
Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

SELECTED TOPICS IN ALGORITHMIC

GEOMETRY

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Victor Manuel Alvarez Amaya

Saarbrücken, 2012

Dean of the Faculty of Natural Sciences Prof. Dr. Mark Groves
and Technology I at Saarland University

Colloquium 20 December 2012

Examination Board

Supervisor and first reviewer Prof. Dr. Raimund Seidel
Chair of Theoretical Computer Science
Saarland University
Saarbrücken, Germany

Second reviewer Prof. Dr. Oswin Aichholzer
Institute for Software Technology
Graz University of Technology
Graz, Austria

Chairman Prof. Dr. Dr. h.c. mult. Reinhard Wilhelm
Chair for Programming Languages and
Compiler Construction
Saarland University
Saarbrücken, Germany

Research Assistant Dr. Tobias Mömke
Chair of Computational Complexity
Saarland University
Saarbrücken, Germany

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus
anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher
Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, 26. September 2012

Victor Manuel Alvarez Amaya

ABSTRACT

Let P ⊂ R2 be a set of n points with no three points on a line. A crossing-free structure
on P is a straight-edge plane graph whose vertex set is P.

In this thesis we consider problems of two different topics in the area of algorithmic
geometry: Geometry using Steiner points, and counting algorithms. These topics have
P and certain crossing-free structures on P as our primary objects of study. Our results
can be roughly described as follows:

� Given a k-coloring of P, with k � 3 colors, we will show how to construct a set
of Steiner points S = S(P) such that a k-colored quadrangulation can always be
constructed on P∪S. The bound we show of |S| significantly improves on previously
known results.

� We also show how to construct a set S = S(P) of Steiner points such that a
triangulation of P ∪ S having all its vertices of even (odd) degree can always be
constructed. We show that |S| � n

3
+ c, where c is a constant. We also look at

other variants of this problem.

� With respect to counting algorithms, we show new algorithms for counting triangu-
lations, pseudo-triangulations, crossing-free matchings and crossing-free spanning
cycles on P. Our algorithms are simple and allow good analysis of their running
times. These algorithms significantly improve over previously known results. We
also show an algorithm that counts triangulations approximately, and a hardness
result of a particular instance of the problem of counting triangulations exactly.

� We show experiments comparing our algorithms for counting triangulations with
another well-known algorithm that is supposed to be very fast in practice.

ZUSAMMENFASSUNG

Sei P eine Menge von n Punkte in der Ebene, so dass keine drei Punkten auf einer
Geraden liegen. Eine kreuzungsfreie Struktur von P ist ein geradliniger ebener Graph,
der P als Knotenmenge hat.

In dieser Dissertation behandeln wir zwei verschiedene Problemkreise auf dem Ge-
biet der algorithmischen Geometrie: Geometrie mit Steinerpunkten und Anzahl bestim-
mende Algorithmen auf P und auf gewissenen kreuzungsfreien Strukturen von P. Unsere
Resultate können wie folgt beschrieben werden:

� Gegeben sei eine k-Färbung von P, mit k � 3 Farben. Es wird gezeigt, wie eine
Menge S = S(P) von Steiner Punkten konstruiert werden kann, die die Konstruk-
tion einer k-gefärbten Quadrangulierung von P∪S ermöglicht. Die von uns gezeigte
Schranke für |S| verbessert die bisher bekannte Schranke.

� Gezeigt wird auch die Konstruktion einer Menge S = S(P) von Steiner Punkten,
so dass eine Triangulierung von P ∪ S konstruiert werden kann, bei der der Grad
aller Knoten gerade (ungerade) ist. Wir zeigen, dass |S| � n

3 +c möglich ist, wobei
c eine Konstante ist. Wir betrachten auch andere Varianten dieses Problems.

� Was die Anzahl bestimmenden Algorithmen betrifft, zeigen wir neue Algorithmen,
um Triangulierungen, Pseudotriangulierungen, kreuzungsfreie Matchings und kreu-
zungsfreie aufspannende Zyklen von P zu zählen. Unsere Algorithmen sind einfach
und lassen eine gute Analyse der Laufzeiten zu. Diese neue Algorithmen verbessern
wesentlich die bisherigen Ergebnisse. Weiter zeigen wir einen Algorithmus, der Tri-
angulierungen approximativ zählt, und bestimmen die Komplexitätsklasse einer
bestimmten Variante des Problems des exakten Zählens von Triangulierungen.

� Wir zeigen Experimente, die unsere triangulierungszählenden Algorithmen mit
einem anderen bekannten Algorithmus vergleichen, der in der Praxis als besonders
schnell bekannt ist.

ACKNOWLEDGMENT

I am profoundly grateful to Raimund Seidel for the time he devoted to me, for his sup-
port, and for his patience while doing research together. His comments and suggestions
always enriched my knowledge and made this work better. I am indebted to him for
giving me the chance to find my own path.

I would like to thank Oswin Aichholzer for agreeing to be on my thesis committee
and for the wonderful conversations about the topics presented in this thesis that we
had the chance to have from time to time.

Many of the results found in this thesis are product of the work I did with Karl
Bringmann, Radu Curticapean, and Saurabh Ray. I would like to thank them for the
amazing time we had while doing research on triangulations. I learned a lot from them.

I would also like to thank the Deutsche Forschungsgemeinschaft (DFG) for the schol-
arship I received during the first two-and-a-half years of my PhD.

Finally, I would like to acknowledge additional financial support from CONACYT-
DAAD of México.

To my family and friends.

To Juliane.

CONTENTS

Contents xiii

1 Introduction 1
1.1 Thesis-wide definitions . 4
1.2 Geometry using Steiner points . 7

1.2.1 Colored quadrangulations with Steiner points – Chapter 2 8
1.2.2 Parity-constrained triangulations with Steiner points – Chapter 3 . . 9

1.3 Counting algorithms . 10
1.3.1 A sweep line algorithm for counting triangulations and

pseudo-triangulations – Chapter 4 11
1.3.2 Counting triangulations and other crossing-free structures via onion

layers – Chapter 5 . 12
1.3.3 Miscellaneous results on counting triangulations – Chapter 6 14

1.4 A quick word on the model of computation 14

2 Colored Quadrangulations with Steiner Points 17
2.1 Our contribution . 19

2.2 Preliminaries . 19
2.3 Proof of Theorem 2.2 . 21

2.4 Closing remarks and conclusions . 27
2.4.1 Conclusions . 28

3 Parity-constrained Triangulations with Steiner points 29
3.1 Our contribution . 31
3.2 Pre-processing of P . 32

3.3 Even and pseudo-even triangulations . 33

xiv Contents

3.3.1 Extension to even triangulations . 40

3.4 Pseudo-odd and odd triangulations . 44
3.4.1 Extension to odd triangulations . 49

3.5 Conclusions . 50

4 A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations 53
4.1 Our contribution . 55

4.1.1 The result on counting triangulations 55
4.1.2 The result on counting pseudo-triangulations 57

4.2 Counting triangulations . 58
4.2.1 The sweep line algorithm . 64
4.2.2 On the number of triangulation paths 71

4.3 Counting pseudo-triangulations . 75

4.4 Discussion and conclusions . 87
4.4.1 Conclusions . 88

5 Counting Triangulations and other Crossing-free Structures via Onion Layers 91
5.1 Our contribution . 92

5.1.1 The new result on counting triangulations 92
5.1.2 The results on counting other crossing-free structures 93

5.2 A general framework for counting crossing-free structures 93

5.3 Counting triangulations using the onion layers 94
5.3.1 The algorithm . 95
5.3.2 Number of vertex-disjoint triples of descending paths 98

5.4 Counting other crossing-free structures . 99
5.4.1 Counting matchings and spanning cycles 99
5.4.2 Triangular paths . 100

5.5 Conclusions . 103

6 Miscellaneous Results on Counting Triangulations 105
6.1 Our contribution . 105

6.2 Counting triangulations approximately . 106
6.2.1 Quality of approximation . 108
6.2.2 Running time . 110

6.3 The hardness result . 111
6.3.1 Preliminaries . 112
6.3.2 Construction and intuition . 112
6.3.3 Defining the gadgets . 114
6.3.4 Formal proofs . 117

Contents xv

6.4 Experimental results on counting triangulations 119
6.5 Conclusions . 122

List of Figures 129

Bibliography 135

CHAPTER 1

INTRODUCTION

Combinatorial geometry deals with problems that consists of geometric entities, such
as points, lines, polygons, etc., and studies structural problems defined on those geo-
metric entities. Many problems in combinatorial geometry tend to look very innocent,
yet they usually are extremely hard. For example, the following innocent-looking ques-
tion is one of the iconic problems in combinatorial geometry: How many non-equivalent
configurations of points are there on the plane? Probably, in order to make more sense
out of this question we have to explain what do we mean by “non-equivalent”.

Given three points p, q, r ∈ R2, we say that p → q → r do a right turn if the determi-
nant of the matrix

(
rx−px qx−px
ry−py qy−py

)
is positive. They do a left turn if the determinant is

negative, and p, q, r are collinear if the determinant is zero, i.e. no turn. See Figure 1.1.

p

q
r

p

r
q

p

q

r

Figure 1.1 — To the left a right turn. In the middle a left turn. To the right no turn.

2 1. Introduction

We define the orientation of the triple p → q → r as the value of their determinant,
as explain above. Two sets P,Q ⊂ R2 of n � 3 points are equivalent if there is a
bijective map between P and Q such that the orientation of all their triples of points
coincide. In such a case we will say that P and Q have the same order type. Thus,
we say that P,Q are non-equivalent if and only if they have different order types. So,
for example, there is exactly one set of three points on the plane, see to the left in
Figure 1.1, there are exactly two non-equivalent sets of four points, see Figure 1.2, and
in general, there are 2Θ(n log(n)) non-equivalent sets of n points on the plane. So there is
a satisfying answer to the question posed above.I The answer, however, did not come as
easily as we might have expected in the beginning. The question was posed by Jacob E.
Goodman and Richard Pollack in [39] in ’83, although not in exactly this form, and the
satisfying answer came years later after intensive highly non-trivial research, see [41, 40]
and references therein.

Order types are still nowadays a very active topic of research. The literature on
order types is however, and unfortunately, very scattered. We strongly recommend the
literature by J. E. Goodman and R. Pollack, who introduce order types in first place,
and the literature by Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser, who
have done extensive research on order types in the recent years, see [50] for example.

CH(P)

Figure 1.2 —With three points there is exactly one order type (left). With four points there are
exactly two (middle, right). The shown line segments are all the ones that can be
found on each set having endpoints at points of the sets.

Order types are the cornerstones of many problems in combinatorial geometry. Let us
for example ask the following: Given a set P ⊂ R2 of n � 3 points, how many different
maximal cardinality sets of pairwise non-crossingII straight-line segments among the
elements of P are there? See Figure 1.3 for an example of what two different such sets
look like. It is clear that whether two straight-line segments intersect depends solely on
IWhere satisfying means that up to multiplicative constants in the exponent, the bound on the number of
non-equivalent sets of points on the plane is tight.

IITwo straight-line segments are called crossing if and only if their intersection point lies in the strict interior
of at least one of them.

1. Introduction 3

the order type of their endpoints. If they look like in the middle in Figure 1.2, they
intersect if and only if they are the diagonals of the quadrilateral. If they look like the
configuration to the right in Figure 1.2, they never intersect. Thus the number of such
sets of maximal cardinalityIII depends only on the order type of P. Sets of points of the
same order type will always give the same answer, while sets of different order types will
give in general different answers.

CH(P) CH(P)

Figure 1.3 — Two different “triangulations” of the same set of points.

The previous question might also look innocent, but as it turns out, no satisfying
answer has been found to this day, although this problem has been the subject of in-
tensive research in the last 30 years. It is nevertheless known today that the answer lies
somewhere between Ω (2.4n) and O (30n), see [77, 75]. Making the gap tight is what
has cost so far a lot of effort. It is widely believed that the tight answer for the lower
end should be Ω

(√
12

n
)

≈ Ω (3.464n). In [72] the configuration that achieves this
number is presented. It is also believed that the tight answer for the high end should
be way smaller, probably O (15n), or even O (10n). A configuration having Ω (8.65n)

is currently known [33]. This is an extremely challenging problem.

The problem of counting the “triangulations” of P comes also in another flavor. If P
is given, we currently know that its number of triangulations lies somewhere between
Ω (2.4n) and O (30n). Now imagine that we are actually interested in the exact number
produced by P. How do we compute such a number? Well, it turns out that this is also
a very challenging problem that is still not well-understood, and whose background is
also more recent than that of the original question. This variant asks essentially for
algorithmic techniques that can exploit the structure of P to compute such a number.IV

Thus, properly, we enter the realm of what is known as algorithmic geometry.

IIIThese sets are commonly known as triangulations of P. A proper definition will be given later on in the
chapter.

IVSince a formula seems in general out of reach.

4 1. Introduction

The difference between combinatorial geometry and algorithmic geometry could really
be a thin line, but we can safely say that algorithmic geometry is the algorithmic part
of combinatorial geometry.

In this thesis we give our small contribution to the area of algorithmic geometry. We
show results in different subjects of the area, one of them being the algorithmic version
of the problem of counting “triangulations” just explained.

Our thesis contains most of our research work between the end of ���� and beginning
of ����. Part of this work has been presented at conferences, mostly in preliminary
forms, see [8, 10, 9].

For excellent, and general, references on the areas of combinatorial and algorithmic
geometry, we encourage the reader to take a look at the following books: Algorithms in
Combinatorial Geometry by Herbert Edelsbrunner, see [34]. Combinatorial Geometry
by János Pach and Pankaj K. Agarwal, see [63]. Computational Geometry – An Intro-
duction by Franco P. Preparata and Michael I. Shamos, see [67]. Algorithmic Geometry
by Jean-Daniel Boissonnat and Mariette Yvinec, see [18]. Computational Geometry:
Algorithms and Applications by Mark de Berg, Marc van Kreveld, Mark Overmars and
Otfried Schwarzkopf, see [27].

With respect to the way the thesis is written, we have chosen to write each chapter as
self-contained as possible. This means that each chapter contains thorough introductions
about the topic therein studied, and also its conclusions. All thesis-wide definitions and
notation are stated in this chapter. Thus, upon reading this chapter, the reader should
feel free to jump to any other chapter as he/she sees fit.

We have divided the rest of the chapter as follows: In § 1.1 we define the basic concepts
that we will use throughout this work. In § 1.2 and § 1.3 we state the topics and results
found in this work. Finally, in § 1.4 we briefly explain the model of computation we
work on.

1.1 Thesis-wide definitions

Definition 1.1 (Simple polygon). A simple polygon P ⊂ R2 is a single closed polygonal
chain that does not intersect itself.

An example of a simple polygon can be seen to the left in Figure 1.4. Example of
objects that are no simple polygons can also be seen in Figure 1.4.

The corners of a polygon P are called its vertices, and the straight-line segments
connecting vertices are called the edges of P.

1.1. Thesis-wide definitions 5

P

Figure 1.4 — A simple polygon P to the left, whose interior is shown in gray. The other three
objects are not simple polygons.

It can be proven, using the Jordan curve Theorem, that a simple polygon P divides the
plane into two connected regions, the interior and exterior of P. Thus P is topologically
equivalent to a circle, and its interior is topologically equivalent to a disk.

If a simple polygon P has n vertices, then we will say that P has size n. Alternatively,
we can also say that P is an n-gon. From now on, unless we say it otherwise, we will
always assume that a polygon is simple.

Definition 1.2 (Convex polygon). A convex polygon is a simple polygon whose interior
is a convex set.

Definition 1.3 (Convex hull). Let P be a non-empty set of points on the plane. The
convex hull of P, denoted by CH(P), is the smallest convex polygon containing P.

CH(P)

Figure 1.5 — The convex hull CH(P) of P.

It is easy to prove that the vertices of CH(P) are elements of P. See Figure 1.5. We
will alternatively use extreme points of P to refer to vertices of CH(P). All other points
of P will be called non-extreme or interior.

6 1. Introduction

Definition 1.4 (Plane graph). Given a set of points P, a plane graph G of P is a geometric
construction on the plane using the points of P, called the vertices of G, and straight-line
segments joining pairs of vertices of G, called the edges of G, such that the following
properties hold:

� No vertex of G lies in the strict interior of an edge of G.

� For every pair of vertices of G there is at most one edge of G connecting them.

� The vertices of G are the only intersection points among the edges of G.

To match terminology in the literature, we will alternatively say that a plane graph
with vertex set P is also a crossing-free structure of P, or defined on P.

Definition 1.5 (Face of a plane graph). Given a plane graph G with vertex set P, we
define the faces of G to be the connected components of the complement of G. The
unbounded connected component will be called the outer, or unbounded face of G.
All other connected components will be called the inner, or bounded faces of G. See
Figure 1.6.

f2

f1

f3

Figure 1.6 — A plane graph with three faces. Face f3 is the unbounded face.

Given a set P of n � 3 points, we will say that P is in general position if and only if
no straight-line contains more than two points of P. So, from now on, unless otherwise
stated, set P will always be in general position. Also, given a crossing-free structure S

of P, we define the degree of vertex v ∈ P in S as the number of edges of S having v as
one endpoint. If S is clear from the context, we will just talk about the degree of v.

The topics of study in this thesis, and thus also the results, can essentially be divided
into two areas: Geometry using Steiner points, and counting algorithms. Let us see each
one in turn.

1.2. Geometry using Steiner points 7

1.2 Geometry using Steiner points

Imagine that we have a certain problem that we want to solve on a given set P of n

points on the plane. Say for example that the problem at hand is the computation of
a minimum spanning tree of P, or MST for short. A spanning tree T = T(P) of P is a
geometric construction that connects all points of P by straight-line segments, called the
edges of T , and such that between any pair of points p, q ∈ P, there is exactly one path
that follows the edges of T . An example of an spanning tree can be seen in Figure 1.7.

p

q

Figure 1.7 — P is the set of black points. A spanning tree T of P is shown with black lines.
Observe that for any p, q ∈ P, there is exactly one path between them that follows
the edges of T . In addition, tree T as shown is a plane graph.

It is easy to observe that for any given non-empty set of points P on the plane, a
spanning tree can always be constructed, just take one point p ∈ P and join it to all
other points of P \ {p} by straight-line segments. So P by itself is a set of points, but
along a spanning tree, set P becomes a set of vertices. In reality, having edges present
in a geometric construction we can use the term “point” and “vertex” interchangeably.

If P is given on a metric space, then we can talk about a minimum spanning tree of
P, that is, a spanning tree where the sum of the lengths of its edges is minimized under
the given metric. This sum will be called the “weight” of the tree.

There are, by now, many good algorithmsV that can compute an MST of P, having
set an underlying metric. This is only one of the traditional problems in algorithmic
geometry. Now, observe that the way a spanning tree is defined is very natural, yet
somewhat restrictive. That is, the edges of the tree must connect pairs of points of P.
We could add a little bit more of freedom to this definition and say that the edges of
the tree do not necessarily have to connect two elements of P, but they can actually
connect any pair of points on the plane, as long as at the end we obtain a tree having
VThe reader should keep in mind that not all algorithms are created equally. Algorithms are no different than
many other things in life, there are some better than others.

8 1. Introduction

P as a subset of vertices, i.e., if we denote this tree by T∗ = TS(P), and its set of
vertices by V∗ = V(T∗), then P ⊆ V∗ and S = V∗ \ P. This set S of extra points used
to construct T∗ is known in the literature as a set of Steiner points ; named after the
Swiss mathematician Jakob Steiner (�� March ���� – � April ����), and T∗ is known
as a Steiner tree, where P is always clear from context. To the best of our knowledge,
the problem that introduced this terminology is precisely the minimum Steiner tree
problemVI, which as the reader can imagine, ask for the Steiner tree of minimum weight
of a given set of points P in a metric space. It is not hard to verify that in general, given
P, the minimum spanning tree of P, and the minimum Steiner tree are different.

The use of Steiner points has created a paradigm for solving geometric problems. In
the case of the minimum Steiner tree, we are interested in improving (optimize) the
weight of the a minimum spanning tree of P. There is however another purpose we
can use Steiner points for. Imagine that we would like to construct certain geometric
structure S on P that, depending on P, might or might not exist; this is a very common
situation in geometry. We could then try to come up with a method to construct a set
of Steiner points S = S(P) such that S can always be constructed on P ∪ S. In such a
case, most of the effort is put on making S as small as possible, while keeping CH(P)

intact.

These two ways of using Steiner points have produced many research problems in the
area during the past 30 years. As such, these kinds of problems are also responsible
for interesting construction and searching techniques that tend to be simple, yet very
clever.

The problems studied in Chapters 2 and 3 are the ones related to Steiner points.

1.2.1 Colored quadrangulations with Steiner points – Chapter 2

A quadrangulation of P is a crossing-free structure on P such that the boundary of its
outer face coincides with CH(P), and where all bounded faces are empty quadrilaterals,
i.e., 4-gons. Now suppose that every point of P is colored with exactly one of k � 2

available colors. We will say that a quadrangulation of P is k-colored if and only if every
edge of the quadrangulation joins vertices of different color.

In Chapter 2 we will see that not all k-colored sets of points admit a k-colored quad-
rangulation. We will show that if P satisfies some condition for the colors of the ver-
tices of its convex hull, then a k-colored quadrangulation can always be constructed on
P ∪ S, where S = S(P) is a k-colored set of Steiner points of size strictly smaller than

VIAs far as we know, the problem was not posed by Jakob Steiner, and the relation between one and the other
is not completely understood.

1.2. Geometry using Steiner points 9

(16k−2)n+7k−2
39k−6

. We will also argue that there are k-colored sets of points for which the
corresponding k-colored set of Steiner points cannot be smaller than n

3 .

Our result on the upper bound of S significantly improves on a previous result of
S. Kato, R. Mori, and A. Nakamoto. The lower bound is a generalization of the con-
struction shown by this author, T. Sakai, and J. Urrutia in [11] for the particular case
when k = 2.

A preliminary version of this result was presented at the ��th European Workshop on
Computational Geometry (EuroCG ����). This is a joint work with Prof. Atsuhiro
Nakamoto from the Department of Mathematics at Yokohama National University,
Japan.

1.2.2 Parity-constrained triangulations with Steiner points – Chapter 3

A triangulation of P is a crossing-free structure on P such that the boundary of its outer
face coincides with CH(P), and where all bounded faces are empty triangles. We will
say that a triangulation of P is even if and only if the degree of every vertex is an even
number. Similarly, we will say that a triangulation of P is odd if and only if the degree
of every vertex is odd.

In Chapter 3 we will show that there are configurations of points on the plane that
admit neither an even triangulation, nor an odd triangulation. However, we will show
that we can always construct such triangulations adding at most roughly n

3 Steiner
points. Moreover, we will show that if we are interested in triangulations where only the
interior points of P receive all even degree, or all odd degree, then we can achieve those
construction by using at most roughly k

3 Steiner points, where k denotes this time the
number of interior points of P.

The problem attacked in Chapter 3 is the Steiner-point version of a problem studied
in [4] by O. Aichholzer, T. Hackl, M. Hoffmann, A. Pilz, G. Rote, B. Speckmann and
B. Vogtenhuber. There the authors showed, among other results, how to construct
triangulations where at least roughly 2n

3
points of P get even (odd) degree. They also

showed that if the assignment of parities to the elements of P is not uniform, i.e., even
and odd parities are assigned to the elements of P, then there are configurations where
at least roughly n

108
parities cannot be satisfied regardless of the chosen triangulation.

Due to the interesting applications of even (odd) triangulations, as we will see, it is then
attractive to study the Steiner-point version.

A preliminary version of this work was presented at the ��th European Workshop on
Computational Geometry (EuroCG ����).

10 1. Introduction

After Chapters 2 and 3 we will shift to a completely different topic within algorithmic
geometry.

1.3 Counting algorithms

So far we have discussed problems in which a crossing-free structure with certain prop-
erties is to be constructed on a given set of points P. A natural question that can then
be made is: How many of those crossing-free structures can be found on P? Here
we are interested in the exact number produced for P. For example, a classical counting
problem is that of counting the triangulations of a convex polygon, which, to the best of
our knowledge goes back to the Swiss mathematician Leonhard Euler (�	 April ���� – ��

September ����). Euler discovered a method to compute such number of triangulations
but he did not have a formal proof for it. It was many years later, in the late ����’s,
that a closed-form solution was found by Eugène Charles Catalan (�� May ���
 – �

February ���
), a French-Belgian mathematicianVII.

Nowadays the number of triangulations of a convex polygon with n+2 sides is known
as the n-th Catalan number, usually denoted by Cn, and which can be given directly in
terms of binomial coefficients by Cn = 1

n+1

(
2n
n

)
. The sequence of Catalan numbers is

without doubt one of the most popular sequences of natural numbers in combinatorics.
In the book Enumerative Combinatorics: Volume 2 by Richard P. Stanley, see [79], one
can find a list of 66 problems whose solutions are also Catalan numbers. This list of
problems has been continuously updated, and by now, a total of 201 problems related
to Catalan numbers are known. This list can be obtained directly from the website of
Richard P. Stanley.

For a counting problem nothing is more elegant than a closed-form solution, namely,
a formula. Nevertheless, for many counting problems a formula has turned out to be
hard to come by. Let us continue with our running example of counting triangulations.
If P is in convex position we have a formula for its number of triangulations, but if P
has interior points, then things get hard very quickly, to the point that to this day no
efficient method is known that can compute the number of triangulations for arbitrary
P with interior points, let alone the idea of a closed-form solution. We will soon discuss
what we mean by “efficient”.

Thus, our main goal now is to focus on developing techniques that correctly compute
the number of certain geometric structures. Moreover, we want to perform the counting
as fast as possible. Therefore, it is time for us to say something about running times and
“efficiency”. We mentioned before that no “efficient” method is known that can compute

VIIOther solutions were found at the same time, see [64].

1.3. Counting algorithms 11

the number of triangulations for arbitrary P having interior points. We call a counting
algorithm “efficient” if its running time can be expressed as a polynomial in n, the size
of the input set P.

Now, let us denote by FT (P) the class of all triangulations of P. Moving away from “ef-
ficiency”, it is not even known whether triangulations can always be counted considerably
faster than enumerating them, i.e., in time o(|FT (P)|). There are, however, counting
algorithms that experimentally indicate that this is possible, see [2, 70]. Unfortunately
a good formal analysis of those algorithms has been very hard to obtain.

In this thesis we are interested in counting not only triangulations, but also other
kinds of crossing-free structures, which so far have also been quite difficult to count
efficiently.

The topics and results concerning counting algorithms contained in this thesis are the
following:

1.3.1 A sweep line algorithm for counting triangulations and pseudo-triangulations –
Chapter 4

Let P be again a given set of n points on the plane. While triangulations require by now
no introduction, pseudo-triangulations do.

A pseudo-triangle is a simple polygon having exactly three convex vertices, that is,
the internal angle at those vertices is strictly less than π. An example can be seen to
the left in Figure 1.8. A pseudo-triangulation of P is a crossing-free structure on P such
that the boundary of its outer face coincides with CH(P), and where all bounded faces
are pseudo-triangles. A pseudo-triangulation can be seen to the right in Figure 1.8. Let
us denote by FPT (P) the class of all pseudo-triangulations of P.

Figure 1.8 — A pseudo-triangle to the left. The three gray vertices are the three convex vertices.
A pseudo-triangulation of P can be seen to the right.

12 1. Introduction

In [2] and [6] an algorithm for counting triangulations and pseudo-triangulations, re-
spectively, is shown. Both algorithms are based on the divide-and-conquer paradigm,
and both work by finding sub-structures on triangulations and pseudo-triangulations
that allow the problems to be split. These sub-structures are called triangulation paths
for triangulations, or T-paths for short, and zig-zag paths for pseudo-triangulations,
or PT-paths for short. The formal definition of both sub-structures will be given in
Chapter 4. For now we just want to point out that those two algorithms using T-paths
and PT-paths have turned out to be very difficult to analyze, to the point that no good
analysis of the running time of those algorithms has been presented so far. The interest-
ing thing about those algorithms, besides their simplicity, is that they experimentally
indicate that counting can be done in o(|FT (P)|) and o(|FPT (P)|) respectively.

In this chapter we will show two new algorithms, one to compute the number of
triangulations of P, and one to compute the number of pseudo-triangulations of P.
They are also based on T-paths and PT-paths respectively, but use the sweep line
paradigm and not divide-and-conquer. The important thing about our algorithms is
that they admit a good analysis of their running times. We will show that our algorithms
run in time O∗(t(P)) and O∗(pt(P)) respectively, where t(P) and pt(P) is the largest
number of T-paths and PT-paths, respectively, that the algorithms encounter during
their execution. The O∗-notation is like the O-notation, but it neglects polynomial
factors. Moreover, by using fancy techniques from combinatorics we will show that
t(P) = O∗(9n), which is the first non-trivial bound on t(P) to be known.

No algorithm like ours was known before, and what makes them even more interesting
is that no configuration, large enough, is known such that t(P) and pt(P) are as large
as |FT (P)| and |FPT (P)| respectively. It is actually believed that t(P) = o(|FT (P)|) and
pt(P) = o(|FPT (P)|), which is supported by many well-studied configurations. We have
however failed to prove that in general.

This is a joint work with Karl Bringmann and Saurabh Ray from Saarbrücken, Ger-
many.

1.3.2 Counting triangulations and other crossing-free structures via onion layers –
Chapter 5

A crossing-free matching of P is a crossing-free structure on P where every vertex has
degree at most one. A crossing-free spanning cycle of P is a simple polygon of size n

whose vertex set is precisely P.

In Chapter 5 we show yet another new algorithm for counting triangulations which is
based on the divide-and-conquer paradigm and the onion layers of P.

1.3. Counting algorithms 13

Definition 1.6 (Onion layers). Let P be a set of n points on the plane and let CH(P)

denote its convex hull. We define the onion layers of P as follows: the first onion layer
P(1) of P is CH(P). For i > 1, the i-th onion layer P(i) of P is defined inductively as
CH

(
P \

⋃i−1
j=1 P

(j)
)
. By “number of onion layers of P” we mean the number of non-

empty onion layers of P, see Figure 1.9.

Figure 1.9 — The onion layers of the set of black points are shown with black lines.

It is then easy to observe that for any non-degenerate set of n points, the number k

of onion layers is always at most
⌈
n
3

⌉
.

The algorithm of Chapter 5 for counting triangulations has a running time of the sort
nO(k). That is, for configurations having k = O(1) onion layers we obtain a polynomial
time algorithm! This is the first algorithm to be known with this property. Moreover,
we give an analysis of the algorithm that shows that even when k = Θ(n), the algorithm
has worst-case running time of O∗(3.1414n). This improves on the worst-case running
time of the algorithm of Chapter 4.

We will also show algorithms to count crossing-free matchings, and crossing-free span-
ning cycles of P in nO(k) time. Unlike the algorithm for counting triangulations of the
previous paragraph, this time we are not able to prove a worst-case running time of the
sort O∗(cn), for some positive constant c ∈ R. The algorithms to count crossing-free
matchings and crossing-free spanning cycles retain nonetheless polynomial time when-
ever k = O(1), which again, was not known before.

The results of Chapter 5 were presented at the ��th Annual ACM Symposium on
Computational Geometry (SoCG ����). This is a joint work with Karl Bringmann,
Saurabh Ray, and Radu Curticapean.

14 1. Introduction

1.3.3 Miscellaneous results on counting triangulations – Chapter 6

Towards the end of the thesis, in Chapter 6, we will show some miscellaneous results
on counting triangulations. The first result that will be shown is an approximation
algorithm for counting triangulations. This algorithm fails to count triangulations ex-
actly, but it provides in sub-exponential time, 2o(n), an approximation Λ such that
|FT (P)| � Λ � |FT (P)| · 2o(n). Since it is known that |FT (P)| = cn, for some positive
constant c ∈ R, we have that c � Λ

1
n � c1+o(1) � (1+ o(1))c.

The second result shown in Chapter 6 is a hardness result. Let E be some set of edges
on P, that is, every edge e ∈ E has its endpoints in P. It is known that the problem
of deciding whether a triangulation of P can be constructed using only edges of E is
NP-complete, see [53, 74]. If we again denote by k the number of onion layers of P, we
will prove that this problem is W[2]-hard, when k is considered the parameter of the
problem. This means that no algorithm with a running time of the sort g(k) · nO(1)

exists for this problem unless FPT = W[2]. The complexity classes FPT and W[2] are
well-known complexity classes in the area of parameterized algorithms. Probably the
most important open question in that area is whether FPT = W[2]. It is however widely
believed that FPT 	= W[2]. The book [37] of J. Flum and M. Grohe is the standard
reference in parameterized complexity theory.

Observe that the problem of deciding whether a triangulation of P can be constructed
using only edges of E can be trivially reduced to the counting version, where we are
interested in counting the triangulations of P that can be formed using only edges of E.
So the counting version is also W[2]-hard.

We close Chapter 6, and thus also the thesis, by showing some experiments compar-
ing the algorithms for counting triangulations of Chapters 4 and 5 with the algorithm
presented in [70], which is reported to be very fast in practice.

The approximation algorithm is a joint work with Karl Bringmann, Saurabh Ray, and
Raimund Seidel.

The hardness result appeared along with the results of Chapter 5 at the ��th Annual
ACM Symposium on Computational Geometry (SoCG ����).

1.4 A quick word on the model of computation

Throughout this thesis we will assume that we are working on the real-RAM model of
computation. That is, our algorithms are designed for a machine that can hold in each
cell of memory a real number, regardless of how big this number really is. Also, we can

1.4. A quick word on the model of computation 15

access any cell of memory in unit time, and for a pair of real numbers we can perform
common operations in unit time such as the following: +, −, ∗, /, =, 	=, <, >, �, �.
Also operations like k

√
n, exp(n), log(n) can be performed in unit time if needed.

With this assumptions, many geometric primitives can be correctly implemented so
they can be performed in O(1) time, such as:

� Given three points p, q, r, decide if p → q → r does a right turn or a left turn.

� Given a point and a line, decide on which side of the line the point lies.

� Given two straight-line segments, decide if they intersect.

The main idea of working in the real-RAM model is that we abstract from a problem its
inherent difficulty, that is, we do not care how those operations are performed, but rather
what do we do with them, how do we use them to achieve our goals (constructions).
Thus the real-RAM model could make, in any case, implementation of algorithms just
harder (more technical), but not impossible. For example, arithmetic on large numbers
can be implemented efficiently, see [56]. The polynomial overheads incurred by these
operations will be, nevertheless, swallowed by the O∗-notation. We refer the reader
to [67] for more information about the real-RAM model, as well as [55, 59] for other
technical aspects on algorithm implementation.

CHAPTER 2

COLORED QUADRANGULATIONS WITH
STEINER POINTS

Quadrangulations of sets of points received extensive attention back in the 90’s, where
they were sometimes preferred over triangulations in the study of finite element methods
and scattered data interpolation, see [51] for example. It is not hard to see that not
every given set P of n points admits a quadrangulation. It can however be verified that
necessary conditions for P to admit a quadrangulation are (�) |P| � 4, and (�) the size
of the convex hull CH(P) of P must be of even cardinality. It turns out that these two
conditions are also sufficient, see [21, 68]. Thus, given any set of points P, at most one
Steiner point s needs to be added to P so that P ∪ {s} admits a quadrangulation.

Having characterized the set of points that admit quadrangulations, and having de-
signed optimal algorithms for their computation, in Θ(n logn) time, researchers started
looking for quadrangulations of set of points having special properties, for example, that
each face of the quadrangulation must be a convex quadrilateral, see [22, 20, 45, 73] for
example. Already in this setting it was shown in [22] that again, not every set of points
admits a convex quadrangulation, thus the use of Steiner points is again required if
one insists on constructing one on the given set of points. Hence the question now is
not whether a given set of points P admits a convex quadrangulation, but rather how
many Steiner points are sufficient and how many necessary in order to construct one.
It was shown in [22] that one can always construct a convex quadrangulation using at
most 3n

2 interior Steiner points I, and that n
4 are sometimes necessary. Later, in [45],

IThese are Steiner points that are introduced in the interior of the convex hull of the given set of points.

18 2. Colored Quadrangulations with Steiner Points

both bounds were improved to roughly 5n
4 and n

3 respectively. For experimental studies
on convex quadrangulations we refer the reader to [20, 73], and to [82] for a somewhat
dated survey on quadrangulations.

Another special kind of quadrangulations arises when the input set of points P is
colored using k � 2 colors, and we look for a quadrangulation not containing monochro-
matic edges, that is, the quadrangulation should be a properly colored plane graph.
We will refer to such quadrangulations as k-colored quadrangulations, for the special
case when k = 2 we will alternatively use the term bichromatic quadrangulation. At
this point is very important to say that since monochromatic edges are forbidden in
a k-colored quadrangulation, and we are regarding CH(P) as being the outer cycle of
any quadrangulation of P, then we will assume from now on, and to avoid any obvious
complication, that CH(P) is a properly colored polygon.

As in the monochromatic case, one can again come up with configurations not ad-
mitting k-colored quadrangulations, thus again requiring the use of Steiner points. The
bichromatic configuration to the left in Figure 2.1 is taken from [25].

s

Figure 2.1 — To the left a bichromatic set of points not admitting a bichromatic quadrangulation
without the use of Steiner points. In the middle the same configuration quadrangu-
lated with one Steiner point s. To the right a 3-colored configuration not admitting
a 3-colored quadrangulation regardless the number of Steiner points used.

The study on k-colored quadrangulations of sets of points is rather new. It was shown
in [11] that one can always construct a bichromatic quadrangulation with the use of
roughly 5n

12 interior Steiner points, and that n
3 Steiner points are sometimes necessary.

They also considered the case k = 3 and showed a surprising fact, there are 3-colored
sets of points that do not admit 3-colored quadrangulations regardless of the number of
interior Steiner points used, which is definitely an unexpected result! The configuration
presented in [11] is shown to the right in figure 2.1.

The strange phenomenon of not admitting 3-colored quadrangulations, even with the
use of Steiner points, was recently explained in [48], where the authors showed an elegant

2.1. Our contribution 19

characterization of the 3-colored sets of points that admit 3-colored quadrangulations
using a finite number of interior Steiner points. In the same paper, the authors showed
that if possible, a 3-colored quadrangulation can be constructed with the use of at most
7n+17m−48

18 interior Steiner points, where |P| = n and |CH(P)| = m. Note however that
this number depends on the size of CH(P), and can get large whenever m and n are
comparable in size. For example, if m = 3n

4
, then the bound becomes 79n−192

72
which

is larger than n already when n � 5.

