OBSCURE: An interactive speciZication language
for model-oriented specification methods
(Extended abstract)
by
Claus-Werner Lermen and Jacques Loeckx

A 85/12

Saarbricken, July 1985

Universitdt des Saarlandes
Fachrichtung 10.2 Informatik
D - 6600 Saarbriicken

to appear

OBSCURE: An interactive specification language for
model-oriented specification methods
(Extended abstract)
Claus-Werner Lermen and Jacques Loeckx

Universitdt des Saarlandes, Saarbriicken, FRG

1. Introduction

Recently several specification languages have proposed in the
literature: CLEAR [BG 77, Sa 84], ACT ONE [EM 85], OBJ2 [FGJM 85],
ASIL [SW 83], Extended ML [ST 85, Sa 85]. The first three of these
languages are essentially based on the concept of the initial alge-
bra; ASL and Extended ML use theories, i.e. classes of models.

The specification language to be presented here differs from these
languages in several respects.

The original version of OBSCURE [Le 85] was developed for the
algorithmic specification method [Lo 81, Lo 84]. According to this
method an abstract data type is specified by a constructively defined
model. The version of OBSCURE to be presented here is more general
and is applicable to any specification method based on the use of
a single model. Hence it is also applicable to, for instance,
the initial algebra specification method, but - at least in its
present form - it is not applicable to specification methods based
on theories.

By allowing to put algebras or theories together the existing
specification languages suggest a bottom-up development of progreams.
Instead, OBSCURE is designed for top-down development ("development
by stepwise refinement"). A specification is therefore defined as
a function mapping algebras into algebras; putting specifications
together corresponds to the composition of these functions. For
instance, the development of an interpreter for a programming
language leads to a specification introducing the sort program and
an operation Interprete mapping programs and input data into output
data. The sorts input-data and output-data as well as the sorts
used in the specification - such as, for instance, statement or
configuration - have still to be specified. The specification of
program 1s interpreted as a function mapping an algebra containing
the sorts <Znput-data, output-data, etc. into an (extension of this)
algebra containing the sort program.

As a further characteristic OBSCURE explicitly links program

development to program verification. More precisely, an OBSCURE imple-
mentation consists of a system with a program development part and

a program verification part. (Figure9 in the Appendix). This allows
OBSCURE to dispose for instance of constructs transforming an algebra
into a subalgebra or a quotient algebra. The semantic conditions
guaranteeing the consistency of these transformations are theorems
which have to be proved by the user.

OBSCURE is designed for interactive use. Its language constructs
are therefore applied "postfix-like". At each construct the system
checks the consistency conditions of syntactic nature. It generates
the theorems expressing the consistency conditions of semantic nature
and transmits them to the program verification part.

Finally, OBSCURE allows a mild form of polymorphism.

The goal of this paper is to give an overview of the language.

A complete formal description together with the proofs of the theorems
may be found in [LL 85]. The version of OBSCURE presented here
contains no syntactic sugar. This simplifies the description but

makes the examples look unappealing. A version with syntactic

sugar is in [Le 85].

Section 2 introduces the main syntactic and semantic notions.
Section 3 presents OBSCURE without parameterized specifications.
Section 4 adds polymorphism. Section 5 introduces parameterized
specifications. Section 6 allows the union of identical subspecifi-
cations. Section 7 contains conclusions. The Figures are in the

Appendix.

2. Syntactic and semantic notions

A sort is an identifier. An operation is a. (k + 2)-tuple, k 2 O,

n: s, X...x 8§ =S8
where n is an identifier, called operation name, and where
Sqyre-<sSy, S are sorts. If S is a set of sorts containing
Sqre--1Sy s Sy the operation is said to be S-sorted. A

set of operations is S-sorted, if its elements are. Note
that classically an operation is defined to be an operation name

characterizing univocally the sorts s1,...,s , S. The present, more

n
general definition eases the introduction of polymorphism in Section
4 but requires the following extra definition: a set of operations
is said to be unambiguous if any two different operations have

different operation names.

