the approximation error shows, that in contrast to original least-squares Monte
Carlo, the convergence behaviour can be significantly enhanced by the martingale
property of the bases.
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Deutsche Zusammenfassung

Rückwärtsgerichtete stochastische Differentialgleichungen (BSDEs) sind ein viel-
seitiges Instrument in der Finanzmathematik. Optionsbepreisung oder Portfolio-
Auswahlprobleme sind wichtige Beispiele dafür. In nichtlinearen Fällen sind BSDEs
in der Regel jedoch nicht geschlossen lösbar, weshalb in den vergangenen Jahren
zahlreiche numerische Ansätze zusammen mit einer theoretischen Analyse ihres
Approximationsfehlers vorgestellt worden sind.

Der erste Teil dieser Arbeit beschäftigt sich mit dem Problem, dass eine direkte a-
posteriori Berechnung des L2-Fehlers zwischen der unbekannten echten und der nu-
merischen Lösung oftmals unmöglich ist. Deshalb präsentieren wir ein a-posteriori
Kriterium, das nur von der numerischen Lösung abhängt und eine Beurteilung
dieser erlaubt.

Der zweite Teil baut auf der Idee von Gobet, Lemor und Warin (Ann. Appl.
Probab., 15, 2172 – 2202 (2005)) auf, numerische Lösungen mit Hilfe eines Kleinste-
Quadrate-Monte-Carlo-Verfahrens zu erzeugen. Wir schlagen Funktionenbasen vor,
die ein System von Martingalen bilden. Eine vollständige Analyse des Approxima-
tionsfehlers zeigt, dass das Konvergenzverhalten durch die Martingaleigenschaft
erheblich verbessert wird im Vergleich zum ursprünglichen Verfahren.
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1 Introduction

1.1 Background on BSDEs and their numerical solution

The theory of backward stochastic differential equations (BSDEs) is a rather young
research field and its subjects first popped up in the context of stochastic control. It
was Bismut (1973) who carried Pontryagin’s maximum principle over to stochastic
control problems and showed that the pair of adjoint processes solves a linear BSDE.

The actual foundation for BSDE theory was laid later on by Pardoux and Peng
(1990), who examined non-linear BSDEs and proved the well-posedness of such
equations in case of a Lipschitz continuous driver. In the following, numerous
publications were devoted to an extension of this result.

One branch was engaged with the relaxation of the Lipschitz condition on the
driver. For instance, see Lepeltier and San Martı́n (1997), who examined BSDEs with
continuous driver of linear growth, or Kobylanski (2000) on BSDEs with drivers of
quadratic growth. An overview is given in El Karoui and Mazliak (1997). Another
important aspect was the analysis of the connection between solutions of BSDEs
and viscosity solutions for quasilinear parabolic partial differential equations by
Pardoux and Peng (1992). Based on this, the notion of forward backward stochastic
differential equations (FBSDEs) was developed and a generalization of the Feynman-
Kac formula was obtained. A detailed introduction on this topic is also available in
Ma and Yong (1999). Particularly, FBSDEs became a useful tool in the field of financial
mathematics. Amongst these are pricing and hedging of European options in cases
with constraints or utility optimization problems. An extension to American options
by BSDEs with reflection was shown in El Karoui et al. (1997a). A comprehensive
survey on the application of BSDEs in finance is given by El Karoui et al. (1997).

Whereas the research on BSDEs was indeed fruitful from its kick-off in the early
nineties on, the pioneering work on the numerics of BSDEs initially advanced much
slower. Bally (1997) was the first who proposed a time discretization scheme as a
numerical approach towards the solution of BSDEs. Then it remained to solve a
series of linear BSDEs within each time step. The main drawback of this approach
is that the time steps have to be chosen randomly in order to avoid any stronger
regularity assumptions on the coefficients of the BSDE that go beyond the Lipschitz
continuity of the driver.

Chevance (1997) presented a fully implementable numerical attempt to solve a
decoupled FBSDE with a deterministic time discretization. However, this was con-
nected with quite strong regularity conditions on the coefficient of both the forward
and the backward SDE. It was Zhang (2001) who offered a way out of this dilemma by
formulating conditions such that the control part of the solution of a BSDE behaves
somewhat ’nice’. These conditions include Lipschitz conditions on the coefficients
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1 Introduction

of the forward SDE and the possibly path-dependent terminal condition of the BSDE
and are merely an addition to the Lipschitz continuity of the driver. In particular,
he introduced the notion of L2-regularity for stochastic processes and showed that
these mild extra conditions are sufficient for the L2-regularity of the control part and
thus also for the convergence of a deterministic time discretization with order 1/2 in
the number of time steps.

Slightly different, but somewhat more natural ways of time discretization for
decoupled FBSDEs were examined in Bouchard and Touzi (2004) and Lemor et al.
(2006), however they both benefit from the L2-regularity results obtained by Zhang
(2001). In contrast to the algorithm suggested in Lemor et al. (2006), the approach
by Bouchard and Touzi (2004) is characterized by its implicit formulation. There
are several proposals to turn this idea into a tractable algorithm by using some sort
of Picard iteration. This can be done within each time step, see Gobet et al. (2005),
or globally by an iteration that restarts at terminal time after having completed
the iteration step along the entire partition, see Bender and Denk (2007). Both
methods have to deal with the problem of nested conditional expectations, on the
one hand along the partition of the time interval and on the other one along the
Picard iterations. Bender and Denk (2007) showed that the global Picard iteration
is more favorable concerning the error propagation that arises when estimating
conditional expectations. The work of Gobet and Labart (2010) is also in the spirit
of global Picard iteration connected with a control variate technique. Another way
of variance reduction within a global Picard scheme was presented in Bender and
Moseler (2010), who applied the so-called importance sampling technique that makes
use of measure change to receive more samples in ’interesting’ regions.

Extensions to this research can be found in Gobet and Makhlouf (2010) and Geiss
et al. (2011), who supposed the terminal condition to be irregular. Even then the error
due to time discretization tends to zero, although the convergence rate is in this case
slower for equidistant partitions of the time interval. However, a clever choice of
partition can improve this rate significantly, in certain cases up to 1/2 in the number
of time steps. Worth mentioning is the work of Imkeller et al. (2010) and also Richou
(2011) on numerical approximation of BSDEs with drivers of quadratic growth in the
control part. In the first case, the non-Lipschitz continuity was tackled by imposing
a truncation on the driver and approximating the true BSDE by a series of truncated
ones. In the latter one time-dependent bounds for the control part within the time
discretization scheme were incorporated.

Regarding coupled FBSDEs, Bender and Zhang (2008) proposed a combination of
time discretization and Markovian iteration to tackle the coupling. They formulated
also sufficient conditions for a time discretization error that decreases with rate 1/2 in
the number of time steps. The case of FBSDEs with jumps was covered by Bouchard
and Elie (2008).

Whatever type of time discretization is chosen, at the end of the day one is con-
fronted with the problem of estimating conditional expectations. This stems from
the backward property of BSDEs and the necessity to adapt the approximation to the
available information at each time step. In recent years several proposals have been
established to cope with this problem. Bouchard and Touzi (2004) applied Malliavin
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1.2 Problem description

Monte Carlo for the estimation of conditional expectations. By means of Malliavin
integration by parts, these can be expressed by a ratio of expectations, that can be
estimated via Monte Carlo simulation. See also Bouchard et al. (2004).

An alternative was considered in Bally and Pagès (2003), who chose the quantiza-
tion tree method for the estimation of conditional expectations. Roughly speaking,
the idea is to project the time-discretized underlying diffusion process on discrete
state spaces and to estimate the transition probabilities between the single time steps
by simulation. The conditional expectations are then easily computable weighted
sums. Delarue and Menozzi (2006) transferred this idea to the numerical solution of
coupled FBSDEs.

Only recently, Crisan and Manolarakis (2010) exploited the cubature method for
the estimation of conditional expectations for the generation of numerical solutions
of BSDEs.

Last but not least, Gobet et al. (2005) tackled the estimation of conditional expecta-
tions by least-squares Monte Carlo. This approach can be understood as a two-step
procedure that starts with a projection on a function basis and next solves the re-
sulting minimization problem by Monte Carlo simulation. We will explain this idea
later on in more detail.

1.2 Problem description

Let (Ω,F,P) be a probability space, whereF = (Ft, t > 0) is the augmented filtration
generated by a D-dimensional Brownian motion W = (W1, . . . ,WD)∗. Here the star
denotes matrix transposition. We fix further a terminal time T > 0. Then our first
branch of studies starts with a backward stochastic differential equation (BSDE) of
the form

Yt = ξ−

∫T
t

f(u, Yu,Zu)du−

∫T
t

ZudWu, (1.1)

where the data is assumed to satisfy

Assumption 1. (i) The terminal condition ξ is a real valued, square-integrable, FT -
measurable random variable.

(ii) The driver is a measurable function f : Ω × [0, T ] × R × RD → R, such that
(f(t, 0, 0), 0 6 t 6 T) is a continuous, F-adapted process with

∫T
0 E|f(t, 0, 0)|2dt < ∞.

Moreover, f is Lipschitz in its spatial variables with constant κ uniformly in (t,ω). Note,
that the stochastic variable is suppressed in the above equation.

The solution of (1.1) consists of a pair of adapted stochastic processes (Y,Z), where
Yt is real valued and Zt = (Z1,t, . . . ,ZD,t) is RD-valued. However, in most cases
we cannot state a closed-form solution for (1.1) and a workaround by numerical
approaches becomes highly interesting in order to obtain at least an approximation
of (Y,Z).

Let us assume, we conducted some arbitrary numerical scheme, that is based on
a discretization π = {t0, . . . , tN} of the interval [0, T ], namely 0 = t0 < t1 < . . . <
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1 Introduction

tN = T , and its result is the pair (Ŷπti , Ẑ
π
ti
)ti∈π. Then, a quite natural wish is to get

information about the approximation error. Precisely, we want to check

sup
06t6T

E|Yt − Ŷ
π
ti
|2 +

∫T
0
E|Zt − Ẑ

π
ti
|2dt

and judge thereby, if the chosen numerical approach was successful. Here, the pair
(Ŷπt , Ẑπt )06t6T denotes the RCLL-extension of (Ŷπti , Ẑ

π
ti
)ti∈π by constant interpola-

tion. But, as the true solution is usually unknown to us, it is not possible to compute
the approximation error directly or even estimate it, e. g. by Monte Carlo simulation.

Nevertheless, we want to shed some light on the question, whether the pair
(Ŷπti , Ẑ

π
ti
)ti∈π is a good approximation. For this purpose we introduce a so-called

’global’ a-posteriori error criterion. Suppose that (Ŷπti , Ẑ
π
ti
)ti∈π is adapted to a filtra-

tion G = (Gt, 0 6 t 6 T) such that Ft ⊆ Gt for t ∈ [0, T ]. That means, G is enlarged
in comparison to F and W is still a Brownian motion with respect to G. But Gti
can also contain additional information, for instance induced by copies of Wti that
were required for the approximation of (Ŷπti , Ẑ

π
ti
)ti∈π. Least-squares Monte Carlo

simulation for BSDEs is an example for the incorporation of such copies. Then the
global a-posteriori criterion checks by

Eπ(Ŷ
π, Ẑπ) := E[|ξπ − ŶπtN |

2| Gt0 ] + max
16j6N

E[|Ŷπtj − Ŷ
π
t0

−

j−1∑
i=0

fπ(ti, Ŷπti , Ẑ
π
ti
)(ti+1 − ti) −

j−1∑
i=0

Ẑπti(Wti+1 −Wti)|
2| Gt0 ], (1.2)

if the approximate solution is ’close to solving’ (1.1). Here, (ξπ, fπ) denotes an
approximation of (ξ, f) living on the time grid π. Contrary to the approximation
error, it is possible to simulate (1.2), as it involves only approximate, hence known
solutions and approximate data. In a first step, we will develop upper and lower
estimates on the approximation error in terms of this criterion. These estimates
require only standard Lipschitz conditions on the driver f.

After that, we apply the global error criterion on a forward backward stochastic
differential equation (FBSDE) denoted by

St = s0 +

∫t
0
b(u,Su)du+

∫t
0
σ(u,Su)dWu

Yt = φ(S) −

∫T
t

F(u,Su, Yu,Zu)du−

∫T
t

ZudWu.
(1.3)

This system is supposed to fulfill

Assumption 2. We call s0 ∈ RD̃ the initial condition of S. The functions b : [0, T ]×RD̃ →
RD̃ , σ : [0, T ]×RD̃ → RD̃×D and F : [0, T ]×RD̃ ×R×RD → R are deterministic and
there is a constant κ such that

|b(t, s) − b(t ′, s ′)|+ |σ(t, s) − σ(t ′, s ′)|+ |F(t, s,y, z) − F(t ′, s ′,y ′, z ′)|

6 κ(
√
t− t ′ + |s− s ′|+ |y− y ′|+ |z− z ′|)

4



1.2 Problem description

for all (t, s,y, z), (t ′, s ′,y ′, z ′) ∈ [0, T ]×RD̃×R×RD. The terminal condition ξ = φ(S)

is a functional on the space of RD̃-valued RCLL functions on [0, T ], that satisfies the L∞-
Lipschitz condition

|φ(s) − φ(s ′)| 6 κ sup
06t6T

|s(t) − s ′(t)|

for all RCLL functions s, s ′. In addition to that

sup
06t6T

(|b(t, 0)|+ |σ(t, 0)|+ |F(t, 0, 0, 0)|) + |φ(0)| 6 κ,

where 0 denotes the constant function taking value 0 on [0, T ].

Clearly, we look at a BSDE with data ξ = φ(S) and f(t,y, z) = F(t,S,y, z), where
F is stochastic through S only. The above system is called decoupled as the forward
SDE is independent of the pair (Y,Z). Given Assumption 2 it is easy to check, that
the conditions of Assumptions 1 are satisfied as well.

Concerning this type of FBSDEs, we will take a closer look on a numerical method
that combines a backwards time discretization scheme with the least-squares Monte
Carlo approach for the estimation of conditional expectations to generate approxi-
mations of the processes Y and Z. This method was already employed by Gobet et
al. (2005) and Lemor et al. (2006) in this setting and aims at replacing the conditional
expectations by a projection on a subspace of L2(Fti) for each time step ti.

We will review the approximation error of this scheme and explain its error sources,
in particular the time discretization error, the projection error and the simulation
error. Moreover, we will recall how the parameters of the latter one can be fixed
such that the overall approximation error converges with the same rate as the time
discretization error.

Additionally, we present for this setting a ’local’ a-posteriori error criterion, that is
denoted by

Elocπ,j (Ŷ
π, Ẑπ) :=

N−1∑
i=j

E|Ŷπti+1
− Ŷπti − F(ti, S

π
ti

, Ŷπti , Ẑ
π
ti
)(ti+1 − ti)

− Ẑπti(Wti+1 −Wti)|
2,

for j = 0, . . . ,N − 1. It is meant to give further information about the projection
error, which is expressed in terms of the L2-error between a time-discretized solution
(Yπti , Z

π
ti
)ti∈π and its best projection on the selected function basis. Precisely, it turns

out that a small local error criterion is a necessary condition for a small projection
error. Furthermore, it allows us to detect those time steps for which the projection
functions were picked inappropriately.

The second branch of our studies is devoted to a modification of the least-squares
Monte Carlo approach. Induced by the time discretization we are confronted with

5



1 Introduction

the estimation of

E[Ŷπti+1
− F(ti, Sπti , Ŷ

π
ti

, Ẑπti)(ti+1 − ti)| Fti ]

1
(ti+1 − ti)

E[(Wti+1 −Wti)Ŷ
π
ti+1

| Fti ],

by a linear combination of basis functions. The estimation of the first conditional
expectation leads to the definition of Ŷπti , whereas the estimation of the latter one is
required for Ẑπti . Motivated by a kind of variance reduction for FBSDEs, we assume
that the function bases form a system of martingales. Let (Xπti)ti∈π be a F-adapted
Markov process and η(i+ 1,Xπti+1

) a basis function at time ti+1 such that

(i) its conditional expectation related to Fti is computable in closed-form,

(ii) the conditional expectation of this function multiplicated with the dth compo-
nent of the Brownian incrementWti+1 −Wti can be evaluated related to Fti for
all d = 1, . . . ,D.

This suggestion is inspired by Glasserman and Yu (2004) in the field of pricing
American options. Assumption (i) is related to the approximation of Y and ensures
that (η(i,Xπti)ti∈π forms a martingale with respect to F, that is available in closed
form. In this setting, the estimation of conditional expectations becomes obsolete
for all linear terms, as they can be computed in closed form under the assumption
of martingale basis functions. E. g., let Ŷπ at time ti+1 be a linear combination of
so-called martingale basis functions, then we can figure out its conditional expecta-
tion by the martingale property. This simplifies the approximation of Ŷπti , as only
E[F(ti, Sπti , Ŷ

π
ti

, Ẑπti)| Fti ] remains to be estimated.
Moreover, by (ii) the evaluation ofE[(Wd,ti+1−Wd,ti)Ŷ

π
ti+1

| Fti ],d = 1, . . . ,D, which
stems from the time discretization of Zd, becomes possible in closed form. That
means, we do not require any additional estimation of conditional expectations for
the approximate solution of Zd. This is particularly interesting in high-dimensional
problems, when D > 1. Clearly, in the martingale basis approach the amount of
conditional expectations to be estimated is the same, no matter if the Brownian
motionW is one-dimensional or multi-dimensional.

We give several examples for ’martingale type’ basis functions and conduct after-
wards a detailed analysis of the approximation error and its error sources. It turns
out that the projection error and the simulation error can be reduced significantly in
contrast to the original least-squares Monte Carlo approach.

The rest of this thesis is organized as follows. In Chapter 2 we review some impor-
tant results on BSDEs that are essential for this paper. Additionally, we explain the
least-squares Monte Carlo approach and its approximation error in detail. Chapter
3 is devoted to the a-posteriori error criteria. Apart from the global criterion, we
present the local one for approximate solutions that where obtained by replacing
conditional expectations by projections. This chapter ends with the introduction of
non-linear control variates for (F)BSDEs inspired by variance reduction methods.
Therefore, we will diminish the original BSDE by some BSDE, that is solvable in

6



1.2 Problem description

closed-form and is likely to ’explain’ the main part of the original one. Approx-
imation has then to be applied to the remainder BSDE. The chapter also includes
numerical examples. In Chapter 4 we introduce the enhanced least-squares Monte
Carlo scheme and examine the approximation error in its very detail. Again, the
chapter is finished by numerical examples.

7





2 Preliminaries

2.1 Some important results on BSDEs

Before turning to the numerical solution of BSDEs and their validation, it is essential
to know if the problem in (1.1) is well-defined. To this end, we cite a result of Pardoux
and Peng (1990).

Theorem 1. We suppose that the data (ξ, f) satisfy Assumption 1. Then there is a unique
pair of predictable processes (Y,Z) with

E

∫T
0
|Yt|

2dt <∞, E

∫T
0
|Zt|

2dt <∞,

that solves the differential equation (1.1).

During our thesis we require some standard regularity estimates on the processes
S and Y several times. These results can also be found in Zhang (2004), who more
generally considers the Lp-norm for p > 2 instead of the case p = 2 only.

Lemma 2. Let Assumption 1 be fulfilled and (Y,Z) be an adapted solution of (1.1). Then
there is a constant C depending on T , κ and the data (ξ, f) only such that

E|Yt − Ys|
2 6 C|t− s|+ C

∫t
s

E|Zu|
2du.

Lemma 3. Let Assumption 2 be fulfilled and S be a solution of the forward SDE in (1.3).
Then there is a constant C depending on T , κ, s0 and the data (b,σ) such that

E|St − Ss|
2 6 C|t− s|.

It was Zhang (2001), who made an important contribution concerning the regu-
larity of the process Z. Beyond inventing the notion of L2-regularity by

N−1∑
i=0

∫ti+1

ti

E
∣∣∣Zt −

1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
dt,

he showed that rather mild conditions are sufficient to obtain a regularity rate of
order 1/2 in the number of time steps of a deterministic partition of the time interval
[0, T ]. This result is essential for the convergence of a discrete-time approximation of
(Y,Z), as will be reviewed in the next subsection.

9



2 Preliminaries

Theorem 4. We suppose that Assumption 2 is satisfied. Let π = {t0, . . . , tN} be a partition
of [0, T ] with 0 = t0 < . . . < ti < . . . < tN = T . Then there is a constant C > 0 depending
on T , κ and s0 only such that

N−1∑
i=0

∫ti+1

ti

E
∣∣∣Zt −

1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
dt 6 C max

06i6N−1
|ti+1 − ti|,

where C is independent of π.

2.2 The least-squares Monte Carlo algorithm for BSDEs

The least-squares Monte Carlo algorithm for BSDEs was initially proposed by Gobet
et al. (2005) for the numerical solution of FBSDEs as formulated in (1.3) and is based
on a discrete-time approximation of (Y,Z). Then least-squares Monte Carlo comes
into play in order to tackle the estimation of conditional expectations, that arise
during the time discretization. We explain both steps in detail in the following
subsections.

2.2.1 Discrete-time approximators

There are several proposals for the time discretization of (Y,Z), for instance see
Bouchard and Touzi (2004) or Zhang (2004). Here, we will explain step by step
the scheme that was proposed by Lemor et al. (2006). Considering the time grid
π = {t0, . . . , tN} of [0, T ] with 0 = t0 < . . . < ti < . . . < tN = T , we define |π| =
max06i6N−1 |ti+1 − ti| and suppose that a discrete-time approximation Sπti , ti ∈ π
of the forward SDE S is at hand that fullfills

Assumption 3. The process (Sπti)ti∈π is an adapted Markov process. Moreover, there is a
constant C > 0 such that

max
06i6N

E|Sti − S
π
ti
|2 6 C|π|.

In numerous financial settings the forward SDE consists of a geometric Brownian
motion, that can be sampled perfectly on the time grid π. For many other cases the
Euler scheme, e. g., provides a suitable approximation satisfying Assumption 3.

For the time discretization of (Y,Z) we define ∆i := ti+1 − ti, ∆Wd,i = Wd,ti+1 −
Wd,ti and ∆Wi = (∆W1,i, . . . ,∆WD,i)

∗. Due to the definition of the BSDE we have

Yti = Yti+1 −

∫ti+1

ti

F(u,Su, Yu,Zu)du−

∫ti+1

ti

ZudWu.

Inspired by this equality, we replace the integrals by their discrete counterparts and
receive the relation

Yti ≈ Yti+1 − ∆iF(ti,Sti , Yti ,Zti) − Zti∆Wi. (2.1)

10



2.2 The least-squares Monte Carlo algorithm for BSDEs

Next, we multiply (2.1) with the Brownian increment ∆Wd,i and take after that the
conditional expectation. Thus, we can derive from

0 ≈ E[Yti+1∆Wd,i| Fti ] − Zd,ti∆i

an approximation Zπti , provided that Yπti+1
is given:

Zπti =
1
∆i
E[(∆Wi)

∗Yπti+1
| Fti ].

For the time discretization of the Y-part, we take the conditional expectation in (2.1)
and obtain

Yti ≈ E[Yti+1 − ∆iF(ti,Sti , Yti ,Zti)| Fti ]
≈ E[Yti+1 − ∆iF(ti,Sti , Yti+1 ,Zti)| Fti ].

In the last step we switched from Yti to Yti+1 , which turns the relation into an explicit
one. Hence, we define for Sπti , Y

π
ti+1

and Zπti known,

Yπti = E[Y
π
ti+1

− ∆iF(ti, Sπti , Y
π
ti+1

, Zπti)| Fti ].

Now, we want to combine these considerations to a full description of the time
discretization scheme, that starts backwards in time with an approximation ξπ of the
terminal condition. We achieve a time-discretized approximation (Yπ,Zπ) of (Y,Z)
by conducting for all i = N− 1, . . . , 0

YπtN = ξπ,

Zπti =
1
∆i
E[(∆Wi)

∗Yπti+1
| Fti ],

Yπti = E[Y
π
ti+1

− ∆iF(ti, Sπti , Y
π
ti+1

, Zπti)| Fti ].

(2.2)

Using constant interpolation we get processes (Yπt ,Zπt ), t ∈ [0, T ]. Zhang (2004) and
Bouchard and Touzi (2004) introduced quite similar schemes. Roughly speaking,
they differ from (2.2) due to the variables that are plugged in the driver. Particularly,
the latter authors evaluate the driver F at (ti, Sπti , Y

π
ti

, Zπti), which leads to an implicit
definition of Yπti . All approaches have in common that under Assumptions 2 and
3 the time discretization error in the L2-sense is of order 1/2 in the number of time
steps plus an error concerning the approximate terminal condition, i. e.

sup
06t6T

E|Yt − Y
π
t |

2 +

∫T
0
E|Zt − Z

π
t |

2dt 6 C|π|+ CE|ξ− ξπ|2,

see Lemor et al. (2006) for a proof with respect to the above setting.
Although (2.2) is formulated explicitly in time, it incorporates the computation of

(nested) conditional expectations, that in many cases cannot be figured out in closed
form. Thus, estimation of conditional expectations is an important problem, when

11



2 Preliminaries

it comes to solving BSDEs numerically. In the next subsection we will review the
least-squares Monte Carlo method as an estimation tool for this purpose.

Before going into the details, we endow the time-discretized solution with a kind
of Markovian structure. To this end, we establish a multivariate Markov process
(Xπti)ti∈π such that its first component matches the discretized SDE (Sπti)ti∈π. In such
a framework we can formulate the approximate terminal condition byξπ = φπ(XπtN),
even if the true terminal condition is path dependent, e.g. φ(S) = max06t6T St or
φ(S) = 1/T

∫T
0 Stdt. Several examples for an appropriate construction of (Xπti)ti∈π

can be found in Gobet et al. (2005). In view of the Markovianity of (Xπti ,Fti)ti∈π we
can then rephrase algorithm (2.2). For i = N− 1, . . . , 0 we have

YπtN = φπ(XπtN),

Zπti =
1
∆i
E[(∆Wi)

∗Yπti+1
|Xπti ],

Yπti = E[Y
π
ti+1

− ∆iF(ti, Sπti , Y
π
ti+1

, Zπti)|X
π
ti
].

(2.3)

Hence, there are functions yπi (x) and zπi (x) such that

Yπti = yπi (X
π
ti
), Zπti = zπi (X

π
ti
), i = 0, . . . ,N.

That means, the estimation of conditional expectation aims at finding deterministic
functions as approximations for yπi and zπi . In the following we describe how this
can be done by least-squares Monte Carlo.

2.2.2 Least-squares Monte Carlo estimation of conditional expectations

The least-squares Monte Carlo approach to the estimation of conditional expectations
was suggested in the context of pricing American options, see Longstaff and Schwartz
(2001). Let U and X̃ be some random variables. Then the computation of E[U| X̃] is
equivalent to finding a function ṽ(x) such that

ṽ(X̃) = arg min
v
E|v(X̃) −U|2, (2.4)

where v is taken from the set of measurable functions with the propertyE|v(X̃)|2 <∞.
We simplify the infinite-dimensional minimization problem to a finite-dimensional
one by defining a function basis η(x) with

η(x) = {η1(x), . . . ,ηK(x)} , K ∈N.

Thus, substituting (2.4) by the K-dimensional minimization problem

α̃ = arg min
α∈RK

E|η(X̃)α−U|2 (2.5)

reduces the original problem of finding a minimizing function to the problem of
finding minimizing coefficients α̃. This yields an orthogonal projection of U on the
subspace of L2(σ(X̃)) spanned by η(X̃). Still, we have a problem that is in general

12



2.2 The least-squares Monte Carlo algorithm for BSDEs

not solvable in closed form. Therefore, we replace the expectation operator in (2.5)
by the sample mean and compute

α̃L = arg min
α∈RK

1
L

L∑
λ=1

|η( X̃λ )α− Uλ |2, (2.6)

where ( X̃λ , Uλ ), λ = 1, . . . ,L are independent copies of (X̃,U). After setting

AL :=
1√
L

(
η1( X̃λ ) · · · ηK( X̃λ )

)
λ=1,...,L ,

we get a solution for (2.6) by

α̃L =
1√
L

(
(AL)∗AL

)−1
(AL)∗




U1
...
UL


 . (2.7)

In case (AL)∗AL is not invertible, we employ the pseudo inverse AL,+ of AL and
compute instead of (2.7) the following coefficients,

α̃L =
1√
L
AL,+




U1
...
UL


 .

In sum, we receive by η(X̃)α̃L the least-squares Monte Carlo estimator for E[U| X̃].
The related approximation error is determined by two components, namely the
projection error, that reflects the adequacy of the chosen basis functions, and the
simulation error caused by the step from (2.5) to (2.6).

2.2.3 Projection error within least-squares Monte Carlo estimation

This subsection is devoted to the analysis of the projection error that occurs when
applying the first step, see (2.5), of least-squares Monte Carlo estimation on (2.3).
Since we are located in the setting of Lemor et al. (2006), the below stated result is
of course part of their error analysis. However, Lemor et al. (2006) examine only
the overall approximation error between a truncated version of the time-discretized
solution and the simulated solution and the impact of the projection error is only
mentioned in passing. In order to distinguish different error sources, we provide
Lemma 5. To this end, we define for all i = 0, . . . ,N− 1 function bases

η0(i, x) := {η0,1(i, x), . . . ,η0,K0,i(i, x)}

for the estimation of yπi (x) and

ηd(i, x) := {ηd,1(i, x), . . . ,ηd,Kd,i(i, x)}, d = 1, . . . ,D

13
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for the estimation of the dth component of zπi (x). Here, Kd,i stands for the dimension
of the function basis for d = 0, . . . ,D at time ti. In particular, we can select in each
time step and for each of theD+1 estimation tasks a different basis. However, many
numerical examples for least-squares Monte Carlo are based on an identical basis
for the estimation of all conditional expectations within the same time step. Later on
we will show, how the estimation can benefit from different bases.

For the sake of clarity we denote by Pd,i,d = 0, . . . ,D, i = 0, . . .N− 1 the operator
such that for some FT -measurable random variable U

Pd,i(U) := ηd(i, Xπti)αd,i

with

αd,i = arg min
α∈RKd,i

E|ηd(i, Xπti)α−U|2.

In other words Pd,i carries out an orthogonal projection on the subspace spanned
by ηd(i, x), d = 0, . . . ,D. Replacing the conditional expectations in (2.3) by the
projection operator yields then the following algorithm:

Y
π,K0,N
tN

= φπ(XπtN),

Z
π,Kd,i
d,ti

=
1
∆i

Pd,i
(
∆Wd,iY

π,K0,i+1
ti+1

)
, d = 1, . . . ,D,

Y
π,K0,i
ti

= P0,i
(
Y
π,K0,i+1
ti+1

− ∆iF(ti, Sπti , Y
π,K0,i+1
ti+1

, Zπ,Ki
ti

)
)
,

(2.8)

where Zπ,Ki
ti

= (Z
π,Kd,i
d,ti

)d=1,...,D. Again, for all i = 0, . . . ,N− 1 there are deterministic

functions yπ,K0,i
i (x) and zπ,Kd,i

d,i (x) such that

Y
π,K0,i+1
ti+1

= y
π,K0,i
i (Xπti), Z

π,Kd,i
d,ti

= z
π,Kd,i
d,i (Xπti), d = 1, . . . ,D. (2.9)

In view of the definition of Pd,i,d = 0, . . . ,D, these functions can be written as linear
combinations of ηd(i, x), respectively.