2.1 Our contribution

In this chapter we show our contribution to the problem of k-colored quadrangulations
using Steiner points, with k � 3. We will show how to use the techniques of [11] for
the bichromatic case to obtain a simple algorithm for the k-colored case. Our algorithm
uses fewer than (16k−2)n+7k−2

39k−6
interior Steiner points to construct a k-colored quadran-

gulation of a given k-colored set of points P, provided that CH(P) is properly colored.
Our bound on the number of used Steiner points has the following advantages:

(�) Our algorithm improves on the algorithm shown in [48], since, as we will see, it
performs equally well when CH(P) is small, but it improves the worst-case behavior
when CH(P) is large. For comparison, our bound for k = 3, at worst, is essentially
46n
111

< 5n
12

, while the one presented in [48] can grow larger than n if the right
conditions are met.

(�) Our bound represents the first bounds for the cases when k � 4.

We will divide the chapter as follows: In § 2.2 we give the necessary definitions and
the precise statement of our result. In § 2.3 we prove our main theorem, and in § 2.4 we
briefly discuss the extension of the lower bound of n

3 interior Steiner points of [11] for
the general case k � 3.

2.2 Preliminaries

In order to make the presentation more self-contained, we will state the results from
other papers that will be used, and will be referred to. Let us first start with some
terminology.

Let Q ⊂ R2 be an m-sided simple polygon, with m � 4 even, and suppose that Q is
properly k′-colored, where k′ � 2. Let us assume that the k′ chromatic classes used to
color the vertices of Q are 1,2, . . . , k′, and that they all appear in Q. Let us denote the

20 2. Colored Quadrangulations with Steiner Points

color of a vertex v of Q by c(v). Let us define an orientation O for the edges of Q as
follows: If e = uv is an edge of Q, then we orient e from u to v if c(u) < c(v), and from
v to u otherwise. Let e+O(Q) and e−O(Q) be the number of edges of Q in clockwise and
counter-clockwise direction, respectively, w.r.t. orientation O.

Definition 2.1 (Winding number). Let Q and O be as explained above. The winding
number of Q, denoted by ω(Q), is defined as:

ω(Q) = |e+O(Q) − e−O(Q)|

for k′ = 3, and ω(Q) = 0 for k′ 	= 3.

Observe that the winding number of a polygon Q is non-trivial only when Q is 3-
colored.

For a k-colored set of points P, k � 2, we will use ω(P) as a shorthand for ω(CH(P)),
extending the definition of winding number for polygons to sets of points. Observe
however that ω(CH(P)) depends solely on the number k′ � k of colors appearing on
CH(P), so we could have ω(P) = ω(CH(P)) 	= 0 while k 	= 3. Finally, we will say that
P can be k-quadrangulated if P admits a k-colored quadrangulation.

The following result is the one, mentioned before, that characterizes the 3-colored sets
of points which can be 3-quadrangulated with Steiner points added [48].

Theorem 2.1 (S.Kato, R. Mori, A. Nakamoto). Let P ⊂ R2 be a 3-colored set of n

points in general position such that |CH(P)| = m. Then there exists a set S = S(P)

of Steiner points such that P ∪ S can be 3-quadrangulated if and only if ω(P) = 0.
In such a case we have that |S| � 7n+17m−48

18 .

Now we can easily decide whether a 3-colored set of point admits a 3-colored quadran-
gulation. Nevertheless, as we mentioned before, the number of Steiner points required
by Theorem 2.1 can get larger than n when m and n are comparable in size.

Our main contribution is the following result:

Theorem 2.2 (V. Alvarez, A. Nakamoto). Let P ⊂ R2 be a k-colored set of n points in
general position, where k � 2. If ω(P) = 0 or k � 4, then there exists a set S = S(P)

of Steiner points such that P∪S can be k-quadrangulated, and |S| <
(16k−2)n+7k−2

39k−6 .

The condition ω(P) = 0 or k � 4 in the previous statement means, as we will see,
that even when only three colors appear on CH(P), and they cause ω(P) 	= 0, we can
still find a set S = S(P) of Steiner points such that P ∪ S can be k-quadrangulated as
long as we have at least four colors in total at our disposal.

Note that our result besides of being able to work with more than three chromatic
classes, depends only on n and k, which is a great improvement over the previously
known bound for k = 3.

2.3. Proof of Theorem 2.2 21

2.3 Proof of Theorem 2.2

In order to prove our theorem we will need some intermediate results, the first one is
easily proven using the well known Euler’s formula:

Lemma 2.1. Let P ⊂ R2 be a set of n points such that |CH(P)| = m. Then any
quadrangulation of P has (n− 1) − m

2 quadrilaterals and 2(n − 2) − m
2 edges.

The following lemma was shown in [48]:

Lemma 2.2. Let Q ⊂ R2 be a 3-colored simple polygon colored by colors c1, c2, c3.
Then the winding number of Q is invariant for any bijection from {c1, c2, c3} to
{1,2,3}.

That is, the winding number is well-defined, and we may well assume that if Q is
a 3-colored simple polygon, then it is colored by {1,2,3}. We now have the following
lemma, which, as we will see, is the one that will make everything go through:

Lemma 2.3. Let Q ⊂ R2 be a properly k-colored simple polygon of m � 4 sides
such that ω(Q) = 0. Then Q can be partitioned into r = m−2

2 properly colored
quadrilaterals Q1, . . . ,Qr such that ω(Qi) = 0 for every 1 � i � r.

Proof. We will proceed by induction over m. The case m = 4 can easily be verified, thus
we will directly assume that Lemma 2.3 holds for every m′ < m, and we will prove it
when m′ = m.

We will divide the proof into two parts, the first one being when Q is exactly 3-colored,
and the second one when Q is at least 4-colored.

(�) By Lemma 2.2, we may assume that the chromatic classes are exactly {1, 2, 3}.
Observe that there is a vertex v ∈ Q such that its two neighbors are of the same
color. For otherwise, i.e., if every vertex of Q has two neighbors with distinct
colors, then we can easily check that Q has a periodic cyclic sequence of colors
1,2,3, which is contrary to ω(Q) = 0. See to the left in Figure 2.2.

Now assume that all edges of Q are oriented using the orientation O explained
before. Let v ∈ Q be a vertex with two neighbors u,w ∈ Q of the same color,
where u is the right neighbor of v, and w the left neighbor. Let x ∈ Q be the
right neighbor of u. Since Q is properly colored, x has a color distinct from
those of u and w, and hence we can add an edge wx to create the properly colored
quadrilateral Q1 = xuvw. Now, let Q′ be the convex polygon defined by Q\{u, v}.
We first observe that ω(Q1) = 0 since u and w have the same color. Second, note

22 2. Colored Quadrangulations with Steiner Points

v

u

w

x

Q′
e1

e2

e3

e41

1
2

3

1

1

2

2

2

3

3

3

Figure 2.2 — If Q is colored by the cyclic sequence 1,2,3, as shown to the left, it can be easily
verified that ω(Q) 	= 0.

that ω(Q′) = 0 as well, which can be explained as follows: Since u and w have
the same color, the orientations of the two edges vw and vu are canceled in the
computation of ω(Q). Moreover, the edges xu and xw are both oriented away from
x, so xw is the actual edge making ω(Q′) = 0. Hence we get ω(Q) = ω(Q′) = 0.

We can now repeat these procedures inductively on Q′, as shown to the right in
Figure 2.2.

(�) Now let us assume that Q is at least 4-colored. We now claim that there is at
least one vertex w ∈ Q such that at least one of its neighbors at distance 3 on
Q, in clockwise or counter-clockwise order, is of different color. Indeed, assume
otherwise and note that if every vertex of Q shares the same color with its two
neighbors at distance 3 on Q, then Q would be 3-colored and thus we would not
be having this conversation. See to the left in Figure 2.2.

Let w ∈ Q be one of the vertices having a neighbor at distance 3 of different color,
say such a neighbor is x ∈ Q. Note that we can join w and x with a straight line,
thus creating the quadrilateral Q1 = wvux, where v, u ∈ Q are the vertices at
distance 1 and 2 from w respectively. Let Q′ be defined as in (�). If ω(Q′) = 0

we are done again. Otherwise, if ω(Q′) 	= 0, then Q′ must be 3-colored and the
fourth color appears at either v or u. We can thus shift (rotate) the labels of the
vertices of Q at most two positions, either clockwise or counter-clockwise, so that
the fourth color appears at vertex w after the shift. At his point Q′ is 4-colored
and we would be done again. See Figure 2.3.

In both cases that the total number of created quadrilaterals is m−2
2 follows from

Lemma 2.1. �

2.3. Proof of Theorem 2.2 23

uv

w

x

Q′v

u

w

x

Q′

Figure 2.3 — Rotation of labels counter-clockwise so that the fourth color of Q appears again on
Q′.

The last result we need from [48] is the following:

Lemma 2.4. Let P = c1 ∪ c2 be a 2-colored set of n points on the plane such that
|CH(P)| = m, where c1 and c2 are the color classes of P such that |c1| � |c2|. Then
there exists a set S = S(P) of Steiner points such that P∪S can be 2-quadrangulated,
and |S| �

⌊
|c1|
3

⌋
+
⌊
|c2|−(m/2)

2

⌋
� 5n

12
− 1.

The previous Lemma is essentially one of the main results of [11], and it is proven
using exactly the same techniques as for Theorem 1 of [11], however, they are applied
differently so the constant term on the bound of |S| is improved in the worst case from
(−1/3), in [11], to −1, in [48]. This negligible improvement of constants will play a
useful role when proving Theorem 2.2.

The next lemma is the last one before we proceed with the proof of our main theorem.

Lemma 2.5. Let P ⊂ R2 be a k-colored set of (q + 4) points such that |CH(P)| = 4

and k � 2. Then there exist two sets of Steiner points SΓ = SΓ (P) and SΔ = SΔ(P)

such that:

� P ∪ SΓ can be k-quadrangulated, and |SΓ | � 5q+8
12

.

� P ∪ SΔ can be k-quadrangulated, and |SΔ| <
(2k+1)q+16k

6k
.

Proof. Let us divide the proof into two parts, one considering SΓ and the other consid-
ering SΔ. For simplicity, let us denote CH(P) by Q.

� Note that P can be regarded as a bichromatic set of points as follows: If Q is
bichromatic itself, say using colors c1, c2, then we can recolor every interior point
of color different than c2 with color c1. We will rename the chromatic classes as
cα = c1 and cβ = c2.

24 2. Colored Quadrangulations with Steiner Points

If Q is 3-colored, say using colors c1, c2, c3, then one color must appear twice on
Q, say without loss of generality c2. Proceed as before, recolor every point of color
different than c2 with a new color cα. Rename the chromatic class c2 as cβ.

If Q is 4-colored, say using colors c1, c2, c3, c4, assume that c1, c3 and c2, c4 appear
in diagonally opposite vertices of Q in clockwise order. Now recolor P with two
new colors cα and cβ as follows: Every point of color c2, c4 receives color cβ. The
rest of the points receive color cα.

As we end up having a bichromatic set of points, using colors cα, cβ, say without
loss of generality that |cβ| � |cα|. Thus by Lemma 2.4 there exists a set SΓ = SΓ (P)

of Steiner points such that P ∪ SΓ can be 2-quadrangulated and:

|SΓ | �
⌊
|cα|

3

⌋
+

⌊
|cβ| − 2

2

⌋
� 5|P|

12
− 1 =

5q + 8

12

� Let us now do the following: Say without loss of generality that c1 is the smallest
chromatic class among the k chromatic classes. Let us assume that Q is colored
with colors other than c1, we will see later on that this assumption only worsens
the upper bound. Now let us introduce two Steiner points of color c1 inside Q,
very close to two opposite vertices of Q, and in such a way that we create a
new quadrilateral Q′ that is still properly colored and still contains the q interior
points. Let P′ be the set of points formed by the vertices of Q′ and the q points
in its interior, see Figure 2.4.

QP′

Figure 2.4 — Points colored with color c1 are represented in black. Quadrilateral Q′ still contains
the q interior points that quadrilateral Q originally contained.

Now recolor every point of P′ of color different than c1 with a new color c. This
leaves only two chromatic classes, c1 and c, where c1 is still the smallest one. We
can now proceed with the quadrangulation of a bichromatic point set again, this

2.3. Proof of Theorem 2.2 25

time finding a set of Steiner points SΔ = SΔ(P) such that:

|SΔ| �
⌊
|c|

3

⌋
+

⌊
(|c1| + 2) − 2

2

⌋
+ 2

� |c|

3
+

|c1|

2
+ 2 =

|c| + |c1|

3
+

|c1|

6
+ 2

<
q+ 2

3
+

q

6k
+ 2

=
q(2k+ 1) + 16k

6k

where the first inequality is obtained using Lemma 2.4 again. The last inequality is
obtained by |c| = q+ 2− |c1| and the assumption that c1 is the smallest chromatic
class, so |c1| <

q
k
. If |c1| = q

k
, then we have |c1| = · · · = |ck| =

q
k
, and hence we can

take c1 so that c1 does appear on Q. In this case, only at most one Steiner point is
required in the beginning to obtain Q′. Hence we would obtain |SΔ| � q(2k+1)+7k

6k

which is slightly smaller, but it would still play a role reducing the bound on
Theorem 2.2. �

We are finally ready to prove Theorem 2.2:

Proof. Let P be a k-colored set of n points where |CH(P)| = m and q = n − m are
interior points. If ω(P) = 0, by Lemma 2.3 we know that we can partition CH(P) into
r = m−2

2 convex quadrilaterals Qi, 1 � i � r, each of which is properly colored and
has ω(Qi) = 0. If ω(P) 	= 0, then by Theorem 2.1 the only case that makes sense is
k � 4. That is, P is colored with at least four colors but only three of them appear
in CH(P), causing ω(P) 	= 0. In this case we cannot apply Lemma 2.3 directly, so we
will introduce one Steiner point s inside CH(P), very close to one vertex v of CH(P)

such that s replaces v in CH(P). If the color of s is chosen such that the new CH(P) is
4-colored, and observe that this is always the case, we can proceed with Lemma 2.3 as
before.

Let qi be the number of interior points in quadrilateral Qi. By Lemma 2.5 we know
that there are two ways of k-quadrangulating Qi using Steiner points. The first way
uses a set of Steiner points SiΓ for each Qi, which would overall give a k-quadrangulation
of P ∪ SΓ with a set SΓ = S1Γ ∪ · · · ∪ SrΓ of Steiner points such that:

|SΓ | =

r∑
i=1

|SiΓ | �
r∑

i=1

5qi + 8

12
=

2r

3
+

r∑
i=1

5qi

12
=

m − 2

3
+

5q

12
(�.�)

26 2. Colored Quadrangulations with Steiner Points

The second way of k-quadrangulating Qi using Steiner points would give a k-quadran-
gulation of P ∪ SΔ using the set of Steiner points SΔ = S1Δ ∪ · · · ∪ SrΔ such that:

|SΔ| =

r∑
i=1

|SiΔ| <

r∑
i=1

(2k + 1)qi + 16k

6k
=

8r

3
+

r∑
i=1

(2k+ 1)qi

6k

=
4(m − 2)

3
+

(2k+ 1)q

6k
(�.�)

There is something important to note here. We are assuming that in each Qi all the
chromatic classes appear. If that is not the case, say there is at least one chromatic class
not appearing in some Qj, 1 � j � r, then the size of the smallest chromatic class in Qj

is 0. In such a case, as the reader can verify, we would obtain an improvement on |S
j
Δ|,

which would in turn improve |SΔ|.

We would like to see now which set of Steiner points, among SΓ and SΔ, performs
better, and under what circumstances. For the following we remind the reader that
q = n−m. If |SΓ | � |SΔ| we have:

m − 2

3
+

5(n −m)

12
<

4(m − 2)

3
+

(2k + 1)(n −m)

6k

and hence m >
k(n+24)−2n

13k−2 . The bound on m in turn implies q <
12k(n−2)
13k−2 .

Let S be a set of Steiner points added to P so that P ∪ S admits a k-quadrangulation.
Estimate |S| by min{|SΓ |, |SΔ|}. Then, if m >

k(n+24)−2n
13k−2 we obtain:

|S| � |SΓ |+ 1 =
m − 2

3
+

5q

12
+ 1 =

4n + q + 4

12
<

(16k − 2)n + 7k − 2

39k − 6

where the second equality follows by substituting m = n − q. On the other hand, if
m � k(n+24)−2n

13k−2
, then:

|S| � |SΔ|+ 1 <
4(m − 2)

3
+

(2k + 1)q

6k
+ 1 =

(6k − 1)m + (2k+ 1)n − 10k

6k

<
(16k − 2)n + 7k− 2

39k − 6

where the equality follows by substituting q = n−m.

As a final remark note that if by any chance CH(P) is small, say of constant size, then
the bound given by equation (�.�) is better than the one given by equation (�.�) for
k � 3.

Theorem 2.2 now follows entirely. �

2.4. Closing remarks and conclusions 27

2.4 Closing remarks and conclusions

It was shown in [11] that there are bicolored sets of n = 3m points, with m � 4, that
require at least m Steiner points to be 2-quadrangulated, where |CH(P)| = m. See in
the left upper corner of Figure 2.5 for a reference of a configuration like that.

e

peqe

e′

e

se

se′

Figure 2.5 — In the left upper corner the bichromatic configuration P that needs at least n
3

Steiner
points in order to be 2-quadrangulated. Every edge e of CH(P) gets associated
with a pair of interior points pe, qe. Down in the middle a partial bichromatic
quadrangulation using Steiner points se 	= se′ is shown. In the right upper corner
the same configuration colored with 4 colors.

We can briefly describe the configuration, as presented in [11], as follows: Each edge
e of CH(P) gets associated with exactly two interior points pe, qe, what pair of interior

28 2. Colored Quadrangulations with Steiner Points

points gets associated to e is also shown in the left upper corner of Figure 2.5. The
coloring of the configuration is done in the following way: The endpoints of e get different
colors and its associated pair of interior points get the color of the left endpoint of e, as
seen by the reader.

The idea behind the proof of [11] is essentially to check that for every edge e, there
is one Steiner point se that can be charge to the triple of points formed by pe, qe and
the left point of e, observe that this triple of points is monochromatic. Intuitively, the
Steiner point se is the one that locally helps to k-quadrangulate the region between e

and pe, qe, see down in the middle in Figure 2.5. The proof of [11] is done by cases. For
the k-colored case the number of cases to analyze increases, since now there are more
colors to choose from for the Steiner points se. Nonetheless, the interested reader will
be able to verify that the same arguments of [11] carry over into the k-colored setting,
and hence also the lower bound of n

3
Steiner points. We will thus refrain ourselves

from repeating those arguments here. See in the right upper corner of Figure 2.5 for an
example of what a 4-colored configuration could look like.

2.4.1 Conclusions

In this chapter we studied the problem of constructing k-colored quadrangulations of
k-colored set of points using Steiner points, with k � 3. We were able to improve
the previous known upper bound on the number of Steiner points when k = 3 with
a general method that also provides the first upper bounds for the case when k � 4.
We also pointed out that the lower bound of n

3 interior Steiner points of [11] for the
bichromatic case follows quasi-verbatim to the more general case k � 3.

The upper bound on the number of Steiner points we presented for the k-colored case
is always less than (16k−2)n+7k−2

39k−6 , which, ignoring lower degree terms, is essentially
16n
39 ≈ 0.4102n. Since n

3 is the lower bound on the same number, both bounds, upper
and lower, are off by roughly n

13
, which albeit being small, is not desirable. Therefore

closing this gap is still an interesting open question, we believe that the correct bound
should be on the lower end.

There is one more thing to note. The upper bound of [11] for the bichromatic case
is roughly 5n

12
= 0.416̄n. Thus both upper bounds, ours and of [11], are essentially the

same in the worst case. This is because our algorithm has at its core the algorithm for
the bichromatic case. Hence, an improvement of bounds for the bichromatic case will
carry over into the general case using our algorithm, as long as only interior Steiner
points are used. We believe that the cases k = 2 and k = 3 are really challenging, while
the cases k � 4 might be more attackable.

CHAPTER 3

PARITY-CONSTRAINED TRIANGULATIONS
WITH STEINER POINTS

Let P ⊂ R2 be a set of n points in general position and let Γ : P → {0,1} be an
assignment of parities to the elements of P, where 0 means even and 1 means odd. Let
G be a straight-edge plane graph with vertex set P. We say that a vertex v ∈ P of G is
happy, with respect to G, if and only if the degree of v in G is of the parity assigned to
v by Γ . If a vertex is not happy w.r.t. G we will say that v is unhappy. If the graph G is
clear from context we will just say that vertices are happy or unhappy without referring
to G.

Given P and Γ , the problem of finding plane graphs on P that maximize the number
of happy vertices has recently received some attention. In [4] it was shown that one
can always construct a tree, a 2-connected outerplanar graph, and a pointed pseudo-
triangulation that makes all but at most three vertices happy. For the class of triangu-
lations it was shown that one can always construct one that makes essentially 2n

3 of its
vertices happy, but a configuration of points with parities was also shown where at least
n

108
vertices remain unhappy regardless of the chosen triangulation. The construction

of this lower bound requires the use of both parities, but the authors pointed out that
there are two particular cases that might accept triangulations with as many as n−o(n)

happy vertices. These two particular cases are the ones where the parities assigned to
the elements of P by Γ are either all even or all odd respectively. However, showing
that in those particular cases n − o(n) vertices can be made happy turned out to be
very challenging. In the same paper the authors showed that in the all-even case, a tri-

30 3. Parity-constrained Triangulations with Steiner points

angulation that makes at least 2n
3 vertices happy can always be constructed. They also

showed that in the all-odd case a 10
13 fraction of happy vertices can always be ensured.

These two special cases, all even or all odd, are of significant interest since they
have interesting properties and/or applications. For example, it is well known that
a connected graph G having all its vertices of even degree is Eulerian. If on top of
it G happens to be a triangulation as well, then G is also 3-colorable, see [44, 80]
for a general reference on 3-colorable planar graphs. Those two properties are usually
considered “nice” in a graph, and they are characterized only by the parity of the degree
of its vertices. For 3-colorability of triangulations a slightly weaker characterization is
known: T is a triangulation having all its interior vertices of even degree if and only if T
is 3-colorable, see [30] for example. The application related to the all-odd case is a little
bit more intricate and we refer the reader to [5] where this application is shown.

Let P be as before. We will say that a triangulation T of P is even, or odd, if and only
if the degree of every vertex of T is even, or odd respectively. If only the interior vertices
of T are even, or odd, we will say that T is pseudo-even, or pseudo-odd respectively.
This defines four kinds of triangulations of P: Even, pseudo-even, odd, pseudo-odd.

In this chapter we attack the following problem: Given P and one kind T of triangula-
tions of the four mentioned above, construct a set S = S(P,T) such that a triangulation
of kind T can always be constructed on P ∪ S.

Thus, the problem attacked in this chapter can be seen as the Steiner-point version
of the ones regarding triangulations presented in [4].

With the idea of using Steiner points in mind, the following lemma is worth noting:

Lemma 3.1. There are arbitrarily large sets of points that, without the use of Steiner
points, admit neither pseudo-even nor pseudo-odd triangulations.

Proof. Let P be a set of points like the one shown to the left in Figure 3.1 where the
size of the convex polygon Q shown in gray is ≡ 1 mod 3. Let v ∈ P be the only point
not in Q. It is clear that in any triangulation of P, point v must be adjacent to every
vertex of Q, that is, without a triangulation of Q, every vertex of Q has degree three.

Now, it is well known that every triangulation of a polygon has at least two “ears”,
i.e., a triangle formed by three consecutive vertices of the polygon. This means that,
regardless of what triangulation of Q we choose, there will always be a vertex of Q whose
adjacencies are only its two neighbors in Q and v. Thus no pseudo-even triangulation
of P exists. See to the right in Figure 3.1.

To show that P does not admit a pseudo-odd triangulation either it suffices to show
that regardless of what triangulation of Q we choose, there will always be at least

3.1. Our contribution 31

v

Q

v

u w u w

Figure 3.1 — To the left we have a configuration in which all shown adjacencies are forced, and it
accepts neither pseudo-even nor pseudo-odd triangulations. To the right we show
in red one of the ears of the shown triangulation of Q.

one interior point of P having even degree. It is not hard to verify that in an even
triangulation, the size of the outer face must be ≡ 0 mod 3, a proof can be found
in [30]. Since |Q| ≡ 1 mod 3, then Q does not admit an even triangulation, so in every
triangulation of Q there will be at least two vertices of odd degree, there must be an
even number of them. So assume that there is a triangulation of Q in which the only
two vertices of odd degree are the two neighbors u,w of v in CH(P). Thus we could
add a point p outside CH(P), below the edge uw, and add the adjacencies pu, pw. This
implies that the set of points Q′ = Q ∪ {p} has an even triangulation, where upw is an
ear. But |Q′| ≡ 2 mod 3, which clearly contradicts the necessary condition on the size
of the outer face of an even triangulation. Therefore, in any triangulation of Q there
must be at least one interior point q ∈ P of odd degree. The force adjacency qv implies
that q gets even degree in a triangulation of P, which is what we wanted to prove. �

3.1 Our contribution

By Lemma 3.1 the use of Steiner points is sometimes necessary if we insists in con-
structing any of the four kinds of triangulations mentioned before (even, pseudo-even,
odd, pseudo-odd). The relevant issue now is not whether we can construct the triangula-
tions we are interested in, but rather with how many Steiner points can we achieve such
constructions, the less, the better. The results we are going to show are the following:

Theorem 3.1. Let P ⊂ R2 be a set of n points in general position where k of them
are interior points. Then a set S = S(P) of interior Steiner points of size at
most

⌊
k+2
3

⌋
+ 2 can always be constructed such that P ∪ S accepts a pseudo-even

triangulation.

Theorem 3.2. Let P be as before. Then a set S = S(P) of interior Steiner points of
size at most

⌊
n+1
3

⌋
+ 1 can always be constructed such that P ∪ S admits an even

triangulation.

32 3. Parity-constrained Triangulations with Steiner points

Theorem 3.3. Let P ⊂ R2 be a set of n points in general position where k of them
are interior points. Then a set S = S(P) of interior Steiner points of size at most⌊
k
3

⌋
+c, with c a positive constant, can always be constructed such that P∪S accepts

a pseudo-odd triangulation.

Theorem 3.4. Let P be as before. Then a set S = S(P) of interior Steiner points of
size at most

⌊
n−1
3

⌋
+ c, with c a positive constant, can always be constructed such

that P ∪ S admits an odd triangulation.

The proofs of all theorems will be constructive. The rest of the chapter is divided as
follows: In Section 3.2 we start with some preliminaries. In Section 3.3 and 3.4 we show
algorithms that imply Theorems 3.1, 3.2, and Theorems 3.3, 3.4 respectively. We close
the chapter in Section 3.5 we some observations and conclusions.

3.2 Pre-processing of P

Let us quickly recall that given a polygon P, a vertex v of P is called reflex if the internal
angle at v is larger than π. We will call it convex otherwise. Also, by a suitable rotation
of P we can assume that the vertex v of CH(P) with the lowest y-coordinate is unique.

The following pre-processing of P will be done: Using v as a pivot we will sort each
interior point of P by its angle with respect to v. Let p1, . . . , pk, be a labeling, from left
to right with respect to this angular order, of the interior points of P. Let p0, pk+1 be
the left and right neighbors of v on CH(P) respectively.

We construct a simple polygon P from P \ {v} as follows: We add each edge pipi+1,
for 0 � i � k. We call this the lower part of P and we will denote it by L(P). Also, we
consider the edges of CH(P) \ {p0v, pk+1v} and we call this the upper part of P, which
will be denoted by U(P), see Figure 3.2.

Next we will scan L(P) from left to right and we will consider the largest polygonal
chains that can be formed using consecutive convex vertices of L(P). Note that for
each such polygonal chain, the left and right vertices must be reflex vertices of P, see
Figure 3.3. Now, for each chain, we will make adjacent its two endvertices, thus forming
convex polygons Qj, with j � 0, from those convex polygonal chains. These convex
polygons can be thought as big “ears” hanging from L(P). We will triangulate the rest
of P outside these Qj’s arbitrarily, see Figure 3.2. If there is no convex vertex of P in
L(P), then this arbitrary triangulation of P is a triangulation of all P.

This is all the pre-processing that will be done. From here every algorithm will
complete a triangulation of P in its own way.

3.3. Even and pseudo-even triangulations 33

v
p0 pk+1

v
p0 pk+1

Figure 3.2 — To the left we have the polygon P on n − 1 vertices in gray. The convex polygons
formed by scanning L(P) from left to right are shown dashed. Note that each pair
of consecutive convex polygons shares at most one vertex. To the right we see a
triangulation T(P) of P. The dashed edges are the only ones that are not arbitrary.

3.3 Even and pseudo-even triangulations

The following observation is very useful when working with 3-colorable triangulations:

Observation 3.1. Let T be a 3-colored triangulation with outer face C, not necessarily
convex, and let u, v,w be three consecutive vertices of C. If the degree of v in T is even,
then the color of u is different than the color of w. If the degree of v in T is odd, then
both u,w have the same color.

We can now continue with the algorithm. Let us triangulate each Qj, if any exists, as
follows: Take its vertex with the lowest y-coordinate, breaking ties arbitrarily, and join
it with straight-line segments to all other vertices of Qj, in case that Qj has more than
three vertices. This is usually called a “fan” triangulation. These fan triangulations along
the arbitrary triangulation outside the Qj’s complete a triangulation T(P) of polygon P.

It is well-known that triangulation T(P) can be 3-colored, see [36], thus we will do
it, and observe that the only colorless vertex is v, the one we used in the beginning to
sort P angularly. Clearly, if a triangulation of P is 3-colorable, then it must be at least
pseudo-even, thus our idea now is to complete a 3-colorable triangulation of P using T(P)

and its 3-coloring. So at all time we will use a 3-coloring as a measure of the correctness
of our algorithm.

From this point on, our construction is done by case analysis. We will assume without
loss of generality that the colors at our disposal are {0,1,2}. Note that as T(P) is already
3-colored, if all the interior vertices of P are colored by only two colors, say 0, 1, we
could use color 2 for v without violating the 3-coloring of T(P), and hence, using the

34 3. Parity-constrained Triangulations with Steiner points

straight-line segments that connect v with each vertex of L(P), we obtain a 3-colorable
triangulation of P. Nevertheless, in general it is not going to happen that the interior
vertices can be colored using only two colors, hence we need to do something else in
such cases. We will proceed in a line-sweep fashion from p0 to pk+1 with respect to the
angular order around v.

Let us fix the color of v as the color of the smallest chromatic class in L(P) using the
3-coloring of T(P), and say that color is iI without loss of generality, 0 � i � 2. Note
that the points in L(P) with color i are the ones causing trouble to complete the desired
triangulation, hence we will handle those points depending on their kind in P, namely if
they are reflex or convex vertices of P. We will keep the invariant that, by the time we
are processing an interior point pj, edge vpj is present, and all interior points pr, with
r < j, have even degree already, except possibly for p0. Also note that by this time, if
the degree of pj is odd it is because pj+1 has color i, due to Observation 3.1.

Let us start now with our case analysis, we will assume that we are currently processing
the interior point pj, 1 � j < k, so again, we will assume that the edge vpj is already
present in the partial triangulation of P constructed so far. We have the following cases:

(�) Point pj+1 is of color i, just as v, and is a reflex vertex of P. If points pj and pj+2

are of different color then we can just add the edge pjpj+2, since pj+1 has already
even degree in T(P), see to the left in Figure 3.3. Thus we can add the edge vpj+2

and move to pj+2. If on the other hand, pj and pj+2 have the same color, we
introduce one Steiner point s, below L(P), of the third color different than the one
of pj and v, which will be adjacent to pj, pj+1, pj+2 and v, as shown in the middle
in Figure 3.3. Thus we can again move to pj+2 and continue.

(�) Point pj+1 is of color i again but a convex vertex of P. If pj and pj+2 have the
same color we proceed just as before, introducing one Steiner point s, below L(P)

and of the third available color, which will be again adjacent to pj, pj+1, pj+2 and
v. We move to pj+2 and continue, see in the middle in Figure 3.3.

So let us assume that pj and pj+2 have different colors, say w.l.o.g. i + 1 and
i + 2 respectively. Note that, as pj+1 is a convex vertex of P, it must be part
of one of the convex polygons Q1, . . . Qr, the big “ears”, we constructed in the
pre-processing phase. Let us denote this one convex polygon simply by Q, and its
rightmost vertex by pl, l � j+ 2, according to the angular order around v.

We have now the following sub-cases:

(�.�) Vertex pj+1 was used as a pivot in the fan triangulation of Q, see to the
right in Figure 3.3. This in particular means that pj+1 is the only vertex of

IIn the figures, unless otherwise stated, we will use colors {i, i+ 1, i+ 2} = {black, red, blue}, with arithmetic
modulo 3.

3.3. Even and pseudo-even triangulations 35

v

p +1
p +2

p

p +1

p
p +2

pl

Q

v

p +1
p +2

s

p

v

p +1

p +2

s

p

Figure 3.3 — The point pj is currently being processed. Point pj+1 is of the same color i of v. If
pj and pj+2 have the same color, then one Steiner point suffices to be able to move
to pj+2. To the right the convex polygon Q is shown in gray. Point pj+1 is the
pivot of the fan triangulation of Q.

color i in Q. If l > j + 2 then we can re-triangulate Q by constructing the
fan triangulation of Q with pivot at pl−1, this changes the 3-coloring of Q
only between pj+1 and pl−1, the former receives color i + 2 while the latter
is the new unique vertex of Q of color i. Thus the only thing we did was to
move the vertex of color i to the right, and hence we can join v to all vertices
pj+1, . . . , pl−2 using straight-line segments. If l = j + 2 then Q is actually a
triangle, and everything is still valid, v is connected to pl−2 = pj, see to the
left in Figure 3.4.

We now further distinguish between the following cases:

(�.�.�) Point pl is of color i+ 1, pl+1 is of color i and pl+2 is of color i+ 2, see
in the middle in Figure 3.4. We introduce two Steiner points s1, s2 of
color i+ 2, i+ 1 respectively and we will make the following adjacencies:
(�) s1 gets adjacent to pl−1, pl, pl+1 and s2, and (�) s2 gets adjacent to
pl−2, pl−1, s1, pl+1, pl+2, v. Observe that these adjacencies can always
be done without introducing any crossing. Moreover, note that with two
Steiner points we complete the even degree of each point in the region
pj, . . . , pl+2 in which there were originally two points of color i. Thus
we can move to pl+2 and continue.

(�.�.�) Point pl and pl+1 as before, but pl+2 is of color i+1. We will proceed as
before except that this time the adjacencies of s1, s2 are as follows: (�) s1
gets adjacent to s2, pl−1, pl, pl+1, pl+2 and v, and (�) s2 gets adjacent
to pl−2, pl−1, s1 and v.

As before, we also introduce the adjacencies pj+1v, . . . , pl−2v and pl+2v.

36 3. Parity-constrained Triangulations with Steiner points

pl−1

pj+1

pj

pj+2

pl

Q

pj+1

pj

pj+2

pl

s1

s2

pl+2
pl−1

pl+2

pj+1

pj

pj+2

pl

s1

s2

pl−1

Figure 3.4 — If pj+1 was used as a pivot to triangulate a convex polygon that can be cut from P,
then we can use pl−1 as the new pivot without changing the color of pj or anything
to its left. Note that pl must be necessarily a reflex vertex of P. In the middle we
see the final configuration in the case that pl+1 is of color i and pl+2 is of color
i + 2. To the right we see the final configuration when pl+1 is of color i and pl+2

is of color i + 1.

We can again move to pl+2. See to the right in Figure 3.4 for the final
configuration.

(�.�.�) Point pl as before but pl+1 is of color i + 2 instead. Note that in this
case, from pj to pl+1 there is only one vertex of color i, namely pl−1,
thus we will introduce only one Steiner point s. Also observe that since
pl is a reflex vertex of P we can add the adjacency pl−1pl+1. Finally
we make s adjacent to pl−2, pl−1, pl+1, v, and we make, as before, v

adjacent to pj+1, . . . , pl−2 and pl+1. See to the left in Figure 3.5 for the
final configuration.

The following three cases are complementary:

(�.�.
) Point pl is of color i+ 2, pl+1 is of color i and pl+2 is of color i+ 1.

(�.�.) Point pl and pl+1 as before and pl+2 is of color i+ 2.

(�.�.�) Point pl as before and pl+1 is of color i+ 1.

However, these cases are the symmetric cases of (�.�.�), (�.�.�) and (�.�.�)
respectively, where pl gets the other possible color, and thus the constructions
get shifted colors. The solution, as can easily be verified, is also of shifted
colors. The two last figures of Figure 3.4 and the first one of Figure 3.5 can
be used as reference if we shift their colors.

(�.�) In this case pj+1 of color i was not used as a pivot in the fan triangulation of
Q. This means that pj and pj+2 are adjacent, since they are part of Q. So

3.3. Even and pseudo-even triangulations 37

pj+1

pj

pj+2

pj+1

pj

pj+2

pl

s

pl−1
pl+1

q

s

q = pj−2 pj+1

pj

pj−1

pj+2
s1

s2

Figure 3.5 — To the left we see the final configuration in the case that pj+1 was a pivot of color
i and pl+1 is of color i + 2. In the middle and to the right we have that, if pj+1

of color i was not a pivot and its neighbors have different color from each other,
then one of them must necessarily be a pivot, pj+2 in this case. So we have to go
back and remove some adjacencies that will allow us to introduce the Steiner points
appropriately. Quadrilateral � is shown in gray.

we have two cases depending on whether pj or pj+2 is the pivot in the fan
triangulation of Q.

(�.�.�) Point pj is the pivot in Q. Then consider the points two positions
ahead, that is pj+3, pj+4. Let us assume w.l.o.g. that they exist, oth-
erwise pj+2 = pk+1, which is the right neighbor of v on CH(P), and
pj, pj+1, pj+2 are the last three points that the algorithm will process.
It is then easy to verify that two interior Steiner points suffice to finish.

Now, consider the pattern of colors of pj, . . . , pj+4. The first three colors
are fixed i + 1, i, i + 2. If we see i, i + 1 next, then the pattern matches
what we see in case (�.�.
)II, which we know how to solve using two
Steiner points, but we would also get rid of two points of color i. If we
see next i, i + 2, then we see the same as in case (�.�.). If pj+3 is of
a color different than i then it must necessarily be of color i + 1, since
pj+2, of color i + 2, and pj+3 are adjacent. But since pj, of color i + 1,
is the pivot of Q, then pj+3 cannot be a vertex of Q, so pj+2 is actually
a reflex vertex of P, and we would find ourselves seeing what we see in
case (�.�.�).