A signature is a pair I = (S,Q) where S is a set of sorts
and 2 a set of operations. It is called an algebra signature, if
@ is S-sorted. If I, I' are signatures, I =1I', r L', L - L'

and "I, £' are disjoint" are meant componentwise.

Let £ = (S,Q) be an algebra signature. A (I-)algebra is a
mapping which associates
(i) with each sort s € S a set A(s), called the carrier set of sort s;
(ii) with each operation n : Sy X.e..X S 7S, k 20, a (possibly

partial) function

A(n : Sy X...x 5 s) A(ST) X...X A(sk) - A(s)
The set of all r-algebras is denoted Algz.

If £, ' are algebra signatures with £ < I', and if A is a
L'-algebra, then A|Z is the f-algebra defined by

(AlZ) (e) = A(e) for all e € S U Q

From now on we will only consider (S,Q)-algebras A where S contains
the special sort bool, @ is unambiguous and contains the special
operations true : - bool and false : - bool, and A maps these special

sorts and operations into their usual meaning.

The goal is to introduce functions mapping algebras (containing
"global" sorts and operations from a signature Xg) into the algebras
obtained by adding "new" sorts and operations (from a signature Zn).
Informally, the "new" sorts and operations are those introduced by a
specification; the "global" ones are those which have still to be
specified and which therefore occur in the specification as global
"variables".

A pair (Xq,zn) of signatures is called an extension signature if
(1) Zg' Zn are disjoint;

(ii) Xg is an algebra signature;

(iii)zg u Zn is an algebra signature.

An algebra extension for the extension signature (Zg,zn) is a
function

E : Algz > AlgZ U

g g n
such that

I
>

(E(A) | Zg) for each A € Algz (1)

g

Two constructions will be recalled which yield an algebra,
called subalgebra and quotient algebra respectively. These construc-
tions arewell-known from the literature (see e.g. [GM 83, EM 85]).

Let A be a (I)-algebra, I = (S,Q), and p a family of (possibly
partial predicates

Py ¢ A(s) - {true, false} for each s € S.

The subalgebra generated by A and p is the I-algebra B defined by:

B(s) = {c € A(s)'l ps(c) = true} for each s € S

B(n:s1 Xooox 5 - s) = (A(n:s1x...xsk - s)) | B(s1y.. .xB(sk)

for each n : Sy Xe..X 8§ =S €0, k=20.

Actually, this definition is consistent only if each operation of
A satisfies a closure condition. Informally, this condition expresses
that arguments from the subset lead to a value from the subset.

Let A again be a (f)-algebra, = ($,0), and g a family of (total!)
equivalence relations

qq ¢ A(s) x A(s) - {true, falsz} for each s € S

The quotient algebra generated by A and q is the I-algebra B defined by:

B(s) = {[c] | c € A(s)} for each s € S

B(n : Sy X...x 5 s)([c1], S [ck])

= [A(n : Sy X...Xx Sy - s)(c1, e ¢ ck)]
for all cy € A(si), 1 <1<k

for all n : Sy X...Xx 5 =S € 0, k=20

This definition is consistent only if each operation of A satisfies
a congruence condition. Informally, the congruence condition expresses

that equivalent arguments lead to equivalent values.

3. OBSCURE without parameterized data tvpes

OBSCURE is described by a context-free grammar, by "semantic
functions" mapping specifications into algebra extensions and by a list
of conditions guaranteeing the consistency of the definition of these
semantic functions. The techniques used are inspired from those used
for the description of CLEAR in [Sa 84] and ASL in [SW 83].

A context-free syntax of OBSCURE is in Figure 1. A "program" in
OBSCURE is a derivation of csp ("composed specification"),
The distinction between csp ("composed specification") and sp

("specification") implicitly provides the "operator" compose with a

lower priority than the other "operators" such as subset and forget.

The definition of m ("model") depends or. the specification. method
used. In the case of the initial algebra specification method m con-
sists of a list of equalities. In the case of the algorithmic specifi-
cation method

m ::= constructors 1lo programs lp

where lp is a list of recursive programs [Lo 84]. The definition of

ax ("axiom") depends on the logic used.