Lemma 5. Let F be Lipschitz continuous in its spatial variables (y, z) with constant κ. Then

max
j6i6N

E|Yπti − Y
π,K0,i
ti

|2 +

N−1∑
i=j

∆iE|Z
π
ti
− Zπ,Ki

ti
|2

< C

N−1∑
i=j

E|P0,i(Y
π
ti
) − Yπti |

2 + C

N−1∑
i=j

D∑
d=1

∆iE|Pd,i(Z
π
d,ti) − Z

π
d,ti |

2,

for j = 0, . . . ,N− 1 with C > 0 being a constant depending on κ, T and D.

Gobet et al. (2005) provide an analysis of the projection error in a setting that
combines least-squares Monte Carlo with Picard iterations in each time step.
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2.2 The least-squares Monte Carlo algorithm for BSDEs

Proof. We set ∆Fi = F(ti, Sπti , Y
π,K0,i+1
ti+1

, Zπ,Ki
ti

) − F(ti, Sπti , Y
π
ti+1

, Zπti) and exploit the
Lipschitz condition on F and Young’s inequality for some Γ to be defined later on.
Hence,

E|∆Fi|
2 6 κ2(1 + ΓD)E

[
|Yπti+1

− Y
π,K0,i+1
ti+1

|2 +
1
ΓD

|Zπti − Z
π,Ki
ti

|2
]
. (2.10)

Then we define

Y
π
ti

= E[Y
π,K0,i+1
ti+1

− ∆iF(ti, Sπti , Y
π,K0,i+1
ti+1

, Zπ,Ki
ti

)|Xπti ].

and apply again Young’s inequality. Due to (2.10), we obtain for Γ = 1

E|Yπti − Y
π
ti
|2 6 (1 + (1 +D)κ2∆i)E|E[Y

π
ti+1

− Y
π,K0,i+1
ti+1

|Xπti ]|
2

+
(
∆i +

1
(1 +D)κ2

)
∆iκ

2(1 +D)E|Yπti+1
− Y

π,K0,i+1
ti+1

|2

+
(
∆i +

1
(1 +D)κ2

)
∆iκ

2 1 +D

D
E|Zπti − Z

π,Ki
ti

|2.

(2.11)

Using the orthogonality of the projection Pd,i we receive

E|Zπd,ti − Z
π,Kd,i
d,ti

|2 = E|Zπd,ti − Pd,i
(
Zπd,ti

)
|2 + E|Pd,i

(
Zπd,ti

)
− Z

π,Kd,i
d,ti

|2

= (I) + (II).
(2.12)

As for (II), the definition of Zπd,ti and Zπ,Kd,i
d,ti

in (2.3) and (2.8) yields

(II) = E|Pd,i
(
∆−1
i E[∆Wd,i(Y

π
ti+1

− Y
π,K0,i+1
ti+1

)|Xπti ]
)
|2

6 E|∆−1
i E[∆Wd,i

{
Yπti+1

− Y
π,K0,i+1
ti+1

− E[Yπti+1
− Y

π,K0,i+1
ti+1

|Xπti ]
}
|Xπti ]|

2

6 ∆−1
i E|Y

π
ti+1

− Y
π,K0,i+1
ti+1

− E[Yπti+1
− Y

π,K0,i+1
ti+1

|Xπti ]|
2

6 ∆−1
i

(
E|Yπti+1

− Y
π,K0,i+1
ti+1

|2 − E|E[Yπti+1
− Y

π,K0,i+1
ti+1

|Xπti ]|
2),

(2.13)

where the second step followed by the contraction property of the projection Pd,i
and the third step by Hölder’s inequality. Now we define a sequence (qi)i∈N with
q0 = 1 and qi+1 = qi(1 + (1 + D)κ2∆i)(1 + ∆i). Turning back to (2.11), we first
exploit the estimates on the Z-part and multiply then with qi. Thus, for i < N− 1,

qiE|Y
π
ti
− Y

π
ti
|2 6 qi(1 + (1 +D)κ2∆i)(1 + ∆i)E|Y

π
ti+1

− Y
π,K0,i+1
ti+1

|2

+ qi(1 + (1 +D)κ2∆i)
∆i
D

D∑
d=1

E|Pd,i(Z
π
d,ti) − Z

π,Kd,i
d,ti

|2

6 qi+1E|Y
π
ti+1

− Y
π
ti+1

|2 + qi+1E|P0,i+1(Y
π
ti+1

) − Yπti+1
|2

+ qi+1
∆i
D

D∑
d=1

E|Pd,i(Z
π
d,ti) − Z

π,Kd,i
d,ti

|2,
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where we incorporated the relation

P0,i
(
Ȳπti − Y

π
ti

)
= Y

π,K0,i
ti

− P0,i(Y
π
ti
) (2.14)

as well as the orthogonality and the contraction property of the projection P0,i. In
case i = N− 1 we have

qN−1E|Y
π
tN−1

− Y
π
tN−1

|2 6 qN
∆N−1

D

D∑
d=1

E|Pd,N−1(Z
π
d,tN−1

) − Z
π,Kd,N−1
d,tN−1

|2,

since YπtN = Y
π,K0,N
tN

. Taking the sum from i to N− 1 leads to

qiE|Y
π
ti
− Y

π
ti
|2

6
N−1∑
j=i+1

qjE|P0,j(Y
π
tj
) − Yπtj |

2 +

N−1∑
j=i

qj+1
∆j

D

D∑
d=1

E|Pd,j(Z
π
d,tj) − Z

π,Kd,j
d,tj

|2.

As ∆i < |π| < CT/N for some C > 0, we can conclude

qN <

(
1 +

(1 +D)κ2CT

N

)N(
1 +

CT

N

)N
−−−−→
N→∞ eCT(1+(1+D)κ2).

Hence,

max
j6i6N−1

E|Yπti − Y
π
ti
|2 6 eCT(1+(1+D)κ2)

N−1∑
i=j+1

E|P0,i(Y
π
ti
) − Yπti |

2

+ eCT(1+(1+D)κ2)
N−1∑
i=j

∆i

D∑
d=1

E|Pd,i(Z
π
d,ti) − Z

π,Kd,i
d,ti

|2. (2.15)

In view of (2.14) and by exploiting the orthogonality of the projections, we receive
immediately

max
j6i6N−1

E|Yπti − Y
π,K0,i
ti

|2

6 2 max
j6i6N−1

E|Yπti − P0,i(Y
π
ti
)|2 + 2 max

j6i6N−1
E|P0,i(Y

π
ti
− Y

π
ti
)|2

6 C
(N−1∑
i=j

E|P0,i(Y
π
ti
) − Yπti |

2 +

N−1∑
i=j

D∑
d=1

∆iE|Pd,i(Z
π
d,ti) − Z

π,Kd,i
d,ti

|2
)

.

Coming back to the estimates in (2.12) and (2.13), we apply the definition of Yπti and
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the orthogonality of the projections. Clearly, we have for i = 0, . . . ,N− 2

∆iE|Z
π
d,ti − Z

π,Kd,i
d,ti

|2

6 E|Yπti+1
− Y

π
ti+1

|2 + E|P0,i+1(Y
π
ti+1

) − Yπti+1
|2 − E|Yπti − Y

π
ti
+ ∆i∆Fi|

2

+ E|Pd,i(Z
π
d,ti) − Z

π,Kd,i
d,ti

|2

6 E|Yπti+1
− Y

π
ti+1

|2 − E|Yπti − Y
π
ti
|2 + 2∆iE|(Yπti − Y

π
ti
)∆Fi|

2

+ E|P0,i+1(Y
π
ti+1

) − Yπti+1
|2 + ∆iE|Pd,i(Z

π
d,ti) − Z

π,Kd,i
d,ti

|2

6 E|Yπti+1
− Y

π
ti+1

|2 − E|Yπti − Y
π
ti
|2 + γ∆iE|Y

π
ti
− Y

π
ti
|2 +

∆i
γ
E|∆Fi|

2

+ E|P0,i+1(Y
π
ti+1

) − Yπti+1
|2 + ∆iE|Pd,i(Z

π
d,ti) − Z

π,Kd,i
d,ti

|2,

for some γ > 0. Now we apply (2.10) with Γ = 2 and consider also relation (2.14).
Thus,

∆iE|Z
π
d,ti − Z

π,Kd,i
d,ti

|2 6 E|Yπti+1
− Y

π
ti+1

|2 − E|Yπti − Y
π
ti
|2 + γ∆iE|Y

π
ti
− Y

π
ti
|2

+
κ2(1 + 2D)∆i

γ
E
[
|P0,i+1(Y

π
ti+1

− Y
π
ti+1

)|2 +
1

2D
|Zπti − Z

π,Ki
ti

|2
]

+
(

1 +
κ2(1 + 2D)∆i

2Dγ

)
E|P0,i+1(Y

π
ti+1

) − Yπti+1
|2

+ ∆iE|Pd,i(Z
π
d,ti) − Z

π,Kd,i
d,ti

|2.
(2.16)

Concerning E|P0,i+1(Y
π
ti+1

− Y
π
ti+1

)|2, we will make use of the contraction property of
the projections. Then, we set γ = κ2(1 + 2D) and define a second sequence (q̃i)i∈N
with q̃0 = 1 and q̃i+1 = q̃i(1 + ∆i). Multiplying (2.16) with q̃i and summing up
from d = 1, . . . ,D and i = 0, . . . ,N− 1 yields

N−1∑
i=j

q̃i∆iE|Z
π
ti
− Zπ,Ki

ti
|2

6 Dκ2(1 + 2D)eCT max
j6i6N

q̃iE|Y
π
ti
− Y

π
ti
|2 +

1
2

N−1∑
i=0

q̃i∆iE|Z
π
ti
− Zπ,Ki

ti
|2

+ C

N−1∑
i=j

(
E|P0,i(Y

π
ti
) − Yπti |

2 +

D∑
d=1

∆iE|Pd,i(Z
π
d,ti) − Z

π,Kd,i
d,ti

|2
)

.

In view of (2.15) and the definition of q̃i , it holds true that
N−1∑
i=j

∆iE|Z
π
ti
− Zπ,Ki

ti
|2

6 C
(N−1∑
i=j

E|P0,i(Y
π
ti
) − Yπti |

2 +

N−1∑
i=j

D∑
d=1

∆iE|Pd,i(Z
π
d,ti) − Z

π,Kd,i
d,ti

|2
)

. �
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2.2.4 Simulation error within least-squares Monte Carlo estimation

In this subsection we will review the proposal of Lemor et al. (2006) how to use the
simulation step of least-squares Monte Carlo, see 2.6, to get a fully implementable al-
gorithm for the approximation of BSDEs. The result of Lemor et al. (2006) considering
the simulation error will be dicussed as well. Looking back in the last subsection, we
received approximate solutions for Yπti and Zπti by replacing conditional expectations
by projections on subspaces of L2(Fti). Clearly, we obtained functions

y
π,K0,i
i (x) = η0(i, x)α

π,K0,i
0,i , z

π,Kd,i
d,i (x) = ηd(i, x)α

π,Kd,i
d,i , d = 1, . . . ,D,

where απ,K0,i
0,i and απ,Kd,i

d,i , d = 1, . . . ,D are solutions of minimization problems of the

form (2.5). The application of least-squares Monte Carlo implies to substitute απ,Kd,i
d,i ,

d = 0, . . . ,D by coefficients that solve minimization problems of type (2.6). To this
end, we introduce L independent copies of (∆Wi, Xπti+1

)i=0,...,N−1. We denote these
samples by (∆ Wλ i, X

π
λ ti+1

)i=0,...,N−1, λ = 1, . . . ,L and by XL the set that contains these

samples. The least-squares Monte Carlo approximations yπ,K0,i,L
i (x) and zπ,Kd,i,L

d,i (x)
, d = 1, . . . ,D are evaluated by carrying out for i = N− 1, . . . , 0:

y
π,K0,N,L
N (x) = φπ(x),

α
π,Kd,i,L
d,i = arg min

α∈RKd,i

1
L

L∑
λ=1

∣∣∣ηd(i, Xπλ ti
)α−

∆ Wλ d,i

∆i
y
π,K0,i+1,L
i+1 ( Xπλ ti+1

)
∣∣∣
2
,

d = 1, . . . ,D,

z
π,Kd,i,L
d,i (x) = ηd(i, x)α

π,Kd,i,L
d,i , d = 1, . . . ,D,

α
π,K0,i,L
0,i = arg min

α∈RK0,i

1
L

L∑
λ=1

∣∣∣η0(i, Xπλ ti
)α− y

π,K0,i+1,L
i+1 ( Xπλ ti+1

)

+ ∆iF
(
ti, Sπλ ti

,yπ,K0,i+1,L
i+1 ( Xπλ ti+1

), zπ,Ki,L
i ( Xπλ ti

)
)∣∣∣

2
,

y
π,K0,i,L
i (x) = η0(i, x)α

π,K0,i,L
0,i ,

(2.17)

where zπ,Ki,L
i (x) = (z

π,Kd,i,L
d,i (x))d=1,...,D. Setting

Y
π,K0,i,L
ti

= y
π,K0,i,L
i (Xπti), Z

π,Kd,i,L
d,ti

= z
π,Kd,i,L
d,i (Xπti), d = 1, . . . ,D

gives then the least-squares Monte Carlo estimators for (Yπti , Z
π
ti
)ti∈π. The analysis

of the L2-error induced by the simulation step of least-squares Monte Carlo can be
found in Lemor et al. (2006), Theorem 2 and Remark 2. It is rather involved, since
the approximation error has to be traced back to the error related to the law of
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(∆ Wλ i, X
π

λ ti+1
)i=1,...,N−1, λ = 1, . . . ,L, namely

max
06i6N

E

[
1
L

L∑
λ=1

|yπi ( X
π

λ ti
) − y

π,K0,i,L
i ( Xπλ ti

)|2

]

+

D∑
d=1

N−1∑
i=0

∆iE

[
1
L

L∑
λ=1

|zπd,i( X
π

λ ti
) − z

π,Kd,i,L
d,i ( Xπλ ti

)|2

]
.

Recall, that yπ,K0,i,L
i (x) and zπ,Kd,i,L

d,i (x) are estimated via the samples of future time
steps. Hence, one has to deal with a quite complicated dependency structure between
the approximators in the different time steps.

What is more, the examination of this error requires the implementation of a
truncation structure in the pure backward scheme (2.3) (which is based on the as-
sumption of computable conditional expectations) and in the least-squares Monte
Carlo algorithm (2.17). The aim is to receive a Lipschitz continuous, bounded esti-
mation of yπi (x) and zπd,i(x) on the one hand and a bounded estimation of yπ,K0,i,L

i (x)

and zπ,Kd,i,L
d,i (x) on the other one. The Lipschitz continuity requires certain additional

assumptions on the approximate terminal condition φπ(x) and the Markov process
(Xπti)ti∈π. As the truncation is generally omitted in practice, we refrain from stating
detailed information on the truncation error and refer the reader to Lemor et al.
(2006).

Neglecting the truncation error, the squared approximation error is bounded as
follows, see Lemor et al. (2006). Given an equidistant partition of [0, T ] with ∆i =
h := T/N, i = 0, . . . ,N− 1 and β ∈ (0, 1] we have

max
06i6N

E|Yπti − Y
π,K0,i,L
ti

|2 +

D∑
d=1

N−1∑
i=0

∆iE|Z
π
d,ti − Z

π,Kd,i,L
d,ti

|2

6 C̃hβ + C̃

(
log(L)
L

N−1∑
i=0

D∑
d=0

Ki,d

+

N−1∑
i=0

K0,i

h
exp

{
C̃K0,i+1 log

C̃
√
K0,i

h
β+2

2

−
Lhβ+2

72C̃K0,i

}

+

N−1∑
i=0

D∑
d=1

Kd,i exp

{
C̃K0,i+1 log

C̃
√
Kd,i

h
β+1

2

−
Lhβ+1

72C̃Kd,i

}

+

N−1∑
i=0

1
h

exp
{
C̃K0,i log

C̃

h
β+2

2

−
Lhβ+2

72C̃

})

+ C̃

(N−1∑
i=0

E|P0,i(Y
π
ti
) − Yπti |

2 +

N−1∑
i=0

D∑
d=1

∆iE|Pd,i(Z
π
d,ti) − Z

π
d,ti |

2
)

+ truncation error,

(2.18)
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where C̃ is a constant depending on the Lipschitz constant κ, T , s0, the dimensions
D̃ and D as well as the truncation parameters. Particularly, the first and the second
summand mark the additional error terms that arise from the simulation step in
least-squares Monte Carlo.

2.2.5 Qualitative analysis of the error sources and their configuration

When neglecting the implementation of truncations, the approximation error of least-
squares Monte Carlo is driven by three main error sources, the time discretization
error, the projection error and the simulation error. In the following we give a short
qualitative recapitulation of the previous subsections. Moreover, we describe what
it takes to bound all error sources by C|π|β/2 in L2-sense for β ∈ (0, 1].

• The squared time discretization error is bounded by

C(|π|+ E|ξ− ξπ|2).

Hence, it is enough to suppose that the L2-error regarding the terminal condi-
tion decreases with order β/2 in the number of time steps. For instance this
case is fulfilled if the terminal condition can be expressed via some Lipschitz-
continuous function φ such that ξ = φ(ST ) and ξπ = φ(SπtN) and the L2-error
between Sti and its approximation Sπti decreases with rate |π|β/2.

• The squared projection error is determined by the chosen function bases and
is bounded by terms of the squared L2-distance between the time-discretized
solution (Yπti ,

√
hZπti) and its best projections on the function bases. Precisely,

the squared error is bounded by a constant times

N−1∑
i=0

E|P0,i(Y
π
ti
) − Yπti |

2 +

N−1∑
i=0

D∑
d=1

∆iE|Pd,i(Z
π
d,ti) − Z

π
d,ti |

2. (2.19)

Note that (Yπti , Z
π
ti
)ti∈π is based on an evaluation of nested conditional ex-

pectations. Thus, the errors due to the estimation of conditional expectations
propagate and the approximation error of Yπ,K0,i,L

ti
and Zπ,Kd,i,L

d,ti
, d = 1, . . . ,D

is influenced by all previous projection errors. Consequently, (2.19) contains
the sum over all L2-distances between (Yπti ,

√
∆iZ

π
ti
) and its best projection for

i = 0, . . . ,N− 1.
Both the time-discretized solution and its projection, are unknown. Hence,
these error terms cannot be quantified in general. An exception to this are
indicator functions related to hypercubes, that form a partition of the state
space of Xπti . For this case Gobet et al. (2005) have shown that each of the
summands of (2.19) is bounded by Cδ2 for all i = 0, . . .N − 1, d = 0, . . . ,D,
where δ denotes the edge length of the hypercubes. Setting δ = (T/N)(β+1)/2

yields the desired convergence rate. Then, the dimension of the function bases
Kd,i grows proportional toND(β+1)/2 for all d = 0, . . . ,D and i = 0, . . . ,N− 1.
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• The squared simulation error causes the additional terms

C̃|π|β + C̃

(
log(L)
L

N−1∑
i=0

D∑
d=0

Ki,d

+

N−1∑
i=0

K0,i

h
exp

{
C̃K0,i+1 log

C̃
√
K0,i

h
β+2

2

−
Lhβ+2

72C̃K0,i

}

+

N−1∑
i=0

D∑
d=1

Kd,i exp

{
C̃K0,i+1 log

C̃
√
Kd,i

h
β+1

2

−
Lhβ+1

72C̃Kd,i

}

+

N−1∑
i=0

1
h

exp
{
C̃K0,i log

C̃

h
β+2

2

−
Lhβ+2

72C̃

})
(2.20)

in the upper bound on the squared approximation error, see (2.18). Given
an appropriate choice of Kd,i, d = 0, . . . ,D, i = 0, . . . ,N − 1 and L it can be
designed to grow with order β in the number of time steps N. To this end we
fix the dimension of the function bases Kd,i by C̃Nρ for some ρ > 0 and the
sample size L by C̃Nβ+2+2ρ for some constant C̃ > 0. Here, the logarithmic
terms were neglected.
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3 Error criteria for BSDEs

3.1 Global a-posteriori error criterion

As the true approximation error cannot be evaluated, the success of a numeric
solution of a BSDE is often judged by the approximation of Y0, see for instance
Bender and Denk (2007). Precisely, an approximation (Ŷπti , Ẑ

π
ti
)ti∈π is supposed to

be successful, if for a finer getting time grid π the approximate initial value Ŷπt0

stabilizes, i. e. converges to some value for |π| → 0. There are two major problems
connected with this procedure. First, in most cases the true Y0 is not available in
closed form. Hence, as Ŷπt0

is a point estimator, it might converge to a biased initial
value.

Second, this method provides no statement on the quality of the approximation
of the entire paths Y and Z. However, this information is highly interesting, e. g.
in financial settings, where the hedging portfolio can be expressed in terms of Z.
Inspired by the identity

Yti+1 − Yti −

∫ti+1

ti

f(ti, Yt,Zt)dt−
∫ti+1

ti

ZtdWt = 0

we argue that a successful approximation (Ŷπti , Ẑ
π
ti
)ti∈π should satisfy

Ŷπti+1
− Ŷπti − ∆if

π(ti, Ŷπti , Ẑ
π
ti
) − Ẑπti∆Wi ≈ 0. (3.1)

From these considerations we derive the global a-posteriori error criterion by sum-
ming up the left-hand side of (3.1) from i = 0 up to i = j− 1. Applying the L2-norm
and then taking the maximum over j = 1, . . . ,N yields the definition of the global
error criterion, see (1.2):

Eπ(Ŷ
π, Ẑπ) := E[|ξπ − ŶπtN |

2| Gt0 ]

+ max
16j6N

E[|Ŷπtj − Ŷ
π
t0
−

j−1∑
i=0

∆if
π(ti, Ŷπti , Ẑ

π
ti
) −

j−1∑
i=0

Ẑπti∆Wi|
2| Gt0 ],

whereG = (Gt, 0 6 t 6 T) is an enlarged filtration such that Ft ⊆ Gt for t ∈ [0, T ] and
(Ŷπti , Ẑ

π
ti
)ti∈π isG-adapted. This criterion can be interpreted as a necessary condition

for the convergence of the approximation error, because it gives information, if the
numeric solution is ’close to solving’ the BSDE, when considering it as a forward
SDE. Therefore, it is interesting in its own right.

However, we require information, if the approximation is close to the true solution,
precisely if the approximation error is tending to zero. The main result of this section
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contains estimates on the L2-error between the true solution and (Ŷπti , Ẑ
π
ti
)ti∈π in

terms of this global criterion and the L2-error between true and approximate data.
Given certain assumptions on the approximate driver and the approximate terminal
condition, these estimates can be extended to an equivalence result between the
global a-posteriori criterion on the one hand and the squared approximation error
on the other one, up to terms of order 1 in the number of time steps (the usual time
discretization error). Hence, the criterion can also be seen as a sufficient condition for
the convergence behavior of the approximation error. Moreover, as the a-posteriori
criterion only depends on the available approximate solution, we can estimate it
consistently by Monte Carlo simulation.

Previous to this we will formulate in a first step the global a-posteriori error
criterion for a discrete-time BSDE that is equipped with data (ξπ, fπ). Mainly based
on the Lipschitz continuity of fπ, we can derive an equivalence relation between the
error criterion and the approximation error for the discrete-time setting. This result
comes along with examples for its application. Next, we consider the solution of the
time-discretized BSDE as a time discretization of the original continuous BSDE. The
estimates on the approximation error of the continuous BSDE are then easily shown
by means of the time discretization error and the equivalence result regarding the
global a-posteriori error criterion for time-discretized BSDEs.

Finally, we review typical examples of BSDEs and explain how the estimates on
the approximation error look like in these special cases.

3.1.1 Global a-posteriori estimates for discrete-time BSDEs

Before deriving a-posteriori estimates for BSDEs as introduced in (1.1), we first focus
on discrete-time BSDEs, that live on the time grid π. In our setting we admit an
enlarged filtration G = (Gt, t > 0) such that for some random vector Ξ, that is in-
dependent of F, Gti = Fti ∨ σ(Ξ) for all ti ∈ π. Recall, that Fti is the σ-algebra
generated by (Wt)06t6ti . Thus,W is also a Brownian motion with respect toG. The
subject of consideration is then

Yπ,?
tN

= ξπ,

Yπ,?
ti

= Yπ,?
ti+1

− ∆if
π(ti, Y

π,?
ti

,∆−1
i E[(∆Wi)

∗Mπ,?
ti+1

| Gti ]) − (Mπ,?
ti+1

−Mπ,?
ti

),
(3.2)

for i = N − 1, . . . , 0. The solution of (3.2) is formed by a pair of square-integrable,
G-adapted processes (Yπ,?

ti
,Mπ,?

ti
)ti∈π such that the process (Mπ,?

ti
)ti∈π is a (Gti)ti∈π-

martingale starting in 0. Analogously to our continuous-time setting, determined
by Assumption 1, we suppose that the data (ξπ, fπ) fulfill

Assumption 4. (i) The terminal condition ξπ is a real valued, square-integrable, GtN-
measurable random variable.

(ii) The driver is a function fπ : Ω × π × R × RD → R such that fπ(ti,y, z) is Gti-
measurable for every (ti,y, z) ∈ π×R×RD and fπ(ti, 0, 0) is square-integrable for every
ti ∈ π. Furthermore, fπ is Lipschitz continuous in (y, z) with constant κ uniformly in
(ti,ω) and independent of π.
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It follows for i = 0, . . . ,N− 1 that

Mπ,?
ti+1

−Mπ,?
ti

= Yπ,?
ti+1

− E[Yπ,?
ti+1

| Gti ]. (3.3)

Given |π| small enough, the existence of a solution follows by a contraction mapping
argument. Considering the relation

Zπ,?
ti

=
1
∆i
E[(∆Wi)

∗Mπ,?
ti+1

| Gti ] (3.4)

we receive a reformulation of the discrete BSDE studied in Bouchard and Touzi
(2004), i.e. for i = N− 1, . . . , 0 we have

Yπ,?
tN

= ξπ,

Zπ,?
ti

=
1
∆i
E[(∆Wi)

∗Yπ,?
ti+1

| Gti ],

Yπ,?
ti

= E[Yπ,?
ti+1

| Gti ] − ∆if
π(ti, Y

π,?
ti

, Zπ,?
ti

).

Now, let (Ŷπti , M̂
π
ti
)ti∈π be an arbitrary, square-integrable approximation of the pair

(Yπ,?
ti

,Mπ,?
ti

)ti∈π, that is (Gti)ti∈π-adapted. At this point the way of approximation
does not have to be specified any further. Our aim is to judge the L2-error between
(Yπ,?
ti

,Mπ,?
ti

)ti∈π and (Ŷπti , M̂
π
ti
)ti∈π by means of the approximate solution and the

data (ξπ, fπ) only.
As already mentioned above, we want to use for this purpose a criterion that

analyzes, if the approximate solution is close to solving (3.2). Hence, we examine

Eπ(Ŷ
π, M̂π) := E[|ξπ − ŶπtN |

2| Gt0 ] + max
16j6N

E[|Ŷπtj − Ŷ
π
t0

−

j−1∑
i=0

∆if
π(ti, Ŷπti ,∆

−1
i E[(∆Wi)

∗M̂π
ti+1

| Gti ]) − M̂
π
ti+1

|2| Gt0 ]. (3.5)

The next theorem will show that this criterion is equivalent to the squared L2-error
between true solution and approximation.

Theorem 6. Let Assumption 4 be fulfilled and (Ŷπti , M̂
π
ti
)ti∈π be a pair of square-integrable,

(Gti)ti∈π-adapted processes such that M̂π is a G-martingale starting in 0. Then there are
constants C, c > 0 such that for |π| small enough

1
c
Eπ(Ŷ

π, M̂π) 6 max
06i6N

E[|Yπ,?
ti

− Ŷπti |
2| Gt0 ] + E[|M

π,?
tN

− M̂π
tN

|2| Gt0 ]

6 CEπ(Ŷ
π, M̂π).

More precisely, the inequalities hold with the choice

c = 6(1 + κ2T(T +D)) + 1, C =
(
3 + 8(3 + 4(2T +D)κ2T))

)
eΓT + 2,

where Γ = 4κ2(2T +D)(2 + 4(2T +D)κ2T) and |π| < Γ−1.
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Proof. The condition on the mesh size |π| ensures that a unique solution (Yπ,?,Mπ,?)
to the discrete BSDE (3.2) exists, see e.g. Theorem 5 and Remark 6 in Bender and
Denk (2007). First we show the lower bound

Eπ(Ŷ
π, M̂π) 6 c

(
max

06i6N
E[|Yπ,?

ti
− Ŷπti |

2| Gt0 ] + E[|M
π,?
tN

− M̂π
tN

|2| Gt0 ]

)
. (3.6)

In order to simplify the notation we set

Ẑπti = ∆
−1
i E[(∆Wi)

∗M̂π
ti+1

| Gti ].

Hence,

Eπ(Ŷ
π, M̂π) = E[|ξπ − ŶπtN |

2| Gt0 ]

+ max
16i6N

E[|Ŷπti − Ŷ
π
t0
−

i−1∑
j=0

∆jf
π(tj, Ŷπtj , Ẑ

π
tj
) − M̂π

ti
|2| Gt0 ]

=: A+ max
16i6N

Bi.

Thanks to the definition in (3.2) and (3.4),

Yπ,?
ti

− Yπ,?
t0

−

i−1∑
j=0

∆jf
π(tj, Y

π,?
tj

, Zπ,?
tj

) −Mπ,?
ti

= 0.

Next, we insert this relation inBi. By applying Young’s inequality and the martingale
property of Mπ,? − M̂π, we have for every γ > 0,

Bi = E[|Ŷ
π
ti
− Yπ,?

ti
− Ŷπt0

+ Yπ,?
t0

−

i−1∑
j=0

∆j
(
fπ(tj, Ŷπtj , Ẑ

π
tj
) − fπ(tj, Y

π,?
tj

, Zπ,?
tj

)
)
− M̂π

ti
+Mπ,?

ti
|2| Gt0 ]

6 (1 + γ)
[5

4
4 max

06i6N
E[|Yπ,?

ti
− Ŷπti |

2| Gt0 ] + 5E[|Mπ,?
tN

− M̂π
tN

|2| Gt0 ]
]

+ (1 + γ−1)T

N−1∑
j=0

∆jE[|f
π(tj, Ŷπtj , Ẑ

π
tj
) − fπ(tj, Y

π,?
tj

, Zπ,?
tj

)|2| Gt0 ].

