Maintaining the minimal
distance of a point set
in less than linear time -

Michiel Smid
A 06/90

FB Informatik, Universitat des Saarlandes, D-6600 Saarbricken, West-Germany

* This work was supported by the ESPRIT II Basic Research Actions Program, under
contract No. 3075 (project ALCOM).



Maintaining the minimal distance of a point set
in less than linear time*

Michiel Smid
Fachbereich Informatik
Universitat des Saarlandes
D-6600 Saarbrucken
West-Germany

April 12, 1990

Abstract

Consider a set of n points in d-dimensional space. It is shown that the
ordered sequence of O(nz/ 3) smallest distances defined by these points can be
computed in optimal O(nlog n) time and O(n) space. Here, distances are measu-
red in an arbitrary L;-metric, where 1 < t < co. This result is used to give a
dynamic data structure of linear size, that maintains the minimal distance of
the n points in O(n?/3logn) time per update.

1 Introduction

One of the fundamental type of problems in computational geometry are proximity
problems, where we are given a set of e.g. points and we want to compute the minimal
distance among these points, or we want for each point its nearest neighbor, etc. Such
problems have been studied extensively, and many results are known. The earliest
results were only concerned with planar point sets. For example, it is well-known
that the minimal euclidean distance between n points in the plane can be found
in O(nlogn) time, and this is optimal. Also, a euclidean nearest neighbor can be
computed for each point of a set of n planar points, in optimal O(n log n) time. These
results have been extended to optimal O(nlogn) algorithms for both problems in
arbitrary, but fixed, dimension, using an arbitrary L,-metric. (See Preparata and
Shamos (7], Vaidya [9].)

The L,~-metric is defined for ¢ such that 1 < ¢ < oco. In this metric, the distance
d:(p, q) between two d-dimensional points p = (py,...,ps) and ¢ = (q1,-.-,9q4) is

*This work was supported by the ESPRIT II Basic Research Actions Program, under contract
No. 3075 (project ALCOM).



defined by

d 1/t
di(p,q) == <Z|Pi — Qalt) ;
i=1
if 1 <t < oo, and for t = oo, it is defined by

doo (P, g) := max |p: — ¢l-

Important examples are the L;-metric, also known as the Manhattan-metric, the
L,-metric, which is the “usual” euclidean metric, and the L.,-metric, which is also
known as the maximum-norm.

In this paper, we consider the problem of maintaining the minimal distance when
points are inserted and deleted. Dobkin and Suri 2] considered the case when the
updates are semi-online. A sequence of updates is called semi-online, when the
insertions arrive on-line, but with each inserted point we get an integer ! indicating
that the inserted point will be deleted ! updates after the moment of insertion. They
showed that in the plane, such updates can be performed at an amortized cost of
O((logn)?) time per semi-online update. This result was made worst-case by the
author in [8].

For arbitrary updates on the minimal euclidean distance of a set of planar points,
however, the best result known today is by Overmars [5,6], who gives an O(n) time
update algorithm. His method uses O(nloglogn) space. Aggarwal, Guibas, Saxe
and Shor [1] showed that in a 2-dimensional Voronoi diagram, points can be inserted
and deleted in O(n) time. This also leads to an update time of O(n) for the minimal
distance, using only O(n) space.

In this paper, we give an algorithm that computes the O(nz/ 3) smallest distances
defined by a set of n points in d-dimensional space. Using this result, we give a
dynamic data structure of O(n) size, that maintains the minimal distance of a set of
n points in d-space at the cost O(n?*/®logn) time per update. The algorithm works
for an arbitrary L,-metric, where 1 < ¢ < oo.

This is the first data structure that can handle arbitrary updates in sublinear
time. In fact, for dimensions d > 4, the update time is even better than the pre-
viously best result for semi-online updates. This best result was an update time of
O(n'~P)(log n)?), where B(d) = 1/(d(d + 3) + 4). See [2].

