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Abstract

The complexity of a set of first-order formulas results from the size of the set and the
complexity of the problem described by its formulas.

Decision Procedures for Ontologies

This thesis presents new superposition based decision procedures for large sets of for-
mulas. The sets of formulas may contain expressive constructs like transitivity and
equality. The procedures decide the consistency of knowledge bases, called ontologies,
that consist of several million formulas and answer complex queries with respect to these
ontologies. They are the first superposition based reasoning procedures for ontologies
that are at the same time efficient, sound, and complete.

The procedures are evaluated using the well-known ontologies YAGO, SUMO, and
CYC. The results of the experiments, which are presented in this thesis, show that
these procedures decide the consistency of all three above-mentioned ontologies and
usually answer queries within a few seconds.

Reductions for General Automated Theorem Proving

Sophisticated reductions are important in order to obtain efficient reasoning procedures
for complex, particularly undecidable problems because they restrict the search space of
theorem proving procedures. In this thesis, I have developed a new powerful reduction
rule. This rule enables superposition based reasoning procedures to find proofs in
sets of complex formulas. In addition, it increases the number of problems for which
superposition is a decision procedure.
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Zusammenfassung

Die Komplexität einer Formelmenge für einen automatischen Theorembeweiser in Prä-
dikatenlogik 1. Stufe ergibt sich aus der Anzahl der zu betrachtenden Formeln und aus
der Komplexität des durch die Formeln beschriebenen Problems.

Entscheidungsprozeduren für Ontologien

Diese Arbeit entwickelt effiziente auf Superposition basierende Beweisprozeduren für
sehr große entscheidbare Formelmengen, die ausdrucksstarke Konstrukte, wie Transi-
tivität und Gleichheit, enthalten. Die Prozeduren ermöglichen es Wissenssammlungen,
sogenannte Ontologien, die aus mehreren Millionen Formeln bestehen, auf Konsistenz
hin zu überprüfen und Antworten auf komplizierte Anfragen zu berechnen. Diese
Prozeduren sind die ersten auf Superposition basierten Beweisprozeduren für große,
ausdrucksstarke Ontologien, die sowohl korrekt und vollständig, als auch effizient sind.

Die entwickelten Prozeduren werden anhand der weit bekannten Ontologien YAGO,
SUMO und CYC evaluiert. Die Experimente zeigen, dass diese Prozeduren die Kon-
sistenz aller untersuchten Ontologien entscheiden und Anfragen in wenigen Sekunden
beantworten.

Reduktionen für allgemeines Theorembeweisen

Um effiziente Prozeduren für das Beweisen in sehr schwierigen und insbesondere in un-
entscheidbaren Formelmengen zu erhalten, sind starke Reduktionsregeln, die den Be-
weisraum einschränken, von essentieller Bedeutung. Diese Arbeit entwickelt eine neue
mächtige Reduktionsregel, die es Superposition ermöglicht Beweise in sehr schwierigen
Formelmengen zu finden und erweitert die Menge von Problemen, für die Superposition
eine Entscheidungsprozedur ist.
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1. Introduction

Today, we can already find answers to many questions in the Internet with the assistance
of search engines like Google, Bing and Yahoo. For a given query, they return webpages
containing the keywords of the query. Searching for a precise answer to a query rather
than webpages often reaches the limit of keyword based search engines. The problem
is that the search engines do not understand the meaning of the words contained in
both the webpages and the query. Therefore, in this thesis I present a query answering
engine that computes precise answers to complex queries.

Consider the following query: ”Which German physicist is also a politician?” On 17
January 2012 Google found 169,000,000 websites containing the keywords ”German”,
”physicist” or ”politician”. The first website found is about climate politics, the second
is about German physics and the third about Max Planck. The fourth hit is an article
that appeared in The New York Times with the title ”Merkel’s Path: Brinkmanship for
Debt Crisis”, which contains the following sentence: ”..., Mrs. Merkel, an East German
physicist turned politician, ...”. From this sentence we, as humans, can conclude that
Angela Merkel is an answer to the above query.

Consequently, a search based on keywords is only successful if a document is found
that contains the right answer. For example, reformulating the query to ask ”Which
German politician is a scientist?” did not find a webpage among the first ten results
containing the name Angela Merkel.

The reason for this behavior is that the search engines neither understand the content
of the webpages nor the meaning of the query. They rather search the webpages for
the character strings composing the respective keywords. A website containing the key-
words of the query does not necessarily contain the answer. If a computer understands
the query and the knowledge contained in the website, it would return ”Angela Merkel”
as an answer in both of the above cases. Figure 1.1 depicts examples of queries that
cannot be directly answered by keyword based search engines.

In order to accomplish that a computer understands the provided knowledge, the knowl-
edge has to be represented in a way that can be interpreted by a computer. Such a
representation is called an ontology. The representation of the knowledge in an ontology
ranges from a rather informal representation to a representation in logic. Ontologies
are briefly presented in the next section.

Answering complex queries in large ontologies precisely and completely requires a pre-
cise formal representation of the ontology and reasoning procedures that fulfill the fol-
lowing requirements: The reasoning procedures support a language expressive enough
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Which politicians are also physicists?

Which predecessor of G.W. Bush has graduated from the same high school as his wife?

In which country was Angela Merkel born?

Which physicists were born in the same locations as all their children?

Which politician is also physicist and born in Europe?

Which successor of Helmut Schmidt is politician and physicist?

Does every German politician have a predecessor who is born in Germany?

Which politicians were born in Germany?

Who was the first German chancellor?

Figure 1.1.: Example queries

to represent the ontology as well as the query. Furthermore, the reasoning procedure is
at the same time sound, complete, terminating, and practically feasible for ontologies
consisting of several million formulas.

In this thesis, I present reasoning procedures that accomplish all these requirements.

1.1. Representing Knowledge in an Ontology

An ontology [Gru95, VHLPs08, Sta09] represents the knowledge of a particular do-
main. It consists of a collection of facts about entities. For example, people, cities,
movies and machines are entities. Examples for facts are the relation between entities,
”Albert Einstein was born in Ulm”, the classification of entities, ”Albert Einstein was
a physicist”, and subclass relations, ”physicists are scientists”.

Ontologies have traditionally been built manually by domain experts and ontology
engineers. They differ in quality and in the amount of contained knowledge. The
representation of the knowledge in an ontology varies from a rather informal repre-
sentation to a mathematically precise formal representation using logics like first-order
logic, higher-order logic or modal logic. The handbook on ontologies [Sta09] discusses
the general design and maintenance of ontologies.

The following are examples for existing ontologies: YAGO [SKW07, SKW08], CYC [Len95],
WordNet [Fel98]. DBPedia [ABK+07], SUMO [NP01a], KnowItAll [ECD+04], Wiki-
Taxonomy [PS08], Omega [PHP08].

The main motivation for the work presented in this thesis was the development of
first-order reasoning procedures for YAGO in order to verify its consistency and answer
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arbitrary first-order queries. The YAGO ontology is automatically generated out of
Wikipedia and WordNet [Fel98]. YAGO contains information about more than two
million entities and has more than 15 million entries. A manual evaluation of YAGO
by randomly choosing facts and comparing them with the respective Wikipedia page
showed an accuracy of approximately 95% [SKW07]. The YAGO ontology is exceptional
when compared to other ontologies because it is fully automatically generated, has a
high coverage, and at the same time, a high accuracy rate.

The knowledge contained in YAGO is represented in a format that is a slight exten-
sion of the Resource Description Format (RDF) [Bec04, Sta09]. YAGO’s knowledge is
represented in triples of the following form:

arg1 rel arg2 .

This kind of triple is called a fact . For example, expressing ”Albert Einstein was born
in Ulm” is encoded as the fact

AlbertEinstein bornIn Ulm, (1.1)

and the fact ”Albert Einstein was of type physicist” is denoted as

AlbertEinstein type physicist . (1.2)

In addition, YAGO formulates constraints like the functionality constraint for the re-
lation bornIn

bornIn type yagoFunction, (1.3)

and it also defines transitive relations, for example,

locatedIn type yagoTransitiveRelation . (1.4)

This thesis defines a mathematically precise semantics for the YAGO ontology by trans-
lating YAGO into a representation in first-order logic. Verifying the consistency of
YAGO and answering queries with the knowledge of YAGO both correspond to first-
order reasoning tasks performed on the first-order representation of YAGO. A consis-
tency check of YAGO verifies, for example, that all functionality constraints are fulfilled.
Answering a query corresponds to checking whether the query logically follows from
the knowledge of YAGO. The translation of YAGO and the respective reasoning tasks
are depicted in the next section.

1.2. Reasoning in Ontologies

In order to define a mathematically precise semantics for YAGO, I present in Chapter 4
that YAGO can be automatically translated into a fragment of first-order logic, which
I call BSH-Y2. The BSH-Y2 fragment is a subset of the Bernays–Schönfinkel Horn
fragment with equality, which is a decidable fragment of first-order logic. The following
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shows a brief overview of the translation. Additionally, it depicts the first-order rea-
soning problems which correspond to the operations for ontologies, namely consistency
checking and query answering.

For example, fact 1.1 and fact 1.2 can, respectively, be represented by the following
first-order formulas:

bornIn(AlbertEinstein,Ulm)

physicist(AlbertEinstein)

The constraint that bornIn is a functional relation is expressed by the following first-
order formula:

∀x, y, z(bornIn(x, y) ∧ bornIn(x, z)→ y ≈ z),

where ≈ denotes equality. The fact that the relation locatedIn is transitive is stated by
the formula

∀x, y, z(locatedIn(x, y) ∧ locatedIn(y, z)→ locatedIn(x, z)).

The queries shown in Figure 1.1 can also be represented as first-order formulas. For
example, the following query asks for ”Physicists who were born in the same location
as all their children”:

∃x, y(physicist(x) ∧ bornIn(x, y) ∧ ∀z. hasChild(x, z)→ bornIn(z, y)).

The next query asks ”Does every German politician have a predecessor born in Ger-
many?”:

∀x(politicianOf(x,Germany)→
∃y, z(hasSuccessor(y, x) ∧ bornIn(y, z) ∧ locatedIn(z,Germany))).

The operations for ontologies, namely checking consistency and answering queries, cor-
respond to first-order reasoning problems, which are depicted in the remainder of this
section. A set of first-order formulas is called a theory. Assume, N is the theory from
BSH-Y2 representing an ontology and Φ is a first-order formula called the query. An-
swering Φ in terms of the theory N corresponds to the reasoning task that verifies
whether N implies Φ; written N |= Φ. If N is inconsistent, denoted as N |= ⊥, then Φ
is trivially entailed by N because from a inconsistency everything is logically implied.
In order to prevent the query answering procedure from returning trivial answers, one
has to make sure that N is consistent, i.e., N 6|= ⊥. In summary, before answering
queries in N , one has to prove its satisfiability.

The standard first-order semantics for answering the query Φ with respect to N corre-
sponds to an open world assumption. This is because N |= Φ means that Φ holds in
all models of N ; formally, for all models I with I |= N , it holds that I |= Φ.

For example, consider the theoryN ′ = {P (a), P (a)→ Q(a)}, the query Φ′ = ∀x(P (x)→
Q(x)), and the model I ′ = {P (a), Q(a), P (b)}. In this case, I ′ is a model of N ′, i.e.,
I ′ |= N ′, but it is not a model of Φ′. So, N ′ 6|= Φ′.
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∃x(politician(x) ∧ physicist(x))

∃x, y, z(hasSuccessor(x,GeorgeWBush) ∧ graduatedFrom(x, z)∧
graduatedFrom(y, z) ∧ isMarriedTo(x, y))

∃x, y(bornIn(Angela Merkel, y) ∧ locatedIn(x, y) ∧ country(y))

∃x, y(physicist(x) ∧ bornIn(x, y) ∧ ∀z. hasChild(x, z)→ bornIn(z, y))

∃x(bornIn(x, y) ∧ politician(x) ∧ locatedIn(x,Europe) ∧ physicist(x))

∃x(politician(x) ∧ physicist(x) ∧ hasSuccessor(Helmut Schmidt, x))

∀x(politicianOf(x,Germany)→ ∃y, z(hasSuccessor(y, x) ∧ bornIn(y, z)∧
locatedIn(z,Germany)))

∃x(politician(x) ∧ bornInCountry(x,Germany))

∃x(GermanChancellor(x) ∧ ∀y(¬hasPredecessor(x, y) ∨ ¬GermanChancellor(y)))

Figure 1.2.: Queries in first-order logic

In contrast to the standard first-order semantics, the minimal model semantics corre-
sponds to a closed world assumption. This means that the query Φ holds if it is implied
only by the minimal model NI of N , i.e., NI |= Φ. The model NI is minimal in terms
of set inclusion. Note, for each set of formulas from BSH-Y2, there is a unique minimal
model. In the above example, the minimal model of N ′ is N ′I = {P (a), Q(a)}. This is
also a model of Φ′, i.e., N ′I |= Φ′. Consequently, Φ′ is entailed in N ′ with respect to
minimal model semantics.

Both satisfiability checking and minimal model query answering are complex reasoning
tasks, particularly in the context of ontologies consisting of several million formulas.
The reason for this is that verifying the satisfiability of formula sets from the Bernays–
Schönfinkel Horn fragment is EXPTIME complete [Pla84], and answering queries with
respect to minimal model semantics is beyond standard first-order reasoning.

The next section shows related work done in the context of reasoning about ontologies.

1.3. Related work

This section depicts other work that has been done towards the development of efficient
reasoning procedures for ontologies. The procedures presented in this other work can
be distinguished by the expressiveness of their underlying logics, the size of axiom sets
they can efficiently reason about, and the expressiveness of their query language.

The systems developed in [LPF+06, DFK+07, LTW09] extended relational databases
with reasoning engines. They are suitable for reasoning about knowledge bases with
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a large proportion of facts and a rather small and simple set of additional formulas.
The set of additional formulas is called the background knowledge. These systems
benefit from sophisticated techniques developed for relational databases. Because of
the fact that the databases store the facts of a knowledge base, these approaches scale
very well when increasing the number of facts. On the other hand, their logic for
encoding the background knowledge is rather restricted. In particular, computing the
transitive closure of a relation requires a complete grounding of this relation. In the
case of YAGO, this is not practically feasible. This becomes even more involved when
considering formulas containing transitive predicates. Such a formula may represent
exponentially many ground instances.

Following [GKKS11a], answer set programming (ASP) [GL90, Bar03] has been success-
fully used in a variety of applications, for example, product configuration [SN98], deci-
sion support for the space shuttle [NBG+00], automatic music composition [BBVF10],
automatic synthesis of multiprocessor systems [IMB+09], and inconsistency detection
in large biological networks [GSTV11]. First, in the ASP approach, a given set of for-
mulas is completely ground instantiated before applying the actual solver. Although
efficient grounding tools like lparser [Syr98] and gringo [GST07, GKKS11b] have been
developed, a complete grounding of the YAGO ontology involving 2 million constants
and 10 million clauses with transitive predicates cause a blow up of the search space,
which is outside of the scope of these grounding procedures [GKKS11a]. For example,
gringo, applied to YAGO++, an extension of YAGO presented in Chapter 8, ran out
of memory on a computer with 96 GB of main memory. During this execution, it
generated over one billion ground instances.

Description logics (DL) [BCM+03] are widely used to encode ontologies. They are
mostly decidable subsets of first-order logic, and a DL ontology usually consists of two
parts, an ABox and a TBox. The ABox contains the facts of the ontology and the TBox
the terminological part. The TBox contains the formulas composing the background
knowledge. The computation of the subsumption hierarchy of an ontology is an essential
reasoning task in description logics. Computing the subsumption hierarchy is deciding
the entailment of concepts in the TBox. For example, the concept ’human’ is entailed by
the concept ’mammal’. The DL reasoners [SPG+07, TH06, HM01, KKS11] have been
developed in order to compute the subsumption hierarchy. Experiments in [MS06]
show that they are not particularly suited for answering queries in ontologies with a
large ABox. In order to also efficiently answer queries in large ontologies represented in
description logics, [CGL09, HMS07] have developed translations from description logics
to datalog. [Sch99] shows that the well-known description logic ALC can be embedded
into the Bernays–Schönfinkel fragment.

State of the art superposition based first-order theorem provers like E [Sch02], Spass
[WDF+09], and Vampire [RV01] are originally designed to reason about first-order theo-
ries consisting of at most several hundred complex formulas. This was motivated by au-
tomatically proving mathematical theorems and performing verification tasks on com-
plex systems. In recent work, superposition based theorem provers have also been used
to reason about knowledge bases formulated in expressive logics that are beyond stan-
dard description logics [BCM+03] and datalog [CGT89]. For example, [PSST10, HV06]
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uses Vampire to reason about subsets of the SUMO [NP01b] ontology. Experiments
presented in [SS11] give evidence that superposition based provers perform better than
tableaux based description logic reasoners when reasoning about ontologies encoded
in OWL 2 Full [OWL09]. The OWL 2 Full language is an expressive semantic web
language that is part of the W3C standard.

The results of the last CASC competition [Sut11] show that superposition based au-
tomated theorem provers can successfully answer simple existential queries in large
ontologies. The systems [Sch02, RV01, Kor08] participating in the large theory cate-
gory of the CASC competition use an axiom selection heuristic [HV11] which ignores
certain axioms. In a preprocessing step, this heuristic selects a small set of axioms in a
goal oriented manner from the knowledge base trying to identify the axioms relevant for
proving the query. The resulting small set of clauses is then processed by the respective
systems. In [RRG05] an inference system and the respective heuristics have been par-
ticularly designed in order to reason about the CYC [Len95] ontology. The approach
presented in [SSW+09] tries to identify relevant axioms in a database on-the-fly during
the reasoning process of SPASS [WDF+09].

The LogAnswer [FGHP08] system is a natural language query answering tool which
combines text analysis approaches with theorem proving techniques. The system con-
tains a snapshot of the German Wikipedia. In order to answer a natural language
query, it tries to identify text passages in the available documents that may contain
the answer. After that, the query and the text passages are translated into a logical
representation. This logical representation, together with some general background
knowledge, is processed by the tableaux based theorem prover E-KRHyper [PW07]. If
E-KRHyper finds a proof, then this proof is further processed in order to generate an
answer to the query. In summary, the LogAnswer system only considers a small part
of the available knowledge and is, therefore, also not complete.

All of the above mentioned heuristics are based on the assumption that the proof for
an answer relies on only a small part of the knowledge base. In fact, they ignore most
axioms of the knowledge base. The resulting incompleteness has two consequences.
First, verifying the consistency of a knowledge base is beyond the capabilities of this
heuristic. It is arguable what an answer to a query in an inconsistent ontology means.
As a matter of fact, the versions of the ontologies SUMO and CYC, as used in the
last CASC competition, were inconsistent. The experiments in Chapter 8 show that
the procedures I have developed in this thesis prove these inconsistencies. Second, this
heuristic is only capable of answering simple existential queries and only in standard
first-order model semantics. Consequently, they are unable to answer queries in terms
of the minimal model because already fixing the domain leads to reasoning tasks beyond
standard first-order reasoning [HW10].

As a result, I was not able to find an already existing approach that covers all re-
quirements; none of the existing approaches are at the same time sound, complete,
terminating, practically feasible, and provide a query answering procedure that an-
swers complex queries with respect to minimal model semantics.
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1.4. Contribution and Structure

In this thesis, I present the first superposition based reasoning procedures that efficiently
decide the satisfiability of ontologies consisting of several million axioms. The developed
procedures also perform efficient entailment checks for complex formulas with respect to
the minimal model semantics of the ontology. This provides a powerful query answering
procedure for complex queries containing arbitrary quantifier alternations.

First, I have defined the ontology language BSH-Y2, which is a decidable fragment
of first-order logic. The language BSH-Y2 is able to appropriately represent large
parts of the knowledge of the widely recognized ontologies YAGO [SKW07, SKW08],
SUMO [NP01a], and CYC [Len95].

Second, I have developed decision procedures for this language together with the neces-
sary data structures. These procedures decide the satisfiability of the BSH-Y2 subsets
of the above ontologies and typically answer queries in the range of a few seconds.

1.4.1. The Ontology Language BSH-Y2

The BSH-Y2 is able to encode the complete core knowledge of YAGO (10m formulas),
about 90% of SUMO (83k formulas), and about 30% of CYC (1m formulas). I consider
the versions of SUMO and CYC as contained in the benchmark set for automated
theorem provers TPTP [Sut10].

The language BSH-Y2 is a subset of the the Bernays–Schönfinkel Horn fragment with
equality and contains the following type of closed formulas

P (a1, . . . , an) Ground Fact

∀x(S1(x)→ S2(x)) Subsort Relation

∀x, y, z(R(x, y) ∧R(x, z)→ y ≈ z) Functionality

∀x, y, z(R(x, y) ∧R(y, z)→ R(x, z)) Transitivity

∀x(¬P1(t11, . . . , t1n1) ∨ . . . ∨ ¬Pk(tk1, . . . , tknk
)) Constraints

∀x(P1(t11, . . . , t1n1) ∧ . . . ∧ Pk(tk1, . . . , tknk
)→ P (s1, . . . , sm)) Defined Relations

where ai are constants, x, y, z are variables, each tij , si is either a constant or a
variable, and x denotes a sequence of variables. All of these formulas are closed, i.e., all
variables are bound. The symbol R denotes a binary relation, Si denotes a sort, and P ,
Pi denotes arbitrary relations. The constants represent individuals of the ontology and,
consequently, are assumed to be different (unique name assumption). The components
of a formula having the form P (s1, . . . , sn), R(s1, . . . , sn), and Si(x) are called atoms.
The defined relations are acyclic and range restricted. This means that all variables of
P (s1, . . . , sm) also occur in

P1(t11, . . . , t1n1) ∧ . . . ∧ Pk(tk1, . . . , tknk
).
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The language BSH-Y2 is defined in detail in Chapter 4. The following ground fact says
that Albert Einstein was born in Ulm:

bornIn(AlbertEinstein,Ulm). (1.5)

The subsort relation

∀x(human(x)→ mamal(x)) (1.6)

expresses that every human is a mammal. The functionality constraint

∀x, y, z(bornIn(x, y) ∧ bornIn(x, z)→ y ≈ z)

says that bornIn is a functional relation.

∀x, y, z(locatedIn(x, y) ∧ locatedIn(y, z)→ locatedIn(x, z))

states that the relation locatedIn is transitive. The constraint

∀x, y(¬bornIn(x, y) ∨ ¬ bornIn(y, x))

expresses that the relation bornIn is not symmetric. Finally, the defined relation

∀x, y, z(male(x) ∧ hasChild(x, y)→ fatherOf(x, y))

defines the new relation fatherOf.

The ontologies SUMO and CYC, as contained in the TPTP, are already represented as a
set of first-order formulas. I extracted from these representations the subsets contained
in BSH-Y2, which I call SUMO-Y2 and CYC-Y2.

Because YAGO is represented in a flat text file format, and because there was no
first-order representation before now, I have developed an automatic translator from
the YAGO format into a set of formulas from BSH-Y2 (Chapter 3). In this way, the
core knowledge of YAGO can be translated. In addition to its core knowledge, YAGO
contains meta facts, which give additional information for each fact, e.g., the time of
its extraction and the respective source. I ignore the meta facts for reasoning and,
therefore, I have only translated the core of YAGO. The translated core contains 10
million formulas, over 2 million individuals, and the following types of formulas: ground
facts, subsort relations, functionality axioms, and transitivity axioms.

In order to also evaluate the other constructs of BSH-Y2 in the context of YAGO, I have
manually added constraints and defined relations to the representation of YAGO. This
extension is called YAGO++ which is presented in detail in Chapter 8. The YAGO++
ontology will be contained in the next releases of the TPTP.
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Figure 1.3.: Spass–Y2 architecture

1.4.2. The Ontology Reasoning Engine Spass–Y2

In this thesis, I have created a new reasoning engine for large ontologies, called Spass–
Y2, which is based on the automated theorem prover Spass [WDF+09]. Figure 1.3
gives an overview of the architecture of Spass–Y2 and shows the components I have
developed; the saturation procedure, the query answering procedure, and the index. The
index is the underlying key data structure for an efficient implementation of both the
saturation and query answering procedure. The saturation procedure decides the sat-
isfiability of a given BSH-Y2 ontology and computes a compact representation of its
minimal model. The query answering procedure performs efficiently by taking advan-
tage of this compact minimal model representation.

Index

For an efficient implementation of both the saturation procedure and the query answer-
ing procedure, I have invented a new index for storing and accessing formulas, called
filtered context tree index [SWW10]. In Chapter 5, I present the filtered context tree
index. The filtered context tree index implements an efficient filtering technique that
reduces the search space of the retrieval operations.
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w0 7→ P (w1, w2)

w1 7→ x

w2 7→ a w2 7→ y

w2 7→ x

w1 7→ x

w2 7→ b

w1 7→ b w1 7→ x

Figure 1.4.: Context tree

An index [OL80] is a data structure for storing formulas, which provides efficient re-
trieval procedures. For example, retrieval operations for an index data structure are
the search for unifiable formulas or instances of formulas. The development of sophis-
ticated term indexing techniques has been pivotal for successful automated theorem
proving [Gra96, RSV01]. In the case of ontologies possibly containing several million
formulas, this becomes even more involved. The index is a central part of the reasoning
engine because it is queried several thousand times during the application of a single
reasoning loop.

The filtered context tree index is based on the context tree [GNN01] index. A context
tree is a tree, which stores atoms. Figure 1.4 shows a context tree. Each node of the
context tree contains a substitution, and a path from the root to a leaf represents a
stored atom. For example, the leftmost path represents the atom P (x, a). Starting
at the root and performing a retrieval operation, the filtered context tree algorithm
checks whether each child, on the path, matches with the current retrieval operation.
For example, the first two children of the root are unifiable with the atom P (a, a) and
with the substitution x 7→ a, but not the last child.

In the case of a huge ontology like YAGO, a node in a context tree may contain several
million children. For example, consider the retrieval for unifiable atoms in the context
tree. During a retrieval operation, it is not feasible to search through all children in
order to find a child that is unifiable with the query. For this reason, I have developed
a filter based on the symbols of each substitution. In particular, the filtered context
tree index implements a mapping mechanism. For a given retrieval atom A and a node
N , the mapping returns the set of children of N that are likely to be unifiable with A.
In other words, the filtering mechanism removes children of N that are not unifiable
with A from the search space. As a result, it removes whole subtrees from the search
space of the retrieval operation. This has been the key for an efficient implementation
of both the saturation and query answering procedure.

The index that is implemented in Spass is substitution tree indexing [Gra96]. The sub-
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stitution tree index is an instance of the context tree index. For this reason, Spass–Y2
contains the new filtering technique integrated into the implementation of the sub-
stitution tree index of Spass. The resulting implementation of the term indexing is
efficient for practical reasoning in huge ontologies. Before integrating the new filtering
technique, Spass was already unable to load the YAGO ontology within reasonable
time.

Saturation Procedure

The saturation procedure of Spass–Y2 (Chapter 6) I have developed is the first su-
perposition based reasoning procedure that can decide the satisfiability of ontologies
containing several million formulas from BSH-Y2. In addition, if the ontology is consis-
tent, the saturation procedure returns a compact representation of its minimal model.
The query answering procedure is efficient, sound, and complete in terms of this com-
pact representation. In general, verifying the satisfiability in the Bernays–Schönfinkel
Horn fragment is EXPTIME complete [Pla84]. Consequently, reasoning in an ontology
with several million clauses is a hard reasoning problem.

Therefore, I have designed a reasoning procedure in such a way that the expensive
reasoning applies only to a rather small part of the actual reasoning problem. I have
accomplished this with the design of a two-layered reasoning procedure. This procedure
separates the reasoning about transitivity from the non-transitive reasoning. For each of
these layers I have designed a separate reasoning calculus. The non-transitive reasoning
calculus performs a Hyperresolution reasoning, and the transitive reasoning calculus is
based on an instance of the chaining calculus [BG98].

The new two-layered reasoning procedure is sound, complete, and terminating. As
the experiments of Chapter 8 confirm, the new procedure is also feasible for practical
reasoning in the huge ontologies YAGO++, SUMO-Y2, and CYC-Y2. It saturates the
YAGO++ ontology in 16 minutes, SUMO-Y2 in 53 minutes, and it finds inconsistencies
in CYC-Y2 within one minute.

Query Answering Procedure

In Chapter 7 of this thesis, I introduce a sound and complete query answering procedure
that answers queries in BSH-Y2 ontologies with respect to minimal model semantics.
The supported query language is a subset of first-order logic, which can express com-
plex formulas containing arbitrary quantifier alternations. Answering queries of this
query language with respect to minimal model semantics is beyond standard first-order
reasoning procedures [HW10].

The query answering procedure is based on a finite domain quantifier elimination algo-
rithm. A finite domain quantifier elimination that performs a complete instantiation is
bounded by the complexity O(mn) where m is the number of occurring constants and
n the number of quantifiers of the query. An ontology like YAGO contains more than
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two million constants. Therefore, my procedure restricts the number of the considered
query instances by exploiting the compact representation of the minimal model as a
saturated set of formulas. This compact representation enables the procedure to effi-
ciently perform intermediate queries to the minimal model during the elimination of
variables.

This yields a procedure which answers complex queries containing arbitrary many quan-
tifier alternations in YAGO++ with minimal model semantics. It answers all queries
of Figure 1.2; usually within a few seconds.

1.4.3. Future work

Chapter 9 describes several directions for further investigations into the next generation
of search engines. These directions include extending the reasoning procedures that
support more expressive ontology languages. Reasoning about time and more specific
locational knowledge is a possible extension. The new version of YAGO, called YAGO 2,
already contains this additional knowledge [HSB+11].

A further direction of research is the development of parallel reasoning procedures that
lift the presented approaches to an Internet scale reasoning engine.

A drawback of the presented approach is the absence of a natural language interface
that opens the query answering procedure also to non-expert users.

1.4.4. Summary of Achievements

This thesis presents the first superposition based reasoning procedures that efficiently
decide the satisfiability of ontologies consisting of several million axioms from BSH-Y2.
The set BSH-Y2 is a subset of the Bernays–Schönfinkel Horn fragment with equality. It
is able to represent the YAGO ontology as well as large parts of the ontologies SUMO
(SUMO-Y2) and CYC (CYC-Y2). Verifying the satisfiability of formula sets from the
Bernays–Schönfinkel Horn fragment is EXPTIME complete.

Further, I have developed a query answering procedure that answers complex queries
containing arbitrary quantifier alternations with respect to minimal model semantics.
In general, minimal model reasoning is beyond standard first-order reasoning proce-
dures.

In order to obtain efficient implementations of the reasoning procedures, I have devel-
oped a new index called filtered context tree index. This index implements an efficient
filtering technique based on the symbols of an ontology. This filter provides more ef-
fective retrieval operations. For example, the index storing YAGO contains about 10
million formulas, and a retrieval operation is performed several thousand times during
one reasoning loop. Therefore, efficient retrieval operation are the key for practical
reasoning about huge formula sets.
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I have implemented the new procedures and the new index in Spass. The resulting
new version is called Spass–Y2. This new version is useful to practically reason about
huge ontologies. It verifies the consistency of YAGO within 16 minutes, the consistency
of SUMO-Y2 in 53 minutes, and it finds inconsistencies of CYC-Y2 within one minute.
Answering times for complex queries with quantifier alternations are usually within a
few seconds.



2. Foundations

This chapter recalls basic definitions and notions of first-order logic and first-order
theorem proving, in general. It serves as the foundation upon which the work presented
in this thesis relies. The notions and definitions of this chapter are mainly from [Wei01]
and [BG01]. In particular, you find the syntax and semantics of standard first-order
logic in Section 2.1 and an overview over the superposition based first-order reasoning
framework in Section 2.2. The implementations of superposition based automated
theorem provers like Spass [WDF+09] rest upon this framework.

2.1. First-Order Logic

2.1.1. Syntax

Definition 1 (Signature). A first-order language is constructed over a signature Σ =
(F ,R). Assume F and R are non-empty, disjoint and finite sets. The set F is a set
of function symbols and R a set of predicate symbols. In addition, assume a function
arity : F ∪R → N that assigns to each function symbol and predicate symbol an arity.
Assume there is the equality predicate in the signature, i.e. ≈ ∈ R.

Definition 2 (Variables). In addition to the signature Σ assume three countable infinite
and pairwise disjoint sets of variables X , U and W.

Note, the variable set X is the set of variables used for standard first-order terms in
Definition 3. The other two sets of variables are used in the context of context tree
term indexing (Section 2.2.5) and filtered context tree term indexing (Chapter 5). The
set U is a set of function symbol variables. The respective definition of terms that also
contain these variables is given in Definition 4. The set W contains variables that are
used internally in term indexing data structure and the respective retrieval algorithms.
They are called index variables. In order to distinguish these three concepts, three
different sets of variables are assumed.

Definition 3 (Terms). The set of terms T (F ,X ) over a signature Σ is recursively
defined: X ⊆ T (F ,X ) and for every function symbol c ∈ F with arity(c) = 0 ( a
constant) c ∈ T (F ,X ). For every function symbol f ∈ F with arity(f) = n and
t1, . . . tn ∈ T (F ,X ) also f(t1, . . . tn) ∈ T (F ,X ). Let vars(t) for a term t ∈ T (F ,X ) be
the set of all variables occurring in t. If vars(t) = ∅ then t is called a ground term.
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Definition 4. The set of terms T (F ∪ U ,X ) is a superset of T (F ,X ), i.e. T (F ,X ) ⊆
T (F ∪ U ,X ). Further, assume each function symbol variable F ∈ U has an associated
arity, arity(F ) = n with n > 0. So, if t1, . . . , tn ∈ T (F ∪ U ,X ) then F (t1, . . . , tn) ∈
T (F ∪ U ,X ).

Definition 5 (Term position). A term position ω is a word over the natural numbers.
Let t = f(t1, . . . , tn) be a term then the set of positions pos(t) of the term t contains the
following words. The empty word ω = ε is in pos(t) and t|ε = t. If t|ω = f(t1, . . . , tn)
then ω.i ∈ pos(t) and t|ω.i = ti for i ∈ {1, . . . , n}. An alternative notation for t|ω = s
is t[s]ω.

Definition 6 (Atoms). Let Σ = (F ,R) be a signature, t1, . . . , tn ∈ T (F ,X ) and
P ∈ R is a predicate symbol with arity(P ) = n then P (t1, . . . , tn) is an atom over the
signature Σ. The variables of an atom are defined as vars(P (t1, . . . , tn)) =

⋃
i vars(ti)

and top(P (t1, . . . , tn)) = P . Atoms involving the equality predicate ≈ are written in
infix notation, i.e. t1 ≈ t2 with t1, t2 ∈ T (F ,X ).