Then we make use of the Lipschitz condition on fπ. Thus,

Bi 6 5(1 + γ)
[

max
06i6N

E[|Yπ,?
ti

− Ŷπti |
2| Gt0 ] + E[|M

π,?
tN

− M̂π
tN

|2| Gt0 ]
]

+ (1 + γ−1)T(T +D)κ2

×
[

max
06i6N−1

E[|Yπ,?
ti

− Ŷπti |
2| Gt0 ] +

N−1∑
j=0

∆j

D
E[|Zπ,?

tj
− Ẑπtj |

2| Gt0 ]
]
.
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Due to the definition of Zπ,? and Ẑπ and the martingale property of Mπ,? − M̂π,

N−1∑
j=0

∆jE[|Z
π,?
tj

− Ẑπtj |
2| Gt0 ]

=

N−1∑
j=0

1
∆j
E[|E[(∆Wj)

∗(Mπ,?
tj+1

− M̂π
tj+1

−Mπ,?
tj

+ M̂π
tj
)| Gtj ]|

2| Gt0 ]

6 D
N−1∑
j=0

(
E[|Mπ,?

tj+1
− M̂π

tj+1
|2| Gt0 ] − E[|M

π,?
tj

− M̂π
tj
|2| Gt0 ]

)

= DE[|Mπ,?
tN

− M̂π
tN

|2| Gt0 ].

(3.7)

By plugging (3.7) in Bi, we obtain

Eπ(Ŷ
π, M̂π) 6

(
5(1 + γ) + T(T +D)κ2(1 + γ−1) + 1

)

×
(

max
06i6N

E[|Yπ,?
ti

− Ŷπti |
2| Gt0 ] + E[|M

π,?
tN

− M̂π
tN

|2| Gt0 ]

)
.

Settingγ = T(T+D)κ2, we receive the lower bound (3.6) with c = 6(1+κ2T(T+D))+1.
For the proof of the upper bound we first introduce the process Yπ by defining for
i = 0, . . . ,N− 1

Y
π
t0

= Ŷπt0
, Y

π
ti+1

= Y
π
ti
+ ∆if

π(ti, Ŷπti , Ẑ
π
ti
) + M̂π

ti+1
− M̂π

ti
,

where again Ẑπti = ∆−1
i E[(∆Wi)

∗M̂π
ti+1

| Gti ]. The pair (Y
π, M̂π) can also be consid-

ered as solution of the discrete BSDE with terminal condition ξπ = Y
π
tN

and driver
f
π
(ti,y, z) = fπ(ti, Ŷπti , z). We will derive the upper bound by examining the error

between (Y
π, M̂π) and (Yπ,?,Mπ,?). To this end we use a slight modification of the

weighted a-priori estimates of Lemma 7 in Bender and Denk (2007). Let Γ ,γ > 0
be constants to be defined later on and qi =

∏i−1
j=0(1 + Γ∆j) the mentioned weights.

Due to (3.3) we have

Mπ,?
ti+1

−Mπ,?
ti

= Yπ,?
ti+1

− E[Yπ,?
ti+1

| Gti ], M̂π
ti+1

− M̂π
ti

= Y
π
ti+1

− E[Y
π
ti+1

| Gti ].

Hence,

N−1∑
i=0

qiE[|(M
π,?
ti+1

−Mπ,?
ti

) − (M̂π
ti+1

− M̂π
ti
)|2| Gt0 ]

=

N−1∑
i=0

qiE[|Y
π,?
ti+1

− Y
π
ti+1

− E[Yπ,?
ti+1

− Y
π
ti+1

| Gti ]|
2| Gt0 ].
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By adapting the argumentation in Step 1 of the proof of Lemma 7 in Bender and
Denk (2007) to our setting, we get,

N−1∑
i=0

qiE[|(M
π,?
ti+1

−Mπ,?
ti

) − (M̂π
ti+1

− M̂π
ti
)|2| Gt0 ]

6 qNE[|Y
π,?
tN

− Y
π
tN

|2| Gt0 ] + γ

N−1∑
i=0

qi∆iE[|Y
π,?
ti

− Y
π
ti
|2| Gt0 ]

+
(2T +D)κ2

γ

N−1∑
i=0

qi∆iE
[ 1

2T
|Yπ,?
ti

− Ŷπti |
2 +

1
D
|Zπ,?
ti

− Ẑπti |
2
∣∣∣Gt0

]
.

The line of argument of Step 2 of the same proof leads to

max
06i6N

qiE[|Y
π,?
ti

− Y
π
ti
|2| Gt0 ] 6 qNE[|Y

π,?
tN

− Y
π
tN

|2| Gt0 ]

+ κ2(2T +D)(|π|+ Γ−1)

N−1∑
i=0

qi∆iE
[ 1

2T
|Yπ,?
ti

− Ŷπti |
2 +

1
D
|Zπ,?
ti

− Ẑπti |
2
∣∣∣Gt0

]
.

Next, we combine the last two inequalities. For convenience, we abbreviate

Ẽ(Yπ,? − Y
π,Mπ,? − M̂π) := 2 max

06i6N
qiE[|Y

π,?
ti

− Y
π
ti
|2| Gt0 ]

+

N−1∑
i=1

qiE[|(M
π,?
ti+1

−Mπ,?
ti

) − (M̂π
ti+1

− M̂π
ti
)|2| Gt0 ].

Thus,

Ẽ(Yπ,? − Y
π,Mπ,? − M̂π) 6 (3 + γT)qNE[|Y

π,?
tN

− Y
π
tN

|2| Gt0 ]

+ C̃

[
max

06i6N
qiE[|Y

π,?
ti

− Y
π
ti
|2| Gt0 ] +

1
D

N−1∑
i=0

qi∆iE[|Z
π,?
ti

− Ẑπti |
2| Gt0 ]

]

+ C̃ max
06i6N

qiE[|Y
π
ti
− Ŷπti |

2| Gt0 ]

with

C̃ =

[
(2 + γT)κ2(2T +D)(|π|+ Γ−1) +

(D+ 2T)κ2

γ

]
.

Considering a weighted formulation of the estimate in (3.7), we have for γ = 4(2T +
D)κ2 and Γ = 4κ2(2T +D)(2 + γT)

Ẽ(Yπ,? − Y
π,Mπ,? − M̂π) 6 (3 + γT)qNE[|Y

π,?
tN

− Y
π
tN

|2| Gt0 ]

+

(
Γ |π|+ 1

4
+

1
4

)[
Ẽ(Yπ,?− Y

π,Mπ,?− M̂π) + max
06i6N

qiE[|Ŷ
π
ti
− Y

π
ti
|2| Gt0 ]

]
.
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Then, we receive for |π| 6 Γ−1

Ẽ(Yπ,? − Y
π,Mπ,? − M̂π)

6 4(3 + γT)qNE[|Y
π,?
tN

− Y
π
tN

|2| Gt0 ] + 3 max
06i6N

qiE[|Ŷ
π
ti
− Y

π
ti
|2| Gt0 ].

Now, it remains to make use of Young’s inequality twice. Bearing in mind the
definition of qi, we have

max
06i6N

E[|Yπ,?
ti

− Ŷπti |
2| Gt0 ] + E[|M

π,?
tN

− M̂π
tN

|2| Gt0 ]

6 Ẽ(Yπ,? − Y
π,Mπ,? − M̂π) + 2 max

06i6N
qiE[|Ŷ

π
ti
− Y

π
ti
|2| Gt0 ]

= 4(3 + γT)eΓTE[|Yπ,?
tN

− Y
π
tN

|2| Gt0 ] + (3eΓT + 2) max
06i6N

E[|Ŷπti − Y
π
ti
|2| Gt0 ]

6 8(3 + γT)eΓTE[|ξπ − Ŷπti |
2| Gt0 ]

+
(
(3 + 8(3 + γT)) eΓT + 2

)
max

06i6N
E[|Ŷπti − Y

π
ti
|2| Gt0 ]

6
( (

3 + 8(3 + 4(2T +D)κ2T)
)
eΓT + 2

)
Eπ(Ŷ

π, M̂π),

because, by the construction of Yπ,

Ŷπti − Y
π
ti

= Ŷπti − Ŷ
π
t0
−

i−1∑
j=0

∆jf
π(tj, Ŷπtj ,∆

−1
j E[(∆Wj)

∗M̂π
tj+1

| Gtj ]) − M̂
π
ti

. �

3.1.2 Examples for the application on numerical approaches

In order to illustrate the global a-posteriori criterion in more detail, we will quite
roughly describe the generic background of some numerical approaches and how the
error criterion works in these settings. Here, we focus on time-discretized Markovian
BSDEs. That means, we suppose that there is a (Fti)ti∈π-adapted Markov process
(Xπti)ti∈π such that Yπ,?

ti
and Zπ,?

ti
, i = 0, . . . ,N − 1 can be expressed by discrete

functions (yπ,?
i (x), zπ,?

i (x)), i = 0, . . . ,N− 1 that will be applied on Xπti , i. e.

Yπ,?
ti

= yπ,?
i (Xπti), Zπ,?

ti
= zπ,?

i (Xπti)

for i = 0, . . . ,N − 1. For the sake of simplicity we also assume here, that ξπ can be
written as deterministic function φπ(XπtN). Then we are in a comparable situation
as in Subsection 2.2.1. Now, one aims at estimating the deterministic functions
(yπ,?
i (x), zπ,?

i (x)), i = 0, . . . ,N− 1. Let these estimators be of the form

ŷπi (x,Ξ), ẑπi (x,Ξ), i = 0, . . . ,N− 1,

where Ξ is some random vector independent of F, which is the natural filtration
generated by the Brownian motion W. Then we define the enlarged σ-algebra G by
setting Gt = Ft ∨ σ(Ξ). Note thatW remains a Brownian motion with respect to G.
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Example 7. This quite generally formulated setting contains also least-squares Monte
Carlo estimation for BSDEs as explained in Section 2.2, where ŷπi (x,Ξ) and ẑπd,i(x,Ξ),
d = 1, . . . ,D are constructed by linear combinations of functions ηd(i, x), d =
0, . . . ,D. Looking back in Subsection 2.2.4 shows, that the computation of the corre-
sponding coefficients involves independent copies of (Xπti)ti∈π. These can be gath-
ered within the random vectorΞ. Now, we define the (Gti)ti∈π-adapted approximate
solution of (3.2) by

Ŷπti = ŷ
π
i (X

π
ti

,Ξ), M̂π
ti+1

− M̂π
ti

= ẑπi (X
π
ti

,Ξ)∆Wi,

where the last definition is obviously a martingale with respect to (Gti)ti∈π but not
to (Fti)ti∈π. As Ẑπti = ∆−1

i E[(∆Wi)
∗M̂π

ti+1
| Gti ], the global a-posteriori criterion can

as well be formulated as follows:

Eπ(Ŷ
π, Ẑπ) := E[|ξπ − ŶπtN |

2| Gt0 ]

+ max
16i6N

E[|Ŷπti − Ŷ
π
t0
−

i−1∑
j=0

∆jf
π(tj, Ŷπtj , Ẑ

π
tj
) −

i−1∑
j=0

Ẑπtj∆Wj|
2| Gt0 ].

In order to derive information about the approximation error from this a-posteriori
criterion, we estimate it by Monte Carlo simulation. To this end, we suppose that a
realization ofΞ is given and that it is possible to draw independent copies of (Xπti)ti∈π
and of the Brownian increments (∆Wi)i=0,...,N−1. Precisely, let XL be such a set of
samples, i. e.

XL = {( Xπλ ti+1
,∆ Wλ i)i=0,...,N−1| λ = 1, . . . ,L}.

Thanks to the definition of ŷπi (x,Ξ), ẑπi (x,Ξ) and φπ(x) we can produce samples

( Ŷπλ ti
, Ẑπλ ti

, fπ(ti, Ŷπλ ti
, Ẑπλ ti

),∆ Wλ i, ξ
π

λ )i=0,...,N, λ = 1, . . . ,L,

that are independent conditional to Ξ. Hence, we can estimate Eπ(Ŷ
π, Ẑπ) by

Êπ(Ŷ
π, Ẑπ) :=

1
L

L∑
λ=1

| ξπλ − Ŷπλ tN
|2

+ max
16i6N

1
L

L∑
λ=1

| Ŷπλ ti
− Ŷπλ t0

−

i−1∑
j=0

∆if
π(tj, Ŷπλ tj

, Ẑπλ tj
) −

i−1∑
j=0

Ẑπλ ti
∆ Wλ i|

2.

Considering the result of Theorem 6 we get thereby estimations on the lower and
upper bound of the approximation error between (Yπ,?

ti
,Mπ,?

ti
)ti∈π and (Ŷπti , M̂

π
ti
)ti∈π.

Example 8. In Chapter 4 we will examine a simplification of least-squares Monte
Carlo. There, we assume that

ẑπi (x,Ξ) :=
1
∆i
E[(∆Wi)

∗ŷπi+1(X
π
ti+1

,Ξ)|Ξ, Xπti = x]
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3.1 Global a-posteriori error criterion

and

E[ŷπi+1(X
π
ti+1

,Ξ)|Ξ, Xπti = x]

are computable in closed form. This allows us to define

M̂π
t0

= 0, M̂π
ti+1

− M̂π
ti

= ŷπi+1(X
π
ti+1

,Ξ) − E[ŷπi+1(X
π
ti+1

,Ξ)|Ξ, Xπti = x]

for i = 0, . . . ,N−1. Note, that in Example 7 it was impossible to define the martingale
differences M̂π

ti+1
− M̂π

ti
in such a way, since we require these martingale differences

in closed form. Like before,

Ẑπti = ẑ
π
i (X

π
ti

,Ξ) = ∆−1
i E[(∆Wi)

∗M̂π
ti+1

| Gti ].

Here, the global a-posteriori criterion equals

Eπ(Ŷ
π, M̂π) := E[|ξπ − ŶπtN |

2| Gt0 ]

+ max
16i6N

E[|Ŷπti − Ŷ
π
t0
−

i−1∑
j=0

∆jf
π(tj, Ŷπtj , Ẑ

π
tj
) − M̂π

ti
|2| Gt0 ].

Similarly to Example 7, we use independent copies of (Xπti)ti∈π and the definition of
ŷπti(x,Ξ) and ẑπti(x,Ξ) to get samples

( Ŷπλ ti
, Ẑπλ ti

, M̂πλ ti
, fπ(ti, Ŷπλ ti

, Ẑπλ ti
), ξπλ )i=0,...,N, λ = 1, . . . ,L.

Then, the estimator Êπ(Ŷπ, M̂π) is analogously defined as in Example 7.

3.1.3 Global a-posteriori criterion for continuous BSDEs

Now we return to the original setting, where we dealt with continuous BSDEs, as
formulated in (1.1):

Yt = ξ−

∫T
t

f(u, Yu,Zu)du−

∫T
t

ZudWu.

Again we received by some arbitrary numerical algorithm an approximate solution
(Ŷπti , Ẑ

π
ti
)ti∈π, that is defined on the discretized time interval π. We assume that it is

square-integrable and adapted to (Gti)ti∈π. Like before, G is the σ-algebra defined
by Gti = Fti ∨ σ(Ξ), where Ξ is some random vector independent of FT . This time
we want to judge the approximation error between (Y,Z) and (Ŷπti , Ẑ

π
ti
)ti∈π by

Eπ(Ŷ
π, Ẑπ) := E[|ξπ − ŶπtN |

2| Gt0 ]

+ max
16i6N

E[|Ŷπti − Ŷ
π
t0
−

i−1∑
j=0

∆jf
π(tj, Ŷπtj , Ẑ

π
tj
) −

i−1∑
j=0

Ẑπtj∆Wj|
2| Gt0 ].
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In contrast to (3.5), we replace M̂π
ti

by the sum over Ẑπti∆Wi, which are martingale
differences with respect to Gti as well. However, Eπ(Ŷπ, Ẑπ) still measures, whether
(Ŷπti , Ẑ

π
ti
)ti∈π is close to solving the time-discretized BSDE, even though we are

situated in a continuous case. The reason is that it might be impossible to draw
samples of ξ and f(t, Ŷπti , Ẑ

π
ti
). As we want to ensure thatEπ(Ŷπ, Ẑπ) can be estimated

via Monte Carlo simulation, we have replaced (ξ, f) by their approximations (ξπ, fπ).

Assumption 5. (i) The approximate terminal condition ξπ is a real valued, square-integra-
ble, and FtN-measurable random variable.

(ii) The approximate driver is a function fπ : Ω×π×R×RD → R such that fπ(ti,y, z)
is Fti-measurable for every (ti,y, z) ∈ π×R×RD and fπ(ti, 0, 0) is square-integrable for
every ti ∈ π. Furthermore, fπ is Lipschitz continuous in (y, z) with constant κ uniformly
in (ti,ω) and independent of π.

The next theorem provides estimates on the L2-error between the true solution
of the BSDE and its approximation. These estimates consist of terms of the ap-
proximate solution (Ŷπ, Ẑπ), the approximate data (ξπ, fπ) and the L2-error between
approximate and original data.

Theorem 9. We assume that Assumption 1 and 5 are satisfied. Let Gt0 be independent of
F. We also define the abbreviation ∆fπi (t) = f(t, Yt,Zt) − fπ(ti, Yt,Zt). Then there are
constants C, c > 0 depending on κ, T , D and the data (ξ, f) such that for every pair of
(Gti)ti∈π-adapted, square-integrable processes (Ŷπti , Ẑ

π
ti
)ti∈π and |π| small enough

max
06i6N

E[|Yti − Ŷ
π
ti
|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E
[
|Yt − Ŷ

π
ti
|2 + |Zt − Ẑ

π
ti
|2| Gt0

]
dt

6 C
(
Eπ(Ŷ

π, Ẑπ) + |π|+ E|ξ− ξπ|2 +

N−1∑
i=0

∫ti+1

ti

E|∆fπi (t)|
2dt
)

.

and

Eπ(Ŷ
π, Ẑπ) 6 c

(
max

06i6N
E[|Yti − Ŷ

π
ti
|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E[|Yt − Ŷ
π
ti
|2| Gt0 ]dt

+

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
π
ti
|2| Gt0 ]dt+ E|ξ− ξ

π|2 +

N−1∑
i=0

∫ti+1

ti

E|∆fπi (t)|
2dt
)

.

If, additionally, f and fπ do not depend on y, then

max
06i6N

E[|Yti − Ŷ
π
ti
|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
π
ti
|2| Gt0 ]dt

6 C
(
Eπ(Ŷ

π, Ẑπ) + E|ξ− ξπ|2 +
N−1∑
i=0

∫ti+1

ti

E|∆fπi (t)|
2dt
)
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and

Eπ(Ŷ
π, Ẑπ) 6 c

(
max

06i6N
E[|Yti − Ŷ

π
ti
|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
π
ti
|2| Gt0 ]dt

+ E|ξ− ξπ|2 +

N−1∑
i=0

∫ti+1

ti

E|∆fπi (t)|
2dt
)

.

The above inequalities can quickly be shown by means of Theorem 6 and the
L2-distance between the true solution (Y,Z) of the continuous BSDE and the pair
(Yπ,?
ti

, Zπ,?
ti

)ti∈π, that we derived from the solution of the discrete-time BSDE, see
(3.2). The following Lemma provides an upper bound for this L2-distance. Recalling
the definition of Zπ,?

ti
in (3.4), we obtain

Lemma 10. Let Assumption 1 and 5 be satisfied. Furthermore, we suppose that fπ is
Lipschitz continuous in the way that

|fπ(ti,y, z) − fπ(ti,y ′, z ′)| 6 κy|y− y ′|+ κ|z− z ′|, κy 6 κ

for all (y, z), (y ′, z ′) ∈ R×RD uniformly in (ti,ω) and independent of π. Then there is a
constant C > 0 depending on κ, T and the data (ξ, f) such that for |π| small enough

max
06i6N

E|Yti − Y
π,?
ti

|2 +

N−1∑
i=0

∫ti+1

ti

E|Zt − Z
π,?
ti

|2dt

6 C
{
E|YtN − ξπ|2 + κ2

y|π|+

N−1∑
i=0

E|Zπ,?
ti
∆Wi − (Yπ,?

ti+1
− E[Yπ,?

ti+1
| Fti ])|

2

+

N−1∑
i=0

∫ti+1

ti

E|f(t, Yt,Zt) − fπ(ti, Yt,Zt)|2dt
}

.

(3.8)

Note, that the proof of the next lemma follows the argumentation in Bouchard and
Touzi (2004), Theorem 3.1.

Proof. The pairs (Y,Z) and (Y̌π,?
t , Žπ,?

t ) are solving for t ∈ [ti, ti+1) the following
differential equations

Yt = Yti+1 −

∫ti+1

t

f(s, Ys,Zs)ds−
∫ti+1

t

ZsdWs,

Y̌π,?
t = Yπ,?

ti+1
− fπ(ti, Y

π,?
ti

, Zπ,?
ti

)(t− ti) −

∫ti+1

t

Žπ,?
s dWs,

where Žπ,?
t can be obtained by the martingale representation theorem, i. e.∫ti+1

ti

Žπ,?
t dWt = Yπ,?

ti+1
− E[Yπ,?

ti+1
| Fti ]. (3.9)
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At time ti we have Y̌π,?
ti

= Yπ,?
ti

by definition. By Itô’s Lemma follows then

E|Yt − Y̌
π,?
t |2 +

∫ti+1

t

E|Zs − Ž
π,?
s |2ds

6 E|Yti+1− Y
π,?
ti+1

|2 + 2
∫ti+1

t

E[(Ys − Y̌
π,?
s )

(
f(s, Ys,Zs) − fπ(ti, Y

π,?
ti

, Zπ,?
ti

)
)
]ds

= (I) + (II).

Concerning summand (II), we receive due to Young’s inequality for some γ > 0

(II) 6 γ
∫ti+1

t

E|Ys − Y̌
π,?
s |2ds+

2
γ

∫ti+1

ti

E|fπ(ti, Ys,Zs) − fπ(ti, Y
π,?
ti

, Zπ,?
ti

)|2ds

+
2
γ

∫ti+1

ti

E|f(s, Ys,Zs) − fπ(ti, Ys,Zs)|2ds.

Next the Lipschitz condition on fπ yields together with Young’s inequality

(II) 6 γ
∫ti+1

t

E|Ys − Y̌
π,?
s |2ds+

4
γ

∫ti+1

ti

(
κ2
yE|Ys − Y

π,?
ti

|2 + κ2E|Zs − Z
π,?
ti

|2
)
ds

+ C

∫ti+1

ti

E|f(s, Ys,Zs) − fπ(ti, Ys,Zs)|2ds.

In view of the setting explained in (1.1) and the Lipschitz condition on f, we can
make use of Lemma 2. Hence,

E|Ys − Y
π,?
ti

|2 6 2E|Ys − Yti |
2 + 2E|Yti − Y

π,?
ti

|2

6 C|π|+ C
∫ti+1

ti

E|Zt|
2dt+ 2E|Yti − Y

π,?
ti

|2.

Coming back to summand (II), we have as κy < κ,

(II) 6 γ
∫ti+1

t

E|Ys − Y̌
π,?
s |2ds+

8κ2

γ

(
∆iE|Yti − Y

π,?
ti

|2 +
1
4

∫ti+1

ti

E|Zs − Z
π,?
ti

|2ds

)

+ Cκ2
y|π|

(
∆i +

∫ti+1

ti

E|Zt|
2dt

)

+ C

∫ti+1

ti

E|f(s, Ys,Zs) − fπ(ti, Ys,Zs)|2ds

=: γ

∫ti+1

t

E|Ys − Y̌
π,?
s |2ds+

8κ2

γ
Ai + Bi.

Summarizing (I) and (II), we get

E|Yt − Y̌
π,?
t |2 6 E|Yt − Y̌

π,?
t |2 +

∫ti+1

t

E|Zs − Ž
π,?
s |2ds

6 E|Yti+1 − Y
π,?
ti+1

|2 + γ

∫ti+1

t

E|Ys − Y̌
π,?
s |2ds+

8κ2

γ
Ai + Bi

(3.10)
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and by Gronwall’s lemma follows

E|Yt − Y̌
π,?
t |2 6 eγ∆i(E|Yti+1 − Y

π,?
ti+1

|2 + 8κ2Ai/γ+ Bi).

Inserting this result into the second inequality of (3.10) yields

E|Yti − Y
π,?
ti

|2 +

∫ti+1

ti

E|Zt − Ž
π,?
t |2dt

6 (1 + γ∆ie
γ∆i)(E|Yti+1 − Y

π,?
ti+1

|2 +
8κ2

γ
Ai + Bi)

6 (1 + Cγ∆i)(E|Yti+1 − Y
π,?
ti+1

|2 +
8κ2

γ
Ai + Bi)

for |π| small enough. Then, choosing γ = 64κ2 and |π| 6 1/(Cγ) leads to

E|Yti − Y
π,?
ti

|2 +

∫ti+1

ti

E|Zt − Ž
π,?
t |2dt 6 (1 + Cγ∆i)

(
E|Yti+1 − Y

π,?
ti+1

|2 + Bi

)

+
1
4
∆iE|Yti − Y

π,?
ti

|2 +
1
16

∫ti+1

ti

E|Zt − Z
π,?
ti

|2dt.

Hence, we have for |π| small enough

E|Yti − Y
π,?
ti

|2 +

∫ti+1

ti

E|Zt − Ž
π,?
t |2dt

6 (1 + C∆i)
{
E|Yti+1 − Y

π,?
ti+1

|2 + Bi

}
+

1
4

∫ti+1

ti

E|Zt − Z
π,?
ti

|2dt.
(3.11)

Next, we make use of∫ti+1

ti

E|Zt − Z
π,?
ti

|2dt 6 2
∫ti+1

ti

(
E|Zt − Ž

π,?
t |2 + E|Žπ,?

t − Zπ,?
ti

|2
)
dt (3.12)

and it turns out that

E|Yti − Y
π,?
ti

|2 +
1
2

∫ti+1

ti

E|Zt − Ž
π,?
t |2dt

6 (1 + C∆i)
{
E|Yti+1 − Y

π,?
ti+1

|2 + Bi

}
+

1
2

∫ti+1

ti

E|Žπ,?
t − Zπ,?

ti
|2dt.

Thanks to the discrete Gronwall lemma we get an upper bound for the Y-part, i. e.

E|Yti − Y
π,?
ti

|2

6 eCT
{
E|YtN − ξπ|2 + C

N−1∑
j=i

Bi + C

N−1∑
j=i

∫ti+1

ti

E|Žπ,?
t − Zπ,?

ti
|2dt
}

.
(3.13)
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By summing (3.11) up from i = 0 to N− 1 we obtain

N−1∑
i=0

∫ti+1

ti

E|Zt − Ž
π,?
t |2dt

6 C max
06i6N

E|Yti − Y
π,?
ti

|2 + C

N−1∑
i=0

Bi +
1
4

N−1∑
i=0

∫ti+1

ti

E|Zt − Z
π,?
ti

|2dt

and applying this result on (3.12) yields

N−1∑
i=0

∫ti+1

ti

E|Zt − Z
π,?
ti

|2dt

6 C max
06i6N

E|Yti − Y
π,?
ti

|2 + C

N−1∑
i=0

Bi + C

N−1∑
i=0

∫ti+1

ti

E|Žπ,?
t − Zπ,?

ti
|2dt.

(3.14)

Merging the results in (3.13) and (3.14) gives

max
06i6N

E|Yti − Y
π,?
ti

|2 +

N−1∑
i=0

∫ti+1

ti

E|Zt − Z
π,?
ti

|2dt

6 CE|YtN − ξπ|2 + C

N−1∑
i=0

Bi + C

N−1∑
i=0

∫ti+1

ti

E|Žπ,?
t − Zπ,?

ti
|2dt.

(3.15)

Regarding the second summand, we have by definition

N−1∑
i=0

Bi 6 Cκ
2
yT |π|+ Cκ

2
y|π|

∫T
0
E|Zt|

2dt

+ C

N−1∑
i=0

∫ti+1

ti

E|f(t, Yt,Zt) − fπ(ti, Yt,Zt)|2dt

6 C|π|+ C
N−1∑
i=0

∫ti+1

ti

E|f(t, Yt,Zt) − fπ(ti, Yt,Zt)|2dt,

as
∫T

0 E|Zt|
2dt < ∞. As far as the third summand of the right-hand side of (3.15)is

concerned, we use Itô’s isometry and the definition of
∫ti+1
ti

Žπ,?
t dWt in (3.9) to

complete the proof. �

Remark 11. The third term of the right-hand side of (3.8) has a meaningful interpre-
tation concerning the L2-regularity of the true control process (Zt)06t6T . The notion
of L2-regularity was introduced in Zhang (2001) and is defined by

N−1∑
i=0

∫ti+1

ti

E
∣∣∣Zt −

1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
dt, (3.16)
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3.1 Global a-posteriori error criterion

see also Subsection 2.1. In order to show the relation between (3.16) and

N−1∑
i=0

E|Zπ,?
ti
∆Wi − (Yπ,?

ti+1
− E[Yπ,?

ti+1
| Fti ])|

2 (3.17)

we make some insertions and apply Young’s inequality.

N−1∑
i=0

∫ti+1

ti

E
∣∣∣Zt −

1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
dt

6 2
N−1∑
i=0

∫ti+1

ti

(
E|Zt − Z

π,?
ti

|2dt+ E
∣∣∣Zπ,?
ti

−
1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
)
dt

6 4
N−1∑
i=0

∫ti+1

ti

E|Zt − Z
π,?
ti

|2dt,

where the last step followed by Jensen’s inequality. Assuming E|ξ− ξπ|2 6 C|π| and
supti6t6ti+1

E|f(t,y, z) − fπ(ti,y, z)|2 6 C|π| for all ti ∈ π, we obtain by Lemma 10

N−1∑
i=0

∫ti+1

ti

E
∣∣∣Zt −

1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
dt

6 C|π|+ C
N−1∑
i=0

E|Zπ,?
ti
∆Wi − (Yπ,?

ti+1
− E[Yπ,?

ti+1
| Fti ])|

2.

On the other hand we have by the definition of Žπ,?
t in the previous proof, Itô’ s

isometry and Young’ s inequality

N−1∑
i=0

E|Zπ,?
ti
∆Wi − (Yπ,?

ti+1
− E[Yπ,?

ti+1
| Fti ])|

2

6 2
N−1∑
i=0

∫ti+1

ti

E|Zπ,?
ti

− Zt|
2dt+ 2

N−1∑
i=0

∫ti+1

ti

E|Zt − Ž
π,?
t |2dt.

Now we apply Young’s inequality on the first summand of the above right-hand side
and use then the relation ∆iZ

π,?
ti

= E[
∫ti+1
ti

Žπ,?
t dt| Fti ], see Lemma 3.1 in Bouchard

and Touzi (2004). Due to Jensen’s inequality we receive

E|Zπ,?
ti
∆Wi − (Yπ,?

ti+1
− E[Yπ,?

ti+1
| Fti ])|

2

6 4
∫ti+1

ti

E
∣∣∣Zπ,?
ti

−
1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
dt

+ 4
∫ti+1

ti

E
∣∣∣ 1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]
− Zt

∣∣∣
2
dt+ 2

N−1∑
i=0

∫ti+1

ti

E|Zt − Ž
π,?
t |2dt

6 4
∫ti+1

ti

E
∣∣∣Zt −

1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
dt+ 6

∫ti+1

ti

E|Zs − Ž
π,?
s |2ds.
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After replacing (3.12) through∫ti+1

ti

E|Zt − Z
π,?
ti

|2dt

6 2
∫ti+1

ti

E
∣∣∣Zt −

1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
dt

+ 2
∫ti+1

ti

E
∣∣∣ 1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]
− Zπ,?

ti

∣∣∣
2
dt

6 2
∫ti+1

ti

E
∣∣∣Zt −

1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
dt+ 2

∫ti+1

ti

E|Zs − Ž
π,?
s |2ds,

we repeat the remaining steps of Lemma 10. Together with the assumptions E|ξ −
ξπ|2 6 C|π| and |f(t,y, z) − fπ(ti,y, z)|2 6 C|π| we obtain

N−1∑
i=0

E|Zπ,?
ti
∆Wi − (Yπ,?

ti+1
− E[Yπ,?

ti+1
| Fti ])|

2

6 C|π|+ C
N−1∑
i=0

∫ti+1

ti

E
∣∣∣Zt −

1
∆i
E
[ ∫ti+1

ti

Zsds
∣∣∣Fti

]∣∣∣
2
dt.

for some constantC > 0. Summing up, we can say that (3.16) and (3.17) are equivalent
up to a term of order |π|. That means, (3.17) reflects a property of the original BSDE,
precisely the L2-regularity of Z.

