
Methods and Tools for Temporal
Knowledge Harvesting

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Yafang Wang

Max-Planck-Institut für Informatik

Saarbrücken

2013

ii

Dekan der
Naturwissenschaftlich-Technischen
Fakultät I Univ.-Prof. Mark Groves

Vorsitzender der Prüfungskommission Prof. Dr. Dietrich Klakow
Berichterstatter Prof. Dr.-Ing. Gerhard Weikum
Berichterstatter Prof. Dr.-Ing. Martin Theobald

Beisitzer Dr.-Ing. Klaus Berberich
Tag des Promotionskollquiums 25.February.2013

iv

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit
selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel
angefertigt habe.

Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte
sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder
ähnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades
vorgelegt.

Saarbrücken, den 15.01.2013

(Yafang Wang)

vi

To my Mum, Chuanwei Zhu
To my Dad, Juyuan Wang

viii

Acknowledgment
I would like to express my profound appreciation to my advisor, Prof. Dr.-Ing.
Gerhard Weikum, for his extreme patience and support, and encouragement
throughout my doctoral studies. Gerhard gave me the freedom to explore on my
own, and at the same time offered the guidance to keep me on track. I am also
greatly thankful for his careful reading and commenting on the manuscript. His
excellent and friendly advice was essential to the completion of this dissertation.

I am also deeply indebted to my colleagues with whom I worked on many
publications that I published throughout the procedure of this dissertation. I
would like to thank Prof. Dr.-Ing. Martin Theobald and Maximilian Dylla, for
the stimulating discussions, for the sleepless nights we were working together
before deadlines. I am grateful to Dr. Bin Yang and Lizhen Qu, for both the
help of technical details of the work, and the fun we have had together in
Saarbrücken. I wish to express my gratitude to Dr. Mingjie Zhu, Dr. Marc
Spaniol, Dr. Spyros Zoupanos, Zhaochun Ren and Mohamed Yahya, for their
help in many details of the work. I appreciate Kim Pecina and Maximilian
Dylla, who were also very generous in helping me to translate the abstract and
summary of this dissertation into German.

I am very thankful to all my colleagues at MPI and all my friends, with whom I
have had lots of inspiring discussions and made great memories lasting forever.
I also very much appreciate the help from Petra Schaaf and Andrea Ruffing, who
were always ready for my questions about both my life in Germany and business
issues. Last but not least, I would like to thank my family and in particular my
parents, who have been a constant source of love, concern, support and strength
all these years.

x

Abstract

To extend the traditional knowledge base with temporal dimension, this thesis
offers methods and tools for harvesting temporal facts from both
semi-structured and textual sources. Our contributions are briefly summarized
as follows.

1. Timely YAGO: A temporal knowledge base called Timely YAGO
(T-YAGO) which extends YAGO with temporal attributes is built. We
define a simple RDF-style data model to support temporal knowledge.

2. PRAVDA: To be able to harvest as many temporal facts from free-text as
possible, we develop a system PRAVDA. It utilizes a graph-based
semi-supervised learning algorithm to extract fact observations, which
are further cleaned up by an Integer Linear Program based constraint
solver. We also attempt to harvest spatio-temporal facts to track a
person’s trajectory.

3. PRAVDA-live: A user-centric interactive knowledge harvesting system,
called PRAVDA-live, is developed for extracting facts from natural
language free-text. It is built on the framework of PRAVDA. It supports
fact extraction of user-defined relations from ad-hoc selected text
documents and ready-to-use RDF exports.

4. T-URDF: We present a simple and efficient representation model for time-
dependent uncertainty in combination with first-order inference rules and
recursive queries over RDF-like knowledge bases. We adopt the common
possible-worlds semantics known from probabilistic databases and extend
it towards histogram-like confidence distributions that capture the validity
of facts across time.

All of these components are fully implemented systems, which together form
an integrative architecture. PRAVDA and PRAVDA-live aim at gathering new

xi

Abstract

facts (particularly temporal facts), and then T-URDF reconciles them. Finally
these facts are stored in a (temporal) knowledge base, called T-YAGO. A
SPARQL-like time-aware querying language, together with a visualization tool,
are designed for T-YAGO. Temporal knowledge can also be applied for
document summarization.

xii

Abstract

Diese Dissertation zeigt Methoden und Werkzeuge auf, um traditionelle
Wissensbasen um zeitliche Fakten aus semi-strukturierten Quellen und
Textquellen zu erweitern. Unsere Arbeit lässt sich wie folgt zusammenfassen.

1. Timely YAGO: Wir konstruieren eine Wissensbasis, genannt ’Timely
YAGO’ (T-YAGO), die YAGO um temporale Attribute erweitert.
Zusätzlich definieren wir ein einfaches RDF-ähnliches Datenmodell, das
temporales Wissen unterstützt.

2. PRAVDA: Um eine möglichst große Anzahl von temporalen Fakten aus
Freitext extrahieren zu können, haben wir das PRAVDA-System
entwickelt. Es verwendet einen auf Graphen basierenden
halbüberwachten Lernalgorithmus, um Feststellungen über Fakten zu
extrahieren, die von einem Constraint-Solver, der auf einem ganzzahligen
linearen Programm beruht, bereinigt werden. Wir versuchen zudem
räumlich-temporale Fakten zu extrahieren, um die Bewegungen einer
Person zu verfolgen.

3. PRAVDA-live: Wir entwickeln ein benutzerorientiertes, interaktives
Wissensextrahiersystem namens PRAVDA-live, das Fakten aus freier,
natürlicher Sprache extrahiert. Es baut auf dem PRAVDA-Framework
auf. PRAVDA-live unterstützt die Erkennung von benutzerdefinierten
Relationen aus ad-hoc ausgewählten Textdokumenten und den Export
der Daten im RDF-Format.

4. T-URDF: Wir stellen ein einfaches und effizientes Repräsentationsmodell
für zeitabhängige Ungewissheit in Verbindung mit Deduktionsregeln in
Prädikatenlogik erster Stufe und rekursive Anfragen über RDF-ähnliche
Wissensbasen vor. Wir übernehmen die gebräuchliche
Mögliche-Welten-Semantik, bekannt durch probabilistische Datenbanken

xiii

Abstract

und erweitern sie in Richtung histogrammähnlicher
Konfidenzverteilungen, die die Gültigkeit von Fakten über die Zeit
betrachtet darstellen.

Alle Komponenten sind vollständig implementierte Systeme, die zusammen
eine integrative Architektur bilden. PRAVDA und PRAVDA-live zielen darauf
ab, neue Fakten (insbesondere zeitliche Fakten) zu sammeln, und T-URDF
gleicht sie ab. Abschließend speichern wir diese Fakten in einer (zeitlichen)
Wissensbasis namens T-YAGO ab. Eine SPARQL-ähnliche zeitunterstützende
Anfragesprache wird zusammen mit einem Visualisierungswerkzeug für
T-YAGO entwickelt. Temporales Wissen kann auch zur
Dokumentzusammenfassung genutzt werden.

xiv

Summary

To extend the traditional knowledge base with temporal dimension, this thesis
offers methods and tools for harvesting temporal facts from both
semi-structured and textual sources. Our contributions are briefly summarized
as follows.

1. Timely YAGO: A temporal knowledge base called Timely YAGO
(T-YAGO) which extends YAGO with temporal attributes is built. We
define a simple RDF-style data model to support temporal knowledge.
For temporal facts valid at a time point, we use the relation on to describe
the validity time; for those valid during a time period, we use the relation
since for the begin time point, and the relation until for the end time point.
Most of the temporal facts are extracted from semi-structured data (e.g.,
infoboxes, categories and lists of Wikipedia articles) via a rule-based
method. A SPARQL-like time aware query language is provided for
querying. The results are shown via a timeline visualization tool.

2. PRAVDA: To be able to harvest as many temporal facts from free-text as
possible, we develop a system PRAVDA. It utilizes a graph-based
semi-supervised learning algorithm, which guarantees a high recall and
comparable precision with limited human created seeds. The graph is
composed of fact candidate nodes and pattern nodes. Edges between fact
candidate nodes and pattern nodes are introduced whenever a fact
candidate appears with a pattern. Their weight is derived from the
co-occurrence frequency. Edges between pattern nodes are created if their
type pair is identical and the degree of their similarity delivers the edge’s
weight. We use one label for each observation type (begin, during, and end)
of each relation. Then label propagation is exploited to determine the
label of each node. Once a fact candidate is labelled with a particular
relation, it is called a valid fact observation. Afterwards, an Integer Linear

xv

Summary

Program is used to clean out false hypotheses that violate temporal
constraints. We also attempt to harvest spatio-temporal facts to track a
person’s trajectory.

3. PRAVDA-live: A user-centric interactive knowledge harvesting system,
called PRAVDA-live, is developed for extracting facts from natural
language free-text. It is built on the framework of PRAVDA. It supports
fact extraction of user-defined relations from ad-hoc selected text
documents and ready-to-use RDF exports. Further features include
support for temporally annotated relations, custom or mined
extraction-patterns, and a constraint solver able to clean extracted fact
observations by inter-fact constraints.

4. T-URDF: We present a simple and efficient representation model for
time-dependent uncertainty in combination with first-order inference
rules and recursive queries over RDF-like knowledge bases. We adopt the
common possible-worlds semantics known from probabilistic databases
and extend it towards histogram-like confidence distributions that
capture the validity of facts across time. An algorithm is designed to
reconcile multiple (potentially inconsistent) observations of temporal
facts into a concise histogram. The begin, during and end fact observations
are aggregated into histograms respectively. Then we perform forward
aggregation for the begin histogram, backward aggregation for the end
histogram, and merge them with the during histogram. Query processing
is done via a Datalog-like, rule-based inference engine, which employs
the lineage of derived facts for confidence computations to remain
consistent with the possible-worlds model.

All of these components are fully implemented systems, which together form
an integrative architecture. PRAVDA and PRAVDA-live aim at gathering new
facts (particularly temporal facts), and then T-URDF reconciles them. Finally
these facts are stored in a (temporal) knowledge base, called T-YAGO. A
SPARQL-like time-aware querying language, together with a visualization tool,
are designed for T-YAGO. Temporal knowledge can also be applied for
document summarization.

xvi

Zusammenfassung

Diese Dissertation zeigt Methoden und Werkzeuge auf, um traditionelle
Wissensbasen um zeitliche Fakten aus semi-strukturierten Quellen und
Textquellen zu erweitern. Unsere Arbeit lässt sich wie folgt zusammenfassen.

1. Timely YAGO: Wir konstruieren eine Wissensbasis, genannt ‘Timely
YAGO’ (T-YAGO), die YAGO um temporale Attribute erweitert.
Zusätzlich definieren wir ein einfaches RDF-ähnliches Datenmodell, das
temporales Wissen unterstützt. Die Relation on beschreibt zeitliche
Fakten, die zu einem bestimmten Zeitpunkt gültig sind; Fakten, die über
eine längere Zeitspanne gültig sind, werden durch die Relationen since
und until ausgedrückt, die jeweils den Startpunkt und den Endpunkt des
Zeitraums beschreiben. Der Großteil der temporalen Fakten wird aus
semi-strukturierten Daten (z.B. Infoboxen, Kategorien und Listen von
Wikipedia-Artikeln) durch regelbasierte Methoden extrahiert. Wir stellen
eine SPARQL-ähnliche Abfragesprache mit Unterstützung der
Zeitkomponente vor. Die Ergebnisse werden mit Hilfe eines
Zeitleisten-Visualisierungstools präsentiert.

2. PRAVDA: Um eine möglichst große Anzahl von temporalen Fakten aus
Freitext extrahieren zu können, haben wir das PRAVDA-System
entwickelt. Es verwendet einen auf Graphen basierenden
halbüberwachten Lernalgorithmus, welcher hohe Ausbeute bei
vergleichbarer Präzision garantiert und mit einer geringen Anzahl von
manuellen Annotationen zurechtkommt. Die Knoten des Graphen
unterteilen sich in Muster-Knoten und Faktkandidat-Knoten. Kanten
zwischen Muster-Knoten und Faktkandidat-Knoten werden in den
Graphen eingefügt, wenn ein Faktkandidat innerhalb eines Musters im
Freitext auftritt. Das Gewicht dieser Kanten wird durch die Frequenz des
gemeinsamen Auftretens bestimmt. Des Weiteren fügen wir Kanten

xvii

Zusammenfassung

zwischen Muster-Knoten in den Graphen ein, wenn deren Typenpaar
identisch ist, wobei das Kantengewicht durch die Ähnlichkeit bestimmt
wird. Für jede Relation benutzen wir drei Annotationen, welche den
Beobachtungstypen (begin, during und end) entsprechen. Danach wird
Annotationsweitergabe verwendet um die Annotation jedes Knoten im
Graphen zu bestimmen. Sobald ein Faktkandidat mit einer Relation
annotiert ist, nennen wir ihn valide Faktbeobachtung. Anschließend wird
ein ganzzahliges lineares Programm verwendet, um die falschen
Hypothesen mit Hilfe von temporalen Bedingungen auszufiltern. Wir
versuchen außerdem räumlich-temporale Fakten zu extrahieren, um die
Bewegungen einer Person zu verfolgen.

3. PRAVDA-live: Wir entwickeln ein benutzerorientiertes, interaktives
Wissensextrahiersystem namens PRAVDA-live, das Fakten aus freier,
natürlicher Sprache extrahiert. Es baut auf dem PRAVDA-Framework
auf. PRAVDA-live unterstützt die Erkennung von benutzerdefinierten
Relationen aus ad-hoc ausgewählten Textdokumenten und den Export
der Daten im RDF-Format. Weitere Merkmale beinhalten die
Unterstützung von zeitlich annotierten Relationen, maßgeschneiderten
oder gewonnenen Extrahierungsmustern und einen Constraint-Solver,
der extrahierte Faktbeobachtungen durch zwischenfaktische
Beschränkungen bereinigt.

4. T-URDF: Wir stellen ein einfaches und effizientes Repräsentationsmodell
für zeitabhängige Ungewissheit in Verbindung mit Deduktionsregeln in
Prädikatenlogik erster Stufe und rekursive Anfragen über RDF-ähnliche
Wissensbasen vor. Wir übernehmen die gebräuchliche
Mögliche-Welten-Semantik, bekannt durch probabilistische Datenbanken
und erweitern sie in Richtung histogrammähnlicher
Konfidenzverteilungen, die die Gültigkeit von Fakten über die Zeit
betrachtet darstellen. Des Weiteren designen wir einen Algorithmus, der
mehrere (potentiell inkonsistente) Beobachtungen von zeitlichen Fakten
in präzise Histogramme überführt. Die Fakten begin, during und end
werden jeweils in Histogramme aggregiert. Danach führen wir eine
Vorwärtsaggregierung für die begin Histogramme, eine
Rückwärtsaggregierung für die end Histogramme durch und fusionieren

xviii

beide mit dem during Histogramm. Anfragen werden mithilfe eines
datalogähnlichen, regelbasierten Deduktionssystems beantwortet,
welches die Abstammung von hergeleiteten Fakten für
Konfidenzberechnungen einbezieht, um im Einklang mit dem
Mögliche-Welten-Modell zu bleiben.

Alle Komponenten sind vollständig implementierte Systeme, die zusammen
eine integrative Architektur bilden. PRAVDA und PRAVDA-live zielen darauf
ab, neue Fakten (insbesondere zeitliche Fakten) zu sammeln, und T-URDF
gleicht sie ab. Abschließend speichern wir diese Fakten in einer (zeitlichen)
Wissensbasis namens T-YAGO. Eine SPARQL-ähnliche zeitunterstützende
Anfragesprache wird zusammen mit einem Visualisierungswerkzeug für
T-YAGO entwickelt. Temporales Wissen kann auch zur
Dokumentzusammenfassung genutzt werden.

xix

Zusammenfassung

xx

Contents

Abstract xi

Abstract xiii

Summary xv

Zusammenfassung xvii

1. Introduction 1
1.1. Motivation . 1
1.2. Research Challenges . 3
1.3. Contributions . 5
1.4. Thesis Outline . 6

2. Related Work 9
2.1. Knowledge Harvesting . 9
2.2. Temporal Information Extraction 11
2.3. Label Propagation . 12
2.4. Temporal and Probabilistic Databases 12
2.5. Interactive Systems . 13
2.6. Summarization . 14

3. Knowledge Representation 17
3.1. Relation and Fact Types . 17
3.2. Time Points, Intervals, and Histograms 18
3.3. Event and State Relations . 19
3.4. Temporal Knowledge Representation 20

4. Temporal Knowledge Harvesting 23

xxi

Contents

4.1. Problem Statement and Contributions 23
4.1.1. Motivation . 23
4.1.2. Contributions . 24

4.2. Temporal Knowledge Harvesting from Semi-structured Text . . . 25
4.3. Temporal Knowledge Harvesting from Natural Language Free-text 28

4.3.1. Framework and System Overview 28
4.3.2. Patterns and Graph Model 30

Candidate Gathering . 31
Pattern Analysis . 32
Graph Model . 35

4.3.3. Label Propagation Algorithm 36
Basic Objective Function . 37
Incorporating Inclusion Constraints 39
Combining Base and Temporal Graphs 41

4.3.4. Experiments . 43
System Implementation . 43
Experimental Setup . 44
Results on Base Fact Observation Extraction 45
Results on Temporal Fact Observation Extraction with

Inclusion Constraints 48
Results on Joint Base and Temporal Fact Observation

Extraction . 49
4.3.5. Conclusions . 51

4.4. Scalable Spatio-temporal Knowledge Harvesting 51
4.4.1. Motivation . 51
4.4.2. Methodology . 52
4.4.3. Experiments . 54

5. Temporal Knowledge Cleaning 57
5.1. Problem Statement and Contributions 57
5.2. Cleaning Temporal Fact Observations 58

5.2.1. Problem Statement and Contributions 58
5.2.2. Framework . 58
5.2.3. Applying Temporal Constraints 59
5.2.4. Experiments . 61

xxii

Contents

Pipeline vs. Joint Model . 62

Increasing Recall . 63

5.2.5. Conclusions . 64

5.3. Temporal Fact Reasoning . 65

5.3.1. Problem Statement and Contributions 65

5.3.2. Histogram Aggregation . 66

5.3.3. Rule-based Reasoning, Lineage, and Possible Worlds . . . 70

5.3.4. Experiments . 74

System Setup and Experiments 74

Rules and Queries . 75

Experimental Results . 75

5.3.5. Conclusions . 77

6. Tools 79
6.1. Interactive Knowledge Harvesting 79

6.1.1. Motivation . 79

6.1.2. Framework . 80

6.1.3. Algorithms . 81

6.1.4. Seed Fact Selection . 82

6.1.5. System Implementation . 83

User Interface . 84

6.1.6. Demonstration Scenarios 90

7. Applications 93
7.1. Time Aware Querying of Temporal Knowledge 93

7.1.1. Query Processing . 93

7.1.2. Use Case Scenario . 95

7.2. Summarization . 96

7.2.1. Problem Statement and Contributions 96

7.2.2. System Architecture . 99

7.2.3. Evidence Aggregation Model 100

Aggregating Events into State Histograms 100

Extracting High-Confidence Intervals 101

7.2.4. Sentence Generation and Reordering 103

Knowledge Ordering . 103

xxiii

Contents

Sentence Generation and Redundancy Elimination 105
7.2.5. Experiments . 106

Experimental Setup . 106
Example Summaries . 108
Experimental Results . 111

7.2.6. Conclusions and Outlook 113

8. Conclusions 115

Bibliography 117

A. Rules and Queries 131

B. Convexity Proof 133

List of Figures 135

List of Tables 137

xxiv

Chapter 1.

Introduction

1.1. Motivation

In recent years, automated fact extraction from Web contents has seen
significant progress with the emergence of freely available knowledge bases,
such as DBpedia [3], YAGO [62], KnowItAll [21]/TextRunner [89, 20],
Kylin/KOG [86] or ReadTheWeb [13, 12]. These knowledge bases are
constantly growing and contain currently (by example of DBpedia) several
million entities and half a billion facts about them. This wealth of data supports
the information needs of advanced Internet users by raising queries from
keywords to entities. This enables queries like “Who is married to Prince
Charles?” or “Who are the teammates of FIFA World Footballer Lionel Messi at
FC Barcelona?”.

However, factual knowledge is highly ephemeral: people get married and
divorced, politicians hold positions only for a limited time, and soccer players
transfer from one club to another. Let us take YAGO as an example to show
the purpose of this thesis. YAGO knows the facts in Table 1.1, which shows an
excerpt from the YAGO knowledge base about David Beckham and Ronaldo.
Obviously, these facts are time-agnostic. What if we want to know the timespan
of Beckham and Ronaldo’s career in Real Madrid? Who is older? Beckham or
Ronaldo? Have they ever been teammates? For the purpose of answering these
questions, we aim at creating time-aware knowledge with validity time intervals
of facts. For the example we could obtain the temporal knowledge in Table 1.2.

Clearly the temporal expressions are at diverse granularities. Some may even
not be accurate especially when temporal information is retrieved from noisy

1

Chapter 1. Introduction

Subject Relation Object
David_Beckham isBornIn London

David_Beckham playsForClub Real_Madrid_C.F.

David_Beckham playsForClub Los_Angeles_Galaxy

David_Beckham winsAward ESPY_Award

David_Beckham winsAward FIFA_100

David_Beckham winsAward La_Liga

Ronaldo isBornIn Rio_de_Janeiro

Ronaldo playsForClub Real_Madrid_C.F.

Ronaldo playsForClub A.C._Milan

Ronaldo winsAward FIFA_100

Ronaldo winsAward Bravo_Award

Ronaldo winsAward La_Liga

Table 1.1.: An excerpt from the YAGO knowledge base about David Beckham
and Ronaldo.

sources. The inaccuracy comes from imperfect extraction methods, careless
authors of information sources, etc. For example, we might extract multiple
start time points for David_Beckham playing for Los_Angeles_Galaxy, such as
2007, 2006-Dec-15 and 2007-Jan. When is the exact start time point?

Some interesting facts can be inferred with the temporal facts in Table 1.2.
For example, “Beckham won La_Liga during the time he was in Real_Madrid”.
The teammate relationship between Beckham and Ronaldo can be inferred as
follows:

David_Beckham playsForClub Real_Madrid_C.F. from 2003 to 2007

David_Beckham playsForClub Los_Angeles_Galaxy from 2007 to NOW

Ronaldo playsForClub Real_Madrid_C.F. from 2002 to 2007

Ronaldo playsForClub A.C._Milan from 2007 to 2008

Therefore, Beckham and Ronaldo were teammates of Real_Madrid during the
time from 2003 to 2007. Also they won La_Liga together for Real_Madrid by
considering the additional facts:

David_Beckham winsCup La_Liga in 2007

Ronaldo winsCup La_Liga in 2007

2

1.2. Research Challenges

Subject Relation Object Start End

David_Beckham isBornIn London 1975-05-02 1975-05-02

David_Beckham playsForClub Real_Madrid_C.F. 2003 2007

David_Beckham playsForClub Los_Angeles_Galaxy 2007-01 NOW

David_Beckham winsAward ESPY_Award 2004 2004

David_Beckham winsAward ESPY_Award 2008 2008

David_Beckham winsAward FIFA_100 2004-03-04 2004-03-04

David_Beckham winsCup La_Liga 2007 2007

Ronaldo isBornIn Rio_de_Janeiro 1976-09-18 1976-09-18

Ronaldo playsForClub Real_Madrid_C.F. 2002-01 2007

Ronaldo playsForClub A.C._Milan 2007 2008

Ronaldo winsAward FIFA_100 2004 2004

Ronaldo winsAward Bravo_Award 1995 1995

Ronaldo winsAward Bravo_Award 1998 1998

Ronaldo winsCup La_Liga 2007 2007

Table 1.2.: An excerpt from the YAGO knowledge base with temporal
knowledge about David Beckham and Ronaldo.

We may further obtain the additional facts from a variety of sources:
David_Beckham isBornIn London on 1975-05-02

David_Beckham isBornIn Paris on 1975-05-02

David_Beckham isBornIn Berlin on 1975-05-02

Beckham can only be born in one place on one day, so what is the birth place of
Beckham? Obviously, this needs some form of data cleaning or reasoning on the
uncertain information.

Relations have different flavors with respect to time aspect. Facts in relations
like isBornIn, winsAward and winsCup are valid on one time point, whereas other
relations like playsForClub are valid within a time period between the start and
end time point.

The construction of a temporal knowledge base is a non-trivial task. We
summarize the challenges in the next section.

1.2. Research Challenges

The automatic construction of a temporal knowledge base is challenging for
various reasons.

3

Chapter 1. Introduction

Diverse Data Sources. Data sources are in various formats: structured, semi-
structured and unstructured. Semi-structured and structured text are easier to
be handled by regular expressions. However, the irregularities and ambiguities
of unstructured text, typically free natural language text, is difficult to define
rules.

Reconciliation of Facts. The inconsistency of different sources and imperfect
extraction methods cause noises in extracted facts. It is thus necessary to remove
these noises and derive reasonable new facts. In particular, each temporal fact
requires inferring the valid time interval from its multiple observations which
might be in different granularities: year, month and day. It is thus desirable to
design a comprehensive model to reconcile all the temporal fact observations,
especially to deal with the different kinds of relations which are valid on a time
point or during a time period. Afterwards, the valid time interval is helpful for
reasoning new temporal facts.

High Precision vs. High Recall. The aggressive extraction methodology
usually results in a large amount of facts but lower precision; while the
conservative method ensures a better precision but lower recall. The trade off
between the precision and recall is thus a tricky problem. On the other hand,
increasing input manually labelled seed facts is able to increase recall.
However, it is highly desirable to introduce as little human effort as possible.

Interactive Knowledge Harvesting. Acquiring high-quality (temporal) facts
for knowledge bases is a labor-intensive process. Although there has been
recent progress in the area of semi-supervised fact extraction, these approaches
still have limitations, including a restricted corpus, a fixed set of relations to be
extracted or a lack of assessment capabilities. It is thus necessary to provide
users with tools that allow them to interactively explore knowledge from their
own documents.

Querying & Visualization. SPARQL is used for querying the time invariant
knowledge bases. It is desirable to design a querying language for temporal
knowledge bases, and provide a proper visualization tool to illustrate temporal
knowledge.

4

1.3. Contributions

1.3. Contributions

In this thesis, methods and tools for harvesting temporal facts from both semi-
structured and textual sources are presented. Our system addresses the issues
pointed out in the previous section. Our contributions are briefly summarized
as follows.

1. Timely YAGO: A temporal knowledge base called Timely YAGO
(T-YAGO) which extends YAGO with temporal attributes is built. We
define a simple RDF-style data model to support temporal knowledge.
Most of the temporal facts are extracted from semi-structured data (e.g.,
infoboxes, categories and lists of Wikipedia articles) via rule-based
method. A SPARQL-like time aware query language is provided for
querying. The results are shown via a timeline visualization tool. Our
Timely YAGO knowledge base system was published in the proceedings
of the 13th International Conference on Extending Database Technology
(EDBT 2010) [85].

2. PRAVDA: To be able to harvest as many temporal facts from free-text as
possible, we develop a system PRAVDA. It utilizes a graph-based
semi-supervised learning algorithm, which guarantees a high recall and
comparable precision with limited human created seeds. Afterwards, an
Integer Linear Program is used to clean out false hypotheses that violate
temporal constraints. We also attempt to harvest spatio-temporal facts to
track a person’s trajectory. Our PRAVDA temporal knowledge harvesting
system was published in the proceedings of the 20th ACM Conference on
Information and Knowledge Management (CIKM 2011) [83], the
proceedings of the conference of the 50th Annual Meeting of the
Association for Computational Linguistics (ACL 2012) [81] and the
proceedings of the 20th International Conference on World Wide Web
(WWW 2011) [84].

3. PRAVDA-live: A user-centric interactive knowledge harvesting system,
called PRAVDA-live, is developed for extracting facts from natural
language free-text. It supports fact extraction of user-defined relations
from ad-hoc selected text documents and ready-to-use RDF exports.

5

Chapter 1. Introduction

Further features include support for temporally annotated relations,
custom or mined extraction-patterns, and a constraint solver able to clean
extracted facts by inter-fact constraints. Our interactive knowledge
harvesting system was published in the proceedings of the 21th ACM
Conference on Information and Knowledge Management (CIKM
2012) [80].

