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1 Introduction

The idea that abstract data types may support the development ¢’ correct
programs is now well-accepted. Meanwhile several methods have been pro-
posed for the specification of abstract data types: operational specifications
([Ho 72], [Sh 81], [Li 81], [NY 83], [LG 86]), algebraic specifications ([GTW
78], (GHM 78], [TWW 82|, [BW 82|, [Eh 82], [EM 85]) and constructive
specifications ([Ca 80], [KI 84], [Lo 87]). While operational specifications
are embedded in an imperative language, algebraic specifications are more
abstract in that they make use of first-order formulas, usually equalities or
Horn-clauses. Algorithmic specifications offer a similar degree of abstraction
but differ by their constructive nature.

The design of non-trivial specifications is practicable only if it is per-
formed modularly. To this end specifications are embedded in a specification
language. Essentially, such a language allows the construction of specifica-
tions out of more elementary ones. In the case of operational specifications
the specification language is foreordained to be the embedding imperative
language. For algebraic specifications several specification languages have re-
cently been proposed: CLEAR ([Sa 84],[BG 80]), ACT-ONE ([EM 85]), OBJ2
([FGJM 85]), PLUSS ([Gd 84],[BGM 87]), ASL ([Wi 86]), ASF ([BHK 87]).

Even with the use of a specification language the design of non-trivial spec-
ifications with pencil and paper is tedious and error-prone. A solution consists
in embedding the specification language into an adequate environment. Such
an environment supports the interactive design of specifications as well as the
(interactive or automatic) verification of their properties. Some more or less
elaborate environments have been described or announced in the literature:
OBJ2 ([FGJM 85)), an environment for a subset of the specification language
PLUSS called ASSPEGIQUE ([BCV 85]), the environment RAP ([Hu 87]), an
environment for the specification language ACT-ONE called the ACT-System.

The specification tool to be presented in this paper is called OBSCURE.
It conmsists of a specification language together with an environment for it.
The specification language is a simple language similar to Bergstra’s term
language ([BHK 86]). The environment is a program consisting of a design
unit and a verification unit. The design unit allows the interactive design of
specifications. More precisely, with the help of a command language the user
induces the design unit to stepwise generate specifications. The verification
unit allows to prove properties of these specifications. The main features by
which OBSCURE differs from the specification languages and environments
described in the literature are now briefly discussed.

First, the specification language of OBSCURE has been designed as a
language to be used in an environment, not as a language to be used with
pencil and paper. As a result the specification language has a very simple
syntax and semantics at the expense of more elaborate context conditions.



These context conditions put no burden on the user as they are checked auto-
matically and on-line (i.e. at each command) by the design unit. Second, the
specification language is independent from the specification method urs=d. It
even allows the use of different (algebraic and/or constructive) specification
methods within the same specification. This is possible because OBSCURE
distinguishes between the constructs inherent to the specification method —
such as “data constraints” in CLEAR — and those inherent to putting speci-
fications together. Third, OBSCURE distinguishes between the specification
language and the command language of the design unit. This is reflected
by the fact that procedure mechanisms (i.e. “parameterized specifications”)
and user-friendly macros are part of the command language, not of the spec-
ification language. Hence parameterized specifications are not specifications
but rather constitute a tool to construct specifications. Next, apart from the
classical operations OBSCURE provides means to explicitly construct subal-
gebras and quotient algebras. Finally, OBSCURE directly ties the design of
a specification to its verification. In particular, the design unit automatically
generates formulas expressing, for instance, certain persistency conditions and
transmits them for verification to the verification unit.

The goal of the present paper is to give a very brief and informal overview
of the command language of the design unit and to illustrate its use. A precise
and formal description of the specification language may be found in [LL 87].

Section 2 briefly recalls some basic notions. Section 3 describes the com-
mand language of the design unit. Section 4 presents a commented protocol.
Section 5 contains final comments.