(�.�.�) Point pj+2 is the pivot in Q. This case is trickier since for the points
pj, . . . , pj+4 we could see the pattern of colors i+1, i, i+2, i+1, i, which
we do not know how to solve locally using only two Steiner points. What
we will do is to not look ahead but to see behind.

IIWhich in turn is the symmetric case of (�.�.�).

38 3. Parity-constrained Triangulations with Steiner points

Since the edge pjv is currently in the triangulation being built, there is
exactly one triangle using this edge. Let q 	∈ {pj, v} be the third vertex
of such triangle. Note that q lies to the left of the edge pjv and hence it
already has even degree, moreover, the color of q is i+ 2, since pj, v have
color i+ 1, i respectively. Now we have the following two cases:

� Vertex q is a Steiner point, or the quadrilateral � = q, pj, pj+1, v is
convex. Let us consider only the case that � is convex, if that is not
the case then q is a Steiner point and it can be moved as pleased to
make � convex without affecting anything.

We will flip the edge pjv for the edge qpj+1 and introduce one Steiner
point s of color i + 1 that will be adjacent to q, pj+1, pj+2, v, see in
the middle of Figure 3.5.

� If q is not a Steiner point and � is non-convex, then it is not hard
to see that the only possibility is q = pj−2, and pj−1 must then be a
reflex vertex of P of color i. Note then that the edge e = pj−2pj must
be present in the triangulation, by case (�), and thus pj−1 is adjacent
to no Steiner point. Hence we will remove e and we will introduce
one Steiner point s1 of color i+2 that is adjacent to pj−1, pj, pj+1, s2,
where s2 is another Steiner point of color i + 1 that is adjacent to
pj−2, pj−1, s1, pj+1, pj+2, v. We can now move to pj+2 and continue.
See to the right in Figure 3.5.

Note that the color i of v was chosen as the color of the smallest chromatic class in
L(P), so its cardinality can be at most

⌊
k+2
3

⌋
. Now, it is important to observe that we

assumed that the point pj that we process is neither p0 nor pk+1 of CH(P), since the
algorithm started with j � 1. So it could happen that at least one of those extreme
points is of the same color i of v, which would give a conflict in the 3-coloring of the
triangulation we are constructing. Let us see how can we deal with this kind of situation.
Assume without loss of generality that p0 is of color i. Then, before start processing the
first interior points p1, introduce one Steiner point v′ inside CH(P), so close to v that
the angular order p1, . . . , pk w.r.t. v is also kept by v′. This Steiner point v′ will replace
v in the algorithm, so it will get color i as well. Now symbolically delete v and run the
algorithm. When the algorithm ends we will still have the conflict of the monochromatic
edge p0v

′, we could simultaneously have the same conflict with edge v′pk+1.

Put back v and remove the conflicting edges from the construction. We will proceed
depending on what v sees, having the edges of the construction as obstacles. That is, if
edge p0v

′ is the only one with conflicts, then v sees the polygonal chain p0, p1, v
′, pk+1,

see to the left in Figure 3.6. If the edge v′pk+1 also has conflicts then v sees the
polygonal chain p0, p1, v

′, pk, pk+1, see to the right in Figure 3.6. The solution will

3.3. Even and pseudo-even triangulations 39

v′ pk+1

v

p1

p0 v′ pk+1

v

p1

p0

pk

Figure 3.6 — Polygon P shown in light gray. In the figures color i = black, and the color white
means that those points are somehow 3-colored without conflicting with the black
points. The visibility region of v is shown in dark gray.

depend on whether p0v
′ is the only conflict or not, and whether v′ has even degree, in

the triangulation constructed by the algorithm, or not. The four cases, shown in solid
lines, and their solutions, shown with dashed lines, can be seen in Figure 3.7. Observe
that at most one more Steiner point s is used for the solutions, and that v′, s are both
interior Steiner points. So s can be charged to p0, which is one of the

⌊
k+2
3

⌋
points

of L(P) of color i, and v′ would be simply one interior Steiner point that cannot be
charged to anything.

v′ pk+1

v

p1

p0

s

v′ pk+1

v

p1

p0

s

v′ pk+1

v

p1

p0

pk pk

v′ pk+1

v

p1

p0

Figure 3.7 — Polygon P shown in gray. On the top part we have the solution for the cases where
p0v

′ is the only conflict and the degree of v′ is odd, left, or even, right. Below we
have the solutions for the case when both edges p0v

′, v′pk+1 are in conflict and the
degree of v′ is odd, left, or even, right. In the figures color i = black.

40 3. Parity-constrained Triangulations with Steiner points

Finally, in the analysis of cases (�.�.�) to (�.�.�) we always assumed that point pl+1

always existed. This might not always be the case since we could have pl = pk+1, but
in this case we could safely assume that pl+1 = v or pl+1 = v′, depending on conflicts
on CH(P), so the second Steiner point we introduce in those cases is also an interior
Steiner point that cannot be charged to anything. Hence the construction used at most⌊
k+2
3

⌋
+ 2 interior Steiner points, and Theorem 3.1 follows.

3.3.1 Extension to even triangulations

Theorem 3.1 guarantees a 3-colorable triangulation, which will be at least pseudo-even,
but it might not necessarily be completely even, and this is because when we choose an
arbitrary triangulation for a part of P, some vertices of CH(P) might get odd degree.
Thus in order to construct an even triangulation we have to do some more work.

As we mentioned before, in an even triangulation the size of the outer face must be
multiple of three. Thus the first thing we will do, if necessary, is to complete CH(P)

using at most two Steiner points so that we fulfill |CH(P)| ≡ 0 mod 3.

Let v again the unique vertex of CH(P) with the smallest y-coordinate, and sort all
P \ {v} angularly, from left to right, around v. Let p1, . . . , pn−1 be the points of P \ {v}

in this sorted order.

The main idea behind the construction is to enclose P in a bigger polygon Q so that all
p0, . . . , pn−1 are interior points, and then run the algorithm of Theorem 3.1, which will
guarantee that all p0, . . . , pn−1 will have even degree. The construction is done in such
a way that CH(P) appears in the construction, at the end we can complete the degree
of v to an even degree, if necessary, and such that by removing Q we do not destroy
any parity, since Q, upon deletion, will take with it an even number of adjacencies per
“affected” point of CH(P), so the degree of those affected points will remain even at the
end. So let us jump to the actual construction.

Enclose CH(P) in a bigger polygon Q with the following properties: (�) The size
of Q is |CH(P)| + 1, (�) The vertex of Q with smallest y-coordinate is also v and is
unique, (�) The polygon C formed by Q ∪ CH(P) can be triangulated using a “zig-
zag” starting at v. That is, if we denote the vertices of CH(P) in clockwise order
starting with v by q1 = v, q2, . . . , qk, with k � 3 and k ≡ 0 mod 3, and we denote
the vertices of Q the same way by q′

1 = v, q′
2, . . . , q

′
k, q

′
k+1, then the “zig-zag” is q1 =

q′
1 = v, q′

2, q2, q
′
3, . . . , q

′
k, qk, q

′
k+1, v = q′

1 = q1, which along the edges of C complete a
triangulation of C itself. See to the left in Figure 3.8.

This construction can always be achieved and has the following properties: (�) All
points of P \ {v} lie in the interior of Q, (�) In the “zig-zag” triangulation of C, every

3.3. Even and pseudo-even triangulations 41

q′3

q′k+1

q′k
qk = pn−1

q3 qk−1

v = q′1 = q1

q2 = p1

q′2

Q C

q′3

q′k+1

q′k
qk = pn−1

q3 qk−1

v = q′1 = q1

q2 = p1

q′2

Q C

Figure 3.8 — To the left: The polygon Q is the outer face of the construction shown. Observe that
it does not have to necessarily be convex. The convex hull of P, CH(P), is shown
in dark gray, and C is shown in light gray, along with its zig-zag triangulation. To
the right: The particular 3-coloring of the zig-zag triangulation of C using colors
{0,1,2} = {black,blue, red}.

vertex of CH(P), and every vertex of Q, except for q′
2, q

′
k+1, has even degree, (�) In the

3-coloring of the triangulation of C that starts with color 0 at q′
2 ∈ Q, and color 1 at

q2 ∈ CH(P), we have that qk ∈ CH(P) receives color 0, vertex q′
k+1 ∈ Q receives color

1, and v receives color 2. See to the right in Figure 3.8.

Now, pre-process Q ∪ P as explained in § 3.2. This pre-processing will construct in a
first step the polygon P used in the algorithm of Theorem 3.1. The reader should see
that this time P is the polygon whose upper part U(P) is Q \ {vq′

2, q
′
k+1v}, and whose

lower part L(P) is formed by the adjacencies pipi+1, for 1 � i � n − 2, along with the
adjacencies q′

2q2, q′
k+1qk. In a second step, the “ears” formed by consecutive convex

vertices of L(P) will be computed. Recall that this “ears” are the convex polygons Qj’s
in the pre-processing phase. Here, by suitably locating q′

2, q
′
k+1 ∈ Q we can assume that

both q2, qk ∈ CH(P) are reflex vertices of P, see Figure 3.9. Moreover, observe that any
other vertex qi ∈ CH(P), 2 < i < k, must also be a reflex vertex of P. This implies that
the convex polygons Qj’s are contained in CH(P). This is important because in a third
step of the pre-processing we compute a arbitrary triangulation of P minus those Qj’s.
At this point we will choose the zig-zag triangulation of C as part of this “arbitrary”
triangulation, adding other arbitrary edges inside CH(P) if the zig-zag triangulation of
C does not complete a triangulation of P minus the Qj’s, the important thing here is
that the zig-zag triangulation of C, which contains CH(P), appears.

42 3. Parity-constrained Triangulations with Steiner points

q′3

q′k+1

q′k

v = q′1 = q1

q′2

P

q′3

q′k+1

q′k

v = q′1 = q1

q′2

P

Figure 3.9 — Polygon P shown in gray. The dash lines delimit the “ears” that are constructed by
the algorithm. They are contained in CH(P) since every vertex of CH(P) is a reflex
vertex of P. To the left we can see a whole 3-colored triangulation of P, where the
zig-zag triangulation of C appears. The 3-coloring is extended from the 3-coloring
of C.

If we now execute the algorithm of Theorem 3.1, the first thing it will do is to compute
a fan triangulation of each Qj, if any exists, see to the right in Figure 3.9. This will
complete a triangulation T(P) of polygon P. The second thing it will do is to compute
a 3-coloring of T(P). Clearly we can extend the particular 3-coloring of the zig-zag
triangulation of C, explained before, to a 3-coloring of T(P). Here again the important
thing is that this particular 3-coloring of the triangulation of C appears. The third thing
the algorithm will do is to re-color v with the color of the smallest chromatic class of
the 3-coloring of T(P). Here we have two cases:

� Vertex v stays of color 2. Observe that since q′
2, q

′
k+1 ∈ Q, q2, qk ∈ CH(P), the

neighbors of v in Q and CH(P) respectively, have colors 0 and 1, then v does not
create any conflict with the 3-coloring of T(P). Thus we will keep the adjacencies
q′
2v, q2v, vqk and vq′

k+1, and we will execute the algorithm to the end. Since
the colors of q′

2, q
′
k+1, q2, qk, v are never changed by the algorithm, we end up

having a 3-colored triangulation, where v also has even degree, that uses at most⌊
n+1
3

⌋
+ 1III interior Steiner points. Note that these interior Steiner points are

also interior w.r.t. CH(P), since the algorithm of Theorem 3.1 would introduce
the Steiner points inside Q, but strictly below the lower part L(P) of P. Since the
adjacencies q′

2v, q2v, vqk and vq′
k+1 are present in the output triangulation, the

Steiner points fall strictly inside CH(P).

IIIIt is not
⌊
n+1
3

⌋
+ 2 this time since there is no conflict in CH(P).

3.3. Even and pseudo-even triangulations 43

The reader can verify that if we now remove Q\ {v}, along with all the adjacencies
that it takes with it, we are left with the desired even triangulation.

� Vertex v changes color. Then we will assume without loss of generality that v

gets color 0. If v got color 1 we would have a symmetric conversation. Remember
that by the particular 3-coloring of C we have that q′

2, q
′
k+1 ∈ Q have colors 0,1

respectively, and q2, qk ∈ CH(P) have color 1, 0 respectively, see Figure 3.8. Thus
the algorithm will introduce the Steiner point v′ of color 0, to take the place of
v, and will symbolically delete v. This time we can charge v′ to q′

2 which is one
of the

⌊
n+1
3

⌋
points of L(P) of color 0. Now introduce the adjacency v′pn−2

and execute the algorithm until it finishes. There, point pn−2 would be the last
processed point. So we arrive at the configuration shown in the left upper corner
of Figure 3.10.

v′

q′3

q′k+1

q′k

qk = pn−1q3 qk−1

pn−2

v′

q′3

q′k+1

q′k

qk = pn−1q3 qk−1

pn−2

v′

q′2q′3

q′k+1

q′k

qk = pn−1

q2 = p1

q3 qk−1

pn−2

s

v = q′1 = q1

q2 = p1

q′2
q2 = p1

q′2

v = q′1 = q1

v = q′1 = q1

Figure 3.10 — Polygon P is shown in light gray. Using colors {0,1,2} = {black,blue, red}, if we
made as if point pn−2 was the last point, we arrive at the configuration shown in
the left upper corner. The white color of point pn−2 means that we do not care
about its real color at this time. If we put v back, and we color it with 3, we
can add the dashed adjacencies shown in the middle and the right upper corner,
depending on the actual color of pn−2. The color of v will conflict with the color
of q′

3, q
′
k ∈ Q, but this is not a problem since in the end we will remove Q \ {v}.

In this configuration we necessarily have that the degree of q2 = p1 ∈ CH(P) is
odd, since it is adjacent to q′

2, v
′ ∈ Q which have both color 0. The degree of pn−2

is also odd since it is adjacent to v′, qk = pn−1 ∈ CH(P), and both are colored 0

as well. So the only options we have now are whether v′ has even or odd degree

44 3. Parity-constrained Triangulations with Steiner points

between q2 and pn−2. This is equivalent to consider whether pn−2 is of color 2

or 1 respectively. Those two configurations are shown in the right upper corner,
and in the middle respectively, in Figure 3.10 in solid.

Now let us put v back and we will finish the construction as shown in Figure 3.10
with dashed lines. We might require the use of another Steiner point s, as shown
to the right in the upper corner of the same figure, which can be charged to
qk = pn−1. In the end v gets even degree as well. It is not hard to verify that the
total number of interior Steiner points is again at most

⌊
n+1
3

⌋
+ 1, that all Steiner

points are interior to CH(P), and that the removal of Q \ {v} does not destroy any
parity. Hence Theorem 3.2 follows.

3.4 Pseudo-odd and odd triangulations

Working locally with (pseudo-)odd triangulations is slightly easier. The following ob-
servation was already pointed out in [65]:

Observation 3.2. Let be a triangle in a triangulation. Then at most seven interior
Steiner points suffice to obtain an odd-triangulation of .

The way this odd triangulation of is obtained is shown in the following figure:

Figure 3.11 — All interior points are Steiner points. Gray vertices are of even parity before the
introduction of Steiner points, and all black vertices on the boundary of are of
odd parity. The middle case spawns two sub-problems, of the kind shown to the
right, by introducing one Steiner point. This gives in total 1 + 3 + 3 = 7 Steiner
points for an odd-triangulation of .

Observe that, in general, no similar statement can be done for (pseudo-)even triangu-
lations.

3.4. Pseudo-odd and odd triangulations 45

For simplicity we will right now focus on pseudo-odd triangulations only. The al-
gorithm to construct them is essentially the same as for pseudo-even triangulations,
however, this time we will not be able to use a 3-coloring as guide. That 3-coloring
played an important role in the upper bound on the number of interior Steiner points
that we used: We did not have to explicitly track whether we introduced at most one
Steiner point every three interior points, but we just had to take care of solving con-
flicts with the coloring as they appeared. The 3-coloring then ensured such conflicts to
appear at most one-third of the time. So for (pseudo-)odd triangulations we will have
to explicitly take care of introducing at most one Steiner point per every three interior
points.

The pre-processing of P will be again as explained in § 3.2. Let v ∈ P be again the
unique vertex with smallest y-coordinate, the one we use to sort the interior points
angularly around. The pre-processing phase ends with the construction of the convex
polygons Qj’s, the big ears hanging from the lower part L(P) of the therein created
polygon P. For pseudo-even triangulations we would fan-triangulate those Qj’s, if any.
For pseudo-odd we will choose different triangulations, the main idea is the following: If
every vertex of a convex polygon Qj is of even degree in a triangulation T(P) of P, then
we could just directly make them adjacent to v and leave them all odd. Unfortunately
this might not always be possible. We will try nonetheless to achieve something similar,
and the following result shown in [4] will be very useful:

Lemma 3.2 (O. Aichholzer et al.). Let Q be a convex polygon where each of its vertices
has a parity assigned. Let p, q, r be any three consecutive vertices of Q. Then there
exists a triangulation of Q that makes all vertices of Q happy with the possible
exception of p, q, r.

After the pre-processing there is an arbitrary triangulation of P minus the Qj’s. We
will complete a triangulation T(P) of P as follows: for each one of the Qj’s set the parity
of its vertices appropriately so that we can apply Lemma 3.2 and make them all even
in T(P), with the possible exception of its last three vertices, w.r.t. the angular order of
the interior points around v. The triangulations of those Qj’s, however, might change
during the algorithm depending on what conflicts we encounter.

Having this particular triangulation T(P) of P we will again scan L(P) from the left
to right, following the angular order p1, . . . , pk of the k interior points of P around v,
so again p0 and pk+1 are the neighbors of v in CH(P). We will again assume that by
the time we are processing point pj, the adjacency pjv is already present and every
point pr, r < j, is of odd degree in the current construction. Nevetheless, observe that
since we want to add roughly k

3
interior Steiner points, processing pj actually means

processing pj, pj+1, pj+2, so we have different cases depending on the local situation.
That is, if we are currently stuck at pj it is because its current degree is even, other-
wise we could just continue. So the cases we have to study are the triples of parities:

46 3. Parity-constrained Triangulations with Steiner points

(e, e, e), (e, e, o), (e, o, e) and (e, o, o), where they correspond entry-wise to the current
parities of (pj, pj+1, pj+2), and e, o stand for even and odd respectively. It is very im-
portant to keep in mind that in the triple (pj, pj+1, pj+2), the only point adjacent to v is
pj. Also, in all cases we will assume that pj+3 exists. If that is not the case then one of
pj, pj+1, pj+2 is pk+1, and we would find ourselves with a problem of constant size that
can be solved using a constant number of interior Steiner points, due to Observation 3.2.
We will now jump to the case distinction.

(�) (e, e, e). Regardless of whether pj, pj+1, pj+2 are reflex or convex vertices of P,
the configuration is shown in solid to the left in Figure 3.12 and its solution is
shown dashed.

pj+1

pj+2

pj

pj+3

(e, e, e) (e, o, e) (e, e, o)

s

pj+1

pj+2

pj

pj+3

s

pj+1

pj+2

pj

pj+3

s

Figure 3.12 — In the figures, the colors represent the parity of the vertices before the adjacencies
of the solution are added. Gray color means even degree, black color means odd
degree, and white means that we do not necessarily take care of that point at this
step. The original configurations are shown in solid black while their solutions are
shown dashed. Point s is a Steiner point.

(�) (e, o, e). Regardless of whether pj, pj+1, pj+2 are reflex or convex vertices of P,
look the middle configuration of Figure 3.12.

(�) (e, e, o). If pj+2 is a reflex vertex of P, then the situation is shown to the right in
Figure 3.12.

If pj+2 is a convex vertex of P, then pj+2 is part of some convex polygon Q we ap-
plied Lemma 3.2 on. Observe that Q cannot be a triangle, otherwise pj+2 would
be the middle vertex and therefore pj+2 would have even degree, since its two
neighbors in Q would be adjacent. Thus Q must have size at least four. This im-
plies that pj cannot be part of Q either, because otherwise we could safely assume
that pj, as any other vertex of Q to the left of pj, is happy due to Lemma 3.2. This
means that pj+1 is necessarily a reflex vertex of P, and thus the leftmost vertex of
Q. Finally, this all means that Q cannot actually have size larger than four, i.e.,

3.4. Pseudo-odd and odd triangulations 47

Q must necessarily be a convex quadrilateral. If Q had size larger than four we
could safely assume that the degree of pj+2 in the triangulation of Q is even due
to Lemma 3.2 and the fact that neither pj+1 nor pj+2 have been modified by the
algorithm before. Therefore the situation is as pictured in the upper left corner of
Figure 3.13 and its solution is shown right below.

(e, e, o) (e, o, o) (e, o, o)

pj+1

pj+2

pj
pj+3

pj+1

pj+2
pj

pj+3

s

pj
pj+1

pj+2
pj+3

Figure 3.13 — The colors represent the parity of the vertices before the adjacencies of the solution
are added. Gray color means even degree, black color means odd degree, and white
means that we do not necessarily take care of that point at this step. The original
configurations are shown in solid black while their solutions are shown dashed.
Point s is a Steiner point.

(
) (e, o, o). This case is the hardest of all. If pj+1 is a reflex vertex of P, then the
situation is shown in the second figure in the upper part of Figure 3.13, and whose
solution is shown right there dashed. If pj+1 is a convex vertex of P, then observe
that pj+2 cannot be a convex vertex as well, since otherwise pj, . . . , pj+3 are part
of the same convex polygon, and pj would be happy due to Lemma 3.2. So pj+2

is a reflex vertex of P. More, if the degree of pj+3 in T(P) is odd then the solution
is like shown to the right in Figure 3.13.

Thus we enter a case where pj+2 is a reflex vertex of P and pj+3 is of even degree
in T(P). This case cannot be solved locally, considering only pj, . . . , pj+3, and
there is more than one way we can deal with it. The way we will do it here is the
following: We will go ahead until pj+6 and we will solve pj, . . . , p6 with at most
two Steiner points, one of them will be charged to the triple pj, pj+1, pj+2, and
the other to the triple pj+3, pj+4, pj+5. At the end of the construction we will be
left with the adjacency pj+6v, which is where the algorithm will continue. So for
all what follows we will assume that pj+4, . . . , pj+6 exist, otherwise pj+3 = pk+1,
and we find ourselves with the last four points the algorithm would process. This
can be solved with a constant number, larger than one, of Steiner points, which
turns into a constant overhead overall.

48 3. Parity-constrained Triangulations with Steiner points

Since we are assuming that pj+3 is currently even, we have four main sub-cases
that depend on the pair of parities (·, ·) of (pj+4, pj+5) in T(P). The configurations
and solutions are pictured in Figure 3.14.

(e, o, o, e) + (e, e)

pj

pj+1

pj+2

pj+3

pj+6

s1

s2

pj

pj+1

pj+2

pj+3

s1 s2

pj

pj+1

pj+2

pj+3

pj+6

s1
s2

(e, o, o, e) + (e, o) (e, o, o, e) + (o, o)

pj+4

pj

pj+1

pj+2

pj+3

s

(e, o, o, e) + (o, e)

pj+4

pj

pj+1

pj+2

pj+3

s1

(e, o, o, e) + (o, e)

pj+4

s2

Figure 3.14 — The colors represent the parity of the vertices before the adjacencies of the solution
are added. Gray color means even degree, black color means odd degree, and white
means that we do not necessarily take care of that point at this step. The original
configurations are shown in solid black while their solutions are shown dashed.
Points s1, s2 are Steiner points.

(
.�) (e, e). The configuration is shown in the left upper corner of Figure 3.14 in
solid and its solution is shown dashed. Observe that for the solution it does
not play a role whether pj+3, pj+4, pj+5 are reflex or convex vertices of P.

(
.�) (e, o). The configuration is shown in the second figure on the upper part
of Figure 3.14 in solid and its solution is shown dashed. Again, it does not
matter whether pj+3, pj+4, pj+5 are reflex or convex vertices of P.

(
.�) (o, o). If pj+4 is a reflex vertex of P, the configuration is shown in solid to
the right on the upper part of Figure 3.14, and its solution is shown dashed.

Now let us argue that pj+4 cannot be a convex vertex. If pj+4 were a convex
vertex it would be part of a convex polygon Q we applied Lemma 3.2 on
in the beginning. This polygon Q cannot be a triangle, because then pj+4

3.4. Pseudo-odd and odd triangulations 49

would be the middle point and it would then have even degree in T(P). Also,
Q cannot have at least five sides because by Lemma 3.2, again, pj+4 could be
made of even degree in a triangulation of Q, without affecting the parity of
pj+3 in the same triangulation. Thus the only case that kind of makes sense
is that Q is a convex quadrilateral. So, there are two possible options for Q.
Either Q = pj+2, pj+3, pj+4, pj+5 or Q = pj+3, pj+4, pj+5, pj+6. The former
is not possible because pj+2 would be part of Q and the algorithm would have
chosen in the beginning to leave pj+2 of even degree, instead of odd, using
a triangulation of Q. This is achievable using Lemma 3.2. The latter is also
not possible because although pj+3 is currently of even degree, pj+4, pj+5 are
of odd degree in the current triangulation of Q. Since pj+4, pj+5 are the two
middle vertices of Q, and Q has only two triangulations, then at least one of
them would get even degree, and again, we would be discussing a different
case. Therefore pj+4 must necessarily be a reflex vertex of P.

(
.
) (o, e). If pj+4 happens to be a reflex vertex of P, then the configuration is
shown to the left on the lower part of Figure 3.14, and its solution is shown
dashed.

If pj+4 is a convex vertex of P, then its part of a convex polygon Q we
applied Lemma 3.2 on in the beginning. By the same arguments as in
case (o, o) we know that Q can be neither a triangle nor a convex polygon
larger than four. Nevertheless, this time Q can indeed be the quadrilateral
pj+3, pj+4, pj+5, pj+6. The other possibility for Q is in this case not possible
either due to the same argument. Since Q is a convex quadrilateral and pj+4

is of odd degree in the current triangulation of Q, then the only possibility is
that the diagonal pj+4pj+6 is present. The configuration is shown to the right
on the lower part of Figure 3.14 in solid and its solution is shown dashed.

This concludes the case analysis.

From all cases discussed it is clear that the algorithm introduces at most one interior
Steiner point per triple of interior points of P, and at the end it might require to brute-
force a configuration of constant size, that due to Observation 3.2 can be solve using a
constant number c of interior Steiner points as well. Hence overall the algorithm makes
use of at most

⌊
k
3

⌋
+ c interior Steiner points and Theorem 3.3 follows.

3.4.1 Extension to odd triangulations

The extension of the algorithm of Theorem 3.3 to odd triangulations is now very easy.
We again enclose the set of points P in a bigger polygon, just as we did for even triangula-
tions. What the configuration looks like can be seen to the left in Figure 3.8 on page 41.

50 3. Parity-constrained Triangulations with Steiner points

We then run the algorithm for pseudo-odd triangulations, and at the end the only thing
that can happen is that the pivot v ∈ P gets even degree. However, by Observation 3.2,
pivot v can be made odd by locally adding a constant number of Steiner points in one
of its adjacent triangles. Thus, in total, the number of used interior Steiner points is
at most

⌊
n−1
3

⌋
+ c, for some constant c. The odd triangulation is finally obtained by

removing the bigger polygon enclosing P. Therefore Theorem 3.4 follows.

3.5 Conclusions

In this chapter we have presented algorithms that construct, with help of Steiner points,
(pseudo-)even and (pseudo-)odd triangulations of a given set of points P. The number
of Steiner points that the algorithms use is roughly k

3 for the pseudo variants, where k

is the number of interior points of P, and roughly n
3

for the other cases. It is important
to observe that our algorithms do not modify the convex hull of P, and therefore they
preserve extent measures of P, such as diameter, width, among others. If we do not
care about modifying CH(P), or about the position of the Steiner points, then the task
is in general significantly easier. For example, only two Steiner points far away from
CH(P) would suffice to construct a pseudo-even triangulation, say one at ∞ and the
other at −∞. Albeit being this construction possible, we do not know why it would be
interesting to use it, since the output set of points does not look anything like the one
that was given as the input.

We could believe that the techniques shown here could be pushed further to improve
the overall number of Steiner points, say to go from one-third to one-sixth, but this will
imply a significantly larger number of cases to analyze, we see this really as a secondary
interesting improvement. What we really see as the primary open problems are the
following:

� Is it possible to always construct (pseudo-)even or (pseudo-)odd triangulations of
a given set of points P using only a constant number of (interior) Steiner points?
In other words, how big is the lower bound on the number of (interior) Steiner
points that are required to always construct such triangulations? We have failed
so far trying to prove a (sub-)linear lower bound, which is the natural guess when
working on these kind of problems.

� Moving away from using Steiner points, would it be possible to construct even or
odd triangulations of a given set of points P where at most a constant number
of points remain unhappy? This question was posed by Aichholzer et al. in [4].
In that same paper they proved a lower bound of roughly n

108 unhappy vertices
when the assignment of parities is not uniform. Thus, as they pointed out, the
interesting cases are all even and all odd.

3.5. Conclusions 51

Note that although these two question look similar, they might not be equivalent. If
we are interested in an even triangulation of P and we construct one where a constant
number of vertices remain unhappy, those unhappy vertices might be far from each
other. This means that we might have to bring them together, at least in pairs, using
Steiner points. We have to get rid of them of them in pairs, at least, since the number
of odd vertices is always even. But to get them close to each other we might require
more than a constant number of Steiner points. Thus the techniques to solve those two
open problems might be rather different. We see a real challenge there.

CHAPTER 4

A SWEEP LINE ALGORITHM FOR COUNTING
TRIANGULATIONS AND

PSEUDO-TRIANGULATIONS

While triangulations require essentially no introduction, due to their many applica-
tions, pseudo-triangulations are way less known. Pseudo-triangulations were originally
used in [66] for sweeping complexes, and in [23, 42] for ray-shooting. However, it was
until a paper of Ileana Streinu appeared, see [81], that pseudo-triangulations really took
off as a main research topic, due to their structural richness. In the same paper, [81], a
particular kind of pseudo-triangulations was introduced, the so-called pointed pseudo-
triangulations. In a pointed pseudo-triangulation every vertex is incident to an angle
larger than π, and its characterization is very rich. The following is just a subset of
equivalences found in [81]:

Theorem 4.1 (I. Streinu). Let G be a straight-edge plane graph on a set of points P.
The following properties are equivalent:

� G is a pointed pseudo-triangulation.

� G is a pseudo-triangulation having the minimum number of edges, and thus
also the minimum number of pseudo-triangles.

� The set of edges of G forms a maximal, by inclusion, planar and pointed set
of edges, i.e., a set of edges whose union is crossing-free, and in which every
vertex is incident with an angle larger than π.

54 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

Pointed pseudo-triangulations have found interesting applications in robot arm motion
planning, see [81], and have been the subject of extensive research, see the survey on
pseudo-triangulations in [38], which is an excellent reference for most known results to
date on pseudo-triangulations.

In this work we will be concerned only with pointed pseudo-triangulations, so we will
drop the “pointed” part and we will only call them pseudo-triangulations. So, unless
otherwise stated, our pseudo-triangulations are always pointed. No confusion shall arise.

Knowing what triangulations and pseudo-triangulations are, we can talk about the
classes FT (P) and FPT (P) of all triangulations and all pseudo-triangulations of a given
set of n points P respectively, and ask about their sizes, how large are they? We can
actually think about two flavors of this question: (�) What is the largest or smallest
they can get over all sets P ⊂ R2 of n points? or (�) Given P, what is the exact size of
a desired class?

The first question mentioned above requires usually heavy mathematical machinery
since the number of combinatorially different configurations of n points is too large to
be explored by computer, see [40]. Thus, the first question is of rather theoretical flavor
and it has actually spawned a large amount of research over almost 30 years, which
started with the seminal work of Ajtai, Chvátal, Newborn and Szemerédi, where they
showed that the number of all crossing-free structures on any set of n points on the
plane can be at most 1013n, see [7]. This bound implies that the size of each class of
crossing-free structures on P can be upper-bounded by cn, with c ∈ R depending on
the particular class. Since then research has focused on fine-tuning c. For example, in
the case of triangulations, the most popular in recent years, it is currently known that
2.4 � c � 30, see [75] for the upper bound and [77] for the lower bound. Thus every set
P of n points on the plane fulfills |FT (P)| = Ω(2.4n) and |FT (P)| = O(30n). For the class
of pseudo-triangulations not much is known. For example, it is known that c attains its
minimum value for sets of points in convex position, i.e., c � 4, see [3]. It is also known
that |FPT (P)| � 3i|FT (P)|, where i is the number of interior points of P, see [69].

As for the second question mentioned before, we always assume that we are given a
set P of n points on the plane and we are interested in computing the exact values of
|FT (P)|, |FPT (P)|, for example, the set of 32 red points presented in Figure 4.1, represent-
ing the State Capitals of Mexico, spans exactly 6 887 011 250 368 237 767 ≈ 3.878732

triangulations.

The second question is thus of empirical flavor, and therefore algorithmic, since no
closed-form formula is known, in general, for |FT (P)|, |FPT (P)|. It is then important to
come up with methods (algorithms) that can compute their sizes efficiently. A first
approach would be to produce all elements of the desired class, using methods for
enumeration, see for example [14, 16, 15, 49], and then simply count the number of

4.1. Our contribution 55

N

S

W E

Figure 4.1 — A set of 32 points representing the State Capitals of Mexico.

elements. This has the obvious disadvantage that the total time spent will be, at best,
linear in the number of elements counted, which, by the first part, is always exponential
in the size of the input. Thus, the crucial question is whether |FT (P)|, |FPT (P)| can be
computed faster, say, for starters, in time sub-linear in the number of elements counted.
Currently this is only known for the super class of all crossing-free structures on the
given set P of n points, see [71]. For the particular classes FT (P),FPT (P) there are
algorithms that seem to count faster than enumeration, see [2, 70, 6], but no theoretical
runtime guarantees are known.

This and the next two chapters are fully devoted to the second question, namely, the
algorithmic version of the problem of counting triangulations.

4.1 Our contribution

In this chapter we focus on counting the elements of FT (P) and FPT (P). We will only
be concerned about algorithms with provable running times.

4.1.1 The result on counting triangulations

In order to state our results we will require some definitions, which for clarity we state
first:

56 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

Definition 4.1 (Separating line). Let P be a non-empty set of points on the plane, and
let l be a straight line such that l ∩ P = ∅ but l ∩ CH(P) 	= ∅, then l will be called a
separating line w.r.t. P.

Definition 4.2 (T-path). Given a non-empty set of points P on the plane, a triangulation
T of P, and a separating line l w.r.t. P, a T-path of T w.r.t. l, denoted by p(l, T), is
defined as follows: (�) p(l, T) is a chain of edges of T where every edge of p(l, T) intersects
l. (�) Starting and ending edges of p(l, T) are two edges of CH(P) intersected by l. (�)
The area bounded by two consecutive edges of p(l, T) and l must be empty of points of
P. See to the left in Figure 4.2 for an example of a T-path p(l, T).

l l

Figure 4.2 — To the left a T-path p(l, T), shown in solid lines, of a triangulation T with vertex
set P. To the right a PT-path pt(l, S), shown also in solid lines, of a pseudo-
triangulation S with vertex set P. The gray areas are the areas bounded by two
consecutive edges of the paths and line l, which are empty of points of P.

T-paths were originally introduced by Oswin Aichholzer in 1999 in [2]. What makes
them relevant is the following theorem, also presented in [2]:

Theorem 4.2 (O. Aichholzer). Let P be a set of points and l a separating line w.r.t. P.
Then the following holds: (�) For every triangulation T of P there always exists a
T-path p(l, T). (�) p(l, T) is unique for T . (�) If T and T ′ are two triangulations
of P, then p(l, T) and p(l, T ′) are either equal, or properly intersect each other, i.e.,
there are intersection points lying in the strict interior of their edges.

Moreover, in the same paper, Aichholzer designed an algorithm to compute |FT (P)|

based on T-paths and the divide-and-conquer paradigm. His algorithm experimentally
exhibited a running time sub-linear in the number of triangulations counted, that is,
that algorithm was apparently faster than enumeration. A formal proof of this fact is,
however, hard to obtain since it is not clear how to show that a single T-path appears
in many triangulations, even on average. Nonetheless, the running time of Aichholzer’s
algorithm can be bounded by the number of sub-problems that it generates. Since the

4.1. Our contribution 57

algorithm is based on the divide-and-conquer paradigm, we can describe its running-
time recurrence by R(n) = 2t(n) · R(n/2), where t(i) denotes the number of T-paths
encountered by the algorithm when i points are considered. If we can show that t(i) �
ai, for some positive constant a, we have that R(n) � 2·an ·R(n/2), which gets solved to
O
(
a2n

)
. It is important to note here that t = t(n) can become exponentially large, for

example, Aichholzer showed that the convex polygon on n vertices has roughly O (2n)

T-paths, and in [32] a configuration is shown that has Ω
(
22n−Θ(log(n))

)
T-paths, which

is essentially 4n, so the quadratic term in the running time of Aichholzer’s algorithm
becomes really expensive. The first contribution of ours that will be shown is the
following theorem:

Theorem 4.3 (V. Alvarez, K. Bringmann, S. Ray). Let P be a given set of n points
on the plane. Then the exact value of |FT (P)| can be computed in O

(
n3 · t) time,

and O(t) space, where t is the largest number of T-paths the algorithm encounters
when run on P. Moreover t = O(9n).

Thus the running time of our algorithm for computing |FT (P)|, based on T-paths, can
really be seen as an asymptotic improvement over Aichholzer’s algorithm. As for the
upper bound on t, ours is the first non-trivial bound on it to be known, however, we
suspect that the real value should be closer to 4n.

Now, no configuration of points is known having as many T-paths as triangulations.
Hence, our T-path-based algorithm could potentially count triangulations asymptoti-
cally faster than enumeration algorithms. No similar result was known before, which
makes ours worth mentioning. On the negative side, the bound for the running time
of our algorithm is very precise, it depends on the largest I number of T-paths the al-
gorithm encounters when run on P, and this number can get very large, sometimes at
least Ω(4n). Thus it is necessary to keep looking for better algorithms. In Chapter 5
we will see a result that goes in this direction.

4.1.2 The result on counting pseudo-triangulations

Pseudo-triangulations have been the subject of extensive research from the counting
point of view, see [69, 15] and references therein. As of today it is not known whether,
for any set of points, the number of pointed pseudo-triangulations is at least as large as
its number of triangulations. Observe that if we remove the pointedness condition, the
answer is trivially “yes”.