4. T-URDF: We present a simple and efficient representation model for
time-dependent uncertainty in combination with first-order inference
rules and recursive queries over RDF-like knowledge bases. We adopt the
common possible-worlds semantics known from probabilistic databases
and extend it towards histogram-like confidence distributions that
capture the validity of facts across time. Query processing is done via a
Datalog-like, rule-based inference engine, which employs the lineage of
derived facts for confidence computations to remain consistent with the
possible-worlds model. Our T-URDF temporal reasoning system was
published in the proceedings of the Fourth International VLDB workshop
on Management of Uncertain Data (MUD 2010) in conjunction with
VLDB 2010 [82].

All of these components are fully implemented systems, which together form
an integrative architecture. PRAVDA and PRAVDA-live aim at gathering new
facts (particularly temporal facts), and then T-URDF reconciles them. Finally
these facts are stored in a (temporal) knowledge base, called T-YAGO. A
SPARQL-like time-aware querying language, together with a visualization tool,
are designed for T-YAGO. Temporal knowledge can also be applied for
document summarization.

1.4. Thesis Outline

We present temporal knowledge harvesting from both semi-structured data
and free-text in Chapter 4. Chapter 5 describes how to clean and reason on the
extracted temporal facts. Chapter 6 demonstrates the user-centric interactive
knowledge harvesting system – PRAVDA-live. Finally Chapter 7 shows
applications of temporal knowledge bases, including a time-aware

6

1.4. Thesis Outline

SPARQL-like query language for temporal knowledge and a document
summarization system. The four main contributions, introduced in Section 1.3,
are presented throughout these chapters. T-YAGO is presented in both
Section 4.2 and Section 7.1.1. Section 4.3 and Section 5.2 discuss the whole
framework of PRAVDA — t-fact observation extraction and cleaning. The
entire Chapter 6 demonstrates PRAVDA-live. T-URDF is described in
Section 5.3. We summarize our findings and highlight future research
directions in Chapter 8.

7

Chapter 1. Introduction

8

Chapter 2.

Related Work

This chapter briefly reviews the literature on knowledge harvesting, temporal
information extraction, label propagation, temporal and probabilistic databases,
interactive systems, and summarization.

2.1. Knowledge Harvesting

Several projects have addressed the automatic construction of large knowledge
bases.

Semi-structured approaches. Projects such as DBpedia [3] and
YAGO [62, 29] automatically extract facts from semi-structured elements of
Wikipedia, like infoboxes and categories. DBpedia uses attribute names in
infoboxes as relation names instead of defining accurate relations with ranges
and domains. Different relation names may refer to the same relation (e.g.,
length, length-in-km, length-km). YAGO defines relations with ranges and
domains, and represents them in a canonical manner. YAGO combines the high
quality of facts extracted from Wikipedia with the clean taxonomy of the
concepts from WordNet.

Free-text approaches. Relation extraction from text aims at detecting and
classifying semantic relationships between entities. Many machine learning
methods have been devised to address this task. Supervised learning methods,
such as [17, 95], suffer from the need for large amounts of manually labelled
training data. Semi-supervised methods, such as [94], require less labelled data.

9

Chapter 2. Related Work

The method of [15] first attempted to apply graph-based label propagation to
relation extraction. Recently distant supervision for relation extraction, such as
[47, 88], has become popular. Instead of using a labelled corpus, the input of
distant supervision only requires an existing knowledge base of seed facts.
These advances in information extraction and the success of knowledge
communities like Wikipedia have enabled the largely automated construction
of fairly comprehensive knowledge bases. The KnowItAll project [21] focuses
on automating the unary or binary fact extraction task on a very large scale
manner. The ReadTheWeb project proposes an approach towards fact
extraction based on coupled semi-supervised learning for information
extraction (IE) : NELL [12, 13]. It exploits the ensemble-learning method with
coupled pattern learners for retrieving both unary and binary facts. TextRunner
project [20, 86] targets at fact extraction in an open-domain way, which aims at
retrieving instances of all meaningful relations without pre-specification.
However, all of these projects do not disambiguate entity mentions to entities.
Kylin/KOG [86] aims at building a knowledge base from not only infoboxes
and categories of Wikipedia articles, but also free-text. PROSPERA [49] designs
an n-gram-itemsets based patterns, and applies frequent itemset mining to
associate confidence to each pattern. Then the MaxSat-based reasoning is
exploited to decide the true fact candidates. SOFIE [63] unifies fact extraction
and cleaning into one framework. This framework includes word
disambiguation, pattern matching and rule-based reasoning on the ontology.
However all of the above mentioned projects do not consider temporal
knowledge harvesting.

None of the aforementioned knowledge bases has a temporal dimension.
They are all designed for time-invariant knowledge and built as snapshots in
time. For example, while several of them know that people can have multiple
spouses, none of them capture the time intervals for the various marriages.
Birth and death dates of people are available, though, as they can be extracted
at the level of base-facts such as Diego_Maradona isBornOn
30-October-1960. This is simpler than the kind of temporal facts that are
tackled in this thesis.

10

2.2. Temporal Information Extraction

2.2. Temporal Information Extraction

Temporal knowledge as a first-class citizen in knowledge bases has been
addressed solely by few prior projects: TOB [92], TIE [43], and CoTS [68].
TOB [92] focuses on extracting business-related temporal facts such as terms of
CEOs. It uses an NLP machinery, with deep parsing of every sentence, and
machine-learning methods for classifiers for specifically interesting relations. It
workes reasonably well, but is computationally expensive, requires extensive
training, and cannot be easily generalized to other relations. TIE [43] uses
training data with fine-grained annotations to learn an inference model based
on Markov Logic. This involves using consistency constraints on the relative
ordering of events. This machinery is computationally expensive and cannot
easily be scaled up. CoTS [68] determines the begin and end dates of temporal
facts via a classifier. Afterwards an Integer Linear Program (ILP) infers the
validity-intervals of facts based on intra- and cross-relation temporal
constraints. The work by [45, 65] studies the properties of relations. [45] studies
the temporal bounds of a certain relation. For instance, it can learn that a
person cannot start a job at age two or get married before his/her birth. [65]
analyzes whether a relation is time-dependent. For example, the isBornIn
relation is time-invariant since one’s birth place never changes. However, these
work do not focus on temporal fact extraction.

The NLP community has event extraction tasks in its SemEval workshop
series [74], using representations such as TimeML and reference corpora such
as Timebank [10]. The TARSQI toolkit [75] provides a suite of techniques for
detecting events and temporal expressions, based on a dictionary of
time-related adverbial phrases and regular-expression matching. These work
mainly focus on detecting events (e.g., “her birthday”), relative expressions
(e.g., “last Sunday”), and time-order relations (before, after, during, etc.). [87]
uses a small set of seeds to learn pattern rules for various complex relations,
such as joining (leaving) a job. The algorithm works on parsed input data,
which requires preprocessing by a dependency parser. Moreover, temporal
mentions associated with these relations are not considered. [40] proposes a
new approach to parse the temporal dependency structures among all the
events in a text. These basic tasks are still far from actual fact extraction.

Temporal facts or temporal information are also considered in other fields. For

11

Chapter 2. Related Work

instance, there is recent awareness of temporal IR: ranking of search results for
keyword queries with temporal phrases [7, 50].

2.3. Label Propagation

Label propagation (LP) belongs to a family of graph-based semi-supervised
learning methods. The first LP method [96] assumed that initial labels are fully
correct. This assumption is inappropriate for our setting, as the seed patterns
are not fully correct, but only associated with a confidence value. The
Adsorption algorithm [4] copes with noisy initial labels, and is successfully
used in video recommendation. The MAD algorithm [66] optimizes the
Adsorption algorithm. The MADDL algorithm [66] incorporates possible
dependencies on different labels into the optimization function. However,
these dependencies must be symmetric, in contrast to asymmetric inclusion
constraints introduced in Section 4.3 of this thesis. In a recent survey [67], MAD
is regarded as the most effective label propagation algorithm across various
data sets and experimental conditions. The nature of label propagation, whose
solution can be iteratively approximated by the Jacobi method, makes it nicely
scalable [4]. [52] describes a scalable implementation of label propagation on
MapReduce to deal with Web-scale graphs.

2.4. Temporal and Probabilistic Databases

Temporal reasoning has a fairly long history through works in logics and AI,
most notably in the seminal work by Allen et al. [23]. Work on temporal
databases dates back to the early 1980’s [33]. Different semantics for associating
time with facts have been defined. In the context of this thesis, we use the
valid-time semantics, where the time recorded for facts in a database captures
the reality of the world being modeled by the database. Extensions for
traditional data models have been explored to accommodate temporal data in
an efficient manner, both in terms of storage space and query processing. There
has also been an extensive effort to develop query languages for querying
temporal data. Most of these efforts were attempts to modify SQL to reduce the
complexity of temporal queries [69]. There is a wealth of research on

12

2.5. Interactive Systems

probabilistic databases and the management of uncertain data. The book
Probabilistic Databases [64] discusses the state of the art in representation
formalisms and query processing techniques for probabilistic data. [32] is a
state-of-the-art probabilistic database management system. [6, 57] present a
framework for dealing with uncertain data and data lineage. This approach
allows for the decoupling of data and confidence computations when
processing queries over uncertain data [57], allowing for a wider range of
query plans to be used while still maintaining the correctness of confidence
computations. For dealing with probabilistic reasoning in the context of
information retrieval, [24] presents a probabilistic version of Datalog.
[25, 31, 73] present probabilistic extensions of RDF and discuss how SPARQL
queries over such an extension can be supported. However, no notion of
temporal reasoning has been considered in these contexts.

2.5. Interactive Systems

Freebase [11] is very related to our work, since users are encouraged to add
facts. Nevertheless, there is no support for extraction from text documents.
Crowdsourcing techniques have been applied to knowledge acquisition. Open
Mind Common Sense (OMCS) [60] project acquires common sense knowledge
from volunteers. Verbosity [76] achieves the same purpose in the form of an
enjoyable game. [61] connects the result data from Verbosity to the OMCS
project. CrowdER [79] develops a hybrid human-machine approach for entity
resolution, where the machine passes over the data to generate the most likely
matching pairs for people to verify. [35] exploits the wisdom of crowds to
derive taxonomies. CrowdMap [56] studies the use of crowdsourcing for
ontology alignment. [91] empirically studies the impact on precision and recall
of changing the size of two types of resources: labelled data from distant
supervision and crowdsourcing. The crowd is employed on collecting seed
facts by sampling the training data. There are other crowdsourcing activities
for data annotation such as KiWi [58] or Semantic Wiki [41]. However, those
efforts do not aim at fact extraction for knowledge bases in terms of clarity and
scale. Especially, none of the systems is designed for users performing fact
extraction on any relations of interest.

13

Chapter 2. Related Work

2.6. Summarization

The two main approaches of document summarization strategies are
abstractive and extractive summarization techniques [27]. Most of the existing
work in abstractive document summarization usually considers advanced
language generation techniques to produce a grammatical summary [18]. Some
employ a form of Nature Language Generation (NLG) [46]. Some other
approaches construct abstractive summaries by using the Cut-And-Paste
algorithm [34], which compresses sentences by removing redundant
information. Similar work use corpus-based methods for sentence
compression [39]. In recent years, several parsing-free abstractive
summarization strategies have been proposed. Opinosis [26] is proposed to
generate summarization from redundant data sources by building a single
graph-based representation. Similarly, a graph-based multi-sentence
compression approach has been proposed in [22].

Extractive document summarization frameworks, which usually extract
summaries based on machine learning methods, can be categorized into
unsupervised methods and supervised methods. For the unsupervised
methods, MEAD [51] is proposed based on a centroid-clustering-based
strategy. After the PageRank method was proposed, several Markov Random
Walk based methods [19, 77] were proposed to rank sentences by their saliency.
A HITS-based ranking algorithm [90] has also been proposed for document
summarization.

After topic models [9] were proposed, LDA has also been applied to
document summarization [2, 78] based on various probabilistic methods for
topic detection and clustering. Other related methods [14] consider the
summarization task as a prediction problem based on a two-step hybrid
generative model. Topic models could deal with sentence understanding at the
topic-level by extracting latent semantic components. However, for a
query-biased summarization task, usually those latent topics could not
represent what “topic” the user exactly intends to search. For the supervised
methods, HMM-based [16] and CRF-based algorithms [59] have proved to be
effective in extractive document summarization. Meanwhile, structured
SVM-based classifiers have also been applied [42] to document summarization,
with the aim of enhancing the diversity, coverage and balance for the summary

14

2.6. Summarization

result.
All these work focus on documents in natural language text, which is

different with our strategy by applying summarization for both
semi-structured and unstructured contents on the web. Moreover, these
extractive methods only extract sentences from unstructured data, however,
our approach represents the semantics from both unstructured and
semi-structured data.

There are also some works that aim to summarize factual information from a
knowledge base. [93] defines the “RDF sentence” to summarize an ontology by
ranking the ontology graph. MING [38] extracts an “informative” subgraph for
given entity nodes in a knowledge base. [72] retrieves the salient type
properties for a certain entity. These work only consider the existing
knowledge base, and the “summary” is in the form of a subgraph or type
properties, while our work automatically harvests the knowledge from data
sources and represents the summary of queried relations in a nicely
(chronologically) ordered set of natural-language sentences.

15

Chapter 2. Related Work

16

Chapter 3.

Knowledge Representation

3.1. Relation and Fact Types

We introduce the distinction between base relations (without temporality) and
temporal relations (including temporality). Base relations indicate the
relationships between two entities without any temporal information. A base
relation Rb is commonly described with a type signature, sig(Rb) = (TYPE1,
TYPE2), meaning that the relation Rb only holds its semantic meaning for two
entities whose types are TYPE1 and TYPE2, respectively. A base relation
contains a set of base facts. Each base fact is in the form of (ei, ej), where ei and
ej indicate two entities whose types are consistent with the corresponding base
relation’s type signature. For example, worksForClub is a base relation with
signature (PERSON, CLUB). The base fact (Lionel_Messi,

FC_Barcelona) holds for the worksForClub relation, where Lionel_Messi is
a PERSON entity and FC_Barcelona is a CLUB entity.

Temporal relations indicate the relationships between two entities at specific
time points or during particular timespans. Similar to base relations, a
temporal relation is always associated with a type signature indicating the
pertinent entity types. A temporal relation contains a set of temporal facts in
the form of (ei, ej)@tk, where ei and ej are two entities with pertinent types, and
tk indicates a temporal mention (either a time point or a timespan). For
example, joinsClubTemp is a temporal relation with type signature (PERSON,
CLUB). The temporal fact (David_Beckham, Real_Madrid)@2005 holds
for the joinsClubTemp relation, indicating that David_Beckham joined
Real_Madrid in 2005.

17

Chapter 3. Knowledge Representation

A fact candidate is a pair of entities that occurs in a textual source (plus a time
stamp in the case of temporal fact candidates), where the pair of entities must
satisfy the type signature of any of the relations of interest. Once a fact
candidate is labelled with a particular relation R, it is called a valid observation
and added to the set of fact observations that are returned as the result of the
knowledge harvesting phase. In particular, we distinguish the base fact
observation (b-observation) with the temporal fact observation (t-observation).
After the knowledge cleaning stage (see Chapter 5), noisy fact observations are
filtered out. The remaining clean fact observations are called true facts. Also we
distinguish the base fact (b-fact) with the temporal fact (t-fact) respectively.

3.2. Time Points, Intervals, and Histograms

A time point t denotes the smallest time unit of fixed granularity. We have a
discrete series of ordered time points 0, . . . ,N (with a special designator N
which marks the end of the time range we consider). These time points could
represent any desired—but fixed—granularity (e.g., years, days, or seconds, or
even transaction-based counters).

A validity interval is represented as a left-closed, right-open or right-closed,
interval, which is bounded by two time points (e.g., [1990, 2010)), thus
denoting a discrete and finite set of time points. This way, we are able to
support both range-queries (i.e., “Is this fact valid in the range of [1999, 2006)?”)
and snapshot queries (i.e., “Is this fact valid at time point 2006?”). A snapshot
query can then simply be seen as a special-case range query by using an
interval consisting of just a single time point (e.g., [2006, 2006]). Every interval
has a corresponding confidence value associated with it, which denotes the
probability of the fact being valid for the given interval. Multiple,
non-overlapping intervals can be concatenated to form a time histogram H.
Intervals in a time histogram do not necessarily have to be contiguous. A gap
between two consecutive intervals is equivalent to an interval with a
confidence value of 0.

18

3.3. Event and State Relations

3.3. Event and State Relations

For t-facts, we further distinguish between event and state relations. In an event
relation, a fact is valid at exactly one time point. For example, Nicolas_Sarkozy
isIn Beijing is valid on 25-Aug-2011 (or 2011, if the time point is available at a
coarser granularity only). Actually, President Sarkozy visits China frequently.
This results in multiple different facts of an event relation, each associated with
different time points. By default, facts in an event relation are thus associated
with a validity interval consisting of only one time point. For capturing
uncertainty, however, validity intervals (and entire histograms) may cover
more than one time point, as in the following example:

winsCupForClub(Beckham,Champions_League)[1999, 2001) :0.8

For simplicity, we assume a uniform distribution for the probability of a fact
within the interval in this case. For example, for the interval [1999, 2001), which
covers 2 time points with a confidence of 0.8, each time point in the interval
would have a probability of 0.4. The confidences of all intervals (and implicitly
also the confidences of the corresponding time points) must form a proper
probability distribution, i.e., the sum of all intervals’ confidences may be at
most 1.

For a state relation, a fact is valid at every time point of an interval. Hence, all
time points in the interval are (implicitly) associated with the probability of the
interval, as in the following example:

playsForClub(Beckham,Manchester_United)[1992, 2003) :0.3; [2003, 2007) :0.4

Here, for the interval [1992, 2003), which covers 12 time points with a confidence
of 0.3, the fact is valid at each time point with probability of 0.3; and for the
interval [2003, 2007), the fact is valid at each time point with probability of 0.4.
For facts in a state relation, the confidences of all intervals must form a proper
probability distribution.

For both event and state relations, the sum p of confidences for the intervals
in a histogram may be less than 1. In general, a fact is invalid for all time points
outside the range of time points captured by the histogram with probability

19

Chapter 3. Knowledge Representation

1 − p. Moreover, different operations for slicing and coalescing intervals apply,
depending on whether a fact belongs to either an event or a state relation.

The extraction of time periods for state facts is challenging, because there are
typically only few occurrences of facts in input sentences with explicit time
intervals. Ideally, there are sentences like “Maradona had a contract with FC
Barcelona from July 1982 to June 1984”. However, such explicit sentences are
rare in both news and web sources. Instead, we can find cues that refer to the
begin, end, or some time point during the desired interval. For example, news
articles would often mention sentences such as “Maradona did not play well in
the match against Arsenal London” with a publication date of 15-May-1983 (a
time point which is supposed to be contained within the corresponding state
fact’s interval). Thus, we also focus on time points (begin, during and end
events) for the extraction step and later aggregate these into intervals of
state-oriented t-facts.

3.4. Temporal Knowledge Representation

A widely used formalism in knowledge representation is OWL. However, it is
computationally expensive; instead we use a simpler RDF-style model. As in
OWL and RDF, all objects are represented as entities in the YAGO data model.
Two entities can stand in a relation, and we call this relational instance a fact.
All facts are represented by unary or binary relations. Unary relations capture
memberships in semantic types such as: David_Beckham instanceOf
Soccer_Player. Binary relations like isBornOn, isBornIn, isMarriedTo, or
winsAward hold between entities of specific types; an example is:

David_Beckham winsAward UEFA_Club_Player_Of_The_Year

This fairly simple model has proven to be very valuable for knowledge
exploration and querying. However, facts actually have associated time
information. For example, “David Beckham has won the UEFA Club Player of
the Year” in “1999”. Therefore, in T-YAGO, we introduce the concept of
temporal facts. A temporal fact is a relation with an associated validity time.
The fact may be valid at a time point or within a time interval. In the current
YAGO ontology, temporal facts cannot be directly represented. Facts are
limited to binary relations while temporal facts have more than two arguments.

20

3.4. Temporal Knowledge Representation

To support temporal facts in a binary relation model, we decompose the n-ary
fact into a primary fact and several associated facts. We assign a fact identifier
to the primary fact, and then the associated facts are represented as the relation
between the identifier and the remaining arguments. For example, for the
ternary relation between David_Beckham, the
UEFA_Club_Player_Of_The_Year, and 1999, we use the original
time-agnostic fact as a primary fact with identifier #1. For temporal facts valid
at a time point, we use the relation on to describe the validity time. Then we
represent the temporal property of the primary fact as: #1 on 1999. For temporal
facts that are valid during a time period, we use two relations to represent the
interval: the relation since for the begin time point, and the relation until for the
end time point. For example, the fact that Beckham played for Real Madrid
from 2003 to 2007 is represented as:

#2 : David_Beckham playsForClub Real_Madrid
#2 since 2003
#2 until 2007

Sometimes it is impossible to extract accurate time points, say the exact day,
and sometimes we may know only the begin or the end of a fact’s validity
interval but not both. For these situations, we introduce a data type for time
points with the earliest and latest possible time to constrain the range of the
true time point. For example, if we know that Beckham started playing for Real
Madrid in July 2003 and terminated his contract in 2007, we would add the
temporal facts:

#2 since [1− July− 2003, 31− July− 2003]

#2 until [1− January− 2007, 31−December− 2007]

Figure 3.1.: Representation of temporal facts.

21

Chapter 3. Knowledge Representation

If we later learn that his contract with the team Los Angeles Galaxy started on
July 1, 2007, and assuming a constraint that one must not play for two clubs at
the same time, we could refine the until relation for #2 into:

#2 until [1− January− 2007, 30− June− 2007]

Figure 3.1 illustrates our representation of validity times of facts.

22

Chapter 4.

Temporal Knowledge Harvesting

The world is dynamic: periodic events like sports competitions need to be
interpreted with their respective time points, and facts such as coaching a
sports team, holding political or business positions, and even marriages do not
hold forever and should be augmented by their respective timespans. This
chapter addresses the problem of automatically harvesting temporal facts with
such extended time-awareness. We describe how we gather temporal facts
from semi-structured and free-text sources.

4.1. Problem Statement and Contributions

4.1.1. Motivation

Who were the teammates of the legendary Argentinean player Diego
Maradona? How often has the pop singer Madonna been married, and to
whom? Questions like these often arise from the information needs of Internet
users, but are not supported by keyword-based search engines. Instead,
answering them requires an understanding of entities and relationships
embedded in Web contents, or even better, a knowledge base that contains facts
about people, organizations, locations, etc. In the last few years, such
knowledge bases have indeed been built and made publicly accessible, for
example: DBpedia [3], YAGO [62], TextRunner [20], ReadTheWeb [12], the
commercial knowledge portals freebase.com and trueknowledge.com, the
computational knowledge engine wolframalpha.com, the entity search engine
entitycube.research.microsoft.com, and others. Most of these have been
automatically compiled, either by integrating structured sources (e.g.,

23

Chapter 4. Temporal Knowledge Harvesting

geospecies.org, geonames.org, world factbook, etc.), by harvesting
semi-structured sources such as Wikipedia infoboxes, lists, and categories, or
by information extraction from Web pages. Some of them involve a substantial
amount of manual curation for quality assurance. Moreover, there is a strong
momentum towards semantically inter-linking many knowledge sources into
the Linked Data cloud [28], see linkeddata.org.

However, the world is highly dynamic and nothing lasts forever! Knowledge
evolves over time, and many facts are fairly ephemeral, e.g., winners of sports
competitions, and occasionally even CEOs and spouses. In addition, many
information needs by advanced users require temporal knowledge. For example,
consider the following variations of the above example questions: Who were
the teammates of Diego Maradona during the 1990 FIFA World Cup? When did
Madonna get married, when did she get divorced? None of these questions are
supported by existing knowledge bases. The problem that we tackle in this
thesis is to automatically distill, from news articles and biography-style texts
such as Wikipedia, temporal facts for a given set of relations. By this we mean
instances of the relations with additional time annotations that denote the
validity point or span of a relational fact. For example, for the winsAward
relation between people and awards, we want to augment facts with the time
points of the respective events; and for the worksForClub relation between
athletes and sports clubs, we would add the timespan during which the fact
holds. This can be seen as a specific task of extracting ternary relations, which
is much harder than the usual information extraction issues considered in prior
work.

4.1.2. Contributions

Knowledge harvesting enables the automatic construction of large knowledge
bases. In this chapter, we present the methods of harvesting temporal facts
from semi-structured and free-text sources. Also we made a first attempt to
harvest spatio-temporal knowledge from news archives to construct trajectories
of individual entities for spatio-temporal entity tracking.

In summary, the work in this chapter makes the following contributions:

• handcrafted rules for extracting temporal facts from semi-structured
textual sources (see Section 4.2),

24

4.2. Temporal Knowledge Harvesting from Semi-structured Text

• a new model for distilling temporal facts from textual sources like news or
biographies (see Section 4.3),

• an algorithm for extended label propagation with consideration of
inclusion constraints (see Section 4.3.3),

• an algorithm for distilling spatio-temporal knowledge from textual
sources (see Section 4.4),

• experimental studies for knowledge harvesting from free-text sources,
comparing the extraction of base facts (without time) against a
state-of-the-art baseline [49], and demonstrating the effectiveness of
harvesting temporal facts for a variety of relations from the domains of
soccer and celebrities (see Section 4.3.4),

• the evaluation for the spatio-temporal knowledge harvesting on the 20
years’ New York Times news article corpus shows that our methods are
effective and scalable (see Section 4.4.3).

4.2. Temporal Knowledge Harvesting from

Semi-structured Text

This section presents methods for constructing a temporal extension of the
YAGO knowledge base [62]. Currently YAGO is built upon facts extracted from
semi-structured infoboxes and category information in Wikipedia, and it is
unified with the taxonomic class system of WordNet. Infoboxes are based on
templates which are re-used for important types of entities such as countries,
companies, sportsmen, politicians, etc. This allows YAGO to apply rule-based
extraction for popular infobox attributes (the attributes in the "long tail" are
typically skipped as they are highly diverse and noisy). Like YAGO, our
approach to temporal fact extraction also focuses on the semi-structured
elements in Wikipedia. However, as we need to detect also the validity time of
each fact, our rules are more sophisticated than those of the original YAGO. We
use regular expression matching for this purpose. For higher coverage, we also
analyze additional elements in Wikipedia articles, most notably lists such as
awards which contain many meaningful temporal facts. Here again, regular

25

Chapter 4. Temporal Knowledge Harvesting

Example Text Regular Expression Type

1993-2003 [\d]{4}[-]{1}[\d]{4} Time Period

1000 BC
(-?\d{1,10})[\W_&&[^-]]*+

Time Period
(?:BC|B\.C\.|BCE|AC|A\.C\.)

2 May 1975

(\d{1,2})[a-z]{0,2}

Time Point[\W_&&[^-]]*+MONTH(\d\d)

[\W_&&[^-]]*+(-?\d{1,10})

[[Manchester United F.C. \[\[([^\|\]]+)(?:\|
Entity

|Manchester United]] ([^\]]+))?\]\]

Table 4.1.: Examples of regular expressions for identifying temporal expressions
and entities.

expressions tailored to specific types of lists yield high return. Table 4.1 shows
some regular expressions for identifying temporal expressions and entities
from the source code of Wikipedia articles. In addition, our rule-based
techniques can also bootstrap learning-based methods applied on the
natural-language text of the full articles. For the latter, the lack of manually
labelled training data is often the bottleneck if not a showstopper. Our rich
collection of temporal facts in T-YAGO can serve as training data and reduce
the need for expensive hand-labeling.

For illustration, Figure 4.1 lists the infobox and the honors list of David
Beckham. For example, “Senior career” attributes are extracted as
playsForSeniorClub facts, yielding the facts
“David_Beckham playsForSeniorClub Manchester_United” and
“David_Beckham playsForSeniorClub Real_Madrid”. YAGO can accept only one
of these two fact candidates, as it enforces consistency constraints like a
functional dependency from SoccerPlayer to SoccerClub (a player cannot
simultaneously play for two clubs). The reason for this deficiency is that YAGO
lacks temporal information. In T-YAGO, we can accept both facts if we can
validate that they refer to disjoint time periods. We identify time points or
intervals like 1993-2003 by pattern matching. This yields temporal facts like
“#3 : David_Beckham playsForSeniorClub Manchester_United”,

26

4.2. Temporal Knowledge Harvesting from Semi-structured Text

Figure 4.1.: Temporal facts in infobox and honors list.