The rest of this paper is organized as follows. In Section 2, we give an algorithm
that computes the k smallest distances defined by a set of n points in d-space. For
k < n, the algorithm is improved, resulting in an algorithm that computes the
ordered sequence of O(n?*3) distances in O(nlogn) time. This result is used in
Section 3 to give the dynamic data structure that maintains the minimal distance.
We finish the paper in Section 4 with some concluding remarks.

2 Computing the k£ smallest distances

Let V be a set of n points in d-dimensional space, where d > 2. We consider an L,-
metric, where ¢ is fixed and satisfies 1 <t < oco. The points of V define ('2‘) distances,

2



n

one distance for each pair of points. Given an integer k, 1 < k < (2), we want to
compute the k smallest distances, sorted in increasing order. More precisely, we want
a sequence §; < §; < ... < §, of distances, such that the other (';)
are at least §,. (If distances occur more than once, this is a more precise description
of the problem.) If we speak about the k-th distance, we mean a distance § such
that there are k — 1 distances that are at most equal to § and ('2') — k distances that
are at least equal to 6.

For k = 1, this problem can be solved in O(n log n) time, and this is optimal. See
e.g. [7,9]. For k > 1, nothing seems to be known, except for the trivial O(n?+k log k)
time algorithm.

Before we give an algorithm for this problem, we prove a lemma. A d-cube
having side-lengths § is the d-dimensional hyper-cube that is defined by the product

of intervals [z; : 1 + 8] X ... X [zq : z4 + 8], for some real numbers z;,...,z,.

— k distances all

Lemma 1 Let V be a set of n points tn d-dimensional space, and let §; be the k-th
smallest distance in the L;,-metric. Then any d-cube having side-lengths 6, contains
at most 2(d + 1)? Vk points of V.

Proof: Let | = 1/(d + 1). Consider a d-cube C having side-lengths [ §;. If we put
d + 1 copies of C next to each other, we get a d-dimensional hyper-rectangle having
one of its side-lengths equal to (d + 1)l §; = 6, and the other side-lengths equal to
1 é,. Repeating this, we see that we can cover a d-cube having side-lengths §, by
(d + 1)? copies of C.

Note that the d-cube C has an L;-diameter equal to dlé§, < é,. That is, each
pair of points p and ¢ that are contained in C, or are on the boundary of C, have
an L,-distance less than §,. Since the L,-distance is at most the L;-distance, i.e.,
di(p, q) < di(p, q), cube C also has L,-diameter less than &.

Now assume that a d-cube having side-lengths &, contains more than 2(d+ 1)k
points of V. Cover this d-cube by (d + 1)¢ copies of C. Then one of these copies
contains more than 2v/k points of V. These points define more than

( [2\2/5] ) 2-;-2\/13(%/1?—1) > k

distances. Since these points are contained in a d-cube having an L,-diameter which
is less than 6, these distances are all smaller than é,. So we have at least k distances
that are smaller than §,. This is a contradiction, because §, is the k-th smallest
distance. O

The upper bound in this lemma is tight up to a constant factor: Take [2\/131

points “close” to each other, and the remaining n — [2\/1;] points “far” away, all at
“large” distances from each other.

We need a data structure for the orthogonal range searching problem. In this
problem, we are given a set V of points in d-space. A query consists of an axis-
parallel hyper-rectangle [z : 1] X ... X |24 : y4], and we have to report all points



of V that lie in this rectangle, i.e., all points p = (p;,...,ps4) in V that satisfy
21 <p1<Y1y.-y%d S Pd < Ya

In Mehlhorn [4], range trees with a slack parameter are introduced, that solve
the orthogonal range searching problem. We recall his result:

Theorem 1 Let V be a set of n points in d-space, and let 0 < ¢ < 1 be a real
number. A range tree with slack parameter [elogn], that stores the set V

1. has size O(n),

2. can be built in O(nlogn) time,

3. has a query time ofO(n‘(d‘l) logn+A), if A ts the number of reported answers,
4. has an amortized update time of O((logn)?).

