BICONNECTED GRAPH ASSEMBLY and
RECOGNITION OF DFS TREES

by
Torben Hagerup

A 85/03
February 1985

FB 10, Informatik
Universitit des Saarlandes
6600 Saarbriicken

West Germany

Abstract:

We present two new algorithms on undirected graphs. The first
of these takes as input a biconnected graph G and produces a
list of simple instructions that may be used to build G from
a trivial initial graph in such a way that all intermediate
graphs are biconnected. Each instruction specifies either

1) the addition of an edge between two nodes, or 2) the
addition of a new node "on" an existing edge. We shall say
that the algorithm solves the problem of "biconnected graph
assembly".

The second algorithm takes as input a connected graph G
and a spanning tree T of G given by a marking of the tree
edges (i.e., the tree is not rooted). It decides whether there
is a depth-first search of G such that the undirected tree
implied by the search is identical to T. This may be called
"recognition of DFS trees". In fact, the algorithm computes
the set of those nodes that may be taken as roots of such a
search.

Both algorithms are based on depth-first search and work
in linear time and space.

1. BASIC DEFINITIONS AND FACTS

We shall assume familiarity with the most basic definitions
concerning undirected graphs and with their common representa-
tions in a computer. This material may be found in e.gq.
(Harary, 1969; Aho et al., 1974; Even, 1979; Tarjan, 1972).

An (unrooted) tree is a graph that is connected and
acyclic. In a tree, there is a unique simple path between any
two given nodes. A rooted tree is a tree in which one node has
been desiqgnated as the root. In a rooted tree, one may talk
about father and son relationships. The father of a node u is
tne first node # u on the simple path from u to the root. The
root has no father. If u is the father of v, v is a son of u.
The reflexive and transitive closure of the father relation
gives the ancestor relation and the inverse descendant relation
which is the reflexive and transitive closure of the son
relation. A leaf is a node which has no sons.

A spanning tree of a granh G is a suhgraph of G which is a
tree and which includes all the nodes of G. Given a rooted
spanning tree T of a gqraph G, we may classify the edges of G
relative to T into 1) tree edges, 2) back edges, i.e. non-tree

edges that connect a node u to an ancestor or a descendant of
u, and 3) cross edges, the remaining edges. We shall often draw
tree edges solid, back edges dashed, and cross edges dotted.
When a back edge is being considered from one of its endpoints,
it may be characterized as "upward", i.e. going to an ancestor,
or as "downward".

3y G-{e}, where G is a graph and e an edge of G, we mean
the graph obtained from G by deleting e, and G-{u}, where u is
a node of G, is the graph obtained from G by deleting u and all
edges incident on u. If G is a connected graph, a node u is
called an articulation point of G if G-{u} is not connected. A
graph is biconnected if it is connected and has no articulation

points.

-3 -

To search a graph is to "visit" all the nodes of the graph,
whereby the details of visiting a node may vary. Depth-first
search (DFS) is one particular way of searching a graph. For
a connected graph, it takes the following form: First, choose
and "discover" some initial node. Then, as long as there
remains discovered nodes with incident edges that were not vet
explored in the direction away from the node in question,
choose the most recently discovered such node and explore one
of its unexplored edges. "Exploring" an edge incident on some
node means to discover the node at the other end of the edge,
if it has not already been discovered. Of the computations
which together comprise the visiting of a node u, some may be
done when u is discovered, and others later when the search
returns to u to explore one of its incident edges, or to
discover that there are no more unexplored edges. It is the
"most recently discovered" above that makes the search "depth-
first", and it also shows that the search may be succinctly
described as a recursive algorithm:

procedure DFS (u:Node);
begin
(# some computations #)
for all nodes v adjacent to u
do if v has not yet been discovered
then DFS(v);
(# some computations +)
end;

Fig. 1. Generic depth-first search.

Hence, in the terminology of the implementation of recursive
procedures, the node currently being visited is the one whose
stack frame is currently active (on top of the run-time stack).