In case we are located in the setting of (1.3) and Assumption 2 is fulfilled, the
squared L2-regularity of Z is of order |π| and (3.16) converges with the same rate.
However, for the results of Theorem 9 the much weaker Assumptions 1 and 5 are
sufficient. Indeed, we estimate (3.17) by the global a-posteriori criterion basically by
using the Lipschitz condition on f and fπ.

Proof of Theorem 9. Recall the notation

∆fπi (t) = f(t, Yt,Zt) − f
π(ti, Yt,Zt).

We start with the first and third inequality. Therefore, we define the (Gti)ti∈π-
martingale (M̂π

ti
)ti∈π by setting M̂π

t0
= 0 and M̂π

ti+1
− M̂π

ti
:= Ẑπti∆Wi for i =

0, . . . ,N − 1. Due to Young’s inequality and the independence between Gt0 and F,
we have

max
06i6N

E[|Yti − Ŷ
π
ti
|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
π
ti
|2| Gt0 ]dt

6 2
(

max
06i6N

E[|Yti − Y
π,?
ti

|2] +

N−1∑
i=0

∫ti+1

ti

E[|Zt − Z
π,?
ti

|2]dt
)

+ 2
(

max
06i6N

E[|Yπ,?
ti

− Ŷπti |
2| Gt0 ] +

N−1∑
i=0

∆iE[|Z
π,?
ti

− Ẑπti |
2| Gt0 ]

)

= (I) + (II).
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3.1 Global a-posteriori error criterion

Regarding the first summand, we employ the result of Lemma 10. Hence, (I) is
bounded by

E|YtN − ξπ|2 + κ2
y|π|+

N−1∑
i=0

E|Zπ,?
ti
∆Wi − (Yπ,?

ti+1
− E[Yπ,?

ti+1
| Fti ])|

2

+

N−1∑
i=0

∫ti+1

ti

E|∆fπi (t)|
2dt.

Bear in mind that there is a process Žπ,?
t such that (3.9) holds. Again we incorporate

the independence between Gt0 and F and receive

N−1∑
i=0

E|Zπ,?
ti
∆Wi − (Yπ,?

ti+1
− E[Yπ,?

ti+1
| Fti ])|

2

=

N−1∑
i=0

E[|Zπ,?
ti
∆Wi −

∫ti+1

ti

Žπ,?
s dWs|

2| Gt0 ]

6 2
N−1∑
i=0

E[|Zπ,?
ti
∆Wi − Ẑ

π
ti
∆Wi|

2 + |Ẑπti∆Wi −

∫ti+1

ti

Žπ,?
s dWs|

2| Gt0 ]

= 2
N−1∑
i=0

∆iE[|Z
π,?
ti

− Ẑπti |
2| Gt0 ]+ 2E

[∣∣∣
N−1∑
i=0

(
Ẑπti∆Wi−

∫ti+1

ti

Žπ,?
s dWs

)∣∣∣
2∣∣∣Gt0

]
.

Similarly to Theorem 6 we define

Ȳπt0
= Ŷπt0

, Ȳπti+1
= Ȳπti + ∆if

π(ti, Ŷπti , Ẑ
π
ti
) + Ẑπti∆Wi

and recall the identity arising from (2.2):∫ti+1

ti

Žπ,?
s dWs = Yπ,?

ti+1
− Yπ,?

ti
+ ∆if

π(ti, Y
π,?
ti

, Zπ,?
ti

).

Then, we obtain

E
[∣∣∣
N−1∑
i=0

(
Ẑπti∆Wi −

∫ti+1

ti

Žπ,?
s dWs

)∣∣∣
2∣∣∣Gt0

]

= E[|ȲπtN − Ŷπt0
−

N−1∑
i=0

∆if(ti, Ŷπti , Ẑ
π
ti
)

−
(
ξπ − Yπ,?

t0
−

N−1∑
i=0

∆if(ti, Y
π,?
ti

, Zπ,?
ti

)
)
|2| Gt0 ]

6 CE[|ȲπtN − ŶπtN |
2| Gt0 ]

+ C
(

max
06i6N

E|Yπ,?
ti

− Ŷπti |
2| Gt0 ] +

N−1∑
i=0

∆iE[|Z
π,?
ti

− Ẑπti |
2| Gt0 ]

)
.

(3.18)
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3 Error criteria for BSDEs

The first summand of the right-hand side of (3.18) is bounded by the error criterion
by definition of ȲπtN . The remaining two summands are bounded by a constant times
(II). Turning to this summand, we apply the estimate (3.7) and get

(II) 6 C
(

max
06i6N

E[|Yπ,?
ti

− Ŷπti |
2| Gt0 ] +DE[|M

π,?
tN

− M̂π
tN

|2| Gt0 ]
)

.

Then we find ourselves in the setting of Theorem 6 and thus can deduce that (II) 6
CEπ(Ŷ

π, M̂π), i. e. Summand (II) is bounded by terms of the global a-posteriori
criterion for discrete-time BSDEs. Due to the definition of M̂π

ti
, we immediately

obtain (II) 6 CEπ(Ŷπ, Ẑπ). In sum,

max
06i6N

E[|Yti − Ŷ
π
ti
|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
π
ti
|2| Gt0 ]dt

6 C
(
Eπ(Ŷ

π, Ẑπ) + E|ξ− ξπ|2 + κ2
y|π|+

N−1∑
i=0

∫ti+1

ti

E|∆fπi (t)|
2dt
)

.

(3.19)

As far as the third inequality is concerned, the proof is complete, since κy = 0 in case
fπ does not depend on y. For the first inequality, it remains to give an estimate for

N−1∑
i=0

∫ti+1

ti

E[|Yt − Ŷ
π
ti
|2| Gt0 ],

which is bounded by

2 max
06i6N

E[|Yti − Ŷ
π
ti
|2| Gt0 ] + 2

N−1∑
i=0

∫ti+1

ti

E|Yt − Yti |
2.

Concerning the first summand, there is an estimate given by (3.19). On the second
summand we can apply Lemma 2. Hence,

N−1∑
i=0

∫ti+1

ti

E|Yt − Yti |
2 6

N−1∑
i=0

∆i(|π|+

∫t
ti

E|Zs|
2ds) 6 C|π|,

as
∫T

0 E|Zt|
2dt <∞. This completes the proof on the first inequality. The second part

of the proof considers the second and forth inequality. Therefore, we make use of
the identity

Yti − Y0 =

∫ti
0
f(t, Yt,Zt)dt+

∫ti
0
ZtdWt. (3.20)

Inserting (3.20) gives

Eπ(Ŷ
π, Ẑπ) = E[|ξπ − ŶπtN |

2| Gt0 ] + max
06i6N

E
[∣∣∣
(
Ŷπti − Yti

)
+
(
Y0 − Ŷ

π
t0

)

+

i−1∑
j=0

∫tj+1

tj

(
f(t, Yt,Zt) − fπ(tj, Ŷπtj , Ẑ

π
tj
)
)
dt+

i−1∑
j=0

∫tj+1

tj

(Zt− Ẑ
π
tj
)dWt

∣∣∣
2∣∣∣Gt0

]
.
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3.1 Global a-posteriori error criterion

Then we obtain by the Itô isometry, Young’s inequality and Jensen’s inequality

Eπ(Ŷ
π, Ẑπ) 6 c

(
E|ξ− ξπ|2 + max

06i6N
E[|Ŷπti − Yti |

2| Gt0 ]

+

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
π
ti
|2| Gt0 ]dt+

N−1∑
j=0

∫tj+1

tj

E|∆fπi (t)|
2dt

+

N−1∑
j=0

∫tj+1

tj

E[|fπ(tj, Yt,Zt) − fπ(tj, Ŷπtj , Ẑ
π
tj
)|2| Gt0 ]dt

)
.

(3.21)

Due to the Lipschitz condition of fπ and Young’s inequality, we obtain
N−1∑
i=0

∫ti+1

ti

E[|fπ(ti, Yt,Zt) − fπ(ti, Ŷπti , Ẑ
π
ti
)|2| Gt0 ]dt

6 2
N−1∑
i=0

∫ti+1

ti

(
κ2
yE[|Yt − Ŷ

π
ti
|2| Gt0 ] + κ

2E[|Zt − Ẑ
π
ti
|2| Gt0 ]

)
dt.

Combining this inequality with (3.21) yields the second inequality. In case fπ does
not depend on y, we have κy = 0. Thus, the fourth inequality is shown as well. �

3.1.4 The a-posteriori error criterion for typical examples of BSDEs

Let S be the solution of the forward SDE

St = s0 +

∫t
0
b(u,Su)du+

∫t
0
σ(u,Su)dWu,

where the deterministic functions b : [0, T ]×RD̃ → RD̃ and σ : [0, T ]×RD̃ → RD̃×D
are 1/2-Hölder-continuous in time and Lipschitz in its spatial variables.

Irregular terminal condition and Lipschitz continuous driver

We define ξ by φ(ST ), where φ is a deterministic function that is considered to be
irregular, as no Lipschitz condition is imposed on φ. Many cases in the literature on
BSDEs involve a driver, that consists of a deterministic function F : [0, T ]×RD̃×R×
RD → R, namely

f(t,y, z) = F(t,S,y, z),

where F isβ-Hölder-continuous in t for someβ > 1/2. Here, we assume that S can be
sampled perfectly on the meshπ. Thus, we can set ξπ = ξ and fπ(ti,y, z) = f(ti,y, z).
Then, the first inequality in Theorem 9 simplifies to

max
06i6N

E[|Yti − Ŷ
π
ti
|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E
[
|Yt − Ŷ

π
ti
|2 + |Zt − Ẑ

π
ti
|2| Gt0

]
dt

6 C
(
Eπ(Ŷ

π, Ẑπ) + |π|
)

.
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3 Error criteria for BSDEs

For φ irregular and F Lipschitz in its spatial variables and 1/2-Hölder in t and an
equidistant time grid, the time discretization error converges with rate |π|p, where p
can be smaller than 1/2, see e.g. Gobet and Makhlouf (2010). Then, the global error
criterion provides information about the time discretization error.

Lipschitz driver depending on z only

As before, we suggest a terminal conditionξ = φ(ST )without any further conditions.
But this time we look at the special case f(t,y, z) = F(z) with F being a deterministic
Lipschitz function. For the sake of simplicity, we suppose again thatS can be sampled
perfectly on the grid such that (ξπ, fπ) can be defined by

ξπ = φ(ST ) = ξ, fπ(ti,y, z) = F(z) = f(ti,y, z).

Since f is independent of y, we have κy = 0 and by the third and fourth inequality
of Theorem 9 consequently

1
c
Eπ(Ŷ

π, Ẑπ) 6 max
06i6N

E[|Yti − Ŷ
π
ti
|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
π
ti
|2| Gt0 ]dt

6 CEπ(Ŷ
π, Ẑπ).

It is worth noting that in this case the squared approximation error between the true
solution of the continuous BSDE and the approximate solution is equivalent to the
global a-posteriori criterion. This is insofar striking, as it is evaluated only by means
of the approximate solution. However this equivalence result considers the error
between Y and Ŷπ merely on the time grid.

Lipschitz continuous terminal condition and Lipschitz continuous driver

Again we look at the case ξ = φ(ST ) and f(t,y, z) = F(t,S,y, z), where F is deter-
ministic. In contrast to the previous examples, let Assumption 2 be satisfied with
the difference that F shall be β-Hölder continuous in time and its Lipschitz constant
corresponding to S is denoted by κs. Precisely,

|φ(s1) − φ(s2)|
2 6 κ|s1 − s2|,

|F(t1, s1,y1, z1) − F(t2, s2,y2, z2)|

6 κ|t1 − t2|
β + κs|s1 − s2|+ κ|y1 − y2|+ κ|z1 − z2|,

for some β > 1/2. Initially, we suppose that for S the approximation Sπt is at hand, e.
g. produced by the Euler scheme. Then we define the approximate data (ξπ, fπ) by

ξπ = φπ(SπtN), fπ(ti,y, z) = F(ti, Sπti ,y, z),
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3.1 Global a-posteriori error criterion

whereφπ is Lipschitz with constant κ and it holds that maxti∈π E|Sti−S
π
ti
|2 6 C|π|2β.

Under these assumptions,

E|ξ− ξπ|2 +

N−1∑
i=0

∫ti+1

ti

E|F(t,St, Yt,Zt) − F(ti, Sπti , Yt,Zt)|
2dt

6 C(κ2|π|2β + κ2
s|π|).

Here we also made use of the estimate E|St− Sti |
2 < C|t− ti|, that is valid according

to Zhang (2004), see Lemma 3. Considering Assumption 2 we have by Lemma 2 and
Lemma 3.2 in Zhang (2004) that

max
06i6N−1

sup
ti6t<ti+1

E|Yt − Yti |
2 < C|π|.

In view of these estimates the first and second inequality of Theorem 9 reduce to

max
06i6N−1

sup
ti6t<ti+1

E[|Yt − Ŷ
π
ti
|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
π
ti
|2| Gt0 ]dt

6 C(Eπ(Ŷ
π, Ẑπ) + |π|)

(3.22)

and

Eπ(Ŷ
π, Ẑπ) 6 c

(
max

06i6N−1
sup

ti6t<ti+1

E[|Yt − Ŷ
π
ti
|2| Gt0 ]

+

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
π
ti
|2| Gt0 ]dt+ κ

2|π|2β + κ2
s|π|
)

.

Due to |π|2β < |π| for |π| < 1, the error criterion is equivalent to the squared approx-
imation error between the true solution an (Ŷπ, Ẑπ) up to terms of order |π| (which
matches the above mentioned squared time discretization error). Contrary to the
previous example, this equivalence works with respect to the complete time interval
[0, T ] and is not restricted to the time grid π.

If the function F does not depend on S, the additional error term in the lower
bound reduces to cκ2|π|2β. In case F does not depend on t and the process S can be
sampled perfectly on the grid, i. e. Sπt = S, we obtain ξπ = ξ and f = fπ. Then the
additional error term c(κ2|π|2β + κ2

s|π|) disappears completely.

Coefficient functions with certain smoothness and boundedness conditions

In the last example we deal with the same data as in the previous example, but this
time we assume that the coefficient functions b, σ,φ and f satisfy beside Assumption
2 certain smoothness and boundedness conditions. Based on the assumption that S
can be sampled perfectly on an equidistant grid π, we set

ξπ = φ(ST ) = ξ, fπ(ti,y, z) = F(ti,Sti ,y, z) = f(ti,y, z).
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For this setting, Gobet and Labart (2007) have shown that

max
06i6N

E|Yπ,?
ti

− Yti |
2 +

N−1∑
i=0

∆iE|Z
π,?
ti

− Zti |
2 6 C|π|2. (3.23)

In view of (3.4), the combination of Theorem 6 and (3.23) yields

max
06i6N

E[|Ŷπti − Yti |
2| Gt0 ] +

N−1∑
i=0

∆iE[|Ẑ
π
ti
− Zti |

2| Gt0 ] 6 C(Eπ(Ŷ
π, Ẑπ) + |π|2),

where (Ŷπti , Ẑ
π
ti
)ti∈π is (Gti)ti∈π-adapted and Gt0 is independent of FT . In contrast

to (3.22), the additional error term decreases here with rate 1 instead of 1/2 in the
L2-sense. In other words, due to the stronger assumptions we are rewarded with a
faster convergence of the additional error term. However, the upper bound is related
to the approximation error on the time grid π only.

The estimate on the approximation error is still valid in case

ξπ = φ(SπtN), fπ(ti,y, z) = F(ti, Sπti ,y, z)

and Sπ is a strong order 1 approximation of S, for example generated by the Milstein
scheme. This result can be obtained by a comparison of the error criteria with respect
to the data (ξ, f) and (ξπ, fπ), respectively. Clearly, we have

E|ξ− ŶπtN |
2 + max

16i6N
E[|Ŷπti − Ŷ

π
t0
−

i−1∑
j=0

∆jf(tj, Ŷπtj , Ẑ
π
tj
) −

i−1∑
j=0

Ẑπtj∆Wj|
2| Gt0 ]

6 2E|ξ− ξπ|2 + C
i−1∑
j=0

∆jE[|F(tj,Stj , Ŷ
π
tj

, Ẑπtj) − F(tj, S
π
tj

, Ŷπtj , Ẑ
π
tj
)|2| Gt0 ]

+ 2E|ξ− ŶπtN |
2 + max

16i6N
2E[|Ŷπti − Ŷ

π
t0

−

i−1∑
j=0

∆jf
π(tj, Ŷπtj , Ẑ

π
tj
) −

i−1∑
j=0

Ẑπtj∆Wj|
2| Gt0 ]

6 max
06i6N

2E|Sπti − Sti |
2 + 2

(
E|ξπ − ŶπtN |

2

+ max
16i6N

E[|Ŷπti − Ŷ
π
t0
−

i−1∑
j=0

∆jf
π(tj, Ŷπtj , Ẑ

π
tj
) −

i−1∑
j=0

Ẑπtj∆Wj|
2| Gt0 ]

)
.

3.2 Local error criterion for approximate solutions obtained
by projections

During the review of typical BSDEs in the previous subsection, we already indicated
the suggestion of an additional ’local’ error criterion. In contrast to the globally
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3.2 Local error criterion for approximate solutions obtained by projections

natured criterion it considers the violation of (3.1) along the partial interval [ti, ti+1]
for all i = j, . . . ,N− 1. Clearly, we define it by taking the L2-norm and summing up
from i = j to N− 1 the local criterion, i.e.

Elocπ,j (Ŷ
π, Ẑπ) =

N−1∑
i=j

E|Ŷπti+1
− Ŷπti − ∆if

π(ti, Ŷπti , Ẑ
π
ti
) − Ẑπti∆Wi|

2.

Situated in the setting of (1.3), see also Subsection 3.1.4, we will examine this criterion
merely for two cases. First, we set (Ŷπti , Ẑ

π
ti
)ti∈π = (Yπti , Z

π
ti
)ti∈π, which is the

solution of the explicit time discretization scheme in Subsection 2.2.1. The results of
this step will primarily have a supporting function for the second step. There we
look at (Ŷπti , Ẑ

π
ti
)ti∈π = (Y

π,K0,i
ti

, Zπ,Ki
ti

)ti∈π, that means we refer to the ’projection’
step of least-squares Monte Carlo, where conditional expectations were replaced by
projections on subspaces of L2(Fti) spanned by ηd,i(X

π
ti
), d = 0, . . . ,D, see (2.8).

A natural third step would be to regard (Y
π,K0,i,L
ti

,Zπ,Ki,L
ti

)ti∈π, which is the nu-
merical solution obtained by (2.17). However, this analysis is similar to that of the
approximation error of least-squares Monte Carlo rather intricate. As the emphasis
of this work is on the global a-posteriori-criterion and the enhanced least-squares
Monte Carlo approach, we neglect this topic here.

Lemma 12. In the setting of (1.3) let Assumptions 2 and 3 be satisfied. Suppose further,
there exists a constant such that

E|ξ− ξπ|2 6 const.|π|.

Then there is a constant C > 0 depending on s0, κ, T , D̃ and D such that Elocπ,0 (Y
π,Zπ) 6

C|π|.

Proof. In view of (1.3), we have fπ(ti,y, z) = F(ti, Sπti ,y, z). Then we define

∆fπi (u) = F(ti, S
π
ti

, Yπti+1
, Zπti) − F(u,Su, Yu,Zu).

Step 1: We show∫ti+1

ti

E|∆fπi (u)|
2du 6 C∆2

i + C∆i

∫ti+1

ti

E|Zu|
2du

+ C
(
∆iE|Y

π
ti+1

− Yti+1 |
2 +

∫ti+1

ti

E|Zπti − Zu|
2du

)
. (3.24)

Due to the Lipschitz condition on F, there is a generic constant C > 0 depending on
κ such that∫ti+1

ti

E|∆fπi (u)|
2du 6 C∆2

i + C∆i sup
ti6u6ti+1

E[|Sti − Su|
2 + |Yti+1 − Yu|

2]

+ C∆iE|S
π
ti
− Sti |

2 + C
(
∆iE|Y

π
ti+1

− Yti+1 |
2 +

∫ti+1

ti

E|Zπti − Zu|
2du

)
.
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Thanks to the assumptions in the present lemma we have for the third summand the
estimation C∆2

i. Assumption 2 allows us to employ the regularity results on S and Y
in Lemmas 3 and 2. Combining these steps yields (3.24).

Step 2: We will insert the equality

Yti+1 − Yti =

∫ti+1

ti

F(u,Su, Yu,Zu)du+

∫ti+1

ti

ZudWu

in the summands of Elocπ,0 (Y
π,Zπ). Recall that

Yti = E[Yti+1 −

∫ti+1

ti

F(u,Su, Yu,Zu)du| Fti ],

Yπti = E[Y
π
ti+1

− ∆iF(ti, Sπti , Y
π
ti+1

, Zπti)| Fti ].
(3.25)

The first equation arises from the formulation of the BSDE, the second from the
backward scheme (2.2). Together with Young’s inequality and Itô’s isometry we get

E|Yπti −
(
Yπti+1

− ∆if
π(ti, Yπti , Z

π
ti
)
)
+ Zπti∆Wi|

2 6 (I) + (II) + (III), (3.26)

with

(I) = 3E|Yπti − Yti −
(
Yπti+1

− Yti+1 −

∫ti+1

ti

∆fπi (u)du
)
|2,

(II) = 3∆2
iE|f

π(ti, Yπti , Z
π
ti
) − fπ(ti, Yπti+1

, Zπti)|
2,

(III) = 3
∫ti+1

ti

E|Zπti − Zs|
2ds.

In view of (3.25) we work out the quadratic term of summand (I)under consideration
of the rules for conditional expectations. Thus,

(I) 6 3E|Yπti+1
− Yti+1 −

∫ti+1

ti

∆fπi (u)du|
2

− 3E|E[Yπti+1
− Yti+1 −

∫ti+1

ti

∆fπi (u)du| Fti ]|
2.

The definition of Yπti − Yti yields

(I) 6 3E|Yπti+1
− Yti+1 −

∫ti+1

ti

∆fπi (u)du|
2 − 3E|Yπti − Yti |

2

6 3(1 + ∆i)

(
E|Yπti+1

− Yti+1 |
2 +

∫ti+1

ti

E|∆fπi (u)|
2du

)
− 3E|Yπti − Yti |

2,

where the last step followed by Young’s inequality and concerning the integral also
by Jensen’s inequality. Thanks to the Lipschitz condition on Fwe have

(II) 6 3κ2∆2
iE|Y

π
ti
− Yπti+1

|2 6 C∆2
i

(
max

06i6N
E|Yπti − Yti |

2 + E|Yti − Yti+1 |
2)

6 C∆2
i max

06i6N
E|Yπti − Yti |

2 + C∆3
i + C∆

2
i

∫ti+1

ti

E|Zu|
2du,
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3.2 Local error criterion for approximate solutions obtained by projections

where we again made use of Lemma 2. Summing (3.26) up from i = 0 to N − 1 and
considering (3.24) leads to

Elocπ,0 (Y
π,Zπ) 6 C

(
max

06i6N
E|Yπti − Yti |

2 +

∫T
0
E|Zπti − Zs|

2ds
)

+ C|π|

∫T
0
E|Zu|

2du+ C|π|.

Applying the assumption on the terminal condition and
∫T

0 E|Zu|
2du <∞ yields

Elocπ,0 (Y
π,Zπ) 6 C

(
max

06i6N
E|Yπti − Yti |

2 +

∫T
0
E|Zπti − Zs|

2ds
)
+ C|π|.

The result on the time discretization error by Lemor et al. (2006) completes the
proof. �

Theorem 13. Let Assumptions 2 and 3 be fulfilledfor the setting in (1.3). Suppose further
there exists a constant such that

E|ξ− ξπ|2 6 const.|π|.

Then there is a constant C > 0 depending on s0, κ, T , D̃ and D such that for every
j = 0, . . . ,N− 1

N−1∑
i=j

E|P0,i(Y
π
ti
) − Yπti |

2 +

D∑
d=1

N−1∑
i=j

∆iE|Pd,i(Z
π
d,ti) − Z

π
d,ti |

2

> CElocπ,j (Y
π,K,Zπ,K) − |π|,

where (Yπ,K,Zπ,K) denotes the pair (Yπ,K0,i
ti

, Zπ,Ki
ti

)ti∈π.

Theorem 13 provides a lower bound on the error between the time-discretized
solution and the unknown best approximation of the discretized solution in terms
of the function basis. A large summand in the local error criterion suggests that the
choice of the basis functions at this time step may be unsuccessful. In particular, for
i = N− 1 we get

E|P0,N−1(Y
π
tN−1

) − YπtN−1
|2 + ∆N−1

D∑
d=1

E|Pd,N−1(Z
π
d,tN−1

) − Zπd,tN−1
|2

> CElocπ,N−1(Y
π,K,Zπ,K) − |π|.

Proof. Recall that within the explicit time discretization scheme (2.2) the generator
F is applied on the vector (ti, Sπti , Y

π
ti+1

, Zπti) in the case of computable conditional

expectations and on (ti, Sπti , Y
π,K0,i+1
ti+1

, Zπ,Ki
ti

), when conditional expectations are esti-
mated. Hence, we have to adapt the local criterion concerning the time points, at
which the Y-processes are evaluated. Therefore, we abbreviate

∆fπi := fπ(ti, Yπti+1
, Zπti) − f

π(ti, Y
π,K0,i+1
ti+1

, Zπ,Ki
ti

)
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and define

Ai := Y
π,K0,i+1
ti+1

− Yπti+1
+ ∆i∆f

π
i .

The orthogonal projections P0,i are mappings on a subspace of L2(Fti). We have,

P0,i
(
Yπti
)
= P0,i

(
E[Yπti+1

− ∆if
π(ti, Yπti+1

, Zπti)| Fti ]
)

= P0,i
(
Yπti+1

− ∆if
π(ti, Yπti+1

, Zπti)
)
.

(3.27)

After adding a zero we employ Young’s inequality and receive

Elocπ,j (Y
π,K,Zπ,K) 6 3

N−1∑
i=j

E|Y
π,K0,i+1
ti+1

− Yπti+1
− (Y

π,K0,i
ti

− Yπti)

− ∆i
(
fπ(ti, Y

π,K0,i
ti

, Zπ,Ki
ti

) − fπ(ti, Yπti , Z
π
ti
)
)
|2

+ 3
N−1∑
i=0

E|Yπti − Y
π
ti+1

+ ∆if
π(ti, Yπti , Z

π
ti
) + Zπti∆Wi|

2

+ 3
N−1∑
i=j

E|(Zπ,Ki
ti

− Zπti)∆Wi|
2

=: Bj + (I) + (II).

Due to Lemma 12, summand (I) 6 C|π|. Now, we use the relation in (3.27) to add
again a zero. By Young’s inequality follows

Bj 6 C
N−1∑
i=j

E|P0,i
(
Ai
)
−Ai|

2 + C

N−1∑
i=j

E|P0,i
(
Yπti
)
− Yπti |

2 + C

N−1∑
i=j

∆2
iE|∆f

π
i |

2

+ C

N−1∑
i=j

∆2
iE|f

π(ti, Yπti , Z
π
ti
) − fπ(ti, Y

π,K0,i
ti

, Zπ,Ki
ti

)|2

= (III) + (IV) + (V) + (VI).

The Lipschitz condition on F yields

(V) + (VI) 6 C|π|


 max
j6i6N

E|Yπti − Y
π,K0,i
ti

|2 +

N−1∑
i=j

∆iE|Z
π
ti
− Zπ,Ki

ti
|2


 .

Thanks to the definitions of Yπ,K0,i
ti

and Yπti the following equality holds true for all
i = 0, . . . ,N− 2:

Ai = P0,i+1(Ai+1) + P0,i+1
(
Yπti+1

)
− Yπti+1

+ ∆fπi ∆i. (3.28)

Due to the orthogonality of P0,i we have

E[P0,i (Ai)Ai] = E|P0,i
(
Ai
)
|2
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and consequently

N−1∑
i=j

E|P0,i
(
Ai
)
−Ai|

2 =

N−1∑
i=j

E|Ai|
2 − E|P0,i

(
Ai
)
|2.

The following calculation takes place in view of (3.28), the orthogonality of the
projections and the equality Yπ,K0,N

tN
− YπtN = 0.

(III) 6 (1 + ∆N−1)E|Y
π,K0,N
tN

− YπtN |
2

+

N−2∑
i=j

(1 + ∆i)E
[
|P0,i+1

(
Ai+1

)
|2 + |P0,i+1

(
Yπti+1

)
− Yπti+1

|2
]

+

N−1∑
i=j

(1 + ∆i)∆iE|∆f
π
i |

2 −

N−1∑
i=j

E|P0,i
(
Ai
)
|2

6 C
N−2∑
i=j

(
∆iE|Y

π,K0,i+2
ti+2

− Yπti+2
|2 + E|P0,i+1

(
Yπti+1

)
− Yπti+1

|2
)

+ C

N−1∑
i=j

∆iE|∆f
π
i |

2.

Because of the Lipschitz condition on Fwe get

(III) 6 C
(

max
j6i6N

E|Y
π,K0,i
ti

− Yπti |
2 +

N−1∑
i=j

∆iE|Z
π,Ki
ti

− Zπti |
2)

+ C

N−2∑
i=j

E|P0,i+1
(
Yπti+1

)
− Yπti+1

|2.

In sum, we achieve

Elocπ,j (Y
π,K,Zπ,K) 6 C

(
max
j6i6N

E|Y
π,K0,i
ti

− Yπti |
2 +

N−1∑
i=j

∆iE|Z
π,Ki
ti

− Zπti |
2)

+ C

N−1∑
i=j

E|P0,i
(
Yπti
)
− Yπti |

2 + C|π|.

Finally, we obtain by employing Lemma 5 the proof. �

3.3 Non-linear control variates for BSDEs

In this section we propose a method for reducing the approximation error within
least-squares Monte Carlo under suitable assumptions. Precisely, we suggest to split
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the original BSDE into the sum of two BSDEs and assume that one of them can be
solved in closed form and only the other one requires numerical approximation.
We call this procedure non-linear control variate inspired by the variance reduction
technique for simulating expectations. The original BSDE is given by

Yt = ξ−

∫T
t

f(s, Ys,Zs)ds−
∫T
t

ZsdWs. (3.29)

Instead of (3.29), we examine the following BSDEs:

Ỹt = ξ−

∫T
t

f̃(s, Ỹs, Z̃s)ds−
∫T
t

Z̃sdWs,

YVt = −

∫T
t

(
f(s, YVs + Ỹs,ZV

s + Z̃s) − f̃(s, Ỹs, Z̃s)
)
ds−

∫T
t

ZV
sdWs,

where V denotes the application of a control variate. Then, we receive the solution
(Y,Z) of (3.29) by adding (Ỹ, Z̃) and (YV,ZV). Note that Gobet and Makhlouf (2010)
made use of this decomposition in their proof of the L2-regularity of Z in cases of
irregular terminal conditions. Concerning (YV,ZV) we employ least-squares Monte
Carlo, see Section 2.2.