2 Basic notions

2.1 Signatures

Sorts, operations and signatures are defined as usual.
Formally, a sort is an identifier. An operation is a (k + 1)-tuple, k > 0,

n:8; X...X 8 = 841

where 81,...,8x+1 are sorts. It is called S-sorted if S is a set of sorts with

81,...,8x+1 among its elements. A list of sorts and operations is a (k + 1)-
tuple

(s1,---,8k;01,.--,01)
with s,,...,8; sorts and 0,,...,0; operations, k > 0,1 > 0.

An example is

(set,integer; € :— set, Insert : set X integer — set)



An (algbra) signature is a pair (S,2) where S is a set of sorts and {) a set of
operations such that each operation of 2 is S-sorted.

For a given rignature, say ¥, one may introduce the notions of a (£- Yterm
and of a (£—)formula in the classical way. For instace, for the signature

({set,snteger}, {e :— set, Insert : set X integer — set})

Insert(e,0) is a term and —Insert(e,0) = € is a (first-order) formula. Precise

definitions are in [LL 87).
In what follows the signatures considered satisfy the following condition:
for any two different operations with the same operation name n

n:8y X...X 8 — 841, k20
and n:t; X...xt; =4y, (20

either k # [ or there exists 1,1 < 7 < k, such that s; # ¢;. This condition
allows operation overloading, i.e. in terms and formulas any operation, say
n: 81 X...X8k41, may be replaced by its name n without creating ambiguities.
(Actually, we already did so in the examples of a term and a formula given
above!). Hence a signature may contain the operations

Insert : set x integer — set

and
Insert : list X integer — list
but not
€ :— get
and
€ :— list

2.2 Algebras
Let £ = (5,) be a signature. A (X¥—)algebra is a function that maps
(i) each sort s of S into a set A(s) called the carrier set of sort s;

(i) each operation n:8y X ... X 8k4+1, k > 0, of Q into a (possibly partial)
function

A(n:sy X...X 8k — 8k4+1) : A(s1) X ... %X A(sx) = A(8k+1)-

Again, for a given X-algebra A the value of a X-term and the validity of a
3-formula are defined as usual, viz. as an extension of the function A (see
[LL 87]). For instance, in the “standard” interpretation the value of the
term Insert(e,0) is the set consisting of the number zero, and the formula
~Insert(e,0) = ¢ is valid.

The class of all X-algebras is denoted Algg.



2.3 Modules

Modules constitute the semantics of specifications. They produce “exnorted”
algebras by extending “imported” ones (cf. [BHK 86], [EW 85], [+ P 87|,
[EFPP 86], [EW 86)).

More formally, a module signature is a pair (Z,,Z.) of signatures called
the smported and ezported signature respectively. A sort or operation that
occurs in both the exported and imported signature is called an snherited
one. Figure 1 shows a graphical representation of a module signature that
will be used in Section 3.

A module for the module signature (Z,,X,) is a (possibly partial) function

m: Algy, — Algs,

satisfying the following persistency condition:

for every algebra A of the domain of m:
for every inherited sort or operation 7:

m(4)(r) = A(r).

Informally, the persistency condition expresses that the meaning of the inher-
ited sorts and operations remains unchanged.

This definition of a module allows to cope with specifications that define
a single model. In order to be able to also handle loose specifications it is
sufficient to define a module as a relation m C Algy,; x Algy, rather than a
function m : Alggy, — Algg, (see [LL 87]).

2.4 Atomic specifications

Essentially, OBSCURE allows to construct specifications out of atomsc spec-
ifications (cf. [BHK 86]). An atomic specification is drawn up according to
one of the numerous specification methods. The description of its syntax and
semantics is outside the realm of OBSCURE.

3 The command language of OBSCURFE

As indicated above a specification in the specification language of OBSCURE
has the form of a term and is interpreted as a module.

The command language of (the design unit of) OBSCURE is essentially
a postfix version of this specification language together with macros and a
procedure mechanism. Its goal is to generate specifications in the specification
language. To this end the design unit makes use of a stack (for transforming
postfix into infix) and of a library of procedures. At each command the
design unit automatically checks the context conditions. Moreover it generates



formulas, the validity of which guarantees the semantic consistency of the
specification. In this way the design unit makes sure that the specifications
generated are syntactically and semantically correct.