We use a range tree with slack parameter to compute smallest distances in a
point set. We take e = 1/(3(d — 1)), giving a data structure for the orthogonal range
searching problem having a query time of O(nl/ 3logn + A).

We fix 1 < t < oo, and we denote by §(p,q) the distance between p and ¢
in the L,-metric. Let V be a set of n points in d-space, and let k¥ be an integer,
1<k< (’2‘) The algorithm for computing the k smallest distances uses the following
data structures:

1. There is a d-dimensional range tree with slack parameter—called the R-tree—
that will contain all points of V', that we have considered so far.

2. There is a balanced binary search tree—called the D-tree—that will contain
the k smallest distances found so far, in increasing order.

During the algorithm, we maintain the following invariant:

Invariant: Let V = {X,,...,X,}. There is an integer ¢, such that [2\/I; ] <
t < n. The D-tree contains the k smallest distances that are defined by the points
X1,...,X;. 8 is the maximal value stored in the D-tree. All points X;,...,X; are
stored in the R-tree.

Initialization: We set the value of i to [2\/l;.|, and we build an R-tree for the
points X,,...,X;. We compute all distances between these i points. This gives us at
least k distances. The k smallest ones are stored in the D-tree, in increasing order.
If distances occur more than once, we store some arbitrary k smallest ones. (Note
that in a binary search tree, values can be stored more than once, without causing
problems in the search and update algorithms, or in the logarithmic time bounds of
these algorithms.) Finally, we set §; := the maximal value stored in the D-tree.

The algorithm: For : = ‘-2\/1:-] ,-..,n— 1, we do the following:



1. Let p := X;41, p = (p1,-.-,pa)- Do a range query in the R-tree, with query-
cube [p; — 8 : p1+ 8k) X ... X [pa — 8k : pa + &k). For each reported point ¢
for which é(p,q) < 6k, do the following: Insert §(p, q) in the D-tree; delete &
from the D-tree; set §, to the new maximal value that is stored in the D-tree.

2. Insert point p in the R-tree, and increase i by one.

Theorem 2 The algorithm, as described above, computes the ordered sequence of k
smallest L;-distances, defined by a set of n points in d-dimensional space, in

O(n*®logn + nvklog k)
time and uses O(n + k) space.

Proof: It is clear that after the initialization, the D-tree contains the k smallest
distances that are defined by the first 7 points of V. In each iteration of the algorithm,
we have to update the D-tree. All new distances that have to be inserted in the D-
tree, are caused by point p = X;;; and by points that lie in an L,-ball around p with
radius 6. These points surely lie in a d-cube centered at p, having side-lengths 26;.
(Note that this d-cube is an Ly-ball with radius 26,.) It follows that all new L,-
distances that are less than the current value of ., are correctly inserted in the
D-tree. For each inserted distance, another distance is deleted. Hence, the number
of distances stored in the D-tree remains equal to k. At the end of the algorithm,
the k smallest distances are stored in the D-tree, in sorted order. This proves the
correctness of the algorithm.

The R-tree contains at most n points. Hence, by Theorem 1, this structure has
size O(n). Since the D-tree stores k distances, its size is bounded by O(k). Therefore,
the algorithm uses O(n + k) space.

The time needed to compute all distances between the first [2‘/1;1 points of V is
bounded by O(k). Selecting the k smallest distances, and storing them in the D-tree
takes O(k log k) time. Finally, it takes O(v/k log k) time to build the R-tree. Hence,
the initialization of the algorithm takes O(k log k) time.

Now consider the rest of the algorithm. With each iteration, we do a range query
in the R-tree, which stores at most n points. The query-rectangle is a d-cube having
side-lengths 26, where §, is the k-th smallest distance in the set of points that
are stored in the R-tree. By Lemma 1, at most O(vk) points of the R-tree lie in
this rectangle. Hence, the query gives O(\/E) answers, and—by Theorem 1—these
answers are computed in O(n'/3logn + v/k) time. For each answer, we spend an
amount of O(log k) time to update the D-tree. Finally, it takes O((logn)?) time to
update the R-tree. Therefore, in each iteration, we spend O(n'/3logn + vk logk +
(logn)?) time. For all iterations together, this takes O(n*/®logn + nv/k log k) time.