One easily proves that each node is discovered exactly once
and that each edge is explored exactly once in each direction.
If visiting a node takes time proportional to its degree, the
whole search takes time OU(IE!), where |E!l is the number of
edges in the graph. The DFS number of a node u is defined to be
k if u is the k“th node to be discovered during the search. DFS
numbers of all nodes may easily be computed along with the
search.

-4 -

We may associate a subaraph T of a connected qgraph G with
a DFS of G. T contains all the nodes of ¢ and precisely those
edges that lead to new (i.e., not yet discovered) nodes during
the sesarch. T is a spanning tree of G. We call T a DF5 tree of
G and sometimes root T at the initial node of the search. A
central observation (Tarjan, 1972; Aho et al., 1974) is that
with respect to T, rooted as just described, G contains no
cross edges.

2. BICONNECTED GRAPH ASSEMBLY

Problem definition.

Consider the following types of operations on undirected
graphs (see fig. 2 helow):

£) Join two non-adjacent nodes by an edge.

N) Delete the edge between two adjacent nodes v and w, create
a new node and join it to v and w (we may describe this
informally as placing a new node "on" the edge (v,w)).

N
= =

Fig. 2. E and N operations.

If an overation of type E or N is apolied to a biconnected
granh, it is easy to see that the resulting graph is bicon-
nected. Hence so is any grapa that can be obtained from the

(biconnected) complete qranh K, on 3 nodes by anplving a

3
sequence of the above operations. Whitney proved that the
converse is true as well: Anv hiconnected graph with at least

3 nodes may be obtained in this way (Whitney, 1932). See fig. 3

below for an example.

§ £
3 = 3 = 3
5 5 5
1 2 1 2
N E
= 3 = 3
4 5 4 5

Fig. 3. A biconnected grapi assembly.

‘Whereas Whitney’s proof is non-constructive, our algoritim
gives an actual derivation of a given biconnected graph G
in the form of a list of instructions, each specifying an
operation of type E or N, such that if the onerations are
carried out in the given order, starting from Kl' the araph
G results.

Development of the algorithm.

The overall strateqy is to generate the instructions in
reverse order, namely bv taking the given graph G apart piece
by piece using the inverses of E and N operations:

E ') Remove an edge.

N~ ') For a node u of degree 2 connected to non-adjacent
nodes v and w, replace u and its incident edges by
the edqge (v,w).

-1

o
ot

== J =

Fig. 4. = ! ana n~! operations.

If each inverse oneration is chosen so as to nreserve bicon-

nectivity, the process must eventually vield K3 since no other
granh of 3 nodes is biconnected (this is very similar to step u
3 of the algorithm given in (Valdes et al., 1979) for the

recognition of series parallel digraphs). Then, provided that

Fig. 5. The transformation of lemma 1.

we have saved enough information about the single inverse Proof: Observe first that a exists and that (u,a) is a
. - ’

operations, we may run the whole process in reverse and thereby back edge since G is biconnected. Let H be the graph resulting
(re-)construct G in the desired way. Since the latter step is
trivial using a stack, it will not be further discussed here,
except in an example. The problem which remains is to preserve
biconnectivity while E-l and N-I operations are employed to
disassemble G.

We establish the validity of the algorithm without refer-

ence to Whitney”s result, thus obtaining an independent proof

from the transformation of the lemma. It is easy to see that
there is a DFS of H that produces the same tree and assigns
the same DFS numbers as #. Hence we may refer to these without
ambiguity. We now use a well-known characterization of articu-
lation points in terms of DFS trees which may be found in e.g.
(Tarjan, 1972; Aho et al., 1974), where it is used in an
algorithm for finding the hiconnected components of a graph.

of the . & i T LAk
latter. We first nrove a number of lemmas, where each Define on the set of nodes a function LOW given by

lemma states that certain changes to a biconnected grapvh do
LOW(v) = min({DFSnumber(v)} u

{DFSnumber (w) Iwv is connected to a descendant of v})

not destroy biconnectivity.

