The Algorithmic Specification Method of Abstract
Data Types: An Overview

by
Jacques Loeckx

A 85/07

May 1985

Universitédt des Saarlandes
Fachrichtung 10.2 Informatik
D - 6600 Saarbriicken

THE ALGORITHMIC SPECIFICATION METHOD OF ABSTRACT DATA TYPES:
AN OVERVIEW

Jacques Loeckx

Fachrichtung 10.2 Informatik
Universitdt des Saarlandes

D - 6600 Saarbriicken

1. INTRODUCTION

The practical relevance of abstract data types is twofold. First, their
use may support the design of modular programs by stepwise refinement.
Second, mechanical correctness proofs of these programs may become

feasible in practice.

Classically, a data type is considered to be a multisorted algebra. This
algebra consists of carrier sets - one for each sort - and of operations
on these sets. Essentially, there exist two different specification
methods. An operational specification [Sh 81, Li 81, NY 83] is embedded
in an imperative programming language; the carrier sets are built up
with the help of the data structures of this programming language and the
operations are defined with the help of program pieces. An algebratic
specification [GTW 78, GHM 78, BW 82, Re 80, EM 85, etc.] essentially
consists of a set of equalities. The algebra thus defined is a special
model of this set of equalities, generally the initial model.

A shortcoming of the operational specification method is its lack of
abstraction. In fact, an operational specification constitutes an imple-
mentation (of a specification) rather than a specification. The main
drawback of the algebraic specification method is related to its gene-
rality and, in particular, to its non-constructive nature. This leads

to the difficult problems of consistency and completeness.

The specification method to be presented here has heen called algorithmid
to stress its constructive nature. In this method each (new) carrier set
is defined by a (constructively defined) formal language; each (new)
operation is defined by a recursive program. By its constructive nature
the algorithmic specification method essentially avoids the problems

of the algebraic specification method. On the other hand it differs from
the operational specification method by being more "abstract". Being
fundamentally different by their very definition the algebraic and algo-
rithmic specification methods are nevertheless related. For instance, in

many "simple" cases algorithmic specifications may be transformed into

algebraic ones by mere rewriting. Other constructive specification

nmethods may be found in [Ca 80, X1 84].

In the frame of this paper it is not possible to present a complete
description of the algorithmic specification method and of its applica-
tions. The interested reader is referred to (Lo 84, Lo 81 a, Lo 81 b,

Lo 80, Le 85]. Instead, Section 2 explains the main ideas of the method.
Section 3 shortly discusses the logic in which properties of the data
types may be expressed and proved. Section 4 provides a glimpse of a
specification language based on the algorithmic specification method and
of its implementation.

2. THE SPECIFICATION METHOD

2.1 The introduction of new sorts

In order to introduce a new sort it is sufficient to define its carrier

set and its operationa.

The carrier set is defined as a term language, i.e. as a particular
formal language. In the case of Figure 1 the carrier set is the term
language generated by the operation symbols characterized by the word
constructor. The elements of this carrier set are words such as

€, App(e,0), App(App(e,4),2), etc.

The definition of the operations is different for the constructors and
the other operation symbols. The ‘interpretation of the constructors is
the Herbrand interpretation. For instance, the value of the operation

App for the arguments € and o is the word App(e,0) . The other operation
symbolsare defined as recursive programs (in the sense of [Ma 74, LS 84]);
For instance, Insert appends an integer to a sequence provided the inte-
ger does not yet occur in this sequence; Delete deletes the rightmost
occurrence of an integer; Memberof tests whether a (given) integer

occurs in a sequence.