It follows that the entire algorithm spends an amount of time that is bounded by

O(klogk + n**logn + nvklog k) = O(n*3logn + nvklogk),

because k < n2. This proves the theorem. O



Remark: In the 2-dimensional case, the time bound can be improved to O(n log n +
nvk log k), by generalizing the sweep-line algorithm of Hinrichs, Nievergelt and
Schorn [3]. This gives a much better result if k& is small. We do not give this
sweep-line algorithm here, because we now give an improved algorithm that runs
even faster for small k.

Let V be a set of n points in d-space, and let k£ be an integer such that 1 < k < n.
In the k smallest distances, at most 2k points are involved. In the next algorithm, we
first discard at least n — 2k points, from which we know that they do not contribute
to the k smallest distances.

An improved algorithm: First, we compute for each point in V its nearest
neighbor, using the algorithm of Vaidya [9]. (If d = 2, we can use the algorithm
given in [7].) This gives n pairs of points and n distances. We select the k smallest
of these n distances. This gives a set of k pairs of points, and hence a set V' of at
most 2k points. Then we compute the k smallest distances in this set V', using our
first algorithm.

Theorem 3 Let 1 < k <n. The tmproved algorsthm correctly computes the ordered
sequence of k smallest L,-distances in the set V, in

O(nlogn + kvklog k)

time and O(n) space.

Proof: To prove the correctness of the algorithm, we only have to prove that the
k smallest distances in the set V' are equal to those in the set V. Let §;, be the
k-th smallest distance in the n distances that we get from Vaidya’s algorithm. Then
the k smallest distances in the set V are at most equal to §,. Let ¢ be a point
in V '\ V'. Since the distance of ¢ to all other points of V is at least §},, point ¢
does not contribute to the k smallest distances in the set V. (This argument is also
correct if distances occur more than once.) This proves that the algorithm is correct.

It takes O(nlogn) time to compute for each point in the set V its nearest neigh-
bor. (See [9], or [7] for the case d = 2.) Next, the time needed to select all points
that will be put in the set V', and to remove duplicates, is bounded by O(k log k).
(Note that a point can be put several times in V'. Therefore, we really have to re-
move duplicates.) We are left with a set of at most 2k points, for which we compute
the k smallest distances. By Theorem 2, this takes O(kﬁlog k) time. Hence, the
runtime of the algorithm is bounded by

O(nlogn + klogk + kvklog k) = O(nlogn + kvk log k).

The space bound follows from Theorem 2, and from the fact that Vaidya’s algorithm
uses O(n) space. O

It is well-known that it takes {3(n log n) time to compute the minimal distance in
a set of n points. (See e.g. [7].) Clearly, this lower bound extends to an (2(k+n log n)

6



lower bound for computing the ordered sequence of k smallest distances. Therefore,
Theorem 3 implies:

Corollary 1 Given a set of n points in d-space, the ordered sequence of O(n?/3)
smallest distances can be computed in O(nlogn) time and O(n) space, and this ts
optimal.

3 Maintaining the minimal distance

The algorithm to be presented now is an extension of the algorithm of the previous
section. The idea is as follows. We start with the ordered sequence of k smallest
distances, where k = n?3. In each update, we have to update this sequence. By
Lemma 1, each point in our point set “occurs” at most O(\/—l;) times in this se-
quence. Therefore, in a deletion, at most O(v/k) distances have to be removed in
this sequence. It follows that in this way we can perform ﬂ(\/IE) updates until all
candidates for being the minimal distance have been removed. If this happens, we
start over the algorithm.