Example 14. Think of an European option pricing problem with pay-off function ξ
and non-linear driver f. Typically, the non-linearity of f is ‘small’ compared to the
terminal condition. In many settings the BSDE

Ỹt = ξ−

∫T
t

Z̃sdWs

has closed-form solutions or very accurate approximations. So, heuristically, the
’main’ part (Ỹ, Z̃) of the solution is correctly or almost correctly computed and only
a small part, here (YV,ZV), is affected by approximation errors.

3.4 Numerical examples

3.4.1 A non-linear decoupled FBSDE with known closed-form solution

We begin with a modification of an example in Bender and Zhang (2008) that is
solvable in closed form as far as (Y,Z) is concerned. That enables us in a way
to compare the Monte Carlo estimates on the global a-posteriori criterion and the
approximation error for some given approximation. Concretely, we consider

Sd,t = sd,0 +

∫t
0
σ
( D∑
d ′=1

sin(Sd ′,u)
)
dWd,u, d = 1, . . . ,D

Yt =

D∑
d=1

sin(Sd,T ) +

∫T
t

1
2
σ2(Yu)

3du−

D∑
d=1

∫T
t

Zd,udWd,u,
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where W = (W1, . . . ,WD) is a D-dimensional Brownian motion and σ > 0 and sd,0,
d = 1, . . . ,D are constants. The true solution for (Y,Z) is given by

Yt =

D∑
d=1

sin(Sd,t), Zd,t = σ cos(Sd,t)
( D∑
d ′=1

sin(Sd ′,t)
)
, d = 1, . . . ,D,

which can be verified by Itô’ s formula. But there is no closed-form solution for
S. Therefore, we will incorporate the Euler or the Miltstein scheme to obtain an
approximation Sπ. Since the terminal condition is not path-dependent we can refrain
here from constructing an extra Markov chain, as described in Subsection 2.2.1 and
simply set Xπ = Sπ. For the approximate solution of (Y,Z) we intend to use then
least-squares Monte Carlo as explained in Section 2.2. This requires, however the
Lipschitz continuity of the driver. Let [·]R be a truncation function such that

[x]R = −R∧ x∨ R

for some constant R > 0 that will be replaced by suitable values as the case may be.
Instead of approximating (Y,Z), we will generate numerical solutions for

YTt =

D∑
d=1

sin(Sd,T ) +

∫T
t

1
2
σ2[(YTu)

3]D3du−

D∑
d=1

∫T
t

ZT
d,udWd,u,

where T indicates the BSDE with truncated driver.

Case 1: One-dimensional Brownian motion and indicator function bases

In the first case we fix the parameters by

D = 1, T = 1, s1,0 = π/2, σ = 0.4 .

Drawing samples of XπtN = SπtN shows that they are primarily located in the interval
[0, 3]. Hence, letK > 3 be the dimension of the function bases η(i, x), that is composed
of indicator functions of equidistant partial intervals of [0, 3] for all i = 0, . . . ,N − 1.
Clearly, we set

η1(i, x) = 1{x<0}(x), ηd,K = 1{x>3}(x),

ηk(i, x) = 1{x∈[3(k−1)/(K−2), 3k/(K−2))}(x), k = 1, . . . ,K− 2,

for i = 0, . . . ,N − 1. The simulation parameter consist of the number of time steps
N, the dimension of the function bases K and the sample size L. For m = 1, . . . , 11
and l = 3, . . . , 5 they are fixed by

N =
[
2
√

2m−1
]

, K = max
{⌈√

2m−1
⌉

, 3
}

, L =
[
2
√

2l(m−1)
]

,

where [a] is the closest integer to a and dae is the closest upper integer to a. To
be precise, we will observe three different choices of l, in which we simultaneously
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increase the parameters N, K and L through their dependence on m. For a better
distinction of the simulation results we will denote the partitions by πN.

The main advantage of indicator function bases is the possibility to control the
projection error through the choice of the dimension K. According to the expla-
nations in Subsection 2.2.5, the above definition yields a convergence rate for the
corresponding L2-error of order 1/2 in the number of times steps. However, this
basis choice is also connected with a severe drawback. Recalling the remarks in
Subsection 2.2.5 on the simulation error, the theoretical convergence threshold is
located at l = 4. The L2-error due to simulation theoretically decreases with rate
N−1/2 when the sample size L grows proportional to N3K2, which is satisfied for
l = 5. Hence, the growing dimension K blows the required sample size much more
up than a constant choice for Kwould. Keep in mind, that enlarging the sample size
L leads to increasing computational cost. For a better illustration, see the absolute
values of L in dependence ofm and l in the below table.

Table 3.1: Sample size L in dependence ofm and l
m 1 2 3 4 5 6 7 8 9 10 11
N 2 3 4 6 8 11 16 23 32 45 64

l
3 2 6 17 46 129 363 1 025 2 897 8 193 23 171 65 537
4 2 9 33 129 513 2 049 8 193 32 769 131 073 524 289 2 097 153
5 2 12 65 363 2049 11 586 65 537 370 728 2 097 153 11 863 284 67 108 865

Given these parameters, we initialize the approximation by ŶT,πN
ti

= sin(SπNti ) and
compute the coefficients α̂T,πN

0,i and α̂T,πN
1,i for the linear combination of the basis

functions by least-squares Monte Carlo and receive the approximate solution by
setting

ŶT,πN
ti

= η(i,XπNti )α̂T,πN
0,i , ẐT,πN

ti
= η(i,XπNti )α̂T,πN

1,i .

As S cannot be sampled perfectly, we measure the squared approximation error by

max
06i6N

E| sin(SπN,MS
ti

) − ŶT,πN
ti

|2

+

N−1∑
i=1

T

N
E|σ cos(SπN,MS

ti
) sin(SπN,MS

ti
) − ẐT,πN

ti
|2, (3.30)

where SπN,MS denotes the approximation of S by the Milstein scheme. This error
term is equivalent to

max
06i6N

E|Yti − Ŷ
T,πN
ti

|2 +

N−1∑
i=1

T

N
E|Zti − Ẑ

T,πN
ti

|2

up to terms of order |πN|
2, as the L2-error between S and SπN,MS decreases with

rate |πN| rather than |πN|
1/2 as in the Euler scheme. Note that ξπ = sin(SπN,MS

tN
)
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and fπ(ti,y, z) = −1
2σ

2[y3]1. According to Subsection 3.1.4 the global a-posteriori
criterion EπN(Ŷ

T,πN , ẐT,πN) satisfies the inequalities

max
06i6N−1

sup
ti6t<ti+1

E[|Yt − Ŷ
T,πN
ti

|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
T,πN
ti

|2| Gt0 ]dt

6 C(EπN(Ŷ
T,πN , ẐT,πN) + |πN|)

and

max
06i6N−1

sup
ti6t<ti+1

E[|Yt − Ŷ
T,πN
ti

|2| Gt0 ] +

N−1∑
i=0

∫ti+1

ti

E[|Zt − Ẑ
T,πN
ti

|2| Gt0 ]dt

>
1
c
EπN(Ŷ

T,πN , ẐT,πN) − |πN|
2.

Thus, in caseEπN(Ŷ
T,πN , ẐT,πN) > const. (1/N) the global error criterion is equivalent

to the squared approximation error. For the estimation of both the criterion and
the error term (3.30) we draw 1000N copies of the increments of the Brownian
motion, denoted by (∆Wi)i=0,...,N−1, and generate thereby samples of XπN = SπN

and SπN,MS.
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Figure 3.1: Development of the global a-posteriori criterion in Case 1

Figure 3.1 shows the estimated global a-posteriori criterion and in Figure 3.2 we
can see the estimated squared approximation error. In both figures the different
paths correspond to the cases l = 3, . . . , 5 with simultaneously growing number
of time steps, dimension of function bases and sample size as described above.
The horizontal as well as the vertical axes are chosen logarithmically for a better
illustration of the results. A comparison of these figures reveals that the a-posteriori

53



3 Error criteria for BSDEs

criterion neatly reflects the convergence behaviour of the approximation error. In
this example, also the absolute values of the criterion and the squared approximation
error almost coincide.
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Number of timesteps, N = 2, ..., 64

l = 3
l = 4
l = 5

Figure 3.2: Development of the squared approximation error in Case 1

Contrary to the theoretical results the global a-posteriori criterion tends to zero in
all three cases for l. Considering the results forN = 32, 45, 64 we receive an empirical
convergence rate of −1.09 for l = 3, −1.25 for l = 4 and −1.02 for l = 5. Hence, only
the expensive example (l = 5) matches the theoretical results as described above.
Nevertheless, the levels of the three paths demonstrate the connection between
sample size L and approximation error. Neglecting the simulations with only few
time steps, we can see that larger values for m and thereby higher computational
cost lead to smaller approximation errors. However, the distance between the error
criteria of l = 4 and l = 5 seems to vanish for a growing number of time steps. That
means forN large enough the error level of the high-expensive case might as well be
achieved by a simulation with smaller computational cost than determined by l = 5.

Case 2: Three-dimensional Brownian motion and polynomial function bases

In this example we also apply the method of non-linear control variates. To this end,
we freeze the diffusion coefficient of S at time 0 and consider a rather simple case of
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decoupled FBSDEs, namely

S̆d,t = Sd,0 +

D∑
d=1

sin(sd,0)σWd,t, d = 1, . . . ,D,

Y̆t =

D∑
d=1

sin(S̆d,T ) −

∫T
t

Z̆udWu.

The process Y̆t can easily be obtained in closed form. Precisely,

Y̆t =

D∑
d=1

E[sin
(
S̆d,t + σ(Wd,T −Wd,t)

)
]

= exp
{
−

1
2
σ2
( D∑
d=1

sin(sd,0)
)2

(T − t)
} D∑
d=1

sin
(
S̆d,t

)
=: u(t, S̆t).

This result inspires to figure out Ỹt := u(t,St) and define thereby the non-linear
control variate. For the sake of convenience we abbreviate

g(t) = exp
{
−

1
2
σ2
( D∑
d=1

sin(sd,0)
)2

(T − t)
}

.

The application of Itô’ s formula yields

Ỹt =

D∑
d=1

sin(Sd,T )

−
1
2
σ2
∫T
t

g(u)
( D∑
d=1

sin(Sd,u)
)(( D∑

d=1

sin(sd,0)
)2

−
( D∑
d=1

sin(Sd,u)
)2
)
du

−

D∑
d=1

∫T
t

g(u)σ cos(Sd,u)
( D∑
d ′=1

sin(Sd ′,u)
)
dWd,u

=

D∑
d=1

sin(Sd,T ) −
1
2
σ2
∫T
t

Ỹu

(( D∑
d=1

sin(sd,0)
)2

−
( D∑
d=1

sin(Sd,u)
)2
)
du

−

D∑
d=1

∫T
t

Z̃d,udWd,u,

with

Z̃d,t = g(t)σ cos(Sd,t)
( D∑
d ′=1

sin(Sd ′,t)
)
, d = 1 . . . ,D.

Hence, there is a BSDE, that has the same terminal condition as the original one and
is solvable in closed form. As described in Section 3.3 it remains now to approximate
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the residual BSDE

YVt =

∫T
t

1
2
σ2
{
[(Ỹu + YVu)

3]D3 + Ỹu

(( D∑
d=1

sin(sd,0)
)2

−
( D∑
d=1

sin(Sd,u)
)2
)}
du

−

D∑
d=1

∫T
t

ZV
d,udWd,u.

The upper indexV refers to the application of non-linear control variates. As concrete
parameters of the BSDE we choose

D = 3, T = 1, s1,0 = s3,0 = π/2, s2,0 = −π/2, σ = 0.4 .

For the construction of function bases we use this time polynomials. Clearly,

η1(i, x) = 1, ηk(i, x) = xk−1, k = 2, . . . , 4
ηk(i, x) = xk−4xj, (k, j) ∈ {(5, 2), (6, 3), (7, 1)},

for i = 0, . . . ,N−1 and d = 0, 1. Thus, the bases are again identical for all d = 0, . . . , 3.
Following the analysis in 2.2.5 we fix the simulation parameters form = 1, . . . , 15 by

N =
[
2
√

2m−1
]

, K = 7, L =
[
2
√

23(m−1)
]

,

which corresponds to a simulation error that decreases with rate N−1/2. Exploiting
least-squares Monte Carlo both for the approximation of (YT ,ZT) and (YV,ZV) gives
the numerical solutions

ŶT,πN
ti

= η(i,XπNti )α̂T,πN
0,i , ẐT,πN

d,ti
= η(i,XπNti )α̂T,πN

d,i , d = 1, . . . , 3,

ŶV,πN
ti

= η(i,XπNti )α̂V,πN
0,i , ẐV,πN

d,ti
= η(i,XπNti )α̂V,πN

d,i , d = 1, . . . , 3.

Based on these results we estimate the global a-posteriori criteria EπN(Ŷ
T,πN , ẐT,πN)

and EπN(Ŷ
V,πN + Ỹ, ẐV,πN + Z̃) by Monte Carlo simulation, for that we use 1000N

samples of XπN = SπN . In contrast to the previous example the approximate termi-
nal condition is this time based on the Euler scheme, namely ξπ =

∑3
d=1 sin(Sπd,T ).

Figure 3.3 allows a comparison of the estimated criteria. Again both axes are loga-
rithmic.

In the original least-squares Monte Carlo approach we can observe for small values
ofN that the criterion decreases faster thanN−1, whereas fromN = 64 the reduction
rate gets significantly smaller than N−1. At N = 256 the error criterion settles down
at about 0.03. Following the theoretical results, the contribution of the squared time
discretization error and the squared simulation error should tend to zero with rate 1
in the number of time steps. Hence, the over all approximation error must be mainly
determined by the non-converging projection error.

For N = 256 we have now a closer look on the projection error. Therefore, we
evaluate the local criterion ElocπN,j(Ŷ

T,πN , ẐT,πN) for j = 0, . . . , 255. Recall, that this
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Figure 3.3: Development of the a-posteriori criterion in Case 2 - Original
least-squares Monte Carlo vs. least-squares Monte Carlo with non-linear
control variates

criterion is a sum over i = j to i = N − 1. According to Section 3.2 the sum of the
projection errors from i = j to N− 1 is bounded from below by a constant times the
local criterion less the negligible term |πN|. The below Figure 3.4 shows that the local
criterion amounts already at j = 255 to 0.025 and then increases nearly linearly for
decreasing j. Finally, we end up at a criterion value of 0.026 at j = 0.

Hence, the results for the local criterion at j 6 255 are primarily influenced by
summand i = 255. This indicates that the projection error at time step i = N−1 = 255
has chief impact on the local criterion, whereas the projections at the remaining time
steps of least-squares Monte Carlo make only minor contribution to this criterion.
Thus, it takes a more suitable function basis a time step i = 255 for a reduction of the
projection error. A first natural step would be the addition of

∑3
d=1 sin(xd), as the

absolute value of ŶT,πN
tN−1

is mainly determined by the terminal condition.
Turning to the application of non-linear control variates, we can observe a global

a-posteriori criterion that empirically decreases with rate 1.03 in the number of time
steps. This matches rougly the theoretical convergence rate of both the squared
time discretization and the squared simulation error. Theses error sources seem to
dominate the over all approximation error, whereas the projection error has negligible
influence up toN = 256. AtN = 256 the global error criterion amounts only to about
a 170th part of the value achieved with the original scheme.

Concerning the local criterion for N = 256, we observe that the estimation of
ElocπN,j(Ŷ

V,πN + Ỹ, ẐV,πN + Z̃) totals 4.667 ∗ 10−7 for j = 255 and increases up to 0.0001
for j = 0. In contrast to least-squares Monte Carlo without control variates, we
cannot identify one particular time step whose projection error has major impact on
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Figure 3.4: Development of the local criterion in Case 2 - Original least-squares
Monte Carlo vs. least-squares Monte Carlo with non-linear control
variates

the local criterion. This corresponds to the fact that here the terminal condition is
not subject of estimation due to the application of non-linear control variates. For
the approximation of (YV,ZV) the chosen function bases seem to be suitable enough
to achieve a small overall approximation error.

3.4.2 A non-linear option pricing problem

The last numerical example of this chapter deals with a non-linear option pricing
problem that was already presented in Lemor et al. (2006). Precisely, we assume that
the underlying stock price is modeled by a geometric Brownian motion according to
Black-Scholes, i. e.

St = s0 exp
{(
µ− σ2/2

)
t+ σWt

}
,

with µ,σ > 0 and W being a one-dimensional Brownian motion. We aim at finding
the price process of an European call-spread option with pay-off

φ(ST ) = (ST − κ1)+ − 2 (ST − κ2)+ ,

where κ1, κ2 > 0 are strike prices. Thus, we can again set X = S and ξπ = ξ = φ(ST ).
We also assume to act in a market with different interest rates for borrowing and
lending. That means, we can invest money in riskless assets at rate r > 0, whereas
bonds can be emitted at rate R > r. According to Bergman (1995), the dynamic of
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the price process is then described by

Yt = φ(ST ) −

∫T
t

(
rYu +

µ− r

σ
Zu − (R− r)

(
Yu −

Zu

σ

)

+

)
du−

∫T
t

ZudWu.

As concrete market parameters we choose

T = 0.25, s0 = 100, r = 0.01, R = 0.06, µ = 0.05, σ = 0.2.

The strike prices are fixed with κ1 = 95 and κ2 = 105. The numerical solution will
be obtained by least-squares Monte Carlo. For this purpose we define the function
bases for i = 0, . . . ,N− 1

η1(x) = (x− 95)+ − 2(x− 105)+,
η2(x) = 1{x<40}(x), η3(x) = 1{x>180}(x),

ηk(x) = 1{x∈[40+140(k−1)/(K−3), 40+140k/(K−3))}(x), k = 1, . . . ,K− 3,

where K is the dimension of the function bases. Again the bases are identical for
d = 0, 1 within each time step. The simulation parameter grow depending on
m = 1, . . . , 10 and l = 3, . . . , 5, clearly

N =
[
2
√

2m−1
]

, K =
⌈

3
√

2m−1
⌉
+ 1, L =

[
2
√

2l(m−1)
]

.

See also the explanations concerning the basis choice in Case 1 of 3.4.1. Note, that
this time the approximators are functions of X = S and not Xπ, since the geometric
Brownian motion can be sampled perfectly. Given these specification, we receive by
least-squares Monte Carlo the approximators for (Y,Z), that is

Ŷπti = η(i,Xti)α̂
π
0,i, Ẑπti = η(i,Xti)α̂

π
1,i.

The global a-posteriori criterion Eπ(Ŷ
π, Ẑπ) is now estimated by drawing 1000N

samples of X = S and applying then Monte Carlo simulation. The results are shown
in Figure 3.5.

Like before the three paths correspond to the different choices of l. Each path
represents the estimated criterion for a simultaneously growing number of time
stepsN, dimension K and sample size L. Whereas the a-posteriori criterion does not
seem to converge in the low-cost case l = 3, we have a growth rate of −1.09 in the
expensive case l = 5. This is consistent with the theoretical results. Apart from that
we observe that the criterion decreases with rate −1 for l = 4. Here, the numerical
results turn out to behave better than the theory suggests. Nevertheless, the absolute
values of the a-posteriori criterion proceed on a higher level for l = 4 than for l = 5.
In case of 45 time steps we end up with a criterion value of 1.39 for the middle-cost
simulation (l = 4) compared to 0.86 in the expensive case.

In the present example it might be prohibitive to turn the sample size of the
expensive case any higher due to the computational complexity required by the
evaluation of the pseudo-inverse of

1√
L

(
η1( Xλ ti

) η2( Xλ ti
) · · · ηK( Xλ ti

)
)
λ=1,...,L,
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Figure 3.5: Development of the global a-posteriori criterion for a call-spread option

see also Subsection 2.2.2. Here, we have to deal with function bases that consist
of the pay-off function and indicator functions. Thus the above matrix is generally
not orthogonal. In contrast to that, the bases of Case 1 in Subsection 3.4.1 are
composed by indicator functions only and thus the corresponding matrix used for
least-squares Monte Carlo is orthogonal. Then the calculation of the pseudo-inverse
in order to receive a solution of the minimization problem of type (2.6) can be
avoided. Indeed, computing projections on orthogonal bases are connected with
smaller computational complexity. For an overview of the absolute values of the
sample size Lwe refer to Subsection 3.4.1.

60



4 Enhancing the least-squares MC
approach by exploiting martingale basis
functions

4.1 Construction of the simplified algorithm and examples
for martingale bases

In subsection 2.2.2 we reviewed the least-squares Monte Carlo approach on estimat-
ing conditional expectations. The objective was to tackle the conditional expectations
that appear in the time discretization scheme (2.3). Clearly, there are (D + 2) condi-
tional expectations to be calculated in every time step, i. e.

E[∆Wd,iY
π
ti+1

|Xπti ], d = 1, . . . ,D (4.1)

E[Yπti+1
|Xπti ], (4.2)

E[F(ti, Sπti , Y
π
ti+1

, Zπti)|X
π
ti
]. (4.3)

Our contribution is now to provide a certain structure such that (4.1) and (4.2) are
computable in closed form and only (4.3) remains to be estimated via least-squares
Monte Carlo.

Roughly speaking, we suppose that at time ti+1 an approximation yπ,K,L
i+1 (Xπti+1

) =

Yπ,K,L
ti+1

of Yπti+1
is at hand such that yπ,K,L

i+1 (x) can be expressed as linear combination
of basis functions η0,k(i+ 1, x), i. e.

yπ,K,L
i+1 (x) =

K∑
k=1

α̃kη0,k(i+ 1, x),

where K is the dimension of the function basis

η0(i+ 1, x) = {η0,1(i+ 1, x), . . . ,η0,K(i+ 1, x)}.

Note, that the dimension of the function bases stays constant over all time steps.
Then, we assume that the basis functions form a system of martingales in the sense
that for all k = 1, . . . ,K

E[η0,k(i+ 1, Xπti+1
)|Xπti ] =: η0,k(i, Xπti),

E[∆Wd,iη0,k(i+ 1, Xπti+1
)|Xπti ] =: ηd,k(i, Xπti), d = 1, . . . ,D.
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4 Enhancing the least-squares MC approach by martingale basis functions

By this construction we receive for each k = 1, . . . ,Kmartingales
(
η0,k(i, Xπti)

)
06i6N.

Because of this definition we have

E[∆Wd,iy
π,K,L
i+1 (Xπti+1

)|Xπti ] =

K∑
k=1

α̃kηd,k(i, Xπti), d = 1, . . . ,D,

E[yπ,K,L
i+1 (Xπti+1

)|Xπti ] =

K∑
k=1

α̃kη0,k(i, Xπti).

However, the non-linearity of F calls for the application of some estimator for the
conditional expectation in (4.3). Like before, we choose for this purpose least-squares
Monte Carlo. Before giving a complete description of the algorithm, we fix the
necessary conditions for the martingale bases setting.

Assumption 6. Let η0(N, x) = {η0,1(N, x), . . . ,η0,K(N, x)} be a K-dimensional basis such
that

(a) E[η0,k(N, Xπti+1
)|Xπti = x] =: η0,k(i, x) ,

(b) E[∆Wd,iη0,k(N, Xπti+1
)|Xπti = x] =: ηd,k(i, x)

are computable in closed form for all k = 1, . . . ,K and i = 0, . . . ,N− 1. Then we define the
bases ηd(i, x) by {ηd,1(i, x), . . . ,ηd,K(i, x)}, d = 0, . . . ,D.

Now, we give a description of the algorithm. Similarly to Subsection 2.2.4, we
make use of a set XL of independent copies of (Xπti)ti∈π, precisely we define

XL = {(∆ Wλ i, X
π

λ ti+1
), i = 0, . . . ,N− 1, λ = 1, . . . ,L}.

First, we check if

E[φπ(XπtN)|X
π
ti

= x], E[∆Wd,iφ
π(XπtN)|X

π
ti

= x]

are available in closed form. If so, we add φπ(x) to the function basis at time tN.
Otherwise we approximate φπ(x) by a linear combination whose coefficients solve
the minimization problem

α̂π,K,L
N = arg min

α∈RK

1
L

L∑
λ=1

|η0(N, Xπλ tN
)α− φπ( Xπλ tN

)|2.

Whatever the case, we can proceed from the assumption that a coefficient vector
α̂π,K,L
N has been chosen, either by perfect evaluation or by least-squares Monte Carlo

estimation. Similarly as before we start with ŷπ,K,L
N (x) = η0(N, x)α̂π,K,L

N and repeat
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then for i = N− 1, . . . , 0

ẑπ,K,L
d,i (x) =

1
∆i
ηd(i, x)α̂

π,K,L
i+1 , d = 1, . . . ,D,

ᾱπ,K,L
i = arg min

α∈RK

1
L

L∑
λ=1

|η ′0(i, X
π

λ ti
)α

− F(ti, Sπλ ti
, ŷπ,K,L
i+1 ( Xπλ ti+1

), ẑπ,K,L
i ( Xπλ ti

))|2,

α̂π,K,L
i = α̂π,K,L

i+1 − ∆iᾱ
π,K,L
i ,

ŷπ,K,L
i (x) = η0(i, x)α̂

π,K,L
i,k .

(4.4)

The comparison of (4.4) with the original scheme in (2.17) shows that in the setting
of Assumption 6 only the conditional expectations of type (4.3) have to be estimated
via least-squares Monte Carlo. This point right away reveals a main advantage of the
simplification. Particularly, in high-dimensional problems the computational effort
is thereby reduced significantly (from D + 2 estimations to one estimation only per
time step).

Nevertheless, the remaining application of least-squares Monte Carlo related to
(4.3) causes a projection error due to the basis choice and a simulation error. Similar
to the original scheme in Lemor et al. (2006), the simplified least-squares Monte Carlo
scheme as well requires the implementation of truncations in order to attain a con-
verging simulation error. Hence, we also have to consider a truncation error. Before
analyzing how the different error sources contribute to the approximation error in
the enhanced approach, we will illustrate by several examples the construction of
function bases, that form a system of martingales according to Assumption 6.

Example 15. This example is based on the assumption that the terminal condition
fulfills ξ = φ(ST ) and the forward SDE in (1.3) is solved by a (possibly multi-variate)
geometric Brownian motion. We model S by D identically and independently dis-
tributed Markov processes (Sd,t)t∈[0,T ] with

Sd,t = sd,0 exp{(µ−
1
2
σ2)t+ σWd,t}, d = 1, . . . ,D,

where sd,0, σ > 0 and µ ∈ R. In this setting the approximation of S by Sπ becomes
obsolete as S can be sampled perfectly. We will explain the creation of martingale
basis functions for three different cases. As the terminal condition is not path-
dependent in the present case, we simply set X = S.

Precisely, we suppose that η0(N, x) is (i) a set of indicator functions of hypercubes
of the state space of X, (ii) a set of monomials depending on X or (iii) includes the
pay-off function of a European max-call option.

(i) Indicator functions of hypercubes: Let η0(N, x) be a set of functions

η[a,b] := 1[a,b] = 1[a1,b1]×···×[aD,bD].
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4 Enhancing the least-squares MC approach by martingale basis functions

Due to the independence of (Xd,t)t∈[0,T ] for all d = 1, . . . ,D, we receive

E[η[a,b](XT )|Xti = x] =

D∏
d=1

E[1[ad,bd](Xd,T )|Xd,ti = xd]

=

D∏
d=1

N(b̃d) −N(ãd) .

Here N is the cumulative distribution function of a standard normal applied
on

ãd =
log(ad/xd) − (µ− 0.5σ2)(T − ti)

σ
√
T − ti

and an analogously defined b̃d.

(ii) Monomials: For monomials ηp(x) := x
p1
1 · · · x

pD
D one has

E[ηp(XT )|Xti = x] =

D∏
d=1

x
pd
d exp{(pdµ+ 0.5pd(pd − 1)σ2)(T − ti)} .

(iii) For the payoff function of a max-call option ηκ(x) = (maxd=1,...,D xd − κ)+, it
can be derived from the results by Johnson (1987) that

E[ηκ(XT )|Xti = x] =

D∑
d=1

eµ(T−ti)xdN0,Σ(ad,+)

− κ
(

1 −

D∏
d=1

N
( log(κ/xd) − (µ− 0.5σ2)(T − ti)

σ
√
T − ti

))
,

where N0,Σ is the distribution function of aD-variate normal with mean vector
0 and covariance matrix Σ. Precisely,

ad,+ =
1

σ
√
T − ti




log(xd/κ) + (µ+ 0.5σ2)(T − ti)
1√
2
(log(xd/xd̄) + σ2(T − ti))

...
1√
2
(log(xd/xD) + σ2(T − ti))




,

with d̄ = 1, . . . ,D, d̄ , d ,and

Σ =




1 1/
√

2 1/
√

2 · · · 1/
√

2
1/
√

2 1 1/2 · · · 1/2
1/
√

2 1/2 1 1/2
...

...
. . .

...
1/
√

2 1/2 · · · 1/2 1




.
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Now we assume that η0(i, x) is computable in closed form according to Assumption 6
(a) and is continuously differentiable with respect to xd, d = 1, . . . ,D. When it comes
to calculating conditional expectations of the form E[∆Wd,iη0,k(N, Xπti+1

)|Xπti = x] in
the present setting for X = Swe can apply for i < N the following rule:

ηd(i, x) = σxd
∂

∂xd
η0(i, x). (4.5)

Indeed, for the one-dimensional case (D = 1) one easily computes

σx
d

dx
η0(i, x) = σx

d

dx
E
[
η0(i+ 1,Xti+1) |Xti = x

]

= σx
1√

2π∆i

∫∞
−∞ e

− u2
2∆i

d

dx
η0(i+ 1, xeσu+(µ−0.5σ2)∆i)du

=
1√

2π∆i

∫∞
−∞ e

− u2
2∆i

d

du
η0(i+ 1, xeσu+(µ−0.5σ2)∆i)du

=
1√

2π∆i

∫∞
−∞ η0(i+ 1, xeσu+(µ−0.5σ2)∆i)

d

du

(
−e

− u2
2∆i

)
du

=
1√

2π∆i

∫∞
−∞ η0(i+ 1, xeσu+(µ−0.5σ2)∆i)

u

∆i
e
− u2

2∆i du

=
1
∆i
E[∆Wiη0(i+ 1,Xti+1)|Xti = x]

=
1
∆i
E[∆Wiη0(N,XπtN)|Xti = x].

Analogously we receive the multi-dimensional case. Using formula (4.5) we can
then calculate the conditional expectations of type E[∆Wd,iη0,k(N, Xπti+1

)|Xπti = x]
for the above examples of η0(N, x), e.g. indicator functions, monomials, and pay-off
function of a European call.