“#3 since 1993”, and “#3 until 2003” (with simplified notation, leaving out the
[earliest, latest] part for brevity). Other time-annotated attributes are extracted
in a similar way. From the honors lists we also obtain valuable knowledge such
as “#4 : David_Beckham winsAward BBC_Sports_Personality_of_Year” and
“#4 on 2001”.

The category systems for Wikipedia articles also contain temporal facts like
those highlighted in Figure 4.2. We identify time points in category names and
map them onto the timeline. The remaining part of the category name is treated
as the entity. For example, from the first category in Figure 4.2 we extract the
temporal fact “#5 : David_Beckham playsAs FIFA_World_Cup_players”,
“#5 on 1998”.

T-YAGO contains around 200,000 temporal facts from the sports domain.
Among them, about 70,000 facts have been extracted from Wikipedia categories
and lists embedded in articles. For evaluation, we randomly sample 50 facts for
each relation. The precision of t-facts in relations of worksForTeam (including
playsForYouthClub, playsForSeniorClub, playsForNationalTeam, and managesTeam),
participatedIn, isBornIn and diedIn is above 90%. The precision of t-facts in
winsAward is around 80%, as the facts are from lists which are not clean and

27

Chapter 4. Temporal Knowledge Harvesting

Categories: 1998 FIFA World Cup players | 2002 FIFA
World Cup players | 2006 FIFA World Cup players | 20th-
century English people | 21st-century English people | A.C.
Milan players | BBC Sports Personality of the Year winners
| British expatriate sportspeople in the United States | ...
| People from Leytonstone | Premier League players |
Preston North End F.C. players | Real Madrid C.F. players
| Serie A footballers | The Football League players | UEFA
Euro 2000 players | UEFA Euro 2004 players | 1975 births
| Living people

Figure 4.2.: Temporal facts from categories of David Beckham.

difficult to apply regular expressions.

4.3. Temporal Knowledge Harvesting from Natural

Language Free-text

4.3.1. Framework and System Overview

This section gives an overview on the system architecture for temporal
knowledge harvesting from free-text. We introduce our system called PRAVDA
(label PRopagated fAct extraction on Very large DAta) for gathering fact
candidates and distilling facts with their temporal extent based on a new form
of label propagation (LP). This is a family of graph-based semi-supervised
learning methods, applied to (in our setting) a similarity graph of fact
candidates and textual patterns. LP algorithms start with a small number of
manually labelled seeds, correct facts in our case, and spread labels to
neighbors based on a graph regularized objective function which we aim to
minimize. The outcome is an assignment of labels to nodes which can be
interpreted as a per-node probability distribution over labels. In our scenario,
the labels denote relations to which the fact in a correspondingly labelled node
belongs.

28

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

We adopt the specific algorithm of [66], coined MAD (Modified Adsorption),
with an objective function that combines the quadratic loss between initial
labels (from seeds) and estimated labels of vertices with a data-induced graph
regularizer and an L2 regularizer. The graph regularizer is also known as the
un-normalized graph Laplacian, which penalizes changes of labels between
vertices that are close. We develop substantial extensions, and show how to
judiciously construct a suitable graph structure and objective function. Notably,
we consider inclusion constraints between different relation labels for the same
node in the graph. For example, we may exploit that a relation like joinsClub
(with time points) is a sub-relation of worksForClub (with timespans).

System Architecture. Figure 4.3 shows the architecture of our system for fact
harvesting from Web sources. The system consists of five components: candidate
gathering, pattern analysis, graph construction, label propagation, and noise cleaning.
The components are invoked in five phases. This chapter focuses on the first
four phases; the noise cleaning phase is presentend in Chapter 5.

Figure 4.3.: System overview.

1. Candidate Gathering: This phase serves to collect potentially relevant
sentences. A sentence is interesting if it contains entities in relevant types
for a target relation of interest. We employ a test for the potential presence

29

Chapter 4. Temporal Knowledge Harvesting

of a base fact in a sentence, by checking for the existence of two noun
phrases (denoting two entities) in the same sentence. In addition, we test
for the existence of a temporal expression (currently only explicit date) in
the sentence, thus producing raw input also for temporal fact candidates.
This is discussed in Section 4.3.2.

2. Pattern Analysis: Based on a (small, manually crafted) set of seed facts for
a particular relation (either base or temporal), seed patterns in the form of
sets of word-level n-grams are extracted from the interesting sentences.
For each target relation that we aim to extract, a statistical prior is then
computed based on how strongly fact candidates have evidence in the
form of seed patterns. This is discussed in Section 4.3.2.

3. Graph Construction: To facilitate the knowledge harvesting procedure, the
fact candidates and pattern candidates are represented as vertices of a
graph. Edges represent the evidence connection between a pattern and a
fact candidate, as well as the similarity between two patterns. The graph
construction is presented in Section 4.3.2.

4. Label Propagation: Finally, a graph-based semi-supervised learning
method is employed to harvest both base facts and temporal facts. To this
end, we have developed an extended label propagation algorithm which
is presented in Section 4.3.3.

4.3.2. Patterns and Graph Model

In this section, we first describe our candidate gathering approach, raising
surface (text) strings to entities. Then, we introduce our pattern analysis
method, which is based on “basic”, “seed” and “fact” patterns. Basic patterns
are (entity) type-aware word-level n-grams of surface strings. Based on
statistical analytics, those patterns yielding in high quality results for a certain
relation become seed patterns. Fact patterns are finally derived from sentences
where the similarity of an observed basic pattern and seed patterns exceeds a
pre-defined threshold. Finally, we will explain the underlying
(pattern-candidate) graph model between patterns and candidate sentences. To
facilitate the following discussions, we use bold capital letters to indicate
matrices, and normal lower-case letters to indicate scalar values.

30

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

Candidate Gathering

Our approach is driven by target relations for which we would like to gather
instances. The set of relations of interest is denoted as R={R1, R2, ..., Rm}. Each
is associated with a type signature and is either a base relation or a temporal
relation. Type(R) contains all possible entity types in the type signatures of the
relations inR.

We assume that there exists a knowledge base with typed entities which
contains the individual entities whose types are in Type(R). In this section, we
consider relations of interest from the domains of soccer and celebrities, and
use YAGO [62] as knowledge base. The YAGO knowledge base contains almost
all the pertinent entities harvested from Wikipedia, such as persons (both
sports people and celebrities), clubs, locations, awards, universities, and even a
large fraction of people’s spouses. YAGO also provides us with a fairly
complete dictionary of surface names for entities, including abbreviations (e.g.,
“ManU” for the entity Manchester_United). Thus, detecting mentions of
entities in an input text is straightforward.

We consider a textual corpus C, e.g., a set of Wikipedia articles, news articles,
or Web pages, as input for candidate gathering. The corpus is pre-processed
to generate meaningful segments. In this section, we consider sentence-level
segments: the corpus is decomposed into a set of sentences where each sentence
is a sequence of tokens.

Given a sentence, an entity recognition and disambiguation module first
checks whether at least two entities (and a temporal mention for temporal
relations) are mentioned in the same sentence. This is primarily based on
YAGO’s “means” relation, where a string means an entity (e.g., “ManU”
meaning Manchester_United). The entity recognition engine works in four
stages:

1. Based on a sliding window technique “interesting” strings are extracted.
A text string becomes interesting when it matches the subject of a YAGO
fact with the means relation. That means, the string can be mapped to at
least one YAGO entity.

2. Entities that can be mapped unambiguously (by plain string matching
between the textual input and the means relation of YAGO) are identified.

31

Chapter 4. Temporal Knowledge Harvesting

These entities serve as “ground-truth entities” for the following
disambiguation steps.

3. The “ground-truth entities” and Wikipedia anchor links are used to build
a graph for disambiguation. The graph consists of edges between those
(entity-) nodes where mutual anchor links among pages exist. For each
“interesting string” it is now checked if an entity exists that is directly
linked with a single “ground-truth entity”. If more than two links to
“ground-truth entities” exist, the analyzed entity becomes - due to its
strong relation to this context a “ground-truth” entity, too.

4. Disambiguation of each “interesting” string to a single (highest ranked)
entity based on a distance function applied to the before constructed
graph.

We then check whether the entity types are compatible with the type
signature of some target relation Rm. If so, a candidate fact is generated, and the
sentence is added to the set of interesting sentences. For example, the sentence
“David_Beckham played for Real_Madrid and LA_Galaxy” will create the
candidate facts (David_Beckham, Real_Madrid) and (David_Beckham,
LA_Galaxy), but not (Real_Madrid, LA_Galaxy) as there is no relation of
interest between two entities of type CLUB.

Pattern Analysis

Basic Patterns. Our notion of patterns builds upon the prior work of [49],
where sets of word-level n-grams from sentences are used as patterns. We
extend this approach by exploiting the type signatures of the target relations for
which we perform fact harvesting.

Consider a fact candidate (ei, ej) and its corresponding candidate sentence,
written in the form x ei y ej z where x, y and z are surface string surrounding
the entities. We consider the context surface string y as an (initial) indicator of
the relationship with fact (ei, ej). For example, we observe a fact candidate
(David_Beckham, LA_Galaxy) in the sentence s = “David_Beckham finally
moved from Real_Madrid before his recent joining LA_Galaxy in 2007.”, the
context surface string “finally moved from Real_Madrid before his recent

32

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

joining” is the evidence for the joinsClubTemp relationship between
David_Beckham and LA_Galaxy.

Context surface strings are usually long and over specific. It is extremely rare
to observe other entity pairs sharing exactly the same context surface strings. To
overcome this problem, we generalize the pattern representation. One possible
solution is to adopt word level n-grams to represent patterns. Before generating
the n-grams, we first do compression and lifting on context surface strings.

In order to avoid getting misguided by problems induced from natural
language processing, we convert each surface string into a compressed surface
string. These contain only - preserving their original order - nouns, verbs, and
prepositions after stop words removal based on Wikipedia’s “List of English
Stop Words” 1. Nouns, verbs and prepositions are identified by LingPipe
Part-of-Speech tagger 2. All verbs are transformed into present tense based on
the verb dictionary provided by Assert (Automatic Statistical SEmantic Role
Tagger) 3. Nouns are stemmed with PlingStemmer 4.

The compressed surface strings are further generalized by considering the set
of types that constitute the type signatures of our target relations. This is done
by replacing entities by their types (e.g. PERSON, CITY, CLUB, and DATE).
Thus, the corresponding lifted surface string of sentence s is {“move from CLUB
before join”}. For a lifted surface string, we generate word-level n-grams as its
basic pattern (with n typically set to 2). For example, the basic pattern of s w.r.t.
the entity pair (David_Beckham, LA_Galaxy) is denoted as BP(s,
David_Beckham, LA_Galaxy) = (“move from”, “from CLUB”, “CLUB
before”, “before join”).

Seed Patterns. Given a set of positive and negative samples for the facts in a
specific relation, we are able to measure how good a pattern is for a particular
relation. The best patterns are then regarded as seed patterns for this relation. The
overall procedure of identifying seed patterns for a specific relation is similar to
[49].

A positive seed fact (ei, ej) (or (ei, ej)@tk) for a base relation Rb (or a temporal

1Stop Words, http://en.wikipedia.org/wiki/Stop_words
2LingPipe POS tagger, http://alias-i.com/lingpipe/web/demo-pos.html
3ASSERT, http://cemantix.org/assert.html
4PlingStemmer, http://www.mpi-inf.mpg.de/yago-naga/javatools/

33

http://en.wikipedia.org/wiki/Stop_words
http://alias-i.com/lingpipe/web/demo-pos.html
http://cemantix.org/assert.html
http://www.mpi-inf.mpg.de/yago-naga/javatools/

Chapter 4. Temporal Knowledge Harvesting

relation Rt), is a valid fact of the relation Rb (or Rt). A negative seed fact (ei, ej)
(or (ei, ej)@tk) for Rb (or Rt) is an entity pair (with temporal mention) that is not
a fact of Rb (or Rt). PF(Ri) and NF(Ri) denote the manually crafted positive and
negative seed facts for Ri.

For each base relation Rb we identify the sentences that contain two entities
from a positive seed in PF(Ri) and the sentences that contain two entities from a
negative seed in NF(Ri). These sentences are collected into the sets PS(Rb) and
NS(Rb), respectively. Analogously, for each temporal relation Rt, the positive
sentences are those that contain both entities and the temporal expression (date)
of a positive seed, and the negative sentences are those that contain a negative
seed. The sets of positive and negative sentences are denoted as PS(Rt) and
NS(Rt), respectively.

Given a relation Ri ∈ R, a candidate sentence s with lifted surface string L(s)
containing a basic pattern p, support and confidence are defined as follows:

supp(p, Ri) = |{s ∈ PS(Ri)|p ⊆ L(s)}|

conf(p, Ri) =
|{s ∈ PS(Ri)|p ⊆ L(s)}|

|{s ∈ PS(Ri) ∪NS(Ri)|p ⊆ L(s)}|

The support value captures the frequency of a pattern in conjunction with
positive seed facts, whereas the confidence value denotes the ratio of a pattern
co-occurring with positive seed facts versus negative seed facts. If supp(p, Ri)
is above predefined thresholds, the basic pattern p is considered as a seed
pattern of Ri. SP(Ri) denotes the set of all seed patterns for Ri. In our
experiment, we vary the threshold of support in different settings.

Fact Patterns. Given a candidate sentence s = x ei y ej z, the fact pattern of the
sentence w.r.t. the entity pair (ei, ej) is defined as:

(TYPE1,TYPE2, BP(s, ei, ej)) (4.1)

TYPE1 and TYPE2 are the types of ei and ej, respectively. BP(s, ei, ej) is a basic
pattern of sentence s w.r.t. the entity pair (ei, ej). In addition, a fact pattern
is associated with a weight vector that contains the weights of the fact patterns
with regard to the target relations of interest: (w(BP(s, ei, ej), R1),w(BP(s, ei, ej),
R2), . . . , w(BP(s, ei, ej), Rm)).

34

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

Given a relation Rk, if its type signature is the same as the fact pattern’s type
signature, the weight is defined by Equation (4.2):

weight(BP(s, ei, ej), Rk) = max
p∈SP(Rk)

(sim(BP(s, ei, ej), p)

× conf(p, Rk)) (4.2)

where the similarity between the basic pattern BP(s) and a pattern p in the seed
patterns of Ri is defined based on the Jaccard coefficient with regard to n-grams
q:

sim(BP(s, ei, ej), p) =
|{q ∈ BP(s, ei, ej) ∩ q ∈ p}|
|{q ∈ BP(s, ei, ej) ∪ q ∈ p}|

Graph Model

A weighted undirected graphG(V, E,W) is employed to facilitate the knowledge
harvesting, where V is the set of vertices, E is the set of edges, and W is the
weight matrix (i.e., an entry Wij indicating the similarity of the corresponding
vertices vi and vj).

We divide the set of vertices into two subsets: fact candidate vertices (VF) and
fact pattern vertices (VP), where VF ∩ VP = ∅ and V = VF ∪ VP. A vertex in VF
corresponds to a fact candidate, i.e., either a base fact (ei, ej) or a temporal fact
(ei, ej)@tk. A vertex in VP corresponds to a fact pattern in the form of
(TYPE1,TYPE2, p), as defined in formula (4.1), where p indicates a basic
pattern.

Edges between a fact candidate vertex and a fact pattern vertex: An edge between
a fact candidate vertex vf and a fact pattern vertex vp is generated, if there is a
candidate sentence containing both. Intuitively, more candidate sentences
provide higher support for the fact candidate vf held in the relation vp. Let S(vf,
vp) be the set of candidate sentences, then the weight of the edge (vf, vp) is
defined and normalized as 1− e(−1)∗β∗|S(vf,vp)|, where β ∈ (0, 1]. The parameter β
smoothens similarity values by reducing the impact of outliers with
undesirable high cardinality such as spam.

Edges between two fact pattern vertices: If two fact patterns are similar, their
corresponding vertices are connected by an edge with a similarity-based
weight. The intuition is that similar patterns often indicate the same relation.
Two fact pattern vertices vpi and vpj are considered dissimilar (similarity is

35

Chapter 4. Temporal Knowledge Harvesting

zero) if their corresponding type signatures are inconsistent (i.e.,
vpi .TYPE1 6=vpj .TYPE1 or v.v.). If their type signatures are consistent, the
edgeweight is defined by the similarity of the basic patterns vpi .p and vpj .p as
follows:

1. If the two patterns share the same verb and preposition, the similarity
between them is the distance-weighted Jaccard similarity. If the two
patterns differ in their verbs or prepositions, then the similarity is set to
zero.

2. If one pattern contains a verb and the other one does not, the similarity
between them is zero.

3. If neither of them contains a verb, the similarity is the distance-weighted
Jaccard similarity.

The distance-weight of an n-gram in a basic pattern is defined based on its
position in the sentence. The closer the n-gram appears to the target entity, the
higher the weight. This way, we can effectively deal with relatively long
patterns. For instance in the example graph in Figure 4.4, although the two
patterns VP2 and VP3 share the n-gram “move from”, its weight in VP3 is very
low, thus resulting in a very low similarity between the two patterns.

Figure 4.4.: An example graph.

4.3.3. Label Propagation Algorithm

After constructing the graph of fact candidates and fact patterns, a
semi-supervised label propagation algorithm is applied to extract the relations

36

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

that hold between fact candidates. The idea of label propagation is that the
labeling of vertices (here the possible relations) is propagated to nearby vertices
via weighted edges until convergence. In this process, the vertices linked by
highly weighted edges are more likely to have the same labels, because the
weights of edges represent the vertex similarities. All vertices are treated
uniformly, regardless of whether they represent fact candidates or fact patterns.

Suppose the graph contains n vertices, consisting of fc fact candidate and fp
fact pattern vertices, where |V | = n, |VF| = fc, |VP| = fp, and n = fc + fp. In
addition, there arem+ 1 labels. The firstm labels correspond to them relations
in the setR of target relations, plus a “none” label (denoting no or an unknown
relation). In the following, we will use labels and relations interchangeably.

The matrix Y ∈ Rn×(m+1)
+ denotes the graph’s initial label assignment. The

vector Yi∗ denotes the ith row of matrix Y, with each element Yik ∈ [0, 1]

indicating vertex vi’s confidence score for label k, where k ∈ {1, 2, ..., m + 1}.
The `th column of matrix Y is denoted by vector Y∗`.

When a fact candidate vertex vi corresponds to a positive seed fact of relation
Rk, the vertex is labelled as Rk with confidence 1, i.e., Yik = 1. A fact pattern
vertex vj is labelled as Rk with confidence 1 (namely Yjk = 1), if its weight for
a seed pattern of relation Rk (evaluated by Equation 4.2) is greater than a pre-
specified threshold value γ. Note that if vj has a strong weight (greater than γ)
with the seed patterns of more than one relation, all the corresponding relations
are labelled. All other entries in Y are initially set to 0.

When the label propagation process finishes, each vertex is associated with a
vector indicating the estimated labels. We use matrix Ŷ ∈ Rn×(m+1)

+ to indicate
the estimated labels for all vertices. Note that the matrix Ŷ has exactly the same
ordering of vertices and labels as Y. Finally, for each vertex, the labels with
sufficiently high confidence scores are selected.

Basic Objective Function

As shown in [66], the process of label propagation is realized by minimizing the
following objective function:

L(Ŷ) =
∑
`

[
(Y∗` − Ŷ∗`)TS`(Y∗` − Ŷ∗`) + µ1ŶT∗`LŶ∗` + µ2‖ Ŷ∗` − R∗`‖2

]
(4.3)

37

Chapter 4. Temporal Knowledge Harvesting

where Y∗` and Ŷ∗` denote the `th column vector of the initial assignment matrix
Y and estimated label matrix Ŷ, respectively.

The intuition of keeping estimated labels centred around initial labels is
realized by the first term of the objective function (4.3), which is the quadratic
loss that measures the discrepancies between the initial labels and the
estimated labels. In the original MAD algorithm of [66], the diagonal matrix S`

is identical for every label, with pinji on the main diagonal for labelled vertices
and 0 for unlabelled ones, where pinji is set to be proportional to vertex vi’s
degree. Since the initially labelled fact pattern vertices may be noisy, the
corresponding elements on the main diagonal of S` should also be able to
control the confidences on the label. Assuming that we are considering label `
and vi is a fact pattern vertex, we represent the confidences on the label ` by
multiplying pinji with the vertex vi’s fact-pattern weight on label ` (evaluated by
Equation 4.2).

The label spreading effect is achieved by the unnormalized graph Laplacian
matrix L, which smoothes label similarities between linked vertices based on
edge weights. This property becomes clearer when µ1ŶT∗`LŶ∗` is rewritten as

µ1ŶT∗`LŶ∗` = µ1
1

2

∑
i,j

Zij(Ŷi` − Ŷj`)2 (4.4)

where Zij = Wij×pconti + Wji×pcontj and Wij is the edge weight between vertices
vi and vj. Following [66], we set pconti to be inversely proportional to vertex vi’s
degree. The hyper-parameter µ1 controls the influence of the graph Laplacian.
In order to minimize the function, similarities of labels between vertex pairs
linked with high edge-weight are enforced, while different labels are tolerated
for those vertex pairs with low edge-weights.

The last term in the objective function (4.3) can be regarded as a combination
of an L2 regularizer for the m relations of interest and a loss function for the
“none” label. R∗` is the `th column of the abandon matrix R ∈ Rn×(m+1)

+ .
Specifically, R∗` is a zero-valued column vector for every ` ∈ {1, 2, ..., m}, which
works exactly as an L2 regularizer for the estimated labels of the m relations of
interest to avoid over-fitting to their seed labels. However, the vector of the last
label (m + 1) is R∗(m+1) = (pabnd1 , pabnd2 , ... pabndn)T , where pabndi is set to
1-pinji -pconti like in the original MAD algorithm [66]. The hyper-parameter µ2
adjusts the degree of regularization and the trust in the “none” relation.

38

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

Since we only change the diagonal matrices S`, the objective function can still
be solved by the optimization algorithm of MAD [66].

Incorporating Inclusion Constraints

Sometimes, a relation Ri implies another relation Rj, meaning that a valid fact of
Ri should also be a valid fact of Rj. In such a case, there is an inclusion
constraint (subsumption) that Ri implies Rj. For example, the relation
isCapitalOf between cities and countries implies the isCityOf relation. Inclusion
dependencies arise in specific forms for temporal relations, that is, between
events and their implied lasting relations, and also between base relations and
their temporal counterparts. For example, the event relation joinsClubTemp
implies worksForClubTemp and the base relation worksForClub. The temporal
fact joinsClubTemp(David_Beckham, Real_Madrid)@2003 also implies
the temporal fact worksForClubTemp(David_Beckham,

Real_Madrid)@2003, which in turn implies the base fact
worksForClub(David_Beckham, Real_Madrid).

Inclusion constraints provide an additional asset: they can generate (or
reinforce) the evidence for a fact by observing another fact about a different
relation. Thus, if relation ` implies relation ` ′, it suggests a fact candidate vm
having label `, that the estimated confidence value Ŷm` ′ should be greater or
equal to the estimated confidence value Ŷm`. For instance, if a fact candidate vm
is estimated as joinsClubTemp, its estimated labels should satisfy the following
constraint Ŷm(worksForClubTemp) ≥ Ŷm(joinsClubTemp). In the following, we will show
how to incorporate inclusion constraints into an extended label propagation
framework.

Objective Function with Inclusion Constraints. We first introduce some
notation. The matrix C ∈ Rm×m+ records the inclusion dependencies between
different relations of interest. Specifically, if relation ` implies relation ` ′, we set
C` ′` = 1. Given a label `, imply(`) denotes the labels that imply ` and

39

Chapter 4. Temporal Knowledge Harvesting

implied(`) those labels that are implied by `.

L(Ŷ) =
∑
`

[
(Y∗` − Ŷ∗`)TS`(Y∗` − Ŷ∗`) + µ1ŶT∗`LŶ∗`

+ µ2‖Ŷ∗` − R∗`‖2 + µ3
∑
v

∑
k 6=`

C`kYvk(Ŷv` − Ŷvk)2
]

s.t. Ŷv` ′ ≥ Ŷv`, v ∈ V, ` ′ ∈ implied(`) (4.5)

We introduce a new objective function, described in Equation (4.5), to
incorporate inclusion constraints between different relations. The last term in
Equation (4.5) serves to smoothen the estimated labels to satisfy the inclusion
constraints. Note that only vertices containing initial labels are smoothed. The
loss is only added when ` is labelled, and then propagated from ` to the labels
in higher levels. Some examples of inclusion constraints are: joinsClubTemp
implies playsForClubTemp implies worksForClubTemp implies worksForTemp. If
playsForClubTemp is labelled, the loss will be added to (playsForClubTemp and
worksForClubTemp), and (worksForClubTemp and worksForTemp). The loss should
not be added between the two labels joinsClubTemp and playsForClubTemp. In
contrast to the MADDL algorithm [66], which assumes all correlations among
classes to be symmetric, our approach does not assume symmetry of
correlations. For example, suppose that joinsClubTemp implies
worksForClubTemp and the fact candidate (David_Beckham,

Real_Madrid)@2003 holds for joinsClubTemp with high probability (e.g. 0.9),
but has low probability for worksForClubTemp relation (e.g. 0.1). This is
undesirable and should be smoothed, as joinsClubTemp implies
worksForClubTemp. Therefore, the objective function (4.5) will pull the estimated
value for worksForClubTemp closer to the value for joinsClubTemp by reducing
the labels’ differences. On the other hand, if the same fact candidate holds for
worksForClubTemp with high probability (e.g., 0.9), but has low probability for
the joinsClubTemp (e.g., 0.1), the objective function (4.5) will not pull the
estimated value for joinsClubTemp.

Optimization Problem Solution. In the Appendix, we prove that adding
inclusion constraints does not change the convexity of the objective function in
Equation (4.3). The convex optimization problem is solved by cyclic coordinate
descent [5]. The algorithm iterates through each coordinate of Ŷ, and solves

40

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

sequentially the following sub-problems until it converges:

min
Ŷv`

L(Ŷ) s.t. lb ≤ Ŷv` ≤ ub (4.6)

where lb and ub are the lower and upper bounds of Ŷv`, respectively.
In each sub-problem, all variables of Ŷv` except the one at the current

coordinate are fixed. So this technique optimizes the objective function by
solving a sequence of single-variable optimization problems. Because the
problem is a weighted sum of quadratic functions, there is a closed-form
solution for each sub-problem. For coordinate Ŷv`, we set the first partial
derivative with respect to Ŷv` to zero. Thus, the optimum in the absence of
constraints is:

Ŷv` =
S`vvYv` + µ1

∑
i ZviŶi` + µ2Rv` + µ3

∑
k 6=`(C`k + Ck`)YvkŶvk

S`vv + µ1
∑

i Zvi + µ2 + µ3
∑

k 6=`(C`k + Ck`)Yvk

(4.7)

From the inclusion constraints we can infer a lower (lb) and an upper bound
(ub) for the solution. Specifically, if imply(`) is not empty,
lb = max` ′∈imply(`) Ŷv` ′ , otherwise lb = 0; if implied(`) is not empty,
ub = min` ′∈implied(`) Ŷv` ′ , otherwise ub = 1. For example, the lower bound of
worksForClubTemp is the maximum of joinsClubTemp and leavesClubTemp, with
the upper bound 1. Similarly, the upper bound of
joinsClubTemp/leavesClubTemp is the value on worksForClubTemp, with the lower
bound 0. The final optimum is computed by max(min(Ŷv`, ub), lb) to ensure
that the optimal solution satisfies the inclusion constraints.

We refer to this algorithm as ICMAD (Inclusion-Constraints-aware MAD). The
complete method is shown in Algorithm 1. Compared to the original MAD
method, the lower and upper bounds are checked after each label update.

Combining Base and Temporal Graphs

The above ICMAD algorithm can be applied to either base or temporal facts and
their patterns. So far, however, these would be two separate instantiations of the
same algorithm. In this subsection, we discuss how to combine the two settings
for enhanced output.

