
I
UNIVERSITÄT DES SAARLANDES

Naturwissenschaftlich-Technische Fakultät I

Fachbereich 6.2 Informatik
Lehrstuhl für Programmiersprachen und Übersetzerbau

Timing Model Derivation
Static Analysis of Hardware Description

Languages

Dissertation

Zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

von

Diplom-Informatiker
Marc Schlickling

Saarbrücken
2012

Kolloquium

Tag des Kolloquiums Montag, 17. Dezember 2012

Dekan Prof. Dr. Mark Groves

Prüfungsausschuss

Vorsitzender Prof. Dr. Jan Reineke

Berichterstatter Prof. Dr. Dr. h.c. mult. Reinhard Wilhelm
Prof. Dr.-Ing. Wolfgang Kunz

Dr. Susanne Graf

Akad. Mitarbeiter Dr. Mario Albrecht

Impressum

Copyright c© 2013 by Marc Schlickling

Druck und Verlag: epubli GmbH, Berlin, www.epubli.de

Printed in Germany

ISBN: 978-3-8442-4513-4

Das Werk ist urheberrechtlich geschützt. Jede Verwertung ist ohne Zustim-
mung des Verlages und des Autors unzulässig. Dies gilt insbesondere für
die elektronische oder sonstige Vervielfältigung, Übersetzung, Verbreitung
und öffentliche Zugänglichmachung.

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deut-
schen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet
über http://dnb.d-nb.de abrufbar.

ii

Abstract

Safety-critical hard real-time systems are subject to strict timing con-
straints. In order to derive guarantees on the timing behavior, the
worst-case execution time (WCET) of each task comprising the system
has to be known. The aiT tool has been developed for computing safe
upper bounds on the WCET of a task. Its computation is mainly based
on abstract interpretation of timing models of the processor and its pe-
riphery. These models are currently hand-crafted by human experts,
which is a time-consuming and error-prone process.
Modern processors are automatically synthesized from formal hard-
ware specifications. Besides the processor’s functional behavior, also
timing aspects are included in these descriptions. A methodology to
derive sound timing models using hardware specifications is described
within this thesis. To ease the process of timing model derivation, the
methodology is embedded into a sound framework.
A key part of this framework are static analyses on hardware specifica-
tions. This thesis presents an analysis framework that is build on the
theory of abstract interpretation allowing use of classical program analy-
ses on hardware description languages. Its suitability to automate parts
of the derivation methodology is shown by different analyses. Practical
experiments demonstrate the applicability of the approach to derive
timing models. Also the soundness of the analyses and the analyses’
results is proved.

iii

Zusammenfassung

Sicherheitskritische Echtzeitsysteme unterliegen strikten Zeitanforde-
rungen. Um ihr Zeitverhalten zu garantieren müssen die Ausführungs-
zeiten der einzelnen Programme, die das System bilden, bekannt sein.
Um sichere obere Schranken für die Ausführungszeit von Program-
men zu berechnen wurde aiT entwickelt. Die Berechnung basiert auf
abstrakter Interpretation von Zeitmodellen des Prozessors und seiner
Peripherie. Diese Modelle werden händisch in einem zeitaufwendigen
und fehleranfälligen Prozess von Experten entwickelt.
Moderne Prozessoren werden automatisch aus formalen Spezifikatio-
nen erzeugt. Neben dem funktionalen Verhalten beschreiben diese auch
das Zeitverhalten des Prozessors. In dieser Arbeit wird eine Methodik
zur sicheren Ableitung von Zeitmodellen aus der Hardwarespezifika-
tion beschrieben. Um den Ableitungsprozess zu vereinfachen ist diese
Methodik in eine automatisierte Umgebung eingebettet.
Ein Hauptbestandteil dieses Systems sind statische Analysen auf Hard-
warebeschreibungen. Diese Arbeit stellt eine Analyse-Umgebung vor,
die auf der Theorie der abstrakten Interpretation aufbaut und den Ein-
satz von klassischen Programmanalysen auf Hardwarebeschreibungs-
sprachen erlaubt. Die Eignung des Systems, Teile der Ableitungsme-
thodik zu automatisieren, wird anhand einiger Analysen gezeigt. Ex-
perimentelle Ergebnisse zeigen die Anwendbarkeit der Methodik zur
Ableitung von Zeitmodellen. Die Korrektheit der Analysen und der
Analyse-Ergebnisse wird ebenfalls bewiesen.

v

Acknowledgements

First and foremost, I would like to express my sincere gratitude to
my advisor, Prof. Reinhard Wilhelm, for his continuous support of my
research, for his scientific advice, patience, motivation, enthusiasm, and
knowledge. He left me a lot of freedom and created a pleasant and
unique working atmosphere in his group.
Special thanks to the other members of my committee, Prof. Wolf-
gang Kunz, Dr. Susanne Graf, Prof. Jan Reineke, and Dr. Mario Albrecht, for
their time, interest and insightful questions; I owe them my heartfelt
appreciation.
I shared my office at university as well as in industry with my colleague
and friend, Dr. Markus Pister; he was my crony in the AVACS subproject
R2. I owe him my most sincere gratitude for sumless discussions, lend-
ing me a sympathetic ear when my thoughts got entangled, his technical
expertise, and hilarious lunch breaks.
I will forever be thankful to my former colleague, Dr. Stephan Thesing.
He has been helpful in providing advice many times during my research
and he also provides invaluable feedback while reading this thesis.
My colleagues at AbsInt Angewandte Informatik GmbH and the Compiler
Design Group at Saarland University also deserve my sincerest thanks;
their friendship and assistance has meant more to me than I could ever
express.
I would like to thank Dr. Philipp Lucas for being supportive throughout
my time at the chair and for helping me with reviewing drafts of this
thesis. Dr. Reinhold Heckmann deserves my gratitude for proofreading
large parts of my thesis; his suggestions on mathematical corner cases
are of inestimable value.
My family has always supported me. I am grateful to my parents,
Elisabeth and Heinz, for their love and support, and waiting patiently for
me to finish this thesis. Thanks also to my parents-in-law, Margot and
Rolf, for standing by me and supporting me all the time. I thank my son,
Lenn Mattis, for all the joy and happiness, he brings to my life. Finally,
my thanks to my wife, Bettina – this is not new, but absolutely necessary.

– To Lenn for changing my life –

This work has been supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS), and by the BMBF as part of the “VerisoftXT ”
project.

vii

Contents

List of Figures xiii

List of Tables xv

List of Listings xvii

1 Introduction 1
1.1 Related Work . 8
1.2 Structure of this Thesis . 9

2 Preliminaries 11
2.1 Lattice Theory . 11
2.2 Fixed-Point Theory . 13
2.3 Abstract Interpretation . 14
2.4 Data-Flow Analysis . 19

2.4.1 Algorithms . 21
2.4.2 Interprocedural Analysis 25

3 WCET Estimation 27
3.1 Methods . 28

3.1.1 Measurement-based Approaches 29
3.1.2 Static Approaches . 30
3.1.3 Related Tools . 32

3.2 aiT WCET-Analyzer Framework 35
3.3 Micro-architectural Analysis . 39

ix

Contents

4 Modern Processor Development 41
4.1 Processor Cores . 43

4.1.1 Caches . 43
4.1.2 Pipelines . 47

4.2 System Components . 52
4.2.1 Buses . 52
4.2.2 Memory . 54
4.2.3 Peripherals . 55
4.2.4 Multiprocessors and DMA 56

4.3 Hardware Predictability . 56
4.4 Timing Anomalies . 60
4.5 VHSIC Hardware Description Language 62

4.5.1 Modeling Digital Systems 63
4.5.2 Register-Transfer Level . 66
4.5.3 Elaboration and Synthesis 68
4.5.4 Semantics . 69
4.5.5 Related Languages . 75

5 Timing Model Derivation 77
5.1 Transformations of VHDL . 79

5.1.1 Environmental Constraints 79
5.1.2 Domain Abstraction . 80
5.1.3 Process Substitution . 81
5.1.4 Memory Abstraction . 83
5.1.5 Abstract VHDL Semantics 84

5.2 Derivation Cycle . 87
5.2.1 Model Preprocessing . 88
5.2.2 Processor State Abstractions 90

5.3 Derivation Framework . 91
5.3.1 Analyses and Transformations 92
5.3.2 Code Generation . 95

6 Static Analysis of VHDL 97
6.1 Analysis Framework . 98

6.1.1 Program Analyzer Generator 99
6.1.2 Control-flow Representation Language 101
6.1.3 Basic Mapping . 104
6.1.4 Transformed VHDL Simulation Semantics 106

6.2 Reset Analysis . 113
6.2.1 Analysis of Functions and Procedures 124

6.3 Assumption-based Model Refinement 126
6.3.1 Widening and Path-Sensitivity 133
6.3.2 Live-Variables Analysis . 139

x

Contents

6.4 Backward Slicing . 140
6.4.1 Slicing Using Dependencies 143
6.4.2 Flow-Dependency Analysis 146
6.4.3 Control-Dependency Analysis 150
6.4.4 Computing Slices . 154
6.4.5 Analysis of Functions and Procedures 155
6.4.6 Timing-Dead Paths and Statements 157

7 Implementation and Evaluation 159
7.1 Hardware Models . 160

7.1.1 Gaisler Research LEON2 . 160
7.1.2 Superscalar DLX Processor 161
7.1.3 Confidential Specifications 163
7.1.4 Model Review . 163

7.2 Implementation . 165
7.2.1 VHDL Analysis-Support Library 165
7.2.2 VHDL Compiler . 167
7.2.3 Reset Analyzer . 174
7.2.4 Assumption-based Model Refiner 179
7.2.5 Backward Slicer . 181

7.3 Evaluation . 183
7.3.1 VHDL Compiler Performance and Memory Consumption 184
7.3.2 Analyzer Performance and Memory Consumption 187
7.3.3 Applicability and Assessment 196
7.3.4 Soundness . 199
7.3.5 Code of Work Rules . 201

8 Conclusion and Outlook 207
8.1 Outlook . 209

Bibliography 211

Index 227

xi

List of Figures

2.1 Basic concept of abstract interpretation. 17
2.2 Galois connection pL, α, γ,Mq. 19
2.3 The widening operator5 applied to f 24
2.4 The narrowing operator4 applied to f 25

3.1 Distribution of execution times for a task. 28
3.2 Measured execution times for a task. 29
3.3 Upper execution time bound. 30
3.4 WCET estimation using abstract simulation. 33
3.5 Schematic overview of the aiT WCET-analyzer framework. 36
3.6 Loop transformation. 37
3.7 Pipeline splits. 40

4.1 Cache architecture. 44
4.2 Cache update under LRU replacement policy. 47
4.3 Cache update under PLRU replacement strategy. 48
4.4 Sequential instruction execution. 48
4.5 Pipelined instruction execution. 49
4.6 Non-pipelined bus access. 54
4.7 Pipelined bus access. 54
4.8 Scheduling timing anomaly. 61
4.9 Speculation timing anomaly. 61
4.10 Domains and levels of abstraction. 65
4.11 Composition of VHDL components. 68
4.12 Execution of a VHDL model. 71
4.13 VHDL sequential execution semantics. 73

xiii

List of Figures

4.14 VHDL simulation semantics. 74

5.1 Abstract VHDL sequential execution semantics. 84
5.2 Timing model derivation process – Methodology overview. 87
5.3 Derivation process automation – Overview. 92
5.4 State altering. 96

6.1 VHDL analysis framework – Structure. 98
6.2 Interprocedural supergraph. 102
6.3 Control-flow graph of the CRL2 example. 104
6.4 Sequentialized representation of the 3-bit counter. 114
6.5 Signal assignment trace of the VHDL example. 116
6.6 Data-flow computation for the assumption “Reset is never active”.134
6.7 Data-flow computation using widening. 137
6.8 Data-flow computation using widening and the enhanced transfer

function. 138

7.1 Block diagram of the superscalar DLX machine. 162
7.2 VHDL compiler – Overview. 168
7.3 Interactive backward slicer – Tool interaction. 183
7.4 Performance of the VHDL compiler. 185
7.5 Relationship of VHDL model complexity and VHDL compiler

performance. 186
7.6 Memory consumption of the VHDL compiler per phase. 188
7.7 Performance of the reset analyzer. 189
7.8 Memory consumption of the reset analyzer. 191
7.9 Performance of the assumption-based model refiner. 192
7.10 Memory consumption of the assumption-based model refiner. . . 194
7.11 Precomputation times of the backward slicer. 195
7.12 Memory consumption of the backward slicer. 196

xiv

List of Tables

3.1 Simple program with execution times for atomic operations. . . . 31

6.1 Mapping of VHDL constructs to CRL2 constructs. 105

7.1 VHDL model characteristics – Lines of code. 164
7.2 VHDL model characteristics – Design unit overview. 164
7.3 VHDL compiler performance (in seconds) per phase. 184
7.4 VHDL compiler memory consumption (in MB) per phase. 187
7.5 Reset analyzer performance (in seconds) per phase. 188
7.6 Reset analyzer memory consumption (in MB). 190
7.7 Assumption-based model refiner performance (in seconds) per

phase. 190
7.8 Assumption-based model refiner memory consumption (in MB). 193
7.9 Backward slicer precomputation times (in seconds). 193
7.10 Backward slicer memory consumption (in MB). 195

xv

List of Listings

2.1 Intuitive method for computing the MFP -solution. 22
2.2 Worklist method for computing the MFP -solution. 23

4.1 Data dependencies between instructions. 50
4.2 3-bit counter in VHDL. 67
4.3 Alternative implementation for the 3-bit counter. 70

5.1 Simple memory controller in VHDL. 82

6.1 Example of set and lattice specifications in DATLA. 99
6.2 Example of a problem specification in FULA. 100
6.3 Recursive implementation of the factorial function. 101
6.4 Sample VHDL code snippet. 102
6.5 CRL2 representation of Listing 6.4. 103
6.6 Construction algorithm of the simulation routine. 109
6.7 Simulation routine for 3-bit counter example. 111
6.8 Construction algorithm for open designs. 113
6.9 Simplified activation chain. 115
6.10 Simplified example of a clock domain. 124
6.11 Sample VHDL snippet of the superscalar DLX machine. 139
6.12 Example (a), backward (b) and forward slice (c) for criterion

p6, tfacuq. 141
6.13 The slicing algorithm. 155

7.1 Excerpt of an IRF file. 170
7.2 Transformation of range attributes. 171

xvii

List of Listings

7.3 Lattice specification of the reset analysis. 174
7.4 Problem specification of the reset analysis. 175
7.5 Excerpt of the transfer-function specification of the reset analyzer. 176
7.6 Excerpt of the support function specification of the reset analyzer 178
7.7 Computation of timing-dead edges. 180
7.8 Lattice specification of the backward slicer. 181
7.9 Superscalar DLX code change. 202
7.10 External interface of the superscalar DLX processor. 203
7.11 Result of the reset analyzer. 204
7.12 Result of the assumption-based model refiner. 205

xviii

1
Introduction

One never knows what will
happen if things are
suddenly changed. On the
other hand, however, does
one know what will happen if
they are not changed?

(Elias Canetti)

Embedded systems are computer systems that are designed for specific control
functions within larger systems. Usually, they are embedded as part of a com-
plete device often including mechanical parts. The complexity of such systems
varies from low employing a single micro-controller chip to high with multiple
units and peripherals that are interconnected. However, the key characteristic
of embedded systems is that they are dedicated to handle a particular task. By
contrast, general-purpose computers such as personal computers are designed
for flexibility in order to meet a wide range of user needs.

Embedded systems can be found in various devices in common use today. They
range from portable devices such as mobile phones and MP3 players, or safety
systems like the anti-lock braking system to large stationary installations like
traffic lights and factory controllers. Use of embedded systems within safety
critical areas as part of the occupant restraint system (e.g., airbags), or their
usage within the control of nuclear power plants induce real-time computing
constraints which are dictated by the surrounding physical environment.

A system is said to be a real-time system if the correctness of its operation depends
not only upon its logical correctness, but also upon the time in which it is
performed. Depending on the consequences of missing a deadline, real-time

1

Chapter 1. Introduction

systems can be classified into hard and soft real-time systems. A system is
called a hard real-time system, if missing a deadline may cause a severe problem.
A classical example of a hard real-time system is the airbag used within cars
whose time for detecting a crash, deciding which airbag to fire, and inflating
the envelope is limited to a few milliseconds. By contrast, a system is called
a soft real-time system, if missing a deadline only results in a degrade of the
system’s quality of service. DVD players are a typical example of a soft real-time
system: decoding of frames is subject to timing constraints, but the violation of
constraints only results in a degraded quality while the player can still continue
to operate.

Thus, one crucial issue in the design and development of a hard real-time system
is to ensure that all deadlines are met. A schedulability analysis proves that
all tasks comprising the system meet their respective deadlines. The input of a
schedulability analysis are the runtimes of these tasks. The runtimes of a task
vary depending on the task’s actual inputs, the hardware state, and the inter-
ference of the physical environment (e.g., memory refreshes or DMA). In order
to guarantee a system’s timeliness, the worst-case execution times (WCET) of the
tasks need to be known. Due to the halting problem, determining a task’s run-
time is impossible in general, but due to programming restrictions that are used
within embedded real-time applications, runtime estimates can be given. The
increasing demand for more and more computing power even in the embedded
area has led to the introduction of hardware features from the field of personal
computers such as out-of-order execution, deep processor pipelines, caches,
and different kinds of speculation. Use of these features increases a system’s
average-case performance, but results in less timing-predictable architectures
making a precise determination of a task’s WCET impossible. WCET analysis
has to deal with all these features and must provide a safe, but also precise upper
bound on a task’s execution times.

Determining safe and precise bounds on the WCET of a task has been subject to
research since the last three decades; the resulting approaches can be classified
into two main categories: measurement-based methods and static methods.
Measurement-based methods utilize program executions and hardware execution
traces to obtain the WCET, but in general, results cannot be guaranteed to be
correct, as the results rely on some specific input that cannot be guaranteed to
trigger a program’s longest execution time path.

In contrast to that, static methods only consider the executable program and
combine it with some (theoretical) model of the system to obtain a WCET
estimate. Due to the history sensitivity of modern hardware features (e.g., an
access might hit the cache due to a prior access of the same address), simple
static approaches like instruction counting are rendered obsolete. The state
space of inputs and initial hardware states that influences a task’s runtime is
too large to exhaustively explore all possible executions. Some abstractions of

2

the execution platform are necessary to make a timing analysis of the system
feasible. These abstractions inevitably lose information, and yet must guarantee
upper bounds for the worst-case execution time.

Saarland University and AbsInt Angewandte Informatik GmbH have success-
fully developed the aiT WCET analyzer (cf. http://www.absint.com/wcet.
htm) for computing safe upper bounds on the WCET of a task. The tool is used
in the aeronautics [SPH�07] and automotive industries [KWH�08]. The tool ar-
chitecture comprises three main phases: First, the control-flow of the executable
program is reconstructed. In a second phase, basic block timings are determined
using an abstract model of a processor and its periphery (timing model) to analyze
how instructions pass through the processor’s pipeline taking cache-hit or miss
information into account. This computes a cycle-level abstract semantics of the
instruction’s execution yielding a certain set of final system states. Analysis is
then restarted for the next instruction in all those states. Here, the timing model
introduces non-determinism that leads to multiple possible execution paths in
the analyzed program. The pipeline analysis needs to examine all of these paths.
Finally, the resulting timing bounds for basic blocks are the coefficients in an
Integer Linear Program (ILP) whose maximal solution yields the final WCET
bound.

Timing models underlying the aiT analyzer are currently hand-crafted by hu-
man experts using processor documentation and hardware execution traces as
source of modeling. [The04] describes the general workflow of utilizing abstract
interpretation to obtain a timing model of a system. The system is partitioned
into units maintaining an inner state, and update rules describe the evolution
of states. The interaction of units is realized via typed signals. The resulting
system model allows for a cycle-precise simulation of program execution. As
system models tend to be large, even when focusing on timing relevant parts,
components (i.e. parts of the units) can be abstracted using the framework of
abstract interpretation [CC77, CC79]. Resulting abstract timing models can still
be cycle-precisely simulated, but may include non-determinism. Development
of a system model is time-consuming and error-prone. Finding abstractions that
are suitable for timing analysis is the task of an experienced software engineer.

Current sophisticated processors used in the embedded area employ more
and more advanced hardware features that improve the system’s average-case
performance. The increasing demand for more and more computing power
and a reduced time to market require large development teams designing a
system. Reliability, and thus simulation and verification of the designs are
crucial issues. Formal hardware description languages are explicitly designed
to support both, design and verification. The final hardware – realized on an
ASIC or FPGA – is synthesized out of the formal hardware description. Formal
verification, simulation and intensive testing are used to ensure that hardware

3

Chapter 1. Introduction

and specification are equivalent. Thus, cycle-accurate timing of the components
comprising a system is already part of the formal specification.

However, hardware specifications of modern processors tend to be large. For
that very reason, simulation of large programs with unknown inputs and un-
known initial hardware state is impossible. Deriving a timing model that is
suitable for the usage within static timing analyzers from a formal specifications
would render both problems – the time-consuming and error-prone implemen-
tation – obsolete. Furthermore, the resulting timing model could be proven to
be correct since both, hardware and model, rely on the same source.

This thesis summarizes the methodology for the derivation of timing models
from hardware description languages that is presented in [Pis12] in more detail.
Based on a formal specification of a processor (or component), a systematic
reduction in size and complexity has to be achieved. A process consisting of two
phases is presented that comprises a structured workflow to derive an abstract
timing model suitable for its usage within the aiT timing analyzer framework.

The first phase, called model preprocessing, reduces the size of a hardware specifi-
cation by employing statically available information. Model preprocessing is
composed of three constituents: Parts of a specification that are irrelevant for
the processor’s (or component’s) timing can be pruned out in order to reduce
the specification’s complexity. From the derivation methodology’s point of view,
a hardware specification is assumed to be correct. Thus, arithmetic operations
are assumed to be correctly modeled, and therefore, information on the internal
function of a multiplier are not interesting for timing analysis. Instead, it is
sufficient to know, how many clock cycles an instruction occupies each stage of
the multiplier’s pipeline. Pruning out this information is called timing dead code
removal.

However, the specification of a processor is still large and complex after timing
dead code removal. Current embedded hardware architectures offer a huge
variability concerning their configurability. E.g., caches can be configured to
be used as scratchpads, partial cache locking can be enabled, unified caches
can be used for instructions or data only, caching can be disabled, etc. Within
the specific field of application in the embedded area, the configuration of the
hardware is fixed. Thus, the fixed configuration renders parts of the specification
inactive and allows for their removal. Besides these features, there exist a variety
of events that are either asynchronous (e.g., DMA, or interrupts) or simply not
predictable in their occurrence (e.g., ECC errors). A timing analysis cannot deal
with these events, thus parts in a specification dealing with the handling of
these events can be safely purged for timing analysis. Within the derivation
methodology, this step is called environmental assumption refinement.

The third step in model preprocessing is the removal of data paths preparing a
specification to be used within the aiT analyzer framework. In general, the

4

latency of instructions is not influenced by the contents of registers and memory
cells. In other cases, the timing depends on such information, but we may choose
to lose the exact timing knowledge in order to make the analysis more efficient,
or even to make it possible at all. [Sic97] has shown that addresses generated
by a task on a hardware can be separated from the task’s execution. Thus, data
paths can be pruned out of a specification. Whenever an address is needed for
hardware simulation, an interface to the external address analysis results has to
be introduced.

For complex architectures, the space required to represent a certain processor
state may still be too large even after model preprocessing, rendering a timing
analysis infeasible in terms of memory consumption. Therefore, the derivation
methodology proposes a second phase, namely processor state abstractions, that
deals with approximating parts of the processor state by providing powerful
abstractions requiring less space but also loses some precision. One example
of such a state approximation is the replacement of a concrete address by an
interval abstraction. For cache-inhibited memory accesses, this loss in precision
might be acceptable, as for timing analysis, the latency of the cache-inhibited
access is only determined by the memory type that is addressed.

Using the methodology of abstract interpretation for processor state abstractions,
we can trade precision of the analysis against efficiency by choosing different
processor abstractions and concretization relations between the concrete proces-
sor state and the abstract one. To ease timing model derivation, the derivation
methodology is embedded into a sound framework. The semi-automatic work-
flow starting with a processor specification given in VHDL – one of the most
prominent hardware description languages – to derive a timing model suitable
to be used within the aiT analyzer framework is presented in [Pis12].

A key part of the derivation framework are static analyses of hardware descrip-
tion languages that support especially environmental assumption refinement
and timing dead code elimination, but also aid in model understanding sup-
porting an engineer in finding suitable abstractions. This thesis presents a novel
framework for generating sound and precise static analyses from high-level spec-
ifications. The static analysis framework is based on the framework of abstract
interpretation, which is the most powerful de facto standard for designing static
analyses. Naturally, the proposed analysis framework enjoys all the powers of
the abstract interpretation framework such as provable correctness of analyses,
a generic fixed-point engine for implementation, and a methodology for tuning
analyses results.

To ease the development of static analyses, an abstract semantics for hardware
description languages at the example of VHDL is introduced. The analysis
framework and the abstract semantics are not limited to full designs, nor to
synchronous circuits.

5

Chapter 1. Introduction

The abstract semantics is based on a transformed semantics, where the two-level
semantics of VHDL is expressed by an equivalent sequentialized one-level se-
mantics. The sequentialized representation enables applicability of common
static analyses that are well-known from the compiler construction domain even
for hardware description languages. In general, specifications given in VHDL
can be interpreted in two different ways. The standard simulation approach is
similar to the simulation of imperative languages. By this, a larger subset of
specifications including behavioral descriptions can be handled. The synthesis
approach to interpret a VHDL specification is closer to the final hardware (i.e. a
specification is given at the level of register transfer), and is thus more interesting
for the derivation of timing models. The running parts within a register-transfer
level specification are processes, which are all collections of actions to be ex-
ecuted in sequence. These processes all run in parallel executing their list of
actions; afterwards a process suspends. Dependencies between processes (via
signals) enforce reactivation of certain processes, which induces delta-delays into
a simulation. Delta-delays take conceptually zero time, and simulation time is
only advanced, if all processes have been suspended. A static process schedule
within a loop that is used by the synthesis approach to simulation assumes that
delta-delays have already been eliminated. The analysis framework presented in
this thesis combines both approaches to simulation by choosing a fixed process
execution order, and adding a dedicated virtual simulation process to handle
the delta-delays. Thus, process reactivation chains need not to be known as they
are handled implicitly by the analysis framework.

To show the suitability of the analysis framework and the abstract semantics, and
to manifest the applicability of the methodology to derive abstract timing models,
this thesis further describes some static analyses supporting the derivation
process. Realizing abstractions of the state of a processor that result in a more
efficient analyzability, but also result in a still precise WCET estimate remains
the task of an experienced software engineer, but static analyses can help in
finding them. They support hardware model understanding in all phases and
can assist a software engineer in the model preprocessing phase.

Assisting an engineer in environmental assumption refinement can be auto-
mated by the combination of two static analyses. First, the reset behavior of
a system needs to be examined. The language standard defines initial values
for all signals comprising a system, but usually, these values will be altered
during the system’s boot-up phase. As a system needs to sustain a stable and
reproducible state also after a reset, the initial state (and also the initial values
of signals and variables) is assigned to the system during the reset handling.
In a complex computer system composed of different components connected
via a system bus, and different peripheral devices, assigning the initial values
to signals often takes more than one clock cycle. Identification of initial values
assigned to signals can be automated by a constant propagation analysis that
yields for each program point, whether or not a signal has a constant value

6

whenever execution reaches that point. Using the static analysis framework and
the abstract semantics, a constant propagation can be easily extended to cope
with the semantical characteristics of hardware description languages. Combin-
ing the resulting values for rising and falling clock cycles, the extended analysis,
which is called reset analysis, computes the initial values assigned to signals
during the system’s reset handling. Besides this, reset analysis also computes a
set of possible clock domains that are present in the specification.

Basing on the fixed configuration of a processor for its specific application
context and building on a set of assumptions on the behavior of the surrounding
environment (e.g., no occurrence of asynchronous events like DMA), parts
of a processor specification become inactive. In order to identify these parts,
we present the assumption evaluation analysis that takes a user-provided set of
assumptions on the behavior of the system and its configuration, and the results
of a prior reset analysis as inputs and computes a set of signals that become
stable under the set of assumptions. Assignments to these stable signals are
pruned out of the specification, and the remaining read references are replaced
by the constant value. Also smaller co-domains for signals and variables being
valid under the set of assumptions are computed. Results are then used to prune
out parts of the specification that become unreachable resulting in a smaller
specification. As this static analysis computes the transitive closure on stable
signals and restricted co-domains, assumptions can also be provided iteratively.
Thus, the assumption evaluation analysis allows to automate the environmental
assumption refinement phase of the derivation methodology.

Beyond that, also the identification and removal of timing dead code can be
automated. The goal of timing dead code elimination within the derivation
methodology is to restrict a given hardware specification to statements that
contribute to a processor’s timing. Instructions executed by a processor can
only have an influence on the processor’s state as long as they are active within
the execution pipeline. Thus, computing backward slices (cf. [Wei79]) for those
points in a specification, where instructions leave the pipeline yields all program
points that are influenced by instructions. All statements of a hardware specifi-
cation that are not contained in the union over all these slices are definitively
known to not influence a processor’s timing behavior, and can thus be safely
pruned from the specification in order to reduce the complexity. Identification
of those points where instruction retire within a given hardware specification
is to be done manually, but slicing can aid an engineer during this task. This
thesis also presents a generic backward slicing algorithm for hardware description
languages that supports both tasks. The algorithm is based on static analyses
that are used to reconstruct control and flow dependencies contained in the
hardware specification. Furthermore, process activation dependencies are taken
into account. Given the retirement points of instructions as described above,
slicing as presented in this thesis is able to automatically identify timing-dead
code. Besides its applicability within the timing dead code elimination step of

7

Chapter 1. Introduction

the model preprocessing phase, slicing is useful in all other phases comprising
the derivation methodology to support model understanding. Therefore, also
an interactive version of the slicer has been developed.

Since all analyses presented within this thesis rely on the proposed analysis
framework that is based on the framework of abstract interpretation, analyses
can be proven to be correct. Thus, this thesis also presents a correctness proof
for the three analyses that compose the slicing tool. Soundness considerations
of analyses results utilizing a technique from the hardware verification domain,
namely interval property checking [Bor09], are also subject of this thesis.

1.1 Related Work

This thesis presents a static analysis framework for hardware description lan-
guages that is based on the framework of abstract interpretation. To the best of
our knowledge, nobody has tried before to partly automate the development
process of a timing model for processors with the goal of WCET determination.
Although the framework has been developed with the goal to support this
automation, it is also applicable to other domains.

Static analysis techniques are still subject to research, but techniques for analysis
of hardware description languages are scarce. The work that has been published
in this area is mostly concerned with security aspects of hardware designs
[LTH�10].

In the mid nineties, the SAVE project (Static Analysis for VHDL Evaluation)
aims at defining and implementing a set of tools that support a circuit designer
to improve the quality of VHDL descriptions. The quality of VHDL code is
expressed using different metrics that are concerned with the complexity of the
code, the simulation efficiency, the feasibility of the synthesis, and the testability
of the circuit. In [Ste94], they present a framework that aims at visualizing these
metrics and advising a designer to improve the VHDL code.

[BBS96] describes a static analysis technique based on data-flow analysis [Kil73]
to analyze behavioral VHDL descriptions that are syntactical similar to proce-
dural programming languages. In contrast to our approach that focuses on
the analysis of hardware descriptions at the level of register transfer, their goal
is the discovery of implementational errors, the identification of critical code
fragments with respect to the synthesizability, and the derivation of test-patterns
from the behavioral description that can be used to validate a register-transfer
level simulation.

The analysis of information flow on synthesizable VHDL programs is described
in [TNN05, Tol06]. Tolstrup et al. utilize static program analyses, such that

8

1.2. Structure of this Thesis

they result in tools that can automatically and efficiently verify specifications
of integrated circuits and give exhaustive and correct assurances of Common
Criteria objectives (cf. [ISO98]).

The closest related work on applying abstract interpretation to hardware de-
scription languages is proposed by Hymans in [Hym04]. In this work, the
author describes a method for applying abstract interpretation to the verifica-
tion of VHDL designs. The advantage of the approach is that data abstractions
that are commonly applied in program analysis can be utilized to hardware
designs. Given a property, the abstract interpreter can automatically confirm
it, if it is satisfied. Thus, Hymans’ technique allows to verify designs that are
data-dominated, as opposed to control-dominated designs that are typically
verified using model checking. The drawback of the method compared to inter-
val property checking is the absence of temporal aspects that can be expressed
within the properties. The work follows a simulation-based approach to model
interpretation allowing also the analysis of behavioral descriptions, whereas the
work presented within this thesis combines simulation- and synthesis-based
approaches and focuses on register-transfer level descriptions. To mitigate inac-
curacies and imprecision induced by delta-delays in the abstract interpretation
when following a simulation-based approach, Hymans adds additional steps in
the interpreter framework.

Besides these different techniques to apply classical program analyses to hard-
ware description languages, there exist also some approaches to compute slices
on them.

[CFR�99, CFR�02] describes an approach for slicing of VHDL that is also based
on a program dependency graph. Language constructs from VHDL are mapped
to language constructs of traditional procedural languages like C or ADA. In
contrast to slicing as presented in this thesis introducing a new kind of depen-
dency, namely activation dependency, to cope with the reactive nature that is
special to hardware description languages, the authors introduce a particular
master process for the simulation of process reactivations.

Slicing as described in [RKK04] is limited to synchronous circuit specification
and focuses especially on the event-oriented communication structure of VHDL
designs, whereas our slicing algorithm is not limited to synchronous circuit
specifications.

1.2 Structure of this Thesis

In the next chapter, the mathematical foundations of this thesis will be briefly
described. Basics of abstract interpretation, fixed-point theory, and data-flow

9

Chapter 1. Introduction

analysis are given. Also algorithms for solving data-flow problems are de-
tailed.

In Chapter 3, current methods for computing worst-case execution time bounds
of a task are detailed, and an overview over nowadays tools for computing
runtime estimates is given. The aiT WCET analyzer is described in more detail,
and its micro-architectural analysis part is presented.

Chapter 4 discusses hardware features that have been mainly developed to in-
crease the average-case performance of modern processors. Also their impact on
the timing predictability of the system employing these features is investigated.
Furthermore, current hardware development using formal hardware description
languages that ease interoperability, simulation, synthesis, and verification is
detailed, and the semantics of VHDL as a prominent example is defined.

Chapter 5 introduces the concept of transformations of VHDL and provides its
abstracted semantics. Building on these transformations, the methodology for
the derivation of timing models is introduced. To ease timing model derivation,
the derivation methodology is embedded into a consistent framework building
on static analyses and transformations of VHDL.

The novel framework for static analysis of VHDL that is the key part of the deriva-
tion framework and the transformation of VHDL to the new abstract semantics
is detailed in Chapter 6. The usability of the abstract semantics is illustrated
by three different analyses that also support the derivation methodology. A
correctness proof is also given.

The subject of Chapter 7 is the implementation of the described analyses. Re-
search as well as industrial specifications of processors or components are used
to evaluate the applicability of the tools. Also soundness considerations of the
analyses results and code of work rules for deriving timing models are given.

Chapter 8 summarizes the contributions of this thesis and provides an outlook
to future work.

10

2
Preliminaries

By three methods we may
learn wisdom: first, by
reflection, which is noblest;
second, by imitation, which is
easiest; and third, by
experience, which is the
most bitter.

(Confucius)

This chapter gives a brief survey on the mathematical concepts underlying
this thesis. Besides a short introduction to lattice theory and fixed-point the-
ory, also the theory of static program analysis in the framework of abstract
interpretation [CC77, CC79, Cou81, CC91, CC92a, CC92b, Cou01, NNH99] is
presented. Finally, algorithms for computation of safe results and the concepts
of interprocedural analyses are presented.

2.1 Lattice Theory

Definition 2.1.1 (Partially ordered set)
Given a set P . A relation �P � P � P is called partial ordering, iff it is reflexive,
transitive and anti-symmetric. pP,�P q is called a partially ordered set.

Definition 2.1.2 (Ascending chains, descending chains)
Given a partially ordered set pP,�P q. A subset X � P is called a chain, iff

@x1, x2 P X : px1 �P x2q _ px2 �P x1q.

11

Chapter 2. Preliminaries

X is also called a totally ordered subset of P .

A sequence p0, p1, p2, . . . with pi P P is called an ascending chain, if

a ¤ b ùñ pa �P pb.

Similarly, the sequence is called a descending chain, if

a ¤ b ùñ pb �P pa.

A partially ordered set pP,�P q is said to satisfy the ascending chain condition
if every ascending chain of elements eventually stabilizes, i.e. there exists a
positive integer m such that

pm � pm�1 � pm�2 � . . .

Similarly, pP,�P q is said to satisfy the descending chain condition if every descend-
ing chain of elements eventually stabilizes, i.e. there is no infinite descending
chain.

Definition 2.1.3 (Upper bounds, lower bounds)
Given a partially ordered set pP,�P q and a set X � P . An element u P P is
called upper bound of X , iff

@x P X : p �P u.

An element u P S is called least upper bound of X ,
�
X , iff u is an upper bound

of X and for all other upper bounds a of X , u �P a holds.

Analogously, an element l P P is called lower bound of X , iff

@x P X : l �P x.

l P S is called greatest lower bound of X ,
�
X , iff l is a lower bound of X and for

all other lower bounds a of X , a �P l holds.

For convenience, a\ b is used for
�
ta, bu, and a[b for

�
ta, bu.

Lemma 2.1.1
In a partially ordered set satisfying the ascending chain condition, every as-
cending chain p0, p1, . . . has a least upper bound, namely

�
nPω pn � pm, with

ω � pN,¤q, where m is the index where the chain stabilizes.

Definition 2.1.4 (Complete lattice)
A partially ordered set pL,�Lq is called a complete lattice, iff for every set P � L,�
P and

�
P exist. A complete lattice has a least element K with K �

�
H and

a greatest element J with J �
�
L. Though it is not mathematically precise, we

often write a complete lattice as the tuple pL,�L,\,[,K,Jq.

12

2.2. Fixed-Point Theory

2.2 Fixed-Point Theory

Sometimes, one needs to solve a recursive equation system, i.e. an equation
system, where the value to be defined also occurs on the right side of the
formula. A well-known example of such a recursive equation system is the
factorial function defined by:

facpnq �

#
1 if n � 0,
n � facpn� 1q otherwise.

Every solution has to fulfill this equation. In order to solve a recursive definition,
a simple iterative approach can be used: Starting with the smallest element of
the solution space K, the definition for the proximate larger element is obtained.
Applying this approach n-times results in a function being defined for the
interval r0, . . . , n� 1s. Generating the limit n ÞÑ 8 yields the function defined
for the natural numbers.

This iterative method can be formalized as follows:

Definition 2.2.1 (Montone function, distributive function)
A function f : D1 Ñ D2, where pD1,�1q and pD2,�2q are partially ordered sets,
is called

• monotone function, if @d, d1 P D1 : d �1 d
1 ùñ fpdq �2 fpd1q,

• distributive function, if @d, d1 P D1 : fpd\1 d
1q � fpdq \2 fpd1q.

Definition 2.2.2 (Pre-fixed point)
Given a function f : D Ñ D on a partially ordered set pD,�Dq. A pre-fixed point
of f is an element d P D, such that fpdq �D d.

Definition 2.2.3 (Fixed point)
Given a function f : D Ñ D. An element d P D is called fixed point of f , iff
fpdq � d.

Theorem 2.2.1 (Fixed-point iteration)
Given a partially ordered set pL,�Lq satisfying the ascending chain condition
and having a least element K, and a monotone function f : LÑ L. Let lfppfq ��

nPω f
npKq, with ω � pN,¤q. Then, lfppfq is a fixed point and also the least

pre-fixed point of f . The following holds:

1. fplfppfqq � lfppfq, and

2. fplq �L l ùñ lfppfq �L l.

Proof 2.2.1
In order to prove this, both propositions must be shown separately:

13

Chapter 2. Preliminaries

to 1.

fplfppfqq � f

�§
nPω

fnpKq

�
�

§
nPω

fn�1pKq

�

�§
nPω

fn�1pKq

�
\ tKu

�
§
nPω

fnpKq

� lfppfq

to 2. Let l be a pre-fixed point. It holds that K �L l. Due to the monotonicity
of f , fpKq �L fplq. l being a pre-fixed point of f implies fpKq �L l. By
induction, fnpKq �L l and thus, lfppfq �

�
nPω f

npKq �L l. Since every
fixed point is also a pre-fixed point, lfppfq is the least fixed point of f .

2.3 Abstract Interpretation

Abstract interpretation [CC77] is a theory of sound approximation of program
semantics, based on monotonic functions over ordered sets. It is applicable in
static analysis, i.e. the extraction of information about the possible executions of
programs. Often, a system’s semantics needs to be approximated. To guarantee
that only valid properties are derived, the approximation needs to be sound.
The framework of abstract interpretation provides a theory of deriving a sound
approximation of a concrete semantics. This section describes the framework in
more details.

A program might start its execution in different initial states. All of them need to
be taken into account in a static analysis in order to compute reliable properties
of the program. In order to be able to take all initial states into account, the
concrete semantics working on one individual state is to be lifted to a collecting
semantics working on sets of concrete states.

Definition 2.3.1 (Control-flow graph)
A program P can be represented by its control-flow graph G � pV,E, s, xq, with
a set V of vertices, and a set E � V � V of edges, where:

1. the nodes v P V zts, xu represent program statements from P ,

2. the edges E represent possible control flow,

14

2.3. Abstract Interpretation

3. s represents the start node, i.e. @v P V : pv, sq R E, and

4. x represents the end node, i.e. @v P V : px, vq R E.

The control-flow graph representation is useful for program analysis. After run-
ning an analysis, information needs to be extracted from the control-flow graph.
The information extracted is the collecting semantics. It can be state-based (also
called “first-order”, [Nie82]) mapping a program point to the range of values
that enter the program point, or path-based (“second-order”) mapping a program
point to the set of paths that lead into the program point. In the following, the
thesis focuses on the more general path-based collecting semantics.

Definition 2.3.2 (Path)
A sequence π � pv1, v2, . . . , vnq with vi P V is called a path through a control-
flow graph pV,E, s, xq, iff

1. v1 � s, and

2. @i P t1, . . . , n� 1u : pvi, vi�1q P E.

A sequence π � pv1, v2, . . . , vnq is called a path to v, iff π is a path and vn � v.
The set P rva, vbs denotes all subsequences pva, . . . , vbq of paths to vb that contain
va.

Given a transformer f : E Ñ D Ñ D that computes the effect of the program
statement assigned to a node v being the source of the edge e � pv, wq P E for a
given state s P D, the semantics of a path π can be defined.

Definition 2.3.3 (Path semantics)
Given a transformer f : E Ñ D Ñ D, the semantics of a path π � pv1, v2, . . . , vnq
is defined as

[π] �

#
λx.x if π � psq,
fppvn�1, vnqq � [pv1, . . . , vn�1q] otherwise.

Program analyses normally shall compute properties for sets of initial states.
Thus, the semantics of a path has to be lifted to compute the semantics of a path
for a set of initial states S P D � PpDq. Therefore, also the definition of the
transformer-function f must be extended to deal with set of states:

f : E Ñ D Ñ D : fpeqpSq :� tfpeqpsq | s P Su

Using this transformer f, the collecting path semantics can be defined.

15

Chapter 2. Preliminaries

Definition 2.3.4 (Collecting path semantics)
Given a transformer f : E Ñ D Ñ D, the collecting path semantics for a path
π � pv1, v2, . . . , vnq is defined as

[π]coll �

#
λx.x if π � psq,
fppvn�1, vnqq � [pv1, . . . , vn�1q]coll otherwise.

In program analysis, one often wants to know a certain property being valid at
a dedicated program point, i.e. a node of the control-flow graph. E.g., a constant
propagation shall determine the set of variables being constant at a particular
program point. This can be formalized by the “sticky” collecting semantics
mapping a node v to the set of concrete states that might be observable at v.

Definition 2.3.5 (Sticky collecting semantics)
Given a program P represented by its control-flow graph GP � pV,E, s, xq, the
sticky collecting semantics CollP : V Ñ D for P on a set of concrete initial states
I � D is defined as:

CollP pvq �
¤
t[π]collpIq | π is a path to vu

It should be noted that different properties that shall be computed for a program
may require different concrete domains. Whereas the sticky collecting semantics
is defined under union, other properties may require a semantics build up
under intersection. Nevertheless, the above definition is sufficient, as a problem
to be solved on a lattice under disjunction can be transformed to a problem
to be solved on the dual lattice under union. Anyhow, the sticky collecting
semantics as presented is adequate for a constant propagation analysis, whereas
a live-variables analysis would require a trace-based semantics (cf. [Nie82]).

Both the sticky collecting semantics and the trace semantics are not computable
in general. The set of initial states might be tremendously or even infinitely large,
and also the number of paths leading to a certain point may be infinite due to
loops. To solve nonetheless problems as described above, replacing the concrete
domain by a more abstract one makes computation feasible again, usually at the
cost of precision.

Sets of concrete states in D can be represented by elements from an abstract
domain Dabs. Ideally, the new abstract domain is a complete lattice with an
ordering relation �abs. The existence of a least upper bound for all subsets (cf.
Definition 2.1.4 on page 12) allows to uniquely combine elements of the abstract
domain. Analogously to the collecting path semantics, a transformation function
fabs : E Ñ Dabs Ñ Dabs is required to compute the effect of program statements
on the abstract domain.

Arguing about the correctness of an abstraction requires to establish a relation
between an element from the abstract domain Dabs and the concrete domain D.

16

2.3. Abstract Interpretation

γ
γ

�

fabs

f

Figure 2.1 – Basic concept of abstract interpretation.

This can be achieved by a monotone concretization function γ : Dabs Ñ Dmapping
an abstract state to the set of concrete states it represents. Figure 2.1 depicts the
general idea of abstract interpretation. The goal is to find an abstraction where
computation is much faster than in the concrete domain. This usually leads
to some loss of precision. The monotonicity of γ ensures that the partial order
�abs on Dabs orders abstract states according to their precision. Furthermore, the
concretization of an abstract state will be a superset of the concretization of a
more precise abstract state, i.e.

a �abs b ùñ γpaq � γpbq.

Using the abstract transformation function fabs, the abstract collecting path
semantics can be defined as follows.

Definition 2.3.6 (Abstract collecting path semantics)
Given an transformation function fabs : E Ñ Dabs Ñ Dabs, the abstract collecting
path semantics for a path π � pv1, v2, . . . , vnq is defined as

[π]abs �

#
λx.x if π � psq,
fabsppvn�1, vnqq � [pv1, . . . , vn�1q]abs otherwise.

Definition 2.3.7 (Local consistency)
Given a control-flow graph GP � pV,E, s, xq and a concretization function
γ : Dabs Ñ D. An abstract transformer fabs : E Ñ Dabs Ñ Dabs is said to be
locally consistent with a collecting transformer f : E Ñ D Ñ D, iff

@e P E, s P Dabs : fpeqpγpsqq � γpfabspeqpsqq.

Thus, fabs shall over-approximate the behavior of f, i.e. @e P E : fpeqpγpSabsqq �
fabspeqpSabsq.

17

Chapter 2. Preliminaries

Local consistency guarantees soundness of the construction. If for all edges e in
a control-flow graph GP � pV,E, s, xq, it holds that

fpeqpγpsqq � γpfabspeqpsqq,

the abstract transformer fabs is also called best transformer.

Theorem 2.3.1 (Soundness of []abs)
The abstract collecting path semantics defined by []abs is a sound approxima-
tion of the collecting path semantics []coll, i.e.

@d P Dabs : p[π]coll � γqpdq � pγ � [π]absqpdq,

iff fabs is locally consistent.

Proof 2.3.1
see [Rei08].

Similar to the concretization function γ, it is sometimes possible to give a mono-
tone function α that computes for a given set of concrete states the best abstract
state. Both functions, α and γ shall form a Galois connection:

Definition 2.3.8 (Galois connection)
Let L and M be complete lattices pL,�q and pM,¤q, and α : L Ñ M and
γ : M Ñ L be monotone functions. The tuple pL, α, γ,Mq is called a Galois
connection, iff

@l P L : l � γpαplqq

and
@m PM : αpγpmqq ¤ m.

α and γ are called abstraction and concretization function, respectively.

Figure 2.2 on the facing page illustrates the relationship induced by the abstrac-
tion and concretization function. Intuitively, the first condition ensures that by
abstracting and concretizing an element, the result will be less precise than the
starting element. Loosing some precision is acceptable since the abstract domain
shall abstract some details of the concrete domain, and thus, an element from
the abstract domain usually represents a set of concrete elements. The second
condition guarantees that α computes precise approximations of concrete states.
A Galois connection pL, α, γ,Mq is called a Galois insertion, if αpγpmqq � m holds
for all m PM .

Definition 2.3.9 (Abstract sticky collecting semantics)
Given a program P represented by its control-flow graph GP � pV,E, s, xq, the
abstract sticky collecting semantics CollabsP : V Ñ Dabs for P on an abstract initial
state Iabs P Dabs is defined as:

CollabsP pvq �
§
t[π]abspIabsq | π is a path to vu

18

2.4. Data-Flow Analysis

pL,�q pM,¤q

l

αplq

γpαplqq

m

γpmq

αpγpmqq

Figure 2.2 – Galois connection pL,α, γ,Mq.

Theorem 2.3.2 (Soundness of CollabsP)
The abstract sticky collecting semantics CollabsP is a sound approximation of the
sticky collecting semantics CollP , i.e.

@v P V : CollP pvq � γpCollabsP pvqq,

iff fabs is locally consistent and Iabs is the abstraction of the set of concrete initial
states I , i.e. Iabs � αpIq.

Proof 2.3.2
see [Rei08].

2.4 Data-Flow Analysis

Data-flow analysis is a technique for gathering information about the possible set
of values calculated at various points in a computer program [Kil73]. In contrast
to abstract interpretation, data-flow analysis does not have an inherent notion of
correctness in matters of a concrete semantics. Given the abstract transformation
function fabs, data-flow analysis can compute an over-approximation of the
abstract sticky collecting semantics CollabsP . Abstract interpretation provides
semantical soundness to data-flow analyses, however, abstract interpretation is
also applicable to other domains.

Data-flow analysis is inherently flow-sensitive and typically path-insensitive,
but it is possible to define data-flow equations that yield a path-sensitive analysis.

19

Chapter 2. Preliminaries

A flow-sensitive analysis takes into account the order of statements in a program,
whereas a path-sensitive analysis computes different pieces of analysis informa-
tion dependent on the predicates at conditional branch instructions, i.e. at nodes
in the control-flow graph with more than one successor [Hec77, BA98]. This
thesis will use the more general definition in order to allow also path-sensitive
analyses.

Definition 2.4.1 (Data-flow problem)
Given a control-flow graph G � pV,E, s, xq, a complete lattice pL,�L,\,[,
K,Jq and a transformation function f : E Ñ L Ñ L. The tuple pG,L, fq is
called a data-flow problem. The functions fpeq are called transfer functions.

Please note that the abstract transfomer fabs on the abstract domain Dabs and a
control-flow graph GP also forms a data-flow problem dfpabs � pGP ,Dabs, fabsq.

Definition 2.4.2 (Monotone data-flow problem)
Let dfp � pG,L, fq be a data-flow problem. dfp is called monotone, iff fpeq : LÑ
L is monotone for all e P E.

Traditional data-flow analysis does not define correctness in terms of a concrete
semantics, however in data-flow analysis, the sticky collecting semantics is
called meet-over-all-paths (MOP) solution [KU76, Nie82]. In the following, this
thesis will use MOPP to denote its solution.

Unfortunately, the definition of the MOP solution does not provide a direct
way for its computation. Especially in programs containing loops, computing
the semantics of all paths is impossible. [KU77] has shown that computing the
MOP solution is not possible in general. However, under certain conditions, it
is possible to compute a safe approximation to the MOP solution, the so-called
maximal fixed-point solution (MFP).

Definition 2.4.3 (Maximal fixed-point solution)
Given a data-flow problem pGP , L, fq with GP � pV,E, s, xq of a program P , a
complete lattice L and a transformation function f : E Ñ LÑ L. The maximal
fixed-point solution MFPP : V Ñ L for an initial state i P L is the least fixed-point
of the recursive equation:

MFPP pvq �

#
i, if v � s,�
tfpeqpMFPpv1qq | e � pv1, vq P Eu, otherwise.

The name “maximal fixed-point solution” is somewhat misleading, but for all
that used for historical reason; classical literature tends to focus on analyses
where \ equals to X, which implies that the least fixed-point with respect to �
equals the greatest fixed-point with respect to �.

20

2.4. Data-Flow Analysis

Using the definitions from above, the data-flow problem dfpabs � pGP ,Dabs, fabsq
can be safely approximated by the MFP solution. If the transformation function
satisfies some properties, one can show the correctness, and also the coincidence
of both solutions, the MOP and MFP solution.

Theorem 2.4.1 (Correctness and coincidence)
Given a control-flow graph GP � pV,E, s, xq for a program P and a monotone
data-flow problem dfp � pGP , L, fq. The maximal fixed-point solution is a safe
approximation of the meet-over-all-paths solution:

@v P V : MOPP pvq � MFPP pvq

Additionally, if f : E Ñ LÑ L is distributive, the following holds:

f is distributive ùñ @v P V : MOPP pvq � MFPP pvq

Proof 2.4.1
see [NNH99].

Implicitly, definitions given here can be used to tackle forward problems, where
information is propagated in program order, i.e. the computed information
depends on the control-flow predecessors. But there exist also problems (e.g.,
live variables) that require a backward analysis, where information is computed
considering the control-flow successors. However, the definitions presented
here suffice, as a backward problem on a control-flow graph G � pV,E, s, xq
can be solved as a forward problem on the inverted control-flow graph G�1 �
pV,E�1, x, sq, with E�1 � tpn,mq|pm,nq P Eu.