Lemma 1: Consider a DF3 ¢ of a biconnected graph G with at
least 3 nodes. Let u be a leaf in the rooted tree associated
with ¢, and let a be the node adjacent to u of minimal DFS

Then a node v is an articulation point cxactly if one of the
following holds:

number. Then all back edges (u,v) except (u,a) may be removed 1) v is the root and has more than one son,

without destroving biconnectivity (see fig. 5). or
2) v is not the root and has a son s with

LOY(s) 2 DFSnumber(v) .

The final step of the nroof is to note that LOW(v) computed in
Il is exactlv the same as LOY(v) computed in G, for all nodes v.
lence, by the above characterization, H has no articulation

points.

Lemma 2: Let G be a biconnected graoh of at least 4 nodes,
ané u, v and w three nodes of 1 that form a clique (i.e.,
there is an edje between anv two of them). If u is of degree 2,
the edge (v,w) may be removed without destroving biconnectivity
(see fig. 6).

seoo,

Ao

Fig. 6. The transformation of lemma 2.

Proof: Let H be the graph G-{(v,w)}. It suffices to show
the existence of a cycle in H containing v and w. But there
must be a node z&€{u,w} connected to v, since otherwise w would
be an articulation point of G. On the other hand, v is not an
articulation point either, so there must be a simple path from
z to w which avoids v (and hence u) (see fig. 7). This path
completes the desired cycle.

Fig. 7. Illustration of the proof of lemma 2.

Lemma 3: Let G be a biconnected graph, and u, v and w three
nodes of G such that G contains the edges (u,v) and (u,w), but
not (v,w), and such that u nas degqree 2. Then the node u and
its incident edges (u,v) and (u,w) may be replaced by the edge
(v,w) without destroying biconnectivity (see fig. 8).

Fig. 8. The transformation of lemma 3.

Proof: There is a path in G from v to w that avoids u. But
then clearly the graph resulting from the change contains a
cycle passing through v and w.

le are now ready to describe a subroutine DeleteLeaf (u)
which is the work-horse of our algorithm. It assumes that we
have found a leaf u in the DFS tree of a graph which is either
the given graph G or an intermediate graph. Let f be the father
of u, and a the neighbouring node of minimal DFS number.
DeleteLeaf (u) now consists of three steps:

1) Remove all back edges (u,v) except (u,a).

These are E_l operations, and lemma 1 assures us that bicon-
nectivity is preserved. Now u is of degree 2.

2) If the edge (f,a) is present, remove it.

Again, an E'l operation. Biconnectivity of the resulting graph
is guaranteed by lemma 2.

Whether or not any action was taken in step 2, lemma 3 now
annlies. Hence we may

3) Replace the node u and its incident edges by the edge
(f,a).

This is an N ' omeration.

The net result of the call DeleteLeaf(u) is that some back
edges have been removed or inserted, and that u has been
deleted. Note that what is left of the oriqginal DFS tree is
a DFS tree of what remains of the graph. Hence we may continue
to call Deleteleaf at another leaf, etc. This may be elegantly
formulated as a depth-first search:

- 10 -

arocedure Eliminate(u:Node);

beagin
Recursively eliminate all sons of u;
(# u now is a leaf *)
DeleteLeaf (u);

end;

Fig. 9. High-level description of the algorithm.

The validity of the comment, which is crucial to correctness,
is easily proved by induction.

An example.

Let us apply the algorithm to the example graph below
(fig. 10).

Fig. 10. Example biconnected graph.

- 11 -

Assume that sons are visited in the order from left to riqght.
Then the first leaf to be discovered is node 5. £ and a are

in this case the nodes 4 and 1, respectively. There are three
back edqges incident on 5, so we remove two of them, (5,2) and
(5,3). Nodes 4 and 1 are not connected, so nothing happens in

step 2 of DeleteLeaf(5). Finally, node 5 and its incident edges

(5,4) and (5,1) are replaced by the edge (1,4).