41

Chapter 4. Temporal Knowledge Harvesting

Algorithm 1 ICMAD Algorithm.
Input: Graph: G = (V, E),

Matrices S` for each ` ∈ [1...m+ 1],

Matrix Z derived from the graph Laplacian,

Abandon matrix R,

Initial labels matrix Y,

Inclusion constraint weight matrix C

Output: Estimated labels matrix Ŷ

1: Ŷ← Y;

2: repeat

3: for each v ∈ V do

4: for each ` ∈ [1, ...m+ 1] do

5: / / Evaluation based on Equation (4.7);

6: numerator← S`vvYv` + µ1
∑
i ZviŶi` + µ2Rv` + µ3

∑
k 6=`(C`k + Ck`)YvkŶvk;

7: denominator← S`vv + µ1
∑
i Zvi + µ2 + µ3

∑
k 6=`(C`k + Ck`)Yvk;

8: Ŷv` ← numerator
denominator ;

9: for each k ∈ [1, ...m]∧ k 6= ` do

10: / / Lower and upper bounds checking;

11: if C`k > 0∧ Ŷv` < Yvk then Ŷv` ← Yvk;

12: if Ck` > 0∧ Ŷv` > Yvk then Ŷv` ← Yvk;

13: end for

14: end for

15: end for

16: until converged

For base relations, seed patterns may be noisy, especially when positive seeds
(entity pairs) hold for multiple relations. For example, a person may be born
and may die in the same place, so both relations isBornIn and hasDiedIn have
similar seed patterns, which is undesired. However, the corresponding temporal
relations are better distinguishable, as - usually - people do not die on the same
date (or same year) they are born. Thus, by combining base and temporal graph,
the seed patterns from the temporal graph can help to counter (“correct”) noisy
patterns in the base graph.

The pattern nodes in the temporal graph are actually a subset of those in the
base graph. Thus, we can unify both graphs by sharing all pattern nodes and
conceptually connecting the fact candidate nodes from base and temporal

42

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

graph with their respective patterns. A new objective function is described in
Equation (4.8), where matrix G ∈ Rpb×pt+ records the relationship of the same
pattern nodes in base and temporal graph. pb and pt are the number of pattern
nodes in base and temporal graph. If a pattern node vi in the base graph is
exactly the same as the pattern node vj in the temporal graph, then we assign
Gij to 1. Otherwise, Gij is set to 0.

Suppose Y =
(Yb 0
0 Yt

)
, where Yb and Yt indicate the initial label matrices of

base and temporal graph, respectively. Likewise, Ŷ =
(Ŷb 0

0 Ŷt

)
, where Ŷb and Ŷt

indicate the estimated label matrices of base and temporal graph, respectively. S`

and L can also be re-written analogously. On this basis, we define Equation (4.8)
as the new objective function as follows:

L(Ŷ) =
∑
`

[
(Y∗` − Ŷ∗`)TS`(Y∗` − Ŷ∗`) + µ1ŶT∗`LŶ∗` + µ2‖Ŷ∗` − R∗`‖2

+ µ3
∑
v

∑
k 6=`

C`kYvk(Ŷv` − Ŷvk)2 + µ4
∑
v,u

Gvu(Ŷbv` − Ŷtu` ′′)
2
]

s.t. Ŷv` ′ ≥ Ŷv`, v ∈ V, ` ′ ∈ implied(`) (4.8)

where label ` ′′ is the corresponding temporal relation of base label ` (e.g., ` for
worksForClub with ` ′′ for worksForClubTemp).

The new objective function shown in Equation (4.8) keeps the same form as
Equation (4.5). Therefore, it is still solvable by cyclic coordinate descent.

4.3.4. Experiments

System Implementation

The whole system is implemented in Java. For pattern analysis, PostgreSQL 5

database serves as the back-end database server. OpenNLP 6 is exploited to get
the part of speech tag, convert verbs to present tense and stem nouns from
textual articles. For MAD algorithm, we use Junto 7–The Label Propagation
Toolkit.

5http://www.postgresql.org/
6http://opennlp.apache.org/
7http://code.google.com/p/junto/

43

http://www.postgresql.org/
http://opennlp.apache.org/
http://code.google.com/p/junto/

Chapter 4. Temporal Knowledge Harvesting

Base Relations Temporal Relations Type Signatures

isBornIn isBornInTemp (PERSON, CITY)

hasDiedIn hasDiedInTemp (PERSON, CITY)

worksForClub worksForClubTemp (PERSON, CLUB)

joinsClubTemp (PERSON, CLUB)

leavesClubTemp (PERSON, CLUB)

isMarriedTo isMarriedToTemp (PERSON, PERSON)

getsMarriedWithTemp (PERSON, PERSON)

getsDivorcedFromTemp (PERSON, PERSON)

winsAwardTemp (PERSON, AWARD)

Table 4.2.: Relations of interest.

Experimental Setup

Data Sets. Our methods have been evaluated against two corpora from the
soccer and celebrity domain. In the soccer domain, we selected more than
23,000 soccer players’ Wikipedia articles. In addition, we retrieved around
110,000 on-line news articles (e.g., BBC, Yahoo! news, ESPN, etc.) by searching
for players contained in the “FIFA 100 list” 8. Likewise, the celebrity corpus has
been populated with more than 88,000 news articles of persons mentioned in
the “Forbes 100 list” 9 in addition to their Wikipedia articles.

Relations of Interest. In the current experiments, we are interested in four
base relations and nine temporal relations. The relations and their type
signatures are summarized in Table 4.2. It is worth mentioning that temporal
relations (highlighted in grey) such as isBornInTemp or hasDiedInTemp are
“extensions” of their corresponding base relations isBornIn resp. hasDiedIn by
temporal information for the identified event (e.g. birth, death, etc.).

8http://en.wikipedia.org/wiki/FIFA_100
9http://www.forbes.com/lists/2010/53/celeb-100-10_The-Celebrity-100.html

44

http://en.wikipedia.org/wiki/FIFA_100
http://www.forbes.com/lists/2010/53/celeb-100-10_The-Celebrity-100.html

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

Seed Selection. For each relation positive and negative seed facts have been
manually selected. Facts with prominent entities are chosen as seed facts due to
their frequency. Thus, the kmost frequently co-occurring entity pairs are chosen
as seed facts for each relation type signature.

For example, when selecting seed facts for the worksForClub relation, we
compute the co-occurrence statistics (eventually supported by keyword
filtering) of PERSON and CLUB entities based on the same sentence. Starting
with the highest ranked entity pair, we manually check in Wikipedia if the
relation of interest is satisfied. If approved, it becomes a positive seed fact,
otherwise a negative.

Performance Metrics. For base facts, the baseline for our experiments is the
state-of-the-art PROSPERA system [49]. We evaluate both approaches in terms
of precision correctness of the extracted facts. For temporal facts, due to the size
of the corpus, evaluation of recall is impossible. Precision estimates are based on
sampling (50 facts per relation) with a human evaluation against ground truth
information in Wikipedia.

Sample Output. For the relations of interest we generate patterns and
(temporal) facts. Table 4.3 depicts randomly chosen results from both corpora.
Results for temporal facts are marked in grey.

Results on Base Fact Observation Extraction

We first compare b-fact observation extraction with PROSPERA and PRAVDA.
The support threshold in pattern analysis is supp(p, Ri) = 10 with 100 positive
and 10 negative seed facts for each relation.

Table 4.4 summarizes the results of this experiment. As one can see both
approaches achieve comparable precision. However, PRAVDA outperforms
PROSPERA with respect to the number of extracted facts. The reason for this
gain can be explained with LP’s propagation of the labels’ confidence scores
from one node to another. This results in confidence propagation among very
similar, but less frequently occurring patterns (“be born in” and “born in”). Of
course, this comes with the risk of inducing more noise, which becomes
apparent for more complex relations such as isMarriedTo. The explanation for

45

Chapter 4. Temporal Knowledge Harvesting

Relation Pattern Fact

joinsClubTemp join LEAGUE side
(David_Beckham,

Los_Angeles_Galaxy)@2007

leavesClubTemp transfer from
(Thierry_Henry,

Juventus_F.C.)@1999

getsMarriedWithTemp marry
(Demi_Moore,

Ashton_Kutcher)@2005

getsDivorcedFromTemp divorce
(Jennifer_Aniston,

Brad_Pitt)@2005

worksForClub to join at
(Michael_Owen,

Real_Madrid_C.F.)

isMarriedTo husband
(Hillary_Rodham_Clinton,

Bill_Clinton)

Table 4.3.: Patterns and facts extracted for relations of interest.

PRAVDA PROSPERA

Relation # Observations Precision # Observations Precision

worksForClub 12,724 88% 4,536 82%

isBornIn 3,629 88% 2,426 90%

hasDiedIn 183 90% 55 93%

isMarriedTo 428 74% 147 90%

Table 4.4.: Base fact observation extraction (100 positive, 10 negative seeds).

46

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

this “misbehavior” is simple: a prominent couple will be frequently mentioned
in the media in completely different contexts (e.g. when dating, talking,
visiting, etc.), thus, propagating high confidence to less useful labels, too.

In order to quantify the impact of the number of seed facts, we now evaluate
the performance of two base relations (worksForClub and isMarriedTo) for varying
numbers of positive seed facts while keeping the number of negative seeds fixed
with 10. We vary them from 10, 20, 50 to 100 by simultaneously adopting the
support supp(p, Ri) used in pattern analysis to 4, 6, 8 and 10 respectively.

PRAVDA PROSPERA

Positive Seeds # Observations Precision # Observations Precision

w
or

ks
Fo

rC
lu

b

10 4,882 84% 2,202 86%

20 8,381 82% 3,358 86%

50 10,826 82% 4,321 84%

100 12,724 88% 4,536 82%

is
M

ar
ri

ed
To

10 388 74% 16 0%

20 391 64% 123 88%

50 391 78% 159 82%

100 428 74% 147 90%

Table 4.5.: Impact of varying the number of positive seed facts.

Table 4.5 summarizes the results on the impact of varying the number of
positive seed facts. PRAVDA extracts far more facts than PROSPERA,
particularly if the number of positive seeds is low. Both approaches achieve
similar precision quality throughout the experiments (except for PROSPERA
for the isMarriedTo relation with 10 positive seeds given). It can again be
recognized that PRAVDA is slightly prone to generate more noise, particularly
when the relation of interest is more complex. As an example of the isMarriedTo
relation, consider the following text from our corpus:

47

Chapter 4. Temporal Knowledge Harvesting

“The Scottish News of the World has published photographs which
it claims show how Sir Paul McCartney is secretly dating Hollywood
actress Rosanna Arquette - the virtual double of his estranged wife
Heather Mills.”

Since we do not use a dependency parser for efficiency reasons, there is no
evidence that the two entities Rosanna Arquette and Heather Mills are
not directly connected. Consequently, the surface string pattern “wife” links
Rosanna Arquette with Heather Mills and identifies them (incorrectly)
as a couple.

Results on Temporal Fact Observation Extraction with Inclusion
Constraints

In the following we present the results of our methods on t-fact observation
extraction with inclusion constraints (yearly granularity). Since PROSPERA is
not geared for harvesting temporal facts, we only report the performance of our
method. We evaluate inclusion constraints for two relations:

• joinsClubTemp and leavesClubTemp imply worksForClubTemp

• getsMarriedWithTemp and getsDivorcedFromTemp imply isMarriedToTemp

The results are depicted in Table 4.6 (10 positive and negative seed facts for
the first seven relations) with a special highlighting in dark grey of the relations
worksForClubTemp and isMarriedToTemp. Without giving any seed facts to the
worksForClubTemp and isMarriedToTemp relations, inclusion constraint are
successfully applied to extract facts for the two relations.

We see that results with respect to the number of extracted facts and precision
are not so good as for b-fact observation extraction. This is not surprising for
at least three reasons. First, our extraction currently operates on the sentence
level, meaning that entity pair and temporal expression have to be in the very
same sentence. Second, we are currently able to detect only explicit temporal
expressions. Third, associating temporal expressions to the appropriate relation
and/or entity/ies is sometimes complex for human, too.

Extraction of facts for the leavesClubTemp and joinsClubTemp relations are
particularly difficult. Usually media coverage starts a long time before the

48

4.3. Temporal Knowledge Harvesting from Natural Language Free-text

actual transfer actually occurs. Consequently, this induces a lot of noise to the
leavesClubTemp relation. In addition, both before mentioned relations are - of
course - affected by unsupported rumors, which are common to sport news
coverage.

Relation # P/N Seeds # Observations Precision

isBornInTemp 10/10 3,471 82%

hasDiedInTemp 10/10 65 88%

winsAwardTemp 10/10 243 84%

joinsClubTemp 10/10 1,871 80%

leavesClubTemp 10/10 235 71%

getsMarriedWithTemp 10/10 76 78%

getsDivorcedFromTemp 10/10 13 71%

worksForClubTemp 0/0 2,086 86%

isMarriedToTemp 0/0 88 80%

Table 4.6.: Temporal fact observation extraction with inclusion constraints.

Results on Joint Base and Temporal Fact Observation Extraction

In the following we now investigate the results of joint base and temporal fact
observation extraction. In contrast to the experiments before, we now combine
the base and temporal graphs and extract the facts simultaneously. Table 4.7
compares the joint approach with the separate (for base facts resp. temporal
facts) ones. For the sake of clarity, results of t-fact observation extraction have
been highlighted in grey. Experiments have been conducted with 10
positive/negative seed facts per base relation and 5 positive/negative seed
facts per temporal relation (except worksForClubTemp and isMarriedToTemp in
order to evaluate the impact of inclusion constraints).

As we can see from Table 4.7, particularly b-fact observation extraction
benefits from the joint approach, while t-fact observation extraction remains
more or less unchanged. The change in precision is not statistically significant.
It is worth mentioning that the worksForClub relation increases a lot in terms of

49

Chapter 4. Temporal Knowledge Harvesting

Joint Separate

Relation # Observations Precision # Observations Precision

worksForClub 10,467 84% 4,882 84%

isBornIn 3,139 92% 368 96%

worksForClubTemp 2,761 84% 2,032 88%

isBornInTemp 3,184 84% 3,297 85%

Table 4.7.: Comparison of joint and separate fact observation extraction.

number of extracted fact observations. Even more, the number of extracted
facts as well as the precision for the worksForClub relation is higher than its
separate “counterpart”, which is the 20-seed baseline compared with 10 seeds
for worksForClub + 5 seeds for joinsClubTemp + 5 seeds for leavesClubTemp in the
joint approach.

W/ Constraints W/O Constraints

Relation # Observations Precision # Observations Precision

worksForClub 10,467 84% 5,657 90%

isMarriedTo 413 64% 480 64%

worksForClubTemp 2,761 84% 0 NA

isMarriedToTemp 98 82% 0 NA

joinsClubTemp 1,788 82% 1,840 82%

leavesClubTemp 249 64% 273 66%

getsMarriedWithTemp 73 77% 73 77%

getsDivorcedFromTemp 13 78% 13 73%

Table 4.8.: Joint extraction with and without constraints.

Finally, we study the impact of inclusion constraints on the joint approach.
From the results in Table 4.8 we can see that inclusion constraints play an
important role in the joint extraction approach. For relation worksForClub
benefits from the inclusion, and the change in precision is not statistically

50

4.4. Scalable Spatio-temporal Knowledge Harvesting

significant. Accuracy for temporal relations (colored in grey) remains almost
unchanged. Please note that no fact observations have been discovered for
worksForClubTemp and isMarriedToTemp (indicated in dark grey in Table 4.8) as
they have been extracted via inclusion constraints, only.

4.3.5. Conclusions

This section introduced a unified framework for harvesting base facts and
temporal facts from textual Web sources. Our experimental results with news
articles and Wikipedia pages demonstrate the viability and high accuracy of
our approach. Moreover, for the base-facts case, we have shown much higher
recall over one of the best state-of-the-art baselines, while achieving similar
precision. We believe that extended forms of constrained label propagation, as
developed in this thesis, are a very promising alternative to prior methods like
Max-Sat reasoning or sampling over Markov-Logic models or factor graphs.

Our extended LP method is nicely geared for scale-out on distributed
platforms. So far, however, our experiments were at a scale where we did not
need to utilize this property. Our future work aims at experiments with
Web-scale datasets (e.g., the TREC ClueWeb corpus), and will explore the
scalability behavior of our method.

4.4. Scalable Spatio-temporal Knowledge

Harvesting

4.4.1. Motivation

Who attended the 2008 G-20 Washington Summit? Which countries did George
W. Bush visit during 2006? How many times did President Bush meet with
Prime Minister Brown in 2007?

Such questions can be easily answered if the traveling trajectories of people
are known. We propose and develop a scalable and effective framework for
harvesting the spatio-temporal knowledge from news archives. A
spatio-temporal fact holds the “person isIn location at time” relationship,
where the person entity indicates a particular person, the location entity

51

Chapter 4. Temporal Knowledge Harvesting

indicates a spatial location, and the time entity indicates a temporal period. For
example, given the sentence “When President George H. W. Bush visited Mainz
in 1989, he made a landmark appeal for a special relationship between the
United States and Germany.”, a spatio-temporal fact “George H. W. Bush isIn

Mainz at 1989” can be extracted. The pertinent spatio-temporal facts of
individual persons constitute their trajectories. Based on these trajectories, more
complicated analytic jobs can be conducted. For example, it is interesting to
explore the relationship of who meets whom, where, and when. Furthermore,
these trajectories can be used for identifying important events by capturing
several politicians’ trajectories intersected in the same place at a particular time.

This work distinguishes itself from existing works by considering both
spatial and temporal annotations associated with the harvested facts. In the
NewsStand [70] project, the spatial focus is identified and associated with a
cluster of news articles. Our work associates both spatial and temporal
annotations to specific entities. The evaluation on the 20 years’ New York
Times news article corpus showed that our methods are effective and scalable.

4.4.2. Methodology

Our spatio-temporal knowledge harvesting framework is composed of an entity
extraction and disambiguation module as well as a fact generation module. In
this section, we describe the methodologies that are applied in each module and
how the needed trajectories are produced.

Entity extraction and disambiguation. Considering efficiency, we did the
entity extraction and disambiguation in a simple but effective way. We aim to
identify person, location and time entities from text. Person and location entities
are identified by a named entity recognizer, and time is recognized by regular
expressions. An identified person or location may be ambiguous and may
correspond to more than one entity. For example, “President Bush” may refer
to “George H. W. Bush” or “George W. Bush”; and “Paris” may refer to the
capital of France or to Paris in Texas, U.S., etc. We propose a multi-stage
disambiguation process.

Person disambiguation: (1) Entities having only first or last name are
disambiguated with the use of the full name entities. Suppose that a full name,

52

4.4. Scalable Spatio-temporal Knowledge Harvesting

of the form “firstname lastname”, appears in an article or in the metadata of an
article. For the same article, an entity annotated either with “firstname” or
“lastname” should be disambiguated as the full name entity. If there are more
than one proper full names, we take the closest one. (2) If the aforementioned
procedure does not provide us with the needed entities for disambiguation, we
simply use the most popular entity at the article’s publication time. For
example, for an article published in 1991, “President Bush” is disambiguated as
“George H. W. Bush”, since 1991 is in George H. W. Bush’s president term, as it
can be found in T-YAGO. Therefore, it is more probable that “President Bush”
refers to “George H. W. Bush” than it refers to “George W. Bush”.

Location disambiguation: (1) Group the identified location entities by text locality.
(a) If these location entities satisfy a containment relationship, this relationship
can be used for location disambiguation. For example, if “Paris in Texas, U.S. ”
appears in an article, “Paris” can be disambiguated as the one in Texas, U.S.. (b)
If these location entities do not imply possible containment relationships with
each other, we use the most frequent candidate containing country of these
locations as their containing county. For example, suppose that “Paris” and
“Rouen” appear in the same paragraph. A city with the name “Paris” exists in
France and in the U.S. Moreover, “Rouen” is a city of France and Barbados.
Since the most frequent candidate containing country of the two cities is
France, “Paris” and “Rouen” can be disambiguated as “Paris, France” and
“Rouen, France” respectively. (2) The location name may change because of
changes in country boundaries and regimes. For example, the city Saint
Petersburg in Russia was called Leningrad in USSR. The obsolete location
names and their corresponding current location names can be obtained by a
specific dictionary from GeoNames 10. Based on the publication time of an
article, such location names can be disambiguated to the same location entity.

Fact generation. Spatio-temporal facts, in the form of (person, location, time),
can be generated using all possible combinations of the disambiguated entities.
To increase precision, we only consider the entities which appear in a
pre-defined window, e.g. within a sentence. Additionally, for further fact
cleaning, we have defined two pruning rules. Sometimes location may appear

10GeoNames, http://www.geonames.org/

53

http://www.geonames.org/

Chapter 4. Temporal Knowledge Harvesting

in noun phrases, meaning that it does not indicate a real spatial location. (1) If
location appears before a person, we expect that some prepositions, e.g. “in” or
“at”, exist before the location. (2) If location appears after a person, we expect to
find at least a verb between them. For instance, consider the sentence “Two
New York advisors sent a signal to Senator Barack Obama, Democrat of Illinois
in 2004.” Since there is no “in” or “at” before New York, and no verbs between
Barack Obama and Illinois, all generated facts will be pruned.

4.4.3. Experiments

System implementation. In our implementation, we used MapReduce, a
framework for large-scale data-intensive computations, to execute our
algorithm and to generate the trajectories from the extracted facts. The news
archives are distributed and stored in different nodes. During the map phase,
each article is processed by the entity extraction and disambiguation module
and the fact generation module. The output of the map phase is a set of
spatio-temporal facts. Articles located at different nodes, can be processed in
parallel. In the reduce phase, the facts are grouped by person first, and sorted
according to the time. This way, the trajectory records of each individual person are
generated.

Experimental setup. We evaluate our methods on the New York Times
Annotated Corpus 11, which contains more than 1.8 million articles published
between 1987 and 2007. The raw data size of the textual content is about 8 GB.
All methods in this section were implemented in Java using Sun JDK 1.6.
LingPipe 12 is the named entity recognizer that we chose and Hadoop 0.21.0 is
the distributed computing infrastructure that we used. All the experiments are
run on a local cluster. Each node of the cluster has two Intel Xeon 2.40GHz,
4-core CPUs.

Visualization. Since two strict pruning rules are employed in fact generation
module, only 79321 facts in total are extracted from the whole corpus, which
indicates that the overall recall is not high. However, at the same time, the

11New York Times Annotated Corpus, http://corpus.nytimes.com/
12LingPipe, http://alias-i.com/lingpipe/index.html

54

http://corpus.nytimes.com/
http://alias-i.com/lingpipe/index.html

4.4. Scalable Spatio-temporal Knowledge Harvesting

pruning rules make the survived facts have relatively high precision. We
visualize part of the trajectory of George W. Bush on a map, as shown in
Figure 4.5. The number of each marker represents the location visit order.

Scalability. We configure different data and cluster size to test the scalability
of our algorithm. We run our algorithm on each configuration twice, and report
the average execution time. Note that we focus on harvesting the
spatio-temporal knowledge from the whole corpus rather than querying the
individual trajectories. The results, as shown in Figure 4.6, indicate that the
larger the data size is, the more performance benefit the bigger cluster can gain,
which indicate that our method is scalable.

Figure 4.5.: Visualization.

0

5K

10K

15K

20K

25K

0 2 5 10 20

T
im

e
(S

ec
on

ds
)

Data Size (x-years Archives)

3 Nodes
6 Nodes
9 Nodes

12 Nodes

Figure 4.6.: Scalability.

55

Chapter 4. Temporal Knowledge Harvesting

56

Chapter 5.

Temporal Knowledge Cleaning

Time information is ubiquitous on the Web, and considering temporal
constraints among facts extracted from the Web is a key for high-precision
query answering over time-variant factual data. This chapter introduces how
to clean noisy and inconsistent temporal fact observations, and reconcile these
diverse observations into clean temporal facts.

5.1. Problem Statement and Contributions

A major shortcoming that modern knowledge bases [3, 86, 62, 89, 13] still face
is the lack of time information in both the representation model and the types
of queries they support. Thus we perform temporal knowledge harvesting to
populate temporal knowledge bases, as introduced in the previous chapter.

Achieving 100% precision in temporal fact extraction is an elusive goal. In
addition to errors from the imperfect extraction methodology, noise also comes
from data sources. Mistakes made by the writers of social media are the key
factors for the inconsistency among different sources. Furthermore, temporal
expressions could appear in different granularities: yearly, monthly, or daily.

We propose an Integer Linear Programming (ILP) based approach to clean
the previously extracted noisy temporal fact observations; this is presented in
Section 5.2. A histogram-based model is designed to reconcile the diverse
(potentially inconsistent) temporal observations of a specific temporal fact into
a concise histogram across time. New temporal facts are then derived via the
histogram model by Datalog-like reasoning. The histogram-based method is
presented in Section 5.3.

57

Chapter 5. Temporal Knowledge Cleaning

5.2. Cleaning Temporal Fact Observations

5.2.1. Problem Statement and Contributions

Motivation. Extracting temporal facts is a complex and time-consuming
endeavor. Apart from the efforts required for entity recognition and
disambiguation, the identification of the relationships between entities is
delicate. There are “conservative” strategies that aim at high precision, but they
tend to suffer from low recall. On the other hand, there are “aggressive”
approaches that target at high recall, but frequently suffer from low precision.
To this end, we introduce a method that allows us to gain maximum benefit
from both “worlds” by “aggressively” gathering fact candidates and
subsequently “cleaning out” the incorrect ones.

Contributions. The salient properties of our approach and the novel
contributions of this section are the following:

• an ILP solver incorporating constraints on temporal relations among
events (e.g., marriage of a person must be non-overlapping in time) (see
Section 5.2.3),

• experiments on real world news and Wikipedia articles showing that we
gain recall while keeping up with precision (see Section 5.2.4).

5.2.2. Framework

Facts and Observations. We aim to extract factual knowledge transient over
time from free-text. More specifically, we assume time T = [0, Tmax] to be a finite
sequence of time points. Furthermore, a fact consists of a relation with two
typed arguments and a time-interval defining its validity. For instance, we
write worksForClub(David_Beckham, Real_Madrid)@[2003,2008) to
express that Beckham played for Real Madrid from 2003 to 2007. Since
sentences containing a fact and its full time-interval are sparse, we consider
three kinds of textual observations for each relation, namely begin, during, and
end. “Beckham signed for Real Madrid from Manchester United in 2003.”
includes both the begin observation of Beckham being with Real Madrid as well

58

5.2. Cleaning Temporal Fact Observations

as the end observation of working for Manchester. A positive seed fact is a valid
fact of a relation, while a negative seed fact is incorrect. For example, for relation
worksForClub, a positive seed fact is worksForClub(David_Beckham,

Real_Madrid), while worksForClub(David_Beckham,

Bayern_Munich) is a negative seed fact.

Framework. As depicted in Figure 5.1, our framework is composed of five
stages, where the first collects fact candidates with their corresponding
sentences, the second mines patterns from the candidate sentences, the third
builds graph for label propagation of the fourth stage to extract fact
observations and the last removes noisy fact observations by enforcing
constraints. Except noise cleaning, all the other stages are presented in
Section 4.3. Thus in this chapter, we focus on presenting how to clean noisy
temporal fact observations.

Figure 5.1.: System overview.

5.2.3. Applying Temporal Constraints

To prune noisy t-observations, we compute a consistent subset of t-observations
with respect to temporal constraints (e.g. joining a sports club takes place before

59

Chapter 5. Temporal Knowledge Cleaning

leaving a sports club) by an Integer Linear Program (ILP).

Variables. We introduce a variable xf,r ∈ {0, 1} for each t-observation
r ∈ {Rbegin,Rduring,Rend} of a t-fact f ∈ F , where 1 means the observation is
valid. Two variables fB, fE ∈ [0, K] denote begin (B) and end (E) of time-interval
of a t-fact f ∈ F . Note, that many t-observations refer to the same t-fact f, since
they share their entity pairs. tBxf,r and tExf,r denote the possible earliest begin and
latest end time point of t-observation xf,r.