In [6] the concept of zig-zag path of a pseudo-triangulation was introduced. This
concept is for pseudo-triangulations what T-paths are for triangulations. For simplicity
and consistency we will call such zig-zag paths simply PT-paths.
ISince T-paths are referenced by a line, different lines might generate different numbers of T-paths.

58 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

Definition 4.3 (PT-path). Given a planar set of points P, a pseudo-triangulation S of P,
and a separating line l w.r.t. P, a PT-path of S w.r.t. l, denoted by pt(l, S), is defined as
follows: (�) pt(l, S) is a chain of edges of S whose starting and ending edges are two edges
of CH(P) intersected by l, and whose intersections with l are linearly ordered along l.
(�) The area bounded by pt(l, S), between two consecutive intersections with l, and line
l is an empty pseudo-triangle. (�) The reflex vertices of the empty pseudo-triangles of
(�) are pointed in S. See to the right in Figure 4.2 for an example of a PT-path pt(l, S).

As for T-paths, an equivalent of Theorem 4.2 for PT-paths was proven in [6]:

Theorem 4.4 (O. Aichholzer, G. Rote, B. Speckmann, I. Streinu). The PT-path pt(l, S)

of a pseudo-triangulation S w.r.t. separating line l always exists and is unique.

The previous theorem does not necessarily hold if we remove the pointedness condi-
tion, that is, a non-pointed pseudo-triangulation might contain more than one PT-path
for the same reference line l. Nonetheless, for such cases one can still define a “canonical”
PT-path.

Again, as for T-paths, divide-and-conquer algorithms that use PT-paths can be de-
vised to count the elements of FPT (P), one such algorithm was already present in [6].
Those algorithms, as for T-paths, end up having running times of the sort O

(
t2
)
, where

t = t(n) is the largest number of PT-paths of P, w.r.t. to some separating line l, that
the algorithm encounters.

The result on pseudo-triangulation that we will prove is the following:

Theorem 4.5 (V. Alvarez, K. Bringmann, S. Ray). Let P be a given set of n points on
the plane. Then the exact value of |FPT (P)| can be computed in O

(
n7 · t) time, and

O(t) space, where t is the largest number of PT-paths the algorithm encounters
when run on P.

Thus again, our result gives a significant improvement over known algorithms for
counting pseudo-triangulations. This time, however, we are not able to show an upper
bound on the largest number of PT-paths that can be constructed w.r.t. a given line.

The rest of the chapter is organized as follows: In § 4.2 we prove Theorem 4.3 and
in § 4.3 we prove Theorem 4.5. We close the chapter in § 4.4 with discussions and
conclusions.

4.2 Counting triangulations

Let T be a triangulation of P and let l be a separating line w.r.t. P. Without loss of
generality we will assume that l is vertical. Let e be an edge of T properly intersecting

4.2. Counting triangulations 59

l. If e is not an edge of CH(P), we will say that e is flippable iff the union Q of the two
triangles of T sharing e forms a convex quadrilateral. If Q is non-convex, or e is an edge
of CH(P), we will simply say that e is non-flippable. Also, for Q, we will call the two
vertices that are not vertices of e, the opposite vertices of e. Finally, we will say that e
is good with respect to l iff e is flippable and its opposite vertices lie on different sides
of l.

Now, let p(l, T) be a T-path of T . The region between two consecutive edges e =

ab, e′ = bd of p(l, T), and delimited by l, defines a wedge W = abd with apex at vertex
b, see Figure 4.3.

a

b

l

d

e

e′

W

Figure 4.3 — Vertices a, b, d are three consecutive vertices of the shown T-path.

Observe that by part (�) of Definition 4.2, wedge W is empty of points of P, so we
can define the set W = W(p(l, T)) = {W1,W2 . . . ,Wk}, as the set of all those empty
wedges. Since we are going to use wedges throughout the whole section, whenever we
have three consecutive vertices a, b, d of p(l, T), we will use the shorthand abd to denote
the corresponding element of W formed by the triple, in which the middle element is
the apex. We now have the following observations:

Lemma 4.1. Let T be a triangulation of P, let l be a vertical line, and let e be a good
edge of T w.r.t. l. Then e is an edge of the unique T-path p(l, T).

Proof. Assume for the sake of contradiction that edge e = pq of T is good but not an
edge of p(l, T), that is, edge e cannot be an edge of CH(P). Let W be the set of empty
wedges of p(l, T). Observe that every element W of W defines an interval on l, which is
precisely where W intersects l, see Figure 4.4.

Note that every interior point of an interval on l defined by some element of W belongs
only to that element of W, that is, two intervals defined by two different elements of
W have disjoint interiors. Denote by x the point of intersection between e and l. This
point x cannot be the boundary point of any interval on l defined by some element of
W, otherwise there would be an edge e′ 	= e of p(l, T) that crosses l at x, but that would

60 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

l

q

p
e

Figure 4.4 — Every empty wedge of p(l, T) defines an interval on l where they intersect.

mean that e and e′ intersect, which is clearly impossible since both edges belong to T ,
see Figure 4.5.

p

q

l

e

xe′

Figure 4.5 — The intersection between e and
l cannot be the boundary of an
interval on l defined by an empty
wedge of p(l, T).

s

e′′ x

p

e′

r

q

e

l

Figure 4.6 — Point x lies in the interior of the
interval of l defined by the empty
wedge with apex p. Since e is
good w.r.t. l, the third vertex
of one of the triangles of T that
share e must lie inside W.

Thus x must belong to the interior of some interval on l defined by some element W

of W. It is also clear that the apex of W must be either p or q, otherwise, either p

or q lies inside W, which is not possible since W is an empty wedge of p(l, T). Let us
assume without loss of generality that the apex of W is p, and that W is defined by the
two consecutive edges e′ = rp and e′′ = ps of p(l, T). Assume without loss of generality
that p lies to the left of l, and thus r, q, s lie to the right. Note that x lies between the
intersection points of e′ and e′′ with l, see Figure 4.6. Since e is good w.r.t. l, then the
two triangles of T sharing e have their third vertices on different sides of l, which means
that one of them necessarily lies inside W, which is again a contradiction since W is
empty of vertices of T . Thus e must belong p(l, T). �

Observe that in general a T-path can also contain non-flippable edges.

4.2. Counting triangulations 61

Lemma 4.2. Let T be a triangulation with vertex set P, and let e be a flippable edge
of T . Then there exists a line l such that e is an edge of the T-path p(l, T).

Proof. Let e = pq be a given flippable edge. Then e cannot be an edge of CH(P), thus,
e is shared by two triangles of T , the third point of each triangle is r and s respectively.
Let e′ = rs be the other diagonal of the convex polygon prqs, see Figure 4.7. Let l be
the vertical line containing the point of intersection between e and e′. Then l makes e

and e′ good. �

p

q

r

s

l

e

e′

Figure 4.7 — e and e′ are the two diagonals
of the convex quadrilateral prqs.
The line l containing their in-
tersection makes both, e and e′

good.

p

qr

s

b

a

e

e′

W

Figure 4.8 — Vertices a, b must be in the gray
zone otherwise angle ∠rps would
not be maximum.

Lemma 4.3. Let T be a triangulation with vertex set P. Then the set of all flippable
edges of T is enough to characterize T .

Proof. Let F(T) be the set of all flippable edges of T . We have to prove that there cannot
be another triangulation T ′ with vertex set P such that T 	= T ′ but F(T) = F(T ′).

Let us assume for the sake of contradiction that such triangulation T ′ exists. Define
the set NF(T) = E(T) \ F(T), which is the set of all non-flippable edges of T . Clearly,
NF(T) 	= NF(T ′), otherwise T = T ′. That is, there must be at least one edge e ∈ NF(T)

that is properly intersected by edges of NF(T ′); it cannot be intersected by edges of
F(T) = F(T ′), and both NF(T),NF(T ′) cannot form a set of non-crossing edges since T

and T ′ are sets of non-crossing edges of maximum cardinality, but NF(T) 	⊆ E(T ′) and
NF(T ′) 	⊆ E(T).

Now let e = pq, and let e′ = rs be an edge of NF(T ′) crossing e. Clearly, the edges
of the quadrilateral Q = prqs cannot be part of either T or T ′ because that would
make e and e′ flippable, see Figure 4.8. Assume that e′ is the edge of NF(T ′) crossing e

that maximizes the angle ∠rps, such e′ must exist. Given that all the edges of CH(P)

62 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

are also shared by T and T ′ we have that e′ must be shared by two triangles of T ′, so
let a, b the third point of each triangle respectively, see Figure 4.8. Observe that it
could happen that p = a, but then b 	= q, since quadrilateral Q makes e′ flippable.
Or vice-versa, b = q, but then p 	= a. Then a, b must be contained in the infinite
wedge W = rps with apex at p. Otherwise, say w.l.o.g. that a lies outside W. This
means that another edge of triangle rsa, other than e′, intersects e properly. Say edge
ra. But then angle ∠rpa > ∠rps, which is a contradiction since ∠rps was chosen to
be maximum among all the edges of NF(T ′) crossing e. Note however that if a, b are
contained in W, then the quadrilateral rasb is convex, which means that e′ is flippable
in T ′, which is a contradiction since we assume that e′ ∈ NF(T ′). Hence such an edge
e′ ∈ NF(T ′) crossing e cannot exist, which means that NF(T ′) = NF(T), since e was an
edge of NF(T), and thus we arrive at T = T ′. �

Lemma 4.4. Let T be a triangulation with vertex set P, and let l, l′ be two vertical
lines such that l 	= l′, and the vertical slab between l and l′ is empty of points of
P. Then p(l, T) = p(l′, T).

Proof. Let us assume without loss of generality that l′ lies to the left of l. Since the
vertical slab between l′ and l is empty of points of P, observe that there is a bijection
between the set W(p(l, T)), the empty wedges of p(l, T), and the set W(p(l′, T)), see
Figure 4.9.

l′ l

Figure 4.9 — T-path p(l, T) shown, along its empty wedges. Every wedge is also empty w.r.t. l′.

Thus p(l, T) and p(l′, T) are both T-paths, by definition, of T w.r.t. l′ and l respec-
tively, but every T-path of T w.r.t. some line is unique, so there is no other option but
p(l, T) = p(l′, T). �

Now let us assume that P is sorted from left to right, i.e., from smallest x-coordinate
to the largest. We can assume that by a suitable rotation we do not have any ties in the
x-coordinate, so P = {p1, p2, . . . , pn}.

4.2. Counting triangulations 63

Let L = {l1, . . . ln−1} be a set of vertical lines such that point pi ∈ P lies in the
vertical slab between li−1 and li, with 2 � i � n− 1. Point p1, the leftmost, lies in the
unbounded vertical slab to the left of l1, and pn, the rightmost, lies in the unbounded
vertical slab to the right of ln−1. For a triangulation T of P let P(T) = {p(li, T) | li ∈ L}.
We now have the following result:

Theorem 4.6. Let T be a triangulation with vertex set P. Then P(T) is enough to
characterize T .

Proof. We have to prove that there cannot be another triangulation T ′ with vertex set
P such that T ′ 	= T , but P(T) = P(T ′). However, by Lemma 4.3 we know that the set of
flippable edges of a triangulation characterizes it, hence it is enough to prove that every
flippable edge of T is an edge of some T-path in P(T).

Let us assume for the sake of contradiction that there is an edge e of T that is flippable
but that is not an edge of any T-path in P(T). By Lemma 4.2 we know that there exists
one vertical line l such that e is an edge of the T-path p(l, T). Note that such a line l is
parallel to every line in L, and that one endpoint of e lies to the left of l and the other
to the right, so l must lie inside the vertical slab between to consecutive lines of L, or to
the left of l1 ∈ L, or to the right of ln−1 ∈ L, let us assume without loss of generality
that l lies in the vertical slab between li and li+1, with 1 � i � n− 2. Observe however
that such a slab contains exactly one point of P, thus it must happen that either, the
vertical slab between li and l is empty of points of P, or the vertical slab between l and
li+1 is empty of points of P, say the former without loss of generality. Nevertheless, by
Lemma 4.4, we know that p(l, T) = p(li, T), so p(l, T) ∈ P(T), which is a contradiction
since e was a flippable edge of T that was not an element of P(T). Thus, such an edge
e cannot exist, and there is no other option but T = T ′ since they share the same set of
flippable edges. �

Therefore every triangulation T having P as vertex set has a unique set P(T) of T-
paths, and thus the number of triangulations |FT (P)| is just the number of different sets
of T-paths P(T) that we can find on P. Let Π(l, P) = {p(l, T) | T is a triangulation of P}
be the set of all T-paths of P w.r.t. line l. Note that while the set of lines L stays
fixed, there will be in general more than one T-path that can be formed per line, thus
a tuple {π1, . . . , πn−1} of T-paths of P, with πi ∈ Π(li, P), defines a triangulation if and
only if all those T-paths are pairwise non-crossing. We will say that such a pairwise
non-crossing set is compatible. It is easy to show that, in order to verify if such a
set is compatible, it suffices to check that two consecutive T-paths π ∈ Π(li, P) and
π′ ∈ Π(li+1, P) are non-crossing, for 1 � i � n − 2.

Note that there might be triangulations sharing some T-paths, for example, if P is in
convex position, its number of triangulations is O(4n), while its number of T-paths is

64 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

O(2n), so we obtain on average O(2n) triangulations per T-path. This motivates the
following definition:

T(πj) = {{π1, . . . , πj−1} | {π1, . . . , πj−1, πj} is compatible and πi ∈ Π(li, P)}.

We need two more definitions in order to describe our algorithm. For each π′ ∈
Π(li+1, P) we define λ(π′) = {π ∈ Π(li, P) | π is compatible with π′}. Similarly we
define μ(π) = {π′ ∈ Π(li+1, P) | π

′ is compatible with π} for each π ∈ Π(li, P). Now we
are ready to describe our algorithm.

4.2.1 The sweep line algorithm

We consider sweeping a vertical line from left to right, the event points being the vertical
lines in the set L as defined before. At any event point li we maintain Π(li, P), and
for each π ∈ Π(li, P) we store |T(π)|. At i = 1 we clearly have |Π(l1, P)| = 1, and for
this particular π ∈ Π(l1, P) we have |T(π)| = 1. We will show that each π′ ∈ Π(li+1, P)

can be obtained from each π ∈ Π(li, P) compatible with π′II by doing local changes,
which will be defined later on, for the time being the important thing to know is that
the number of possible local changes for a T-path is O

(
n2

)
. Hence, if we go through

each π ∈ Π(li, P) and try all possible local changes for π, we will obtain Π(li+1, P).
Moreover, for each π′ ∈ Π(li+1, P) we also get the set λ(π′). Observe that |T(π′)| is
given by

∑
π∈λ(π′) |T(π)|. Thus we are able to compute Π(li+1, P) as well as |T(π′)|

for each π′ ∈ Π(li+1, P). All this takes time O
(
n2 · ti

)
, where tj = |Π(lj, P)|, since

there are O(n2) local changes to try for each π ∈ Π(li, P), and as we will see later, the
time taken per local change is constant. The overall running time of the algorithm is
therefore

∑
lj∈LO

(
n2 · tj

)
� O

(
n3 · t), where t = max{tj}. At the end, the number we

are looking for is precisely |FT (P)| = |T(π)|, where π is the unique T-path of Π(ln−1, P).

Our main task now is to explain the local changes and to prove that there are indeed
O
(
n2

)
. We first need the following intermediate result:

Lemma 4.5. At times l = li and l = li+1, point p = pi+1 has degree zero, one, or two
in every T-path π ∈ Π(li, P), as well as in every T-path π′ ∈ Π(li+1, P). However,
if π and π′ do not cross, then p cannot simultaneously have degree zero in both
T-paths, that is, p must be a vertex of at least one T-path.

Proof. Let us look at the case when l = li, the other case, l = li+1 is just symmetric.
If p is not a vertex of π, then the degree of p is zero. If p is a vertex of π, then there

IIAgain, by compatibility we mean non-crossing.

4.2. Counting triangulations 65

are two cases depending on whether p is a vertex of CH(P) or not. Since both cases are
very similar we will prove only the latter.

Since p lies inside CH(P) we know that p is an internal vertex of π, i.e., the degree
of p in π is at least two. To verify that it is at most two let us assume that its degree
is at least four, it must be even. Let b be the first neighbor of p in π, when visiting p

while traversing π from the first vertex to the last. Similarly, let c be the last neighbor
of p in π in the same traversing order, see Figure 4.10. Since the degree of p is at least
four, there must be other two vertices b′, c′ between b and c. Observe that p lies to
the right of l, and b, b′, c, c′ to the left, so there must be at least one vertex x 	= p of π
connecting b′ and c′, however, x should lie inside the vertical slab between l and li+1,
which is empty of points of P except for p, see Figure 4.11. Thus x cannot exist, which
implies that b′, c′ cannot exist either. Hence, the degree of p in π is at most two, which
is what we wanted to prove.

p

ab

b ′

c ′
c

d

li li+1

Figure 4.10 — T-path π ∈ Π(li, P) where p has
degree at least four shown.

p

ab

b ′

c ′
c

d

li li+1

x

Figure 4.11 — Vertex x of π cannot exist be-
cause p is the only point in that
vertical slab.

It remains to prove that p cannot have degree zero in both T-paths, π and π′, if they
do not cross. To see this, note that if neither π nor π′ has p as a vertex, then clearly p

cannot be on CH(P), so p must lie in the interior of CH(P), and thus it also lies inside
the triangles abd, and a′b′d′, where a, b, d and a′, b′, d′ are consecutive vertices of
π and π′ respectively, see Figures 4.12 and 4.13. Note however that this case can only
happen if either abd and a′b′d′ intersect, or if one lies entirely inside the other,
since both triangles contain p in their interior. In the first case we have obviously an
intersection between π and π′, which is a contradiction. In the second case, assume
without loss of generality that abd lies inside a′b′d′. But then observe that since
a, d and b′ lie on the same side of li+1, then the wedge a′b′d′ of π′ is not empty, which
is clearly not possible since π′ is a T-path and edges a′b′ and b′d′ are consecutive in π′,
see Figure 4.13. Thus, Lemma 4.5 follows. �

66 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

p

a

b
b ′

d ′
d

li li+1

a ′

Figure 4.12 — π is shown in solid lines, and π′

in dashed lines.

p
a

b

b ′

d ′

d

li li+1a ′

Figure 4.13 — If abd lies inside a′b′d′,
then the wedge a′b′d′ with
apex b′ and delimited by li+1

is not empty.

We are now ready to explain the local changes carefully: From Lemma 4.4 we know
that p(l, T) = p(l′, T) for a triangulation T of P as long as the vertical slab between l

and l′ is empty of points of P. This in turn implies that Π(l, P) = Π(l′, P). Now assume
that l′ = li and l = li+1, that is, the vertical slab between l and l′ is no longer empty,
but contains point p = pi+1. It is clear that during the continuous movement from li

to li+1 the only ways a T-path can change, are the ones involving p in the following
two senses: If p is not a vertex of the current T-path π ∈ Π(li, P), then the only empty
wedge of π that cannot be made an empty wedge of a T-path π′ ∈ Π(li+1, P) is the one
that during the sweeping process starts containing p, see Figure 4.14. If on the other
hand, p is a vertex of π, then its neighbors in π lie to the left of li, since p lies to the
right, see Figure 4.15. But then p along with its neighbors lie to the left of li+1, so
those adjacencies cannot be part of a T-path w.r.t. li+1. Thus we will obtain μ(π), for
every T-path π ∈ Π(li, P), by locally changing π around p. We will have two cases to
consider depending on whether p appears as a vertex of the current T-path π ∈ Π(li, P)

we are considering, or not. We will study each case in turn, however, there is a case
analysis that one has to do, so in order to avoid going through all cases, we will describe
the general setting from which all the cases can be obtained. Let again π ∈ Π(li, P):

(�) Assume that p appears as a vertex of π, and let us first consider the case when p

lies in the interior of CH(P). By Lemma 4.5 point p must have degree exactly two
in π.

Now take vertices a, b, c, d of π as displayed in Figure 4.16. Look for all pairs of
points b′, c′ ∈ P such that the substitution of the pattern (a, b, p, c, d) in π to
(a, b, b′, p, c′, c, d) results in a T-path w.r.t. li+1, see Figure 4.16.

Observe that as particular cases we could have b′ = c′ = a = d, which would
result in the substitution (a, b, p, c, d) → (a), or we could have b′ = c′ = a,
a 	= d, which would result in (a, b, p, c, d) → (a, c, d). Since there are many cases,

4.2. Counting triangulations 67

p

li li+1

Figure 4.14 — Sweeping from li to li+1 results
in a wedge containing p.

p

li li+1

Figure 4.15 — Sweeping from li to li+1 results
in the adjacencies of p being on
the same side of li+1.

p
a

b

c d

li li+1

b′

c′

Figure 4.16 — Substitution (a, b, p, c, d) →
(a, b, b′, p, c′, c, d) is only one
of the possibilities.

p

a

b

li li+1

b′

c

Figure 4.17 — Substitution (a, b, p) →
(a, b, b′, p, c).

we would have to exhaust all choices for b′, c′, however, they all occur inside the
same region.

If p ∈ CH(P), then p could be the very first vertex of π, or the very last, or the
second, or second-to-the-last. Let us consider when p is the last, it is symmetric to
the case when p is the first. Let the last three vertices of π be a, b, p in that order,
so b ∈ CH(P) as well, and bp is intersected by li. We are looking in general for
the substitution (a, b, p) → (a, b, b′, p, c), where c ∈ CH(P) is the other neighbor
of p on CH(P). Observe that pc is intersected by li+1, see Figure 4.17. We could
for example have b′ = c or b′ = a as particular cases, among others.

(�) Now assume p does not appear as a vertex of π. Then p cannot be a vertex of
CH(P) either, as otherwise one of the edges of CH(P) having p as a vertex would
intersect li, and thus p would necessarily appear in π by definition. Thus π must
look locally as in Figure 4.18, that is, the point p must be contained inside the
triangle abd, where a, b, d are consecutive on π, point b lies on one side of
li, and a, d on the other side. Thus observe that the adjacency bp is forced in

68 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

any triangulation containing π, since p is the only point of P contained in the
vertical slab between li and li+1. The reader will be able to verify that this
case is a particular case of (�) in which b = c, and we could have, for example,
the substitutions (a, b = c, d) → (a, p, d), or (a, b = c, d) → (a, b, b′, p, c′, b, d),
among others, see Figure 4.17.

p

a

b

li li+1

d

b′

c′

Figure 4.18 — Substitution (a, b, d) → (a, b, b′, p, c′, b, d).

Note that the substitutions can be done in reverse order, that is, imagine that we go
back in time, from time l = li+1 to time l = li, so we would be sweeping the plane
from right to left, and therefore the pattern (b, b′, p, c′, c) of some π′ ∈ Π(li+1, P) could
become pattern (b, p, c) of some π ∈ Π(li, P), upon proper relabeling of points, see
Figures 4.16, 4.17 and 4.18. So π′ is obtained from π in one direction, and π is obtained
from π′ in the opposite direction, this relation will be denoted by π ↔ π′. We have
finally the following result:

Lemma 4.6. Given Π(li, P), every T-path of Π(li+1, P) is produced by the local changes
just explained. Moreover, for each π ∈ Π(li, P), the cardinality of μ(π) is O

(
n2

)
,

and we can correctly compute λ(π′) for each π′ ∈ Π(li+1, P) in time O(n2 · ti).

Proof. Let again p = pi+1 ∈ P. For the first part let π′ ∈ Π(li+1, P). We will prove that
π′ produces at least one T-path π ∈ Π(li, P). The result will then follow by the relation
π ↔ π′ explained before. For the second part we have to show that |μ(π)| = O

(
n2

)
for each π ∈ Π(li, P), and that we are able to correctly compute λ(π′) for each π′ ∈
Π(li+1, P) in time O

(
n2 · ti

)
. That is, we will prove that if π 	↔ π′ then both T-paths

cross, and thus π 	∈ λ(π′). For both parts we have two cases depending on whether p is
a vertex of π′ or not, but for simplicity we will only consider the case when p is not a
vertex of π′, the other case in both parts follows using similar arguments.

Let W be the empty wedge of π′ that cannot be extended to an empty wedge W′ of
π due to p. Thus p lies inside the triangle abd, where a, b, d are consecutive vertices,
see Figure 4.19. Let ap, pd be two new adjacencies. Observe that a, d lie to the left of

4.2. Counting triangulations 69

li, and p, b lies to the right. If the substitution (a, b, d) → (a, p, d) results in a T-path
of Π(li, P), we are done, if not, then the triangle bap, or the triangle pdb is not
empty, probably even both. Let us assume without loss of generality that the former is
the one that is not empty, and that this is the only one. If both triangles contain points
of P we can proceed in the same way on both of them. Call this non-empty triangle ′,
and observe that there is at least one point c′ ∈ P contained in ′. Choose it and create
the adjacencies bc′, c′p. Now do the substitution (a, b, d) → (a, b, c′, p, d), and again
test if the new path is an element of Π(li, P). If yes, we are done, if not, set ′ = bc′p,
and thus, there must be again some point of P inside ′. Choose one of those points,
label it with c′, and repeat. Observe that every new point we take lies to the left of
li. Since P is finite, we will eventually arrive at ′ being empty, and at that point, we
would have created an element of Π(li, P), see Figure 4.20.

p b

li+1li

d

a

c′

Figure 4.19 — T-path π′ is shown in solid.

p b

li+1li

d

a

c′

Figure 4.20 — T-path π′ being extended to a
T-path π ∈ Π(li, P).

For the second part, by the way the local changes are made, it is clear that from a
T-path π ∈ Π(li, P) we cannot obtain more than O(n2) T-paths of Π(li+1, P), since
when trying local changes of π around p, at most every pair of points of P will be tested,
and thus every such a pair can produce at most one T-path of Π(li+1, P). We now have
to prove that if π 	↔ π′ then π and π′ cross. Remember that we are still assuming
that p is not a vertex of π′, thus p is still inside triangle abd, where a, b, d are three
consecutive vertices of π′. Let us assume for the sake of contradiction that π 	↔ π′, but
π ∈ λ(π′), i.e., those two paths are non-crossing. Since π ∈ λ(π′) there must be at least
one triangulation of P containing both T-paths. Let T be one of those triangulations,
and observe that in T , vertex p must have at least two adjacencies to the left of li, since
the degree of p in π′ is zero. Among all these adjacencies keep just the first and the
last in the radial order around p in clockwise order. Let b′, c′ be those two neighbors
of p respectively, see Figure 4.21. Clearly b′ and c′ must be adjacent to b, but then
the substitution (a, b, d) → (a, b, b′, p, c′, b, d) creates a T-path π′′ ∈ Π(li, P), that is,
π′′ ↔ π′, and thus we have that π 	= π′′ since π 	↔ π′. But π′′ is also a T-path of T

70 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

w.r.t. li, which is a contradiction since the T-path of a triangulation w.r.t. a given line
is unique, hence such π′ cannot exist.

b

li+1li

d

a

p

b′

c′

Figure 4.21 — In any triangulation of P con-
taining π′, vertex p must have
at least two adjacencies to the
left of li.

p

a
b

c d

li li+1

Figure 4.22 — All possibilities for b′, c′ are
shown as black points. The
white points are visible from
neither b nor c.

It remains to prove that λ(π′) can be computed in time O(n2 · ti) for each π′ ∈
Π(li+1, P), where ti = |Π(li, P)|. From the discussion above we obtain that π ∈ λ(π′)
if and only if π ↔ π′. The relation π ↔ π′ is obtained by guessing pairs of points
b′, c′, and checking if the new adjacencies, attached to π, produce π′. For example, let
us assume we want to obtain the possible substitutions for the pattern (a, b, p, c, d),
with p = pi+1, like in Figure 4.22. We just have to look for b′, c′ among all the points
of P that are visible from b or c, having the edges of π as obstacles, see Figure 4.22.
All these points can be obtained in O

(
n2

)
time, since the number of edges of π is

O(n). Once we obtain this list of candidates, one list B for b and another list C for
c, we try every possible pair b′, c′ such that b′ ∈ B, and c′ ∈ C, for adjacencies that
would create π′, for example, we could try adjacencies bb′, b′p, pc′, c′c to obtain the
substitution (a, b, p, c, d) → (a, b, b′, p, c′, c, d), but if c′ = d occurs, then we would have
to try substitution (a, b, p, c, d) → (a, b, b′, p, d), and so on depending on the particular
configuration. If we pre-process P in such a way that we can answer in constant time if a
given triangle with vertices in P is empty or not, we can also test the correctness of the
adjacencies in constant time per pair b′, c′. Thus we spend overall O

(
n2

)
time per path

π of Π(li, P). If we have that π ↔ π′, then we also have that π ∈ λ(π′), and thus after
O
(
n2 · ti

)
we have constructed λ(π′), for every π′ ∈ Π(li+1, P), where ti = |Π(li, P)|.

This completes the proof. �

The above discussion implies the algorithmic part of Theorem 4.3. The next subsection
addresses the second part of the same theorem, i.e., a rough upper bound, depending
only on n, for the running time of the algorithm just presented will be given.

4.2. Counting triangulations 71

4.2.2 On the number of triangulation paths

It is known that if P is in convex position, then the largest number of T-paths that
we can find w.r.t. some line is O(2n), see [2]. However, there could be configurations
for which this number is much larger. In [32] a set P is shown for which we can find
Ω(4n−Θ(log(n))) T-paths w.r.t. to some line. This number is essentially 4n, thus we can
see that the number of T-paths that one needs to consider is also large. Up to now there
have been no results about the largest number of T-paths, over all sets of n points on the
plane, and over all possible lines we can define T-paths on. The main result presented
here is the following:

Theorem 4.7. The largest number of T-paths, w.r.t. a line, of a set of n points P

on the plane is at most O(9n).

Before the actual proof, let us first explain how we are going to count T-paths. Let P
be a set of n points whose elements are labeled with the integers from 1 to n, and let π

be a T-path of P w.r.t. some given line l. Without loss of generality assume that π starts
at the edge of CH(P) with the lowest intersection with l, and thus it ends at the edge of
CH(P) with the highest intersection with l. Observe that given l, the starting and ending
edges of any T-path w.r.t. l are always the same two edges of CH(P). Without loss of
generality we will assume that π starts to the left of l, unless it is otherwise explicitly
stated. If π starts to the right of l then we would have a symmetric conversation.

Now orient the edges of π as traversing it from the starting edge to the ending edge.
The starting edge, by assumption, crosses l from left to right, the second from right to
left, the third from left to right again, and so on until we arrive at the ending edge.
Observe that the edges of π appear sorted bottom-up on l as they intersect l, so the
starting edge has the lowest intersection with l, the second edge has the second lowest
intersection with l, and so on. Thus the starting vertex of π and the edges of π that cross
l from left to right are enough to characterize π. There is no other way one can complete
adjacencies, since in-between two edges e, e′′ crossing l from left to right, there must be
an edge e′ crossing from right to left and interconnecting e and e′′, and vice-versa, see
Figure 4.23. The starting vertex of π tells us if the starting edge crosses l from left to
right or from right to left. Now let e = pipj be an edge of π that crosses l from left to
right. Let us mark the intersection of e and l with the pair (i, j). Doing this for every
edge of π that crosses from left to right we obtain a sequence N of pairs of integers on
l, which along with the first vertex of π can be considered as the “signature” of π, since
we know at each of those intersection points which edge of π crosses l, and in which
direction. There is the particular case when π also ends to the left of π, and thus its
last edge crosses l from right to left, and under our labeling scheme, the last vertex of
π might not appear in any pair of integers on l, however, given l, the last edge of π is
fixed, thus there is no confusion as how to complete π see Figure 4.23. Now, observe

72 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

that the sequence N of pairs of integers along l can be partitioned into the sequence N−

of vertices of π lying to the left of l, and the sequence N+ of vertices of π lying to the
right. Both sequences N− and N+ can be seen as sequences of integers that are sorted
w.r.t. the order they appear on l bottom-up. The way we are going to upper-bound the
number of T-paths of P w.r.t. l is by upper-bounding the number of different sequences
that represent N−. The same bound will obviously hold for the number of different
sequences that represent N+. The final bound will come out essentially from combining
the two bounds obtained.

l

1
2

3

4

5

6

7

8

9
10

(1, 2)

Figure 4.23 — A T-path π. The first and last vertices are shown in gray. The edges of π crossing
l from left to right are shown with arrows, and the intersection point is shown as
a white dot. The integer sequence N− for π is 1,3,5,7,5,3.

Proof of Theorem 4.7. To create a sequence of integers that represent N− we just need
the elements of P that lie to the left of l. Let us denote this subset of points by P− ⊂ P.
Let Pk ⊆ P− be a subset of P− of k elements. Imagine that the sequence N− will be
obtained using only elements of Pk, but every element of Pk must appear in N− at least
once. Let us assume without loss of generality that 1 is the leftmost point of Pk. Since
1 must appear in N−, it means that there must be at least one straight-line segment s

that connects 1 with l, this segment can be thought of as the left part of an edge of a
T-path where 1 appears. Moreover, assume that s is the segment that creates the last
entry of 1 in N−, that is, point 1 is not connected to l at a higher point than the one
that s defines. Thus s divides the problem into two sub-problems, since we want to keep
everything non-crossing. Let P−

k be the set of points of Pk above segment s, and let P+
k

be the set of points of Pk below s but also including 1. There are k possibilities for P−
k ,

since we can rotate s around 1 clockwise to make the cardinality of P−
k vary from 0 to

k− 1, and thus the cardinality of P+
k varies from k to 1. Since we are assuming that s is

the segment that connects point 1 for the last time to l, then point 1 does not form part
of the sub-problem defined by P−

k , thus this sub-problem is totally independent and we
can recurse directly on it. However, point 1 does play a role in the sub-problem defined
by P+

k . If f(k) = fk represents the total number of different possibilities for N− when k

4.2. Counting triangulations 73

points are involved, then we get the following recurrence for fk:

fk = gk +

k−1∑
i=1

fi · gk−i

where gj represents the sub-problem defined by P+
k , for every 1 � j � k. Note that for

j = k we obtain that P−
k is empty, and thus |P+

k | = k, which is represented by the term
gk of fk. Observe that in the case j = k, the sub-problem defined by P+

k is of the same
size as the original problem, however, it has a slightly different structure, since in P+

k we
know that point 1 is already connected to l, so the immediate lower connection of 1 to
l, if any, cannot be consecutive: This would mean that there are two consecutive edges
e, e′′, of some T-path, crossing l from left to right, and sharing vertex 1 as endpoint,
but between e, e′′ there must be exactly one edge e′ of the same T-path that crosses l

from right to left, see Figure 4.24. If we assume that e intersects l below e′′, then e′

intersects l in-between, and connects the right endpoint of e with the left endpoint of
e′′, thus e = e′, but in a T-path every edge is used exactly once, hence there cannot be
two consecutive appearances of an integer in N−. The summation term of fk accounts
for the other k− 1 possibilities for P−

k and P+
k .

l

1

e

e′′

e′

Figure 4.24 — Edges e, e′′ are consecutive edges, of a T-path, that cross l from left to right and
share vertex 1.

The recurrence for gk is very similar; once we enter sub-problem P+
k we just have to

take care of not connecting point 1 to l consecutively, so we have that:

gk = hk + fk−1 +

k−1∑
i=1

fi · gk−i

where the term fk−1 means that point 1 is not used in P+
k . If on the other hand, point 1

is used, then the summation will again account for all the possibilities. The term hk is
technical, and its definition is: hk = 1 ⇔ k = 1, and 0 otherwise. With it we can safely
define our boundary condition f0 = g0 = h0 = 0, and we obtain f1 = g1 = h1 = 1,
which makes the recursion safe.

74 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

We are now interested in the asymptotic behavior of f. We will obtain it by using
ordinary generating functions. We will not explain every single step in detail since we
will be using standard techniques. The interested reader is referred to [83, 43] for the
common techniques to obtain generating functions from recurrences.

Introducing the ordinary generating functions F(x) =
∑∞

k=0 fk · xk, G(x) =
∑∞

k=0 gk ·
xk, H(x) =

∑∞
k=0 hk · xk = x, we obtain for fk, gk the following:

F(x) = G(x) + F(x) ·G(x)

G(x) = H(x) + x · F(x) + F(x) ·G(x)

We can now solve this system of equations in unknowns F(x), G(x) to obtain two
possible solutions for F(x):

F1 = F(x) =
1−

√
1− 8x

3+
√
1− 8x

and G1 = G(x) =
1−

√
1− 8x

4

F2 = F(x) =
−1−

√
1− 8x√

1− 8x− 3
and G2 = G(x) =

1+
√
1− 8x

4

However, we know that F(0) must be 0, and this condition is only met by F1, so
1−

√
1−8x

3+
√
1−8x

is the generating function of our sequence f, i.e., the coefficients of the Taylor
expansion of F1 around 0 are precisely the terms f0 = 0, f1 = 1, f2 = 3, f3 = 13, f4 =

67, f5 = 381, f6 = 2307 . . ., which turned out to be known as sequence A064062 of
“The On-Line Encyclopedia of Integer Sequences”, but with term f0 = 1, which makes
no difference for the asymptotics of f, see [60]. The generating function of A064062
is FA = 1

1−xC(2x) , where C(y) = 1−
√
1−4y
2y is the generating function of the Catalan

numbers, see [60] and references therein. It is now easy to verify that FA = F1+ 1, since
FA and F1 differ only at f0 = 1.

It is known that the i-th term fi of FA, for sufficiently large i, grows roughly as
8i

36i
√
π·i < 8i, see [60] and Theorem 3 of [19].

Thus the number of different possibilities for N− that we can obtain from a set of
cardinality k is upper-bounded by 8k. It remains to consider every possible set Pk ⊆ P−.
If |P−| = a, then the absolute number t− we are looking for is upper-bounded by∑a

i=0

(
a
i

)
8i = 9a. The same bound holds for the number t+ of different sequences that

represent N+. If we partition the original set P into P− of cardinality a, and P+ of
cardinality b, such that a + b = n, then the number of ways we can create T-paths of
P w.r.t. l that start to the left of l is upper-bounded by t− · t+ = 9a · 9b = 9n. The
same bound holds for T-paths that start to the right of l, thus obtaining O(9n) overall
possibilities. The theorem follows. �

This concludes the proof of Theorem 4.3.

4.3. Counting pseudo-triangulations 75

4.3 Counting pseudo-triangulations

The main idea behind our algorithm for counting pseudo-triangulations is to mimic with
PT-paths what we did with T-paths for counting triangulations. Thus, here we will have
equivalent results to the ones we proved in § 4.2. We will first explain how a PT-path
pt(l, S) of a pseudo-triangulation S, with respect to line l, can be constructed, but in
order to do so, we need to define some terms first.