3.2 An informal introduction to the semantics

The context-free rule (csp2) of Figure 1 corresponds to a "refine-
ment step" in the top-down development of programs: sp contains a spe-
cification of some "global" (i.e. not yet specified) sorts and opera-
tions of csp. Hence the composition of csp and sp yields an
algebra extension containing less - or, at least, "lower level" - glo-
bal sorts and operations.

The rule (spl) specifies "new" sorts and operations by describing
a model m with the help of "global" sorts and operations. The rule (sp2)
transforms an algebra into a subalgebra. This transformation is a spe-
cial case of Section 2.4 in that only the carrier set of sort s is
restricted to a subset. Similarly (sp3) transforms an algebra into
a quotient algebra. By (sp4) it is possible to drop ("hide") sorts and
operations. The renaming of sorts and operations according to (sp5) is
especially useful for parameterized data types (see Section 5). The
axioms introduced by (sp6) have no effect on the algebra extension
defined. Instead, they are transmitted to the verification part of
the OBSCURE system. With these axioms the user may, for instance,
check properties of the data type introduced. Moreover, the axioms
may be used to restrict the actual parameters of a parameterized

specification (see Section 5).

3.3 Semantics

The semantics are defined with the help of two (families of)
semantic functions. The first of these functions, denoted %, maps a
specification into the signature of an algebra extension. The second,
denoted 3, maps the specification into the algebra extension itself.

The definition of the semantic function $ is in Figure 2. The
notation I[lso1/1s02] used in (sp5) denotes the signature obtained
from I through simultaneous substitution of the sorts and operations
of 1lsol by those of 1lso2. It is understood that the substitution of a

sort includes the substitution of its occurrences in the operations

(for a more precise definition see [LL 85]). Note that "forgetting"
and "renaming" applies to "new" sorts and operations only.

The definition of the semantic function 3 is in Figure 3.
Most of the equalities define the algebra extension by its value for
an arbitrary argument A. The signature of this algebra A is univo-
cally defined by the semantic function 3. The only "difficult" equali-
ty in Figure 3 is the one expressing the semantics of compose.
Essentially this equality expresses the composition of the functions
BCSP (csp) and ZSP (sp) . The complication stems from the fact that
the arguments have first to be restrictad to the signature of the
function domain and that the parts cut off by this restriction have to
be added to the function value. Note that by the union of two algebras
we mean the union of their graphs (remember that according to Section
2.2 an algebra is a function). Of course, the union of two algebras
yields an algebra only if the resulting graph represents a function

and not merely a relation.

The value of the semantic function & is defined in Figure 2
as a pair of signatures. Such a pair is an extension signature only
if it satisfies the condition (i) to (iii) of Section 2.3. Similarly,
the value of the semantic function 3 for a specification sp and an
algebra A is defined as a relation. Hence J(sp) is an algebra ex-
tension only if this relation is a function (i.e. J(sp) (A) is an
algebra) and if moreover the condition (I) of Section 2.3 is satisfied.

To guarantee these properties a number of conditions, called
consistency conditions, are attached to each rule of the context-free
grammar of Figure 1. The following remarks may provide a flavor of
these conditions. In rule (sp1),SlSO(lso1) and 5150(1502) have to
satisfy the conditions (i) to (iii) of Section 2.3. In rule (sp2) s
has to be a "new" sort, o has to be of the form n : s - bool and the
closure conditions of Section 2.4 must be satisfied. A similar remark
holds for rule (sp3). In (sp4) the sorts and operations of 1lso have
to be "new" ones. A similar remark holds for 1lsol in rule (sp5);
moreover, lsol and 1lso2 must "match". An important condition for
(csp2) is that Zn1 2
these consistency conditions together with their formal description
is in [LL 85].

Let OK (csp) denote that the composed specification csp satisfies

and En have to be disjoint. A complete list of

the consistency conditions. The following theorems are proved in [LL 85]:
THEOREM 1: If OK (csp) holds for a composed specification csp

then Scsp (csp) is an extension signature.

THEOREM 2: If OK (csp) holds for a composed specification csp

then Jcsp (csp) is an algebra extension.