2.4.1 Algorithms

There exist different approaches to solve data-flow problems. The most signif-
icant ones are the iterative algorithms, which will be presented here in more
detail.

Intuitive Method

The maximal fixed-point solution as defined in Definition 2.4.3 on the preceding
page already describes a recursive formula for its computation, which can be
directly implemented.

Given a control-flow graph GP � pV,E, s, xq for a program P , a complete lattice
L and a transformer function f : E Ñ L Ñ L, the algorithm depicted in List-
ing 2.1 on the following page computes the desired information. Termination
of the algorithm is only guaranteed if the data-flow problem dfp � pGP , L, fq is
monotone, and L satifies the ascending chain condition.

21

Chapter 2. Preliminaries

forall n P N
MFPpnq � K;

MFPpsq � i;
done � false;

while (!done)
done � true;
forall pm,nq P E

temp � fppm,nqqpMFPpmqq
if (temp � MFPpnq)

MFPpnq � MFPpnq \ temp;
done � false;

Listing 2.1 – Intuitive method for computing the MFP -solution.

Worklist Iteration

Termination of the intuitive computation method can be enforced: instead
of recomputing the data-flow value for each node in the given control-flow
graph in each loop iteration, only the data-flow value of those nodes needs
to be recomputed, where the input value has changed. Therefore, a worklist
containing all nodes that need to be revisited is introduced. The modified
version of the algorithm is shown in Listing 2.2 on the next page.

A further computational speed-up can be achieved by using some heuristics for
selecting the next node (cf. [TMAL98]).

Basic-block Optimization

Another important way in speeding up the computation is to make use of basic
blocks instead of single nodes of the control-flow graph.

Definition 2.4.4 (Basic block)
Given a control-flow graph G � pV,E, s, xq. A sequence of nodes v1, . . . , vn is
called a basic block, iff @i P t1, . . . , n� 1u:

Epv, vi�1q P Eztpvi, vi�1qu

^ Epvi, vq P Eztpvi, vi�1qu

and Ev P V , such that v, v1, . . . , vn nor v1, . . . , vn, v have this property.

During the iteration, it is sufficient to store the data-flow value only at nodes
with more than one successor. Data-flow values at nodes with one successor are

22

2.4. Data-Flow Analysis

forall n P N
MFPpnq � K;

MFPpsq � i;
workset � tn | ps, nq P Eu;

while (workset � H)
let

n P workset
in

workset � worksetztnu;
temp �

�
tfpeqpMFPpmqq | e � pm,nq P Eu

if (temp � MFPpnq)
MFPpnq � temp;
workset � worksetY tm | pn,mq P Eu;

Listing 2.2 – Worklist method for computing the MFP -solution.

propagated to that successor by means of the transfer function of the intervening
edge. This is repeated until a node with more than one successor is reached
(chain optimization). After the iteration, the information is propagated to all
nodes by a post-processing step.

Widening and Narrowing

A possibility to enforce termination of a data-flow analysis is using widening
and narrowing as introduced in [CC77] and [CC92a]. Using these operators
guarantees termination even though the underlying lattice does not satisfy the
ascending chain condition. Using widening even makes sense in cases where
computing a precise result would take too much computational effort, at the
cost of precision. The approximation found in this way can then be improved
using narrowing.

Definition 2.4.5 (Widening)
Let pL,�L,\,[,K,Jq be a complete lattice. An operator 5 : L � L Ñ L is
called widening operator, iff:

@l,m P L : l �L pl5mq

^ @l,m P L : m �L pl5mq

and for every ascending chain l1 �L l2 �L � � � , the ascending chain m1 �L

m2 �L � � � , constructed by

m1 � l1

mi�1 � mi5 li�1

23

Chapter 2. Preliminaries

pL,�q

...

tl | fplq � lu

lfppfq

f 0
5

f 1
5

f 2
5

fm�1
5

fm
5 � fm�1

5 � . . .

Figure 2.3 – The widening operator5 applied to f .

eventually stabilizes.

Given a monotone function f : L Ñ L on a complete lattice L and given a
widening operator5 on L, one can construct the sequence f 0

5, f
1
5, . . . by

fn
5 �

$'&'%
K if n � 0,
fn�1
5 if n ¡ 0^ fpfn�1

5 q �L f
n�1
5 ,

fn�1
5 5 fpfn�1

5 q otherwise.

Following this construction, f is reductive at a certain point fm
5 , i.e. fpfm

5 q �L f
m
5 .

Theorem 2.2.1 implies that fm
5 � lfppfq, and thus, the widening operator yields

the desired approximation. Figure 2.3 illustrates this iteration sequence.

Use of a widening operator thus leads to an over-approximation of the desired
least fixed-point. In order to improve the approximation provided by fm

5 , a
narrowing operator establishing a descending chain criterion can be used.

Definition 2.4.6 (Narrowing)
Let pL,�L,\,[,K,Jq be a complete lattice. An operator 4 : L � L Ñ L is
called narrowing operator, iff:

@l,m P L : pl �L mq ùñ pl �L pm4 lq �L mq

and for every descending chain l1 �L l2 �L � � � , the descending chain m1 �L

m2 �L � � � , constructed by

m1 � l1

mi�1 � mi 4 li�1

24

2.4. Data-Flow Analysis

pL,�q

...tl | fplq � lu

lfppfq

f 0
4 � fm

5
f 1
4

fm1�1
4
fm1

4 � fm1�1
5 � . . .

Figure 2.4 – The narrowing operator4 applied to f .

eventually stabilizes.

Given a narrowing operator4 : LÑ L, and a point fm
5 satisfying fpfm

5 q �L f
m
5 ,

one can construct the sequence f 0
4, f

1
4, . . . as follows:

fn
4 �

#
fm
5 if n � 0,
fn�1
4 4fpfn�1

4 q if n ¡ 0

Figure 2.4 illustrates the sequence. Intuitively, the narrowing operator is used
to reduce the over approximation introduced by use of a widening operator.
[NNH99] proofs that the sequence f 0

4, f
1
4, . . . is a descending chain in the re-

ductive subset1 of the given complete lattice L, and thus fn
4 �L lfppfq for all n.

2.4.2 Interprocedural Analysis

Up to now, only programs with one procedure have been considered. However,
this is not the general case, and preferably, data-flow analysis has to deal with
more complex programs including procedures, loops and recursion.

A trivial approach to deal with complex programs would be to treat procedures
as conservatively as possible. From the point-of-view of a data-flow analysis, all
data-flow values computed so far need to be invalidated at every call instruction.
This approach is easy to implement, but imprecise.

1The reductive subset of a lattice L is defined by tl P L | fplq � lu.

25

Chapter 2. Preliminaries

A typical program consists of more than one procedure, which may be called
from different places in the program with different arguments and different
values for global variables. Best data-flow analysis results can be obtained by
inlining the called function at the place of the call instruction. This approach
definitively separates all procedure calls, but cannot be applied to recursive
procedures.

In general, a procedure called more than once will have different call contexts,
which lead to different updates of data values in the called procedure. Best
results can be obtained when the procedure is analyzed separately for each call
context. First, one needs to define a special interprocedural control-flow graph,
the so-called supergraph.

Definition 2.4.7 (Supergraph)
Given a program P with procedures P0, P1, . . . , Pn. Let P0 be the main proce-
dure of P , and let G0, G1, . . . , Gn with Gi � pVi, Ei, si, xiq be the control-flow
graphs of these procedures. The supergraph G� � pV �, E�, s�, x�q for the pro-
gram P is the collection of control-flow graphs G0, G1, . . . , Gn. Each procedure
call in the program P is represented in G� by two nodes, a call node and a return
node. In addition to the ordinray intrapocedural edges that connect the nodes
of the individual control-flow graphs Gi, for each procedure call – represented
by call node c and return node r – G� contains three egdes: an intraprocedural
local edge from c to r, an interprocedural call edge from c to the starting node
si of the called procedure Pi, and an interprocedural return edge from the exit
node xi of the called procedure Pi to the return node r.

To separate the different contexts of a procedure call, the call-string approach
introduced by [SP81] can be used:

Definition 2.4.8 (Call string)
Given a supergraph G� � pV �, E�, s�, x�q and a path π � pv1, v2, . . . , vnq. The
call string cs is defined as the sequence pcalla, callb, . . . , callzq, with
calli P tv1, v2, . . . , vnu ^ returni R tv1, v2, . . . , vnu. Intuitively, the call string of a
path π is the number of pending calls in π.

Using the call-string approach on a given supergraph allows using the algo-
rithms presented in Section 2.4.1 in order to solve a data-flow problem on an
interprocedural control-flow graph. In the following, the terms control-flow
graph and supergraph are used both to denote an interprocedural control-flow
graph.

26

3
WCET Estimation

To err is human but to really
foul up requires a computer.

(Dan Rather)

Embedded systems are the most used computer systems supporting our every
day life. They can be found in mobile phones, multimedia players, cars, etc. In
the area of safety-critical systems, human life often depends on a correct behavior
of these systems. Will my airbag save my life if I have an accident with my car? is
a crucial question. It depends on the correct behavior of the airbag controller
detecting the crash timely and firing the right airbags. Another example for such
a hard real-time system is the flight control computer of an airplane, which is
responsible for the stability and attitude. All of these systems have one thing in
common: they are subject to stringent timing constraints (beside their functional
correctness) which are dictated by the surrounding physical environment.

A schedulability analysis needs to prove that all tasks involved in the decision
process meet their physically dictated deadlines. As an input for the schedula-
bility analysis, the runtimes for the tasks need to be known. In general, it is not
possible to determine the runtime for programs due to the halting problem. But
for embedded real-time applications, it is possible since they are using only a
small programming subset which guarantees the termination of the application.
Recursion is only allowed in cases where the recursion depth is known, and also
for loops, the least and upper bounds of the iteration counts can be given.

Nevertheless, runtimes of a task vary depending on the actual input data, the
initial hardware state, and the interference from the physical environment.
Whereas the functional behavior of a task normally is only dependent on the

27

Chapter 3. WCET Estimation

probability

execution
time

BCET WCET

variation due to different inputs
and initial hardware state

Figure 3.1 – Distribution of execution times for a task. The minimal and maximal
times are the best-case (BCET) and worst-case execution times (WCET),
respectively.

input, the timing behavior of a task is also dependent on the current state of the
hardware, especially in the presence of caches, execution pipelines and other
hardware features. Preemptions and interrupts do also influence the timing
behavior of a task.

Figure 3.1 shows the distribution of execution times for a task. The minimal
runtime for a task is known as the best-case execution time (BCET), the maximal
runtime is called the worst-case execution time (WCET).

3.1 Methods

Determining the worst-case execution time for a task has been subject to research
since the last three decades. An overview on the different approaches to tackle
the problem of computing safe and precise WCET estimates is given in the
following sections.

According to [WEE�08], existing approaches for the WCET estimation can be
classified into two categories:

• Measurement-based methods utilize program executions and traces to obtain
the WCET, and

• Static methods only consider the executable program for all possible con-
crete inputs.

28

3.1. Methods

3.1.1 Measurement-based Approaches

Measurement-based methods execute the task or parts of the task on the target
hardware or a simulator for some set of inputs. The runtime of a task can be
obtained by augmenting the program with additional code to use hardware
timers or by using a logic analyzer and identifying the relevant signal changes
directly. This leads to a distribution of measured times as shown in Figure 3.2.
The method is not safe since in nearly every case, the program input leading to
the WCET is not known. Running and measuring a program for every possible
input will lead to the correct WCET, but is practically infeasible. Using a small
input subset also does not guarantee a full path coverage of the analyzed task
since it cannot be guaranteed that every path is triggered by the test vectors.

Furthermore, the method is quite expensive in terms of hardware and human re-
sources needed since real-time computer systems are connected to their physical
environment via a set of sensors and actuators. For the measurements, the sensor
data has to be provided by external simulation hardware since running the tests
on the concrete system might be too dangerous. In many of these systems, the
actuators output directly influences the values of the sensors, which also has
to be taken into account. Since the values of the sensors directly influence the
program path taken, the whole system may behave different than in the concrete
application domain.

Augmenting the task with additional code triggering timers or interrupts is also
not allowed in some application domain, e.g., in avionics. Due to certification
requirements for real-time systems, runtime guarantees must be given for the
unmodified application, and on complex architectures, the additional code
might also change a task’s runtime behavior.

Another approach combines measurement with static methods. Only small
pieces of code are measured, some safety margin is added and the results

probability

execution
time

minimal observed
execution time

maximal observed
execution time

WCET

Figure 3.2 – Measured execution times for a task (filled area). The best and worst
runtimes are not discovered.

29

Chapter 3. WCET Estimation

probability

execution
time

WCET upper
bound

overestimation

Figure 3.3 – Upper execution time bound. The overestimation is caused by uncer-
tainties that cannot be excluded statically.

are statically combined according to the structure of the analyzed task. These
approaches are called hybrid approaches. In contrast to purely measurement-based
approaches, the path-coverage problem can be solved using these approaches.
Furthermore, the measurement overhead can be reduced to a certain degree since
program snippets often are reused in the program and have to be measured only
once. However, in the presence of modern hardware (e.g., caches), guarantees
may also not be given for this approach since the measured time for the pieces
cannot be validated.

All measurement-based approaches share one large disadvantage: the surround-
ing environment and the actual hardware must be available. Especially in the
early development stages, this might not always be possible.

3.1.2 Static Approaches

In contrast to measurement-based methods, static approaches do not rely on
executing the program code on the real hardware. They take the program and
combine it with some theoretical model in order to obtain a WCET estimate. All
static methods do only compute upper bounds on the execution time of a task
leading to a WCET overestimation (cf. Figure 3.3). The overestimation itself
depends on uncertainties (e.g., on the input or about the hardware state) that
cannot be excluded statically.

One of the first approaches being applicable for a wide range of programming
languages and target architectures was presented by [Sha89] and makes use
of so-called timing schemes. The method is based on the assumption that the
runtime for atomic operations can be determined. Table 3.1 on the next page
shows a small example program and the corresponding times for the atomic
operations. The worst-case execution time can be calculated by summing up
the time for evaluating the condition of the if-statement, adding the maximum

30

3.1. Methods

Program Timing

while (x < 4) 1
if (x > 1) 1
r = r * x; 4

else
r = 1; 1

x++; 2

Table 3.1 – Simple program with execution times for atomic operations.

of the execution times of the branches – 4 in this example – and by adding the
time for the iterator increment. For loops, iteration bounds can be used. To
compute the WCET, the maximal iteration count has to be multiplied with the
execution time for the body plus the time for evaluating the condition. If the
condition of a loop is checked at the start, the condition will be executed iteration
count plus one times, which has also to be respected. For the above example,
assuming an input greater or equal to 0, this leads to a worst-case execution time
of 4� p1� 4� 2q � 5� 1 � 33.

This method produces safe WCET estimates (assuming safe execution times for
the atomic instructions and correct loop bounds), but the precision may be very
bad. Even in the small example given, the WCET bound is overestimated since
the execution of the loop body is much faster for some values of x.

Another drawback of this approach is the assumption that the worst-case execu-
tion times for the atomic instructions are invariant. Thus, the WCET estimate
is only safe, if the local worst-case execution time of an instruction does not de-
pend on the execution history. But especially on newer architectures using deep
pipelines, parallel execution units and caches, this is no longer the case. Thus,
the unit-time (executing an instruction always takes exactly one unit of time) or
constant-time abstractions used in many approaches are rendered obsolete.

A similar approach by [LMW96] models the flow through a program as an
integer linear program. This approach also assumes fixed execution times for
atomic instructions. The WCET bound is then computed by maximizing the
objective function defining the execution time.

A different static method is simulation using models of the hardware which
are usually provided by the manufacturer. These simulators are often avail-
able for architectures that are difficult to debug, so simulation might ease the
development process on these architectures. Unfortunately, these models are
sometimes not cycle-accurate. [SP09] could also show some underestimation
for the simG4 simulator [Fre06] for the Freescale PowerPC MPC7448 processor

31

Chapter 3. WCET Estimation

[Fre05a]. For simulation, the same restrictions regarding the input as mentioned
in Section 3.1.1 on page 29 for measurement-based approaches hold. Addition-
ally, simulation is much slower than executing the program on the real hardware.
[Bor09] state that nowadays simulation models are a million times slower than
the real hardware.

The most promising approach for the computation of safe upper bounds on the
WCET of a program is the use of data-flow analysis (cf. Section 2.4). The technique
is well known in the area of compiler construction [WM95] to derive properties
of a program holding for all executions. For instance, data-flow analysis is used
to obtain values of variables – the result of the analysis may then be used for
a constant propagation. So, data-flow analysis can be used to compute safety
properties holding for all executions of a program. Thereby, concrete values can
be abstracted, and computations are made on these abstracted values.

The theory underlying this approach is abstract interpretation (cf. Section 2.3 on
page 14), a framework that eases correctness proofs of the results. Figure 3.4
on the facing page roughly shows how the worst-case execution time can be
estimated using the data-flow analysis approach: The domain of the data-flow
analysis is an abstracted processor state containing all information necessary
for timing, cache contents, etc. of the complete system. Basing on the basic
block structure of the program to be analyzed, a set of abstracted states can be
cycle-wise simulated using an abstract processor model for each instruction in
the basic block. The resulting set of abstract states is then propagated to each
successor basic block. In contrast to traditional simulation, this method does not
have the drawback of unknown input since computation is made on abstract
values. The method can be viewed as an abstract simulation, each abstract state
thereby represents a set of concrete states of the target system.

Today, a variety of tools for worst-case execution time estimation exists. A short
overview over these tools, their functionality and also their limitations will be
given in the next section.

3.1.3 Related Tools

As stated earlier, determining worst-case execution time bounds has been subject
of research since the last three decades. As a result, a variety of tools for WCET
estimation has been developed. Nowadays existing tools, their functionality,
restrictions and limitations will be described in this section.

Most tools are able to analyze binary code since compiler optimizations make
it difficult to argue about the timing behavior of high-level source programs
or specifications [TSH�03]. Additionally, standards released by certification

32

3.1. Methods

instruction 1

instruction 2

instruction n

basic block

cycle-wise
simulation

Figure 3.4 – WCET estimation using abstract simulation.

authorities, e.g., DO-178B [Spe92], require that validation has to be performed
on the unmodified code that actually runs on the real-time system1.

The most prominent and successful tools in the area of measurement-based
methods are RapiTime [BBN05] and a research prototype from the TU Vienna
[PN98]. Both tools rely on input vectors triggering the worst-case execution path
to be executed during measurement. As stated earlier, this is not always possible,
so test cases can be generated to achieve basic block coverage. Combining the
basic block timings to a worst-case execution path is then in the responsibility of
the user.

The field of static WCET estimation tools is much more widespread. The most
powerful and industrially usable tool is aiT, developed at Saarland University
and AbsInt Angewandte Informatik GmbH. More details on this tool can be
found in Section 3.2, an industrial evaluation of the tool on avionics control
software can be found in [TSH�03]. Besides the aiT tool, different other static
WCET estimation tools exist. In contrast to the aiT tool, these tools do not support
complex processor architectures with hardware features like speculation, out-of-
order execution, etc. More details on these hardware features can be found in
Chapter 4 on page 41.

The Bound-T tool of Tidorum [HLS00] was originally developed at Space Sys-
tems Finland Ltd under contract with the European Space Agency and was used
for the verification of spacecraft on-board software. Nowadays, Tidorum Ltd
is extending the tool to other application domains. The tool is able to produce
safe upper bounds on the execution time of a subroutine, including all called

1“Fly what you test and test what you fly”

33

Chapter 3. WCET Estimation

functions. Unfortunately, the tool is limited to a set of non-complex architectures,
and currently, the tool is not able to cope with caches.

Another tool is SWEET [Erm03] (for SWEdish Execution Time), which was devel-
oped by the Mälardalen University, C-Lab in Paderborn and Uppsala University.
For now, development has been fully moved to Mälardalen University. The
underlying tool architecture is held modular, allowing the different parts to
act rather independently. WCET analysis with SWEET consists of three major
phases: a flow analysis reconstructing the program flow of the task to be an-
alyzed, a processor behavior analysis and an estimate calculation. Estimates
can be computed using three different approaches: a fast path-based technique,
a global IPET and a hybrid clustered technique. SWEETs behavioral analysis is
limited to in-order pipelines with no long-term effects like timing anomalies (cf.
Section 4.4 on page 60).

Only a subset of ANSI-C is supported by the research prototype from the TU
Vienna [KLFP02]. The tool cooperates with a C compiler translating programs
written in WCETC to object code and producing additional information used by
the WCET tool.

The research prototype from Chalmers University of Technology [LS99b] is
currently limited to a subset of the PowerPC instruction set architecture [Fre05b].
This tool uses an extended version of an instruction set simulator capable to
handle unknown input data.

Quality of service (QoS) guarantees for hard real-time systems are the point of
interest that led to the development of the research prototype from Florida
State University [AMWH94]. For this, a modified compiler has to be used
producing additional information like loop bounds, control flow, and instruction
characteristics. As a result, the tool produces a lower and an upper estimate for
the runtime of a task.

Heptane [CP00] combines two WCET computation methods in one tool. Besides
the timing scheme-based method which quickly produces a, under some cir-
cumstances, rather overestimated upper bound, a computation method based
on integer linear programming can be used to tighten the WCET estimate. In
contrast to the aiT tool, no automatic flow analysis is performed to identify
mutually exclusive paths.

In contrast to all other tools, Chronos [LLMR07] is an open-source static WCET
analysis tool supporting out-of-order execution and branch prediction. The
functionality of the tool is rather similar to the aiT tool. Unfortunately, the
tool currently does not support data caches, which are widely used in today’s
embedded systems.

Besides the classical measurement-based and static methods, a variety of tools
exists combining measurement with static path analysis methods. SymTA/P

34

3.2. aiT WCET-Analyzer Framework

(for Symbolic Timing Analysis for Processes) [WEY01, WKE02] combines a plat-
form independent path analysis on source code level and platform dependent
measurement on object code level. The execution times can be obtained by
simulation using a cycle-accurate processor model or by using an evaluation
board. A similar approach can be seen in the hybrid research prototype from the
TU Vienna [WKRP05, WRKP05]. The key feature of this tool is the automatic
segmentation of the program code into segments of reasonable size, and the au-
tomatic generation of test cases used to measure the execution times of all paths
within each program segment. The tool was especially designed for the analysis
of automatically generated code, e.g., code generated from Matlab/Simulink
models.

More details on available tools, supported hardware architectures, limitations
and the underlying analysis techniques can be found in [WEE�08]. In the
following section, the aiT framework for WCET analysis will be described in
more detail.

3.2 aiT WCET-Analyzer Framework

An overview of the aiT WCET analyzer is shown in Figure 3.5 on the next
page, details can be found in [FKL�99, FHL�01]. Inputs to the aiT tool are the
executable to be analyzed, additional user annotations, a description of the
memories and buses used in the target system (i.e. a list of minimal and maximal
access latencies for each memory region), the processor’s cache configuration,
flow constraints and a task (identified via its start address). Effects of interrupts,
IO and co-processors are not reflected in the predicted runtime estimate and
have to be considered separately (e.g., by a quantitative analysis). aiT consists of
different tools that can be influenced by several configuration files. The main
data is shared via the separated analyses in a human-readable representation
that was designed to simplify analyses and optimizations. This intermediate
representation is called CRL2 and can be augmented with attributes [Lan98].
The different phases are now described in more detail.

First, control-flow reconstruction (also called decoding phase) has to be performed.
aiT analyzes the binary of the task since analyzing C-code or assembly code is
not sufficient for certain certification requirements: a compiler might change the
structure of a program making the use of source code for timing consideration
impossible. Furthermore, several analyses within aiT require the use of binary
code since source code does not offer information about the use of registers
and absolute addresses of data accesses. The latter is of particular importance
for the cache analysis and for memory accesses since different regions may
have different access timings. As a result, only the binary level offers sufficient
information for safe WCET estimates.

35

Chapter 3. WCET Estimation

Executable
Program

Call- and
CFG-Builder

Loop-
Transformation

Annotations

Control-flow
Graph

Loop-Bound
Analysis

Value Analysis

Cache/Pipeline
Analysis

Static Analyses

Annotated
CFG

ILP-Solver

ILP-Generator Loop Bounds

Evaluation

Path Analysis

WCET

Figure 3.5 – Schematic overview of the aiT WCET-analyzer framework.

The control-flow reconstruction uses a bottom-up approach. Details can be
found in [The00]. The reconstructed control-flow graph must be a sound ap-
proximation, i.e. it must cover all possible execution paths. Problems may
arise when function pointers are in use. Thus, the user can aid the decoder
by providing annotations about the compiler used, call targets and targets of
dynamically computed branches. The result of the reconstruction is stored in the
CRL2 intermediate format, where the instructions are augmented with attributes
that further classify them (e.g., registers used and modified, instruction class
information, etc.).

The original control-flow graph obtained from the decoder phase is modified by
the so-called loop transformation (cf. [Mar99]), which turns loops into separate
routines that call themselves recursively. This is done in order to enhance the
precision of the timing analysis in the presence of loops (allowing the usage of
common context separation techniques). Please note that loop transformation is
only performed on the reconstructed control-flow graph, the executable itself

36

3.2. aiT WCET-Analyzer Framework

start

b0

b1

b2

b3

end

start

b0

loop call

b3

end

start

b1

b2

loop rec call

end

Figure 3.6 – Loop transformation – unmodified control-flow graph on the left, trans-
formed control-flow graph on the right side.

remains unmodified. The effect of loop transformation on a simple loop is
shown in Figure 3.6. The graph on the left shows an example containing such
a simple loop. The entire routine is entered at the special node start and
left at the special node end. The picture on the right hand side of Figure 3.6
shows the result of the loop transformation. The loop has been turned into a
separate loop routine. The calling relationship is indicated via an arrow between
the two routines. As a result of the loop transformation phase, iteration has
been replaced by recursion. Loop transformation is not applicable to loops with
multiple entries. The loops remain unchanged. Please note that there might
also exist a variety of loops that cannot be transformed by loop transformation,
especially loops with multiple entries. The loop-transformed control-flow graph
serves as input for all further analyses within the aiT toolchain.

In the third phase, the loop-bound analysis tries to automatically find the upper
bounds for loop iterations. Only for a small amount of loops, the user must
provide this bound via an external annotation. The analysis is implemented via
a data-flow analysis [NNH99].

37

Chapter 3. WCET Estimation

The value analysis phase uses a data-flow analysis to determine safe intervals
for data accesses to the memory performed by the program. These intervals
are safe over-approximations for the possible addresses of each access. Since
instruction accesses (e.g., prefetches) are precisely known and fixed by the
structure of the control-flow graph, it is sufficient to compute the access intervals
for data accesses. The analysis is an abstract interpretation of the machine
set semantics on an interval domain. It was first developed by [Sic97]. The
underlying principles of interval analysis can be found in [CH78, WW08]. The
result of this phase is context-sensitive intervals for all instructions accessing
the memory. Register contents are also modeled within the analysis. Thus, the
outcome of branches can often be determined by this phase. So, the not-taken
part in a dedicated context can often be marked as infeasible and thus, will be no
longer investigated by subsequent analyses. The quality of the results computed
by this phase can be seen in [FHL�01]. More details about the functionality
can be found in [Abs02]. Recent developments concerning the structure of the
aiT framework have led to a join of the loop-bound analysis and the value
analysis.

The combined cache/pipeline analysis is the heart of the WCET analyzer and is
also called micro-architectural analysis. It models the cycle-wise evolution of
abstract processor states and determines maximal timings for each basic block
in the control-flow graph. This phase is important for the purpose of this thesis
and will be described in more detail in the next section.

The path analysis generates an integer linear program (ILP) from the control-flow
graph of the program and the results of the combined cache/pipeline analysis.
The objective function is the execution time of the program, which is to be
maximized. Various configuration parameters, e.g., flow constraints, can be
used to model special relationships between several basic blocks. More details
on the ILP generation can be found in [The00].

The last steps in the aiT toolchain then solve the generated ILP by using an ILP
solver, map the result back to a path in the control-flow graph and visualize
it. The path shown is one possible WCET path; there might exist more than
one path in the control-flow graph leading to identical worst-case executions.
Additionally, this step computes WCET contributions for each basic block and
routine contained in the control-flow graph.

The whole aiT toolchain is controlled via an interactive driver allowing the user
to control several parameters and providing feedback. Novel developments like
a refined loop analysis and a refined infeasible-path detection are described in
[FMC�07]. A new path analysis on prediction files – a graph-representation of the
evolution of abstract pipeline states – is described in [Ste10].

38

3.3. Micro-architectural Analysis

3.3 Micro-architectural Analysis

As stated earlier, the micro-architectural analysis or cache/pipeline analysis is
the heart of the aiT WCET analyzer.

The cache analysis classifies the accesses to main memory. Within aiT, the analysis
is based on [FW99], which handles analysis of caches with least recently used
(LRU) replacement strategy. However, it had to be modified to reflect the non-
LRU replacement strategies of common microprocessors: the pseudo-round-
robin replacement policy of the ColdFire MCF5307, and the PLRU (Pseudo-
LRU) strategy of the Freescale PowerPC MPC750 and MPC755. The modified
algorithms distinguish between sure cache hits and unclassified accesses. The
deviation from perfect LRU is the reason for the reduced predictability of the
cache contents in case of Motorola ColdFire MCF5307 and Freescale PowerPC
MPC750/755 compared to processors with perfect LRU caches [HLTW03]. A
more detailed discussion on caches and the influence of the replacement strategy
on cache predictability is given in [Rei08, WGR�09].

The pipeline analysis models the pipeline behavior of the target architecture to
determine execution times for a sequential flow (i.e. a basic block) of instructions
(cf. Figure 3.4 on page 33). It takes into account the current pipeline state(s),
in particular resource occupancies, contents of prefetch queues, grouping of
instructions, and classification of memory references as cache hits or misses. The
result is an execution time for each basic block in each distinguished execution
context.

Since aiT follows a static analysis approach, also the pipeline analysis has to deal
with missing or unknown information. That is, for example, missing information
on the input of the task to be analyzed, or the outcome of some branches. Also
information computed by the value analysis might be sometimes imprecise, or,
in the worst case, totally unknown. Thus, the target region of a memory access,
and also the fact if the requested information is already contained in the cache
cannot be deterministically answered. So, micro-architectural analysis has to
deal with non-determinism and must follow all possibilities in order to compute
safe estimates for the execution time of a sequential instruction block. In contrast,
execution of a task on the target architecture always is deterministic. This is
shown in Figure 3.7 on the following page. Consider the case shown on the left:
execution of the then-branch would take much more time then executing the
else-case. Running the application on the target system would show exactly
one execution path, but in static analysis, the outcome of the condition statement
at the beginning often cannot be determined, so micro-architectural analysis has
to split the state(s) propagated along the control-flow graph and must follow
both possibilities.

39

Chapter 3. WCET Estimation

if

then else

...

Figure 3.7 – Sample program structure – the height of a block indicates its instruc-
tion count.

Moreover, not only missing input may lead to these pipeline splits, also ab-
stractions used to make micro-architectural analysis feasible may introduce
uncertainties that result in splits. Thus, in contrast to normal simulation or
execution on the real hardware, which results in an execution trace of a program,
micro-architectural analysis has to deal with an execution tree.

The pipeline analysis within aiT relies on a timing model that is currently hand-
crafted by human experts [The04, The06, FMC�07] using mainly the processor
documentation as input. Thus, timing model creation and implementation
are time-consuming and also error-prone processes. Also correctness of the
documentation used cannot be guaranteed, thus a rather complex and sophisti-
cated process of timing model validation has to be performed afterwards. As of
today, this is done by comparing the timing model with hardware traces taken
from programs, for which the worst-case input is already known. Interpreta-
tion of possible discrepancies between the micro-architectural analysis and the
hardware trace often offers a multiplicity of explanations and thus is not easy.

A more reliable and complete source of information about the timing behavior
of the processor pipeline is given by formal processor descriptions in a hardware
description language (HDL). In [The06], general ideas on how to manually derive
a timing model from these formal descriptions are described, at least for small
components.

Modern architectures offer a variety of hardware features coupled with deep
processor pipelines and out-of-order execution making timing model derivation
in the old fashioned way more and more complex. The contribution of the thesis
is the automation of some analysis steps required to (semi-) automatically derive
a timing model for a whole processor given in a hardware description language.
An overview over current embedded hardware development and its formal
description will be presented in Chapter 4.

40

4
Modern Processor

Development

What is chiefly needed is
skill rather than machinery.
. . . It is possible to fly without
motors, but not without
knowledge and skill.

(Wilbur Wright)

The need for more computing power is increasing rapidly, resulting in an increas-
ing demand for faster computer systems. The microprocessors used in those
systems are traditionally classified according to the design of their instruction
set. According to [HPG03], they can be categorized as complex instruction set
computers (CISC), reduced instruction set computers (RISC), and very long instruc-
tion word architectures (VLIW). Their characteristics according to [WM95] are as
follows:

• CISC architectures are designed to close the semantic gap between high-
level programming languages and machine languages. These architectures
are characterized by:

– a large number of different and complex addressing modes to provide
efficient access to different data structures,

– diverse versions of operations for different operand length and com-
binations of different sorts of operands,

– only a few processor registers,

41

Chapter 4. Modern Processor Development

– a huge variety of execution times for instructions (depending on the
concrete instance),

– and a microprogrammed control logic.

• The design goal of RISC architectures focuses on increasing the execution
speed of machine instructions by simplifying them. The main characteris-
tics of these architectures are:

– the restriction of memory accesses to dedicated load/store instruc-
tions,

– the ability of executing more than one machine operation per clock
cycle,

– few addressing modes,

– and a hard-wired control logic.

• VLIW architectures are explicitly designed to provide statically determined
instruction level parallelism. Thereby, a fixed number of operations can be
composed to form a VLIW instruction. Execution of the operation is then
started in parallel. The arrangement of operations to exploit a high degree
of parallelism is the task of the compiler.

Nowadays, classifying microprocessors according to this traditional scheme
becomes more and more difficult. Historically seen, the need for computing
power in articles of daily use has led to the development of RISC architectures.
The increase in computing power compared to traditional CISC architectures
then has also influenced the development of other architectures.

As of today, the market for embedded systems and also the demand for more
computing power are still increasing. The biggest bottleneck for system perfor-
mance still remains the connection of the processor core(s) to the main memory.
Thus, modern processors offer a variety of features for speeding up program
execution. The key features are described in the next section. Other components
that are paired with the processor core to form the whole system are described in
Section 4.2 on page 52. Section 4.3 on page 56 is concerned with the predictabil-
ity of modern hardware architectures. Section 4.4 on page 60 details different
classes of timing anomalies decreasing a system’s predictability. Due to the
complexity of modern processors, formal hardware description languages are
used for development. This is described in Section 4.5 on page 62.

42

4.1. Processor Cores

4.1 Processor Cores

The demand for more performance of the cores has led to the development of
sophisticated features like caches, pipelining, or branch prediction. Modern
architectures spend most of the time waiting for slow main memory, which is
mainly a cost factor. Currently, a memory hierarchy is introduced placing a small,
but fast cache between the CPU and the main memory. Basing on the fact that
normal programs exhibit a high degree of temporal and spatial locality, the use
of caches improves the overall performance dramatically. Nowadays, usage of
two or three level of cache hierarchy becomes more and more common.

In contrast to caches aiming at reducing the latency of memory accesses, deep
processor pipelines are used to make use of high parallelism in the machine
code. Execution of an instruction can be split into different phases: first, it has to
be fetched from the memory, then it is to be dispatched to its execution unit. While
in execution stage, the instruction competes for resources. After having finished
its execution, results are written back. Having passed this stage, all changes to
operands, etc. are part of the architectural state, i.e. the instruction itself does
not influence the behavior of the processor anymore. Ideally, an instruction
resides exactly one processor cycle in one stage. Since the different stages of the
processor pipeline can execute in parallel, this allows a maximal performance of
one instruction per clock cycle.

Caches as well as pipelines increase the average case performance of a system
(cf. Figure 3.1 on page 28), but there are also some programs that exhibit a
bad runtime. Both, caches and pipelines are history-sensitive, i.e. their behavior
strongly depends on instructions executed before. E.g., whether an instruction
fetch results in a cache hit or a miss depends on the instructions fetched before.
The use of pipelines and caches combined with their history-sensitivity make
it impossible to easily decide, how long an instruction resides in one of the
previously mentioned pipeline stages and thus renders timing scheme-based
WCET estimation methods inadequate. An overview on caches and pipelines as
well as their functionality and corner cases is given in the next sections.

4.1.1 Caches

A cache is a small piece of fast memory that is placed between the connection
of the processor core and the main memory to bridge the gap in performance.
There can exist different levels of caches that are hierarchical organized. The
fastest one is the closest to the processor and is called level-1 cache (or L1 cache
for short), the next one level-2 cache, and so on. For a memory access, whose
data is not found in the cache Ln, the Ln�1 cache is asked for the corresponding
data. If there is no next cache, data is loaded from the main memory. The

43

Chapter 4. Modern Processor Development

.

.

.

Ways

line 0 line 1 ... line A � 2 line A � 1

Se
ts

0
S
�

1

Tag D V ... Data

Figure 4.1 – Cache architecture.

architecture of a cache is depicted in Figure 4.1. Depending on the architecture,
there can be separated caches for instructions and data, but also unified cache
architectures are widely used. Also mixed cache hierarchies (e.g., separated L1
caches and unified L2 cache) are common.

Since caches are used to bridge the gap between processor core performance
and memory performance, caches uses a memory type, which is much faster but
also more costly than the memory type that shall be cached. In order to solve
the problem, which data shall be available in the cache, locality attributes are
used:

• Temporal locality: Programs often access data repeatedly (e.g., when exe-
cuting a loop).Thus, it is likely that data already accessed by the processor
will be accessed again in the near future. This “new” data shall reside in
the cache, whereas “older” data shall be removed from the cache/replaced
by other data. This removal/replacement is called eviction.

• Spatial locality: Program code and data are not arbitrarily placed in the
address space, moreover, they reside in special address areas (e.g., code
segment, data segment, stack segment, etc.). Thus, it is likely that after an
access to a dedicated address there will be an access in the neighborhood of
this address (i.e. the delta of both addresses is very small). This assumption
is valid for instructions, which are located consecutively in the memory, as
well as for array data structures.

Due to spatial locality, not only single bytes are placed into the cache. Instead,
the cache collects data of a complete address area. This area is called cache line
or cache block. A cache consists of S sets, each set consists of A ways. Each way
stores the contents of one cache line. A is called the associativity of the cache.
If S � 1, the cache is called fully associative, otherwise, it is called A-way set
associative; if A � 1, the cache is called direct mapped. Each cache line consists of

44

4.1. Processor Cores

data obtained from the memory, a tag - the high order address bits of the address
- that is used for identifying the line, and some status bits. Besides others, the
V -bit is used to indicate that the cache line contains valid data, and, for data
caches, the dirty bit (D) marks cache lines that have been modified and have not
yet been written back to main memory. In case of multi-core systems, additional
flags for coherency, etc. are available.

A cache can be characterized by the following parameters: its capacity C, the size
of a cache line L, its associativity A, and its number of sets S. Thus, the capacity
of a cache is C � S � A � L, where the line size L and the number of sets S is
always a power of 2. The same usually holds for the associativity A as well.1

Another important characteristics of a cache is its replacement policy, which is
responsible for selecting the line to be evicted from the cache, if it is full and
further data is to be accessed. The location, where newly accessed data is to be
placed, is determined by using the address a of the access. The index i of the set,
data is placed in, is computed by i � pa{Lq mod S.

For instruction fetches and load instructions (read accesses), the upper address
bits are checked in parallel against the tags stored in the ways of the set i
(ignoring those ways that are not valid). If a match is found, the access hits
the cache and the required data is returned to the processor. Otherwise, the
data must be loaded from memory, which is called a miss. It is the task of the
replacement strategy to determine the place in the set, where the data shall be
stored in. Usually, invalid ways will be filled first. If there are no invalid lines
in the selected cache set i, the line to be replaced is selected by the replacement
strategy. The new data is placed into the cache, the tag bits are updated with the
address of the new access, the valid bit is set and the dirty bit is cleared. Then,
the processor starts to fetch the data of the new cache line from the memory
hierarchy (next cache level or main memory). Due to the size of a cache line, it
normally requires more than one transaction to fill the whole line. If the data
word of the referenced line is returned first, this is called critical word first, the
line fetch wraps around at the end of the line. Otherwise, the line is filled from
its beginning. A cache that can further process accesses during a cache line fill
hitting the cache is called hit-under-miss capable. A further cache miss will lead
to a stall in the cache architecture. More advanced cache architectures are also
able to process more than one outstanding cache miss. Those architectures are
called miss-under-miss capable.2

For store instructions, cache behavior can be configured. If the data that is
modified by the store operation is directly issued to the main memory, and, if
available in cache, also modified in place, the cache is said to be write-through.
Each modification is made directly visible in the main memory. If the data is

1One exception is the instruction cache of the SuperSPARC architecture, where A � 5.
2Miss-under-miss caches also stall, when there are too many outstanding misses.

45

Chapter 4. Modern Processor Development

only modified in the cache, the cache is said to be write-back. In this case, the
dirty flag is set, indicating that the cache line was modified, but the modified
data is not yet visible in main memory. Thus, data must be flushed to main
memory to obtain a consistent state. This could be achieved by explicit flush
instructions, or by triggering a write flush, when the cache line is to be replaced.
If a line that is to be modified is not in the cache, the line must be fetched from
memory in order to modify it (write-allocate), or the data is just passed to the
main memory. Normally, write-back implies write-allocation.

Most cache architectures allow to lock the cache, or at least parts of the cache.
No replacements for these parts will occur, but invalid lines will be filled until
no empty lines exist. Normally, this feature is used for critical code or data, or
the stack area is locked increasing the performance of the application.

Within the embedded area, it is also possible to mark memory regions as not
cached. Accesses to these regions completely bypass the cache and do not
modify the state of it. All accesses to these regions are directly served by the
main memory over the external bus.

As stated before, the replacement policy of a cache is an important characteristics.
One replacement strategy that is often implemented is the least recently used
strategy (LRU). Thereby, the line in a set that has been unreferenced for the
longest time is the one being replaced next. The sets of the cache are independent,
i.e. counting of referenced lines is done separately for each set. Therefor, each
line in a set is assigned an age, so for each set A ages must be maintained. The
line being referenced last gets the youngest age, the line being unreferenced
for the longest time gets the oldest age. Each access of the set, no matter if hit
or miss, updates the ages of all lines in the set. If the access is a cache hit, the
referenced line becomes the youngest age (age 0), and all lines younger than the
referenced one age by 1. In case of a cache miss, the newly loaded line becomes
the youngest, the oldest line will be evicted from the cache and all other lines
age by 1. For a 4-way set-associative cache, line aging is depicted in Figure 4.2
on the next page. On top, line aging in case of a hit is shown; below, aging in
case of a miss is shown.

Unfortunately, storing the age of each cache line per set is quite expensive
leading to the development of another strategy called pseudo least recently used
(PLRU)3. This strategy is used in the caches of the Intel 486 and in many proces-
sors in the Power Architecture (formerly PowerPC) family, such as Freescale’s
PowerPC MPC7448. In contrast of storing the age of each line, PLRU requires
only A� 1 bits per set to build up a binary search tree. Each node of the tree has
an one-bit flag denoting “go left” or “go right” to find an element for replace-
ment. To update the tree, it has to be traversed and each node flag has to be set
to the direction denoting in the direction that is opposite to the direction taken.

3also known as Tree-LRU

46

4.1. Processor Cores

ag
e

3

2

1

0

ag
e

3

2

1

0 a

b
c

d

a

b
c

d

b
a
c

d

e
a

b
c

b

e

Figure 4.2 – Cache update under LRU replacement policy.

For a 8-way set-associative cache, this is shown in Figure 4.3 on the following
page.

4.1.2 Pipelines

The process of executing an instruction can be split into several disjoint phases.
E.g., the pipeline of the simple DLX machine [HPG03, MP00] can be split into:

• instruction fetching from memory,

• instruction decoding,

• execution of the instruction,

• memory access of load and store instructions, and

• write-back of results into registers.

Each of these phases is called a pipeline stage. Instead of waiting for an instruction
to finish all sub-operations (which is also called instruction retirement) before
a subsequent instruction can be started (cf. Figure 4.4 on the next page), the
idea behind pipelining is to overlap the execution of different pipeline stages of
subsequent instructions. If there are no dependencies between the several stages
and assuming no dependencies between the instructions, a perfect pipelining
of instructions as shown in Figure 4.5 on page 49 can be achieved, assuming a
1 cycle latency for each instruction in each stage. Once filled, the CPU is thus
able to retire one instruction per clock cycle.

47

Chapter 4. Modern Processor Development

0

1

0

a b

1

c d

0

1

e f

0

g h

1

0

0

a b

1

c d

0

1

e f

0

g h

c

0

1

0

a b

1

c d

0

1

e f

0

g h

1

0

0

a b

0

c i

0

1

e f

0

g h

i

Figure 4.3 – Cache update under PLRU replacement strategy.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

I1
I2

Fetch stage

Decode stage

Execution stage

Memory access stage

Write-back stage

Figure 4.4 – Sequential instruction execution.

Pipeline Hazards

Pipelines massively exploit the parallelism that is inherent in programs. In
practice, a retirement of one instruction per clock cycle would never be achieved
due to dependencies between several instructions and other conflicts. The
situations preventing the next instruction from executing in a certain pipeline
stage is called hazards. Hazards thus reduce the performance that could be
theoretically achieved by ideal pipelining. Moreover, hazards can make it
necessary to stall certain pipeline stages or even the whole pipeline. Stalling a
certain stage inserts bubbles into the pipeline, i.e. the stage remains empty and
no work will be performed in the next clock cycle.

Hazards can be classified into three categories:

• structural hazards,

48

4.1. Processor Cores

• data hazards, and

• control hazards.

Pipelining overlaps the execution of instructions. This overlapping requires
pipelining of functional units and also duplication of resources to allow all
possible combinations of instructions in the pipeline. If some combination is
not possible due to resource conflicts, this is called a structural hazard. E.g.,
the memory bus of the DLX machine mentioned before is a resource, which
is available only once. The bus is used by the memory access stage to process
load and store operations as well as by the instruction fetch stage acquiring new
instructions from the memory. So, if both stages want to simultaneously transfer
data over the bus, the fetch stage has to be stalled until the memory fetch stage
has completed. A bubble must be inserted after the instruction fetch stage.

Data hazards arise from data dependencies between operands of subsequent
instructions and are the most common ones. Listing 4.1 on the next page shows
a small example code sequence. The second instruction requires the result
of the first one in form of operand r5. Thus, the second instruction cannot
start execution until the first one has written back the result into the register
file (which happens in the write-back stage). In general, one can distinguish
between three kinds of data hazards:

• Read after write hazards occur, if a subsequent instruction reads a register
that is written by the previous instruction (cf. the first two instructions in
Listing 4.1 on the following page). To speed up the pipelines and to reduce
the stall time, forwarding can be used.

• Write after read hazards occur, whenever an instruction writes a register
that is read by a previous one. In this case, it has to be guaranteed that
the write occurs after the read. For the DLX machine, this can be guaran-
teed due to the in-order execution paradigm. Other more sophisticated
architectures like the Freescale PowerPC MPC7448 support out-of-order

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

I1
I2
I3
I4
I5

perfectly filled pipeline

Fetch stage

Decode stage

Execution stage

Memory access stage

Write-back stage

Figure 4.5 – Pipelined instruction execution.

49

Chapter 4. Modern Processor Development

add r5, r6, r7;
sub r2, r8, r5;
add r6, r7, r7;
add r8, r6, r6;
add r6, r5, r5;

Listing 4.1 – Data dependencies between instructions.

execution requiring a special logic to resolve this type of hazard. In the
above example, instruction four and five reveal this type of hazard.

• Write after write hazards occur, if a subsequent instruction writes the same
register file as an instruction before (cf. instruction three and five in List-
ing 4.1). For correctness, it must be guaranteed that only the last write
operation is performed to the register file. For an in-order pipeline with
only a single write-back stage, this hazard cannot occur. On the Freescale
PowerPC MPC7448, a reorder buffer and in-order retirement are used to
maintain the order of writes.

Pipelining only is useful, if the pipeline is filled with instructions. Whenever
a dynamic branch instruction in form of a conditional branch or an indirect
jump is encountered, the fetch stage cannot fetch the next instruction after the
branch until the target of the dynamic branch is known, i.e. until the instructions
computing the arguments for the branch have written back their results. This
form is called a control hazard resulting in an empty pipeline, which has to be
refilled with instructions, when the depending instructions have retired.

Performance Features

As stated before, efficient pipelining requires all stages to continuously perform
work. Thus, hazardous events shall be prevented or their effect must be limited.
In order to achieve this, several features have been implemented to improve the
performance of pipelines.

To overcome structural and data hazards, a processor can execute instructions
out-of-order. Execution of an instruction may start even if the predecessors
of this instruction have not yet been started and wait for some input and no
dependency-issues for the instruction to be started exists. Out-of-order execution
thus increases the utilization of functional units of a processor, but also makes
pipeline design more sophisticated since the order of reading and writing results
must still be maintained. Additionally, a new problem arises: the processor
must still be able to provide precise exceptions, i.e. it must always be clear, which

50

4.1. Processor Cores

instruction triggers an exception. This is necessary for the processor to correctly
restart the program after a system trap due to a page miss, etc.

To solve this problem and to keep a correct machine state, there exists two
approaches: the use of a scoreboard [Tho65] and Tomasulo’s algorithm [Tom67].
The latter introduces reservation stations in front of each functional unit for
handling instructions waiting for inputs and a reorder buffer keeping track of
sequential dependencies and register updates.

Pipelines can be designed to continue fetching even if later pipeline stages stall.
Newly fetched instruction are then inserted into a prefetch queue, instructions
to be decoded and issued are taken from this queue. Additionally, prefetching
minimizes the delays due to fetching.

In order to reduce the effect of control hazards, prefetching can be coupled with
an early decoding of branches. This is called branch prediction. The idea behind
this is to redirect the fetching of instructions to the known target address of
static branches. Additionally, the branch instruction can be removed from the
instruction stream (branch folding).

This technique is also applicable for dynamic branches, but branch folding is
limited to cases, where the result of the branch condition is still present, when
the branch is decoded. Otherwise, the branch has to be predicted and remains in
the instruction stream. For conditional branches, there exist only two possible
outcomes: taken and not-taken. Even in this case, the fetch address has to be
redirected assuming that the condition is known. All instructions being fetched
based on this assumption must be marked as speculative. If the branch turns out
to be mispredicted, instructions marked as speculative must be removed from the
prefetch queue. Otherwise, the branch was well predicted and can be resolved,
marked instructions become normal instructions.

The performance improvement due to out-of-order execution is reduced, if a
dynamic branch is encountered. The instructions at the predicted target address
cannot be executed until the outcome of the branch is resolved. Tomasulo’s
algorithm can be extended to allow speculative instructions to continue their
execution by copying their mark also to the reorder buffer. If a prediction turns
out to be wrong, speculatively executed instructions are simple flushed out
of the pipeline and their entries in the reorder buffer have to be freed. Addi-
tionally, speculatively executed instructions are not allowed to write-back their
results into register files or the memory until the prediction can be confirmed, ie.
speculation can be resolved.

Another technique used to especially reduce the impact of read after write
hazards is to use forwarding. The result of an operation can be directly passed to
any other stage holding an instruction depending on this result. Thus, stall times
can be reduced. Additionally, shortcuts are useful to speed up the resident time
of instructions within functional units, e.g., if one argument of a multiplication

51

Chapter 4. Modern Processor Development

is 0, computation time can be shortened. Using these techniques, the latency of
an instruction also depends on values of operands making timing analysis more
complicated (cf. Section 4.4).

To increase the utilization of different functional units, superscalar (also known as
multiple-issue) processors are used. In contrast to the simple DLX machine from
above, the pipeline can issue more than one instruction to the corresponding
functional unit in one clock cycle. How many instructions are issued in a
dedicated cycle is computed dynamically based on the dependencies among the
instructions in the prefetch queue and the availability of functional units.

Memory accesses still remain the bottleneck for a system’s performance. Store
gathering or store merging is a technique used to reduce the number of store
operations to the memory subsystem. Subsequent store instructions that target
the same location in memory are identified. The operations specified by the
first and second store instructions are merged into a single store operation
that subsumes the original ones. Thereafter, the new single store operation
is performed reducing the overall amount of write operations to the memory
subsystem. Using this technique strongly requires forwarding to ensure that
correct values are read by other operations.

4.2 System Components

So far, only caches and pipelines of processors have been subject to timing
considerations. Besides these parts, also other parts, which together form the
whole system, do have an influence on the timing and the behavior of the system.
Some of the most important components are shortly described in this section.

4.2.1 Buses

A bus is a subsystem for transferring data between different components inside
a computer, between a computer and its peripheral devices, or between different
computers. In contrast to point-to-point connections, a bus logically connects
several peripherals over the same set of wires using a dedicated protocol.

In general, buses can be classified by the involved components, e.g., system
buses like the 60x-bus [Fre04] on the PowerPC architectures, memory buses
connecting the memory controller with the memory slots, internal computer
buses like Peripheral Component Interconnect (PCI) and external computer
buses like CAN or FlexRay (cf. [WGR�09]).

52

4.2. System Components

Due to their functioning, most buses are clocked with a lower frequency than the
CPU. E.g., the clock frequency of the PCI bus is specified to 33 MHZ in Rev. 2.0
and to 66 MHz in Rev. 2.1 of the PCI standard [PCI02].

The increasing demand for more computing power has forced a decoupled
system development, i.e. the peripherals and the processors can be developed
independently. A bus controller acting as the interface between the CPU and the
other various devices allows for increasing the CPU speed without affecting the
bus and the connected resources.