Let V be a set of N points in d-space. We fix 1 < ¢t < oo. All distances are
measured in the L;-metric. The distance between p and g is denoted by §(p, q). Let
k = | N%3|. The data structure consists of the following:

1. There is a balanced binary search tree—called the D-tree—in which we store
the | smallest distances defined by the current set V, in sorted order. Here, [
is an integer, such that 1 <1 < k. (As before, some distances may occur more
than once in the D-tree.)

2. There is a value § resp. D, that stores the current minimal resp. maximal
distance that is stored in the D-tree.

3. All points that are currently present are stored in a d-dimensional range tree
with slack parameter, called the R-tree. We take the slack parameter equal to

(logn)/(3(d — 1)).

The integer [ in 1. is only needed for reference in the proofs of the correctness and
the runtime of the algorithm.

Initialization: The D-tree is built using the improved algorithm of Section 2.
The value of [ is set to k. The value § resp. D is set to the minimal resp. maximal
value that is stored in the D-tree. The R-tree is built using the algorithm given
in [4].

The insert algorithm: To insert a point p = (py,...,ps), we do the following:

1. In the R-tree, we do a range query with query-cube [py — D : p; + D] x ... X
[pa — D : pa+ D]. For each reported answer g, such that §(p,q) < D, we insert



4(p, q) in the D-tree; we delete D from the D-tree; and we set D to the new
maximal value that is stored in the D-tree.

2. We set § to the minimal value that is stored in the D-tree.

3. Finally, we insert p in the R-tree.

Note that no problems arise when distances occur more than once in the D-tree.

The delete algorithm: To delete a point p = (p,...,pa), we do the following:

1. In the R-tree, we do a range query with query-cube [py — D : p; + D] x ... x
[pa — D : pa+ D). For each reported answer g, such that §(p,q) < D, we delete
§(p, q) from the D-tree; we decrease ! by one; and we set D to the new maximal
value that is stored in the D-tree.

2. We set § to the minimal value that is stored in the D-tree.

3. Finally, we delete p from the R-tree.

If a distance §(p,q) = D is deleted, it might be possible that this distance “does
not occur” in the D-tree, i.e., although the distance is stored in the D-tree, it is
stored there because another pair of points are already at distance D, and D is
stored because of this pair of points, not because of the pair p and ¢q. This does not,
however, give any problems.

Rebuilding: If after an operation, the D-tree gets empty, or after |[N'/3| up-
dates, we start over again. That is, we set k = | M?/3], where M is the number of
points that are present at that moment, and we build the structures anew. Then we
proceed performing updates as above.

Lemma 2 At any moment, the D-tree stores the | minimal distances of the current
set of points. Here, | satisfies1 <1<k = |_N2/3J. Also, at any moment, the variable
d contains the minimal distance of the current set of points.

Proof: It is clear that after the initialization, the D-tree contains the = k = | N%/3|
smallest distances, and that é is equal to the minimal distance of the points.

If a point p is inserted, new distances are introduced. All distances that have
to be inserted in the D-tree are caused by p and by points that lie in an L,-ball
centered at p with radius D. These points lie in a d-cube centered at p, having
side-lengths 2D. It follows that all new distances that are less than the current
value of D, are correctly inserted in the D-tree. For each inserted distance, another
distance is deleted. Hence, the number of distances stored in the D-tree—i.e., the
value of [—does not change with an insertion.

Similarly, when a point p is deleted, we delete all distances that are caused by p
and that are at most equal to the current value of D. For each deleted distance,
we decrease | by one. In this case, the D-tree will store less distances than before
the deletion. All distances that are stored, however, are the I smallest ones in the
current set of points. [



Lemma 3 If the data structure is rebuilt, ©(N'/3) updates have been performed.

Proof: If after | N'/3| updates, the D-tree is still not empty, we rebuild the data
structure. Hence, after O(N'/3) updates, a rebuilding is done.