A non-exhaustive list of the commands is in Figure 2. The semantics of
these commands are graphically illustrated in Figure 3 and are now shortly
commented. Most of these comments are illustrated in the protocol of Sec-
tion 4. Hence the reader may very well skip the present Section and return to
it if required. For a definition of the syntax, the context conditions and the
semaatics of the command language the reader is referred to [LL 87]. This
paper also contains a proof that the context conditions together with the for-
mulas generated by the specification unit suffice to guarantee the consistency
of the definition of the semantics.

The design unit is started with an empty stack. The library is empty or
may contain “given” procedures.

The command create am endcreate writes the atomic specification am
on the stack.

The commands add and compose act like binary postfix operators: they
replace the top two elements of the stack by the result. The commands forget
lso through quot s by w act like unary operators.

The commands add and compose put specifications together (see Figure 3).
The command add constructs the “union” of the specifications m; and m;.
The use of compose corresponds to a top-down design: being contained by
the top element of the stack the “refinement” m; has been designed after
m,. Figures 3(a) and 3(b) suggest that both commands are subject to severe
context conditions. For instance, the exported signatures of the operands
m,; and m, of add may only have inherited sorts and operations in common.
Being too stringent for most “practical” cases these context conditions are
relaxed in the macro-command refine to be discussed below.

The command forget (Figure 3(c)) drops exported sorts and operations.
It allows to get rid of auxiliary (“hidden”) sorts and operations. More im-
portantly it allows to eliminate those operations which would fail to satisfy
the semantic constraints induced by subsequent sub or quot commands (see
below).

The command

e-rename Ilsol into [s02

(Figure 3(d)) renames exported sorts and operations. More precisely, the
(exported) sorts and operations of the list [so2 are simultaneously substituted
for those of lsol. The imported sorts and operations remain unchanged. Note
that the renaming of a sort implies the renaming of its occurrences in the
operations. For instance, the renaming of the sort el into tnteger entails the
substitution of the operation Insert : set X el — set by Insert : set X integer —



set. The command may be used to avoid name clashes, i.e. to comply with
the context conditions of, for instance, a subsequent add command.
The command

i-rename lsol into ls02

is similar but applies to the imported signature. As a fundamental difference
the renaming extends to the exported sorts and operations that are inherited:
in Figure 3(e), for instance, both the imported and the exported occurrence
of a is renamed into f. Moreover, the command may identify names by giving
them the same name: in Figure 3(e) both names b and ¢ are renamed into
g. The utility of this command will become clear in the discussion of the
parameter passing mechanism.
In the command

i-axiom w

the formula w is a formula of the imported signature. It expresses a semantic
constraint on the domain of the module. More precisely, the module defined
by the specification m yielded by the command is identical with the (module
defined by the) specification m; to which the command is applied, except that
its domain is restricted to those algebras A which satisfy the formula w. From
a user’s point of view the command requires the verification of a semantic
constraint, i.e. a proof that the “intended” imported algebra belongs to the
domain of the module m. To this end the design unit transmits the formula
w to the verification unit (see [LL 87] for more precision). The main use of
the command is to express semantic constraints on the (formal) parameters
of a procedure, — as will become clear below.
In the command

e-axiom w

the formula w is a formula of the exported signature. The domain of the
module m is now restricted to those algebras A for which the algebra m(A)
satisfies the formula w. The command allows in particular to express that the
specification satisfies a given property. For instance, having specified the sort
set the user may want to check that