Definition 7 (Formula). Let Σ be a signature then the language LΣ of first-order
formulas is inductively defined in terms of atoms over Σ and the logical symbols ⊥, >,
¬, ∧, ∨, ∀ and ∃ as follows

• ⊥,> ∈ LΣ

• A ∈ LΣ for all atoms A over Σ

• ¬A ∈ LΣ for all atoms A over Σ

• Φ1 ∧ Φ2 ∈ LΣ for Φ1,Φ2 ∈ LΣ

• Φ1 ∨ Φ2 ∈ LΣ for Φ1,Φ2 ∈ LΣ

• ∀x Φ ∈ LΣ for Φ ∈ LΣ and x ∈ X

• ∃x Φ ∈ LΣ for Φ ∈ LΣ and x ∈ X

Note, that I use the quantifiers ∃ and ∀ in different contexts throughout this thesis,
too.

Definition 8 (Sentence). Let Φ be a formula of the following form Φ = ∀x Φ′ or
Φ = ∃x Φ′. In this case the occurrence of the variable x in Φ′ is called bound by the
quantifier ∀ and ∃, respectively. If a variable is not bound by a quantifier then it is
called free. A first-order formula which has no free variables is called a sentence.

Definition 9 (Bernays–Schönfinkel fragment). The Bernays–Schönfinkel fragment con-
sists of formulas of the form ∃∗∀∗Φ that do not contain any function symbols, i.e., for
all f ∈ F that occur in the formula Φ it holds that arity(f) = 0.

Definition 10 (Literals and Clauses). A literal is an atom or a negated atom. A clause
is a disjunction of literals. If L1, . . . , Ln are literals then L1∨· · ·∨Ln is a clause. Clauses
are also written in implication form Γ→ ∆ where Γ and ∆ are multisets of atoms. The
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set Γ is interpreted as the conjunction of its elements and ∆ as the disjunction of its
elements. In addition, variables of a clause are assumed to be universally quantified,
i.e., bound with the quantifier ∀. The multiset Γ is called the antecedent and the multiset
∆ the succedent of the clause Γ → ∆. The empty clause Γ = ∆ = ∅ is denoted by �.
The set of predicate symbols of a clause C = L1 ∨ · · · ∨ Ln is defined as preds(C) =⋃
i top(Li).

Note that a clause is a sentence because all variables are assumed to be bound by a
universal quantifier. For example, the clause ¬A1∨¬An∨B1∨ . . . Bm looks as follows in
implication notation A1, . . . , An → B1, . . . , Bm where A1, . . . , An, B1, . . . Bm are atoms.
Note, I use x, y, z to denote variables, a, b and c to denote constants, s, t, l, r to denote
terms, A, B to denote atoms, L to denote literals, C, D to denote clauses and N to
denote a set of clauses.

Definition 11 (Horn clauses). A clause C is called Horn iff it has either the form Γ→
or Γ→ A.

In this thesis I, consider the sort reasoning calculus [GMW97, Wei01] which treats
monadic (unary) predicates independently from all other predicates. The following
shows the respective definitions.

Definition 12 (Sort). A monadic predicate S, i.e., S ∈ R and arity(S) = 1, is called
a sort. The atom S(t) for t ∈ T (F ,X ) is a sort atom.

Definition 13 (Sorted clauses). A clause can also be written in the form Θ ‖Γ → ∆.
The multiset Θ is called the sort constraint and solely contains sort atoms interpreted
as conjunction. The multisets of atoms Γ and ∆ are interpreted as in Definition 10.

Definition 14 (Solved sort constraint). A sort constraint Θ is solved in a clause C =
Θ ‖Γ → ∆ if for all S(t) ∈ Θ the term t is a variable and t ∈ vars(Γ ∪ ∆). A sort
constraint is called unsolved otherwise.

Definition 15 (Static sort theory [GMW97]). The static sort theory of a clause set N
is the set of clauses Θ ‖ → S(t) such that there is a clause Θ′ ‖Γ → ∆, S(t) ∈ N with
(i) Θ′ is solved and (ii) Θ is a maximal subset of Θ′ with vars(Θ) ⊆ vars(S(t)). The
static sort theory of a clause set N is donated as SN .

Note, in general, the static sort theory SN of a clause set N safely approximates
the clauses of N containing positive monadic atoms [Wei01]. More precisely, SN 6|=
∃x1, . . . , xn Θ implies N 6|= ∃x1, . . . , xn Θ with vars(Θ) = {x1, . . . , xn}.

In addition, I also consider the chaining calculus [BG98] which is a particular calcu-
lus efficiently reasoning about clause sets involving transitivity. The following defines
transitivity axioms and transitive predicates.

Definition 16 (Transitivity axiom). A clause of the following form is called the tran-
sitivity axiom for the predicate P with P ∈ R

P (x, y), P (y, z)→ P (x, z)
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Definition 17 (Transitive predicate). The chaining calculus is defined in terms of a
clause set N not containing any transitivity axioms and a set of predicates Tr ⊂ R
denoting the predicates assumed to be transitive in N . The predicates of N occurring
in Tr are called the transitive predicates of N .

Definition 18 (Transitive theory). Let Tr be a set of predicate symbols from R then
the transitive theory of Tr is defined as the set of transitivity axioms as follows

ATr = {Q(x, y), Q(y, z)→ Q(x, z) | Q ∈ Tr}

A clause set N not containing any transitivity axioms together with the set Tr represent
the clause set N ∪ ATr.

Definition 19 (Substitution). A substitution σ : X → T (F ,X ) is a mapping from the
set of variables into the set of terms such that xσ 6= x for only finitely many x ∈ V.
The domain of a substitution σ is defined as dom(σ) = {x | xσ 6= x} and the codomain
is defined as cod(σ) = {xσ | xσ 6= x}.

A substitution uniquely assigns the term xσ to each variables x ∈ dom(σ). Conse-
quently, the substitution σ can also be written in the form σ = {x1 7→ x1σ, . . . , xn 7→
xnσ} for {x1, . . . , xn} = dom(σ).

The composition of two substitutions σ ◦ τ applied to a variable x is defined as the
substitution (xσ)τ . This can be simply written as xστ by omitting the brackets. A
substitution σ can be lifted to a substitution over terms T (F ,X ) as follows:

for t = x ∈ T (F ,X ) we have tσ = xσ

if t = f(t1, . . . , tn) then tσ = f(t1σ, . . . , tnσ)

Likewise, if σ is a substitution then

• P (t1, . . . , tn)σ = P (t1σ, . . . , tnσ)

• (¬P (t1, . . . , tn))σ = ¬P (t1σ, . . . , tnσ).

• {A1, . . . , An}σ = {A1σ, . . . , Anσ}.

• (Γ→ ∆)σ = Γσ → ∆σ.

Definition 20 (Unifier, Generalization, Instances). Given two terms s,t, a substitution
σ is called a unifier if sσ = tσ and most general unifier (mgu) if, in addition, for any
other unifier τ of s and t there exists a substitution λ with σλ = τ . A substitution σ is
called a matcher from s to t if sσ = t. The term s is then called a generalization of t
and t an instance of s. If sσ is ground then σ is called a grounding substitution for s
or, alternatively, sσ is a ground instance of s.
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2.1.2. Semantics

Definition 21 (Herbrand Interpretation). A Herbrand interpretation I over the sig-
nature Σ is a set of ground atoms over Σ. Each ground atom A is called true in I if
A ∈ I. It is called false in I if A 6∈ I. The logical constant > is true in I and ⊥ is
false in I. For ground formulas Φ1 and Φ2 the logical connectives are interpreted in the
usual way: A negated atom ¬Φ is true in I if Φ 6∈ I. A conjunction Φ1 ∧ Φ2 is true
in I if both Φ1 and Φ2 are true in I; the disjunction Φ1 ∨ Φ2 is true in I if at least
one of Φ1 and Φ2 is true in I; a universally quantified formula ∀x Φ is true in I if Φσ
is true in I for all substitutions σ that assign x to some ground term; an existential
formula ∃x Φ is true in I if Φσ is true in I for some substitutions σ that assign x to
some ground term. A ground clause C is called true in I if one of its literals is true in
I.

Definition 22 (Model). A Herbrand interpretation I is called a model of a formula Φ
iff Φ is true in I, written I |= Φ. The notation Φ1 |= Φ2 denotes that Φ2 is true in
a Herbrand interpretation I whenever Φ1 is true in I; alternatively I |= Φ2 whenever
I |= Φ1. For clauses C1, . . . Cn and D we write C1, . . . , Cn |= D iff for all Herbrand
interpretations I whenever I |= C1, . . . , Cn then also I |= D. If N is a set of clauses
then I is a model of N , written I |= N iff I |= C for all C in N .

Definition 23. For a non-ground clause C and a Herbrand interpretation I we write
I |= C iff for all grounding substitutions σ we have that I |= Cσ.

Definition 24 (Satisfiability). We call a set of clauses (formulas) N satisfiable iff
there is a Herbrand interpretation I with I |= N . Otherwise, N is called unsatisfiable
or inconsistent.

Definition 25 (Theory). We call a satisfiable set of formulas (clauses) a theory.

2.2. Superpositon based First-Order Reasoning Framework

A theorem prover can prove if a formula Φ is implied by a set of clauses N , i.e. N |= Φ.
A superposition based first-order theorem prover is a refutational theorem prover that
proves the equivalent problem N ∪ {¬Φ} |= ⊥. Alternatively, it verifies if N ∪ {¬Φ}
is unsatisfiable. The underlying reasoning procedure is composed of a set of inferences
and reductions. The inferences span the search space by deriving new consequence.
The reductions restrict the search space by replacing the clauses of the search space
by simpler ones. Inferences as well as reductions are defined regarding an ordering on
terms, literals and clauses. The implementation of inferences and reductions is based
on a term index data structure which provides an efficient retrieval mechanism for
candidate clauses that may be involved in an inference or reduction.

Based on the general superposition based first-order theorem proving framework, I
have developed respective calculi and data structures that efficiently reason about huge
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ontologies like YAGO. Even the query answering procedure, which lies beyond standard
first-order reasoning, successfully uses this framework.

The following provides a brief overview over the first-order reasoning framework. Sec-
tion 2.2.1 depicts the main reasoning loop and Section 2.2.2 shows the ordering on
terms, literals and clauses which is used in the definition of the inference and reduc-
tion rules. The inferences and reductions used in this thesis are shown in Section 2.2.3
and Section 2.2.4, respectively. For a more detailed presentation of this framework
consider [Wei01]. Section 2.2.5 shows the context tree term indexing and gives the
definitions and algorithms from the introductory article [GNN01]. It completes this
article by providing the missing retrieval algorithms.

2.2.1. First-Order Reasoning Procedure

The first-order resolution procedure considered in this work was first used in the Otter
theorem prover [McC03, MW97, Wei01] and is the loop implemented in Spass. It is
based on a set of inferences (Section 2.2.3) and a set of reductions (Section 2.2.4). It
exhaustively applies the inferences and reductions on a set of clauses N . During this
process the inferences explore the search space by inferring new consequences. The
reductions restrict the search space by deleting unnecessary clauses.

Algorithm 1 depicts the main loop of the superposition based first-order reasoning
framework. The procedure call Inf(C,WorkedOff) performs all possible inferences be-
tween the clause C and clauses D ∈WorkedOff and returns the set of conclusions. The
procedure Red(Derived,Usable,WorkedOff) interreduces the three sets Derived,Usable
and WorkedOff, i.e., it applies all reductions possible between the clauses of these sets.

Algorithm 1: ProofSearch

Input: Clause set N

1 WorkedOff := ∅;
2 Usable := N ;
3 while Usable 6= ∅ and � 6∈ Usable do
4 Given := C with C ∈ Usable;
5 Usable := Usable \{Given};
6 Derived := Inf(Given,WorkedOff);
7 WorkedOff := WorkedOff ∪{Given};
8 Red(Derived,Usable,WorkedOff);
9 Usable := Usable ∪ Derived;

10 end
11 if Usable = ∅ then
12 N is satisfiable
13 else if � ∈ Usable then
14 N is unsatisfiable
15 end
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In lines 4–5 a clause Given is chosen from the clause set Usable and removed from
Usable. Then all inferences between Given and clauses from WorkedOff are computed in
line 6 and the clause Given is inserted into WorkedOff. The clause sets Derived,Usable
and WorkedOff are completely interreduced in line 8. This means each clause C of
Derived is fully reduced with clauses from Usable and WorkedOff. This process is called
forward reduction. After that, all clauses of Usable and WorkedOff are reduced with C.
This is called backward reduction. After complete interreduction the remaining clauses
in Derived are added to the set Usable in line 9. The loop repeats this process until
either the empty clause has been derived from an inference or there are no clauses left
in Usable. This loop ensures that all clauses are processed and all inferences between
clauses are performed in the limit. If the loop terminates then the given clause set
N is saturated (Definition 33). This procedure together with appropriate inferences
(Section 2.2.3) and reductions (Section 2.2.4) is refutationally complete. This means
that whenever the clause set N is unsatisfiable this procedure derives the empty clause
� [BG01].

2.2.2. Ordering on Terms and Clauses

Superposition based calculi are defined in relation to an ordering on terms and liter-
als. Only maximal literals in a clause are considered for performing inferences. The
introduction of such an ordering restricts the number of inferences between two clauses
without loosing completeness. The usual ordering on terms which is lifted to literals
and clauses, is described in this section. The work of this thesis is also based on the
chaining calculus [BG98] which requires an extension of the usual term ordering. This
extension is called admissible ordering and is shown in this section, as well.

The actual orderings used for the implementation of superposition based calculi are
mostly variants of the Knuth-Bendix Ordering [KB70] or the recursive path ordering
with status [Der82]. These orderings are defined regarding the tree structure of terms
and formulas. Assume a strict ordering> on the signature symbols in Σ which is called a
precedence. Let weight be a function weight : Σ→ N assigning a natural number to each
signature symbol. The function weight is extended to a function weight : T (F ,X )→ N
as follows:

• if t ∈ X then weight(t) = k, where k = min({weight(c) | c ∈ F , arity(c) = 0})

• if t = f(t1, . . . , tn) then weight(t) = weight(f) +
∑

i weight(ti)

The number of occurrences of a term s in a term t is defined as

occ(s, t) = |{p ∈ pos(t) | t|p = s}|

and status is a mapping status : Σ→ {left , right ,mul}. The ordering �lex is the lexico-
graphic extension of the strict ordering � and is defined by (t1, . . . , tk) �lex (s1, . . . , sl)
if ti � si for some i ∈ {1, . . . , k} and tj = sj for all j ∈ {1, . . . , i − 1} . Let M,N be
multisets then the ordering �mul is the multiset extension of the strict ordering � and
is defined by M �mul N if M 6= N and for all n ∈ N \M there is a m ∈ M \N with
m � n.
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Definition 26 (KBO). Let s, t ∈ T (F ,X ) be two terms then t �kbo s iff occ(x, t) ≥
occ(x, s) for all variables x with x ∈ vars(t) ∪ vars(s) and

1. weight(t) > weight(s) or

2. weight(t) = weight(s) and t = f(t1, . . . , fk) and s = g(s1, . . . , sl) and

a) f > g or

b) f = g and

i. status(f) = left and (t1, . . . , tk) �lex
kbo (s1, . . . , sl) or

ii. status(f) = right and (tk, tk−1 . . . , t1) �lex
kbo (sl, sl−1, . . . , s1)

If the precedence > is total on Σ then KBO is total on ground terms. Note, the case
status(f) = mul can also be defined but is not practically useful [Wei01].

Definition 27 (RPOS). Let s, t ∈ T (F ,X ) then t �rpos s iff

1. t ∈ vars(s) and t 6= s or

2. t = f(t1, . . . , tk) and s = g(s1, . . . , sl) and

a) ti �rpos s for some i ∈ {1, . . . , k} or

b) f > g and t �rpos sj for all j ∈ {1, . . . , l} or

c) f = g and

i. status(f) = left and (t1, . . . , tk) �lex
rpos (s1, . . . , sl) and

t �rpos sj for all j ∈ {1, . . . , l} or

ii. status(f) = right and (tk, tk−1 . . . , t1) �lex
rpos (sl, sl−1 . . . , s1) and

t �rpos sj for all j ∈ {1, . . . , l}

iii. status(f) = mul and {t1, . . . , tk} �mul
rpos {s1, . . . , sl}

If the precedence > is total on Σ then RPOS is total on ground terms.

The precedence is also defined on predicate symbols which provides an extension of
KBO and RPOS to atoms. Further, if the precedence is total on the symbols in Σ
then KBO and RPOS are total on ground atoms.

An ordering on atoms can be extended to literals and clauses as follows.

Definition 28 (Literal/Clause ordering). Let � be an ordering on atoms. Clauses
are considered as the multiset extension of occurrences of atoms. An atom A in the
antecedent of a clause is assumed to be the multiset {{A,>}} and in the succedent the
multiset {{A}, {>}}. The constant > is always assumed to be minimal with respect to
>. An ordering on clauses is the multiset extension of literal occurrences in a clause.
The notation � is overloaded also denoting the ordering on literals and clauses.
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In addition to this ordering, which is well-founded and total on ground terms, the chain-
ing calculus [BG98] requires an ordering that is admissible for the transitive predicates
(Definition 17) of a clause set N .

Definition 29 (Admissible Ordering). Let � be an ordering on ground terms and
literals and max (s, t) be the maximum of the two terms s and t with respect to �. The
ordering � is called admissible [BG98] if

• it is well-founded and total on ground terms and literals,

• it is compatible with reduction on maximal subterms, i.e., for literals L and L′, it
holds that L � L′ whenever L and L′ contain the same transitive predicate symbol
Q, and the maximal subterm of L′ is strictly smaller than the maximal subterm
of L,

• it is compatible with goal reduction, i.e., for atoms A and B, it holds

– ¬A � A for all ground atoms A,

– ¬A � B whenever A is an atom Q(s, t) and B is an atom Q(s′, t′), such
that Q is a transitive predicate and max (s, t) � max (s′, t′),

– ¬A � ¬B whenever A is an atom Q(s, s) and B atom Q(s, t) or Q(t, s),
where Q is a transitive predicate and s � t.

An ordering on ground clauses is called admissible if it is the multiset extension of an
admissible ordering on literals.

Definition 30 (Maximal literal). An atom A is called maximal in a clause Γ → ∆
(Θ ‖Γ → ∆) if there is no atom A′ ∈ Γ ∪ ∆ such that A′ � A. It is called strictly
maximal if there is no A′ ∈ Γ ∪∆ with A′ � A.

Note, that Θ is not considered for maximality of literals because sort atoms are treated
independently. In particular, sort predicates are assumed to have a precedence smaller
than any other predicate symbol [Wei01].

Definition 31 (Reductive clause). A clause Γ→ ∆, A (Θ ‖Γ→ ∆, A) is reductive for
the atom A iff A is strictly maximal in the clause.

2.2.3. Inferences

The standard first-order reasoning framework contains a variety of reasoning calculi.
The current section presents only those three calculi that are used in the reasoning pro-
cedures of this thesis. These calculi are the sort reasoning calculus, the hyperresolution
calculus and the chaining calculus. Each of these has specific properties. The appropri-
ate combination and modification of these three calculi leads to a practically successful
reasoning and query answering procedure for huge knowledge bases like YAGO.
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Let N be a clause set. An inference is defined in terms of clauses C1, . . . Cn ∈ N and
is denoted in the following form

C1 = Γ1 → ∆1 . . . Cn = Γn → ∆n

D = Γ→ ∆

where the clause D is a logical consequence of the clauses C1, . . . , Cn; more formally

C1, . . . , Cn |= D

The clauses C1, . . . Cn are called premises and D the conclusion. A set of inferences is
called a calculus or an inference system.

Beside the ordering there exists also the selection mechanism which allows to define a
reasoning strategy.

Definition 32 (Free selection). A free selection is a mapping that selects a set of
negative atoms in each clause C of a clause set N .

Following the notations from [Wei01], the rules use the clause notation of Definition 13
in order to make clear that sort atoms are treated independently from all other atoms.

Sort Reasoning Calculus

Let N be a set of clauses and SN be the static sort theory of N . The sort reasoning
calculus handles sort atoms independently from all other atoms of a clause set N . These
calculus rules can be implemented more efficiently than the standard reasoning calculus
by using particular data structures [Wei01].

Actually, the sort reasoning calculus simulates a particular ordering and selection strat-
egy on the standard calculus [GMW97]. For all subsort declarations S(x)→ T (x) of N
it holds that T � S. This ordering is well-defined if the static sort theory SN is acyclic.
Whenever a clause has an unsolved constraint, this constraint is selected. Finally, all
sort predicates occurring in a clause set N are assumed to be smaller than all the other
predicates.

Empty sort

S(x),Θ1 ‖Γ1 → ∆1 Θ2 ‖Γ2 → ∆2, S(s)

(Θ1,Θ2 ‖Γ1,Γ2 → ∆1,∆2)σ
,

x 6∈ vars(Γ1 ∪∆1), Θ2 is solved, and S(s) is maximal in Θ2 ‖Γ2 → ∆2, S(s).

Sort resolution

S(t),Θ1 ‖Γ1 → ∆1 Θ2 ‖Γ2 → ∆2, S(s)

(Θ1,Θ2 ‖Γ1,Γ2 → ∆1,∆2)σ
,

where σ is the most general unifier of t and s, t is not a variable, Θ2 is solved, and
(S(s))σ is strictly maximal in (Θ2 ‖Γ2 → ∆2, S(s))σ.
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Resolution Calculus

Ordered resolution is a special case of standard resolution which respects the spe-
cial treatment of sorts via sort reasoning as well as the ordering and selection restric-
tion [Wei01].

Ordered resolution

D = Θ′ ‖Γ′ → A C = Θ ‖Γ, B → ∆

(Θ,Θ′ ‖Γ,Γ′ → ∆)σ
,

where σ is the most general unifier of A and B, Θ and Θ′ are solved, no literal in
Γ′ is selected, Aσ is strictly maximal in Dσ, Bσ is selected or it is strictly maximal in
Cσ, and no literal is selected in Γ.

Ordered Hyperresolution

(1 ≤ i ≤ k) Θi ‖Γi → ∆i, Ai Θ ‖B1, . . . , Bk, Bk+1, . . . , Bn → ∆

(Θ,Θ1, . . . ,Θn ‖Γ1, . . . ,Γk, Bk+1, . . . , Bn → ∆)σ
,

where k ≥ 1, σ is the simultaneous most general unifier of Ai and Bi, Θ and all Θi

are solved, and all Aiσ are strictly maximal in (Θi ‖Γi → ∆i, Ai)σ respectively, for all
i ∈ {1, . . . k}.

The clause Θ ‖B1, . . . , Bk, Bk+1, . . . , Bn → ∆ is called the nucleus and the clauses
Θi ‖Γi → ∆i, Ai are called electrons.

The application of the hyperresolution rule can be simulated by several applications
of resolution with a particular selection strategy and by dropping all intermediately
inferred clauses [FLHT01, BG01].

This rule is a generalization of ordered hyperresolution used in the standard superposi-
tion framework. For example, the rule ordered hyperresolution [Wei01] is the instance
of the above rule with k = n.

The reasoning calculus that I have developed in Chapter 6 uses an instance of this
general ordered hyperresolution rule because it separates reasoning about transitive
predicates from reasoning about non-transitive predicates. This is similar to the sort
reasoning calculus which treats sort predicates separately.

Chaining Calculus

The ordered resolution and hyperesolution calculi usually do not perform very well on
theories containing transitivity axioms. This results from the fact that these inferences
always span the whole transitive closure during an application of Algorithm 1. If con-
sidering clause sets of the size of YAGO, effectively reasoning about transitive relations
becomes crucial. Ordered chaining [BG98] provides a calculus that often reasons about
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transitive theories more efficiently than the standard resolution approach and, in par-
ticular, it turned out that it is very efficient for reasoning about transitivity in the
first-order representation of YAGO.

The calculus assumes a given clause set N over a signature Σ which does not contain
any transitivity axioms. All the transitive predicates are contained in the set set Tr ⊂ R
(Definition 17). The respective transitivity theory (Definition 18) is

ATr = {Q(x, y), Q(y, z)→ Q(x, z) | Q ∈ Tr}

The paper [BG98] shows that the below calculus together with ordered resolution is
sound and complete in terms of the transitivity theory. More precisely, if N ∪ATr |= ⊥
then the chaining calculus together with ordered resolution applied to N and Tr derives
the empty clause �.

Ordered chaining

Θ1 ‖Γ1 → ∆1, Q(l, s) Θ2 ‖Γ2 → ∆2, Q(t, r)

C = Θ1,Θ2 ‖Γ1,Γ2 → ∆1,∆2Q(l, r)σ

where Q ∈ Tr, σ is the most general unifier of s and t, Θ1 and Θ2 are solved,
no literal of Γ1 is selected, Q(l, s)σ is strictly maximal with respect to Γ1σ and ∆1σ,
Q(t, r)σ is strictly maximal with respect to Γ2σ and ∆2σ, lσ 6� sσ and rσ 6� tσ, and
nothing is selected in Γ1 and Γ2.

Negative chaining

Θ1 ‖Γ1 → ∆1, Q(l, s) Θ2 ‖Γ2, Q(t, r)→ ∆2

(Θ1,Θ2 ‖Γ1,Γ2, Q(s, r)→ ∆1,∆2)σ

where Q ∈ Tr, σ is the most general unifier of l and t, Θ1 and Θ2 are solved, no literal
of Γ1 is selected, Q(l, s)σ is strictly maximal with respect to Γ1σ and ∆1σ, sσ 6� lσ,
rσ 6� tσ and Q(t, r) is selected or it is maximal with respect to (Θ2 ‖Γ2, Q(t, r)→ ∆2)σ,
and no other atom is selected in Γ2, and

Θ1 ‖Γ1 → ∆1, Q(l, s) Θ2 ‖Γ2, Q(t, r)→ ∆2

(Θ1,Θ2 ‖Γ1,Γ2, Q(t, l)→ ∆)σ

where Q ∈ Tr, σ is the most general unifier of s and r, Θ1 and Θ2 are solved,
no literal of Γ1 is selected, Q(l, s)σ is strictly maximal with respect to Γ1σ and ∆1σ,
lσ 6� sσ, tσ 6� rσ, Q(t, r) is selected or it is maximal with respect to (Θ2 ‖Γ2, Q(t, r)→
∆2)σ, and no other atom is selected in Γ2
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2.2.4. Reductions

Standard Redundancy Criterion

A clause C is redundant with respect to a set of clauses N if there exists clauses
C1, . . . , Ck ∈ N such that C1, . . . Ck |= C and C � Cj , for all j with 1 ≤ j ≤ k.

An inference π is redundant with respect to N if either one of its premises is redundant,
or else there exists a set of clauses C1, . . . , Ck ∈ N such that the conclusion of π is true
in every model of C1, . . . , Ck and C � Cj , for all j with 1 ≤ j ≤ k, where C is the
maximal premise of π.

Definition 33 (Saturation). A set of clauses N is saturated (up to redundancy) with
respect to some inference system, if all inferences from N are redundant.

Reduction rules

In contrast to the inferences, a reduction rule reduces the search space by deleting
clauses or by reducing clauses to simpler ones. A reduction is denoted as

R C1 . . . Cn
D1
...
Dm

(2.1)

where the clause above the bar C1, . . . , Cn from N are replaced in N by the clauses
below the bar D1, . . . , Dm.

The reductions implement special redundancy criteria which are used in the superposi-
tion based first-order reasoning framework. In this thesis, I consider the below depicted
reduction rules.

Tautology Deletion

R Θ ‖Γ→ ∆

where |= Θ ‖Γ→ ∆.

Definition 34 (Subsumption). A clause Θ1 ‖Γ1 → ∆1 subsumes a clause Θ2 ‖Γ2 →
∆2 if there is a matcher σ such that Θ1σ ⊆ Θ2, Γ1σ ⊆ Γ2 and ∆1σ ⊆ ∆2.

Subsumption Deletion

R Θ1 ‖Γ1 → ∆1 Θ2 ‖Γ2 → ∆2

Θ1 ‖Γ1 → ∆1

where Θ1 ‖Γ1 → ∆1 subsumes Θ2 ‖Γ2 → ∆2.

The subsumption check is NP–complete in general. Today’s theorem provers use an
approximation of the general definition which can be efficiently decided. For an overview
consider [Wei01].
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Reductions for Sort Reasoning

Sort simplification

R S(t),Θ ‖Γ→ ∆

Θ ‖Γ→ ∆
,

where SN |= ∀x1, . . . , xn(S1(x1), . . . , Sn(xn)→ S(t)), {S1(x1), . . . , Sn(xn)} is the max-
imal subset of Θ with {x1, . . . , xn} ∈ vars(t), and SN is a sort theory from the clause
set N .

Note, for an arbitrary sort theory SN the following condition:

SN |= ∀x1, . . . , xn(S1(x1), . . . , Sn(xn)→ S(t)),

can always be decided in polynomial time [Wei98].

Static Soft Typing

R S(x),Θ ‖Γ→ ∆
,

if SN 6|= ∃x S(x).

2.2.5. Context Tree Term Indexing

Context trees are a term indexing data structure that stores and manages terms in-
volved in processing a first-order reasoning problem. An index has the functionality
of a database for automated theorem proving that particularly implements the specific
retrieval operations occurring in automated theorem proving applications. They build
the underlying data structure for an efficient implementation of the inference and re-
duction rules. In particular, they efficiently implement the retrieval for terms that are
possibly involved in an application of an inference or reduction rule. The invention
of term indexing data structures was the key for successful automated superposition
based first-order theorem proving [OL80, RSV01, Gra96, NHRV01].

Likewise, powerful term indexing techniques are essential for reasoning in huge ontolo-
gies. Therefore, I have further advanced the context tree index [GNN01, GNN04] such
that the resulting new index is also efficient for huge clause sets consisting of several
million clauses. The new term index is presented in Chapter 5.

The context tree term index is a generalization of the substitution tree index [Gra96].
The following section shows the definitions of the context tree term index following
notions from [Gra96] as well as the algorithms implementing the respective retrieval
and maintenance operations. This section also completes the introductory article of
the context tree index [GNN01] which only presents the algorithms for the retrieval of
generalizations.
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w0 7→ F1(w1, w2)

w1 7→ ∗1

F1 7→ f
w2 7→ a

F1 7→ g
w2 7→ ∗2

w2 7→ ∗1

F1 7→ h
w1 7→ ∗1

w2 7→ b

F1 7→ g

w1 7→ b w1 7→ ∗1

Figure 2.1.: Context tree

Context Trees

Compared to substitution trees, context trees can additionally share common subterms
even if they occur below different function symbols via the introduction of extra vari-
ables for function symbols U . These variables are called function variables. For example,
the terms f(s, t) and g(s, t) can be represented as F1(s, t) with children F1 = f and
F1 = g. The function variable F1 represents a single function symbol. In the context
of deep formulas, this potentially increases the degree of sharing in a index structure.
In order to increase the sharing potential, variables of a term are normalized before
inserting them into the index.

Definition 35 (Normalized variables). Assume a set of variables {∗1, ∗2, . . . } ⊆ X
and a total order defined on these variables ∗i <∗ ∗i+1. A normalization is a renaming
substitution σ of the variables of a term t such that (i) cod(σ) ⊂ {∗1, ∗2, . . . }, (ii) for
∗n = max(cod(σ)) it holds that |vars(t)| = n and (iii) if ω1 and ω2 are the smallest
positions of t such x = t|ω1, x ∈ vars(t) and y = t|ω2, y ∈ vars(t) with ω1 < ω2 then it
holds that tσ|ω1 <

∗ tσ|ω2.

For example, consider the two terms f(x, y) and f(u, v). Both of them become the term
f(∗1, ∗2) after the normalization; normalized variables are denoted by ∗i. Figure 2.1
depicts a context tree containing the terms f(∗1, a), g(∗1, ∗2), h(∗1, ∗1), g(b, b), and
g(∗1, b). For context trees the notion of a substitution σ is extended to a substitution
σ : X ∪ U ∪W → T (F ∪ U ,X ∪W).

Definition 36 (Context Tree). A context tree is a tree T = (V,E, subst, vr) where V
is a set of vertices, E ⊂ V × V is the edge relation, the function subst assigns to each
vertex a substitution, vr ∈ V is the root node of T , and the following properties hold:

1. each node is either a leaf or an inner node with at least two children.
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2. for every path v1 . . . vn from the root (v1 = vr) to any node it holds:

dom(subst(vi)) ∩
⋃

1≤j<i
dom(subst(vj)) = ∅

3. for every path v1 . . . vn from the root (v1 = vr) to a leaf vn

vars(cod(subst(v1) ◦ · · · ◦ subst(vn))) ⊂ X

Each node in a context tree, which is not a leaf node, must have at least two subtrees
due to the first condition. The second condition ensures that each variable is bound at
most once along a path. The third condition assures that all terms represented by a
path from the root to a leaf are from T (Σ,X ).

A term that is stored in a context tree is represented by a path from the root to a leaf.
The respective term can be obtained by the composition of the substitutions along this
path.

Definition 37 (Variables of a path). Let v1, . . . , vn be a path from the root of a context
tree to a node vn then the set of variables of this path is

vars(v1, . . . , vn) =
⋃

i∈{1...n}

vars(cod(subst(vi))) \
⋃

i∈{1...n}

dom(subst(vi))

Note, for a path vr = v1, . . . , vn of a context tree from the root vr to a leaf vn, it holds
that vars(v1, . . . , vn) ⊂ X because of Condition 3 of Definition 36.

Algorithms for Context Trees

This section shows the algorithms for context trees implementing the standard oper-
ations for term indexing structures. The standard operations of term indexing data
structures can be separated into two categories. The first are the retrieval algorithms.
These operations query the index for unifiable terms, instantiations, and generalizations
of a given query term. In the second category are the algorithms for the maintenance
of the indexing structure. These are the algorithms for insertion of terms into the index
and deletion of terms from the index.

Retrieval Algorithm

The query algorithms for unifiable terms, instantiations, and generalizations are based
on a common lookup procedure which traverses the tree and applies for the substitution
of each visited node the procedure Test. The procedure Test is either the test for
unifiability, the test for instantiation, or the test for generalization. If Test is successful
it returns the the tuple (true, σ) where σ is the respective unifier or instance of the
input.
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The query that is given to the lookup function is a query substitution containing the
query term rather than the query term itself. This means, if t is the query term,
then the respective query substitution is {w0 7→ t} where w0 is the first index variable
occurring in the context tree.