At any moment, the D-tree contains the smallest ! distances, for some [ satisfying
1 <1< k=|N%*3. By Lemma 1, each d-cube having side-lengths 2D—where D is
the I-th distance in the current set of points—contains at most O(v1) = O(Vk) =
O(N*/3) points. When a point is inserted, the number of distances that are stored in
the D-tree does not change. When a point is deleted, O(N'/3) distances are deleted.
Since initially, there are |N?/3| distances stored in the D-tree, it takes Q(N'/3)
updates before this tree becomes empty, i.e., before the data structure is rebuilt. [J

Theorem 4 There exists a data structure that masntasns the minimal L-distance
of a set of n points in d-space, at the cost of O(n*/®logn) amortized time per update.
The data structure has size O(n) and can be built in O(nlogn) time.

Proof: The bounds on the building time and the size of the data structure follow
from Corollary 1 and Theorem 1. Consider an update such that the data structure is
not rebuilt. Since the number of answers to the range query is bounded by O(N'/3),
such a query takes O(n'/3log n+ N'/3) time, if n is the current number of points. (See
Theorem 1.) For each answer, we spend an amount of O(log k) = O(log N) time in
the D-tree. Finally, it takes O((log n)?) amortized time to update the R-tree. Hence,
if the structure is not rebuilt we spend amortized

O(n'*logn + N'/*log N)

time in an update. By Lemma 3, it takes O(N 1/"‘) updates, before we rebuild the
structure. Therefore, the current number of points—n—is always ©(N). Hence, in
case no rebuilding is done, an update takes amortized O(nl/ 3logn) time.

The structure is rebuilt once every ©(n!/3) updates, and this takes O(nlogn)
time. It follows that the amortized update time is bounded by

]
O('nl/3 log n) +0 (%) = O('n,z/3 log n)

This proves the theorem. O

The amortized complexity of Theorem 4 can be made worst-case. Then we need
a worst-case version of Theorem 1. More precisely, we need a structure having the
complexity of Theorem 1, except that now a sequence of O(nl/ %) updates can be
performed at the cost of O(nz/ 3logn) time per update in the worst case. (Note that
the amortized update time in Theorem 1—which is O((logn)?)—may increase to
O(n*3logn), without increasing the overall complexity of the algorithm for main-
taining the minimal distance.) This structure can easily be obtained as follows.

We start with a perfectly balanced range tree with slack parameter, storing the
N points that are present at that moment. This structure consists of a binary tree,



some nodes of which have a pointer to another binary tree, some nodes of which
have a pointer to another binary tree, etc. Deletions are performed in this range
tree, without rebalancing. Since initially all binary trees that occur in this data
structure have heights O(log N), and since we perform only O(N'/3) deletions in
this structure, the heights of these binary trees is always bounded by O(logn), if
n is the current number of points. Therefore, the query time of this range tree
remains within the bound of Theorem 1. Furthermore, the worst-case deletion time
is bounded by O((logn)?). Besides this range tree, we maintain a (one-dimensional)
balanced binary search tree T', in which the inserted points are stored. Hence, T
contains O(N'/3) points. Clearly, this tree can be maintained in O(logn) time. (If
a point p is to be deleted, we first check whether p occurs in T'. If it does, we delete
it. Otherwise, p is stored in the range tree, and we delete it, without rebalancing.)

A range query is performed as follows. We first query the range tree using its
query algorithm. This gives a list /; of answers. Then we walk through the binary
tree T, and we just check for each of the O(N'/3) = O(n'/®) points whether it lies
in the query rectangle. If it does, we store it in a list [;. The answers to the entire
query are formed by the union of the two lists of answers obtained. Note that each
answer is reported exactly once. This query algorithm runs in

O(n'2logn + |l]) + O(n/3) = O(n'/®logn + A)

time, if A is the total number of reported answers. Hence, the query time is the
same as in Theorem 1.

It follows that we have a data structure having the same complexity as that of
Theorem 1, except that a sequence of O(nl/ %) updates can be performed at the cost
of O((logn)?) time in the worst case. (Note that the update time is much smaller
than the admissible O(n*?logn) bound.)

Using this structure, the time bound of Theorem 4 can be made worst-case by
applying techniques that are similar to techniques that are given in [6,8]. We leave
the details to the reader.