Let l be a separating line, and let S be a pseudo-triangulation of P. Let us denote by
El the set of edges of S that are intersected by l. Let e ∈ El and denote by e and e the
edges of El right above and below e respectively. We will say that e ∈ El of S is good III

w.r.t. l iff the intersections of the supporting line of e with the supporting lines of e and
e lie on different sides of l, or if e is an edge of CH(P).

Let us now explain how a PT-path pt(l, S) of a pseudo-triangulation S, and with
respect to line l, can be constructed. The following method was originally described
in [6]: Remove from S all edges of El that are not good. This leaves a plane graph
S∗ of P. Let e and e′ be two consecutive good edges w.r.t. l, and connect them using
the common face f of S∗ that they are part of according to the following rule: If the
supporting lines of e and e′ intersect to the left of l, then we use the edges of f that lie
to the left. Otherwise we use the edges of f that lie to the right of l, see Figure 4.25.

l l

Figure 4.25 — To the left a pseudo-triangulation S. To the right we have the plane graph S∗

obtained from S by removing all non-good edges of El. Joining two consecutive
good edges of El by the rules described before results in the PT-path shown in
Figure 4.2 on page 56.

Observe that the polygonal chain of edges created by the method described above
always exists. In [6] it was proven that it fulfills the properties of a PT-path, see
Definition 4.3 on page 58. Thus, by Theorem 4.4, also on page 58, it follows that it is
unique.

IIISuch an edge e is called signpost in [6].

76 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

Let L = {l1, . . . ln−1} be again a set of vertical lines such that point pi ∈ P lies in
the vertical slab between li−1 and li, with 2 � i � n − 1. Point p1, the leftmost,
lies in the unbounded vertical slab to the left of l1, and pn, the rightmost, lies in the
unbounded vertical slab to the right of ln−1. For a pseudo-triangulation S of P let
P(S) = {pt(li, S) | li ∈ L}. The following result is the equivalent of Theorem 4.6 on
page 63 for T-paths and triangulations:

Theorem 4.8. Let S be a pseudo-triangulation with vertex set P. Then P(S) is enough
to characterize S.

Proof. We will prove something stronger, namely, we will prove that every edge of a
pseudo-triangulation S is an edge of some PT-path in P(S), this clearly implies the
theorem. Observe that to prove the stronger statement we just have to prove that for
any given edge e of S there exists a line l in L such that e is good w.r.t. l, or if there
is no line of L that e is good with respect to, then we have to show that there is a
line l of L such that e is used to connect two consecutive good edges of S w.r.t. l, that
is, e is an edge of the common face of S∗ that those two consecutive good edges of S

w.r.t. l are part of. By a suitable rotation of the plane we will assume w.l.o.g. that every
conceivable vertical line contains at most one point of P.

Let e be an edge of S. If e is an edge of CH(P) then there is clearly at least one
line l ∈ L that intersects e, and thus it makes e the very first or the very last edge of
pt(l, S). Now assume that e lies strictly in the interior of CH(P) and let , be the
two pseudo-triangles that e is part of. By convention we will assume that a vertical line
intersecting e intersects immediately above e, and intersects immediately below e.

In pseudo-triangulations, as in triangulations, the notion of flipping an edge exists:
This time a flip exchanges the diagonal of a pseudo-quadrilateral by its other diagonal,
however, for pseudo-quadrilaterals it is not always true that both its diagonals intersect,
see Figures 4.26 and 4.28, while for triangulations that is always the case. Thus, both
diagonals could appear in the same non-pointed pseudo-triangulation, nevertheless, in
a pseudo-triangulation only one of them appears at a time, since the presence of both
destroys either planarity or pointedness. We will thus inspect two cases, depending on
whether the dual edge e′ of e in the pseudo-quadrilateral � = ∪ intersects e or not.

If e and e′ intersect, let l be the vertical line containing their intersection point, see
Figures 4.26 and 4.27. The reader can easily verify that the supporting lines of the edges
e of and e of , intersected by l right above and below e, intersect the supporting
line of e on different sides of l, making e good w.r.t. l. It remains to argue what happens
if l 	∈ L, which can easily be the case. If l 	∈ L then l lies in the vertical slab between a
pair of lines li−1, li ∈ L, and pi is the only point of P that also lies in that slab. Thus
we can continuously sweep l in one direction as to make it coincide with either li−1 or
li without destroying any argument.

4.3. Counting pseudo-triangulations 77

e

e

e

l

Figure 4.26 — The flip edge e′ of e is shown
dashed. If those two edges in-
tersect, the e is good w.r.t. line
l. The two vertices of � oppo-
site to e are shown in white.

l

e

e

e

Figure 4.27 — Another possibility for �.

If e and e′ do not intersect, let us assume that there is no vertical line l contained in
the vertical slab defined by e such that the supporting lines of the edges e, e intersect the
supporting line of e on different sides of l, otherwise e is good w.r.t. to l, see Figure 4.28.
We will assume that the intersections between those supporting lines happen to the left
of any vertical line that intersects e, see Figure 4.29.

e

e

e

l

Figure 4.28 — If e and e′ do not intersect,
the pseudo-triangles of � can
be oriented such that there is
still a line l that e is good with
respect to.

e

e

e

Figure 4.29 — If the red path is pulled from
its ends in the direction shown
by the arrows, until its length
is minimal, we end up having a
geodesic path between the op-
posite vertices, where e′ is the
only new edge.

Therefore we have to prove that e is actually used to connect two consecutive good
edges of S w.r.t. some line that does not intersect e. Since e and e′ do not intersect,
it must be the case that e and e′ share one vertex, this is because a flip can be seen

78 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

as a geodesic path IV between the two corners of � opposite to e. This geodesic path
coincides with the boundary of � except at exactly one edge, which is the flip e′ of e.
Since this path does not properly intersect e, but connects two points on different sides
of the supporting line of e, it must happen that one endpoint of e is part of the path,
which is exactly the place where e′ helps to complete the geodesic path, see Figure 4.29.

Let p = pi be the vertex of e that is also shared by e′. Note that p is the only
point of P contained in the vertical slab defined by li−1, li ∈ L. Also, observe that only
one of those two lines intersects e, so let us assume w.l.o.g. that li−1 is the one that
intersects e. The configuration at which we arrive can be seen in Figure 4.30. Another
configuration arises when the other vertex of e is the one shared by e′; the configuration
would be mirror-reflected to the one presented here.

li li+1

e

e

pe f

f

Figure 4.30 — Point p is the only point con-
tained in the vertical slab be-
tween li, li+1. The configura-
tion, if non-degenerate, must
locally look like this.

li li+1

e

e

pe f = f

Figure 4.31 — If � is degenerate, then the con-
figuration looks like this.

Let f, f be the other edges of , adjacent to p respectively. We claim that f is good
w.r.t. li+1: If � is non-degenerate, then f 	= f, as displayed in Figure 4.30. In such a
case observe that e, f and f intersect li+1 consecutively, the latter two intersect to the
left of li+1, at p, and the supporting lines of the former two intersect to the right of
li+1, which proofs the claim in this case. If � is degenerate, as displayed in Figure 4.31,
then f = f, and thus e, f and e intersect li+1 consecutively. Here, the latter two share
an endpoint to the right of li+1, and the supporting lines of the former two intersect
to the left of li+1, this makes f = f good again w.r.t. li+1. At this point observe that
regardless of the case, the part of to the right of li+1 cannot be used in pt(li+1, S,)
to connect f with the good edge w.r.t. li+1 that lies above f, since that part along with
li+1 does not form a pseudo-triangle, as the definition of a PT-path requires. Thus the
part of to the left of li+1 will be used in pt(li+1, S), but that means that e will also
be part of that PT-path, which concludes the proof. �
IVA geodesic path between two points in a region R is the shortest path between the points that stays in R,
including its boundary.

4.3. Counting pseudo-triangulations 79

Hence, as for T-paths, every pseudo-triangulation S of P has a unique set P(S). Let
Π(l, P) = {pt(l, S) | S is a pseudo-triangulations of P} be the set of all PT-paths w.r.t. to
separating line l. What is now of interest to us is the opposite. Does every tuple
{π1, . . . , πn−1} of pairwise non-crossing PT-paths define a unique pseudo-triangulation?
Where πi ∈ Π(li, P) and li ∈ L. The analogous statement for triangulations was clear,
however, pseudo-triangulations might require more explanation. The answer is yes, as
long as the union

⋃
1�i�n−1 πi is pointed. To see this, just observe that if that union is

pointed, then it can be completed to a pseudo-triangulation S1 by adding edges, while
keeping planarity and pointedness, see Theorem 4.1. Assume there is another pseudo
triangulation S2 that can be obtained from the union of the PT-paths πi by adding
edges in a different way. Observe that every PT-path πi, 1 � i � n − 1, keeps being
a PT-path of S1, S2 since the additional edges do not break planarity or pointedness.
Thus by Theorem 4.8 there is no other option but

⋃
1�i�n−1 πi = P(S1) = P(S2). But

in the proof of that theorem we actually showed that every edge of S1, S2 is in some
PT-path in P(S1),P(S2) respectively, thus S1 = S2.

Thus the number of pointed pseudo-triangulations of P equals the number of different
sets P(S) that we can find on P. The algorithm for counting pseudo-triangulations is
the same as the algorithm for counting triangulations presented in the previous section,
so we just have to define the sets the algorithm works on. Also, the proof of correctness
will remain essentially the same, we will just point out what the differences are.

By previous discussions we know that a tuple {π1, . . . , πn−1} of PT-paths, where
πi ∈ Π(li, P) and li ∈ L, defines a pseudo-triangulations iff those PT-paths are pairwise
non-crossing and their union is pointed. As before, we will use the term compatible
for such a pointed and pairwise non-crossing set of PT-paths. We can now define the
following set:

T(πj) = {{π1, . . . , πj−1} | {π1, . . . , πj} is compatible, and πi ∈ Π(li, P), li ∈ L}

By the discussion above we have that the number of pointed pseudo-triangulations of
P is exactly |T(π)|, where π is the unique PT-path of P w.r.t. ln−1 ∈ L.

Finally, and for completeness, for each π′ ∈ Π(li+1, P) and each π ∈ Π(li, P), with
li, li+1 ∈ L, we define:

λ(π′) = {π ∈ Π(li, P) | π is compatible with π′}

μ(π) = {π′ ∈ Π(li+1, P) | π
′ is compatible with π}

The notation Π(·, ·),T(·), λ(·) and μ(·) is the same as the one used in § 4.2 for T-paths,
but the definitions here reflect that we are now dealing with PT-paths instead.

80 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

Since the sweep line algorithm for counting pseudo-triangulations is the same as the
one for counting triangulations, we just have to show how to obtain Π(li+1, P), as
well as |T(π′)| for every π′ ∈ Π(li+1, P), having stored Π(li, P) and |T(π)| for every
π ∈ Π(li, P), where li, li+1 ∈ L are two consecutive event points of the sweep line
algorithm. This, as for T-paths, will be accomplished by doing local changes to every
PT-path π ∈ Π(li, P), which we explain next. From this local changes we directly obtain
Π(li+1, P) as well as λ(π′) for each π′ ∈ Π(li+1, P). Thus, obtaining |T(π′)| is easy since
|T(π′)| =

∑
π∈λ(π′) |T(π)|. We will later prove that λ(π′) can be correctly computed

in time O
(
n6 · ti

)
, where ti = |Π(li, P)|. Therefore the overall running time of the

algorithm is
∑

lj∈LO
(
n6 · tj

)
� O

(
n7 · t), where t = max{tj}.

Let us now explain what the local changes in general look like. Let p = pi+1 ∈ P be
the point lying between lines li, li+1 ∈ L. As for T-paths, the only obstacle of every
PT-path π of Π(li, P) to be a PT-path π′ of Π(li+1, P) is p. The changes are mostly
equivalent (in form) to the ones for T-paths but this time they are more complicated.
We have two possibilities, depending on whether π has p as a vertex or not. Let us see
each one in turn:

(�) If π ∈ Π(li, P) has p as vertex we have more sub-cases depending on whether p

lies inside CH(P) or on CH(P), and whether p is the convex vertex of an empty
pseudo-triangle bounded by li or not. Let us see:

� If p lies strictly inside CH(P) let us first assume that p is also the convex vertex
of an empty pseudo-triangle of π bounded by li. This case is equivalent to the
one for triangulations displayed in Figure 4.16 on page 67. The situation is as
displayed in Figures 4.32 and 4.33 with solid lines. Let e, f be the good edges
of π w.r.t. li right below and above p respectively, and let e′, f′ be the good
edges of π w.r.t. li adjacent to p such that e, e′, f′, f are ordered bottom-up
along li. Let (′) be the empty pseudo-triangle of π to the left of li having
e, e′ (f, f′) as edges and bounded by li. If e and f share their right endpoint,
then a PT-path π′ ∈ Π(li+1, P) can be produced using only adjacencies from
the original PT-path π ∈ Π(li, P), see Figure 4.33. This situation can easily
be detected.

If e and f do not share their right endpoint, then the situation is in general as
displayed in Figure 4.32. The local changes we are looking for are produced
by every point α ∈ P such that the dotted adjacencies shown in Figure 4.34
produce a PT-path π′ ∈ Π(li+1, P) with the property that π∪π′ is pointed.

So, let us explain more carefully how these changes are really produced. Let
I be the interval of li+1 seen by p having the edges of π as obstacles. The
visibility cone of p towards li+1 is shown dashed in Figures 4.32 and 4.33.
Observe that every α used for a change has a visibility ray to I. So having the

4.3. Counting pseudo-triangulations 81

p

e

f

e′

f′

li li+1

′

I

Figure 4.32 — Here e and f do not share the
right endpoint.

p

e

f

e′
f′

li li+1

I

Figure 4.33 — In this case a PT-path π′ ∈
Π(li+1, P) can be produced us-
ing only adjacencies from the
original PT-path π ∈ Π(li, P).

p

e

f

e′

f′

li li+1

α

α

α

α
α

′

Figure 4.34 — All points α can be used to produce a PT-path π′ ∈ Π(li+1, P).

edges of π as obstacles, obtain a list A of all points to the right of li+1 having
a visibility ray to I. This can be done in total time O

(
n2 log(n)

)
, see [62]. Let

α ∈ A. We will assume that we have actually computed a visibility cone to I

with apex at α. We then regard α as the apex of an empty pseudo-triangle
bounded by π′ (to be constructed) and li+1, see the dark gray region to the
right of li+1 with apex at one of the α’s in Figure 4.34. The same α can give
rise to different PT-paths of Π(li+1, P), see Figure 4.35.

So the way we discern between all the PT-paths of Π(li+1, P) that can be
obtained from a single α ∈ A is as follows: Shoot a visibility ray ρ from α

to I that is fully contained in the empty pseudo-triangle delimited by li+1

that α is apex of, the dashed lines of Figure 4.35. From the intersection
point between ρ and I create two paths ρ↓, ρ↑ following I towards e and f

respectively, so ρ↓ goes down, and ρ↑ goes up. Once e and f are reached,
follow the adjacencies of π towards the leftmost convex vertex v, v′ of ,
′ respectively. Paths ρ↓, ρ↑ are shown in red in Figure 4.35. Now, the
adjacencies that are joining π ∈ Π(li, P) with α are nothing but two shortest

82 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

p

e

f

e′

f′

li li+1

′

α

v

v′

ρ

p

e

f

e′

f′

li li+1

′

α

v

v′

ρ

Figure 4.35 — Two different possibilities for adjacencies connecting α to π ∈ Π(li, P). Each gives
a different PT-path of Π(li+1, P).

paths ρ̃↓, ρ̃↑ between α and v, v′ respectively, the former homotopic to ρ↓∪ρ

and the latter homotopic to ρ↑∪ρ. Just imagine that if ρ↓∪ρ and ρ↑∪ρ are two
strings between α and v, v′ respectively, then pulling them as to make them of
shortest length, having the points of P as obstacles, will give the adjacencies
connecting α to π, and thus complete the adjacencies of π′ ∈ Π(li+1, P).

p

e

f

e′

f′

li li+1

′

α

v

v′

	 α

Figure 4.36 — The visibility cone ∠α (to the
right of li+1) is shown in dark
gray.

p

e

f

e′

f′

li li+1

′

α

v

v′

	 α

Figure 4.37 — Each of the dashed lines defines
an homotopy class.

Thus, in order to construct all PT-paths of Π(li+1, P) that can be obtained
from α ∈ A, we have to exhaust all its possibilities. This is done as follows:
Consider the visibility cone ∠α to I with apex at α, shown in dark gray in
Figure 4.36. If ∠α is empty, then any visibility ray ρ to I inside ∠α will do to
create ρ↓ and ρ↑. As a consequence of the emptiness of ∠α, point α will spawn
only one PT-path of Π(li+1, P). Otherwise, sort the points of P inside ∠α

angularly around α (clockwise). Now shoot visibility rays ρ0, . . . , ρk from α

to I such that between any two consecutive visibility rays there is exactly one
point of P, and use each visibility ray ρ = ρi, 0 � i � k, to create paths ρ↓ and
ρ↑ as described before. Since ∠α is non-empty, ray ρ defines the homotopy

4.3. Counting pseudo-triangulations 83

class that paths ρ̃↓, ρ̃↑ belong to. Thus, potentially, every ray ρi, 0 � i � k,
could give a PT-path of Π(li+1, P). Figure 4.38 shows a configuration where a
visibility ray does not produce a PT-path π′ ∈ Π(li+1, P) where α is a convex
vertex of an empty pseudo-triangle of π′ bounded by li+1.

p

e

f

e′

f′

li li+1

′

α

v

v′

	 α

α′

Figure 4.38 — Visibility ray shown in dashed defines the homotopy that the adjacencies con-
necting α with π should follow. In this case the created path is not a PT-path
of Π(li+1, P) where α is a convex vertex. It would be nevertheless a PT-path of
Π(li+1, P) where α′ is a convex vertex. This path will be detected when processing
α′.

So, given α ∈ A, obtaining the points of P lying inside ∠α, and their sorted
order around α, can be done in O(n log(n)) time. For each visibility ray
ρ ∈ {ρi}

k
i=0, we can construct the paths ρ↓, ρ↑ in O(n) time, and the shortest

homotopic paths ρ̃↓, ρ̃↑ can be computed in O
(
n2

)
, see [17] and references

therein. Thus, we spend O
(
n3

)
time to exhaust all possibilities for α, and

it can spawn O(n) different PT-paths of Π(li+1, P). Doing this for every
element of A takes O

(
n4

)
time in total, where also the total number of

PT-paths produced is O
(
n2

)
. Clearly, by construction, the union of each

PT-path π′ ∈ Π(li+1, P) constructed this way from a PT-path π ∈ Π(li, P) is
non-crossing and pointed.

If p is not the convex vertex of an empty pseudo-triangle of π bounded by
li, then the situation is essentially like displayed in Figure 4.39. A similar
construction can be done that looks like mirror-reflected. Using the same
notation as before, the empty pseudo-triangles ,′ lie on different sides of
li and li+1. Also, only the edges e, f are good w.r.t. li and li+1, edge e′

is good w.r.t. li only, and edge f′ is good w.r.t. li+1 only. In the “mirror-
reflected” construction, edge f′ is the one that is good w.r.t. li, and edge e′

is the one that is good w.r.t. li+1.

Observe that we cannot extend to an empty pseudo-triangle bounded by
li+1 since point p would be a convex vertex of such extension, and thus

84 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

e′
f′

li li+1

p

e

f

′

I

Figure 4.39 — The symmetric configuration in
which and ′ lie on opposite
sides is also possible.

e′
f′

li li+1

p

e

f

′

α

Figure 4.40 — The red lines connect α to p

and to the leftmost convex ver-
tex of via the visibility ray
shown dashed. These two paths
define the homotopy the local
changes must follow.

that extension would be a pseudo-quadrilateral, see Figure 4.39. No such a
problem occurs with ′.

The way we deal with this situation is very similar to the previous case. Let
I and A be as before. For every α ∈ A define again the visibility cone ∠α,
and construct the set of rays {ρi}

k
i=0 as well. For ρ ∈ {ρi}

k
i=0, define the path

ρ↓ just as before. This time, however, define ρ↑ as the path that connects the
intersection point of ρ and li+1 with p by following li+1 up to edge f′, and
then f′ to p. We now compute the two shortest paths ρ̃↓, ρ̃↑ homotopic to
ρ↓∪ρ, ρ↑ ∪ρ respectively. So again we exhaust all possibilities of every point
in A. The time remains O

(
n4

)
in total, and again the number of PT-paths

of Π(li+1, P) produced is O
(
n2

)
. If α is the right endpoint of e′ or of f′, then

one of the shortest homotopic paths overlaps with the adjacencies of π, and
thus it must be ignored in the resulting PT-path of Π(li+1, P). The reader
can use Figure 4.40 by imaging pulling α to the right endpoint of e′. Another
example of such a degeneracy will be seen later on.

Observe again that pointedness and planarity is kept.

� If p lies on CH(P) then one possible configuration is as the one shown in
Figure 4.41, in which p is the last, or first, vertex of π ∈ Π(li, P). Another
possibility arises when p is the second, or second-to-the-last, vertex of π.
Which shortest homotopic paths should be computed should be clear from
the figure by now.

(�) If π does not have p as a vertex, then p must necessarily lie inside CH(P). The
situation is in general as displayed in Figure 4.42. In this case there are two kinds of

4.3. Counting pseudo-triangulations 85

li li+1

p

α

α

Figure 4.41 — In this case p lies on CH(P) and
its degree in π ∈ Π(li, P) is ex-
actly one. Two possibilities us-
ing two different α’s are shown.

p

li li+1

′
I

Figure 4.42 — Although p is not a vertex of
π ∈ Π(li, P), it must be part of
some π′ ∈ Π(li+1, P) since the
empty pseudo-triangle ′ of π

cannot be extended further.

local changes that can be made; one kind is produced by a single point α ∈ P, and
the other kind is produced by pairs of points α,β ∈ P, see Figures 4.43 and 4.44
for a reference.

p

li li+1

α

′

f

e

α

α
α

ααα

Figure 4.43 — Changes are produced only by
one point α.

p

li li+1

β

β

α

ββ

α

′

α

f

e

Figure 4.44 — Changes are now produced by
pairs of points α,β.

Let I, A be defined as before. Let us see each kind of local changes in turn. For the
local changes produced by just one point α ∈ A ⊂ P, the PT-paths of Π(li+1, P)

produced look like the ones in Figure 4.45.

Using the same ideas as before, of following red paths, the adjacencies of α in
a PT-path of Π(li+1, P) are two shortest paths homotopic to the two red paths
shown in Figure 4.45, one going up and the other going down, and the visibility
ray from α to I, shown dashed in Figure 4.45. Using the visibility cone ∠α we can
again exhaust all possibilities for α in O

(
n3

)
time, and thus we exhaust all of A

in O
(
n4

)
time, producing O

(
n2

)
PT-paths of Π(li+1, P) in total. As a remark,

observe that if α is the right endpoint of edge f or e, then one of the shortest
homotopic paths overlaps completely with adjacencies of π ∈ Π(li, P), this path

86 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

p

li li+1

α

′

ff

e

p

li li+1

′

f

α

e

Figure 4.45 — Two different PT-paths of Π(li+1, P) produced by two different points.

can be ignored, and then the produced PT-path of Π(li+1, P) would look like the
one in Figure 4.46, where the path of π connecting α with the leftmost convex
vertex of ′ is the one ignored.

p

li li+1

′

f

e

α

Figure 4.46 — A particular case occurs if α co-
incides with an endpoint of e or
of f.

p

li li+1

β

′

f

α

e

Figure 4.47 — Combining the PT-paths
shown in Figure 4.45 we ob-
tained yet another PT-path
of Π(li+1, P), we just had to
remove the adjacencies of p

that make it non-pointed.

As for the local changes produced by pairs of points α,β ∈ A ⊂ P, the PT-
paths of Π(li+1, P) produced look like the one shown in Figure 4.47. If we have
constructed the PT-paths produced by a single α ∈ A, then we can construct the
paths produced by pairs α,β ∈ A by combining the local changes applied to α,
with all the local changes applied to β. For example, the PT-path π′ ∈ Π(li+1, P)

shown in Figure 4.47 is obtained from the PT-paths of Figure 4.45, by removing
the adjacencies at p that do not make it pointed. So, when combining changes we
have, of course, to be careful about pointedness and planarity of the construction,
which takes not much more effort to verify.

4.4. Discussion and conclusions 87

Since the total number of different PT-paths produced by α,β is O (n), by com-
bining them we will obtained no more than O

(
n2

)
PT-paths. Thus, by going

through every pair α,β ∈ A, the total number of PT-paths of Π(li+1, P) produced
is O

(
n4

)
, and all this can be achieved in O

(
n6

)
time, since combining a pair can

be achieved in O
(
n2

)
time.

This concludes the explanation of the local changes that need to be made to PT-
paths as we sweep.

As for T-paths, the local changes of PT-paths can be seen in reverse order, as going
from line li+1 to li, so we will use again the notation π ↔ π′ to denote the fact that
π′ ∈ Π(li+1, P) is produced from π ∈ Π(li, P) in one direction, so π′ ∈ μ(π), and π is
produced from π′ in the reverse direction, so π ∈ λ(π′).

We can now prove the following result which is the equivalent to Lemma 4.6 on page 68
for T-paths:

Lemma 4.7. Given Π(li, P), every PT-path of Π(li+1, P) is produced by the local
changes just explained. Moreover, for each π ∈ Π(li, P), the cardinality of μ(π)

is O
(
n4

)
, and we can correctly compute λ(π′), for each π′ ∈ Π(li+1, P), in time

O
(
n6 · ti

)
, where ti = |Π(li, P)|.

Proof. For the first part of the lemma an argument as the one we used for the first part
of Lemma 4.6 can be used. We can check that given any PT-path π′ ∈ Π(li+1, P) we can
always obtain a PT-path π ∈ Π(li, P) by locally changing π′, and thus every PT-path of
Π(li+1, P) is produced by the relation π ↔ π′. The second part, the correct computation
of λ(π′) for every π′ ∈ Π(li+1, P), also follows by a similar argument as the one we did
in Lemma 4.6 in the corresponding part, that is, π 	↔ π′ implies that π and π′ properly
cross.

Finally, the size of μ(π) and the time it takes to compute λ(π′), for every π′ ∈
Π(li+1, P), follows from the explanations done while explaining the local changes of
PT-paths. Hence the lemma follows. �

This concludes the proof of Theorem 4.5.

4.4 Discussion and conclusions

The problem of “algorithmically” counting crossing-free structures defined on given sets
of points is directly related to the problem of generating random crossing-free structures.
For example, we might be interested in producing a triangulation of a given set of points

88 4. A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

P uniformly at random, that is, every triangulation of P must appear with probability
1

|FT (P)|
. This allows us to study structural properties of an “average” triangulation of

P, for example, to check how many of its vertices have a given degree, or to verify
what fraction of its vertices has a degree of certain parity. This could allow us to make
conjectures on triangulations and to try to prove them using induction, for which the
base cases can be checked by computer.

Methods to produce random triangulations are known, for example, in [2] a method is
explained that produces random triangulations using the divide-and-conquer algorithm
therein presented. For the sweep line algorithms that we just presented another method
can be used (due to a different paradigm): Assume we want to generate a random
triangulation, generating random pointed pseudo-triangulations is the same. Remember
that we sweep from left to right, so we store for every event point li, 1 � i � n−1, and for
every T-path π found w.r.t. li, the cardinality of T(π), which is the number of structures
to the left of li that are compatible with π. We construct a random triangulation by
sweeping in reverse order once the algorithm has finished the counting. Since there is
only one path w.r.t. ln−1 we choose it. Going from li+1 to li, 1 � i < n−1, and having
fixed a path πi+1 w.r.t. li+1, we choose a path πi w.r.t. li with probability |T(πi)|

|T(πi+1)|
.

By the time we arrive at l1 we have generated a triangulation with probability:

1 · |T(πn−2)|

|T(πn−1)|
· |T(πn−3)|

|T(πn−2)|
· · · |T(π1)|

|T(π2)|
=

|T(π1)|

|T(πn−1)|
=

1

|FT (P)|

since there is only one T-path w.r.t. l1. The downside of this method is that we need
to compute the number of triangulations of P beforehand.

There is nevertheless a different method that seems to be quite good in practice, this
method works by randomly flipping edges of a triangulation (with a pseudo-triangulation
it would be the same). It is known that this method leads to a random triangulation
in polynomial time for sets of points in convex position, see [58, 54]. Note, however,
that since the number of triangulations of a convex polygon is a Catalan number, a
triangulation generated uniformly at random can be obtained in optimal linear time,
see [35] and references therein. For general sets of points nothing is known about the
convergence of the random flipping procedure. This is a very interesting and challenging
open problem.

4.4.1 Conclusions

In this chapter we have presented algorithms to compute the number of triangulations
and pseudo-triangulations of a given set of points P. Both algorithms are rather simple

4.4. Discussion and conclusions 89

and they are based on T-paths, PT-paths and the sweep line paradigm. We also pro-
vided the first non-trivial upper bound for the number of T-paths of P w.r.t. to a given
separating line. Unfortunately, this number turned out to be rather large, O (9n). We
believe that the real upper bound for this number is closer to 4n, which remains being
very large nevertheless. However, we are not aware of any configuration of points, large
enough, having as many T-paths as triangulations. This has previously been supported
by experiments and proven for many known configurations of points. We will also see
our own experiments in Chapter 6.

It seems that our T-path algorithm really is counting triangulations in time sub-linear
in the number of triangulations, so we believe that this algorithm is still very interesting
from the theoretical point of view. We suspect the same about our PT-path algorithm
for counting pseudo-triangulation. An easy argument can be done to show that these
algorithms are, in any case, no worse than enumeration algorithms. Although this sounds
pessimistic, there are algorithms for which such an argument cannot be done.

The holy grail of counting triangulations is to prove polynomial time or #P-hardness.
So far we have failed to prove any of them. Thus, the most interesting open questions at
this moment are (in ascending order of importance): (�) For n large enough, is it true
that there are always asymptotically more triangulations (pseudo-triangulations) than
T-paths (PT-paths) w.r.t. a given separating line? (�) Is it possible to count triangula-
tions (pseudo-triangulations) in sub-exponential time? Or even count approximately in
polynomial time? (�) Is the problem of counting triangulations (pseudo-triangulations)
in P, or is it #P-complete? Each one of these questions looks very challenging.

CHAPTER 5

COUNTING TRIANGULATIONS AND OTHER
CROSSING-FREE STRUCTURES VIA ONION

LAYERS

In previous chapters we have met three particular kinds of crossing-free structures on P,
namely; quadrangulations, triangulations, and pseudo-triangulations. Other well-known
crossing-free structures that can be defined on P are matchings, and spanning cycles.
We remind the reader that a matching of P is a crossing-free structure on P where every
vertex has degree at most one, and a spanning cycle of P is a single simple polygon with
n sides whose vertex set is P.

As we did for triangulations and pseudo-triangulations in the previous chapter, we
can also define FC(P) and FM(P) as the class of all spanning cycles, and all matchings
of P respectively, and we can try to count their elements as well. Nevertheless, we
have to keep in mind that those classes of crossing-free structures are also in general
exponentially large. Their cardinality can be again of the form cn for a constant c

that depends on the class, for example, for FC(P) is currently known that c � 54.55,
see [76], and a configuration where c � 4.65 is known, see [61]. The interested reader
can visit [78, 28] for an up-to-date list of bounds on all these, and also other classes, of
crossing-free structures. The references therein give a good account of all listed bounds.

In this chapter we continue the design of counting algorithms for crossing-free struc-
tures.

92 5. Counting Triangulations and other Crossing-free Structures via Onion Layers

5.1 Our contribution

We mentioned before that, although Theorem 4.3, see page 57, could potentially count
triangulations in o (|FT (P)|), and thus beat brute force enumeration, its running time
might still be pretty large. This is because its running time depends on the number of
T-paths that the algorithm encounters during its execution, and there are configurations
having at least Ω(4n) T-paths.

In this chapter we present, among other results, yet another new algorithm to count
triangulations. Along with this new algorithm we also present algorithms to count
the elements of FC(P) and FM(P), the classes of spanning cycles and matchings of P

respectively. It is important to keep in mind that, so far, no algorithm is known that
always beats enumeration on those classes.

In order to state the results we present in this chapter we need the following definition:

Definition 5.1 (Onion layers). Let P be a set of n points on the plane and let CH(P)

denote its convex hull. We define the onion layers of P as follows: The first onion layer
P(1) of P is CH(P). For i > 1, the i-th onion layer P(i) of P is defined inductively as
CH

(
P \

⋃i−1
j=1 P

(j)
)
. By “number of onion layers of P” we mean the number of non-

empty onion layers of P.

Observe that the number of onion layers of any non-degenerate set of n points is
always at most

⌈
n
3

⌉
. We are now able to state our results.

5.1.1 The new result on counting triangulations

Theorem 5.1 (V. Alvarez, R. Curticapean, K. Bringmann, S. Ray). Let P be as before
and let k be its number of onion layers. Then the exact value of |FT (P)| can be com-

puted in time O
(
k2 · g (nk)n), where g(x) =

(
x3+3x2+2x+2

2

) 1
x
. Since k �

⌈
n
3

⌉
, this

bound never exceeds O∗(3.1414n). This running time can alternatively be bounded
by nO(k), which is polynomial for constant k.

Thus the algorithm of the previous theorem has better worst-case behavior than that
of Theorem 4.3, which is O (9n). Moreover, it has other nice properties:

� It is the first algorithm to be known that can compute the exact value of |FT (P)|

in polynomial time in at least some non-trivial cases.

5.2. A general framework for counting crossing-free structures 93

� As stated before, for every set of n points, the size of FT (P) can be lower-
bounded by Ω(2.4n), but it is widely believed that this bound can be improved
to Ω

(√
12

n
)
≈ Ω(3.464n). If this stronger bound is true, then the algorithm of

Theorem 5.1 would always count triangulations in time O∗(3.1414n) = o(|FT (P)|).
Thus setting in the positive the answer of whether or not one can always count
triangulations of set of points faster than enumerating them.

5.1.2 The results on counting other crossing-free structures

Moving away from triangulations, the other result that will be proven is the following:

Theorem 5.2 (V. Alvarez, R. Curticapean, K. Bringmann, S. Ray). Let P be as before
and let k be its number of onion layers. Then the exact values of |FM(P)| and
|FC(P)| can be computed in nO(k) time.

Thus again, as long as k = O(1), the algorithms of Theorem 5.2 compute the said
numbers in polynomial time, which then gives a partial answer to Problem 16 of The
Open Problems Project, which asks whether |FC(P)| can always be computed in poly-
nomial time, see [29]. This time, however, we are not able to prove a running time of
the sort cn for large k, like in Theorem 5.1.

The general layout of the algorithms of Theorems 5.1 and 5.2 is similar to the one
found in [12], where these ideas have been used for optimization problems.

We will divide the rest of the chapter is organized as follows: In § 5.2 we give a rough
idea on how the algorithms work. In § 5.3 we prove Theorem 5.1, and in § 5.4 we prove
Theorems 5.2. We close the chapter in § 5.5 with some conclusions.

5.2 A general framework for counting crossing-free structures

The overall idea of all our algorithms can be roughly described as follows. Suppose we
want to count the elements of some particular class F of crossing-free structures on P. A
set S of non-crossing edges on P is called a separator if the union of the edges in S splits
the interior of CH(P), possibly along with CH(P), into at least two regions. In such a
case we will say that S splits CH(P) into those regions. Now assume that there exists
a set S of separators with the following properties: (�) Every element of F contains a
unique separator S ∈ S, and (�) we can “quickly” enumerate the members of S. With
a set of separators S, the elements of F can be counted as follows: For each S ∈ S, let
RS
1 , RS

2 , . . . , RS
t be the regions S splits CH(P) into. Recursively compute the number

94 5. Counting Triangulations and other Crossing-free Structures via Onion Layers

nS
i of elements of F of each region RS

i . The number of elements of F containing S is
then NS =

∏t
i=1 n

S
i . Thus the total number of elements of F is simply

∑
S∈SN

S. Of
course, in the recursion, a set of separators is required in each RS

i , and the efficiency of
the algorithm depends heavily on the choice of S. For example, one well-known family of
separators S for triangulations is the set of T-paths, which we saw in Chapter 4. We will
introduce some other families of separators, some of them with additional properties,
however, for the time being we believe that this vague description of how the algorithms
work conveys the main idea appropriately.

5.3 Counting triangulations using the onion layers

In this section we will present yet another new algorithm for counting triangulations
that uses the onion layers of the given set of points P.

Now, for any p ∈ P, let (p) denote the index of the onion layer to which p belongs.
Let us label the points p ∈ P with distinct labels in {1, . . . , n} such that if (p) < (q)

then p also receives a label smaller than q. This is clearly possible. Figure 5.1 shows
the onion layers of a set of 17 points and the labels assigned to them. From now on we
will refer to the points of P by their labels i.e., we will think of P as the set {1, . . . , n}

and when we say “p ∈ P”, we will mean the point with label p.

9

1

3

4
5

6
8

10
11

7
13

12

15

14

17

16

2

Figure 5.1 — Four onion layers.

Let T be any triangulation of P. For p ∈ P\P(1), let snT (p) be the smallest neighbor of
p in T . Observe that any such point p has at least one neighbor q such that (q) < (p)

and therefore snT (p) < p. If p ∈ P(1), we set snT (p) = p. When T is clear from context,
we will just write sn(p) instead of snT (p). We denote by sn-pathT (p) the unique path
p = a0, a1, . . . , am in T such that for each 0 � i < m, we have that ai+1 = sn(ai)

and sn(am) = am. We will also direct this path from a0 towards am and call this the
direction of “descent” since (·) decreases along the path. Note that any sn-path consists

5.3. Counting triangulations using the onion layers 95

of at most one point from each onion layer and precisely one point from the first onion
layer.

Let (p, q) be some edge in T and suppose that sn-path(p) ends at p′ ∈ P(1) and
sn-path(q) ends in q′ ∈ P(1). There are two paths in T from p′ to q′ along CH(P),
one in the clockwise direction and the other in the counter-clockwise direction. Each
of these paths along with the edge (p, q) and the two sn-paths starting at p and q

respectively, defines a region within CH(P). We call these two regions the sn-regions of
(p, q). See Figure 5.2. Given any sn-region R, we refer to the number of triangles in any
triangulation of R as the size of R. This is well defined since the number of triangles is
the same regardless of the triangulation chosen.

9

1

3

4
5

6

10

7
1214 16

2
p

p′

q′

R

R′
q

Figure 5.2 — R and R′ are the sn-regions of
(p, q).