Remark 16. It might be objected, that Assumption 6 oversimplifies the problem of
estimating conditional expectations that appear in the time discretization scheme
(2.3). Indeed, the crucial point consists of finding appropriate basis functions, that
fulfill the martingale property. A way out might be to find basis functions that match
the conditions of the martingale setting at least approximately. When it comes to
pricing and hedging European options, there are often approximative solutions for
the price and its delta available, which can be used in this sense.

Generally, one can exploit the approximative terminal condition and estimate

η0(i, x) := E[φπ(XπtN)|X
π
ti

= x],

ηd(i, x) := E[∆Wd,iφ
π(XπtN)|X

π
ti

= x], d = 1, . . . ,D

by Monte Carlo simulation. To this end, we use samples of Xπ,ti,x
tN

, where the upper
index denotes that the Markov process starts in x at time ti. Both approaches to
finding basis functions should be complemented by further functions for the least-
squares Monte Carlo estimation of E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]. For this purpose, see

the above proposals. A related numerical example can be found at the end of this
chapter.
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4 Enhancing the least-squares MC approach by martingale basis functions

Similarly to Section 2.2, we will proceed with the analysis of the approximation
error step by step. Again, we will start with the projection error.

4.2 Error sources of the simplified scheme and their
contribution to the approximation error

4.2.1 Projection error

We first examine the projection error of the simplified least-squares Monte Carlo
scheme. To this end, we assume that (4.1) and (4.2) are computable in closed form
and (4.3) is replaced by

P0,i
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
= η0(i, Xπti)α̃

π,K
i ,

with

α̃π,K
i = arg min

α∈RK
E|F(ti, Sπti , Y

π
ti+1

, Zπti) − η0(i, Xπti)α|
2.

Thus, the adjusted scheme reads then for all i = N− 1, . . . , 0 as follows:

Ŷπ,K
tN

= φπ(XπtN),

Ẑπ,K
ti

=
1
∆i
E[(∆Wi)

∗Ŷπ,K
ti+1

|Xπti ],

Ŷπ,K
ti

= E[Ŷπ,K
ti+1

|Xπti ] − ∆iP0,i
(
F(ti, Sπti , Ŷ

π,K
ti+1

, Ẑπ,K
ti

)
)
.

(4.6)

Lemma 17. Let Assumption 2 be satisfied. Then there is a constant C depending on κ, T
and D such that

max
06i6N

E|Yπti − Ŷ
π,K
ti

|2 +

N−1∑
i=0

∆iE|Z
π
ti
− Ẑπ,K

ti
|2

6 C
N−1∑
i=0

∆iE|P0,i
(
F(ti,Sπtti , Y

π
ti+1

,Zπti)
)
− E[F(ti,Sπtti , Y

π
ti+1

,Zπti)|X
π
ti
]|2.

As the proof of Lemma 17 involves procedures that will be repeated for the analysis
of the truncation error, we first show general estimates on the L2-distance of two
processes Ỹkti , k = 1, 2 and Z̃kti , k = 1, 2, respectively. For an (Fti)ti∈π-adapted triple
(skti ,y

k
ti

, zkti)ti∈π, these processes are defined for i = N− 1, . . . , 0 by

ỸktN = yktN ,

Z̃kti =
1
∆i
E[(∆Wi)

∗ykti+1
| Fti ],

Ỹkti = E[y
k
tj+1

| Fti ] − ∆iΨ
(k)
(
i, F(ti, skti ,y

k
ti+1

, zkti)
)
,

(4.7)

where Ψ(k)(i, ·), k = 1, 2 are operators that map Ũ on a Fti-measurable random var-
iable Ψ(k)(i, Ũ), k = 1, 2, respectively. Precisely, Ψ(k)(i, ·) can e.g. be the conditional
expectation or some other orthogonal projection on a subspace of L2(Fti).
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Lemma 18. Let Ψ(1)(i, ·) = P0,i(·) and

Ψ(2)(i, ·) = P0,i(·) or Ψ(2)(i, ·) = E[·| Fti ].

Supposing that γi, i = 0, . . . ,N− 1 is a series of positive real numbers and F is Lipschitz in
(s,y, z) with constant κ, we receive for qi = (1 + 1{s1

ti
,s2
ti
})κ

2(1 +D), i = 0, . . . ,N − 1
that

E|Ỹ1
ti
− Ỹ2

ti
|2 6 (1 + qi∆i)E|E[y

1
ti+1

− y2
ti+1

| Fti ]|
2 +

1 + qi∆i
1 +D

E|s1
ti
− s2

ti
|2

+ (1 + qi∆i)∆iE
[
|y1
ti+1

− y2
ti+1

|2 +
1
D
|z1
ti
− z2

ti
|2
]

+
1 + qi∆i
qi

∆iE|P0,i
(
F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
− Ψ(2)(i, F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
|2,

(4.8)

∆iE|Z̃
1
d,ti − Z̃

2
d,ti |

2 6 E
[
|y1
ti+1

− y2
ti+1

|2 − E[y1
ti
− y2

ti
| Fti ]

2
]

, (4.9)

and

∆iE|Z̃
1
d,ti − Z̃

2
d,ti |

2 6

(
1 +

qi
γi
∆i

)
E|y1

ti+1
− y2

ti+1
|2

+ (γi∆i − 1)E|Ỹ1
ti
− Ỹ2

ti
|2 +

qi
γi(1 +D)

∆iE|s
1
ti
− s2

ti
|2 +

qi
Dγi

∆iE|z
1
ti
− z2

ti
|2

+
1
γi
∆iE|P0,i

(
F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
− Ψ(2)(i, F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
|2.

(4.10)

Proof. From now on we abbreviate as follows:

∆Ψi := P0,i
(
F(ti, s1

ti
,y1
ti+1

, z1
ti
)
)
− Ψ(2)(i, F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
.

In view of (4.7) we can write for d = 1, . . . ,D

Z̃kd,ti =
1
∆i
E[∆Wd,iy

k
ti+1

| Fti ].

Thanks Hölder’s inequality we have

√
∆i|Z̃

1
d,ti − Z̃

2
d,ti | 6 E

[
|
(
y1
ti+1

− y2
ti+1

|− E[y1
ti
− y2

ti
| Fti ]

)2
| Fti

]1/2

and (4.9) follows immediately by computing the quadratic term and by considering
the rules concerning conditional expectations. Due to the definition of Ỹkti we obtain

∆iE|Z̃
1
d,ti − Z̃

2
d,ti |

2 6 E|y1
ti+1

− y2
ti+1

|2 − E|Ỹ1
ti
− Ỹ2

ti
|2 − 2∆iE[(Ỹ1

ti
− Ỹ2

ti
)(∆Ψi)].
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4 Enhancing the least-squares MC approach by martingale basis functions

Young’s inequality yields for some γi > 0

∆iE|Z̃
1
d,ti − Z̃

2
d,ti |

2

6 E|y1
ti+1

− y2
ti+1

|2 + (γi∆i − 1)E|Ỹ1
ti
− Ỹ2

ti
|2 +

1
γi
∆iE|∆Ψi|

2.
(4.11)

Taking the possible definitions of Ψ(2)(i, ·) into account, we can either make use of
the orthogonality of P0,i or of the identity Ψ(2)(i, ·) = P0,i(·). Thus, it holds true that

∆iE|∆Ψi|
2 6 ∆iE|P0,i

(
F(ti, s1

ti
,y1
ti+1

, z1
ti
) − F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
|2

+ ∆iE|P0,i
(
F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
− Ψ(2)(i, F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
|2.

The contraction property of the projections and the Lipschitz condition on F lead to

∆iE|∆Ψi|
2 6 κ2∆iE

[
|s1
ti
− s2

ti
|+ |y1

ti+1
− y2

ti+1
|+ |z1

ti
− z2

ti
|
]2

+ ∆iE|P0,i
(
F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
− Ψ(2)(i, F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
|2

6 (1 + 1{s1
ti
,s2
ti
})κ

2E|s1
ti
− s2

ti
|2

+ (1 + 1{s1
ti
,s2
ti
})κ

2(1 +D)∆iE
[
|y1
ti+1

− y2
ti+1

|2 +
1
D
|z1
ti
− z2

ti
|2
]

+ ∆iE|P0,i
(
F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
− Ψ(2)(i, F(ti, s2

ti
,y2
ti+1

, z2
ti
)
)
|2,

(4.12)

where the last step followed by Young’ s inequality. After setting qi = (1 +
1{s1

ti
,s2
ti
})κ

2(1+D), we apply (4.12) on (4.11) and receive immediately (4.10). Turning
to the Y-part we obtain by Young’s inequality

E|Ỹ1
ti
− Ỹ2

ti
|2 6 (1 + qi∆i)E|E[y

1
ti+1

− y2
ti+1

| Fti ]|
2 +

1 + qi∆i
qi

∆iE|∆Ψi|
2.

The estimate in (4.12) completes the proof of (4.8). �

After these preparations we turn to the

Proof of Lemma 17. We want to apply Lemma 18. To this end we set

(s1
ti

,y1
ti

, z1
ti
)ti∈π = (Sπti , Ŷ

π,K
ti

, Ẑπ,K
ti

)ti∈π,

(s2
ti

,y2
ti

, z2
ti
)ti∈π = (Sπti , Y

π
ti

, Zπti)ti∈π

and Ψ(2)(i, ·) = E[·|Xπti ]. Then qi = κ2(1+D) for all i = 0, . . . ,N− 1. That means, we
are now in the setting of (4.6) and (2.3). Hence, we receive by (4.8)

E|Yπti − Ŷ
π,K
ti

|2 6 (1 + qi∆i)E|E[Y
π
ti+1

− Ŷπ,K
ti+1

|Xπti ]|
2

+ (1 + qi∆i)∆iE
[
|Yπti+1

− Ŷπ,K
ti+1

|2 +
1
D
|Zπti − Ẑ

π,K
ti

|2
]

+ C∆iE|P0,i
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2.
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By exploiting (4.9) we obtain

E|Yπti − Ŷ
π,K
ti

|2 6 (1 + qi∆i)(1 + ∆i)E|Y
π
ti+1

− Ŷπ,K
ti+1

|2

+ C∆iE|P0,i
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2.

Gronwall’s inequality leads to

E|Yπti − Ŷ
π,K
ti

|2 6 eT(1+qi(1+|π|))
{
E|YπtN − Ŷπ,K

tN
|2

+ C

N−1∑
j=i

∆jE|P0,j
(
F(tj, Sπtj , Y

π
tj+1

, Zπtj)
)
− E[F(tj, Sπtj , Y

π
tj+1

, Zπtj)|X
π
tj
]|2
}

.

Since Yπti = Ŷ
π,K
ti

, the upper bound for the Y-part is proven. Thanks to (4.10) we get

∆iE|Z
π
d,ti − Ẑ

π,K
d,ti

|2 6 (1 +
qi
γi
∆i)E|Y

π
ti+1

− Ŷπ,K
ti+1

|2

+ (γi∆i − 1)E|Yπti − Ŷ
π,K
ti

|2 +
qi
Dγi

∆iE|Z
π
ti
− Ẑπ,K

ti
|2

+
1
γi
∆iE|P0,i

(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2.

Summing up from i = 0 to N− 1 and setting γi = 2qi yields

N−1∑
i=0

∆iE|Z
π
ti
− Ẑπ,K

ti
|2 6 D(1 + 4qi)T max

06i6N−1
E|Yπti − Ŷ

π,K
ti

|2

+
D

qi

N−1∑
i=0

∆iE|P0,i
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2.

We finish the proof by applying the upper bound on E|Yπti − Ŷ
π,K
ti

|2. �

4.2.2 Truncation error

For technical reasons we require an approximation of (Y,Z) that is bounded. Pre-
cisely, we modify the scheme in (4.6) by applying a truncation function on Ŷπ,K

ti+1
and

Ẑπ,K
ti

for all i = 0, . . . ,N − 1. For this purpose we define for some R-valued random
variable U and R > 0

[U]R := −R∧U∨ R, [U]R/
√
∆i

:= −
R√
∆i

∧U∨
R√
∆i

.

By implementing the truncations in (4.6) we obtain for i = N− 1, . . . , 0

Ŷπ,K,R
tN

=
[
φπ(XπtN)

]
R

,

Ẑπ,K,R
d,ti

=
[
∆−1
i E[∆Wd,iŶ

π,K,R
ti+1

|Xπti ]
]
R/
√

|∆i|
, d = 1, . . . ,D

Ŷπ,K,R
ti

=
[
E[Ŷπ,K,R

ti+1
|Xπti ] − ∆iP0,i

(
F(ti, Sπti , Ŷ

π,K,R
ti+1

, Ẑπ,K,R
ti

)
)]
R

.
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4 Enhancing the least-squares MC approach by martingale basis functions

However, introducing truncation functions cancels out the advantage of Assumption
6. This is insofar no critical factor as truncations in practice are generally neglected.
The next lemma gives information about the truncation error, which determines the
difference between (Ŷπ,K

ti
, Ẑπ,K
ti

)ti∈π and (Ŷπ,K,R
ti

, Ẑπ,K,R
ti

)ti∈π.

Lemma 19. Let Assumption 2 be satisfied. Then there is a constant C depending on κ, T
and D such that

max
06i6N

E|Ŷπ,K
ti

− Ŷπ,K,R
ti

|2 +

N−1∑
i=0

∆iE|Ẑ
π,K
ti

− Ẑπ,K,R
ti

|2

6 CN
K2ε

R2ε−2 max
06i6N

E|Yπti |
2ε

+ C

N−1∑
i=0

∆iE|P0,i
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2.

Proof. By Young’s inequality we receive

max
06i6N

E|Ŷπ,K
ti

− Ŷπ,K,R
ti

|2 +

N−1∑
i=0

∆iE|Ẑ
π,K
ti

− Ẑπ,K,R
ti

|2

6 2
(

max
06i6N

E|Ŷπ,K
ti

− Yπti |
2 +

N−1∑
i=0

∆iE|Ẑ
π,K
ti

− Zπti |
2
)

+ 2
(

max
06i6N

E|Yπti − Ŷ
π,K,R
ti

|2 +

N−1∑
i=0

∆iE|Z
π
ti
− Ẑπ,K,R

ti
|2
)

.

An upper bound for the first summand is given by Lemma 17 and it remains to
analyse the second summand. This will be done in two steps.

Step 1: We start with calculating estimates for

E
[
|Yπti − Ŷ

π,K,R
ti

|21
{|Yπti |>R}

]
, ∆iE

[
|Zπd,ti − Ẑ

π,K,R
d,ti

|21{|Zπd,ti
|>R/

√
∆i}

]
.

The application of Young’s inequality and then Hölder’s inequality yields

E
[
|Yπti − Ŷ

π,K,R
ti

|21
{|Yπti |>R}

]
6 2E

[
(|Yπti |

2 + R2)1
{|Yπti |>R}

]

6 2E[|Yπti |
2ε]1/ε(P{|Yπti | > R})

1/ζ + 2R2P{|Yπti | > R},

where ζ > 1 is determined by ε−1 + ζ−1 = 1. Due to Markov’s inequality we have

E
[
|Yπti− Ŷ

π,K,R
ti

|21
{|Yπti |>R}

]
6 2E|Yπti |

2ε(R−
2ε
ζ + R2−2ε) 6 4R2−2ε max

06i6N
E|Yπti |

2ε.

Analogously, we obtain

∆iE
[
|Zπd,ti − Ẑ

π,K,R
d,ti

|21{|Zπd,ti
|>R/

√
∆i}

]
6 4E|

√
∆iZ

π
d,ti |

2εR2−2ε.
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By the definition of Zπd,ti and Hölder’s inequality, we achieve

E|
√
∆iZ

π
d,ti |

2ε 6 E
∣∣∣E
[∆Wd,i√

∆i
Yπti+1

∣∣∣ Xπti
]∣∣∣

2ε
6 E|E[|Yπti+1

|2|Xπti ]|
ε 6 E|Yπti+1

|2ε.

Thus, we receive for ∆iE[|Zπd,ti − Ẑ
π,K,R
d,ti

|21{|Zπd,ti
|>R/

√
∆i}

] the same upper bound as

for E[|Yπti − Ŷ
π,K,R
ti

|21
{|Yπti |>R}

].

Step 2: For the application of Lemma 18 we define

(s1
ti

,y1
ti

, z1
ti
)ti∈π = (Sπti , Ŷ

π,K,R
ti

, Ẑπ,K,R
ti

)ti∈π,

(s1
ti

,y2
ti

, z2
ti
)ti∈π = (Sπti , Y

π
ti

, Zπti)ti∈π

and set Ψ(2)(i, ·) = E[·|Xπti ]. Then we have qi = κ2(1 + D) for all i = 0, . . . ,N − 1.
Note, that in view of this definition the Lipschitz continuity of [·]R yields

E|Ŷπ,K,R
ti

− Yπti |
2 = E

[
|Ŷπ,K,R
ti

− Yπti |
21

{|Yπti |6R}
]
+ E
[
|Ŷπ,K,R
ti

− Yπti |
21

{|Yπti |>R}
]

6 E|Ỹ1
ti
− Ỹ2

ti
|2 + E

[
|Ŷπ,K,R
ti

− Yπti |
21

{|Yπti |>R}
]

(4.13)

and analogously

E|Ẑπ,K,R
d,ti

− Zπd,ti |
2 6 E|Z̃1

ti
− Z̃2

ti
|2 + E

[
|Ẑπ,K,R
d,ti

− Zπd,ti |
21{|Zπd,ti

|>R/
√
∆i}

]
.

(4.14)

We obtain by (4.8),

E|Ỹ1
ti
− Ỹ2

ti
|2 6 (1 + qi∆i)E|E[Ŷ

π,K,R
ti+1

− Yπti+1
|Xπti ]|

2

+ (1 + qi∆i)∆iE
[
|Ŷπ,K,R
ti+1

− Yπti+1
|2 +

1
D
|Ẑπ,K,R
ti

− Zπti |
2]

+
1 + qi∆i
qi

∆iE|P0,i
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2.

Due to (4.14) and (4.9) it holds true that

E|Ỹ1
ti
− Ỹ2

ti
|2 6 (1 + qi∆i)(1 + ∆i)E|Ŷ

π,K,R
ti+1

− Yπti+1
|2

+ (1 + qi∆i)∆iE
[
|Ẑπ,K,R
d,ti

− Zπd,ti |
21{|Zπd,ti

|>R/
√
∆i}

]

+
1 + qi∆i
qi

∆iE|P0,i
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2.

Considering (4.13) and the upper bounds derived in Step 1, we can employ Gron-
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wall’s inequality. Hence,

E|Ỹ1
ti
− Ỹ2

ti
|2 6 eT(1+qi(1+|π|))

{
E|Ỹ1

tN
− Ỹ2

tN
|2 + C

NK2ε

R2ε−2 max
06i6N

E|Yπti |
2ε

+ C

N−1∑
j=i

∆jE|P0,j
(
F(tj, Sπtj , Y

π
tj+1

, Zπtj)
)
− E[F(tj, Sπtj , Y

π
tj+1

, Zπtj)|X
π
tj
]|2
}

6 CN
K2ε

R2ε−2 max
06i6N

E|Yπti |
2ε

+ C

N−1∑
j=i

∆jE|P0,j
(
F(tj, Sπtj , Y

π
tj+1

, Zπtj)
)
− E[F(tj, Sπtj , Y

π
tj+1

, Zπtj)|X
π
tj
]|2,

(4.15)

as Ỹ1
tN

− Ỹ2
tN

= 0. Inserting this result in (4.13) and using again the upper bounds of
Step 1, has the consequence

E|Ŷπ,K,R
ti

− Yπti |
2 6 CNR2−2εK2ε max

06i6N
E|Yπti |

2ε

+ C

N−1∑
j=i

∆jE|P0,j
(
F(tj, Sπtj , Y

π
tj+1

, Zπtj)
)
− E[F(tj, Sπtj , Y

π
tj+1

, Zπtj)|X
π
tj
]|2.

Exploiting (4.10) and (4.13) gives

∆iE|Z̃
1
d,ti − Z̃

2
d,ti |

2 6 (1 +
qi
γi
∆i)

[
E|Ỹ1

ti+1
− Ỹ2

ti+1
|2 + C

K2ε

R2ε−2 max
06i6N

E|Yπti |
2ε
]

+ (γi∆i − 1)E|Ỹ1
ti
− Ỹ2

ti
|2 +

qi
Dγi

∆iE|Ẑ
π,K,R
ti

− Zπti |
2

+
1
γi
∆iE|P0,i

(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2.

Taking (4.14) into account and summing up from i = 0 to N− 1, it turns out that

N−1∑
i=0

∆iE|Ẑ
π,K,R
ti

− Zπti |
2 6 D(1 +

qN−1

γN−1
∆N−1)E|Ỹ

1
tN

− Ỹ2
tN

|2

+

N−1∑
i=0

D(
qi−1

γi−1
+ γi)∆iE|Ỹ

1
ti
− Ỹ2

ti
|2 +

N−1∑
i=0

qi
γi
∆iE|Ẑ

π,K,R
ti

− Zπti |
2

+ C

N−1∑
i=0

D(2 +
qi
γi
∆i)

K2ε

R2ε−2 max
06i6N

E|Yπti |
2ε

+D

N−1∑
i=0

∆i
γi
E|P0,i

(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2,
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where q−1/γ−1 := 0. By definition, Ỹ1
tN

− Ỹ2
tN

= 0. Choosing γi = 2qi yields

N−1∑
i=0

∆iE|Ẑ
π,K,R
ti

− Zπti |
2 6 TD(1 + 4qi) max

06i6N−1
E|Ỹ1

ti
− Ỹ2

ti
|2

+ CND(2 +
1
2
∆i)R

2−2εK2ε max
06i6N

E|Yπti |
2ε

+ C

N−1∑
i=0

∆iE|P0,i
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2.

Due to (4.15), we have

N−1∑
i=0

∆iE|Ẑ
π,K,R
ti

− Zπti |
2 6 CN

K2ε

R2ε−2 max
06i6N

E|Yπti |
2ε

+ C

N−1∑
i=0

∆iE|P0,i
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2. �

Recall, that the above approximators can be expressed by deterministic functions
of (Xπti)ti∈π. Thus, there are functions ŷπ,K,R

i (x) and ẑπ,K,R
i (x) such that

Ŷπ,K,R
ti

= ŷπ,K,R
i (Xπti), Ẑπ,K,R

ti
= ẑπ,K,R

i (Xπti).

For the analysis of the simulation error of the martingale based least-squares Monte
Carlo approach we require ŷπ,K,R

i (x) to be Lipschitz continuous in x. Therefore, we
have to endow the approximative terminal condition φπ, the approximation of Sπ

and the Markov process (Xπti)ti∈π with additional properties, that imply the desired
Lipschitz continuity.

Assumption 7. (i) The approximative terminal condition φπ(x) is Lipschitz continuous
(uniformly in π) and supN |φπ(0)| <∞.

(ii) We denote by Sπ,i0,s
ti

, i0 6 i 6 N the approximation of (St)t∈[ti0 ,T ] that starts with

Sπti0
= s. Moreover, we call Xπ,i0,x

ti
, i0 6 i 6 N the related multivariate Markov process that

we require for the Markovian formulation of the time discretization, see Subsection 2.2.1.
That means, Xπ,i0,x

ti0
= x, where x is determined by s only and its first component is equal to

s. There is a CX > 0 such that for all i = i0, . . . ,N− 1

E|Xπ,i0,x
tN

− Xπ,i0,x ′
tN

|2 + E|Sπ,i0,s
ti

− Sπ,i0,s ′
ti

|2 6 CX|x− x
′|2,

uniformly in i0 and π.
(iii) There is a C > 0 such that for any x

E|Xπ,i0,x
ti0+1

− x|2 6 C∆i0(1 + |x|2).

uniformly in i0 and π.
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4 Enhancing the least-squares MC approach by martingale basis functions

Remark 20. The above assumption on Sπ is naturally fulfilled in case S satisfies
Assumption 2 and is approximated via Euler scheme.

Lemma 21. Let Assumptions 2 and 7 be fulfilled. Then there is a Lipschitz constant κR > 0
depending on κ, T , D and CX such that

|ŷπ,K,R
i0

(x) − ŷπ,K,R
i0

(x ′)| < κR|x− x
′|

for i0 ∈ {0, . . . ,N− 1} and x, x ′ real-valued samples of Xπti .

Proof. Let s and s ′ be the first component of the vectors x and x ′, respectively. First,
we define analogously to (1.3) forward SDEs that start at time ti0 . Precisely, we set

Si0,x
t = s+

∫t
ti0

b(u,Si0,x
u )du+

∫t
ti0

σ(u,Si0,x
u )dWu

for t ∈ [ti0 , T ]. The forward SDE Si0,x ′
t is constructed analogously. We call Sπ,i0,x

ti

and Sπ,i0,x ′
ti

for i = i0, . . . ,N − 1 the time-discrete approximations of (Si0,x
t )t∈[ti0 ,T ]

and (Si0,x ′
t )t∈[ti0 ,T ]. The related multivariate Markov processes, that we need for the

Markovian formulation of the time-discrete BSDE (see Subsection 2.2.1), are denoted
by Xπ,i0,x

ti
and Xπ,i0,x ′

ti
for i = i0, . . . ,N and shall fulfill Assumption 7. Then, ŷπ,K,R

i0
(x)

is the solution of the following scheme. For i = N− 1, . . . , i0 we conduct

Ŷπ,K,R,i0,x
tN

=
[
φπ(Xπ,i0,x

tN
)
]
R

,

Ẑπ,K,R,i0,x
d,ti

=
[
∆−1
i E[∆Wd,iŶ

π,K,R,i0,x
ti+1

| Fti ]
]
R/
√
∆i

, d = 1, . . . ,D

Ŷπ,K,R,i0,x
ti

=
[
E[Ŷπ,K,R,i0,x

ti+1
| Fti ] − ∆iP0,i

(
F(ti,S

π,i0,x
ti

, Ŷπ,K,R,i0,x
ti+1

, Ẑπ,K,R,i0,x
ti

)
)]
R

.

Hence, ŷπ,K,R
i0

(x) = Ŷπ,K,R,i0,x
ti0

. Analogously, we can evaluate ŷπ,K,R
i0

(x ′). Again we
exploit Lemma 18. Therefore, we set

(s1
ti

,y1
ti

, z1
ti
)i=i0,...,N = (Sπ,i0,x

ti
, Ŷπ,K,R,i0,x
ti

, Ẑπ,K,R,i0,x
ti

)i=i0,...,N,

(s2
ti

,y2
ti

, z2
ti
)i=i0,...,N = (Sπ,i0,x ′

ti
, Ŷπ,K,R,i0,x ′
ti

, Ẑπ,K,R,i0,x ′
ti

)i=i0,...,N,

andΨ(2)(i, ·) = P0,i. Here we haveqi = (1+1{s1
ti
,s2
ti
})κ

2(1+D) for all i = i0, . . . ,N−1.

Note that [·]R is 1-Lipschitz. Thus, due to (4.8) follows

E|Ŷπ,K,R,i0,x
ti

− Ŷπ,K,R,i0,x ′
ti

|2 6 (1 + qi∆i)E|E[Ŷ
π,K,R,i0,x
ti+1

− Ŷπ,K,R,i0,x ′
ti+1

| Fti ]|
2

+
(1 + qi∆i)

1 +D
∆iE|S

π,i0,x
ti

− Sπ,i0,x ′
ti

|2

+ (1 + qi∆i)∆iE
[
|Ŷπ,K,R,i0,x
ti+1

− Ŷπ,K,R,i0,x ′
ti+1

|2 +
1
D
|Ẑπ,K,R,i0,x
ti

− Ẑπ,K,R,i0,x ′
ti

|2
]
.

(4.16)
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Note, that
√
∆iẐ

π,K,R,i0,x
d,ti

=
[√

∆i
−1E[∆Wd,iŶ

π,K,R,i0,x
ti+1

| Fti ]
]
R

, d = 1, . . . ,D.

In view of the Lipschitz continuity of [·]R and (4.9) we achieve then

∆iÊ|Z
π,K,R,i0,x
d,ti

− Ẑπ,K,R,i0,x ′
d,ti

|2

6 E|Ŷπ,K,R,i0,x
ti+1

− Ŷπ,K,R,i0,x ′
ti+1

|2 − E|E[Ŷπ,K,R,i0,x
ti+1

− Ŷπ,K,R,i0,x ′
ti+1

| Fti ]|
2,

Applying this result on (4.16) together with Assumption 7 (ii) on Sπ yields

E|Yπ,K,R,i0,x
ti

− Yπ,K,R,i0,x ′
ti

|2

6
(
1 + ∆i[qi(1 + ∆i) + 1]

)
E|Yπ,K,R,i0,x

ti+1
− Yπ,K,R,i0,x ′

ti+1
|2 + C∆i|x− x

′|2.

Making use of Gronwall’s inequality and after that of the Lipschitz continuity of [·]R
and the Lipschitz condition on φπ leads to

E|Ŷπ,K,R,i0,x
ti

− Ŷπ,K,R,i0,x ′
ti

|2

6 eT(qi(1+|π|)+1)
(
E|Ŷπ,K,R,i0,x

tN
− Ŷπ,K,R,i0,x ′

tN
|2 + CT |x− x ′|2

)

6 CE|φπ(Xπ,i0,x
tN

) − φπ(Xπ,i0,x ′
tN

)|2 + C|x− x ′|2

6 C
(
E|Xπ,i0,x

tN
− Xπ,i0,x ′

tN
|2 + |x− x ′|2

)
.

Recalling Assumption 7 we can finish the proof. �

4.2.3 Simulation error

First, we translate the ’function’-based scheme (4.4) in a ’random’-variable based
approach. To this end, we denote by σ(XL ∪ Xπti) the σ-algebra generated by XL and
Xπti . Moreover, let PLi be an operator defined by

PLi

((
F(ti, Sπλ ti

, ŷπ,K,L
i+1 ( Xπλ ti+1

), ẑπ,K,L
i ( Xπλ ti

))
)
λ=1,...,L

)

=
(
η ′0(i, X

π
λ ti

)ᾱπ,K,L
i

)
λ=1,...,L

,

where, by (4.4),

ᾱπ,K,L
i = arg min

α∈RK

1
L

L∑
λ=1

|η0(i, Xπλ ti
)α− F(ti, Sπλ ti

, ŷπ,K,L
i+1 ( Xπλ ti+1

), ẑπ,K,L
i ( Xπλ ti

))|2.

In other words, given some function g(x) the operator PLi is an orthogonal projection
with respect to the norm ( 1

L

∑L
λ=1 |g( X

π
λ ti

)|2)1/2. Based on the definition of PLi , we
define also

P̃Li

(
F(ti, Sπti , ŷ

π,K,L
i+1 (Xπti+1

), ẑπ,K,L
i (Xπti))

)
= η0(i, Xπti)ᾱ

π,K,L
i .
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4 Enhancing the least-squares MC approach by martingale basis functions

With these definitions, we can reformulate (4.4). By definition, we have

Ŷπ,K,L
ti+1

= ŷπ,K,L
i+1 (Xπti+1

) = η0(i+ 1, Xπti+1
)α̂π,K,L
i+1 .