Algorithm 2: Lookup

Input: context tree T = (V,E, subst, vr), v ∈ V , substitution ρ, function Test
1 HITS = ∅;
2 if Test(subst(v), ρ) = (true, σ) then
3 if isLeaf(v) then return {v};
4 foreach (v, v′) ∈ E do
5 HITS = HITS ∪ Lookup(T, v′, ρ ◦ σ,Test);
6 end

7 end
8 return HITS ;

Lookup The lookup procedure Lookup (Algorithm 2) expects a context tree T , a node
v, a query substitution ρ and the test function Test. The node v is initially set to the
root node of T and it is the current examined node of T during the recursive application
of Lookup. The substitution ρ is an accumulator argument. It is the composition
(line 5) of the initial query substitution and all substitutions σ computed in line 2
during the recursive application of Lookup. The function Test is one of the functions
UnifyTest (Algorithm 4), GenTest (Algorithm 6), or InstTest (Algorithm 8) which tests
two substitutions for unifiability, generalization, or instantiation, respectively.

Theorem 38 (Correctness and completeness of Lookup [Gra96]). Let t be a term, Test
be one of the test functions for unification, generalization, or instantiation, ρ = {w0 7→
t}. Further, let vn be a leaf, (vr, v1) . . . (vn−1, vn) be a path from the root vr to vn with
τi = subst(vi) then vars(σ) ⊂ X ∪ U .

vn ∈ Lookup(T, vr, ρ,Test) ⇔ Test(τ1 ◦ · · · ◦ τn, ρ) = (true, σ) (2.2)
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Unification The unification test of two substitutions τ and ρ tests if there is a sub-
stitution σ such that for all x ∈ dom(τ) it holds xτρσ = xρσ. Note, that ρ occurs on
both sides of the equation. The substitution ρ works as an accumulator argument of
Lookup (Algorithm 2) and it may bind variables of xτ . These bindings have to be also
respected in the test function. The respective test procedure UnifyTest is depicted in
Algorithm 4. The procedure UnifyTest uses the procedure TermUnify (Algorithm 3)
which checks for two given terms s and t whether they are unifiable, i.e., does there ex-
ist a substitution σ with sσ = tσ. The correctness proof of UnifyTest for substitutions
trees is given in [Gra96]. This proof can easily be extended to context trees.

Algorithm 3: TermUnify

Input: term s, term t, substitution σ
1 if s = x then
2 if sσ = t then
3 return (true, σ)
4 else if s 6∈ dom(ρ) then
5 σ = σ ◦ {s 7→ t};
6 return (true, σ);

7 else
8 return (false, ∅);
9 end

10 else if t = x then
11 if s = tσ then
12 return (true, σ)
13 else if t 6∈ dom(σ) then
14 σ = σ ◦ {t 7→ s};
15 return (true, σ);

16 else
17 return (false, ∅);
18 end

19 else if s = F (s1, . . . , sn) and t = f(t1, . . . , tn) then
20 foreach i ∈ {1, . . . n} do
21 (r, σ) = TermUnify(si, ti, σ);
22 if r = false then return (false, ∅);
23 end
24 if F ∈ dom(σ) ∧ Fσ 6= f then return (false, ∅);
25 if Fσ = f then return (true, σ) else return (true, σ ◦ {F 7→ f});
26 end
27 return (false, ∅);
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Algorithm 4: UnifyTest

Input: substitution τ , substitution ρ
1 σ = ∅;
2 foreach x ∈ dom(τ) do
3 (r, σ) = TermUnify(xτ ,xρ,σ);
4 if r = false then return (false,σ)

5 end
6 return (true, σ);

Generalization The test function for generalization GenTest (Algorithm 6) checks
for two given substitutions τ and ρ if there exists a substitution σ such that for all
x ∈ dom(τ) : xτρσ = xρ. Note, ρ occurs on both sides because ρ is the accumulator
argument of Lookup (Algorithm 2) and may bind variables of xτ . The implementation
of this procedure is based on TermGen (Algorithm 5) that tests for two given terms
s and t if s is a generalization of t, i.e. if a substitution σ exist with sσ = t. The
correctness proof of GenTest for substitutions trees is given in [Gra96]. This proof can
easily be extended to context trees.

Algorithm 5: TermGen

Input: term s, term t, substitution σ
1 if s = x then return (true, σ ◦ {x 7→ t});
2 if s = F (s1, . . . , sn) and t = f(t1, . . . , tn) then
3 foreach i ∈ {1, . . . n} do
4 (r, σ) = TermGen(si, ti, σ);
5 if r = false then return (false, ∅);
6 end
7 if F ∈ dom(σ) ∧ Fσ 6= f then return (false, ∅);
8 if Fσ = f then return (true, σ) else return (true, σ ◦ {F 7→ f});
9 end

10 return (false, ∅);

Algorithm 6: GenTest

Input: substitution τ , substitution ρ
1 σ = ∅;
2 foreach x ∈ dom(τ) ∪ dom(ρ) do
3 (r, σ) = TermGen(xτ ,xρ,σ);
4 if r = false then return (false,σ)

5 end
6 return (true, σ);
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Instance The test function for instantiation InstTest (Algorithm 8) checks for two
given substitutions τ and ρ if there exists a substitution σ such that for all x ∈ dom(τ) :
xτρσ = xρσ and dom(σ) ⊂ vars(xρ)∪W. Note, that σ occurs here on both sides of the
equation. During the recursive browsing of the context tree it may become necessary for
the retrieval that the substitution σ binds index variables in xτρ as well as in xρ. This
is because of the fact, that a term in the context tree is represented by the composition
of the substitutions along a path from the root to a leaf. Condition 3 in Definition 36
ensures that the algorithm has found an instance of the query once it has reached a leaf
node. In the case of substitution trees, I refer to [Gra96] for the correctness proof. This
proof can easily be extended to context trees. The implementation of the procedure
InstTest is based on the procedure TermInst (Algorithm 7) that tests for two given
terms s and t if s is an instance of t, i.e., if a substitution σ exist with sσ = tσ and
dom(σ) ∈ vars(t)∪W. The above note about InstTest also holds for TermInst, namely
that σ can occur on both sides of the equation. In the case that s does not contain
any variables from W this is the same as testing whether there is a substitution σ with
s = tσ.

Algorithm 7: TermInst

Input: term s, term t, substitution σ
1 if s ∈ W then return (true, {s 7→ t});
2 if t = x then return (true, {x 7→ t});
3 if s = F (s1, . . . , sn) and t = f(t1, . . . , tn) then
4 foreach i ∈ {1, . . . n} do
5 (r, σ) = TermInst(si, ti, σ);
6 if r = false then return (false, ∅);
7 end
8 if F ∈ dom(σ) ∧ Fσ 6= f then return (false, ∅);
9 if Fσ = f then return (true, σ) else return (true, σ ◦ {F 7→ f});

10 end
11 return (false, ∅);

Algorithm 8: InstTest

Input: substitution τ , substitution ρ
1 σ = ∅;
2 foreach x ∈ dom(τ) do
3 (r, σ) = TermInst(xτ ,xρ,σ);
4 if r = false then return (false,σ)

5 end
6 return (true, σ);
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Maintenance Algorithms

The insertion and deletion operations are based on a modified version of Lookup. This
lookup procedure, called LookupVariant (Algorithm 9), traverses a context tree for
finding a variation of a term t encapsulated in the query substitution. In case there is
no variation of t in the context tree, it, in addition to Lookup, returns a node that is
a suitable position for inserting t into the context tree, if there is such a node in the
context tree.

Variation The test procedure VariantTest (Algorithm 11) checks for a substitutions
τ and a substitution ρ if for all x ∈ dom(τ) xτρσ = xρσ and dom(σ) ∩ X = ∅. The
procedure is depicted in Algorithm 11. This procedure uses a procedure (Algorithm 10)
which tests for two given terms s and t if they are variations, i.e. sσ = tσ and dom(σ)∩
X = ∅.

Algorithm 9: LookupVariant

Input: Context tree T = (V,E, subst), v ∈ V , substitution ρ
1 HIT = ∅;
2 BEST = NULL;
3 foreach v′ with (v, v′) ∈ E do
4 if VariantTest(subst(v′), ρ) = (true, σ) then
5 if isLeaf(v′) ∧ vbest = NULL then return (v′,NULL, ρ ◦ σ);
6 (HIT, vbest, ρ

′) = LookupVariant(T, v′, ρ ◦ σ,VariantTest);
7 if HIT then
8 return (HIT,NULL, ρ′)
9

10 else if ∀x ∈ dom(subst(v′)) top(x subst(v′)) = top(xρ) and vbest = NULL then
11 vbest = v′;
12 end

13 end
14 return (v, vbest , ρ);

The procedure LookupVariant (Algorithm 9) is invoked with a context tree T , a node
v, and the query substitution ρ. Like Lookup (Algorithm 2), the node v is initially set
to the root node of T , and it is the current examined node of T during the recursive
application of LookupVariant. The substitution ρ is an accumulator argument, initially
set to the substitution containing the term t to be inserted. It is the composition (line 6)
of the initial query substitution and all substitutions σ computed in line 4 during the
recursive application of LookupVariant. The procedure LookupVariant traverses the
context tree T as long as the variant test (line 4) is successful. The algorithm of
VariantTest is given in Algorithm 11. If the algorithm has found a leaf node (line 5) the
recursion stops and it returns this leaf node. If VariantTest fails then LookupVariant
checks if the terms in the codomain of the substitution of the current node and the
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substitution ρ have the same top symbols (line 10). If they have the same top symbols
then LookupVariant remembers this node in vbest. If no variant is found then the
algorithm returns vbest. This node indicates a suitable position in the context tree T
where a new leaf node can be created which represents t.

Algorithm 10: TermVariant

Input: term s, term t, substitution σ
1 if s = x ∧ s = t then ;
2 if s ∈ Vi then
3 if sσ = t then
4 return true
5 else if s 6∈ dom(σ) then
6 σ = σ ◦ {s 7→ t};
7 return true;

8 else
9 return false;

10 end

11 end
12 if s = F (s1, . . . , sn) and t = f(t1, . . . , tn) then
13 foreach i ∈ {1, . . . n} do
14 (r, σ) = TermVariant(si, ti, σ);
15 if r = false then return (false, ∅);
16 end
17 if F ∈ dom(σ) ∧ Fσ 6= f then return (false, ∅);
18 if Fσ = f then return (true, σ) else return (true, σ ◦ {F 7→ f});
19 end
20 return (false, ∅);

Algorithm 11: VariantTest

Input: substitution τ , substitution ρ
1 σ = ∅;
2 foreach x ∈ dom(τ) do
3 (r, σ) = TermVariant(xτ ,xρ,σ);
4 if r = false then return (false,σ)

5 end
6 return (true, σ);
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Most Specific Common Generalization In order to insert a new term into the index
it can become necessary to split a node. Therefore, a further operation is needed,
namely the computation of the most specific common generalization; if τ and ρ are
two substitutions and there exist substitutions σ1 and σ2 and µ such that µ ◦ σ1 = τ
and µ ◦ σ2 = ρ, then µ is called a common generalization. If, additionally, there is a
substitution δ for each other substitution ν 6= µ such that µ = ν ◦ δ, then µ is called
the most specific common generalization which is given by the following function:

mscg(τ, ρ) := (σ1, σ2, µ).

Insert The procedure EntryCreate inserts a term t into a context tree T . Remember,
the variables of t are assumed to be normalized. First the term t is transformed into a
query substitution ρ. Then EntryCreate calls LookupVariant with T , the root node vr,
and the query substitution ρ. Three cases can occur. The first is that LookupVariant
has found a leaf (line 5) which represents t. Then a reference to t is inserted into
the leaf node which is done by InsertReference. If there is no respective leaf node
representing t then LookupVariant returns a node vbest, if there is one. The node vbest
indicates a suitable insert position. In order to insert t into the index, EntryCreate first
computes the mscg(subst(vbest), ρ) = (µ, σ1, σ2). After that, the procedure creates two
new nodes v1, v2. All subnodes of vbest become subnodes of v1 and are deleted from
the subnodes of vbest. Then v1 and v2 become the new subnodes of vbest ((vbest, v1) ∈ E
and (vbest, v2) ∈ E). The substitutions of vbest, v1 and v2 are set to the substitutions
computed by mscg(subst(vbest), ρ) as follows: subst(v1) = σ1, subst(v2) = σ2 and
subst(vbest) = µ. After that, the path vr, . . . , vbest, v1 represents the same terms as
the former path vr, . . . , vbest. The path vr, . . . , vbest, v2 represents the inserted term.
Additionally, a reference to t is inserted into the leaf node v2. The third case arises
if none of the above occurs. This means, neither t has been inserted into the index
before nor is there a suitable insert position. Then a new leaf node is inserted below v
representing the term t.
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Algorithm 12: EntryCreate

Input: Context tree T = (V,E, subst, vr), term t
1 ρ = {x0 7→ t};
2 if ¬ IsLeaf(vr) then
3 (v, vbest, ρ

′) = LookupVariant(T, vr, ρ);
4 end
5 if IsLeaf(v) ∧ vbest = NULL then InsertReference(v, t) ;
6 else if vbest 6= NULL then
7 (σ1, σ2, µ) = mscg(subst(vbest), ρ

′);
8 V = V ∪ {v1, v2};
9 foreach (vbest, v

′) ∈ E do E = (E \ {(vbest, v′)}) ∪ {(v1, v
′)};

10 E = E ∪ {(vbest, v1), (vbest, v2)};
11 InsertReference(v2, t);
12 subst(vbest) = µ;
13 subst(v1) = σ1;
14 subst(v2) = σ2;

15 else
16 V = V ∪ {v′};
17 E = E ∪ {(v, v′)};
18 InsertReference(v′, t);

19 end
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Algorithm 13: EntryDelete

Input: Context tree T = (V,E, subst, vr), term t
1 ρ = {x0 7→ t};
2 if IsLeaf(vr) then
3 RemoveReference(T, v, ρ)
4 else
5 (v′, vbest) = LookupVariant(T, v′, ρ);
6 if v′ 6= ∅ then RemoveReference(T, v′, ρ);

7 end

Delete The procedure EntryDelete (Algorithm 13) removes the term t from the con-
text tree T . It first generates the query substitution from t. If vr is not a leaf node,
EntryCreate applies LookupVariant in order to obtain the leaf node representing t. If
there is such a leaf node in T then EntryDelete removes the reference to t from this
node. EntryDelete does not delete a leaf node and collapse the context tree when a
term is removed. It just removes its reference from the respective leaf. Although, it
is possible to destruct the context tree after the deletion of a term, the indexing in-
troduced in Chapter 5 does not do this. The reason for this is that the destruction of
the context tree is too expensive in the context of reasoning about huge clause sets.
In [Gra96] the destruction of the substitution tree indexing is shown which is analogous
to the case of context trees. Not destructing a context tree requires a slight modifica-
tion of the invariant of the original notions of context trees, i.e., each path in a context
tree corresponds to a term stored in the index. The new invariant is as follows: a
path represents a term stored in the context tree, if and only if the respective leaf node
contains a reference to this term.
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2.2.6. Rewrite Proofs for Transitive Relations

In this thesis, I consider ontologies represented in the BSH-Y2 first-order fragment
(Chapter 4). The BSH-Y2 language contains transitivity axioms. The reasoning calcu-
lus for BSH-Y2 presented in Chapter 6, treats the transitivity axioms specially via the
chaining calculus (Section 2.2.3).

Consequently, I use in this thesis the model construction of the chaining calculus pre-
sented in [BG98] which is minimal with respect to set inclusion. This model construc-
tion relies on the following depicted notions. The actual model construction is given in
Chapter 4. For the proofs and further details, I refer to [BG98].

In this section, let N be a set of clauses without transitivity axioms, Tr be the set of
transitive predicate symbols and ATr be the transitive theory as already shown for the
chaining calculus in Section 2.2.3 defined as follows.

ATr = {Q(x, y), Q(y, z)→ Q(x, z) | Q ∈ Tr}

Definition 39 (Chain). A chain is a finite sequence of atoms

Q(l0, l1), Q(l1, l2), . . . , Q(ln−1, ln)

where n ≥ 1, all terms l0, . . . , ln are ground, and Q is a transitive predicate. The
type of such a chain is the atom Q(l0, ln). A chain is called a proof in a Herbrand
interpretation I if all atoms Q(li−1, li) are true in I. We say Q(l0, ln) is provable in I
if there exists a proof of type Q(l0, ln) in I.

Note, a subsequence of a proof is again a proof, and replacing a subproof with another
subproof of the same type is again a proof.

Definition 40. The transitive closure of a Herbrand interpretation I with respect to
a transitive theory ATr is defined as the set I together with all ground atoms Q(l, r)
which are logically implied in I by the transitivity axioms in ATr.

Observation 41. A Herbrand interpretation I is a model of a set of transitivity axioms
ATr if and only if it is identical to its transitive closure with respect to the transitive
theory ATr.

The following defines a rewrite system where each rewrite step defines one step in the
proof for a transitive atom Q(l, r), i.e., Q ∈ Tr. Each step is defined with respect to
the ordering of l and r

• l⇒Q r if l � r,

• l⇐Q r if r � l,

• l⇔Q r if l = r.
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The annotation Q will be omitted if it is clear from the context or inessential.

Definition 42. A valley is a chain of the form

l0 ⇒ l1 . . .⇒ lk ⇐ lk+1 ⇐ . . .⇐ ln

or
l0 ⇒ l1 . . .⇒ lk ⇔ lk+1 ⇐ . . .⇐ ln

Valleys are also called rewrite proofs. If an interpretation I contains a rewrite proof of
type Q(l, r) then this is denoted as l ⇓IQ r. A two step chain l⇐ t⇒ r is called a peak.
A chain l⇔ l⇒ r or l⇐ r ⇔ r is called a plateau. A chain l = l0 ⇔ l1 ⇔ . . .⇔ lk = r
is called a plain if k ≥ 2.

Definition 43. A peak, plateau or plain commutes in the Herbrand interpretation I if
there exists a rewrite proof of the same type in I. The rewrite closure of I with respect
to a set of transitive predicates Tr is defined as I ∪ {Q(l, r) : l ⇓IQ r and Q ∈ Tr}.

Note, the rewrite closure is obviously contained in the transitive closure.

Definition 44 (Complexity of rewrite steps). We define

• the complexity of l⇒Q r as the multiset {l},

• the complexity of l⇐Q r as the multiset {r},

• the complexity of l⇔Q r as the multiset {l, r}.

The complexity of a chain is the multiset of the complexities of all its individual steps.

Two chains are compared by their respective complexities in the two-fold multiset
extension of the ordering �. The resulting ordering is denoted by �π. Such an ordering
on proofs can be called proof ordering as it satisfies the following properties:

• A proper subproof of a proof is smaller than the original proof.

• Replacement of any subproof by a smaller proof will result in a smaller proof.

Definition 45. A proof of Q(l, r) in I is said to be minimal (w.r.t. �π) if there exists
no smaller proof of the same type in I.

Observation 46 (Characterization of minimal proofs). Let � be a well-founded or-
dering on ground terms, �π be the corresponding proof ordering, and I be a Herbrand
interpretation. If no peak, plateau, or plain in I is a minimal proof, then all minimal
proofs in I are rewrite proofs. Furthermore, if a peak, plateau or plain commutes in I,
then it is non-minimal.

Lemma 47 (Commutation). Let � be a well-founded and total ordering on ground
terms. The rewrite closure of I with respect to a set of transitive predicates Tr is a
model of ATr if and only if all peaks in I commute.

Definition 48. The size of a rewrite proof

Q(l0, l1), . . . , Q(ln−1, ln)

with type Q(l0, ln) in an interpretation I is defined as the length of the proof chain;
written |Q(l0, ln)|I .





3. The YAGO Ontology

The ontology YAGO (Yet another great ontology) [SKW07] is automatically generated
out of Wikipedia and WordNet [Fel98]. It contains knowledge about the relations
between individuals, classes and relations. Figure 3.1 shows a small excerpt from the
knowledge of YAGO represented as a graph. This graph contains the information
that Albert Einstein was a physicist and each physicist is a scientist. Further, Albert
Einstein was born in Ulm and had three children: Eduard, Hans Albert, and Lieserl.
The relation bornIn is a functional relation and the relation locatedIn is transitive.

This chapter gives a brief overview over the representation of the knowledge in YAGO.
In order to apply first-order reasoning procedures, I have developed a translation of
YAGO into a representation in first-order logic. The representation is designed in such
a way that the reasoning procedures that I present in Chapter 6 and Chapter 7 perform
efficiently with respect to this representation.

AlbertEinstein 

Ulm physicist 

scientist 

bornIn 
type 

subClassOf 

EduardEinstein 

hasChild 

type function 

Germany 

locatedIn type transitive 

HansAlbertEinstein hasChild 

LieserlEinstein 

hasChild 

Figure 3.1.: YAGO Ontology
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3.1. Knowledge Representation in YAGO

The YAGO ontology is automatically generated out of Wikipedia and WordNet [Fel98].
YAGO contains information about more than two million entities and has more than
15 million entries. A manual evaluation of YAGO by randomly choosing facts and com-
paring them with the respective Wikipedia page showed an accuracy of approximately
95% [SKW07]. The YAGO ontology is exceptional when compared to other ontologies
because it is fully automatically generated, has a high coverage, and at the same time,
a high accuracy rate.

The knowledge contained in YAGO is represented by facts. There are four types of
facts in YAGO: facts about individuals, facts about classes, facts about relations, and
facts about facts.

A fact in YAGO is a triple of the following form:

arg1 rel arg2,

where rel is a relation and arg1, arg2 are individuals, classes, facts, or relations. In
addition, each fact has a unique id and a confidence value attached.

The triple representation of YAGO is a slight extension of the W3C standard represen-
tation format for ontologies RDF/XML [Bec04, Sta09].

The following gives examples for each type of fact. Facts about an individual are:

AlbertEinstein bornIn Ulm
AlbertEinstein hasChild EduardEinstein
AlbertEinstein type physicist.

These facts represent the knowledge about the individual ’Albert Einstein’ saying that
”Albert Einstein was born in Ulm”, ”Albert Einstein had a child called Eduard Einstein”,
and that ”Albert Einstein was a physicist”. A fact of the second type is:

physicist subClassOf scientist,

which states that every physicist is also a scientist. The third type of facts represents
knowledge about relations of YAGO; for example,

bornIn type yagoFunction
locatedIn type yagoTransitiveRelation.

The first fact states that the relation bornIn is functional meaning that everybody
has at most one birthplace. The second fact expresses that the relation locatedIn is
transitive.

The last type of facts provides additional information to facts. This extra information
expresses, for example, where a fact was extracted from and at what time this fact
holds.
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fact173859 foundIn www. source. org
fact173859 until 1896

A detailed introduction to YAGO and its representation format can be found in [SKW07].

3.2. Translating YAGO into First-Order Logic

This section defines the clause set NY that represents the knowledge of the YAGO
ontology in a first-order language over the signature ΣY = (FY ,RY). All occuring
function symbols are constants, i.e., for all c ∈ FY it holds that arity(c) = 0. During
the translation, I distinguish four distinct clause sets: Nfact, Nsort, Ntrans, and Nfunc.
Each of them consists of a particular type of clauses: the set Nfact contains all the
binary facts over individuals, Nsort contains the type and subtype information, Ntrans

all the transitivity axioms, and Nfunc the functionality constraints. For reasoning about
YAGO, I do not consider the relations providing extra information like foundIn and
until. I call the set of facts without this type of facts the core of YAGO. The repre-
sentation of the core of YAGO in first-order logic is the union of the sets Nfact, Nsort,
Ntrans, and Nfunc. Additionally, I have implemented the presented translation, result-
ing in a tool that automatically transforms the core of YAGO into a representation in
first-order logic.

Definition 49 (Fact). A positive ground unit clause→ A is called a fact and a negative
ground unit clause A→ is called a negative fact.

3.2.1. Relation of Individuals

Let arg1, arg2 be individuals and rel be a relation. For each fact about an individual

arg1 rel arg2,

there are constants carg1, carg2 ∈ FY , a binary relation Prel ∈ PY , and the unit clause

→ Prel(carg1, carg2).

Table 3.2 shows all YAGO relations over individuals that are translated in this way.
The resulting ground unit clauses are stored in Nfact.

3.2.2. Classifying Individuals

Facts that have an individual as their first argument and a class as their second argu-
ment are of the following form:



48 CHAPTER 3. THE YAGO ONTOLOGY

actedIn bornIn created
dealsWith diedIn directed
discovered graduatedFrom happenedIn

hasAcademicAdvisor hasCapital hasChild
hasCurrency hasOfficialLanguage hasPredecessor
hasProduct hasProductionLanguage hasSuccessor

hasWonPrize inTimeZone influences
interestedIn isAffiliatedTo isCitizenOf
isLeaderOf isMarriedTo livesIn
locatedIn madeCoverFor originatesFrom

participatedIn politicianOf produced
worksAt wrote

Figure 3.2.: Relations of individuals

arg1 type arg2

arg1 isOfGenre arg2

arg1 musicalRole arg2.

For all of these facts, there are constant carg1 ∈ FY , the monadic (sort) predicate
Sarg2 ∈ PY , and the clause

→ Sarg2(carg1),

which is added to Nsort.

3.2.3. Relations of Classes

Subclass relations are expressed by the following types of facts in YAGO:

arg1 subClassOf arg2

arg1 isMemberOf arg2

arg1 isSubstanceOf arg2.

Each fact of this type is translated into a subsort relation and added to the set Nsort.

Sarg1(x)→ Sarg2(x)

where Sarg1 and Sarg2 are sorts with Sarg1, Sarg2 ∈ PY , and x ∈ X is a variable.

Translating classes into sorts instead of translating them to constants has the advan-
tage that reasoning about sorts can be efficiently performed independently from the
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remaining reasoning tasks via special data structures and algorithms. More details
about sort reasoning in the context of large ontologies are presented in Chapter 6 and
in Chapter 7. In [Wei01, SS89] you find further details about reasoning about sorts in
general. Note, the sort theory that we get by this translation of YAGO is acyclic and
static.

3.2.4. Functionality Constraint

There are facts in YAGO stating that a relation is functional. For example, the following
fact states that the relation rel is a functional relation:

rel type yagoFunction.

These kind of facts seem to be second order but they can be translated into their
respective first-order axiom: the functionality axiom. The relation rel is represented as
a predicate Prel ∈ PY and the following functionality axiom is added to Nfunc:

Prel(x, y),Prel(x, z)→ y ≈ z,

where x, y, z ∈ X are variables.

3.2.5. Transitivity Axiom

In YAGO, there are facts expressing that a relation rel is a transitive relation:

rel type yagoTransitiveRelation.

Like in the case of functions, these facts are translated into the respective first-order
transitivity axioms:

Prel(x, y), Prel(y, z)→ Prel(x, z),

where x, y, z ∈ X are variables. The axiom is added to the set Ntrans.

3.2.6. Unique Name Assumption

In addition, there is an implicit unique name assumption for YAGO. Expressed in first-
order logic this means that for two syntactically different constants c1, c2 ∈ F and for
all Herbrand models I the following holds: I |= ¬(c1 ≈ c2). The set Nuna, which states
the unique name assumption, is defined as the following set of clauses:

Nuna = {a ≈ b→ ‖ a, b ∈ FY and a 6= b}
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3.2.7. First-Order Representation of YAGO

The previous sections showed how the different types of facts are translated into a first-
order representation. The YAGO ontology represented in first-order language is the set
NY that is the union of all the previously defined sets

NY = Nfact ∪Nsort ∪Nfunc ∪Ntrans ∪Nuna

The clause set NY consists of clauses from the Bernays–Schönfinkel Horn fragment with
equality. Note, NY does not represent the whole knowledge of YAGO. The translated
part consists of the core knowledge that I consider in this thesis. The signature ΣY
consists of about 2 million elements and NY consists of about 10 million clauses.

Facts that give additional information to facts like the relation foundIn, are not con-
sidered for reasoning in this work and therefore are not translated into first-order logic.

In addition, I have omitted facts of YAGO that could not be translated into Horn
clauses or that contain time and date information. Integrating this type of facts into
the reasoning procedure presented in this thesis, is left for future work.



4. Reasoning in BSH-Y2

In this chapter, I define the ontology language BSH-Y2 which is a decidable fragment
of first-order logic. Furthermore, I present the first-order reasoning problems that
correspond with checking the consistency of an ontology and answering queries in an
ontology.

The language BSH-Y2 can represent the knowledge of large ontologies. Additionally,
the reasoning procedures developed in Chapter 6 and Chapter 7 perform efficient on
large sets of this language. In particular, the language BSH-Y2 contains the first-order
representation of YAGO as presented in the last chapter and it represents large parts
of the two ontologies: SUMO [NP01a] and CYC [Len95].

4.1. Defining BSH-Y2

The language BSH-Y2 is an extension of the language representing the YAGO ontology.
It contains constraints and defined relations in addition to the clauses presented in
Chapter 3. Furthermore, BSH-Y2 is a subset of the Bernays–Schönfinkel Horn fragment
and, consequently, decidable.

The following defines properties of Horn clauses and sets of Horn clauses N .

Definition 50 (Range restricted). A Horn clause Γ → A is range restricted if and
only if vars(A) ⊆ vars(Γ).

Definition 51 (Defined predicate). A range restricted Horn clause C = Γ→ P (t1, . . . , tn)
with t1, . . . , tn ∈ T (F ,X ) and P ∈ R is called a definition for predicate P . In other
words, P is defined by C.

Definition 52 (Dependent definitions). The dependency of a definition C = Γ → A
on a set D ⊂ R in a Horn clause set N is inductively defined. The definition C
is dependent on D iff there is a predicate symbol P in Γ with (i) P ∈ D or (ii) P
is defined by a clause C ′ ∈ N that is dependent on D. Otherwise, the clause C is
independent from D in N .

Definition 53 (Transitive dependent). A clause C is transitive dependent in a clause
set N iff C is dependent on Tr. The set Tr is the set of transitive predicate symbols
occurring in N .

Definition 54 (Acyclic definitions). A definition C = Γ → P (t1, . . . , tn) is acyclic if
it is independent from every set D with P ∈ D.
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4.1.1. Constraints

Constraints are clauses of the following form

P1(t11, . . . , t1n1), . . . , Pk(tk1, . . . , tknk
)→

This allows to formulate negative facts like Albert Einstein was not born in Munich:

bornIn(AlbertEinstein,Munich)→

Additionally, constraints like asymmetry and irreflexivity can be expressed for a relation
rel:

Prel(x, x)→
Prel(x, y), Prel(y, x)→

4.1.2. Defined Relations

Defined relations provide a method to define a predicate in relation to other predicates.
A defined relation in a clause set N is a defined predicate as follows:

C = P1(t11, . . . , t1n1), . . . , Pk(tk1, . . . , tknk
)→ P (s1, . . . , sm)

with (i) C is acyclic in N , and (ii) if P is transitive then C is transitive independent in
N .

The requirement that defined relations are acyclic is needed because the query answer-
ing procedure does not remove redundant clauses. The requirement (ii) ensures that
the saturation procedure terminates.

The definition of relations is often used in the specification of ontologies. For example,
the relation hasSon can be specified in terms of the relations male and hasChild.

male(y), hasChild(x, y)→ sonOf(y, x)

Transitive Relations and Constraints

Although the relation locatedIn is transitive, defined relations allow us to formulate
constraints like irreflexivity and asymmetry for the relation locatedIn without a com-
plete ground instantiation of locatedIn. This can be achieved by the definition of a new
predicate locatedInTC representing the transitive closure of locatedIn. The resulting
clauses are



CHAPTER 4. REASONING IN BSH-Y2 53

locatedIn(x, x)→ (4.1)

locatedIn(x, y), locatedIn(y, x)→ (4.2)

locatedIn(x, y)→ locatedInTC(x, y) (4.3)

locatedInTC(x, y), locatedInTC(y, z)→ locatedInTC(x, z) (4.4)

Equation 4.1 and Equation 4.2 express the irreflexivity and asymmetry constraints, the
Equation 4.3 is the definition of the new predicate locatedInTC, finally, Equation 4.4
is the transitivity axiom for locatedInTC.

4.1.3. BSH-Y2

The ontology language BSH-Y2 is a subset of the Bernays–Schönfinkel Horn fragment
with equality. This language can express the core of the YAGO ontology and supports
additional constructs like constraints and defined relations. Chapter 8 shows an exten-
sion of YAGO by constraints and defined relations called YAGO++. Further, it shows
that large parts of the ontologies SUMO and CYC can also be expressed in BSH-Y2.
In addition, the reasoning procedures I have developed in this thesis work efficient for
huge clause sets from BSH-Y2. Figure 4.1 depicts the type of clauses of BSH-Y2.

→ P (a1, . . . , an) Ground Fact

S(x)→ T (x) Subsort Relation

R(x, y), R(x, z)→ y ≈ z Functionality Axioms

R(x, y), R(y, z)→ R(x, z) Transitivity Axioms

P1(t11, . . . , t1n1), . . . , Pk(tk1, . . . , tknk
)→ Constraints

P1(t11, . . . , t1n1), . . . , Pk(tk1, . . . , tknk
)→ P (s1, . . . , sm) Defined Relations

Figure 4.1.: BSH-Y2

where ai are constants, x, y, z ∈ X are variables, each tij , si is either a constant or a
variable. The symbol R denotes a binary predicate, Si denotes a sort predicate, and P ,
Pi denote predicates with arbitrary arity. The predicates of the functionality axioms
are non-transitive and not defined. Note, defined relations are acyclic and transitive
independent if P is transitive in a BSH-Y2 clause set.

Note, for the static sort theory SN of clause sets N from BSH-Y2 it holds that SN ⊆ N .
This means the sort theory of N is exactly its static sort theory. The reason for this is
that a positive sort atom occurs only in monadic facts (→ S(a)) or in subsort relations
(S1(x) → S2(x)) in N . In addition, assume that the sort theory SN contains only
acyclic subsort relations. If SN contains a cycle then this cycle can be deleted from SN .