Objective Function. The objective function intends to maximize the number
of t-observations, where wxf,r is a weight obtained from the previous stage:

max
∑

f∈F ,r∈{Rbegin,Rduring,Rend}

wxf,r · xf,r

Intra-Fact Constraints. fB and fE encode a proper time-interval by adding the
constraint:

∀f ∈ F fB < fE

Considering only a single relation R, we assume the sets Rbegin, Rduring, and
Rend to comprise its t-observations with respect to the begin, during, and end
observations. Then, we introduce the constraints

∀r ∈ Rbegin tBxf,r · xf,r ≤ f
B ≤ tBxf,r · xf,r + (1− xf,r)K (5.1)

∀r ∈ Rend tExf,r · xf,r ≤ f
E ≤ tExf,r · xf,r + (1− xf,r)K (5.2)

∀r ∈ Rduring fB ≤ tBxf,r · xf,r + (1− xf,r)K (5.3)

∀r ∈ Rduring tExf,r · xf,r ≤ f
E (5.4)

Here we want to infer the begin and end time point of f: fB and fE, by given the
t-observations xf,r with their weightswxf,r and time intervals [tBxf,r , t

E
xf,r

]. f has the
same entity pair as xf,r and tBxf,r , t

E
xf,r

are begin and end of xf,r’s time-interval.

Whenever xf,r is set to 1 for begin or end t-observations, Eq. (5.1) and Eq. (5.2)
set the value of fB or fE of t-fact f to tBxf,begin or tExf,end

, respectively. For each
during t-observation with xf,r = 1, Eq. (5.3) and Eq. (5.4) enforce fB ≤ tBxf,begin and
tExf,end

≤ fE.

60

5.2. Cleaning Temporal Fact Observations

Inter-Fact Constraints. Since we can refer to a fact f’s time interval by fB and
fE and the connectives of Boolean Logic can be encoded in ILPs [36], we can use
all temporal constraints expressible by Allen’s Interval Algebra [1] to specify
inter-fact constraints. For example, we leverage this by prohibiting marriages of
a single person from overlapping in time.

Previous Work. In comparison to [68], our ILP encoding is time-scale
invariant. That is, for the same data, if the granularity of T is changed from
months to seconds, for example, the size of the ILP is not affected.
Furthermore, because we allow all relations of Allen’s Interval Algebra, we
support a richer class of temporal constraints.

5.2.4. Experiments

System Implementation. The whole system is implemented in Java. For
temporal knowledge harvesting, the system is implemented in the same way
with the system presented in Section 4.3.4. The integer linear program tackling
the constraints utilizes Gurobi1.

Corpus. Experiments are conducted in the soccer and the celebrity domain
by considering the worksForClub and isMarriedTo relation, respectively. In the
soccer domain, we selected more than 23,000 soccer players’ Wikipedia articles.
Moveover for each person in the “FIFA 100 list” and “Forbes 100 list” we retrieve
their Wikipedia article. In addition, we obtained about 450,000 documents for
the soccer and celebrity domain from BBC, The Telegraph, Times Online and
ESPN by querying Google’s News Archive Search2 in the time window from
1990-2011. All hyperparameters are tuned on a separate data set.

Seeds. For each relation we manually select the 10 positive and negative fact
candidates with highest occurrence frequencies in the corpus as seeds.

Evaluation. We evaluate precision by randomly sampling 50 (isMarriedTo) and
100 (worksForClub) facts for each observation type and manually evaluating

1http://www.gurobi.com/
2news.google.com/archivesearch

61

http://www.gurobi.com/
news.google.com/archivesearch

Chapter 5. Temporal Knowledge Cleaning

them against the text documents. All experimental data is available for
download from our website3.

Pipeline vs. Joint Model

Setting. In this experiment we compare the performance of the pipeline being
stages 3, 4 and 5 in Figure 5.1 and a joint model in form of an ILP solving the
t-observation extraction and noise cleaning at the same time. Hence, the joint
model resembles [55] extended by Section 5.2.3’s temporal constraints.

R
el

at
io

n

Observation
Label Propagation ILP for T-Fact Extraction

Precision # Observations Precision # Observations

w
or

ks
Fo

rC
lu

b begin 80% 2537 81% 2426

W
ithoutN

oise
C

leaning

during 78% 2826 86% 1153

end 65% 440 50% 550

is
M

ar
ri

ed
To

begin 52% 195 28% 232

during 76% 92 6% 466

end 62% 50 2% 551

w
or

ks
Fo

rC
lu

b begin 85% 2469 87% 2076

W
ith

N
oise

C
leaning

during 85% 2761 79% 1434

end 74% 403 72% 275

is
M

ar
ri

ed
To

begin 64% 177 74% 67

during 79% 89 88% 61

end 70% 47 71% 28

Table 5.1.: Pipeline vs. joint model.

Results. Table 5.1 shows the results on the pipeline model (lower-left), joint
model (lower-right), label-propagation w/o noise cleaning (upper-left), and ILP
for t-fact extraction w/o noise cleaning (upper-right).

3www.mpi-inf.mpg.de/yago-naga/pravda/

62

www.mpi-inf.mpg.de/yago-naga/pravda/

5.2. Cleaning Temporal Fact Observations

Analysis. Regarding the upper part of Table 5.1 the pattern-based extraction
works very well for worksForClub, however it fails on isMarriedTo. The reason is,
that the types of worksForClub distinguish the patterns well from other
relations. In contrast, isMarriedTo’s patterns interfere with other person-person
relations making constraints a decisive asset. That is the reason why the ILP for
t-fact extraction wins on recall but fails on precision than Label Propagation for
isMarriedTo. The ILP accepts most of the patterns co-occur with the seed facts,
so all the fact candidates co-occurred with such patterns are accepted.
However, those patterns are very noisy. For example, David Beckham can
kiss, date, visit and marry Victoria Beckham in 1999. If
isMarriedTo(David_Beckham, Victoria_Beckham)@1999 is a seed
fact, then patterns “kiss, date, visit and marry” are considered as good patterns
for isMarriedTo. The noisy patterns cause a lot of false positives.

When comparing the joint model and the pipeline model, the former sacrifices
recall in order to keep up with the latter’s precision level. That is because the
joint model’s ILP decides with binary variables on which patterns to accept.
For example “wedding” is a good pattern for isMarriedTo, but it may co-occur
with many noisy fact candidates due to the extraction mistakes. However the
ILP removes all the fact candidates with pattern “wedding”. In contrast, label
propagation addresses the inherent uncertainty by providing label assignments
with confidence numbers. The ILP constraint solver in the pipeline model just
removes the conflicted noisy fact observations from label propagation.

Increasing Recall

Setting. In a second experiment, we move the t-fact observation extraction
stage away from high precision towards higher recall, where the successive
noise cleaning stage attempts to restore the precision level.

Results. The columns of Table 5.2 show results for different values of µ1 of
Eq. (4.3) in Section 4.3.3. From left to right, we used µ1 = e−1, 0.6, 0.8 for
worksForClub and µ1 = e−2, e−1, 0.6 for isMarriedTo. The table’s upper part
reports on the output of fact observation extraction, whereas the lower part
covers the facts returned by noise cleaning.

63

Chapter 5. Temporal Knowledge Cleaning

Conservative Standard Relaxed

Precision # Observations Precision # Observations Precision # Observations

w
or

ks
Fo

rC
lu

b begin 84% 2443 80% 2537 80% 2608
W

ithoutN
oise

C
leaning

during 81% 2523 78% 2826 76% 2928

end 76% 377 65% 440 62% 501

is
M

ar
ri

ed
To

begin 72% 112 52% 195 44% 269

during 90% 63 76% 92 52% 187

end 67% 37 62% 50 36% 116

w
or

ks
Fo

rC
lu

b begin 83% 2389 85% 2469 84% 2536

W
ith

N
oise

C
leaning

during 88% 2474 85% 2761 75% 2861

end 78% 349 74% 403 70% 463

is
M

ar
ri

ed
To

begin 72% 111 64% 177 46% 239

during 90% 62 79% 89 54% 177

end 69% 36 70% 47 38% 110

Table 5.2.: Increasing recall.

Analysis. For the conservative setting label propagation produces high
precision facts with only few inconsistencies, so the noise cleaning stage has no
effect, i.e. no pruning takes place. This is the setting usual pattern-based
approaches without cleaning stage are working in. In contrast, for the standard
setting (coinciding with Table 5.1’s left column) t-observation extraction yields
less precision, but higher recall. Since there are more inconsistencies in this
setup, the noise cleaning stage accomplishes precision gains compensating for
the losses in the previous stage. In the relaxed setting precision drops too low,
so the noise cleaning stage is unable to figure out the truly correct facts. In
general, the effects on worksForClub are weaker, since in this relation the
constraints are less influential.

5.2.5. Conclusions

In this section we have developed a method that combines label propagation
with constraint reasoning for temporal fact extraction. Our experiments have

64

5.3. Temporal Fact Reasoning

shown that best results can be achieved by applying “aggressive” label
propagation with a subsequent ILP for “clean-up”. By coupling both
approaches we achieve both high(er) precision and high(er) recall. Thus, our
method efficiently extracts high quality temporal facts at large scale.

5.3. Temporal Fact Reasoning

5.3.1. Problem Statement and Contributions

Motivation. For reasoning and query answering temporal knowledge bases,
new temporal facts need to be derived from existing temporal facts. Knowing,
for example, the facts that a player joined and left a club, we could derive a time
interval for when this player actually played for the club. Furthermore,
teammates of the player and their corresponding time intervals could be
derived as well, which calls for a principled approach to reasoning in temporal
knowledge bases with uncertainty. Similar to work done on temporal
databases [33], validity intervals provide simple, yet effective, support for
query semantics built on interval intersections and unions in T-YAGO. Simple
interval operations are however only of limited use for query processing (or
reasoning) with uncertainty, i.e., with probabilistic models or otherwise
statistically quantified degrees of uncertainty. In this section, we adopt the
common possible-worlds semantics known from probabilistic databases and
extend it towards histogram-like confidence distributions that capture the
validity of facts across time. Query processing is done via a Datalog-like,
rule-based inference engine, which employs the lineage of derived facts for
confidence computations to remain consistent with the possible-worlds model.

Contributions. We propose an approach for representing and reconciling
facts with temporal annotations for time-aware reasoning over uncertain and
potentially inconsistent temporal knowledge bases. We briefly summarize the
main contributions of this section as follows:

• an algorithm to reconcile multiple (potentially inconsistent) observations
of facts with temporal annotations into a concise histogram at extraction
time (see Section 5.3.2),

65

Chapter 5. Temporal Knowledge Cleaning

• the data lineage in the form of Boolean formulas that capture the logical
dependencies between base and derived facts, in a recursive, Datalog-like
reasoning environment (see Section 5.3.3),

• the evaluation on a real-world temporal knowledge (Timely YAGO) with
more than 270,000 (aggregated) temporal facts, using handcrafted rules for
query processing and reasoning in the football domain (see Section 5.3.4).

5.3.2. Histogram Aggregation

In our temporal model for extraction, each fact is associated with its possible
earliest and latest time information. For example, from the sentence "Beckham
signed up for Real Madrid in 2003.", we infer that Beckham joined Real in the
year 2003. Using days as our primary granularity for reasoning, we determine
the possible earliest (begin) time point of starting his contract to be 2003-1-1
and the latest (end) time point as 2003-12-31 (using date-formatted time points
for better readability). The begin and end time points then constitute an initial
time interval [2003-1-1, 2003-12-31] for this observation (evidence) of the fact
joinsClub(Beckham, Real) in the document. But then the question arises,
how we should reconcile multiple of these (potentially inconsistent)
observations, which we are likely to observe in different documents during the
extraction phase, and how to represent these in a concise histogram for query
processing.

Fact Time Expression Begin Time End Time Freq. Event Type

joinsClub “July, 2003” 2003-7-1 2003-7-31 2 begin
(Beckham, Real) “Summer, 2003” 2003-6-1 2003-9-30 3

leavesClub “June, 2007” 2007-6-1 2007-6-30 1 end
(Beckham, Real) “Early June, 2007” 2007-6-1 2007-6-10 2

hasContract “Season 2003 2003-7-1 2007-6-30 2 during
(Beckham, Real) to 2007”

Table 5.3.: Examples of time expressions and their corresponding intervals.

The extraction stage produces fact observations which may be valid at both a
single time point (e.g., a day or a year) and entire intervals (e.g., multiple days
or years). Staying in our football example, we aim to aggregate multiple

66

5.3. Temporal Fact Reasoning

observations of such events into a single state fact playsForClub(Beckham,
Real)[2003-1-1, 2007-12-31]. This state fact for playsForClub can be
inferred, for example, from two event facts joinsClub(Beckham,

Real)[2003-1-1, 2003-12-31] and leavesClub(Beckham,

Real)[2007-1-1, 2007-12-31). Besides events that indicate the begin

and end of an interval, we can also directly extract events that happened
during the period when Beckham played for Real, such as
hasContract(Beckham, Real)[2003-7-1, 2007-6-30]. Table 5.3
depicts a few examples of time expressions along with their corresponding
intervals and possible observation frequencies as they occur at extraction time.

From these facts, we aim to derive the histogram for
playsForClub(Beckham, Real). Notice, that even in case a player might
have played for a team multiple times (which occurs frequently), our approach
allows for aggregating multiple overlapping observations of begin, end and
during events into a single histogram.

Slicing and Coalescing. In analogy to temporal databases [33], different
operations for reorganizing time intervals (and thus histograms) apply. For an
event relation, we can slice an interval into any set of disjoint and contiguous
subintervals by applying our uniformity assumption of confidences. Further,
we can coalesce any two contiguous intervals into a single interval, only if the
individual time points in both intervals have the same probability. In this case,
the confidence of the coalesced interval is the sum of the confidences of the two
input intervals. For a state relation, however, slicing intervals into subintervals
is generally not allowed. Further, we can coalesce any two contiguous
subintervals into a single interval, only if they have the same confidence. In this
case, the confidence of the coalesced interval in a state relation is the same as
the confidence of the two input intervals.

Merging Observations. Before presenting the forward and backward
aggregation of event frequencies into a histogram, we first introduce the basic
algorithm for reorganizing the bins of an output histogram, given two or more
input histograms, as depicted in Algorithm 2. That is, at each time point where
the confidence of an input histogram changes (i.e., at every interval boundary
of an input interval), the confidence in the output histogram may change as

67

Chapter 5. Temporal Knowledge Cleaning

well, and a new bin in the output histogram is created. Initially, the input
histograms correspond to the basic intervals we extracted for the begin, end
and during events (see Table 5.3).

This (binary) reorganization operation of bins is associative and
commutative, hence multiple input histograms can be reorganized into a single
output histogram in arbitrary order. Runtime and the number of bins in the
output histogram are linear in the number of bins in the input histograms.
Notice that the smallest-possible width of a histogram bin is a single time point.

Algorithm 2 Reorganizing Histograms.
Require: Two input histograms H1, H2

1: Let T be the disjoint union of begin and end time points from intervals inH1 andH2,

respectively (in ascending order)

2: Let H3 be an empty output histogram

3: Set tb := -1

4: for each te ∈ T do

5: if tb > −1 then

6: Insert a new interval [tb, te) into H3
7: end if

8: Set tb := te
9: end for

10:

11: return H3

Forward and Backward Aggregation of Frequencies. As we have finished
the histogram reorganization from the basic begin, end and during events,
we continue to aggregate and normalize the frequencies for our fact in the
target relation playsForClub. Intuitively, the confidence of the playsForClub
should increase while we aggregate frequencies of intervals that indicate a
begin event; it should increase at the begin of a during interval but decrease at
the end of a during interval; and it should decrease for intervals relating to end
events. The amount of observations for begin and end events may however be
imbalanced, such that we also need to normalize the frequencies of each of
these two types individually, before combining them into a single histogram.
To obtain an increasing confidence from begin events, we cumulate frequencies

68

5.3. Temporal Fact Reasoning

of each bin from the first bin to the last bin (forward aggregation). In contrast,
to obtain a decreasing confidence from end events, we cumulate frequencies of
each bin from the last bin to the first one (backward aggregation).

Figure 5.2.: Example for reorganizing and merging histograms based on the
input facts from Table 5.3.

As shown in Figure 5.2, we first define the reorganized histograms H1 and H2
by aggregating the frequencies of all begin and end events of Table 5.3 according
to their type. Forward aggregation then iterates over all bins of H1 by
cumulating the bins’ weights as H1[i] =

∑
0≤j≤iH1[j], starting with the first bin

H1[0]. On the contrary, the backward aggregation iterates over all bins of H2 by
cumulating the bins’ weights as H2[i] =

∑
e≥j≥iH2[j], starting from the last bin

H2[e]. In the next step, both H1 and H2 are normalized to the weight of H3, i.e.,
the aggregated histogram of all during events, before all three histograms are
again aggregated and normalized to form the final confidence distribution of
the playsForClub fact. In case no during event could be extracted from the
sources, an artificial during interval with the earliest and latest time points of
begin and end events with weight 1 can be created as H3, in order to normalize
H1 and H2. These various levels of aggregation are summarized in Algorithm 3.

69

Chapter 5. Temporal Knowledge Cleaning

Figure 5.2 provides an illustration of these three iterative reorganization and
aggregation steps based on the facts in Table 5.3. We remark that this
aggregation of frequencies is just one possible way of deriving an initial
histogram at extraction time. In the following, we call facts like
playsForClub(Beckham, Real), which are obtained from such a
forward/backward aggregation step, the base facts. Confidences in a
probabilistic sense are traced back to only those base facts at reasoning time.
Further, we assume these base facts to be independent.

Algorithm 3 Merging Histograms.
Require: Aggregated begin histogram H1, end histogram H2, and during histogram H3

1: Let H4 be an empty output histogram

2: Reorganize H1, H2, H3, and H4 using Algorithm 2

3: Forward-cumulate begin histogram H1, backward-cumulate end histogram H2

4: Normalize H1 and H2 such that
∑
iH1[i] =

∑
iH3[i] and

∑
iH2[i] =

∑
iH3[i]

5: for each i ∈ H4 do

6: Set H4[i] := H1[i] +H2[i] +H3[i]

7: end for

8: Normalize H4 such that
∑
iH4[i] = 1

9:

10: return H4

5.3.3. Rule-based Reasoning, Lineage, and Possible Worlds

Our approach for reasoning in semantic knowledge bases is based on
Datalog-like inference rules (Horn clauses), which can be employed to either
enforce integrity constraints (Horn clauses with only negated literals) or
provide means for actual inference and query answering (Horn clauses with
exactly one positive literal). Recall that Horn clauses with exactly one positive
literal can equivalently be rewritten as implications, where the positive literal
becomes the head of the rule and the body is a conjunction of the remaining
literals. Our key observation is that the logical dependencies of query answers
(i.e., the possible worlds the entire knowledge base can take) are determined only
by the way rules were processed in order to ground the query atoms
(potentially recursively) down to the base facts. In this section, we focus on the

70

5.3. Temporal Fact Reasoning

case of Horn clauses with exactly one positive head literal, because it results in
Boolean formulas with positive (i.e., conjunctive or disjunctive) lineage only.

Temporal Predicates. For reasoning about time intervals, we employ
additional temporal predicates such as overlaps, before, after, etc. (see, e.g.,
Allen et al. [23] for an overview of temporal relations among intervals). These
temporal predicates allow us to constrain the temporal relationships of
time-annotated facts in the rules. Within the formulation of a rule, we also
extend the given (binary) predicates by a third time variable t which is used as
reference when reasoning with the temporal predicates (see Rules 5.5 and 5.6).
While this extension clearly remains in first-order logic, it—strictly
speaking—no longer conforms with the core RDF data model.

Queries. Queries in Datalog can be expressed as Boolean combinations of
literals (again, we do not allow negation). Hence, teammates(Beckham, x)
would retrieve all teammates of Beckham, while teammates(x, y) would
denote all pairs of teammates that could be inferred from the knowledge base.
Literals in queries are grounded against the knowledge base. Semantically, a
disjunction of two literals relates to a disjoint union of two sets of facts
(obtained from grounding each literal), while a conjunction relates to a set
intersection. Set operations in these reasoning settings are always duplicate
eliminating.

Conjunctive vs. Disjunctive Lineage. When processing a query, predicates
in the body of an inference rule are combined conjunctively, while multiple
rules with the same head predicate create a disjunctive derivation of the query
answer. In analogy to probabilistic databases, processing the body of a rule
thus conforms to a join operation with conjunctive lineage, whereas grounding
the same derived fact from multiple rules conforms to a duplicate-elimination
step with disjunctive lineage [6, 57]. We thus adopt a similar notion of data
lineage as in [6] to compute the individual confidences of bins in the time
histogram of a derived fact. In a Datalog-like setting, however, rules are
potentially recursive, such that the derivation of answers typically is less
uniform than for a regular SQL query or materialized view. Lineage however

71

Chapter 5. Temporal Knowledge Cleaning

remains acyclic also in our setting, because all rules are grounded against base
facts to find valid answers.

ID Fact Histogram Relation Type

F1 playsForClub(Beckham, Real) [2003,2008):0.8 state

F2 playsForClub(Ronaldo, Real) [2002,2008):0.7 state

F3 winsCupForClub(Ronaldo,Real) [2003,2004):0.6 event

Table 5.4.: Base facts with time histograms (intervals).

As an example, consider we want to retrieve the probability of Beckham and
Ronaldo being teammates for Rules 5.5 and 5.6 and the base facts depicted in
Table 5.4. We will next discuss how confidence computation works in this
setting.

teammates(x, y) ← playsForClub(x, z, t1) ∧ playsForClub(y, z, t2)

∧ notEquals(x, y) ∧ overlaps(t1, t2) (5.5)

teammates(x, y) ← playsForClub(x, z, t1) ∧ winsCupForClub(y, z, t2)

∧ notEquals(x, y) ∧ overlaps(t1, t2) (5.6)

Confidence Computation. While grounding queries via rules yields exactly
one Boolean lineage formula for a derived fact, the input confidences of base
facts may vary across time. Hence our algorithm needs to ensure that the
correct confidences are chosen as input when calculating the confidence of a
result histogram. This is achieved via reorganizing the bins of the output
histogram using Algorithm 2 and slicing and coalescing the input intervals of
base facts belonging to an event relation accordingly. Notice that intervals from
base facts belonging to a state relation do not have to be sliced, since a fact is
defined to be valid at each time point of an interval with the same probability
(see Section 3.3).

Thus, grounding the query teammates(Beckham,x) over the above rules
(5.5) and (5.6) and base facts depicted in Table 5.4 results in the (single)
grounded query answer teammates(Beckham, Ronaldo) with lineage
(F1 ∧ F2) ∨ (F1 ∧ F3). However, by simply multiplying the probability of each

72

5.3. Temporal Fact Reasoning

literal in the lineage of teammates(Beckham, Ronaldo), we would get
0.8 × 0.7 × 0.8 × 0.6 = 0.2688. This is not correct, since the probability of
playsForClub(Beckham, Real) is considered twice. Assuming
independence among base facts, we can calculate the correct probability of
teammates(Beckham, Ronaldo) for the interval [2003, 2004) as
0.8 × 0.7 × 0.6 + 0.8 × 0.7 × (1 − 0.6) + 0.8 × (1 − 0.7) × 0.6 = 0.704 (as can be
verified by a truth table). For simplicity, we show the confidence computation
only for a single interval. In general, one such computation can be triggered for
each bin of a time histogram (again using Algorithm 2 for reorganizing the
histogram, but with a possible-worlds-based confidence computation instead
of the simple aggregation of Algorithm 3).

Our approach for confidence computations with time histograms can thus be
summarized into the following two steps:

1) reorganizing bins of the output histogram using Algorithm 2, and

2) computing the confidence for a fact’s validity at each bin of its histogram.

While step 1) is linear in the number of input bins, each confidence
computation per output bin is #P-complete for general Boolean formulas [54].
We thus employ the Luby-Karp family of sampling algorithms for
approximating the confidence computation. Different versions for Luby-Karp
sampling [37] are available, depending on whether the formula is in CNF, DNF,
or of generic Boolean shape, each with different approximation guarantees.
Thus, as a simple optimization, our implementation is able to check for the
structure of the formulas at query time, and it can select the most appropriate
variant of Luby-Karp, or even an exact confidence computation if this is still
feasible.

In our current implementation, lineage is transient, i.e., we keep lineage
information only in memory at query processing time. For future work, we aim
to investigate also making lineage persistent, thus being able to “learn” new
facts from existing facts in the knowledge base and storing these derived facts
along with their derivation in the knowledge base for further processing and
faster subsequent inference.

73

Chapter 5. Temporal Knowledge Cleaning

5.3.4. Experiments

System Setup and Experiments

Our system is implemented as an extension of URDF [71, 48], which is a
framework for efficient reasoning over uncertain RDF knowledge bases
developed at the Max Planck Institute for Informatics. URDF employs SLD
resolution for grounding first-order formulas (Horn clauses) against an
underlying knowledge base. Unlike most Datalog engines, URDF follows a
top-down grounding approach, i.e., for an incoming query, it aims to resolve
answers by processing rules recursively from the head predicate down to the
body predicates, which are conjunctions of predicates found either in the
knowledge base or which can in turn be processed via the head predicate of a
rule. URDF is implemented in Java 1.6 with about 4,000 lines of code. All
experiments were run on an Intel Xeon 2.40GHz server (in single-threaded
mode) with 48GB RAM. We use Oracle 10g as backend for storing the T-YAGO
knowledge base, which was installed on a second AMD Opteron 2.6 GHz
server with 32GB RAM.

As competitors we employ the original URDF framework (without the
temporal extension) and the IRIS [8] reasoner, a default reasoning engine used
in many Semantic Web applications. In terms of reasoning, IRIS [8] is an
open-source Datalog engine supporting built-in predicates. It is designed to be
highly configurable, allowing for different Datalog evaluation strategies and
the definition of custom data types and predicates.

Timely YAGO Knowledge Base Our experiments are based on the semantic
graph of T-YAGO (see Chapter 4). For T-YAGO, we extracted more than 270K
temporal facts from Wikipedia and free-text, with 16 distinct relationship types.
Currently it covers the football domain, including relationships such as
playsForSeniorClub, participatedIn and winsCup, but also fact observations for the
begin, end, and during events of these relations, such as joinsSeniorClub or
leavesSeniorClub. These raw facts can be integrated with the existing facts of the
corresponding relations (e.g., playsForSeniorClub), in order to reconcile time
histograms using the aggregation rules depicted in Table A.1.

The facts and time histograms are stored in two separate tables. The facts table
contains three columns for RDF triplets (i.e., first argument, second argument,

74

5.3. Temporal Fact Reasoning

and relation name) and a column for the fact id. The time table is composed
of two columns (i.e., start time point and end time point) corresponding to the
begin and end time point of an interval, a foreign key connecting to the fact’s id,
and a column for the fact’s confidence at the interval.

Rules and Queries

Table A.1 depicts 4 aggregation rules for reasoning about the time interval of a
player’s or coach’s career period, as well as 9 partly recursive, hand-crafted
inference rules for reasoning about people’s activities and relationships in the
football domain. As URDF (without time) and IRIS do not support time-aware
reasoning, we remove all temporal predicates in the inference rules, such as
overlaps or after, when comparing their runtimes and results. Table A.1
illustrates 8 queries including single-fact queries, chains, stars and cliques of
interconnected facts used as our baseline for experiments.

Experimental Results

Our experiments focus on investigating the overhead of time-aware query
processing, compared to a time-oblivious setting. We compare the running
times and result precision of URDF (with time) to IRIS and URDF (without
time). The running time of URDF (with time) includes grounding time (using
SLD resolution) and histogram creation (i.e., possible-worlds-based histogram
calculation time).

Baseline Runs Without Time. Since IRIS and URDF (without time) do not
support time-aware reasoning, we compare grounding time and result
precision of IRIS to URDF (without time) in the first experiment. The
grounding time in URDF (without time) denotes the time to ground the query
atoms, using the inference rules and queries depicted in Table A.1. The
measured time in IRIS is the time required to ground the query using magic
sets rewriting, which includes both the rule rewriting step followed by a
bottom-up query evaluation over the rewritten rules. We can see that URDF
already outperforms IRIS for the grounding time (both without using
time-specific predicates).