Figure 4 shows a specification of the data type "set of elements”.
It contains "superfluous" information which could easily be removed
by adding syntactic sugar to the language (cf [Le 85]). The create
construct makes us of the algorithmic specification method [Lo 81,
Lo 84]. According to this method which, by the way, is very similar
to the one proposed in Standard ML [Mi 84], the carrier set of sort
set is the term language generated by the constructors. Hence, it
contains words such as Emptyset and App (Emptyset, 0). The interpre-
tation of the operations which are constructors is the Herbrand
interpretation. Hence the value of the operation App for the arguments
Emptyset and O is the word App(Emptyset, O). The other operations
are defined as recursive programs in the sense of [Ma 74, LS 84]; a
precise syntax and semantics may be found in [Lo 84]. It is important
to note that after execution of the create construct the elements
of the carrier set may be accessed through the ("new") operations
only. The formulas in the axioms construct have to be formulated in an
appropriate logic, for instance the one proposed in [Lo 84]. The
forget construct is necessary because the operation App does not satisfy
the closure conditions implied by the subsequent subset construct
which eliminates the carriers containing duplicates. The quotient con-
struct identifies carriers differing only by the order of occurrence
of their elements. Note that it is possible to do without the subset
construct by making the quotient construct also identify carriers
differing only by duplicates.

An illustration of the use of compose and rename is delayed

until Section 5.

4. Introducing a mild version of polymorphism

According to the notion of unambiguity introduced in Section 2.1
an operation name univocally defines its operation. Actually, an
operation name never occurs "naked" in a specification. It rather
occurs "at least" in a term, Viz. within an axiom or a recursive
program. This suggests the following, more general definition: a set
of operations is unambiguous, if for any two different operations of

the form

k 2 O, there exists i, 1 £ i1 £ k, such that e # ti’ Hence, an
unambiguous set of operations may, for instance, contain
Memberof : intset x int - bool
and Memberof : stringset x string - bool
(take i = 1 or i = 2) but not
Emptyset : - intset
and Emptyset : - stringset

5. Introducing parameterized specifications

The present Section introduces "procedures" with and without
parameters. Procedures with parameters constitute parameterized speci-
fications. Parameterless procedures allow to modularize the design:

instead of developing a single specification by composing'"elemen-
tary" ones, each elementary specification is given a name and called
when needed.

The use of procedures requires the introduction of an environ-
ment which binds "procedure names" to "procedure bodies". Two
approaches are possible: in the operational approach names are bound
to specifications, i.e. to pieces of text; in the denotational approach
names are bound to algebra extensionsi.e. to the meaning of the pieces
of text. In most specification languages the approach taken is essen-
tially the denotational one (see e.g. [Sa 84, EM 85]). The approach
taken here is the operational one. As an advantage it leads to a
very simple copy-rule semantics.

Formally, an environment is defined as a function

n -» lso x csp
where the sorts and operations of the list 1lso constitute the

formal parameters and the composed specification csp the procedure body.

The syntax is in Figure 5.

The semantic function % is in Figure 6. Note that scsp and ssp
now have the environment as an extra argument. The notation
...[1s01/1s0] used in (sp8) is that of Section 3.3 applied compo-
nentwise.

The semantic function 3 is in Figure 7. The notion cspizgf
expresses the copy rule. More precisely, for the constructs of the
rules (cspl) to (sp7), the notation expresses the simultaneous sub-
stitution of the sorts and operations of 1lsol ("formal parameters")

by those of 1so2 ("actual parameters"). For the rule (sp8) the nota-

tion is defined by

1so2
(call n(lso))lso1
let e(n) = (lso', csp) in

(cs 1so)1502
P1so'’1s01

A complete formal definition of the notation may be found in [LL 85].

The consistency conditions are essentially those of Section 3.4
together with conditions for the rules of Figure 5. For instance, the
sorts and operations of 1lso in rule (d1) have to be global sorts and
operations of csp. For (sp8) the name n must already have been declared
and the actual and formal parameters must match.