The analysis of the timing behavior of memory accesses is somehow special
because these accesses cross the CPU/bus clock boundary. The gap between
CPU and bus clock must be modeled within a micro-architectural analysis, as
the time unit for those analyses is one CPU cycle; the analysis needs to know
when the next bus cycle begins. If the analysis does not have this information it
needs to account for all possibilities including the worst case: the bus cycle has
just begun and the CPU needs to wait nearly a full bus cycle to perform a bus
action. This pessimism would lead to less precise WCET bounds.

The number of possible displacements of phase between CPU- and bus-clock
signal is bounded, i.e. at the start of a CPU cycle the bus cycle can only be in a
finite number of states. For example, if the CPU operates at fCPU � 100 MHz
and the bus at fBUS � 25 MHz, there are 4 different states. In general, the
number of states is determined by:

bus-clock-states :�
fCPU

gcdpfCPU , fBUS q

The displacement of phase has to be modeled within a micro-architectural
analysis in order to obtain a more precise WCET bound.

Buses can also be classified as parallel (e.g., SCSI) or bit-serial (e.g., USB) buses.
Parallel buses carry data words in parallel on multiple wires, bit-serial buses
carry data in serial form. Because of the separation of addresses and data on
parallel buses, the execution of consecutive memory accesses can be overlapped,
i.e. for two accesses, the address phase of the second access can be overlapped
with the data phase of the first access. This is called bus pipelining. The number
of accesses that can overlap is called the pipeline depth of the bus. Hence, one
distinguishes between pipelined and non-pipelined buses. The advantage of
bus pipelining is better performance due to reduced idle time. On the other
hand, pipelined buses need to arbitrate the incoming bus requests, e.g., if there
is an instruction fetch and a data access at the same time, the arbitration logic
needs to decide which bus request is issued first.

Figure 4.6 on the following page and Figure 4.7 on the next page show artificial
timing diagrams for non-pipelined and pipelined access sequences on the 60x-
bus, respectively. Note that the examples only show the most relevant parts of

53

Chapter 4. Modern Processor Development

0 5 10 15 20 25

TS

AACK

TA

Figure 4.6 – Timing diagram of a non-pipelined access sequence of two accesses on
the 60x-bus. Accesses finish after cycle 13 and 24, respectively.

0 5 10 15 20 25

TS

AACK

TA

Figure 4.7 – Timing diagram of a pipelined access sequence of two accesses on the
60x-bus. Accesses finish after 13 and 20 cycles respectively.

the 60x bus protocol; the full protocol can be found in [Fre04]. A bus request
from the CPU is initiated by issuing the TS (Transfer-Start) signal. At this
point the CPU drives the requested memory address on the address wires. The
memory controller reads this address and acknowledges it by issuing the AACK
(Address-Acknowledge) signal to the CPU. After that the memory device drives
the requested data on the data wires and signals this to the CPU by issuing the
TA (Transfer-Acknowledge) signal.

Instances that can request access to the bus, are called bus masters. On simple sys-
tems there is only one bus master since there is typically one CPU that requests
the bus. Whereas the timing behavior of a single bus master is deterministic,
more masters on a bus increase the difficulty of analyzing the traffic on the bus
resulting in less precise bounds on latencies that can be guaranteed.

4.2.2 Memory

The component with the greatest impact on the timing of a processor is the
main memory. Accesses are performed via a memory controller translating
transactions on the system bus of the processor to the access protocol of the
memory chip. The memory controller may be directly part of the CPU or it has
to be provided as an external circuit. Often the RAM controller is integrated into

54

4.2. System Components

the main system controller (also named northbridge) also acting as the interface
for other peripheral buses, e.g., the PCI bus.

Main memory can be roughly categorized into two major groups:

• static RAM (SRAM), and

• dynamic RAM (DRAM).

Static RAM normally uses 6 transistors per bit to prevent information from being
disturbed when reading [HPG03]. This makes SRAM chips quite expensive,
high capacity chips are not easily available. But the access timings for SRAMs
are fixed, which provides for good predictability and eases WCET prediction.

Dynamic RAM uses only a single transistor to store a bit allowing a tight packing
of RAM cells. Thus, accessing the information requires a lot of address lines.
Due to the growing capacity of DRAMs, address lines were multiplexed, the
number of address pins is cut. The first half of the address, which is sent first, is
called the row access strobe (RAS). It is followed by the second half of the address
called column access strobe (CAS). The names reflect the internal organization
of a memory chip, i.e. a rectangular matrix addressed by rows and columns.
An array contributes 1 bit to the output data. Since the output data normally
ranges between 4 and 64 bits, the same amount of arrays is required and are
then accessed in parallel within the chip. The contents of DRAM chips must be
refreshed periodically, because each transistor loses its bit content. Refreshing
copies all bits in a row and writes them directly back. During the periodical
refresh phase, the chips cannot be accessed.

4.2.3 Peripherals

Embedded systems are defined as information processing systems embedded
into enclosing products [Mar05]. Many of these system, especially real-time
systems, have a number of sensors to receive their inputs and trigger a bunch
of actuators used to pass the computed action to the environment. Accessing
sensors and actuators can be realized in two ways:

• via special I/O instructions, or

• normal load/store operations for memory-mapped peripherals.

Accessing peripherals might be restricted, i.e. an access is only allowed, if the
sensor’s data is definitively needed by the processor core. Preventing a CPU
from speculatively accessing those data is realized via marking the mapped
memory regions as guarded.

55

Chapter 4. Modern Processor Development

4.2.4 Multiprocessors and DMA

Systems with more than one processor core induce a new problem, named cache
coherency. Usually, those multiprocessor systems share the main memory and
are connected through one system bus (including the problems arising with
more than one bus master, cf. Section 4.2.1 on page 52). Fast and small caches
are located near the processor’s pipeline, so, the caches exists for each processor
core in those systems. If one processor changes data in the cache, cache and
memory coherency must be preserved. Thus, processors snoop the system bus
for accesses of other components to the memory and implement a coherency
protocol to maintain a coherent picture of the cache state w.r.t. the main memory.
E.g., if a dirty line exists in the cache of one processor and a second one writes
data to the main memory at the same address, the dirty cache line must no
longer be written back to the main memory and must be invalidated from the
cache. Otherwise, wrong data could end up in the main memory. Coherency
protocols and snooping thus directly influence the state of the cache and the
behavior of processor and must thus be covered by a WCET analysis.

Direct memory accesses (DMA) by other peripherals sharing the same main mem-
ory as the CPU cause conflicts for concurrent accesses by the CPU. As only one
device is allowed to access memory at a certain point in time, other devices must
wait. As DMA activity runs in parallel with normal program execution and is
also not synchronized with it, the access latency for a memory access may vary
due to the concurrent activity.

4.3 Hardware Predictability

In the previous sections, many features for increasing the performance of systems
and for bridging the gap between fast processor cores and the slow main memory
have been discussed. Most of these features lead to an increase of the average-
case performance of the system, but their effect on the worst-case behavior is
often not that obvious. E.g., speculative prefetching used for consecutively
providing instructions to subsequent pipeline stages directly influences the
state of the instruction cache of a CPU. If a conditional branch instruction is
encountered, whose outcome has to be predicted, and this prediction is wrong,
instructions that are fetched are not needed on the one hand, but on the other
hand, may evict something useful from the instruction cache. So, this feature
may have a bad impact on the performance of the system, at least on the worst-
case performance.

As already discussed in Chapter 3 on page 27, only static WCET estimation
methods can produce safe results on the runtime of a task on complex target
architectures. But also the static methods are subject to timing predictability of

56

4.3. Hardware Predictability

a system. According to [GRW11], predictability is the possibility to forecast the
behavior of hardware. Thus, timing predictability is the possibility to predict the
timing of a system within static analysis. Since static analyses compute valid
results independently from any concrete input and concrete system state, the
behavior of the (normally) deterministic hardware must be simulated resulting
in some non-determinism.

As stated before, some of the features described in Section 4.1.1 and Section 4.1.2
directly influence the timing predictability of a system. The use of dynamic
branch prediction, where the outcome depends on the history of program exe-
cution massively increases the search space, a static WCET estimation method
must cover. Whenever the outcome could not be definitively predicted, the
analysis must follow all possibilities, which, in case of branch prediction, means
that both possibilities must be covered.

An identical problem arises in the presence of store gathering or store merging.
Due to the nature of static WCET methods, accesses to memory may be imprecise.
E.g., in case of an array access within a loop, where several loop iterations are
merged into one collecting context (cf. [Weg11]), the access is not sharp, i.e. the
access addresses an interval, whose boundaries are not the same. Thus, it cannot
be safely determined, whether two successive store instructions can be merged
or not, which increases the search space for timing analysis.

Imprecise data accesses are also problematic within one execution unit, when
forwarding is used. E.g., the load/store unit of Freescale’s PowerPC MPC7448
[Fre05a] massively uses forwarding for bridging the gap of slow memory ac-
cesses and the fast core by forwarding not yet written data to subsequent load
instructions. Especially slow store operations are delayed until the load/store
unit is idle, or the whole load/store unit is stalled by this operation. Thus, stores
are inserted into a queue, and their effect is viewed as part of the architectural
state, even if the store is not yet written back to main memory. Whenever a
load instruction is to be processed, the queue picking all stores must be checked,
whether the load operation addresses something that is also to be modified by
a store in this queue. If there is a match in the modified address, data must be
taken from the queue (since it is modified) and can be delivered fast, otherwise,
the load operation must be passed to the memory subsystem. For a static WCET
estimation tool, imprecise accesses are once again a problem since all possibil-
ities, i.e. a matching address or no match in this example, must be simulated,
which again results in a larger search space.

Another problem arises in the presence of several different buses connecting
different peripherals. The system bus connecting the fast core with the slower
memory subsystem is typically clock synchronized with the core clock of the
processor. But for other buses, this need not hold. E.g., the internal PCI bus
normally is not synchronized with the system bus. Thus, communication points,
i.e. timestamps, where both the PCI bus and the system bus can exchange data,

57

Chapter 4. Modern Processor Development

are harder to predict. [Sch09] shows a formula that is used to tackle the problem
of asynchronous clocks within the aiT WCET analyzer frameworks. It shows
a formula for the safe conversion of external bus cycles into system bus cycles.
The duration of an access given in external cycles corresponds to the interval
given by �Z

k
Fmin
sb

Fmax
eb

^
;

R�
pk � 1q

Fmax
sb

Fmin
eb

� 1

V�
where

• k is the latency in external bus cycles of the access,

• Fmin
sb and Fmax

sb are the minimal and maximal frequencies of the system
bus clock, and

• Fmin
eb and Fmax

eb are the minimal and maximal frequencies of the external
bus clock.

Communication between both buses thus is possible at each integral value
contained in this interval.

Whereas features mentioned so far increase the search space for a WCET analysis,
other features cannot be statically predicted. As stated in Section 4.1.1 on page 43,
the replacement policy of a cache influences its behavior and thus directly
influences the performance of a system. E.g., the L2 cache of the Freescale
PowerPC MPC7448 uses a random replacement strategy. Since the line to be
evicted is randomly chosen, this strategy can be viewed as not predictable, or,
to be more precise, only one (namely the last) cache line can be predicted. A
detailed discussion of cache replacement policies and their impact on WCET
estimation can be found in [Rei08, WGR�09].

Also the presence of asynchronous events as used for implementing exchange
protocols in multi-core systems are currently not predictable in general. Espe-
cially the concurrent accesses of different cores to the main memory, but also
the synchronization needed on cache level, cannot be predicted by todays static
WCET estimation tools.

In contrast to these asynchronisms, periodic or sporadic events can be covered
by statistical means. E.g., for DRAM refreshes that occur every x milliseconds,
the impact of a refresh is well known. Each page of the dynamic memory must
be loaded and written back to save the content of the transistors. In other words,
the effect of a DRAM refresh can be bounded to the time for closing the actual
open page in the controller, time for open, read, write and close any page of
the memory and reopen the previously closed page again. Since these timings
are constant, and refreshes occur periodically, the effect of these asynchronous
events can be covered by a static WCET analysis. The same statistical approach
is feasible for direct memory accesses, if the frequency of DMA is statically
known.

58

4.3. Hardware Predictability

Another predictability issue arises due to the combination of several features.
Whereas a write-back in the presence of a LRU replacement cache policy and an
empty initial cache content can be predicted, this becomes disappointing for a
PLRU replacement policy. In contrast to LRU, the PLRU replacement strategy
allows only to predict the content of 2 ways [RGBW07]. As a result, predicting
evictions becomes impossible and as a result, from the point of view of a static
analysis, it is unclear, if a write-back memory operation is necessary.

Currently, the trend in embedded systems tends to employ multi-core architec-
tures to satisfy the increasing demand for more and more computing power
[Low06]. All characteristic challenges from single-cores are still present in the
multi-core design, but the multiple cores can run multiple instructions at the
same time. To interconnect the several cores, buses (e.g., Freescale’s PowerPC
MPC603e, [Fre02]), meshes, crossbars, and also dynamically routed communica-
tion structures (e.g., Freescale’s QorlQ P4080, [Fre08]) are used. Most multi-core
architectures offer a sophisticated memory hierarchy including private L1 caches,
but also some shared caches. Access to the interconnect usually requires an
arbitration of accesses from the different cores. The shared physical address
space requires additional effort in order to guarantee a coherent system state:
Data resident in the private cache of one core may be invalid, since modified
data may already exist in the private cache of another core, or data might have
already been changed in the main memory. Thus, additional communication
between different cores is required. In general, access to a shared resource might
cause the following traffic to appear on the processor’s interconnect: A cacheable
read access issued by one core

• may cause no communication on the processor’s interconnect in case of a
cache hit,

• may initiate a read request in case of a cache miss, and

• may initiate a write access first to evict modified data from the cache.

A write access to a cacheable memory area issued by one core

• may cause no traffic on the processor’s interconnect in case of a cache hit,

• may cause some coherency traffic in case of a cache hit to update directories
of other cores [Mar08],

• may initiate a read access in case of a cache miss, and

• may initiate a write access first to evict modified data from the cache.

Hence, interconnect traffic initiated by one core in order to process an instruction
is composed of data traffic, eviction traffic, and coherency traffic. Accessing the
processor’s interconnect to aquire some data may be impossible at a time due
to interconnection traffic initiated by other cores. Thus, predicting the timing
behavior of multi-cores without enforcing privatization as proposed by PROMPT

59

Chapter 4. Modern Processor Development

(PRedictability Of Multi-Processor Timing, [WFC�09]) still remains an open
research issue. [KSP�12a, KSP�12b] describe an experiment showing that a
task’s average runtime on a multi-core increases tremendously, if other tasks
run on other cores, even if spatial isolation is guaranteed.

4.4 Timing Anomalies

Especially the interaction of several features in a pipeline and also the interac-
tion with the caches may be hard to predict and lead to some counterintuitive
behavior of the whole system: the case, where a locally faster execution time
(e.g., a cache hit) leads to an increase in the overall execution time of a program
compared to the locally worst execution time (e.g., the cache miss), is called a
timing anomaly. This effect was originally stated in [Lun02].

To compute safe timing guarantees, a static timing analysis has to consider all
possible execution paths caused by any non-determinism in the abstract hard-
ware model. Due to the loss of predictability, the static analysis of architectures
featuring timing anomalies requires much more effort in terms of computational
power and memory consumption.

[RWT�06] classify timing anomalies into three different classes:

• Scheduling timing anomalies are the most common ones. Most timing anoma-
lies found in the literature correspond to this class. Figure 4.8 on the next
page shows one instance. Depending on the execution time of the task A,
a faster execution might lead to a globally longer schedule. This kind of
anomaly is well-known in the scheduling domain.

• A speculation timing anomaly is shown in Figure 4.9 on the facing page. An
initial cache hit allows the pipeline to speculatively prefetch an instruction
that is not cached leading to an overall longer execution.

• Cache timing anomalies are caused by some non-LRU replacement strategies
(cf. [Ber06, Geb10]).

A system is said to have domino effects [LS99a] if there are at least two hardware
states s1 and s2 such that the difference in execution time of the same program
starting in s1 and s2 respectively may be arbitrarily high, i.e. cannot be bounded
by a constant. Otherwise, if the effect of a timing anomaly can be bounded by a
factor k, this is called a k-bounded timing anomaly.

The existence of domino effects is crucial for timing analysis. Unfortunately,
domino effects show up in real hardware. [Sch03] describes a domino effect in
the pipeline of the Freescale PowerPC MPC755. Another example basing on

60

4.4. Timing Anomalies

C ready

Resource 1 A D E

Resource 2 C B

Resource 1 A D E

Resource 2 B C

Figure 4.8 – Scheduling timing anomaly.

the PLRU replacement policy of caches is given in [Ber06]. [Geb10] exhibits that
timing anomalies are not limited to complex hardware architectures.

In general, architectures can be classified into three categories basing on the
presence of timing anomalies and domino effects [WGR�09]:

• Fully timing compositional architectures do not exhibit timing anomalies.
Hence, a static WCET analysis can safely follow local worst-case decisions.
One example for this class is the ARM7 processor core [ARM04].

• Compositional architectures with k-bounded effects exhibit timing anomalies
but no domino effects. In general, an analysis has to consider all paths.
To trade precision with efficiency, it would be possible to safely discard
local non-worst-case decisions by adding a constant number of cycles to
the local worst-case decision. The Infineon TriCore [Inf02] is assumed, but
not formally proven, to belong to this class.

Branch condition
evaluated

Cache hit A Prefetch B C

Cache miss A C

Figure 4.9 – Speculation timing anomaly.

61

Chapter 4. Modern Processor Development

• Non-compositional architectures exhibit domino effects and timing anomalies.
For such architectures timing analyses always have to cover the whole
search space (i.e. must follow each possible decision) since a local effect
may influence the future execution arbitrarily. A domino effect within
the pipeline of the Freescale PowerPC MPC755 [Fre01] has been shown
in [Sch03]. Furthermore, the Freescale PowerPC MPC7448 [Fre05a] is
assumed to belong to this class.

4.5 VHSIC Hardware Description Language

Modeling modern processors combining features described in the previous
sections is simply not possible for a single person. Large development teams
work together to design modern digital electronic systems. Shorter and shorter
development cycles, a reduced time to market and reliability requirements
become important goals. Thereby, simulation and verification are crucial issues.
In 1994, a faulty behavior within the floating point unit of the Intel Pentium
[Hal95] led to a recall of a huge charge of processors. The use of formal hardware
description languages, designed to support the design process as well as the
simulation and verification process becomes more and more important in the
development of digital electronic systems.

When talking about digital electronic systems, several definitions exist. They
range from single VLSI circuits4 to complete systems including peripherals.
Due to their complexity, it is not possible to comprehend the complexity of the
systems in their entirety. Thus, there is a need for finding methods of dealing
with the complexity to be able (at least with some confidence) to design com-
ponents and systems meeting their requirements. To ease the communication
and understanding and to enhance the interoperability, languages for describing
digital electronic systems, called hardware description languages (HDLs), have
been developed.

One of the most common languages for describing digital electronic systems is
VHDL. It arose from the US Department of Defense Very High Speed Integrated
Circuits (VHSIC) program and was originally developed as an alternative to
huge, complex manuals which were subject to implementation-specific details.
Due to the need for a standard language describing the structure and function
of integrated circuits, the VHSIC Hardware Description Language (VHDL) was
developed. Concepts and syntax of VHDL are very similar to the Ada program-
ming language [Bar95] since the US government wants to avoid re-inventing
concepts that had already been thoroughly tested in the development of Ada.

4Very-large-scale integration (VLSI) is the process of creating integrated circuits by combining
thousands of transistors into a single chip.

62

4.5. VHSIC Hardware Description Language

Subsequent development of VHDL is made under the auspices of the Institute of
Electrical and Electronic Engineers (IEEE), a first version of the IEEE standard
1076 [IEE87] was published in 1987. Like all IEEE standards, also the VHDL
standard is subject to review every five years.

VHDL defines a formal notation intended for use in all phases of the creation
of electronic systems [Ash01]. Thus, VHDL allows to describe the structure of a
system, how it is decomposed into subsystems and how these subsystems are in-
terconnected. Furthermore, it allows the specification of the function of a system
using a familiar programming language form. Hardware prototyping for testing
a system is expensive and very time-consuming, so VHDL was also designed
to simulate a whole system before being manufactured. Additionally, design
synthesis allows the designers to focus on more strategic design decisions.

VHDL allows designers to specify digital electronic systems in a high-level
human-readable notation, and allows for both, simulation and sythesis of the
model. Therefore, the focus of the language ranges from specifying circuits
at wavefront level to describing large system behaviors with high-level con-
structs. As a result, the standard is huge resulting in a more restricted subset for
automatic design synthesis [IEE99].

In June 2006, VHDL technical committee of Accellera released the so-called
draft 3.0 of VHDL-2006 standard. Key changes include incorporation of child
standards (1164, 1076.2, 1076.3) into the main 1076 standard, and extend the set
of operators with the goal to improve the quality of synthesizable VHDL code.

In September 2008, VHDL 4.0 also informally known as VHDL-2008 has been
released as IEEE 1076-2008 addressing more than 90 issues discovered during
the trial period for version 3.0 and including enhanced generic types.

4.5.1 Modeling Digital Systems

Modeling a digital system requires a systematic methodology of design. Starting
with a requirements document, an abstract structure meeting these requirements
has to be designed. This abstract structure can be decomposed into a collection
of components that interact to perform the function that is required. The process
of decomposition can be iterated arbitrarily until a level is reached, where some
ready-made, primitive components performing the required function exists.

The advantage of this methodology is that each component of the system can
be designed independently. The use of subcomponents thus can be viewed
as a kind of black-boxing abstracting away details about their composition and
implementation. Often, such subcomponents are part of the intellectual property
(IP) of one party and can be licensed to another party. In each particular stage of
the design process, only a small amount of information that is relevant for the

63

Chapter 4. Modern Processor Development

current design focus must be present and the designers are not overwhelmed by
masses of details. Thus, the result of this design methodology is a hierarchically
composed system.

In the following, the term model will be used for the understanding of a sys-
tem. A model represents the information which is relevant and abstracts away
all irrelevant details. Consequently, there might exist more than one model
for the same system or component since depending on the context, relevant
information might differ. E.g., one model focuses on the function of a system,
whereas another model concentrates on the composition of the system from
subsystems.

[Ash01] classifies models into three domains:

• Functional models focus on the operations performed by the system.

• Structural models reveal details on the composition of interconnected sys-
tems.

• Geometric models deal with the layout of a system in physical space.

Each domain can be divided into different levels of abstractions (cf. Figure 4.10
on the next page by [GK83]). The top level (i.e. the outer circle) provides an
overview on function, structure and geometry of the system. Lower levels
successively introduce more and more details.

At the most abstract functional level, the function of a system is described in
terms of an algorithm, comparable to an algorithm for a computer program.
This is often called behavioral modeling. At the same abstract level, the structure
of a system may often be described as an interconnection of components such as
a processor, different kinds of memories, sensors and actors. Within the struc-
tural domain, this is often called processor-memory-switch. Within the geometric
domain, the system to be implemented as a VLSI circuit is often described using
a floor plan showing the components of a system and their arrangement on a
silicon die.

The next level of abstraction, depicted by the second ring in Figure 4.10 on the
facing page, describes a system in terms of units of data storage and transfor-
mations. Within the structural domain, this is called register-transfer composed
of a data path and a control section. The data path contains the description of
registers, data between these registers is transferred through transformation
units. The control section sequences operations of the data path components.
In the functional domain, this level is often described using a register-transfer
language, storage is represented using variables, and transformations are repre-
sented by arithmetic and logical operators. Within the geometric domain, this
level is often associated with standard library cells used to implement registers
and transformations which have to be placed on the physical die according to
the floor plan.

64

4.5. VHSIC Hardware Description Language

Structural

Geometric

Functional
Processor-Memory-Switch

Register-Transfer

Gate

Transistor

Floor Plan

Standard Cells

Sticks

Polygons

Algorithm

Register-Transfer Language

Boolean Equation

Differential Equation

Figure 4.10 – Domains and levels of abstraction (cf. [GK83]). The axes show the
different domains of modeling. The concentric rings show the differ-
ent levels of abstraction – more abstract levels on the outside, more
detailed ones towards the center.

The third level shown in Figure 4.10 is the conventional logic level. Structure
is modeled using interconnections of gates, functions are modeled by boolean
equations, and the geometric domain uses the notation of virtual grids.

At the most detailed level, structure is modeled using individual transistors,
functions using differential equations that relate current and voltage in the cir-
cuit, and the geometry deals with polygons for each mask layer of an integrated
circuit. Due to the availability of design tools (e.g., Synopsys [Syn]), designers
do not need to work on those detailed levels. Translation from higher levels of
abstraction, namely from register-transfer level, is automated.

Models of every domain and of different abstraction level can be described in
many ways. E.g., a structural model can be expressed using a circuit schematic.
Graphical symbols are used to express subsystems (or components), and in-
stances of these components are connected using lines that represent wires. The
same information can also be represented in a textual manner, e.g., in form of a
net list. Within the functional domain, representation usually is based on formal
mathematical methods that ease testing and verification of a system and are

65

Chapter 4. Modern Processor Development

typically based on programming languages. This supports reliability and thus
reduces the time to market.

VHDL as a modeling language includes facilities for describing structure and
function at a number of abstraction levels, from the most abstract level to the gate
level. Due to an attribute mechanism, it can further be used to annotate a model
with information from the geometric domain. Thus, VHDL explicitly offers the
possibility to create arbitrary models for each domain. VHDL is intended as a
modeling language for specification, simulation, and, when restricted to the
synthesizable substandard, for automatic hardware synthesis.

In the following, this thesis focuses on the second abstraction layer, namely the
register-transfer level, and the synthesizable IEEE substandard 1076.6. Com-
mercial synthesis tools like Synopsys also work on this level and allow use of
powerful standard libraries providing implementations of widely used com-
ponents such as flip-flops, etc. Furthermore, this thesis is only concerned with
synchronous models, i.e. models that are synchronized to an external clock
signal.

4.5.2 Register-Transfer Level

Models described at the level of register transfer are more or less a collection
of process statements. Each process is a collection of actions that are executed
in sequence. These actions are called sequential statements and are comparable
to conventional programming languages. The types of sequential statements
to be performed include assignments to either signals or variables, expression
evaluation, conditional execution (if- and switch-statements), repeated execution
(for- and while-loops), and subprogram execution (function and procedure
calls). Additionally, the sequential execution can be suspended by dedicated wait
statements.

Listing 4.2 on the facing page shows the specification of a simple 3-bit counter in
VHDL. The description of the circuit consists of an interface declaration defining
the in- and output signals of the circuit and of one or more implementation(s).
In VHDL, the interface declaration is called an entity, the implementation an
architecture.

The entity declaration defines the input ports of the circuit (clk and rst). The
counter is designed as a synchronous circuit, i.e. all computations are synchro-
nized on the transitions of a global signal. This signal is referred to as the global
clock (clk in the sample circuit). The current value of the counter is provided by
the output port val which is a 3-bit binary number.

The implementation is given in form of a process (P1). A process executes its
code, whenever one of the signals contained in the process’ sensitivity list (clk

66

4.5. VHSIC Hardware Description Language

entity counter is
port (clk : in std_logic;

rst : in std_logic;
val : out std_logic_vector (2 downto 0));

end entity;

architecture rtl of counter is
signal cnt : std_logic_vector (2 downto 0);

begin

P1: process (clk, rst) is
begin

if (rst = ’1’) then
cnt <= "000";

elsif (rising_edge (clk)) then
if (cnt < "111") then

cnt <= cnt + ’1’;
else

cnt <= "000";
end if;
val <= cnt;

end if;
end process;

end;

Listing 4.2 – 3-bit counter in VHDL.

and rst) changes its value. Thus, the sensitivity list of a process is an implicit
wait-statement at its end.5 After execution of all statements, execution suspends
until another change of at least one signal’s value. Within an architectural
body, many processes may be used to implement the desired behavior. All of
these processes (besides some other language constructs) are called concurrent
statements since they all run in parallel.

A VHDL process consists of a set of local variables that are only accessible from
inside the process. By contrast, local signals can be accessed by more than one
process, but only one process is allowed to drive the value of a signal.6 Within a
process, execution of statements is done sequentially.

VHDL makes a distinction between assignments to a variable and to a signal.
Assigning a value to a variable takes effect immediately (i.e. the next reference

5In VHDL, the use of explicit wait-statements and sensitivity lists is exclusive.
6In full VHDL, resolution functions can be used for value computation of signals being driven by

two or more processes.

67

Chapter 4. Modern Processor Development

a

b

not0

or0 c

entity implies is
port (a, b: in std_logic;

c: out std_logic);
end entity;

architecture struct of implies is
signal int_neg: std_logic;

begin
not0: entity invert

port map (a, int_neg);

or0: entity or2bit
port map (int_neg, b, c)

;
end;

Figure 4.11 – Composition of VHDL components.

of this variable returns the newly assigned value), whereas the assignment of a
value to a signal is only scheduled to be the future value (i.e. the next reference
returns the old value). E.g., in Listing 4.2 on the previous page, the signal
assignment cnt <= cnt + ’1’; schedules the next value of cnt to be cnt
plus one, but the next reference val <= cnt; schedules the next value of val
to be the current value of cnt. These future values take effect as soon as all
processes suspend their execution.

VHDL also supports component-based circuit specifications. Figure 4.11 gives an
example for hierarchical composition. Here, a circuit for the logical implication
a Ñ b for two inputs a and b and the output c is built from a logical-or gate
or2bit and a negation gate invert, implementing the implication by the
formula c � a_ b. Note that or0 is an instance of the generic entity or2bit,
as not0 is one of the entity invert. In VHDL, use of predefined entities is
called component instantiation. Having a hierarchically composed specification of
a circuit, elaboration has to be performed in order to get a flat definition of it.

4.5.3 Elaboration and Synthesis

Once a hierarchical composed system has been modeled, elaboration has to be
performed. Elaboration does all the required renaming for unifying names,
wires all structural descriptions, etc. The result of the elaboration process is a
collection of processes interconnected by nets.

68

4.5. VHSIC Hardware Description Language

Elaboration starts with the topmost entity of a design hierarchy. Every compo-
nent instantiation within the implementation is substituted with the contents of
an architecture body of the corresponding entity. Since many architecture can
exist for a component, the implementation to be used must be explicitly chosen.
After substitution, the architecture body is elaborated by first instantiating all
signals it declares, then by elaborating each concurrent statement in its body.

This procedure is repeated recursively until all component instantiations are
replaced by their corresponding implementation and all signals are created. The
result is a flattened system model consisting of a collection of nets comprising
signals and ports, and processes that sense and drive the nets.

After elaboration, the system is ready to be simulated, and, if no faulty behavior
can be detected by simulation, the system can be synthesized for usage on a
FPGA7 or an ASIC8. This is called hardware synthesis. The idea behind this is
to allow the designer to model the system in abstract terms, i.e. the designer
must not think about how best to implement the design in hardware logic.
This is automated by a synthesis tool converting the abstract description into a
structural description at a lower level of abstraction.

Not all constructs of VHDL are suitable for synthesis. Most constructs that
explicitly deal with timing such as wait for 5 ns; are not synthesizable
despite being valid for simulation. Thus, the IEEE standard 1076.6 [IEE99] – the
synthesizable subset of VHDL – defines constructs and idioms map into common
hardware for hardware synthesis. There exists a wide range of synthesis tools,
all covering different sets of language constructs. Thus, it is generally considered
a “best practice” to write very idiomatic code for synthesis as results can be
incorrect or suboptimal for non-standard constructs.

4.5.4 Semantics

Since VHDL explicitly allows for simulation, every model after elaboration can
be executed. The underlying semantics and thus the operation of a system can
be seen as a chronological sequence of events. This is also called discrete-event
simulation. At a point in time, a process can be simulated by changing the value
of a signal to which the process is sensitive. The process is resumed and may
schedule new values to be given to signals at some later time, which is called
scheduling a transaction on a signal. If the newly assigned value differs from the
previous value, an event occurs, and all other processes being sensitive to this
signal must be resumed.

7A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
the customer or designer after manufacturing.

8An application-specific integrated circuit (ASIC) is an integrated circuit customized for a particu-
lar use, rather than intended for general-purpose use.

69

Chapter 4. Modern Processor Development

architecture rtl of counter is
signal cnt : std_logic_vector (2 downto 0);

begin
P1: process (clk, rst) is

begin
if (rst = ’1’) then

cnt <= "000";
elsif (rising_edge (clk)) then

if (cnt < "111") then
cnt <= cnt + ’1’;

else
cnt <= "000";

end if;
end if;

end process;

P2: process (cnt) is
begin

val <= cnt;
end process;

end;

Listing 4.3 – Alternative implementation for the 3-bit counter.

Listing 4.3 shows a different implementation of the 3-bit counter example shown
in Listing 4.2 on page 67. The implementation is given in form of two processes.
The semantics of this VHDL model is depicted in Figure 4.12 on the facing page.
Execution of the model starts with an initialization phase, where each process
of the elaborated model – P1 and P2 in this example – runs until it suspends.
During this phase, each signal (and variable) of the system is given an initial
value. Simulation time is set to zero, each process is activated and its sequential
statements are executed. In general, every process will include at least one
signal assignment in its body to schedule a transaction at a later execution step.
Sequential execution resumes until a wait-statement is reached causing the
process to suspend. In this example, val and cnt are both set to 0. Since the
synthesizable VHDL subset does not allow the specification of clocks9, the clock
signal is external and is changed from the outside.

After the initialization phase, the activation phase starts. This phase repeatedly
executes the simulation cycle which can be described as follows:

1. Execute processes until they suspend.

9The synthesizable subset of VHDL does not allow a process to sense a signal it drives. Also
use of timeouts is not allowed, thus, a frequent change of a signal’s value cannot be modeled.

70

4.5. VHSIC Hardware Description Language

step event action

clk=0, cnt=0, val=0

t0 clk=1 resume P1
cnt <= cnt + 1;
no more active processes

cnt=1 resume P2
val <= cnt;
no more active processes

val=1 no more active processes
no more scheduled transactions for t0

t0 � 1 clk=0 resume P1
no more active processes
no more scheduled transactions for t0 � 1

t0 � 2 clk=1 resume P1
cnt <= cnt + 1;
no more active processes

cnt=2 resume P2
val <= cnt;
no more active processes

val=2 no more active processes
no more scheduled transactions for t0 � 2

t0 � 3 clk=0 resume P1
no more active processes
no more scheduled transactions for t0 � 3

delta-delay

delta-delay

delta-delay

Figure 4.12 – Execution of a VHDL model.

2. If all processes are suspended, make all scheduled signal assignments
visible at once.

3. If there is a process being sensitive on a signal having changed its value,
resume this process and go to step 1.

4. Otherwise, an external signal must change its value (e.g., the external clock
signal). If this happens, resume all processes waiting for this signal and go
to step 1.

In the example shown in Listing 4.3 on the preceding page, all processes have
suspended after the initialization phase. Since there is no scheduled transaction,
nothing happens until the change of the external clock signal clk <= 1. This
change causes P1 to resume and triggers the transaction cnt <= cnt + 1;
to be scheduled. Afterwards, P1 suspends, and no other process is actually
running (cf. Figure 4.12). All scheduled transactions are now made visible at
once. The time until this happens is called a delta-delay within VHDL.

71

Chapter 4. Modern Processor Development

A delta-delay is an infinitesimally small delay that separates events occurring in
successive simulation cycles but at the same simulation time.

The change of the signal cnt, as scheduled by P1, leads to a reactivation of
process P2. This process schedules the transaction val <= cnt;. After the
next delta-delay making this transaction visible, no process has to be reactivated.
So, simulation time needs to be advanced to the change of an external signal,
which happens at timestamp t0 � 1 in this example. Since the specified circuit is
synchronized to rising clock events, nothing happens here and the simulation
time is advanced again. At the next rising clock edge, at simulation cycle t0 � 2,
the same actions occur as described for simulation cycle t0.

The semantics of VHDL can be seen as a two-level semantics: sequential process
execution at its first, signal update and process reevaluation at its second level.
The sequential execution rules for a VHDL process are depicted in Figure 4.13 on
the next page. In order to formally define the semantics of a VHDL process, it is
necessary to define, what action is performed by it (cf. [MPS09]).

Definition 4.5.1 (Program, program counter)
A program Πp is the list of sequential statements of a process p. The current
statement of a program is denoted by the program counter ζp. The function
nextpζpq returns the address of the next statement of a program Πp. If the
current statement is the last one in a program, nextpζpq returns the special
program counter ζsus indicating that the process is suspended. The function
startpbq takes a list of statements b and returns the address of the first statement
in b.

In other words, each process in VHDL is comparable to programs in other
imperative programming languages.

Definition 4.5.2 (Environment)
The environment Θ P Env of a VHDL process p is a mapping from logical names
to values. A logical name in VHDL can be either a variable v, a signal s, or a
scheduled signal s̄.

Definition 4.5.3 (Process context)
The context of a process p is the tuple pΘ, ζp,Πpqwhere

• Θ is the environment of process p,

• ζp is the program counter of process p, and

• Πp is the program of p.

The inference rule (I) on the facing page covers variable assignments. W. l. o. g.,
evaluation of VHDL operations is embedded into the function eval, inference
rules describing the semantics of VHDL expressions are detailed in [Hym03].
Note that during evaluation, eval always works on the current values of signals,

72

4.5. VHSIC Hardware Description Language

var

Πrζs ñ ν :� expr; Θ $ evalpexprq � u Θ1 � λt.

#
u if t � ν,
Θptq otherwise.

pΘ, ζ,Πq á pΘ1, nextpζq,Πq
(I)

sig

Πrζs ñ s � expr; Θ $ evalpexprq � u Θ1 � λt.

#
u if t � s̄,
Θptq otherwise.

pΘ, ζ,Πq á pΘ1, nextpζq,Πq
(II)

tcond
Πrζs ñ if expr then b1 else b2 end if; Θ $ evalpexprq � true

pΘ, ζ,Πq á pΘ, startpb1q,Πq
(III)

fcond
Πrζs ñ if expr then b1 else b2 end if; Θ $ evalpexprq � false

pΘ, ζ,Πq á pΘ, startpb2q,Πq
(IV)

tloop
Πrζs ñ while expr loop b end loop; Θ $ evalpexprq � true

pΘ, ζ,Πq á pΘ, startpbq,Πq
(V)

floop
Πrζs ñ while expr loop b end loop; Θ $ evalpexprq � false

pΘ, ζ,Πq á pΘ, nextpζq,Πq
(VI)

skip
Πrζs ñ;

pΘ, ζ,Πq á pΘ, nextpζq,Πq
(VII)

Figure 4.13 – VHDL sequential execution semantics.

never on scheduled ones. The process environment is updated with the new
value assigned to variable v. Inference rule (II) covers signal assignments. While
in case of a variable assignment, the environment is directly updated with the
new value, this is not the case for signal assignments. Here, the new value is a
scheduled transaction and must be seen as the future value.

The behavior of conditional statements is specified in the inference rules (III) and
(IV). When the condition expression evaluates to true, control is transfered to
the first instruction of the subsequent block b1. Otherwise, control is transfered
to the first instruction in the block b2. Obviously, switch-statements can be easily

73

Chapter 4. Modern Processor Development

exec

Dl P L : ρplq � pζl,Πl, ωlq ^ ζl � ζsus

pΘ, ζl,Πlq áseq pΘ1, ζ 1l ,Πlq

ρ1 � λpt P Lq.

#
pζ 1l ,Πl, ωlq if t � l,
ρptq otherwise.

pΘ,ρq á pΘ1,ρ1q
(VIII)

delta

@l P L : ρplq � pζsus,Πl, ωlq Θ1 � λt.

$'&'%
Θps̄q if t � s,
Θps̄q if t � s̄,
Θptq otherwise.

ρ1 � λpl P Lq.

#
pstartpΠlq,Πl, ωlq if Ds P ωl : Θpsq � Θps̄q,
pζsus,Πl, ωlq otherwise.

pΘ,ρq á pΘ1,ρ1q
(IX)

Figure 4.14 – VHDL simulation semantics.

transformed into conditional cascades, so the rules for these statements are left
out in Figure 4.13 on the preceding page.

Although the synthesizable VHDL subset only defines for-loops, they can be
easily transformed to while-loops. Their semantics is specified in the inference
rules (V) and (VI). Similar to conditional statements, control is transfered to
the loop body, when the conditional expression evaluates to true. Otherwise,
control is transfered to the first statement after the loop body.10

Inference rule (VII) on the previous page describes the semantics of empty
blocks, e.g., an empty else-part within a conditional statement. The environ-
ment remains unchanged, only the program counter is updated to the next
statement.

Process termination in the inference rules in Figure 4.13 on the preceding page is
guaranteed by the definition of the function nextpζq. A VHDL process terminates
(i.e. suspends execution) when reaching the special program counter ζsus as
defined above.

The global simulation semantics, i.e. the level of processes reactivation, for a
VHDL model is shown in Figure 4.14 working on a set of processes.

10As this thesis focuses on the synthesizable substandard of VHDL, all loops are assumed to be
bounded, i.e. no infinite loops are part of the models.

74

4.5. VHSIC Hardware Description Language

Definition 4.5.4 (Process)
A process ρplq is a tuple pζl,Πl, ωlq where ζl and Πl are the program counter and
the program as defined above, and ωl is a set of signal names representing the
sensitivity list of ρplq.

Definition 4.5.5 (Global execution context)
The global execution context of a VHDL simulator is the tuple pΘ,ρqwhere

• Θ is the environment as defined above.

• ρ is a map from process labels L to processes.

Sequential execution of all running (i.e. not suspended) processes is specified in
inference rule (VIII) on the facing page. The sequential execution rules shown
in Figure 4.13 on page 73 are embedded in the functionáseq. This rule covers
step 1 in the description of the VHDL simulation cycle.

Transaction handling (i.e. handling of scheduled signal assignments) and process
reactivation is covered by inference rule (IX) on the facing page. For each process
p having at least one signal in its sensitivity list ωp that actually has changed its
value the program counter ζp is set to the first instruction in the program. This
corresponds to the steps 2 and 3 of the simulation cycle.

As stated earlier, it is not possible to model the frequent change of a clock signal
within the synthesizable subset of VHDL. Thus, the rules given in Figure 4.14
do not describe, how simulation time advances. Simulation proceeds when all
scheduled transaction have been processed and no further update occurs. The
advance in simulation time (cf. step 4 of the simulation cycle) must be handled
externally. The combination of inference rules given in Figure 4.13 on page 73
and Figure 4.14 on the facing page specifies the semantics of the synthesizable
subset ofVHDL and can be used to generate a cycle-accurate simulator for a
given VHDL model.

4.5.5 Related Languages

Besides VHDL, a variety of other hardware description languages have been
developed. The first languages were ISPS [BBCS77] developed at Carnegie
Mellon University, and KARL, developed at University of Kaiserslautern, in
1977. Whereas ISPS does only offer the possibility to simulate a design but
not to synthesize it, KARL also includes capabilities for supporting VLSI chip
floorplanning and structured hardware design.

The first modern HDL was Verilog [TM02], developed in 1985. As for VHDL,
Verilog was initially developed to document and simulate system models to
enable engineers to work at a higher level of abstraction. With the introduction

75

Chapter 4. Modern Processor Development

of logic-synthesis supporting the automatic compilation of the description into
transitor-level netlist descriptions, modern HDLs come to the fore regarding the
design of integrated circuits.

As VHDL, Verilog also offers support to describe state-machines and temporal
dependencies, the syntax was designed to be related to the C programming
language [KR88]. A Verilog design consists of a hierarchy of modules, modules
communicate through a set of declared input, output, and bidirectional ports.
As in VHDL, a module consists of a set of concurrent blocks, each block is a list of
statements that is executed sequentially. The blocks are executed concurrently.

Also VHDL and Verilog have many things in common, both HDLs differ in
some points: Whereas VHDL is patterned after Ada, Verilog is patterned after C.
Basically, this means that Verilog is terse, and type-checking is made very airy,
whereas VHDL is verbose and strongly typed. Another difference is that Verilog
is a case sensitive programming language, whereas VHDL is case insensitive.

Within a few years, both, VHDL and Verilog, emerged as the dominant HDLs
in the electronics industry, while older HDLs disappeared step by step from
use. Anyhow, VHDL and Verilog share the limitation that both are not suitable
for analog/mixed-signal circuit simulation. Specialized hardware description
languages such as Confluence [Haw03] were introduced with the goal to explic-
itly fixing this limitation, though none were ever intended to replace VHDL or
Verilog.

76

5
Timing Model Derivation

Nothing is more powerful
than an idea whose time has
come.

(Victor Hugo)

Chapter 3 on page 27 already introduced methods for estimating the WCET of
tasks. The most prominent and successful tool, the aiT WCET analyzer frame-
work, developed by Saarland University and AbsInt Angewandte Informatik
GmbH, now serves as the basis for this thesis. They key concept underlying the
approach of aiT is abstract interpretation of a timing model of a processor and
its periphery. A timing model used in the micro-architectural analysis of the aiT
framework thereby is a reduced description of a processor only describing its
timing behavior.

Currently, the micro-architectural analysis and the underlying timing model
are hand-crafted by human experts using publicly available processor doc-
umentation and measurements as input. Thus, the process of developing a
micro-architectural analysis for a new target processor is time-consuming and
also error-prone. Faults are caused by several factors:

• Wrong documentation – the public available processor documentation not
necessarily reflects the real behavior of a processor.

• Missing documentation – especially corner cases are often not or only
partly described in the publicly available documentation.

• Ambiguity of measurement results – often, the result of a program snippet
allows multiple interpretations and thus not yield the desired information.

77

Chapter 5. Timing Model Derivation

• Limitations in inspecting processor internals – unfortunately, execution
unit details and internal buses are not accessible from the outside compli-
cating understanding corner cases.

• Human factors in the implementation of the micro-architectural analysis
– human involvement in implementation always causes a big source of
errors.

The increasing complexity and features used in modern hardware makes model
derivation even harder.

The previous Chapter 4 on page 41 introduces VHDL, one of the most prominent
hardware description languages. Modern processors and system controllers are
automatically synthesized out of these formal hardware specifications. The use
of HDLs eases design, simulation and verification of new processors. Besides the
systems functional behavior, such specifications provide all information needed
for the creation of a timing model (cf. Section 4.5.4 on page 69).

Since the final hardware (i.e. the processor that can be bought) is automatically
synthesized out of the formal hardware model (normally given in form of a
register-transfer level description), hardware and specification are equivalent.
Thus, it seems reasonable to use the specification directly to derive timing models
usable for their operation in WCET analysis. Currently, faulty documentation is
directly reflected in the timing analysis and can cause faulty WCET estimates
at worst. Using the same sources for timing analysis as for hardware synthesis
thus eliminates an important source of errors. Often, hardware does not behave
as described in the reference manuals due to specification errors for some corner
cases. For timing analysis, such a behavior can only be covered with difficulty.
However, using the same source of information as for synthesis would also solve
this problem.

Due to size and complexity, manually examining the formal specification sources
is even more complex than only looking at the processor manuals. Moreover,
this would not reduce the effort nor the probability of implementation errors.
Since a processor description in a hardware specification language also includes
all functional details, it cannot be used directly for a micro-architectural analysis
due to space limitations. Thus, there is a need for a methodology to derive
timing models from a processor specification. Besides all issues discussed above,
this would also reduce the effort for creating a micro-architectural analysis from
months to weeks.

This chapter describes a semi-automatic method to derive timing models suitable
for the usage within the micro-architectural analysis (cache/pipeline analysis)
of the aiT WCET analyzer framework. First, transformations reducing size and
complexity of a processor specification given in VHDL will be introduced. A new
methodology for the derivation of timing models will be described in Section 5.2
on page 87. Section 5.3 on page 91 describes the framework supporting the

78

5.1. Transformations of VHDL

semi-automatic derivation of timing models and their automatic translation into
a micro-architectural analysis that can be directly used in the aiT framework.

5.1 Transformations of VHDL

A VHDL specification of a complete processor is quite large, e.g., around 70000
lines of code for the LEON2 processor [Gai05]. Due to elaboration (cf. Sec-
tion 4.5.3 on page 68) – a necessary process before hardware synthesis – the size
of the processor model is even larger. Directly using such a model for timing
analysis, i.e. within the micro-architectural analysis is not feasible in terms of
computational effort and resource consumption, and thus would render timing
analysis infeasible.

Nowadays processors offer a variety of different options optimizing them for
usage in different fields of application. Within the area of embedded systems,
and in contrast to the usage within a normal desktop-oriented area, only a small
and fixed amount of options is in use. Thus, for timing analysis of embedded
software, large parts of a VHDL model are not relevant due to the restricted
usage. As a result, the uninteresting parts within a processor specification can be
removed for timing analysis reducing size and complexity of the specification.
In the following, some size and complexity-reducing transformations will be
presented. More details on these transformations can be found in [Pis12].

5.1.1 Environmental Constraints

Current embedded hardware architectures offer a huge variability concerning
their configurability. E.g., caches can be configured to be used as scratchpads,
partial cache locking can be enabled, unified caches can be used for instructions
or data only, memory regions can either use a write-back or a write-through
write policy, branches can be predicted by only using static information or using
dynamic information taken from large branch history tables, or the system bus
can be used in a pipelined or a non-pipelined mode. All of these settings have
one thing in common: they are fixed during runtime, thus rendering some parts
of a hardware specification given in VHDL obsolete for timing analysis. Remov-
ing the unused parts of the specification directly contributes to the reduction
in size and complexity, thereby directly reducing the complexity of a timing
analysis.

Besides these configurable features, there exist a variety of events that are
either asynchronous (e.g., DMA, or interrupts) or simply not predictable in their
occurrence (e.g., ECC errors). A timing analysis won’t deal with these events,

79

Chapter 5. Timing Model Derivation

thus parts in the VHDL specification dealing with these events can be safely
purged for timing analysis.

In order to make static timing analysis still applicable, it is necessary to make
assumptions about the processor’s environment. An exception or interrupt
brings the whole system to a state where no timing bound for the current task
is needed. So for timing analysis, it is safe to assume that those events do not
happen. Based on this assumption, some signals in the VHDL description can be
assumed to never change their value, so they can be hardwired to their default
value (i.e. the value after system reset). As a result, parts of the VHDL become
unreachable (i.e. control never reaches these statements), and thus, dead-code
elimination can be used to remove those parts from the VHDL specification.

Asynchronous events that occur frequently (e.g., SDRAM refreshes) can be
handled in a similar way. As stated in Section 4.3 on page 56, these events can be
handled by statistical means. Within a VHDL specification, an occurrence of such
an event triggers an input signal, which also can be viewed as hardwired for
timing analysis, and thus can be treated in the same manner as non-predictable
events.

The specialized operational area of processors within the field of embedded
systems and the (non-)predictability of some hardware features and events
offer possibilities to restrict the VHDL model of the used architecture without
changing its semantics within the concrete field of application.

5.1.2 Domain Abstraction

Many modern processors offer a wide range of registers used for storing data
processed by the CPU. In the field of timing analysis, the concrete value of a
register at a certain program point (i.e. during execution) is often not important.
E.g., for timing analysis, the resulting value of an addition is not important but
the time spent to add the two involved registers. [Sic97] describes a method for
separating value computations from other processor activities, thus, data paths
within a VHDL model can be excluded for timing analysis. This directly implies
the possibility to abstract the contents of registers in order to reduce size and
complexity of the timing model.

A rather similar argumentation is valid for different memory parts, e.g., a fast
and a slow memory. Due to the presence of timing anomalies (cf. Section 4.4
on page 60), memory might not be abstracted in total. But in the specialized
field of application in which a processor is used, it might be sufficient for timing
analysis to remember for each access, which type of memory will be accessed.
Instead of storing a concrete address, an index denoting the type of memory is
satisfactory for WCET analysis.

80

5.1. Transformations of VHDL

Related abstractions are also applicable to queues used in the processor (e.g.,
prefetch queues), where not the contents of the several queue entries is inter-
esting for timing analysis, but the current filling level in order to determine, if
there are currently any vacant slots or not.

In case of homogeneous execution units offered by many modern processors, a
reduction in size and complexity of the timing model can also be achieved by this
kind of abstraction. E.g., Freescale’s PowerPC MPC7448 offers three identical
simple fixed-point units used for simple arithmetic operations (like additions,
subtractions and compare operations, [Fre05a]). For timing analysis, it might
not be interesting, which concrete instruction is currently running on which
concrete instance of the homogeneous execution units, instead, it is sufficient
to know the amount of free/occupied units. Using this kind of abstraction re-
quires the hardware to have no irregularities. Typical characteristics of irregular
hardware architectures are constraints on instruction-level parallelism and the
interconnectivity of functional units [Kä00].

All kind of transformations discussed above can be called domain abstractions.
At the VHDL level, they can be viewed as a change of type of signals and
variables in the model. Changing a domain type thus implies also a change of
functors used in the model in order to preserve both, the syntactical as well as
the semantical correctness of the model. The functors to be adopted need to
work on the abstracted domains as well. An example is shown in Listing 5.1 on
the next page showing an implementation of a simple memory controller and
its access latencies for two types of memory. Changing the domain of a concrete
address to address intervals implies that the compare operators used in the
sample code must be adopted to return three values: yes, no and perhaps. The
new implementation of the compare operators thus introduce non-determinism
into the given VHDL model.

In general, this kind of transformation might introduce non-determinism into
the timing model, and it is the task of the timing analysis to cope with the variety
of possibilities (cf. Section 3.3 on page 39).

5.1.3 Process Substitution

For timing analysis, the internal implementation of many components is unin-
teresting. As stated before, correctness of the VHDL specification is assumed,
and the result of some computational unit is not of interest for timing analysis
and can be viewed as a kind of black box.