75

Chapter 5. Temporal Knowledge Cleaning

Without time information With time histograms T-URDF/URDF

IRIS URDF PWs-conf # T-URDF PWs-conf #

ms ms ms results ms ms results precision

Q1 6893 35 2 8 45 <1 8 8/8

Q2 821 11 <1 5 12 <1 5 8/8

Q3 7127 1905 1191 766 2113 1 184 184/766

Q4 6686 699 188 239 308 5 58 58/239

Q5 7628 3099 314 190 1423 51 114 114/190

Q6 4317 693 20345 14 1054 87600 14 8/8

Q7 6909 6712 574 183 3277 5 17 17/183

Q8 7125 6396 190 133 4441 1 25 25/133∑
47506 19550 <22805 1538 12673 <87665 425 avg=0.545

Table 5.5.: Experimental results.

Overhead of Confidence Computations with Histograms. In the second
experiment, we compare the grounding time and result precision of URDF
(without time) to URDF (with time). Besides the grounding time consumed by
URDF (without time), URDF (with time) also includes the
possible-worlds-based histogram computation time. A comparable confidence
computation for facts with just a single confidence value but without a time
histogram is also shown on the left-hand side for URDF (without time).

Interestingly, Table 5.5 shows that URDF (with time) even partly achieves
better runtimes than URDF (without time) for complex queries, because URDF
(with time) does not ground any answers that do not satisfy the temporal
predicates. This is also the main reason for the lower precision of URDF
(without time) compared to URDF (with time). The grounding time of URDF
(with time) is better than URDF (without time) for Queries 4, 5, 7 and 8, even
when taking also the time for building the final histogram into account.
However, the time for building the histogram for Query 6 is much worse than
the others, yielding 14 results with 6,552 literals in 504 disjunctions in their
lineage. Also, only for Query 6 we needed to employ Luby-Karp-based
sampling (using ε = 0.05 and δ = 0.05), while all the other confidences could be
computed exactly.

76

5.3. Temporal Fact Reasoning

5.3.5. Conclusions

Time-aware information extraction increases the demand for coping with
imprecise or otherwise uncertain data and is an excellent showcase for
uncertain data management. In our approach, we show that adding time
histograms involves only a light overhead over a comparable probabilistic
setting that does not consider time. Time-aware reasoning may even spare
unnecessary computations for false-positive answers at an early stage and thus
reduce the overall runtime for query answering.

77

Chapter 5. Temporal Knowledge Cleaning

78

Chapter 6.

Tools

6.1. Interactive Knowledge Harvesting

6.1.1. Motivation

Acquiring high-quality (temporal) facts for knowledge bases is a labor-intensive
process. Although there has been recent progress in the area of semi-supervised
fact extraction to which this dissertation contributes, these approaches still have
limitations, including a restricted corpus, a fixed set of relations to be extracted
or a lack of assessment capabilities.

To lower the bar of customized fact extraction from free-text, we introduce an
interactive knowledge harvesting system called PRAVDA-live1. Our system is an
out-of-the-box solution to address this issue by covering all subproblems within
a web-based interface. This allows users of all provenance (from greenhorns to
experts) to perform fact extraction on their own.

Problem Setting. Suppose the user provides the whole Wikipedia corpus as
the input, and he/she wants to know the birth place and date of all the people
in Wikipedia. PRAVDA-live can guide the user to query the system by using the
relation bornIn, which connects a subject of type person with an object of type
location. And then the user is requested to label limited number of seed facts.
Afterwards, our system can be employed to automatically distill the fact, for
example bornIn(Einstein, Ulm)@14-03-1879 from the sentence: “Albert
Einstein was born in Ulm, in the Kingdom of Württemberg in the German Empire on

1 http://www.mpi-inf.mpg.de/yago-naga/pravda/

79

http://www.mpi-inf.mpg.de/yago-naga/pravda/

Chapter 6. Tools

14 March 1879.”

Contributions. We present a system called PRAVDA-live, which supports
fact extraction of user-defined relations from ad-hoc selected text documents and
ready-to-use RDF exports. Further features include the support for temporally
annotated relations, customized or mined extraction-patterns, and a constraint
solver being able to clean extracted facts by inter-fact constraints.

6.1.2. Framework

Figure 6.1.: System workflow.

PRAVDA-live is constructed based on the framework of PRAVDA (see
Figure 5.1) presented in Section 4.3 and Section 5.2 by adding user interactive
features. The new framework is depicted in Figure 6.1, where boxes with
continuous lines require user-interaction. As a first step, the user uploads a
corpus for the extraction process. Then, the user either selects predefined
relations or defines customized relations or both. What follows are the parsing
and graph construction stages performed in the backend. If customized
relations are present, the next step is the seed fact selection followed by manual
labeling of these. Afterwards we continue with pattern analysis and label
propagation, eventually yielding extracted facts. Finally, there is the option to
define and apply constraints to the extracted facts, or to download the facts
immediately.

80

6.1. Interactive Knowledge Harvesting

6.1.3. Algorithms

Parsing. Once the corpus is uploaded and the relations of interest are known,
our system proceeds with the parsing stage. We provide several approaches for
named entity recognition and disambiguation. One approach follows
Section 4.3, entities are recognized and disambiguated by leveraging YAGO
[62]. The other approaches utilize AIDA framework [30]. The surface string
between two entities are lifted to patterns by considering n-grams of nouns,
verbs converted to present tense, and prepositions. A detailed description of
patterns is beyond the scope of this section; we refer the reader to Section 4.3.
Finally, we detect temporal expressions by regular expressions.

Graph Construction. As in Section 4.3 we construct an undirected graph G =

(V, E) comprising two types of vertices V = Ve∪̇Vp. The former set Ve contains
one vertex per entity pair discovered in the corpus and the latter set Vp has one
vertex per pattern. Edges betweenVp andVe are added, if an entity pair occurs in
a pattern. Additional edges between vertices in Vp are derived from similarities
among patterns. An example graph is shown in Figure 6.2, where oval vertices
belong to Ve and box-shaped vertices are members of Vp.

Figure 6.2.: Example graph.

Seed Fact Selection. In previous works seed facts were chosen entirely
manually. To ease usability of our system, we develop a novel ranking
algorithm returning the entity pairs to be labelled by the user. The algorithm is

81

Chapter 6. Tools

presented in Section 6.1.4. This stage is skipped for problem instances with
only predefined relations, where labelled seed facts are available in our system.

Pattern Analysis. In this stage, the labelled seed facts are employed to
compute an initial weighting of the patterns, being derived from frequency
counts of both the patterns as well as the entity pairs. A more detailed
description is available in Section 4.3.

Label Propagation. Building on the work presented in Section 4.3 we utilize
Label Propagation [66] to determine the relation expressed by each pattern.
Here, the labelled seed facts and patterns serve as input. Label Propagation is a
semi-supervised learning algorithm, where the supervision results from the
labelled seed facts. It passes labels on the previously described graph (see
Figure 6.2), where each label corresponds to a relation.

Fact Observation Extraction. After Label Propagation has terminated, the
entity pair vertices which hold a relation’s label weighted above a threshold for
a fact (see Section 4.3).

Constraint Solving. Given user-defined constraints and a set of extracted
facts, we intend to select a maximal consistent subset of facts. The resulting
optimization problem is encoded into an integer linear program as the work
presented in Section 5.2.

6.1.4. Seed Fact Selection

Our seed fact selection procedure acts on the graph introduced in Section 6.1.2.
By construction the graph consists of disconnected components corresponding
to a different pair of entity types. Considering a single connected component,
we cluster its vertices reflecting patterns in the following manner: If two
patterns have an identical main verb and last preposition, they belong to the
same cluster. For example, in the disconnected component of Figure 6.2, we
cluster ‘die in’ and ‘died at home in’ with pair of entity type – “PERSON,
LOCATION”. More formally, a disconnected component is defined as
C = (Ve∪̇(

⋃̇
iVp,i), E), where Ve are the vertices standing for entity pairs (fact

82

6.1. Interactive Knowledge Harvesting

Algorithm 4 Seed Fact Selection

Require: Component C = (Ve∪̇(
⋃̇
iVp,i), E), number of seeds k

1: S = ∅ //Seed facts to return
2: for Vp,i ∈ C by decreasing |Vp,i| do
3: //select the vertice ve (not in S) with the maximum degree
4: //from Ve connecting with the pattern cluster Vp,i
5: ve := argmax

ve∈Ve\S,∃vp∈Vp,i:(ve,vp)∈Edegree(ve)
6: S := S ∪ {ve}

7: if |S| ≥ k then
8: break
9: end if

10: end for
11:

12: return S

candidates), and each Vp,i represents a cluster of vertices embodying patterns
with a certain pair of entity type. With respect to Figure 6.2, we have
Ve = {(Bohr,Copenhagen), (Einstein,Princeton)} and Vp,0 = {die at home in, die in},
Vp,1 = {decede in}, for instance. To each disconnected component we apply
Algorithm 4 implementing a greedy strategy. The goal of this algorithm is to
select prominent fact candidates in each cluster.

The loop in Line 2 repeatedly cycles through all clusters of pattern vertices
Vp,i beginning with the largest cluster. It stops when k seed facts have been
determined. For each cluster we add an entity-pair-vertex ve (not in S) as seed,
which has maximum degree and is connected to Vp,i (Line 5). In Figure 6.2 the
largest cluster is Vp,0 = {die at home in, die in} where the algorithm selects
(Einstein,Princeton) since its degree is maximal.

6.1.5. System Implementation

PRAVDA-live is implemented in Java, where Apache Tomcat2 acts as
Webserver. While parsing text documents we employ OpenNLP 3 for part of
speech tagging, converting verbs to present tense and stemming nouns.

2http://tomcat.apache.org/
3http://opennlp.apache.org/

83

http://tomcat.apache.org/
http://opennlp.apache.org/

Chapter 6. Tools

Furthermore, the integer linear program tackling the constraints utilizes
Gurobi4. All data is managed by a PostgreSQL5 database.

User Interface

Figure 6.3.: Paste text.

1. Corpus Upload. The user interface offers the opportunity for both
pasting text into a text field and uploading larger text files. In Figure 6.3
the text field holds excerpts from Bill Gate’s Wikipedia article. The user
can also choose to upload a file (or a URL showing the address of the file)
containing many documents in an XML-like format (see Figure 6.4 and
Figure 6.5). We allow experts to modify the parameters used in seed facts

4http://www.gurobi.com/
5http://www.postgresql.org/

84

http://www.gurobi.com/
http://www.postgresql.org/

6.1. Interactive Knowledge Harvesting

Figure 6.4.: Upload a file.

Figure 6.5.: Upload a URL showing the address of a file.

labeling, pattern analysis and label propagation. Users are also free to
choose the disambiguation approach (see the bottom part of Figure 6.3).

2. Defining Relations. By investigating the text on the left in Figure 6.3,
Figure 6.4 and Figure 6.5, the user can define relations of interest. There

85

Chapter 6. Tools

are two lists of relations. The upper list holds exclusively predefined
relations, such as bornIn typed by person and location in the screenshot. On
the other hand, the lower list may contain both predefined and
user-defined relations, since on these the seed fact selection process will
be invoked. In Figure 6.5, isIn typed by person and location is user-defined
relation, which invokes the seed fact selection.

Figure 6.6.: Label seed temporal facts.

Figure 6.7.: Label seed base facts.

3. Seed Labeling. During the labeling process text snippets are displayed,
where recognized entities are marked in red. It is the user’s task to select
the correct relation (here “isIn”) connecting both entities (see Figure 6.6

86

6.1. Interactive Knowledge Harvesting

Figure 6.8.: All the labelled seed facts.

and Figure 6.7). Seed facts can be labelled as true or false, as indicated by
the respective buttons. All the labelled seed facts (including both base
and/or temporal seed facts) can be checked or modified from the
interface in Figure 6.8. If the user clicks the button “Next”, the pattern
analysis stage will be invoked. All the patterns which are labelled with
initial values are shown in Figure 6.9. They are used for the next stage –
fact observation extraction. The patterns are set as to-be-deleted by default
(Save is 0 in Figure 6.9). Every new-log-in or new-start deletes all the
patterns with the save status in “0”. Users are free to change the status of
good patterns to “1” to keep them for future use.

4. Fact Observations Evaluation. The extracted fact observations can be
evaluated via the assessment interface. Figure 6.10 and Figure 6.11
illustrate the extracted base and temporal fact observations respectively.

5. Defining Constraints. PRAVDA-live allows the specification of
constraints to be applied to the extracted fact observations. In the
example screenshot of Figure 6.12, we require birthdays to precede dates

87

Chapter 6. Tools

Figure 6.9.: All the seed patterns from pattern analysis.

of death and we disallow the time annotation of livesIn to exceed 120
years in length. As for non-temporal constraints, we enforce bornIn to be
functional, such that persons can be born in at most one location.

6. Downloads. Finally, the parsed fact candidates, the extracted fact
observations and the clean facts are exported as RDF documents, which
can be downloaded from the interface in Figure 6.13.

7. Adding and Editing Patterns. The user is free to manually add any new
patterns of the interesting relations by the interface shown in Figure 6.14.
In the example, the user creates a pattern “visited” for relation “travelsTo”.
Afterwards, the user can edit/delete the added patterns via the interface
illustrated in Figure 6.15. Once the “Save” value is set as “1”, the pattern
will be used for the future extraction. In Figure 6.9, the patterns with the
save value “1” are the old ones from either manually added patterns or
previous pattern analysis stage. These patterns, together with the new

88

6.1. Interactive Knowledge Harvesting

Figure 6.10.: Extracted base fact observations.

Figure 6.11.: Extracted temporal fact observations.

labelled patterns from pattern analysis (the “0” ones), are used in the fact
observation extraction stage.

89

Chapter 6. Tools

Figure 6.12.: Add constraints.

Figure 6.13.: Downloads.

6.1.6. Demonstration Scenarios

In order to showcase the entire pipeline of our interactive knowledge harvesting
system PRAVDA-live, we have prepared two dedicated demo scenarios: Ad-hoc
Fact Extraction for YAGO and Fact Extraction on Customized Relations. Users
may freely interact with our system.

Ad-hoc Fact Extraction for YAGO. In the first scenario we enable users to
harvest (temporal) facts based on the relations supported by YAGO. To this
end, users are able to either upload a document collection or paste a text

90

6.1. Interactive Knowledge Harvesting

Figure 6.14.: Add patterns.

Figure 6.15.: Edit patterns.

document in the user interface of PRAVDA-live for a subsequent fact extraction
(see Figure 6.3). After that, the facts can be evaluated via the assessment
interface (see Figure 6.10 and Figure 6.11). Finally, the so created fact set can be
exported as an RDF document (see Figure 6.13).

Fact Extraction on Customized Relations. The second scenario allows users
to harvest facts from customized relations. This use case is of particular interest
for those, who want inject RDF exports from PRAVDA-live into a proprietary
knowledge base. To this end, we demonstrate the specification of additional
relations (see Figure 6.5) and the corresponding labeling of a small number
seed facts (see Figure 6.6 and Figure 6.7). Also users can manually add patterns
for any relation of interest (see Figure 6.14). Further, we showcase the bulk
processing feature of PRAVDA-live with a subsequent assessment. The demo

91

Chapter 6. Tools

concludes with a RDF export of the extracted facts (see Figure 6.13).

92

Chapter 7.

Applications

7.1. Time Aware Querying of Temporal Knowledge

7.1.1. Query Processing

From the work presented in Chapter 4 and Chapter 5, we build a temporal
knowledge base called Timely YAGO (T-YAGO). In this section, we provide a
time-aware query language for T-YAGO on its knowledge base of temporal
facts. Recall that facts are represented as subject-property-object triples, SPO
triples for short, of the RDF data model. Conditions on S, P, or O are expressed
by SPARQL triple patterns, and can be combined in a conjunctive manner. For
temporal conditions we have extended the query language by a suite of time
predicates that refer to the on, since, and until relations of temporal facts: before,
after, equal, during, overlaps, sameYear, and a few more. Each of these predicates
takes as input two time points or two time periods or a time point and a time
period, and returns a Boolean value. As T-YAGO’s notion of validity times
refers to fact identifiers, we need to be able to have variables for fact identifiers
and also variables that denote time points for which we need to compute
appropriate bindings. As an example, consider a query about teammates of
David Beckham - soccer players who played for the same club as Beckham
during overlapping periods. We can express this in the T-YAGO query
language as follows:

?id1 : ‘‘David Beckham ′′ playsForClub ?x .

?id2 : ?a playsForClub ?x .

?id1 since ?t1 . ?id1 until ?t2 .
?id2 since ?t3 . ?id2 until ?t4 .

93

Chapter 7. Applications

[?t1− ?t2] overlaps [?t3− ?t4] .

?a notEqual ‘‘David Beckham ′′

where [?t1 − ?t2] denotes a time interval. The query returns important players
such as Paul Scholes, Gary Neville, and Ruud van Nistelrooy at Manchester
United, and Zinedine Zidane, Luis Figo, and Ronaldo at Real Madrid. In the
query, predicates like overlaps are used as if they were relations (or properties in
RDF jargon). However, they are not necessarily materialized, but instead
computed dynamically as needed. We call these virtual relations. As they are
actually evaluated as run-time functions, it is easy to switch to
relaxed-matching semantics as an alternative to exact-matching evaluation of
time predicates. The rationale for this option is that we may have different time
resolution or uncertainty in the validity times of different facts. For example,
consider a query about politicians who visited the same city on the same day.
We may know that one politician visited Rome on May 21, and that another
politician visited Rome in May of the same year. These time points do not
match exactly because of the different resolutions. But we should still consider
them as equal in a relaxed-matching mode. For such cases, T-YAGO supports
relaxed-matching variants of all temporal predicates. These are based on the
[earliest, latest] representation of uncertain time points. Two time points with
uncertainty are considered equal if there is a non-zero probability that they are
truly equal if they were exactly known. Figure 7.1 illustrates the matching of
time points with [earliest, latest] uncertainty in a graphical manner: while the
time points t1 and t2 are not equal in the strict sense they should be regarded as
potentially equal applying our relaxed matching scheme. The other temporal
predicates like overlaps, during, etc., are handled analogously.
t1[1999− 01− 01, 1999− 06− 30] t2[1999− 03− 01, 1999− 12− 31]

Figure 7.1.: Relaxed matching of time points.

94

7.1. Time Aware Querying of Temporal Knowledge

7.1.2. Use Case Scenario

At this point, T-YAGO contains around 200.000 temporal facts from the sports
domain. Among them, about 70.000 facts have been extracted from Wikipedia
categories and lists embedded in articles. All these temporal facts have been
integrated into the existing YAGO knowledge base. This way, we can
demonstrate our querying capabilities for temporal facts in our prototype
system.

Figure 7.2.: The timeline of David Beckham.

To present the temporal facts, we implemented our demonstration based on
SIMILE Timeline 1 which is a DHTML-based AJAX widget for visualizing
time-based events. In our demo, we support several types of temporal queries.
For example, users can query temporal facts for a person. Figure 7.2 is a
snapshot segment of the querying result for “David Beckham”. A point means
a fact valid only on a time point like “David_Beckham isBornOn 1975”. A
timespan denotes a fact valid in a time interval, e.g. “David Beckham
playsForSeniorClub from 1993 to 2003”. The users can navigate all facts along the
whole timeline and click on anyone of them for the details. Above the timeline

1SIMILE Timeline, http://www.simile-widgets.org/timeline/

95

http://www.simile-widgets.org/timeline/

Chapter 7. Applications

are the temporal facts concerning “David Beckham” himself, such as the
awards he gained and his duration of time playing for different clubs. Below
the timeline, there are the results for the query in Subsection 7.1.1 “who is the
teammate of David Beckham?” We can click on each player’s name and check
his career information when David Beckham was at the same team with him.
With the visualization, we can easily identify the related facts if they are in the
same or the overlapping timespans.

7.2. Summarization

The recent dramatic growth of the Internet has attracted much attention on
document summarization methods. However, most traditional techniques do
not consider the semantic representation of a document, thus missing out the
opportunities to address issues such as redundancy and incoherence of the
resulting summaries. Prior approaches typically do not address specific users’
interests, when a user seeks fine grained knowledge about a particular target
entity. This section develops a novel method for abstractive summarization.
Our method distills temporal knowledge from documents and generates a
concise summary according to a particular user’s interest, for example,
focusing on a soccer player’s career. Experiments are conducted on
biography-style Wikipedia pages, and the results demonstrate the performance
of our system compared to existing, both abstractive and extractive,
summarization methods.

7.2.1. Problem Statement and Contributions

Document summarization denotes the process of generating a compressed
version of one or more input documents that reflects the most important
content of these documents in a condensed form. Automatic document
summarization techniques have attracted a lot of attention
recently [14, 26, 78, 22, 42]. The task of document summarization contains two
main approaches: extractive and abstractive summarizations [27]. Usually
extractive summarization methods generate the summary by extracting and
reproducing entire sentences from the source documents, whereas abstractive
document summarization techniques produce a grammatical summary by

96

7.2. Summarization

advanced language generation techniques [18]. Since abstractive
summarization is generally found to be difficult, most existing summarization
strategies focus on extractive summarization. However, one serious problem
for most extractive methods is the presence of redundant information that is
often formulated in slight variations in the natural-language input. To ensure a
reasonable trade-off between summary size and information content, these
systems rank sentences by various informativeness and redundancy measures
and then select the top-ranked sentences for the summary. If sentences are very
similar at the word level, but rather dissimilar in the content they reflect, this
may lead to many false removals of candidate sentences from the summary.
For example, the following three, syntactically very similar sentences

• “Beckham transferred to Real Madrid”,

• “Beckham moved to Real Madrid”, and

• “Ronaldo moved to Real Madrid”

might be arranged in the result summary in descending order of weight. An
overly eager removal of syntactically similar sentences might thus lead to an
erroneous removal of the last two sentences. In fact, only the second sentence
is redundant in this case, while the third one is not. Other issues, such as bad
readability and incoherence of sentences in the resulting summaries, are also
longstanding difficulties of extractive summarization approaches.

Another challenging problem in document summarization is the relevance of
the summary to a particular user’s intent. Often, the summary does not reflect
the specific information that is requested by a user (along with some relevant
context information), especially when a user seeks a rather specific piece of
information. Topic-based summarization strategies have been proposed to
address this issue; however, in many cases users do not just search for a
predefined topic, but ask for the summary related to more fine grained
knowledge, e.g., a soccer players’ family life. This would call for a combination
of information extraction, information retrieval, and knowledge-based
representation techniques for a specific and concise form of document
summarization.

To solve these challenges, our goal is to provide an abstractive
summarization method that is capable of identifying the key factual knowledge
provided by a natural-language input document with similar precision and

97

Chapter 7. Applications

recall as a human, and to aggregate and represent this information in a natural,
non-redundant way. What, for example, should a short summary (of, say, 100
words) for a soccer player’s career include? For a famous player, it will be quite
impossible to list all the clubs and games the player was associated with during
his or her entire career. After reading, for example, the Wikipedia article about
the player, a human could easily provide the total number of clubs in which the
player served, as well as the number of honors the player won. Reporting these
numbers in a summary could help a reader to know the popularity of the
player. The next step would be to identify the most important clubs and
honors—in chronological order—and to add these to the summary. While
identifying and aggregating the key facts of a document is not difficult for a
human, this certainly remains a challenge for any automated summarization
approach.

To this end, we argue that the recent advent in information extraction and
knowledge harvesting, and in particular the extraction of temporal knowledge,
may come to our rescue.

Contributions. In this section, we propose a method that, similarly to a
human, distills factual temporal knowledge from input documents and
generates concise summaries from these facts directly via templates for
natural-language output sentences. We summarize our contributions:

• a new abstractive approach for multi-document summarization from both
semi-structured and natural-language input contents,

• an algorithm for reordering the extracted temporal knowledge and for
presenting this knowledge as natural language text (see Section 7.2.4),

• a method for aggregating potentially noisy pieces of evidence into
coherent, high-confidence time intervals for facts (see Section 7.2.3),

• an experimental study with Wikipedia biographies demonstrating the
effectiveness of our knowledge-based summarization approach in
comparison to existing baseline systems for extractive and abstractive
summarization (see Section 7.2.5).

98

7.2. Summarization

7.2.2. System Architecture

Given a set of input documents D = {D1, D2, . . . , Dn} and a set of typed target
relations R = {R1, R2, . . . , Rm}, our system aims at distilling key factual
knowledge (i.e., instances of the target relations in R) from different kinds of
data formats that are captured in D. Our approach is designed to follow the
way a human would summarize a document, by first digesting the document
and then by representing and rearranging the interesting knowledge and
associating the different facts occurring in the documents with each other.

Figure 7.3.: System architecture.

Figure 7.3 depicts an overview of our approach. Knowledge harvesting and
evidence aggregation serve as the digesting and representation step, while
knowledge ordering and sentence generation serve to arrange and present the
key facts in the form of a coherent, natural-language summary to the user. To
harvest interesting knowledge from both semi-structured and textual data
sources, we employ the general architecture of PRAVDA (including candidate
gathering, pattern analysis and fact extraction) to extract new facts (both base
and temporal facts) from free-text. Multiple occurrences of temporal facts are
reconciled by a form of evidence aggregation, which serves to condense the
extracted knowledge, and to extract high-confidence time intervals at which
these new facts are found to be valid. Finally, for better readability and
coherence of the final summary, these facts along with their time intervals are
ordered chronologically and presented as natural language sentences by
mapping the facts onto a set of handcrafted sentence templates. For details of
knowledge harvesting, we refer the reader to Chapter 4. All the other details

99

Chapter 7. Applications

for each of these steps are provided in the following sections.

7.2.3. Evidence Aggregation Model

In this section, we present two basic processing steps for aggregating time points
attached to the event facts provided by knowledge harvesting into a concise time
histogram of a corresponding state fact. These aggregation steps include (1) the
aggregation of event facts with individual time points into state facts with a
single time histogram, and (2) the distillation of high-confidence time intervals
out of these histograms. Please notice that the aggregation algorithm presented
in Section 5.3.2 could only cope with unimodal time histograms, whereas the
aggregation approach in this section also supports multimodal histograms.

Aggregating Events into State Histograms

Among all observations of event facts found in input sentences by knowledge
harvesting step, we first determine the time range [tb, te] of the largest possible
validity interval of a corresponding state fact by selecting the earliest time point
tb and the latest time point te out of these event facts, respectively. According to
the relation an event fact has been labelled with, we refine the individual event
facts into begin, end, and during observations that mark either the possible begin
or end time point, or a time point during which the corresponding state fact may
be valid.

Next, all observations of begin, end, and during events are aggregated into
three initial histograms, each ranging over [tb, te]. It yields one frequency value
freq[ti] per time point ti. Initially, the ith bin’s frequency value freq[ti] refers to
the plain number of observations corresponding to this time point, for each of
the three types of event facts. Subsequent time points with equal frequencies
are coalesced into a single histogram bin. In each of the histograms, the bins’
frequencies are then normalized to 1. For combining the three event-oriented
histograms into a single histogram of the corresponding state fact, we apply the
following assumptions:

• A during observation at time point tj should increase the confidence in the
state fact being correct at tj (for all time points captured by the interval of
the during observation).

100

7.2. Summarization

• A begin observation at time point tj should increase the confidence in the
state fact for all time points ranging from tj to te.

• An end observation at time point tj should decrease the confidence in the
state fact for all time points tj to te.

Algorithm 5 shows pseudo-code for combining the begin, end and during
histograms. We first merge the two begin and end histograms, before we merge
the resulting begin-end histogram with the during histogram using Equation 7.1
(based on De Morgan’s law).

P = Pduring ∪ Pbegin,end = Pduring
⋂
Pbegin,end (7.1)

= 1− (1− Pduring) · (1− Pbegin,end)

For this, let P denote the final frequency obtained after all aggregation steps,
let Pduring denote the frequency of the during event, and let Pbegin,end be the
output (i.e., freq[ti] after the inner for loop in Algorithm 5) of aggregating the
begin and end histograms. For all the non-empty bins in the during histogram,
we use Equation 7.1 to compute the new frequency value P. Finally, all
consecutive bins with the same frequency values are merged, and the bins are
once more normalized to 1 (cf. Algorithm 5 and Figure 7.4).

Figure 7.4.: Aggregating events into state histograms.