2.2 The operations subset and quotient

The method of Section 2.1 does not allow to specify "elaborate" sorts
such as the sort consisting of (finite) sets (of integers). In fact, let
us try to modify the specification of Figure 1, being understood that

a term such as App(App(e,0),1) now stands for the set {o,1}. Clearly,

a term with "duplicates" such as

App(App(e,0) ,0)

sort seq
signature
constructor € : =+ seq
constructor App : seq x int = seq
Insert : seq x int + seq
Delete : seq x int =+ seq
Memberof : seq x int + bool
Subset : seq x seq - bool
operations
Insert(s,i) « if Memberof(s,i) then s else App(s,i) fi
Delete(s,i) « case s of
€ : S
App(s',i) : if i=i' then s' else App(Delete(s',i),i') fi
esac
Memberof(s,i) « case s of
e : false
App(s',i') : if i=i' then true else Memberof(s',i) fi
esac
Subset(si,sz) = case s, of
e : true
APp(sa,i) : iﬁ_NEnterof(s2,i) then Subset(si,sz)
else false fi esac

FIGURE 1: A specification of the sort seq, which consists
of finite sequences of integers

may not occur in the carrier set. Moreover, terms such as

App(App(e,0),1)
and
App(App(e,1),0)

have to stand for the same set. The first of these difficulties is

solved by introducing an operation which defines a subset of the carrier
set; an example of such an operation is the operation Nodup of Figure

2. The second difficulty is solved by introducing an equivalence relation
such as Eq of Figure 2; the carrier set then consists of a set of equi-

valence classes.

It is well-known that such a subset operation Or quotient operation
yieldsan algebra only if the elosure condition and the congruence con-
dition respectively are fulfilled (see e.g. [GM 83]). Informally, the
closure condition expresses that arguments from the subset lead to a

value from the subset; the congruence condition expresses that egqui-

signature
Nodup : seq + bool

Eq : seq x seq = bool
operations

Nodup(s) « case s of

€ : true

App{s',i) : if Membercf(s',i) then false

else Nodup(s') fi esac
Eq(s1,sz) - if Subsat(s1,sz) then Subset(sz,s1)
else false fi

FIGURE 2: The specification of Figure 1 together with Nodup as
subset operation and Eq as quotient operation defines
the sort consisting of finite sets of integers. The
operation App is not put at the disposal of the user
of the specification, as it does not fulfil the closure

condition.

valent arguments lead to equivalent values. These conditions have to be
fulfilled by all operations put at the disposal of the user of the
specification; they have to be proved once and for all by the designer
of the specification.

3. THE LOGIC OF STRICT ALGEBRAS

The logie of strict algebras [Lo 84] allows to express and prove proper-
ties of the data types introduced by algorithmic specifications. The
logic is similar to LCF (see [Mi 72 , LS 84]) and takes account of the
fact that the operations constitute partial computable functions. An

example of a formula referring to Figure 1 is:

Vs€ seq, i € int. Memberof(s,i) = false > Delete(s,i) = s

An important proof rule is structural induction on the carrier set
[Lo 80, Lo 84] . For "non-trivial" properties it may be necessary to

use fixpoint induction [Lo 81 b].

4. THE SPECIFICATION LANGUAGE OBSCURE

4.1 The language

The specification language OBSCURE [Le 85] is similar to CLEAR [Sa 84]
but is based on the algorithmic specification method instead of the al-
gebraic one. Essentially OBSCURE allows to construct an algebra from

a given one.

OBSCURE contains among others three constructs which correspond to the
extension described in Section 2.1, to the subset operation and to the
quotient operation respectively. Moreover OBSCURE allows the specifica-
tion and use of parameterized data types. Finallv, it provides the
possibility to define implementations of abstract data types.

4.2 The implementation

An implementation of OBSCURE is under construction at the university of

Saarbriicken. It consists of a programming and a verification part.

The programming part supports the top-down development of programs by
stepwise refinement. In particular, it generates the closure and

congruence conditions which are to be proved.

The verification part allows interactive correctness proofs and bears
similarities with the AFFIRM system [Mu 80, Th 79, Lo 80]. Essentially,
the computer performs the formula manipulation and takes care of the
administration; the user is responsible for the choice of the proof
strateqgy. The readability of the intermediate results produced by the

computer is given particular attention to.