In terms of VHDL, the running parts within a specification are processes. Pro-
cesses drive signals containing the result of its computational task (e.g., the

81

Chapter 5. Timing Model Derivation

entity mem_ctrl is
port (addr : in integer; wait_states : out integer);

end entity;

architecture arch of mem_ctrl is
function access_time (a: integer) returns integer is
begin

if a >= X"0000" and a < X"1000" then --slow memory
return 15;

else --fast memory
return 5;

end if;
end function;

begin
P: process (addr) is

variable latency: integer;
begin

latency := access_time (addr);
if addr mod 4 /= 0 then --address not aligned

latency = latency * 2;
end if;
wait_states <= latency;

end process;
end architecture;

Listing 5.1 – Simple memory controller in VHDL.

address of next instructions to be fetched from memory) and activate other
processes that sense at least one of those signals.

For timing analysis, the details on how a process derives its result often is
uninteresting. Process substitution allows for replacing a concrete VHDL process
implementation by a custom implementation modeling less details or using
abstractions. It can further be used, if a modeling of all details results in a
too large timing model rendering the resulting timing analysis computational
infeasible. Thus, this transformation can be viewed as a kind of black boxing
with respect to the timing behavior of the process.

This kind of transformation has been successfully applied to caches and is
known as cache abstraction [FMWA99]. The concrete implementation of the cache
is replaced by an abstracted cache domain storing only the maximal ages of all
lines that are definitively in the cache (cf. Section 4.1.1 on page 43).

As for domain abstractions, depending on the implementation chosen, this
kind of transformation might introduce non-determinism into the timing model,

82

5.1. Transformations of VHDL

which must be handled by the resulting timing analysis.

5.1.4 Memory Abstraction

Code and data processed by a CPU are kept in memory. For execution, instruc-
tions need to be fetched from main memory, decoded, executed and the results
are written back to memory [HPG03].

Large memory arrays like the main memory blow up a timing model. Moreover,
only small portions of these arrays are normally used by a program or task, for
which timing analysis is made. Content of registers, addresses of memory cells
being accessed by a program, and also their content can be statically computed
without modeling the details of processor pipelines. A cycle-wise simulation of
the processor’s behavior is not necessary for the determination of these values,
only the instruction semantics is needed [Sic97]. Within the aiT timing analyzer
framework, this phase is called value analysis, which has been described in
Section 3.2 on page 35.

Thus, and to make timing analysis feasible, large memory areas need to be
abstracted. Otherwise, the space consumption of a resulting timing analysis
will be too large. The removal of memory arrays requires changes in the VHDL
model since instructions to be executed are fetched from main memory. Within
the aiT framework, analyses are based on a common control-flow graph of the
program to be executed augmented with additional informations (cf. Section 3.2
on page 35). This is also valid for the micro-architectural analysis modeling
the processor behavior. In order to derive this analysis from a timing model,
instructions have to be inserted into the model using the common control-flow
graph. Thus, a new interface for the insertion of instructions into the timing
model is needed enabling the removal of the main memory from the model.
In order to achieve this, a new VHDL process is to be inserted into the model
serving as interface to the control-flow graph.

Due to the value analysis, data paths can be abstracted for timing analysis
and thus reduce the complexity of the timing model. The removal of these
paths also requires the introduction of an interface to the annotated control-flow
graph to obtain information computed by the value analysis, whenever such
an information is required. E.g., for load or store instructions, the information,
which address is to be accessed, requires the connection to the control-flow
graph.

The removal of memory arrays and data paths from a VHDL model, and the
introduction of new VHDL processes acting as interfaces to the control-flow
graph is called memory abstraction. Due to domain abstraction and process
substitution, and also due to static analysis, data access addresses of instructions

83

Chapter 5. Timing Model Derivation

var

Πrζs ñ ν :� expr; Θ $ evalpexprq � u1. � � � .un

Θ1 � λt.

#
u1 if t � ν,
Θptq otherwise.

Γ1 � Γ.xν Ð u1y

ζ 1 � nextpζq ai � xΓ, ζ 1, ν Ð uiy

pΘ,Γ.Γ,Σ, ζ,Πq á pΘ1,Γ.Γ1, a2. � � � .an.Σ, ζ 1,Πq
(I)

sig

Πrζs ñ s � expr; Θ $ evalpexprq � u1. � � � .un

Θ1 � λt.

#
u1 if t � s̄,
Θptq otherwise.

Γ1 � Γ.xs̄Ð u1y

ζ 1 � nextpζq ai � xΓ, ζ 1, s̄Ð uiy

pΘ,Γ.Γ,Σ, ζ,Πq á pΘ1,Γ.Γ1, a2. � � � .an.Σ, ζ 1,Πq
(II)

bktrk
Σ � xΓ, ζ 1, δy.Σ1 Θ1 � updatepΘs,Γ.δq
pΘ,Γ,Σ, ζend,Πq á pΘ1,Γ.rΓ.δs,Σ1, ζ 1,Πq

(III)

stop
pΘ,Γ, r s, ζend,Πq á pΘ,Γ, r s, ζsus,Πq

(IV)

Figure 5.1 – Abstract VHDL sequential execution semantics.

might only be known as safe intervals, not as single addresses. Thus, the
VHDL design must be adapted to utilize the information from the value analysis
instead of the real computation of addresses. For this, all places where data
access addresses are generated by instructions have to be identified. At these
places pseudo VHDL processes have to be added that interface with the value
analysis to retrieve the previously computed intervals. Consequently, addresses
must be abstracted to address intervals.

5.1.5 Abstract VHDL Semantics

Abstractions introduced into a timing model must not affect the global simu-
lation semantics of VHDL (i.e. the process reactivation level) since this would
cause a severe loss of precision [MPS09].

W. l. o. g., but for simplification, it is assumed that the VHDL model has been
preprocessed avoiding any non-determinism in compound expressions, i.e. there
shall be at most one operation or function call in assignment statements, and no

84

5.1. Transformations of VHDL

operations at all in the conditions of if- and loop-statements. Thus, only variable
and signal assignment rules need to be adjusted.

The sequential execution semantics for abstracted VHDL processes is shown in
Figure 5.1 on the facing page. For simulation of these processes, it is necessary
to remember points, where non-determinism was encountered. This can be
achieved by managing a list of updates being applied over the initial process
environment and a stack managing the decision points.

Definition 5.1.1 (Assignment)
An assignment δ P D with δ � nÐ v associates a logical name n to a value v.

Definition 5.1.2 (Process update)
A process update Γ P listpDq is a list of assignments, which is to be applied to
the environment Θ of a process p (cf. Definition 4.5.2 on page 72). Θsp denotes
the environment at the start of process p.

Definition 5.1.3 (Stack)
A stack element is a triple xΓ, ζ, δy, where Γ is the update to be applied on the
initial environment Θsp to restore the environment before the program point
where non-determinism was encountered, denoted by the program counter ζ .
δ is the assignment to be applied to the resulting environment Θ to proceed
from the split point on. A list of stack elements is called stack. r s is used to
denote an empty stack.

Using these definitions, the context of an abstracted VHDL process can be de-
fined.

Definition 5.1.4 (Process context)
The context of an abstracted process p is defined as the tuple pΘ,Γ,Σ, ζp,Πpq
where

• Θ is the environment of process p.

• Γ is a list of updates Γ1,Γ2 . . .Γn. The last element Γ in a list Γ is denoted
as Γ.Γ.

• Σ is the stack as defined above.

• ζp is the program counter as defined in Definition 4.5.1 on page 72. ζend is
a special address denoting that the current simulation path is at its end
(i.e. process suspends here).

• Πp is the program as defined in Definition 4.5.1.

85

Chapter 5. Timing Model Derivation

The evaluation function eval that embeds evaluation of VHDL expression, must
be extended to return a list of result values in order to support non-determinism
encountering the evaluation of expressions.

Signal and variable assignments are shown in the transformation rules (II) and
(I), respectively. Only one of the values obtained from the evaluation function is
directly used for further updates, the remaining results (if any) are pushed on
the stack along with the current program counter ζ 1 and the update Γ that has to
be applied over the initial environment Θsp of the process p to restore the state
before the actual statement.

Having processed the last statement of a process, the special program counter
ζend is reached. A non-empty stack indicates that there are still execution paths
that are not yet covered by the simulation. Thus, the topmost element pΓ, ζ, δq
is popped from the stack Σ and used to restore the process environment after
the non-deterministic statement right before ζ . This is called backtracking and is
depicted in inference rule (III) on page 84. update is a function applying a list of
assignments to an environment. Applying Γ to the initial environment Θsp of a
process p thus restores the environment before the point, where non-determinism
encounters. Additionally applying δ to this restored environment results in
the environment after the program point causing the split (which is exactly the
program point in the process, ζ points to).

When reaching the last statement (denoted by ζend) with an empty stack r s,
all possible simulation paths have been visited, i.e. simulation is done. This
is covered by inference rule (IV) on page 84 and the program counter is set to
ζsus.

Embedding the rules from Figure 5.1 on page 84 and Figure 4.13 on page 73 into
the simulation functionáseq, the transitive closure of this function

pΘ, r s, r s, startpΠpq,Πpq á
�
seq pΘ

1,Γ, r s, ζsus,Πpq

describes all execution paths through a process p.

Applying each update Γ in the list of updates Γ to the initial environment
yields an environment at a suspend state (i.e. a state, where ζp � ζend) of the
abstract execution tree (cf. Section 3.3 on page 39). The union over all resulting
environments forms the input for the next process update. In order to simulate
abstracted VHDL processes, the simulation rules depicted in Figure 4.14 on
page 74 must be adopted to cope with sets of environments (see [Pis12, MPS09]
for more details).

86

5.2. Derivation Cycle

VHDL Model

Timing
Dead Code
Elimination

Environmental
Assumption
Refinement

Data Path
Elimination

Model Preprocessing

Preprocessed
VHDL

Processor State
Abstractions

Timing Model

Figure 5.2 – Timing model derivation process – Methodology overview.

5.2 Derivation Cycle

As shown previously, a VHDL specification of a processor also describes its
timing behavior, but it also contains all implementational details. In order to
make timing analysis feasible, a VHDL specification needs to be reduced in
both, size and complexity. Within the previous Section 5.1 on page 79, some
transformations of VHDL have been introduced that can be used to simplify
a given VHDL specification. Within this section, a methodology describing
the systematic derivation of a timing model from a VHDL specification will be
introduced. The resulting timing model can be directly used within the aiT
WCET analyzer framework.

Figure 5.2 depicts the general process flow. Starting with a full VHDL specifica-
tion, a systematic reduction in size and complexity must be achieved. Model

87

Chapter 5. Timing Model Derivation

preprocessing uses statically available information on the system’s environment
and common abstractions to reduce the complexity of the specification. Basing
on the resulting model, further processor state abstractions have to be applied
iteratively until the resulting timing model is applicable within the specific field
of application. Finding the balance between precision and analysis speed (i.e.
applying an abstraction/transformation introduces non-knowledge into the
model, which results in a more pessimistic WCET bound) thereby is the task of
an advanced software engineer.

In following, the phases of the derivation cycle are briefly described, more details
can be found in [Pis12, SP10].

5.2.1 Model Preprocessing

Model preprocessing is the task of reducing the size of the input VHDL model by
removing parts in it that are irrelevant for the timing behavior of the system. As
stated earlier, embedded systems are very specific, both in terms of hardware
and software components. Mostly, some parts of a processor are not used or
only used in a limited way by the application running on the system (e.g., no
floating point instructions are used by the application).

Processors nowadays used in the area of embedded systems especially allow
configuration of many features supported by the hardware. In a VHDL model,
these configurable parts are often guarded by control signals enabling or dis-
abling a dedicated hardware feature. Since these control signals are assigned
their values during the system’s initialization, remaining accesses of them are
read accesses. Thus, these signals can be viewed as constant from the point of
view of a timing analysis. The default values of these control signals within
a processor and its corresponding VHDL model are set during system reset.
Analyzing the reset behavior of a VHDL model thus leads to the initial values
of these control signals. Changes of these signals can be found in the system’s
startup code. Using the information obtained via these two sources directly
reveals, which components might be unused within a VHDL model and are thus
not interesting for timing analysis. The removal of parts not reachable under
a fixed mapping of control signals is called environmental assumption refinement
(cf. Figure 5.2 on the previous page). Those parts can be safely pruned from the
VHDL model and do not affect the system’s behavior nor its timing within the
specific filed of application.

Another optimization also aiming at reducing the size of the original VHDL
model is timing dead code elimination. This optimization removes parts within a
specification that do not contribute to the system’s timing behavior and thus are
not interesting for timing analysis. Timing dead code elimination (in contrast
to environmental assumption refinement) is not restricted to inactive parts

88

5.2. Derivation Cycle

or modules within a VHDL specification. E.g., a specification of a pipelined
multiplier unit within VHDL describes the function of this unit in every detail
including the algorithmic implementation of the unit, and also the control logic
and data flow through the several pipeline stages. But for timing analysis, the
algorithmic implementation and the data flow through the unit are uninteresting.
Only the logic controlling the residence time of instructions in the pipeline stages,
or in other words, the time spent in each stage is interesting for timing analysis.

Thus, the goal of timing dead code elimination is to restrict the VHDL model to
timing-alive code portions. In order to achieve this, all points in the VHDL model
must be identified, where an instruction can leave the processor pipeline (i.e. an
instruction retires). Due to the complexity of modern architectures with branch
prediction, branch folding and other early-out conditions for some instruction (cf.
Section 4.1 on page 43), there might exist several locations in the model, where
instruction retirement can happen. Instructions leaving the processor pipeline at
the same place in the VHDL model form a so-called instruction class. After having
identified all of these retirement locations, a backward slice (see Section 6.4 on
page 140 for more details) for each instruction class can be computed. The
resulting slice yields all VHDL statements influencing the instruction retirement
within the model and therefore contributing to the instruction flow through the
pipeline w.r.t. the instruction class. All VHDL statements not being part of this
slice do obviously not influence the behavior of this instruction class for which
the slice is computed. All VHDL code that is not part in the union over all these
slices is said to be timing dead and thus can be safely removed from the VHDL
model reducing its size and complexity.

The focus of timing model derivation presented in this thesis is to derive models
suitable for the usage in the aiT WCET analyzer framework (cf. Section 3.2 on
page 35). [Sic97] has shown that data paths within a processor core can be
factored out. The removal of these data paths from a given VHDL model is called
data path elimination. Fortunately, the latency of instructions is normally not
influenced by the content of registers and/or memory cells they use.1 Therefore,
all data paths within a VHDL model can be removed, the values of registers and
memory cells are completely computed by an external value analysis. Whenever
information about the content of registers is necessary, the external analysis must
be queried for this information. In contrast to the real address computation, the
value analysis relies on a different domain, i.e. an interval domain representing
address intervals. Due to the lack of information that is statically available,
and due to the nature of abstract interpretation (cf. Section 2.3 on page 14), the
removal of data paths introduces non-determinism. Consequently, this factor-
ization of address/value information implies the need of domain abstractions
from addresses to address intervals.

1There exists some exceptions, e.g., some early-out conditions in the multiply unit, where
instructions are faster, when one of the operands contains the value 0.

89

Chapter 5. Timing Model Derivation

5.2.2 Processor State Abstractions

Model preprocessing as described above reduces size and complexity of a given
VHDL model and makes the timing model computationally feasible. The re-
moval of timing dead code and environmental assumption refinement do not
cause any non-determinism into the model, whereas the elimination of data
paths causes splits due to the interconnection to the external value analysis
and the accompanying switch form concrete addresses to address intervals.
However, depending on the complexity of the target processor providing many
performance improving features like branch speculation, speculative execution,
etc., the reduction in size might not be sufficient.

Parts of the VHDL model removed so far did not contribute to the timing be-
havior of the processor at all. A further reduction in size can only be achieved
by abstracting parts of the model relevant for its timing behavior. These parts
have to be approximated rather than precisely modeled. In principle, a lack of
information about the system state results in a loss of precision of the computed
WCET bound. Fortunately, timing is often not affected by these abstractions,
since many units work independent from any concrete input. E.g., the latency of
an addition is not affected by the concrete operands’ values, so simply counting
remaining cycles until finished suffices for timing analysis. In contrast to this,
multiplications on a multiply unit can be finished much faster, if one argument
has many leading zero bits (cf. [Fre05a], Table 6-5, Integer Unit Execution Laten-
cies). Due to the presence of timing anomalies (cf. Section 4.4 on page 60) in many
modern processor cores, a lack of information here induces non-determinism
into the timing model leading to a larger search space in order to guarantee a
safe WCET bound. If multiplications are rare in the domain for which the timing
analysis is developed for, this might be acceptable.

Section 5.1 on page 79 has already introduced transformations that can be used
to further abstract the state representation of the processor. Whereas process
substitution and domain abstraction can be iteratively applied until the resource
consumption of the resulting micro-architectural analysis is acceptable, memory
abstraction can only be applied once.

The kind in which an abstraction is to be used to derive a timing model suitable
for usage in the aiT WCET analyzer framework cannot be described in general.
This is and will ever be an engineering problem. For rather simple architec-
tures like the ARM7 [ARM04], most parts can be modeled precisely without
getting computational trouble, whereas for more complex architectures, more
abstractions have to be used. Anyhow, some abstractions are widely used and
are applied to nearly every processor:

• Cache abstraction: Process substitution is used to replace the concrete im-
plementation of a cache by an abstract one. Details on this abstraction and

90

5.3. Derivation Framework

its domain can be found in [FMWA99].

• Address abstraction: Domain abstraction replacing concrete/precise ad-
dresses by address intervals. The use of this abstraction is mainly implied
by the removal of data paths and the interconnection to an external value
analysis. Switching from concrete addresses to intervals for e.g., load
instructions in the load/store unit of a processor directly implies an adjust-
ment of the interface of the bus interface unit and the memory controller
unit.

Processor state abstractions certainly must not change the timing behavior of the
VHDL specification. Moreover, their usage is very architecture specific in terms
of applicability and necessity. As stated previously, their introduction leads
to several possibilities in the simulation/behavior of a process. If the number
of possibilities at a certain point in simulation is too high, the computational
complexity and resource consumption might increase and timing analysis may
still be infeasible. This is called state explosion in terms of an micro-architectural
analysis [Wil12], i.e. the number of possible successor states is too high. Thus,
processor state abstraction must be chosen very carefully.

The introduction of processor state abstractions leads to a loss of precise in-
formation. Whenever precise information is required, but not available for
further process simulation (e.g., for the latency check in Listing 5.1 on page 82),
this yields to multiple successor states. The abstract VHDL simulation rules
introduced in Section 5.1.5 on page 84 deal with this non-determinism.

5.3 Derivation Framework

Previous sections already gave an overview of possible transformations on
VHDL and have also proposed a workflow to derive models suitable for usage
in a timing analyzer framework. Performing these steps by hand is a very
time-consuming process on the one hand [The06], and error-prone on the other
hand. In order to eliminate these harms, this section introduces a framework
enabling the semi-automatic derivation of timing models given a formal VHDL
specification of a processor.

All parts of model preprocessing as well as the processor state abstractions are
based on techniques that are well known from the area of compiler construction,
namely static analyses and source-to-source transformations [SWH12].

This sections describes, how to use static analyses and transformations to au-
tomate parts of the methodology introduced in the last section and to system-
atically derive timing models suitable for the usage in the aiT WCET analyzer
framework. The general workflow is depicted in Figure 5.3. Starting with a

91

Chapter 5. Timing Model Derivation

VHDL Model Static Analyses/
Transformations

Timing Model

Code Generator

CFG-Builder

Value Analysis

Pipeline/Cache
Analysis

Static Analyses

ILP-Generator

ILP-Solver

Path Analysis

WCET

Timing Analyzer

Figure 5.3 – Derivation process automation – Overview.

processor model specified in VHDL, a set of static analyses and transformations
can be applied to derive the timing model. Afterwards, simulation code for the
combined cache/pipeline analysis can be automatically produced using a code
generator, that also respects the simulation rules of abstracted VHDL. A more
detailed view on the derivation workflow can be found in [Pis12].

5.3.1 Analyses and Transformations

The methodology introduced in the last section describes several processes to
derive a timing model usable for timing analysis. In order to make this process
easier and more efficient, methods from the compiler design domain can be
used. This section introduces these processes, a detailed view on the new VHDL
analysis framework that eases the development of VHDL analyzers is given in
the next Chapter 6 on page 97.

92

5.3. Derivation Framework

In order to simplify a processor specification given in VHDL, assignment state-
ments to either signals or variables need to be removed. If this results in a
specification containing only read-references of these signals (or variables), con-
stant values are read. These constant values are the initial values assigned during
system reset.

Within VHDL, the system reset normally is controlled externally by an input
signal, called reset signal. The assertion of this signal causes the system’s init-
code to be executed.

Identification of default (or initial) values assigned during system reset can be
automated by evaluating the code segments that are active during reset. The
contents of signals/variables after these code segments have finished are the
initial values. Please note that modern hardware often uses activation chains to
initialize subcomponents, thus, the desired initial values are often not obtainable
by looking at the one clock cycle, where the reset signal is asserted. E.g., memory
controllers often make use of long initialization sequences to initialize the several
memory chips being attached to them.

Obtaining the initial values of a system’s signals and variables can be easily
automated by a constant propagation analysis on those parts of the VHDL model
that are active during the system’s reset. A constant propagation analysis deter-
mines for each program point, whether or not a signal/variable has a constant
value whenever execution reaches that point [NNH99]. The execution context
thus has to be restricted to the active parts under system reset. Furthermore, the
special VHDL signal semantics, process reactivations and simulation cycles need
to be taken into account.

In the following , we will refer to this context-sensitive static analysis as reset
analysis. For the sample implementation of a 3-bit counter given in Listing 4.3
on page 70, the reset analysis would determine the value “000” as the initial
value for the signals cnt and val.

Timing analysis is always performed for a special field of application. The
hardware used in this field is configured to exactly fit into the needs of the
applications running on it. Further restrictions allow the applications to make
only use of dedicated hardware features. In contrast to this, modern hardware
offers a variety of features (as described in Chapter 4 on page 41). For the
specialized use within embedded systems, many features are disabled (like
dynamic branch prediction), or the use of them brings the whole system into
a state, where guaranteeing the WCET is no longer of interest (e.g., interrupt
handling in case of an error).

The assumptions on the environment of the embedded system can be auto-
matically incorporated into the VHDL model to reduce its size. Evaluating
assumptions result in rendering statements in the VHDL model as timing dead.

93

Chapter 5. Timing Model Derivation

Definition 5.3.1 (Timing dead)
A statement in VHDL is called timing dead, if it does not contribute to the timing
behavior of the processor specification.

Doing a constant propagation analysis using the externally specified assump-
tions yields all signals and variables that become constant under a certain
assumption. Moreover, assumptions may restrict the domains of signals and
variables to smaller co-domains. Evaluating conditional expressions under the
co-domains can also mark code sequences as timing dead, since under a given
set of assumptions, it can be guaranteed that control never reaches these pro-
gram points. This process can be automated by a static analysis. In following,
this analysis is referred to as the assumption evaluation.

Both, reset analysis and assumption evaluation, can be coupled and support the
process of environmental assumption refinement. The initial values of signals
and variables are determined by the reset analysis. The output of this analysis
then can be used while analyzing the effect of environmental assumptions.
Due to the absence of a system reset for timing analysis2, specification parts
concerned with system reset can also be removed to derive a timing model.
Please not that this corresponds to the assumption “The reset is never triggered”
and thus can also be automatically purged from the VHDL specification by using
the assumption evaluator.

Reset analysis and assumption evaluation support the process of environmental
assumption refinement. Also the removal of timing-dead code can be automated
by means of backward slicing as defined in [Wei81]. [Sch05] describes how to
derive slices using data-flow analyses.

Computing backward slices for the criterion defined in Section 5.2 on page 87,
i.e. the set of points, where instructions are retired in the VHDL model, results in
a set of slices. All instructions not contained in the union over these slices do
not have any influence on the timing behavior of the processor, and thus, can
be viewed as timing dead. For timing model derivation, these statements can
safely be purged from the specification.

Analyses described so far are used for supporting the model preprocessing steps
shown in Figure 5.2 on page 87. Supporting the data-path elimination and the
processor state abstractions requires the introduction of abstractions into the
VHDL model. The process of inserting abstractions can also be supported by
transformations tools.

Changing the type of a signal or variable to an abstract domain is a very common
abstraction used for introducing non-knowledge into a VHDL model, e.g., for

2For timing analysis, the absence of faults is mandatory, since every failure results in a system
state, where timing bounds are no longer of interest.

94

5.3. Derivation Framework

imprecise or unknown addresses, address abstraction is used. Naturally, chang-
ing the domain (i.e. the type) of a signal/variable also induces a change of all
functors used by the signal/variable (cf. Section 5.1.2). A similar transformation
is the process substitution as described in Section 5.1.3 that replaces a dedicated
process by a more abstract implementation which has to be provided by the
user.

Both transformations can be viewed as source-to-source transformations. More
details on these transformations and their implementations can be found in
[Pis12].

Combining these analyses and transformations allows for automating the pro-
cess of timing model derivation in order to obtain a model that is feasible for
timing analysis. In general, the iterative workflow to reduce the complexity of a
VHDL model can be viewed as:

1. Exploration of the VHDL model: an engineer determines a possible abstrac-
tion.

2. Abstraction-specific analyzes: according to the chosen abstraction, some
specific analyzes might be necessary in order to safely transform the model.

3. Model transformation: induce the chosen abstraction into the model.

4. Timing dead code elimination: Many transformations and analyzes result
in dead code parts within the model that can be purged from it.

Applying these steps iteratively, the code generator described in the next section
can be used to generate a combined cache/pipeline analysis suitable for the
usage within the aiT WCET analyzer framework.

5.3.2 Code Generation

After applying a set of transformations and abstractions to the initial VHDL
model, a timing model is derived. This timing model can be used to directly
generate C++-code respecting the abstract simulation rules described in Sec-
tion 5.1.5 on page 84. The generated code provides simulation code for exactly
one simulation cycle (cf. Section 4.5.4 on page 69), i.e. exactly one clock cy-
cle. Process reactivations resulting from VHDL delta cycles are unrolled and
therewith respected by the code generator.

Due to abstractions induced into the model, the simulation code provides a
set of resulting processor states based on one initial state. This is shown in
Figure 5.4 on the next page showing the evolvement of final states for the simple
memory controller depicted in Listing 5.1 on page 82. If the input address that
is to be checked is unknown, four possible successor states exists. The edges in

95

Chapter 5. Timing Model Derivation

start

latency � 5

wait_states � 5

a
li
gn

ed

wait_states � 10

!a
lign

ed

ad
dr

R
ra

ng
e

latency � 15

wait_states � 15

a
li
gn

ed

wait_states � 30

!a
lign

ed

addr
P range

Figure 5.4 – State altering of the sample memory controller from Listing 5.1 on
page 82 and unknown input.

the figure are labeled with the basis of decision. The tree-like representation is
called abstract computation tree (cf. [Sch98]).

Due to the special two-level semantics of VHDL, code generation has to cover
both, process execution as well as the re-evaluation level. In general, every
VHDL model can be directly simulated. Due to certain loss of information (some
information is statically not available), the resulting simulation code won’t be
feasible in terms of computational effort.

[Mak07, MPS09] describes the implementation of a code generator for abstracted
VHDL models. Besides the simulation cycle code allowing for a cycle-wise up-
date of the model, additional constructs are generated supporting a seamless
integration into the aiT WCET framework. In order to enable code generation
for a given VHDL model, processor state abstractions are not mandatory. Only
memory abstraction as described in Section 5.1.4 is mandatory due to the in-
sertion of pseudo processes serving a the interface to aiT’s shared control-flow
graph (cf. Section 3.2).

Since the generated simulation code automatically follows all possible paths
within the execution tree, timing anomalies are safely found and the resulting
WCET is guaranteed to be safe. Due to abstractions and missing knowledge on
the inputs, not necessarily all paths within an execution tree need to correspond
to execution traces being observable in reality. E.g., if there are some exclu-
sive conditional paths in the analyzed application and due to some unknown
memory accesses, all paths are combined although some of them are mutually
exclusive. Such situations can lead to overestimations of the real WCET if such
a combined path leads to the highest WCET. [Ste06] describes a method that
allows for precise analysis of exclusive paths.

96

6
Static Analysis of VHDL

The man with a new idea is a
crank until the idea
succeeds.

(Mark Twain)

This chapter describes the transformation of an architecture design given in
VHDL into a semantically equivalent sequential program. The transformation
is embedded into a framework supporting the specification of data-flow ana-
lyzers. Due to the theory of abstract interpretation underlying these data-flow
analyzers, their results can be proven to be correct. Also the soundness of the
transformation to obtain the sequentialized program is shown.

The design of the proposed framework focuses on simplicity, efficiency, flexi-
bility and reliability. The utilizability of the framework is shown by different
analyses, which are bundled to support the process of timing model deriva-
tion as described in the previous chapter. In detail, the following parts of the
derivation framework will be presented:

• reset analysis,

• assumption evaluation, and

• static backward slicing.

Also the correctness of these analyses will be proved.

97

Chapter 6. Static Analysis of VHDL

VHDL Model VHDL2CRL2 CRL2

Analysis
Specification PAG Static Analysis

Analysis Result

Figure 6.1 – VHDL analysis framework – Structure.

6.1 Analysis Framework

This section introduces a new framework allowing for static analyses of VHDL
using abstract interpretation. The overall structure of the framework is depicted
in Figure 6.1. Starting with an architecture specification given in VHDL, the
model is transformed into an equivalent intermediate format, called CRL2. The
transformation tool named VHDL2CRL2 performs all the required renaming
for unifying names, instantiates referenced components, and wires structural
descriptions as described in Section 4.5.3. In order to support the process of
timing model derivation (cf. Section 5.3 on page 91), the framework focuses on
efficient and reliable analyses of VHDL [SP07]. Thus, PAG is used to generate
efficient static analyzers from concise high-level specifications that work on an
intermediate format, called CRL2. The analyzer framework offers the possibility
of analyzing open, as well as closed designs1. The generated analyzers are
so called data-flow analyzers that rely on a control-flow graph given in an
intermediate format.

In the following, PAG and the intermediate format are described in more detail.
Then, the principal mapping of VHDL constructs to CRL2 primitives is detailed.
Section 6.1.4 describes how the special two-level semantics of VHDL can be
transformed into a one-level semantics, which enables the use of PAG to auto-
matically generate program analyzers from high-level specifications. Moreover,
additional constructs introduced to support analysis of open designs as well as
synchronous designs (including multiple clock domains) are described.

1A design is called open (or non-closed) if the design refers to some external input signals.

98

6.1. Analysis Framework

SET
numlist = list (unum)

DOMAIN
numberset = set (unum)
numbers = lift (numberset)

Listing 6.1 – Example of set and lattice specifications in DATLA.

6.1.1 Program Analyzer Generator

Analogous to flex and bison used to generate lexers and parsers, the program
analyzer generator (PAG) is used to automatically generate data-flow analyzers
from high-level specifications. Its theoretical background is detailed in [Mar95,
Mar99]. The generated analyzers are efficient allowing not only prototyping of
analyses, but also using them within the final software [AM95, Mar98].

The input for PAG is the specification of an analysis given in high-level specifi-
cation languages, namely DATLA and FULA. The specified analysis thereafter
is available via a C-function, whose input is only the control-flow graph of the
program to be analyzed. The result of the analysis is a data structure mapping
the nodes of the control-flow graph to the computed data-flow value. Computed
information may then be used for optimizations.

An analysis specification for PAG consists of two parts: the first part contains the
definition of sets and lattices, the second part contains the problem specification,
transfer functions and support routines. For the specification of sets and lattices,
DATLA is used. An example specification is given in Listing 6.1. Here, a set of
lists over unsigned numbers is defined. Within the DOMAIN section, a power
set of the unsigned numbers with inclusion ordering is defined using H as
bottom and the set of unsigned numbers as top element for the defined lattice.
lift extends the argument lattice by additional top and bottom elements while
preserving the ordering of the argument lattice.

Listing 6.2 on the following page lists an example problem specification given in
FULA. Besides the direction of the data-flow analysis (i.e. forward or backward),
the analysis carrier denoting the underlaying lattice of the analysis, as well as the
initial values need to be specified. Moreover, a functor to combine two data-flow
values at control-flow joins, a widening operator (cf. Section 2.4.1 on page 23)
and a functor for checking the equality of two data-flow values need to be given.
Both specification languages, DATLA and FULA, are detailed in [TMAL98].

Analyzers generated by PAG are data-flow analyzers, thus, all computations
are based on a control-flow graph. Therefore, PAG is not restricted to any input

99

Chapter 6. Static Analysis of VHDL

PROBLEM Dominators
direction: forward
carrier: numbers
init: bot
init_start: lift(bot)
combine: comb
widening: wid
equal: eq

RETURN
...

TRANSFER
...

SUPPORT
...

Listing 6.2 – Example of a problem specification in FULA.

language, but the input programs need to be translated into a control-flow graph.
Within PAG, this translation is made within the so-called frontends. PAG already
supports a couple of frontends, but a user may also write his own frontend
according to his wishes and demands. The most widely used frontend is the
CRL2 frontend, which also serves as the internal exchange format for the aiT
toolchain (cf. Section 3.2 on page 35). A more detailed view on CRL2 will be
given in the next section.

Analyzes generated by PAG support interprocedural analysis based on an inter-
procedural control-flow graph, the supergraph (cf. Definition 2.4.7 on page 26).
The underlying principle of constructing a supergraph from several control-flow
graphs by adding call and return nodes and connecting these special nodes via
special edges was introduced by [SP81]. Listing 6.3 on the facing page gives
a recursive implementation of the factorial function, the corresponding super-
graph is shown in Figure 6.2 on page 102. At return nodes in the combined
supergraph, a special function return : L � L Ñ L is used instead of the usual
combine operator defined on a lattice L. Within PAG, this function is called to
combine data-flow information over the local edge and the return edge.

To keep different call paths apart, each node within the supergraph is annotated
with an array of data-flow elements from the analysis domain; the size of each
array (and thus the number of disjoint contexts) is fixed. PAG calculates a map-
ping, i.e. a set of functions describing for each call within a supergraph how the
data-flow elements of the calling procedure are connected to the locations of the

100

6.1. Analysis Framework

int fac (int n)
{

if (n < 2)
return 1;

else
return n * fac (n - 1);

}

void main (int argc, char** argv)
{

int n, res;
scanf ("number: %d", &n);
res = fac (n);
printf ("result: %d\n", res);

}

Listing 6.3 – Recursive implementation of the factorial function.

called procedure. Each field in the array is called a context. Within a procedure,
this mapping is fixed, i.e. context is not switched here. The number of contexts
(and therewith the size of the data-flow arrays) is not fixed by PAG and can be
varied by setting the maximum length for the call strings. The sample super-
graph shown in Figure 6.2 on the following page uses a maximum call string
length of one, i.e. only the two calls of the factorial function can be distinguished,
all recursive calls are mapped into a collecting context. More details on call
strings and the static call-graph approach can be found in [TMAL98].

6.1.2 Control-flow Representation Language

The control-flow representation language (CRL2) was developed as an interme-
diate format simplifying analyzes and optimizations on a control-flow graph
[Lan98]. Originally, it was developed at Saarland University and AbsInt Ange-
wandte Informatik GmbH and is for now totally maintained by AbsInt.

Based on the assumption that the control-flow graph of a program is always
well-formed, a CRL2 description is text-based and its structure is hierarchically
organized into operations, instructions, blocks and routines.

Listing 6.4 on the next page shows a concurrent signal assignment statement
taken from a VHDL processor specification. The corresponding CRL2 description
is depicted in Listing 6.5, and the control-flow graph is shown in Figure 6.3 on
page 104. Operations are grouped to instructions, which in turn are grouped to
basic blocks. Basic blocks are connected via edges of different types to describe

101

Chapter 6. Static Analysis of VHDL

startmain

readpnq

callfac

returnfac

printpresq

endmain

startfac

n 2

return 1 callfac

returnfac

endfac

Figure 6.2 – Interprocedural supergraph.

the structure of programs. Beside normal edges, also true and false edges exist to
describe the successors of conditional expressions. Edges between two routines
indicate a call dependency. Each call is represented through call/return blocks
in the calling routine. Use of these call/return blocks and the corresponding
call/return edges ease interprocedural analyzes [SP81] and can be viewed as
place holders for the branch to the called routine.

Nevertheless, CRL2 is a flexible language by virtue of an attribute-value concept:
each element of a CRL2 description can be easily extended by attributes coding
arbitrary information. The language provides a set of predefined advanced
data structures like key-value-maps, hashes, lists and sets that can be further

IF_InstrRegA_Input <=
IF_InstrRegB when IF_LoadStageA_WithStageB = ’1’ else
IC_DataOut(31 downto 0) when IF_InstrCounterReg(2) = ’1’

else
IC_DataOut(63 downto 32);

Listing 6.4 – Sample VHDL code snippet.

102

6.1. Analysis Framework

routine r4: file="sources/Dlx.vhd", line=0x346, name="process_5" {
2 block b8 (start) {

edge e830 -> b833;
4 }

block b9 (end);
6 block b833: bbid=0xe {

edge e834 (true) -> b834;
8 edge e838 (false) -> b835;

instruction i831 {
10 operation o832 "IF_LoadStageA_WithStageB = \’1\’":

cat=1*{ifstatement}, defs=0*{}, op_id=0x2f,
12 uses=1*{’IF_LoadStageA_WithStageB’};

}
14 }

block b834: bbid=0xf {
16 edge e849 -> b9;

instruction i835 {
18 operation o836 "IF_InstrRegA_Input <= IF_InstrRegB":

cat=1*{signalassignment}, def=1*{’IF_InstrRegA_Input’},
20 op_id=0x1d, uses=1*{’IF_InstrRegB’};

}
22 }

block b835: bbid=0x10 {
24 edge e842 (true) -> b836;

edge e846 (false) -> b837;
26 instruction i839 {

operation o840 "IF_InstrCounterReg(2) = \’1\’":
28 cat=1*{ifstatement}, defs=0*{}, op_id=0x2f,

uses=1*{’IF_InstrCounterReg’};
30 }

}
32 block b836: bbid=0x11 {

edge e850 -> b9;
34 instruction i843 {

operation o844 "IF_InstrRegA_Input <= IC_DataOut(31 downto 0)":
36 cat=1*{signalassignment}, def=1*{’IF_InstrRegA_Input’},

op_id=0x1d, uses=1*{’IC_DataOut’};
38 }

}
40 block b837: bbid=0x12 {

edge e851 -> b9;
42 instruction i847 {

operation o848 "IF_InstrRegA_Input <= IC_DataOut(63 downto 32)":
44 cat=1*{signalassignment}, def=1*{’IF_InstrRegA_Input’},

op_id=0x1d, uses=1*{’IC_DataOut’};
46 }

}
48 }

Listing 6.5 – CRL2 representation of Listing 6.4 on the facing page.

103

Chapter 6. Static Analysis of VHDL

Figure 6.3 – Control-flow graph of the CRL2 example from Listing 6.5.

nested. To process programs represented in CRL2, AbsInt offers a huge library
providing a large interface. Also a frontend for PAG (cf. Section 6.1.1 on page 99)
is available.

6.1.3 Basic Mapping

As stated before, the static analysis framework for analysis of VHDL models
makes use of PAG to efficiently generate program analyzers from high-level
specifications. The analyzers rely on a control-flow description of the program
to be analyzed given in CRL2. Thus, a VHDL specification needs to be expressed
in CRL2 while preserving the semantics of VHDL. This section gives the basic
mapping of VHDL constructs to constructs from CRL2.

The basic mapping of VHDL constructs is shown in Table 6.1 on the facing
page. For sequential statements that form the body of processes, functions
and procedures, the control-flow reconstruction rules described in [CFS94] and
[NNH99] can be easily applied. Each statement is mapped to a single operation
within a CRL2 instruction. Change-of-flow constructs (i.e. if statements, switch
statements, etc.) form the basic block structure of the CRL2 representation.

Consequentially, processes are mapped to routines, as well as functions and
procedures. Each routine is extended by unique start and end nodes marking
the entry and the exit of the routine, respectively. For concurrent signal assign-
ments and concurrent procedure calls, their transformation into fully qualified
processes is described in the IEEE VHDL standard [IEE87]. Thus, both constructs
are also mapped to CRL2 routines.

104

6.1. Analysis Framework

VHDL element CRL2 element

Sequential statement Operation + instruction

Process, Routine
Function,
Procedure,
Concurrent signal assignment,
Concurrent procedure call

Function call, Routine call
Procedure call

Loop Loop transformation + call

Table 6.1 – Mapping of VHDL constructs to CRL2 constructs.

To enhance the analyzability of loops [MAWF98], and thus to achieve more
precise results, loops have to be transformed into recursive procedures. In order
to achieve this, for-loops have to be converted into semantically equivalent while-
loops. The resulting while-loop can be transformed into the desired recursive
procedure by applying the loop transformation as described in Section 3.2 on
page 35.

Function and procedure calls are represented via call and return nodes in CRL2.
Additionally, a call edge connecting the caller’s call node and the callee’s start
node is inserted. Also, a return edge from the callee’s end node to the caller’s
return node is added to ease analysis of interprocedural control-flow [SP81].

This basic mapping of constructs suffices to transform every process in VHDL
to its semantically equivalent representation in CRL2. To further enhance the
analyzability of the VHDL model, additional transformations can be applied
(while keeping the semantic equivalence). Thus, switch statements within the
body of processes, functions or procedures are transformed into equivalent
if-then-else cascades.

To support and ease analyses, additional attributes can be added to the CRL2
description of a VHDL model. These attributes also code information that is
missing due to limitations of the available CRL2 constructs. The basic mapping
rules map processes, procedures, as well as functions to routines in CRL2. When
only looking at the new representation, the correlation to the corresponding
VHDL part is missing. Thus, an attribute is added to mark if a routine represents
a process, a procedure or a function. Attributes are further used to ease access

105

Chapter 6. Static Analysis of VHDL

to used and defined variables, signals and constants at a certain statement.
Also the type of a statement (i.e. a classification if the statement is a signal
assignment, a variable assignment, a change-of-flow statement, etc.) is expressed
as an attribute in CRL2. Use of attributes in CRL2 is not limited to hierarchical
constructs, but can also be used to classify edges connecting nodes. Edges are
thus classified as normal, true, false, call and return edges.

Using attributes to express certain properties of statements and constructs of
VHDL allows static analyzers not to rely on parsing VHDL itself in order to
obtain provable correct results. E.g., the attributes coding the information on
used and defined identifiers dramatically ease the development of a reaching
definition analysis. Paired with the statement classification attribute mentioned
above, a reaching definition analysis can be implemented without any further
knowledge of the semantics of VHDL. An example showing some of the at-
tributes mentioned so far is shown in Listing 6.5 on page 103. The statement
IF_InstrRegA_Input <= IF_InstrRegB; in line 18 is categorized as a
signal assignment using the identifier IF_InstrRegB and defining the signal
IF_InstrRegA_Input. In order to ease the implementation of static analyzers
like an available expression analysis and to not rely these analyzers being able
to parse VHDL expressions with their language specific operator precedence, an
attribute can also store the prefix notation of the underlying expression.

Whereas this section has described the basic mapping of constructs from one
language to another one being more suitable for static analyses, the scope of
mapping rules is restricted to the process execution level with its sequential
semantics. The next section details on how to deal with the two-level semantics
specific for hardware description languages.

6.1.4 Transformed VHDL Simulation Semantics

The semantics of VHDL is special compared to other widely spread languages.
Compared with imperative languages, the VHDL semantics is two-staged (cf.
Section 4.5 on page 62). At the first level, there is the parallel execution of
processes, and the second level is signal updating and process reactivation.

In order to enable use of PAG and CRL2, which are both designed to analyze
and represent structured control-flow based on imperative languages, the two
semantical levels of VHDL need to be joined. This section describes, which
semantic properties allow joining both semantic levels to one level, and thus,
enable use of PAG and CRL2 to implement efficient static analyzers on VHDL.

The subsequent definitions describe the semantics of constructs used to join
the two semantical levels of VHDL. The definitions are based on the semantic
description of VHDL that is given in Section 4.5.

106

6.1. Analysis Framework

First, it is necessary to extend the definition of an environment for the simulation
of VHDL models. The standard offers a variety of functions for accessing the
history of transactions of signals connecting the different processes. Since this
history is relevant for process reactivation, and thus relevant for the behavior of
a VHDL model, the definition of environments is to be updated as follows.

Definition 6.1.1 (Environment)
The environment Θ P Env for the transformed VHDL semantics is a mapping
from logical names to values. A logical name for the transformed simulation
semantics can be either a variable v, a signal s, a scheduled signal s̄, or a
preceding signal s.

Thus, access to the previous value assigned to a signal s is possible via s. Using
this special name allows for access of the transaction history of a signal, and
thus allows for checking the occurrence of a new event. This is necessary for
modeling the simulation cycle that advances simulation time for a given VHDL
model. Please note that for the remainder of this thesis, we will use identifier to
denote the set of logical names.

Joining the two semantical levels requires the following property of the VHDL
language: Variables in a VHDL model are process-local, and thus visible solely in
the defining process. All processes in a model run in parallel. Any assignment to
a variable immediately takes effect. In contrast, signal assignments are delayed
to the point, where all processes have finished their execution. Only signals are
used to interconnect processes in a model. These semantics directly induce that
there are no side effects in the execution of different VHDL processes in a model.
Thus, it is possible to serialize the execution of processes without changing the
semantics of the whole VHDL model. As a result, it is possible to choose an
arbitrary execution order among all processes, and sequentially execute the
processes in this chosen order.

Therefore, a special simulation process, called simul, has to be added to the
given model. The task of this special process is to model the execution order
that has been chosen for process execution. Therefore, a special reactivation
statement with its semantics has to be defined.

Definition 6.1.2 (Reactivation statement Υ)
The semantics of a reactivation statement Υ: LÑ Env Ñ Env for a process label
l P L, with ρplq � pζl,Πl, ωlq and an environment Θ P Env is defined as

ΥplqpΘq � Θ1, with pΘ, startpΠlq,Πlq á
�
seq pΘ

1, ζsus,Πlq

The reactivation statement resets the program counter of a given process to
its first statement, and thus reinvokes the given process. This is safe since
the models of interest for timing model derivation are restricted to have their

107

Chapter 6. Static Analysis of VHDL

wait-statement (i.e. the statement that suspends a process) at the end of their
sequential code.

Use of reactivation statements sequentializes the process execution and allows
for choosing a fixed process ordering. To model the change of signal values, a
special synchronize statement has to be introduced. This statement models the
part where scheduled transactions become visible in a VHDL simulation.

Definition 6.1.3 (Synchronize statement Ω)
The semantics of the synchronize statement Ω: Env Ñ Env for a given environ-
ment Θ P Env is defined as:

ΩpΘq � λt.

$'''&'''%
Θps̄q if t � s,
Θps̄q if t � s̄,
Θpsq if t � s,
Θptq otherwise.

Use of reactivation statements and the use of the synchronize statement allow for
joining process reactivation and signal updating to one semantic level, which al-
ready can be expressed in CRL2 using the basic mapping rules from Section 6.1.3
on page 104. The missing part in the VHDL semantics is the level of process
reactivation.

A process is to be reinvoked if, and only if, at least one of the signals being part
of the its sensitivity list changes its value. Within the terminology of VHDL,
assigning a value to a signal s is called scheduling a transaction. Please note that
also the assignment of an identical value schedules a transaction on the signal,
but for process reactivation, the value assigned to a signal must have changed.
This is called an event. In VHDL, the presence of transactions, events, and other
properties of signals can be checked using signal attributes. In order to check
if there is a pending event for any signal s in the current simulation cycle (i.e.
under a certain environment), the attribute s1event is to be used. This denotes
the presence or absence of an event. Beside this attribute, several other attributes
exist (see [Ash01, chap. 5] for a complete listing of available attributes). The
semantics of the event attribute can be defined as follows:

Definition 6.1.4 (event attribute)
The signal attribute event for a given signal s under the environment Θ is
defined as

s1event �

#
true if Θpsq � Θpsq,
false otherwise.

Using this attribute allows to express process reactivation as the disjunction of
events on the signals of a process’ sensitivity list. The reactivation of a process

108

6.1. Analysis Framework

//create initial starting label
create ("label start:")

// create if-guard and process revocation statement
forall l P L, with ρplq � pζl,Πl, ωlq

create ("if pΞplqpΘq � trueq then")
create (" Θ � ΥplqpΘq;")
create ("end if;")

// create synchronization statement and delta delay
create ("Θ � ΩpΘq;")
create ("if pp

�
lPL ΞplqpΘqq � trueq then")

create (" goto start;")
create ("end if;")

Listing 6.6 – Construction algorithm of the simulation routine.

(via the special reactivation statement) can now be guarded by the following
condition.

Definition 6.1.5 (If-guard statement Ξ)
Given a process label l P L, with ρplq � pζl,Πl, ωlq, the if-guard statement
Ξ: L Ñ Env Ñ IB for the process ρplq is constructed as logical disjunction
of the event attribute of each signal contained in ωl:

ΞplqpΘq � Θ $
ª
sPωl

s1event

The combination of process reactivation statements, if-guard statements and the
synchronize statement can be used to express the two semantic levels of VHDL
with only one level, which enables a direct use of PAG to derive static analyzers
from high-level specifications.

The construction algorithm of the special simulation process simul for a given
environment Θ is given in Listing 6.6. First, a start label is created, which is part
of modeling the delta-delay. Then, for each process label l in the set of process
labels L, an if-statement with the special if-guard is created. The process ρplq is
only to be reinvoked if at least one signal s contained in the sensitivity list ωl

changes its value (i.e. an event on at least one signal must be pending). If this is
the case, the process labeled l must be reinvoked, so the program counter ζl has
to be changed to the start of the process’ statement list Πl and the process has to
be executed once again. Otherwise, no signal of the process’ sensitivity list ωl

has been changed, so the process is not to be reinvoked and the corresponding
program counter ζl remains unchanged (i.e. ζl � ζsus).

109

Chapter 6. Static Analysis of VHDL

By this code, a sequential update order and the conditions for process reactiva-
tion are already modeled. Making scheduled transaction visible is done by the
synchronize statement Ω, but modeling the VHDL delta-delay (cf. Section 4.5.4
on page 69) requires at least one event in the set of all signals at least one process
is sensitive to. This set can be easily constructed via the disjunctionª

lPL

ΞplqpΘq

If this logic expression under the updated environment Θ1 � ΩpΘq evaluates to
true, at least one process must be reinvoked. This can be guaranteed by creating
a goto statement jumping to the beginning of the created simulation process.

The result of applying this construction algorithm to the sample VHDL code
shown in Listing 4.3 on page 70 is depicted in Listing 6.7 on the facing page.
The VHDL model consists of two processes, P1 and P2. The first process senses
the clock signal clk and the reset signal rst, and thus, the if-guard statement
for the first process must check these two signals for containing an event in the
current simulation cycle. If one of these signals actually have changed its value,
P1 has to be reinvoked. Analogously, process P2 senses the signal driving the
counter value cnt, so this process must be reinvoked if the value of the counter
changes.

If at least one of the signals mentioned changes its value, another delta cycle
within the current simulation cycle is necessary. So, if, after making all scheduled
transactions visible, one of the signals clk, rst or cnt currently contains an
event, the goto statement is taken to reinvoke the required processes.

Modeling Simulation Time

The focus of this thesis is the static analysis of synchronous VHDL circuits in
order to ease the process of deriving timing models usable for timing analysis.
In a synchronous design, a clock signal triggers the integrated circuit to go
from a well defined and stable state to the next one. On an event of the clock
signal, all signals must reside stable in either the high or low state. Between
two consecutive events of the clock, the signals are allowed to change and may
take any intermediate state. Thus, especially the advance of simulation time and
the state of the model at a certain simulation cycle is interesting. Modeling the
frequent change of a clock signal is not possible using the synthesizable subset
of VHDL, and therefore, the clock signal (and with it the simulation time) is an
external signal.

Nevertheless, timing is relevant for static analyses, and thus, the frequent change
must be part of the static analysis framework presented here. Hence, the clock
signal of the synchronous circuit is to be modeled via a special clock process
modeling rising and falling edges of the clock signal.

110

6.1. Analysis Framework

label start:

if (Θpclkq � Θpclkq||Θprstq � Θprstq) then
Θ � ΥpP1qpΘq;

end if;

if (Θpcntq � Θpcntq) then
Θ � ΥpP2qpΘq;

end if;

Θ � ΩpΘq;
if (Θpclkq � Θpclkq

||Θprstq � Θprstq
||Θpcntq � Θpcntq) then
goto start;

end if;

Listing 6.7 – Simulation routine for 3-bit counter example from Listing 4.3.

Definition 6.1.6 (Rising clock ΓÒ, falling clock ΓÓ)
Given the name of a clock signal c. The semantics of a rising clock update
ΓÒ : identifier Ñ Env Ñ Env is defined as

ΓÒpcqpΘq � λt.

$'''&'''%
1 if t � c,
1 if t � c̄,
0 if t � c,
Θptq otherwise.

Analogously, the semantics of a falling clock update ΓÓ : identifier Ñ Env Ñ Env
is defined as

ΓÓpcqpΘq � λt.

$'''&'''%
0 if t � c,
0 if t � c̄,
1 if t � c,
Θptq otherwise.

Using these definitions, we can define the clock process for the static analysis
framework.

Definition 6.1.7 (Clock process κ)
Given the simulation process simul , the semantics of the recursive clock process
κ : Env Ñ Env is defined as

Υpκq �
�
Υpκq �Υpsimulq � ΓÓpclkq �Υpsimulq � ΓÒpclkq

�

111

Chapter 6. Static Analysis of VHDL

The clock process is modeled as a recursive process. This allows static analy-
ses based on this framework to make use of PAGs static call-string approach
(cf. Section 6.1.1 on page 99). Use of the call-string approach allows for sepa-
rating several clock cycles via different contexts that can be controlled by the
static analyzers. So, a cycle-wise analysis of the behavior of a VHDL model is
possible.

Modeling Open Designs

So far, the analysis framework presented in this section can only cope with closed
designs. To analyze open designs (i.e. designs where transactions of at least one
signal besides the clock signal are scheduled from outside the VHDL model), the
framework has to be extended. Therefore, a new process called environment will
be introduced. Signal transactions that are not part of the analyzed VHDL model
have to be handled in this process.