1

3

4
5

6

13

2

a b

p

Rap
Rpb

Figure 5.3 — Rap and Rpb are the sn-regions
of (a, p) and (p, b), respectively,
that do not contain triangle apb.

Let ab be an edge on CH(P). Observe that in any triangulation, CH(P) is one of the
sn-regions of (a, b), the other region being empty. In any triangulation T of P, there
is precisely one triangle apb that the edge ab belongs to. Let Rap be the sn-region of
(a, p) that does not contain apb and similarly let Rpb be the sn-region of (p, b) that
does not contain apb, see Figure 5.3.

5.3.1 The algorithm

Let ab be again an edge on CH(P). The core idea of our algorithm is as follows:
We can easily enumerate all the points p such that the triangle apb appears in some
triangulation. This is just the set Q of points p such that the triangle apb is free of
other points of P. For every element p of Q, suppose that we can enumerate the sn-paths
ρ of p over all triangulations of P. For ever pair (p, ρ), let T(p,ρ) = T(p,ρ)(P) be the set
of triangulations of P that contain the triangle apb and in which ρ is the sn-path of p.

96 5. Counting Triangulations and other Crossing-free Structures via Onion Layers

If, for each such pair that we can obtain, we can compute |T(p,ρ)|, then we are done,
since each triangulation of P must contain precisely one pair (p, ρ), adding the numbers
over all pairs gives us the total number of triangulations.

Let us fix a pair (p, ρ) for which we would like to compute |T(p,ρ)|. The pair already
defines the regions Rap and Rpb for all triangulations in T(p,ρ). Observe that any
triangulation in T(p,ρ) contains a triangulation Tap of Rap and a triangulation Tpb of
Rpb, each of which satisfy the following sn-constraint: For each edge (q, r) in ρ there is
no edge (q, s) in the triangulation (either Tap or Tpb) such that s < r. Furthermore,
putting together any pair of triangulations Tap and Tpb, each satisfying the constraint,
and the triangle apb gives a triangulation in T(p,ρ). This observation follows from the
fact that ρ is an sn-path of p in any triangulation of Tp,ρ, and allows us to separately
compute the number of (sn-constraint-satisfying) triangulations Nap of Rap and Npb

of Rpb whose product gives |T(p,ρ)|.

The numbers Nap and Npb are computed recursively. We will maintain the invariant
that at any point in the recursion we are dealing with an sn-region of some edge. This is
certainly true in the beginning since we start with an sn-region of the edge ab and also
in the next step since we recurse on sn-regions defined by the edges (a, p) and (p, b)

respectively. At any point, let us say that we are dealing with an sn-region R defined by
an edge (x, y) and let ρx and ρy be the sn-paths starting at x and y respectively.

Now, we recurse almost exactly as we did before: We enumerate the set of points z

such that the triangle xzy lies within R and is free of other points of P contained in R,
see Figure 5.4. Furthermore, we ensure that if z happens to be a point in either ρx or
ρy, and (z, t) is an edge in that sn-path, then both x and y are bigger than t. This
way, we do not violate the sn-constraint. For each such z we enumerate the portions of
sn-paths starting at z that lie within R. See Figure 5.4. Each such path splits the region
R into regions Rxz and Rzy which are sn-regions defined by (x, z) and (z, y) respectively.
Each of the regions Rxz and Rzy have sizes smaller than R, i.e., fewer triangles in any
triangulation. The recursion bottoms out when the size is � 1, in which case we know
that there is exactly one triangulation. Note that even though we enumerate only the
portions of the sn-paths of z that lie within R, these portions implicitly define the entire
sn-path of z. This is because such a portion either ends at a point on the first onion
layer in which case it is the entire sn-path, or at a point w on either ρx or ρy. The
direction of descent along that sn-path, starting at w, is then the remaining portion of
the sn-path of z.

One detail is still missing. How do we enumerate the portions of the sn-paths of z that
belong to at least one triangulation of R? and the answer is: We will not do it. Instead,
we enumerate a superset of paths which are descending in the sense that they start at
z and each successive point is in a strictly upper layer (a layer containing points with
smaller indices). Again, we only enumerate the portion of such paths that lie inside R

5.3. Counting triangulations using the onion layers 97

9

1

3

4
5

6
8

10

7
1214

17

16

2

x

x′

y′

R

R′

z y

Figure 5.4 — R and R′ are the sn-regions of (x, y).

since the rest is implicitly defined. For any descending path that does not really belong
to any triangulation of R, at least one of the regions Rxz or Rzy has no triangulations
satisfying the sn-constraint. This will be detected somewhere down the recursion where
we will not be able find any z satisfying the sn-constraint. At that point, we return 0

as the number of triangulations. Thus the algorithm still works in these cases.

There is one other ingredient that we add for efficiency: Memoization. Whenever we
compute the number of triangulations of a certain sn-region that satisfy the sn-constraint
dictated by the sn-paths defining the region, we store it in a hash table (or any other
data structure). Now consider a call graph in which each node represents an sn-region
and there is a directed edge from a region R to a region R′ if from R we make a recursive
call to R′. The number of egdes in this graph is an upper boundI on the running time
of the algorithm since, because of memoization, no edge is traversed more than once.

We will now prove an upper bound on the number of edges in the call graph. Each
call from a region R to a region R′ can be charged to a triple of descending paths - two
defining R and a third that, along with a triangle, splits R into two regions, one of which
is R′. The triples (ρ1, ρ2, ρ3) that are produced in the algorithm have the property that
once two paths merge in the direction of descent, they never split again. This is ensured
by the fact that we only enumerate the portions of the third descending path within the
region R and the rest is implicitly defined, as noted before. Let ρ′2 be the portion of ρ2
that does not have any point in common with ρ1, and let ρ′3 be the portion of ρ3 that
does not have any point in common with either ρ1 or ρ2. The descending paths ρ1, ρ′2
and ρ′3 are vertex disjoint, and along with some additional information they completely
describe ρ1, ρ2 and ρ3. The additional information that is required is whether, and
where, ρ2 merges with ρ1, and whether, and where, ρ3 merges with one of the other
paths. If P has k onion layers, then each descending path has length at most k and
therefore there are at most k ways that ρ′2 may merge with ρ1, and at most 2k ways ρ′3
IUp to a polynomial overhead arising from the construction and handling of sub-problems.

98 5. Counting Triangulations and other Crossing-free Structures via Onion Layers

may merge with one of ρ1 or ρ2. Therefore, if U is an upper bound on the number of
triples of vertex disjoint descending paths, then 2k2U is an upper bound on the number
of triples (ρ1, ρ2, ρ3) as described above, and hence also an upper bound on the running
time of the algorithm.

5.3.2 Number of vertex-disjoint triples of descending paths

Each descending path uses at most one vertex from every onion layer. Let ni = |P(i)|

be the size of the i-th onion layer. Let us count how many ways there are for any triple
of paths to use at most one vertex each from this layer. There is one way for the triple
of paths to skip this onion layer. There are ni ways of choosing one point among the ni

which may then be used by any of the paths. This gives 3ni ways for the three paths.
There are

(
ni

2

)
ways to choose two points, and any two of the paths may use them. This

gives 6
(
ni

2

)
ways among the three paths. Finally there are

(
ni

3

)
ways of choosing three

points, and there are three (not six) ways for the three paths to use one of these vertices.
This is because these paths are non-crossing planar curves, and therefore the clockwise
order of these paths along any CH

(
P(i)

)
that intersects all three of them is the same

for each i. The overall number of ways in which at most three points can be used from
the i-th layer is therefore f(ni), where f(x) = 1+ 3x + 6

x(x−1)
2 + 3

x(x−1)(x−2)
6 .

The number of triples of vertex disjoint descending paths is therefore at most U =∏k
i=1 f(ni). Since each ni is a positive integer, and the function f(·) is log-concave for

x � 1, the above product is maximized when each ni is equal to n
k . This gives an upper

bound of f
(
n
k

)k
= g

(
n
k

)n, where g(x) = f(x)
1
x . Now, g(x) is maximized for some value

of x between 0 and 1 and is a decreasing function for x � 1. Since each onion layer
except the k-th one must have at least three points, we have U = O (g(3)n). The fact
that the k-th onion layer may have fewer than three points makes only a difference of a
constant factor. Therefore the running time of the algorithm presented in this section
is O

(
k2g(3)n

)
= O∗(3.1414n). This concludes the proof of Theorem 5.1.

We want to point out that often the number of onion layers can be much smaller than
the maximum possible

⌈
n
3

⌉
. For example, Dalal [26] has shown that if n points are

chosen uniformly at random from a disk, then the expected number of onion layers of
the resulting point set is Θ

(
n2/3

)
.

From a theoretical point of view, the algorithm presented in this section, sn-path
algorithm for short, has a running time polynomial in n whenever the number of onion
layers of P is constant. This is the first known algorithm for counting triangulations
having this property. Also, its worst-case behavior is better than the one based on T-
paths that we presented before, O∗(3.1414n) of the former against O(9n) of the latter.

5.4. Counting other crossing-free structures 99

The sn-path algorithm is an excellent candidate for having good experimental behavior
as well, due to its polynomial-time instances. Towards the end of Chapter 6 we shall
see how the sn-path performs experimentally against the fastest-known (in practice)
algorithm for counting triangulations presented in [70], and also against our own T-
path-based algorithm.

5.4 Counting other crossing-free structures

In this section we show how the core ideas of the previous two algorithms for counting
triangulations, the T-path-based of section 4.2 and sn-path-based of section 5.3, can
be “modified” or “adapted” so that we can count other crossing-free structures on P.
We start by showing how the ideas of the sn-path algorithm can be used to develop a
general framework that helps to count crossing-free structures in general. We use this
framework to count perfect matchings and spanning cycles defined by P.

5.4.1 Counting matchings and spanning cycles

Assume we want to count crossing-free matchings spanned by P. Clearly any matching
can be completed to a triangulation by adding edges, and thus we might want to try the
technique used for counting triangulations: Take a set S of separators and for each S ∈ S

count the matchings in triangulations containing S, and finally add this up over all S ∈ S.
In any matching M that can be completed to a triangulation containing S, each vertex
in S is either unmatched, or it is matched to a vertex within some RS

i , or it is matched
to another vertex in S. We can annotate each separator S with this information. When
counting, for each S ∈ S, we iterate over all annotations of S, and take care to be
consistent with the current annotation when recursing into the sub-problems.

This simple algorithm fails because some matchings M could be contained in a tri-
angulation that could contain several, say sM > 1, separators and would thus fool our
algorithm to count M exactly sM times. If sM = s were a constant over all matchings
we would not have this problem, however, we are not aware of any set of separators S

with this property.

There is however a way in which we can modify the simple algorithm so that we
can count each matching exactly once: We embed each matching M into a unique
triangulation T ⊃ M. Given a family S of separators for the triangulations of P, we
associate a unique S ∈ S to each matching. For concreteness, let us associate to each M

the constrained Delaunay triangulation (CDT) M constrained to contain M, which
we briefly describe next.

100 5. Counting Triangulations and other Crossing-free Structures via Onion Layers

Constrained Delaunay Triangulation: The constrained Delaunay triangulation (CDT)
S of P was first introduced in [24]. Formally, it is the triangulation T of P containing
S such that no edge e in T \S is flippable in the following sense: Let 1,2 be triangles
of P sharing e. The edge e is flippable if and only if � = 1 ∪ 2 is convex, and
replacing e with the other diagonal of � increases the smallest angle of the triangulation
of �. One of the most important properties of constrained Delaunay triangulations is its
uniqueness if no four points of P are cocircular. Thus, under standard non-degeneracy
assumptions, there is a unique CDT for any given set of mandatory edges. For a good
study on constrained Delaunay triangulations we suggest the book [46] by Ø. Hjelle and
M. Dæhlen.

For our counting purposes we will assume that no four points of P are cocircular.
This can easily be taken care of by perturbing P. We can now go back to our simple
algorithm for counting matchings and revise it as follows: Whenever we recurse, in each
sub-problem we only count matchings M such that S ⊆ M, where S ∈ S is a separator.
If this last condition can be satisfied locally in each sub-problem, i.e., choices in one
sub-problem do not depend on choices in others, we are done. While not every S admits
such a locality condition, some do as we will see next.

5.4.2 Triangular paths

We assume again that P has k onion layers. For every point p ∈ P (on layer P(i) which
is not the first layer) we fix in advance a ray ρp which emanates from p and does not
intersect the interior of CH

(
P(i)

)
.

For any triangulation T of P there is a unique triangle p = p, q1, q2 adjacent to p

and intersecting ρp. Let qp be the smaller of q1 and q2, using the same labeling as
before. Clearly qp lies in a layer lower than the one containing p. Let p0, p1, . . . , pr be
the sequence so that p0 = p, pi+1 = qpi

, ∀ 0 � i < k, and pr lies on the first layer. We
call Pp(T) :=

⋃
i pi

the triangular path of p w.r.t. T , and we call pr the last point of
Pp(T). See Figure 5.5.

The triangular path Pp(T) is uniquely defined for any triangulation. Moreover, for
distinct triangulations T1 and T2, Pp(T1), Pp(T2) are either identical or they intersect
properly: Let i be the first position where pi

(T1) 	= pi
(T2), then those two triangles

intersect, as they both are adjacent to p, intersect ρp and have interiors free of points
in P. We are now ready to finish the algorithm for counting matchings.

5.4. Counting other crossing-free structures 101

p0
p1

ρp0
ρp1

p2

ρp2
p3

Figure 5.5 — Triangular path Pp starting in onion layer P(4). Onion layers are shown in dashed.
Pp can be extended to a triangulation T , in such a case Pp will be unique for T .

Algorithm for counting matchings

Given a matching M, let M be the CDT of M. By our assumption of no four cocircular
points, this CDT is unique for M. We annotate M as follows:

� each vertex v of M is annotated with a number mv that represents the vertex of
M that v is matched to. If mv is 0 say, then we know that v is not matched in M.

� each edge e of M is annotated with a bit be that indicates whether e belongs to
M or not.

Let us denote by M the annotated version of M. Let S be a separator contained in
M that splits CH(P) into regions R1, . . . , Rt. Separator S inherits all the information
from M. We additionally keep track of whether mv is any of the adjacencies of v in
S, for each vertex v ∈ S. If not then we set mv to the index 1 � i � t of the region Ri

the matching vertex of v falls into (it must necessarily be a region having v as a vertex
of its boundary). The separator thus annotated will be denoted by M

S .

We say that an annotated constrained Delaunay triangulation is legal if and only if
it is identical to M, for some matching M. Since there is a one-to-one correspondence
between matchings and legal constrained Delaunay triangulations, our goal is to count
the latter.

Our algorithm is essentially the same as for counting triangulations: Instead of sn-
paths we use annotated triangular paths. We start with an edge ab on CH(P), and
enumerate the set of points p such that the triangle apb is free of other points of P.
For each such p, the triangle apb along with the triangular path starting at p forms a
separator, see Figure 5.6. We enumerate such separators and all possible annotations
for each one of them. Each such annotated separator splits CH(P) into two smaller

102 5. Counting Triangulations and other Crossing-free Structures via Onion Layers

regions in which we recurse. In each recursive sub-problem we count (legal) annotated
constrained Delaunay triangulations consistent with the annotated separator.

a b

p

R2

R3

R1

Figure 5.6 — In the first call of the algorithm, the triangular path shown in dark gray is created.
It divides the problem into regions R1 ∪R3 and R2. A call for the latter creates the
triangular path shown in light gray. Annotations are not shown for simplicity.

The reason for which we use triangular paths instead of simple sn-paths is the follow-
ing: No edge in a separator, formed by a triangular path, lies on the boundary of more
than one sub-problem. This allows us to verify flippability of edges separately in each
sub-problem. If an edge belonged to more than one sub-problem, then the flippability
of this edge would depend on the choices made in each sub-problem, thus introducing
dependency between these sub-problems.

As in the case for counting triangulations, we use memoization. The running time
as before is dominated by the number of triples of annotated triangular paths. The
size of each triangular path is O(k), thus there are clearly at most nO(k) triangular
paths. Also, trying all possible annotations per triangular path leads to no more than
nO(k) annotations per triangular path, as can be easily checked. Hence there are nO(k)

annotated triangular paths, and also nO(k) triples of annotated triangular paths. The
overall running time is thus nO(k), which even considers the polynomial overheads
arising from checking flippability of edges and inclusion of points into sub-problems.
This concludes one part of Theorem 5.2.

The annotations required for counting matchings are not very complicated, but for
many other counting problems this is a highly non-trivial task. An example of more
involved annotations is given next, where we consider the problem of counting spanning
cycles.

5.5. Conclusions 103

Algorithm for counting spanning cycles

Counting spanning cycles is more complicated than counting matchings. What we will
actually do is that, instead of counting spanning cycles, we will count rooted and ori-
ented spanning cycles. Given any cycle, we make it rooted by designating a starting
vertex, and we make it oriented by assigning an orientation- clockwise or counter-
clockwise. We then number the vertices in the cycle from 1 to n, beginning at the
starting vertex (which is the root of the cycle), and continuing along the assigned di-
rection. We also direct the edges along this direction. This way, each spanning cycle is
counted exactly 2n times. At the end we divide the computed number by 2n to get the
desired number. In the remainder we use the term HamCycle for rooted and oriented
spanning cycles.

Given a HamCycle H let H be the CDT of H. We annotate H as follows:

� each vertex v of H is annotated with (posv,prevv,nextv), where posv is the
number assigned to v in H, prevv is the vertex lying immediately before v in H,
and nextv is the vertex lying immediately after v in H.

� each edge e in H is annotated with a bit be that indicates whether e belongs to
H or not.

As in the case for matchings, the annotated H will be denoted by H. Let S be
again a separator contained in H that splits CH(P) into regions R1, . . . Rt. Separator S
inherits the following information from H: Each vertex v ∈ S inherits posv from H.
If prevv and nextv are already adjacent to v in S then this information is also inherited.
If prevv is absent in S then v is annotated with the index i, 1 � i � t, of the region Ri

that prevv falls in. The same holds for nextv. Each edge e of S carries the annotation
it has in H. The separator S of ΔH thus annotated will be denoted by H

S .

The algorithm, as the reader might be thinking right now, is no other than the algo-
rithm for counting matchings. The only difference are the annotations, they encode a
different problem. Thus again, the number of triangular paths is nO(k). The number
of annotations per triangular path stays nO(k), and hence the total running time will
stay at nO(k), including again the other polynomial overheads. This finishes the proof
of Theorem 5.2.

5.5 Conclusions

In this chapter we have presented algorithms to count triangulations, crossing-free
matchings and crossing-free spanning cycles of a given set of points P. All algorithms
use the onion layers of P and the divide-and-conquer paradigm.

104 5. Counting Triangulations and other Crossing-free Structures via Onion Layers

The algorithm to count triangulations presented in this chapter has the best provable
worst-case running time as of this writing, O∗(3.1414n). We consider important to note
that configurations of points having from Ω (3.464n), see [72], to Ω (8.65n), see [33],
triangulations are known. Thus the algorithm presented in this chapter counts triangu-
lations faster than enumeration algorithms in at least those cases. Also, this algorithm
has polynomial-time instances whenever the number of onion layers of the given set of
points is constant. We will see in the next chapter that, experimentally, for up to 3
onion layers this algorithm outperforms the algorithm of [70], which is reported to be
extremely fast in practice. At this point the most interesting open question is the follow-
ing: Is it true that every set of n points, n being large enough, spans at least Ω (3.464n)

triangulations? If this is true, then the algorithm we presented in this chapter always
counts triangulations in o (|FT (P)|).

Speaking about counting other kinds of crossing-free structures, we showed again two
algorithms. The first one could be seen more as a framework for counting essentially
“every” kind of crossing-free structures, since it depends on a labeling scheme, which is
the hardest part of the algorithm to come up with. This “framework” implies algorithms
with running times of the sort nO(k), where k is the number of onion layers of the
given set of points, which again, for fixed k implies polynomial time. Algorithms like
these were not known before for this kind of problems. This gives a partial answer to
Problem 16 of The Open Problems Project, which asks whether |FC(P)| can always
be computed in polynomial time, see [29]. These counting algorithms also allow us to
generate crossing-free matchings and spanning cycles uniformly at random. The latter
being a problem that has attracted the attention of researchers for almost 20 years, in
the form of generating random simple polygons on P, which is nothing but a crossing-
free spanning cycle of P. Since our algorithms are based on the divide-and-conquer
paradigm, we can adapt the method explained in [2] to produce such random structures,
once the counting has been done. Other methods to generate random simple polygons
without having to count are known, for example, in [13] many heuristics for polygons are
presented. There the authors reported that (uniform) random generation can be done
in polynomial time when the random polygon is star-shaped, but in the general case the
algorithms therein presented are either unpractical or unable to generate uniformly at
random.

Finally, it is worth noting that although we could have tried to come up with an
annotation scheme for pseudo-triangulations, and thus we could have obtained another
algorithm to count pseudo-triangulations using the onion layers, the resulting algorithm
would have had a running time of the sort nO(k). This running time is in general not
better than O∗(t), at least from the theoretical point of view, since for the latter we
have t = O (cn), for some constant c, while for the former k can get linearly large. The
most important open problem here is whether the number of matchings and spanning
cycles can always be computed in polynomial time.

CHAPTER 6

MISCELLANEOUS RESULTS ON COUNTING
TRIANGULATIONS

In this chapter we conclude the study on counting algorithms that we started in Chap-
ter 4. The topic turned out to be very vast, and as it often occurs in research, one
stumbles upon results on the same topic but of rather different nature. This chapter
contains two such results, one is an algorithm for approximate counting triangulations,
and the other is a hardness result of a very particular instance of the problem of (ex-
actly) counting triangulations. Along with these two results we also show experiments
comparing our two algorithms for counting triangulations, of Chapters 4 and 5, with the
algorithm presented in [70], which is supposed to be very fast in practice.

6.1 Our contribution

The first result, whose proof will be shown in § 6.2, is the following:

Theorem 6.1 (V. Alvarez, K. Bringmann, S. Ray, R. Seidel). Let P be a set of n points
on the plane, and let c ∈ R be such that |FT (P)| = cn. Then a number Λ can be
computed in time 2o(n) such that cn � Λ � cn+o(n).

This first result is an approximation algorithm for counting the triangulations of P.
While the approximation factor of Λ is rather big, there is something very important
to note here: The approximation is within the same order of growth of the real value

106 6. Miscellaneous Results on Counting Triangulations

of |FT (P)|, that is, the base of the exponentially large computed value is still c, more
precisely c � Λ

1
n � c1+o(1) � (1 + o(1))c. Also, this approximation can be computed

in sub-exponential time, which, at least theoretically, is asymptotically faster than the
worst-case instances of the algorithms of Chapters 4 and 5. This is certainly very
appealing.

The second result is a hardness result. Observe that the running times of the algo-
rithms of Theorems 5.1 and 5.2 can be stated as nf(k), for some function f that does
not depend on n. With regard to parameterized complexity it is natural to ask if these
running times can be improved to something of the sort g(k) ·nO(1), for some function g

independent of n, thus proving that our problems belong to the FPT complexity class.
Which is the class of fixed-parameter tractable problems. However, the techniques in-
volved in the algorithms of Theorems 5.1 and 5.2 are general enough to solve harder
problems, such as the following:

Restricted-Triangulation-Counting-Problem: Given a set of points P and a
subset of edges E over P, count the triangulations of P that use only edges from E.

The hardness result, whose proof will be presented in § 6.3, is the following:

Theorem 6.2 (V. Alvarez, R. Curticapean, K. Bringmann, S. Ray). The Restricted-

Triangulation-Counting-Problem is W[2]-hard if the parameter is considered
to be the number of onion layers of P. This result even holds for the problem of
just deciding the existence of a restricted triangulation.

The book by J. Flum and M. Grohe, see [37], is a standard reference for Param-
eterized Complexity Theory, where the classes FPT and W[2] are defined. For now,
however, it suffices to say that the separation FPT 	= W[2] is widely believed. Thus an
algorithm with a running time of the sort g(k) · nO(1) is most likely not attainable for
the Restricted-Triangulation-Counting-Problem. This might be an indication
that we may have to exploit the particular structure of the problems in order to obtain
fixed-parameter tractable algorithms for counting crossing-free structures, in the general
non-restricted case.

In § 6.4 the experimental results mentioned before will be shown. We close the chapter
in § 6.5 with some conclusions.

6.2 Counting triangulations approximately

In this section, as in the previous chapter, we use separators as the main ingredient of
our algorithm. Here, however, they come in the form of simple cycles, that is, cycles

6.2. Counting triangulations approximately 107

that do not cross themselves. The following resultI shows that separators with this form
exist, and that they have very appealing properties:

Theorem 6.3 (G. L. Miller, H. N. Djidjev, S. M. Venkatesan). Let T be a triangulation
of a set of n points on the plane such that the unbounded face is a triangle. Then
there exists a simple cycle C of size at most

√
4n, which separates the set A of

vertices of T in its interior from the set B of vertices of T in its exterior, such that
the number of elements of each one of A and B is always at most 2n

3 .

Observe however that the result of Miller does not imply that every triangulation of
a set of points contains a unique simple cycle separator. One can easily come up with
examples in which one triangulation contains more than one simple cycle separator.
The important part here is that every triangulation contains at least one simple cycle
separator. This is the reason behind the use of simple cycle separators for approximate
counting.

The idea for a counting algorithm now suggests itself: We will enumerate all possible
simple cycles separators C of size at most

√
4n that we can find in the given set P. We

will then recur in each of the parts A and B of Theorem 6.3 delimited by CII, and add
or multiply the numbers we thus obtain accordingly.

With the previous algorithm we clearly over-count all triangulations of P. However,
there are technicalities that we have to overcome. For starters, Miller’s result holds
only if the unbounded face of T is also a triangle, so if we add a dummy vertex v∞
outside CH(P), along the adjacencies between v∞ and the vertices of CH(P), to make
the unbounded face a triangle, we can apply Miller’s result. Once a simple cycle with
the dividing properties of a separator is found, by the deletion of v∞ we are left with
a separator that is either the original cycle that we found, if v∞ does not appear as a
vertex of the separator, or a path otherwise. So when guessing a separator it suffices
to consider that it might be a path instead of a cycle. This brings us to the second
technical issue. As we go deeper in the recursion we might create “holes” in P whose
boundaries are the separators that we have considered thus far. So the recursive problems
are polygonal regions, possibly with holes, containing points of P. Therefore, when
guessing a separator, cycle or path, we have to keep in mind that the separator might
be “extended” by the boundaries of the holes it encountersIII. This extensions are not
guessed nevertheless, they are just detected and added, so this does not modify the size
of the sets we guess for a separator in a sub-problem.

What is now interesting is the running time of the algorithm as well as the quality of
its approximation. We will devote the rest of this section to these two subjects.
IOriginally presented in [57] by G. L. Miller, and improved in [31] by H. N. Djidjev and S. M. Venkatesan.
IIThus separator C also forms part of the two sub-problems.
IIIThink of it as the separator dividing the hole it encounters into many parts.

108 6. Miscellaneous Results on Counting Triangulations

6.2.1 Quality of approximation

We first prove the following lemma:

Lemma 6.1. Let FT (P) be the set of triangulations of a set P of n points. Then all
separators, simple cycles or paths, among all the elements of FT (P) can be computed
in time 2o(n).

Proof. We know by Theorem 6.3 and the discussion above that every element of FT (P)

contains at least one separator C, simple cycle or path. Moreover, the size of C is at most√
4n, thus searching by brute-force will do the job. We can enumerate all the subsets of

P of size at most
√
4n along with their permutations. A permutation is what tells us how

to connect the points of the guessed subset. We can then verify if the constructed simple
cycle, or path, fulfills the dividing properties of a separator, as specified in Theorem 6.3.

It is not hard to check that the total number of guessed subsets and their permutations
is 2O(

√
n log(n)). Identifying whether a cycle, or a path, is indeed a separator can be

done in polynomial time. So the total time spent remains being 2O(
√
n log(n)). �

By the proof of the previous theorem we also obtain that the number of simple cycle
separators cannot be larger than 2O(

√
n log(n)). Since at every stage of the recursion of

the counting algorithm no triangulation of P can contain more than the total number
of simple cycle separators found at that stage, we can express the over-counting factor
of the algorithm by the following recurrence:

S(P,Δ) =
∑
C

S(A ∪C,Δ) · S(B ∪ C,Δ) � 2O(
√
n log(n)) · S(A ∪C∗, Δ) · S(B ∪ C∗, Δ)

Where the summation is over all separators C available at the level of recursion,
A ∪ C, B ∪ C are the sub-problems as explained before, C∗ is the cycle that maximizes
S(A ∪ C,Δ) · S(B ∪ C,Δ) over all C, and Δ is a stopping condition which means that
whenever the sub-problem we recur in contains � Δ points, we stop the recursion, and we
compute the number of triangulations exactly instead, so we have a boundary condition
S(Q,Δ) = 1 whenever |Q| � Δ.

The product of S(A ∪ C,Δ) and S(B ∪ C,Δ) means that we are combining all trian-
gulations of A ∪ C with all triangulations of B ∪ C. We can now write:

S′(P,Δ) := log(S(P,Δ)) � O
(√

n log(n)
)
+ S′(A ∪C∗, Δ) + S′(B ∪ C∗, Δ)

Our goal now is to prove the following lemma:

Lemma 6.2. S′(P,Δ) = O

((
n√
Δ/3

−
√
n

)
log(Δ)

)
, for a suitably chosen value of Δ.

6.2. Counting triangulations approximately 109

Proof. We will proceed by induction over P′ ⊆ P of size m � n, so we have:

S′(P′, Δ) � O
(√

m log(m)
)
+ S′(A ∪ C∗, Δ) + S′(B ∪ C∗, Δ)

� O
(√

m log(m)
)
+ c

⎛
⎝ m1√

Δ
3

−
√
m1 +

m2√
Δ
3

−
√
m2

⎞
⎠ log(Δ) (�.�)

Where m1,m2 are the sizes of the sub-problems A∪C∗ and B∪C∗ respectively, and c is
some large enough positive constant. Thus, observe that we can express m1 � αm+

√
4m

and m2 � βm +
√
4m, such that: (�) α,β are constants that depend on the instance,

so α = α (A ∪ C∗) and β = β (B ∪ C∗), (�) 0 < β � α � 2
3
IV, and (�) α+ β = 1.

Now let us for the moment focus on the term m1√
Δ/3

−
√
m1 + m2√

Δ/3
−
√
m2 of �.�:

m1√
Δ
3

−
√
m1 +

m2√
Δ
3

−
√
m2 =

m1 +m2√
Δ
3

−
√
m1 −

√
m2

� αm +
√
4m + βm +

√
4m√

Δ
3

−
√
m1 −

√
m2

� m + 4
√
m√

Δ
3

−
√
m1 −

√
m2 � m+ 4

√
m√

Δ
3

−
√
αm−

√
βm

� m + 4
√
m√

Δ
3

−
√
m

(√
α+

√
β
)
� m+ 4

√
m√

Δ
3

−
√
m (1+ ε)

The last inequality is obtained by minimizing
√
α +

√
β. Since we mentioned before

that 0 � β � α � 2
3
, then the minimum of

√
α +

√
β is attained (α,β) =

(
2
3
, 1
3

)
, and

is strictly larger than one, so ε > 0. Now, if Δ is large enough, then 4
√
m√

Δ/3
� ε

√
m,

so 4
√
m√

Δ/3
− ε

√
m = −d1

√
m, for some positive constant d1. Thus we can continue as

follows:
m1√

Δ
3

−
√
m1 +

m2√
Δ
3

−
√
m2 � m+ 4

√
m√

Δ
3

−
√
m (1+ ε) � m√

Δ
3

−
√
m− d1

√
m (�.�)

Combining equations �.� and �.� we obtain:

S′(P′, Δ) � O
(√

m log(m)
)
+ c

⎛
⎝ m√

Δ
3

−
√
m− d1

√
m

⎞
⎠ log(Δ)

� c

⎛
⎝ m√

Δ
3

−
√
m

⎞
⎠ log(Δ) +O

(√
m log(m)

)
− c · d1

√
m log(Δ)

IVThe 2
3
upper bound is guaranteed by Theorem 6.3.

110 6. Miscellaneous Results on Counting Triangulations

If we choose in the beginning Δ large enough, say Δ � nδ, for some constant δ > 0,
then we have that Δ � nδ � mδ, and the negative term −c · d1

√
m log(Δ) is asymptot-

ically larger, for c large enough, than the O
(√

m log(m)
)

term. Hence we can conclude

that S′(P′, Δ) � O

((
m√
Δ/3

−
√
m

)
log(Δ)

)
, which is what we wanted to prove in the

beginning.

It still remains to prove that the solution holds for the boundary condition, so let Q

be an instance of size � Δ. Thus S′(Q,Δ) = 0 � c

(
|Q|√
Δ/3

−
√

|Q|

)
log(Δ), which holds

if and only if 0 � |Q|√
Δ/3

−
√

|Q|, which in turn holds if and only if |Q| � Δ
3 , but it is

easy to see that this always holds. Lemma 6.2 follows entirely. �

Now, let Λ be the number we compute with the previous algorithm. Also let cn be
the exact number of triangulations of P. By setting Δ =

√
n log(n) we obtain that the

over-counting factor of the algorithm is:

S(P,Δ) = 2S
′(P,Δ) = 2

O
(

n log(Δ)√
Δ

)
= 2

O

(
n

3
4
√

log(n)

)

Hence cn � Λ � cn · 2O
(
n

3
4
√

log(n)

)
= cn+o(n).

This completes the qualitative part of Theorem 6.1. It remains to discuss how much
time it takes to compute Λ.

6.2.2 Running time

The running time of the algorithm can be expressed with the following recurrence:

T(n) < 2O(
√
n log(n))T

(
2n

3
+
√
4n

)

Taking again T ′(n) = log(T(n)) yields T ′(n) := T ′
(
2n
3

+
√
4n

)
+O

(√
n log(n)

)
, which

can then be solved using the well-known Akra-Bazzi Theorem for recurrences, see [52],
and whose solution gives T ′(n) = O

(√
n log(n)

)
. There is however one detail missing,

the stopping condition Δ. In order to use the Akra-Bazzi Theorem we need a boundary
condition of T(n) = 1 for 1 � n � n0, but in the algorithm we stop the recursion
whenever a sub-problem Q is of size � Δ, at that point we compute the exact number

6.3. The hardness result 111

of triangulations of Q, this gives T(|Q|) = cO(|Q|) � cO(Δ), for some constant c whose
value is not really relevant at this point. Hence the exponent in the running time of
the algorithm is upper-bounded by the solution of T ′(n), as given by the Akra-Bazzi
Theorem, plus a factor of O (Δ), i.e., T(n) = 2O(

√
n log(n)+Δ). If as before we assume

that Δ =
√
n log(n) then we end up having T(n) = 2O(

√
n log(n)), which concludes the

proof of Theorem 6.1.

As a final remark observe that we could have used other values for Δ, rather than√
n log(n), without violating any argument in the proofs, but then, although the qual-

ity of the approximation would have been better, the running time would have been
slower. Since we see no way of not having over-counting with this algorithm, we regard
Δ =

√
n log(n) as a good trade-off.

6.3 The hardness result

In this section we show a hardness result related to our counting algorithms based on
sn-paths and triangular paths, shown in Chapter 5. Observe that those algorithms are
parameterized by the number k of onion layers of P. They have running times of the sort
nO(k), thus, from the complexity point of view, it is natural to ask whether algorithms
with running times of the sort g(k) · nO(1), for some function g independent of n, are
possible. That would mean that our problems belong to the FPT complexity class.
Unfortunately, our techniques are general enough to solve harder problems, such as the
Restricted-Triangulation-Counting-Problem explained before, on page 106.

Here we prove Theorem 6.2, which states that the Restricted-Triangulation-

Counting-Problem, RTCP for short, is W[2]-hard if the parameter is considered to
be the number of onion layers of P. More, this result even holds for the problem of just
deciding the existence of a restricted triangulation.

The algorithms of Chapter 5 require little to no modification to be run on instances
of RTCP, that is, those algorithms are quite generic. Since the separation FPT 	= W[2]
is widely believed, and we do not really know about the complexity of the counting
problems studied in Chapters 4 and 5, we can still hope that by exploiting structural
properties we could obtain fixed-parameter tractable algorithms for the problems studied
in the two aforementioned chapters. The book by J. Flum and M. Grohe, see [37], is an
excellent reference for Parameterized Complexity Theory.

112 6. Miscellaneous Results on Counting Triangulations

6.3.1 Preliminaries

Let P be a set of n points with k onion layers, and let E be some set of pre-specified edges
spanned by P. We say that a triangulation T of P is restricted w.r.t. E if T ⊆ E. Here we
consider the following Restricted-Triangulation-Existence-Problem: On input
(P, E), decide whether there exists a triangulation of P that is restricted w.r.t. E. This
defines the Restricted-Triangulation-Counting-Problem in the natural way, and
the existence problem is trivially reducible to the counting problem.

The Restricted-Triangulation-Existence-Problem, RTEP for short, was proven
to be NP-complete in [53, 74]. Something very important can be observed here, namely,
both reductions are actually parsimoniousV, implying #P-completeness of its natural
counting problem, RTCP.

So far all reductions involving restricted triangulations rely heavily on the ability to
specify a particular set E as part of the input. If E is instead fixed to the set of all
edges spanned by P, we obtain the problem of counting all triangulations of P, which
we strongly believe to be #P-complete.

In this section we parameterize RTCP and RTEP by k, the number of onion layers
of P. As we mentioned before, the counting algorithm, for triangulations, presented in
Section 5.3 of Chapter 5 can easily be adapted to solve RTCP, and thus also RTEP,
in time nO(k). Our proof is by reduction from the Parameterized-Hitting-Set-

Problem, PHSP for short, which is proven to be W[2]-hard in [37]. An instance A of
this problem is formed by numbers n,m, k ∈ N, along with sets S1, . . . , Sm ⊆ [n], where
k is considered a parameter, and [n] := {0, . . . , n− 1}. The output to A is “yes” iff there
is a set H ⊆ [n] of size at most k, such that H ∩ Si 	= ∅ for every 1 � i � m.

In our reduction, several gadgets are used to transform an instance A of the hitting set
problem to an instance GA = (P, E) of the Restricted-Triangulation-Existence-

Problem. The reduction is an fpt-reduction in the sense of [37], that is, it maps every
instance A with parameter k to an instance GA with O(k) onion layers. Each gadget is
given by a set of points with O(1) onion layers, along with a set of pre-specified edges.
The gadgets that will be used are called: pipes, wires, ORs, terminals, testers, and
crossings, their specifications will be given later on, for now we would like to explain
how the gadgets fit together as well as the intuition behind it.