Again, it is possible to prove the theorems of Section 3.4. The
proof of Theorem 2 requires a lemma which, roughly speaking, expresses
that if OK(csp) holds and lsol, 1lso2 match, then OK(cspizgf) holds.

For details and proofs see [LL 85].

Note that, while global sorts and operations are used before being
specified (i.e. before being "created"), procedure names may only be
used after having been declared. The reason for this restriction lies in
the interactive nature of OBSCURE which requires that all syntactic

consistency conditions may be checked at each step of the development.

An examples introducing "pairs of sets of sets of integers" is
in Figure 8. Line (1) turns the specification of Figure 4 into a pro-
cedure. Line(2) to (5) introduce the sort "set of sets of integers".
According to the top-down development principle this sort is intro-
duced by making use of the global sort "set of integers" which is
specified in lines (4) to (5). Note thet at least one of the renamings
of line (3) and (5) is necessary in orcer to avoid name collisions and
ambiguity at the execution of the combine construct. In line(6) the
specification is shoved off into the environment as a parameterless
procedure. The exact definition of the model in line (7) is dispensed
with. The "new" sorts generated by the program of Figure 8 are patr,
setofint and setofsctofint (but not set). "New" operations are for
instance

Insert : setofsetofint x setcfint - setofsetofint

and Insert : setofint x int - setofint
The global sorts are <nt and bool, the global operations

Equal : Znt x Znt - bool, true : - bool and false :- bool. The reader

= 10 =

who has difficulties in keeping track of all these global and new
sorts and operations should remember that OBSCURE is a language
for interactive use and that the system updates and displays the

global and new sorts and operations at each step of the development.

6. Allowing the union of identical subspecifications

One of the consistency conditions of the combine construct re-
quires the sets Zn1-and Lo of "new" sorts and operations to be dis-
joint (see Section 3.4). This condition is unnecessarily stringent

as illustrated by the following example. Let-A stand for a proce-

s,t
dure call with global sorts s and t, Bi for a procedure call with "new"

sort s and global sort t and Ct foxr a procedure call with "new" sort t.

Then the specification

. S . t.
C
As,t combine Bt combine (1)
is ok but the "equivalent" specification
As £ combine Ct combine spec Bi combine ct endspec (2)
’

is not, because the arguments of the second combine construct both
have t among their "new" sorts. While a perspicuous user is expected
to write (1) rather than (2), forbidding (2) appears not reasonable.
Hence it is necessary to relax the consistency condition of the com-
bine construct by allowing I , and I , to have common sorts and
operations with the same "origin". Note that the same problem occurs
in "bottom-up" specification languagessuch as CLEAR for a similar -
but not identical - reason.

To this end a so-called history function is introduced. It maps
each "new" sort or operation into the rame of the procedure - together
with the actual parameters - in which it was introduced by a create
construct. The function is defined alorg the same lines as the
semantic functions (see [LL 85]).

It is worthwhile to note that the solution proposed changes
neither the syntax nor the semantics of OBSCURE. It merely modifies

that part of the OBSCURE system which tests the consistency conditions.

7. Conclusions

OBSCURE is a simple, yet powerful specification language differing
from other specification languages by its underlying principle of top-
down development, by its interactive nature and by its link to verifi-
cation. Thanks to an operational approach the parameterization concept

has a simple semantics. A mild version of polymorphism and the union

of common subspecifications are obtained without modifying the
syntax and semantics of the language.

A further development of OBSCURE concerns its generalization for
classes of models (loose specifications) and the inclusion of the
concept of implementation (of a data type by another data type).

An implementation of OBSCURE based on [Le 85] is under develop-
ment (Figure 9). The program development part will be completed before
the end of 1985. The verification part is inspired from the AFFIRM-
system [Th 79, Mu 80, Lo 80].

We are especially indebted to Rod Burstall and Don Sannella

for several helpful discussions.