The search now returns to node 4, which has become a leaf.
There is only one back edge incident on 4, s0 nothing is done
in step 1. Since 3 and 1 are connected, we remove the edge
(1,3) in step 2. In step 3, node 4 and its incident edges are
removed, and (1,3) (re-)inserted.

The search next returns to 3 and continues to 6, which is
leaf. (2,3) is removed, and 6 and its incident edges replaced
(2,3). What is left is the complete graph on nodes 1, 2 and 3.

The instructions output by the algorithm during the above
execution might be as in the left column below (fig. 11). The
right column shows the instructions read backwards and re-
interpreted as instructions to construct the graph from K3.

Remove edge (5,2)

a
by

Start with the complete graph

Remove edge (5,3) on nodes 1, 2 and 3.
Remove node S between nodes 1 and 4 Add new node 6 on edge (2,3)
Ramove edge (1,3) Add edge (2,3)
Remove node 4 between nodes 1 and 3 Add new node 4 on edge (1,3)
Remove edge (2,3) Add edge (1,3)
Remove node 6 between nodes 2 and 3 Add new node 5 on edge (1,4)
This leaves the complete graph Add edqe (5,3)

on nodes 1, 2 and 3. Add edge (5,2)

Fig. 11. Output of the algorithm on input as in fig. 10.

- 12 -

The stacks of descendants.

In order to obtain an algorithm which works in linear time
and space, one further complication has to be introduced. The
test in step 2 of DeletelLeaf must be carried out in constant
time. Whereas this is easy if the graph is represented by an
adjacency matrix, the latter data structure in general takes
up too much space, and we shall assume instead that the graph
is given as a set of adjacency lists. But then the obvious
algorithm for testing whether an edge is present takes more
than constant time. We solve the problem in the following way:

Each node in the graph has an associated stack of nodes
called the stack of descendants. While the search is at some
node u (the call Eliminate(u) is the last to have been
initiated and not yet completed), the stack of some other
node a is empty if u is not a descendant of a, and otherwise
contains exactly those nodes that 1) lie on the unique simple
tree path from a to u, and 2) are connected to a. The nodes
occur in the same order as on the path from a to u, with the
node closest to u immediately accessible. The stacks may easily
be maintained during the search: When the search proceeds to a
new node u, u is pushed on the relevant stacks which may be
found by following the upward back edges incident on u, and
when the search leaves u to return to u’s father, u is popped
from the same stacks.

The test "Are f and a connected?" in step 2 now simply
becomes "Is f at some fixed nosition (first or second, de-
pending on programming details) near the top of a’s stack of
descendants?". We are still unable to actuallv locate and
delete the edge (f,a) in constant time but fortunately, this
turns out not to be needed since (f,a) is inserted again in
step 3 anyway. See the complete algorithm below (fia. 12) for
details.

- 13 -

The complete algorithm.

Innut: A biconnected granh G.

Output: Instructions describing how G mav he disassembled
by E-l and N-‘ operations that preserve biconnectivity. Read
in reverse order and re-interpreted as in the example above,

the instructions specify a biconnected assembly of G.

Calling conventions: The procedure Disassemble (fig. 12)

should be called on two nodes as actual parameters, where the
first one will be taken as the root, and the second one is
ignored (generally, this parameter is the father of the first
parameter). Before the call, New[u] should have the value

true for all nodes u, and all stacks of descendants should

be empty. Count should be initialized to the value 1, and
NodesLeft to 1VI, the number of nodes in the graph. The latter
variable is used to detect when the graph has been reduced

to KJ'