=(z € Delete(s, z)) = true

i.e. that an element no longer belongs to a set from which it has been deleted.
In the command

sub s by w



the formula w is a formula of the exported signature and contains free occur-
rences of a single variable, namely a variable of sort s. The exported sort s
may not be inherited. The module m yielded by the command d:iffe 's from
the module m; to which it is applied in the following way: let A be an ar-
bitrary algebra of the domain of the module m; the carrier set m(A)(s), i.e.
the carrier set of sort s of the algebra m(A), is a subset of the carrier set
m,(A)(s), namely the subset whose elements satisfy the formula w. In other
words, m(A) is the subalgebra of the algebra m;(A) induced by the formula w
([EM 85], [Lo 87], [LL 87]). For instance, if the carrier set m;(A)(s) consists
of multisets, and if

Nodup : s — bool

is an operation expressing that a multiset contains no duplicates then the
command

sub s by (Nodup(z) = true)

applied to the module m, yields a module m such that the carrier set m(A)(s)
consists of sets (see Section 4 for a detailed example). Clearly, this construc-
tion of a subalgebra is well-defined only if some closure condstions are satisfied
([EM 85], [Lo 87], [LL 87]). In the case of the example these closure condi-
tions express that the operations of the algebra m;(A) map duplicate-free
arguments into duplicate-free values. These closure conditions constitute im-
plicit semantic constraints on the module m;. The design unit automatically
generates formulas expressing these constraints and transmits them to the
verification unit.
The command

quot 8 by w

is similar but the formula w now has free occurrences of two variables of
the sort 8. Hence w defines a relation rather than a subset. It is assumed
that this relation is an equivalence relation (again a semantic constraint to
be verified!). Let m,m; and A be as above. The carrier set m(A)(s) now
consists of the equivalence classes induced by the equivalence relation in the
carrier set m;(A)(s). In other words, m(A) is the quotient algebra induced
by the formula w ([EM 85], [Lo 87], [LL 87]). For instance, if the carrier set
my(A)(8) consists of lists, and if

Eq: s X 8 — bool

is an operation expressing that two lists are identical except for the order of
occurrence of their elements, then the command

quot 8 by (Eq(u,v) = true)



applied to the module m, yields a module m such that the carrier set m(4)(s)
consists of multisets. Again, the construction of a quotient algebra is well-
defined only if the equivalence relation is a congruence relation, i.e. if each
operation of the algebra m;(A) maps equivalent arguments into equivalent
values. Again, the design unit automatically generates formulas expressing
the different semantic constraints.

The command is proc n(lso) constitutes a procedure declaration. The
name of the procedure is n, the procedure body is the specification at the top
of the stack and the sorts and operations of lso are the formal parameters.
The effect of the command is to add the declaration to the library and to pop
the stack. The sorts and operations constituting the formal parameters have
to be imported ones. For instance, if the specification contained by the top
element of the stack specifies “sets of elements”, set being an exported sort
and element an imported one, a possible procedure declaration is

is proc SET (element).

From the user’s point of view a procedure body is designed as if it were a
“normal” specification; when completed this specification is turned into a
procedure by the is proc n(lso) command.

The command call n(lso) constitutes a procedure call: n is the name
of a procedure from the library and the sorts and operations of lso are the
actual parameters. The effect of the command is to write (a copy of) the
procedure body on the stack. The parameter passing is performed by an
implicit i-rename command. For instance, the command

call SET (integer)

yields a specification specifying sets of integers. This specification is obtained
by applying the command

i-rename el into tnteger

to the body of the procedure SET. The sort integer is an imported sort of
this specification — as was the sort element in the specification constituted
by the procedure body. Note that one of the context conditions requires that
a procedure name is declared before it is called. This excludes, in particular,
recursive calls.

The command identity lso creates an “empty” specification: the module
it defines is the identity function for the imported signature (Figure 3(f)).

The command refine combines the effects of the commands add and
compose (Figure 3(g)). It automatically “supplies” the missing sorts and
operations. As a result the context conditions are less stringent than for add
and compose.



The command extend first permutes the two top elements of the stack and
then acts like refine. While compose and refine are intended for top-down
design of specifications, extend is useful for bottom-up design.