Definition 6.1.8 (Environment process $)
The semantics of the environment process $: listpDq Ñ Env Ñ Env for a given
list of assignments Γ P listpDq and an environment Θ P Env is defined as:

$pΓqpΘq � updatepΘ,Γq

The list of assignments applied to the environment must be given externally.
Listing 6.8 on the facing page gives the pseudo code for generating the simula-
tion process for open VHDL designs. The process reactivation statement for the
environment process $ must not be guarded with Ξp$q, since, from the design’s
point of view, external signals may change their value in each delta cycle.

Using this construction algorithm and the basic mapping rules from the previous
section allow for expressing any synchronous VHDL model with constructs of
the CRL2 language in a semantically equivalent way. The semantics of the
additional processes was given in this section. Applied to the example given
in Listing 4.3 on page 70, the equivalent sequentialized representation as a
control-flow graph is shown in Figure 6.4 on page 114.

The CRL2 representation of the VHDL model can be directly processed by static
analyzers created by PAG. In order to show the effectiveness and the correctness
of the presented static analysis framework, static analyses in forward and back-
ward direction as well as the combination of analyses will be presented in the
next sections.

112

6.2. Reset Analysis

//create initial starting label
create ("label start:")

// create if-guard and process revocation statement
forall l P L, with ρplq � pζl,Πl, ωlq

create ("if pΞplqpΘq � trueq then")
create (" Θ � ΥplqpΘq;")
create ("end if;")

// create process revocation for environment
create ("Θ � Υp$qpΘq;")

// create synchronization statement and delta cycle
create ("Θ � ΩpΘq;")
create ("if pp

�
lPL ΞplqpΘqq � trueq then")

create (" goto start;")
create ("end if;")

Listing 6.8 – Construction algorithm for open designs.

6.2 Reset Analysis

The last section has introduced the new framework for static analysis of hard-
ware description languages. This section now introduces a first data-flow prob-
lem (cf. Section 2.4 on page 19) making use of the new framework to solve
it.

Chapter 5 has introduced the workflow to derive a timing model suitable for
static timing analysis from a hardware specification given in VHDL. Also the
need for tools supporting the derivation process was described there. The
process that has been introduced consists of two main phases, namely the model
preprocessing and the processor state abstraction phases. Model preprocessing
reduces the size and complexity of a processor specification by information that
is statically available. To gain the best return from environmental assumption
refinement, where the processor is “instantiated” according to the constraints
introduced by a certain application context, knowing the initial values of signals
and variables within a system is important.

According to the IEEE VHDL standard [IEE87], the initial value assigned to a
signal or variable is defined as the “leftmost” value of the type of the identifier.
Obviously, this information can be directly extracted from a given hardware
specification. But most of these standard-defined initial values will be altered
during the system’s boot-up phase. Whereas the standard only defines the
behavior of a system when it is powered on, a system needs to sustain a stable

113

Chapter 6. Static Analysis of VHDL

Figure 6.4 – Sequentialized representation of the 3-bit counter from Listing 4.3.

114

6.2. Reset Analysis

1 entity delayed is
port (clk : in bit; rst : in bit;);

3 end delayed;

5 architecture rtl of delayed is
signal d0, d1, d2, d3 : bit;

7 begin
process (clk, rst)

9 begin
if (rst = ’1’) then

11 d0 <= ’1’;
end if;

13

if rising_edge (clk) then
15 if (d0 = ’1’) then

d1 <= ’1’;
17 end if;

19 if (d1 = ’1’) then
d2 <= ’1’;

21 end if;

23 if (d2 = ’1’) then
d3 <= ’1’;

25 end if;
end if;

27 end process;
end rtl;

Listing 6.9 – Simplified activation chain.

and reproducible state also after a reset. Thus, the initial state (and also the
initial values of signals and variables) is assigned to the system during reset
handling.

Reset handling is mostly not finished within one clock cycle. In a complex
computer system with several components connected via a system bus, and
different peripheral devices assigning the initial values to signals and variables
might take several clock ticks. The sequence of assigning initial (and stable)
values to the signals of a component is called an activation chain.

The stable state of a system assigned during reset is apparently not visible in a
hardware specification. It is the goal of the reset analysis to statically determine
the initial values assigned to signals during the system’s reset phase.

115

Chapter 6. Static Analysis of VHDL

clk Ð 0 rst Ð 1 sync

d0 Ð 1 sync

clk Ð 1 sync

d0 Ð 1 d1 Ð 1 sync

clk Ð 0 sync

d0 Ð 1 sync

clk Ð 1 sync

d0 Ð 1 d1 Ð 1 d2 Ð 1 sync

clk Ð 0 sync

d0 Ð 1 sync

clk Ð 1 sync

d0 Ð 1 d1 Ð 1 d2 Ð 1 d3 Ð 1 sync

clock cycle

clock cycle

clock cycle

Figure 6.5 – Signal assignment trace of the VHDL example shown in Listing 6.9 on
the preceding page.

Listing 6.9 on the preceding page shows a simplified activation chain. Obviously,
all signals d0, d1, d2, and d3 are set to ’1’ after reset, but it takes 3 ticks of the
external clock to achieve the stable state, i.e. it takes 3 clock cycles to finish the
activation chain.

While the example VHDL code seems artificial, activation chains are widespread
when considering a computer system as a whole. During the initialization phase
of memory controllers with different supported types of memory, several bridges
(e.g., north and south bridges of modern chipsets), and buses with different clock
domains connecting the peripheral devices, it normally takes several cycles until
the system has been initialized.

Figure 6.5 depicts the trace of signal assignments for an activated reset signal on
the simplified activation chain example from above. Each dashed line indicates
the end/start of a clock cycle. The second semantics level of VHDL, namely

116

6.2. Reset Analysis

process reactivation and the waiting for a change of the environment, is depicted
by gray synchronization nodes. At these points, scheduled signal assignments
become visible. Within the notation of the trace semantics, the actual value
of a signal can be obtained by traversing the edges backwards until the last
synchronization node, and from that point on by searching backwards until the
last assignment of the signal being in focus of interest. In contrast, assignments
to variables are directly visible, and thus, directly searching the last assignment
contained in the trace yields the desired value.

The signal assignment trace also depicts that after the third clock cycle, signals
(besides the frequent tick of the externally driven clock signal) become stable,
thus, the initialization phase ends. In general, only stable signals and variables
are interesting for reset analysis.

From the area of compiler construction, we already know the constant propagation
analysis that yields for each program point, whether or not a variable has a
constant value whenever execution reaches that point.

Using the static analysis framework as described in Section 6.1 on page 98,
this well-known analysis can be easily extended to cope with the semantical
characteristics of hardware description languages.

In the following, the lattice and transfer functions will be described that, together
with the control-flow graph obtained from the analysis framework, form a data-
flow problem whose maximal fixed-point solution yields the constant signals
under the assumption that the reset signal is triggered.

As the domain underlying the analysis, the environment as defined in Definition
6.1.1 can be used, but it needs to be extended to cope with unknown and
undefined (i.e. not yet defined) values. Thus, the new domain Vext is defined
by

Vext � Value Y tK,Ju

ordered such that K �Vext v �Vext J for all v P Value, and no other ordering
relationship holds. Defining Vext as a flat domain is sufficient, since for reset
analysis, we are only interested in signals becoming stable during the reset
phase.

The functors \Vext and [Vext for a, b P Vext are defined as follows:

a\Vext b �

$'''&'''%
a if a � b,
a if b � K,
b if a � K,
J otherwise.

117

Chapter 6. Static Analysis of VHDL

a[Vext b �

$''''''&''''''%

K if a � K_ b � K,
a if b � J,
b if a � J,
a if a � b,
K otherwise.

Using the extended value domain Vext , it is possible to define the domain for the
analysis mapping identifiers to a value v P Vext .

Dcp � tf | f : identifier Ñ Vextu Y tK,Ju

with f �Dcp g for f, g P Dcp defined as:

f � K_ g � J_ pf, g R tK,Ju ^ @i P identifier : fpiq �Vext gpiqq

The combine \Dcp and meet functors [Dcp for f, g P Dcp are defined as:

f \Dcp g �

$'''&'''%
J if f � J_ g � J,
f if g � K,
g if f � K,
λx P identifier . fpxq \Vext gpxq otherwise.

f [Dcp g �

$'''&'''%
K if f � K_ g � K,
f if g � J,
g if f � J,
λx P identifier . fpxq [Vext gpxq otherwise.

The lattice for the data-flow problem to analyze the reset behavior of a system
thus can be defined as pDcp,�Dcp ,\Dcp ,[Dcp ,K,Jq, and will be denoted by Dcp

for short. In order to define a data-flow problem, transfer-functions f : E Ñ
Dcp Ñ Dcp for the edges in a given control-flow graph G � pV,E, s, xq need to
be defined.

The nodes of a control-flow graph resulting from the construction algorithm
shown in Listing 6.8 on page 113 can be grouped into several disjoint sets making
the definition of suitable transfer functions more convenient:

V � Vframework Y VVHDL

VVHDL corresponds to the straight-forward mapping of VHDL constructs to a
control-flow representation as described in Section 6.1.3 on page 104. The nodes
from the analysis framework Vframework can be further categorized as:

Vframework � Vclock Y Vsimul Y Venv

118

6.2. Reset Analysis

The classification of nodes of the control-flow graph eases the definition of trans-
fer functions to determine constant signals in a given VHDL model. Especially
for the analysis framework nodes, some special rules need to be defined in order
to correctly analyze any VHDL input. In the following, the transfer function for
VHDL statements will be given first, followed by the special functions handling
the framework nodes.

For the definition of the transfer functions, the attribute-value concept of CRL2
will be used. Values of attributes are accessible via dedicated functions:

Definition 6.2.1 (CRL2 attributes)
Given a control-flow graph G � pV,E, s, xq constructed from a CRL2 descrip-
tion, the value of an attribute attr for a node v P V is written as attrpvq.
Analogously, the value of an attribute attr for an edge e P E is denoted by
attrpeq.

As stated before, the straight-forward mapping of VHDL constructs to CRL2
constructs already adds attributes to the CRL2 description denoting used and
defined identifiers (uses and defs attributes), as well as a statement and edge
type classification (cat attribute). This classification can further be used to define
the desired transfer functions. For the definition, the evaluation function eval
that has been introduced in the last section is extended to use the domain of the
data-flow analysis as the environment for evaluation.

Thus, the update function transfer variable : Dcp�VVHDL Ñ Dcp for a VHDL variable
assignment v :� expr ; represented via its corresponding CRL2 construct w P
VVHDL on a lattice element l P Dcp is defined as:

transfer variablepl, wq �

#
lrv Ð Js if l $ evalpexprq � u1. � � � .un ^ n ¡ 1,
lrv Ð u1s if l $ evalpexprq � u1.

Whenever evaluation of the right-hand side of the variable assignment yields
a list of possible values, the result is non-deterministic, and thus, the value
assigned to the variable cannot statically proven to be constant. Please note that
also in the case of a deterministic return value of the function eval, the returned
value might be J.

Analogously to variable assignments, the transfer function transfer signal : Dcp �
VVHDL Ñ Dcp for a VHDL signal assignment s � expr ; represented via its
corresponding CRL2 construct w P VVHDL on a lattice element l P Dcp is defined
as:

transfer signalpl, wq �

#
lrs̄Ð Js if l $ evalpexprq � u1. � � � .un ^ n ¡ 1,
lrs̄Ð u1s if l $ evalpexprq � u1.

119

Chapter 6. Static Analysis of VHDL

Update functions for signal and variable assignment directly follow the defi-
nition of the abstract simulation rules for VHDL. In order to compute precise
results, if-statements in the VHDL model are of interest.

The transfer function transfer if : Dcp � EVHDL Ñ Dcp, with EVHDL � te | e �
pm,nq P E ^ m,n P VVHDLu, for a VHDL if-statement expr represented via its
corresponding CRL2 construct m P VVHDL for an edge e � pm,nq is defined as:

transfer if pl, eq �

$''''''''&''''''''%

K if l � K,
J if l � J,
l if l $ evalpexprq � u1. � � � .un ^ n ¡ 1,
l if l $ evalpexprq � u1 ^ u1 � J,
K if l $ evalpexprq � u1 ^ u1 � catpeq,
l otherwise.

Whenever the evaluation of the condition is non-deterministic, the current
data-flow value is propagated to the destination of the given edge. In case
of a deterministic evaluation, i.e. n � 1, the current data-flow value is only
propagated over the edge matching the result of the expression evaluation, i.e.
if the evaluation of the expression returns true, but the categorization of the
current edge marks it as a false-edge, K is returned. This transfer function
allows modeling of the sequential VHDL simulation rules. Combined with the
transfer functions for signal and variable assignments, the update function for
VHDL-statements can be defined.

The update function transfer VHDL : Dcp � EVHDL Ñ Dcp for an edge e � pm,nq P
EVHDL can be defined as:

transfer VHDLpl, eq �

$'''&'''%
transfer variablepl,mq if catpmq � variableassignment ,
transfer signalpl,mq if catpmq � signalassignment ,
transfer if pl, eq if catpmq � ifstatement ,
l otherwise.

The transfer function mentioned above only deals with statements being directly
derived from the original VHDL model. In order to define a data-flow problem,
also updates for the routines derived from the analysis framework need to be
given. As mentioned before, the framework helpers can be distinguished into
a clock simulation routine, the process reactivation simulation routine and the
environment routine. In the following, the transfer functions for these routines
will be given.

Given the identifier of the reset signal rst and its activation value v P Value , the
transfer function for the environment routine transfer env : Dcp � Venv Ñ Dcp for

120

6.2. Reset Analysis

a node w P Venv on a data-flow element l P Dcp is defined as:

transfer envpl, wq � λi P identifier .

#
v if i � rst_ i � rst_ i � rst,
lpiq otherwise.

The environment process thus is used to ensure that the reset signal remains
activated during the whole analysis. In general, the reset signal of a processor is
not updated within its specification, i.e. the signal normally is used as an input
signal which has to be triggered by the environment, namely the user pushing
the reset button. Nevertheless, in the area of embedded systems, a processor is
also reset in case of an uncorrectable error.

The transfer function for the nodes of the process reactivation simulation routine
transfer simul : Dcp � Esimul Ñ Dcp for an edge e P Esimul � te | e � pm,nq P
E ^m,n P Vsimulu on a given control-flow graph G � pV,E, s, xq and a data-flow
value l P Dcp is defined as:

transfer simulpl, eq �

$''''''''&''''''''%

J if l � J,
K if l � K,
l if catpmq � ifstatement ^ l $ Ξpmq � J,
K if catpmq � ifstatement ^ l $ Ξpmq � catpeq,
Ωplq if catpmq � syncstatement ,
l otherwise.

The update rules for the simulation process use the definitions of the if-guard
statement Ξ and the synchronize statement Ω as defined in Definitions 6.1.3
and 6.1.5. Also the event-attribute must be extended to cope with elements of
Vext instead of Value. This also implies that Ξ returns a tristate value true, false
and J. Whenever it is statically undecidable if a process statement has to be
reinvoked, the data-flow value is propagated over both edges of the if-guard
statement. At the synchronization statement, all scheduled transactions become
visible, which is ensured by the Ω update. The delta-delay (required for process
reactivation) is represented via another if-statement in the analysis framework,
and thus, the rules for the if-guard statements also apply to it.

The clock routine of the analysis framework is used to model the frequent change
of a clock signal. Since the reset analysis shall determine constant signals during
system reset, modeling the frequent change of the clock is also important for
the analyzer. Most current systems are triggered on the rising edge of a clock
signal. An example of such a system is shown in Listing 6.9. As stated above,
this system finishes its initialization phase after 3 clock cycles. In general, the
duration of an initialization phase in an arbitrary model must be bounded, but
is not limited to a certain value. Thus, the reset analyzer needs to compute the
fixed point over the process executions in order to determine the desired stable
signal values.

121

Chapter 6. Static Analysis of VHDL

Given the name of an external clock signal clk, the transfer function transfer clock :
Dcp � Vclock Ñ Dcp for the clock routine of the analysis framework for a node
v P Vclock on a data-flow value l P Dcp is defined as:

transfer clockpl, vq �

$'&'%
ΓÒpclkqplq if catpvq � risingedge,
ΓÓpclkqplq if catpvq � fallingedge,
l otherwise.

Given a control-flow graph G � pV,E, s, xq. The update functions defined above
can now be combined to a transfer function transfer cp,e : Dcp Ñ Dcp for an edge
e � pm,nq P E on a lattice element l P Dcp:

transfer cp,eplq �

$''''''&''''''%

transfer VHDLpl, eq if e P EVHDL,
transfer clockpl,mq if e � pm,nq P Eclock ,
transfer simulpl, eq if e P Esimul ,
transfer envpl,mq if e � pm,nq P Eenv ,
l otherwise.

The return function return : Dcp �Dcp Ñ Dcp combining the data-flow values
coming from the local edge (a) and the return edge (b) at return nodes is defined
as:

returnpa, bq � b

Now, it is possible to define a function fcp : E Ñ pDcp Ñ Dcpq for an edge e P E
as:

fcppeq � transfer cp,e

This yields the data-flow problem dfpcp � pG,Dcp, fcpq, with G � pV,E, s, xq.
Given the name of the reset signal rst, and its activation value v P Vext, the initial
state ι is defined as:

ι � λi P identifier .

#
v if i � rst_ i � rst_ i � rst,
J otherwise.

The data-flow problem describes a forward analysis. At control-flow joins, the
union of the incoming information is formed. It can now be solved using one
the algorithms described in Section 2.4.1 on page 21 leading to the maximal
fixed-point solution MFP cp. The maximal fixed-point is computed for every
node v P V of the given control-flow graph.

Reset analysis shall determine the set of stable identifiers under the assumption
that the reset is triggered. A stable identifier is not allowed to change its value

122

6.2. Reset Analysis

until the reset signal is asserted anymore. Furthermore, the value of a stable
identifier must not flip depending on the current state of the external clock signal.
Thus, the set of stable identifiers during the system initialization phase can be
determined by combining the maximal fixed-point solutions of the data-flow
problem dfpcp for the rising and falling clock nodes of the clock process κ.

We define two functors r[Vext and r[Dcp for a, b P Vext and f, g P Dcp helping in
determining the set of stable identifiers:

a r[Vext b �

$'''&'''%
J if a � J_ b � J,
a if a � b,
K if a � b,
J otherwise.

f r[Dcp g �

$'''&'''%
K if f � K_ g � K,
f if g � J,
g if f � J,
λx P identifier . fpxq r[Vext gpxq otherwise.

Let v1, v2 P Vclock � V , with catpv1q � risingedge and catpv2q � fallingedge. The
set of stable identifiers during system reset is defined as:

Sstablecp � ts | s P identifier

^ pMFP cppv1q r[Dcp MFP cppv2qqpsq � J

^ pMFP cppv1q r[Dcp MFP cppv2qqpsq � Ku

The definition of the function lattice Dcp and the functor r[cp ensure that identi-
fiers that are mapped to different values depending on the state of the external
clock signal are not stable. Moreover, the initial element maps all identifiers
(except the reset signal) to J, thus the definition of r[Dcp also guarantees that for
two elements a, b P Vext, it holds that:

a r[Vext b � K ùñ a � J^ b � J^ pa � b_ pa � K^ b � Kqq

So, whenever a signal identifier s is mapped to K when applying r[Dcp to the
falling and rising data-flow values, it can be guaranteed that it has been assigned
different stable values depending on the external clock signal. The signal s is said
to define a different clock domain. Listing 6.10 on the following page gives a small
excerpt of the register transfer-level description of the superscalar DLX processor
(cf. Section 7.1.2). The external clock signal is named IncomingClock, but
processor updates are triggered on the rising edge of an internally defined clock
signal Clock, which is derived from the external signal by conjunction with the
negation of an internal halt signal.

123

Chapter 6. Static Analysis of VHDL

entity Dlx is
port (IncomingClock : in bit;

Reset : in bit;);
end Dlx;

architecture arch of Dlx is
signal Clock : bit;
signal DP_HaltFlag : bit;

begin
P1: Clock <= IncomingClock and not DP_HaltFlag;

P2: process(Clock, IncomingClock)
begin

if Reset = ’1’ then
DP_HaltFlag <= ’0’;

end if;

if (rising_edge (Clock)) then
processor update logic
. . .

end if;
end process;

end;

Listing 6.10 – Simplified example of a clock domain.

Thus, a side-product of the reset analysis is the set of possible clock domains
Spclk , which can be defined as follows. Let v1, v2 P Vclock � V be the nodes
representing the rising and falling clock updates of the clock simulation routine,
i.e. catpv1q � risingedge and catpv2q � fallingedge, Spclk is defined as

Spclk � ts | s P identifier ^ pMFP cppv1q r[Dcp MFP cppv2qqpsq � Ku

The knowledge of different clock domains is very useful in the process of de-
riving a timing model from a formal hardware specification, since it enables a
human expert to find more suitable abstractions in order to derive a small, but
also precise timing model. More details on abstractions of hardware description
languages can be found in [Pis12].

6.2.1 Analysis of Functions and Procedures

This section describes an enhancement to the reset analysis presented so far.
VHDL, and many other hardware description languages, also provide functions

124

6.2. Reset Analysis

and procedures to implement functionality that will be often reused. The dis-
tinction between a function and a procedure is limited to the kind of parameter
passing: function calls transfer their parameters by value, whereas procedure
calls use parameter passing by reference. Furthermore, procedures do not return
a value.

Procedures and functions are widely used from within VHDL specifications,
thus extending the data-flow problem dfpcp as presented before to cope with
functions and procedures will result in more precise analysis results. The solu-
tion presented in this section makes use of the call/return approach mentioned
before. Every function and procedure call statement within a processor spec-
ification is represented in the CRL2 description via a pair of call and return
nodes connected to the routine representing the called function/procedure (cf.
Figure 6.2 on page 102).

The parameters occurring in the heads of function and procedure declarations
are named formal parameters, the identifiers used at caller side to call the func-
tion (or procedure) are called actual parameters. To enhance the reset analysis,
mapping actual to formal parameters is necessary.

As before, modeling function- and procedure-calls uses the flexible attribute-
value concept of CRL2. The function formal returns for a node v P VVHDL of
a control-flow graph G � pV,E, s, xq a list of formal parameter names of the
function, v is contained in. If v does not belong to a function or procedure, the
empty list is returned. Analogously, the function actual can be defined returning
the list of actual parameter names for a node v. If v does not represent a call
or a return node (i.e. catpvq � callnode ^ catpvq � returnnode), the empty list
is returned. Using these two functions, the update function transfer call : Dcp �
EVHDL Ñ Dcp for an edge e � pm,nq P EVHDL, with catpeq � calledge, on a lattice
element l P Dcp can be defined. Let formalpnq � p0. � � � .ps and actualpmq �
a0. � � � .as, with s ¥ 0, transfer callpl, eq is defined as:

@i P r0, ss : lppiq � lpaiq

Please note that static type checking of VHDL already guarantees that functions
and procedures are called with the correct number of parameters. Thus, the
lengths of the lists returned from actual and formal must be equal.

Whereas the update function for call statements establishes a mapping from
actual to formal parameters, this mapping needs to be destroyed after the call,
since formal parameter names are not live after the function (or procedure) call.
For procedure calls, where parameters are passed by reference, also the modified
values must be updated. Thus, the update function transfer return : Dcp�EVHDL Ñ
Dcp for an edge e � pm,nq P EVHDL with catpeq � returnedge on a lattice element
l P Dcp can be defined. Let apply : Dcp � identifier � Vext Ñ Dcp be a function

125

Chapter 6. Static Analysis of VHDL

defined by

applypl, i, vq � λj P identifier .

#
v if j � i,
lpjq otherwise.

Let formalpmq � p0. � � � .ps and actualpnq � a0. � � � .as, with s ¥ 0, apply can be
used to define transferreturnpl, eq as follows:

@i P t0, . . . , su : l :�

#
applypapplypl, ai, lppiqq, pi,Jq if is_procedurepmq � true,
applypl, pi,Jq otherwise.

Please note that due to elaboration, identifiers used in the resulting VHDL model
are unique, i.e. they are not overloaded. This also applies to new naming scopes
introduced by function calls, etc. Thus, identifiers used at callee side can never
be modified at the caller side.

Both functions now have to be integrated into the update function for VHDL
statements, resulting in the update function transfer VHDL : Dcp � EVHDL Ñ Dcp

for an edge e � pm,nq P EVHDL:

transfer VHDLpl, eq �

$''''''''&''''''''%

transfer variablepl,mq if catpmq � variableassignment ,
transfer signalpl,mq if catpmq � signalassignment ,
transfer if pl, eq if catpmq � ifstatement ,
transfer callpl, eq if catpeq � calledge,
transfer returnpl, eq if catpeq � returnedge,
l otherwise.

Use of this function in the data-flow problem dfpcp as defined above enables
analysis of procedure and function calls in order to enhance the results.

6.3 Assumption-based Model Refinement

This section introduces the assumption-based model refinement analysis, or
assumption evaluation for short. The goal of the assumption evaluation analysis
is to support the process of environmental assumption refinement as introduced
in Chapter 5 on page 77.

Modern processors offer a huge variety in configurable components (and fea-
tures) in order to make them universally applicable. This configurability com-
pared to the restricted usage within a specific embedded area offers the possi-
bility of instantiating a timing model for timing analysis for a dedicated field
of application. E.g., interrupt handling often brings a system to a state, where
a timing bound for the task currently being executed is no longer of interest.

126

6.3. Assumption-based Model Refinement

Thus, the parts in a specification being concerned with the implementation of
the processor’s interrupt handling can be safely removed for timing analysis.

The specific field of application of a processor within the embedded area thus
leads to a set of assumptions on the physical environment. Moreover, asyn-
chronous events like DMA, or erroneous events like transfer errors due to alpha
collisions leading to bit flips cannot be covered by any static analysis, but by
statistical means. Events that can be covered by statistical means can also be
used to extend the set of assumptions on the specific use and the behavior of
a processor for timing analysis. These assumptions render parts of a proces-
sor specification obsolete. Parts of the specification can be safely marked as
timing dead. Signals and variables that are modified within this timing-dead
code might become stable, or their co-domains might be restricted to a smaller
subset. Knowing these restricted values, other parts within a VHDL processor
specification might also become timing dead.

Furthermore, if a signal (or variable) is known to always be of a constant value,
assignments to this signal (or variable) can be removed from the specification in
order to reduce its size. Remaining read references then access constant values,
which may also be inlined.

Identification of these signals can be automated by extending a constant propa-
gation analysis to deal with an interval domain. Using the set of environmental
assumptions, all signals that become constant under these assumptions can
be identified. Moreover, evaluating conditional expressions under the newly
computed restricted co-domains for signals and variables allows marking of
code sequences (namely the then- or else-branch) as timing dead, since under
the given set of assumptions, it can statically be guaranteed that control never
reaches these program points. In this case, also the conditional statement can be
safely removed from the processor specification.

For analysis, the environment has to be extended to use a pair of values pa, bq P
Value � Value representing the set tx | x P Value ^ a ¤ x ¤ bu.2 In the following,
ra, bs is used to denote the set of values contained in the interval from a till b. For
convenience, the left and right end point of an interval X P Value � Value will
be denoted by X and X , respectively.

X � rX,Xs

The Cartesian product domain representing intervals is extended by additional
top and bottom elements to ease data-flow analyses. So, the domain used within
the environment is defined by

VInt � pValue � Valueq Y tK,Ju

2Type-domains within VHDL must be mappable to basic partially ordered types, thus, w. l. o.
g., the domain Value is a partially ordered set with the ordering relation ¤.

127

Chapter 6. Static Analysis of VHDL

partially ordered such that K �VInt
X �VInt

J for all X P Value � Value, and for
X, Y P Value � Value : Y ¤ X ^X ¤ Y ùñ X �VInt

Y .

The functors \VInt
and [VInt

for X, Y P VInt are defined as follows:

X \VInt
Y �

$'''&'''%
J if X � J_ Y � J,
X if Y � K,
Y if X � K,
rminpX, Y q,maxpX,Y qs otherwise.

X [VInt
Y �

$''''''&''''''%

K if X � K_ Y � K,
X if Y � J,
Y if X � J,
K if Y X _X Y ,
rmaxpX, Y q,minpX,Y qs otherwise.

Please note that \VInt
computes the interval hull of two intervals, since in general,

the union of two intervals is not an interval.

Using this interval domain, the analysis domain for the assumption-based model
refinement is defined as

DInt � tf | f : identifier Ñ VIntu Y tK,Ju

The ordering relation f �DInt
g for two elements f, g P DInt is given by

f � K_ g � J_ pf, g R tK,Ju ^ @i P identifier : fpiq �VInt
gpiqq

The combine and meet functors \DInt
and [DInt

for f, g P DInt are defined as:

f \DInt
g �

$'''&'''%
J if f � J_ g � J,
f if g � K,
g if f � K,
λx P identifier . fpxq \VInt

gpxq otherwise.

f [DInt
g �

$'''&'''%
K if f � K_ g � K,
f if g � J,
g if f � J,
λx P identifier . fpxq [VInt

gpxq otherwise.

The domain DInt paired with the ordering relation �DInt
, the join and meet

functors \DInt
and [DInt

, and the least and greatest elements K and J forms
a lattice used as the domain for the data-flow problem. In the following, the
adaptations to the transfer functions presented in the previous section in order
to define the reset analysis will be described. These updated transfer functions

128

6.3. Assumption-based Model Refinement

then form a data-flow problem, whose fixed-point solution can be used to
identify smaller co-domains for signals and variables and also to mark parts of
a processor specification as timing-dead.

In order to cope with intervals, the evaluation function eval for arithmetic
expression evaluation of VHDL statements has to be extended according to
the interval arithmetic rules described in [MKC66]. The return value of the
evaluation function is no longer a list of possible results, but the interval hull
enclosing all result values.

Using the extended version, the update function for variable assignment state-
ments transfer variable : DInt � VVHDL Ñ DInt for a variable assignment v :� expr;
represented by a node w P VVHDL on a lattice element l P DInt can be defined as

transfer variablepl, wq � lrv Ð U s

with l $ evalpexprq � U .

Analogously, the update function for signal assignment statements transfer signal :
DInt � VVHDL Ñ DInt for a signal assignment s � expr; represented by a node
v P VVHDL on a lattice element l P DInt can be defined as

transfer signalpl, vq � lrsÐ U s

with l $ evalpexprq � U .

To enhance the quality of the analysis results, also conditional statements must
be analyzed. Whenever the conditional expression can be statically determined
to be true or false in every case, the then- or else-branch can be rendered as
infeasible. Thus, statements contained in the infeasible branch are known to be
never executed and therefore do not contribute to the values computed by the
program.

In order to model this behavior, the update function transfer if : DInt � EVHDL Ñ
DInt on a lattice element l and an edge e � pm,nq for a VHDL if-statement
represented via its corresponding CRL2 construct m P VVHDL is defined as:

transfer if pl, eq �

$''''''&''''''%

K if l � K,
J if l � J,
l if l $ evalpexprpmqq � U ^ pU � J_ U � catpeqq

K if U � catpeq,
l otherwise.

where the CRL2-attribute expr is used to access the VHDL-mnemonic of con-
ditionals and the right-hand side of assignment statements, i.e. for a node n
representing the statement s � a� b;, exprpnq � a� b.

129

Chapter 6. Static Analysis of VHDL

Intuitively, the current data-flow value is propagated over an edge of a condi-
tional statement if the condition can statically be evaluated to match the type of
the edge, i.e. if the condition is evaluated to true, the data-flow value is propa-
gated over the true, but not over the false edge. Whenever the condition cannot
be deterministically evaluated, the data-flow value is propagated over the true
as well as the false edge.

Analysis of procedure and function calls directly follows the definitions pre-
sented in Section 6.2.1 on page 124 and is therefore omitted here. Using these
update functions, the transfer function for transfer VHDL : DInt �EVHDL Ñ DInt for
an edge e � pm,nq P EVHDL can be easily defined:

transfer VHDLpl, eq �

$''''''''&''''''''%

transfer variablepl,mq if catpmq � variableassignment ,
transfer signalpl,mq if catpmq � signalassignment ,
transfer if pl, eq if catpmq � ifstatement ,
transfer callpl, eq if catpeq � calledge,
transfer returnpl, eq if catpeq � returnedge,
l otherwise.

The analysis framework presented in this chapter has introduced a process han-
dling the environment of the VHDL specification to be analyzed. This process
can now be used to instantiate the assumptions provided by the user. Thereby,
it does not matter whether a specific assumption is concerned with an external
signal of the specification or with an internal one since the user guarantees that
the given signal does not change its value for the rest of the analysis time. One
of the simplest assumptions used for timing model derivation is the assump-
tion “The reset is never triggered”. By this, all initialization code in a given
specification is pruned out.

Given a mapping assume : identifier Ñ VInt from identifiers to value ranges
representing the assumption provided by the user, where for all signal identifiers
s it holds that assumepsq � assumepsq � assumepsq, the update function for the
environment process transfer env : DInt � Venv Ñ DInt for a node n P Venv and a
data-flow element l P DInt is defined as:

transfer envpl, vq � λi P identifier .

$'&'%
assumepiq if assumepiq � K

^ assumepiq � J,
lpiq otherwise.

In order to define the data-flow problem of the assumption evaluator, also the
update functions for the process reactivation simulation routine and the clock
simulation routine need to be provided. Fortunately, both update functions
equal the definitions provided for the reset analysis, but their domains (i.e. the

130

6.3. Assumption-based Model Refinement

environment) have to be adapted. They can be analogously extended to cope
with intervals instead of single values, and thus, their definitions are omitted
here.

Given a control-flow graph G � pV,E, s, xq. The update functions defined above
can now be combined to a transfer function transfer Int ,e : DInt Ñ DInt for an
edge e � pm,nq P E on a lattice element l P DInt :

transfer Int ,eplq �

$''''''&''''''%

transfer VHDLpl, eq if e P EVHDL,
transfer clockpl,mq if e � pm,nq P Eclock ,
transfer simulpl, eq if e P Esimul ,
transfer envpl,mq if e � pm,nq P Eenv ,
l otherwise.

The return function return : DInt �DInt Ñ DInt combining the data-flow values
coming from the local edge (a) and the return edge (b) at return nodes is defined
as:

returnpa, bq � b

To obtain the desired data-flow problem, the function fInt : E Ñ pDInt Ñ DIntq
for an edge e P E is to be defined as:

fIntpeq � transfer Int ,e

Using this function, dfpInt � pG,DInt , fIntq, with G � pV,E, s, xq forms a data-
flow problem. Given the mapping assume of user-assumptions as mentioned
above, the maximal fixed-point solution of the reset analysis MFP cp, and the
set of stable identifiers Sstablecp derived from the reset analysis, the initial state ι
used for solving this data-flow problem is defined as:

ι � λi P identifier .

#
pMFP cppxqpiq,MFP cppxqpiqq if i P Sstablecp ,
assumepiq otherwise.

Illustratively, the initial element used for solving the data-flow problem uses
the results from a preceding reset analysis in order to enhance the analysis
results. Furthermore, the assumptions about the behavior of dedicated signals
and variables are also integrated into the starting value.

The data-flow problem describes a forward analysis requiring the union of
incoming information at control-flow joins. It can now be solved using one
the algorithms described in Section 2.4.1 on page 21 leading to the maximal
fixed-point solution MFP Int . The maximal fixed-point thereby is computed for
every node v P V of the given control-flow graph.

131

Chapter 6. Static Analysis of VHDL

The result of the assumption evaluation analysis is the set of newly stable
identifiers within a VHDL specification based on assumptions on the behavior of
the processor within a specific embedded environment. So, let v1, v2 P Vclock � V ,
with catpv1q � risingedge and catpv2q � fallingedge, this set is defined as

SstableInt � ts | s P identifier

^ pMFP Intpv1q [DInt
MFP Intpv2qqpsq � J

^ pMFP Intpv1q [DInt
MFP Intpv2qqpsq � K

^MFP Intpv1qpsq � MFP Intpv2qpsq � X ^X � Xu

The knowledge on stable identifiers and their specific values now can be used
to reduce the size of the VHDL specification by pruning out assignments to
identifiers known to be stable and inlining their use within other expressions.

Therefore, new CRL2-attributes timing_dead : V Ñ IB and timing_dead : E Ñ IB
are introduced marking statements or edges within a control-flow graph as
timing dead (cf. Definition 5.3.1 on page 94). A timing-dead mark for a statement
semantically implies that the statement shall be ignored for further analyses,
and the statement can be safely removed from the control-flow graph, and
therewith, also from the specification. A timing-dead mark at an edge implies
that every path π � pv1, . . . , vk, vl, . . . , vnq starting from the unique start node s of
a control-flow graph G � pV,E, s, xq, i.e. v1 � s, containing an edge e � pvk, vlq,
with timing_deadpeq � true has to be viewed as unreachable under the given
set of assumptions. A node v P V that is only accessible via an edge that has
been marked as timing dead (i.e. all paths to v starting at s contain at least one
edge e, where timing_deadpeq � true), can also be removed for timing model
derivation.

Timing-dead marks for statements and edges can now be automatically com-
puted using the set of stable identifiers SstableInt and the result of the assumption
evaluation analysis MFP Int . Thus, it is possible to mark signal assignment state-
ments of a VHDL specification as timing dead if the signal to be assigned is
known to be stable:

@n P VVHDL : catpnq � signalassignment ^ def pnq P SstableInt

ùñ timing_deadpnq � true

Removing signal assignment statements of signals that are known to be stable
under a set of assumptions also directly implies that remaining read references
of a stable signal s P SstableInt access a constant value, namely MFPIntpxqpsq. This
constant value can also be inlined in the right-hand side expression of VHDL
statements.

The design of the assumption evaluation analysis dfpInt to use an interval domain
being capable to not only identify constant signals, but also more restricted

132

6.3. Assumption-based Model Refinement

co-domains for identifiers additionally allows for identification of paths in a
control-flow graph that cannot be reached under a certain set of assumptions.
Whenever an expression of a conditional statement can be statically evaluated
to be always true or false (i.e. the result of the conditional expression becomes
stable), the then- or else-branch can be rendered obsolete.

@e � pm,nq P EVHDL, with catpeq � true _ catpeq � false :

MFP Intpmq $ evalpexprpmqq � catpeq

^MFP Intpmq $ evalpexprpmqq R tK,Ju

ùñ timing_deadpeq � true

Furthermore, every conditional statement whose outcome can be statically
determined to be constant can also be marked as timing-dead. By this, a further
reduction in size of a given VHDL specification can be achieved.

@n P VVHDL, with catpnq � ifstatement : MFP Intpnq $ evalpexprpnqq R tK,Ju

ùñ timing_deadpnq � true

Using the assumption evaluation analysis as presented in this section in combi-
nation with the results from a preceding reset analysis thus supports the process
of timing model derivation, namely the environmental assumption refinement
(cf. Section 5.2.1 on page 88). In the following, some problems, optimizations,
and enhancements supporting the assumption evaluation analysis will be dis-
cussed.

6.3.1 Widening and Path-Sensitivity

Interval analysis as presented here has one limitation: depending on the program
to be analyzed, termination of interval analysis is not guaranteed due to infinite
ascending chains in the determination of the fixed-point.

Figure 6.6 on the next page shows the control flow graph of the 3-bit counter
example shown in Listing 4.2 on page 67. Assumption evaluation using the
assumption “reset is never active”, and using the result of a preceding reset
analysis (cnt � 0 in this example), yields the data-flow computation shown
in the figure. Thereby, we focus only on value computation for the internal
counter signal cnt. The several iterations of the fixed-point computation are
shown as the evolution of data-flow information for the counter signal, i.e. a
data-flow value trace cntÑ r0, 0s r0, 1s r0, 2s denotes a data-flow value of r0, 0s
for the signal cnt in the first iteration, and an evolution to r0, 1s in the second
iteration. The fixed-point is reached if for all edges in the control-flow graph the
computed value range does not differ from the one of the previous iteration (cf.
Definition 2.2.3 on page 13).

133

Chapter 6. Static Analysis of VHDL

s

rst = ’1’(1) cnt <= "000"

(2)

rising_edge (clk)(3) cnt < "111" (4)

cnt <= "000"(5) cnt <= cnt + ’1’ (6)

val <= cnt(7)

x

Normal edge

True edge

False edgecntÑ r0, 0s r0, 1s . . . r0, 7s r0, 8s . . .

K K . . .cntÑ r0, 0s r0, 1s . . . r0, 7s r0, 8s . . .

K K . . .

cntÑ K K . . . r0, 7s r0, 8s . . . cntÑ r0, 0s r0, 1s . . . r0, 7s r0, 8s . . .

cntÑ K K . . . r0, 0s r0, 0s . . . cntÑ r1, 1s r1, 2s . . . r1, 8s r1, 9s . . .

cntÑ r1, 1s r1, 2s . . . r0, 8s r0, 9s . . .

Figure 6.6 – Data-flow computation for the assumption “Reset is never active” on
the 3-bit counter from Listing 4.2.

Starting with the result of the reset analysis, cntÑ r0, 0s in the above example,
the then-branch of the conditional statement at node (1) is known to never be
taken (due to the assumption “The reset is never active”). Thus, the data-flow
value is propagated over the false-edge, and K is propagated over the true-edge.
The circuit in the example is synced on the rising edge of an external clock signal
(cf. node (3)), thus, w. l. o. g., in the following, we focus on the rising edge of the
clock process of the analysis framework.

At a falling clock edge, information is only propagated over the false-edge (edge
from node (2) to the exit node) of the second conditional statement, thus no
updates of the computed data-flow values occur.

In the first iteration, the conditional statement cnt ”111” at node (4) can
be evaluated to true, thus, data-flow information is only propagated over the
true-edge, whereas the least element K is used on the else-branch. The counter
increment cnt � cnt � 1 schedules a transaction on cnt, and the increment
leads to an updated value of r1, 1s. Please note that in this example, the current
value of cnt and its scheduled value cnt are treated the same due to readability

134

6.3. Assumption-based Model Refinement

reasons. Furthermore, data-flow value update at the synchronize statement is
handled by the update function of the simulation routine transfer simul , and also
the frequent change of the clock signal handled by transfer clock is only implicitly
shown here. Finally, at the exit node of the control-flow graph, information is
joined leading to r1, 1s as the value of cnt, which than has to be merged into the
collecting contexts.

The next iteration uses r0, 1s as the possible value range of the counter signal.
Now, the same rules as in the first iteration apply, leading to r1, 2s in the end,
which has to merged in the collecting context, and the third round uses a value
range of r0, 2s.

In the 8th iteration using a value range of r0, 7s, the conditional statement at
node (4) cannot be evaluated deterministically anymore, so also the else-branch
has to be taken into account, and the effects from branch parts need to be merged
in front of node (7). From now on, all further iterations behave the same, leading
to an infinite ascending chain, where the next iteration i� 1 always differs from
the previous one by

transfer i�1
Int pιqpcntq � transfer i

Intpιqpcntq � r0, 1s

Consequently, the least fixed-point cannot be computed due to an infinite as-
cending chain, and the assumption evaluation analysis won’t terminate. In order
to ensure termination of the analysis, widening as described in Section 2.4.1 on
page 23 can be used. Intuitively, the idea underlying widening is that it is always
safe to take a fixed point that is greater than the least fixed point. Therefore, a
widening operator needs to be defined that takes the old and the new values
of an iteration sequence such that the result is always greater or equal than the
new value. This approach reduces the length of the iteration sequence at the
cost of precision.

For the assumption evaluation analysis using intervals, we can therefore define
a widening operator5VInt

: VInt � VInt Ñ VInt as follows:

5VInt
pA,Bq �

$'''''''''''&'''''''''''%

J if A � J_B � J,
A if B � K,
B if A � K,
J if A � B ^ A B ^ A � A,
J if A � B ^ A ¡ B ^ A � A,
J if A ¡ B ^ A B ^ A � A,
A\VInt

B otherwise.

Whenever a bound is increased in the current iteration, and the interval in the
last iteration was not precise, we set the resulting interval to J. Obviously, the

135

Chapter 6. Static Analysis of VHDL

widening operator computes an upper bound for all pairs l,m P VInt and for
every ascending chain l1 �L l2 �L � � � , the ascending chain m1 �L m2 �L � � � ,
constructed by

m1 � l1

mi�1 � mi5 li�1

stabilizes. Thus, the following lemma holds.

Lemma 6.3.1
5VInt

: VInt � VInt Ñ VInt is a widening operator as defined in Definition 2.4.5
on page 23.

Therewith, it is possible to also define a widening operator5DInt
: DInt �DInt Ñ

DInt for the domain DInt underlying the assumption evaluation analysis as
follows:

5DInt
pl,mq �

$'''&'''%
J if l � J_m � J,
l if m � K,
m if l � K,
λi P identifier . lpiq5VInt

mpiq otherwise.

Theorem 6.3.1 (Widening5DInt
)

5DInt
: DInt �DInt Ñ DInt is a widening operator enforcing the termination of

the assumption evaluation analysis.

The proof of this theorem is omitted here since 5DInt
obviously is an upper

bound operator for the domain DInt . As the set of identifiers that occur within a
VHDL model is finite stabilization of ascending chains is already guaranteed by
Lemma 6.3.1.

Figure 6.7 on the next page again shows the control-flow graph of the 3-bit
counter example. Data-flow computation depicted in this figure uses widening
to enforce termination of the fixed-point iteration. Before starting a new iteration,
the widening operator as defined above is used to derive the new data-flow
value. By this, the first two iteration rounds behave as before (i.e. as without
using widening), but at the beginning of the third round, the old data-flow value
of r0, 1s is widened with the new data-flow value of r0, 2s, which leads to a new
(greater) data-flow value of J. The fixed point is reached after the third iteration.

However, results of the assumption evaluation analysis might become unsatis-
factory due to the use of widening. Thus, it is possible to define an enhanced
transfer function that augments the assumption evaluation analysis to be path
sensitive. Figure 6.8 on page 138 depicts the data-flow value computation

136

6.3. Assumption-based Model Refinement

s

rst = ’1’(1) cnt <= "000"

(2)

rising_edge (clk)(3) cnt < "111" (4)

cnt <= "000"(5) cnt <= cnt + ’1’ (6)

val <= cnt(7)

x

Normal edge

True edge

False edgecntÑ r0, 0s r0, 1s J

K K KcntÑ r0, 0s r0, 1s J

K K K

cntÑ K K J cntÑ r0, 0s r0, 1s J

cntÑ K K J cntÑ r1, 1s r1, 2s J

cntÑ r1, 1s r1, 2s J

Figure 6.7 – Data-flow computation using widening.

using an enhanced transfer function that uses additional statically available
information to compute more precise values.

The idea behind the enhanced transfer function is that whenever a conditional
statement is encountered, the value range for the identifier used for comparison
is restricted with the solution space of the condition, the edge type, and the
identifier’s type range3.

So, within the example, the benefit of adding path sensitivity to the assumption
evaluation analysis is visible within the third iteration. Widening still ensures
termination by “cutting off” the infinite ascending chain for the value range of
cnt, but the conditional statement cnt ”111” allows to refine the value range
of cnt depending on the edge type. From the specification (cf. Listing 4.2), cnt
is known to be of an unsigned type of 3-bit width, and the condition ensures
that within the then-branch, the value must be less than ”111”, thus it is safe to
propagate a data-flow value of r0, 6s for cnt along the taken edge, whereas on the
fall-through edge, cnt is known to be of value r7, 7s. So, adding path sensitivity

3Within VHDL, every type has a defined range that is known statically. The range of a type T is
defined as rT 1low , T 1highs.

137

Chapter 6. Static Analysis of VHDL

s

rst = ’1’(1) cnt <= "000"

(2)

rising_edge (clk)(3) cnt < "111" (4)

cnt <= "000"(5) cnt <= cnt + ’1’ (6)

val <= cnt(7)

x

Normal edge

True edge

False edgecntÑ r0, 0s r0, 1s J J

K K K KcntÑ r0, 0s r0, 1s J J

K K K K

cntÑ K K r7, 7s r7, 7s cntÑ r0, 0s r0, 1s r0, 6s r0, 6s

cntÑ K K r0, 0s r0, 0s cntÑ r1, 1s r1, 2s r1, 7s r1, 7s

cntÑ r1, 1s r1, 2s r0, 7s r0, 7s

Figure 6.8 – Data-flow computation using widening and the enhanced transfer
function.

to the analysis allows to refine information according to the information known
at conditional statements.

Please note that the use of this enhancement is currently limited to “simple”
conditional statements, i.e. compare statements of the kind

 simple_conditional ¡ � identifier ¡ relation ¡ expression ¡,

whereas in general, additional computational effort for rearranging the condi-
tional expressions is required.

Thus, we can define an enhanced transfer function transfer if simple
: DInt�EVHDL Ñ

DInt for a simple conditional statement i rel expr on a lattice element l and an
edge e. Let A � tx | x rel expru be the solution space of the (in-)equation
x rel expr , and B � tx | x !rel expru be the solution space of the (in-)equation
x !rel expr , and let Ar s and Br s be the interval hulls of the sets A and B, respec-
tively, i.e. Ar s � rv, ws, such that @a P A : v ¤ a ¤ w and v, w P A. Furthermore,

138

6.3. Assumption-based Model Refinement

...
DP_TakeExternalInterrupt <= InterruptRequest

and (DP_InterruptEnableFlag
or DP_ExecuteRfe);

...

Listing 6.11 – Sample VHDL snippet of the superscalar DLX machine.

let Ti be the type of identifier i.

transfer if simple
pl, eq �

λj P identifier .

$'&'%
lpiq [VInt

rT 1
i low , T 1

ihighs [VInt
Ar s if j � i^ catpeq � true,

lpiq [VInt
rT 1

i low , T 1
ihighs [VInt

Br s if j � i^ catpeq � false,
lpjq otherwise.

This function can be used within the update function transfer if in order to refine
the results of the assumption evaluation analysis.

6.3.2 Live-Variables Analysis

Using the results of the assumption evaluation analysis, a subsequent live-
variables analysis can be used to identify further timing-dead statements. The
live-variables analysis is described here in more detail.

Listing 6.11 shows a small excerpt of the VHDL specification of the superscalar
DLX machine available from the TU Darmstadt [Hor97]. As it is often the case in
timing analysis, the effects of external interrupts occurring in a non-deterministic
sporadic manner cannot be covered, thus the external signal InterruptRequest is
assumed to be of a constant value, namely 101. Thus, the statement depicted in the
listing can be evaluated statically, and also the signal DP_TakeExternalInterrupt
becomes static. By this, the whole statement can be marked as timing dead by
using the results of the assumption evaluation analysis. If there are no further
read references of the signals DP_InterruptEnableFlag and DP_ExecuteRfe that
are also used in the assignment statement, also the nodes, where their values are
assigned, can be marked as timing dead. The transitive closure of this problem
can be automatically determined by the live-variables analysis.

An identifier is live behind a statement if there exists a path from the statement
to a use of the identifier that does not redefine the identifier. Thus, the live-
variables analysis will determine for each program point of a control-flow graph,
which identifiers may be live at the exit of the point.

139

Chapter 6. Static Analysis of VHDL

The live-variables analysis is a well-known analysis in the area of compiler
construction used as the basis for dead code elimination. The analysis belongs
to the class of bit vector problems in which the data-flow value is a set, e.g., the
set of live variables. These sets can be represented efficiently as bit vectors, in
which each bit represents set membership of one particular element. Using this
representation, the join and transfer functions can be implemented as bitwise
logical operations. For the live-variables analysis, the join operation is the
union, implemented by bitwise logical or. The transfer function for each type of
statement can be decomposed in so-called gen and kill sets.

The kill set for live-variables analysis is the set of identifiers that are written in a
particular statement, whereas the gen set is the set of identifiers that are read
without being written first. A formal definition of the data-flow problem to de-
termine live variables is given in [NNH99] and is therefore omitted here. Please
note that nodes (i.e. statements) that have been already identified as timing
dead are skipped while determining the live variables (as these statements are
known to not contribute any longer). This analysis is a backward analysis, where
information is build up from the information at the control-flow successors. At
joins, the union of the incoming information is formed.

The maximal fixed-point solution MFP lv for this data-flow problem can now be
used for determining further timing-dead identifiers as described above. Thus,
given a control-flow graph G � pV,E, s, xq, all assignment statement nodes
assigning a value to an identifier that is not live at that node can be marked as
timing dead.

@n P V : catpnq � signalassignment ^ pdef pnq XMFP lvpnqq � H

ùñ timing_deadpnq � true;

By this, a further reduction in terms of size and complexity of a given VHDL
specification can be achieved.

6.4 Backward Slicing

A program slice of a program P consists of all parts of P that potentially affect
the values computed at some point of interest, referred to as the slicing criterion
C. All parts of P that have a direct or indirect influence on the criterion C are
called program slice with respect to C.

The original concept of program slicing – the task to compute program slices –
was introduced by Weiser [Wei79, Wei81, Wei82, Wei84]. Weiser argues that a
slice corresponds to abstractions that programmers make in their mind while
debugging a program, and therefore suggests to integrate slicing into debugging
environments. Building on the definitions of Weiser, various slightly different

140

6.4. Backward Slicing

1 read(n);
int fac = 1;

3 int sum = 0;
while (n >= 0) {

5 if (n == 0)
fac = fac * 1;

7 else
fac = fac * n;

9 sum = sum + n;
n--;

11 }
write(fac);

13 write(sum);

(a)

read(n);
int fac = 1;

while (n >= 0) {
if (n == 0)

fac = fac * 1;
else

fac = fac * n;

n--;
}

(b)

fac = fac * 1;

fac = fac * n;

write(fac);

(c)

Listing 6.12 – Example (a), backward (b) and forward slice (c) for criterion
p6, tfacuq.

notions of program slices and methods for program slicing have been proposed.
This is mainly due to the fact that different applications require slightly differ-
ent characteristics of slices. According to Weiser, a program slice is a reduced
executable program derived from the original program P by removing state-
ments, such that the slice replicates parts of the behavior of P . Building on the
definition of Weiser, Ottenstein et al. restate the problem of slicing in terms of a
reachability problem in a program dependency graph [KKP�81, OO84, FOW87], a
directed graph where nodes represent statements and control predicates, and
edges correspond to data and control dependencies. The definition of a slice
is changed to a subset of the statements and control predicates of the program
which directly or indirectly affect the values computed at the slicing criterion,
but the subset must not necessarily constitute an executable program.