References

[BG 77] Burstall, R.M., Goguen, J.A., Putting theories together
to make specifications, Proec. Sth Joint Conf. on Art. Int.,
Cambridge, pp. 1045 - 1058 (1977)

[EM 85] Ehrig, H., Mahr, B., Fundamentals of Algebraic Specification,
Springer-Verlag, 1985

[FGJM 85] Futatsugi, K., Goguen, J., Jouannaud, J.-P., Meseguer, J.,
Principles of OBJ2, Proc. 12th POPL Conf., pp. 52 - 66 (1985)

[GM 83] Goguen, J.A., Mesequer, J., Initiality, Induction and Compu-
tability, SRI-CSL Techn. Rep. 140, Stanford Research Institute,
December 1983

[Le 85] Lermen, C.W., The specification language OBSCURE, Int.
Rep. A 85/11, Univ. Saarbrucken (1985)

[LL 85] Lermen, C.W., Loeckx, J., OBSCURE: An interactive specification
language for model-oriented specification methods, Int. Rep. A 85/12,
Univ. Saarbrucken (Sept. 1985)

[Lo 80] Loeckx, J., Proving properties of algorithmic specifications
of abstract data types in AFFIRM. AFFIRM-Memo-29-JL, USC-ISI,
Marina del Rey, 1980

[Lo 81] Loeckx, J., Algorithmic specifications of abstract data
types, Proc. ICALP 81, LNCS 115 (1981), 129 - 147

[Lo 84] Loeckx, J., Algorithmic specifications: A constructive speci-
fication method for abstract data types. Int. Rep. A 84/03, Univ.
Saarbrucken (1984). To appear in TOPLAS

- 12 -

[LS 84] Loeckx, J., Sieber, K., The Foundations of Program Verifi-
cation, J. Wiley/Teubner-Verlag, New York/Stuttgart (1984)

[Ma 74] Manna, %Z., Mathematical Theory of Computation, McGraw-Hill (1974)

[Mi 84] Milner, R., The Standard ML Core Language, Int. Rep. CSR-168-84,
Univ. Edinburgh (1984)

[Mu 80] Musser, D.R., Abstract data type specification in the AFFIRM
System, IEEE Trans. on Softw. Eng. SE-6, pp. 24 - 32 (1980)

[Sa 84] Sannella, D., A set-theoretic semantics for CLEAR, Acta
Inform. 21, 5, 443 - 472 (1984)

[Sa 85] Sannella, D., The semantics of Extended ML, draft (May 1985)

[ST 85] Sannella, D., Tarlecki, A., Program specification and deve-
lopment in standard ML, Proe. 12th POPL Conf., pp. 67 = 77 (1985)

[SW 83] Sannella, D., Wirsing, M., A kernel language for algebraic
specification and implementation, Proc. Int. Coll. FCT, LNCS 158,
413 - 427, 1983

[Th 79] Thompson, D.H. (Ed.), AFFIRM Reference Manual. Internal
Report, USC-ISI, Marina del Rey (1979)

- Al -

| csp :
sp
1so
1s :
lo :
lax
Syntax.
csp ::
sp sz
1so
1s HH
lo
lax ::
o .
FIGURE 1:

Il

Syntactic categories.

camposed specification s : sort

specification O : operation

list of sorts and operations ax : axiom

list of sorts m model

list of operations n : name

list of axioms
sp | (csp 1)
CsSp campose sp (csp 2)
create new 1lso model m global 1lso | (sp 1)
sp subset of s by o | (sp 2)
sp quotient of s by o | (sp 3)
sp forget 1so | (sp 4)
sp rename lso as 1lso | (sp 5)
sp axioms lax | (sp 6)
spec csp endspec (sp 7)
e | sorts 1ls | opns lo sorts 1ls opns 1lo
s | 1lss
o | loo
ax | lax ax
n:->s | n:ls->s

The syntax of OBSCURE (without parameterized specifications) .