6.3.2 Construction and intuition

Given an instance A of PHSP, as explained above, we will create in polynomial time an
instance GA = (P, E) of RTEP of size poly(n,m) that has O(k) onion layers and admits
VThis means that there is a one-to-one correspondence between the solution sets.

6.3. The hardness result 113

a triangulation w.r.t. E iff A admits a hitting set of size � k. The mapping A �→ GA

will clearly be polynomial-time computable, and thus an fpt-reduction. Figure 6.1 is a
reference for the construction that follows.

In the construction, we start with parallel pipes Q1, . . . ,Qk of n states each, and
of length polynomial in m and n. Pipe Qi lies above pipe Qi+1. Let Qi be a pipe,
1 � i � k, and let Sj = {sj,1, . . . sj,t} ⊆ [n] be a set of instance A. We define the stripe
Bi,j as a set of t testers attached to Qi that check if Qi carries any of the values of set
Sj, see Figure 6.1. The stripe Bi+1,j will lie in the same vertical slab as Bi,j. The testers
of Bi,j are connected to a chain of or-gadgets that lies between pipes Qi,Qi+1. For
i < k, the output of the last or-gadget in Bi,j is carried to Bi+1,j by a crossing-gadget,
see Figure 6.1. For i = k, the last or-gadget in Bi,j is connected to a terminal-gadget.

Q1

Q2

2 5 6

2 5 6

5 7

5 7

OR
B1,1

B2,1

B1,2

B2,2

pipe

tester

crossing

terminal

wire
OR

OROROROR

OR

OR

stripe B1,1

block B1 block B2

Figure 6.1 — Instance GA produced from instance A of the Parameterized-Hitting-Set-

Problem with n = 8,m = 2, k = 2 and S1 = {2,5,6}, S2 = {5,7}.

The block Bj is the union of the stripes B1,j, . . . , Bk,j. The blocks B1, . . . ,Bm are
arranged horizontally in such a way that the points in stripes Bi,1, . . . , Bi,m, with 1 �
i � k, are horizontally collinear, that is, they are aligned by their y-coordinate.

Finally, P is defined to be the set of points of all the gadgets involved. To define the
set E of pre-specified edges, we first include the edges of all gadgets involved. Then, the
empty spaces between gadgets are triangulated arbitrarily, and these edges are added to
E. We now set GA = (P, E).

The intuition behind the construction is the following: Horizontally, pipe Qi transmits
a single value between 1 and n. The testers in stripe Bi,j verify if the value transmitted
by Qi hits one of the elements of the set Sj of A. If so, this information is transmitted
vertically along block Bj, in such a case the transmitted value is true. For this trans-
mission we need ORs, wires and crossing gadgets. At the end of block Bj the terminal

114 6. Miscellaneous Results on Counting Triangulations

gadget can be triangulated iff the value transmitted to it is true. If Sj is not hit by the
value transmitted in Qi, then the testers will transmit false and this value will be trans-
mitted vertically along Bj until it is possibly flipped by another pipe Qr, with i < r � k,
thus Sj is not hit by Qi but it is hit by Qr. If the value transmitted to the terminal
gadget in block Bj is false, this means that the terminal cannot be triangulated, thus no
restricted triangulation of GA exists. This in turns implies that Sj was not hit by any
value transmitted by the pipes Q1, . . . ,Qk. If this is always the case then no hitting set
of size at most k exists for A.

All this will be formally proven later on, for now we believe that this rough intuition
is enough. Therefore we will jump now to define the gadgets formally.

6.3.3 Defining the gadgets

The basic gadget is the pipe, shown in Figure 6.2, whose definition is the following:

Definition 6.1 (Pipe). A pipe Q with n states and length l > 4(n − 1) consists of
points p1 . . . pl, q1 . . . ql with pt = (t,0), qt = (t,1), 1 � t � l, and a set EQ =

S ∪ F ∪ L0 ∪ · · · ∪ Ln−1 of pre-specified edges. The individual sets that form EQ are
defined as follows:

For 1 � i � n − 1 and 1 � t � l − 4i we define the zig-edges ai,t = {pt, qt+4i} and
the zag-edges bi,t = {qt+4i, pt+1}. For i = 0, we define other zig- and zag-edges by
a0,t = {pt, qt+1} and b0,t = {qt, pt}, where this time 1 � t � l − 1. For i ∈ [n], we
define the zig-zag Li = {ai,1, . . . , ai,l−w, bi,1, . . . , bi,l−w} with w = 1 for i = 0, and
w = 4i otherwise.

Next, we add the set of completion edges S:

S = {{p1, qt} | 1 � t � 4(n − 1)} ∪ {{pl−t, ql} | 0 � t � 4(n − 1) + 2}

Finally, we add the frame edges F = {{pi, pi+1} | i < l} ∪ {{qi, qi+1} | i < l}.

It is clear that any triangulation T of a pipe Q contains exactly one zig-zag Li, for
i ∈ [n], since different zig-zags lines cross. The sets S, F help to complete a triangulation
of Q whenever zig-zag Li is present. If Li ⊆ T , we say that Q “carries” the value i in T .
Note that F ⊆ T holds for every triangulation T of Q. We cannot say the same about S

however.

A pipe with n states will always be “horizontal”, i.e., it will not turn in any other
direction. This is required for the final set of points to feature a bounded number of
onion layers.

6.3. The hardness result 115

q1

p1 p9

q9

Figure 6.2 — (Top) A pipe with 3 states and l = 9. Thick black edges constitute F, thick gray
edges constitute S, red edges are L2, solid thin black edges are zig-zag L1, dashed
edges are zig-zag L0. (Bottom) A stretched and bent wire with a terminal gadget
attached to it.

In our construction we will also require vertical connections between pipes. These
are obtained by wires, which are pipes with two states. Since they feature only two
states, wires can be stretched by arbitrary factors, and bent by arbitrary angles, while
increasing their length only by a constant additive term. This is shown in Fig. 6.2. For
wires, we relabel the values 0 and 1 by false and true respectively.

The remaining gadgets for our reduction are specified and defined as follows:

Or-gadget. This gadget is connected to two input wires W1,W2, and to an output wire
W3, as shown in Figure 6.3. We have that: (�) If one of W1 or W2 carries true
in some restrictedVI triangulation T of the gadget, then W3 may carry true. (�) If
W3 carries true in T , then at least one of W1 or W2 must necessarily carry true.

· · ·W1

· · ·W2

· · ·W3e

Figure 6.3 — The or-gadget. The gray edges from W2 to W3 are “transfer edges”. An analogous
set of edges is also present from W1 to W3, but suppressed in this figure to improve
legibility.

VIRestricted w.r.t. the shown adjacencies.

116 6. Miscellaneous Results on Counting Triangulations

A terminal-gadget. This gadget can be attachted to a wire W, replacing its “end part”
as exemplified in the bottom part of Figure 6.2. It admits a triangulation iff W

carries true.

A tester-gadget. This gadget is connected to a pipe Q, for value i at position t, between
ai,t and bi,t, and has an output wire W, see to the left in Figure 6.4. We have
that: (�) If Q carries i in some restricted triangulation T of Q, then W may carry
true. (�) If W carries true, then Q must carry i in T .

A crossing-gadget. This is a more intricate gadget which allows an input wire V to
intersect a pipe Q, leaving it as an output wire W. The value carried by Q

is not influenced by V . We have that: (�) If V carries true in some restricted
triangulation T of the gadget, then W may carry true. (�) If W carries true, then
V must necessarily carry true.

As shown in the middle in Figure 6.4, V enters the crossing-gadget from the top.
If V intersects Q between points qt and qt+1 then a new point r collinear with
those two points is added to Q. Wire V will now enter Q between r and qt+1

instead, as shown in the middle in Figure 6.4. Let us assume that Q is an n-state
pipe, and consider the set S formed by the points pu such that ai,u is a zig-edge,
of zig-zag Li, adjacent to qt+1, with 0 � i � n − 1. By definition of ai,u we have
that u = t− 4i+ 1 for 1 � i � n− 1, and u = t for i = 0. There will be an output
wire Wi, for zig-zag Li, which will go out from Q between pu ∈ S and pu+1.

Since pipes and wires are purely combinatorial objects, we have some freedom
to move their points without affecting the adjacencies between the p’s and q’s,
and without losing collinearities. Thus we will move all the p points of Q from
pt−4(n−1)+1 to pt to the right, and condense them in such a way that we keep
their linear order, thus we also keep the planarity of the zig-zags Li, 0 � i � n−1.
The condensing part is also done in such a way that the following empty convex
quadrilateral Ci

u for zig-zag Li at pu ∈ S exists: Both diagonals of Ci
u have

negative slopes. One diagonal of Ci
u is formed by r and pu+1. The other diagonal

of Ci
u is form by the point αu of V , which is vertically aligned with r and lies

three points behind r on V , and the point βu of Wi which is vertically aligned
with pu+1 and lies three points ahead of pu+1 on Wi. Points αu and βu, for
u = t− 3, can be seen in the middle and to the right in Figure 6.4. Observe that
this re-arrangement of elements is always possible.

Now, the zig-edge ai,u of Li adjacent to qt+1 is replaced by the edges a′
i,u = {pu, r}

and {pu+1, r}. The latter edge is a diagonal of Ci
u and is shown in red in Figure 6.4.

The rest of the adjacencies of Li remains the same.

Intuitively speaking, the red edge {pu+1, r} will help V to transmit false to Wi,
as seen to the right in Figure 6.4 for i = 1. Thus we also need to add the edges

6.3. The hardness result 117

that will help V to transmit true to Wi. Those edges are shown on solid black
for i = 1 to the right in Figure 6.4. The adjacencies are equivalent for any other
0 � i � n − 1. Observe that all these adjacencies intersect neither a′

i,u nor bi,u.

Finally, the output wires W0, . . . ,Wn−1 are connected to a chain of or-gadgets, as
shown in the middle in Figure 6.4, whose output is precisely the output wire W.

Q

ai,t bi,t

pt pt+1

qu

W
...

r

Q
qt r qt+1

V

...

pt

pt+1

pt−3

pt−2

a′
1,t−3

W1

W0

b1,t−3

b0,t+1

a′
0,t

Q

V

...

r

pt−3

a′
1,t−3

pt−2

qt+1

b1,t−3

W1
...

αt−3

βt−3

αt−3

βt−3

W · · ·OR

Figure 6.4 — To the left the tester-gadget for i at t. Q is modified by shifting, for k > 0, all pt+k

and qu+k to the right until the triangle r, pt+1, qu is oriented counter-clockwise.
In the middle a crossing between pipe Q and input wire V which becomes output
wire W. To the right the details of the crossing for i = 1 at pt−3.

6.3.4 Formal proofs

Lemma 6.3. All the previous gadgets fulfill their specifications.

Proof. Or-gadget: (�) Assume without loss of generality that W2 carries true in some
restricted triangulation T of the gadget. Observe that W3 carries true or false in T

depending on whether the transfer edges, shown in gray in Figure 6.3, are chosen.
For (�) note that if W3 carries true in T , the transfer edges from either W1 or W2,
say W2 without loss of generality, must be present. If W2 carried false, it can do it
only up to edge e shown in Figure 6.3, since all following edges intersect transfer
edges. But then, the gray point fails to be part of a triangle in any restricted
triangulation of the gadget, thus W2 must necessarily carry true in T .

118 6. Miscellaneous Results on Counting Triangulations

Terminal: If W carries true, the terminal is triangulated as shown at the bottom of
Figure 6.2. However, if W carries false, then the gray point shown in the same
figure fails to be in a triangle of the restricted triangulation of the gadget.

Tester: For (�) assume Q carries i in some restricted triangulation T . Since no gray
edges in the tester intersect Li, they can be added to T or not. That would make
W carry true or false respectively. For (�) given some restricted triangulation T ,
in which W carries true, all gray edges must be present in T . But the gadget is
designed such that for every 0 � j 	= i � n − 1, there is an edge e ∈ Lj of Q that
intersects both ai,t and bi,t, and thus all gray edges. Therefore e /∈ T , and hence
Lj � T , forcing Li ⊆ T .

Crossing: (�) Let T be a restricted triangulation of the whole gadget in which Q carries
i. Observe that if either, V or Wi, carries true in T , then the black solid edges that
cross Q from V to Wi, shown to the right in Figure 6.4 for i = 1, must be present.
Those edges in turn imply that the other gadget must necessarily carry true in T

as well, otherwise the red points shown to the right in Figure 6.4 will fail to be part
of T , which would give us a contradiction since T is a triangulation. Thus V carries
true iff Wi carries true, as long as Q carries i. By using the chain of or-gadgets
that the Wj’s are connected to we could leave the output wire W carrying true.
(�) Assume that W carries true and Q carries i in T . Observe that in the chain
of or-gadgets that the Wj’s are connected to, we can always force to transmit true
from W to Wi, while we transmit false to every other Wj, 0 � j 	= i � n− 1. This
in turn will force the edges that cross Q from Wi to V to be included in T , the
black solid edges that cross Q from Wi to V shown to the right in Figure 6.4 for
i = 1. This will make V carry true.

A triangulation is also possible if V and W carry false. If Q carries i in T , then
the edges a′

i,u = {pu, r} and {pu+1, r}, for some t− 4(n − 1) + 1 � u � t, are also
present in T . Thus we transmit false from W to every Wj, 0 � j � n−1. However,
as we said before, the red edge {pu+1, r} will help to transmit false from Wi to V

through Q. Thus V would also carry false in T . �

Theorem 6.2 follows from the following lemma:

Lemma 6.4. GA has O(k) onion layers and admits a triangulation iff A admits a
hitting set of size � k.

Proof. Consider the number of different y-coordinates of P. This is an upper bound for
the number of onion layers of P. The pipes contribute 2k different y-coordinates. Every
other gadget features O(1) different y-coordinates. Each wire can be stretched and bent
with O(1) overhead, thus giving O(1) different y-coordinates. Since the points in stripes

6.4. Experimental results on counting triangulations 119

Bi,1, . . . , Bi,m are aligned by their y-coordinates, each set Bi,1 ∪ · · · ∪ Bi,m has O(1)

different y-coordinates. This totals to 2k+O(k) = O(k) different y-coordinates among
all points in P.

Given a hitting set H = {x1, . . . , xk} of k elements, we construct a triangulation that
uses only edges from E as follows: For every i � k, make Qi carry xi. For every j � m

pick some x = xi ∈ H such that x ∈ Sj. In stripe Bi,j triangulate the output wire of
the tester for x to carry true, and transmit this true value along the or-gadgets of Bi,j.
When crossing a pipe Qz, with z > i, the true value will get transmitted through the
output wire Wz of the corresponding crossing-gadget. The true value will eventually
reach the terminal of Bj, which can then be triangulated without problems.

On the other hand, the values H = {x1, . . . , xk} carried by the pipes Q1, . . . ,Qk in
any restricted triangulation of GA form a hitting set. To see this, observe that every
terminal must be triangulated, so the wire of every block Bj must carry true at some
place. Thus, the output of some or-gadget in Bj must carry true. Consider the first
or-gadget that fulfills this top-down, and say it lies in stripe Bi,j. This or-gadget must
be connected to a tester that outputs true. This implies xi ∈ Sj and H ∩ Sj 	= ∅. �

6.4 Experimental results on counting triangulations

We have implemented the sn-path algorithm presented in § 5.3 of Chapter 5 and we
compare it with the algorithm presented in [70], and also with our own T-path algo-
rithm presented in § 4.2 of Chapter 4. The implementations for the latter two algorithms
were kindly provided by Saurabh Ray. All experiments were run on a server generously
provided by Prof. Bernd Finkbeiner, head of the Reactive Systems group at Saarland
University. All implementations are single-threaded, so all algorithms were run a on sin-
gle core of a dual-core processor AMD Opteron at 2.6 Ghz. Linux was the used operating
system, and the amount of RAM available was 122 GB. Finally, all implementations use
the GMP library to handle big numbers. All statistics here reported were obtained from
the output of the command ‘time -v’.

The main idea behind the experiments was to obtain evidence of the practical limits
of the algorithms, thus they are really provided without statistical analysis. If we denote
the number of points by n, the number of onion layers by k, and the size of the convex
hull by h, we were interested in knowing for different values of those parameters what are
the largest sets of points we can solve. Also, besides providing the number of triangula-
tions, we also provide: (�) Total number of sub-problems generated by each algorithm,
(�) Memory consumption, and (�) Total running time. Since we used memoization in all
algorithms, the total number of sub-problems is just the size of the database at the end

120 6. Miscellaneous Results on Counting Triangulations

of execution with exception of the T-path algorithm, there we rather kept the largest
number of T-paths the algorithm encountered during its execution.

We have four kinds of sets of points, of selected cardinalities, we ran the algorithms on:
(�) Sets of points having three onion layers. (�) Sets of points generated in a square (�)
Sets of points having the largest possible number of onion layers, w.r.t. the cardinality of
the set (
) Grids. Sets (�), (�) and (�) were generated at random. For (�) we generated
random points on three concentric circles and we only kept configurations having three
onion layers.

Table 6.1 summarizes the largest sets of points, of each type, that we were able to
solve within 140 hours, the complete results can be seen in the tables at the end of the
chapter. Results for (�) are shown in Tables 6.2 and 6.3, for (�) in Tables 6.4 and 6.5, for
(�) in Tables 6.6 and 6.7, and for (
) in Tables 6.8 and 6.9. In the tables the algorithm
of [70] is called “ray-seidel”, and our algorithms simply “sn-paths” and “t-paths”. We
could not run ray-seidel on sets of kind (
) due to degeneracy. All columns are self-
explanatory except for the columns “Base” and “Exp”. The former refers to the base c,
truncated to two decimal digits, of a number expressed as cn. The latter refers to the
term d, also truncated to two decimal digits, of a number expressed as nd·k, this makes
sense for sn-paths since we know that for fixed k the running time is nO(k).

Points

(�) (�) (�) (
)

ray-seidel 43 43 34 NA

sn-paths 80 43 28 6x17

t-paths 30 33 28 6x7

Table 6.1 — Largest sets of points of kind (i), 1 � i � 4, solved by each algorithm within 140
hours.

Since we are interested in the largest n we can solve, we started the experiments with
at least 25 points, below this threshold all algorithms perform very well, where ray-seidel
is notably the fastest, giving answers in at most a couple of seconds, and sn-paths the
slowest for k = 8. All empty entries, except for the last entry of sn-paths in Tables 6.4
and 6.5, mean that the corresponding algorithm consumed all available RAM memory
before finishing the corresponding set of points. In the same sense, one complete empty
row means that no algorithm managed to finish the corresponding set of points. The
last entry of sn-paths in tables 6.4 and 6.5 was explicitly stopped due to its potentially
large running time.

6.4. Experimental results on counting triangulations 121

To verify the correctness of the algorithms we ran them on configurations available
in [1, 47], for which an answer is known via other algorithms. We also run them on sets
of points in convex position, there the number of triangulations is a Catalan number.
In all cases the three algorithms confirmed the known answers.

The experiments turned out to be what we had expected, namely, generally worse be-
havior as the number of onion layers increases, since the number of triangulations should
certainly increase with the number of onion layers. The experiments show however that
all algorithms are counting triangulations by generating far fewer sub-problems: Having
a glimpse at the number of sub-problems in Tables 6.2 to 6.9, each looks as something
of the sort

√
|FT (P)|, which was already reported in [70] for the ray-seidel algorithm.

The t-paths and ray-seidel algorithms showed a consistent behavior across all experi-
ments, the former being notably the most expensive overall computationally speaking.
This came at first as a surprise since t-paths is a very simple algorithm, and it has a
running time linear in the number of T-paths it encounters, but on a second thought
one realizes that the number of T-paths is expected to be always exponential, thus
there is no doubt that they are really the bottleneck of the algorithm. The ray-seidel
algorithm lived up to its expectations, it turned out to be simply the fastest algorithm,
but this came with the price of being very resource-consuming. We can see in the tables
that the resources the algorithm uses increase very fast, at that rate we could say that
increasing RAM to a couple of Terabytes will not really allow us to run the algorithm
on significantly larger set of points. However, there are other techniques we could use
to alleviate this situation, we could for example decide to store only a subset of the
produced sub-problems and re-compute a sub-problem whenever needed. Since appar-
ently computing sub-problems is very fast, we could expect that this method does not
severely blow up the running time.

Now turning to sn-paths, the algorithm really performed best for three convex layers,
see Tables 6.2 and 6.3. For those configurations the algorithm allowed us to go up
to 80 points in a “reasonable” amount of time without exhausting the RAM, which is
almost twice as much as the ray-seidel algorithm allowed. In this regard we believe that
increasing computational power and resources, say 512 GB of RAM, could allow us to
go somewhere near 160 points, the other two algorithms would get nowhere close to this
number of points per se. This “nice” behavior can also be seen in Tables 6.8 and 6.9
with grids having three and four onion layers, however, grids are believed to have far
less triangulations than sets of points in general position, this is also supported by the
experiments. For fewer than three onion layers the algorithm gets better, so they are
really not an issue. Also, since the running time of sn-paths can be expressed as nd·k,
for some positive d, the idea of column Exp in the tables was to see whether that value
comes out roughly as a constant for the same values of k, however, the data set seems
to be small to show this. We believe that the right value should be 3 � d � 4. Finally,

122 6. Miscellaneous Results on Counting Triangulations

by increasing the number of onion layers, Tables 6.4 to 6.7, we can see how the behavior
of sn-paths quickly deteriorates, in all aspects, up to the point of being comparable to
t-paths for k =

⌈
n
3

⌉
, where sometimes the latter is even faster.

The conclusions of the experiments really suggest themselves. In the “low” end, up to
25 points, any algorithm will do but ray-seidel is the fastest. In the “high” end it really
seems that sn-paths is a better choice due to its smaller memory footprint, so up to 6-7
onion layers we would stick with it, but beyond that number of onion layers we would
consider ray-seidel a better option.

6.5 Conclusions

In this chapter we have shown two results related to the problem of counting triangula-
tions. The first result shown was an algorithm to compute the number of triangulations
approximately. Although this algorithm fails to give an exact answer, it correctly com-
putes the base c of the number of triangulations cn, and it does so in sub-exponential
time. No algorithm with this properties was known before.

The second result shown was a hardness result of a very particular instance of the
problem of counting triangulations exactly, namely the Restricted-Triangulation-

Counting-Problem (RTCP). We showed that this problem is W[2]-hard if the param-
eter is the number of onion layers of the set of points it is defined on. The algorithm for
counting triangulations shown in Chapter 5 needs little to no modifications to be run
on instances of RTCP, and the separation FPT 	= W[2] is widely believed, so we can
still hope that, by exploiting structural properties of triangulations, and also of other
crossing-free structures, we can obtain FPT algorithms for the counting problems stud-
ied in Chapters 4 and 5. Thus, one interesting question at this moment is: Do those
counting problems belong to FPT or not?

Finally, we showed experimental results comparing the algorithms for counting tri-
angulations of Chapters 4 and 5, and the algorithm of [70]. Those experiments give a
rough idea of what to expect when running each one of those algorithms on real config-
urations of points. It would be very interesting to see a hybrid algorithm that uses the
sn-path and the ray-seidel algorithms, if possible. That algorithm could combine the
small memory footprint of the sn-path algorithm with the fast execution of the ray-seidel
algorithm. This could allow us to solve larger sets of points.

6.5. Conclusions 123
T

im
e

in
hh

:m
m

:s
s.

m
s

R
A

M
in

M
b

n
h

#
T
ri

an
gu

la
ti

on
s

B
as

e
ra

y-
se

id
el

sn
-p

at
hs

t-
pa

th
s

ra
y-

se
id

el
sn

-p
at

hs
t-

pa
th

s

30
10

1
6
1
0
1
4
6
5
6
1
5
2
6
5
5
4
4
1

≈
3
.7
4

20
.1

8
55

.7
7

1:
21

:1
9

30
3

33
39

74
0

10
3
1
2
5
1
3
3
7
3
6
8
6
5
9
4
1
8
3

≈
3
.8
2

1:
07

.7
2

1:
09

.1
7

3:
20

:5
8

11
60

38
87

55
5

33
11

3
2
1
5
5
6
0
1
7
1
4
5
5
3
6
6
5
7
9
6

≈
3
.9
0

3:
50

.9
6

2:
19

.1
9

27
62

62
11

6
8
5
9
8
0
1
0
8
3
3
4
0
7
7
3
8
0
6
7

≈
3
.9
9

58
.4

3
2:

30
.9

4
85

7
62

37
12

9
3
3
4
9
4
7
6
7
9
2
3
0
3
2
3
5
0
9
4
2
9

≈
3
.9
2

1:
53

.6
0

3:
43

.5
1

15
21

90
12

3
1
1
1
3
0
6
8
8
1
3
0
1
2
0
7
6
4
4
3
5
1
2

≈
4
.0
5

3:
20

.4
1

4:
42

.2
4

24
65

97

40
14

2
6
4
2
1
4
3
0
5
4
6
8
0
2
1
7
8
5
6
0
7
4
1
2
6

≈
4
.0
7

18
:1

2.
16

8:
10

.2
6

12
55

7
13

1
15

2
9
0
3
7
7
8
2
6
2
2
9
5
0
7
5
9
2
8
8
2
3
0
1
1

≈
4
.0
8

7:
01

.4
0

9:
50

.9
8

43
25

14
9

43
14

4
5
2
3
7
1
6
9
7
8
0
8
1
6
2
3
9
6
5
8
3
0
5
5
6
5
6

≈
4
.1
6

1:
34

:4
8

21
:3

9.
66

53
26

3
24

3
14

4
6
1
5
5
0
2
1
4
7
6
4
3
6
9
8
8
1
0
1
8
5
6
4
0
5
1

≈
4
.1
6

19
:2

5.
53

24
2

47
16

1
5
7
7
5
9
7
1
0
5
4
0
6
7
1
9
8
5
4
3
6
6
2
1
9
2
2
6
3
9

≈
4
.1
8

32
:4

6.
68

36
3

15
3
4
1
0
3
7
5
8
5
2
3
8
6
7
8
3
4
6
7
1
0
3
7
2
7
4
8
7
5
8

≈
4
.2
4

39
:3

3.
42

42
0

50
16

5
4
7
8
2
1
6
8
6
4
9
0
2
0
6
2
7
4
3
0
4
1
3
0
0
1
4
3
3
2
6
1

≈
4
.3
1

1:
06

:5
3

60
6

16
1
5
8
9
9
7
5
9
2
7
2
3
6
8
3
9
7
7
7
5
8
5
0
1
0
7
9
9
1
5
9
1
0

≈
4
.4
0

1:
07

:1
9

55
3

60
21

3
8
3
0
5
1
9
3
2
7
2
2
5
6
6
7
6
5
6
8
3
5
9
1
7
4
8
0
2
3
0
3
9

≈
4
.5
6

7:
51

:5
3

20
06

0
0
0
4
4
2
8

20
1
9
0
0
3
0
7
8
0
2
6
6
3
3
7
9
2
6
7
0
0
0
3
3
7
7
1
4
9
3
5
8
6

≈
4
.6
9

8:
59

:3
6

20
63

9
6
3
6
1
3
3
8

70
25

4
8
1
4
2
3
5
7
8
6
4
2
7
5
8
9
0
8
9
7
7
6
5
1
2
7
7
9
6
7
5
3
2

≈
4
.6
4

22
:5

9:
43

39
37

5
3
6
9
5
1
6
4
8
6
2
0
7
8

23
2
2
4
4
1
1
5
4
7
7
2
9
6
7
2
4
6
9
8
2
3
7
0
9
0
7
8
9
6
2
0
2
0

≈
4
.7
4

26
:5

4:
49

45
06

6
6
7
5
3
0
8
6
4
0
8
7
5
8
8

80
26

3
9
6
9
7
8
8
5
1
6
6
8
9
6
6
0
5
3
9
5
7
5
8
2
7
8
8
7
9
6
8
9
9

≈
4
.8
1

81
:2

9:
23

89
32

3
4
0
3
8
6
4
7
5
5
4
2
2
4
6
4
0
3
0
0
9
0

26
1
8
5
2
7
9
9
8
2
2
7
7
1
8
2
7
1
5
2
0
7
1
2
6
5
8
3
2
5
9
6
6
2

≈
4
.9
0

90
:3

4:
22

96
17

5
3
3
9
3
4
8
5
4
7
4
0
4
0
4
5
2
8
5
8
8
3
2

Ta
bl
e
6.
2
—

n
ra

nd
om

po
in

ts
on

a
sq

ua
re

,h
av

in
g

th
re

e
on

io
n

la
ye

rs
an

d
h

po
in

ts
on

th
ei

r
co

nv
ex

hu
ll.

124 6. Miscellaneous Results on Counting Triangulations

Sub-problems

n h ray-seidel Base sn-paths Base Exp t-paths Base

30 10 2050514 ≈ 1.62 215732 ≈ 1.50 ≈ 1.20 147633229 ≈ 1.87

10 7879754 ≈ 1.69 246657 ≈ 1.51 ≈ 1.21 351513627 ≈ 1.92

33 11 18992928 ≈ 1.66 405580 ≈ 1.47 ≈ 1.23

11 5812991 ≈ 1.60 410357 ≈ 1.47 ≈ 1.23

37 12 10027300 ≈ 1.54 575255 ≈ 1.43 ≈ 1.22

12 16250100 ≈ 1.56 626274 ≈ 1.43 ≈ 1.23

40 14 82635240 ≈ 1.57 866278 ≈ 1.40 ≈ 1.23

15 28333612 ≈ 1.53 982791 ≈ 1.41 ≈ 1.24

43 14 347603518 ≈ 1.57 1604269 ≈ 1.39 ≈ 1.26

14 1591423 ≈ 1.39 ≈ 1.26

47 16 2287764 ≈ 1.36 ≈ 1.26

15 2720786 ≈ 1.37 ≈ 1.28

50 16 3631525 ≈ 1.35 ≈ 1.28

16 3998798 ≈ 1.35 ≈ 1.29

60 21 12527119 ≈ 1.31 ≈ 1.33

20 13076694 ≈ 1.31 ≈ 1.33

70 25 23762305 ≈ 1.27 ≈ 1.33

23 27937551 ≈ 1.27 ≈ 1.34

80 26 54047260 ≈ 1.24 ≈ 1.35

26 58561612 ≈ 1.25 ≈ 1.36

Table 6.3 — Number of sub-problems generated by the configurations (entry-wise) presented in
Table 6.2.

6.5. Conclusions 125
T

im
e

in
hh

h:
m

m
:s

s.
m

s
R

A
M

in
M

b

n
k

h
#

T
ri

an
gu

la
ti

on
s

B
as

e
ra

y-
se

id
el

sn
-p

at
hs

t-
pa

th
s

ra
y-

se
id

el
sn

-p
at

hs
t-

pa
th

s

30
5

9
2
9
7
6
2
2
8
4
4
2
7
8
4
5
6
1
8

≈
3
.5
4

7.
60

3:
56

.6
1

16
:3

7.
83

13
0

14
1

70
63

6
7

5
4
6
4
8
9
5
2
5
5
5
2
0
2
1
1
5

≈
3
.6
1

30
.6

9
16

:1
7.

12
21

:1
9.

74
47

0
53

5
99

55

33
5

11
8
8
3
0
9
5
3
3
7
4
4
4
2
2
4
8
3
7
8

≈
3
.7
5

34
.8

0
14

:4
7.

26
4:

09
:1

5
64

3
39

4
63

05
1

6
7

2
3
4
0
7
9
1
8
3
6
5
6
4
9
1
4
9
3
8
2

≈
3
.8
6

15
.1

0
1:

10
:3

4
5:

03
:2

9
28

8
12

92
82

81
7

37
5

11
8
3
1
7
1
9
7
8
9
2
5
6
8
7
9
8
8
3
2
0
5
0

≈
3
.9
1

3:
35

.2
7

1:
15

:0
0

27
96

15
24

5
13

1
5
3
4
7
6
0
9
7
8
2
9
8
7
9
6
6
7
6
7
2
4
8

≈
3
.9
7

15
:2

3.
53

2:
16

:3
2

10
70

7
19

57

40
6

12
1
1
4
6
1
3
8
9
7
1
0
3
3
7
1
5
2
0
3
9
2
6
9
2
6

≈
3
.9
9

25
:4

2.
43

13
:2

9:
43

18
52

5
88

89
7

10
5
0
5
0
4
9
3
2
8
2
1
6
9
4
6
2
4
2
9
0
1
2
5
3
6

≈
4
.1
4

1:
35

:4
5

46
:4

9:
41

54
12

8
25

53
3

43
6

10
9
8
1
4
0
3
3
1
3
2
9
8
2
5
9
8
3
4
2
9
2
2
0
2
9
2
5

≈
4
.2
4

3:
20

:5
4

10
7:

48
:4

8
11

65
06

37
40

7
7

8

Ta
bl
e
6.
4
—

n
ra

nd
om

po
in

ts
on

a
sq

ua
re

,h
av

in
g
k

on
io

n
la

ye
rs

an
d
h

po
in

ts
of

th
ei

r
co

nv
ex

hu
ll.

#
Su

b-
pr

ob
le

m
s

n
k

h
ra

y-
se

id
el

B
as

e
sn

-p
at

hs
B

as
e

E
xp

t-
pa

th
s

B
as

e

30
5

9
8
5
4
5
7
9

≈
1
.5
6

9
4
7
2
6
2

≈
1
.5
8

≈
0
.8
0

2
3
5
3
5
5
6
3

≈
1
.7
6

6
7

3
1
5
0
2
2
8

≈
1
.6
4

3
5
9
0
8
7
8

≈
1
.6
5

≈
0
.7
3

3
5
9
5
1
9
7
2

≈
1
.7
8

33
5

11
4
2
4
5
3
9
9

≈
1
.5
8

2
5
5
4
0
6
3

≈
1
.5
6

≈
0
.8
4

2
1
6
6
9
1
3
3
8

≈
1
.7
8

6
7

1
9
0
7
4
4
9

≈
1
.5
4

8
7
3
1
9
4
3

≈
1
.6
2

≈
0
.7
6

2
8
3
6
2
1
5
8
5

≈
1
.8
0

37
5

11
1
8
4
7
7
6
7
0

≈
1
.5
7

9
7
3
5
4
3
0

≈
1
.5
4

≈
0
.8
9

5
13

7
0
4
8
3
6
9
1

≈
1
.6
2

1
2
5
3
5
6
3
2

≈
1
.5
5

≈
0
.9
0

40
6

12
1
2
1
0
4
9
5
2
3

≈
1
.5
9

5
6
5
8
7
1
9
5

≈
1
.5
6

≈
0
.8
0

7
10

3
5
4
7
1
7
0
5
1

≈
1
.6
3

1
5
5
7
1
6
5
3
1

≈
1
.6
0

≈
0
.7
3

43
6

10
7
5
2
5
9
6
8
2
3

≈
1
.6
0

2
3
9
0
8
4
2
5
6

≈
1
.5
6

≈
0
.8
5

7
8

Ta
bl
e
6.
5
—

N
um

be
r

of
su

b-
pr

ob
le

m
s

ge
ne

ra
te

d
by

th
e

co
nfi

gu
ra

ti
on

s
(e

nt
ry

-w
is

e)
pr

es
en

te
d

in
T
ab

le
6.

4.

126 6. Miscellaneous Results on Counting Triangulations

T
im

e
in

hh:m
m

:ss.m
s

R
A

M
in

M
b

k
n

#
T
riangulations

B
ase

ray-seidel
sn-paths

t-paths
ray-seidel

sn-paths
t-paths

9
25

2
4
8
4
4
1
7
0
1
5
5
0
1
9
6

≈
3
.7
6

7.82
1:36:07

6:35.48
154

3828
3801

27
6
6
3
2
7
5
5
9
3
3
1
0
5
0
6
4

≈
3
.8
5

1:16.84
9:56:09

26:15.48
1239

17406
13564

10
28

1
3
4
8
0
6
1
1
4
6
8
8
3
2
1
8
8
8

≈
4
.0
9

1:04.33
39:29:17

37:51.20
1130

56197
14147

28
2
5
9
0
5
1
7
5
1
5
1
2
7
8
6
1
4
7

≈
4
.1
8

58.55
32:31:58

6:33:56
903

41745
122190

11
32

1
8
8
7
4
8
4
8
2
0
2
6
8
0
0
1
5
4
0
8
3

≈
4
.3
0

1:43:22
70647

33
2
6
8
0
1
3
8
0
2
3
9
4
8
1
0
9
6
0
8
0
8
0

≈
4
.4
6

1:38:04
62477

12
34

1
6
6
0
5
1
8
6
1
6
3
1
6
6
4
4
5
7
5
5
5
6
0

≈
4
.5
0

2:52:16
114676

34

Table
6.6

—
n

random
points

having
k
= ⌈

n3 ⌉
onion

layers.

#
Sub-problem

s

k
n

ray-seidel
B

ase
sn-paths

B
ase

t-paths
B

ase

9
25

1
0
7
8
3
9
9

≈
1
.7
4

2
4
8
1
1
8
8
6

≈
1
.9
7

1
3
1
4
6
5
4
8

≈
1
.9
2

27
8
7
3
8
5
3
5

≈
1
.8
0

1
1
0
8
1
7
5
2
4

≈
1
.9
8

4
4
8
3
1
6
0
3

≈
1
.9
2

10
28

8
0
1
5
0
2
3

≈
1
.7
6

3
4
7
4
4
8
7
8
7

≈
2
.0
1

5
2
1
4
5
3
7
5

≈
1
.8
8

28
6
3
0
3
2
0
3

≈
1
.7
4

2
6
6
6
6
1
0
6
4

≈
1
.9
9

4
1
2
3
1
7
7
2
6

≈
2
.0
3

11
32

4
7
8
6
9
2
8
4
4

≈
1
.8
6

33
4
2
3
2
3
6
7
5
4

≈
1
.8
2

12
34

7
7
3
3
6
1
6
2
2

≈
1
.8
2

34

Table
6.7

—
N

um
ber

of
sub-problem

s
generated

by
the

configurations
(entry-w

ise)
presented

in
T
able

6.6.

6.5. Conclusions 127
T

im
e

in
hh

h:
m

m
:s

s.
m

s
R

A
M

in
M

b

n
m

k
#

T
ri

an
gu

la
ti

on
s

B
as

e
sn

-p
at

hs
t-

pa
th

s
sn

-p
at

hs
t-

pa
th

s

6
6

3
2
6
0
4
2
0
5
4
8
1
4
4
9
9
6

≈
2
.5
1

10
.3

6
1:

55
.7

4
16

11
75

6
7

3
3
4
1
8
1
6
4
8
9
6
2
5
5
2
2
0
3
2

≈
2
.6
1

45
.7

9
22

:0
7.