Besides the slightly different definitions, an important distinction is that between
static and dynamic slices. Static slices are computed without making assumptions
regarding the program’s input and environment, whereas dynamic slices rely on
some specific input vector. As this thesis is concerned with the static analysis of
hardware description languages, dynamic slicing will not be further investigated
here, and is just mentioned for completeness reasons. A detailed discussion of
dynamic as well as static slicing, different approaches for their computation and
a survey on different slicing definitions can be found in [Tip95].

Slices mentioned so far are computed by collecting statements and control
predicates by means of a backward traversal of the program, starting at the given

141

Chapter 6. Static Analysis of VHDL

slicing criterion. Listing 6.12 (b) shows a backward slice of the program given
in Listing 6.12 (a) with respect to slicing criterion p6, tfacuq. Usually, the slicing
criterion consists of a tuple (program point, set of variables). In the example
mentioned here, the program point is referred to as the line-number of the
original program. Besides this classical backward slicing, Bergeretti and Carré
had formally introduced the term forward slicing [BC85]. Intuitively, a forward
slice for a slicing criterion C consists of all statements and control predicates of
a program that depend on C. A statement “depends” on a slicing criterion C, if
the values computed at that statement depend on a value computed at C, or the
execution of the statement under consideration depends on a value computed
at C. An example of a forward slice with respect to the slicing criterion p6, tfacuq
is depicted in Listing 6.12 (c).

For timing model derivation, understanding a VHDL specification is of utmost
importance. Finding abstractions suitable for the given model in order to make
timing analysis feasible requires a detailed view in the several components form-
ing a process while not losing the overall view of the dependencies contained in
the specification.

Slicing as introduced by Weiser offers the possibility to focus on more strategic
decisions. Furthermore, model preprocessing as described in Section 5.2.1 on
page 88 introduced the concept of timing dead code elimination. As stated there,
backward slicing with respect to program points where instructions leave the
processor’s pipeline results in a slice, whose inversion (i.e. statements not in
the slice become part of it, and vice versa) represents all statements that are
not relevant with respect to the timing behavior of a processor. Please note
that depending on the processor specification to be analyzed, there might exist
several points where instructions will leave the pipeline, thus the union of slices
for each of these points needs to be formed before building the inversion.

In the following, program slicing using program dependencies will be intro-
duced. Furthermore, an extension due to the two-level semantics of hardware
description languages will be described. Building on that, data-flow problems
for reconstructing these dependencies using the analysis framework introduced
at the beginning of this chapter will be defined. Also the resulting slicing algo-
rithm and some further optimizations will be described.

[CFR�99, CFR�02] describe a similar approach for slicing of hardware descrip-
tion languages. They map language constructs from VHDL to language con-
structs of traditional procedural languages like C or ADA. The reactive nature
being special to hardware description languages is modeled via a special master
process.

Another method to compute slices on synchronous circuits is described in
[RKK04] focusing on the event-oriented communication structure of VHDL.
Slicing as presented here is not limited to synchronous circuit specifications.

142

6.4. Backward Slicing

6.4.1 Slicing Using Dependencies

In [OO84], Ottenstein and Ottenstein presented a slicing approach based on a
program dependency graph. Horwitz, Reps, and Binkley [HRB88] extended
this approach to compute interprocedural, context-sensitive slices. This section
briefly introduces the approaches presented there and extends them to cope with
the two-level semantics being special for hardware description languages.

Definition 6.4.1 (Slicing criterion)
Let G � pV,E, s, xq be the control-flow graph of a program P . A tuple C �
pn, Uqwith n P V and U � def pnq Y usepnq is called a slicing criterion.

Definition 6.4.2 (Slice)
Let G � pV,E, s, xq be the control-flow graph of a program P . A slice with
respect to a slicing criterionC � pn, Uq is a subset S � V such that the following
holds: If P halts on input I , then the value of u P U at the statement represented
by n each time n is executed in P is the same in P and PS . If P fails to terminate
normally, n may execute more times in PS than in P , but P and PS compute
the same values each time n is executed by P .

Obviously, for any program P represented by GP � pV,E, s, xq and for any
slicing criterion pn, Uq, there exists at least one slice S, namely the identity
S � V . In most cases, this conservative solution is not very satisfactory. Thus,
we are looking for a subset S � V , where S is approximately minimal.

Definition 6.4.3 (Minimal slice)
A slice S with respect to a slicing criterion C � pn, Uq is called minimal, if there
exists no other slice S 1 with respect to C, where |S 1| |S| holds.

According to Weiser, minimal slices are not necessarily unambiguous and the
problem of determining minimal slices is not decidable in general. In the fol-
lowing, this thesis presents the theory of an iterative algorithm to compute
approximations to minimal slices.

Using the CRL2-attributes def and use, several types of data dependence can be
defined, such as flow dependence, output dependence and anti dependence
[FOW87]. For slicing, only flow dependence is taken into account.

Definition 6.4.4 (Flow dependence ó)
Let G � pV,E, s, xq be a control-flow graph. A node n P V is flow dependent on
a node m P V , if there exists an identifier i such that:

i P def pmq,
^ i P usepnq,
^ Dπ P P rm,ns : @u P πztm,nu : i R def puq

143

Chapter 6. Static Analysis of VHDL

We use the relation ói to express this dependency: m ói n. The set of nodes
defining an identifier i for a node n P V can be defined as

datapn, iq � tm | m P V ^m ói nu

If the execution of a program statement depends on the execution of another
program statement, this is called control dependency. A control dependence is
usually defined in terms of postdominance.

Definition 6.4.5 (Postdomination Ò)
Let G � pV,E, s, xq be a control-flow graph. A node n P V is postdominated by
a node m P V , if all paths from n to the exit node of the control-flow graph
contain the node m.

@π P P rn, xs : m P π

We will use Ò to denote this relation: m Ò n. The postdominator set for a node
n P V thus is defined as:

pdompnq � tm | m P V ^m Ò nu

Using this definition, control dependence can be defined as follows:

Definition 6.4.6 (Control dependence Ó)
Let G � pV,E, s, xq be a control-flow graph. A node n P V is control dependent
on a node m P V , iff

Dπ P P rm,ns : @u P πztm,nu : n P pdompuq

^ n R pdompmq

We will use Ó to express this relation: m Ó n. The set of control-dependent
nodes for a node n P V can be defined as

inflpnq � tu | u P V ^ n Ó uu

inflpnq is also called the range of influence of the node n.

Using the definitions 6.4.4 and 6.4.6, an approximation to minimal slices can
be found by computing successive sets of relevant identifiers for each node of a
control-flow graph.

Definition 6.4.7 (Directly relevant identifiers)
LetG � pV,E, s, xq be a control-flow graph and C � pn, Uq be a slicing criterion.
The set of directly relevant identifiers R0

C for a node o P V is defined as:

R0
Cpoq �

$'&'%
U if o � n,
ti | @po, pq P E : pi P R0

Cppq ^ i R def poqq

_ pi P usepoq ^ def poq XR0
Cppq � Hqu, otherwise.

144

6.4. Backward Slicing

Building on this definition, the set of directly relevant statements is defined as:

Definition 6.4.8 (Directly relevant statements)
LetG � pV,E, s, xq be a control-flow graph and C � pn, Uq be a slicing criterion.
The set of directly relevant statements S0

C is defined as the set of all nodes o P V
which define an identifier i that is relevant for a successor of o in the control-
flow graph.

S0
C � to | Dpo, pq P E : def poq XR0

Cppq � Hu

Building on the definitions of R0
C and S0

C , the sets Rk
C , Sk

C , Bk
C and Ak

C for k ¥ 0
will be defined by induction.

Identifiers that are referenced in the control predicates of branch statements are
indirectly relevant, if at least one of the statements being control dependent
on the branch statement is relevant. The execution of a slicing criterion also
depends on all nodes on which the criterion is control dependent. In general,
control dependencies have to be considered for all relevant statements. Thus,
the set of relevant control statements can be defined as follows:

Definition 6.4.9 (Relevant control statements)
The set of relevant control statements Bk

C which are relevant due to the influence
they have on nodes n in Sk

C are:

Bk
C � tb | inflpbq X Sk

C � Hu

Within VHDL, execution of a process is “controlled” via its sensitivity list. Thus
also the signals used in the sensitivity lists induce a dependency that has to
be taken into account. Within the analysis framework presented in this thesis,
the sensitivity list of a process can be accessed via the sensitivity attribute of
its starting node si. Section 6.1 on page 98 has already shown that process (re-
)activation can be modeled using the if-guard statement Ξ, however, for slicing,
adding nodes induced by the framework to the set of relevant statements with
respect to a slicing criterion C is not desirable. Hence, activation dependencies
due to sensitivity lists are handled by defining the set of relevant activation
statements Ak

C .

Definition 6.4.10 (Relevant activation statements)
LetG � pV,E, s, xq be a supergraph of a VHDL model derived from the analysis
framework, i.e. G is constructed from processes P0, P1, . . . , Pn and the addi-
tional framework code. The set of relevant activation statements Ak

C which are
relevant for the activation of a process Pi represented via Gi � pVi, Ei, si, xiq is
defined as:

Ak
C � tsi | Dn P S

k
C , n P Viu

Using the definitions from above, we can define the set of indirectly relevant
identifiers.

145

Chapter 6. Static Analysis of VHDL

Definition 6.4.11 (Indirectly relevant identifiers)
The set of indirectly relevant identifiers Rk�1

C is defined by considering the
identifiers in the predicates of the control statements Bk

C and the signals used
in the sensitivity lists of the affected processes to be relevant.

Rk�1
C poq � Rk

Cpoq Y
¤
bPBk

C

R0
pb,usepbqqpoq Y

¤
aPAk

C

R0
pa,sensitivitypaqqpoq

Definition 6.4.12 (Indirectly relevant statements)
The set of indirectly relevant statements Sk�1

C consists of all nodes in Bk
C together

with the nodes o defining an identifier that is relevant to a control-flow succes-
sor p:

Sk�1
C � Bk

C Y to | Dpo, pq P E, def poq XRk�1
C ppq � Hu

Please note that nodes in Ak
C do not belong to the set of indirectly relevant

statements, since the activation dependency induced by the sensitivity list of
a process is only reflected implicitly. The semantics of VHDL does not require
an identifier contained in the sensitivity list of a process to be used within the
process body.

Both sequences
�
Rk

C

�
kPIN

and
�
Sk
C

�
kPIN

represent monotonically increasing sub-
sets of identifiers and statements of the VHDL model, respectively; the fixed
point of the sequence

�
Sk
C

�
kPIN

constitutes the desired program slice with respect
to the slicing criterion C.

Theorem 6.4.1 (Correctness)
Let G � pV,E, s, xq be the control-flow graph of a VHDL model derived from
the analysis framework, and C � pn, Uq with n P V and U � def pnq Y usepnq
be a slicing criterion. The fixed point of the sequence

�
Sk
C

�
kPIN

is a safe slice
with respect to the slicing criterion C.

The definition of Sk
C provides an iterative approach for its computation resulting

in an approximation of a minimal slice. Termination in computing the fixed
point is guaranteed because the set of nodes is finite. The following subsections
now describe static analyses that aid in computing the dependencies required
for instantiating the slicing algorithm.

6.4.2 Flow-Dependency Analysis

Reconstruction of data dependencies, or, to be more precise, of flow dependen-
cies can be easily formulated as a data-flow problem by computing the reaching
definitions for each node in the control-flow graph.

146

6.4. Backward Slicing

A definition reaches a program point if there is a path from the definition to this
point without any redefinition. Let G � pV,E, s, xq be a control-flow graph. An
identifier i defined at node m P V reaches a node n P V , iff

i P def pmq

^ Dπ P P rm,ns : @o P πztm,nu : i R def poq

Obviously, the result of a data-flow analysis building on this definition yields a
superset of the flow dependency defined in Definition 6.4.4 on page 143.

Computing reaching definitions thus requires a mapping f defined on the set
identifier of identifiers used in the VHDL specification such that fpiq is the set of
nodes in the control-flow graph defining identifier i.

map � tf | f : identifier Ñ PpV qu

with the pointwise ordering relation �map for f, g P map defined as

f �map g ðñ @i P identifier : fpiq � gpiq

The combine and meet functors \map and [map for f, g P map are defined as:

f \map g � λi P identifier . fpiq Y gpiq

f [map g � λi P identifier . fpiq X gpiq

The domain used for reaching-definitions analysis consists of this function
domain map extended by additional least and greatest elements K and J easing
further optimizations

Drd � mapY tK,Ju

ordered such that

@f P Drd : K �Drd
f �Drd

J

^ f, g P map : f �Drd
g ðñ f �map g

The join and meet functors \Drd
and [Drd

for x, y P Drd are defined as follows:

x\Drd
y �

$'''&'''%
J if x � J_ y � J,
x if y � K,
y if x � K,
x\map y, otherwise.

x[Drd
y �

$'''&'''%
K, if x � K_ y � K,
x, if y � J,
y, if x � J,
x[map y, otherwise.

147

Chapter 6. Static Analysis of VHDL

For the reaching definitions, information being valid on one path through the
control-flow graph is interesting, thus, the union of incoming information is
formed at control-flow joins and information is propagated in forward direction.
Thus, the lattice used for the data-flow problem is

pDrd,�Drd
,\Drd

,[Drd
,K,Jq

The domain chosen for analysis maps identifiers used in the program to program
points, where this identifier potentially is to be modified. Whereas signal and
variable assignments of scalar types target the whole identifier, modifications
of composite types (i.e. bitvectors in VHDL) may only update a “part” of the
identifier, e.g., a field in an array. VHDL offers two classes of composite types,
arrays and records. Whereas record types are non-interesting here4, VHDL
additionally offers the possibility to modify a consecutive part of an array type
at once, which is called an array slice. For slicing, assignment to composite types
does not necessarily write the content that is to be read later on. Thus, we define
two functionsmust : Drd� identifier�V Ñ Drd andmay : Drd� identifier�V Ñ
Drd as follows:

Definition 6.4.13 (must update)
Let G � pV,E, s, xq be a control-flow graph. The must update must : Drd �
identifier �V Ñ Drd for an identifier i P identifier and a node n P V on a lattice
element l P Drd is defined as:

mustpl, i, nq � lriÐ tnus

Definition 6.4.14 (may update)
Let G � pV,E, s, xq be a control-flow graph. The may update may : Drd �
identifier �V Ñ Drd for an identifier i P identifier and a node n P V on a lattice
element l P Drd is defined as:

maypl, i, nq � lriÐ lpiq Y tnus

Using the definitions ofmust andmay, it is possible to define the update function
transfer VHDL : Drd � EVHDL Ñ Drd for an edge e � pm,nq P EVHDL on a lattice
element l P Drd as follows:

transfer VHDLpl, eq �

λi P identifier .

$'&'%
maypl, i,mq if i P def pmq ^ compositeptypepiqq � true,
mustpl, i,mq if i P def pmq ^ compositeptypepiqq � true,
lpiq otherwise.

4The elaboration process already “flattens” these structures in order to enhance synthesizability
of the given model.

148

6.4. Backward Slicing

This update function only deals with statements being directly derived from the
original VHDL model. In order to define a data-flow problem, also updates for
the routines derived from the analysis framework need to be given. Since these
statements do not define any signal or variable (except the external clock signal
that cannot be modeled using the synthesizable VHDL subset), these statements
do not contribute to the reaching definition analysis.

Thus, the update function transferother : Drd�EzEVHDL Ñ Drd for a given control-
flow graph G � pV,E, s, xq on a lattice element l P Drd and an edge e P EzEVHDL

can be easily defined as:
transferotherpl, eq � l

Given a control-flow graph G � pV,E, s, xq, we can now define the transfer
function transfer rd,e : Drd Ñ Drd for an edge e � pm,nq P E on a lattice element
l P Drd as:

transfer rd,eplq �

#
transfer VHDLpl, eq if e P EVHDL,
transferotherpl, eq otherwise.

The return function return : Drd �Drd Ñ Drd is defined as:

returnrd � \Drd

Now, it is possible to define a function frd : E Ñ pDrd Ñ Drdq for an edge e P E
as

frdpeq � transfer rd,e

and use it as the transfer function of the data-flow problem dfprd � pG,Drd, frdq.

The maximal fixed-point solution MFP rd of dfprd starting with the initial element
ι � λi P identifier . t u can now be used to access a superset of the definitions
reaching a program point.

Theorem 6.4.2 (Soundness of dfprd)
The data-flow problem dfprd � pG,Drd, frdq computes a superset of the flow
dependencies of the VHDL model described by G. MFP rd is a sound approxi-
mation of MOP rd and the following holds:

@n P V : @i P identifier : m P datapn, iq ùñ m P MFP rdpnqpiq

Proof 6.4.1
In order to prove this theorem, the following two propositions need to be
shown:

1. dfprd is a monotone data-flow problem ùñ MFP rd is a sound approxi-
mation of MOP rd.

2. @n P V : @i P identifier : m P datapn, iq ùñ m P MFP rdpnqpiq

149

Chapter 6. Static Analysis of VHDL

Let G � pV,E, s, xq be a control-flow graph and dfprd � pG,Drd, frdq be the
data-flow problem as described above.

to 1. The data-flow problem dfprd is monotone, iff @e P E : frdpeq is monotone
(cf. Definition 2.4.2 on page 20).
By definition of frd, this property only depends on the monotonicity of the
function transfer rd,e : Drd Ñ Drd. By definition, transfer rd,e is monotone.
ùñ dfprd is monotone.
ùñ MFP rd is a sound approximation of MOP rd (cf. Theorem 2.4.1 on
page 21).

to 2. Let n P V , and i P identifier .

m P datapn, iq

ùñ m ói n

ùñ i P def pmq

^ i P usepnq

^ Dπ P P rm,ns : @u P πztm,nu : i R def puq

ùñ m P MFP rdpnqpiq

6.4.3 Control-Dependency Analysis

The reconstruction of control dependencies is analogous to the two-level defini-
tion given in Definition 6.4.6. It can be computed by two successive standard
data-flow analyses, namely a postdominator and a dominator analysis.

The domain underlying both analyses is defined as

Dctrl � PpV q Y tK,Ju

representing the set of nodes of the control-flow graph G � pV,E, s, xq dom-
inating or postdominating the actual node. The additional greatest and least
elements J and K are used for further optimizations described later on.

The order of the set Dctrl is defined as:

@x P Dctrl : K �Dctrl
x �Dctrl

J

^ x1, x2 P PpV q : x1 �Dctrl
x2 ðñ x1 � x2

The join and meet operators \Dctrl
and [Dctrl

are defined analogously to the
operators \Drd

and [Drd
described in Section 6.4.2 on page 146.

150

6.4. Backward Slicing

Postdominator Analysis

The postdominator analysis is used to directly compute the postdominator set
pdom as defined in Definition 6.4.5 on page 144. For each node n P VVHDL of
a control-flow graph G � pV,E, s, xq, we are interested in the set of successor
nodes that is contained in every path from n to the exit node x. For the postdom-
inator analysis, we are interested in information on the successors of the actual
node, thus, the postdominator analysis is a backward data-flow problem. The
result must be valid on all paths through a control-flow graph, so at control-flow
joins, the intersection of incoming information is computed. The resulting lattice
for the postdominator analysis hence is defined as

pDctrl,�Dctrl
,[Dctrl

,\Dctrl
,J,Kq

The update function transfer pdom,e : Dctrl Ñ Dctrl for an edge e � pm,nq P E of
a control-flow graph G � pV,E, s, xq representing a VHDL model derived from
the analysis framework on a lattice element l P Dctrl is defined as

transfer pdom,eplq �

#
l \Dctrl

tmu if m P VVHDL,
l otherwise.

The return function returnpdom : Dctrl �Dctrl Ñ Dctrl used to combine results at
function calls in the interprocedural control-flow graph is defined as

returnpdom � \Dctrl

Now, we can define the transfer function fpdom : E Ñ pDctrl Ñ Dctrlq for any
edge e P E as

fpdompeq � transfer pdom,e

and obtain the data-flow problem dfppdom � pG
�1, Dctrl, fpdomq, whose maximal

fixed-point solution MFPpdompnq for a node n P V yields a superset of the nodes
of the postdominator set pdompnq.

Dominator Analysis

The second analysis, namely the dominator analysis, is used to restrict the
number of nodes in a control-flow graph that may be control nodes. In order to
define this analysis, it is necessary to introduce the concept of domination.

151

Chapter 6. Static Analysis of VHDL

Definition 6.4.15 (Domination)
Let G � pV,E, s, xq be a control-flow graph. A node m P V dominates a node
n P V , iff

Dπ P P rm,xs : n P π

^ |to|pm, oq P Eu| ¥ 2

Unlike the postdominator analysis, the dominator analysis is a classical forward
problem using the same domain as the postdominator analysis. Since we are
interested in an information being valid on all paths through a program, also
the dominator analysis is a data-flow problem built under intersection. The
resulting lattice is thus defined as

pDctrl,�Dctrl
,[Dctrl

,\Dctrl
,J,Kq

As we are only interested in dominators that are part of a given VHDL speci-
fication, and not in any dependencies introduced by the analysis framework,
the update function transferdom,e : Dctrl Ñ Dctrl for an edge e � pm,nq P E of a
control-flow graph G � pV,E, s, xq on a lattice element l P Dctrl is defined as

transferdom,eplq �

#
l \Dctrl

tmu if |to | pm, oq P EVHDLu| ¥ 2,
l otherwise.

The return function returndom : Dctrl �Dctrl Ñ Dctrl used to combine results at
the return of a function call in the interprocedural control-flow graph is defined
as

returndom � \Dctrl

Now, we can define the transfer function fdom : E Ñ pDctrl Ñ Dctrlq for any edge
e P E as

fdompeq � transferdom,e

and obtain the data-flow problem dfpdom � pG,Dctrl, fdomq, whose maximal
fixed-point solution MFPdompnq for a node n P V yields a superset of possible
control nodes. Combining the results of this analysis with the results of the
postdominator analysis allows for computing the control dependencies of a
given control-flow graph.

Combining the Results

As stated before, a node n is control dependent on a node m, if there exists at
least one path in the control-flow graph starting at m to the exit x that does not
contain n. Additionally, there must also exist at least one path from m to x that

152

6.4. Backward Slicing

contains n. The results from the postdominator and dominator analyses can
now be combined in order to determine the set of nodes on which a node n is
control dependent.

The nodes on which a specific node n of the control-flow graph is control depen-
dent are computed by combining the data-flow values of these two analyses:

ctrlpnq �

$'&'%
H if MFPdompnq � J

_MFPdompnq � K,
tm P MFPdompnq | n R MFPpdompmqu otherwise.

Theorem 6.4.3 (Soundness of ctrl)
Let G � pV,E, s, xq be a control-flow graph derived from the analysis frame-
work. Let dfppdom and dfpdom be the data-flow problems as described above.
For all nodes m P VVHDL, the set ctrlpmq is a sound approximation of the control
dependencies and the following holds:

@m P VVHDL : @n P inflpmq ñ m P ctrlpnq

Proof 6.4.2
In order to prove this theorem, the following two propositions need to be
shown:

1. dfpdom and dfppdom are monotone data-flow problems ùñ MFPdom and
MFPpdom are sound approximation of MOPdom and MOPpdom, respec-
tively.

2. @m P VVHDL : @n P inflpmq : m P ctrlpnq

Let G � pV,E, s, xq be a control-flow graph, and dfpdom � pG,Dctrl, fdomq and
dfppdom � pG

�1, Dctrl, fpdomq be the data-flow problems as described above.

to 1. Monotonicity of both data-flow problems, dfpdom and dfppdom, follows di-
rectly from the construction of the update functions transferdom,e and
transfer pdom,e. According to Theorem 2.4.1 on page 21, MFPdom and
MFPpdom are sound approximations of MOPdom and MOPpdom, respec-
tively.

to 2. Let m P V .

n P inflpmq

ðñ m Ó n

ðñ Dπ P P rm,ns : @u P πztm,nu : n P pdompuq

153

Chapter 6. Static Analysis of VHDL

^ n R pdompmq

ðñ Dπ P P rm,ns : @u P πztm,nu : @π1 P P ru, xs : n P π1

^ Dπ2 P P rm,xs : n R π2

�
ðñ |tz|pm, zq P Eu| ¥ 2

^ Dπ2 P P rm,xs : n R π2

ùñ m P MFPdompnq

^ n R MFPpdompmq

ðñ m P ctrlpnq

with p�q basing on the conclusion that every path to the exit x starting at a
node in between any path from m to n must contain n, but an alternative
path π2 P P rm,xs with n R π2 exists. Thus, the number of outgoing edges
of node m must be greater or equal to two.

6.4.4 Computing Slices

Interprocedural slices on VHDL for arbitrary criteria can be computed by means
of reachability along control- and flow-dependence edges as described in [OO84].
Furthermore, the dependence introduced by sensitivity lists has to be gath-
ered.

The previous two sections have described data-flow problems that yield sound
approximations of a VHDL model’s control- and flow-dependencies. Activa-
tion dependencies of processes introduced by the sensitivity list of the process
needs not be recomputed since the analysis framework presented here already
explicitly states them as the if-guard statement Ξp of the simulation process con-
trolling execution of a process p. However, since these statements are explicitly
bypassed while reconstructing the control-dependencies of a VHDL model (as
framework induced parts shall not be part of a slice), the induced dependency
needs to be covered for the computation of correct slices. Thus, we define the
function act : VVHDL Ñ Vsimul returning for a node n P VVHDL the if-guard node
that “controls” the execution of n.

The general slicing algorithm is shown in Listing 6.13 on the facing page. The
input for the algorithm is the control-flow graph derived from the analysis
framework. After the computation of the data-flow problems introduced in the
Sections 6.4.2 and 6.4.3, slices can be computed arbitrarily often until abort is
requested.

For computation, the algorithm holds two sets. One set is the working set (wset)
containing tuples of nodes and identifiers that still have to be considered. The

154

6.4. Backward Slicing

Input : contro l�flow graph pV,E, s, xq
compute MFPrd , MFPpdom , and MFPdom f o r pV,E, s, xq

while pno abortq
wait f o r new s l i c i n g c r i t e r i o n C � pn,Uq
wset � tpn, uq | u P Uu
vset � H

while pwset � Hq
l e t pm,wq P wset
vset � vset Y tpm,wqu Y tpc, _q | c P ctrlpmqu
tset � tmu Y ctrlpmq Y tactpmqu
wset � wsetztpm,wqu Y��

oPtset , uPusepoqtpx, uq | x P MFPrdpoqpuquzvset
	

slice � tm | pm,wq P vsetu

Listing 6.13 – The slicing algorithm.

visited set (vset) contains all tuples that have already been treated guaranteeing
termination of the algorithm. A third set (tset) is employed as temporary storage.
While the working set is not empty, the slice is not yet completely computed. In
this case, an element pm,wq is selected from the working set and added to the
visited set, together with all “control nodes” c on which the current node m is
control-dependent.

All data and activation dependencies of the current node m and also the data
dependencies of the control nodes are intersected with the complement of the
visited set and then added to the working set. This guarantees the termina-
tion of the algorithm in Op|V | � |identifier |q where |V | and |identifier | are the
number of nodes and the number of identifiers used in the VHDL specification,
respectively.

The slice for the specified criterion C can be calculated as the projection of the
visited set to the nodes of the given control-flow graph.

6.4.5 Analysis of Functions and Procedures

The quality of the slicing algorithm presented in the last section strongly depends
on the quality of the results of the flow- and control-dependency reconstruction,
and therewith on the three presented data-flow problems. The term quality of

155

Chapter 6. Static Analysis of VHDL

a slice aims at the number of statements, or to be more precise the number of
nodes contained in it.

A slice S 1

C with respect to a criterion C is said to be of a better quality than a slice
S

2

C for the same criterion, iff |S 1

C | |S
2

C |.

Computing slices on a hierarchical composed system – even after elaborations –
still requires analysis of function and procedure calls. As stated earlier, VHDL
distinguishes between functions and procedures: the first passes parameters
by value, whereas the latter uses parameter passing by reference. Furthermore,
functions return a value, whereas procedures do not.

In the following, we will describe an extension to the flow-dependency anal-
ysis that yields more precise results when analyzing functions and procedure
calls. The optimization is build on the call/return node approach presented
earlier. Every function (or procedure) call statement within a given processor
specification is represented in the CRL2 description using a pair of call and
return nodes connected to the routine representing the called function (or pro-
cedure). Access to the formal parameters, a function or procedure defines, is
given over the function formal : VVHDL Ñ Ppidentifierq returning for a given call
node c P VVHDL ^ catpcq � callnode the set of formal parameters of the called
function.

Using this function, we can define an update function for call edges transfer call :
Drd � EVHDL Ñ Drd as follows:

transfer callpl, pc, siqq �

λj P identifier .

#
mustpl, j, nq if j P formalpcq ^ pn, cq P EVHDL,
lpjq otherwise.

Intuitively, each formal parameter of a function or procedure call is defined at
the statement representing the VHDL call. Please note that elaboration ensures
that all identifiers used in a VHDL specification have unique names, thus no
additional effort to detect identifier overloading is required.

Additionally, functions as well as procedures may define local variables (cf. Sec-
tion 4.5.2 on page 66) that are only accessible from within the function or proce-
dure. Thus, information being computed for these local variables is no longer
needed after the return from the call. Let local : VVHDL Ñ Ppidentifierq be a func-
tion that returns for a return node n P VVHDL the set of local identifiers defined
by a function (or procedure). If n does not belong to a function or procedure, the
empty set is returned. The return function return : Drd �Drd Ñ Drd combining
the data-flow values coming from the local edge and the return edge at a return

156

6.4. Backward Slicing

node r P VVHDL is extended to:

returnplcalli , lxi
q �

λj P identifier .

$'''''''''''''&'''''''''''''%

K if j P localpxiq,
lxi
pjq if is_procedurepxiq � true,

mayplcalli , j, xiq if Dpn, cq P EVHDL : De � pc, rq P EVHDL :

catpeq � localedge ^ j P def pnq

^ compositeptypepjqq � true,
mustplcalli , j, xiq if Dpn, cq P EVHDL : De � pc, rq P EVHDL :

catpeq � localedge ^ j P def pnq,
lcallipjq otherwise.

Using this return function, information computed for local variables will be
destroyed at the return node. Parameter passing by reference is honored, as for
procedure calls only the newly computed information on the return edge will be
propagated. If the return value is used for assigning it to an identifier, also the
dependency to the return statement will be established.

Use of these enhanced functions within the data-flow problem dfprd enables
analysis of functions and procedures calls and results in a more precise recon-
struction of flow-dependencies.

6.4.6 Timing-Dead Paths and Statements

This section introduces an extension of the flow-dependency analysis as well as
the dominator and postdominator analyses in order to improve the quality of
slices by incorporating knowledge from the assumption-based model refinement
as described in Section 6.3 on page 126. Statements and consecutive parts of a
VHDL specification that have already been marked as timing dead due to some
assumptions provided by the user can also be safely discarded for backward
slicing. Doing so, the resulting slices will be more precise.

In order to incorporate results from the assumption-based model refinement,
the update functions presented in the last sections need to be extended to also
consider timing-dead marks during analysis. In following, the enhancement to
the transfer functions of the flow-dependency analysis will be described first. Af-
terwards, also the enhancements to the dominator as well as the postdominator
analysis will be given.

The data-flow problem dfprd describes a problem, where information is com-
puted in forward direction of a given control-flow graph. Since the result of
the analysis must be valid only on one path through the graph, the union of

157

Chapter 6. Static Analysis of VHDL

incoming information is formed at control-flow joins. Thus, the neutral data-
flow value not destroying information at joins is the least element K of the
function lattice Drd. The transfer function transfer VHDL : Drd � EVHDL Ñ Drd for
the flow-dependency analysis therefore is defined for edges e � pm,nq P EVHDL

as:

transfer VHDLpl, pm,nqq �

λi P identifier .

$''''''''&''''''''%

K if timing_deadppm,nqq � true,
lpiq if timing_deadpmq � true,
maypl, i,mq if compositeptypepiqq � true

^ i P def pmq,
mustpl, i,mq if i P def pmq,
lpiq otherwise.

This function can now be used within the global transfer function in order to
enhance the results of the flow-dependency analysis.

The idea of propagating neutral elements on paths can also be applied to the
dominator and postdominator analyses. In contrast to the flow-dependency
analysis, information computed by these two analyses shall be valid on all
paths, thus, the intersection of incoming information is formed at control-
flow joins. Thus the transfer functions transferdom : Dctrl � E Ñ Dctrl and
transfer pdom : Dctrl � E Ñ Dctrl for the dominator and postdominator analy-
ses, respectively, are defined for an edge e � pm,nq P E as:

transferdom,epl, pm,nqq �

$'''&'''%
J if timing_deadppm,nqq � true,
l if timing_deadpmq � true,
l \Dctrl

tmu if |to | pm, oq P EVHDLu| ¥ 2,
l otherwise.

transfer pdom,epl, pm,nqq �

$'''&'''%
J if timing_deadppm,nqq � true,
l if timing_deadpmq � true,
l \Dctrl

tmu if m P VVHDL,
l otherwise.

Building the intersection at control-flow joins ensures in both analyses that no
information gets lost.

Using the enhanced transfer functions results in an improved prediction (or
reconstruction) of a program’s flow and control dependencies. As the determi-
nation of slices depends on these reconstructed dependencies, also the quality
of the resulting slices is improved.

158

7
Implementation and Evaluation

Thinking is easy, acting is
difficult, and to put one’s
thoughts into action is the
most difficult thing in the
world.

(Johann Wolfgang von
Goethe)

The static analysis framework described in Section 6.1 is intended for but not
limited to use with PAG. However, a specification needs to be translated into the
intermediate language CRL2.

In order to show the applicability and the effectiveness of the framework and
the analyses described so far, a compiler transforming a VHDL specification into
a CRL2 description including elaboration, etc. has been developed. Furthermore,
reset analysis, assumption-based model refinement, and also backward slicing
using the abstract semantics as defined in Sections 6.2, 6.3, and 6.4, respectively,
have been implemented. Their implementations and usability, the soundness of
the analyses, but also some general applicability rules are subject of this chapter.
Additionally, some general code of work patterns supporting the process of
timing model generation are given.

This chapter is organized as follows: Section 7.1 describes some processor spec-
ifications that have inspired parts of this thesis, but also have been used for
evaluating the work presented in this thesis. Section 7.2 describes the implemen-
tation of the compiler transforming a VHDL specification into a CRL2 description.
Also the implementations of the analyses are detailed. Section 7.3 presents the
experimental evaluation, soundness and applicability considerations.

159

Chapter 7. Implementation and Evaluation

7.1 Hardware Models

This section provides an overview on the VHDL models used for evaluation.
Moreover, the insights of these models have directly influenced the genesis of
the timing model derivation methodology and the static analysis framework.

In general, hardware models are hard to obtain. Besides some industrial open-
source implementations of cores like the LEON family, there exist a wide range
of research implementations of the DLX machine.

Developing a processor or even a part of it (e.g., a memory controller) is a
quite challenging task requiring large development teams with many years
of experience. Thus, it is not amazing that these specifications are part of
the intellectual property of the manufacturers, and access to them is strongly
regulated, and in most cases strictly prohibited. However, access to some
commercial specification is granted under confidentially within some of the
projects mentioned at the beginning of this thesis.

In the following, the characteristics of the models used for evaluation are given.
To respect the intellectual property of others, abstract names for the confidential
models are used.

7.1.1 Gaisler Research LEON2

LEON2 [Gai05] is a 32-bit CPU microprocessor core based on the SPARC-V8
RISC architecture and instruction set [SPA91]. The core arose from the LEON
CPU family that was originally designed by the European Space Research and
Technology Centre (ESTEC), the largest site of the European Space Agency (ESA).
Today, development is performed at site of Gaisler Research [Gai]. The core is
used in system-on-a-chip designs both in research and commercial settings.

LEON2 has a five-stage pipeline [Gai05] while later versions (LEON3 and LEON4)
have a seven-stage pipeline [Gai08]. It is designed for embedded applications
and provides separate instruction and data caches and hardware multiplier
and divider support. Additionally to the core itself, LEON2 also provides the
following features:

• Interrupt controller,

• Debug support unit with trace buffer,

• Two 24-bit timers,

• 16-bit I/O port, and

• Memory controller.

160

7.1. Hardware Models

The LEON2 core is described in fully synthesizable VHDL and can be imple-
mented on both, FPGAs and ASICs. The specification of the core offers the
possibility to configure several components through VHDL generics before hard-
ware synthesis. Configuration management thereby includes the possibility of
changing the cache size of the instruction and data caches (i.e. 1 – 4 sets, 1 – 64
kilobyte/set, 16 – 32 bytes per line). Also the replacement policy employed after
synthesis can be configured through these generics. LEON2 offers all basic func-
tions of a pipelined in-order processor. The VHDL description of the LEON2 core
consists of 69144 lines of code, 210 entities and 61 packages. The specification
can be viewed as large in both, size and complexity.

7.1.2 Superscalar DLX Processor

In Section 4.1.2, the simple DLX machine [HPG03, MP00] has been introduced.
Various implementations of this machine – pipelined and non-pipelined – exist.
The implementation provided by TU Darmstadt [Hor97] is one of the most
challenging ones. The design of the superscalar DLX is based on the design of
Freescale’s PowerPC MPC603e processor family [Fre02].

Figure 7.1 on the next page shows the block diagram of the superscalar DLX
machine being able to issue and retire a maximum of two instructions per clock
cycle. The four independent execution units (branch-resolve unit, arithmetic-
logic unit, multiply-divide unit, and load-store unit) have a reservation station
each in order to maintain a coherent system state [Tom67].

Execution of instructions can be out-of-order, and a reorder buffer is used to
commit instructions in program order. The latter also enables precise exception
processing. Additionally, the core features a branch-target buffer supporting
the instruction prefetch of up to two instructions. In order to increase the
performance, the superscalar DLX provides two separate instruction and data
caches, each with a width of 64 bytes, and 4-entry instruction and data address-
translation buffers. Access to the main memory is controlled via a centralized
bus interface unit.

Despite of all these features, implementation is given in only one entity and
one support package within 5022 lines of code in total. The implementation
provided by TU Darmstadt [TUD] is not described in fully synthesizable VHDL,
but compliance to the synthesizable substandard [IEE99] can be achieved easily.
The VHDL specification of the superscalar DLX is small in terms of size and
complexity.

161

Chapter 7. Implementation and Evaluation

Instruction
Cache

Instruction
Fetch

Branch-
Target Buffer

Instruction A Instruction B

Register File Dispatch/
Decode

Load/Store
Unit

Integer
Unit

Multiply
Unit

Branch
Resolve Unit

Reorder Buffer

Data
Cache

Write
Buffer

Bus Inter-
face Unit

External Bus

Figure 7.1 – Block diagram of the superscalar DLX machine.

162

7.1. Hardware Models

7.1.3 Confidential Specifications

Beside the open-source processor descriptions described above, the collaboration
within national and European research projects has offered limited access to
commercial processor specifications from the automotive as well as the avionics
field of application. These models have also been used for evaluation the
methods presented within this thesis and are thus briefly described here. Due to
confidentiality, pseudonyms are used to distinguish the different cores.

Automotive CPU 1 is a 32-bit peripheral co-processor used in the automotive
area. It is fully user-programmable and offers efficient support for DMA and
bus transactions. Automotive CPU 1 is designed as a Harvard architecture, i.e.
it offers separate code and data memory spaces. The specification is given in
form of fully synthesizable VHDL in around 31000 lines of code providing 49
entities and 10 packages.

The second processor whose specification is closed source and which was only
accessible within a project is called Automotive CPU 2. This processor is widely
in use within the automotive area, but is also suitable for use within the process
measuring and control technology. Automotive CPU 2 is a superscalar multi-
stage pipelined CPU with a 32-bit load/store Harvard architecture with several
parallel execution path for different instruction classes. It further comprises
a deep memory hierarchy with several communication buses and supports
both, 16-bit and 32-bit instruction formats. The VHDL specification is fully
synthesizable and consists of more than 160000 lines of code, 284 different
design entities and 13 packages. Unfortunately, access to the whole specification
of Automotive CPU 2 was provided only for a limited period. Thus, only the
memory subsystem could have been used for evaluation. These parts consist of
around 8400 lines of code, divided into 9 entities and 6 packages.

Besides the two automotive cores, also a memory controller being used in the
avionics industry has been used for evaluation. Since this memory controller
is confidential, it will be called Avionics MCU for the remainder of this thesis.
Avionics MCU supports static as well as dynamic RAM and additionally allows
for connecting external periphery via the peripheral component interconnection
bus. The specification comprises of around 20000 lines of synthesizable VHDL
code, divided in 32 entities and 4 packages.

7.1.4 Model Review

The previous sections have shortly introduced several processor and component
specifications being subject to the evaluation of this thesis. An overview on the
size of the used models in terms of lines of code, empty lines, and comment lines

163

Chapter 7. Implementation and Evaluation

VHDL model Blank lines Comment lines VHDL lines Total

LEON2 5793 7253 56098 69144

Superscalar DLX 718 1108 3196 5022

Automotive CPU 1 4058 5637 22286 31981

Automotive CPU 2 20719 27326 116431 164476

Avionics MCU 3783 3500 11703 18986

Table 7.1 – VHDL model characteristics – Lines of code.

VHDL model Entities Packages Total Units

LEON2 210 61 271

Superscalar DLX 1 1 2

Automotive CPU 1 49 10 59

Automotive CPU 2 284 13 297

Avionics MCU 32 4 36

Table 7.2 – VHDL model characteristics – Design unit overview.

is given in Table 7.1. By only considering the lines of code, the superscalar im-
plementation of the DLX processor is the smallest implementation that has been
used, whereas Automotive CPU 2 is the largest one. As access to Automotive
CPU 2 was restricted to a limited time period, Automotive CPU 1 is the largest
processor specification. Even though Avionics MCU is only the implementation
of a dynamic memory controller, i.e. the specification describes an open design,
Avionics MCU is half of the size of Automotive CPU 1 in terms of lines of code.

The complexity of a specification given in VHDL is not revealed by only consid-
ering the amount of lines of code. Due to the hierarchical design methodology
behind VHDL (and other hardware description languages) to support a dis-
tributed, but also structured development, the complexity of a specification
also depends on the number of component instantiations. In general, the more
different design units a specification consists of, the more complex the resulting
model is. Obviously, the number of lines of code and the number of design units
are in general not independent, but there exists no strict connection. Common
practice shows that implementations become unreadable, incomprehensible,
and unmaintainable, if a design unit description becomes too large.

Table 7.2 gives an overview over the design units of the hardware models

164

7.2. Implementation

used for evaluation. Unsurprisingly, the implementation of the superscalar
DLX machine is the most simple one even in terms of number of design units,
whereas the specification of LEON2 that is of average size in terms of lines of
code tends to be complex in terms of number of design units.

It is a surprising finding that publicaly available models often use more com-
plicated VHDL constructs, whereas commercial models of processors that are
widely in use employ a much more restricted subset. Furthermore, commercial
models seem to be closer to the real hardware, i.e. their specifications are closer
to a model using explicit registers and transactions between them, whereas
publicaly available models use more abstract data types.

This is mainly based on the fact that open-source models often employ configura-
bility by using generics allowing modification of replacement policies of caches,
queue size, etc. to address a wide range of application and allow for assembly on
FPGAs and ASICs, whereas within commercial processor specifications, use of
VHDL constructs is limited to a set of standard idioms that have been intensely
tested and are known to be synthesizable without further adjustments.

7.2 Implementation

This section describes the implementation of key components of the static analy-
sis framework introduced in Section 6.1. Furthermore, implementational details
showing the flexibility and reliability of the framework as well as the simplicity
of analyses specifications are given.

7.2.1 VHDL Analysis-Support Library

Most analyses presented in this thesis but also the analysis framework itself are
defined using the function eval for evaluation of VHDL expressions. In order to
ease the development of the analyses, but also to ease the process of elaboration,
a VHDL analysis-support library has been developed with the goal of providing
an easy-to-use interface for evaluating VHDL expressions. To overcome the need
of parsing a VHDL expression with its complex operator precedence rules, its
potentially deep nesting, and its ambiguity in the used syntax1, expressions to
be evaluated has to be given in a kind of prefix notation. The prefix notation
of mathematical expression was invented by Łukasiewicz [LT30] and is also
known as Polish notation.

1In VHDL, it is impossible to distinguish an indexed access to an array element from a function
call with one parameter by syntactical means. For this, semantic information is of urgent
need.

165

Chapter 7. Implementation and Evaluation

Whereas the prefix notation by Łukasiewicz for the expression

p3 � 5q � 9

would be
� p� 3 5q 9,

the variety of basic VHDL functors requires unary, binary, and ternary operators2,
thus brackets and comma for expressing the affiliation of arguments are used
explicitly. This enhances readability, but also eases parsing. The above example
will be expressed as

�p�p3, 5q, 9q.

The library offers support for most basic types covered in the synthesizable
VHDL standard [IEE99]. Additionally, some basic types of widely used VHDL
libraries (e.g., IEEE standard logic and standard arithmetic) are supported. Thus,
integer, real, bit, bitstring, std_ulogic, std_logic, and strings are natively sup-
ported. The current implementation does not offer support for array data types,
and along with that, array slices and indexed accesses cannot be evaluated.

Beside this, support for interval arithmetic is also included following the rules
presented in [MKC66]. Intervals are supported for all basic types mentioned
above except strings due to the lack of a proper interval arithmetic for string
intervals. In order to express indecisiveness due to a lack of concrete values or
the ambiguity of a result (e.g., r0, 1s ¥ 0), the library additionally supports a
“don’t know” (dunno) element, i.e. J.

Most expression to be evaluated are not of the kind as in the example above
– simple expressions as above can be directly evaluated and their results can
be inlined in order to simplify the VHDL specification. Normally, expressions
contain at least one signal or variable, whose value depends on the current exe-
cution history. In order to evaluate these expressions, the current environment,
i.e. the mapping from identifiers to current values as described in Section 6.1.4
on page 106 is used for evaluation.

Obviously, the VHDL analysis-support library does not offer support for function
calls being part of the expression to be evaluated. As evaluating of function calls
would require an evaluation of arbitrary VHDL code, this drawback can easily
be softened by requiring the administrative normal form (ANF) [FSDF93] for all
expressions. Calls to functions within expressions can be factored out, their
results can be assigned to temporary variables that have to be used within the
original expression instead of their calls. By this, function calls can be handled
by the analyzer that uses the support library and expressions can be evaluated
by use of the environment provided for evaluation.

2In many programming languages, ? is a ternary operator: e1 ? e2 : e3.

166

7.2. Implementation

The library as described has been implemented in C++ and offers an easy-to-use
interface that can be accessed from any analyzer. Basically, it offers two functions
for any expression expr P Expression given in prefix notation

eval : ExpressionÑ VInt, and
eval : Expression�DInt Ñ VInt,

with VInt and DInt as defined in Section 6.3 on page 126, where the first function
uses the predefined environment λi P identifier .J for evaluation.

7.2.2 VHDL Compiler

In general, the VHDL specification of a processor (or a component) consists of
several modules, the so-called design units. Usually, these units are separated
into several files. Before a VHDL model can be elaborated, each design unit has
to be “compiled” and added to the design library. Compilation into the design
library ensures syntactical and semantical correctness and also guarantees that
dependencies to other modules can be resolved. In order to resolve dependencies
to other design units, all signatures of units already contained in the design library
have to be preloaded before parsing a new module. The signature of a design
unit describes the interface of the unit that is visible from the outside. It does
not care about implementational details, and compared to other programming
languages, it is similar to header files in C++. Each design unit has its own
namespace, but use-clauses can be used to remove the namespace name as an
explicit qualifier when parsing a new module.

In order to get a CRL2 description of a processor from its VHDL specification, a
VHDL compiler called VHDL2CRL2 has been developed. It is used for building
up the design library of the processor specification and performs all the required
renaming for unifying names, instantiates referenced components, and wires
structural descriptions as described in Section 4.5.3. Figure 7.2 on the following
page gives a schematic overview of the structure of the compiler. VHDL2CRL2
is organized into three main phases:

1. Model parsing,

2. Model elaboration, and

3. CRL2 generation.

In order to derive an elaborated, i.e. flattened, model of a processor, every design
unit has to be compiled into the design library. Parsing of VHDL offers several
characteristic problems:

167

Chapter 7. Implementation and Evaluation

VHDL
specification

Parser

IRF
intermediate

format

Design library

GDL graph
description

Elaborator

Flat model
GDL graph
description

Generator

CRL2
description

aiSee

Visualization

Figure 7.2 – VHDL compiler – Overview.

168

7.2. Implementation

• The language design of VHDL makes it impossible to distinguish indexed
accesses to arrays from calls to functions with only one parameter by syn-
tactical means. In the syntax of VHDL, both are written as a(i) requiring
semantical knowledge to distinguish them.

• Name scoping rules of VHDL allows for accessing arbitrary identifiers
from disjoint blocks by using appropriate prefixed names. Thus, parsing
requires a powerful symbol table, as usual scoping rules known from
wide-spread programming languages are not sufficient for VHDL.

During parsing, several semantic preserving transformations are automatically
applied to ease subsequent phases and later static analyses. As described in
Section 4.5.4 on page 69, the implementation of a module is given in form
of one or more processes that all run in parallel. Instead of specifying every
process with its sensitivity list, VHDL offers two shortcut versions: concurrent
signal assignments and concurrent procedure call statements. Their semantic is
equivalent to a process with all used signal identifiers as part of the sensitivity
list, and only one statement in the process’ body, namely the signal assignment
or the procedure call, respectively. VHDL2CRL2 syntactically changes these
kind of statements in order to ease the generation of CRL2. Furthermore, switch
statements contained in the specification are transformed to if-then-else cascades.
Doing this eases static analyses as the condition for each decision is explicitly
visible. Both transformations that are automatically applied to a given design
unit specification are only of a syntactical kind and do not affect the semantics
of the design unit.

Every parsed design unit is added to the design library – a centralized storage for
all items belonging to a specification. Internally, the design library is organized
into several libraries. All items of a dedicated library must be loaded before
parsing a new design unit. In order to ease this, we have developed an internal
format, called IRF, containing all information necessary to rebuild the annotated
syntax tree and to update the internal symbol table. A small excerpt of an IRF
file is shown in Listing 7.1 on the following page.

After having parsed all design units belonging to a specification, elaboration
has to be performed in order to flatten the design hierarchy and to wire all
instantiated components. Elaborating a VHDL model is a complex process
comprised of several steps. In order to ease later static analyses, the elaboration
process described in the VHDL language standard [IEE87] is supplemented
by some steps that do not change the semantics nor the timing of a VHDL
specification. These additional steps are marked as not required by the standard.
In the following, the steps for elaborating a model are detailed:

1. Elaboration starts with a transformation of subtypes mapping all identifiers
of a subtype back to the VHDL standard type, the subtype is derived from.
Subtypes enhance the readability of a specification, but after parsing, the

169

Chapter 7. Implementation and Evaluation

...
<NODE>
Common node properties inherited from ParseNode
ID ="21262";
TYPE ="NODE_SUBTYPEINDICATION";
LINENO ="17";
FILENAME ="sources/Dlx.vhd";
MNEMONIC ="";

Common node properties inherited from DeclarationNode
NAME="ieee.numeric_bit.unsigned";
TYPENAME="ieee.numeric_bit.unsigned";

Specifific properties
RESOLUTION_NAME="";

Definition of the left child
<LCHILD>
<NODE>
Common node properties inherited from ParseNode
ID ="21261";
TYPE ="NODE_INDEXCONSTRAINT";
LINENO ="17";
FILENAME ="sources/Dlx.vhd";
MNEMONIC ="";

Specifific properties

Definition of the left child
<LCHILD>
<NODE>
Common node properties inherited from ParseNode
ID ="21260";
TYPE ="NODE_DISCRETERANGE";
LINENO ="17";
FILENAME ="sources/Dlx.vhd";
MNEMONIC ="DIRECTION_DOWNTO";

Common node properties inherited from ConstraintNode
DIRECTION_TYPE="DIRECTION_DOWNTO";

Specific Properties
...

Listing 7.1 – Excerpt of an IRF file.

170

7.2. Implementation

for i in x’RANGE loop
 loop body ¡

end loop;

ó

if x’ASCENDING then
for i in x’LEFT to x’RIGHT loop

 loop body ¡
end loop;

else
for i in x’LEFT downto x’RIGHT loop

 loop body ¡
end loop;

end if;

Listing 7.2 – Transformation of range attributes.

restricted co-domains are no longer needed. To support static analyses,
information on restricted co-domains is stored at the annotated syntax tree,
but the mapping to standard types enables use of the analysis-support
library.

2. The process of elaboration proceeds with resolving of overloaded functions.
VHDL supports function overloading, but in order to flatten a design
hierarchy, calls to overloaded functions need to be cleared.

3. Functions are allowed to return composite data-types, but the elaboration
process needs to break record structures to standard types. Thus, functions
returning record data-types need to be transformed into procedures of
equivalent semantics by introducing a new temporary variable of the same
type as the return value of the function. Transformation of record-returning
functions into procedures also enables applicability of the next step.

4. Collapsing of record data-structures has to be performed to unfold (possibly
nested) composite record structures and to map them back to basic VHDL
types. Therefore, assignments to records need to be duplicated to assign
each record element. This step is rather complex and increases the size of
the model due to inserting new identifiers and duplicating assignments.