- A2 -

5csp : csp - extension signature
Scsp(sp) = Ssp (sp) (csp 1)
Scsp(csp canpose sSp) = (csp 2)
et 5csp(CSp) - (Zg1’ Iag) in
let Ssp(SP) = (ng' zn2) -
((zg1 > Zn2) B Zg2 ! Zn1 o 2:n2)
Ssp : sp - extension signature
Ssp(create new 1lsol model m global 1lso2) = (Slso(lSOZ) , Slso(lso1))
Ssp(sp subset of s by o) = $sp(sp)

Ssp(sp quotient of s by o) = Ssp(sp)

Ssp(sp forget 1so) = let Ssp(sp) = (zg,zn) in ():g, Ly~ 9150(180))

Ssp(sp rename 1lsol as 1so2) = let Ssp(sp) = (Eg,):n) in
():g,):n[lso1/1502])

Ssp(sp axiams lax) = Ssp(sp)

Ssp(sgc csp endspec) = Scsp(csp)

Slso : lso - signature
F1e0l8) = (8, 8)
S (sorts ls) = (3,.(1s), @)
S
S

(opns lo) = (sD ' 510(10))
(sorts ls opns 1lo) = (Sls(ls), S-O(lo))

1so

3 : 1ls - set-of-sorts
1s

518(5) = {s}
Sls(ls s) = Sls(ls) U {s}

Slo : lo - set-of-operations

510(0) = {o}
SI’lo(lo o) = Slo(lo) U {o}

FIGURE 2: The family of semantic functions $ for OBSCURE without

parameterized specifications

(sp 1) .
(sp 2)
(sp 3)
(sp 4)
(sp 5)

(sp 6)
(sp 7)

3 : csp - algebra extension
csp

chp(sp) = ESp(sp)
3csp(csp canpose sp) (A) =
St Scsp(CSp) - (Zg1’ It
“EE 5sp(5p) - (ZgZ' Ipp) An
3csp(csP)((Zsp(Sp) (a | Zgz) ua | zg1)
U Zsp(sp) Aalz

) in

92)

: sp - algebra extension
Igplcreate new 1sol model m global 1s02) (A) = A U 3 (m) (A)
Z-Isp(sp subset of s by o) (A) =

ﬁ_ Ssp(sp) . ((sgl Qg) ’ (Snl Qn))ﬂ

let p be the family of functions Py« t € Sg U Sn’ with:

3
sp

P, a function which maps any element fram
Jsp(sp) (A) (t) into true, fcr all t # s
Pg = J55(sP) (B) (0) in

the subalgebra generated by JSp(sp) (A) and p
3Sp(sp quotient of s by o0)(a) =
ﬁ Ssp(Sp) = ((Sgl Qg)l (Snr Qn)) in
let q be the family of functions qyr t € Sg Us,, with:
g, a function which maps a pair of elements from

(csp 1)
(csp 2)

(sp 1)
(sp 2)

(sp 3)

ZSp(sp) (A) (t) into true iff they are ecual, for all t#s

qg = 35, (sp) (A) (0) in
the quotient algebra generated by Zsp(sp) (A) and gq
Zsp(sp forget 1so) (3) =
let Slso(lso) = (S, 2) in
ZSp(sp) (A) - { (e, A(e)) | eesu @}
Jsp(sp rename lsol as 1so2) (A) = B
where B(e) = Zsp(sp) (A) (e) if e is a sort or opera-
tion not occurring in 1lso2
and where B(e) = Jsp(sp) (A) (e') if e is a sort or
operation occurring in 1lso2 and e' the corresponding
sort or operation in lsol.
3sp(sp axiams lax) = 3sp(sp)
3sp(§E9 Csp endspec) = 3csp(csp)

FIGURE 3: The family of semantic functions 3 for OBSCURE without

parameterized specifications

(sp 4)

(sp 5)

(sp 6)
(sp 7)

- A4 -

create
new sorts set
opns Emptyset : - set

App : set x el - set
Insert : set x el - set
Memberof : set x el - bool
Subset : set x set - bool
Nodup : set - bool
‘Eq : set x set - bool

model

constructors Emptyset : - set

App : set x el - set
programs
Insert(s,e) « if Memberof(s,e) then s else App(s,e)
Memberof (s,e) « case s of
Emptyset : s
App(s',e') : if Equal(e,e') then true else Memberof (s',e)
Subset(s1,s2) = case s, of
Emptyset : true
App(sj,e) : if Memberof(s,.,e) then Subset(s),s,) else false