Extracting High-Confidence Intervals

For the final temporal knowledge base, we aim at further simplifying the
potentially very fine-grained histogram we have obtained from the previous

101

Chapter 7. Applications

Algorithm 5 Aggregating Events into State Histograms.
Require: Event histograms with frequencies freqbegin, freqend, freqduring over the

time range [tb, te]

1: for each ti ∈ [tb, te] do
2: Set freq[ti] = 0
3: // Aggregate begin histogram with end histogram
4: for each tj ∈ [ti, te] do
5: Set freq[tj] = freq[tj] + freqbegin[ti] //aggregate begin
6: Set freq[tj] = max(0, freq[tj] − freqend[ti]) //reduce end
7: end for
8: // Combine merged begin,end histogram with during histogram
9: Set freq[ti] = (1− (1− freqduring[ti]) · (1− freq[ti]))

10: end for
11: Reorganize the bins and normalize their frequencies to 1
12:

13: return State histogram with frequencies freq

aggregation step by discarding bins with a low confidence. Assuming, for
example, we are interested in a final histogram that captures at least 90 percent
of the confidence mass of the original histogram, we discard all low-confidence
bins whose cumulative frequencies sum up to at most 10 percent.

Since the original histogram’s bins form a discrete confidence distribution,
we pursue an iterative algorithm. Starting from the lowest-frequency bin, we
first sort all bins by their frequency values and then check for the remaining
confidence mass when cutting off these bins horizontally. Let τ be the expected
threshold of the confidence interval (e.g., 90 percent). Our algorithm stops as
soon as we have cut off more than a threshold of 1 − τ (e.g., 10 percent) of the
overall confidence mass. We then pick the previous solution, which must still
be above τ. This procedure is further refined by a final vertical trimming step of
the remaining bins. To this end, we assume a uniform confidence distribution
within each bin, and we adjust the frequency value freq[i] of the trimmed bin
proportionally to its cut-off width (cf. Figure 7.4) until we reach τ.

102

7.2. Summarization

7.2.4. Sentence Generation and Reordering

Most extractive summarization methods return summary sentences in the
order in which these sentences are presented in the original articles. We argue
that a chronological order of facts is a more natural way to present more concise
summaries (e.g., biographies), that allows us to further abstract the summary
contents from the contents of the original input documents. The extraction of
temporal facts of course strongly facilitates this task.

Knowledge Ordering

Before sorting the individual facts about an entity of interest, we first roughly
sort the more abstract relations associated with t-facts. Some relations can be
very naturally ordered. Considering a person’s life, for example, the time point
of a t-fact for the isBornIn relation must lie before the start point of a isMarriedTo
t-fact for the same person, which in turn must lie before the time point of a diedIn
t-fact of that person.

This order of relations can be learned statistically from t-facts. Given a set of
relations R and their temporal instances (t-facts), we aim at building a
time-ordered directed graph G = (V, E), where each vertex refers to a relation
and each edge represents a chronological dependency. We start by creating an
initial graph G ′ = (R, E) by adding an edge (Ri before Rj) if the support sij of
(Ri before Rj) is much greater than sji. sij is calculated by counting the instances
of Ri and Rj having the same subject, that is ri(a, b) and rj(a, c), satisfying
(ri(a, b) before rj(a, c)). The final graph G is then obtained from G ′ by adding
two virtual vertices representing two start and end states to G ′ and by removing
all transitive dependencies from G ′. For example, isBornIn may have an edge
with many relations, such as graduatedFromHighSchool, graduatedFromUniversity
and diedIn. These edges are removed according to the transitive dependencies
among these relations, and only a path from isBornIn through
graduatedFromHighSchool, graduatedFromUniversity to diedIn is kept. If the graph
G contains a cycle, we remove the cycle by dropping the edge with the lowest
support within the cycle. Figure 7.5 illustrates an example for transforming a
set of relations into G. Algorithm 6 shows details about how to determine the
chronological order of both t-facts and b-facts according to G. The algorithm is
based on topological sorting. Regarding a state fact, which is valid during an

103

Chapter 7. Applications

Algorithm 6 Knowledge Ordering
Require: Graph G; the base and temporal facts Fb and Ft.

1: S = ∅ //Empty list that will contain the sorted facts.
2: L⇐= Set of all vertices with no incoming edges.
3: while L is non-empty do
4: remove a vertex n from L

5: if n has not been visited yet then
6: insert all the t-facts(in time-order) and then b-facts of relation n into S
7: end if
8: for each nodemwith an edge e from n tom do
9: remove edge e from the graph G

10: ifm has no other incoming edges then
11: insertm into L and markm as visited
12: sort all the t-facts of relationm by time and insert them into S
13: insert b-facts of relationm into S
14: end if
15: end for
16: end while
17:

18: return S //Facts sorted by topological order of relations in G.

entire time interval, only the start time point is taken into consideration. For
example, suppose we captured that David_Beckham played for
Manchester_United from 1991 to 2003, Real_Madrid from 2003 to 2007 and got
married on 4-July-1999. The three temporal facts are ordered as
{David_Beckham playsForClub Manchester_United, David_Beckham
getsMarriedWith Victoria_Beckham, David_Beckham playsForClub
Real_Madrid}, according to the time points {1-January-1991, 4-July-1999, and
1-January-2003}. Base facts (b-facts) which generally cannot be ordered
explicitly by time are inserted into G after the temporal facts (t-facts) in the
same relation according to the topological order (Line 13).

104

7.2. Summarization

Figure 7.5.: Relation graph.

Sentence Generation and Redundancy Elimination

For each relation, we manually define sentence templates to construct the
summary sentences. These templates aim at providing easy-to-read summaries
also for non-native speakers. We depict some example templates used in our
system in Table 7.1: These are the templates for base facts.

Relation Templates
isBornIn ARG1 was born in ARG2

worksForClub ARG1 served for ARG2; ARG1 worked for ARG2

actedIn ARG1 acted in ARG2; ARG1 appeared in ARG2

hasWonHonor ARG1 has won ARG2; ARG1 received ARG2

Table 7.1.: Example sentence templates for relations.

For temporal facts these templates are additionally associated with a place
holder for a time point or interval. For example, the template for temporal facts
of isBornIn is “ARG1 was born in ARG2 on TIME”. The template for temporal
facts of worksForClub containing single time interval is “ARG1 served for ARG2
from begin_TIME to end_TIME”;and for multiple time intervals is “ARG1
served for ARG2 (begin_TIME1–end_TIME1, begin_TIME2–end_TIME2, ...,
begin_TIMEn–end_TIMEn)”.

Specifically, we create a number of different templates for each relation and
randomly choose from them for each subject to improve the diversity of the
output. After the knowledge ordering, t-facts of the same relation are ordered
next to each other due to the topological order in the relation graph. In terms
of templates, sentences representing the same relation are likely to contain a lot
of redundancy. Thus we propose two steps to merge redundant sentences into
one. For example, “David Beckham played for Manchester United from 1993

105

Chapter 7. Applications

to 2003” and “David Beckham played for Real Madrid from 2003 to 2007” are
merged into “David Beckham played for Manchester United (1993-2003) and
Real Madrid (2003-2007)”. For his honors, we could similarly get the following
merged sentence “David Beckham won the Premier League (1996), the FA Cup
(1999), the UEFA Champions League (1999), the Intercontinental Cup (1999),
and the La Liga (2007), etc.” Since there are many honors, we resort to only
show the first ones. Such summaries correspond to the long summary in the
experiments section (see Section 7.2.5, baseline systems).

In case there are too many facts holding the same relation, we could omit
some unimportant facts, report the total number, and choose only some
examples for the summary sentences. Considering once more Beckham’s
career, if the importance of a career depends on the number of honors a player
has won during this time period, we could keep Manchester United and omit
all the others. The number of honors in each club is not difficult to get by
comparing the time point when at which the player won the honor with the
time period during which he played for the club. Similarly, the repeated
occurrence of the full name “David Beckham” can be replaced by the
corresponding pronoun “he”. Hence the final summary is compressed into
“David Beckham has played for about eight clubs. He joined Manchester
United in 1993. During his career in Manchester United, he won about fifteen
honors including the Premier League (1996), the FA Cup (1999), etc.”. The
initially redundant sentences were thus compressed into just three sentences
with the key facts about David Beckham. Such summary is called short
summary in Section 7.2.5 (see baseline systems).

7.2.5. Experiments

Experimental Setup

Data Sets: We evaluate our method on Wikipedia articles from two domains:
soccer players and movie stars. The corpora include Wikipedia articles for soccer
players from the “FIFA 100 list”2, and movie stars from the “Top 100 movies
stars”3. The gender of the person was heuristically deterimined by the most

2http://en.wikipedia.org/wiki/FIFA_100/
3http://articles.cnn.com/2003-05-06/entertainment/movie.poll.100_1_

star-movies-godfather?_s=PM:SHOWBIZ/

106

http://en.wikipedia.org/wiki/FIFA_100/
http://articles.cnn.com/2003-05-06/entertainment/movie.poll.100_1_star-movies-godfather?_s=PM:SHOWBIZ/
http://articles.cnn.com/2003-05-06/entertainment/movie.poll.100_1_star-movies-godfather?_s=PM:SHOWBIZ/

7.2. Summarization

frequent pronoun in the Wikipedia article. Thus we preprocessed the corpora
by replacing the most frequent pronoun by the title of the Wikipedia article and
all the entity mentions were disambiguated against the YAGO [62] knowledge
base using the AIDA [30] framework for named entity disambiguation.

Queries: For both domains, we query the system for summaries about facts
associated with the birth and death dates of the respective persons, their family
life (including marriage and children), honors they won, and their career
(including the relations worksForClub for soccer players or actedIn for movie
stars, as well as playing positions for soccer players).

Baseline Systems: According to Section 7.2.4, we conduct two experiments
for our system. 1) We generate the summary with most of the facts about a
person (about 200 words), and 2) we generate a summary with only the most
important facts and aggregated statistics (about 100 words). We call the results
from each experiment a long summary and a short summary, respectively.

We compare our system to three different approaches introduced in the
literature. Since the top paragraphs in a Wikipedia article are usually a small
biography of the subject of the article, we extracts the first n sentences from a
Wikipedia article. Such method is called NIST-Wiki.

LDA is a generative probabilistic model used for discovering “latent” topics
based on a hierarchical Baysian model [9]. LDA-based document
summarization has been applied to document summarization in 2008 [2] and
uses probabilistic topic distributions to calculate the salience for each input
sentence.

Additionally, as a representative model for recent abstractive summarization
methods, we use Opinosis as another baseline. Opinosis [26] is a graph-based
abstractive summarization framework. It constructs a graph from a set of input
sentences set by considering redundancy and generates an optimal path from
the graph.

Since these baseline systems can only consider textual input data, the
semi-structured input data (such as infoboxes) are translated to
natural-language sentences by sentence templates, in order to make the input
equal for both our system and the baseline systems. For example, all the honors
of Beckham are translated into “David Beckham has won Premier League in

107

Chapter 7. Applications

1996. David Beckham has won Premier League in 1997. David Beckham has
won FIFA 100. ...”. For the short summary, we limit the number of words to
about 100; and to 200 for the long summaries. Since Opinosis is limited by the
number of sentences, a short summary is limited to 10 sentences, while a long
summary contains 20 sentences.

Evaluation Procedures: We evaluate the summary for informativeness,
diversity, coherence and precision [44, 42] by performing a user study. There are
four participants. Each participant randomly samples thirty summaries for
each domain. For each of the above metrics, we rate the summary from one to
five. With respect to the four metrics, a rating of one means {“least informative”,
“least diverse”, “very incoherent”, “very imprecise”}; while a rating of five
means {“very informative”, “very diverse”, “very coherent”, “very precise”}.
The final score of each metric then is the average of all 4 × 30 summaries. The
score of each metric in Table 7.4 is the average of all 4 × 60 summaries on both
domains including the short and long summary. The overall score then is the
average over all four metrics for each system on both short and long
summaries.

Example Summaries

In order to better compare the results, we depict a few of the generated
summaries about David Beckham in this subsection. Due to the limited space,
we only show some running examples for our system (including long and short
summaries but with similar size), NIST-Wiki, LDA, Opinosis, plus a manually
created summary as additional reference.

Our System(long): David Beckham was born in London in 1975/05/02. He played as

Midfielder. He served in Manchester United F.C. (1991-2003), Real Madrid C.F. (2003-

2007), Los Angeles Galaxy (2007-). He has won FA Youth Cup (1992), FA Community

Shield (1993,1994,1996,1997), Premier League (1996,1997,1999,2000,2001,2003), FA Cup

(1996,1999), UEFA Club Football Awards (1999), MLS Cup (2011), FIFA 100, etc.

108

7.2. Summarization

Our System(short): David Beckham was born in London in 1975/05/02. He played as

Midfielder. He has played for about 3 clubs and won about 45 honors. In 1991 he joined

Manchester United F.C. and served for 13 years. During this time period, he was awarded

FA Youth Cup (1992), FA Cup (1996), FA Cup (1999), Intercontinental Cup (1999), UEFA

Club Football Awards (1999), etc.

NIST-Wiki: David Robert Joseph Beckham, Order of the British Empire (born 1975-

05-02) is an England association footballer who plays for Los Angeles Galaxy. David

Beckham has played for Manchester United F.C., Preston North End F.C., Real Madrid

C.F., A.C. Milan, and the England national football team for which David Beckham holds

the appearance record for a Outfield#Association football. David Beckham’s career began

when David Beckham signed a professional contract with Manchester United, making his

first-team debut in 1992 aged 17.

LDA: Beckham scored the equaliser and United went on to win the match and the league.

Beckham scored 9 goals that season, all in the Premier League. The income from his new

contract, and his many endorsement deals, made Beckham the highest-paid player in the

world at the time. In the first nine matches David Beckham started, Real lost 7. David

Beckham returned to play in the final home match of the season. Beckham is Officers of the

Order of the British Empire. Beckham is England expatriates in the United States.

Opinosis: David Beckham enjoyed tremendous following. Beckham’s right midfield

position. Beckham’s contract became public knowledge. Beckham’s maternal grandfather

was Jewish. Beckham’s best season as united player and united. Beckham is England

under-21 international footballers. Beckham England people of Jewish descent. Beckham’s

marriage in 2007- -/:. Beckham crumpled hard to the ground. Beckham of the most

recognisable athletes throughout the world, not concentrating on the tournament and

England ’s next match.

Manual: David Beckham, born in 2 May, 1975, is a midfielder. Beckham began his career

with Manchester United in 1991. During his 13 years career there, he won several honors.

He received Premier League 10 Seasons Awards for his contribution from the 1992-93 to

2001-02 seasons. He also played for Real Madrid, LA Galaxy, etc. To honor his contribution,

he was named FIFA 100. On 4 July 1999, David married Victoria. They have four children:

sons Brooklyn Joseph, Romeo James, and Cruz David; and daughter Harper Seven.

109

Chapter 7. Applications

System Diversity Informativeness Coherence Precision
Ours 3.97 4.56 4.48 4.58 Soccer

NIST-Wiki 3.10 3.71 4.83 4.88

LDA 3.38 4.06 3.54 4.61

Opinosis 2.28 3.90 1.95 3.17

Ours 3.48 4.78 4.13 4.68 M
ovie

Star

NIST-Wiki 2.25 3.64 4.34 4.99

LDA 1.98 3.33 2.26 4.79

Opinosis 1.47 3.03 1.76 3.48

Table 7.2.: Long summary.

System Diversity Informativeness Coherence Precision
Ours 3.64 4.06 4.25 4.22 Soccer

NIST-Wiki 2.80 3.00 4.78 4.83

LDA 2.93 3.55 3.28 4.46

Opinosis 2.01 3.22 1.81 3.03

Ours 3.35 4.53 4.37 4.11 M
ovie

Star

NIST-Wiki 1.93 3.18 4.33 4.98

LDA 1.58 2.75 2.23 4.79

Opinosis 1.33 2.61 1.68 3.40

Table 7.3.: Short summary.

System Diversity Informativeness Coherence Precision Overall
Ours 3.61 4.48 4.30 4.40 4.20
NIST-Wiki 2.52 3.38 4.57 4.92 3.85

LDA 2.46 3.42 2.83 4.66 3.34

Opinosis 1.77 3.19 1.80 3.27 2.51

Table 7.4.: Overall score.

110

7.2. Summarization

Experimental Results

The evaluation results from two experiments on the four metrics are displayed in
Tables 7.2 and 7.3. On the average over all four metrics, our system outperforms
all baseline systems (see the last column of Table 7.4). More specifically, our
system outperforms all the others on diversity and informativeness, but comes
slightly shorter on precision and coherence. In contrast, NIST-Wiki is the best on
these two metrics, because it just picks the first n sentences from each Wikipedia
article which is very similar to a manual short summary.

There is no 100% perfect extraction methodology. Incorrect extractions
obviously affect the precision of the generated summary. Furthermore,
extraction recall also influences the short summary since we report a statistical
number. For example, if we only extract one award of David Beckham, the
short summary “David Beckham won about one honor” is incorrect. This error
may only happen for extractive summaries when the source data contains
mistakes. To reduce such errors, we might consider including also vague
statements like “more than”. Opinosis compresses the text by considering the
sentence redundancy, so the new generated sentences may change the
semantics of the original sentences. This holds for semi-structured contents
which are presented as natural-language sentences, such as “Rui Costa has won
Toulon Tournament in 1992. Rui Costa has won FIFA U-20 World Cup in 1991.”
Opinosis is able to compress them into one meaningful sentence “Rui Costa has
won Toulon Tournament in 1992 and FIFA U-20 World Cup in 1991.” While for
other sentences in the Wikipedia article, most generated sentences are
meaningless and even incorrect. See the running examples of David Beckham
in the last subsection. Opinosis generates one sentence “Beckham’s marriage in
2007- -/:.” However Beckham actually got married with Victoria on
1999-July-04. Also, the sentence “David Beckham enjoyed tremendous
following” is meaningless. Such a sentence is given a score of 3. So the overall
precision of Opinosis is about 3. Noisy text, such as URL links which are
recognized as sentences, is accounted as an error for precision during the
evaluation. This is also the reason why the precision of NIST-Wiki is not 100%
correct.

NIST-Wiki produces perfect coherence as it returns the contiguous first n
sentences from the Wikipedia article. Other extractive methods, like LDA,

111

Chapter 7. Applications

introduce incoherence into the summary, as the extracted sentences are usually
not contiguous. Besides incoherence, they also introduce imprecision when the
extracted sentence contains indicative pronouns, such as “after this”, and
temporal phrases, such as “one year later”. If the original previous sentence
was not extracted, the extracted sentence would indicate incorrect information.
As for the abstractive method, some sentences generated by Opinosis are
meaningless, therefore it increases the difficulty of reading the summary. On
the contrary, our system exploits simple templates which are easy to
understand. Only when too many facts hold the same relation, the generated
sentence feels non-fluent. For example, “David Beckham won the Primier
League (1996,1997,1999,2000,2001,2003), FA Cup (1996), La Liga (2007), MLS
Cup (2011) ...”. We currently use a parameter to show only a fixed number of
repeated facts.

Notice also that the informativeness and diversity are affected by recall. Our
system managed to find the key information. The sentences from the
semi-structured input contents facilitate LDA and Opinosis to find this key
information as well. Specifically for LDA, those sentences get higher topic
saliency than other sentences from the free-text contents in the article for each
topic, thus LDA could extract more information from those structured
sentences into the final summary. Therefore the score of LDA and Opinosis for
informativeness is better than or close to NIST-Wiki (the natural biography),
according to Table 7.4. The diversity is not good across all systems. No system
managed to extract all information of interest. Looking at the last subsection of
the running examples, no system extracted summaries about Beckham’s
marriage and children. Considering the honors, even if our system extracted all
the honors for Beckham, it is difficult to decide which ones are the most
important ones to be shown in the summary, since only an expert with strong
background knowledge could find out the important honors. Since the
LDA-based summarization strategy calculate the saliency in multiple topics, it
could get different sentences focusing on different sub-topics for each article.
Therefore, as shown in the results, for diversity the LDA-based method could
get a score that is close to NIST-Wiki’s score.

112

7.2. Summarization

7.2.6. Conclusions and Outlook

This section has presented a novel abstractive summarization method by
leveraging facts from a temporal knowledge base. The experimental results
show that our approach may more adequately capture a user’s interest and
achieves high performance on summarization diversity and informativeness in
comparison to other extractive and abstractive methods.

In our approach, the natural language sentences are generated by manually
defined templates. Our current experiments mostly focused on a small number
of relations over two specific domains. Future work could aim at designing an
automatic approach for generating sentence templates for each relation and to
generalize our techniques to broad and open domains.

113

Chapter 7. Applications

114

Chapter 8.

Conclusions

Summary. This thesis has presented methods and tools for the automatic
construction of temporal knowledge base. It consists of four contributions: the
core temporal knowledge base T-YAGO (introduced in Chapter 4) and the
knowledge harvesting system PRAVDA (introduced in Chapter 4 and 5) , the
knowledge cleaning system T-URDF (introduced in Chapter 5) and the
interactive knowledge harvesting system PRAVDA-live (introduced in
Chapter 6). These assets, together, constitute a system for constructing,
maintaining and expanding a temporal knowledge base. Finally applications of
temporal knowledge are discussed in Chapter 7.

Outlook. There are several directions for future work.

1. Currently the system is designed for a single machine. The obvious next
step is to extend the system for distributed platforms, aiming at scalable
temporal knowledge harvesting.

2. Temporal expressions are recognized by regular expressions. Since it is
impossible to create the regular expressions for all valid temporal
expressions, only explicit temporal expressions (e.g., 21 December, 2012)
are recognized. This could be extended to increase recall. In addition to
explicit dates, the implicit temporal expressions, for example, the French
Revolution, should be recognized as well.

3. Since we focus on closed-domain relation extraction, the relations are
manually pre-specified in our system. In contrast, open-domain relation
extraction aims at extracting all facts without any limitation of relations.

115

Chapter 8. Conclusions

Methods could be developed to discover relations automatically by
combining closed-domain and open-domain relation extraction.

116

Bibliography

[1] James F. Allen. Maintaining knowledge about temporal intervals. Commun.
ACM, 26(11):832–843, November 1983.

[2] Rachit Arora and Balaraman Ravindran. Latent dirichlet allocation based
multi-document summarization. In Proceedings of the second workshop on
Analytics for noisy unstructured text data, AND ’08, pages 91–97, New York,
NY, USA, 2008. ACM.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary Ives. DBpedia: A nucleus for a web of open data. In
Proceedings of the 6th international The semantic web and 2nd Asian conference
on Asian semantic web conference, ISWC’07/ASWC’07, pages 722–735, Berlin,
Heidelberg, 2007. Springer-Verlag.

[4] Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi Jing, Jay Yagnik, Shankar
Kumar, Deepak Ravichandran, and Mohamed Aly. Video suggestion and
discovery for YouTube: Taking random walks through the view graph. In
Proceedings of the 17th international conference on World Wide Web, WWW ’08,
pages 895–904, New York, NY, USA, 2008. ACM.

[5] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming:
theory and algorithms. Wiley-Interscience series in discrete mathematics and
optimization. Wiley, 1993.

[6] Omar Benjelloun, Anish Das Sarma, Alon Halevy, Martin Theobald, and
Jennifer Widom. Databases with uncertainty and lineage. The VLDB Journal,
17(2):243–264, March 2008.

[7] Klaus Berberich, Srikanta Bedathur, Omar Alonso, and Gerhard Weikum.
A language modeling approach for temporal information needs. In

117

Bibliography

Proceedings of the 32nd European conference on Advances in Information
Retrieval, ECIR ’10, pages 13–25, Berlin, Heidelberg, 2010. Springer-Verlag.

[8] Barry Bishop and Florian Fischer. IRIS- Integrated rule inference system.
In Proceedings of the 1st Workshop on Advancing Reasoning on the Web:
Scalability and Commonsense (ARea2008) hosted by the 5th European Semantic
Web Conference (ESWC-08), ARea ’08. CEUR Workshop Proceedings, 2008.

[9] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet
allocation. The Journal of Machine Learning Research, 3:993–1022, 2003.

[10] Branimir Boguraev, James Pustejovsky, Rie Kubota Ando, and Marc
Verhagen. TimeBank evolution as a community resource for TimeML
parsing. Language Resources and Evaluation, 41(1):91–115, 2007.

[11] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD ’08, pages 1247–1250, New York,
NY, USA, 2008. ACM.

[12] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam
R. Hruschka Jr., and Tom M. Mitchell. Toward an architecture for never-
ending language learning. In Maria Fox and David Poole, editors,
Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI
’10, pages 1306–1313. Association for the Advancement of Artificial
Intelligence, 2010.

[13] Andrew Carlson, Justin Betteridge, Richard C. Wang, Estevam R.
Hruschka, Jr., and Tom M. Mitchell. Coupled semi-supervised learning
for information extraction. In Proceedings of the third ACM international
conference on Web search and data mining, WSDM ’10, pages 101–110, New
York, NY, USA, 2010. ACM.

[14] Asli Celikyilmaz and Dilek Hakkani-Tur. A hybrid hierarchical model for
multi-document summarization. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, ACL ’10, pages 815–824,
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

118

Bibliography

[15] Jinxiu Chen, Donghong Ji, Chew Lim Tan, and Zhengyu Niu. Relation
extraction using label propagation based semi-supervised learning. In
Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics,
ACL-44, pages 129–136, Stroudsburg, PA, USA, 2006. Association for
Computational Linguistics.

[16] John M. Conroy and Dianne P. O’leary. Text summarization via hidden
Markov models. In Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’01,
pages 406–407, New York, NY, USA, 2001. ACM.

[17] Aron Culotta and Jeffrey Sorensen. Dependency tree kernels for relation
extraction. In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, ACL ’04, pages 423–429, Stroudsburg, PA, USA,
2004. Association for Computational Linguistics.

[18] Dipanjan Das and Andrĺę F. T. Martins. A survey on automatic text
summarization. Literature Survey for the Language and Statistics II course at
CMU, 4:192–195, 2007.

[19] Günes Erkan and Dragomir R. Radev. LexRank: graph-based lexical
centrality as salience in text summarization. J. Artif. Int. Res., 22(1):457–479,
December 2004.

[20] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld.
Open information extraction from the web. Commun. ACM, 51(12):68–74,
December 2008.

[21] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria
Popescu, Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander
Yates. Web-scale information extraction in KnowItAll: (preliminary
results). In Proceedings of the 13th international conference on World Wide Web,
WWW ’04, pages 100–110, New York, NY, USA, 2004. ACM.

[22] Katja Filippova. Multi-sentence compression: finding shortest paths
in word graphs. In Proceedings of the 23rd International Conference on

119

Bibliography

Computational Linguistics, COLING ’10, pages 322–330, Stroudsburg, PA,
USA, 2010. Association for Computational Linguistics.

[23] Michael Fisher, Dov Gabbay, and Lluis Vila. Handbook of Temporal Reasoning
in Artificial Intelligence (Foundations of Artificial Intelligence (Elsevier)).
Elsevier Science Inc., New York, NY, USA, 2005.

[24] Norbert Fuhr. Probabilistic Datalog-a logic for powerful retrieval methods.
In Proceedings of the 18th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’95, pages 282–290,
New York, NY, USA, 1995. ACM.

[25] Yoshio Fukushige. Representing probabilistic relations in RDF. In
Proceedings of the 1st International Semantic Web Conference, Workshop 3:
Uncertainty Reasoning for the Semantic Web, pages 106–107. Springer, 2005.

[26] Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. Opinosis: a
graph-based approach to abstractive summarization of highly redundant
opinions. In Proceedings of the 23rd International Conference on Computational
Linguistics, COLING ’10, pages 340–348, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

[27] Udo Hahn and Inderjeet Mani. The challenges of automatic
summarization. Computer, 33(11):29–36, November 2000.

[28] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a
Global Data Space. Synthesis Lectures on the Semantic Web: Theory and
Technology. Morgan & Claypool, 1st edition, 2011.

[29] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-
Kelham, Gerard de Melo, and Gerhard Weikum. YAGO2: Exploring and
querying world knowledge in time, space, context, and many languages.
In Proceedings of the 20th international conference companion on World Wide
Web, WWW ’11, pages 229–232, New York, NY, USA, 2011. ACM.

[30] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau,
Manfred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. Robust disambiguation of named entities in text. In Proceedings

120

Bibliography

of the Conference on Empirical Methods in Natural Language Processing,
EMNLP ’11, pages 782–792, Stroudsburg, PA, USA, 2011. Association for
Computational Linguistics.