nrocedure Disassemble(u,f:Node); (# f is the father of u =)
heqgin
New[uj:=false;
DFSnumber{ u}:=Count;
Count:=Count+1;
for all nodes v adjacent to u
do if not Wew[v)] (* v is an ancestor of u #)
then push u on v's stack of descendants;
for all nodes v adjacent to u
do if New[vV])
then Disassemble(v,u);
(# u"s adjacency list will grow during this process;
onlv nodes initially adjacent to u need be iterated over =)
for all nodes v adjacent to u
do if DFSnumber(v)<DFSnumber[u] (# v is an ancestor of u)
then pon (# u #) from v's stack of descendants; (# undo #*)
if NodesLeft>3 (# more to do *)
then
begin (# DeleteLeaf(u) =)
a:=lowest-numbered node adjacent to u:;
(# beginning of step 1 *)
for all nodes v adjacent to u
do if DFSnumber[a]<DFSnumber| v]<DF5number(f]
(# a back edge - but not (u,a) #)
then
hegin
Delete the edge (u,v):;
writeln('Remove edge ', (u,v));
end;
(# beginning of steps 2 and 3)
if f is on top of a°s stack of descendants
(# £f and a are connected #)
then writeln('Remove edge ',(f,a)) (# but don"t do it =)
else
begin
Insert the edge (f,a);
Push f on a’s stack of descendants;
end;
Delete the edges (u,f) and (u,a):
writeln('Remove node ',u,' between nodes ',f,' and ',a):;
(# end of steps 2 and 3 &)
NodesLeft:=NodesLeft-1;
end
else writeln(u,' is one of the 3 nodes left in the K, graph');
end; (# Disassemble #)

Fig. 12. Detailed descrintion of the algorithm.

- 15 -

Complexity analysis.

The space taken up by a node consists of some fixed-sized
fields, the adjacencyv list and the stack of descendants.
Although the adjacency list of a node u may grow during the
execution of the algorithm due to the edge insertions in step
3 of DeleteLeaf, its size will never double and so is still
O(degree(u)), where degree(u) means the original degree of u.
u’s stack of descendants certainly qrows no bigger than this
since all nodes in the stack are also adjacent to u (to take
advantage of this, the stacks are most conveniently implemented
as linked lists). Hence the total space requirements of node u
are ((degree(u)). Summing over all nodes gives a space com-
plexity of Q(IEI).

By the above, clearly the time spent visiting u is
Q@(degree(u)). Hence the total execution time is also Q(IEI).

Implementation considerations.

We first show that one may avoid explicitly storing the
stacks of descendants. The stack of node u never contains nodes
that are not also in u’s adjacency list. Hence the adjacency
list could answer the same queries as the stack if it happened
to always be ordered conveniently. But one may arrange for this
to happen. "Push v on u’s stack" then becomes "delete v from
wherever it occurs in u’s adjacency list, and re-insert it at
the front". "Pop a node from u’s stack" becomes "move the node
at the front of u’s adjacency list to the end of the list". By
inspecting the algorithm, one may check that wherever a push
is required, an available pointer allows it to be performed in
constant time (for pop, this is trivial).

- 16 -

Secondly, it has so far been tacitly assumed that the
adjacencv lists were doubly-linked and contained pointers
linking the occurrence of v in u’s adjacency list with the
occurrence of u in v’'s adjacency list, for each edqge (u,Vv).
In fact, one may make do with singly-linked adjacency lists
and no such cross references. The reason is that although the
algorithm "claims" to delete various edges, it isn’t ever
necessary to actually delete an edge. If an edge, supposed to
have been deleted, is later again inspected, the workings of
the algorithm are such that no action is taken. The linear
time and space bounds still hold with this change.

Finally, it is possible to combine the two modifications
above. In this situation, the deletion which was part of the
implementation of push above is no longer feasible and is just
ignored. Hence the re-insertion part of pop should also be
ignored. One is in effect using an initial segment of the
adjacency list as the stack of descendants, and a node may
occur here as well as later in the adjacency list. Again, one
may show that the change is harmless, as far as correctness is
concerned. Furthermore, the adjacency lists grow to at most
twice their length in the original implementation, and the
algorithm still runs in linear time and space.

A modified algorithm using multi-graphs.

If it is acceptable to have graphs with multiple edges
(more than one edge between some pair of nodes) occur as inter-
mediate graphs, the stacks of descendants are no longer needed
and a simpler solution is possible. To accommodate this case,
step 2 of DeleteLeaf should be removed, and in step 3 the edge
(£,a) should be inserted even if one or more edges (f,a) are
already present. In step 1, if there are several edges (u,a),
all but one should be removed together with the other back
edges. Finally, when there are only 3 nodes left, the algorithm
should continue to remove edges until K3 is reached.