54 CHAPTER 4. REASONING IN BSH-Y2

4.2. Reasoning in BSH-Y2 ontologies

In this thesis, I focus on two reasoning tasks for ontologies represented as clause sets
from BSH-Y2. The first task is verifying whether a particular ontology is consistent, i.e.,
whether it is satisfiable. Formally, if N is a clause set from BSH-Y2 then satisfiability
checking is the following reasoning problem

N 6|= ⊥ (4.5)

The second reasoning task is query answering in the minimal model. Given a first-order
formula Φ and a minimal model NI of a BSH-Y2 ontology N . Then query answering in
the minimal model means verifying whether the formula Φ is entailed by the minimal
model NI . Formally, this is the following reasoning problem.

NI |= Φ (4.6)

In the context of huge ontologies like YAGO, standard first order reasoning procedures
are not suited to perform these reasoning tasks. This has two reasons. First, the stan-
dard first-order reasoning framework is too prolific. Second, minimal model reasoning
is beyond standard first-order reasoning; in particular, if queries with quantifier alter-
nations are considered. The following provides further details about these reasoning
problems.

4.2.1. Satisfiability

Before being able to answer queries in the minimal model, the clause set representing
the ontology has to be verified to be satisfiable, i.e., N 6|= ⊥. This is because, the
minimal model exists only if the clause set is satisfiable. Verifying the satisfiability of
a BSH-Y2 ontology can, in principle, be accomplished by a finite saturation.

However, the BSH-Y2 is a subset of the the Bernays–Schönfinkel Horn fragment with
equality. Checking satisfiability of a clause set from this fragment is EXPTIME com-
plete [Pla84]. Therefore, standard general purpose reasoning procedures are not feasi-
ble for practically verifying the satisfiability of huge ontologies which consists of several
million clauses. The experiments presented in Chapter 8 verify this.

Furthermore, already the existence of one defined relation (Section 4.1.2) containing a
transitive atom causes the standard reasoning procedure to blow up the search space.
This phenomenon is illustrated in Chapter 6.

In Chapter 6, I present a reasoning procedure that is based on the superposition reason-
ing framework and verifies the consistency of BSH-Y2 ontologies by a finite saturation
in less than one hour (Chapter 8).
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4.2.2. Query Answering in the Minimal Model

Minimal Model Semantics

The minimal model semantics corresponds to a closed world assumption which con-
trasts the open world assumption of standard first-order semantics. In minimal model
semantics, every formula Φ is assumed to be true if it is entailed by the minimal model
NI of a clause set N and is assumed to be false, otherwise. This is in contrast to
standard semantics where the formula Φ is assumed to be true if it is entailed by all
models I of N , i.e. I |= N implies I |= Φ.

The next example illustrates the differences between these two semantics.

Example 55 (Minimal model semantics). For example, consider the following clause
set:

N ′ = {→ P (a), P (a)→ Q(a)},

the clause C = P (x) → Q(x), and the model I ′ = {P (a), Q(a), P (b)}. In this case, I ′

is a model of N ′, i.e., I ′ |= N ′ but it is not a model of C, i.e. N ′ 6|= C.

However, I ′ is not minimal with respect to set inclusion because NI = {P (a), Q(a)} is
also a model of N ′, NI |= N ′ and also NI |= C. Consequently, the clause C holds with
respect to minimal model semantics but not with standard semantics.

The BSH-Y2 language contains only Horn clauses and, therefore, there is a unique
minimal model for every BSH-Y2 ontology. Also in [Rei77a, Rei77b] it is shown that
one can make the closed world assumption for a set of Horn clauses. An extension of
the closed world assumption for non-Horn clauses is developed in [Min82]. The closed
world assumption is also called negation as failure [Cla78].

The following defines a minimal candidate interpretation for a set N consisting of
clauses from BSH-Y2. The construction of a minimal candidate interpretation for
a clause set from BSH-Y2 follows the construction of [BG98]. The chaining calculus
which I consider in this thesis is sound and complete in terms of this model construction.
I have extended this by a selection function as suggested in [BG01]. The saturation
calculus that I present in Chapter 6 is sound and complete with respect to the following
model construction. The respective proofs are provided in Chapter 6, too.

Definition 56 (Candidate interpretation). Let N be a set of clauses from the BSH-
Y2 without transitivity axioms such that the transitive predicates of N are in the set Tr.
Further, let � be an admissible ordering. The following defines a candidate interpreta-
tion for N and Tr. Let C = Γ→ A be a ground instance of a clause from N . Suppose
EC′ and RC′ have been defined for all ground clause C ′ with C � C ′. Then

RC =
⋃

C � C′

EC′
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if (i) A � Γ, (ii) A 6∈ R∗C , (iii) Γ ⊆ R∗C , and (iv) no literal is selected in C then

EC = {A}

otherwise EC = ∅. If EC 6= ∅, we say that C is productive and produces A.

R∗C = RC ∪ {Q(l, r) : l ⇓RC
Q r ∧Q ∈ Tr}

The interpretation NI of N is defined as NI =
⋃
C R

∗
C .

Note, this definition is also defined for sets containing non-ground Horn clauses via the
lifting lemma which is a standard result of the superposition framework.

Lemma 57 (Monotonicity). For each clause C if R∗D |= C for a clause D � C then
for all D′ � D also R∗D′ |= C.

Query Language

In order to answer sophisticated queries efficiently, I have identified a query language as
a subset of the first-order language. The query language, which I introduce in Chapter 7,
contains queries with arbitrary quantifier alternations. The respective query answering
procedure efficiently answers the queries of this language. For example, the following
query is contained in this query language:

∃x, y(physicist(x) ∧ bornIn(x, y) ∧ ∀z(hasChild(x, z)→ bornIn(z, y))) (4.7)

Further, all queries of Figure 1.2 are also elements of the query language. In addition
to its expressiveness, the query language should have the property that its queries can
be efficiently answered using appropriate reasoning procedures. The query answering
procedure I present in Chapter 7 answers queries formulated in this language with
respect to minimal model semantics.

Query answering in the Minimal Model

As defined above, answering a query Φ in the minimal model NI of a BSH-Y2 ontology
N is the following reasoning task:

NI |= Φ. (4.8)

In general, reasoning in minimal models is beyond standard first-order reasoning. In
particular, some of the queries of Figure 1.2 cannot be answered with these reason-
ing procedures. If considering simple existential queries then the standard first-order
reasoning is equivalent to minimal model reasoning.
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Proposition 58. [HW08] For a Horn clause set N and queries of the form ∃~x.Γ where
Γ is a conjunction of literals it holds that

NI |= ∃~x.Γ⇔ N |= ∃~x.Γ

A set of clauses from the BSH-Y2 contains only Horn clauses and, consequently, has
a unique minimal model. Furthermore, the minimal model is finite because BSH-Y2
is a subset of the Bernays–Schönfinkel fragment. Consequently query answering in
terms of the minimal model is decidable. The problem is that the query cannot be
transformed into a clausal representation by Skolemization because this changes the
domain. In [HW08] it is shown that already fixing a domain leads to reasoning tasks
that go beyond first-order reasoning.

As a result, all queries not having the above form need a special query answering pro-
cedure. In Chapter 7, I introduce a new efficient, sound and complete, query answering
procedure that answers complex queries in BSH-Y2 ontologies with respect to minimal
model semantics. Instead of applying a Skolemization, the procedure performs a spe-
cific finite quantifier elimination algorithm. This algorithm works with respect to the
saturation of the ontology. Chapter 7 proves that the saturation of a BSH-Y2 ontology
with the calculus of Chapter 6 is a sufficient and efficient representation of the minimal
model for this purpose. Chapter 8 evaluates the performance of the query answering
procedure and shows its efficiency for practical query answering.

4.3. Summary

This chapter has presented BSH-Y2 which is a subset of the Bernays–Schönfinkel first-
order fragment with equality. The BSH-Y2 fragment can encode the knowledge con-
tained in YAGO and it provides additional types of clauses, namely constraints and
defined relations. So it provides additional constructs to extend the knowledge of the
YAGO ontology. Such an extension, called YAGO++, is defined in Chapter 8. The
BSH-Y2 language can encode large parts of further ontologies like SUMO and CYC. In
the remainder of this thesis, I present the first superposition based procedures which
are able to saturate ontologies consisting of several million clauses from BSH-Y2 and
answer queries with respect to minimal model semantics.

Reasoning in BSH-Y2 is complicated especially if considering ontologies consisting of
several million clauses. The experiments presented in Chapter 8 show that standard
reasoning procedures are too prolific. In addition, answering complex queries containing
arbitrary quantifier alternations, in terms of the minimal model leads to reasoning tasks
that are beyond standard first-order reasoning.





5. Filtered Context Tree Term Indexing

The invention of term indexing data structures has been pivotal for the success of auto-
mated theorem proving because they provide effective retrieval operations for formulas.
Therefore, they build the basis for efficient implementations of the inference and re-
duction rules of the superposition reasoning framework. The inference and reduction
rules access the term index several thousand times during the application of one single
reasoning loop. For successful reasoning about ontologies that consist of several mil-
lion clauses, it was necessary to further advance the term indexing techniques. I have
developed a sophisticated term index and the respective algorithms which I present in
this chapter. The new term index, called filtered context tree index [SWW10], has been
the key for successful reasoning about ontologies like YAGO that consists of about 10
million clauses.

Filtered context tree indexing extends context tree indexing [GNN01] (Section 2.2.5)
with a filtering mechanism. For example, terms of the following form occur in the
YAGO ontology: Q(a, b), Q(a, x), Q(x, b), Q(x, y), S(a), and S(x), where Q is a binary
predicate symbol, a, b are constants and S is a monadic predicate (sort symbol) from
the signature. Performing retrieval operations fast on an index containing such atoms,
requires the procedure to efficiently filter out subtrees of the index that do not lead to
a success with respect to the current retrieval operation.

The filtered context tree indexing is the key for the efficient implementation of the
saturation procedure in Chapter 6 and the query answering procedure in Chapter 7.
The automated theorem prover Spass [WDF+09] implements substitution tree indexing
which is an instance of context tree indexing. For evaluating the filtering techniques
presented in this section, I have integrated these into the substitution tree index of
Spass. The version of Spass containing the new index and the implementation of the
procedures presented in Chapter 6 and Chapter 7 is called Spass–Y2. The evaluation in
Chapter 8 confirms that Spass–Y2 efficiently saturates BSH-Y2 ontologies, like YAGO
and answers queries in terms of minimal model semantics. Spass without the imple-
mentation of the new indexing techniques was even unable to load these clauses into
the index within reasonable time. Additionally, this chapter presents implementation
details of the index and further improvements.

When performing a retrieval operation, the procedure Lookup (Algorithm 2) pursues
paths that do not contribute to the current query. In the case of ontologies like YAGO,
this approach is not feasible because one subnode may have millions of subnodes and the
term indexing is processed several thousand times in a single reasoning loop. Therefore,
I have developed a mechanism that efficiently filters out subtrees of a context tree index
whose paths do not contribute to the current query.
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τ0 : {w0 7→ F1(w1, w2)}

τ1 : {w2 7→ a}

τ2 : {F1 7→ f
w1 7→ c}

τ3 : {F1 7→ h
w1 7→ d}

τ4 : {w1 7→ a
F1 7→ g
w2 7→ d}

τ5 : {F1 7→ g
w2 7→ b}

τ6 : {w1 7→ d} τ7 : {w1 7→ e}

Figure 5.1.: Context Tree

The following example demonstrates a retrieval operation on the context tree depicted
in Figure 5.1.

Example 59. Consider the context tree of Figure 5.1 and the retrieval of terms unifiable
with the term g(e, x). The query substitution ρ for g(e, x) is ρ = {w0 7→ g(e, x)}. The
algorithm starts with the query substitution ρ at the root node whose substitution is τ0.
The substitution τ0 is unifiable with ρ using the following substitution:

σ = {w1 7→ e, w2 7→ x, F1 7→ g}.

Further descending the index requires to check all subnodes. In this case, these are the
nodes containing τ1, τ4 and τ5. Unifiable under the current substitution ρ ◦ σ are the
substitutions τ1 and τ5. At first, the algorithm proceeds by inspecting the subtree start-
ing at the node with τ1. The substitution τ1 is unifiable with ρ ◦ σ using σ′ = {x 7→ a}.
Continuing with the subnodes, the algorithm recognizes that neither τ2 nor τ3 are unifi-
able with ρ◦σ ◦σ′. Then the algorithm backtracks, proceeds with τ5 and eventually finds
a leaf where all substitutions along the path τ0, τ5, τ7 are unifiable under the respective
substitution ρ and returns the desired term which is w0τ0τ5τ7.

In this example, after examining the node containing the substitution τ0, the retrieval
procedure proceeds by examining all subnodes. These subnodes are the nodes contain-
ing the substitutions τ1, τ4 and τ5. Looking at the query, the symbol g has to occur in
a substitution of some node along a successful path. However, if we inspect the subtree
starting at the node with the substitution τ1, we recognize that the symbol g does not
occur in any substitution of this subtree. Consequently, this subtree does not have a
successful path and can, therefore, be excluded from further processing.

The following presents the filtering technique in detail and shows the respective retrieval
operations. Section 5.1, introduces filtered context trees and Section 5.2 presents the
algorithms for the retrieval operations of filtered context trees and its soundness and
completeness proofs. Some details about the implementation of these techniques in
Spass-Y2 can be found in Section 5.3 and further possible optimization in Section 5.4.
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τ0 : {w0 7→ F1(w1, w2)}

[a, c, d, f, h]
τ1 : {w2 7→ a}

[c, f ]
τ2 : {F1 7→ f

w1 7→ c}

[d, h]
τ3 : {F1 7→ h

w1 7→ d}

[a, d, g]
τ4 : {w1 7→ a

F1 7→ g
w2 7→ d}

[b, e, g]
τ5 : {F1 7→ g

w2 7→ b}

[d]
τ6 : {w1 7→ d}

[e]
τ7 : {w1 7→ e}

Figure 5.2.: Filtered Context Tree

5.1. Filtered Context Trees

In order to obtain filtered context trees, the notion of context trees has to be extended.
In addition to context trees, filtered context trees contain a mapping M that maps each
node v and any symbol s to each subnode of v that contains s in one substitution along
a path starting at v including v itself. In order to be more efficient, M considers only
the symbols that are characteristic for a substitution instead of considering all symbols
that occur in a substitution. The following introduces the notion of a characteristic
function for a substitution. More precisely, it defines what the characteristic symbols
of a substitution are.

Example 60. Reconsider Example 59 with the unification retrieval operation for the
query substitution ρ = {w0 7→ g(e, x)}. Extending Figure 5.1 with the map M yields the
filtered context tree depicted in Figure 5.2. The retrieval algorithm applied to Figure 5.2
examines the node containing the substitution τ0. As we have seen only those subtrees
can contribute to the current retrieval operation that contain g in the codomain of the
substitution of any of its nodes. The function M contains exactly this information. If
we apply g to M , the function M returns those subtrees; in this example, these are the
subtrees starting at the nodes containing the substitution τ4 and τ5. Consequently, the
node containing the substitutions τ1 is not considered during the retrieval.

A mapping mechanism has also been used for discrimination trees. In discrimination
tree indexing, the mapping assigns to a given label the respective successor node of
the discrimination tree. For example, this has been added to the index of the theorem
prover E [Sch02].

Using a mapping mechanism for context trees requires a function that assigns a set of
signature symbols to a given substitution. The following defines such a function which
is called the characteristic function. The characteristic function assigns to a substitu-
tion the set of top symbols occurring in its codomain. In order to also characterize a
substitution containing only variables in its codomain, assume a symbol ⊥ with ⊥ 6∈ Σ.
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Definition 61 (Characteristic function). Let σ be a substitution and O ⊂ X ∪ U ∪W
be a finite set of variables. The set of top symbols of σ respecting O is defined as

ts(σ,O) = {f | ∃x ∈ dom(σ) ∩ O with xσ = f(t1, . . . , tn)}

The characteristic function chr(σ,O) of a substitution σ with respect to the set of vari-
ables O is defined as follows:

chr(σ,O) =



ts(σ,O) if ts(σ,O) 6= ∅

{⊥}
if ts(σ,O) = ∅ ∧ ∃x ∈ dom(σ) with

xσ ∈ X ∨ xσ ∈ T (Σ ∪ U ,X ) \ T (Σ,X ) ∨ x ∈ X

∅ otherwise

Note, this definition also includes the cases where xσ is a constant or xσ is a function
symbol mapped from a function variable.

Example 62. Reconsider the query substitution ρ = {w0 7→ g(e, x)} of Example 59.
The characteristic function of ρ is chr(ρ, {w0}) = {g}. Note that g is the only symbol
of the characteristic function of ρ because this is the top symbol of the term g(e, x). A
term that is unifiable with g(e, x) is of the form g(y, x), where y is either a variable or
the constant e. Consequently, the symbol g is the only symbol characterizing ρ.

Once the characteristic function for a substitution has been defined, a context tree can
be extended with a function M that assigns to a given node v and a symbol s a set of
successor nodes. For each node v′ in the set of successor nodes it holds that there is a
node on a path, starting at v′, that contains the symbol s in the characteristic of its
substitution. On the other hand, the characteristic of substitutions that do not match
the characteristic of a subtree in the context tree can be excluded from the current
retrieval process. Matching the characteristic functions is a necessary requirement for
a successful retrieval operation. This lifts the characteristic function of a substitution
of one node to the characteristic of a subtree of a context tree.

Definition 63 (Filtered Context Tree). A filtered context tree
FT = (V,E, subst, vr,M, succ) is a context tree (V,E, subst, vr) together with a function
M : V × (Σ ∪ {⊥}) → 2V from nodes and function symbols to a subset of V such that
vk+1 ∈M(vk, s) iff there is a path v1, . . . , vk, vk+1, . . . , vn, where v1 is the root node vr,
with

s ∈
⋃

i∈{k+1,...,n}

chr(subst(vi), vars(v1, . . . , vk)).

The function succ (v, ρ,O) defines the set of successor nodes of v ∈ V with respect to a
substitution ρ and a set of variables O ⊂ X ∪ U ∪W as follows:

succ (v, ρ,O) =


{v′ | (v, v′) ∈ E} if chr(ρ,O) = {⊥}

⋃
s∈chr(ρ,O)∪{⊥}M(v, s) otherwise
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Algorithm 14: FilteredLookup

Input: FT = (V,E, subst, vr,M, succ), v ∈ V , substitution ρ,
function Test

1 HITS = ∅;
2 if Test(subst(v), ρ) = (true, σ) then
3 if isLeaf(v) then return {v};

/* vr = v1, ..., vn = v path from the root vr to vn */

4 foreach v′ ∈ succ(v, ρ, vars(v1, . . . , vn)) do
5 HITS = HITS ∪ FilteredLookup(FT , v′, ρ ◦ σ,Test);
6 end

7 end
8 return HITS

5.2. Algorithms for Filtered Context Trees

The procedure FilteredLookup (Algorithm 14) depicts the function performing the
lookup operation on a given filtered context tree FT , a starting node v, a query substi-
tution ρ and a function Test. The node v is the current examined node of FT during the
recursive application of FilteredLookup. Initially, the node v is the root node vr. The
function Test is either UnifyTest (Algorithm 4), GenTest (Algorithm 6), or InstTest
(Algorithm 8). These are the standard algorithms for the test functions shown in Sec-
tion 2.2.5. These test functions expect two substitutions as their argument and are,
therefore, independent from the underlying index. As a result, the standard algorithms
can also be used for filtered context trees.

FilteredLookup (Algorithm 14) is almost the same algorithm as Lookup (Algorithm 2).
The only difference is line 4. Instead of considering all children of v, FilteredLookup
considers only the nodes which are returned by succ. The set

succ(v, ρ, vars(v1, . . . , vn))

contains only those nodes which match the characteristic of ρ. Computing the char-
acteristic of ρ is in time O(|dom(ρ)|), where | dom(ρ)| is the number of elements of
the domain of ρ. As a result, the time complexity of the function succ is in time
O(| dom(ρ)| ∗ log |Σ|) where |Σ| is the number of symbols in the signature.

The algorithms for insertion, EntryCreate (Algorithm 12), and deletion, EntryDelete
(Algorithm 13), use the procedure LookupVariant (Algorithm 9). The procedure Lookup-
Variant has to be modified analogously to FilteredLookup (Algorithm 14) due to the
fact that LookupVariant is a variation of Lookup (Algorithm 2).

Additionally, the procedure EntryCreate (Algorithm 12) has to maintain the map M
when inserting a term into the indexing. When the procedure inserts a new inner node
in line 6 - 14, the function M has to be updated in order to meet the properties required
in Definition 63. The map M has to be updated for each vi along the path vr, . . . , v1
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and for all s ∈ chr(σ1, vars(vr, . . . , vi)) as follows:

M(vi, s) := M(vi, s) ∪ {vi+1}.

The nodes along the path vr, . . . , v2 have to be updated analogously.

The function M is realized via a map and, therefore, insertion is bounded by O(log |Σ|)
where |Σ| is the number of signature symbols. As a result, updating the nodes along a
path with length n, is bounded by the following complexity:

O(n ∗ (| chr(σ1,W)|+ | chr(σ2,W)|) ∗ log |Σ|).

In the context of clause sets from BSH-Y2, the characteristic functions of σ1 and σ2

have size at most two and the index has depth at most three.

The procedure EntryDelete (Algorithm 13) does not change the context tree when
removing a term. Consequently, no update of M becomes necessary.

Theorem 64 (Correctness).
Let ρ be a substitution, T = (V,E, subst, vr) a context tree, and FT = (V,E, subst, vr,M)
be a filtered context tree. Then

v ∈ FilteredLookup(FT, vr, ρ,Test) ⇒ v ∈ Lookup(T, vr, ρ,Test)

where Test is one of the following test functions: UnifyTest (Algorithm 4), GenTest
(Algorithm 6), and InstTest (Algorithm 8).

Proof:
Since, the algorithm only restricts the number of nodes in the context tree which are
considered for testing, the correctness follows from the correctness of Lookup (Theo-
rem 38).

Theorem 65 (Completeness). Let ρ be a query substitution, T = (V,E, subst, vr) a
context tree, and FT = (V,E, subst, vr,M. succ) be a filtered context tree. Then

v ∈ FilteredLookup(FT, vr, ρ,Test)⇐ v ∈ Lookup(T, vr, ρ,Test),

where Test is one of the following test functions: UnifyTest (Algorithm 4), GenTest
(Algorithm 6), and InstTest (Algorithm 8).

Proof. Let ρ be a query substitution, T = (V,E, subst, vr) a context tree, and FT =
(V,E, subst, vr,M. succ) be the respective filtered context tree. Assume the following
holds:

vn ∈ Lookup(T, vr, ρ,UnifyTest).

The proof for GenTest and InstTest follows analogously. By soundness and correctness
of Lookup, it follows that there is a path vr, v1, . . . , vn from the root to the leaf vn with
τi = subst(vi), and

∃σ∀x(xτ1 . . . τnσρ = xρσ). (5.1)
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Because of condition 2 of context trees (Definition 36), it holds for all τi that

∃σ∀x(xτiσρ = xρσ). (5.2)

It remains to show that for all vi on this path vi+1 ∈ succ(vi, ρ, vars(v1, . . . , vi)). The
proof is by contradiction. Assume there is an i such that the following holds:

vi+1 6∈ succ(vi, ρ, vars(v1 . . . vi)).

We have to distinguish two cases

• Assume there is a x ∈ dom(ρ)∩vars(v1, . . . , vi)∩W with top(xρ) = f and f ∈ Σ.
x ∈ vars(v1, . . . , vi) implies x ∈ vars(cod(τj)) for some j ∈ {1, . . . , i} and x 6∈
dom(τk) for all 1 ≤ k ≤ j.
Because x ∈ W and condition 3 of context trees (Definition 36) it follows: there
is a l ∈ {i+ 1, . . . , n} with x ∈ dom(τl).
From 5.2 it follows that ∃σ(xτlσρ = xρσ) and, therefore, either (i) top(xτl) = f
or (ii) xτl ∈ X .

(i) From top(xτl) = f , it follows that f ∈ chr(τl, vars(v1, . . . , vl−1)).
Consequently, vi+1 ∈M(vi, f) by definition of FT (Definition 63).

(ii) From xτl ∈ X , it follows that ⊥ ∈ chr(τl, vars(v1, . . . , vl−1)).
Consequently, vi+1 ∈M(vi,⊥) by definition of FT (Definition 63).

As a results form (i) and (ii), vi+1 ∈M(vi, f) ∪M(vi,⊥).
By definition of succ (Definition 63) it follows

vi+1 ∈ succ(vi, ρ, vars(v1 . . . vi))

contradicting the assumption.

• Assume there is no x ∈ dom(ρ)∩vars(v1, . . . , vi)∩W with top(xρ) = f and f ∈ Σ.
If there is an x ∈ dom(ρ) such that one of the following holds

– x ∈ X

– top(xρ) ∈ X

– top(xρ) ∈ U ,

then chr(ρ, vars((v1, . . . , vi)) = {⊥}. By definition of succ (Definition 63) it follows

vi+1 ∈ succ(vi, ρ, vars(v1 . . . vi))

contradicting the assumption.
If none of the above cases occur then we have for all x ∈ dom(ρ) that x 6∈
vars(v1 . . . vi). Consequently, we have two distinguish the following two cases:

– if x ∈
⋃

1≤j≤i dom(τj) for all x then vi is a leaf contradicting the fact that
there is a vi+1 with (vi, vi+1) ∈ E.

– if there is a x with x 6∈
⋃

1≤j≤i vars(cod(τj)) then ρ is not a query substitution
for T .
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5.3. Implementation in Spass–Y2

The index that is implemented in Spass is the substitution tree index, which is a special
kind of context trees. For this reason, I have integrated the filtering technique of filtered
context trees into the substitution tree index of Spass. The new version of Spass that
contains this new index and the reasoning procedures that I present in Chapter 6 and
in Chapter 7 is called Spass–Y2.

In Spass, symbols are internally represented as integers. Consequently, they can be
compared with respect to their integer value. So, the implementation of the map M
uses CSB+-trees [RR00] a cache conscious variant of B-trees.

The implementation of the set of variables of a path vars(vr = v1, . . . , vn) is realized
via a marking mechanism. Each time a substitution τ of a node is compatible with the
current query ρ all index variables of dom(τ) are marked.

Because of the fact that one node of a filtered context tree could be reached via several
symbols from its parent node, the retrieval algorithm marks each visited node in order
to avoid multiple inspections of the same node.

Although working with every retrieval operation, I have implemented a separate version
of the procedure FilteredLookup (Algorithm 14) for each of the retrieval operations:
unification, instantiation, and generalization. This enables the procedure to exclude
more subnodes of a given filtered context tree respecting the current retrieval operation.
For example, assume the retrieval for instances of the substitution {wi 7→ g(x)}. In this
case, nodes that solely contain substitutions of the form {wi 7→ x} do not contribute and
can be excluded from further processing. A similar argument holds for generalizations.

5.4. Further Improvements

There are further opportunities to improve the current implementation of the term
index of Spass–Y2. For example, the occurrence check for the unification operation
can be omitted.

In the context of ontologies, the notion of function variables provides a mechanism
to query for predicate symbols. For example, one can query the index for terms that
contain the symbol a as its second argument. The respective query term is F (x, a).
Applying this query to the context tree given in Figure 5.1 returns the terms f(c, a)
and h(d, a). For example, this feature could be used in order to answer queries like:
”What is the relation of Angela Merkel and Hamburg”.

We can also use context trees to index each term stored in the context tree by each of
its symbols. For example, consider the term f(c, a) which is stored in the context tree
of Figure 5.1. Following the path from the root to the leaf we find the substitutions τ1

and τ2 with f(c, a) = x0τ1τ2. The order of the application of the substitutions τ1 and τ2

to x0 does not matter, because x0τ1τ2 = f(c, a) = x0τ2τ1. Using this property a filtered
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context tree index can store both paths. Depending on the query one or the other is
more efficient. Consider the query term F (x, a). Here the only symbol occurring is
a. In order to restrict the search space, the retrieval operation follows the path τ1τ2.
If we consider, however, the query term f(x, y) it is more efficient to first consider τ2

because f ∈ cod(τ2). This increases the size of the tree exponentially. However, in the
case of the YAGO ontology, this is affordable because a filtered context tree storing
terms from BSH-Y2 has depth at most three. This approach provides a very efficient
retrieval mechanism. A similar idea is used for the implementation of relational data
base system, where an index is created for each of its arguments. For example, the tuple
(a, b, c) can be obtained by querying the index of the first argument for a, querying the
index of the second argument for b or querying the index of the third argument for c.
An implementation of this can be found in [NW08].

5.5. Summary

Filtered context tree indexing is a powerful invention for storing large amounts of
terms and efficiently performing queries on the index; in particular, for terms occurring
in an ontology that contains several million clauses. When querying the index, the
filtered context tree index enables the retrieval operations to avoid the inspection of
unsuccessful subtrees of the context tree index. As a consequence, it performs a more
goal oriented search. Spass was not able to load YAGO into its index. Integrating
the filtering technique of the filtered context tree index into the substitution tree index
of Spass–Y2, enables Spass–Y2 to load YAGO into its index and also to efficiently
perform reasoning tasks on this clause set. The presented filtering technique is sound
and complete.





6. Superposition Calculus for BSH-Y2

In this chapter, I present the first superposition based reasoning calculus that efficiently
decides the satisfiability of BSH-Y2 ontologies consisting of several million axioms.
The set BSH-Y2 is a subset of the Bernays–Schönfinkel Horn fragment with equal-
ity. It is able to represent the YAGO ontology as well as large parts of the ontologies
SUMO (SUMO-Y2) and CYC (CYC-Y2). In general, verifying the satisfiability in the
Bernays–Schönfinkel Horn fragment is EXPTIME complete. Therefore, standard rea-
soning procedures are too prolific for reasoning in such large ontologies; the experiments
in Chapter 8 confirm this.

Successful reasoning about the BSH-Y2 fragment requires a calculus that avoids the
prolific behavior of the standard reasoning calculus. Examining the produced clauses of
the standard first-order reasoning calculus, one can make two observations. First, or-
dered resolution produces too many clauses. Second, applying hyperresolution, instead
of ordered resolution, is still too prolific because of the transitivity axioms of BSH-Y2.
A solution for this problem is the chaining calculus which computes only that part of
the transitive closure that is sufficient for completeness. The chaining calculus turned
out to be effective for reasoning about the transitivity in BSH-Y2 ontologies. However,
the chaining calculus requires ordered resolution for completeness.

In [SWW10], I have developed a calculus which uses hyperresolution together with
the chaining calculus. This calculus is complete because an ordering restriction of the
chaining calculus has been dropped. The resulting reasoning procedure saturates the
YAGO ontology in less than one hour. However, this calculus is not able to saturate
clause sets containing defined relations of BSH-Y2 in acceptable time. The reason for
this observation is that a non-ground transitive atom that occurs in a defined relation
causes the chaining calculus to inspect the whole transitive closure of this predicate.
This problem arises already if one only adds the following clause to the YAGO ontology:

bornIn(x, y), locatedIn(y, z)→ bornInTr(x, z).

In this chapter, I present my solution to the above problems: a two-layered superposition
calculus. The two-layered superposition reasoning calculus separates the reasoning
about non-transitive atoms from the reasoning about transitive atoms. This calculus
combines hyperresolution and the chaining calculus, and it is at the same time effective,
sound, complete, and terminating for BSH-Y2. I also provide the respective proofs in
this chapter. As the experiments in Chapter 8 confirm, the new calculus, within the
superposition reasoning framework, is an efficient saturation procedure for BSH-Y2
ontologies that consist of several million clauses.
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Furthermore, if N is saturated with the new two-layered calculus, then it is an efficient
representation of its minimal model. I use this observation in the definition of the
efficient query answering procedure that I present in Chapter 7.

This chapter is structured as follows. First, it illustrates the problem of the chaining
calculus that occurs if defined relations involving transitivity are present. Section 6.2
introduces the new two-layered superposition reasoning calculus for BSH-Y2. Sec-
tion 6.3 proves the soundness, completeness, and termination of the calculus. Finally,
Section 6.4 depicts details about the implementation of the new calculus in Spass–Y2.

6.1. Saturation Strategy

The chaining calculus (Section 2.2) is defined in terms of an admissible ordering that
may avoid the generation of the whole transitive closure. However, in the presence of
a non-ground transitive atom, the ordering does not prevent the negative chaining rule
from inspecting the whole transitive closure. This causes the generation of quadratically
many new clauses. Consequently, the chaining calculus is not feasible for practical
saturating a BSH-Y2 ontology consisting of several million clauses over several million
constants. A possible solution is given via a selection function. But, the problem that
the chaining calculus requires ordered resolution for completeness, still exists. The
following example illustrates the problem of negative chaining if applied to a defined
relation.

Assume a defined relation from BSH-Y2 containing the transitive predicate locatedIn
as follows:

bornIn(x, y), locatedIn(y, z)→ bornInTr(x, z), (6.1)

and the clause set:

→ bornIn(AngelaMerkel,Hamburg) (6.2)

→ locatedIn(Saarland,Germany) (6.3)

→ locatedIn(Saarbrücken, Saarland) (6.4)

→ locatedIn(Hamburg,Germany) (6.5)

→ locatedIn(Germany,Europe). (6.6)

Further, assume the following precedence of constants:

Saarbrücken � Saarland � Hamburg � Germany � Europe .

The rule negative chaining applied to the transitive atom locatedIn(y, z) of Clause 6.1
infers the transitive closure of locatedIn. All ordering requirements are fulfilled because
the variables y, z and constants are incomparable and the atom locatedIn(y, z) is strictly
maximal in the clause 6.1. Consequently, negative chaining derives the below clauses
from the clauses 6.3 – 6.6 and clause 6.1.
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bornIn(x,Saarland), locatedIn(Germany, z) → bornInTr(x, z) (6.7)

bornIn(x,Saarbrücken), locatedIn(Saarland, z) → bornInTr(x, z) (6.8)

bornIn(x,Hamburg), locatedIn(Germany, z) → bornInTr(x, z) (6.9)

bornIn(x,Germany), locatedIn(Europe, z) → bornInTr(x, z) (6.10)

bornIn(x,Saarbrücken), locatedIn(Germany, z) → bornInTr(x, z) (6.11)

bornIn(x,Saarland), locatedIn(Europe, z) → bornInTr(x, z) (6.12)

bornIn(x,Hamburg), locatedIn(Europe, z) → bornInTr(x, z) (6.13)

bornIn(x, Saarbrücken), locatedIn(Europe, z) → bornInTr(x, z) (6.14)

In order to avoid the generation of the clauses 6.7–6.14, during the saturation process,
one can select the literal bornIn(x, y). As a result, negative chaining is not applicable
anymore. An application of ordered resolution to the clause 6.1 and clause 6.2 derives
the following clause:

locatedIn(Hamburg, z)→ bornInTr(AngelaMerkel, z), (6.15)

where x and y are instantiated by constants. The variables of the atoms are not
disjoint in the clause and, consequently, the atoms are comparable. If, by the choice of
the precedence, the following holds:

locatedIn(Hamburg, z) ≺ bornInTr(AngelaMerkel, z). (6.16)

In this case, no further inferences are possible and the clause set is saturated. This can
be achieved by defining a precedence on the predicates as follows: bornInTr > locatedIn.
Such an ordering of the predicates is always possible because each defined relation in
BSH-Y2 is acyclic (Section 4.1.2).