In the command

copy lsol as Iso2

the sorts and operations are from the exported signature (Figure 3(h)). A
possible use of the command is the following. Consider the notation of Fig-
ure 3(h) with d denoting a sort. Apply the command sub d by w on the
specification m. According to this command the carrier set of sort d becomes
a subset of the original one. But this original carrier set is not lost: thanks
to the copy command it is still available under the name f.

The command is proc n(lsol)(ls0o2) is similar to a usual procedure decla-
ration but contains in addition the parameters ls08, called result parameters.
The sorts and operations of /s0o2 have to be exported ones. At the com-
mand call n(lsol’)(lso2’) the parameter passing of the result parameters
is performed by an implicit e-rename command. For instance, a procedure
declaration could be

is proc SET (element)(set)

and a corresponding procedure call
call SET (integer)(setofint).

The specification yielded by this call again has the sort integer among
its imported sorts but the sort setofint (instead of set) among its exported
ones. As they automatically rename exported sorts and operations, result
parameters may be used to avoid name clashes when a procedure is called
more than once.

The design unit which is being implemented in our laboratory offers several
additional facilities. The user is, for instance, allowed to designate at any
moment an operation by its name only. If — due to overloading — this name
does not univocally determine the arity of the operation the design unit will
ask the user for it. A further facility allows to delete the actual parameters
from a procedure call whenever they are identical with the formal ones. Hence
the command call n writes the body of the procedure n on the stack without
any renaming.

4 A protocol

The goal of this Section is to illustrate the use of OBSCURE as a tool for the
design of specifications. The three examples illustrate in particular the use
of procedures, the construction of quotient algebras and the introduction of



semantic constraints on parameters. Together the three examples constitute
the protocol of a single session with the design unit of OBSCURE.

When presenting concrete examples one has to fix the specificatica ; 1ethod
and the logic. We have chosen the initial algebra specification method and
first-order logic.

The reader of this Section may experience that it is tedious to keep track
of the current module signature. He should remember that the design unit
automatically updates the signatures and checks the context conditions at
each command.

The protocol is in the Appendix. Note that “n?.” introduces text written
by the user, “***” introduces text displayed by the design unit and “$$$”
introduces comments that are not part of the protocol.

5 Some final comments

OBSCURE allows top-down, bottom-up or “mixed” development of specifi-
cations. It does not require to start specifying “from scratch” because the
initial contents of the library of procedures has not to be empty.

The commands subset and quotient are essential in the algorithmic spec-
ification method (see [Lo 87]). While they may be dispensed with in an al-
gebraic specification method they may be useful to make specifications more
modular and explicit.

OBSCURE is more than a specification language in that it also allows to
express properties of the specifications. In particular, the command e-axiom
is similar to a “Hoare-like” assertion in an imperative programming language.

A prototype of an environment for OBSCURE is being developed in our
laboratory. The design unit is nearing completion. It offers several facilities
beyond those mentioned in this paper. A manual of the editor is available

([FH 87)).
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FIGURE 1: A graphical representation of (the signature of) an algebra
module. The symbols a, b, c,d stand for sorts and/or operations: a and b are
imported, a,c and d are exported, a is inherited.
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Syntactic categories

am

lso

atomic specification

sort

list of sorts and operations
formula

(procedure) name

(i) Elementary commands

List of commands

create am endcreate
add

compose

forget lso

e-rename lsol into lso2
i-rename lsol into lso2
i-axioms w

e-axioms w

sub s by w

quotient s by w

atomic specification

horizontal composition

vertical composition

dropping sorts and operations

renaming exported sorts and operations
renaming imported sorts and operations
semantic constraint on import

semantic constraint on export
subalgebra

quotient algebra

(11) Procedure commands

is proc n (lso)
call n (lso)

procedure declaration
procedure call

(iii) Macro-commands

identity lso

refine

extend

copy lsol as lso?