Considering Assumption 6, we can also write

Ẑπ,K,L
d,ti

= ẑπ,K,L
d,i (Xπti) =

1
∆i
ηd(i, Xπti)α̂

π,K,L
i+1

=
1
∆i
E[∆Wd,iη0(i+ 1, Xπti+1

)α̂π,K,L
i+1 |σ(XL ∪ Xπti)]

=
1
∆i
E[∆Wd,iŶ

π,K,L
ti+1

|σ(XL ∪ Xπti)].

Similarly, we obtain

Ŷπ,K,L
ti

= η0(i, Xπti)α̂
π,K,L
i

= E[η0(i+ 1, Xπti+1
)α̂π,K,L
i+1 |σ(XL ∪ Xπti)] − ∆iη0(i, Xπti)ᾱ

π,K,L
i

= E[Ŷπ,K,L
ti+1

|σ(XL ∪ Xπti)] − ∆iP̃
L
i

(
F(ti, Sπti , Ŷ

π,K,L
ti+1

, Ẑπ,K,L
ti

)
)
.

For technical reasons, we additionally have to impose a truncation structure on (4.4)
such that (Ŷπ,K,L

ti
, Ẑπ,K,L
ti

)ti∈π are bounded processes. However, we emphasize, that
the truncations in essence have a technical character and are usually neglected in
practical implementation. Hence, we set for i = N− 1, . . . , 0

Ŷπ,K,R,L
tN

=
[
η0(N, XπtN)α̂

π,K,L
N

]
R

,

Ẑπ,K,R,L
d,ti

=
[ 1
∆i
E[∆Wd,iŶ

π,K,R,L
ti+1

|σ(XL ∪ Xπti)]
]
R/
√
∆i

, d = 1, . . . ,D

Ŷπ,K,R,L
ti

=
[
E[Ŷπ,K,R,L

ti+1
|σ(XL ∪ Xπti)] − ∆iP̃

L
i

(
F(ti, Sπti , Ŷ

π,K,R,L
ti+1

, Ẑπ,K,R,L
ti

)
)]
R

.

Our aim is now to examine the error

max
06i6N

1
L

L∑
λ=1

E|Ŷπ,K,R
ti

− Ŷπ,K,R,L
ti

|2 +

N−1∑
i=0

∆i
1
L

L∑
λ=1

E|Ẑπ,K,R
ti

− Ẑπ,K,R,L
ti

|2.

Like in the original least-squares Monte Carlo scheme, we have to trace this error
back to

max
06i6N

1
L

L∑
λ=1

E|ŷπ,K,R
i ( Xπλ ti

) − ŷπ,K,R,L
i ( Xπλ ti

)|2

+

N−1∑
i=0

∆i
1
L

L∑
λ=1

E|ẑπ,K,R
i ( Xπλ ti

) − ẑπ,K,R,L
i ( Xπλ ti

)|2.

For this purpose, we introduce for i = 0, . . . ,N− 1 the norms

‖g‖XLti+1
=

√√√√1
L

L∑
λ=1

|g( Xπλ ti+1
)|2, ‖g‖

X̄
π,ti
ti+1

=

√√√√1
L

L∑
λ=1

|g( X̄
π,ti

λ ti+1
)|2,
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where g : RD̃ → R is some measurable function and X̄
π,ti
ti+1

is a set of so-called
ghost samples. Clearly, we denote by X̄

π,ti
ti+1

= {(∆ W̄
ti

λ i , X̄π,ti
λ ti+1

)| λ = 1, . . . ,L} an
independent copy of XLti+1

= {(∆ Wλ i, X
π

λ ti+1
)| λ = 1, . . . ,L} conditional to { Xπλ ti

| λ =
1, . . . ,L}.

Lemma 22. For all i = 0, . . . ,N− 1 we define by

Gi =
{
[η0(i, x)α]R − ŷπ,K,R

i (x)|α ∈ RK
}

sets of bounded functions. Furthermore, we denote for all i = 0, . . . ,N− 1

Ai+1 =

{
∀g ∈ Gi+1 : ‖g‖

X̄
π,ti
ti+1

− ‖g‖XLti+1
6 ∆

β+2
2
i

}
.

Under the Assumptions 2 and 7 we have for |π| small enough and β ∈ (0, 1]

max
06i6N

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

+

N−1∑
i=0

∆iE‖ẑπ,K,R
i − ẑπ,K,R,L

i ‖2
XLti

6 C inf
α∈RK

E|φπ(XπtN) − η0(N, XπtN)α|
2

+ C
(

max
06i6N

E|Yπti − Ŷ
π,K
ti

|2 +

N−1∑
i=0

∆iE|Z
π
ti
− Ẑ

π,K
ti

|2
)

+ C
(

max
06i6N

E|Ŷ
π,K
ti

− Ŷπ,K,R
ti

|2 +

N−1∑
i=0

∆iE|Ẑ
π,K
ti

− Ẑπ,K,R
ti

|2
)

+ C

N−1∑
i=0

∆iE|P0,j
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2

+ C|π|β + CR2
N−1∑
i=0

1
∆i
P{[Ai+1]

c},

(4.17)

where C is a constant depending on κ, T , D, CX and κR.

The following proof adapts the argumentation in Lemor et al. (2006) on our setting.

Proof. Preliminary definitions and abbreviations: First, we will introduce the coefficient
βπ,K,R,L
i , which solves

βπ,K,R,L
i = arg min

α∈RK

1
L

L∑
λ=1

|η0(i, Xπλ ti
)α− F(ti, Sπλ ti

, ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

), ẑπ,K,R
i ( Xπλ ti

))|2.

In view of the definition of X̄
π,ti

λ ti+1
we have the following identities.

E[F(ti, Sπλ ti
, ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

), ẑπ,K,R
i ( Xπλ ti

))|σ(XL)]

= E[F(ti, Sπλ ti
, ŷπ,K,R
i+1 ( Xπλ ti+1

), ẑπ,K,R
i ( Xπλ ti

))| Xπλ ti
],
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4 Enhancing the least-squares MC approach by martingale basis functions

Thus, E[βπ,K,R,L
i |σ(XL)] is the minimizer of

1
L

L∑
λ=1

|η0(i, Xπλ ti
)α− E[F(ti, Sπλ ti

, ŷπ,K,R
i+1 ( Xπλ ti+1

), ẑπ,K,R
i ( Xπλ ti

))| Xπλ ti
]|2.

For reasons of space, we will abbreviate the projection error of some FT -measurable
random variable U. Clearly, we denote

Ri(U) = E|P0,i(U) − E[U|X
π
ti
]|2.

Error due to sample changes: For technical reasons the proof involves several so-
called sample changes. To this end, we repeatedly carry out the following estimation:

E‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖2
X̄
π,ti
ti+1

6 (1 + ∆i)E‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖2
XLti+1

+
C

∆i
E

[(
‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖
X̄
π,ti
ti+1

− ‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖XLti+1

)2

+

]
.

By the definition of Ai+1 we receive

E‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖2
X̄
π,ti
ti+1

6 (1 + ∆i)E‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖2
XLti+1

+ C∆β+1
i +

C

∆i
R2P {[Ai+1]

c} .
(4.18)

Main proof: Our proof goes through the following steps. In Step 1 we give proof for
the following estimate. Let ᾱπ,K,R,L

i ∈ RK be the minimizing coefficient vector of

1
L

L∑
λ=1

|η0(i, Xπλ ti
)α− F(ti, Sπλ ti

, ŷπ,K,R,L
i+1 ( Xπλ ti+1

), ẑπ,K,R,L
i ( Xπλ ti

))|2.

Then, for every Γ > 0,

1
L

L∑
λ=1

E|η0(i, Xπλ ti
)ᾱπ,K,R,L
i − P0,i

(
F(ti, Sπλ ti

, ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

), ẑπ,K,R
i ( Xπλ ti

))
)
|2

6 γRi
(
F(ti, Sπti , Ŷ

π,K,R
ti+1

, Ẑπ,K,R
ti

)
)
+ γE‖ŷπ,K,R

i+1 − ŷπ,K,R,L
i+1 ‖2

XLti+1

+
γ

Γ
E‖ẑπ,K,R

i − ẑπ,K,R,L
i ‖2

XLti
+ C|π|.

(4.19)

with γ = 4 + (2 + Γ)κ2. Applying Step 1, we will show in Step 2 that

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

6 C inf
α∈RK

E|φπ(XπtN) − η0(N, XπtN)α|
2

+ C

N−1∑
j=i

∆jRj
(
f(tj, Sπtj , Ŷ

π,K,R
tj+1

, Ẑπ,K,R
tj

)
)
+ C|π|β + CR2

N−1∑
j=i

1
∆j
P{[Aj+1]

c}.

(4.20)
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In Step 3 we will turn to Z-part and deduce that

N−1∑
i=0

∆iE‖ẑπ,K,R
i − ẑπ,K,R,L

i ‖2
XLti

6 C inf
α∈RK

E|φπ(XπtN) − η0(N, XπtN)α|
2

+ C

N−1∑
i=0

∆iRi
(
F(ti, Sπti , Ŷ

π,K,R
ti+1

, Ẑπ,K,R
ti

)
)
+ C|π|β + CR2

N−1∑
i=0

1
∆i
P{[Ai+1]

c}.

(4.21)

Combining the results of Step 2 and 3 with the following calculation completes then
the proof.

Ri
(
F(ti, Sπti , Ŷ

π,K,R
ti+1

, Ẑπ,K,R
ti

)
)

6 CE
∣∣P0,i

(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]
∣∣2

+ CE
∣∣F(ti, Sπti , Y

π
ti+1

, Zπti) − F(ti, S
π
ti

, Ŷ
π,K
ti+1

, Ẑ
π,K
ti

)
∣∣2

+ CE
∣∣F(ti, Sπti , Ŷ

π,K
ti+1

, Ẑ
π,K
ti

) − F(ti, Sπti , Ŷ
π,K,R
ti+1

, Ẑπ,K,R
ti

)
∣∣2

6 CRi
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
+ C

(
E|Yπti+1

− Ŷ
π,K
ti+1

|2 + E|Zπti − Ẑ
π,K
ti

|2
)

+ C
(
E|Ŷ

π,K
ti+1

− Ŷπ,K,R
ti+1

|2 + E|Ẑ
π,K
ti

− Ẑπ,K,R
ti

|2
)

.

Step 1: Considering the definition of E[βπ,K,R,L
i |σ(XL)] and by Young’s inequality we

receive for some Γ > 0 and γ = 4 + (2 + Γ)κ2

1
L

L∑
λ=1

E|η0(i, Xπλ ti
)ᾱπ,K,R,L
i − P0,i

(
F(ti, Sπλ ti

, ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

), ẑπ,K,R
i ( Xπλ ti

))
)
|2

6
γ

4
2

1
L

L∑
λ=1

E|P0,i
(
F(ti, Sπλ ti

, ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

), ẑπ,K,R
i ( Xπλ ti

))
)

− E[F(ti, Sπλ ti
, ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

), ẑπ,K,R
i ( Xπλ ti

))|σ(XL)]|2

+
γ

4
2

1
L

L∑
λ=1

E|E[F(ti, Sπλ ti
, ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

), ẑπ,K,R
i ( Xπλ ti

))|σ(XL)]

− η0(i, Xπλ ti
)E[βπ,K,R,L

i |σ(XL)]|2

+
γ

4
4

(2 + Γ)κ2
1
L

L∑
λ=1

E|η0(i, Xπλ ti
)E[βπ,K,R,L

i |σ(XL)] − η0(i, Xπλ ti
)ᾱπ,K,R,L
i |2

= (I) + (II) + (III).

The summands of (I) are identically distributed for all λ = 1, . . . ,L. Hence, we have

(I) =
γ

2
Ri
(
f(ti, Sπti , Ŷ

π,K,R
ti+1

, Ẑπ,K,R
ti

)
)
.
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In view of the definition of E[βπ,K,R,L
i |σ(XL)] we obtain

(II) =
γ

2
E
[

inf
α∈RK

1
L

L∑
λ=1

|η0(i, Xπλ ti
)α

− E[F(ti, Sπλ ti
, ŷπ,K,R
i+1 ( Xπλ ti+1

), ẑπ,K,R
i ( Xπλ ti

))| Xπλ ti
]|2
]

6
γ

2
inf
α∈RK

E
[
|η0(i, Xπti)α− E[F(ti, Sπti , ŷ

π,K,R
i+1 (Xπti+1

), ẑπ,K,R
i (Xπti))|X

π
ti
]|2
]

=
γ

2
Ri
(
F(ti, Sπti , Ŷ

π,K,R
ti+1

, Ẑπ,K,R
ti

)
)
.

Turning to (III) we exploit first the fact that ᾱπ,K,R,L
i is σ(XL)-measurable, then the

contraction property of the operator PLi and the Lipschitz continuity of F and finally
Young’s inequality.

(III) 6 γ
1

(2 + Γ)κ2
1
L

L∑
λ=1

E|η0(i, Xπλ ti
)βπ,K,R,L
i − η0(i, Xπλ ti

)ᾱπ,K,R,L
i |2

6 γ
1

(2 + Γ)κ2
1
L

L∑
λ=1

E|F(ti, Sπλ ti
, ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

), ẑπ,K,R
i ( Xπλ ti

))

− F(ti, Sπλ ti
, ŷπ,K,R,L
i+1 ( Xπλ ti+1

), ẑπ,K,R,L
i ( Xπλ ti

))|2

6 γ
1

(2 + Γ)
(1 + Γ/2)

1
L

L∑
λ=1

E|ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

) − ŷπ,K,R,L
i+1 ( Xπλ ti+1

)|2

+ γ
1

(2 + Γ)
(1 +

2
Γ
)E‖ẑπ,K,R

i − ẑπ,K,R,L
i ‖2

XLti

= (IIIa) + (IIIb).

The Lipschitz continuity of ŷπ,K,R
i+1 (x) and Assumption 7 (iii) lead to

(IIIa) 6 γE‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖2
XLti+1

+ γκR
1
L

L∑
λ=1

E| X̄
π,ti

λ ti+1
− Xπλ ti+1

|2

6 γE‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖2
XLti+1

+ C|π|.

Summarizing the estimates of (I), (II) and (III) we get the result in (4.19).
Step 2: Note, that

ŷπ,K,R
i ( Xπλ ti

) =
[
E[ŷπ,K,R

i+1 ( X̄
π,ti

λ ti+1
)|σ(XL)]

− ∆iP0,i
(
F(ti, Sπλ ti

, ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

), ẑπ,K,R
i ( Xπλ ti

))
)]
R

,

ŷπ,K,R,L
i ( Xπλ ti

) =
[
E[ŷπ,K,R,L

i+1 ( X̄
π,ti

λ ti+1
)|σ(XL)] − ∆iη0(i, Xπλ ti

)ᾱπ,K,R,L
i

]
R

.
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4.2 Error sources and their contribution to the approximation error

Bearing these identities in mind, we first employ the Lipschitz-continuity of [·]R and
then Young’s inequality.

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

6 (1 + γ̃∆i)
1
L

L∑
λ=1

E|E[ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

) − ŷπ,K,R,L
i+1 ( X̄

π,ti
λ ti+1

)|σ(XL)]|2

+ (1 + γ̃∆i)
∆i
γ̃

1
L

L∑
λ=1

E|η0(i, Xπλ ti
)ᾱπ,K,R,L
i

− P0,i
(
F(ti, Sπλ ti

, ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

), ẑπ,K,R
i ( Xπλ ti

))
)
|2,

(4.22)

where γ̃ is a positive constant. The application of (4.19) with Γ = D and γ̃ = γ =
4 + (2 +D)κ2 yields

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

6 (1 + γ̃∆i)
1
L

L∑
λ=1

E|E[ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

) − ŷπ,K,R,L
i+1 ( X̄

π,ti
λ ti+1

)|σ(XL)]|2

+ (1 + γ̃∆i)∆iE

[
‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖2
XLti+1

+
1
D
‖ẑπ,K,R
i − ẑπ,K,R,L

i ‖2
XLti

]

+ (1 + γ̃∆i)∆iRi
(
F(ti, Sπti , Ŷ

π,K,R
ti+1

, Ẑπ,K,R
ti

)
)
+ C∆i|π|.

(4.23)

Regarding the third summand of the right-hand side of the above summand, we em-
ploy the sample set X̄ti,L in order to consider the dependency structure of ẑπ,K,R,L

i (x)

correctly. In view of the definitions of ẑπ,K,R
i (x) and ẑπ,K,R,L

i (x), respectively, and the
Lipschitz continuity of [·]R we achieve

√
∆i|ẑ

π,K,R
d,i ( Xπλ ti

) − ẑπ,K,R,L
d,i ( Xπλ ti

)|

6 |(
√
∆i)

−1E[∆ W̄
ti

λ d,i

{
ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

) − ŷπ,K,R,L
i+1 ( X̄

π,ti
λ ti+1

)
}
|σ(XL)]|

For an analogous application of Lemma 18, (4.9) we set y1
ti+1

= ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

) and
y2
ti+1

= ŷπ,K,R,L
i+1 ( X̄

π,ti
λ ti+1

). Considering σ(XL) instead of Fti , we get

∆iE|ẑ
π,K,R
d,i ( Xπλ ti

) − ẑπ,K,R,L
d,i ( Xπλ ti

)|2

6 E|ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

) − ŷπ,K,R,L
i+1 ( X̄

π,ti
λ ti+1

)|2

− E|E[ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

) − ŷπ,K,R,L
i+1 ( X̄

π,ti
λ ti+1

)|σ(XL)]|2.

(4.24)
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4 Enhancing the least-squares MC approach by martingale basis functions

Inserting this inequality in (4.23) gives

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

6 (1 + γ̃∆i)E‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖2
X̄
π,ti
ti+1

+ (1 + γ̃∆i)∆iE‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖2
XLti+1

+ (1 + γ̃∆i)∆iRi
(
F(ti, Sπti , Ŷ

π,K,R
ti+1

, Ẑπ,K,R
ti

)
)
+ C∆i|π|.

A sample change in ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

) − ŷπ,K,R,L
i+1 ( X̄

π,ti
λ ti+1

) leads to

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

6 (1 + γ̃∆i)(1 + 2∆i)E‖ŷπ,K,R
i+1 − ŷπ,K,R,L

i+1 ‖2
XLti+1

+ C∆iRi
(
F(ti, Sπti , Ŷ

π,K,R
ti+1

, Ẑπ,K,R
ti

)
)
+ C∆i|π|+ C∆

β+1
i +

C

∆i
R2P{[Ai+1]

c}.

Thanks to Gronwall’s inequality we receive

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

6 e(γ(1+2|π|)+2)TE‖ŷπ,K,R
N − ŷπ,K,R,L

N ‖2
XLtN

+ C

N−1∑
j=i

∆jRj
(
f(tj, Sπtj , Ŷ

π,K,R
tj+1

, Ẑπ,K,R
tj

)
)
+ C|π|β + CR2

N−1∑
j=i

1
∆j
P{[Aj+1]

c}.

The definition of ŷπ,K,R
N (x) and ŷπ,K,R,L

N (x) and the Lipschitz continuity of [·]R yield

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

6 e(γ(1+2|π|)+2)TE
[

inf
α∈RK

1
L

L∑
λ=1

|φ( Xπλ tN
) − η0(N, Xπλ tN

)α|2
]

+ C

N−1∑
j=i

∆jRj
(
f(tj, Sπtj , Ŷ

π,K,R
tj+1

, Ẑπ,K,R
tj

)
)
+ C|π|β+ CR2

N−1∑
j=i

1
∆j
P{[Aj+1]

c}

6 C inf
α∈RK

E
[
|φ(XπtN) − η0(N, XπtN)α|

2
]

+ C

N−1∑
j=i

∆jRj
(
f(tj, Sπtj , Ŷ

π,K,R
tj+1

, Ẑπ,K,R
tj

)
)
+ C|π|β+ CR2

N−1∑
j=i

1
∆j
P{[Aj+1]

c}.

This completes Step 2.
Step 3: Recalling the estimate in (4.24), we get by a change of samples

∆iE‖ẑπ,K,R
d,i − ẑπ,K,R,L

d,i ‖2
XLti

6 (1 + ∆i)
1
L
E‖ŷπ,K,R

i+1 − ŷπ,K,R,L
i+1 ‖2

XLti+1
+ C∆β+1

i +
C

∆i
P{[Ai+1]

c}

−
1
L

L∑
λ=1

E|E[ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

) − ŷπ,K,R,L
i+1 ( X̄

π,ti
λ ti+1

)|σ(XL)]|2,
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for i = 0, . . . ,N− 2. Making use of the inequality in (4.22) gives

∆iE‖ẑπ,K,R
d,i − ẑπ,K,R,L

d,i ‖2
XLti

6 (1 + ∆i)(1 + γ̃∆i+1)

× 1
L

L∑
λ=1

E|E[ŷπ,K,R
i+2 ( X̄

π,ti+1
λ ti+2

) − ŷπ,K,R,L
i+2 ( X̄

π,ti+1
λ ti+2

)|σ(XL)]|2

+ (1 + ∆i)(1 + γ̃∆i+1)
∆i+1

γ̃

1
L

L∑
λ=1

E|η0(i+ 1, Xπλ ti+1
)ᾱπ,K,R,L
i+1

− P0,i+1
(
f(ti+1, Sπλ ti+1

, ŷπ,K,R
i+2 ( X̄

π,ti+1
λ ti+2

), ẑπ,K,R
i+1 ( Xπλ ti+1

))
)
|2

+ C∆β+1
i +

C

∆i
P{[Ai+1]

c}

−
1
L

L∑
λ=1

E|E[ŷπ,K,R
i+1 ( X̄

π,ti
λ ti+1

) − ŷπ,K,R,L
i+1 ( X̄

π,ti
λ ti+1

)|σ(XL)]|2.

By summing up from i = 0 to N− 1, we get

N−1∑
i=0

∆iE‖ẑπ,K,R
d,i − ẑπ,K,R,L

d,i ‖2
XLti

6 (1 + ∆N−1)E‖ŷπ,K,R
N − ŷπ,K,R,L

N ‖2
XLtN

+ C

N−2∑
i=0

(∆i + ∆i+1)

× 1
L

L∑
λ=1

E|E[ŷπ,K,R
i+2 ( X̄

π,ti+1
λ ti+2

) − ŷπ,K,R,L
i+2 ( X̄

π,ti+1
λ ti+2

)|σ(XL)]|2

+

N−2∑
i=0

(1 + ∆i)(1 + γ̃∆i+1)
∆i+1

γ̃

1
L

L∑
λ=1

E|η0(i+ 1, Xπλ ti+1
)ᾱπ,K,R,L
i+1

− P0,i+1
(
f(ti+1, Sπλ ti+1

, ŷπ,K,R
i+2 ( X̄

π,ti+1
λ ti+2

), ẑπ,K,R
i+1 ( Xπλ ti+1

))
)
|2

+ C|π|β +

N−1∑
i=0

CR2

∆i
P{[Ai+1]

c}.

Now, we conduct a sample change in the second summand of the above inequality
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4 Enhancing the least-squares MC approach by martingale basis functions

and exploit (4.19) with Γ = 1. Hence,

N−1∑
i=0

∆iE‖ẑπ,K,R
d,i − ẑπ,K,R,L

d,i ‖2
XLti

6 C max
06i6N

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

+

N−2∑
i=0

(1 + ∆i)(1 + γ̃∆i+1)
γ

γ̃
∆i+1E‖ŷπ,K,R

i+2 − ŷπ,K,R,L
i+2 ‖2

XLti+2

+

N−2∑
i=0

(1 + ∆i)(1 + γ̃∆i+1)
γ

γ̃
∆i+1E‖ẑπ,K,R

i+1 − ẑπ,K,R,L
i+1 ‖2

XLti+1

+ C

N−2∑
i=0

∆i+1Ri+1
(
f(t+1i, Sπti+1

, Ŷπ,K,R
ti+2

, Ẑπ,K,R
ti+1

)
)

+ C|π|β(1 + |π|) +

N−1∑
i=0

CR2(
1
∆i

+ 1)P{[Ai+1]
c}.

For γ̃ = 8Dγ and |π| < min{1, 1/γ̃} we obtain then

N−1∑
i=0

∆iE‖ẑπ,K,R
i − ẑπ,K,R,L

i ‖2
XLti

6 C max
06i6N

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

+ C

N−2∑
i=0

∆i+1Ri+1
(
f(t+1i, Sπti+1

, Ŷπ,K,R
ti+2

, Ẑπ,K,R
ti+1

)
)

+ C|π|β + CR2
N−1∑
i=0

1
∆i
P{[Ai+1]

c}.

By employing the result of Step 2, see (4.20), we can finish the proof of Step 3. Hence,
the proof is complete. �

Next, we aim at giving an upper bound for P{[Ai+1]
c}, i = 0, . . . ,N− 1 with

Ai+1 =

{
∀g ∈ Gi+1 : ‖g‖

X̄
π,ti
ti+1

− ‖g‖XLti+1
6 ∆

β+2
2
i

}
.

Concerning the original least-squares Monte Carlo approach, Lemor et al. (2006)
used in their analysis of the approximation error rather similar sets AMi+1. The only
difference is that our sets Ai+1 are based on a general partial interval ∆i, whereas
the sets [AMi+1]

c consider h := ∆i = T/N for all i = 0, . . . ,N− 1.

Lemma 23. Under the Assumption of Lemma 22 it holds true that for some C > 0

P{[Ai+1]
c} 6 C exp

{
CK log

CR

∆
(β+2)/2
i

−
L∆
β+2
i

72R2

}

for i = 0, . . . ,N− 1.
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We omit the proof, because it works in exactly the same manner as the proof of
Proposition 4 in Lemor et al. (2006), except thath is replaced by∆i. Now it remains to
derive the L2-error between (ŷπ,K,R

i (·), ẑπ,K,R
i (·))ti∈π and (ŷπ,K,R,L

i (·), ẑπ,K,R,L
i (·))ti∈π

with respect to Xπti instead of { Xπλ ti
, λ = 1, . . . ,L} as done in Lemma 22. Recall,

Ŷπ,K,R
ti

= ŷπ,K,R
i (Xπti), Ẑπ,K,R

ti
= ẑπ,K,R

i (Xπti),

Ŷπ,K,R,L
ti

= ŷπ,K,R,L
i (Xπti), Ẑπ,K,R,L

ti
= ẑπ,K,R,L

i (Xπti).

Lemma 24. Under the assumptions of Lemma 22 there is a constant C > 0 depending on
κ, T , D, CX and κR such that for |π| small enough and β ∈ (0, 1]

max
06i6N

E|Ŷπ,K,R
ti

− Ŷπ,K,R,L
ti

|2 +

N−1∑
i=0

∆iE|Ẑ
π,K,R
ti

− Ẑπ,K,R,L
ti

|2

6 CR2NK
logL
L

+ C inf
α∈RK

E|φπ(XπtN) − η0(N, XπtN)α|
2

+ C
(

max
06i6N

E|Yπti − Ŷ
π,K
ti

|2 +

N−1∑
i=0

∆iE|Z
π
ti
− Ẑ

π,K
ti

|2
)

+ C
(

max
06i6N

E|Ŷ
π,K
ti

− Ŷπ,K,R
ti

|2 +

N−1∑
i=0

∆iE|Ẑ
π,K
ti

− Ẑπ,K,R
ti

|2
)

+ C

N−1∑
i=0

∆iE|P0,j
(
f(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[f(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2

+ C|π|β + CR2
N−1∑
i=0

1
∆i

exp

{
CK log

CR

∆
(β+2)/2
i

−
L∆
β+2
i

72R2

}
.

By and large, the following proof matches that of Theorem II.3 in Lemor (2005),
who adopted the line of argumentation of Theorem 11.3 in Györfi et al. (2002).

Proof. We denote by PXi the distribution of Xπti . Additionally, we have for some
measurable function g the norms

‖g‖i =
√∫

|g(x)|2dPXi (x), ‖g‖XLti =

√√√√1
L

L∑
λ=1

|g( Xπλ ti
)|2.

Then,

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
i

= E
(
‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖i − 2‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖XLti
+ 2‖ŷπ,K,R

i − ŷπ,K,R,L
i ‖XLti

)2

6 E
(

max
{
‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖i − 2‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖XLti , 0
}

+ 2‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖XLti
)2

.
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4 Enhancing the least-squares MC approach by martingale basis functions

Making use of Young’ s inequality gives

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
i

6 2E
(

max
{
‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖i − 2‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖XLti , 0
})2

+ 8E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

.

Similarly, we have

∆iE‖ẑπ,K,R
d,i − ẑπ,K,R,L

d,i ‖2
i

6 2E
(

max
{
‖
√
∆i(ẑ

π,K,R
d,i − ẑπ,K,R,L

d,i )‖i− 2‖
√
∆i(ẑ

π,K,R
d,i − ẑπ,K,R,L

d,i )‖XLti , 0
})2

+ 8∆iE‖ẑπ,K,R
d,i − ẑπ,K,R,L

d,i ‖2
XLti

.

Due to Lemma 22 and Lemma 23, the upper bound for

max
06i6N

E‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖2
XLti

+

D∑
d=1

N−1∑
i=0

∆iE‖ẑπ,K,R
d,i − ẑπ,K,R,L

d,i ‖2
XLti

is given by the right-hand side of (4.17) and it suffices to provide an estimate for

E
(

max
{
‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖i − 2‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖XLti , 0
})2

,

E
(

max
{
‖
√
∆i(ẑ

π,K,R
d,i − ẑπ,K,R,L

d,i )‖i − 2‖
√
∆i(ẑ

π,K,R
d,i − ẑπ,K,R,L

d,i )‖XLti , 0
})2

.

for d = 1, . . . ,D. We first take care for the Y-part and explain then, how the results
can be transfered to the Z-part. Let a be some positive variable. It holds true that

P
{(

max
{
‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖i − 2‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖XLti , 0
})2

> a
}

< P
{
∃g ∈ Gi

∣∣∣ ‖g‖i − 2‖g‖XLti >
√
a
}

.

The application of Lemma 28, Appendix A, yields

P
{(

max
{
‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖i − 2‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖XLti , 0
})2

> a
}

6 3 exp
{
−

La

288(2R)2

}
E

[
N2(

√
2a

24
,Gi,X2L

i )

]
,

where X2L
i = { Xπλ ti

| λ = 1, . . . , 2L} is a set of i.i.d. copies of Xπti . For an explanation of
N2, see Definition 27. Recalling

Gi =
{
[η0(i, x)α]R − ŷπ,K,R

i (x)|α ∈ RK
}

,
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4.2 Error sources and their contribution to the approximation error

we can write by definition of N2 that

N2(

√
2a

24
,Gi,X2L

i ) = N2(

√
2a

24
, [η0(i, x)α]R ,X2L

i ) = N2(

√
2a

24
, G̃i,X2L

i ),

where

G̃i = {[η0(i, x)α]R + R|α ∈ RK}

is a set of positive functions bounded by 2R. Let G̃+
i = {{(x, t) ∈ RD̃ × R| t 6

g̃(x)}, g̃ ∈ G̃i}. By Lemma 29 we obtain for 0 < a < 72R2

N2(

√
2a

24
, G̃i,X2L

i ) 6 3
(

2e(2R)2242

2a
log

3e(2R)2242

2a

)V
G̃+
i

6 3

( √
6e(2R)2242

2a

)2V
G̃+
i

6 3

(
1152

√
6eR2

a

)2V
G̃+
i

,

where VG̃+
i

is the Vapnik-Chervonenkis (VC) dimension of G̃+
i . See Definition 26 for

an explanation on this dimension and the related topic of shattering coefficients. It
remains to show

VG̃+
i

(I)
= V{[η0(i,x)α]R|α∈RK}+

(II)

6 V{η0(i,x)α|α∈RK}+
(III)

6 K+ 1. (4.25)

Concerning (I) we assume that VG̃+
i
= n. Hence, there is a set

Ã :=
{
(x1, t1), . . . , (xn, tn)

}
⊂ RD̃ ×R

that is shattered by G̃+
i . Namely, for an arbitrary subset J ⊆ {1, . . . ,n} there is a

g̃ ∈ G̃i such that

g̃(xj) = [η0(i, xj)α̃]R + R > tj, j ∈ J,
g̃(xj) = [η0(i, xj)α̃]R + R < tj, j < J.