25
41

84
42

6
8

3
4
6
4
4
7
6
3
8
5
6
8
0
9
3
5
6
5
6
2
4
0

≈
2
.6
9

2:
31

.7
0

10
7

6
9

3
6
4
5
8
5
5
1
5
9
4
6
6
3
7
1
3
9
1
9
4
7
6
6
0

≈
2
.7
6

7:
28

.2
2

21
3

6
10

3
9
1
3
0
3
6
9
0
2
5
1
3
4
9
9
0
4
1
8
2
0
7
0
2
7
8
4

≈
2
.8
1

17
:2

7.
63

46
0

6
11

3
1
3
0
6
5
2
0
8
4
9
7
3
3
6
1
6
7
8
1
7
8
9
1
9
0
5
1
3
8
2
0

≈
2
.8
5

39
:3

5.
88

84
0

6
12

3
1
8
8
7
5
9
1
1
6
5
8
9
1
6
5
1
2
5
3
9
0
4
0
3
9
4
3
2
3
7
1
1
7
2

≈
2
.8
9

1:
22

:1
5

15
55

6
13

3
2
7
4
7
8
4
8
4
2
7
7
2
1
2
4
1
4
6
1
9
0
5
1
7
6
3
6
1
0
7
8
1
4
7
1
6
8

≈
2
.9
3

2:
50

:4
2

24
79

6
14

3
4
0
2
4
7
5
8
3
8
6
3
1
0
8
0
1
4
2
7
7
9
3
6
0
2
3
7
4
4
6
6
2
4
3
7
1
4
6
0
8

≈
2
.9
6

5:
14

:2
3

44
39

6
15

3
5
9
2
4
7
4
4
7
3
6
0
4
1
7
1
8
6
8
7
6
2
2
9
5
8
1
9
1
8
2
9
4
7
1
0
1
0
8
4
7
1
3
2

≈
2
.9
8

8:
43

:1
4

63
15

6
16

3
8
7
5
7
9
5
6
1
9
9
5
7
1
2
6
1
1
1
6
6
9
0
2
2
6
5
9
8
7
6
4
5
0
1
1
4
2
0
8
8
4
9
6
8
6
0

≈
3
.0
1

14
:5

5:
29

10
34

4

6
17

3
1
2
9
9
1
2
1
5
9
5
7
9
1
6
5
7
7
6
3
5
2
5
1
0
9
5
6
1
3
8
5
9
4
6
5
1
7
6
2
1
6
5
3
0
1
0
6
0
8
0

≈
3
.0
3

26
:0

8:
38

15
02

3

7
7

4
1
9
9
9
2
0
6
9
3
4
7
5
1
1
3
3
0
5
5
5
1
8

≈
2
.7
2

6:
09

.7
5

18
7

7
8

4
1
2
1
6
9
4
0
9
9
5
4
1
4
1
9
8
8
7
0
7
1
8
6
0
5
2

≈
2
.8
0

36
:5

9.
53

86
9

7
9

4
7
6
0
8
3
3
3
6
3
3
2
9
4
7
5
1
3
6
5
5
5
5
4
9
1
8
9
9
4

≈
2
.8
7

2:
28

:4
2

23
44

7
10

4
4
8
4
7
7
2
5
1
2
1
6
7
2
6
6
6
8
8
4
9
8
3
9
9
6
3
2
9
1
8
1
9
6

≈
2
.9
3

8:
12

:5
9

64
65

7
11

4
3
1
3
1
5
2
1
9
5
9
8
6
9
7
7
0
1
2
8
1
3
8
4
9
1
2
8
7
8
2
6
0
6
5
9
0
4

≈
2
.9
7

27
:4

2:
55

14
87

0

7
12

4
2
0
4
4
3
7
6
7
6
1
1
9
2
7
5
9
9
8
2
3
2
1
7
2
9
1
7
6
9
4
6
8
4
4
9
4
8
8
5
4
8

≈
3
.0
1

67
:0

6:
41

34
75

2

8
8

4
3
3
2
6
3
3
8
4
0
8
4
4
1
1
3
1
0
3
7
5
1
5
9
7
9
9
5
9
2
0

≈
2
.8
9

6:
00

:4
9

61
71

8
9

4
9
3
6
9
3
6
3
5
1
7
5
0
1
2
0
8
8
1
9
5
3
0
4
2
9
9
6
7
2
8
0
7
0
8

≈
2
.9
6

32
:4

9:
11

19
07

1

8
10

4
2
6
9
6
2
1
1
0
9
7
5
3
7
3
2
5
1
8
2
5
2
4
9
3
2
5
7
8
2
8
4
1
3
1
3
7
2
7
2

≈
3
.0
2

13
9:

58
:0

1
75

22
0

Ta
bl
e
6.
8
—

G
ri

d
of

n
by

m
w

it
h
k

on
io

n
la

ye
rs

.

128 6. Miscellaneous Results on Counting Triangulations

Sub-problems

n m k sn-paths Base Exp t-paths Base

6 6 3 69908 ≈ 1.36 ≈ 1.03 4025520 ≈ 1.52

6 7 3 207193 ≈ 1.33 ≈ 1.09 27908087 ≈ 1.50

6 8 3 465416 ≈ 1.31 ≈ 1.12

6 9 3 1002029 ≈ 1.29 ≈ 1.15

6 10 3 1883205 ≈ 1.27 ≈ 1.17

6 11 3 3409331 ≈ 1.25 ≈ 1.19

6 12 3 5705962 ≈ 1.24 ≈ 1.21

6 13 3 9417222 ≈ 1.22 ≈ 1.22

6 14 3 14471156 ≈ 1.21 ≈ 1.24

6 15 3 22201708 ≈ 1.20 ≈ 1.25

6 16 3 32491047 ≈ 1.19 ≈ 1.26

6 17 3 46979052 ≈ 1.18 ≈ 1.27

7 7 4 972496 ≈ 1.32 ≈ 0.88

7 8 4 3527752 ≈ 1.30 ≈ 0.93

7 9 4 10558836 ≈ 1.29 ≈ 0.97

7 10 4 25013282 ≈ 1.27 ≈ 1

7 11 4 55453561 ≈ 1.26 ≈ 1.02

7 12 4 109901193 ≈ 1.24 ≈ 1.04

8 8 4 14569428 ≈ 1.29 ≈ 0.99

8 9 4 50333235 ≈ 1.27 ≈ 1.03

8 10 4 122283519 ≈ 1.26 ≈ 1.06

Table 6.9 — Number of sub-problems generated by the configurations (entry-wise) presented in
Table 6.8.

LIST OF FIGURES

1.1 To the left a right turn. In the middle a left turn. To the right no turn. 1
1.2 With three points there is exactly one order type (left). With four points

there are exactly two (middle, right). The shown line segments are all the
ones that can be found on each set having endpoints at points of the sets. . 2

1.3 Two different “triangulations” of the same set of points. 3
1.4 A simple polygon P to the left, whose interior is shown in gray. The other

three objects are not simple polygons. 5
1.5 The convex hull CH(P) of P. 5
1.6 A plane graph with three faces. Face f3 is the unbounded face. 6
1.7 P is the set of black points. A spanning tree T of P is shown with black lines.

Observe that for any p, q ∈ P, there is exactly one path between them that
follows the edges of T . In addition, tree T as shown is a plane graph. 7

1.8 A pseudo-triangle to the left. The three gray vertices are the three convex
vertices. A pseudo-triangulation of P can be seen to the right. 11

1.9 The onion layers of the set of black points are shown with black lines. . . . 13

2.1 To the left a bichromatic set of points not admitting a bichromatic quadran-
gulation without the use of Steiner points. In the middle the same configu-
ration quadrangulated with one Steiner point s. To the right a 3-colored con-
figuration not admitting a 3-colored quadrangulation regardless the number
of Steiner points used. 18

2.2 If Q is colored by the cyclic sequence 1,2,3, as shown to the left, it can be
easily verified that ω(Q) 	= 0. 22

2.3 Rotation of labels counter-clockwise so that the fourth color of Q appears
again on Q′. 23

2.4 Points colored with color c1 are represented in black. Quadrilateral Q′ still
contains the q interior points that quadrilateral Q originally contained. . . . 24

130 List of Figures

2.5 In the left upper corner the bichromatic configuration P that needs at least
n
3 Steiner points in order to be 2-quadrangulated. Every edge e of CH(P)

gets associated with a pair of interior points pe, qe. Down in the middle a
partial bichromatic quadrangulation using Steiner points se 	= se′ is shown.
In the right upper corner the same configuration colored with 4 colors. . . . 27

3.1 To the left we have a configuration in which all shown adjacencies are
forced, and it accepts neither pseudo-even nor pseudo-odd triangulations.
To the right we show in red one of the ears of the shown triangulation of Q. 31

3.2 To the left we have the polygon P on n − 1 vertices in gray. The convex
polygons formed by scanning L(P) from left to right are shown dashed. Note
that each pair of consecutive convex polygons shares at most one vertex. To
the right we see a triangulation T(P) of P. The dashed edges are the only
ones that are not arbitrary. 33

3.3 The point pj is currently being processed. Point pj+1 is of the same color
i of v. If pj and pj+2 have the same color, then one Steiner point suffices
to be able to move to pj+2. To the right the convex polygon Q is shown in
gray. Point pj+1 is the pivot of the fan triangulation of Q. 35

3.4 If pj+1 was used as a pivot to triangulate a convex polygon that can be cut
from P, then we can use pl−1 as the new pivot without changing the color
of pj or anything to its left. Note that pl must be necessarily a reflex vertex
of P. In the middle we see the final configuration in the case that pl+1 is of
color i and pl+2 is of color i+ 2. To the right we see the final configuration
when pl+1 is of color i and pl+2 is of color i+ 1. 36

3.5 To the left we see the final configuration in the case that pj+1 was a pivot
of color i and pl+1 is of color i+ 2. In the middle and to the right we have
that, if pj+1 of color i was not a pivot and its neighbors have different color
from each other, then one of them must necessarily be a pivot, pj+2 in this
case. So we have to go back and remove some adjacencies that will allow
us to introduce the Steiner points appropriately. Quadrilateral � is shown
in gray. 37

3.6 Polygon P shown in light gray. In the figures color i = black, and the color
white means that those points are somehow 3-colored without conflicting
with the black points. The visibility region of v is shown in dark gray. 39

3.7 Polygon P shown in gray. On the top part we have the solution for the cases
where p0v

′ is the only conflict and the degree of v′ is odd, left, or even, right.
Below we have the solutions for the case when both edges p0v

′, v′pk+1 are
in conflict and the degree of v′ is odd, left, or even, right. In the figures color
i = black. 39

List of Figures 131

3.8 To the left: The polygon Q is the outer face of the construction shown. Ob-
serve that it does not have to necessarily be convex. The convex hull of P,
CH(P), is shown in dark gray, and C is shown in light gray, along with its
zig-zag triangulation. To the right: The particular 3-coloring of the zig-zag
triangulation of C using colors {0,1,2} = {black, blue, red}. 41

3.9 Polygon P shown in gray. The dash lines delimit the “ears” that are con-
structed by the algorithm. They are contained in CH(P) since every vertex
of CH(P) is a reflex vertex of P. To the left we can see a whole 3-colored
triangulation of P, where the zig-zag triangulation of C appears. The 3-
coloring is extended from the 3-coloring of C. 42

3.10 Polygon P is shown in light gray. Using colors {0,1,2} = {black, blue, red}, if
we made as if point pn−2 was the last point, we arrive at the configuration
shown in the left upper corner. The white color of point pn−2 means that
we do not care about its real color at this time. If we put v back, and we
color it with 3, we can add the dashed adjacencies shown in the middle and
the right upper corner, depending on the actual color of pn−2. The color of
v will conflict with the color of q′

3, q
′
k ∈ Q, but this is not a problem since

in the end we will remove Q \ {v}. 43

3.11 All interior points are Steiner points. Gray vertices are of even parity before
the introduction of Steiner points, and all black vertices on the boundary
of are of odd parity. The middle case spawns two sub-problems, of the
kind shown to the right, by introducing one Steiner point. This gives in total
1+ 3+ 3 = 7 Steiner points for an odd-triangulation of 44

3.12 In the figures, the colors represent the parity of the vertices before the ad-
jacencies of the solution are added. Gray color means even degree, black
color means odd degree, and white means that we do not necessarily take
care of that point at this step. The original configurations are shown in solid
black while their solutions are shown dashed. Point s is a Steiner point. . . 46

3.13 The colors represent the parity of the vertices before the adjacencies of the
solution are added. Gray color means even degree, black color means odd
degree, and white means that we do not necessarily take care of that point
at this step. The original configurations are shown in solid black while their
solutions are shown dashed. Point s is a Steiner point. 47

3.14 The colors represent the parity of the vertices before the adjacencies of the
solution are added. Gray color means even degree, black color means odd
degree, and white means that we do not necessarily take care of that point
at this step. The original configurations are shown in solid black while their
solutions are shown dashed. Points s1, s2 are Steiner points. 48

4.1 A set of 32 points representing the State Capitals of Mexico. 55

132 List of Figures

4.2 To the left a T-path p(l, T), shown in solid lines, of a triangulation T with
vertex set P. To the right a PT-path pt(l, S), shown also in solid lines, of
a pseudo-triangulation S with vertex set P. The gray areas are the areas
bounded by two consecutive edges of the paths and line l, which are empty
of points of P. 56

4.3 Vertices a, b, d are three consecutive vertices of the shown T-path. 59
4.4 Every empty wedge of p(l, T) defines an interval on l where they intersect. . 60
4.5 The intersection between e and l cannot be the boundary of an interval on

l defined by an empty wedge of p(l, T). 60
4.6 Point x lies in the interior of the interval of l defined by the empty wedge

with apex p. Since e is good w.r.t. l, the third vertex of one of the triangles
of T that share e must lie insideW. 60

4.7 e and e′ are the two diagonals of the convex quadrilateral prqs. The line l
containing their intersection makes both, e and e′ good. 61

4.8 Vertices a, b must be in the gray zone otherwise angle ∠rps would not be
maximum. 61

4.9 T-path p(l, T) shown, along its empty wedges. Every wedge is also empty
w.r.t. l′. 62

4.10 T-path π ∈ Π(li, P) where p has degree at least four shown. 65
4.11 Vertex x of π cannot exist because p is the only point in that vertical slab. . 65
4.12 π is shown in solid lines, and π′ in dashed lines. 66
4.13 If abd lies inside a′b′d′, then the wedge a′b′d′ with apex b′ and de-

limited by li+1 is not empty. 66
4.14 Sweeping from li to li+1 results in a wedge containing p. 67
4.15 Sweeping from li to li+1 results in the adjacencies of p being on the same

side of li+1. 67
4.16 Substitution (a, b, p, c, d) → (a, b, b′, p, c′, c, d) is only one of the possibil-

ities. 67
4.17 Substitution (a, b, p) → (a, b, b′, p, c). 67
4.18 Substitution (a, b, d) → (a, b, b′, p, c′, b, d). 68
4.19 T-path π′ is shown in solid. 69
4.20 T-path π′ being extended to a T-path π ∈ Π(li, P). 69
4.21 In any triangulation of P containing π′, vertex p must have at least two

adjacencies to the left of li. 70
4.22 All possibilities for b′, c′ are shown as black points. The white points are

visible from neither b nor c. 70
4.23 A T-path π. The first and last vertices are shown in gray. The edges of π

crossing l from left to right are shown with arrows, and the intersection
point is shown as a white dot. The integer sequence N− for π is 1,3,5,7,5,3. 72

4.24 Edges e, e′′ are consecutive edges, of a T-path, that cross l from left to right
and share vertex 1. 73

List of Figures 133

4.25 To the left a pseudo-triangulation S. To the right we have the plane graph S∗

obtained from S by removing all non-good edges of El. Joining two consec-
utive good edges of El by the rules described before results in the PT-path
shown in Figure 4.2 on page 56. 75

4.26 The flip edge e′ of e is shown dashed. If those two edges intersect, the e is
good w.r.t. line l. The two vertices of � opposite to e are shown in white. . . 77

4.27 Another possibility for �. 77
4.28 If e and e′ do not intersect, the pseudo-triangles of � can be oriented such

that there is still a line l that e is good with respect to. 77
4.29 If the red path is pulled from its ends in the direction shown by the arrows,

until its length is minimal, we end up having a geodesic path between the
opposite vertices, where e′ is the only new edge. 77

4.30 Point p is the only point contained in the vertical slab between li, li+1. The
configuration, if non-degenerate, must locally look like this. 78

4.31 If � is degenerate, then the configuration looks like this. 78
4.32 Here e and f do not share the right endpoint. 81
4.33 In this case a PT-path π′ ∈ Π(li+1, P) can be produced using only adjacen-

cies from the original PT-path π ∈ Π(li, P). 81
4.34 All points α can be used to produce a PT-path π′ ∈ Π(li+1, P). 81
4.35 Two different possibilities for adjacencies connecting α to π ∈ Π(li, P).

Each gives a different PT-path of Π(li+1, P). 82
4.36 The visibility cone ∠α (to the right of li+1) is shown in dark gray. 82
4.37 Each of the dashed lines defines an homotopy class. 82
4.38 Visibility ray shown in dashed defines the homotopy that the adjacencies

connecting α with π should follow. In this case the created path is not a PT-
path of Π(li+1, P) where α is a convex vertex. It would be nevertheless a
PT-path ofΠ(li+1, P)whereα′ is a convex vertex. This path will be detected
when processing α′. 83

4.39 The symmetric configuration in which and′ lie on opposite sides is also
possible. 84

4.40 The red lines connect α to p and to the leftmost convex vertex of via the
visibility ray shown dashed. These two paths define the homotopy the local
changes must follow. 84

4.41 In this case p lies on CH(P) and its degree in π ∈ Π(li, P) is exactly one.
Two possibilities using two different α’s are shown. 85

4.42 Although p is not a vertex of π ∈ Π(li, P), it must be part of some π′ ∈
Π(li+1, P) since the empty pseudo-triangle ′ of π cannot be extended
further. 85

4.43 Changes are produced only by one point α. 85
4.44 Changes are now produced by pairs of points α,β. 85
4.45 Two different PT-paths of Π(li+1, P) produced by two different points. . . . 86

134 List of Figures

4.46 A particular case occurs if α coincides with an endpoint of e or of f. 86
4.47 Combining the PT-paths shown in Figure 4.45 we obtained yet another PT-

path of Π(li+1, P), we just had to remove the adjacencies of p that make it
non-pointed. 86

5.1 Four onion layers. 94
5.2 R and R′ are the sn-regions of (p, q). 95
5.3 Rap and Rpb are the sn-regions of (a, p) and (p, b), respectively, that do

not contain triangle apb. 95
5.4 R and R′ are the sn-regions of (x, y). 97
5.5 Triangular path Pp starting in onion layer P(4). Onion layers are shown in

dashed. Pp can be extended to a triangulation T , in such a case Pp will be
unique for T . 101

5.6 In the first call of the algorithm, the triangular path shown in dark gray is
created. It divides the problem into regions R1 ∪ R3 and R2. A call for the
latter creates the triangular path shown in light gray. Annotations are not
shown for simplicity. 102

6.1 Instance GA produced from instance A of the Parameterized-Hitting-

Set-Problem with n = 8,m = 2, k = 2 and S1 = {2,5,6}, S2 = {5,7}. 113
6.2 (Top) A pipe with 3 states and l = 9. Thick black edges constitute F, thick

gray edges constitute S, red edges are L2, solid thin black edges are zig-zag
L1, dashed edges are zig-zag L0. (Bottom) A stretched and bent wire with a
terminal gadget attached to it. 115

6.3 The or-gadget. The gray edges from W2 to W3 are “transfer edges”. An
analogous set of edges is also present from W1 to W3, but suppressed in
this figure to improve legibility. 115

6.4 To the left the tester-gadget for i at t. Q is modified by shifting, for k > 0,
all pt+k and qu+k to the right until the triangle r, pt+1, qu is oriented
counter-clockwise. In the middle a crossing between pipeQ and input wire
V which becomes output wireW. To the right the details of the crossing for
i = 1 at pt−3. 117

BIBLIOGRAPHY

[1] O. Aichholzer. Counting triangulations - olympics. http://www.ist.tugraz.
at/staff/aichholzer/research/rp/triangulations/counting/. One citation on
page 121.

[2] O. Aichholzer. The path of a triangulation. In Symposium on Computational
Geometry, pages 14–23, 1999. 8 citations on pages 11, 12, 55, 56, 71, 88, and 104.

[3] O. Aichholzer, F. Aurenhammer, H. Krasser, and B. Speckmann. Convexity mini-
mizes pseudo-triangulations. Comput. Geom., 28(1):3–10, 2004. One citation on
page 54.

[4] O. Aichholzer, T. Hackl, M. Hoffmann, A. Pilz, G. Rote, B. Speckmann, and
B. Vogtenhuber. Plane graphs with parity constraints. In F. K. H. A. Dehne,
M. L. Gavrilova, J.-R. Sack, and C. D. Tóth, editors, WADS, volume 5664 of Lec-
ture Notes in Computer Science, pages 13–24. Springer, 2009. 5 citations on pages
9, 29, 30, 45, and 50.

[5] O. Aichholzer, T. Hackl, C. Huemer, F. Hurtado, and B. Vogtenhuber. Large
bichromatic point sets admit empty monochromatic 4-gons. SIAM J. Discrete
Math., 23(4):2147–2155, 2010. One citation on page 30.

[6] O. Aichholzer, G. Rote, B. Speckmann, and I. Streinu. The zigzag path of a pseudo-
triangulation. In F. K. H. A. Dehne, J.-R. Sack, and M. H. M. Smid, editors, WADS,
volume 2748 of Lecture Notes in Computer Science, pages 377–388. Springer,
2003. 8 citations on pages 12, 55, 57, 58, and 75.

[7] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free subgraphs.
In P. L. Hammer, A. Rosa, G. Sabidussi, and J. Turgeon, editors, Theory and
Practice of Combinatorics A collection of articles honoring Anton Kotzig on

http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/counting/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/counting/

136 Bibliography

the occasion of his sixtieth birthday, volume 60 of North-Holland Mathematics
Studies, pages 9 – 12. North-Holland, 1982. One citation on page 54.

[8] V. Alvarez. Even triangulation of planar set of points with steiner points. In
EuroCG, 2010. One citation on page 4.

[9] V. Alvarez, K. Bringmann, R. Curticapean, and S. Ray. Counting crossing-free
structures. In T. K. Dey and S. Whitesides, editors, Symposium on Computational
Geometry, pages 61–68. ACM, 2012. One citation on page 4.

[10] V. Alvarez and A. Nakamoto. Colored quadrangulations with steiner points. In
EuroCG, 2012. One citation on page 4.

[11] V. Alvarez, T. Sakai, and J. Urrutia. Bichromatic quadrangulations with steiner
points. Graph. Comb., 23(1):85–98, 2007. 16 citations on pages 9, 18, 19, 23, 27,
and 28.

[12] E. Anagnostou and D. G. Corneil. Polynomial-time instances of the minimum
weight triangulation problem. Comput. Geom., 3:247–259, 1993. One citation on
page 93.

[13] T. Auer and M. Held. Heuristics for the generation of random polygons. In F. Fiala,
E. Kranakis, and J.-R. Sack, editors, CCCG, pages 38–43. Carleton University
Press, 1996. One citation on page 104.

[14] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Math-
ematics, 65(1-3):21–46, 1996. One citation on page 54.

[15] S. Bereg. Enumerating pseudo-triangulations in the plane. Comput. Geom.,
30(3):207–222, 2005. 2 citations on pages 54 and 57.

[16] S. Bespamyatnikh. Enumerating pseudo-triangulations in the plane. In CCCG,
pages 162–166, 2002. One citation on page 54.

[17] S. Bespamyatnikh. Computing homotopic shortest paths in the plane. J. Algo-
rithms, 49(2):284–303, 2003. One citation on page 83.

[18] J.-D. Boissonnat and M. Yvinec. Algorithmic geometry. Cambridge University
Press, 1998. One citation on page 4.

[19] N. Bonichon, C. Gavoille, and N. Hanusse. Canonical decomposition of outerplanar
maps and application to enumeration, coding and generation. J. Graph Algorithms
Appl., 9(2):185–204, 2005. One citation on page 74.

[20] P. Bose, S. Ramaswami, G. T. Toussaint, and A. Turki. Experimental results on
quadrangulations of sets of fixed points. Computer Aided Geometric Design,
19(7):533–552, 2002. 2 citations on pages 17 and 18.

Bibliography 137

[21] P. Bose and G. T. Toussaint. Characterizing and efficiently computing quadrangu-
lations of planar point sets. Computer Aided Geometric Design, 14(8):763–785,
1997. One citation on page 17.

[22] D. Bremner, F. Hurtado, S. Ramaswami, and V. Sacristan. Small strictly convex
quadrilateral meshes of point sets. Algorithmica, 38(2):317–339, 2003. One citation
on page 17.

[23] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir,
and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algo-
rithmica, 12(1):54–68, 1994. One citation on page 53.

[24] L. P. Chew. Constrained delaunay triangulations. In Symposium on Computa-
tional Geometry, pages 215–222, 1987. One citation on page 100.

[25] C. Cortés, A. Márquez, A. Nakamoto, and J. Valenzuela. Quadrangulations and
2-colorations. In EuroCG, pages 65–68. Technische Universiteit Eindhoven, 2005.
One citation on page 18.

[26] K. Dalal. Counting the onion. Random Struct. Algorithms, 24(2):155–165, 2004.
One citation on page 98.

[27] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000.
One citation on page 4.

[28] E. Demaine. Simple polygonizations. http://erikdemaine.org/polygonization/.
One citation on page 91.

[29] E. Demaine, J. S. B. Mitchell, and J. O’Rourke. Problem 16: Simple polygonaliza-
tions. http://cs.smith.edu/~orourke/TOPP/P16.html#Problem.16. 2 citations
on pages 93 and 104.

[30] K. Diks, L. Kowalik, and M. Kurowski. A new 3-color criterion for planar graphs.
In L. Kucera, editor, WG, volume 2573 of Lecture Notes in Computer Science,
pages 138–149. Springer, 2002. 2 citations on pages 30 and 31.

[31] H. Djidjev and S. M. Venkatesan. Reduced constants for simple cycle graph sepa-
ration. Acta Inf., 34(3):231–243, 1997. One citation on page 107.

[32] A. Dumitrescu, B. Gärtner, S. Pedroni, and E. Welzl. Enumerating triangulation
paths. Comput. Geom., 20(1-2):3–12, 2001. 2 citations on pages 57 and 71.

[33] A. Dumitrescu, A. Schulz, A. Sheffer, and C. D. Tóth. Bounds on the maximum
multiplicity of some common geometric graphs. In T. Schwentick and C. Dürr,
editors, STACS, volume 9 of LIPIcs, pages 637–648. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2011. 2 citations on pages 3 and 104.

http://erikdemaine.org/polygonization/
http://cs.smith.edu/~orourke/TOPP/P16.html#Problem.16

138 Bibliography

[34] H. Edelsbrunner. Algorithms in combinatorial geometry. Springer-Verlag New
York, Inc., New York, NY, USA, 1987. One citation on page 4.

[35] P. Epstein and J.-R. Sack. Generating triangulations at random. ACM Trans.
Model. Comput. Simul., 4(3):267–278, 1994. One citation on page 88.

[36] S. Fisk. A short proof of chvátal’s watchman theorem. J. Comb. Theory, Ser. B,
24(3):374, 1978. One citation on page 33.

[37] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. 5 citations on pages 14, 106,
111, and 112.

[38] J. E. Goodman, J. Pach, and R. Pollack, editors. Surveys on Discrete and Com-
putational Geometry: Twenty Years Later. American Mathematical Society,
Providence, RI, USA, 2008. One citation on page 54.

[39] J. E. Goodman and R. Pollack. Multidimensional sorting. SIAM J. Comput.,
12(3):484–507, 1983. One citation on page 2.

[40] J. E. Goodman and R. Pollack. Upper bounds for configurations and polytopes in
rd. Discrete & Computational Geometry, 1:219–227, 1986. 2 citations on pages
2 and 54.

[41] J. E. Goodman and R. Pollack. The complexity of point configurations. Discrete
Applied Mathematics, 31(2):167–180, 1991. One citation on page 2.

[42] M. T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths in
planar subdivisions via balanced geodesic triangulations. J. Algorithms, 23(1):51–
73, 1997. One citation on page 53.

[43] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics - a foun-
dation for computer science (2. ed.). Addison-Wesley, 1994. One citation on page
74.

[44] P. J. Heawood. On the four-color map theorem. Quart. J. Pure Math., 29:270–285,
1898. One citation on page 30.

[45] M. Heredia and J. Urrutia. On convex quadrangulations of point sets on the plane.
In J. Akiyama, W. Y. C. Chen, M. Kano, X. Li, and Q. Yu, editors, CJCDGCGT,
volume 4381 of Lecture Notes in Computer Science, pages 38–46. Springer, 2005.
One citation on page 17.

[46] Ø. Hjelle and M. Dæhlen. Triangulations and Applications (Mathematics and
Visualization). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. One
citation on page 100.

Bibliography 139

[47] V. Kaibel and G. M. Ziegler. Counting lattice triangulations. In C. D. Wensley,
editor, Surveys in Combinatorics, volume 307 of London Mathematical Soci-
ety Lecture Note Series, pages 277–307. Cambridge University Press, 2003. One
citation on page 121.

[48] S. Kato, R. Mori, and A. Nakamoto. Quadrangulations on 3-colored point sets with
steiner points and their winding numbers. Submitted. Preliminary version in
Proc. XIV Spanish Meeting on Computational Geometry, pages 133–136, 2011.
7 citations on pages 18, 19, 20, 21, and 23.

[49] N. Katoh and S.-I. Tanigawa. Fast enumeration algorithms for non-crossing geo-
metric graphs. Discrete & Computational Geometry, 42(3):443–468, 2009. One
citation on page 54.

[50] H. Krasser. Order Types of Point Sets in the Plane. PhD thesis, Institute for
Theoretical Computer Science, Graz University of Technology, Austria, October
2003. One citation on page 2.

[51] M.-J. Lai and L. L. Schumaker. Scattered data interpolation using c2 supersplines
of degree six. SIAM J. Numer. Anal., 34(3):905–921, 1997. One citation on page
17.

[52] T. Leighton. Notes on better master theorems for divide-and-conquer recurrences.
Technical report, Massachusetts Institute of Technology, 1996. One citation on page
110.

[53] E. L. Lloyd. On triangulations of a set of points in the plane. In FOCS, pages
228–240. IEEE Computer Society, 1977. 2 citations on pages 14 and 112.

[54] L. McShine and P. Tetali. On the mixing time of the triangulation walk and other
catalan structures. In P. Pardalos and S. Rajasekaran, editors, Randomization
Methods in Algorithm Design, volume 43 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 147–160. American Mathe-
matical Society, 1998. One citation on page 88.

[55] K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic Tool-
box. Springer, 2008. One citation on page 15.

[56] K. Mehlhorn and S. Schirra. Exact computation with leda_real - theory and ge-
ometric applications. In G. Alefeld, J. Rohn, S. M. Rump, and T. Yamamoto,
editors, Symbolic Algebraic Methods and Verification Methods, pages 163–172.
Springer, 2001. One citation on page 15.

[57] G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs.
JCSS, 32(3):265–279, June 1986. invited publication. One citation on page 107.

140 Bibliography

[58] M. S. Molloy, B. Reed, and W. Steiger. On the mixing rate of the triangulation
walk. In P. Pardalos and S. Rajasekaran, editors, Randomization Methods in
Algorithm Design, volume 43 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 179–190. American Mathematical Society,
1998. One citation on page 88.

[59] M. Müller-Hannemann and S. Schirra, editors. Algorithm Engineering: Bridging
the Gap between Algorithm Theory and Practice [outcome of a Dagstuhl Sem-
inar], volume 5971 of Lecture Notes in Computer Science. Springer, 2010. One
citation on page 15.

[60] The on-line encyclopedia of integer sequences. http://oeis.org/A064062. One
citation on page 74.

[61] A. G. Olaverri, M. Noy, and J. Tejel. Lower bounds on the number of crossing-free
subgraphs of kn. Comput. Geom., 16(4):211–221, 2000. One citation on page 91.

[62] J. O’Rourke. Art gallery theorems and algorithms. Oxford University Press, Inc.,
New York, NY, USA, 1987. One citation on page 81.

[63] J. Pach and P. K. Agarwal. Combinatorial geometry. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, 1995. One citation on page 4.

[64] D. Pengelley, I. Pivkina, D. Ranjan, and K. Villaverde. A project in algorithms
based on a primary historical source about catalan numbers. In D. Baldwin, P. T.
Tymann, S. M. Haller, and I. Russell, editors, SIGCSE, pages 318–322. ACM, 2006.
One citation on page 10.

[65] A. Pilz. Parity properties of geometric graphs. Master’s thesis, Graz University of
Technology, 2009. One citation on page 44.

[66] M. Pocchiola and G. Vegter. Topologically sweeping visibility complexes via pseu-
dotriangulations. Discrete & Computational Geometry, 16(4):419–453, 1996. One
citation on page 53.

[67] F. P. Preparata and M. I. Shamos. Computational Geometry - An Introduction.
Springer, 1985. 2 citations on pages 4 and 15.

[68] S. Ramaswami, P. A. Ramos, and G. T. Toussaint. Converting triangulations to
quadrangulations. Comput. Geom., 9(4):257–276, 1998. One citation on page 17.

[69] D. Randall, G. Rote, F. Santos, and J. Snoeyink. Counting triangulations and
pseudo-triangulations of wheels. In CCCG, pages 149–152, 2001. 2 citations on
pages 54 and 57.

http://oeis.org/A064062

Bibliography 141

[70] S. Ray and R. Seidel. A simple and less slow method for counting triangulations
and for related problems. In EuroCG, 2004. 10 citations on pages 11, 14, 55, 99,
104, 105, 119, 120, 121, and 122.

[71] A. Razen and E. Welzl. Counting plane graphs with exponential speed-up. In C. S.
Calude, G. Rozenberg, and A. Salomaa, editors, Rainbow of Computer Science,
volume 6570 of Lecture Notes in Computer Science, pages 36–46. Springer, 2011.
One citation on page 55.

[72] F. Santos and R. Seidel. A better upper bound on the number of triangulations of
a planar point set. J. Comb. Theory, Ser. A, 102(1):186–193, 2003. 2 citations
on pages 3 and 104.

[73] T. Schiffer, F. Aurenhammer, and M. Demuth. Computing convex quadrangula-
tions. Discrete Applied Mathematics, 160(4-5):648–656, 2012. 2 citations on pages
17 and 18.

[74] A. Schulz. The existence of a pseudo-triangulation in a given geometric graph. In
EuroCG, 2006. 2 citations on pages 14 and 112.

[75] M. Sharir and A. Sheffer. Counting triangulations of planar point sets. Electr. J.
Comb., 18(1), 2011. 2 citations on pages 3 and 54.

[76] M. Sharir, A. Sheffer, and E. Welzl. Counting plane graphs: Perfect matchings,
spanning cycles, and kasteleyn’s technique. CoRR, abs/1109.5596, 2011. One
citation on page 91.

[77] M. Sharir, A. Sheffer, and E. Welzl. On degrees in random triangulations of point
sets. J. Comb. Theory, Ser. A, 118(7):1979–1999, 2011. 2 citations on pages 3
and 54.

[78] A. Sheffer. Numbers of plane graphs. http://www.cs.tau.ac.il/~sheffera/
counting/PlaneGraphs.html. One citation on page 91.

[79] R. P. Stanley. Enumerative Combinatorics: Volume 2. Number 62 in Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1st edition edition,
2001. One citation on page 10.

[80] R. Steinberg. The state of the three color problem. In J. W. K. John Gimbel
and L. V. Quintas, editors, Quo Vadis, Graph Theory? A Source Book for
Challenges and Directions, volume 55 of Annals of Discrete Mathematics, pages
211 – 248. Elsevier, 1993. One citation on page 30.

[81] I. Streinu. A combinatorial approach to planar non-colliding robot arm motion
planning. In FOCS, pages 443–453. IEEE Computer Society, 2000. 4 citations on
pages 53 and 54.

http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html
http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html

142 Bibliography

[82] G. T. Toussaint. Quadrangulations of planar sets. In S. G. Akl, F. K. H. A.
Dehne, J.-R. Sack, and N. Santoro, editors, WADS, volume 955 of Lecture Notes
in Computer Science, pages 218–227. Springer, 1995. One citation on page 18.

[83] H. S. Wilf. generatingfunctionology: Third Edition. CRC Press, 2005. One
citation on page 74.

	Contents
	Introduction
	Thesis-wide definitions
	Geometry using Steiner points
	Colored quadrangulations with Steiner points – Chapter 2
	Parity-constrained triangulations with Steiner points – Chapter 3

	Counting algorithms
	A sweep line algorithm for counting triangulations and pseudo-triangulations – Chapter 4
	Counting triangulations and other crossing-free structures via onion layers – Chapter 5
	Miscellaneous results on counting triangulations – Chapter 6

	A quick word on the model of computation

	Colored Quadrangulations with Steiner Points
	Our contribution
	Preliminaries
	Proof of Theorem 2.2
	Closing remarks and conclusions
	Conclusions

	Parity-constrained Triangulations with Steiner points
	Our contribution
	Pre-processing of P
	Even and pseudo-even triangulations
	Extension to even triangulations

	Pseudo-odd and odd triangulations
	Extension to odd triangulations

	Conclusions

	A Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations
	Our contribution
	The result on counting triangulations
	The result on counting pseudo-triangulations

	Counting triangulations
	The sweep line algorithm
	On the number of triangulation paths

	Counting pseudo-triangulations
	Discussion and conclusions
	Conclusions

	Counting Triangulations and other Crossing-free Structures via Onion Layers
	Our contribution
	The new result on counting triangulations
	The results on counting other crossing-free structures

	A general framework for counting crossing-free structures
	Counting triangulations using the onion layers
	The algorithm
	Number of vertex-disjoint triples of descending paths

	Counting other crossing-free structures
	Counting matchings and spanning cycles
	Triangular paths

	Conclusions

	Miscellaneous Results on Counting Triangulations
	Our contribution
	Counting triangulations approximately
	Quality of approximation
	Running time

	The hardness result
	Preliminaries
	Construction and intuition
	Defining the gadgets
	Formal proofs

	Experimental results on counting triangulations
	Conclusions

	List of Figures
	Bibliography