The following provides a definition of the respective selection function.

Definition 66 (Selection for BSH-Y2).

sel(Γ→ ∆) =

{
{A} , if there is A ∈ Γ with A non-transitive

∅ , else

The defined selection function guaranties that all inferences between non-transitive
atoms are performed first. The superposition calculus is complete with this selection
function [BG98, BG01].

Note, using a reasoning calculus with ordering constraints, as suggested in [NR01], does
not prevent the generation of the clauses 6.7 – 6.14 because variables and constants
are not comparable. For example, when generating the clause 6.7, the clause with
constraint, as imposed by negative chaining, is the following:

bornIn(x,Saarland), locatedIn(Germany, z) → bornInTr(x, z) | z 6� Saarland . (6.17)
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Because of the fact that the variable z and the constant Saarland are not comparable,
the constraint is trivially fulfilled as long as the variable z is not instantiated. As
a consequence, the constraint of clause 6.17 does not prevent negative chaining from
deriving the following clause from the ordered constrained clause 6.17 and the clause 6.6:

bornIn(x,Saarland), locatedIn(Europe, z) → bornInTr(x, z) | z 6� Saarland
z 6� Gemany

(6.18)

Instead of avoiding the inferences, the ordered constrained calculus only adds a further
constraint (z 6� Germany) which is again trivially fulfilled if the variable z is not
instantiated. So, reasoning with ordered constraints does not prevent the generation of
the clauses 6.7 – 6.14, and, consequently, reasoning with ordered constraints does not
prevent the negative chaining rule from processing the whole transitive closure.

6.2. Superposition Calculus for BSH-Y2

This section introduces the two-layered superposition reasoning calculus for BSH-Y2.
The calculus performs a reasoning on two layers that separate the reasoning about
transitive predicates from reasoning about non-transitive predicates. Likewise, in the
standard superposition framework, reasoning about sorts can be separated from reason-
ing about non sort clauses. Reasoning about sorts independently is much more effective
via special data structures and reasoning procedures [Wei01].

The separation of reasoning about transitive predicates from reasoning about non-
transitive predicates, allows the calculus to use the prolific ordered resolution rule only
for reasoning about the transitive predicates where it is required for completeness.
In all other cases, hyperresolution is applied which is much less prolific than ordered
resolution. The two-layered calculus reasons about sorts independently from the two
layers like in the standard reasoning calculus. Figure 6.1 illustrates the separation of
the clauses of a reasoning problem.

During the saturation of a clause set N , each clause is assigned to exactly one layer
or to the sort theory. Each layer has its own calculus rules which are applied only to
the clauses of this layer. The sort theory contains the static sort theory SN of N . The
respective sort reasoning rules, EmS, SSi, and SST, are applied to the clauses of both
the transitive layer and the non-transitive layer. The non-transitive reasoning layer
applies hyperresolution, HyperY2, and object equality cutting, OECut, to its clauses,
and the transitive reasoning layer applies the chaining rules, OChainY2 and NChainY2,
and ordered resolution, OReY2, to its clauses.

In order to use the standard superposition framework and its sophisticated implemen-
tation in Spass, I have developed the new calculus in such a way that the clause set
is not explicitly split into the different layers. Instead, the separation is done by each
individual calculus rule; similar to the sort reasoning calculus. This means that each
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Figure 6.1.: Reasoning Layers

inference rule can be either applied to a clause that contains at least one non-transitive
predicate or to a clause that contains only transitive predicates. The resulting layered
superposition calculus is called C�Tr and defined in the following.

Definition 67 (Two-Layered superposition reasoning calculus C�Tr). The two-layered
superposition reasoning calculus C�Tr is defined with respect to (i) a set of clauses N from
BSH-Y2 not containing transitivity axioms, (ii) the respective sort theory SN , (iii) the
set Tr containing the transitive predicates of N , and (iv) an admissible ordering �.

The calculus C�Tr consists of the following inferences defined in the remainder of this
chapter: (i) HyperY2, (ii) OECut, (iii) OChainY2, (iv) NChainY2, (v) OReY2, (vi)
EmS, (vii) SSi, and (viii) SST. The calculus C�Tr uses subsumption deletion and tautol-
ogy deletion as the redundancy criteria during the saturation for each layer.

6.2.1. Non-Transitive Reasoning Layer

The calculus of the non-transitive layer consists of two rules. The first is an instance
of the hyperresolution rule (Section 2.2) and the second rule is object equality cutting
which ensures that the unique name assumption is respected.

Ordered Hyperresolution for BSH-Y2 (HyperY2)

(1 ≤ i ≤ n) Θi ‖Γi → Ai Θ ‖T1, . . . , Tm, B1, . . . , Bn → ∆

(Θ,Θ1, . . . ,Θn ‖T1, . . . , Tm,Γ1, . . . ,Γn → ∆)σ
,

where n ≥ 1, T1, . . . , Tm are transitive atoms, Θ1, . . . ,Θn,Θ are solved, Γ1, . . . ,Γn con-
tain only transitive atoms, B1, . . . , Bn are non-transitive atoms, σ is the simultaneous
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most general unifier of Ai and Bi for all i ∈ {1, . . . n}, respectively, and Aiσ are strictly
maximal in (Θi ‖Γi → Ai)σ.

This instance of ordered hyperresolution simulates several ordered resolution steps with
respect to the selection function sel (Definition 66) without generating the intermediate
results. This rule ignores all transitive atoms and is only applied to clauses containing at
least one non-transitive atom. Consequently, this rule performs a complete saturation
of the non-transitive reasoning layer. The rule HyperY2 derives clauses that have only
transitive antecedents. Consequently, the derived clause belongs to the transitive layer
if ∆ = ∅ or ∆ contains a transitive atom.

Object Equality Cutting (OECut)

‖ → a ≈ b
2

,

where a and b are two different constants.

By the definition of BSH-Y2 in Section 4.1.3, equations occur only on the non-transitive
reasoning layer. Consequently, the rule object equality cutting [SB05] is only considered
for clauses of this layer. The rule ensures for a saturated clause set N of BSH-Y2 that
the minimal model of the saturated clause set respects the unique name assumption,
i.e., NI |= Nuna. Consequently, it is not necessary for a BSH-Y2 ontology to explicitly
contain quadratically many disequations ({a 6≈ b ‖ a 6= b, a ∈ F , b ∈ F}).

6.2.2. Transitive Reasoning Layer

This section presents the reasoning calculus for the transitive reasoning layer. The
calculus is an instance of the chaining calculus [BG98] which has also been shown in
Section 2.2. The transitive layer consists of purely transitive clauses Θ ‖Γ → ∆, i.e.
for all atoms Q(t1, t2) ∈ Γ ∪∆ it holds Q ∈ Tr. The calculus presented in this section
is the standard chaining calculus defined only for clauses from the transitive reasoning
layer. It consists of the respective instances of ordered chaining, negative chaining and
ordered resolution. Because all defined transitive predicates are independent from other
transitive predicates, in the definition of the following rules, the antecedent of a clause
is empty if the succedent is non empty.

Ordered Chaining for BSH-Y2 (OChainY2)

Θ1 ‖ → Q(l, s) Θ2 ‖ → Q(t, r)

(Θ1,Θ2 ‖ → Q(l, r))σ

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of s and t, Θ1 and
Θ2 are solved, Q(t, r)σ is strictly maximal in (Θ ‖Γ→ Q(t, r))σ, lσ 6� sσ, rσ 6� tσ, and
there are only transitive literals in Γ.
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Negative Chaining for BSH-Y2 (NChainY2)

Θ1 ‖ → Q(l, s) Θ2 ‖Γ, Q(t, r)→
(Θ1Θ2 ‖Γ, Q(s, r)→)σ

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of l and t, Θ1 and Θ2

are solved, sσ 6� lσ, rσ 6� tσ, Q(t, r)σ is maximal with respect to (Θ ‖Γ, Q(t, r) →)σ,
and there are only transitive literals in Γ.

Θ1 ‖ → Q(l, s) Θ2 ‖Γ, Q(t, r)→
(Θ1,Θ2 ‖Γ, Q(t, l)→)σ

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of s and r, Θ1 and
Θ2 are solved, lσ 6� sσ, tσ 6� rσ, Q(t, r)σ is maximal with respect to (Θ ‖Γ, Q(t, r)→)σ,
and there are only transitive literals in Γ.

Ordered Resolution for BSH-Y2 (OReY2)

Θ1 ‖ → Q(t1, t2) Θ2 ‖Γ, Q(s1, s2)→
(Θ1,Θ2 ‖Γ→)σ

,

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of Q(t1, t2) and
Q(s1, s2), Θ1 and Θ2 are solved, Q(s1, s2)σ is strictly maximal in (Θ ‖Γ, Q(s1, s2)→)σ,
and there are only transitive literals in Γ.

6.2.3. Sort Reasoning

The sort theory SN of a BSH-Y2 ontology is static (Section 4.1.3) because it only
consists of facts ( ‖S(a) →) and subsort relations (S1(x) ‖ → S2(x)). As a conse-
quence, NI |= S(a) iff SN |= S(a). This property is invariant on the saturation of
N , while fixing SN from the beginning, because SN only consists of facts and subsort
relations [GMW97].

Hence, when deriving a clause S(a),Θ ‖Γ → ∆ with SN 6|= S(a), the clause is a
tautology and can be deleted. This observation is used for the implementation of
C�Tr. Note, the relations SN |= S(a) and SN |= ∃xS1(x) ∧ . . . ∧ Sn(x) can be efficiently
decided by specific algorithms [Wei01]. The sort theory SN is acyclic by definition
of BSH-Y2. Reasoning about sort theories with these properties can be performed
by an efficient implementation of the two rules Empty sort and Sort simplification
[Wei01, GMW97]. The presented calculus is an instance of the general sort reasoning
calculus (Section 2.2) that makes use of the fact that the sort theory of a BSH-Y2
ontology is static. This enabled me to integrate the sort reasoning procedures into the
implementation of the inference rules of the two-layered calculus (Section 6.4) yielding
a more efficient reasoning procedure for BSH-Y2.
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Empty Sort

S(x),Θ ‖Γ→ ∆

(Θ ‖Γ→ ∆)σ
,

if σ is a substitution with S(xσ) is ground, x 6∈ vars(Γ ∪∆), and SN |= S(xσ).

Sort Simplification

R S(a),Θ ‖Γ→ ∆

Θ ‖Γ→ ∆
,

if SN |= S(a). In the sort theory of a clause set from the BSH-Y2 sort simplification
coincides with sort resolution.

Static Soft Typing

R S(x),Θ ‖Γ→ ∆
,

if SN 6|= ∃x S(x).

6.3. Soundness, Termination, and Completeness

The two-layered superposition reasoning calculus for the BSH-Y2 is sound, complete,
and terminating. This chapter presents the respective proofs.

6.3.1. Soundness

Theorem 68 (Soundness). The two layered reasoning calculus is sound.

Proof. The soundness of the calculus is implied by the soundness of each individual rule.
The superposition calculus C�Tr is composed of instances of rules from the standard
first-order reasoning framework (Section 2.2) which are known to be sound [Wei01,
BG01].
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6.3.2. Completeness

Lemma 69. If N is a saturation, with respect to C�Tr, of a clause set consisting of
clauses from BSH-Y2 and 2 6∈ N then for all ground terms S(a) the following holds:

NI |= S(a)⇔ SN |= S(a).

Proof. For the static sort theory SN of N from the BSH-Y2 it holds that SN ⊆ N
because the only clauses of N where a sort atom occurs positively is either a subsort
relation (S1(x) ‖ → S2(x)) or a sort fact ( ‖ → S(a)). In addition, there are no
cycles produced by the subsort relations of N . Then from [GMW97, SS89] the lemma
holds.

Lemma 70. If N is the saturation, with respect to C�Tr, of a clause set consisting of
clauses from the BSH-Y2, 2 6∈ N , and NI the minimal model of N . A ground atom A
is produced in NI by a ground instance Θ ‖Γ → Q(s, t) of a clause N with Γ contains
only transitive atoms.

Proof. The proof is by contradiction. Assume a ground instance as follows:

Cσ = (Θ ‖Γ, B1, . . . , Bn → A)σ

that produces the atom Aσ in NI and B1, . . . , Bn are non-transitive atoms. Assume Cσ
is the smallest productive clause that contains non-transitive antecedents. By definition
of NI it follows:

{B1σ, . . . , Bnσ} ⊆ R∗C
Since, Cσ is the smallest clause, all Biσ have been produced by ground instances
Θi ‖Γi → Biσ with Bi � Γi for i ∈ {1, . . . , n}. An application of Hyperresolution
derives a smaller clause that produces Aσ. This contradicts the assumption that Cσ
produces Aσ.

Lemma 71. If N is the saturation, with respect to C�Tr, of a clause set consisting of
clauses from the BSH-Y2 and 2 6∈ N . A ground atom Q(s, t) with Q ∈ Tr is produced
by a clause Θ ‖ → Q(s, t) in NI .

Proof. Assume Q(s, t) has been produced by a ground instance of a clause Θ ‖Γ →
Q(s, t) with Γ 6= ∅. Then Γ does not contain transitive predicates because Q is transitive
independent. All atoms Ai ∈ Γ have been produced by clauses Θi ‖Γi → Ai with
Ai � Γi. An application of Hyperresolution derives a smaller clause producing Q(s, t).
As a result, the clause Θ ‖Γ→ Q(s, t) cannot be productive.

Lemma 72. Let N be the saturation, with respect to C�Tr, of a clause set consisting of
clauses from BSH-Y2 using the selection sel (Definition 66) and 2 6∈ N then for all
clauses C ∈ N we have that NI |= C.
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Proof. For the sort theory SN ⊆ N we have that NI |= SN as a consequence form
Lemma 69. The following proof by contradiction shows that for all other clauses C ∈ N
and all ground instances Cσ it holds that NI |= Cσ. Assume a ground instance Cσ of
a clause C = Θ ‖Γ → ∆ in N such that NI 6|= Cσ. Assume further, that Cσ is the
smallest ground instance of a clause in N with this property. Consequently, Cσ is not
productive and we have to distinguish the following cases.

(a) If C has an unsolved constraint then either C = S(x),Θ′ ‖Γ→ ∆ and S(x) with
x 6∈ vars(Γ ∪ ∆) or C = S(a),Θ′ ‖Γ → ∆. In the first case, by assumption
NI |= S(x)σ which is equivalent to SN |= S(x)σ (Lemma 69). Consequently,
empty sort derives a smaller clause D with NI 6|= Dσ which contradicts the
fact that Cσ is minimal. In the second case, by assumption NI |= S(a) and
an application of sort simplification reduces C to a smaller clause. Both cases
contradict the assumption that C is the minimal non productive clause.

(b) If the clause C has the following form C = Γ, B1, . . . , Bm → ∆ with Γ a possibly
empty set of transitive atoms, Bj are non-transitive atoms and either ∆ = ∅ or
∆ = {A}. By the selection function sel the atoms Bj are selected and there-
fore, Cσ is not productive. Then by construction of NI (Definition 56) and the
monotonicity of the construction (Definition 57) we have that

{T1σ, . . . , Tnσ,B1σ, . . . , Bmσ} ⊆ R∗C and, if ∆ = {A} then Aσ 6∈ R∗C .

Consequently, the ground atoms Biσ have been produced by ground instances
(Θi ‖Γi → Bi)σ of clauses from N . As a result, Γi ≺ Biσ and Γi, by Lemma 70,
contains only transitive atoms. This enables a hyperresolution step deriving a
smaller clause

T1σ, . . . , Tnσ,Γ1σ, . . . ,Γmσm → ∆σ

Consequently, C is not the minimal non productive clause.

(c) If C is of the form C = T1, . . . , Tn → then by the construction ofNI (Definition 56)
and the monotonicity of the construction (Definition 57) we get

{T1σ, . . . , Tnσ} ⊆ R∗C

There is a Tσ ∈ {T1σ, . . . , Tnσ} such that Tσ is maximal in Cσ. We have to
distinguish two cases either Tσ has been produced or there is a rewrite proof for
Tσ in R∗C .

(i) Assume Tiσ has been produced. By Lemma 71, it has been produced by a
ground unit clause→ Tiσ. An application of ordered resolution for transitive
relations is possible deriving a smaller clause and C is not the minimal non
productive clause.

(ii) If Tiσ has not been produced then there is a rewrite proof l ⇓RC
Q r with

Tiσ = Q(l, r). The rewrite proof is a chain with l = t1 and r = tn

Q(t1, t2), . . . , Q(tn−1, tn)
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with the following ordering

t1 � · · · � ti ≺ · · · ≺ tn

Each Q(ti, ti+1) has been produced by a ground unit clause (Lemma 71)
D =→ Q(ti, ti+1). Now, we have to distinguish two cases either l � r or
l � r. First, assume l � r. Since we have that t1 � t2 in the above chain a
negative chaining step is applicable between Cσ and D producing a smaller
clause than C which is false in NI . In the other case, if l � r then an
application of negative chaining with → Q(tn−1, tn) derives a smaller clause
and C is not the minimal non productive clause.

Lemma 73. If N is a saturation, with respect to C�Tr, of a clause set from BSH-Y2 ,
2 6∈ N then NI |= ATr.

Proof. By Lemma 47 we have to show that all peaks commute in NI . The following
proves by induction on the clause order that all peaks in NI commute. Assume a ground
instance C of a clause from N which produces the atom Q(l, r). By induction all peaks
of R∗C commute. So, it remains to show that all peaks of (RC ∪ EC)∗ commute, too.

A peak of (RC ∪ EC)∗ which is not in R∗C has the following form l′ ⇐ t ⇒ r′. Con-
sequently, there are ground instances Γ → Q(l′, t) and Γ2 → Q(t, r′) of clause from
N which produce Q(l′, t) and Q(t, r′), respectively. W.l.o.g. assume C is the larger of
these two. Because of the facts that Q(l′, t) � Γ1 and Q(t, r′) � Γ2 an ordered chaining
application derives the clause C ′ = Γ1,Γ2 → Q(l′, r′). The ordering � is admissible
and, therefore, C � C ′. Then we get C ′ ∈ R∗C from Lemma 72. As a result, the peak
l′ ⇐ t⇒ r′ commutes in (RC ∪ EC)∗.

Lemma 74. If N is the saturation, with respect to C�Tr, of a clause set consisting of
clauses from BSH-Y2 and 2 6∈ N then NI |= a 6≈ b for a 6= b.

Proof. We show by contradiction that NI 6|= a ≈ b for a 6= b. So, assume a ≈ b is the
smallest equational atom with NI |= a ≈ b for a 6= b. Consequently, there is a ground
instance Cσ = ‖Γ→ a ≈ b of a clause C ∈ N that produces a ≈ b.

First, consider the case that, Γ = ∅, therefore, Cσ = ‖ → a ≈ b and an application of
OECut derives 2 contradicting the fact that N is saturated and 2 6∈ N .

Second, consider the case Γ 6= ∅ where Γ = B1, B2 with B1, B2 are non defined
binary predicates by definition of the BSH-Y2. The ground clause Cσ is productive by
assumption and, consequently, Γσ ⊆ R∗C and a ≈ b 6∈ R∗C . So, for B1, B2 there are
ground instances → B1σ and → B2σ of clauses from N that have produced B1σ and
B2σ in R∗C , respectively. A hyperresolution application derives from these clauses and
Cσ the clause

‖ → a ≈ b

This contradicts the assumption that N is saturated and Cσ is productive.
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Theorem 75 (Completeness). If N is the saturation, with respect to C�Tr, of a clause
set consisting of clauses from BSH-Y2 then 2 ∈ N if and only if N is unsatisfiable. If
N is satisfiable then NI |= N ∪ ATr ∪Nuna.

Proof. If N contains a contradiction, namely 2 ∈ N , then N is unsatisfiable. If 2 6∈ N
then from Lemma 72, Lemma 73 and Lemma 74 it follows NI |= N ∪ ATr ∪Nuna.

6.3.3. Termination

Definition 76. Let N be a clause set from the BSH-Y2, Σ = (F ,R) the respective
signature, and Tr ⊆ R the set of transitive predicates. All clauses from N are acyclic
by Definition of BSH-Y2. Consequently, a total ordering >R on the predicates in R
can be defined as follows.

• for all T ∈ Tr and for all P ∈ R \ Tr it holds P >R T .

• Assume for each clause Θ ‖ΓTr,Γ→ A in N , with ΓTr is a set of transitive atoms
and Γ a set of non-transitive atoms, the following ordering on the predicates of
R: For all B ∈ Γ it holds that top(B) >R top(A).

• The ordering can be extended to an ordering total on R.

For each clause C = Θ ‖ΓTr,Γ→ ∆ in N the order ord(C) ∈ R× N is defined as

ord(C) = (P, |ΓTr|+ |Γ|) (6.19)

with P is maximal in preds(C) w.r.t. >R. The ordering �C is the lexicographic exten-
sion of >R and >:

(P1,m1) �C (P2,m2) (6.20)

if and only if

1. P1 >R P2 or

2. P1 = P2 and m1 > m2

Since, >R is total and well-founded on R and > is total and well-founded on N, also
their lexicographic extension is total and well-founded on R× N.

Lemma 77. Let N be a clause set from the BSH-Y2, Σ = (F ,R) the respective signa-
ture and Tr ⊆ R the set of transitive predicates of N . For each

(P,m) ∈ R× N (6.21)

the following set is finite up to subsumption

{C | ord(C) = (P,m) ∧ C is a Horn clause over Σ} (6.22)
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Proof. Assume a Horn clause C = Θ ‖Γ → ∆ with ord(C) = (P,m). By definition
of ord(C), it follows that |Γ| = m. The clause C is Horn and, consequently, |∆| ≤ 1.
As a result, the number of non-sort atoms in C is smaller or equal than m + 1, i.e.,
|Γ ∪ ∆| ≤ m + 1. Because of the fact that C is from BSH-Y2, all function symbols
occurring in C are constants, and F and R are finite. As a result, the following set of
atoms over Σ is finite up to variable renaming:

A = {P (s, t) | P ∈ R ∧ s, t ∈ T (F ,X )} (6.23)

So, there are only finitely many possibilities for the set of atoms Γ ∪∆ with |Γ ∪∆| ≤
m+ 1.

It remains to show that there are only finitely many sort atoms over Σ. This means,
the following set is finite up to variable renaming:

{S(t) | S ∈ R ∧ t ∈ T (F ,X )} (6.24)

This is finite up to variable renaming because all function symbols occurring in C are
constants, and F and R are finite. Because of the fact that |Γ ∪∆| ≤ m + 1 also the
number of different variables is restricted. As a result, the number of different variables
which need to be considered in Θ is bound. As a consequence, the set

{C | ord(C) = (P,m) ∧ C is a Horn clause over Σ} (6.25)

is finite up to variable renaming.

Theorem 78 (Termination). If N is a clause set from BSH-Y2 then C�Tr is terminating
on N .

Proof. Assume a clause set N from BSH-Y2, the respective signature Σ, and the or-
dering �C . This proof shows that the inference rules HyperY2, OChainY2, NChainY2,
and OReY2 derive a clause that is either smaller than all premises with respect to �C ,
or that is smaller than or equal to the largest premise. If a rule derives a clause that
is only smaller than or equal to the largest premise with respect to �C then the proof
shows that there are only finitely many equal clauses with respect to �C .

• HyperY2: Assume a clause

D = Θ ‖T1, . . . , Tm, B1, . . . , Bn → ∆

with Ti are transitive atoms and Bi non-transitive atoms. Assume w.l.g. B1 is
maximal among the Bi with respect to >R and i ∈ {1, . . . , n}. By definition of �C
also top(B1) �R top(A) if ∆ = {A}, and, consequently, ord(C) = (top(B1),m+
n). An application of HyperY2 derives the clause

C = Θ,Θ1, . . . ,Θn ‖T1, . . . , Tm,Γ1, . . . ,Γn → ∆

from D and Di = Θi ‖Γi → Bi. Depending on ∆ the following cases have to be
considered:
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(i) if ∆ = {A} then ord(C) = (top(A),m+ |Γ1|+ · · ·+ |Γn|).

(ii) if ∆ = ∅ then ord(C) = (top(T ),m+ |Γ1|+ · · ·+ |Γn|) for some
T ∈ T1, . . . , Tm,Γ1, . . . ,Γn.

All atoms of Γi are transitive and ord(Di) = (Bi, |Γi|). Because Bi >R A and
Bi >R T for all T ∈ Tr, by Definition 76, ord(Di) �C ord(C) and ord(D) �C
ord(C). In summary, the clause C is smaller than all premises D1, . . . , Dn, and
D.

• OChainY2: For a clause D = Θ2 ‖ → Q(t, r), OChainY2 derives a clause C =
Θ1,Θ2 ‖ → Q(l, r) with ord(D) = ord(C) = (Q, 0). By Lemma 77 the set

{C | ord(C) = (P,m) ∧ C is a Horn clause over Σ} (6.26)

is finite up to subsumption. Consequently, OChainY2 can derive only finitely
many clauses up to subsumption.

• NChainY2: For a clause D = Θ2 ‖Γ, Q(t, r) →, NChainY2 derives a clause C =
(Θ1,Θ2 ‖Γ, Q(t, r)→)σ with ord(D) = ord(C). By Lemma 77 the set

{C | ord(C) = (P,m) ∧ C is a Horn clause over Σ} (6.27)

is finite up to subsumption. Consequently, NChainY2 can derive only finitely
many clauses up to subsumption.

• OReY2: For the clauses D1 = Θ1 ‖ → Q(t1, t2) and D2 = Θ2 ‖Γ, Q(s1, s2) →,
OReY2 derives a clause C = Θ1,Θ2 ‖Γ→. We have to distinguish three cases

1. if ord(D2) = (Q,m) and ord(C) = (Q′,m− 1) with Q >R Q
′ than Q is the

maximal predicate in D2 w.r.t. >R. As a result, ord(D1) �C ord(C) and
ord(D2) �C ord(C). Consequently, C is smaller than all premises: D1 and
D2.

2. if ord(D2) = (Q,m) and ord(C) = (Q,m− 1)
then ord(D2) �C ord(C),
but ord(D1) 6�C ord(C).
By Lemma 77 the following holds:

{C | ord(C) = (P,m− 1) ∧ C is a Horn clause over Σ} (6.28)

is finite up to subsumption.

3. if ord(D2) = (Q′,m) with Q′ >R Q
then ord(C) = (Q′,m− 1) and ord(D2) �C ord(C),
but ord(D1) 6�C ord(C).
By Lemma 77 the following holds:

{C | ord(C) = (P,m− 1) ∧ C is a Horn clause over Σ} (6.29)

is finite up to subsumption.
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6.4. Implementation

In order to obtain an actual decision procedure for BSH-Y2 that is efficient, sound,
complete, and terminating for C�Tr ontologies consisting of several million clauses, I
have implemented the two-layered superposition reasoning calculus C�Tr in Spass–Y2.

The implementation of the calculus C�Tr is based on the filtered context tree index that
I have presented in Chapter 5 and that is also implemented in Spass–Y2.

In order to further reduce the number of generated clauses, I have integrated empty
sort and sort simplification directly into the implementation of hyperresolution and the
chaining rules. This is based on the following observation: Any clause Θ, S1, . . . , Sn ‖Γ→
∆ from the BSH-Y2 with either (i) all Si contain the variable x and x 6∈ vars(Γ→ ∆)
or (ii) all Si are ground, can be reduced to either true or Θ ‖Γ → ∆ in polynomial
time.

As a consequence, the integration of the sort reasoning into the implementation of the
hyperresolution and chaining rules avoids the generation of clauses that can eventually
be removed by empty sort, sort simplification, and static soft typing.

6.5. Summary

In this chapter, I have presented a superposition calculus for BSH-Y2 that is at the
same time efficient, sound, complete, and terminating. Consequently, if implemented
in the superposition reasoning framework, this calculus is a decision procedure for the
BSH-Y2 fragment of first-order logic. The experiments of Chapter 8 confirm that this
decision procedure is efficient also for BSH-Y2 ontologies consisting of several million
clauses.

The key for successful reasoning about these ontologies is the two-layered reasoning
calculus C�Tr that performs a saturation with a dedicated calculus for each layer; the
non-transitive reasoning layer and the transitive reasoning layer. Reasoning about sorts
is performed independently by an adaption of the efficient sort reasoning calculus. In
addition, in order to avoid the generation of clauses that eventually become redundant,
the implementation integrates sort reasoning into the implementation of the hyperres-
olution rule and the chaining rules.

In the next chapter, I present a query answering procedure that answers complex queries
with arbitrary quantifier alternations in terms of the minimal model of a BSH-Y2
ontology. In order to do this, the query answering procedure is defined with respect
to the saturation N of the clause set with C�Tr. In the next chapter I proof that the
saturation, with respect to C�Tr, of a BSH-Y2 ontology N is an efficient representation
of the minimal model of N for query answering.





7. Query Answering in BSH-Y2 Ontologies

In this chapter, I introduce an efficient, sound, and complete query answering procedure
that answers complex queries in BSH-Y2 ontologies with respect to minimal model se-
mantics. The supported query language is a subset of first-order logic that can express
complex formulas with arbitrary quantifier alternations. As the experiments in Chap-
ter 8 confirm, the procedure answers complicated queries in the YAGO++ ontology,
which is an extension of YAGO, within a few seconds.

In general, reasoning with minimal model semantics is above standard first-order rea-
soning. Therefore, I have developed a query answering procedure that is based upon a
finite domain quantifier elimination algorithm. However, eliminating the quantifiers of a
formula Φ by a complete ground instantiation generates a formula of size O(|Σ|n) [SS03]
where |Σ| is the size of the signature Σ and n is the number of quantifiers in Φ. Because
of the fact that the YAGO ontology has more than 2 million constants in the signature,
a complete ground instantiation of Φ is practically not feasible.

The query answering procedure, I have developed, performs intermediate queries to the
minimal model in order to restrict the number of ground instances of the query. These
intermediate queries to the minimal model can be efficiently performed by exploiting
the compact representation of the minimal model as a clause set that is saturated with
respect to C�Tr.

In the first section of this chapter, I introduce the supported query language. Af-
ter illustrating the operating principle of the query answering procedure, Section 7.2
presents the query answering calculus and the quantifier elimination algorithm. Sec-
tion 7.3 proves the soundness and completeness of this algorithm. Section 7.4 presents
details about the actual implementation of the algorithm in Spass–Y2.

7.1. Query Language

The query language for BSH-Y2 ontologies is a subset of the first-order language and
defined as follows:

Definition 79. Let Σ be the signature of a BSH-Y2 ontology. The query language LQΣ
is defined as follows

• Γ ∈ LQΣ where Γ is a multiset of ground atoms over Σ

• ∀x(Γ→ Φ) ∈ LQΣ if Γ is a multiset of atoms and Φ ∈ LQΣ



86 CHAPTER 7. QUERY ANSWERING IN BSH-Y2 ONTOLOGIES

• ∃x(Γ ∧ Φ) ∈ LQΣ if Γ is a multiset of atoms and Φ ∈ LQΣ

The example in Section 6.1 demonstrates that a transitive non-ground atom may cause
the computation of the whole transitive closure. In order to avoid this behavior, addi-
tional restrictions on the query language are required.

Definition 80 (Shielded Variable). The variables of a formula Φ of the language LQΣ
are called shielded iff either Φ is ground or it is of the form Φ = ∃x(Γ ∧ Φ′) or Φ =
∀x(Γ→ Φ′), and all variables occurring under a transitive dependent predicate in Γ or
occurring freely in Φ′, also occur under a non-transitive dependent predicate or a sort
predicate in Γ.

Definition 81 (Query). A formula Φ is a query if it is a sentence from the language
LQΣ such that all variables occurring in Φ are shielded.

For simplicity, I assume that a variable is bound by at most one quantifier in a query.

Note, requiring shielded variables in a query is not a real restriction because it can
always be achieved. All queries of Figure 1.2 are contained in this query language.

Furthermore, the query language of Definition 81 provides a way to express a restricted
form of negation. For example, consider the query asking for the first German chan-
cellor. In other words, this is a German chancellor who had no predecessor. Assume
an atom ⊥ such that NI 6|= ⊥. The following query, which belongs to the above query
language, expresses this question:

∃x(GermanChancellor(x) ∧ ∀y(GermanChancellor(y) ∧ hasPredecessor(x, y)→ ⊥)).

For example, one could choose for ⊥ the atom

hasChild(AlbertEinstein,AlbertEinstein) (7.1)

because it holds that

NI 6|= hasChild(AlbertEinstein,AlbertEinstein). (7.2)

7.2. Query Answering Procedure

This section presents the query answering procedure that answers queries from LQΣ in
a BSH-Y2 ontology with respect to minimal model semantic. The first part of this
section presents an example illustrating the operation principle of the query answering
procedure. The second part introduces the query answering calculus. Finally, the
last part presents the quantifier elimination procedure which is based on the query
answering calculus.
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7.2.1. Operating Principle of the Query Answering Procedure

This section shows the operating principle of the query answering procedure. It illus-
trates how an answer to a given query can be extracted from the minimal model of a
BSH-Y2 ontology. Let N be the saturation, with respect to C�Tr, of a BSH-Y2 ontology,
and � 6∈ N . Further, let Σ be the signature of N and NI be the minimal model of
N (Definition 56). Assume the question: ”Who was born in the same place as all his
children?”. This question can be expressed in first-order logic by the following query:

Φ = ∃x, y(bornIn(x, y) ∧ ∀z(hasChild(x, z) → bornIn(z, y))). (7.3)

As shown in Section 4.2.2, the standard first-order reasoning framework is not able to
verify if NI |= Φ. In particular, it is not possible to change the signature. This is why
Skolemization of the query is not an option.