5. Removal of range attributes forms the next step in elaboration. Whereas the
previous steps have all been required by the standard, this step is only
required for CRL2 generation. The range attribute in VHDL is defined for
arrays and is independent from the concrete array definition. The attribute
is usually used within for-loops and allows for writing code independently

171

Chapter 7. Implementation and Evaluation

from the iteration direction. Listing 7.2 on the previous page depicts the
transformation of these loop statements into semantically equivalent loops.
Depending on the direction of the array type that can be checked via
the ascending attribute, different loops are executed easing a later loop
transformation to enhance analyzability. If the direction of the loop is
statically known, the then or else branch can be omitted, but sometimes
(e.g., within functions), both outcomes are possible.

6. Unification of type names is performed to enhance the analyzability of the
resulting flattened VHDL model. For example, the IEEE support library de-
fines the type unsignedwithin several packages, namely in the numeric_bit
package and the std_logic_arith package. If both packages are used within
different design units (within one design unit, parsing will fail with a
type-checking error), elaboration will see an overloaded type. In order to
solve this, the unique prefix of a type is prepended at each declaration.

7. Expressions in VHDL can be arbitrarily nested including function calls. In
order to enhance the analyzability, each statement is converted to the admin-
istrative normal form [FSDF93]. This transformation eases CRL2 generation
and also the specification of data-flow problems. Furthermore, this step
enables use of the analysis-support library.

8. Many components of a VHDL specification can be implemented as iterative
compositions of smaller components. Memories being composed of a
rectangular array of storage cells are a classical example of this. In order to
ease their implementation, VHDL offers the possibility of expressing the
repetition of subsystems by only describing the subsystem once and gen-
erating the remaining ones. But for elaboration, these generate statements
need to be unrolled and the subsystems need to be instantiated.

9. In order to obtain a flat model (i.e. a model without hierarchy), component
instantiations need to be embedded into the topmost design hierarchy. This
can be easily implemented by replacing every component instantiation
statement by its corresponding entity implementation.

The last two steps (8 and 9) have to be applied iteratively until all component
instantiations have been embedded into the topmost design hierarchy element.
Elaboration is performed using the topmost design entity, which is usually the
description of a whole processor. Every subsystem used by this unit is embed-
ded (i.e. the implementation is inlined instead of using the port mapping), which
may result in new component instantiations within the newly inlined implemen-
tations. Thus, elaboration flattens the design hierarchy by transitively inlining
all instantiated components into the topmost design hierarchy element.

10. Besides variable and signal declaration, VHDL also allows to declare and
define constant values. To enhance the analyzability of the model, con-

172

7.2. Implementation

stants referenced in the specification are inlined and their declarations are
removed.

11. Blocks in VHDL are used to introduce a new naming scope and can be
compared to braces in C++. Embedding of component instantiations as
described above is implemented using these blocks, but for elaboration,
signal and variable declarations need to be moved to their correct position
at the topmost design hierarchy element.

12. Elaboration ends with the removal of remaining entity declarations and im-
plementations as they were orphaned after having been embedded into the
topmost hierarchy element.

The result of the elaboration process is a flat version of the VHDL specification
that can be either used for simulation or hardware synthesis.

After elaboration, the flattened model is passed to the CRL2 generator applying
the mapping rules described in Section 6.1.3 on page 104 including the transfor-
mation of for-loops to while-loops. In a second step, while-loops are transformed
into recursive routines enhancing their analyzability (cf. [MAWF98]). Each state-
ment is annotated with attributes that ease analysis specification. The attributes
being added classify each statement according to the statement’s type, encode
information on defined and used identifiers, and also encode the prefix notation
of expressions. Adding the prefix notation of expressions enables use of the
VHDL analysis-support library (cf. Section 7.2.1) by static analyzers. Further-
more, attributes encoding the actual and formal parameters of functions and
procedures depending on the calling context are added.

The CRL2 generator adds the analysis framework simulation routines used to
model the second semantical level of VHDL to the model. During simulation
routine generation, a fixed update ordering of VHDL processes is chosen. Since
PAG currently requires a non-recursive routine to be the entry for generated
analyzers, the generator additionally adds an analysis start routine simply
calling the generated recursive clock process. Each of these supporting routines
is additionally annotated with attributes marking them as support routines and
enabling a later classification of control-flow graph nodes into different (and
disjoint) sets of nodes as described in Section 6.2 on page 113.

Passing a flattened (and elaborated) VHDL model to the CRL2 generator yields
a CRL2 description fulfilling the requirements of the analysis framework (cf.
Section 6.1) enabling use of PAG to generate efficient static analyzers from high-
level specifications.

In order to ease the development and to support the debugging of the VHDL
compiler, each stage in the compilation process is fully visualizable. For this,
the graph description language (GDL) [Abs05] is used and each stage in the VHDL

173

Chapter 7. Implementation and Evaluation

SET
strl = list (str)

DOMAIN
func = str -> Value
map = lift (func)
env = map * map * map

Listing 7.3 – Lattice specification of the reset analysis.

compiler is extended by GDL-export facilities. The resulting graphs can be inter-
actively explored using AbsInt Angewandte Informatik’s graph visualization
software aiSee.

Although the projects, in which this work was supported, require a closed
source development also of the VHDL compiler, there exists an open-source
implementation of a VHDL compiler and simulator, called GHDL [Gin07]. In
contrast to VHDL2CRL2, GHDL requires the GCC toolchain. The model is
compiled resulting in an executable simulator that can be further inspected using
gtkwave [Byb12]. In order to obtain a CRL2 description of a VHDL specification,
at least the code generation backend of GHDL had to be adjusted.

7.2.3 Reset Analyzer

Chapter 6 has introduced an abstract semantics allowing static analyses of
hardware descriptions given in VHDL. As stated before, PAG is used to generate
program analyzers from concise high-level specifications. The reset analysis
presented in Section 6.2 on page 113 has been implemented using PAG.

An analysis specification to be used with PAG consists of two parts: a domain
specification part and a problem and transfer specification part. In the following,
the specifications to implement the reset analysis are detailed.

Listing 7.3 depicts the DATLA definitions of data types and lattices that are
required for analysis specification. The specification of data types is given after
the SET keyword, whereas lattices that can be used as basis of data-flow prob-
lems have to be defined after the DOMAIN keyword. Building on the predefined
data type str representing strings, a list of strings called strl is defined. The
latticeDcp used within the data-flow problem specification of the reset analysis is
constructed in the DOMAIN section. First, a function domain func mapping iden-
tifiers (represented via strings) to values is constructed. The type Value used
within the specification refers to the data type provided by the VHDL analysis-
support library representing the interval domain VInt (cf. Section 6.3). This

174

7.2. Implementation

PROBLEM ResetAnalysis
direction : forward
carrier : env
init : (bot, bot, bot)
init_start : (top, top, top)
combine : comb
widening : wid
equal : eq

Listing 7.4 – Problem specification of the reset analysis.

function domain is extended by additional bottom and top elements resulting
in the domain Dcp. The final domain env used for analysis is then constructed
as the Cartesian product pd1, d2, d3q of this domain modeling past, present and
future values of signals and variables, respectively. Thus, env is an implementa-
tion of the environment Θ (cf. Definition 6.1.1) easing the implementation of the
synchronization statement Ω.

The specification of the lattice can then be used within the specification of the
data-flow problem. A data-flow specification within PAG is split up into three
sections: the problem specification, the transfer-function specification, and the
specification of support functions.

Listing 7.4 gives the problem specification of the reset analysis. This part of a PAG
specification is introduced after the keyword PROBLEM and covers the direction
of the data-flow problem (forward or backward), the lattice used for analysis,
and also the initial value to be assigned to the nodes of the control-flow graph
to be analyzed. The initial value to be used at analysis start is given after the
init_start keyword. Obviously, the value provided matches the definition
of the initial element ι as described in Section 6.2. Furthermore, functors used to
combine data-flow values at control-flow joins, a widening operator and also
an equality functor used for verifying the achievement of the fixed point are
required. The implementation of the functors used in the problem specification
has to be provided within the support section.

The specification of the transfer functions of a data-flow problem has to be
provided in the transfer section of a PAG specification. PAG offers support to
provide transfer functions for edges as well as for nodes. Transfer functions
that shall be applied to edges have to be introduced following the keyword
TRANSFER_EDGE. The applicability of a transfer function to an edge can be
restricted by requiring a dedicated source node, a dedicated edge type and a
dedicated destination node. Listing 7.5 on the following page gives an excerpt of
the transfer-function specification of the reset analyzer. For readability reasons,
only the transfer function to be applied to true-edges is given; the transfer

175

Chapter 7. Implementation and Evaluation

TRANSFER_EDGE
2 normal_node (operation::[!]), edge_true, _:

let
4 cond = eval (vhdl_rhand_side (operation), @!1!3, @!2!3);

in
6 if (cond = top || cond != Value(0)) then

//condition could not be evaluated or evaluates to true
8 @

else
10 bot

endif;

12
...
TRANSFER_STATEMENT

14 normal_node(operation::[!]):
if (vhdl_synchronize (operation)) then

16 //sync point: make all scheduled signals visible at once
(@!2!3, @!3!3, @!3!3)

18 else if (vhdl_environment (operation)) then
//ensure reset signal is active

20 (update (rst_signal (), @!1!3, rst_value ()),
update (rst_signal (), @!2!3, rst_value ()),

22 update (rst_signal (), @!3!3, rst_value ()))
else let

24 def = vhdl_definition (operation);
in

26 if (def = "") then
//no definition here, conditions are evaluated at edge

28 @
else let

30 result = eval (vhdl_rhand_side (operation), @!2!3);
in

32 if (vhdl_variable_assignment (operation)) then
(@!1!3,

34 update (def, @!2!3, result),
update (def, @!3!3, result))

36 else
(@!1!3,

38 @!2!3,
update (def, @!3!3, result))

40 endif
endif

42 endif;

Listing 7.5 – Excerpt of the transfer-function specification of the reset analyzer.

176

7.2. Implementation

function for false-edges can be implemented analogously. Depending on the
result of the conditional expression of the source node when evaluated under
the current environment, the actual data-flow value3 or bottom is propagated
to the next statement. Thus, also the update function transfer if as defined in
Section 6.2 on page 113 can be easily implemented. Process reactivation due to
signal changes at the if-guard statements Ξ can also be directly implemented
by comparing the signals’ past values (i.e. the first element of the Cartesian
product domain) with the current ones (i.e. the second element in the Cartesian
product domain). The corresponding code in the specification is omitted here
for readability.

Transfer functions used for updating nodes of the control-flow graph have to
be defined following the keyword TRANSFER_STATEMENT. A small excerpt of
the specification of the reset analysis is also shown in Listing 7.5. The snippet
depicts the specification of the synchronize statement Ω and also the handling
of signal and variable assignments. If the current node in the control-flow graph
is the synchronize statement introduced in the analysis framework, the current
variable and signal mapping is moved to the first element of the Cartesian
product domain in order to be able to check signals for events (i.e. the past value
of a signal differs from the current one). Consequently, scheduled transaction
are made visible by copying the third element of the Cartesian product domain
to the second element denoting the current environment.

The update function for variable and signal assignments is also given in List-
ing 7.5 on the facing page from line 23 on. First, the set of identifiers being
defined at the current node is obtained. If this set is empty, the current node
does not define any identifier, so no further update is required, and the current
data-flow value is propagated to the control-flow successor node. Otherwise,
the right-hand side of the VHDL statement represented by the node is evaluated
under the current data-flow value (i.e. the second element in the Cartesian prod-
uct domain) using the VHDL analysis-support library. The result is then used
to update the current and future value mapping in case of a variable assign-
ment, whereas in case of a signal assignment, only the future value mapping is
updated.

The lines 18 – 22 in Listing 7.5 implement the update function transfer env as
defined in Section 6.2 on page 113. To access the user provided name of the reset
signal and its activation value, the external functions rst_name and rst_value
are used.

Functions that are used within the problem specification and the transfer func-
tion specification need to be given in the support section. This section is in-
troduced by the keyword SUPPORT and allows for providing the definition of
functions within the functional language FULA. Besides this, it is also possible

3Within FULA, the data-flow value entering a node is accessible via the special symbol @.

177

Chapter 7. Implementation and Evaluation

SUPPORT
update :: str, map, Value -> map;
update (def, env, value) = env\[def -> value];

//access to attributes
vhdl_synchronize :: CrlItem -> bool;
vhdl_environment :: CrlItem -> bool;
vhdl_variable_assignment :: CrlItem -> bool;
vhdl_definition :: CrlItem -> str;
vhdl_rhand_side :: CrlItem -> str;

//external interface to support library
eval :: str, map -> Value;

Listing 7.6 – Excerpt of the support function specification of the reset analyzer

to declare function prototypes that need to be given externally in C/C++. List-
ing 7.6 depicts an excerpt of the support function section of the reset analysis
specification. Definitions of combine, widening and equality checking are omit-
ted here; their implementation is straight forward to their definitions given in
Section 6.2 on page 113. In addition to access functions returning the existence
of several attributes as mentioned before, also the external interface to the VHDL
analysis-support library is given here. The function update is used for updating
the current value mapping of the identifier to a new value. Its definition is given
in the functional specification language FULA.

Using this specification, PAG generates the source code of a static data-flow
analysis implementing the reset analysis. The source files can be compiled
into a library that can be easily used from within own projects. The analysis is
accessible via a dedicated interface function that computes the maximal fixed-
point solution of the data-flow problem dfpcp for a given CRL2 description of a
VHDL model. Afterwards, the resulting data-flow values can be accessed from
within a project. By this means, also the set of stable signals Sstable, but also the
set of possible clock domains Spclk as defined in Section 6.2 on page 113 can be
easily computed. Both sets are added to the CRL2 description for later usage by
other analyses.

Computation of the sets of stable identifiers and possible clock domains have
been implemented, and, paired with the analysis library, form the tool reset
analyzer. The input for the analyzer is the CRL2 description of a VHDL model,
the name of the reset signal as well as its activation value4, and the name of the

4Some designers prefer active-low signal values, other prefer active-high values. An active-high
signal represents the asserted state by the higher of two voltages, whereas an active-low signal
represents the asserted state by the lower of two voltages.

178

7.2. Implementation

external clock signal. Using these informations, the analyzer computes the sets
of stable signals under reset and possible clock domains, and adds the resulting
sets to the CRL2 description for later usage.

7.2.4 Assumption-based Model Refiner

As the reset analysis, the assumption evaluation analysis (cf. Section 6.3 on
page 126) is implemented using PAG. The specification of the analysis is rather
similar to the specification of the reset analyzer given in the previous section,
and thus is omitted here. Interval arithmetics as required for the assumption
evaluation analysis is already embedded in the data type provided by the VHDL
analysis-support library, and thus, the domain specification for this analysis
equals the domain specification of the reset analyzer. The analysis is integrated
into a tool called assumption-based model refiner allowing the user to specify
arbitrary assumptions of the kind “the value of a signal is guaranteed to be
in the interval range a till b”. Assumptions of this kind are supported for all
data types with a properly defined interval arithmetic, such as bits, bitstrings,
integers, reals, and enumerations. Due to the lack of an interval arithmetic
for strings, the assumption-based model refiner currently does not support
assumptions over signals of type string. In order to enhance the results of
the analysis, results of the reset analyzer are incorporated together with the
user-given assumptions into the initial data-flow element.

After the computation of the maximal fixed-point solution, timing-dead state-
ment and edges can be computed. Thus, every node and every edge of the
control-flow graph must be revisited once. The CRL2 frontend of PAG already
provides an interface

kfg_forall_edges (cfg, <callback function>, NULL);
kfg_forall_nodes (cfg, <callback function>, NULL);

allowing to iterate over the set of edges E and the set of nodes V , respectively.
For each edge (or node), a user-defined callback function is executed allowing
to access properties of the edge (or node). By this, marking of timing-dead
edges and nodes can be easily implemented. Listing 7.7 on the following page
depicts the implementation of the callback function to compute timing-dead
information for edges. As defined in Section 6.3 on page 126, timing-dead marks
are only computed at the outcome of conditional statements, i.e. for true and
false edges. So, the implementation first checks the edge type, and then tries to
evaluate the expression of the last statement of the source basic block using the
incoming data-flow value (accessed via dfi_statement_get_pre() return-
ing the combination of all data-flow values entering the last statement). If the
evaluation of the expression returns a static value that differs from the condition

179

Chapter 7. Implementation and Evaluation

1 void compute_edge_infeasible (KFG cfg, KFG_EDGE edge, void*)
{

3 if (kfg_edge_get_type (cfg, edge) == CRL_EDGE_TRUE
|| kfg_edge_get_type (cfg, edge) == CRL_EDGE_FALSE)

5 {
//get dfi_value of source of the edge and evaluate underlying constraint

7 CrlBlock* source = kfg_edge_get_source (cfg, edge);
CrlInstruction *last_stmt = kfg_node_get_last_statement (cfg, source);

9 o_map value_map = o_env_select_2 (dfi_statement_get_pre (cfg, source, last_stmt));

11 Value *result = eval (vhdl_rhand_side (cfg, source, last_stmt), value_map);

13 if (result->valid ()) //not top, nor bot
{

15 if (result->lowerIntVal () == result->upperIntVal ())
if ((!result->lowerIntVal () && kfg_edge_get_type (cfg, edge) == CRL_EDGE_TRUE

)
17 || (result->lowerIntVal () && kfg_edge_get_type (cfg, edge) ==

CRL_EDGE_FALSE))
{

19 //mark edge as timing dead
edge->set_sym ("vhdl_timing_dead", true);

21

//also mark the if statement as timing dead
23 last_stmt->set_sym ("vhdl_timing_dead", true);

last_stmt->single_operation ()->set_sym ("vhdl_timing_dead", true);
25 }

}
27 }

}

Listing 7.7 – Computation of timing-dead edges.

induced by the edge type, the edge is marked as infeasible. Please note that the
function does not compute the transitive closure on timing-dead edges, and it
is the task of the analyzer to propagate a neutral data-flow element over these
edges, or to bypass data-flow value computation on these paths. For the later,
PAG offers a dedicated skip directive, called BYPASS.

The goal of the assumption-based model refiner is to identify statements that can
be removed from a VHDL specification because their outcome is known to be
static. Thus, if one outcome of a conditional statement can be marked as timing
dead, the condition is known to be constant, and thus, also the conditional
statement can be marked as timing dead (cf. line 23 f. in the above listing).

Similar to the computation of timing-dead edges, also statements can be marked
as timing dead. Therefore, the set of stable identifiers SstableInt

as defined in
Section 6.3 is computed first. The set is then to be used when examining every
node of the control-flow graph adding timing-dead marks to those statements
assigning a value to an element of SstableInt

.

Also the live-variables analysis as a first backward analysis using the VHDL
analysis framework has been implemented to enhance the results. The domain
for the analysis is the power-set domain of identifiers used in a VHDL description.

180

7.2. Implementation

SET
// basic block, instruction number, context
node = snum * snum * snum

DOMAIN
node_set = set (node)
// domain for postdominator and dominator analyses
dom = lift (node_set)
// mapping from identifiers to set of definition points
map = str -> node_set
// domain for reaching definition analysis
rd = lift (map)

Listing 7.8 – Lattice specification of the backward slicer.

Due to the definition/use classification already present in the CRL2 description,
implementation is straight forward. The maximal fixed-point solution of the
data-flow problem is then used to further classify statements as timing-dead (cf.
Section 6.3.2 on page 139).

Finally, the results of both analyses are added to the CRL2 description. As
timing-dead statements and statements that are no longer reachable when skip-
ping timing-dead edges during analysis, are to be purged from the specification,
their constant values need to preserved for further analyses. Thus, a mapping
assumptions : identifers Ñ VInt mapping identifiers to their constant value is
added to the CRL2 description. This mapping can be used for accessing the
value of signals that could statically be proven to be constant. Furthermore,
assumptions specified by the user are added to this map. Obviously, an as-
sumption must persist, otherwise results cannot be guaranteed to be correct.
Information from the assumption map are also automatically added to the initial
data-flow elements of subsequent runs of the assumption-based model refiner
allowing to compute the transitive closure of stable signals.

7.2.5 Backward Slicer

Within the timing model derivation cycle, slicing is of utmost importance. Be-
sides its usage in the timing dead code elimination phase, it further supports
model understanding. Thus, slicing as described in Section 6.4 on page 140 has
been implemented using PAG to automatically generate the required data-flow
analyzers. The slicing algorithm has been implemented using C++. The specifi-
cations of the three collaborating analyses, namely reaching-definition analysis,
post- and dominator analyses, are straight forward to their definitions and are

181

Chapter 7. Implementation and Evaluation

mostly omitted here for readability reasons. Only the domain specification will
be detailed.

As stated before, a CRL2 description consists of routines, basic blocks, instruc-
tions, and operations. The later is always enclosed into the former. For interpro-
cedural analyses, PAG uses the static call-string approach [SP81] together with
the basic block optimization to speed up computation time. In order to ease
implementation, but also to ease specification of slicing criteria, basic blocks are
assigned a unique id, called basic block id, and the list of instructions contained
in an basic block are numbered according to their sequential ordering within
the basic block. Thus, each node in the control-flow graph G � pV,E, s, xq can
be addressed via the tuple pb, i, cq P IN � IN � IN , where b refers to the unique
basic block id, i refers to the linear ordering number of the node within the basic
block, and c refers to the context of the node within the mapping computed by
PAG (cf. Section 6.1.1 on page 99).

The combined lattice specification for the reaching definition analysis, the post-
dominator analysis, and the dominator analysis is given in Listing 7.8 on the
previous page. A node of the control-flow graph can be uniquely specified using
the above tuple and is specified here using the predefined PAG data type snum
representing the signed numbers. Building on that definition, the power-set
domain node_set of nodes is specified. Extended with additional least and
greatest elements, this domain forms the lattice for the postdominator and dom-
inator analyses. Also the function domain mapping identifiers to sets of nodes
is extended with additional least and greatest elements to form the lattice for
reaching definition analysis.

Using PAG on this specification and the problem and transfer-function specifi-
cations results in three data-flow analyzers that can be combined to a backward
slicer for VHDL models. Given a CRL2 description of the VHDL model to be
analyzed and a slicing criterion using the above notation, the backward slicer
returns an approximation to the minimal slice for the specified criterion. As the
results from the three different data-flow problems are independent from any
slicing criterion, it is also possible to specify a set of slicing criteria resulting
in the unification of the individual slices to be returned. Thus, the backward
slicer can be directly used for timing dead code elimination as described in
Section 5.2.1 on page 88.

In order to support model understanding, also an interactive version of the
backward slicer has been developed. Figure 7.3 on the next page depicts the
tool interaction of the interactive slicer: Given a CRL2 description, the tool
crl22gdl converts the control-flow representation into the graph description
language, which can be interpreted by aiSee. Both tools have been provided by
AbsInt Angewandte Informatik GmbH. The CRL2 description is also passed to
the backward slicer computing the maximal fixed-point solutions of the three
analyses. Afterwards, a socket for the communication with aiSee is created

182

7.3. Evaluation

CRL2
description

Backward
Slicer

aiSee

crl22gdl GDL graph
description

Socket communication

Figure 7.3 – Interactive backward slicer – Tool interaction.

allowing the user to interactively select a slicing criterion. All nodes belonging
to the computed slice are then highlighted within aiSee’s visualization of the
input model.

In order to allow the user to focus on the parts of a design that are currently in
focus of interest, the interactive version of the slicer allows to prevent certain
dependencies (i.e. flow dependency, control dependency, and activation depen-
dency) from being considered by the slicing algorithm. The resulting slice is no
longer a slice matching the definition, but gives the user the freedom to focus on
what he believes to be important.

7.3 Evaluation

This section gives an overview on the usability and applicability of the tools
presented in the previous section. For evaluation, the VHDL models introduced
in Section 7.1 have been used. First, performance and memory consumption of
the VHDL compiler and the static analyzers are considered. The suitability of
the tools on different VHDL models is subject to investigation in Section 7.3.3.
Also the soundness of the analyses results will be further investigated. Finally, a
use case building on the superscalar DLX is given applying the typical code of
work rules to derive a timing model.

Measurements have been performed on an Intel R© CoreTM 2 Duo CPU 6700
running at 2.66 GHz each. The test system comprises 8 GB of DDR3 main
memory and runs a Linux-based Ubuntu 11.04 “Natty Narwhal” operating
system. All runtime measurements and the memory consumptions of the several
tools have been measured using proc-time, version 1.3.55, from LilyPond.

183

Chapter 7. Implementation and Evaluation

VHDL model Parsing Elaboration Total

Superscalar DLX 11.02 21.26 32.28

Automotive CPU 2 69.47 82.68 152.15

Avionics MCU 82.97 78.85 161.82

Automotive CPU 1 198.61 191.16 389.77

LEON2 517.55 497.82 1015.37

Table 7.3 – VHDL compiler performance (in seconds) per phase.

7.3.1 VHDL Compiler Performance and Memory
Consumption

The evaluation of the VHDL compiler is divided into two parts. The first part
focuses on the performance of the compiler, whereas the second part considers its
memory consumption. Compiling a VHDL model into a semantically equivalent
CRL2 description is split into three phases: model parsing, model elaboration,
and CRL2 generation.

Generating CRL2 from an elaborated specification is a quite simple and linear
process requiring each statement of the specification to be considered once. Thus,
this phase in the VHDL compiler is rather similar to other compiler backends,
and its performance is mainly limited by the bandwidth of the file-system of the
underlying test systems. Hence, performance and memory considerations for
this phase were not made.

Table 7.3 lists the runtime of the VHDL compiler on different VHDL models in
order to obtain an elaborated model. The overall runtime is partitioned into the
time for model parsing and the time for model elaboration. Figure 7.4 on the
next page gives a visualization of the data from the table.

Compiling a VHDL model into a design library is an iterative process. First,
the modules already present in the design library have to be loaded. Second,
the current module has to be parsed, and finally it has to be added to the
design library. As this process is to be performed for every design unit a VHDL
specification comprises, the overall runtime of the parsing phase is dependent
on the number of design units, i.e. the nth unit requires at least n� 1 modules to
be loaded from the design library. The runtime for parsing a single module, i.e.
the isolated runtime of parsing the new module, is linear to the lines of code of
the module.

Elaboration of a VHDL model is performed to flatten the design hierarchy by

184

7.3. Evaluation

100

300

500

700

900

1100

Su
per

sc
ala

r DLX

Auto
m

otiv
e CPU

2

Avionics
M

CU

Auto
m

otiv
e CPU

1

LEON2

sec Elaboration

Parsing

Figure 7.4 – Performance of the VHDL compiler.

instantiation all referenced components and inlining their implementation. Due
to the use of generate statements within most VHDL specifications, instantiation
of components is an iterative process. Thus, the runtime of the elaboration phase
depends on the number of component instantiations contained in the model,
but also on the size of the entities to be instantiated. In general, it can be stated
that the more entities a VHDL specification comprises, the more components
have to be instantiated, and thus, the more complex the elaboration phase is.

Figure 7.5 on the following page visualizes the relations between different terms
of model complexity (lines of code, number of entities, and total number of
design units) and the runtimes for model parsing and model elaboration. Model
complexity in terms of lines of code, and also design complexity in terms of
number of design units directly influence the performance of the parsing phase.
Design complexity in terms of number of entities influences the performance
of the elaboration phase. Please note that the number of entities is not always
an expressive number: e.g., memories are normally composed of a rectangular
array of storage cells. Each cell is an unique instantiation of one design entity.
Thus, a memory can be specified by only two design entities using thousands of
component instantiations. In general, counting of component instantiations is
not simple due to the use of generate statements at different hierarchical levels,
thus, the number of entities is used for determining the complexity of a design.

Table 7.4 shows the memory consumption of the VHDL compiler in megabytes.
Since parsing and elaboration phases run sequentially and require at least two

185

Chapter 7. Implementation and Evaluation

complexity
runtime

Su
per

sc
ala

r DLX

Auto
m

otiv
e CPU

2

Avionics
M

CU

Auto
m

otiv
e CPU

1

LEON2

Parsing

Elaboration

Lines of Code

Entities

Units

Figure 7.5 – Relationship of VHDL model complexity and VHDL compiler perfor-
mance.

runs of the compiler, the memory consumption is given per phase. Figure 7.6
visualizes the data given in the table.

The memory consumption of the parsing phase increases linearly with the
number of lines of code. The maximal value is achieved while parsing the last
design unit of a VHDL specification, as all other modules need also to be loaded.
Thus, the memory consumption while parsing the smallest VHDL specification,
the superscalar DLX, is the lowest, whereas the most complex specification of
the LEON2 processor requires the most memory for model parsing. Obviously,
this depends on the fact that the whole specification of a processor resides in the
main memory when parsing the last design unit.

In contrast to that, the memory consumption of the elaboration phase is domi-
nated by the number of component instantiations. Similar to the parsing phase,
the whole specification of the model is loaded from the design library into main
memory. Elaboration as defined in the VHDL standard [IEE87] requires every
component instantiation in the specification to be replaced by the component’s
architectural body. Thus, elaboration increases the size of the model while
flattening the design hierarchy. In general, the more design entities – design
packages do only provide shared functionality that can be analyzed using a call-
string approach – a VHDL specification comprises, the more memory is required
for elaboration. This trend is confirmed by the results of the evaluation.

186

7.3. Evaluation

VHDL model Parsing Elaboration

Superscalar DLX 111 576

Automotive CPU 2 191 989

Avionics MCU 432 1680

Automotive CPU 1 756 3043

LEON2 1929 6960

Table 7.4 – VHDL compiler memory consumption (in MB) per phase.

7.3.2 Analyzer Performance and Memory Consumption

This section describes the efficiency of the analyzers that have been implemented
using PAG. As in the previous section, evaluation is split into two parts for each
analyzer examining the analyzer’s performance and its memory consumption.

Runtime considerations have been partitioned into the time required to build
up the control-flow graph from a CRL2 description and calculating a mapping,
analysis time, and time for evaluating the results of the analysis. The control-
flow graph and the mapping need to be constructed/computed only once,
independently from the number of analyses the tool comprises. In contrast
to the performance consideration, the memory consumption is considered per
analysis. Every analysis requires the data structure containing the control-flow
graph and the mapping, whereas the evaluation of analysis results does not
increase the memory consumption.

In following, the runtime performance and the memory consumption of the
three different analyzers described in Section 7.2 on page 165 will be given.
Results are given for the VHDL models described above, namely the models of
the superscalar DLX, Automotive CPU 1, Avionics MCU, Automotive CPU 2,
and LEON2.

Reset Analyzer

Table 7.5 on the following page lists the runtime of the reset analyzer on the
different models used for evaluation. A visualization of the data is given in
Figure 7.7. The overall runtime of the analyzer is dominated by the analysis itself,
whereas the runtime of constructing the control-flow graph and the evaluation
phase are negligible.

187

Chapter 7. Implementation and Evaluation

1024

2048

3072

4096

5120

6144

7168

Su
per

sc
ala

r DLX

Auto
m

otiv
e CPU

2

Avionics
M

CU

Auto
m

otiv
e CPU

1

LEON2

MB Elaboration

Parsing

Figure 7.6 – Memory consumption of the VHDL compiler per phase.

The measured runtimes of the reset analyzer are impressively low even for large
processor specifications. In general, the runtime increases with increasing model
complexity showing an surprising cut for the specification of the Avionics MCU.
This fact is caused by the implementation of reset handling within the design:
in contrast to the other specifications, the reset handling in the Avionics MCU
is strictly spatially uncoupled from the remaining parts. This fact allows the
analyzer to skip large parts of the control-flow graph describing this model and
yields to a tremendous speed-up in analysis time.

Meanwhile, the runtime of parsing a CRL2 description and building up the
internal data structures required for analysis increases linearly with the number

VHDL model Control-flow Analysis Evaluation Total

Superscalar DLX 0.30 4.00 0.02 4.32

Automotive CPU 2 0.36 4.73 0.03 5.12

Avionics MCU 0.55 0.90 0.04 1.49

Automotive CPU 1 0.59 5.20 0.45 6.34

LEON2 0.71 7.97 0.54 9.22

Table 7.5 – Reset analyzer performance (in seconds) per phase.

188

7.3. Evaluation

2

4

6

8

Su
per

sc
ala

r DLX

Auto
m

otiv
e CPU

2

Avionics
M

CU

Auto
m

otiv
e CPU

1

LEON2

sec Evaluation

Analysis

Control-flow graph

Figure 7.7 – Performance of the reset analyzer.

of statements contained in the VHDL specification, and thus with the number of
lines of code of the model.

The runtime of the evaluation phase of the reset analyzer is dependent on the
number of signals contained in the data-flow values: the more identifiers are
contained in the data-flow values at the return edges of the clock simulation
routine (cf. computation of the set Sstablecp , Section 6.2 on page 113), the longer
the evaluation phase takes.

In general, evaluation of large specifications takes longer compared to smaller
specifications, as the complexity of a specification in terms of lines of code
often is a metric for the number of declared identifiers. But this is only a weak
proposition.

Table 7.6 on the following page shows the memory consumption of the reset
analysis measured for the five specifications. A graphical visualization is given
in Figure 7.8. The consumption is correlated to the runtime of the analyzer:
the longer the analyzer runs, the more memory is consumed. The data-flow
value has to be stored at each edge (or, if basic block optimization is in use, at
least for each basic block), so the larger the specification is, the more memory
is consumed. As for the runtime, the memory consumption of Avionics MCU
shows a cut compared to its complexity, which is again caused by the strict
spatial isolation of the reset handling within this specification.

189

Chapter 7. Implementation and Evaluation

VHDL model Analysis

Superscalar DLX 533

Automotive CPU 2 547

Avionics MCU 126

Automotive CPU 1 654

LEON2 1136

Table 7.6 – Reset analyzer memory consumption (in MB).

VHDL model Control- Interval Live-variables Evaluation Total
flow analysis analysis

Superscalar DLX 0.31 10.72 11.51 7.63 30.17

Automotive CPU 2 0.37 11.30 12.76 8.45 32.88

Avionics MCU 0.56 16.06 15.33 18.64 50.59

Automotive CPU 1 0.60 16.67 16.03 19.20 52.50

LEON2 0.73 18.75 17.86 36.02 73.36

Table 7.7 – Assumption-based model refiner performance (in seconds) per phase.

Assumption-based Model Refiner

The assumption-based model refiner comprises four different phases: parsing of
CRL2 and building up of internal data structures, an interval analysis to identify
stable signals, a live-variables analysis, and an evaluation phase. Thereby, the
latter phase always relies on the results of the former phase.

The runtime of the analyzer depends on the assumptions given by the user. If
an assumption provided by the user renders most of the parts of a specification
infeasible, the runtime of the analyzer decreases. To enable a comparison of
runtimes of the analyzer, a similar starting condition has to be provided. As the
assumptions that are used for analysis are dependent on both, the hardware and
the environment, providing an identical assumption is in general impossible.
Fortunately, each model used for evaluation of this thesis provides an external
interface including the reset signal. For timing model derivation, it is usually
a common assumption that the reset does not occur during normal operation,
and thus, assuming the absence of the reset is an appropriate assumption. This
assumption can be provided for every of the used models, and thus allows for

190

7.3. Evaluation

256

512

768

1024

Su
per

sc
ala

r DLX

Auto
m

otiv
e CPU

2

Avionics
M

CU

Auto
m

otiv
e CPU

1

LEON2

MB

Figure 7.8 – Memory consumption of the reset analyzer.

comparing the runtimes of the assumption-based model refiner.

Table 7.7 shows the runtime of each phase of the assumption-based model
refiner for the assumption “the reset is not active”. A graphical representation is
given in Figure 7.9. Compared to the runtime of the reset analyzer, assumption
evaluation is more complex which results in a higher runtime.

The slight increase in runtime of the control-flow graph construction phase
is caused by uncertainties during measurement and the additional effort for
parsing the results of a preceding reset analysis. The runtime of the parsing
phase is negligible compared to the runtimes of the other phases.

The runtime of the interval analysis and the live-variables analysis are compara-
ble. Both analyses have to consider nearly the whole specification of each model.
Only the parts that implement reset handling can be skipped.

Evaluation of analyses results is a complex process requiring every node and
every edge of the control-flow graph to be considered once. Adding timing-dead
marks to edges requires the data-flow values of the several analysis contexts at
each edge to be joined. Joining data-flow values entering an edge requires the
pointwise join of each function in the data-flow value. Thus, the more elements
are contained in the data-flow values, the longer the join takes. As a rule of
thumb, we can notice that the larger a specification is in terms of lines of code,
the more different identifiers are used, which results in larger data-flow values.
This rule is confirmed by the runtimes measured for the evaluation phase.

191

Chapter 7. Implementation and Evaluation

10

30

50

70

Su
per

sc
ala

r DLX

Auto
m

otiv
e CPU

2

Avionics
M

CU

Auto
m

otiv
e CPU

1

LEON2

sec Evaluation
Live-variables analysis
Interval analysis
Control-flow graph

Figure 7.9 – Performance of the assumption-based model refiner.

The memory consumption of the assumption-based model refiner is given in
Table 7.8. As the later live-variables analysis relies on the results of the preceding
interval analysis, memory consumed by the analyses cannot be separated. Thus,
the memory consumed by the live-variables analysis is determined by the mem-
ory consumed for interval analysis plus the memory consumed for storing the
results of this analysis. In general, we can observe that the memory consumption
of the analyzer increases in parallel with the model complexity in terms of lines
of code and the number of design units. The larger the control-flow graph of a
specification, the more memory is consumed.

It might be a surprise that the memory consumption of the live-variables analysis
is much higher compared to the interval analysis, even though if the memory
consumption of the interval analysis is counted out. Figure 7.10 on page 194
illustrates this finding. The increase of memory consumed for the live-variables
analysis can be easily explained with additional background knowledge on the
implementation of function lattices within PAG. In order to safe space, PAG uses
a wildcard element for all identifiers mapping to the default value of a function.
Applied to interval analysis, all identifiers whose values are unknown can be
efficiently handled. Only those identifiers whose value range could be restricted
by the analyzer must be stored separately. Using this implementation allows for
saving a lot of space.

In contrast to that, the live-variables analysis computes a superset of all identi-
fiers being live at a certain node of the control-flow graph. Thus, a space-saving

192

7.3. Evaluation

VHDL model Interval Live-variables
analysis analysis

Superscalar DLX 1233 3372

Automotive CPU 2 1345 3467

Avionics MCU 1323 4176

Automotive CPU 1 1487 4332

LEON2 1488 5321

Table 7.8 – Assumption-based model refiner memory consumption (in MB).

VHDL model Control- Reaching Post- Dominators Total
flow definitions dominators

Superscalar DLX 0.30 432.57 1.18 1.27 435.32

Automotive CPU 2 0.35 382.43 1.32 1.41 385.51

Avionics MCU 0.53 393.85 1.81 1.95 398.14

Automotive CPU 1 0.61 456.76 1.83 2.01 461.21

LEON2 0.71 63.50 1.62 1.89 67.72

Table 7.9 – Backward slicer precomputation times (in seconds).

implementation as for function lattices is not available for this kind of lattice,
which results in the more in memory consumption compared to the interval
analysis.

Backward Slicer

The backward slicer comprises three different analyses that closely work together
in order to compute slices for arbitrary criteria. A reaching definition analysis
is used to reconstruct flow dependencies of a given VHDL specification, the
results of a dominator analysis and a postdominator analysis together are used
to reconstruct control dependencies. All analyses rely on a control-flow graph
data structure that is to be build from a CRL2 description of the model to be
analyzed. After the analyses have finished, slices for arbitrary criteria can be
computed.

Table 7.9 lists the runtimes of the several parts comprising the backward slicer, a

193

Chapter 7. Implementation and Evaluation

1024

2048

3072

4096

5120

Su
per

sc
ala

r DLX

Auto
m

otiv
e CPU

2

Avionics
M

CU

Auto
m

otiv
e CPU

1

LEON2

MB Live-variables analysis

Interval analysis

Figure 7.10 – Memory consumption of the assumption-based model refiner.

graphical evaluation is given in Figure 7.11 on the next page. The precompu-
tation time of the slicer is dominated by the runtime of the reaching definition
analysis, whereas the times for building up the internal data structures, domina-
tor and postdominator analyses are negligible.

Whereas the runtimes of the dominator analysis and the postdominator analysis
linearly increase with the model complexity in terms of lines of code, the run-
time of the reaching definition analysis does not. This is caused by the 2-level
semantics that is special to hardware description languages: a definition that
occurs later in the imperative part of a VHDL process may reach preceding
statements. Thus, computing the maximal fixed-point solution or reaching the
fixed point in the analysis is more complex. Within the structure of the VHDL
analysis framework, the second semantical level is expressed in the synchro-
nize and delta-delay statements by introducing a back-edge to the entry of the
simulation routine. Furthermore, a further rise in complexity of computing the
maximal fixed-point solution is caused by the recursive structure of the clock
simulation routine. The capability of distinguishing several clock cycles during
analysis is a feature for all path-sensitive analyses, but induces a drawback for
path-insensitive analyses. The high precomputation time is a result of the VHDL
semantics coupled with the structure of the analysis framework. Nevertheless,
precomputation times at a scale of 400 seconds even for large specifications are
reasonable.

Interestingly, the runtime of the reaching definition analysis on the specification

194

7.3. Evaluation

1

10

100

1000

Su
per

sc
ala

r DLX

Auto
m

otiv
e CPU

2

Avionics
M

CU

Auto
m

otiv
e CPU

1

LEON2

sec Dominators

Postdominators

Reaching definitions

Control-flow graph

Figure 7.11 – Precomputation times of the backward slicer.

of LEON2 is significantly lower compared to all other measured execution times.
This is due to the way how the design of this CPU is structured: LEON2 is
composed of many small processes with process-local variables easing the
reaching definition analysis. Only key parts are modeled using large data
structures. The drawbacks of such a design methodology are described in
Section 7.3.3.

The memory consumption of the backward slicer is depicted in Table 7.10, a
graphical evaluation is given in Figure 7.12 on the next page. The consumption
is given per analysis, but for slicing, the sum of the individual values is required.

VHDL model Reaching Post- Dominators
definitions dominators

Superscalar DLX 3898 58 59

Automotive CPU 2 3904 57 58

Avionics MCU 3912 68 68

Automotive CPU 1 3987 71 71

LEON2 3898 60 61

Table 7.10 – Backward slicer memory consumption (in MB).

195

Chapter 7. Implementation and Evaluation

4

16

64

256

1024

4096

Su
per

sc
ala

r DLX

Auto
m

otiv
e CPU

2

Avionics
M

CU

Auto
m

otiv
e CPU

1

LEON2

MB Dominators
Postdominators
Reaching definitions

Figure 7.12 – Memory consumption of the backward slicer.

Dominator and postdominator analyses require only a small amount of main
memory (around 70 MB for each analysis), whereas the consumption of the
reaching definition analysis is significantly higher (nearly 4 GB). This is partly
caused by the structure of data-flow information that has to be propagated over
the control-flow graph of a specification: where dominator and postdominator
analyses use a power-set domain of nodes of the control-flow graph, the reaching
definition analysis relies on a more advanced function lattice. The main reason
for a nearly identical memory consumption independent from the specification
that is to be analyzed is an optimization in the implementation of the analysis.
In order to speedup the computation time of the reaching definition analysis,
the analyzer preallocates 50% of the main memory that is available at analysis
start. As the system used for evaluation comprises 8 GB of main memory, the
consumption of around 4 GB can be explained. Therefore, the results are only of
limited significance, but it is noticeable that the preallocated memory seems to
be sufficient for each specification.

7.3.3 Applicability and Assessment

The analyses presented so far are applicable to arbitrary specifications given in
VHDL. The VHDL standard gives designers the freedom to specify a circuit using
different idioms. Depending on the idioms used within a VHDL specification
of a circuit, the precision of the analyzers, and along with that, the quality of

196

7.3. Evaluation

results might diverge. In following, we will first briefly explain the different
idioms to specify a circuit. Thereafter, the impact of them on the results of the
different analyses is examined in more detail.

In general, we can distinguish between sequential and combinatorial circuit spec-
ifications, but due to hierarchical design composition, also mixed specifications
are widespread.

Sequential circuits are those that maintain an internal state. The outputs such a
circuit produces in response to given inputs depend on the history of inputs
received previously. Hence, sequential designs are usually used for modeling
finite state machines. Most sequential designs are synchronous designs using a
rising or falling edge of a clock, or a kind of control logic, to control the transition
from one state to another. Nevertheless, it is possible to specify asynchronous
sequential designs in VHDL, but the synthesizable substandard forbids them.

Combinatorial circuits are those in which the outputs are determined solely by
the current values of inputs. The circuit does not maintain an internal state.
Anyhow, the specification of a combinatorial circuit may require some internal
storage after synthesis that is not obvious in the specification (more details on
the synthesis of combinatorial circuits can be found in [Ash01]).

Most current design methodologies used for designing advanced processors
and peripheral components prefer synchronous, i.e. edge driven, sequential
designs as timing constraints and the storage requirements in hardware are
more explicit.

The analyzers presented within this thesis do not rely on a certain kind of idiom
used to specify a processor, or parts of it. Nevertheless, some kind of idioms
may result in more imprecise results compared to other kinds. In general, it is
impossible to provide a metric allowing to classify the quality of analysis results.
However, some typical scenarios leading to imprecision will be given. Please
note that these scenarios diverge depending on the analysis.

Results of the reset analysis implemented in the reset analyzer do not differ
for sequential or combinatorial designs. On the sample specifications used to
evaluate this thesis, the initial values of all signals of scalar data types could
be automatically determined. Due to the missing support for composite data
structures, initial values of identifiers of such data types could not be determined.
It has been an interesting finding that the specifications of processors that are
widely in use (e.g., Automotive CPU 1 and Automotive CPU 2) or that have
been designed for use within a specialized field of application (e.g., Avionics
MCU) makes only limited use of composite data types. Moreover, the usage
of data types maintaining an internal structure is limited to array types; record
structures are usually not used. In contrast to that, the open-source specification
of LEON2 comprises nested composite data types of both. Thus, results for this
model are not as good as for the four other models used within this thesis.

197

Chapter 7. Implementation and Evaluation

Besides the identification of initial values, a side product of the reset analysis is
the set of possible clock domains. The computed set is overestimated for two of
the five models. One model, namely Automotive CPU 2, does not contain an
additional clock domain in its specifications. Even though the model describes
the memory subsystem, clock signal generation is made externally, i.e. core and
bus clock are inputs of the given circuit specification. For the superscalar DLX
and the Avionics MCU, the automatically derived sets of possible clock domains
exactly contains the clock signals contained in the specification.

A general assessment on the quality of results of the assumption-based model
refiner is not possible. Results of the analyzer strongly depends on the assump-
tions provided by the user making a global evaluation impossible. Furthermore,
the assumptions strongly depend on the specific field of application, a processor
will be used in. As described earlier, we have only investigated the results of the
analyzer with one assumption being guaranteed, namely that the reset signal
was inactive. On all models used for evaluation, this assumption has led to the
result that reset handling within each model has been marked as timing dead.

In general, results could become less good depending on the structure of the
specification to be analyzed. As for reset analysis, indexed and slice accesses
of identifiers of composite data structures result in less precise co-domains
being automatically computed by the analyzer. This is caused by the fact that
these accesses are currently not supported by the analyzer itself. This drawback
can be solved by adding support for array data types. Regarding the two
types of circuit specifications, it has to be noticed that sequential designs that
maintain an internal state lead to worse results compared to combinatorial
circuit specifications. This is mainly based on write-enable signals that are used
to control the update of internal registers. If the value of these signals cannot be
determined, uncertainties on the contents of internal registers arise, which lead
to a loss in precision.

Assessing the quality of slices computed by the backward slicer is difficult. The
term quality of slice has already been introduced in Section 6.4.5 on page 155. A
complete assessment would require the computation of minimal slices, which is
in general not possible nor deterministic [Wei79]. Furthermore, a slice is always
computed for a certain criterion making general assessments impossible. [Sch05]
describes a similar approach, i.e. an approach using reconstructed dependencies,
to compute slices on binary programs. Also the quality of slices computed for
some selected criteria was examined there and evaluated as well.

Slicing using program dependencies is independent from the kind of idiom used
within a specification. Thus, sequential and combinatorial specifications lead
to the same quality of slices. Uncertainties in the reconstruction of flow- and
control dependencies leading to less precise slices arise from two things:

198

7.3. Evaluation

• Array data types and indexed accesses lead to some overestimation in the
reconstruction of flow dependencies since identifiers of array types are
treated as a whole in the reaching definition analysis.

• Mutual exclusiveness in the imperative part of processes may lead to some
overestimation, if the conditions cannot be statically evaluated.

Some of the processor specifications used for evaluation have been developed
in compliance with some high-level design paradigms that are mainly in use
for design and implementation of large software projects, but only applicable in
a limited way to hardware description languages. One example is the LEON2
specification encapsulating components into huge data types in order to define
proper interfaces. Unfortunately, also the sensitivity lists of processes are stud-
ded with references of signals of these data types, leading to huge activation
dependencies after elaboration. An example within the LEON2 is the imple-
mentation of the data cache. In order to check for a current bus activity of the
instruction cache, one certain bit of this cache implementation is required. But
due to the design paradigms, the sensitivity list contains a reference to the whole
data structure describing the instruction cache. Since the standard does not
require a signal contained in the sensitivity list of a process to be used within
its implementation, restricting the sensitivity lists to the set of used signals is
not possible in general. For the LEON2 data cache implementation, this results
in every signal of the data cache to be dependent on every signal of the instruc-
tion cache. As slicing computes a transitive closure on the dependencies, the
resulting slices become very unsatisfactory and imprecise.

7.3.4 Soundness

Results of the different analyzers can be proven to be correct. Whereas the
soundness of backward slicing already has been proven, the soundness of
the reset analyzer and the assumption-based model refiner are subject to this
section.

In order to show their correctness, formal verification has been used. Formal
verification analyzes a mathematical model of the design and proves that the
design exhibits the desired behavior for all possible input patterns. Nowadays,
formal verification plays an increasingly important role in system-on-chip de-
sign, because it has a big advantage with respect to simulation: in principle,
formal verification can detect all bugs in a design model.

Complete formal verification [Bor09] is a methodology combining operation-
based circuit representation, interval property checking, and a completeness
checker. In following, the principles of complete formal verification will be

199

Chapter 7. Implementation and Evaluation

briefly introduced. Subsequently, its application to proof the soundness of
analysis results will be detailed.

An operation-based circuit specification consists of a set of operation properties.
A single operation property expresses a single design transaction, which is a
transition between abstract, high-level design states. A transaction describes
the behavior of the design in an abstracted way, being free of implementation
details. Properties have an implicative structure consisting of an assume and
a prove part. The assume part of a property is used to restrict and describe
the (abstract) starting state and the condition under which an operation is to
be executed. The prove part describes the expected output resulting from the
operation and the abstract state where the transition ends. Operation properties
can be derived from a transaction-based representation of a circuit. Combining
several operation properties results in an abstract description of a circuit.

Proving the correctness of operation properties is done using interval property
checking (IPC). The implementation of the circuit to be proven is translated into
an equivalent Mealy machine. IPC can be used to relate input-, output-, and
state variables of a circuit represented as a Mealy machine within a bounded
time interval rt, t� ns. Thus, IPC is able to prove operation properties derived
from a high-level transaction-based representation. IPC checks these properties
for all time points t ¥ 0 and all possible starting states. To do so, the transition
and output functions of the Mealy machine are unrolled n � 1 times. This
creates instances of the functions for each time point t, t�1, � � � , t�n allowing to
substitute the variables of the property by the function’s output. This results in
a Boolean function whose arguments are the instances of the input variables for
each of the Mealy machines at time point t till t� n and the instance of the state
variables at time point t. The circuit meets the original property if the boolean
function returns true for all arguments. If the boolean function returns false, a
counter example can be constructed by considering the state at time point t and
applying the sequence of inputs for the time points t till t � n. Although, the
reachability of the circuit state at time point t is not guaranteed by IPC, i.e. it
is not guaranteed that the initial state at time point t can occur during normal
operation of the circuit. If not, the counter example is unrealistic, and the proof
needs to be redone with additional properties restricting the set of initial states.
Checking the boolean function for zero is made using an arbitrary SAT-solver.
In general, IPC is related to bounded model checking (BMC) with the difference
that BMC relies on a time interval starting at a fixed time point 0. More details
on IPC, complete formal verification, and operation properties can be found in
[Bor09, USB�10, LWS�10].

Complete formal verification using IPC has been successfully applied to the Infi-
neon TriCore2 processor [BBM�07] and other components like DMA controllers,
bus arbiters, SDRAM-controllers, and ECC protection. The methodology has
been integrated into the tool OneSpin 360 MV [One06].

200

7.3. Evaluation

Interval property checking of operation properties can also be used to prove the
soundness of results of the reset analyzer and the assumption-based model re-
finer. In order to do so, we have closely cooperated with the group of Prof. Kunz
at TU Kaiserslautern.

The result of the reset analyzer is the set of stable identifiers Sstablecp together
with their initial values (that can be obtained via MFP cppxqpsq for all s P Sstablecp).
Using this information, an operation property for the reset behavior of a system
can be derived that can be proven using IPC. The assume part of the property
is specified as “the reset signal is active”, the prove part is specified as @s P
Sstablecp : s � MFP cppxqpsq at t � n, where n is at least the number of cycles
of the longest activation chain. If interval property checking on the original
(unmodified) VHDL sources of the circuit specification returns true for this
property, results from the reset analyzer are proven to be correct.

Equivalence checking verifies the functional equivalence of two models of the same
design. Traditionally, equivalence checking is used to verify transformations and
optimizations that are done automatically by synthesis tools. Two designs are
said to be functionally equivalent if they produce the same output for all possible
input patterns. Thus, equivalence checking can also be used to proof the results
of the assumption-based model refiner. The unmodified VHDL specification
serves as the original model, which is assumed to be correct. This model is also
called the golden model. The annotated model, i.e. the CRL2 description including
timing-dead marks, derived after applying several user assumptions is used as
the second model. To make equivalence checking feasible, the annotated model
must be available in VHDL. Fortunately, reconstructing of VHDL from CRL2 is
feasible [Pis12]. All statements and transitions in the CRL2 description that have
been marked as timing dead are skipped during reconstruction resulting in a
modified VHDL model. The equivalence of both models is to be proven using
the set of user assumptions. A successful proof guarantees the soundness of the
assumption-based model refiner with respect to the set of assumptions.