- 17 -

3. RECOGNITION OF DFS TREES

In the examnles below (fig. 13) of two spanning trees
(heavilvy drawn lines) of the same graph G, the first tree
is associated with a deoth-first search of G, e.qg. one that
discovers the nodes in the order 1-2-3-4, whereas the second
one is not. To see this, note that in a rooted DFS tree, there
can be no edges between brothers (sons of the same father).

2 3 2 3

Fig. 13. Two spanning trees of the same graph.

We present an algorithm that takes as input an unrooted
spanning tree T of a connected graph G and computes the set

of possible DFS roots, i.e. the set of nodes from which it is
possible to start a DFS of G whose associated tree is identical
to T. In particular, if this set is empty, T is not a DFS tree
of G.

The first sten towards a solution is the simple observation
(Tarijan, 1972, theorem 1) that a spanning tree T is a DFS tree
if and only if there are no cross edges with respect to T.

Ye already used a special case of this above. Note carefully,
however, that the notion of a cross edge makes sense for a
rooted tree only, whereas the given tree is not rooted. Once a
root has somehow been decided upon (i.e., a candidate initial
node for the DFS has been chosen), one may use the above
criterion to test whether there is a DFS starting at that node
which is associated with the given tree. We do this by means
of a tree search, a search of the graph which is like a DFS
except that only tree edges are explored in order to find new
nodes (thus the search is forced to follow the given spanning

- 18 -

tree). Ye say that a tree search discovers the nodes in

preorder and accordingly speak of nreorder numbers rather than

DF3 numbers. The number of cross edges may be determined in
linear time hy a tree search which considers each edge in turn
and works directly from the definition: A cross edge is one
that does not connect an ancestor and a descendant. During a
tree search starting at the chosen root, one mav easily arrange
to have a field Ancestor associated with each node indicate
vhether the node is an ancestor of the node currently being
visited, in a sense by simulating the run-time stack associated
withh the recursive procedure calls. Thus upward back edges may
be detected, and if the algorithm is made to ignore non-tree
edqges leading to nodes having a higher preorder number than

the node currently being visited, each non-tree edge is
considered exactly once and may at that point be classified as
a hack edge or as a cross edge. The details are given below
(fig. 14).

Calling conventions: Fields PreNumber and FatherLink are
assumed to indicate for each node its preorder number and the
edge connecting it to its father, respectivelv. For each edge
e, a hoolean field TreeEdge[e) specifies whether e is part of
the aiven spanning tree. All fields Ancestor must be initialized
to the value false, and CrossCount to O. Then after a call
CountCross®tdges (u), where u is the chosen root, CrossCount

will contain the number of cross edges.

procedure CountCrossEdges(u:Node) ;
beqgin
Ancestor[u]:=true;
for all edges e=(u,v) incident on u
do if e*FatherLink[u] (# v is not the father of u #)
then
if TreeEdgel[e]
then CountCrossEdges(v)
else
if (PreNumber[v]<PreNumber(u]) and not Ancestor(v]
then CrossCount:=CrossCount+1;
Ancestor[u]:=false;
end;

Fig. 14. Algorithm to count cross edges.

- 19 -

Definition: For each node u, let Tu be the given spanning
tree, but rooted at u, and let C(u) be the number of cross

edges with respect to Tu.