Instead, a quantifier elimination procedure over finite domains [SS03], which performs
a complete ground instantiation of the query, transforms the query into a quantifier
free formula without changing the signature. This approach instantiates the quantified
variables with all constants of the signature. The size of the resulting ground query is
in O(|Σ|n), where |Σ| is the size of the signature Σ and n the number of quantifiers in
Φ. This means that the size of the ground instantiated query is single exponential in
the number of quantifiers. However, an approach by a complete ground instantiation,
is not feasible in order to answer queries in an ontology like YAGO because the sig-
nature of YAGO contains more than two million constants. Therefore, the approach I
have developed, restricts the number of considered ground instances, while remaining
complete, by performing intermediate queries to the minimal model NI .

In order to eliminate the outermost existential quantifier in the current example, it is
actually not necessary to instantiate the quantified variables x and y with all constants
of Σ. Instead, one needs to consider only those constants for the variables x and y such
that the respective instance of the atom bornIn(x, y) is entailed by the minimal model.
Formally, this is the following set of grounding substitutions:

{σ | dom(σ) = {x, y}, NI |= bornIn(xσ, yσ)}. (7.4)

The original query Φ can be transformed into the following disjunction which is entailed
by NI if and only if NI |= Φ:

∨
NI |=bornIn(xσ,yσ)

∀y(hasChild(xσ, z) → bornIn(z, yσ)), (7.5)

where all σ are substitutions such that bornIn(x, y)σ is ground.

Likewise, the universal quantifier can be eliminated by a finite instantiation as follows:∨
NI |=bornIn(xσ,yσ)

∧
NI |=hasChild(xσ,zσ′)

bornIn(zσ′, yσ). (7.6)
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Verifying if the ground formula 7.6 is entailed by the minimal model NI can be per-
formed by several queries of the following form:

NI |= bornIn(zσ′, yσ). (7.7)

The standard first-order reasoning framework can decide this reasoning problem (Propo-
sition 58).

The following lemma proves that the respective ground instantiations (in the example
σ and σ′) can be efficiently retrieved from N for transitive independent predicates.

Lemma 82. Let N be the saturation, with respect to C�Tr, of a BSH-Y2 clause set,
� 6∈ N , sel be the selection function (Definition 66), A be a transitive independent
ground atom, and NI the minimal model of N . Then NI |= A iff there is a ground
substitution σ and a clause Θ ‖ → B ∈ N with Bσ = A and SN |= Θσ.

Proof. ”⇐ ” NI defines a Herbrand model with NI |= N by Theorem 75.

” ⇒ ” Assume NI |= Bσ. Then there is a ground instance Cσ = (Θ ‖Γ → B)σ
of a clause C ∈ N that produces Bσ. This means that Bσ is maximal in Cσ,
(Θ ∪ Γ)σ ⊆ R∗Cσ, and Bσ 6∈ R∗Cσ. This implies NI |= Θσ, and, consequently, SN |= Θσ
by Lemma 69.

Now, we show by contradiction that Γσ in Cσ must be empty. So, assume Γσ 6= ∅.
By assumption Bσ is transitive independent. Consequently, all B′σ ∈ Γσ are non-
transitive. By the selection function sel one B′σ ∈ Γσ is selected. This contradicts the
fact that Cσ is productive by definition of NI (Definition 56).

Note, the clause Θ ‖ → B together with the respective unifier σ can be efficiently
retrieved from N using the filtered context tree index procedures of Chapter 5.

7.2.2. Query Answering Calculus

Let N be the saturation, with respect to C�Tr, of a set of clauses from BSH-Y2, and
2 6∈ N . From Theorem 75 it follows that N is a sufficient representation of its minimal
model, i.e.,

NI |= N ∪ ATr ∪Nuna.

Further, let SN be the static sort theory of N . It holds that SN ⊆ N as shown in
Section 4.1.3.

The query answering calculus is composed of a deterministic rule system with respect
to N and SN . It consists of three calculus rules; one for each type of query: existential
query, universal query and ground query.

Basically, the calculus derives for each query ∀x(Γ→ Φ) and ∃x(Γ∧Φ) the instances Φσ
of the subquery Φ with NI |= Γσ. The calculus obtains the instances σ by performing
reasoning tasks on N .
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For all rules, we assume that Ai are transitive independent atoms, Ti are transitive
dependent atoms, and Si are sort atoms. Note, each subquery Φ′σ, derived from
the query answering calculus, is again a query because all variables of Φ are shielded
by Definition 81. Likewise, for all transitive dependent atoms Ti of a query Φ and a
substitution σ, it holds that Tiσ is ground if σ is grounding for all transitive independent
atoms and all sort atoms of Φ.

Verifying the side-conditions of the query answering calculus rules requires to perform
entailment operations. The sort entailment of condition 1 and condition 3 is a well-
sortedness check which is quasi-linear [SS89]. The entailment check in condition 4 is
performed by exhaustively applying the saturation calculus C�Tr with a set-of-support
strategy. Note, from Proposition 58 we know that C�Tr together with the superposition
reasoning framework is a decision procedure for this minimal model reasoning problem.
In addition, the set-of-support strategy is complete in this case because N is saturated.

Existential Query

Φ = ∃x(S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1, . . . , Tn3 ∧ Φ′) Θi ‖ → A′i
Φ′σ

if 1 ≤ i ≤ n2 and there is a grounding substitution σ such that

1. SN |= Siσ for all i ∈ {1, . . . , n1}

2. Aiσ = A′iσ for all i ∈ {1, . . . , n2}

3. SN |= Θiσ for all i ∈ {1, . . . , n2}

4. NI |= Tiσ for all i ∈ {1, . . . , n3}

Universal Query

Φ = ∀x(S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1 ∧ · · · ∧ Tn3 → Φ′) Θi ‖ → A′i
Φ′σ

if 1 ≤ i ≤ n2 and there is a grounding substitution σ such that

1. SN |= Siσ for all i ∈ {1, . . . , n1}

2. Aiσ = A′iσ for all i ∈ {1, . . . , n2}

3. SN |= Θiσ for all i ∈ {1, . . . , n2}

4. NI |= Tiσ for all i ∈ {1, . . . , n3}
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Ground Query

Φ = S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1 ∧ · · · ∧ Tn3 Θi ‖ → A′i
true

if 1 ≤ i ≤ n2 and there is a grounding substitution σ such that

1. SN |= Si for all i ∈ {1, . . . , n1}

2. Ai = A′iσ for all i ∈ {1, . . . , n2}

3. SN |= Θi for all i ∈ {1, . . . , n2}

4. NI |= Ti for all i ∈ {1, . . . , n3}

7.2.3. Query Answering Algorithm

Algorithm 15 implements the query answering procedure that answers a query Φ with
respect to minimal model semantics by performing a finite quantifier elimination algo-
rithm that is based on the query answering calculus. Let N be the saturation, with
respect to C�Tr, of a BSH-Y2 ontology, and � 6∈ N . In this case, the algorithm is sound
and complete.

The algorithm expects as its input a query Φ and the saturated clause set N . First,
the algorithm checks whether the given query Φ is an existential quantified, a universal
quantified, or a ground query. Then it computes the set of all subqueries obtained by
applying the above defined query answering calculus rules.

The set ext(Φ, N) is the set of all subqueries from applying the rule Existential query
to Φ and N . Likewise, the set unv(Φ, N) is the set of all subqueries from applying the
rule Universal query to Φ and N . Finally, gnd(Φ, N) is the result of the application of
Ground query. If gnd(Φ, N) is true then the algorithm returns true otherwise it returns
false.

Because of the fact that the implication in a universal query is not symmetric the
algorithm processes a query from the outer query to the inner subquery. Verifying if
NI |= ∀x(Γ→ Φ′) requires to check whether each ground instance of Γ is also contained
in the set of instances of Φ′. This requires that all ground instances of Γ have to be
computed. Therefore, computing the instances of Φ′ at first does not help to improve
performance.
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Algorithm 15: AnswerQuery

Input: Query Φ, saturated clause set N

1 if Φ = > then
2 return true
3 else if Φ = ∃x.Γ ∧ Φ′ then

4 foreach Φ′σ ∈ ext(Φ, N) do

5 if AnswerQuery(Φ′σ,N) then

6 return true;

7 end

8 end

9 return false;

10 else if Φ = ∀x.Γ→ Φ′ then

11 foreach Φ′σ ∈ unv(Φ, N) do

12 if ¬AnswerQuery(Φ′σ,N) then

13 return false;

14 end

15 end

16 return true;

17 else if gnd(Φ, N) = true then

18 return true

19 else
20 return false
21

7.3. Soundness and Completeness

Theorem 83 (Soundness of AnswerQuery). Let Φ be a query and N be a clause set
that is saturated with respect to C�Tr from BSH-Y2. Then the following holds:

AnswerQuery(Φ, N) = true⇒ NI |= Φ.

Proof. Assume AnswerQuery(Φ, N) = true. For a query Φ, I show that NI |= Φ by
induction on the structure of Φ. As base case, assume Φ is a ground query with

Φ = S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1 ∧ · · · ∧ Tn3

From AnswerQuery(Φ, N) = true it follows gnd(Φ, N) = true. Consequently, the side
conditions 1 – 4 of the rule Ground query hold. It remains to show that NI |= Φ is
a consequence of these conditions. In order to show this, I prove that NI |= A for all
atoms A of Φ.



92 CHAPTER 7. QUERY ANSWERING IN BSH-Y2 ONTOLOGIES

• Let A be a sort atom in Φ. SN |= A by condition 1 and consequently, NI |= A.

• Let A be a transitive independent atom that is no sort atom. By conditions 2
and condition 3 together with Lemma 82 it follows: NI |= A.

• Let A be a transitive atom. From condition 4 it follows: NI |= A.

Now, assume Φ = ∃x(Γ ∧ Φ′) is an existential query with

Γ = S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1 ∧ · · · ∧ Tn3

In order to show NI |= Φ one can equivalently show that there is a substitution σ
with NI |= Γσ and NI |= Φ′σ. From the assumption AnswerQuery(Φ, N) = true it
follows that Φ′σ ∈ ext(Φ, N). Consequently, by definition of ext, the conditions 1 – 4
of Existential query are fulfilled for σ and, consequently, NI |= Γσ. By the induction
hypothesis it follows that NI |= Φ′σ.

If Φ = ∀x.Γ → Φ′ is a universal query then we need to show that for all σ with
NI |= Γσ also NI |= Φ′σ. From the assumption AnswerQuery(Φ, N) = true it follows
for Φ′σ ∈ unv(Φ, N) that condition 1–4 of Universal Query hold for Γσ and, as a
consequence, NI |= Γσ. By definition of unv the set unv(Φ, N) contains all Φ′σ with
NI |= Γσ. For each Φ′σ it holds that NI |= Φ′σ by the induction hypothesis.

Theorem 84 (Completeness of AnswerQuery). Let Φ be a query, N the saturation,
with respect to C�Tr, of a clause set from BSH-Y2. Let NI be the minimal model of N
then

NI |= Φ⇒ AnswerQuery(Φ, N) = true

Proof. The proof of the theorem is by structural induction on Φ. Let Φ be a ground
query with NI |= Φ then Φ has the following form

Φ = S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1 ∧ · · · ∧ Tn3

This means that NI |= Si for i ∈ {1, . . . , n1} and NI |= Ai for i ∈ {1, . . . , n2} and
NI |= Ti for i ∈ {1, . . . , n3}. By Lemma 82 it follows that Θi ‖ → A′i ∈ N and σ with
A′iσ = Ai and SN |= Θiσ for all i ∈ {1, . . . , n2}. Because for the static sort theory SN
of N it holds that SN ⊆ N , it follows form NI |= Si that SN |= Si. By definition of
gnd it follows:

gnd(Φ, N) = true. (7.8)

If Φ is an existential query then it has the following form

Φ = ∃x(Γ ∧ Φ′)

Because of the fact that NI |= Φ, it follows that there is a grounding substitution σ of
Γ ∧ Φ with NI |= Γσ ∧ Φ′σ. This means that NI |= Γσ and NI |= Φ′σ. The set Γ has
the following form

Γ = S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ Tn ∧ · · · ∧ Tn3 (7.9)



CHAPTER 7. QUERY ANSWERING IN BSH-Y2 ONTOLOGIES 93

where Si are atoms of sort predicates, Ai are atoms of binary transitive independent
predicates and Ti are atoms of binary transitive dependent predicates. As a consequence
we get NI |= Siσ for i ∈ {1, . . . n1}, NI |= Aiσ for i ∈ {1, . . . n2} and NI |= Tiσ for
i ∈ {1, . . . n3}. From NI |= Aiσ and Lemma 82 we get Θi ‖ → A′i ∈ N and Aiσ = A′iσ
with SN |= Θiσ . From NI |= Siσ and NI |= N we get SN |= Siσ and also because of
NI |= N we have that N |= Tiσ. As a consequence, an application of the rule existential
query derives Φ′σ. From NI |= Φ′σ and the fact that all variables of Φ′ are shielded we
get that Φ′σ is a query and, by induction, it follows that AnswerQuery(Φ′, N) = true.

If Φ is an universal query then it has the following form

Φ = ∀x(Γ→ Φ′)

Because of the fact that NI |= Φ for all σ = {xi 7→ ci | ci ∈ Σ, i ∈ {1, . . . , n}} we get
that NI 6|= Γ or NI |= Φ′. Assume that NI |= Γ because otherwise we are done. In this
case the theorem follows analogously to the case of existential queries.

7.4. Implementation in Spass–Y2

The implementation of the query answering procedure for BSH-Y2 ontologies follows
exactly Algorithm 15. The rules are implemented following the implementation of
hyperresolution style rules. Furthermore, instead of generating new subqueries for
each instance, the implementation represents an instance of a subquery implicitly by
the respective substitution. Composing two substitutions is linear in the size of the
substitutions, i.e., the number of bound variables.

One exception to the straight forward implementation is the condition 4 that checks
whether a transitive dependent atom T is entailed by NI . The implementation does
not initiate the whole reasoning engine of Spass–Y2 for this purpose. Instead, it
uses a special procedure that simulates several derivation steps in hyperresolution style
macro steps while efficiently representing the newly derived clauses by their respective
substitutions together with the original clause.

By Lemma 82, the retrieval of instances can be done by searching the saturated clause
set N for respective instances. The filtered context tree index, introduced in Chapter 5,
efficiently performs these tasks. Additionally, the index maintains the number of ground
instances of a predicate. This allows the procedure to determine an optimized order
for processing the atoms Ai of a given query. More precisely, it orders the atoms Ai
by the number of instances in increasing order and begins with the atom that has the
least instances. This avoids the unnecessary inspection of non successful instances.

Actually, in case of an existential query ∃x Φ, the implementation of AnswerQuery
returns all ground instances σ with NI |= Φσ. In the case of an universal query
∀x Φ that is not entailed by NI the implementation of AnswerQuery returns a counter
example σ with NI 6|= Φσ.
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7.5. Summary

This chapter has introduced an efficient query answering procedure for complex queries
that contain arbitrary quantifier alternations. The query answering procedure answers
these queries in a clause set from BSH-Y2 with respect to minimal model semantics.
If N is saturated in terms of C�Tr, and � 6∈ N then the query answering procedure is
sound and complete.



8. Evaluation

In this chapter, I present the results obtained from evaluating Spass–Y2 that is based
on the automated theorem prover Spass [WDF+09]. Spass–Y2 implements the proce-
dures that I have presented in this thesis: the saturation procedure (Chapter 6), the
query answering procedure (Chapter 7), and the underlying filtered context tree index
(Chapter 5). The experiments show that Spass–Y2 efficiently decides the satisfiabil-
ity of large ontologies and answers complex queries that contain arbitrary quantifier
alternations in minimal model semantics.

The chapter is structured as follows. First, I present the the sample ontologies that
I have used for the evaluation of Spass–Y2. These sample ontologies are based on
the following three ontologies: YAGO, SUMO, and CYC. In Section 8.2, I present
the results obtained from saturating the above-mentioned ontologies with Spass–Y2
and from comparing these results with other reasoning tools. Finally, in Section 8.3, I
evaluate the query answering capabilities of Spass–Y2 with respect to both standard
first-order semantics and minimal model semantics.

The experiments presented in this chapter are computed on a 2 x Intel Xeon Processor
X5660 (12 MB Cache, 2.80 GHz) Debian Linux machine with 96 GB RAM. Spass–Y2
requires a 64 bit architecture for the experiments because it addresses around 20 GB
RAM for the saturation of the YAGO++ ontology.

8.1. The Sample Ontologies

This section describes the ontologies I have used for the experiments presented in this
chapter. These are the YAGO++ ontology and the BSH-Y2 subsets of SUMO and
CYC.

8.1.1. The YAGO++ Ontology

The BSH-Y2 representation of YAGO, as shown in Chapter 3, contains clauses of the
following types: ground facts, subsort relations, functionality, and transitivity axioms.
In addition, this representation assumes a unique name assumption.

In order to evaluate also the other constructs of BSH-Y2, namely constraints and de-
fined relations, in the context of YAGO, I have created the YAGO++ ontology. Fig-
ure 8.1 depicts the defined relation that YAGO++ contains in addition to the BSH-Y2
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male(x), female(y) isMarriedTo(x, y)→ wifeOf(y, x)
male(x), female(y) isMarriedTo(x, y)→ husbandOf(y, x)

male(x), hasChild(x, y)→ fatherOf(y, x)
male(y),hasChild(x, y)→ sonOf(x, y)

female(x), hasChild(x, y)→ motherOf(y, x)
female(y),hasChild(x, y)→ daughterOf(x, y)

fatherOf(x, y)→ parentOf(x, y)
motherOf(x, y)→ parentOf(x, y)

produced(x, y),movie(y)→ producedMovie(x, y)

bornIn(x, y), locatedIn(y, z), country(z)→ bornInCountry(x, z)

Figure 8.1.: Defined relations in YAGO++

representation of YAGO. The additional constraints of YAGO++ are negative facts,
asymmetry and irreflexivity axioms.

As shown in Chapter 4, one can formulate asymmetry and irreflexivity constraints for
transitive relations without causing the saturation procedure to generate the transitive
closure. This can be achieved by defining an extra predicate representing the transitive
closure. For example, the YAGO++ ontology contains the following axioms instead
of the transitivity axiom for locatedIn. The predicate locatedInTC represents together
with the respective transitivity axiom the transitive closure of locatedIn:

locatedIn(x, y)→ locatedInTC(x, y)

locatedInTC(x, y), locatedInTC(y, z)→ locatedInTC(x, z).

Now, the asymmetry and irreflexivity constraint can be used for the non-transitive
predicate locatedIn as follows:

locatedIn(x, x)→
locatedIn(x, y), locatedIn(y, x)→ .

The YAGO++ ontology contains in sum 9, 918, 724 clauses. Figure 8.2 shows how many
clauses from each type YAGO++ contains. The YAGO++ ontology will be integrated
into the next releases of the TPTP that is the benchmark library for automated theorem
proving tools.
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Clause Quantity

→ P (a, b) 5, 163, 706
→ S(a) 4, 505, 488
S(x)→ T (y) 249,431
P (x, y), P (x, z)→ y ≈ z 60
P1(t11, t12) . . . , Pk(tk1, tk2)→ 20
P1(t11, t12) . . . , Pk(tk1, tk2)→ P (s1, s2) 10
P (x, y), P (y, z)→ P (x, z) 3
unique name assumption

Figure 8.2.: The type and number of clauses contained in YAGO++

8.1.2. The SUMO Ontology

The benchmark library for automated theorem proving TPTP contains a representation
of SUMO [NP01a] as a set of first-order clauses [PS07]. This representation of SUMO
is not completely contained in BSH-Y2. For this reason, I only considered the subset
that is contained in BSH-Y2 for the experiments. This set is called SUMO-Y2 and
contains about 90% (83k clauses) of SUMO from the TPTP.

Furthermore, the type information of individuals in SUMO is encoded with the binary
relation s instance. As presented in Chapter 6, reasoning about type information is
much more efficient if the respective type information is represented with sorts. For this
reason, I have transformed the type information of SUMO-Y2 into sorts. Additionally,
I have removed all non-static sort clauses from SUMO-Y2.

8.1.3. The CYC Ontology

There is also a first-order translation [RRG05] of CYC [RRG05] contained in the TPTP
library. The CYC ontology contains several microtheories. Each microtheory encodes
knowledge of a particular domain. In addition, there is also a base theory containing
basic knowledge which is common to all microtheories. For the experiments in this
Chapter, I consider the BSH-Y2 subset of the base theory of CYC. This subset is called
CYC-Y2 and it contains about 30% (1 million clauses) of the overall CYC ontology as
contained in the TPTP. The type information of CYC is already represented as sorts.

8.2. Saturation

In the experiments, I have compared clasp 2.0.4 with the grounder gringo [GKK+11],
DLV [LPF+06], Vampire 0.6 [RV01], E 1.4 [Sch02], iProver 0.8.1 [Kor08], Spass 3.8
[WDF+09], and Spass-Y2. Spass 3.8 contains already the filtered context tree index
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YAGO++ SUMO-Y2 CYC-Y2

Tool Derived Result Time Derived Result Time Derived Result Time

clasp 1, 118, 858, 572 kbs 70 min 1, 322, 070 sat 20 sec unsat 1 min

DLV t.o. 100 min sat 30 sec t.o. 100 min

Vampire kbs 12 sec kbs 1 min kbs 4 min

E kbs 6 min t.o. 100 min kbs 3 min

iProver kbs 1 min 967, 678 t.o. 100 min kbs 8 sec

Spass 3.8 49, 848, 842 sat 60 min 1, 530, 025 t.o. 100 min 18, 907, 803 t.o. 100 min

Spass-Y2 2, 724, 048 sat 16 min 790, 691 sat 53 min 328,904 unsat 1 min

Figure 8.3.: Evaluation of Spass-Y2

as presented in Chapter 5. But it does not have an implementation of the new calculus
presented in Chapter 6.

All provers were called with the recommended default settings and a time limit of
100 min. Each of these tools was run with each of the ontologies YAGO++, SUMO-
Y2, and CYC-Y2.

Spass-Y2 has found inconsistencies in YAGO++ and SUMO-Y2. Figure 8.4 depicts
a proof of an inconsistency that Spass–Y2 has found in SUMO-Y2. I have manually
removed these inconsistencies from YAGO++ and SUMO-Y2. After that, Spass–Y2
could saturate both ontologies YAGO++ and SUMO-Y2. Spass-Y2 has identified 35
inconsistencies in CYC which I have also manually removed. It still contains inconsis-
tencies, and as a consequence, Spass-Y2 does not saturate CYC-Y2 because it finds an
inconsistency.

The results of the experiments are depicted in Figure 8.3. The first column shows
the tool and the third column the results for the respective ontology. The column
derived shows the number of newly generated formulas during problem processing.
This column contains empty entries because this information was not always available
when the prover timed out (t.o.) after 100 min or was killed by operating system/self
killed (kbs), which is marked in the result column.

In summary, Spass-Y2 can effectively decide the satisfiability for all three ontologies,
where all other systems fail on at least one input set. Clasp performed nicely on
SUMO-Y2 and CYC-Y2, but failed on YAGO++ because, due to the 2m constants and
transitive relations, gringo was unable to completely ground instantiate YAGO++.
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2138[0:Inp] || -> Ss__City(s__JerusalemIsrael)*.

4198[0:Inp] Ss__LandArea(U) || -> Ss__GeographicArea(U)*.

6560[0:Inp] Ss__GeographicArea(U) || -> Ss__Region(U)*.

7206[0:Inp] || -> s__geographicSubregion(s__JerusalemIsrael,s__Israel)*.

7760[0:Inp] || -> Ss__GeographicArea(s__WestBank)*.

12964[0:Inp] Ss__Region(U) || -> Ss__Object(U)*.

14914[0:Inp] || -> s__geographicSubregion(s__JerusalemIsrael,s__WestBank)*.

19333[0:Inp] Ss__Agent(U) || -> Ss__Object(U)*.

19642[0:Inp] || -> Ss__Nation(s__WestBank)*.

25040[0:Inp] || -> Ss__LandArea(s__WestBank)*.

27820[0:Inp] Ss__City(U) || -> Ss__LandArea(U)*.

28157[0:Inp] || -> s__meetsSpatially(s__WestBank,s__Israel)*.

31172[0:Inp] Ss__Nation(U) || -> Ss__GeopoliticalArea(U)*.

33618[0:Inp] || -> Ss__Nation(s__Israel)*.

44236[0:Inp] || -> Ss__GeopoliticalArea(s__WestBank)*.

49814[0:Inp] Ss__GeopoliticalArea(U) || -> Ss__GeographicArea(U)*.

50380[0:Inp] Ss__GeopoliticalArea(U) || -> Ss__Agent(U)*.

80769[0:Inp] Ss__Object(U) Ss__Object(V) ||

s__properPart(V,U)+ -> s__part(V,U)*.

80874[0:Inp] Ss__Object(U) Ss__Object(V) ||

s__meetsSpatially(V,U)*+ -> s__meetsSpatially(U,V)*.

80993[0:Inp] Ss__GeographicArea(U) Ss__GeographicArea(V) ||

s__geographicSubregion(V,U)*+ -> s__properPart(V,U).

81215[0:Inp] Ss__Object(U) Ss__Object(V) ||

s__meetsSpatially(U,V)*+ s__overlapsSpatially(U,V) -> .

81653[0:Inp] Ss__Object(U) Ss__Object(V) Ss__Object(W) ||

s__part(W,U)*+ s__part(W,V)* -> s__overlapsSpatially(V,U)*.

82911[0:SSHy:80993.2,14914.0,27820.0,4198.0,2138.0,7760.0,19642.0,25040.0,44236.0]

|| -> s__properPart(s__JerusalemIsrael,s__WestBank)*.

82978[0:SSHy:80993.2,7206.0,27820.0,4198.0,2138.0,31172.0,49814.0,33618.0]

|| -> s__properPart(s__JerusalemIsrael,s__Israel)*.

159004[0:SSHy:80769.2,82911.0,27820.0,4198.0,6560.0,12964.0,2138.0,50380.0,

19333.0,7760.0,19642.0,25040.0,44236.0]

|| -> s__part(s__JerusalemIsrael,s__WestBank)*.

159071[0:SSHy:80769.2,82978.0,27820.0,4198.0,6560.0,12964.0,2138.0,31172.0,

49814.0,6560.0,12964.0,33618.0]

|| -> s__part(s__JerusalemIsrael,s__Israel)*.

160060[0:SSHy:80874.2,28157.0,50380.0,19333.0,7760.0,19642.0,25040.0,44236.0,

31172.0,49814.0,6560.0,12964.0,33618.0]

|| -> s__meetsSpatially(s__Israel,s__WestBank)*.

629035[0:SSHy:81653.3,159004.0,81653.4,159071.0,27820.0,4198.0,6560.0,12964.0,

2138.0,31172.0,49814.0,6560.0,12964.0,33618.0,50380.0,19333.0,

7760.0,19642.0,25040.0,44236.0]

|| -> s__overlapsSpatially(s__Israel,s__WestBank)*.

657017[0:SSHy:81215.2,160060.0,81215.3,629035.0,50380.0,19333.0,7760.0,19642.0,

25040.0,44236.0,31172.0,49814.0,6560.0,12964.0,33618.0]

|| -> .

Figure 8.4.: Proof of an inconsistency that Spass–Y2 found in SUMO-Y2
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8.3. Query Answering

In this section, I present the results of testing the query answering abilities of Spass–Y2
with respect to both standard first-order semantics and minimal model semantics.

8.3.1. Standard Semantics

For the evaluation in terms of the standard first-order semantics, I tested the 20 queries
of the SUMO category of the last CASC competition. First, I saturated the consistent
SUMO-Y2 ontology with Spass–Y2. Then I have added the respective query to this
saturated clause set as conjecture. Finally, I applied the saturation procedure of Spass-
Y2, as presented in Chapter 6 with a, in this case, complete set-of-support strategy.
This approach terminates on 13 problems with a proof and on further five with a
consistent saturated set. The latter result is due to the fact that SUMO-Y2 does not
contain all SUMO clauses. All results were obtained within one second. The remaining
two problems cannot be formulated in BSH-Y2.

8.3.2. Minimal model semantics

Example Run

The following depicts an example execution of the query answering procedure answering
a query in YAGO++ with minimal model semantics. Let the clause set N be the
saturation of YAGO++ with C�Tr (Chapter 6). Assume the following query:

∃x, y(bornIn(x, y) ∧ ∀z(hasChild(x, z)→ bornIn(z, y))).

The predicate bornIn is transitive independent in N . An application of the rule existen-
tial query derives a set of subqueries obtained by clauses of the form Θ ‖ → bornIn(a, b)
from N such that SN |= Θ. Actually, Θ = ∅ because bornIn is not defined in N . Con-
sequently, the rule existential query removes the outermost existential quantifier by
instantiating x and y. The resulting subqueries look as follows:

∀z(hasChild(GalileoGalilei, z)→ bornIn(z,Pisa)) (8.1)

∀z(hasChild(AlbertEinstein, z)→ bornIn(z,Ulm)) (8.2)

∀z(hasChild(PierreCurie, z)→ bornIn(z,Paris)) (8.3)

∀z(hasChild(MaxPlanck, z)→ bornIn(z,Kiel)) (8.4)

∀z(hasChild(JamesClerkMaxwell, z)→ bornIn(z,Edinburgh)) (8.5)

...

If one of these subqueries holds, then also the whole query holds. So, assume sub-
query 8.3 to continue with. The rule universal query searches N for all ground instances
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of hasChild(PierreCurie, z). The predicate hasChild is also not defined. So, universal
query searches all ground instances of the clause ‖ → hasChild(PierreCurie, z). In N
it finds the two clauses

‖ → hasChild(PierreCurie, IrèneJoliot-Curie))

‖ → hasChild(PierreCurie, ÈveCurie))

The resulting subqueries are

bornIn(IrèneJoliot-Curie,Paris)) (8.6)

bornIn(ÈveCurie,Paris)) (8.7)

Due to the universal quantifier both of these queries have to hold in the minimal model
NI . The rule ground query searches N and finds the following two clauses:

‖ → bornIn(IrèneJoliot-Curie,Paris)

‖ → bornIn(ÈveCurie,Paris).

The rule ground query derives true for both subquery 8.6 and subquery 8.7. As a
consequence, the query holds in N with minimal model semantics. In other words, it
is entailed by the minimal model NI .

Experimental Results

This section shows the experimental results obtained by applying the query answering
procedure that I have presented in Chapter 7 to sample queries. Each query regards a
particular feature of the query language or of BSH-Y2. This includes quantifier alterna-
tions, transitive dependent defined relations, transitive independent defined relations,
and the restricted negation. The answering times of the query answering procedure for
each of the following presented queries is depicted in Figure 8.5. For these experiments,
the query answering procedure works in terms of the saturation, with respect to C�Tr,
of the YAGO++ ontology. The saturated ontology has been loaded into the index
data structures of Spass–Y2 prior to answering the queries. So, the given runtimes
are just for question answering. The first column of Figure 8.5 specifies the query, the
second column shows the query answering times in the format seconds.milliseconds.
The current implementation of Spass–Y2 returns ”Yes” or a counter example for uni-
versal queries and ”No” or a complete set of answers for existential queries. The last
column depicts the number of found answers in the case of an existential query. For an
universal query it shows either counter example (c.e.) or true.

Q1 = ∃x(politician(x) ∧ physicist(x))
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The query Q1 is a conjunction of two sort atoms. This shows that reasoning about sorts
and subsort relations is efficient. Note, that answering this query requires a reasoning
about the sort theory of the ontology, in particular, the subsort relations.

Q2 = ∃x, y, z(hasSuccessor(x,GeorgeWBush) ∧ graduatedFrom(x, z)∧
graduatedFrom(y, z) ∧ isMarriedTo(x, y))

The query Q2 is a simple conjunction of predicates involving reasoning about the tran-
sitive predicate hasSuccessor. Figure 8.5 shows that the query answering procedures
needs almost no time to answer this query.

Q3 = ∃x, y(bornIn(Angela Merkel, y) ∧ locatedIn(x, y) ∧ country(y))

Query Q3 involves reasoning about the transitive predicate locatedIn. The query an-
swering procedure of Spass–Y2 spends almost one minute for answering this query.
This is because it needs to check for each country in the YAGO++ ontology if Ham-
burg, which is the birthplace of Angela Merkel, is located in this country. Each of these
steps may require the execution of several chaining applications.

Q4 = ∃x, y(bornIn(x, y) ∧ ∀z. hasChild(x, z)→ bornIn(z, y))

Although having many answers, the query Q4, which contains a quantifier alternation,
can be answered fast.

Q5 = ∃x, y, v(bornIn(x, y) ∧ physicist(x) ∧ ∀z(hasChild(x, z)→ bornIn(z, y)))

This query is almost the same as the query Q4, but further restricts the answers by the
predicate physicist. This is the reason why fewer instances of the universal subquery
have to be considered and, as a result, answering this query is faster than answering
query Q4.

Q6 = ∃x, y, v(bornIn(x, y) ∧ physicist(x) ∧ hasChild(x, v) ∧
∀z(hasChild(x, z)→ bornIn(z, y)))
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The query Q6 is a restriction of query Q5 by considering only those physicists who have
at least one child. There are only two answers for query Q6 in YAGO++ because the
universal subquery of Q4 and Q5 is trivially fulfilled for all those physicists who do not
have children.

Q7 = ∃x(bornIn(x, y) ∧ politician(x) ∧ locatedIn(y,Europe) ∧ physicist(x))

Like query Q3, the query Q7 requires reasoning about the transitive predicate locatedIn.
However, this query can be answered faster than query Q3 because less reasoning about
the transitive predicate is necessary. This is because the search space is further re-
stricted by the predicate politician and the fact that the query answering procedure
only needs to consider locations in Europe.

Q8 = ∃x(bornIn(x,Hamburg) ∧ politician(x) ∧ physicist(x)∧
hasSuccessor(Helmut Schmidt, x))

Although hasSuccessor is a transitive predicate, answering this query is fast. After
reasoning about the non-transitive predicates, the query answering procedure needs to
perform just one reasoning task involving transitivity. This is because the YAGO++ on-
tology contains only one person who is born in Hamburg, is politician and physicist:
Angela Merkel.

Q9 = ∀x(politicianOf(x,Germany)→ ∃y, z.hasSuccessor(y, x) ∧ bornIn(y, z) ∧
locatedIn(z,Germany))

The query Q9 is a quantifier alternation with an outermost universal quantifier. The
query answering procedure of Spass–Y2 finds a counterexample in almost no time.