Nodup(s) < case s of

Emptyset : true

App(s',e):if Memberof(s',e) then false else Nodup(s')
Eq(s,,s,) = if Subset(s,,s,) then Subset(s,,s,) else false

global sorts el, bool

opns Equal : el x el - bool
true : - bool, false: » bool
axiams expressing that Equal : el x el - bool is an equivalence
relation
forget opns App : set x el - set
subset of set by Nodup : set - bool
quotient of set by Eq : set x set - bool

FIGURE 4: An example of a specification. The global sorts and operations

of the extension signature defined by this specification are
those listed above under global, the new sorts and operations
are those listed under new except Zor the operation

App : set x el - set

AS

Syntactic categories
pr : program
1d : 1list of declarations

d : declaration

Syntax
pr :: = 1d csp
1d ::= ¢ | 1dd

d = csp is proc n(lso)
sp = I (as in Figure 1)

call n(lso)

(anmn

(sp 1) to (sp 7)
(sp 8)

FIGURE 5: Figure 1 and Figure 5 together constitute the camplete

syntax of OBSCURE with parameterized specifications

Spr : pr » extension signature

sor (1d csp) = Scsp (csp) (Sld(ld))

&

51 q: 1d -» environment
$1q (€) =6

Sld (1d d) = Sld (1d) v 5d (d)

Sd : d » environment

$4 (csp is proc n(lso)) = {(n,(lso,csp))}

Scsp : csp = environment - extension signature

similar to Figure 2

$: sp - environment - extension signature
...... (similar to Figure 2)
bsp (call n(lso)) (e) =
let e(n) = (1sol, csp) in
let ScsP(CSP) (e) = (ngzn) in
(Zg,Zn) [1so1/1s0]

(sp 1) to (sp 7)
(sp 8)

FIGURE 6: The family of semantic functions & for OBSCURE with parameterized

specifications

A6

: pr - algebra extension

jpr (1d csp) = chp (csp) (Sld(ld))

3
pr

3csp : csp - environment - algebra extension

similar to Figure 3

Esp : sp - environment - algebra extension
(similar to Figure 3) (sp 1) to (sp 7)
JSp (call n(lso))(e) = (sp 8)
let e(n) = (1sol, csp) in

- 1so
Jcsp (CSplso1) (e)

FIGURE 7: The family of semantic functions 3 for OBSCURE with

parameterized specifications

create

Figure 4
quotient of set rk_)X Eq : set x set - bool
is proc SET (sorts el opns Equal : el x el - bool) (1)

call SET (sorts setofint opns Eq : setofint x setofint - bool) (2)

rename sorts set opns Emptyset : - set
as sorts setofsetofint opns Emptysetofsetofint : - setofsetofint (3)

cambine

call SET (sorts int opns Equal : int x int - bool) (4)
rename sorts set opns Emptyset : - set

as sorts setofint opns Emptysetofint : - setofint (5)

is proc SETOFSETOFINT() (6)

create (model introducing the sort pazr and the operations
Pair : ell x el2 - pair, First : pair - ell, Second : pair » el2) (7)
is proc PAIR (sorts ell, el2)

call PAIR (sorts setofsetofint, setofsetofint)
canbine
call SETOFSETOFINT()

FIGURE 8: An OBSCURE program introducing pairs of sets of sets of

integers (see Section 5.3 for camments)

= A7 =

User interface

i T
| l

[Program development] 3 Program verification

—>| Syntactic conditions —3 Proof methods

—9 Semantic conditions —)

Simplification

L7 Rapid prototyping — Arithmetic

FIGURE 9: A rough scheme of an OBSCURE implementation

	fb1985-12_0001
	fb1985-12_0002
	fb1985-12_0003
	fb1985-12_0004
	fb1985-12_0005
	fb1985-12_0006
	fb1985-12_0007
	fb1985-12_0008
	fb1985-12_0009
	fb1985-12_0010
	fb1985-12_0011
	fb1985-12_0012
	fb1985-12_0013
	fb1985-12_0014
	fb1985-12_0015
	fb1985-12_0016
	fb1985-12_0017
	fb1985-12_0018
	fb1985-12_0019
	fb1985-12_0020