The algorithm CountCrossEdges described above computes C(u)
for a given node u in time O(I1E!). llence the set {urC(u)=0},
which is the desired final answer, mav be computed in time
O(IVIIEI) (here VI is the number of nodes) by repeated
anplication of CountCrossEdqes on all possible roots. Being
more clever, we can reduce this to O(IEI).
The first idea is to consider, for each tree edge e=(u,v),

the quantity

ple] = ¥(C(v)-C(u))
which indicates bv how much the value of C changes when the
root is moved a small distance in the graph. Since e is
undirected, we must find a consistent way of defining the sign
of D[e]. Consider for this purpose an arbitrary, but henceforth
fixed, root Root and the associated rooted tree TRoot‘ In

T , u is the father of v, or vice versa.
Root

pefinition: For each treec edge e=(u,v), where u is the

father of v in TRoo let

t'
Dle] = C(v)-C(u) .
Each tree edge e=(u,v), where u is the father of v in TRoot'
may be considered as follows to partition the nodes of G into
two groups: The removal of e splits the given spanning tree
into two connected components. Let V‘ be the set of nodes
connected to u in T-{e}, and let V2 be the set of remaining
nodes. See fig. 15.

Fig. 15. Node partition relative to a tree edge.

- 20 -

Now consider a (non-tree) edqge e =(x,vy), where xEVl\(u) and
yevz\(v). e’ is a cross edqe relative to T, as well as relative
to Tv. Hence we may say that e’ cancels out and contributes O
to D[e]. Likewise, an edqe (x,v), where either (x,y)ggv] or
(x,y)ggvz, is a cross edge relative to Tu iff it is a cross
edge relative to Tv, and also contributes O to D[e].

An edge (u,y), where yev \{v}, is a cross edge relative to
T,, but not relative to Tu._It hence contributes +1 to Dle].
Similarly, an edge (x,v), where xEVl\(u), contributes -1 to
Dle]. This exhausts the possible cases, and we may thus state
that

Dle] = #((u,y)lyevz\(v}) - #{(x,v) Ix€V \{u}} .

Given a tree edge e=(u,v), it is not clear how to compute D[e]
reasonably fast. Even though membership in VI and V2 via some
nreprocessing may be decided in constant time, it still seems
necessary to step through the entire adjacency lists of u and
v, which is too expensive for a linear-time algorithm. The
second idea is to compute the values of D for all tree edges
simultaneously.

Consider a non-tree edge e”=(x,y) and the unique simple
tree path p from x to y. It follows from the preceding
discussion that e contributes 1 to the D values of precisely
two tree edges, namelv the first and the last edge on p (whose
length is at lecast 2) (figq. 16).

Fig. 16. A non-tree edge and the corresponding tree path.

As for the sign to choose, consider the close-up in fig. 17.
By definition, e” contributes +1 to Dle] if u is the father of

v in T and -1 otherwise.

Root’

-21 -

Fig. 17. A non-tree edqe and part of the tree path.

The algorithm successively considers all non-tree edqges and
accumulates their contributions to D values in counters
associated with the tree edges. 'When all edges have been
considered, the D value of each tree edqge mav be read off its
counter.

For a non-tree edge (x,y), there are two possibilities
(fig. 18 below):

BACK EDGE CROSS EDGE

FatherLink[x)

Fig. 18. The two possible cases for a non-tree edge (x,y).

1) (x,y) is a back edge in T with, say, v an ancestor

Root
of x. Then the tree path from x to v is the obvious one, always

- 22 -

going from son to father. The edge connecting x to its father
(FatherLink[x]) receives a contribution of -1, and the edge
connecting y to its son in the direction of x (the son which

is an ancestor of x) receives a contribution of +1.

2) (x,y) is a cross edje in T Then the tree nath

Root*
between x and y qgoes upward from each of x and y until it

reaches their lowest common ancestor. In any case, FatherLink{x]

and FatherLink{y! both receive a contribution of -1.