is proc n (lsol) (Iso2)
call n (lso1) (ls02)

empty specification
refinement step
extension step

copy with new names

procedure declaration with result parameters

procedure call with result parameters

FIGURE 2: The commands of the design unit of OBSCURE. The left
columns of the tables contain the commands, the right columns contain com-

ments. The list of macro-commands is not exhaustive.
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FIGURE 3 Graphical illustration of the semantics of the main commands.
In this illustration m, and m, are operands (i.e. the specifications contained
by the top element and the second element of the stack respectively), m is the
result (i.e. the specification yielded by the command). Each of the symbols
a,b,c,... stands for a sort or an operation.
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Appendix

First exan-ple

17- create
produces sorts list
operations e :— list
- list x el — list
-€ _:el x list = bool
equations (e € ¢) = false
(e € (I.¢')) = if (e = ¢€’) then true else (e €!) fi
needs sorts el, bool
operations _=_: el X el — bool
endcreate
* ¥k

$¢$

$33

$$8

L = (el,bool; _=_: el x el — bool)
L. =X,U (list; e:— list, _._: list x el — list, _ € _: el X list — bool)

This atomic specification introduces “list of elements” and is drawn
up according to the initial algebra specification method. Its imported
signature is described under the heading needs. Its exported signature
additionally contains the sorts and operations listed under the heading
produces. lence all sorts and operations of the imported signature
are inherited. According to the initial algebra specification method an
atomic specification delines a free extension of the imported algebra.
The operation “.” expresses “appending”, “€” expresses “element of”.

To be precise we should have added the constants true, false and the
ternary operation if-then-else to the imported signature. We have omit-
ted them to simplify the presentation.

The stack of the design unit now contains the atomic specification as its
single element.

2 ?- is proc LIST(el; - =_: el x el — bool) (list; € :— list)

$$3

$3%

The specification in the stack is turned into a procedure with name
LIST. It contains two (formal) argument parameters, viz. el and . = _:
el x el — bool, and two (formal) result parameters, viz. list and € :— list.
This procedure is added to the library.

The stack of the design unit is now empty again.

3 7- call LIST (int; - = _:int X int — bool) (slist; i-€ :— slist)

* %k

L, = (int, bool; _ = _: int X int — bool)
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e = X; U (slist; i-€ :— slist, _._: slist X int — slist, _ € _: int X slist —
bool)

$88 The specification resulting from the call is pushed onto the s.ack. It
is obtained by applying two renamings on (a copy of) the procedure
body: an i-rename for the argument parameters (i.e. the parameters
contained by the first pair of parentheses) and an e-rename for the
result parameters (i.e. the parameters contained by the second pair of
parentheses).

4 7- call LIST (string; - = _: string X string — bool) (slist; s-c :— slist)
*#E X = (string, bool; _ = _: string X string — bool)

L. = X, U (slist; s-€ :— slist, _._ : slist X string — slist, _ € _ :
string X slist — bool)

$$8 Yet another call of the procedure LIST. The stack now contains two

specifications.

5 7- add

¥ 3, = (int, string, bool; . = _: int X tnt — bool, _ = _: string X string —
bool)

Y. = X, U (slist, slist; i-e :— slist, _._ : shist x int — dlist, _ € _ :
_tnt X slist — bool, s-€ :— slist, _._ : slist X string — shst, _ € _ :
slring x slist — bool)

888 Note the overloading of the operation names “.” and “€”. Note also
that without the renaming performed by the result parameters of the
procedure calls overloadings such as that of the operation name “c”
would fail to satisfy the overloading condition of Section 2.1.

6 7- is proc LISTS-OF-INT-AND-LISTS-OF-STRINGS

$8$ The specification is stored for later use as a parameterless procedure.
The stack is empty again.

Second example

$38 The goal is to deduce a specification of multisets from the specification
LIST. To this end the procedure LIST is enriched. According to the
top-down philosophy this enrichment is “created” and then “refined” by
(the procedure body of) LIST.