Considering the set

A =
{
(x1, t1 − R), . . . , (xn, tn − R)

}
⊂ RD̃ ×R,

we can then pick out the points determined by the index set Jby means of the function
[η0(i, x)α̃]R. As J was chosen arbitrary, we can deduce that {[η0(i, x)α]R|α ∈ RK}+
shatters A. Thus, VG̃+

i
6 V{[η0(i,x)α]R|α∈RK}+ . The reverse direction can be proven in

the same manner.
Turning to (II), we suppose again V{[η0(i,x)α]R|α∈RK}+ = n. Let Ã again be a subset

of n points of RD̃ ×R that is shattered by {[η0(i, x)α]R|α ∈ RK}+. Clearly, there is a
g(x) such that

g(xj) = [η0(i, xj)α̃]R > tj, j ∈ J,
g(xj) = [η0(i, xj)α̃]R < tj, j < J.
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4 Enhancing the least-squares MC approach by martingale basis functions

We claim now, η0(i, xj)α̃ > [η0(i, xj)α̃]R for j ∈ J and η0(i, xj)α̃ < [η0(i, xj)α̃]R for
j < J. Suppose there is a j? ∈ J with η0(i, xj?)α̃ < g(xj?). Consequently, by definition
of g(xj?) we have η0(i, xj?)α̃ < −R and g(xj?) = −R. Then, tj? 6 −R. Regarding the
complement of j? in {1, . . . ,n} there must be a g?(x) ∈ {[η0(i, x)α]R|α ∈ RK} such that

g?(xj) = [η0(i, xj)α?]R > tj, j , j?,
g?(xj?) = [η0(i, xj?)α?]R < tj? .

But −R < tj? 6 −R is a contradiction and we get the desired result η0(i, xj)α̃ >
[η0(i, xj)α̃]R for j ∈ J. The inequality η0(i, xj)α̃ < [η0(i, xj)α̃]R for j < J can be shown
analogously. In sum, Ã is also shattered by {η0(i, x)α|α ∈ RK}+.

As far as (III) is concerned, we adopt the argument from page 152, Györfi et al.
(2002). We have

{η0(i, x)α|α ∈ RK}+ =
{
{(x, t)|η0(i, x)α > t},α ∈ RK

}
⊂
{
{(x, t)|η0(i, x)α+ b · t > 0},α ∈ RK,b ∈ R

}
The vector space {η0(i, x)α+b ·t|α ∈ RK,b ∈ R} isK+1-dimensional and by Lemma
30, the proof of (4.25) is complete. Now, we have the estimate

P
{(

max
{
‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖i − 2‖ŷπ,K,R
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> a
}

< 9

(
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√
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a
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exp
{
−

La

1152R2

}
< 9

(√
6eL
)2(K+1)

exp
{
−

La

1152R2

}
,

for a > 1152R2/L. This enables us to give an upper bound for the expectation of (I).
Clearly,

E
(

max
{
‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖i − 2‖ŷπ,K,R
i − ŷπ,K,R,L
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∫∞
0
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}
dt

6 a+ 9
(√

6eL
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6 a+ 9
(√

6eL
)2(K+1) 1152R2

L
exp
{
−

La

1152R2
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.

The last term can be minimized by choosing

a =
1152R2

L
log(9(

√
6eL)2(K+1)).

Hence,

E
(

max
{
‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖i − 2‖ŷπ,K,R
i − ŷπ,K,R,L

i ‖XLti , 0
})2
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1152R2
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(
log(9) + 2(K+ 1) log(

√
6eL) + 1

)
6 CR2K

logL
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.
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Concerning the Z-part, we get the same upper bound for

E
(

max
{
‖
√
∆i(ẑ

π,K,R
d,i − ẑπ,K,R,L

d,i )‖i − 2‖
√
∆i(ẑ

π,K,R
d,i − ẑπ,K,R,L

d,i )‖XLti , 0
})2

by replacing Gi by {[
√
∆iηd(i, x)α]R −

√
∆iẑ

π,K,R
d,i |α ∈ RK}. The functions of this set

are also bounded by 2R. Therefore, the result follows by a straightforward repetition
of the single steps of the proof for the Y-part. Then the proof is complete. �

4.3 The overall approximation error and its comparison with
the original LSMC approach

Just like the original least-squares Monte Carlo approach, the approximation error
of the simplified algorithm is determined by the errors that are caused by time
discretization, projection, truncation and last but not least simulation.

However, the simplification has no impact on the squared time discretization
error, that is

sup
06t6T

E|Yt − Y
π
t |

2 +

∫T
0
E|Zt − Z

π
t |

2dt 6 C|π|+ CE|ξ− ξπ|2,

see Subsection 2.2.1. The error term E|ξ− ξπ|2 decreases with rate |π|β, for β ∈ (0, 1]
for instance, if there is a Lipschitz-continuous function φ such that ξ = φ(ST ) and
ξπ = φ(SπtN) with max06i6N E|Sti − S

π
ti
|2 6 |π|β. As for the remaining error sources,

the combination of Lemmas 17, 19 and 24 yields the overall L2-error between the
time-discrete solution and the approximation generated by simplified least-squares
Monte Carlo.

Theorem 25. Let Assumption 2 and 7 be satisfied. Then there is a constantC > 0 depending
on κ, T , D, CX and κR such that for |π| small enough, ε > 1 and β ∈ (0, 1]

max
06i6N

E|Yπti − Ŷ
π,K,R,L
ti

|2 +

N−1∑
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∆iE|Z
π
ti
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|2

6 CR2NK
logL
L
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2

+ C
NK2ε
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+ C
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∆iE|P0,j
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
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π
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−
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.
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4 Enhancing the least-squares MC approach by martingale basis functions

Referring to Lemma 17 and the defintion of Ŷπ,K,R,L
tN

as a projection on the space
spanned by η0(N, XπtN), the squared projection error is bounded by

C inf
α∈RK

E|φπ(XπtN) − η0(N, XπtN)α|
2

+ C

N−1∑
i=0

∆iE|P0,j
(
F(ti, Sπti , Y

π
ti+1

, Zπti)
)
− E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
]|2.

The first error term stems from the projection error of the approximate terminal
condition. It vanishes, if the conditional expectations of the approximate terminal
condition are available in closed form, which means that it can be included in the
system of martingale basis functions. Contrary to that, the squared projection error
of the original least-squares Monte Carlo scheme was bounded by a constant times
the sum of the L2-errors regarding (Yπti , Z

π
ti
)ti∈π and their best projection. In other

words, the original least-squares Monte Carlo scheme suffers from a propagation of
the projection errors, that can be avoided in our proposal.

The additional error term

CR−2(ε−1)NK2ε max
06i6N

E|Yπti |
2ε

arises from the squared truncation error. Due to |Yπti | < C(1 + |Xπti), see Gobet et
al. (2005), the term E|Yπti |

2ε is bounded under appropriate integrability conditions.
Thus, the squared truncation error can be designed to converge with rate |π|β for
R proportional to N(1+β)/(2ε−2)Kε/(ε−1). But, usually, this error term is simply
neglected when it comes to conducting simulations.

The second important difference between original and simplified least-squares
Monte Carlo lies in the additional terms caused by the squared simulation error.
They sum up to

CR2NK
logL
L

+ CR2
N−1∑
i=0

1
∆i

exp

{
CK log

CR

∆
(β+2)/2
i

−
L∆
β+2
i

72R2

}
+ C|π|β

These error terms are also contained in the squared simulation error of the original
scheme, see Subsection 2.2.5. It is worth noting, that these terms require a much
slower increase of the sample size L than the remaining terms in (2.20). Precisely,
if the dimension K grows proportional to Nδ for some δ > 0, then choosing L
proportional to Nβ+2+δ log(N)R2 is sufficient for a convergence rate of |π|β. In
general, the log-term and the truncation constant are neglected, when determining
the sample size. Hence, we have for L a growth rate of β + 2 + δ in the simplified
scheme versus β+ 2 + 2δ in the original least-squares Monte Carlo algorithm.
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4.4 Numerical examples for non-linear European option pricing problems

4.4 Numerical examples for non-linear European option
pricing problems

Again we look at option pricing problems, where the price of the underlying stocks
S is modeled by a geometric Brownian motion according to Black-Scholes, i. e.

St,d = s0,d exp
{(
µ− σ2/2

)
t+ σWt,d

}
, d = 1, . . . ,D,

with µ, σ > 0 and W = (W1, . . . ,WD) being a D-dimensional Brownian motion.
That means, for D > 1 we have options that are based on a basket of several stocks.
As S can be sampled perfectly, we can simply set Sπ = S. The pay-off function will
be of type ξ = φ(ST ), that means we concentrate on non-path-dependent termincal
conditions. Hence, the construction of a larger Markov process Xπ, that includes Sπ,
becomes obsolete and we define Xπ = X = S.

The assumption of a market with different interest rates for borrowing R and
lending r with R > r makes our problem a non-linear one. Following Bergman
(1995), the option price for a possibly multidimensional underlying is described by
the BSDE

Yt = φ(ST ) −

∫T
t

(
rYu +

µ− r

σ

D∑
d=1

Zd,u

)
du

+ (R− r)

∫T
t

(
Yu −

1
σ

D∑
d=1

Zd,u

)

+

du−

D∑
d=1

∫T
t

Zd,udWd,u.

The following examples contain a call-spread option (either one-dimensional and
multi-dimensional) and a straddle. In the latter case, we will try the Monte Carlo
estimation of martingale basis functions. For a better distinction of the simulation
results we write again πN instead of π to indicate how many time steps the partition
π has.

4.4.1 Call-spread option

The payoff-function is a composition of max-call options, clearly

φ(ST ) =

(
max
d=1,...,D

ST ,d − κ1

)

+

− 2
(

max
d=1,...,D

ST ,d − κ2

)

+

,

where κ1 and κ2 are the corresponding strike values. The market parameters are the
same as in Subsection 3.4.2, thus

T = 0.25, sd,0 = 100, r = 0.01, R = 0.06, µ = 0.05, σ = 0.2.

for d = 1, . . . ,D. The strike prices are again κ1 = 95 and κ2 = 105. Note, that the
case D = 1 matches the example in Subsection 3.4.2.
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4 Enhancing the least-squares MC approach by martingale basis functions

Case 1: One-dimensional Brownian motion and indicator functions at terminal
time

The first example considers D = 1. For the numerical solution we fix the basis
functions at terminal time by

η0,1(N, x) = (x− 95)+ − (x− 105)+,
η0,k(N, x) = 3(K− 1)1{x∈[ak−2,ak−1)}, k = 2, . . . ,K

where K is the dimension of the function bases and {a0, . . . ,aK−1} a partition of the
real line such that the probability of ST ending up in [ak−2,ak−1) is the same for all
k = 2, . . . ,K. This kind of interval construction was also applied by Bouchard and
Warin (2012) in the field of pricing American options with Monte Carlo methods.
The function bases η0(i, x) and η1(i, x) are then generated by the martingale property
for i = 0, . . . ,N − 1. The factor 3(K − 1) prevents too small function values that
might produce problems when computing the pseudo-inverse of (η0(i, Xλ ti

)λ=1,...,L
for i < N. In contrast to a pure indicator function basis, we are not able to quantify
the projection error that arises in the present case. Like before, we fix the simulation
parameters in dependence on l = 3, . . . , 5 and m = 1, . . . ,m(l). To be precise,
m(3) = 14,m(4) = 12,m(5) = 10. Then, the number of time steps N, the dimension
of the function bases K and the sample size L are given by

N =
[
2
√

2m−1
]

, K =
⌈

3
√

2m−1
⌉
+ 1, L =

[
2
√

2l(m−1)
]

.

Concerning the simulation error, the cases l = 3 and l = 4 are the convergence
thresholds in the simplified and the original least-squares Monte Carlo scheme,
respectively. According to the theoretical results the L2-error due to simulation
decreases with rate 1/2 in the number of time steps for l = 4 in the simplified and
l = 5 in the original approach. We denote by

Y̆πNti = η0(i,Xti)ᾰ
πN
0,i , Z̆πNti = η1(i,Xti)ᾰ

πN
1,i .

the approximators of (Y,Z) generated by original least-squares Monte Carlo and by

ŶπNti = η0(i,Xti)α̂
πN
0,i , ẐπNti = η1(i,Xti)α̂

πN
1,i

those, that result from the simplified approach. Again the global a-posteriori criteria
EπN(Y̆

πN , Z̆πN) and EπN(Ŷ
πN , ẐπN) are in each case for l estimated by Monte Carlo

simulation for which we incorporate 1000N samples of X = S. For a better view on
the results we have separated them in two figures. The first one, Figure 4.1, shows
the criterion for the original least-squares Monte Carlo scheme EπN(Y̆

πN , Z̆πN) for
l = 3, 4, 5 and that for our enhanced proposal EπN(Ŷ

πN , ẐπN) for l = 3. As in
the previous chapter, all figures will have logarithmic axes for a better view on
convergence rates and details in the smaller range of values.

Concerning original least-squares Monte Carlo first, a comparison with the results
in Subsection 3.4.2 gives information how the switch to a system of martingale basis
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Figure 4.1: Case 1: Development of the global a-posteriori criterion for the original
least-squares Monte Carlo approach in case of a one-dimensional
call-spread

functions affects the projection error and thereby the over-all approximation error.
Recall, that Subsection 3.4.2 differs from the present example only in the choice of
bases, which there consisted of the pay-off function and indicator functions in all
time steps i = 0, . . . ,N− 1.

Starting with the low-cost case l = 3, the global error criterion seems to be wors-
ened by the chosen martingale basis functions. Not until the number of time steps
takes values larger than 91, we can observe a trend tending to zero. Even for l = 4
the new basis functions deteriorate the results on the error criterion when looking
at N = 2, . . . , 23. However, the numerics for larger numbers of time steps nearly
coincide with the results in Subsection 3.4.2 as far as available. For N > 23 the case
l = 4 decreases with rate −1.06. Looking at the case l = 5, the difference between
the absolute values of the error criterion in Subsection 3.4.2 and that for martingale
basis functions is negligible. Here, the empirical rate of convergence is −1.

It remains to mention the path in Figure 4.1 that corresponds to the global a-
posteriori criterion when applying the simplified least-squares Monte Carlo ap-
proach for l = 3. We can see that for simulations with 16 or even more time steps
the error criterion amounts roughly to the same absolute values as in case l = 5
when using original least-squares Monte Carlo. Taking a closer look at the numerics
for 45 time steps, we observe an absolute value of 0.82 in the original scheme and
0.80 in the simplified algorithm. Particularly remarkable is here, that the first value
was obtained by using 11, 863, 284 samples, whereas the latter result gets along with
23, 171 samples only.

In Figure 4.2 we show the numerics for EπN(Ŷ
πN , ẐπN) for l = 3, 4, 5. Apparently,

the results for larger numbers of time steps, precisely for N > 16, nearly coincide as
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4 Enhancing the least-squares MC approach by martingale basis functions

far as calculated. For largerN all paths decrease with mean rate roughly about 0.96.
This is insofar surprising as the theoretical results on the simulation error suggest
that such a rate of convergence is attained not until l = 4. But we can also see, that
the a-posteriori criterion does not benefit from larger sample sizes as used in the
expensive case l = 5. This is also supported by the theoretical analysis.

2 3 4 6 8 11 16 23 32 45 64 91 128 181

10
0

10
1

Number of time steps, N = 2, ..., 181

l = 3
l = 4
l = 5

Figure 4.2: Case 1: Development of the a-posteriori criterion for the simplified
least-squares Monte Carlo approach in case of a one-dimensional
call-spread

The present example shows nicely how the computational cost can be reduced
by enhanced least-squares Monte Carlo, when the dimension of the function bases
grows with the number of time steps. The smaller effort can be exploited to simulate
even finer partitions than possible in original least-squares Monte Carlo due to com-
putational limitations. This has the effect that the approximation can be calculated
for larger N than in the original proposal such that the corresponding error can be
further reduced. Here, we finished the simulations atN = 181, where we achieved a
global error criterion of 0.21 for l = 3. Recall, that the simulations for the call-spread
in Subsection 3.4.2 stopped at N = 45 with a global error criterion of 0.86 in the
expensive case l = 5.

Case 2: Three-dimensional Brownian motion and monomials at terminal time

This time we set D = 3 such that our basket includes 3 stocks. As basis functions at
terminal time we pick

η0,1(N, x) = (x− 95)+ − (x− 105)+, η0,2(N, x) = 1,
η0,3(N, x) = x1, η0,4(N, x) = x2, η0,5(N, x) = x3
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and determine ηd,k(i, x) by the martingale property explained in Assumption 6. The
simulation parameter are defined by

N =
[
2
√

2m−1
]

, K = 5, L =
[
2
√

23(m−1)
]

,

for m = 1, . . . , 11. We try three types of numerical solution. The first one exploits
original least-squares Monte Carlo with basis functions

η̃d,k(i, x) = η̃0,k(i, x) = η0,k(N, x), d = 1, . . . , 3, k = 1, . . . , 5

for all i = 0, . . . ,N− 1. This generates approximators

ỸπNti = η̃0(i,Xti)α̃
πN
0,i , Z̃πNd,ti

= η̃d(i,Xti)α̃
πN
d,i , d = 1, . . . , 3.

The second simulation combines original least-squares Monte Carlo with the system
of martingale function bases ηd(i, x), d = 0, . . . , 3, i = 0, . . . ,N and yields

Y̆πNti = η0(i,Xti)ᾰ
πN
0,i , Z̆πNd,ti

= ηd(i,Xti)ᾰ
πN
d,i , d = 1, . . . , 3.

The third attempt uses simplified least-squares Monte Carlo with martingale function
bases and we receive

ŶπNti = η0(i,Xti)α̂
πN
0,i , ẐπNd,ti

= ηd(i,Xti)α̂
πN
d,i , d = 1, . . . , 3.

Concerning both algorithms, original as well as simplified least-squares Monte Carlo,
this parameter choice leads to a simulation error that decreases with rate |πN|1/2. The
following figure compares the global a-posteriori criterion of all three approaches.
Note, that the approximation of (ỸπNti , Z̃πNti ) and (Y̆πNti , Z̆πNti ) varies only in the choice
of basis functions. Apparently, the projection error connected with (Y̆πNti , Z̆πNti ) is
far smaller than that caused by (ỸπNti , Z̃πNti ) due to the choice of basis functions. As
expected, the functions ηd(i, x), d = 0, . . . , 3, i = 0, . . . ,N are much more suitable as
projection bases thanks to their martingale property. Moreover, the error criterion
EπN(Ỹ

πN , Z̃πN) seems to tend to a constant value of about 13.70. Hence, the projection
error superposes the effects from the time discretization error and the simulation
error, which both decrease with rate |πN|

1/2 in this setting.
Contrary to that, the absolute value of EπN(Y̆

πN , Z̆πN) amounts to 0.90 at N =
64. Looking at the entire path gives the impression that the convergence rate of
EπN(Y̆

πN , Z̆πN) gets closer to that of EπN(Ŷ
πN , ẐπN), where we tried simplified least-

squares Monte Carlo. Indeed, the path that represents the empirical error criterion
EπN(Ŷ

πN , ẐπN) form = 1, . . . , 11 tends to zero with rate −0.88 and ends up atN = 64
with an absolute value of 0.77.

A possible reasons for the difference between the error criteria for the approxima-
tions (Y̆πNti , Z̆πNti ) and (ŶπNti , ẐπNti ) is the following: The squared projection error in the
latter case does not sum up, see Lemma 5, but is an average over time of the L2-error
between E[F(ti, Sπti , Y

π
ti+1

, Zπti)|X
π
ti
] and its best projection on the function bases, see

also Lemma 17.
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original, martingale basis functions, pay−off and monomials at terminal time

simplified, martingale basis functions, pay−off and monomials at terminal time

Figure 4.3: Case 2: Development of the global a-posteriori criterion in case of a
three-dimensional call-spread

4.4.2 Pricing of a straddle - Simulation with estimated martingales

In the previous case we exploited the possibility to compute the conditional expec-
tation of the basis functions in closed form. Several examples for such functions
were already introduced in Example 15. The last numerical setting will pick up the
question what to do if this possibility is not available. Let η0,k(N, x), k = 1, . . . ,K be
a function basis at terminal time. When carrying out enhanced least-squares Monte
Carlo estimation, we have to compute

η0,k(i, Xλ ti
) = E

[
η0,k(N,XtN)

∣∣Xti = Xλ ti

]
,

ηd,k(i, Xλ ti
) = E

[
∆ Wλ d,iη0,k(N,XtN)

∣∣Xti = Xλ ti

]
, d = 1, . . . ,D

for λ = 1, . . . ,L, k = 1, . . . ,K and i = 0, . . . ,N − 1. In case this is not computable in
closed form, we estimate these conditional expectations by Monte Carlo simulation.
To this end, we generate for λ = 1, . . . ,L a set of Mi,λ copies of {(∆ Wλ i, Xλ ti+1

)|j =
i, . . . ,N− 1}, called

Xti,λ := {(∆ Wti,λµ j , Xti,λµ tj+1
)| j = i, . . . ,N− 1,µ = 1, . . . ,Mi,λ}.

Here, the upper index (ti, λ) signals, that the Markov process (Xti,λtj )i6j6N starts at
time ti in Xλ ti

. Then we define

η̌0,k(i, Xλ ti
) =

1
Mi,λ

Mi,λ∑
µ=1

η0,k(N, Xti,λµ tN
).
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For the estimation of ηd,k(i, x̃λ ), d = 1, . . . ,Dwe use the identity

E [∆Wd,iη0,k(N,XtN) |Xti = x ]
= E [∆Wd,i (η0,k(N,XtN) − E [η0,k(N,XtN) |Xti = x ]) |Xti = x ]

in order to improve Monte Carlo simulation by variance reduction. With an inde-
pendent copy

X̃ti,λ := {(∆ W̃
ti,λ

µ j , Xti,λµ tj+1
)| j = i, . . . ,N− 1,µ = 1, . . . ,Mi,λ}

of Xti,λ we set

η̌d,k(i, Xλ ti
) =

1
Mi,λ

Mi,λ∑
µ=1

∆ W̃
ti,λ

µ d,i

(
η0,k(N, X̃

ti,λ
µ tN

) − η̌0,k(i, Xλ ti
)
)

,

for d = 1, . . . ,D. Now, we have for a fixed sample Xλ ti
of Xti at least esti-

mations for the function values η0,k(i, Xλ ti
) and ηd,k(i, Xλ ti

), even if the martin-
gales (η0,k(i,Xti))06i6N and the processes (ηd,k(i,Xti))06i6N, d = 1, . . . ,D, for
k = 1, . . . ,K are not available in closed form. With this workaround simplified least-
squares Monte Carlo becomes possible. Even though a theoretical analysis of the
impact of this idea on the approximation has yet to be worked out, the following
numerical example will show that this approach is quite promising.

Once again we are concerned with the pricing and hedging of a European option
with dimensionD = 1, see the introductory explanations of the current section. The
pay-off function is this time defined by

φ(ST ) = |ST − κ1|.

The parameters of the stock are determined by

T = 0.5, s0,1 = 100, r = 0.01, R = 0.01, µ = 0.05, σ = 0.2.

The strike price is fixed by κ1 = 110 and the function basis η0(N, x) at terminal time
is formed by

η0,1(N, x) = |x− κ1|, η0,2(N, x) = 1, η0,3(N, x) = x, η0,4 = x2.

By the martingale property we receive η0(i, x) and η1(i, x) for i = 0, . . . ,N − 1, see
Assumption 6. It remains to define the simulation parameter. Clearly,

N =
[
2
√

2m−1
]

, K = 4, L =
[
2
√

23(m−1)
]

,

for m = 1, . . . , 15. With these preliminaries we carry out three different numerical
approaches. We apply original least-squares Monte Carlo with

η̃1(i, x) = η̃0(i, x) = η0(N, x)
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for all i = 0, . . . ,N− 1. Then we receive

ỸπNti = η̃0(i,Xti)α̃
πN
0,i , Z̃πNti = η̃0(i,Xti)α̃

πN
1,i .

The second approximation of (Y,Z) uses simplified least-squares Monte Carlo with
the above defined function bases ηd(i, x), d = 0, 1 and i = 0, . . . ,N. This gives the
approximators

ŶπNti = η0(i,Xti)α̂
πN
0,i , ẐπNti = η1(i,Xti)α̂

πN
1,i .

The last numerical solution arises from the combination of simplified least-squares
Monte Carlo with estimated function values η̌0,k(i, Xλ ti

) and η̌d,k(i, Xλ ti
), λ =

1, . . . ,L, d = 1, . . . ,D, k = 1, . . . , 4, that were computed by an ’inner’ Monte Carlo
simulation as explained above. The amountMi,λ of inner samples, that are used for
this Monte Carlo simulation, is set to 200(N− i) independent of λ. Then we define

Y̌πNti = η̌0(i,Xti)α̌
πN
0,i , ŽπNti = η̌1(i,Xti)α̌

πN
1,i .

The empirical global a-posteriori criteria for all three attempts are shown in the
following figure. Each of the three paths refers to one of the different numerical
approaches. Not surprisingly, the empirical error criterion for (ỸπNti , Z̃πNti )ti∈πN does
not tend to zero but levels out at 9.15 for 256 time steps.

4 6 8 11 16 23 32 45 64 91 128 181 256
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Number of time steps, N = 4, ..., 256

original, pay−off function and polynomials at all time steps
simplified, estimated martingale bases, pay−off function and polynomials at term. time
simplified, martingale bases, pay−off function and polynomials at term. time

Figure 4.4: Development of the global a-posteriori criterion in case of a straddle

In contrast to that the a-posteriori criterion EπN(Ŷ
πN , ẐπN) has a empirical con-

vergence rate of −0.94 and we obtain at N = 256 the absolute value of 0.39. These
results are our benchmark for judging the approximation of (Y̌πNti , ŽπNti )ti∈πN . For
this approach with approximate martingale basis functions we observe that the
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error criterion EπN(Y̌
πN , ŽπN) runs on a higher level compared to the results for

EπN(Ŷ
πN , ẐπN) and gets down to an absolute value of 1.19 at N = 256. The dis-

tance between both criteria stays nearly constant and amounts to 0.78 on average.
Although the empirical criterion EπN(Y̌

πN , ŽπN) decreases with significantly smaller
rate than EπN(Ŷ

πN , ẐπN), we can observe a significant improvement in contrast to
the results for EπN(Ỹ

πN , Z̃πN). The empirical results for EπN(Y̌
πN , ŽπN) can be fur-

ther improved by using a larger size of inner samples Mi,λ for the computation of
η̌0,k(i, Xλ ti

) and η̌d,k(i, Xλ ti
).

By and large, the combination of simplified least-squares Monte Carlo with ap-
proximate martingales seems to be a good alternative to original least-squares Monte
Carlo if no appropriate system of martingale basis functions is available in closed
form, even if it is more expensive to implement due to the simulation of inner
samples.
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A Some results on nonparametric
regression and VC dimension

For the sake of convenience, we list here some results on nonparametric regression,
that are required for the proof of Lemma 24. Precisely, we start by citing the contents
of Definition 9.5 and 9.6 in Györfi et al. (2002).

Definition 26. Let A be a class of subsets of RD̃ and let n ∈N.
(i) For x1, . . . , xn ∈ RD̃ define

s(A, {x1, . . . , xn}) = #
{
{A ∩ {x1, . . . , xn}|A ∈ A}

}
,

that is, s(A, {x1, . . . , xn}) is the number of different subsets of {x1, . . . , xn} of the form
A ∩ {x1, . . . , xn} for A ∈ A.
(ii) Let B be a subset of RD̃ of size n. One says that A shatters B if s(A,B) = 2n, i. e.
if each subset of B can be represented in the form A ∩ B for some A ∈ A.
(iii) The nth shatter coefficient of A is

S(A,n) = max
{x1,...,xn}⊆RD̃

s(A, {x1, . . . , xn}).

That is the shatter coefficient is the maximal number of different subsets of n points
that can be picked out by sets from A.
(iv) Let A , ∅. The VC dimension (or Vapnik-Chervonenkis dimension) VA of A is
defined by

VA = sup{n ∈N|S(A,n) = 2n},

i. e. the VC dimension VA is the largest integer n such that there exists a set of n
points in RD̃ which can be shattered by A.

Now, we introduce for a set U of functions u : RD̃ → R the norms

‖u‖ =
√∫

|u(x)|2dPX(x), ‖u‖L =

√√√√1
L

L∑
λ=1

|u(Xλ)|2,

where PX is the law of a random variable X and XL := {Xλ|λ = 1, . . . ,L} a set of
independent copies of X.

The following definitions of covers and covering numbers are taken from Defini-
tion 9.3 in Györfi et al. (2002).
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Definition 27. Let ε > 0.
(i) An L2 − ε-cover of U on XL is a finite set of functions u1, . . . ,un : RD̃ → R such
that for every u ∈ U there is a j ∈ {1, . . . ,n} with

∥∥u− uj
∥∥
L
< ε.

(ii) The ε-covering number N2(ε,U,XL) of U with respect to ‖u‖L is the smallest
number n such that an L2 − ε-cover of U on XL exists. Note that, as XL is a random
set, the covering number N2(ε,U,XL) is also a random variable.

By Theorem 11.2 of Györfi et al. (2002) we have

Lemma 28. Let U be a class of functions u : RD̃ → R that is bounded in absolute value by
R. Given ε > 0 we have

P{∃u ∈ U : ‖u‖− 2 ‖u‖L > ε} 6 3 exp{−
Lε2

288R2 }E

[
N2(

√
2

24
ε,U,X2L)

]
,

where X2L = {X1, . . . ,XL,XL+1, . . . ,X2L} is as set of i.i.d. copies of X.

Combining Lemma 9.2 and Theorem 9.4 of Györfi et al. (2002), we receive

Lemma 29. Let U be a class of functions u : RD̃ → [0,R] and

U+ :=
{
{(x, t) ∈ RD̃ ×R|t 6 u(x)},u ∈ U

}
with VU+ > 2 and let 0 < ε < R/4. Then

N2(ε,U,XL) 6 3
(

2eR2

ε2 log
3eR2

ε2

)VU+

.

Furthermore, we quote a result on the VC dimension of linear vector spaces, that
can be found in Theorem 9.5 of Györfi et al. (2002).

Lemma 30. Let U be a K-dimensional vector space of real-valued functions on RD̃, and set

A =
{
{x|u(x) > 0},u ∈ U

}
.

Then VA 6 K.
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