We have already secen how to distinguish between back edges
and cross edqes during a tree search. The only nroblem which
still has to be considered is how to find the edge linking y
to its son in the direction of x in 1) above. But this is
easily solved by associating with each node a dvnamically
chanaing field SonLink which gives the edge to the son whose
tree of descendants is currently being searched. Details in
the algorithm below (fig. 19), which assumes the following

Calling conventions: All Ancestor fields should have the
value false, and all D fields the value O initially. The
outermost call should be Compute_D_values (Root).

procedure Compute_D_values(x:Node);
begin -
Ancestor[x]:=true;
for all edges e=(x,y) incident on x
do if e#FatherLink[x]) (# y is not the father of x #)
then
if TreeEdge[e]
then
begin
SonLink[x]:=e;
Compute_D_values(y);
end
else
if Preumber[y]<PreNumber(x]
then
begin
D[FatherLink[x]] :=D[FatherLink{ x]]-1;
if Ancestor[y] (# an upward back edge #)
then D[SonLink[y]]:=D[SonLink[y]]+1
else D[FatherLink[y]]):=D[FatherLink[vy]]-1;
end;
Ancestor{ x):=false;
end;

rig. 19. Algorithm to compute all D values.

- 23 -

An example.

In the example below (fiqg. 20), the algorithm
Compute D_values has been run with Root=1. For each tree edge
e is indicated the final value of D[e] as well as intermediate
values (overbarred) incurred during the computation. JVhere no
number is given, the value stayed O throughout.

Fig. 20. D values computed in an example qrapi.

For instance, the first two non-tree edges that cause
an update of D values are the cross edge (5,3), which makes
bl (2,3)1=D[(4,5)]=-1, and the back edge (5,2), after the
nrocessing of which D[(2,4)]=+1 and D[(4,5)]=-2.

A final easy step is to use the values of D for each tree
edge and the value of C(Root) (computed by CountCrossEdges)
to find C(u) for all remaining nodes u. This is another tree
search by the algorithm helow (fig. 21), where the outermost
call should be Report(Root,C(Poot)).

- 24 -

ACKNOWLEDGEMENTS
orocedure Report(u:Node; Cu:inteqer); (# Cu=C(u) =)

beganu=o The author wishes to thank Pierre Rosenstiehl and Kurt
then writeln(u,' is a nossible root');
égriélérzgggseﬁzguézé %Ziéiigérgﬁn;(u;, graph assembly problem, and his colleagues in Saarbriicken for
then Report(v,Cu+Dle] (# C(v) *));

Mehlhorn for having brought up a variant of the biconnected

inspiring discussions.
end;

Fig. 21. Algorithm to report all nodes u with C(u)=0.

REFERENCES

Conti ig. = i .
SORELRUENG (EhS: exanple ARave (Eige 204p CA11SS G5 Gvident Lrom Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974), "The

Design and Analysis of Computer Algorithms", Addison-Wesley,
Reading, Mass.

the fiqgure, and we find the followinag C values:

e = e =)= el =2 Even, S. (1979), "Graph Algorithms", Pitman, London.
C(3) = C(7) =1
C(5) =0 Harary, F. (1969), "Graph Theory", Addison-Wesley, Reading,

Mass.
Fig. 22. C values for the example graph in fig. 20.

Tarjan, R. E. (1972), Depth-First Search and Linear Graph

Algorithms, SIAM J. Comput. 1:2, 146-160.
Hence there is precisely one node, 5, which is the root of a

j . L. (1979), The
tree with no cross edges and which mav therefore be the initial valdes, J., Tarjan, R. E., and Lawler, E. L. (o). r1en
roc.
node of a depth-first search associated with the qiven tree. Recognition of Series Parallel Digraphs, tn 1-12
Using results in (Tarjan, 1972), it is now easy to actually Ann. ACM Symposium on Theory of Conpusing e)

find such a DFS. Whitney, H. (1932), Non-separable and planar graphs, Trans.

Amer. Math. Soc. 34, 339-362.
It is clear that all steps of the described algorithm work

in linear time and space. In a more practical programming
setting, the calculation of C(Root) and the computation of D
values may be combined into a single tree search.

- 25 - - 26 -

	fb1985-03_0001
	fb1985-03_0002
	fr1985-03_0003
	fr1985-03_0004
	fr1985-03_0005
	fr1985-03_0006
	fr1985-03_0007
	fr1985-03_0008
	fr1985-03_0009
	fr1985-03_0010
	fr1985-03_0011
	fr1985-03_0012
	fr1985-03_0013
	fr1985-03_0014