19



7 7- create

Kok

$83

produces operations Eq: list X list — bool
Subset : list x list — bool
Delete : list X el — list

equations Eq(ly,l3) = if Subset(ly,l2) then Subset(lz, ;)

else false fi
Subset(e,l) = true

Subset((ly.€),l2) = if (e € l2) then Subset(l,, Delete(lz,€))

else false fi
Delcte(e,e) = €
Delete((l.'),e) = if e = ¢’ then

else Delete(l,e).e’ fi

needs sorts list, el, bool
operations € :— list
- list X el — list
-€_: el x list — bool

endcreate
I, = (list, el, bool; € :— list, _._: list x el — list, _ € _: el x list — bool)

Y. =X,U(Eq: hst x list — bool, Subset : list x list — bool, Delete :
list x el — list)

Delete(l, e) deletes the rightinost occurrence of the element e in the list /.
Eq(l1,12) checks whether the lists /; and /3 contain the same number of
“occurrences of each element.

8 7- forget (Subset, Delete)

**x ¥, is unchanged
Y. =3, U (Eq: list x list — bool)

$$8 The user drops these operations because he feels he no longer needs
them. Hence these operations act like “hidden functions”.

9 7- call LIST

k3 = (elybool; = _: el x el — bool)
Ye=X;U(list; €:— list, _._: list x el — list, _ € _: el X list — bool)

$38 A copy of the procedure body of the procedure LIST is pushed onto the
stack without any renaming.

10 ?- refine

*xx L= (el,bool; .= _: el x el — bool)
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Y. = (list,el,bool; € :— list, _._: list x el — list, _ € _: el X list —
bool, Eq: list x list — bool)

$33 The enrichment was performed in a top-down way. The user could also
have performed it bottom-up by first calling LIST, then “creating” the
new operations and finally putting both specifications together with the
command extend.

11 7- quotient #ist by Eq(ly,l2) = true
**x ¥4, X are unchanged.
$38 1,,l; are variables of sort list.

$48  The design unit automatically generates formulas expressing the seman-
tic constraints implied by the construction of the quotient algebra and
transmits them for verification to the verification unit.

$88 The original meaning of list, €, “.” and “€” is now “overwritten”. Wlile
this original meaning is no longer available on the stack it is of course
still attached to the procedure LIST contained in the library.

12 7- e-rename (list; Eq: list X list — bool) into (multiset; _ = _ : multiset x
multiset — bool)
ek 3 = (el,bool; .= _: el x el — bool)

L. = (multiset, el, bool; € :— multiset, _..: mulliset X el — multiset,
- € _: el X multiset — bool, _ = _: multiset X multiset — bool)

$3% The new names are more suggestive. Note that Eq : list x list — boo! or
after renaming - = _ : multiset X multiset — bool expresses the standard
equality between multisets — as directly results from the definition of
the quotient operation.

13 7- is proc MULTISET (el; .= _: el X el — bool)

T'hird example

$3$ The goal is to deduce a specification of ordered lists from the specifica-
tion LIST. First “parameterized axioms” are introduced.

14 7- identity (el,bool; - < _: el x el — bool)

¥ 5=, = (el,bool; < _: el x el — bool)

$3$ The command creatcs an “empty specification”, i.e. a specification defin-
ing the identity module.
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15 ?- 1-axioms
variables u:el, v:el, w: el
(v L u) = trve
(v Sv)=trueA(v<u)=truedDu=v
(v <v) = true A (v < w) = true D (v < w) = true
(v <v) = true V (v < u) = true
endaxions

**¥ ¥, XU, are unchanged.

$38 The axioms express that “<” is a total order. It is implicitly assumed
that cach axiom is univeisally quautified and that the different (univer-
sally quantified) axioms are connected by “A” to yield a single first-order

formula.
16 7- is proc TOTAL-ORDER (el; - < _: el X el — bool)
$$8 The procedure TOTAL-ORDER constitutes a “parameterized axiom”.

$$$ Now the procedure LIST is extended.