Q10 = ∃x(politician(x) ∧ bornInCountry(x,Germany))

The predicate bornInCountry of query Q10 is a defined predicate which is transitive de-
pendent (Figure 8.1). So, answering this query requires the query answering procedure
to reason about the transitive predicate locatedIn.

Q11 = ∀x(actress(x)→ performer(x))
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The query Q11 queries the minimal model of the YAGO++ ontology whether the
property holds that every actress is also a performer. This holds for YAGO++, and
Spass-Y2 returns true in almost no time.

Q12 = ∃x(GermanChancellor(x) ∧ ∀y(GermanChancellor(y)∧
hasPredecessor(x, y)→ bornIn(AlbertEinstein,AlbertEinstein)))

The query Q12 uses the fact that the query language can express a restricted form
of negation. It asks for the first German chancellor, i.e., the German chancellor who
had no predecessor. The atom bornIn(AlbertEinstein,AlbertEinstein) does not hold
in the minimal model of the YAGO++ ontology and, consequently, expresses ⊥. As
Figure 8.5 depicts, Spass–Y2 also computes the answer for this query in almost no
time.

query time #answers

Q1 00.85 41

Q2 00.00 1

Q3 55.00 4

Q4 03.15 35664

Q5 00.56 779

Q6 00.09 2

Q7 06.71 3

Q8 00.04 1

Q9 00.13 c.e.

Q10 23.94 73

Q11 00.05 true

Q12 00.01 1

Figure 8.5.: Query answering results: The table depicts the query answering times for
each query. The time is given in the format seconds.milliseconds. For an
existential query the table depicts the number of results and for an universal
query either counterexample (c.e.) or true.
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8.4. Summary

This chapter evaluates Spass–Y2 that is based on Spass and that implements the pro-
cedures presented in this thesis. Spass–Y2 decides the consistency of YAGO++ within
16 minutes, the consistency of SUMO-Y2 in 53 minutes, and it finds inconsistencies of
CYC-Y2 within one minute. The results depicted in Figure 8.3 show that Spass-Y2 is
the only system deciding the satisfiability of all three ontologies.

Spass-Y2 is also the first superposition based query answering procedures that for-
mally, completely, and efficiently answers, with respect to minimal model semantics,
complex first-order queries, which contain arbitrary quantifier alternations, in a BSH-
Y2 ontology that consists of several million clauses. The results depicted in Figure 8.5
show that this procedure answers queries with respect to minimal model semantics in
the range of seconds. As a consequence, this is a practically useful query answering
procedure.

Spass–Y2 together with YAGO++, SUMO-Y2, CYC-Y2 and the queries are available
from the Spass homepage http://www.spass-prover.org/ in section prototypes and
experiments. There is also a prototype of a web frontend accessible from http://

spassyago.spass-prover.org/.





9. Conclusion and Future Work

9.1. Robustness, Scalability and Usability

Spass–Y2 implements the first superposition based reasoning procedures that efficiently
decides the satisfiability of ontologies consisting of several million BSH-Y2 axioms. The
set BSH-Y2 is a subset of the Bernays–Schönfinkel Horn fragment with equality. It is
able to represent the YAGO ontology as well as large parts of the ontologies SUMO
(SUMO-Y2) and CYC (CYC-Y2). In general, verifying the satisfiability in the Bernays–
Schönfinkel Horn fragment is EXPTIME complete.

Additionally, Spass–Y2 is the first efficient, sound, and complete reasoning procedure
which decides the entailment of complex formulas in terms of minimal model semantics.
This procedure performs an entailment check also for formulas containing arbitrary
quantifier alternations in an ontology with several million formulas.

Therefore, the results of this work open several directions for future research which
can basically be divided into three main directions of future investigation. The first
direction is towards a parallelization of the methods presented in this thesis in order
to lift them to Internet scale reasoning procedures distributed over several computers.
The second direction is the development of a natural language style user interface
which provides the query answering procedure to the non-expert Internet users. The
last direction is towards more expressive languages providing a mechanism to express
more information that can be stored in a knowledge base and used for answering more
complex queries.

9.2. Parallelized Reasoning Procedures

In order to obtain reasoning procedures for the scale of the Internet, the reasoning has
to be distributed over several computers. In order to gain also an additional constant
speedup several algorithms such as the retrieval from the term index and the query
answering procedure could possibly be parallelized.

In addition, also the saturation procedure can be parallelized by a stratification [SPT11]
of the input clause set. Because of the fact that there are no cycles in the BSH-Y2 there
is always a stratification. A stratification gives a layering of the original input showing
which clauses depend from other clauses. This identifies independent parts of a clause
set, and the layering defines a saturation ordering, i.e., which parts of a clause set have
to be saturated before other parts.
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The previous version of Spass–Y2 that I have presented in [SWW10] is called Spass-
YAGO. An execution of several parallel instances of Spass-YAGO, which exchange
information via a network protocol, is examined in [Sch12]. The clause set representing
the logical representation is split among the Spass-YAGO instances. The experiments
show that this also splits the saturation work among the instances. Similar ideas could
be possibly used to also split query answering among several instances of the query
answering procedure.

9.3. Natural language interface

In its current status, Spass–Y2 is only suitable for usage by experts because the queries
have to be formulated in first-order logic. A natural language interface, which is can gen-
erate the first-order queries from natural language queries, is the missing link. A natural
language interface would make the query answering procedure of Spass–Y2 available
to a broader number of users.

9.4. Going beyond BSH-Y2

The current version of YAGO which is YAGO 2 [HSB+11] contains constructs that
I have not explicitly considered in this work. These are confidence values, time and
location information. Further investigations could be done by examining how the proce-
dure presented in this thesis could be appropriately adapted to support also to perform
reasoning about this information.

Many special purpose ontologies are represented in a description logic. Because of
the fact that description logics are decidable fragments of first-order logic, it would
be interesting to further investigate the question whether the reasoning procedures of
Spass–Y2 can be adapted such that they also support description logic languages.

9.4.1. Reasoning with Confidences

Attaching each fact with a confidence value allows a reasoning procedure to relativize
the facts among each other. These values also help to resolve a conflict occurring in
a clause set representing a particular knowledge base. If information is automatically
extracted from different sources then these sources might have contrary information.
A confidence value attached with the extracted facts can possibly resolve the conflict.

Consider the following clause set depicting this problem. A clause with a confidence
attached is a tuple (C,α) where C is a clause and α is a confidence value with 0 ≤ α ≤ 1.
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(bornIn(AlbertEinstein,Ulm), 0.9) (9.1)

(bornIn(AlbertEinstein,Munich), 0.1) (9.2)

(¬bornIn(x, y) ∨ ¬ bornIn(x, z) ∨ y ≈ z, 1.0) (9.3)

(Ulm 6≈ Munich, 1.0) (9.4)

Ignoring the confidence values, we see that this clause set is unsatisfiable. But the
clause 9.2 has a very low confidence measure and this gives evidence that clause 9.1 is
true and clause 9.2 false. The following resolution rule gives an example of an inference
respecting the confidence values.

The value α is called a confidence measure if 0 ≤ α ≤ 1. Let Li and Lj be literals for
i ∈ {1, . . . n}, j ∈ {1, . . . ,m}, A be an atom, and α, β be confidence measures then the
following inference is a resolution with confidences [DLP94].

(L1 ∨ · · · ∨ Ln ∨A,α) (L′1 ∨ · · · ∨ L′m ∨ ¬B, β)

((L1,∨ · · · ∨ Ln ∨ L′1,∨ · · · ∨ L′m)σ,min(α, β))

if σ is the most general unifier of A and B.

Resolution between Clause 9.1 and Clause 9.2 infers the following clause:

(bornIn(AlbertEinstein, z) ∨Ulm ≈ z, 0.9). (9.5)

Performing a resolution between Clause 9.2 and Clause 9.5 infers

(Ulm ≈ Munich, 0.1), (9.6)

and resolution between Clause 9.6 and Clause 9.4 derives

(false, 0.1). (9.7)

This example derives false from the Clauses 9.1–9.4 with confidence 0.1. Without con-
sidering the confidences the resolution calculus would derive false. As a consequence,
this clause set is inconsistent and collapses. However, considering the attached confi-
dence values, one could conclude that bornIn(AlbertEinstein,Ulm) holds because this
fact has a higher confidence than the conflict false, clause 9.7.

9.4.2. Reasoning with Arithmetic

The ontology YAGO 2 [HSB+11], which is the successor of the YAGO ontology, has ad-
ditional information about time and location attached with facts. With this additional
information queries can be answered involving time and location aspects. Reasoning
about time and locations, requires particular calculi that are able to reason about
arithmetic constraints.
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The query ”Which physicist survived all his children” can be formulated in first-order
logic with arithmetic constraints as follows

∃x, d1(physicist(x) ∧ diedIn(x, d1) ∧
∀z, d2(hasChild(x, z) ∧ diedIn(z,d2)→ d1 > d2))

(9.8)

Assume a saturated clause set N of a translation of YAGO 2 with the same properties
as the saturation of a clause set from the BSH-Y2. Assume further, the clause set
contains the following clauses

→ physicist(MaxPlanck) (9.9)

→ diedInYear(MaxPlanck, 1947) (9.10)

→ hasChild(MaxPlanck,KarlPlanck) (9.11)

→ hasChild(MaxPlanck,EmmaPlanck) (9.12)

→ hasChild(MaxPlanck,GretePlanck) (9.13)

→ hasChild(MaxPlanck,ErwinPlanck) (9.14)

→ diedIn(KarlPlanck, 1916) (9.15)

→ diedIn(EmmaPlanck, 1919) (9.16)

→ diedIn(GretePlanck, 1917) (9.17)

→ diedIn(ErwinPlanck, 1945) (9.18)

Similar to the query answering procedure of Chapter 7, instantiating the query 9.8 with
these clauses would result in the following four constraints:

1947 > 1916 (9.19)

1947 > 1919 (9.20)

1947 > 1917 (9.21)

1947 > 1945 (9.22)

These constraints are ground and can be decided [KW11]. Since, all of these constraints
are fulfilled, MaxPlanck is an answer for query 9.8. It remains for future investigation
to verify if the approach, presented in this thesis, can indeed be extended accordingly
while remaining sound and complete.

The YAGO 2 ontology contains also locational information in the form of geograph-
ical coordinates. Reasoning about this information requires a calculus also working
on arithmetic constraints. Then also queries involving locational specifications, for ex-
ample, north of or within 10 kilometers, would be possible; for example ”What is the
southernmost city of Europe?”

∃x, l1(city(x) ∧ locatedIn(x,Europe) ∧ latitudeOf(x, l1) ∧
∀y, l2(city(y) ∧ locatedIn(y,Europe) ∧ latitudeOf(y, l2) → l2 > l1))
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9.4.3. Reasoning in Description Logics

Description logics like the standard description logic ALC and DL–Lite are decid-
able [BCM+03]. These languages allow an existential quantified variable occurring
in a clause. For example, this allows the formulation of constraints like ”Every country
has a capital city” which is in first-order notations

∀x(country(x)→ ∃y(hasCapital(x, y))) (9.23)

The paper [CGL09] shows that Datalog [CGT89] can be extended with this construct.
This extension is decidable if the respective clauses contain a guard. A guard is an
atom that contains all non-existential quantified variables.

The work, presented in [GdN99], shows that superposition is a decision procedure for
the guarded fragment of first-order logic. It remains to verify if the procedures of this
thesis can be appropriately adapted using these results in order to also decide clause
sets from BSH-Y2 plus clauses like clause 9.23.

9.4.4. Higher-Order Queries

Asking the YAGO ontology for the relation that two entities have in common, seems
to be a higher-order query. If we consider finite domain reasoning this higher-order
construct can be replaced by a finite disjunction over first-order clauses.

For example consider a clause set from the BSH-Y2 and the following query:

∃x, F (F (AlbertEinstein, x) ∧ F (MaxPlanck, x)), (9.24)

where F is a variable for a predicate symbol. Let preds(N) be the set of all predicate
symbols occurring in N . In the case of finite domain reasoning, the query 9.24 can be
rewritten as a finite disjunction as follows

∃x

 ∨
P ∈ preds(N)

P (AlbertEinstein, x) ∧ P (MaxPlanck, x)

 (9.25)

The filtered context tree term index, presented in Chapter 5, is able to efficiently retrieve
the respective instances from the index as mentioned in Section 5.4. Consequently, the
query answering procedure could be extended respectively. Additionally, this also re-
quires that the filtered context tree index is implemented in Spass–Y2. The current
implementation of Spass–Y2 contains only an implementation of the filtered substitu-
tion tree index that is a special case of the filtered context tree index. The substitution
tree index does not support variables representing predicate symbols.
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9.4.5. Extended Query Language

The query language could be extended in such a way that more than one subquery is
allowed. The new syntax looks as follows:

Φ := Γ | ∀x(Γ ∧
∧

Φ→ Φ) | ∃x(Γ ∧
∧

Φ ∧ Φ) | >

where
∧

Φ could possibly be an empty disjunction. If the shielding property (Defini-
tion 80) of queries is appropriately adapted the query answering procedure of Chapter 7
could possibly be adapted to also answer this type of queries.



Part II.

Reductions for Automated Theorem
Proving





10. Introduction

In the superposition context, first-order theorem proving with equality deals with the
problem of showing unsatisfiability of a finite set N of clauses. This problem is well-
known to be undecidable, in general. It is semi-decidable in the sense that superposition
is refutationally complete. As shown in Chapter 2, the superposition reasoning frame-
work is composed of inference and reduction rules. Inference rules generate new clauses
from N whereas reduction rules delete clauses from N or transform them into simpler
ones while deleting the ancestors. If, in particular, powerful reduction rules are avail-
able, decidability of certain subclasses of first-order logic can be shown and explored
in practice [BGW93, HSG04, JMW98, GdN99, FLHT01]. Hence, sophisticated reduc-
tions are an important means for progress in automated theorem proving. In this work
I have developed an instance of the reduction rule contextual rewriting called subterm
contextual rewriting which is considered in combination with the superposition calcu-
lus [BG94]. Contextual rewriting extends rewriting with unit equations to rewriting
with full clauses containing a positive orientable equation. In order to apply such a
clause C for rewriting a clause D, all other literals of C have to be entailed by the
literals of D in N . The literals of D are called the context. The name contextual
rewriting comes from the inclusion of this context. The instance subterm contextual
rewriting introduced in this work, restricts the instantiation of the context to subterms
of the involved potentially rewritten clause.

For a first, simple example consider the two clauses

P (x)→ f(x) ≈ x (10.1)

S(g(a)), a ≈ b, P (b)→ R(f(a)) (10.2)

Clauses are written in implication form [Wei01]. A brief introduction of this is also
provided in Chapter 2. Now in order to rewrite R(f(a)) in clause 10.2 to R(a) us-
ing the equation f(x) ≈ x of clause 10.1 with matcher σ = {x 7→ a}, it needs to
be shown that P (x)σ holds in the context of clause 10.2 S(g(a)), a ≈ b, P (b), i.e.,
|= S(g(a)), a ≈ b, P (b) → P (x)σ. This obviously holds, so a contextual rewriting
application of clause 10.1 can replace clause 10.2 by S(g(a)), a ≈ b, P (b)→ R(a).

More generally, contextual rewriting is the following reduction rule:

RD = Γ1 → ∆1, s ≈ t C = (Γ2 → ∆2)[u[sσ] ≈ v]

Γ1 → ∆1, s ≈ t

(Γ2 → ∆2)[u[tσ] ≈ v]
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where (Γ2 → ∆2)[u[sσ] ≈ v] expresses that u[sσ] ≈ v is an atom occurring in Γ2 or ∆2

and u contains the subterm sσ. Contextual rewriting reduces the subterm sσ of u to
tσ if, apart from additional ordering restrictions, the following conditions are satisfied

NC |= Γ2 → A for all A in Γ1σ (10.3)

NC |= A→ ∆2 for all A in ∆1σ (10.4)

where N is the current clause set, C,D ∈ N , and NC denotes the set of clauses from N
smaller than C with respect to an ordering ≺, total on ground terms (Section 2.2.2).
All calculus rules considered in this thesis are actually reduction rules (Section 2.2.4).
Both side conditions 10.3 and 10.4 are undecidable, in general. Therefore, in order to
make the contextual rewriting rule applicable in practice, it must be instantiated such
that eventually these two conditions become effectively decidable.

10.1. Example

For a more sophisticated, further motivating example, consider the following clause
set. It can be finitely saturated using contextual rewriting but not solely with less
sophisticated reduction mechanisms such as unit rewriting or subsumption. Consider
the following inference superposition right [BG90, Wei01].

Superposition right

Γ1 → ∆1, l ≈ r Γ2 → ∆2, s[l
′]p ≈ t

(Γ1,Γ2 → ∆1,∆2, s[r]p ≈ t)σ
,

where (i) σ is the most general unifier of l′ and l, (ii) l′ is not a variable, (iii) no
literal in Γ1, Γ2 is selected, (iv) rσ 6� lσ, (v) lσ ≈ rσ is reductive for (Γ1 → ∆1, l ≈ r)σ,
and (vi) sσ ≈ tσ is reductive for (Γ2 → ∆2, s[l

′]p ≈ t)

Let i, q, r, f be functions, a, b, n be constants and x1, x2, x3, x4, y1 be variables and
the precedence set as follows r > f > q > i > b > a > n using the KBO (Section 2.2.2)
with weight 1 for all function symbols and variables.
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→ q(n) ≈ b (10.5)

i(x1) ≈ b, q(y1) ≈ b→ q(r(x1, y1)) ≈ b (10.6)

i(x1) ≈ b, q(y1) ≈ b→ q(f(x1, y1)) ≈ a (10.7)

i(x1) ≈ b, q(y1) ≈ b,i(x3) ≈ b→
r(x3, f(x1,y1)) ≈ f(x1, r(x3, y1))

(10.8)

i(x1) ≈ b, i(x3) ≈ b,i(x2) ≈ b,
q(y1) ≈ b, b ≈ a→

y1 ≈ n, q(f(x1, f(x2, r(x3, y1)))) ≈ b
(10.9)

If we apply superposition right between clause 10.8 and clause 10.9 on the term q(f(x1, f(x2, r(x3, y1))))
we obtain the clause

i(x1) ≈ b, i(x3) ≈ b,i(x2) ≈ b, i(x4) ≈ b,
q(y1) ≈ b,q(f(x4, y1)) ≈ b, b ≈ a

→
f(x4, y1) ≈ n,

q(f(x1, f(x2,f(x4, r(x3, y1))))) ≈ b

(10.10)

which is larger (both in the ordering and the number of symbols) than clause 10.9. Ap-
plying superposition between clause 10.8 and clause 10.10 yields an even larger clause.
Repeating the superposition inference between clause 10.8 and these clauses creates
larger and larger clauses. All those clauses cannot be simplified by unit rewriting, non-
unit rewriting and are not redundant with respect to subsumption deletion [Wei01]
(Chapter 2.2.4). Hence, the exhaustive application of the superposition calculus does
not terminate on this clause set. However, contextual rewriting can reduce clause 10.9
using clause 10.7 to

i(x1) ≈ b, i(x3) ≈ b, i(x2) ≈ b,
q(y1) ≈ b, b ≈ a→ y1 ≈ n, a ≈ b.

(10.11)

Clause 10.11 is a tautology and can be reduced to true. Then the set is saturated since
no further superposition inference is possible. In order to apply contextual rewriting
to clause 10.9 using clause 10.7 the following two side conditions have to be verified
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NC |= i(x1) ≈ b, i(x3) ≈ b, i(x2) ≈ b,
q(y1) ≈ b, b ≈ a→ i(x1) ≈ b

and

NC |= i(x1) ≈ b, i(x3) ≈b, i(x2) ≈ b, q(y1) ≈ b,
b ≈ a→ q(f(x2, r(x3, y1))) ≈ b.

The first condition holds trivially and the latter follows from clause 10.7 and clause 10.6
which are both smaller than clause 10.9. The example will be explained in full detail
in Chapter 13. It already shows that the class of clause sets that can be finitely satu-
rated with contextual rewriting is strictly larger than the class of clause sets that can
be finitely saturated by unit rewriting, non-unit rewriting or local contextual rewrit-
ing [Wei01, WBH+02].

For the superposition calculus, contextual rewriting was first implemented in the SAT-
URATE system [NN93, GN94] but never matured. On one hand it turned out to be
indispensable for proving a number of examples, on the other hand the implementation
was not able to decide even a single rule application in reasonable time for a bunch
of other examples. This was partly due to a straightforward naive implementation,
compared to the techniques developed in this work, and a more general setting where
the ordering constraints of the rule were not a priori calculated, but inherited through
ordering constraints.

10.2. Related work

Apart from the superposition calculus, contextual rewriting was already intensively
studied for purely equational (Horn) rewrite systems and in the context of inductive
theorem proving [Gan87, Zha93, BR95]. Comparing the variants of contextual rewriting
defined there, they are less general with respect to non-Horn clauses but also less
restrictive with respect to ordering restrictions. However, the ordering restrictions
imposed on the superposition variant of the rule, Definition 85, are needed to preserve
completeness of the superposition calculus. In an inductive theorem proving setting,
completeness is typically not an issue as it cannot be obtained anyway.

10.3. Contribution

In this part of the thesis, I present a decidable instance of contextual rewriting, called
subterm contextual rewriting, that enables the superposition reasoning procedure to
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find proofs in hard theories. Furthermore, it increases the number of first-order prob-
lems for which superposition is a decision procedure. Subterm contextual rewriting
is presented in Chapter 11. I have implemented subterm contextual rewriting in
Spass 3.1. [WBH+02] (Chapter 12) and tested this implementation on all problems
of the TPTP library version 3.2.0 [SS98] (Chapter 13). Compared to my first imple-
mentation of the rule [WW08] the results of this work lead to significant increase in
performance. The extended and refined implementation wins significantly more prob-
lems on the overall TPTP than it loses while keeping the positive results on hard
problems. In particular, it solves 6 problems from the TPTP that no other reported
system could solve before. The gained performance is due to a tight incorporation of
contextual rewriting with unit and non-unit rewriting and a new caching technique,
see Chapter 12. Finally, in Chapter 14, I prove that subterm contextual rewriting is a
decision procedure for ground equations in the minimal model of a universally reductive
equational theory. Subterm contextual rewriting is the first effective decision procedure
for this problem. I have the presented work already published in [WW10].





11. Subterm Contextual Rewriting

This section presents the subterm contextual rewriting rule, Definition 88, which is a
decidable instance of the general superposition variant of contextual rewriting, Defini-
tion 85. To this end I have developed side conditions of contextual rewriting which are
decidable and feasible for problems occurring in practice. This is done by restricting
the considered instances for the context to ground subterms of the rewritten clause,
Section 11.2. In addition, the testing of these instances is restricted by a particular
subterm contextual rewriting rule for ground clauses, Definition 87.

In addition to the standard first-order reasoning framework presented in Chapter 2 this
part requires two further notions. A clause C is called reductive for a positive equation
s ≈ t if s ≈ t is strictly maximal in C and s � t. Furthermore, C is called universally
reductive[GS93], if in addition vars(s) ⊇ vars(C).

11.1. Contextual Rewriting

Contextual rewriting is a sophisticated reduction rule originally introduced in [BG94]
that generalizes unit rewriting and non-unit rewriting [Wei01]. It is an instance of the
standard redundancy notion of superposition as shown in Section 2.2.4.

Definition 85 (Contextual Rewriting [BG94]). Let N be a clause set, C,D ∈ N , σ be
a substitution then the reductions

RD = Γ1 → ∆1, s ≈ t C = Γ2, u[sσ] ≈ v → ∆2

Γ1 → ∆1, s ≈ t

C ′ = Γ2, u[tσ] ≈ v → ∆2

RD = Γ1 → ∆1, s ≈ t C = Γ2 → ∆2, u[sσ] ≈ v

Γ1 → ∆1, s ≈ t

C ′ = Γ2 → ∆2, u[tσ] ≈ v

where the following conditions are satisfied
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1. sσ � tσ

2. C � Dσ

3. NC |= Γ2 → A for all A in Γ1σ

4. NC |= A→ ∆2 for all A in ∆1σ

are called contextual rewriting.

Due to condition 85-1 and condition 85-2, C ′ ≺ C and Dσ ≺ C. Then from condi-
tion 85-3 and condition 85-4, it follows that there exist clauses C1, . . . , Cn ∈ NC and
C1, . . . , Cn, C

′, Dσ |= C. Therefore, the clause C is redundant in N ∪ {C ′} and can
be replaced by C ′. The rule is an instance of the abstract superposition redundancy
notion (Section 2.2.4).

The side conditions 85-3 and 85-4 having both the form NC |= Γ→ ∆ are undecidable,
in general. There are two sources for undecidability of conditions having the form
NC |= Γ → ∆. First, there are infinitely many possible grounding substitutions for
the clauses Γ → ∆ and C. Second, even for a given grounding substitution σ′ there
may be infinitely many ground substitutions δ with Ciδ ≺ Cσ′, Ci ∈ N , e.g., if ≺ is
the lexicographic path ordering (LPO, Section 2.2.2). Therefore, in order to effectively
decide the side conditions, the following approach fixes one σ′ and restricts δ such that
cod(δ) is a subset of the subterms from C. This yields subterm contextual rewriting.

11.2. Developing Feasible Side Conditions

First, NC |= Γ → ∆ is equivalent to NC ∪ {∃x1, . . . , xn.¬(Γ → ∆)} |= ⊥ where
the xi are the variables of Γ → ∆. The existential quantifier can be eliminated by
Skolemization yielding a Skolem substitution τ that maps any xi to a new Skolem
constant. Consequently, setting σ′ to τ yields the instance NC |= (Γ → ∆)τ , where
(Γ → ∆)τ is ground. Still there may exist infinitely many δ with Ciδ ≺ Cτ , Ci ∈ N .
Furthermore, Cτ may still contain variables as the literal u[tσ] ≈ v of C may contain
variables that do not occur in Γ2, ∆2.

Therefore, I restrict δ to those grounding substitutions that map variables to terms
only occurring in Cτ or Dστ where I additionally assume that τ is also grounding for
C and Dσ, i.e., it maps any variable occurring in C or Dσ to an arbitrary fresh Skolem
constant. Let NDστ

Cτ be the set of all ground instances of clauses from N smaller than Cτ
obtained by instantiation with ground terms from Dστ,Cτ . Then NDστ

Cτ is finite and
NDστ
Cτ ⊆ NCτ . Consequently, NDστ

Cτ |= (Γ → ∆)τ is a sufficient ground approximation
of NC |= Γ→ ∆.

Even though this is a decidable approximation of the original problem the set NDστ
Cτ is

exponentially larger than N , in general. In particular, the set typically already gets so
large that an instantiation based theorem proving approach does not always work out



CHAPTER 11. SUBTERM CONTEXTUAL REWRITING 123

deciding NDστ
Cτ |= (Γ→ ∆)τ . For example, the rewriting step from the example in the

introduction contains already more than 20 different ground terms out of

i(c1) ≈ b, i(c3) ≈ b, i(c2) ≈ b,
i(c4) ≈ b, q(c5) ≈ b,q(f(c4, c5)) ≈ b, b ≈ a

→
f(c4, c5) ≈ n, q(f(c1, f(c2,f(c4, r(c3, c5))))) ≈ b

where the ci are the freshly introduced Skolem constants. Recall that N is not the input
clause set but the set of all clauses generated in the course of a saturation and can thus
consists of several (hundred) thousand clauses. The side condition NDστ

Cτ |= (Γ→ ∆)τ
is typically tested several 10 thousand times for a problem with potential contextual
rewriting applications, even with respect to the refinements that are introduced in the
sequel. Therefore, the following definition gives a redundancy notion that implicitly
represents NDστ

Cτ and approximates NDστ
Cτ |= (Γ→ ∆)τ .

Definition 86 (Ground subterm redundancy). A clause is ground subterm redundant,
if it can be reduced to > by the reduction rules tautology reduction, forward subsump-
tion, obvious reduction and a particular instance of contextual rewriting called subterm
contextual ground rewriting defined below.

Tautology reduction reduces syntactic and semantic tautologies to true whereas for-
ward subsumption reduces subsumed clauses to true. Obvious reduction eliminates
trivial literals [Wei01]. A procedure deciding ground subterm redundancy is shown in
Algorithm 16 and explained in detail in Chapter 12.

Ground subterm redundancy only applies to ground clauses. Therefore, the following
definition introduces an instance of contextual rewriting only working on ground clauses.
Further, it refines contextual rewriting such that it implicitly only considers clauses from
NDστ
Cτ . This is in particular guaranteed by condition 87-3 below that limits the clauses

used for reductions to universally reductive clauses.

Definition 87 (Subterm Contextual Ground Rewriting). If N is a clause set, D ∈ N ,
C ′ ground, σ a substitution then the reductions

RD = Γ1 → ∆1, s ≈ t C ′ = Γ2, u[sσ] ≈ v → ∆2

Γ1 → ∆1, s ≈ t

Γ2, u[tσ] ≈ v → ∆2

RD = Γ1 → ∆1, s ≈ t C ′ = Γ2 → ∆2, u[sσ] ≈ v

Γ1 → ∆1, s ≈ t

Γ2 → ∆2, u[tσ] ≈ v
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where the following conditions are satisfied

1. sσ is a strictly maximal term in Dσ

2. u[sσ] ≈ v � sσ ≈ tσ

3. vars(s) ⊇ vars(D)

4. (Γ2 → A) is ground subterm redundant for all A in Γ1σ

5. (A→ ∆2) is ground subterm redundant for all A in ∆1σ

are called subterm contextual ground rewriting.

Condition 87-1 and condition 87-2 ensure the ordering restrictions required by con-
textual rewriting. Condition 87-3 implies that Dσ is ground. Recall that any clause
meeting condition 87-1 and condition 87-3 is universally reductive. Condition 87-4 and
condition 87-5 recursively apply the ground subterm redundancy criterion.

The ground subterm redundancy criterion is terminating since C ′ is reduced to a smaller
ground clause. As a consequence, also the ground subterm redundancy procedure
(Algorithm 16) is terminating.

11.3. Subterm Contextual Rewriting

The instance of contextual rewriting, namely the subterm contextual rewriting rule,
becomes the below reduction rule.

Definition 88 (Subterm Contextual Rewriting). Let N be a clause set, C,D ∈ N , σ
be a substitution then the reductions

RD = Γ1 → ∆1, s ≈ t C = Γ2, u[sσ] ≈ v → ∆2

Γ1 → ∆1, s ≈ t

Γ2, u[tσ] ≈ v → ∆2

RD = Γ1 → ∆1, s ≈ t C = Γ2 → ∆2, u[sσ] ≈ v

Γ1 → ∆1, s ≈ t

Γ2 → ∆2, u[tσ] ≈ v

where the following conditions are satisfied

1. sσ � tσ
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2. C � Dσ

3. τ maps all variables from C,Dσ to fresh Skolem constants

4. (Γ2 → A)τ is ground subterm redundant for all A in Γ1σ

5. (A→ ∆2)τ is ground subterm redundant for all A in ∆1σ

are called subterm contextual rewriting.

Note that unit rewriting and non-unit rewriting [Wei01] are also instances of the sub-
term contextual rewriting rule. Note further that the conditions for the subterm con-
textual rewriting rule are weaker compared to the subterm contextual ground rewriting
rule: the right premise does not need to be ground and the equation s ≈ t needs not to
be maximal in the first premise. Subterm contextual rewriting uses subterm contextual
ground rewriting to effectively decide the side conditions.

In addition to the rewriting style, where subterms are replaced by simpler ones, the
general idea of contextual rewriting can also be used to actually eliminate literals,
resulting in a generalization of matching replacement resolution [Wei01]. This variant
then also considers negative literals for reductions and was used for the experiments on
the TPTP, Chapter 13.

Definition 89 (Subterm Contextual Literal Elimination). Let N be a clause set, C,D ∈
N , σ be a substitution then the reductions

RD = Γ1 → ∆1, s ≈ t C = Γ2, u ≈ v → ∆2

Γ1 → ∆1, s ≈ t

Γ2 → ∆2

RD = Γ1, s ≈ t→ ∆1 C = Γ2 → ∆2, u ≈ v

Γ1, s ≈ t→ ∆1

Γ2 → ∆2

where the following conditions are satisfied

1. sσ = u and tσ = v

2. C � Dσ

3. τ maps all variables from C,Dσ to fresh Skolem constants

4. (Γ2 → A)τ is ground subterm redundant for all A in Γ1σ

5. (A→ ∆2)τ is ground subterm redundant for all A in ∆1σ

are called subterm contextual literal elimination.





12. Implementation

The implementation of Spass [Wei01] focuses on a sophisticated reduction machinery.
As shown in Section 2.2 the Spass main loop performs an exhaustive application of its
inference and reduction rules. The integration of contextual rewriting into the reduction
procedure of Spass consists of two steps: finding rewrite candidates and verifying the
side conditions of subterm contextual rewriting. These two steps are presented in this
chapter. In addition, further techniques are presented that increase the performance of
the subterm contextual rewriting procedure on practical reasoning problems.

12.1. Finding Rewrite Candidates

First, I consider the search for appropriate contextual rewrite application candidates.
This is analogous to the case of unit rewriting and non-unit rewriting. Finding ap-
propriate rewrite candidates is realized in Spass via substitution tree indexing [Gra96,
NHRV01] which is an instance of context tree indexing [GNN01] shown in detail in
Section 2.2.5. An index has the functionality of a database for automated theorem
proving. It does not store relations, but terms, i.e. trees, and instead of the typical
database operations it provides queries delivering terms with respect to the instance,
generalization, and unifiable relation. The unifiable relation is used to find partners
for inferences, the other two in order to find partners for the backward and forward
application of reduction rules, respectively.

The following shows the non-unit rewriting rule as it is considered by several superpo-
sition based provers.

Definition 90 (Non-Unit Rewriting).

RD = Γ1 → ∆1, s ≈ t C = Γ2, u[sσ] ≈ v → ∆2

Γ1 → ∆1, s ≈ t

C ′′ = Γ2, u[tσ] ≈ v → ∆2

RD = Γ1 → ∆1, s ≈ t C = Γ2 → ∆2, u[sσ] ≈ v

Γ1 → ∆1, s ≈ t

C ′′ = Γ2 → ∆2, u[tσ] ≈ v

where (i) s � t and (ii) Γ1σ ⊂ Γ2,∆1σ ⊂ ∆2.