REFERENCES

[BW 82] Broy, M., Wirsing, M., Partial abstract types, 4dcta Inform. 18
(1982), 47 - 64

[ca 80] cartwright, R., A constructive alternative to abstract data
type definitions, Proc. 1980 LISP Conf., Stanford Univ. (1980),
46 - 55

[EM 85] Ehrig, H., Mahr, B., Fundamentals of Algebraic Specification,
Springer-Verlag, 1985

[GHM 78] Guttag, J.V., Horowitz, E., Musser, D.R., Abstract data types
and software validation. Comm. ACM 21 (Dec. 1978), 1048 - 1069

[GM 83] Goguen, J.A., Meseguer, J., Initiality, Induction and Computabi-
lity, SRI-CSL Techn. Rep. 140, Stanford Research Institute,
December 1983

[GTWw 78] Goguen, J.A., Thatcher, J.W., Wagner, E.G., An initial algebra
approach to the specification, correctness and implementation
of abstract data types. Current Trends in Programming Methodolo-
gy IV (Yeh, R., Ed.), Prentice-Hall, 1978, 80 - 149

[K1 84] Klaeren, H.A., A constructive method for abstract algebraic soft-

ware specification, Theor. Comp. Se. 30, 139 - 204 (1984)

[Le 85] Lermen, C.W., OBSCURE, a specification language for algorithmic
specifications, Intern. Rep., FR 10.2, Univ. Saarbriicken (in

preparation)
[Li 81] Liskov, B., et al, CLU Reference Manual, LNCS 114, 1981

[Lo 80] Loeckx, J., Proving properties of algorithmic specifications of
abstract data types in AFFIRM. AFFIRM-Memo-29-JL, USC-ISI,
Marina del Rey, 1980

[Lo 81 a] Loeckx, J., Algorithmic specifications of abstract data types,
Proc. ICALP 81, LNCS 115 (1981), 129 - 147

[Lo 81 b] Loeckx, J., Using abstract data types for the definition of
programming languages and the verification of their compilers,
Int. Rep. A 81/13, FB 10, Univ. Saarbriicken (1981)

[Lo 84] Loeckx, J., Algorithmic specifications: A constructive specifica-

tion method for abstract data types, to appear in TOPLAS

(LS 84] Loeckx, J., Sieber, K., The Foundations of Program Verification,
J. Wiley/Teubner-Verlag, New York/Stuttgart (1984)

[Ma 74] Manna, Z., Mathematical Theory of Computation, McCraw-Hill (1974)

[Mi 72] Milner, R., Implementation and application of Scott's logic for
computable functions. Proc. ACM Conf. on Proving Assertions about
Programs, SIGPLAN Notices 7 (Jan. 1972), 1 - 6

10

[Mu

[NY

[Re

{sa

[sh

[Th

30]

83]

801

84]

811

79]

Musser, D.R., Abstract data type specification in the AFFIRM
System. IEEE Trans. on Softw. Eng. SE-6 (1980), 24 - 32

Nakajima, R., Yuasa, T., The IOTA Programming System, LNCS 160,
1983

Reichel, H., Initially-restricting algebraic theories, Proc.
9th rcs, LNcs 88, 460 - 473 (1980)

Sannella, D., A set-theoretic semantics for CLEAR, Acta Inform.
21, 5, 443 - 472 (1984)

Shaw, M. (ed.), ALPHARD, Form and Content, Springer-Verlag,
1981

Thompson, D.H. (Ed.), AFFIRM Reference Manual. Internal Report,
USC-ISI, Marina del Rey (1979)

11

	fb1985-07_0001_2_fertig
	fb1985-07_0002_iA
	fb1985-07_0003_fertig
	fb1985-07_0004_fertig_neu
	fb1985-07_0005_fertig_neu
	fb1985-07_0006_fertig
	fb1985-07_0007_fertig
	fb1985-07_0008_fertig