17 7- create
produces operations Isord : list — bool
-®-: list x el — bool
equations Isord(e) = true
Irord(e.e) = true
Isord((l.e).e’) = if e < ¢’ then Isord(l.e)
else false fi
eE@Qe=¢.e
(l.e)©e' =if e < e then ((l.e).€')
else (({©¢€).e) 1i
needs scris List, el, bool
operationa € :— list
- list x el — list
_<_:el x el = bogl

endcreate

*6x B = (list,el,bool; € :— list, _._: list x el — list, - < _: el X el — bool)
L. = X; U (Isord : list — bool, _© _: list x el — list)

$38 “©” expresses “ordered appending”.

18 7- e-axioms
variables ! : list, e: el
Isord(l.e) = false D ~(l =€)

endaxioms
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¥ %, X, are unchanged.

$28 For one reason or another the user wants to check that his specification
satisfies the property expressed by this axiom. The design unit tra. imits
the formula for verification to the verification unit.

19 7- call LIST

ek Y = (el bool; = _: el x el — bool)
Ve=X,U((list; e:— list, _._: list x el — list, _ € _: el x list — bool)

20 7- call TOTAL-ORDER

*x ¥, =X, = (el,bool; - < _: el x el = bool)

21 7- add

¥ %= (el,bool; _=_:elx el = bool, _<_: el x el — bool)
L.=1%,U(list; €:— list, _._: list x el — list, _€ _: el x list — bool)

$$8 The axiorus of TOTAL-ORDER are added as semantic constraints to
(the procedure body of) LiST.

22 7- refine
s Li= (el,bool; .= _:el x el = bool, _< _: el X el — bool)
¥ 3. = (liet el beoly _=_:el X el = bool, . < _: el X el = bool, € :—

list, _._: listx el — list, _ € _: elxlist — bool, Isord : list — bool, _O_:
list x el — list)

$$$ The macro-conmaud refine “automatically” adds the missing opera-
tions before “adding” the specifications obtained in the steps “21 ?7-”
and “18 7-”.

23 7- forget (-=_, - <., -..)
*¥¥ ¥, is unchanged.

Ye = (lsst,el,bool; € :— list, Isord : list — bool, _® _ : list X el —
list, _€ _: el x list — bool)

$$8 The first two operations arc dropped in order to simplify the example.
Dropping the third operation is essential: the operation would fail to
satisfy the closure condition of the sub command applied next.

24 7- sub list by (Isord(l) = true)
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%k

§38

25 7-

%k ok %

26 1-

% % %

Kk ok

$3%

$38

X, X, are unchanged.

All unordered lists aie removed {rom the carrier set. Again, the de-
sign unit generates formulas expressing the corresponding semaciic con-
straints, viz. the closure conditions.

forget (Isord)
Y, is unchanged.

e = (list,el,bool; € :— list, _.®© _: list x el — list, _ € _: el X list —
bool)

This operation is superfluous because it now has the constant value true.
e-rename (list; € :— list) into (olist; o-€ :— olist)
3, is unchanged.

Y. = (olist,el, bool; 0-€ :— olist, _.® _ : olist x el — olist, . € _ :
el X olist — bool)

The user wants more suggestive names

is proc ORDERED-LIST (el; -=_:el x el — bool, _ < _: elx
el — bool) (olist; o-€ :— olist)

- The user has reached his goal. A possible call is:

call ORDERED-LIST(int; . = _: int X int — bool, . < _: intx
int — bool)(oslist; oi-€ :— oilist)

L, = (int, bool; .= _:int X int — bool, _ < _: int X int — bool)

L. = (oslist, int, bool; oi-€ :— otlist, _© _ : oslist X int — oshist, _€ _:
int X oslist — bool)

The renamings resulting from the call “automatically” translate the
axioms expressing that . < _: el X el — bool is a total order into axioms
expressing that _ < _: int X int — bool is (see [LL 87] for more details).

There is no difficulty in specifying, for instance, ordered lists of or-
dered lists of integers. In principle one more call of the procedure
ORDERED-LIST suffices but it is of course necessary to first enrich
the sort otlist with operations _ = _: otlist X oilist — bool and _ < _:
otlist X oslist — bool.
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