[31] Hai Huang and Chengfei Liu. Query evaluation on probabilistic
RDF databases. In Proceedings of the 10th International Conference on
Web Information Systems Engineering, WISE ’09, pages 307–320, Berlin,
Heidelberg, 2009. Springer-Verlag.

[32] Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu.
MayBMS: A probabilistic database management system. In Proceedings
of the 2009 ACM SIGMOD International Conference on Management of data,
SIGMOD ’09, pages 1071–1074, New York, NY, USA, 2009. ACM.

[33] Christian S. Jensen and Richard Thomas Snodgrass. Temporal data
management. IEEE Trans. on Knowl. and Data Eng., 11(1), 1999.

[34] Hongyan Jing and Kathleen R. McKeown. Cut and paste based text
summarization. In Proceedings of the 1st North American chapter of the
Association for Computational Linguistics conference, NAACL 2000, pages
178–185, Stroudsburg, PA, USA, 2000. Association for Computational
Linguistics.

[35] Dimitris Karampinas and Peter Triantafillou. Crowdsourcing taxonomies.
In Proceedings of the 9th international conference on The Semantic Web: research
and applications, ESWC ’12, pages 545–559, Berlin, Heidelberg, 2012.
Springer-Verlag.

[36] Richard M. Karp. Reducibility among combinatorial problems. In
Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[37] Richard M. Karp and Michael Luby. Monte-Carlo algorithms for
enumeration and reliability problems. In Proceedings of the 24th Annual
Symposium on Foundations of Computer Science, SFCS ’83, pages 56–64,
Washington, DC, USA, 1983. IEEE Computer Society.

[38] Gjergji Kasneci, Shady Elbassuoni, and Gerhard Weikum. MING: Mining
informative entity relationship subgraphs. In Proceedings of the 18th ACM

121

Bibliography

conference on Information and knowledge management, CIKM ’09, pages 1653–
1656, New York, NY, USA, 2009. ACM.

[39] Kevin Knight and Daniel Marcu. Summarization beyond sentence
extraction: A probabilistic approach to sentence compression. Artificial
Intelligence, 139(1):91–107, July 2002.

[40] Oleksandr Kolomiyets, Steven Bethard, and Marie-Francine Moens.
Extracting narrative timelines as temporal dependency structures. In
Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Long Papers - Volume 1, ACL ’12, pages 88–97, Stroudsburg, PA,
USA, 2012. Association for Computational Linguistics.

[41] Markus Krötzsch and Denny Vrandecic. Semantic MediaWiki. In
Foundations for the Web of Information and Services, pages 311–326. Springer
Berlin Heidelberg, 2011.

[42] Liangda Li, Ke Zhou, Gui-Rong Xue, Hongyuan Zha, and Yong Yu.
Enhancing diversity, coverage and balance for summarization through
structure learning. In Proceedings of the 18th international conference on World
Wide Web, WWW ’09, pages 71–80, New York, NY, USA, 2009. ACM.

[43] Xiao Ling and Daniel S. Weld. Temporal information extraction. In
Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI
’10, pages 1385 – 1390. Association for the Advancement of Artificial
Intelligence, 2010.

[44] Inderjeet Mani. Summarization evaluation: An overview. In Proceedings
of the NTCIR Workshop 2 Meeting on Evaluation of Chinese and Japanese
Text Retrieval and Text Summarization, pages 77–85. National Institute of
Informatics, 2001.

[45] David McClosky and Christopher D. Manning. Learning constraints for
consistent timeline extraction. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL ’12, pages 873–882, Stroudsburg, PA,
USA, 2012. Association for Computational Linguistics.

122

Bibliography

[46] David D. Mcdonald and James D. Pustejovsky. Natural language
generation. In Proceedings of the 9th international joint conference on Artificial
intelligence, pages 799–805. John Wilwy and Sons, 1986.

[47] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision
for relation extraction without labeled data. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume
2, ACL ’09, pages 1003–1011, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics.

[48] Ndapandula Nakashole, Mauro Sozio, Fabian M. Suchanek, and Martin
Theobald. Query-time reasoning in uncertain RDF knowledge bases with
soft and hard rules. In Proceedings of the 2nd International Workshop on
Searching and Integrating New Web Data Sources, VLDS ’12, pages 15–20.
CEUR-WS.org, 2012.

[49] Ndapandula Nakashole, Martin Theobald, and Gerhard Weikum. Scalable
knowledge harvesting with high precision and high recall. In Proceedings of
the fourth ACM international conference on Web search and data mining, WSDM
’11, pages 227–236, New York, NY, USA, 2011. ACM.

[50] Marius Pasca. Towards temporal web search. In Proceedings of the 2008 ACM
symposium on Applied computing, SAC ’08, pages 1117–1121, New York, NY,
USA, 2008. ACM.

[51] Dragomir R. Radev, Timothy Allison, Sasha Blair-Goldensohn, John Blitzer,
Arda Çelebi, Stanko Dimitrov, Elliott Drábek, Ali Hakim, Wai Lam,
Danyu Liu, Jahna Otterbacher, Hong Qi, Horacio Saggion, Simone Teufel,
Michael Topper, Adam Winkel, and Zhu Zhang. MEAD - a platform
for multidocument multilingual text summarization. In Proceedings of the
4th International Conference on Language Resources and Evaluation, LREC
’04, pages 699–702, Paris, France, 2004. European Language Resources
Association (ELRA).

[52] Delip Rao and David Yarowsky. Ranking and semi-supervised
classification on large scale graphs using Map-Reduce. In Proceedings of

123

Bibliography

the 2009 Workshop on Graph-based Methods for Natural Language Processing,
TextGraphs-4, pages 58–65, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics.

[53] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes
for machine learning, volume 1. MIT press Cambridge, MA, 2006.

[54] Christopher Re, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k query
evaluation on probabilistic data. In Proceedings of the 23rd International
Conference on Data Engineering, ICDE ’07, pages 886–895, Washington, DC,
USA, 2007. IEEE Computer Society.

[55] Dan Roth and Wen-Tau Yih. A linear programming formulation for
global inference in natural language tasks. In Proceedings of the 8th
Conference on Computational Natural Language Learning, CoNLL ’04, pages 1–
8, Stroudsburg, PA, USA, 2004. Association for Computational Linguistics.

[56] Cristina Sarasua, Elena Simperl, and Natalya Fridman Noy. CrowdMap:
Crowdsourcing ontology alignment with microtasks. In Proceedings of the
11th International Semantic Web Conference, ISWC ’12, pages 525–541, Berlin,
Heidelberg, 2012. Springer.

[57] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Exploiting
lineage for confidence computation in uncertain and probabilistic
databases. In Proceedings of the 2008 IEEE 24th International Conference on
Data Engineering, ICDE ’08, pages 1023–1032, Washington, DC, USA, 2008.
IEEE Computer Society.

[58] Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, Mihai
Radulescu, Rolf Sint, and Stephanie Stroka. KiWi - a platform for semantic
social software. In Proceedings of the 4th Semantic Wiki Workshop (SemWiki
2009) at the 6th European Semantic Web Conference (ESWC 2009), SemWiki
’09. CEUR-WS.org, 2009.

[59] Dou Shen, Jian-Tao Sun, Hua Li, Qiang Yang, and Zheng Chen. Document
summarization using conditional random fields. In Proceedings of the 20th
international joint conference on Artifical intelligence, IJCAI’07, pages 2862–
2867, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

124

Bibliography

[60] Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim, Travell Perkins,
and Wan Li Zhu. Open mind common sense: Knowledge acquisition
from the general public. In On the Move to Meaningful Internet Systems,
2002 - DOA/CoopIS/ODBASE 2002 Confederated International Conferences
DOA, CoopIS and ODBASE 2002, pages 1223–1237, London, UK, UK, 2002.
Springer-Verlag.

[61] Robert Speer, Catherine Havasi, and Harshit Surana. Using verbosity:
Common sense data from games with a purpose. In Proceedings of the 23rd
International Florida Artificial Intelligence Research Society Conference, FLAIRS
’10. AAAI Press, 2010.

[62] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A core
of semantic knowledge. In Proceedings of the 16th international conference
on World Wide Web, WWW ’07, pages 697–706, New York, NY, USA, 2007.
ACM.

[63] Fabian M. Suchanek, Mauro Sozio, and Gerhard Weikum. SOFIE: A self-
organizing framework for information extraction. In Proceedings of the 18th
international conference on World Wide Web, WWW ’09, pages 631–640, New
York, NY, USA, 2009. ACM.

[64] Dan Suciu, Dan Olteanu, Christopher Rĺę, and Christoph Koch. Probabilistic
Databases. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2011.

[65] Yohei Takaku, Nobuhiro Kaji, Naoki Yoshinaga, and Masashi Toyoda.
Identifying constant and unique relations by using time-series text. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, EMNLP-
CoNLL ’12, pages 883–892, Stroudsburg, PA, USA, 2012. Association for
Computational Linguistics.

[66] Partha Pratim Talukdar and Koby Crammer. New regularized algorithms
for transductive learning. In Proceedings of the European Conference on
Machine Learning and Knowledge Discovery in Databases: Part II, ECML PKDD
’09, pages 442–457, Berlin, Heidelberg, 2009. Springer-Verlag.

125

Bibliography

[67] Partha Pratim Talukdar and Fernando Pereira. Experiments in graph-
based semi-supervised learning methods for class-instance acquisition. In
Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, ACL ’10, pages 1473–1481, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

[68] Partha Pratim Talukdar, Derry Wijaya, and Tom Mitchell. Coupled
temporal scoping of relational facts. In Proceedings of the 5th ACM
international conference on Web search and data mining, WSDM ’12, pages 73–
82, New York, NY, USA, 2012. ACM.

[69] Abdullah Uz Tansel, James Clifford, Shashi Gadia, Sushil Jajodia, Arie
Segev, and Richard Snodgrass, editors. Temporal databases: theory, design,
and implementation. Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA, 1993.

[70] Benjamin E. Teitler, Michael D. Lieberman, Daniele Panozzo, Jagan
Sankaranarayanan, Hanan Samet, and Jon Sperling. NewsStand: A new
view on news. In Proceedings of the 16th ACM SIGSPATIAL international
conference on Advances in geographic information systems, GIS ’08, pages 18:1–
18:10, New York, NY, USA, 2008. ACM.

[71] Martin Theobald, Mauro Sozio, Fabian Suchanek, and Ndapandula
Nakashole. URDF: Efficient reasoning in uncertain RDF knowledge bases
with soft and hard rules. Technical Report MPI-I-2010-5-002, Max Planck
Institute Informatics (MPI-INF), Saarbruecken, Germany, February 2010.

[72] Tomasz Tylenda, Mauro Sozio, and Gerhard Weikum. Einstein: physicist or
vegetarian? summarizing semantic type graphs for knowledge discovery.
In Proceedings of the 20th international conference companion on World Wide
Web, WWW ’11, pages 273–276, New York, NY, USA, 2011. ACM.

[73] Octavian Udrea, V. S. Subrahmanian, and Zoran Majkic. Probabilistic RDF.
In IEEE Conference on Information Reuse and Integration, IRI ’06, pages 172–
177. IEEE Computer Society, 2006.

[74] Marc Verhagen, Robert Gaizauskas, Frank Schilder, Mark Hepple, Jessica
Moszkowicz, and James Pustejovsky. The TempEval challenge: Identifying

126

Bibliography

temporal relations in text. Language Resources and Evaluation, 43:161–179,
2009.

[75] Marc Verhagen, Inderjeet Mani, Roser Sauri, Jessica Littman, Robert
Knippen, Seok Bae Jang, Anna Rumshisky, John Phillips, and James
Pustejovsky. Automating temporal annotation with TARSQI. In Proceedings
of the ACL 2005 on Interactive poster and demonstration sessions, ACLdemo ’05,
pages 81–84, Stroudsburg, PA, USA, 2005. Association for Computational
Linguistics.

[76] Luis von Ahn, Mihir Kedia, and Manuel Blum. Verbosity: A game for
collecting common-sense facts. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’06, pages 75–78, New York, NY,
USA, 2006. ACM.

[77] Xiaojun Wan and Jianwu Yang. Multi-document summarization using
cluster-based link analysis. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’08, pages 299–306, New York, NY, USA, 2008. ACM.

[78] Dingding Wang, Shenghuo Zhu, Tao Li, and Yihong Gong. Multi-document
summarization using sentence-based topic models. In Proceedings of
the ACL-IJCNLP 2009 Conference Short Papers, ACL ’09, pages 297–300,
Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

[79] Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng.
CrowdER: Crowdsourcing entity resolution. Proc. VLDB Endow.,
5(11):1483–1494, jul 2012.

[80] Yafang Wang, Maximilian Dylla, Zhaochun Ren, Marc Spaniol, and
Gerhard Weikum. PRAVDA-live: Interactive knowledge harvesting. In
Proceedings of the 21st ACM International Conference on Information and
Knowledge Management, CIKM ’12, pages 2674–2676, New York, NY, USA,
2012. ACM.

[81] Yafang Wang, Maximilian Dylla, Marc Spaniol, and Gerhard Weikum.
Coupling label propagation and constraints for temporal fact extraction.
In Proceedings of the 50th Annual Meeting of the Association for Computational

127

Bibliography

Linguistics: Short Papers - Volume 2, ACL ’12, pages 233–237, Stroudsburg,
PA, USA, 2012. Association for Computer Linguistics.

[82] Yafang Wang, Mohamed Yahya, and Martin Theobald. Time-aware
reasoning in uncertain knowledge bases. In Ander de Keijzer and Maurice
van Keulen, editors, Proceedings of the Fourth International VLDB workshop
on Management of Uncertain Data (MUD 2010) in conjunction with VLDB
2010, volume WP10-04 of CTIT Workshop Proceedings Series, pages 51–65,
University of Twente, The Netherlands, 2010. Centre for Telematics and
Information Technology (CTIT).

[83] Yafang Wang, Bin Yang, Lizhen Qu, Marc Spaniol, and Gerhard
Weikum. Harvesting facts from textual web sources by constrained label
propagation. In Proceedings of the 20th ACM international conference on
Information and knowledge management, CIKM ’11, pages 837–846, New York,
NY, USA, 2011. ACM.

[84] Yafang Wang, Bin Yang, Spyros Zoupanos, Marc Spaniol, and Gerhard
Weikum. Scalable spatio-temporal knowledge harvesting. In Proceedings
of the 20th international conference companion on World Wide Web, WWW ’11,
pages 143–144, New York, NY, USA, 2011. ACM.

[85] Yafang Wang, Mingjie Zhu, Lizhen Qu, Marc Spaniol, and Gerhard
Weikum. Timely YAGO: Harvesting, querying, and visualizing temporal
knowledge from wikipedia. In Proceedings of the 13th International Conference
on Extending Database Technology, EDBT ’10, pages 697–700, New York, NY,
USA, 2010. ACM.

[86] Fei Wu and Daniel S. Weld. Automatically refining the wikipedia infobox
ontology. In Proceedings of the 17th international conference on World Wide
Web, WWW ’08, pages 635–644, New York, NY, USA, 2008. ACM.

[87] Feiyu Xu, Hans Uszkoreit, and Hong Li. A seed-driven bottom-up machine
learning framework for extracting relations of various complexity. In
Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics, ACL ’07, pages 584–591, Stroudsburg, PA, USA, 2007.
Association for Computational Linguistics.

128

Bibliography

[88] Limin Yao, Sebastian Riedel, and Andrew McCallum. Collective cross-
document relation extraction without labelled data. In Proceedings of
the 2010 Conference on Empirical Methods in Natural Language Processing,
EMNLP ’10, pages 1013–1023, Stroudsburg, PA, USA, 2010. Association for
Computational Linguistics.

[89] Alexander Yates, Michael Cafarella, Michele Banko, Oren Etzioni, Matthew
Broadhead, and Stephen Soderland. TextRunner: Open information
extraction on the web. In Proceedings of Human Language Technologies:
The Annual Conference of the North American Chapter of the Association for
Computational Linguistics: Demonstrations, NAACL-Demonstrations ’07,
pages 25–26, Stroudsburg, PA, USA, 2007. Association for Computational
Linguistics.

[90] Hongyuan Zha. Generic summarization and keyphrase extraction using
mutual reinforcement principle and sentence clustering. In Proceedings of the
25th annual international ACM SIGIR conference on Research and development
in information retrieval, SIGIR ’02, pages 113–120, New York, NY, USA, 2002.
ACM.

[91] Ce Zhang, Feng Niu, Christopher Ré, and Jude W. Shavlik. Big data versus
the crowd: Looking for relationships in all the right places. In Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics: Long
Papers - Volume 1, ACL ’12, pages 825–834, Stroudsburg, PA, USA, 2012.
Association for Computational Linguistics.

[92] Qi Zhang, Fabian Suchanek, and Gerhard Weikum. TOB: Timely ontologies
for business relations. In Proceedings of 11th International Workshop on the Web
and Databases, WebDB ’10, New York, NY, USA, 2008. ACM.

[93] Xiang Zhang, Gong Cheng, and Yuzhong Qu. Ontology summarization
based on RDF sentence graph. In Proceedings of the 16th international
conference on World Wide Web, WWW ’07, pages 707–716, New York, NY,
USA, 2007. ACM.

[94] Zhu Zhang. Weakly-supervised relation classification for information
extraction. In Proceedings of the 13th ACM international conference on

129

Bibliography

Information and knowledge management, CIKM ’04, pages 581–588, New York,
NY, USA, 2004. ACM.

[95] Guodong Zhou, Min Zhang, Dong-Hong Ji, and Qiaoming Zhu. Tree
kernel-based relation extraction with context-sensitive structured parse
tree information. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL ’07, pages 728–736, Stroudsburg, PA, USA, 2007.
Association for Computational Linguistics.

[96] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings of The
20th International Conference on Machine Learning, ICML ’03, pages 912–919.
AAAI Press, 2003.

130

Appendix A.

Rules and Queries

Aggregation Rules

A1 : joinsYouthClub(a, b)∧ duringYouthClub(a, b)∧ leavesYouthClub(a, b)→ playsForYouthClub(a, b)

A2 : joinsSeniorClub(a, b)∧ duringSeniorClub(a, b)∧ leavesSeniorClub(a, b)→ playsForSeniorClub(a, b)

A3 : joinsNationalTeam(a, b)∧ duringNationalTeam(a, b)∧ leavesNationalTeam(a, b)→ playsForNationalTeam(a, b)

A4 : beginManagesTeam(a, b)∧ duringManagesTeam(a, b)∧ endManagesTeam(a, b)→ managesTeam(a, b)

Inference Rules

Players playing for teams are summarized into playsForTeam.

C1 : playsForYouthClub(a, b)→ playsForTeam(a, b)

playsForSeniorClub(a, b)→ playsForTeam(a, b)

playsForNationalTeam(a, b)→ playsForTeam(a, b)

If two players play for the same team at the same time, they are teammates.
C2 : playsForTeam(a, b, t1)∧ playsForTeam(c, b, t2)∧ overlaps(t1, t2)∧ notEquals(a, c)→ teammates(a, c)

If one player plays for the same team after another player, then the former is a successor of the latter.
C3 : playsForTeam(a, b, t1)∧ playsForTeam(c, b, t2)∧ after(t1, t2)∧ notEquals(a, c)→ successor(a, c)

If one player plays for the same team before another player, then the former is an ancestor of the latter.
C4 : playsForTeam(a, b, t1)∧ playsForTeam(c, b, t2)∧ before(t1, t2)∧ notEquals(a, c)→ predecessor(a, c)

Players who have played for more than 1460 days (more than 4 years) for a team.
C5 : playsForTeam(a, b, t1)∧ durationMoreThan(t1, 1460)→ playedMoreThan4YearsForTeam(a, b)

If a coach manages the team when a player is playing for the team, the coach trained this player.

131

Appendix A. Rules and Queries

C6 : managesTeam(a, b, t1)∧ playsForTeam(c, b, t2)∧ overlaps(t1, t2)→ isCoachOf(a, c)

If a coach manages a team, and this is a national team, then he is a coach of a national team.
C7 : managesTeam(a, b, t1)∧ playsForNationalTeam(c, b, t2)∧ overlaps(t1, t2)→ isCoachOfNationalTeam(a, b)

Queries

Single-fact queries:

For which teams did David Beckham play (and when)?
Q1 : playsForTeam(DavidBeckham, x)

Which teams has Alex Ferguson managed (and when)?
Q2 : managesTeam(AlexFerguson, x)

Who are the predecessors of David Beckham?
Q3 : predecessor(x,DavidBeckham)

Chain query:

Who are the coaches of David Beckham, and which teams did they previously play for?
Q4 : isCoachOf(x,DavidBeckham)∧ playsForTeam(x, y)

Which teammates of David Beckham, participated in an activity with Zinedine Zidane?
Q5 : teammates(DavidBeckham, y)∧ participatedIn(y, z)∧ participatedIn(ZinedineZidane, z)

Star query:

Who are the coaches of the England National Football Team, what cups did they win,
and which activities did they join?

Q6 : isCoachOfNationalTeam(x, EnglandNationalFootballTeam)∧winsCup(x, y)

∧ participatedIn(x, z)

Who played for Manchester United for more than 4 years and was a teammate of David Beckham?
Q7 : playedMoreThan4YearsForTeam(x,ManchesterUnited)∧ teammates(x,DavidBeckham)

Clique query:

Who are the successors of David Beckham, and who won the same cup as Beckham?
Q8 : successor(x,DavidBeckham)∧winsCup(x, z, t1)∧winsCup(DavidBeckham, z, t2)

Table A.1.: Aggregation rules, inference rules, and queries used for the experiments.

132

Appendix B.

Convexity Proof

We show that the function 4.5 is convex, following the convention of [53], we
rewrite the estimated labels of Ŷ into a vector ŷ with length n× (m+ 1).

ŷ = (Ŷ11, ..., Ŷn1, Ŷ12, ..., Ŷn2, ..., Ŷ1(m+1), ..., Ŷn(m+1))
T (B.1)

In the same way, the initial label assignment matrix Y can be converted into a
vector y. Following the same idea, the graph Laplacian L is block diagonal with
the matrices L1, ...,Lm+1. In our case, Li = L.

L1

L2

...

Lm+1

 . (B.2)

And the diagonal matrix S is represented analogously.
S1

S2

...

Sm+1

 . (B.3)

Then the matrix Ĉ implied by inclusion constraints has the same form as the
unnormalized graph Laplacian, which is Ĉ = DĈ − WĈ. The elements WĈ

v`v`
′

and WĈ
v`

′
v` of affinity matrix WĈ have the same positive weights C`` ′ · Yv` ′ , if an

inclusion constraint between labels ` and ` ′ is included. The remaining entries
of WĈ are zeros. Then the degree matrix DĈ is a diagonal matrix with DĈ

ii =∑
j W

Ĉ
ij.

133

Appendix B. Convexity Proof

With the new formulation of the problem, the optimization problem including
inclusion constraints takes the form

min
ŷ

[
(ŷ − y)TS(ŷ − y) + µ1ŷTLŷ

+ µ2(ŷ − r)TI(ŷ − r) +µ3ŷT Ĉŷ
]
s.t. ŷlv ≥ ŷl

′

v

The Hessian matrix of the objective function with respect to ŷ is

S + µ1L + µ2I + µ3Ĉ (B.4)

which is positive definite if µ2 > 0 (Ĉ is positive semi-definite following the
same reason as for the unnormalized graph Laplacian). Finally, as the feasible
region is defined by linear constraints, the optimization problem is convex.

134

List of Figures

3.1. Representation of temporal facts. 21

4.1. Temporal facts in infobox and honors list. 27

4.2. Temporal facts from categories of David Beckham. 28

4.3. System overview. 29

4.4. An example graph. 36

4.5. Visualization. 55

4.6. Scalability. 55

5.1. System overview. 59

5.2. Example for reorganizing and merging histograms based on the
input facts from Table 5.3. 69

6.1. System workflow. 80

6.2. Example graph. 81

6.3. Paste text. 84

6.4. Upload a file. 85

6.5. Upload a URL showing the address of a file. 85

6.6. Label seed temporal facts. 86

6.7. Label seed base facts. 86

6.8. All the labelled seed facts. 87

6.9. All the seed patterns from pattern analysis. 88

6.10. Extracted base fact observations. 89

6.11. Extracted temporal fact observations. 89

6.12. Add constraints. 90

6.13. Downloads. 90

6.14. Add patterns. 91

6.15. Edit patterns. 91

135

List of Figures

7.1. Relaxed matching of time points. 94
7.2. The timeline of David Beckham. 95
7.3. System architecture. 99
7.4. Aggregating events into state histograms. 101
7.5. Relation graph. 105

136

List of Tables

1.1. An excerpt from the YAGO knowledge base about David
Beckham and Ronaldo. 2

1.2. An excerpt from the YAGO knowledge base with temporal
knowledge about David Beckham and Ronaldo. 3

4.1. Examples of regular expressions for identifying temporal
expressions and entities. 26

4.2. Relations of interest. 44
4.3. Patterns and facts extracted for relations of interest. 46
4.4. Base fact observation extraction (100 positive, 10 negative seeds). 46
4.5. Impact of varying the number of positive seed facts. 47
4.6. Temporal fact observation extraction with inclusion constraints. . 49
4.7. Comparison of joint and separate fact observation extraction. . . . 50
4.8. Joint extraction with and without constraints. 50

5.1. Pipeline vs. joint model. 62
5.2. Increasing recall. 64
5.3. Examples of time expressions and their corresponding intervals. . 66
5.4. Base facts with time histograms (intervals). 72
5.5. Experimental results. 76

7.1. Example sentence templates for relations. 105
7.2. Long summary. 110
7.3. Short summary. 110
7.4. Overall score. 110

A.1. Aggregation rules, inference rules, and queries used for the
experiments. 132

137

	Abstract
	Abstract
	Summary
	Zusammenfassung
	Introduction
	Motivation
	Research Challenges
	Contributions
	Thesis Outline

	Related Work
	Knowledge Harvesting
	Temporal Information Extraction
	Label Propagation
	Temporal and Probabilistic Databases
	Interactive Systems
	Summarization

	Knowledge Representation
	Relation and Fact Types
	Time Points, Intervals, and Histograms
	Event and State Relations
	Temporal Knowledge Representation

	Temporal Knowledge Harvesting
	Problem Statement and Contributions
	Motivation
	Contributions

	Temporal Knowledge Harvesting from Semi-structured Text
	Temporal Knowledge Harvesting from Natural Language Free-text
	Framework and System Overview
	Patterns and Graph Model
	Candidate Gathering
	Pattern Analysis
	Graph Model

	Label Propagation Algorithm
	Basic Objective Function
	Incorporating Inclusion Constraints
	Combining Base and Temporal Graphs

	Experiments
	System Implementation
	Experimental Setup
	Results on Base Fact Observation Extraction
	Results on Temporal Fact Observation Extraction with Inclusion Constraints
	Results on Joint Base and Temporal Fact Observation Extraction

	Conclusions

	Scalable Spatio-temporal Knowledge Harvesting
	Motivation
	Methodology
	Experiments

	Temporal Knowledge Cleaning
	Problem Statement and Contributions
	Cleaning Temporal Fact Observations
	Problem Statement and Contributions
	Framework
	Applying Temporal Constraints
	Experiments
	Pipeline vs. Joint Model
	Increasing Recall

	Conclusions

	Temporal Fact Reasoning
	Problem Statement and Contributions
	Histogram Aggregation
	Rule-based Reasoning, Lineage, and Possible Worlds
	Experiments
	System Setup and Experiments
	Rules and Queries
	Experimental Results

	Conclusions

	Tools
	Interactive Knowledge Harvesting
	Motivation
	Framework
	Algorithms
	Seed Fact Selection
	System Implementation
	User Interface

	Demonstration Scenarios

	Applications
	Time Aware Querying of Temporal Knowledge
	Query Processing
	Use Case Scenario

	Summarization
	Problem Statement and Contributions
	System Architecture
	Evidence Aggregation Model
	Aggregating Events into State Histograms
	Extracting High-Confidence Intervals

	Sentence Generation and Reordering
	Knowledge Ordering
	Sentence Generation and Redundancy Elimination

	Experiments
	Experimental Setup
	Example Summaries
	Experimental Results

	Conclusions and Outlook

	Conclusions
	Bibliography
	Rules and Queries
	Convexity Proof
	List of Figures
	List of Tables