In cooperation with TU Kaiserslautern, results of both analyzers could be proven
to be correct.

7.3.5 Code of Work Rules

Previous sections have dealt with runtime considerations of the tools described
within this thesis, their applicability, and also their soundness. This section now
describes the typical working patterns used to derive a timing model from a
high-level specification given in VHDL. The specification, which is used within
this section, is that of the superscalar DLX machine [TUD]. As the topic of this
thesis is limited to static analysis of hardware description languages, this section
focuses on the model preprocessing phase of the timing model derivation cycle

201

Chapter 7. Implementation and Evaluation

process
begin

wait on Clock until Clock = ’1’;
 process body ¡

end process;

ó

process(Clock)
begin

if rising_edge(Clock) then
 process body ¡

end if;
end process;

Listing 7.9 – Superscalar DLX code change.

(cf. Section 5.2 on page 87), and therein on environmental assumption refinement
and timing dead code removal.

The model of the superscalar DLX comprises around 4000 instructions dis-
tributed over 849 processes after elaboration. Indeed, a specification of a size
like the superscalar DLX is already suitable (with some slight extension to cope
with non-determinism) for use within a static timing analyzer framework, but it
also allows for illustrating the general code of work rules.

The implementation provided by TU Darmstadt has a slight drawback: the
specification does not fulfill the requirements defined in the synthesizable sub-
standard of VHDL. As this standard defines language constructs and idiom maps
that shall be used for hardware synthesis, slight modifications at the source code
of the specification had to be made. Furthermore, the analysis framework cur-
rently limits the VHDL specifications to rely on sensitivity lists instead of explicit
wait statements. Therefore, the specification of the superscalar DLX has been
modified. Listing 7.9 depicts the transformation of the explicit wait statement
into a semantically equivalent sensitivity list. The standard of VHDL describes
the semantics of a sensitivity list of a process as an implicit wait statement at
its end. The condition clause “until Clock = ’1’” can be transformed to a
conditional checking for a rising edge of the clock signal.

In order to derive a timing model, an examination of the physical environment
of the field of application, the processor shall be used in, is required. The
specific type of use of a processor in its surrounding environment offers the
most potential for assumption-based model refinement.

The methodology to derive a timing model from a VHDL specification of a

202

7.3. Evaluation

entity Dlx is
port (IncomingClock : in bit;

BusClock : out bit;
AddressBus : out TypeWord;
DataBus : inout TypeBidirectionalDataBus;
ByteEnable : out unsigned(7 downto 0);
TransferStart : out bit;
WriteEnable : out bit;
TransferError : in bit;
TransferAcknowledge : in bit;
InterruptRequest : in bit;
CacheInhibit : in bit;
Reset : in bit;
Halt : out bit);

end Dlx;

Listing 7.10 – External interface of the superscalar DLX processor.

processor as introduced in this thesis starts with the model preprocessing phase.
The process of environmental assumption refinement is based on the knowledge
of initial values of signals and variables used in the specification. Thus, timing
model derivation usually starts with determining the initial values using the
reset analyzer.

In order to do so, the name and the activation value of the reset signal and also
the name of the external clock signal have to be determined by manual exami-
nation of the VHDL model sources. As the synthesizable substandard of VHDL
does not allow a modeling of the frequent change of a clock signal, and basing
on the fact that a system reset is often triggered by the environment surrounding
a processor, both signals usually can be found in the interface specification
of the processor, namely the topmost entity description of a design, which is
known due to elaboration. Listing 7.10 shows the external interface of the su-
perscalar DLX machine declaring the signals Reset and IncomingClock. A
further lookup in the topmost entity’s architectural body yields that the reset
signal within this processor is modeled as an active-high signal. Providing both
information to the reset analyzer, the initial values of the signals depicted in
Listing 7.11 on the following page can be automatically derived.

Additionally, reset analysis computes the set of possible clock domains. For the
superscalar DLX, two signals, Clock and BusClock, are identified as possible
clock domains. The correctness of the set of possible clock domains could
be proven by manual examination of the VHDL sources of the processor. For
example, the signal Clock is defined within the sources as

Clock <= IncomingClock and not DP_HaltFlag;

203

Chapter 7. Implementation and Evaluation

ALU_ValidFlag = 0
BIU_ActiveFetchFlag = 0
BIU_ActiveLoadFlag = 0
BIU_ActiveStoreFlag = 0
BIU_FirstBusClockOfActiveCycleFlag = 0
BRU_ValidFlag = 0
BTB_ValidFlag =0
CU_NextCommitPointerReg = 16
DC_ValidFlag = 0
DP_HaltFlag = 0
DP_InterruptEnableFlag = 0
DP_ProcessIdentifierReg = 0
DTB_ValidFlag = 0
IC_ValidFlag = 0
IF_ValidFlagA = 0
IF_ValidFlagB = 0
ITB_ValidFlag = 0
LSU_EA_ValidFlag = 0
LSU_SPR_ValidFlag = 0
LSU_ValidFlag = 0
MDU_ValidFlag = 0
RB_ValidFlag = 0
WB_EntranceValidFlag = 0
WB_ValidFlag = 0

Listing 7.11 – Initial signal values of the superscalar DLX identified by the reset
analyzer.

and is further used for all internal processor updates.

Using the results from the reset analysis, the assumption-based model refiner
can be used to identify timing-dead parts in the specification to reduce their size.
Our experience shows that the inputs of the external interface of a processor
design provides a good start point for assumption-based model refinement.
Depending on the specific usage of a processor within its surrounding envi-
ronment, assumptions on the behavior of the environment may differ. For the
example derivation shown is this section, we assume the following reactions of
the environment:

• the reset is not triggered during normal system operation (which is nor-
mally the case),

• no external interrupt occurs (as external interrupts are simply not pre-
dictable), and

204

7.3. Evaluation

Reset = 0
InterruptRequest = 0
TransferError = 0
DP_TakeExternalInterrupt = 0
BIU_TransferErrorFetch = 0
BIU_TransferErrorLoad = 0
BIU_TransferErrorStore = 0
CU_Inhibit = 0
IF_TransferErrorFlagA = 0
IF_TransferErrorFlagB = 0
IF_TransferErrorFlagB_Input = 0
IF_TransferErrorFlagA_Input = 0

Listing 7.12 – Stable signals of the superscalar DLX based on the assumptions no
reset, no external interrupts, and no transfer errors.

• there is no faulty transmission on the external bus (as transfer errors can
handled by statistical means).

The three propositions can be easily mapped to assumptions on the value range
of the corresponding signals. The “reset is not active” is equivalent to the
statement “the value of the identifier Reset is always in the interval r0, 0s”.
Similarly, the absence of an external interrupt request can be expressed as
InterruptRequest P r0, 0s, and the absence of transfer errors on the system
bus can be expressed as TransferError P r0, 0s.

Providing these assumptions together with the name of the external clock signal
(IncomingClock) to the assumption-based model refiner, 43 VHDL statements
can be marked as timing dead. Furthermore, the outcome of five conditionals can
be statically predicted, such that large parts concerned with interrupt handling
and transaction repetition become unreachable. Also 53 VHDL processes could
be statically proven to be timing dead based on these assumptions. Listing 7.12
lists the signals that become stable under the set of assumptions. Please note
that only stable identifiers are reported by the assumption-based model refiner
and assignments to them are marked as timing-dead. Unstable identifiers with
new restricted co-domains are not reported and are handled internally by the
analyzer.

In this example, all assumptions have been passed to the analyzer at once. The
results of the assumption-based model refiner will be the same, if assumptions
are provided sequentially.

Up to now, only input signals of the VHDL specification have been examined.
The next step focuses on the output signals defined in the interface of a processor.
For example, the superscalar DLX machine drives six signals comprising the

205

Chapter 7. Implementation and Evaluation

outgoing interface of the processor. Whenever the semantics of an identifier is
not clear to an engineer working on an abstract timing model, backward slicing
is helpful in getting the missing intuition.

A backward slice for the output signal Halt on the superscalar DLX yields that
this signal is a carbon copy of the internal signal DP_HaltFlag. This signal is
set to ’1’, if the halt instruction of the DLX instruction set is decoded in the
dispatch stage, and is only reassigned during system reset. As this signal is also
used to compute the value of the internal clock signal Clock, a decoding of
a halt instruction stalls the whole processor until a reset is triggered. Besides
the fact that this issue is a bug in the implementation of the superscalar DLX,
for guaranteeing timing bounds, it is safe to assume that the halt signal will
never be triggered. Further assumptions that might be used for timing model
derivation are the absence of illegal instructions, or the absence of exceptions
that are caused by the software running on the processor.

Based on the resulting model, interactive slicing coupled with the documenta-
tion of the processor is to be used to explore, how instructions flow through the
several stages of a processor pipeline. This allows identification of points in the
processor, where instructions leave the pipeline, i.e. where instructions retire.
Within the superscalar DLX processor, instructions retire at one dedicated cen-
tralized place, namely the reorder buffer that maintains the instruction order (cf.
Figure 7.1 on page 162). Since the superscalar DLX is able to retire two instruc-
tions within one clock cycle, the two oldest entries in the reorder buffer are of
interest. Within the VHDL specification, the signals RB_NextInstrToCommitA
and RB_NextInstrToCommitB are used to determine the two oldest instruc-
tions. Combining the backward slices for the assignment statements to both
signals results in a set of nodes S � VVHDL. All nodes v P VVHDLzS are guaranteed
to have no effect on the behavior of the instruction pipeline, and thus can be
marked as timing dead.

Following the structured methodology of timing model derivation as introduced
in Chapter 5 coupled with the static analyses described in Chapter 6, the pro-
cess of deriving a timing model of a modern processors suitable for its usage
within a timing analyzer framework is faster, more efficient and less error-prone
compared to the traditional approach based on processor documentation and
measurements. Details on data-path elimination, processor state abstractions,
and the tool-based generation of micro-architectural analyses can be found in
[Pis12].

206

8
Conclusion and Outlook

Don’t cry about something
that passed. Smile because
it has happened.

(Gabriel García Márquez)

An important part in the design of hard-real time systems is the proof of timeli-
ness. Therefore, the worst-case execution times of the tasks comprising a system
need to be known. There exists a bunch of tools for estimating the runtime of
tasks, but for sophisticated architectures, static approaches are currently viewed
as the only safe and practical technique for obtaining bounds on the execution
time that are provable correct. The most promising tool that is in industrial use
and whose results and methodology are accepted by certification authorities is
the aiT WCET analyzer.

Performance-enhancing features like caches, deep pipelines, branch prediction,
and speculative execution have an increasing impact on the average as well as
the worst-case performance, but their history sensitive behavior make a precise
and fast analysis of the hardware difficult. Timing anomalies that are mainly
caused by the interaction of these features furthermore increase the search space,
a static timing analyzer has to cope with.

Estimating the worst-case execution time of a task relies on a timing model
of the hardware of the system. Currently, timing models used by aiT rely on
the documentation of the system’s processor and are hand-crafted by human
experts. Also knowledge derived from execution traces of the real hardware is
used to improve these timing models. Thus, the derivation of a timing model
is a time-consuming, but also error-prone process. This is mainly caused by

207

Chapter 8. Conclusion and Outlook

missing or wrong documentation, misinterpretation of trace results, and the
human involvement. Due to validation issues that are caused by the limitations
of the current process, the deployment of a timing model for a sophisticated
processor takes several person months, sometimes years.

The increasing demand for more and more computing power even in the area of
embedded systems and the decreasing time to market has led to the development
of hardware description languages that ease communication of the design teams,
but also ease hardware simulation. The cycle-accurate behavior of a processor
as required for guaranteeing timeliness of hard real-time systems is already part
of these descriptions. Due to the complexity of current sophisticated processors,
these specifications tend to be large and thus cannot be directly used within a
timing analyzer.

This thesis summarizes the methodology for the derivation of timing models
from hardware description languages that is detailed in [Pis12]. Based on the
formal specification of a processor, the proposed derivation process is split into
two phases:

• The model preprocessing phase prepares the hardware model for its use
within the aiT timing analyzer framework and reduces its size by incorpo-
rating static available information.

• The subsequent processor state abstraction phase further reduces the size
of the model by introducing abstractions that approximate the behavior of
the hardware at the cost of precision.

The second phase is to be applied iteratively until the resulting model is ap-
plicable for its use within the aiT timing analyzer. Thus, the methodology is a
consistent advance of the ideas presented in [The04].

To ease timing model derivation, the methodology is embedded into a sound
derivation framework. A key part of the derivation framework are static analyses
of hardware description languages. This thesis describes the novel static analysis
framework that is based on abstract interpretation of hardware description
languages.

At the example of VHDL, the two-level semantics that is special to many of these
languages is transformed to a more comprehensible one-level semantics that
is similar to imperative programming languages. The abstract semantics that
is introduced within this thesis eases and supports the deployment of static
analyses. The proposed framework allows for analysis of open and closed
design specifications and is also not restricted to synchronous circuits.

To show the applicability of the static analysis framework, this work describes
three different static analyzers supporting the process of model preprocessing.
The employed analyses are not limited to a certain analysis direction, nor limited
to flow-sensitive analyses. Also path- and context-sensitive data-flow analyses

208

8.1. Outlook

can be modeled using the analysis framework. The theory of abstract interpre-
tation underlying the framework further allows for proving the analyses to be
correct.

The methods and analyses employed within this thesis have been successfully
evaluated on both, academic and industrial processor (or component) specifi-
cations. Also the correctness of the analyses that form the backward slicer has
been proven. The soundness of analyses results have been proven using interval
property checking.

Despite the fact that all analyses presented within this thesis focus on VHDL, the
methodology is applicable to other hardware description languages. Also the
abstract semantics introduced by the analysis framework is not limited to VHDL
itself and is applicable to other hardware description languages requiring only
the development of a new compiler frontend for the semantic transformation.
Although the presented analysis framework is designed to support and ease
the methodology of timing model derivation, it is not limited to this specific
domain. The tools developed within this thesis have been provided to the group
of Prof. Steger at TU Graz in order to explore the applicability of the framework
to other application domains like power estimation.

8.1 Outlook

Future work aims at different research directions, but mainly concerns the
improvement of the precision of the different analyses that have been described
within this thesis.

Extending the VHDL analysis-support library to support composite data struc-
tures is expected to have a major benefit. Supporting composite data structures
and operations on them will result in improved results from both, the reset ana-
lyzer and the assumption-based model refiner. The ability of evaluating indexed
and slice array accesses allows for more initial values being identified by the
reset analyzer, and also allows to identify more timing-dead paths and smaller
co-domains by the assumption-based model refiner. In the end, supporting
composite data structures allows for further restricting the size of a processor
specification by only using information that is statically available.

Also the domain of the assumption evaluation analysis is subject to future
research. Whereas the current interval domain underlying the analysis allows for
restricting the co-domain of an identifier, the introduction of an octagon domain
as presented in [Min04, Min05] additionally allows for expressing relations
between several identifiers. Relations that can be expressed by this special form
of a polyhedral are of the kind �x � y ¤ c where x and y are identifiers of
basic types and c is a constant. These relations are called octagon packs. A

209

Chapter 8. Conclusion and Outlook

simple heuristic on which identifiers to be related on each other is to group those
that are used within the same expression. Their relation can than be analyzed
by a separate analysis. The additional knowledge may then be used in the
evaluation of expressions and might further result in more precise results of the
assumption-based model refiner.

Also the VHDL compiler that has been developed as a side-product of this
thesis is to be improved. Although the synthesizable substandard of VHDL
defines standard idioms to be used in order to ease the synthesis process of
a specification, wide-spread synthesis tools additionally support languages
constructs that improve readability or re-usability. One example are user-defined
attributes in VHDL that enhance readability. Especially commercial (closed-
source) circuit specifications extensively use these additional features, as the
synthesis tool used by the manufacturer is in use over years. In order to enhance
the applicability of the compiler to these specifications, the compiler is to be
extended to cope with that non-standard idioms and language features. Besides
that, new VHDL language standards have been released recently requiring an
adaptation of the compiler.

Processor specifications tend to be large and are distributed over many files.
Compilation of a design unit requires a preloading of all units on which the
current one is dependent on. Currently, the parse ordering for a given specifi-
cation has to be determined manually. This can also be automated by a prior
dependency analysis that provides the parse order to the compiler.

210

Bibliography

[Abs02] AbsInt Angewandte Informatik GmbH. Prédiction de Temps d’Exé-
cution au Pire Cas. Technical report, 2002.

[Abs05] AbsInt Angewandte Informatik GmbH. aiSee. Graph Visualization
User’s Documentation, 2005.

[AM95] Martin Alt and Florian Martin. Generation of Efficient Interproce-
dural Analyzers with PAG. In Alan Mycroft, editor, SAS’95, Static
Analysis Symposium, volume 983 of Lecture Notes in Computer Science,
pages 33–50. Springer Verlag, September 1995.

[AMWH94] Robert Arnold, Frank Mueller, David Whalley, and Marion Har-
mon. Bounding worst-case instruction cache performance. In
Proceedings of the IEEE Real-Time Systems Symposium, pages 172–181,
1994.

[ARM04] ARM Limited. ARM7TDMI Technical Reference Manual. Reference
Manual r4p1, ARM Limited, 2004.

[Ash01] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2001.

[BA98] Rastislav Bodík and Sadun Anik. Path-sensitive value-flow analy-
sis. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’98, pages 237–251, New
York, NY, USA, 1998. ACM.

[Bar95] John Barnes. Ada 95 Rationale: The Language, The Standard Libraries.
Springer Verlag, 1995.

211

Bibliography

[BBCS77] Mario Roberto Barbacci, Gary E. Barnes, Rick G. Cattell, and
Daniel P. Siewiorek. The ISPS computer description language.
Technical report, Carnegie-Mellon University, Departments of Com-
puter Science and Electrical Engineering, 1977.

[BBM�07] Jörg Bormann, Sven Beyer, Adriana Maggiore, Michael Siegel, Se-
bastian Skalberg, Tim Blackmore, and Fabio Bruno. Complete
formal verification of TriCore2 and other processors. In Tom Fitz-
patrick, editor, Proceedings of the Design and Verification Conference
(DVCon), San José, California, USA, February 2007.

[BBN05] Guillem Bernat, Alan Burns, and Martin Newby. Probabilistic
timing analysis: An approach using copulas. Journal on Embedded
Computing, 1:179–194, April 2005.

[BBS96] Luciano Baresi, Cristiana Bolchini, and Donatella Sciuto. Software
methodologies for VHDL code static analysis based on flow graphs.
In Proceedings of the conference on European design automation, EURO-
DAC ’96/EURO-VHDL ’96, pages 406–411, Los Alamitos, CA, USA,
1996. IEEE Computer Society Press.

[BC85] Jean-Francois Bergeretti and Bernard A. Carré. Information-flow
and data-flow analysis of while-programs. ACM Trans. Program.
Lang. Syst., 7:37–61, January 1985.

[Ber06] Christoph Berg. PLRU Cache Domino Effects. In Frank Mueller,
editor, Proceedings of 6th International Workshop on Worst-Case Ex-
ecution Time (WCET) Analysis. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2006.

[Bor09] Jörg Bormann. Vollständige funktionale Verifikation. PhD thesis,
Technische Universität Kaiserslautern, Kaiserslautern, Germany,
June 2009.

[Byb12] Tony Bybell. GtkWave. http://gtkwave.sourceforge.net, 2012.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: a uni-
fied lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In Conference Record of the Sixth Annual ACM

212

Bibliography

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 269–282, San Antonio, Texas, 1979. ACM Press, New
York, NY.

[CC91] Patrick Cousot and Radhia Cousot. Comparison of the Galois
connection and widening/narrowing approaches to abstract inter-
pretation. JTASPEFL ’91, Bordeaux. BIGRE, 74:107–110, October
1991.

[CC92a] Patrick Cousot and Radhia Cousot. Abstract Interpretation and
Application to Logic Programs. Journal of Logic Programming, 13(2–
3):103–179, 1992. (The editor of Journal of Logic Programming has mistakenly
published the unreadable galley proof. For a correct version of this paper, see
http://www.di.ens.fr/~rcousot.).

[CC92b] Patrick Cousot and Radhia Cousot. Abstract Interpretation Frame-
works. Journal of Logic and Computation, 2(4):511–547, August 1992.

[CFR�99] Edmund M. Clarke, Masahiro Fujita, Sreeranga P. Rajan, Thomas W.
Reps, Subash Shankar, and Tim Teitelbaum. Program slicing of
hardware description languages. In Laurence Pierre and Thomas
Kropf, editors, Correct Hardware Design and Verification Methods, vol-
ume 1703 of Lecture Notes in Computer Science, pages 72–72. Springer
Verlag, 1999.

[CFR�02] Edmund M. Clarke, Masahiro Fujita, Sreeranga P. Rajan, Thomas W.
Reps, Subash Shankar, and Tim Teitelbaum. Program slicing for
VHDL. International Journal on Software Tools for Technology Transfer
(STTT), 4:125–137, 2002.

[CFS94] Bruce A. Cota, Douglas G. Fritz, and Robert G. Sargent. Control
flow graphs as a representation language. In Proceedings of the 26th
conference on Winter simulation, WSC ’94, pages 555–559, San Diego,
CA, USA, 1994. Society for Computer Simulation International.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of
linear restraints among variables of a program. In Proceedings of the
5th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, POPL ’78, pages 84–96, New York, NY, USA, 1978. ACM.

[Cou81] Patrick Cousot. Semantic Foundations of Program Analysis. In S.S.
Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 10, pages 303–342. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1981.

[Cou01] Patrick Cousot. Abstract Interpretation Based Formal Methods and
Future Challenges, invited paper. In R. Wilhelm, editor, Informatics

213

Bibliography

— 10 Years Back, 10 Years Ahead, volume 2000 of Lecture Notes in
Computer Science, pages 138–156. Springer Verlag, 2001.

[CP00] Antoine Colin and Isabelle Puaut. Worst Case Execution Time
Analysis for a Processor with Branch Prediction. Journal on Real-
Time Systems, 18:249–274, 2000. 10.1023/A:1008149332687.

[Erm03] Andreas Ermedahl. A Modular Tool Architecture for Worst-Case Exe-
cution Time Analysis. PhD thesis, Uppsala University, 2003.

[FHL�01] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Flo-
rian Martin, Michael Schmidt, Henrik Theiling, Stephan Thesing,
and Reinhard Wilhelm. Reliable and Precise WCET Determination
for a Real-Life Processor. In Proceedings of the First International
Workshop on Embedded Software, EMSOFT ’01, pages 469–485, Lon-
don, UK, 2001. Springer Verlag.

[FKL�99] Christian Ferdinand, Daniel Kästner, Marc Langenbach, Florian
Martin, Michael Schmidt, Jörn Schneider, Henrik Theiling, Stephan
Thesing, and Reinhard Wilhelm. Run-Time Guarantees for Real-
Time Systems - The USES Approach. In Kurt Beiersdörfer, Gregor
Engels, and Wilhelm Schäfer, editors, Informatik ’99. Informatik über-
windet Grenzen. 29. Jahrestagung der Gesellschaft für Informatik on
October 5-9, 1999 at Paderborn, Germany, pages 410–419. GI, Springer
Verlag, 1999.

[FMC�07] Christian Ferdinand, Florian Martin, Christoph Cullmann, Marc
Schlickling, Ingmar Stein, Stephan Thesing, and Reinhold Heck-
mann. New Developments in WCET Analysis. In Thomas Reps,
Mooly Sagiv, and Jörg Bauer, editors, Program Analysis and Compi-
lation. Theory and Practice. Essays Dedicated to Reinhard Wilhelm on
the Occasion of His 60th Birthday, volume 4444 of Lecture Notes in
Computer Science, pages 12–52. Springer Verlag, 2007.

[FMWA99] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Mar-
tin Alt. Cache Behavior Prediction by Abstract Interpretation. Sci-
ence of Computer Programming, 35(2-3):163–189, 1999.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Transactions
on Programming Languages and Systems, 9:319–349, July 1987.

[Fre01] Freescale Semiconductor, Inc. MPC750 RISC Microprocessor Fam-
ily. Reference manual, Freescale Semiconductor, Inc., December
2001. Rev. 1.

214

Bibliography

[Fre02] Freescale Semiconductor, Inc. MPC603e RISC Microprocessor
User’s Manual. Reference manual, Freescale Semiconductor, Inc.,
April 2002. Rev. 3.

[Fre04] Freescale Semiconductor, Inc. PowerPC Microprocessor Family:
The Bus Interface for 32-Bit Microprocessors. Reference manual,
Freescale Semiconductor, Inc., 2004. Rev. 0.1.

[Fre05a] Freescale Semiconductor, Inc. MPC7450 RISC Microprocessor Fam-
ily. Reference manual, Freescale Semiconductor, Inc., January 2005.
Rev. 5.

[Fre05b] Freescale Semiconductor, Inc. Programming Environments Manual
for 32-Bit Implementations of the PowerPC Architecture. Reference
manual, Freescale Semiconductor, Inc., September 2005. Rev. 3.

[Fre06] Freescale Semiconductor, Inc. sim_G4plus v1.1 Cycle-Accurate Sim-
ulator User’s Guide. Reference manual, Freescale Semiconductor,
Inc., May 2006. Rev. 2.5.

[Fre08] Freescale Semiconductor, Inc. QorIQTM P4080 Communications
Processor Product Brief. Product brief, Freescale Semiconductor,
Inc., September 2008. Rev. 1.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias
Felleisen. The essence of compiling with continuations. Proceedings
of the ACM SIGPLAN 1993 conference on Programming language design
and implementation, 28:237–247, June 1993.

[FW99] Christian Ferdinand and Reinhard Wilhelm. Fast and Efficient
Cache Behavior Prediction for Real-Time Systems. Journal of Real-
Time Systems, 17(2-3):131–181, 1999.

[Gai] Gaisler Research. http://www.gaisler.com.

[Gai05] Gaisler Research. Leon2 Processor User’s Manual. Reference Man-
ual 1.0.30, Gaisler Research, 2005.

[Gai08] Gaisler Research. GRLIB IP Core User’s Manual. Reference Manual
1.0.18, Gaisler Research, 2008.

[Geb10] Gernot Gebhard. Timing Anomalies Reloaded. In Björn Lisper, edi-
tor, Proceedings of the 10th International Workshop on Worst-Case Exe-
cution Time Analysis (WCET 2010), volume 15 of OpenAccess Series in
Informatics (OASIcs), pages 1–10, Dagstuhl, Germany, 2010. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. The printed version
of the WCET’10 proceedings are published by OCG (www.ocg.at) -
ISBN 978-3-85403-268-7.

[Gin07] Tristan Gingold. GHDL. A VHDL compiler, 2007.

215

Bibliography

[GK83] Dan D. Gajski and Robert Henry Kuhn. New VLSI Tools. Computer,
16:11–14, December 1983.

[GRW11] Daniel Grund, Jan Reineke, and Reinhard Wilhelm. A Template for
Predictability Definitions with Supporting Evidence. In Proceedings
of the Workshop on Predictability and Performance in Embedded Systems,
2011.

[Hal95] Tom R. Halfhill. The Truth Behind the Pentium Bug. Byte, 1995.

[Haw03] Tom Hawkins. Declarative programming language simplifies hard-
ware design. EE Times Design, 2003.

[Hec77] Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier
Science Inc., New York, NY, USA, 1977.

[HLS00] Niklas Holsti, Thomas Långbacka, and Sami Saarinen. Worst-Case
Execution Time Analysis for digital signal processors. In Proceed-
ings of the EUSIPCO 2000 Conference (European Signal Processing
Conference), 2000.

[HLTW03] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and
Reinhard Wilhelm. The Influence of Processor Architecture on the
Design and the Results of WCET Tools. In Proceedings of the IEEE,
volume 91, pages 1038–1054, 2003.

[Hor97] Joachim Horch. Entwurf eines RISC-Prozessors in der Hardware-
beschreibungssprache VHDL. Studienarbeit, Technische Univer-
sität Darmstadt, Darmstadt, Germany, June 1997.

[HPG03] John L. Hennessy, David A. Patterson, and David Goldberg. Com-
puter Architecture: A Quantitative Approach. Morgan Kaufmann,
2003.

[HRB88] Susan Beth Horwitz, Thomas William Reps, and David Wendell
Binkley. Interprocedural slicing using dependence graphs. Proceed-
ings of the ACM SIGPLAN 1988 Conference on Programming Language
Design and Implementation, 23:35–46, June 1988.

[Hym03] Charles Hymans. Design and Implementation of an Abstract Inter-
preter for VHDL. In Daniel Geist and Enrico Tronci, editors, Correct
Hardware Design and Verification Methods, volume 2860 of Lecture
Notes in Computer Science, pages 263–269. Springer Verlag, 2003.

[Hym04] Charles Hymans. Vérification de composants VHDL par interprétation
abstraite. PhD thesis, École Polytechnique, 2004.

[IEE87] Institute of Electrical and Electronics Engineers, New York. IEEE
Standard P1076 1987 VHDL Language Reference Manual, 1987.

216

Bibliography

[IEE99] Institute of Electrical and Electronics Engineers, New York. IEEE
Standard P1076.6 1999 VHDL Register Transfer Level Synthesis, 1999.

[Inf02] Infineon Technologies. TriCore 1.3 32-bit Unified Processor Core Ar-
chitecture Overview Handbook. Reference Manual 1.3.3, Infineon
Technologies, May 2002.

[ISO98] ISO/IS 15408 Final Committee, International Standards Organisa-
tion. Common Criteria for information technology security (CC), 1998.
Version 2.0 Draft.

[Kil73] Gary A. Kildall. A unified approach to global program optimiza-
tion. In Proceedings of the 1st annual ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, POPL ’73, pages
194–206, New York, NY, USA, 1973. ACM.

[KKP�81] David J. Kuck, Robert Henry Kuhn, David A. Padua, Bruce Lea-
sure, and Michael Joseph Wolfe. Dependence graphs and compiler
optimizations. In Proceedings of the 8th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’81, pages
207–218, New York, NY, USA, 1981. ACM.

[KLFP02] Raimund Kirner, Roland Lang, Gerald Freiberger, and Peter
Puschner. Fully Automatic Worst-Case Execution Time Analysis
for Matlab/ Simulink Models. In Proceedings of the 14th Euromi-
cro Conference on Real-Time Systems, pages 31–40, Washington, DC,
USA, 2002. IEEE Computer Society.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C programming
language, Second Edition, ANSI C. Bell Telephone Laboratories, Inc.,
1988.

[KSP�12a] Daniel Kästner, Marc Schlickling, Markus Pister, Christoph Cull-
mann, Gernot Gebhard, Christian Ferdinand, and Reinhold Heck-
mann. Timing Predictability of Multi-Core Processors. In Proceed-
ings of the Embedded World 2012 Conference, 2012.

[KSP�12b] Daniel Kästner, Marc Schlickling, Markus Pister, Christoph Cull-
mann, Gernot Gebhard, Reinhold Heckmann, and Christian Ferdi-
nand. Meeting real-time requirements with multi-core processors.
In Frank Ortmeier and Peter Daniel, editors, Computer Safety, Relia-
bility, and Security, volume 7613 of Lecture Notes in Computer Science,
pages 117–131. Springer Verlag, 2012.

[KU76] John B. Kam and Jeffrey D. Ullman. Global data flow analysis
and iterative algorithms. Journal of the ACM (JACM), 23(1):158–171,
1976.

217

Bibliography

[KU77] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis
frameworks. Acta Informatica, 7:305–317, 1977. 10.1007/BF00290339.

[KWH�08] Daniel Kästner, Reinhard Wilhelm, Reinhold Heckmann, Marc
Schlickling, Markus Pister, Marek Jersak, Kai Richter, and Christian
Ferdinand. Timing Validation of Automotive Software. In Tiziana
Margaria and Bernhard Steffen, editors, Proceedings of the 3rd In-
ternational Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISOLA) 2008, volume 17 of Communica-
tions in Computer and Information Science, pages 93–107. Springer
Verlag, November 2008.

[Kä00] Daniel Kästner. Retargetable Postpass Optimisation by Integer Linear
Programming. PhD thesis, Saarland University, 2000.

[Lan98] Marc Langenbach. CRL – A Uniform Representation for Control
Flow. Technical report, Saarland University, 1998.

[LLMR07] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury.
Chronos: A timing analyzer for embedded software. Science of
Computer Programming, 2007.

[LMW96] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Cache
modeling for real-time software: beyond direct mapped instruction
caches. In Proceedings of the 17th IEEE Real-Time Systems Sympo-
sium, RTSS ’96, pages 254–263, Washington, DC, USA, 1996. IEEE
Computer Society.

[Low06] Geoff Lowney. Why Intel is designing multi-core processors. In
Proceedings of the eighteenth annual ACM symposium on Parallelism
in algorithms and architectures, SPAA ’06, pages 113–113, New York,
NY, USA, 2006. ACM.

[LS99a] Thomas Lundqvist and Per Stenström. Timing anomalies in dynam-
ically scheduled microprocessors. In Proceedings of the 20th IEEE
Real-Time Systems Symposium (RTSS’99), pages 12–21, December
1999.

[LS99b] Thomas Lundqvist and Per Stenström. An integrated path and
timing analysis method based on cycle-level symbolic execution.
Journal of Real-Time Systems, 17:183–207, 1999.

[LT30] Jan Lukasiewicz and Alfred Tarski. Untersuchungen über den Aus-
sagenkalkül. Comptes Rendus Séances Société des Sciences et Lettres
Varsovie, 23:30–50, 1930.

218

Bibliography

[LTH�10] Xun Li, Mohit Tiwari, Ben Hardekopf, Timothy Sherwood, and
Frederic T. Chong. Secure information flow analysis for hardware
design: Using the right abstraction for the job. In Proceedings of
the 5th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, page 8. ACM, 2010.

[Lun02] Thomas Lundqvist. A WCET Analysis Method for Pipelined Micro-
processors with Cache Memories. PhD thesis, Chalmers University of
Technology, 2002.

[LWS�10] Sascha Loitz, Markus Wedler, Dominik Stoffel, Christian Brehm,
and Wolfgang Kunz. Complete verification of weakly pro-
grammable IPs against their operational ISA model. In Adam
Morawiec and Jinnie Hinderscheit, editors, Proceedings of the Forum
on Specification & Design Languages (FDL), pages 1–8, Southampton,
United Kingdom, September 2010. IET, ECSI, Electronic Chips &
Systems design Initiative.

[Mak07] Mohamed Abdel Maksoud. Generating Code from Abstracted
VHDL Models. Master’s thesis, Saarland University, 2007.

[Mar95] Florian Martin. Entwurf und Implementierung eines Generators
für Datenflußanalysatoren. Master’s thesis, Saarland University,
1995.

[Mar98] Florian Martin. PAG – an efficient program analyzer generator.
International Journal on Software Tools for Technology Transfer, 2(1):46–
67, 1998.

[Mar99] Florian Martin. Generating Program Analyzers. PhD thesis, Saarland
University, 1999.

[Mar05] Peter Marwedel. Embedded System Design. Springer Verlag, Berlin,
2nd edition, November 2005.

[Mar08] Michael R. Marty. Cache coherence techniques for multicore processors.
PhD thesis, University of Wisconsin, Madison, Wisconsin, USA,
2008.

[MAWF98] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdi-
nand. Analysis of Loops. In Kai Koskimies, editor, Proceedings of the
7th International Conference on Compiler Construction (CC ’98), held as
part of the Joint European Conferences on Theory and Practice of Software
(ETAPS) on March 28-April 4, 1998 at Lisboa, Portugal, volume 1383
of Lecture Notes in Computer Science, pages 80–94. Springer Verlag,
1998.

219

Bibliography

[Min04] Antoine Miné. Relational abstract domains for the detection of
floating-point run-time errors. Programming Languages and Systems,
pages 3–17, 2004.

[Min05] Antoine Miné. Weakly relational numerical abstract domains. PhD
thesis, École Polytechnique, Paris, France, 2005.

[MKC66] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Intro-
duction to Interval Analysis. Prentice-Hall Englewood Cliffs, NJ,
1966.

[MP00] Silvia M. Müller and Wolfgang Paul. Computer Architecture: Com-
plexity and Correctness. Springer Verlag, Secaucus, NJ, USA, 2000.

[MPS09] Mohamed Abdel Maksoud, Markus Pister, and Marc Schlickling.
An Abstraction-Aware Compiler for VHDL Models. In Proceedings
of the International Conference on Computer Engineering and Systems
(ICCES ’09), pages 3–9. IEEE Computer Society, December 2009.

[Nie82] Flemming Nielson. A denotational framework for data flow analy-
sis. Acta Informatica, 18(3):265–287, 1982.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Princi-
ples of Program Analysis. Springer Verlag, 1999.

[One06] OneSpin Solutions GmbH. OneSpin 360 MV. http://www.onespin-
solutions.com/download.php, May 2006.

[OO84] Karl J. Ottenstein and Linda Ottenstein. The program dependence
graph in a software development environment. Proceedings of the
ACM SIGPLAN ’84 Conference on Programming Language Design and
Implementation, 19(5):177–184, 1984.

[PCI02] PCI Special Interest Group, 5440 SW Westgate Drive Suite 217
Portland, Oregon 97221. PCI Local Bus Specification, March 2002.
Standard Rev. 2.3.

[Pis12] Markus Pister. Timing Model Derivation – Pipeline Analyzer Gener-
ation from Hardware Description Languages. PhD thesis, Saarland
University, 2012.

[PN98] Peter Puschner and Roman Nossal. Testing the Results of Static
Worst-Case Execution-Time Analysis. In Proceedings of the 19th
IEEE Real-Time Systems Symposium, pages 134–143. IEEE Computer
Society Press, 1998.

[Rei08] Jan Reineke. Caches in WCET Analysis. PhD thesis, Saarland Uni-
versity, November 2008.

220

Bibliography

[RGBW07] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm.
Timing predictability of cache replacement policies. Real-Time Sys-
tems, 37(2):99–122, November 2007.

[RKK04] Sethu Ramesh, Aditya Rajeev Kulkarni, and V. Kamat. Slicing tools
for synchronous reactive programs. In Proceedings of the 2004 ACM
SIGSOFT international symposium on Software testing and analysis,
ISSTA ’04, pages 217–220, New York, NY, USA, 2004. ACM.

[RWT�06] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm,
Ilia Polian, Jochen Eisinger, and Bernd Becker. A definition and
classification of timing anomalies. In Proceedings of 6th International
Workshop on Worst-Case Execution Time (WCET) Analysis, July 2006.

[Sch98] David A. Schmidt. Trace-based abstract interpretation of oper-
ational semantics. Lisp and Symbolic Computation, 10(3):237–271,
1998.

[Sch03] Jörn Schneider. Combined schedulability and WCET analysis for
real-time operating systems. Master’s thesis, Saarland University,
2003.

[Sch05] Marc Schlickling. Generisches Slicing auf Maschinencode. Master’s
thesis, Saarland University, 2005.

[Sch09] Marc Schlickling. Safe Approximation of Access-Latencies to Asyn-
chronous Memory Regions. Technical report, AbsInt Angewandte
Informatik GmbH, 2009.

[Sha89] Alan Shaw. Reasoning about Time in Higher-Level Language
Software. IEEE Transactions on Software Engineering, 15:875–889,
1989.

[Sic97] Martin Sicks. Adreßbestimmung zur Vorhersage des Verhaltens
von Daten-Caches. Master’s thesis, Saarland University, 1997.

[SP81] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data
flow analysis, chapter 7, pages 189–234. Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[SP07] Marc Schlickling and Markus Pister. A Framework for Static Anal-
ysis of VHDL Code. In Christine Rochange, editor, Proceedings
of 7th International Workshop on Worst-case Execution Time (WCET)
Analysis, July 2007.

[SP09] Marc Schlickling and Markus Pister. Worst Case Execution Time
Analyzer for PowerPC MPC7448 – Performance Counter Validation
Report. Technical report, AbsInt Angewandte Informatik GmbH,
October 2009. ai20090930.

221

Bibliography

[SP10] Marc Schlickling and Markus Pister. Semi-Automatic Derivation
of Timing Models for WCET Analysis. In Proceedings of the ACM
SIGPLAN/SIGBED 2010 conference on Languages, compilers, and tools
for embedded systems, pages 67–76. ACM, April 2010.

[SPA91] SPARC International, Inc. The SPARC Architecture Manual – Ver-
sion 8. Reference manual, SPARC International, Inc., 1991. Revision
SAV080SI9308.

[Spe92] Special Commitee 167. Software Considerations in Airborne Sys-
tems and Equipment Certification (DO-178B/ED-12B). Standard,
Radio Technical Commission for Aeronautics, 1992.

[SPH�07] Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Guillaume Bo-
rios, Victor Jégu, and Reinhold Heckmann. Computing the Worst
Case Execution Time of an Avionics Program by Abstract Interpre-
tation. In Reinhard Wilhelm, editor, 5th Intl. Workshop on Worst-Case
Execution Time (WCET) Analysis, Dagstuhl, Germany, 2007. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[Ste94] Mario Stefanoni. Static analysis for VHDL model evaluation. In Pro-
ceedings of the conference on European design automation, EURO-DAC
’94, pages 586–591, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[Ste06] Ingmar Stein. Analyse von Pfadausschlüssen auf Maschinencode.
Diplomarbeit, Universität des Saarlandes, Saarbrücken, February
2006.

[Ste10] Ingmar Stein. ILP-based Path Analysis on Abstract Pipeline State
Graphs. PhD thesis, Saarland University, 2010.

[SWH12] Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. Compiler
Design – Analysis and Transformation. Springer Verlag, 1st edition,
July 2012. ISBN 978-3-642-17547-3.

[Syn] Synopsys, Inc. http://www.synopsys.com.

[The00] Henrik Theiling. Extracting Safe and Precise Control Flow from
Binaries. In Proceedings of the 7th Conference on Real-Time Computing
and Applications Symposium (RTCSA ’00) on December 12-14, 2000
at Cheju Island, South Korea, pages 23–30. IEEE Computer Society,
2000.

[The04] Stephan Thesing. Safe and Precise WCET Determination by Abstract
Interpretation of Pipeline Models. PhD thesis, Saarland University,
2004.

222

Bibliography

[The06] Stephan Thesing. Modeling a system controller for timing analysis.
In Proceedings of the 6th ACM & IEEE International conference on
Embedded software, EMSOFT ’06, pages 292–300, New York, NY,
USA, 2006. ACM.

[Tho65] James E. Thornton. Parallel operation in the control data 6600. In
Proceedings of the October 27-29, 1964, fall joint computer conference,
part II: very high speed computer systems, AFIPS ’64 (Fall, part II),
pages 33–40, New York, NY, USA, 1965. ACM.

[Tip95] Frank Tip. A Survey of Program Slicing Techniques. Technical
Report CS-R9438, Centrum voor Wiskunde en Informatica, 1995.

[TM02] Donald E. Thomas and Philip R. Moorby. The Verilog hardware
description language. Springer Verlag, 2002.

[TMAL98] Stephan Thesing, Florian Martin, Martin Alt, and Oliver Lauer.
PAG User’s Manual. Technical report, Saarland University, 1998.
Version 1.0.

[TNN05] Terkel K. Tolstrup, Flemming Nielson, and Hanne Riis Nielson. In-
formation flow analysis for VHDL. Parallel Computing Technologies,
pages 79–98, 2005.

[Tol06] Terkel K. Tolstrup. Language-based Security for VHDL. PhD thesis,
Technical University of Denmark, Department of Informatics and
Mathematical Modeling, Language-Based Technology, 2006.

[Tom67] Robert M. Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. IBM Journal of Research and Development, 11(1):25–
33, 1967.

[TSH�03] Stephan Thesing, Jean Souyris, Reinhold Heckmann, Faman-
tanantsoa Randimbivololona, Marc Langenbach, Reinhard Wil-
helm, and Christian Ferdinand. An Abstract Interpretation-Based
Timing Validation of Hard Real-Time Avionics Software. In Pro-
ceedings of the International Conference on Dependable Systems and
Networks (DSN 2003) at San Francisco, CA, USA, 22-25 June 2003,
pages 625–632. IEEE Computer Society, 2003.

[TUD] TU Darmstadt http://www.rs.tu-darmstadt.de/downloads/docu/
dlxdocu/superscalardlx.html.

[USB�10] Joakim Urdahl, Dominik Stoffel, Jörg Bormann, Markus Wedler,
and Wolfgang Kunz. Path predicate abstraction by complete inter-
val property checking. In Natasha Sharygina, editor, Proceedings
of the International Conference on Formal Methods in Computer-Aided
Design (FMCAD), volume 10, pages 207–215, Lugano, Switzerland,
October 2010. IEEE.

223

Bibliography

[WEE�08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-
sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian
Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Is-
abelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström.
The Worst-case Execution Time Problem—Overview of Methods
and Survey of Tools. ACM Transactions on Embedded Computing
Systems (TECS), 7(3):36:1–36:53, 2008.

[Weg11] Simon Wegener. Improving Static Analysis of Loops. Master’s
thesis, Saarland University, June 2011.

[Wei79] Mark Weiser. Program Slices: Formal, Psychological, and Practical
Investigations of an Automatic Program Abstraction Method. PhD
thesis, The University of Michigan, 1979.

[Wei81] Mark Weiser. Program Slicing. In Proceedings of the 5th international
conference on Software engineering, pages 439–449. IEEE Press, 1981.

[Wei82] Mark Weiser. Programmers Use Slicing When Debugging. Commu-
nications of the ACM, 25(7):446–452, 1982.

[Wei84] Mark Weiser. Program Slicing. IEEE Transactions on Software Engi-
neering, SE-10(4):352–357, 1984.

[WEY01] Fabian Wolf, Rolf Ernst, and Wei Ye. Path Clustering in Software
Timing Analysis. IEEE Transactions on VLSI Systems, 9(6), December
2001.

[WFC�09] Reinhard Wilhelm, Christian Ferdinand, Christoph Cullmann,
Daniel Grund, Jan Reineke, and Benoit Triquet. Designing Pre-
dictable Multicore Architectures for Avionics and Automotive Sys-
tems. In Workshop on Reconciling Performance with Predictability
(RePP), 2009.

[WGR�09] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling,
Markus Pister, and Christian Ferdinand. Memory Hierarchies, Pipe-
lines, and Buses for Future Architectures in Time-critical Embedded
Systems. IEEE Transactions on CAD of Integrated Circuits and Systems,
28(7):966–978, July 2009.

[Wil12] Stephan Wilhelm. Symbolic Representations in WCET Analysis. PhD
thesis, Saarland University, 2012.

[WKE02] Fabian Wolf, Judita Kruse, and Rolf Ernst. Timing and Power
Measurement in Static Software Analysis. Microelectronics Journal,
Special Issue on Design, Modeling and Simulation in Microelectronics
and MEMS, 6(2):91–100, January 2002.

224

Bibliography

[WKRP05] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter
Puschner. Measurement-Based Worst-Case Execution Time Analy-
sis. In Proceedings of the Third IEEE Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems, pages 7–10, Washington,
DC, USA, 2005. IEEE Computer Society.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Interna-
tional Computer Science Series. Addison-Wesley, 1995. Second
Printing.

[WRKP05] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter
Puschner. Automatic Timing Model Generation by CFG Partition-
ing and Model Checking. In Proceedings of the conference on Design,
Automation and Test in Europe - Volume 1, DATE ’05, pages 606–611,
Washington, DC, USA, 2005. IEEE Computer Society.

[WW08] Reinhard Wilhelm and Björn Wachter. Abstract Interpretation with
Applications to Timing Validation. In Aarti Gupta and Sharad
Malik, editors, Computer Aided Verification (CAV), volume 5123 of
Lecture Notes in Computer Science, pages 22–36. Springer Verlag,
2008.

225

Index

A
AbsInt GmbH . 33, 77, 101, 173, 182
abstract interpretation . . 5, 9, 14–18
abstraction function 5, 18
activation see VHDL semantics
activation chain 115, 201
activation dependency . 9, 145, 154,

183
aiSee . 173, 182
aiT . . 3, 33, 35–38, 57, 77, 83, 89, 207
architecture

model see VHDL model
VHDL . . . see VHDL architecture

ARM7 . 61, 90
ASIC . 3, 69
Automotive CPU 1 163, 197
Automotive CPU 2 163, 197
Avionics MCU . . . 163, 187, 189, 197

B
basic block 3, 22, 32, 38, 39, 182
BCET . see best-case execution time
best-case execution time 28
bit vector problem 139
Bound-T . 33

bus 49, 52, 56, 57
60x . 52, 53
asynchronous 57
controller 53
external 52, 57
FlexRay . 52
internal 52, 57
parallel . 53
PCI . 52, 57
pipelined 53
serial . 53
system see bus, internal

C
cache 2, 4, 43–46, 161, 199

abstraction . . see cache analysis
analysis 39, 82, 90
associativity 44
capacity . 45
coherence 56, 59
hit . 45
line . 44
locking . 46
miss . 45
replacement policy 39, 45,

46–47, 58, 60

227

Index

set . 44
size see cache capacity
way . 44

cache/pipeline analysis see
mirco-architectural analysis

call string 26, 100, 112
Chronos . 34
circuit

combinatorial 197
sequential 197
specification . . see VHDL model
synchronous 66, 110, 142

CISC . 41–42
complete formal verification . . 199–

200
component . . see VHDL component
concretization function 5, 18
Confluence . 76
control-flow graph 14, 26, 35, 83, 98,

101
core model see VHDL model
CRL2 35, 101–104, 119, 167, 173, 201

D
data-flow problem . . 19–20, 32, 122,

131, 142
backward 21
forward . 21

derivation cycle 87–91
derivation framework 91–96
derivation methodology see

derivation cycle
discrete-event simulation 69
DLX

simple 47, 49
superscalar . . 123, 139, 161, 186,

201–206
DO-178B . 32
domino effect 60

E
elaboration . . see VHDL elaboration

F
fixed point . 13
fixed-point iteration 13
FPGA . 3, 69
Freescale

PowerPC MPC603e 59, 161
PowerPC MPC7448 . . 31, 46, 49,

50, 57, 58, 62, 81
PowerPC MPC750 39
PowerPC MPC755 . . . 39, 60, 62
QorIQ P4080 59

G
Galois connection 18
Galois insertion 18
gen set . 139
GHDL . 174

H
hardware description language . . 3,

42, 62
hardware synthesis see VHDL

synthesis
hazard see pipeline hazard
HDL see hardware description

language
Heptane . 34

I
Infineon TriCore 61, 200
Intel

486 . 46
Core 2 Duo 183
Pentium . 62

intellectual property 63, 160
interval property checking 8, 9, 200
IP see intellectual property
IPC . see interval property checking
ISPS . 75

K
KARL . 75

228

Index

kill set . 139

L
LEON2 . . 79, 160–161, 186, 194, 197,

199
LEON3 . 160
LEON4 . 160
live variable 139
live-variables analysis . . 16, 21, 139
LRU . see cache replacement policy

M
maximal fixed-point solution . . . 20,

122, 131, 140, 149, 151, 152,
201

meet-over-all-paths solution 20, 149,
153

memory hierarchy 43
MFP see maximal fixed-point

solution
micro-architectural analysis 38,

39–40, 53, 77, 90, 91, 206
model preprocessing 88–89
MOP see meet-over-all-paths

solution
Motorola ColdFire MCF5307 . . . 39

N
narrowing 23–25

O
operation property 200

P
PAG see program analyzer

generator
path . 15
pipeline 60, 89, 142

branch folding 51
branch prediction 51
forwarding 49, 51

hazard 48–50
control 50
data . 49
structural 49

out-of-order execution 50
prefetching 51
speculative execution 51
stage . 47, 88
store gathering 52
store merging 52
superscalar 52

pipeline analysis see
mirco-architectural analysis

PLRU see cache replacement policy
pre-fixed point 13
process reactivation see VHDL

semantics
processor model . . see VHDL model
processor state abstraction . . 90–91
program analyzer generator 99–101,

102, 104, 106, 174, 179, 192
PROMPT . 59

R
RapiTime . 33
revocation see VHDL semantics
RISC . 42, 160

S
signal assignment see VHDL signal

assignment
simulation 31, 69, 95, 208
slice . see slicing
slicing 7, 140–142, 156, 181–183

backward 89, 140
criterion 143
dynamic 141
forward 141
static . 141

spatial locality 44
state explosion 91
supergraph 26, 100
SWEET . 34

229

Index

SymTA/P . 34
Synopsys 65, 66
synthesis see VHDL synthesis
synthesis tool 66, 69, 201, 210

T
temporal locality 44
timing anomaly 34, 60, 80, 90
timing model 3, 40, 77
TriCore see Infineon TriCore

V
variable assignment see VHDL

variable assignment
Verilog . 75–76
VHDL

architecture 66, 68
clock domain 123
component . . . 3, 63–64, 68, 161,

172–173, 209
component instantiation 68,

172–173, 184
concurrent statement . . 66, 104,

169
delta-delay . 6, 71, 109–110, 194
design methodology 63–66
elaboration 68–69, 169–173
entity 66, 161, 203
hierarchical composition 63–64,

68, 68
level

behavioral 8, 9, 64
register-transfer . . 6, 8, 66–68

model . 64
functional 64
geometric 64
structural 64

net . 65, 68
port . 66, 172
process 6, 66, 69–71, 74, 81,

85–86, 104–106
scheduled transaction 67, 69–72,

106, 108–109

semantics
abstract 84–86
concrete 69–75, 107
transformed 106–112

sensitivity list . . 66, 74, 108–109,
169

signal . . . 6, 29, 66, 69–72, 80, 88,
166

signal assignment . . . 67, 72, 86,
127, 148, 169

simulation cycle 5–6, 70–71, 107,
173

synthesis . 8, 63, 69, 78, 197, 202
variable 67, 166
variable assignment . 67, 72, 86,

127, 148
VLIW . 42
VLSI . 62, 64, 75

W
WCET see worst-case execution time
widening 23–24, 135–136
worst-case execution time 2, 28, 35,

56

230