128 CHAPTER 12. IMPLEMENTATION

In order to forward rewrite a clause C the implementation of unit and non-unit rewriting
tries to reduce each subterm sσ of C. Therefore, for each subterm sσ the procedure
queries the substitution tree index for generalization, i.e. whether there exist a candidate
term l with lδ = sσ. With respect to the above rule context, l = s and δ = σ would
be one result of the query. If there exists such a term then the substitution tree index
returns l together with the matcher δ. For all clauses D containing a generalization l,
the requirements (i) and (ii) are verified. If they are fulfilled for a specific D, then C
is rewritten. Otherwise, the implementation queries the substitution tree index for the
next candidate term l. The retrieval is realized for forward reduction in an iterative
way because the first hit is already used for performing the reduction and the remaining
hits can be ignored.

12.2. Ground Subterm Redundancy Check

The second step for integrating contextual rewriting into Spass is to check the side
conditions that require an effective implementation of the ground subterm redundancy
check.

First of all, it is too costly to explicitly compute the Skolem substitution τ for each
clause (Γ → ∆)τ subject to the ground subterm redundancy criterion. Applying τ
explicitly requires to allocate memory for the new constants, the resulting terms and
the new clause and it requires additional computations to build the clause. Because
of the recursive structure of the redundancy criterion this is not feasible. Therefore,
my solution is to simply treat variables as constants in the implementation of the
redundancy criterion.

In Spass constants and variables in terms are represented by particular nodes. If the
implementation of subterm contextual rewriting replaced the variables of the clause
Γ → ∆ explicitly by fresh constants, then it would create for each variable a new
node carrying a constant and inserting the new constant into the existing signature
precedence with lowest precedence. Internally in Spass, variables are represented by
positive integers. So variables are implicitly ordered. This allows Spass to consider
variables to be constants with a lower precedence than any other non-variable symbol
of the signature and take the integer ordering among the variables. Using this trick and
adapting the ordering modules (KBO, RPOS) of Spass such that they treat variables
exactly as constants in the context of subterm contextual rewriting, this approach
has the same properties with respect to ordering computation as creating constants
explicitly but saves the additional effort and memory consumption.

If variables are interpreted as constants the standard procedure of Spass for finding
appropriate rewrite candidates can remain unchanged, because a fresh constant as well
as a variable have only a variable as its generalization.

The following algorithm presents the implementation of the ground subterm redundancy
check. It works exactly as an implementation that explicitly creates fresh Skolem
constants.
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Algorithm 16: GroundSubtermRedundant

Input: clause set N , clause C
1 Rewritten = true;
2 while Rewritten do
3 Rewritten = false;
4 if IsEmpty(C) then return false;
5 if IsTautology(C) then return true ;
6 if ForwardSubsumption(C,N) then
7 return true;
8 end
9 if ObviousReduction(C) then

10 Rewritten = true;
11 end
12 if SubtermContextualGroundRewriting(C,N) then
13 Rewritten = true;
14 end

15 end
16 return false;

The implementation is depicted in Algorithm 16 and uses tautology check, forward
subsumption and obvious reductions from the reduction procedure of Spass. These
are the procedures implemented in Spass except that they work with respect to the
modified ordering procedures that interpret variables as constants. As explained above,
the retrieval of candidate terms of forward subsumption remains unchanged.

Algorithm 16 expects as input a clause C and a clause set N . It reduces C with
respect to N in the main loop. The reductions performed on the clause C in Algo-
rithm 16 change C destructively. IsEmpty(C) checks whether the given clause is the
empty clause. IsTautology(C) checks if |= C. This is realized via a congruence closure
algorithm testing whether a positive literal is implied by the negative literals.
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ForwardSubsumption(C, N) checks whether C is already subsumed by clauses from N .

R Γ1 → ∆1 Γ2 → ∆2

Γ1 → ∆1

where Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2.

ObviousReduction(C) consists of the following reduction rules

RΓ→ ∆, s ≈ t, s ≈ t
Γ→ ∆, s ≈ t

and

RΓ, s ≈ t, s ≈ t→ ∆

Γ, s ≈ t→ ∆

and

RΓ→ ∆, t ≈ t
Γ→ ∆

and

RΓ, t ≈ t→ ∆

Γ→ ∆

and

RΓ, x ≈ t→ ∆

Γ→ ∆
if x 6∈ (Γ ∪∆)

Further details can be found in the Spass Handbook [WSK07].

12.3. Subterm Contextual Ground Rewriting

SubtermContextualGroundRewriting(C, N), depicted in Algorithm 17, implements sub-
term contextual ground rewriting. The variables occurring in C are interpreted as
constants in the above explained sense. The call generalSDT (N, u′) (line 1) to the
substitution tree index iteratively returns all generalizations s from N of u′ together
with the respective matcher σ. Then the procedure computes for each of the gener-
alizations the literals and the clauses where they occur. The candidate clauses are
then checked for the non-recursive side conditions of contextual rewriting. Because of
the condition vars(s) ⊇ vars(D) (line 5) the rewrite clause D is strongly universally
reductive. This means that σ has all variables of D in its domain. The substitution
σ replaces all variables of D by terms occurring in C. Therefore, Dσ contains only
variables occurring in C which are assume to be constants. As a consequence, this
procedure neither introduces any new Skolem constants nor does it change the prece-
dence of them. Therefore, the ordering check (line 6) is implemented using the above
explained, modified ordering modules treating variables as constants. Additionally,
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Algorithm 17: SubtermContextualGroundRewriting

Input: clause C[u[u′] ≈ v], clause set N
1 foreach (s, σ) ∈ generalSDT (N, u′) do
2 Lits = LiteralsContainingTerm(s);
3 foreach (s ≈ t) ∈ Lits s.t. sσ � tσ do
4 D = LiteralOwningClause(s ≈ t);
5 if vars(s) ⊇ vars(D) ∧
6 u[sσ] ≈ v � sσ ≈ tσ ∧
7 sσ strictly maximal term in Dσ ∧
8 ∀A ∈ Ante(Dσ) GroundSubtermRedundant(Γ→ A,N) ∧
9 ∀A ∈ Succ(Dσ) GroundSubtermRedundant(A→ ∆, N)

10 then
11 return C[u[tσ] ≈ v];
12 end

13 end

14 end

building the subproblems (line 8 – line 9) does also not change the Skolem constants
nor introduce new Skolem constants. The two sets Ante(Dσ) and Succ(Dσ) denote the
set of antecedent and succedent literals of Dσ without sσ ≈ tσ, respectively. For each
of these subproblems the procedure SubtermContextualGroundRewriting recursively
calls the procedure GroundSubtermRedundant (Algorithm 16).

Interpreting variables as Skolem constants during the recursive application of Ground-
SubtermRedundant results exactly in the same behavior where explicitly new constant
objects are introduced, but saves time and memory.

The implementation of subterm contextual rewriting (Definition 88) and subterm con-
textual literal elimination (Definition 89) is analogous to the implementation of subterm
contextual ground rewriting. The difference is that the input clause C is not interpreted
to be ground and the local side conditions (line 5 – line 7) are changed with respect to
the definition of subterm contextual rewriting and subterm contextual literal elimina-
tion, respectively.

Algorithm 18 depicts the overall forward reduction procedure of Spass where subterm
contextual rewriting is integrated. Note that the input clause C is destructively changed
during the reductions.

12.4. Integration of Unit and Non-Unit Rewriting

In addition to my first implementation [WW08] I have integrated unit and non-unit
rewriting into subterm contextual rewriting. Considering the old Algorithm 18 standard
rewriting (line 7), namely unit and non-unit rewriting, was implemented independently
from subterm contextual rewriting (line 8). As a result, the previous implementation
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Algorithm 18: ForwardReduction

Input: clause C, clause set N
1 Rewritten = true;
2 while Rewritten do
3 Rewritten = false;
4 if IsTautology(C) then return true;
5 if ObviousReduction(C) then Rewritten = true;
6 if ForwardSubsumption(C,N) then return true;
7 if Rewriting(C,N) then Rewritten = true;
8 if SubtermContextualRewrting(C,N) then Rewritten = true;

9 end
10 return (C);

searches the index structure for finding appropriate standard rewriting candidates and
then searches the index again for finding candidates for subterm contextual rewriting.
In order to save queries to the index and side condition checks, the new procedure
(Algorithm 19) contains nested unit and non-unit rewriting.

Algorithm 19: SubtermContextualRewriting

Input: clause C[u[u′] ≈ v], clause set N
1 foreach (s, σ) ∈ generalSDT (N, u′) do
2 Lits = LiteralsContainingTerm(s);
3 foreach (s ≈ t) ∈ Lits s.t. sσ � tσ do
4 D = LiteralOwningClause(s ≈ t);
5 if IsUnit(C) ∧ IsUnit(Dσ) then
6 return C[u[tσ] ≈ v];
7 else if SubsumesBasic(C,Dσ) then
8 return C[u[tσ] ≈ v];
9 else if u[sσ] ≈ v � sσ ≈ tσ ∧

10 sσ strictly maximal term in Dσ ∧
11 ∀A ∈ Ante(Dσ) GroundSubtermRedundant(Γ→ A,N) ∧
12 ∀A ∈ Succ(Dσ) GroundSubtermRedundant(A→ ∆, N)
13 then
14 return C[u[tσ] ≈ v]
15

16 end

17 end

The procedure IsUnit (line 5) checks if the clause given as argument contains exactly
one literal. If both C and Dσ are unit clauses then C can be rewritten. SubsumesBasic
(line 7) checks if the literals of C except literal u[u′] ≈ v subsume all literals ofDσ except
literal sσ ≈ tσ. Analogously, SubtermContextualGroundRewriting (Algorithm 17) is
extended by unit and non-unit rewriting.
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The integration of unit and non-unit rewriting into subterm contextual rewriting poten-
tially changes the proof search strategy because clauses are reduced in different order.
Concerning Algorithm 18 rewriting (line 7) is performed on an input clause C be-
fore subterm contextual rewriting. The procedure implementing rewriting reduces the
clause C using all clauses of N . If no further reduction with rewriting is possible then
subterm contextual rewriting reduces C using N . After integrating standard rewriting
into subterm contextual rewriting this is done in an interleaved way. The clause set
N is processed only once. Each time a candidate clause is retrieved, the procedure
checks if standard rewriting is possible. If it is not possible then it immediately checks
whether subterm contextual rewriting is possible. This potentially changes the proof
search strategy, because the clauses are reduced in a different order.

12.5. Fault Caching

Testing whether a term can be rewritten using subterm contextual rewriting might
cause to perform many procedure calls because of the mutual recursive structure of the
side conditions. To memorize terms that have been identified not to be reducible saves
a lot of computation.

First, the new algorithm implementing subterm contextual ground rewriting, queries
the cache each time a term is considered for rewriting. If the term is in the cache then
this term is not considered for rewriting. If it is not in the cache and neither standard
rewriting nor subterm contextual ground rewriting was possible then the algorithm
inserts it into the cache. Once a term is inserted into the cache it remains there.

The cache operates globally in order to avoid as much computation as possible. This
is an approximation because a term that is not reducible in the context of one clause
might be reducible in the context of another clause. Further, for checking whether a
term is in the fault cache, the implementation considers terms that are generalizations
with respect to variable mappings. Because variables are interpreted as constants the
cache might reject terms that are reducible with another ordering of the variables.
Remember that variables are interpreted as Skolem constants. The fault cache is also
compatible with splitting [Wei01]. If a term is inserted into the cache in a split branch
that is not valid anymore, it does not produce wrong results because the cache is purely
negative, i.e., it only excludes terms that could be possibly rewritten. As a consequence,
this approach loses possible applications of a contextual rewriting step. Storing also
terms that can be reduced would not work because if a term could be identified to
be reducible in a split branch then this term does not have to be reducible in another
branch. In this case backtracking updates of splitting have to consider cached clauses.
Similarly, if a term is reducible in the context of one clause with contextual rewriting,
this does not have to be the case in the context of another clause. However, the results
in Chapter 13 show that this heuristic performs well on practical instances.

The cache itself is realized via a term index because this provides all the required
functionality for storing and querying for terms. Furthermore, Spass already provides
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this data structure via substitution trees as explained above. Substitution trees return
for a query term a generalization together with the respective substitution. Assume the
check if a term t is already in the fault cache. If the substitution tree returns a term t′

and a substitution σ then t′σ = t. If σ substitutes only variables of t′ by variables then
t is not subterm ground redundant if the same context is considered.

12.6. Context of Side Conditions

The current implementation of subterm contextual rewriting (Algorithm 19) does cur-
rently not consider the side condition as context; it only considers the clause set N .
Consider the side conditions of subterm contextual rewriting which have the following
form:

NDστ
Cτ |= (Γ→ ∆)τ. (12.1)

This is equivalent to the following reasoning problem:

NDστ
Cτ ∪ {Γτ} |= ∆τ. (12.2)

Consequently, lines 11–12 of Algorithm 19 and lines 8–9 of Algorithm 17 could be
adapted as follows, respectively.

∀A ∈ Ante(Dσ)GroundSubtermRedundant(→ A,N ∪ {→ Γ}) (12.3)

∀A ∈ Succ(Dσ)GroundSubtermRedundant(→ ∆, N ∪ {→ A}) (12.4)

This is currently not implemented, because some additional investigation needs to be
done in order to find efficient methods to maintain the insertion and deletion of the
context which are feasible for application on practical problems.



13. Results

This chapter evaluates subterm contextual rewriting on two different applications. The
first subsection 13.1 consecutively evaluates the three different variants of the imple-
mentation of subterm contextual rewriting on the TPTP. The second subsection depicts
its application by continuing the introductory example.

13.1. Results on the TPTP

This section evaluates the implementations of subterm contextual rewriting in Spass
by comparing it to the current standard configuration of Spass.

As test samples, I used the problems of the TPTP 3.2.0 [SS98] which is a library con-
sisting of 8984 problems for testing automated theorem proving systems. The reference
run is Spass version 3.1 that is version 3.0 extended by some bug fixes with default
configuration. For the sample runs I have integrated subterm contextual rewriting and
the respective improvements in this version of Spass. All sample runs were performed
with Spass options set to -RFRew=4 -RBRew=3 -RTaut=2 . This means that both
subterm contextual rewriting and subterm contextual literal elimination are activated
for forward rewriting, subterm contextual rewriting is activated for backward reduc-
tions and semantic tautology checks are activated. The hardware setup consisted of
Opteron nodes running at speed of 2.4 GHz equipped with 4 GB RAM for each node.
For the sample run as well as for the reference run the time limit was set to 300 seconds
for each problem.

The problems of the TPTP are ranked from 0.00 to 1.00 indicating their level of dif-
ficulty. Basically, the value expresses how many of the current existing provers have
been able to solve a particular problem. This means that problems with rating 1.00
have not been solved by any prover so far. For further details please consider [SS01].
The evaluation in this section compares Spass containing the new improvements to the
original Spass with respect to the different rankings of problems. All proofs that Spass
with subterm contextual rewriting could find additionally were proof-checked.

First consider the implementation of subterm contextual rewriting and subterm contex-
tual ground rewriting without integrated unit and non-unit rewriting and without fault
caching. The results of running Spass containing this implementation are depicted in
Table 13.1. This version found 85 additional proofs and lost 143 proofs compared to
the run without subterm contextual rewriting if considering all problems. If only prob-
lems with rank greater then 0.65 are considered then Table 13.1 shows that subterm
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threshold lost won

0.00 143 85

0.50 80 69

0.65 48 61

0.80 3 42

0.90 0 21

1.00 0 5

Table 13.1.: Subterm Contextual rewriting, 300 seconds time limit

contextual rewriting solves more problems than it loses. The higher the rank the better
are the results of subterm contextual rewriting compared to the reference version. If
the threshold is greater than 0.9, Spass with subterm contextual rewriting found 21
additional proofs and lost none. It even could solve five additional problems (problems
with ranking 1.00).

At first, it was not clear why subterm contextual rewriting lost so many easy problems.
Then by inspecting some of the lost problems two reasons could be identified. First,
the actual proof found by the standard version of Spass got lost through a subterm
contextual rewriting application resulting in a different exploration of the search space.
Second, a call to a contextual rewriting procedure took so long that Spass did not
finish within the time limit although the reference run terminated within milliseconds.
Therefore, I improved the implementation of subterm contextual rewriting and subterm
contextual ground rewriting, along the lines of Chapter 12, by integrating unit and
non-unit rewriting into the procedure of subterm contextual rewriting and subterm
contextual ground rewriting. This leads to the following section where the improved
variant is evaluated.

13.1.1. Integrated Unit and Non-Unit Rewriting

The integration of unit and non-unit rewriting into the implementation of subterm
contextual rewriting and subterm contextual ground rewriting improved the results
significantly. Although more problems were lost than before more could be additionally
solved. This improvement narrowed the difference between solved and lost problems
from 58 to 33. Table 13.2 depicts the results.

Considering all problems the version with integrated unit and non-unit rewriting found
152 additional proofs and lost 119. It still solves hard problems whereas it is able to
solve more easy ones.
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threshold lost won

0.0 152 119

0.5 88 71

0.65 51 62

0.8 4 36

0.9 0 20

1.0 0 5

Table 13.2.: Integrated Unit and Non-Unit Rewriting, 300 seconds time limit

13.1.2. Fault Caching

After additionally integrating the fault cache in the subterm contextual ground rewrit-
ing procedure, the results further improved as Table 13.3 depicts. Spass found 132
additional problems whereas it only lost 67. This implementation improved much on
the easy problems but could also solve new difficult problems. Even one additional
problem that has not been solved before (ranking 1.00).

threshold lost won

0.0 67 132

0.5 43 81

0.65 23 71

0.8 3 40

0.9 0 22

1.0 0 6

Table 13.3.: Subterm Contextual Rewriting with Caching, 300 seconds time limit

The following table compares Spass with subterm contextual rewriting and all improve-
ments with a time limit of 900 seconds to the reference run. As you can see almost half
of the 67 lost problems could be regained by increasing the time limit.

The six new problems that Spass with subterm contextual rewriting could solve are all
from the software model checking category of the TPTP. The problems are: SWC308+1,
SWC329+1, SWC345+1, SWC342+1, SWC261+1, SWC335+1. This is not a surprise
as subterm contextual rewriting can for example employ conditional access function
definitions for reduction. For example, a list element access function that first checks
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threshold lost won

0.0 38 190

0.5 23 99

0.65 7 83

0.8 3 40

0.9 0 22

1.0 0 6

Table 13.4.: Subterm Contextual Rewriting with Caching, 900 sec run time

for emptiness is perfectly matched by the subterm contextual rewriting rule.

Although potentially deciding more satisfiable problems, the implementation of subterm
contextual rewriting did not improve on satisfiable problems on the TPTP. The first
implementation lost seven problems and did not terminate on problems in the time
limit where the reference version did. The implementation integrating unit and non-
unit rewriting even lost eight problems. But also for satisfiability problems it turned
out that the fault cache is useful because the version containing the fault cache only
lost one problem. Running the version with caching and a time limit of 900 seconds
still lost this particular problem but additionally terminated on three problems. This
is surprising because the example from Chapter 10 shows that subterm contextual
rewriting is capable of increasing the number of problems on which Spass can terminate.
An explanation may be that the TPTP version 3.2.0 does not contain such problems.

13.2. Application to the Example from the Introduction

The following depicts the application of subterm contextual ground rewriting on the
introductory example in detail. Therewith, the example shows that superposition to-
gether with the instance of contextual rewriting presented in this thesis, terminates on
a problem on which the superposition calculus alone does not terminate; Spass with
subterm contextual rewriting is able to saturate the clause set from Chapter 10 whereas
Spass without subterm contextual rewriting is not. Recall that clause 10.9 could be
reduced with clause 10.7 using contextual rewriting, in particular subterm contextual
rewriting, if the side conditions are fulfilled. The ground clauses

i(x1) ≈ b, i(x3) ≈ b, i(x2) ≈ b,
q(y1) ≈ b, b ≈ a→ i(x1) ≈ b

(13.1)

i(x1) ≈ b, i(x3) ≈ b, i(x2) ≈ b,q(y1) ≈ b,
b ≈ a→ q(f(x2, r(x3, y1))) ≈ b

(13.2)
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must be entailed by clauses from NC . Clause 8 is a tautology whereas clause 9 can be
rewritten with clause 3 to

i(x1) ≈ b, i(x3) ≈ b, i(x2) ≈ b,
q(y1) ≈ b, a ≈ b→ a ≈ b

(13.3)

using subterm contextual ground rewriting if in addition the clauses

i(x1) ≈ b, i(x3) ≈ b, i(x2) ≈ b,
q(y1) ≈ b, a ≈ b→ i(x2) ≈ b

(13.4)

i(x1) ≈ b, i(x3) ≈ b, i(x2) ≈ b,q(y1) ≈ b,
a ≈ b→ q(r(x3, y1)))) ≈ b

(13.5)

are also entailed by clauses fromNC . Clause 13.4 is a syntactic tautology and clause 13.5
is subsumed by clause 10.6.





14. Computing in Minimal Models

If all clauses of a given clause set N are universally reductive, then it is decidable
whether a ground equation is valid in the minimal model NI of N [GS93]. This chapter
proves that subterm contextual rewriting is a decision procedure for ground clauses in
this context.

First, the minimal model NI of N with respect to set inclusion is defined. A rewrite
relation R is defined from a ground clause set N by induction over the clause ordering
� as follows. Suppose EC′ and RC′ have been defined for a ground clause C with
C � C ′. Then

RC =
⋃

C � C′

EC′

Further, if C = Γ→ ∆, s ≈ t of a clause in N such that (i) C is reductive for s ≈ t (ii)
s is irreducible by RC , (iii) Γ ⊂ R∗C and (iv)∆ ∩R∗C = ∅ then

EC = {s ≈ t}

otherwise EC = ∅. R∗C is the transitive, reflexive closure of RC . The rewrite system R
is defined as R =

⋃
C EC .

For a non-ground clause set N , NI is the above model with respect to all ground
instances of all clauses from N .

Lemma 91. [GS93] Let N be a saturated, finite and universally reductive set of clauses.
Then, it is decidable whether a ground equation s ≈ t is valid in the minimal model NI .

Following [GS93], if N is a saturated, finite and universally reductive set of clauses and
s ≈ t is ground, then deciding whether s ≈ t is valid in NI is equivalent to deciding
s ≈ t ∈ R∗. More precisely, if N is a saturated, finite and universally reductive set of
clauses then the construction of R provides a minimal model NI for N . For deciding
whether s ≈ t is valid in N , s and t have to be rewritten using R to their normal forms
and can then be checked for equality.

The sequel shows that whenever a rewriting step on s ≈ t is possible with respect to
R then subterm contextual rewriting with respect to the clause set N can also perform
this step.

In order to apply a subterm contextual rewriting step, the ordering restrictions have
to be fulfilled. Therefore, the equation s ≈ t can equivalently be transformed into the
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clause top ≈ top → s ≈ t such that top is the greatest symbol in the signature. This
is also used in [GS93] for applying general contextual rewriting as a decision procedure
for s ≈ t. Additionally, condition 2 of Definition 87 has to be changed to

u[sσ] ≈ v � sσ ≈ tσ or top ≈ top ∈ C ′

This is an approximation of condition 2 of general contextual rewriting like condition 2
of Definition 87. Consequently, adapting condition 2 does not change completeness.

Lemma 92. Let N be a saturated, finite and universally reductive set of clauses. Sub-
term contextual rewriting can decide whether a ground equation s ≈ t is valid in the
minimal model NI .

Proof:
First, equivalently transform s ≈ t to the clause C = top ≈ top→ s ≈ t. By Lemma 91
s ≈ t is decidable using R. If there is a relation l ≈ r ∈ R that can rewrite s or t, then
there is a ground instance D = Γ → ∆, l ≈ r of a clause in N producing l ≈ r, i.e.
D is reductive. In order to perform an actual subterm contextual rewriting step on C
using D, the side conditions have to be fulfilled.

1. D is universally reductive for l ≈ r and, therefore, lσ is ground and � can be
decided.

2. The adapted condition holds because top ≈ top ∈ C.

3. Condition 3 requires that top ≈ top → s′ ≈ t′ is ground subterm redundant for
s′ ≈ t′ in Γ and clauses from NC . This is a strictly smaller problem (with respect
to �) than s ≈ t and therefore, together with an analogous lemma for subterm
contextual ground rewriting, follows inductively.

4. Condition 4 requires that s′ ≈ t′ → is ground subterm redundant for s′ ≈ t′ in ∆
and clauses from NC . This is a strictly smaller problem (with respect to �) than
s ≈ t and therefore, together with an analogous lemma for subterm contextual
ground rewriting, follows inductively.

Due to the previous lemma, the validity of ground literals in minimal models can be
decided with subterm contextual rewriting. As a consequence, subterm contextual
rewriting can also decide the validity of ground clauses in minimal models.



15. Conclusion

In summary, contextual rewriting is costly but it helps solving difficult problems. It
actually gains more problems than it loses and is able to solve many difficult problems.
In addition, it is a decision procedure for ground equations in the minimal model of
a universally reductive equational theory. The implementation described in this thesis
and used for the experiments is integrated into Spass version 3.5 and can be obtained
from the Spass homepage (http://spass-prover.org/).





Part III.

Summary





16. Summary

The complexity of a set of first-order formulas results from its size and from the com-
plexity of the problem described by its formulas. In this thesis, I have advanced super-
position based automated theorem proving by accomplishing two goals. First, I have
developed decision procedures for ontologies that consist of several million formulas.
These procedures decide the satisfiability of ontologies and answer complex queries
containing alternating quantifiers with respect to minimal model semantics. Second, I
have developed a powerful reduction rule for complex, particularly undecidable, first-
order reasoning problems. This new reduction rule enables superposition to solve more
complex problems, and it extends the number of problems for which superposition is a
decision procedure.

Decision Procedures for Ontologies

In this thesis, I have presented the first superposition based reasoning procedure for
efficiently deciding the satisfiability of ontologies that consist of several million axioms
from BSH-Y2. The set BSH-Y2 is a subset of the Bernays–Schönfinkel Horn frag-
ment with equality. It is able to represent the YAGO ontology as well as large parts
of the ontologies SUMO (SUMO-Y2) and CYC (CYC-Y2). In general, verifying the
satisfiability in the Bernays–Schönfinkel Horn fragment is EXPTIME complete.

Additionally, I have developed the first efficient, sound, and complete reasoning proce-
dure that decides the entailment of complex formulas, which contain arbitrary quantifier
alternations, with respect to minimal model semantics in ontologies with several million
formulas. Because minimal model reasoning is beyond standard first-order reasoning, I
have developed a sophisticated query answering procedure based on a finite quantifier
elimination algorithm.

The index, which stores and manages the formulas occurring in a reasoning problem, is
the central data structure for successful automated theorem proving. This is because it
is accessed several thousand times during one reasoning loop. Consequently, in order to
successfully reason about ontologies consisting of several million clauses, sophisticated
index data structures are necessary. For this reason, I have developed a new index
called filtered context tree. The filtered context tree invents a filtering technique that
discriminates the symbols occurring in an ontology. The filtering excludes whole parts of
the context tree from the search space of a retrieval operation. As a result, the filtering
provides efficient implementations of the retrieval operations for context trees. The
invention of this filtering technique was pivotal for successfully reason about ontologies
because Spass, without the new index, was already unable to load the YAGO ontology.



148 CHAPTER 16. SUMMARY

I have implemented the new procedures together with the new indexing in Spass.
The resulting version is called Spass–Y2. It decides the consistency of YAGO within
16 minutes, the consistency of SUMO-Y2 in 53 minutes, and it finds inconsistencies
of CYC-Y2 within one minute. The evaluation in this work shows that Spass-Y2 is
currently the only system that can decide the satisfiability of all three ontologies. As
a consequence, Spass-Y2 is the first tool for efficiently deciding the satisfiability of
ontologies that consist of several million clauses.

Spass-Y2 is also the first superposition based query answering tool that formally, com-
pletely, and efficiently answers complex first-order queries containing arbitrary quan-
tifier alternations. This procedure answers queries with respect to minimal model se-
mantics, and the experiments have shown that it answers queries within a few seconds.
As a consequence, Spass-Y2 is a practically useful query answering tool.

Reductions for General Automated Theorem Proving

In order to obtain efficient reasoning procedures for complex, particularly undecidable,
first-order problems, sophisticated reductions that keep the search space small are es-
sential. For this reason, I have developed subterm contextual rewriting. Subterm con-
textual rewriting is a decidable instance of contextual rewriting which is undecidable,
in general.

With the help of subterm contextual rewriting, many difficult problems that could not
be solved before, can be solved now. Furthermore, it extends the number of problems
for which superposition is a decision procedure. I have also shown that subterm con-
textual rewriting is a decision procedure for ground equations in the minimal model
of a universally reductive equational theory. Subterm contextual rewriting is the first
effective decision procedure for this problem.
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[DLP94] Didier Dubois, Jérôme Lang, and Henri Prade. Automated reasoning us-
ing possibilistic logic: Semantics, belief revision, and variable certainty
weights. IEEE Trans. Knowl. Data Eng., 6(1):64–71, 1994.

[ECD+04] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria
Popescu, Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander
Yates. Web-scale information extraction in knowitall. In Proceedings of the
13th conference on World Wide Web - WWW ’04, page 100, New York,
NY, USA, 2004.

[Fel98] Christiane Fellbaum. WordNet: an electronic lexical database. MIT Press,
1998.
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Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, IJCAR, vol-
ume 2083 of Lecture Notes in Computer Science, pages 242–256. Springer,
2001.

[GNN04] Harald Ganzinger, Robert Nieuwenhuis, and Pilar Nivela. Fast term in-
dexing with coded context trees. J. Autom. Reasoning, 32(2):103–120,
2004.

[Gra96] Peter Graf. Term Indexing, volume 1053 of Lecture Notes in Computer
Science. Springer, 1996.

[Gru95] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. Int. J. Hum.-Comput. Stud., 43:907–928, December
1995.



152 Bibliography

[GS93] Harald Ganzinger and Jürgen Stuber. Inductive theorem proving by con-
sistency for first-order clauses. In The Third International Workshop on
Conditional Term Rewriting Systems, Extended Abstracts, pages 130–135.
Teubner Verlag, 1993.

[GST07] Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo : A new grounder
for answer set programming. In Chitta Baral, Gerhard Brewka, and John S.
Schlipf, editors, Logic Programming and Nonmonotonic Reasoning, 9th
International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17,
2007, Proceedings, volume 4483 of Lecture Notes in Computer Science,
pages 266–271. Springer, 2007.

[GSTV11] Martin Gebser, Torsten Schaub, Sven Thiele, and Philippe Veber. Detect-
ing inconsistencies in large biological networks with answer set program-
ming. TPLP, 11(2–3):323–360, 2011.
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ing. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Au-
tomated Reasoning, First International Joint Conference, IJCAR 2001,
Siena, Italy, June 18-23, 2001, Proceedings, volume 2083 of LNCS, pages
257–271. Springer, 2001.

[NN93] Pilar Nivela and Robert Nieuwenhuis. Saturation of first-order (con-
strained) clauses with the Saturate system. In Claude Kirchner, edi-
tor, Rewriting Techniques and Applications, 5th International Conference,
RTA-93, volume 690 of Lecture Notes in Computer Science, LNCS, pages
436–440, Montreal, Canada, June 16–18, 1993. Springer.

[NP01a] Ian Niles and Adam Pease. Towards a standard upper ontology. In Pro-
ceedings of the international conference on Formal Ontology in Informa-
tion Systems - Volume 2001, FOIS ’01, pages 2–9, Ogunquit, Maine, USA,
2001. ACM. ACM ID: 505170.

[NP01b] Ian Niles and Adam Pease. Towards a standard upper ontology. In FOIS
’01, pages 2–9, Ogunquit, Maine, USA, 2001. ACM.

[NR01] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem
proving. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, pages 371–443. Elsevier and MIT Press, 2001.

[NW08] Thomas Neumann and Gerhard Weikum. Rdf-3x: a risc-style engine for
rdf. PVLDB, 1(1):647–659, 2008.

[OL80] Ross Overbeek and Ewing Lusk. Data structures and control architecture
for implementation of theorem-proving programs. In Wolfgang Bibel and
Robert Kowalski, editors, 5th Conference on Automated Deduction Les



Bibliography 155

Arcs, France, July 8–11, 1980, volume 87 of Lecture Notes in Computer
Science, pages 232–249. Springer Berlin / Heidelberg, 1980.

[OWL09] W3c owl working group: Owl 2 web ontology language: Document
overview, 2009. W3C Recommendation (October 27, 2009).

[PHP08] A. Philpot, E.H. Hovy, and P. Pante. The omega ontology. In Ontology
and the Lexicon. Cambridge University Press, 2008.

[Pla84] David A. Plaisted. Complete problems in the first-order predicate calculus.
J. Comput. Syst. Sci., 29(1):8–35, 1984.

[PS07] Adam Pease and Geoff Sutcliffe. First order reasoning on a large ontology.
In Geoff Sutcliffe, Josef Urban, and Stephan Schulz, editors, ESARLT,
volume 257 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[PS08] Simone Paolo Ponzetto and Michael Strube. WikiTaxonomy: a large scale
knowledge resource. In ECAI, pages 751–752, 2008.

[PSST10] Adam Pease, Geoff Sutcliffe, Nick Siegel, and Steven Trac. Large theory
reasoning with sumo at casc. AI Commun., 23:137–144, April 2010.

[PW07] Björn Pelzer and Christoph Wernhard. System description: E– KRHyper.
In Frank Pfenning, editor, Automated Deduction – CADE–21, volume 4603
of Lecture Notes in Computer Science, pages 508–513. Springer Berlin /
Heidelberg, 2007.

[Rei77a] Raymond Reiter. Deductive Question-Answering on relational data bases.
In Logic and Data Bases, pages 149–177, 1977.

[Rei77b] Raymond Reiter. On closed world data bases. In Logic and Data Bases,
pages 55–76, 1977.

[RR00] Jun Rao and Kenneth A. Ross. Making b+-trees cache conscious in main
memory. In Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein,
editors, SIGMOD Conference, pages 475–486. ACM, 2000.

[RRG05] Deepak Ramachandran, Pace Reagan, and Keith Goolsbey. First-orderized
researchcyc: Expressivity and efficiency in a common-sense ontology. In
In Papers from the AAAI Workshop on Contexts and Ontologies: Theory,
Practice and Applications, 2005.

[RSV01] I. V. Ramakrishnan, R. C. Sekar, and Andrei Voronkov. Term indexing.
In Handbook of Automated Reasoning, pages 1853–1964. 2001.

[RV01] Alexandre Riazanov and Andrei Voronkov. Vampire 1.1. In Rajeev Goré,
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