Theorem 5 There exists a data structure that maintains the mintmal L;-distance
of a set of n points in d-space, at the cost of O(n?/3logn) time per update, in the
worst case. The data structure has size O(n) and can be built in O(nlogn) time.

Remark: The data structure presented here can also be used to maintain the k
smallest distances, for some k that is bounded by O(n?/3): Just start with the 2k
smallest distances. If the D-tree stores k distances, start over again. The complexity
bounds are the same.

4 Concluding remarks

We have presented an algorithm that computes the ordered sequence of O(nz/ %)
smallest distances in a set of n points in optimal O(nlogn) time. This algorithm

10



was used to obtain a dynamic data structure that maintains the minimal distance in
a set of n points, at the cost of O(nz/ 3log n) time per update in the worst case. This
is the first algorithm that maintains the minimal distance in sublinear time when
arbitrary updates are carried out. In higher dimensions, it is even faster than the
best result for—the less general—semi-online updates given in [2].

The update time can be improved if it is possible to compute more smallest
distances in O(n logn) time. Suppose we are able to compute the k smallest distances
in O(nlogn) time. Then using the results of this paper, we get a data structure that
maintains the minimal distance in

logn
o(vkiogk+2 )
( BET Tk

time. Here, the first term is the time needed if no rebuilding is done, and the second
term is the time to rebuild the structures, wich happens once every 6(\/I;) updates.
Improving the value of k from n?® to e.g. n, would result in an update time of
O(y/nlogn). It is an interesting open problem whether this is possible.

Another open problem is to find the complexity of computing the ordered se-
quence of k smallest distances in a set of n points, for large values of k. At present,
the only lower bound is Q(k+n logn). For n?/3 < k < n, the best upper bound is the
O(k+vk log k) bound of Theorem 3, and for k > n, the best result is the O(n+v/k log k)
bound of Theorem 2. Especially interesting is the case k = (’;) . That is, is it possible
to order all distances in O(n?) time?

References

[1] A. Aggarwal, L.J. Guibas, J. Saxe and P.W. Shor. A linear-time algorithm for
computing the Voronot diagram of a convez polygon. Discrete Comput. Geom.
4 (1989), pp. 591-604.

[2] D. Dobkin and S. Suri. Dynamically computing the mazima of decomposable
functions, with applications. Proc. 30-th Annual IEEE Symp. on Foundations
of Computer Science, 1989, pp. 488-493.

[3] K. Hinrichs, J. Nievergelt and P. Schorn. Plane-sweep solves the closest pair
problem elegantly. Inform. Proc. Lett. 26 (1987/88), pp. 255-261.

[4] K. Mehlhorn. Data Structures and Algorithms, Volume 3: Multi-Dimensional
Searching and Computational Geometry. Springer-Verlag, Berlin, 1984.

[5] M.H. Overmars. Dynamsization of order decomposable set problems. J. of Algo-
rithms 2 (1981), pp. 245-260.

[6] M.H. Overmars. The Design of Dynamic Data Structures. Lecture Notes in
Computer Science, Vol. 156, Springer-Verlag, Berlin, 1983.

11



[7] F.P. Preparata and M.I. Shamos. Computational Geometry, an Introduction.
Springer-Verlag, New York, 1985.

(8] M. Smid. A worst-case algorithm for semi-online updates on decomposable pro-
blems. Report A 03/90, Fachbereich Informatik, Universitit des Saarlandes,

1990.

[9] P.M. Vaidya. An optimal algorithm for the all-nearest-neighbor problem. Proc.
27-th Annual IEEE Symp. on Foundations of Computer Science, 1986, pp. 117-
122.

12



	fb1990-06-0001
	fb1990-06-0002
	fb1990-06-0003
	fb1990-06-0004
	fb1990-06-0005
	fb1990-06-0006
	fb1990-06-0007
	fb1990-06-0008
	fb1990-06-0009
	fb1990-06-0010
	fb1990-06-0011
	fb1990-06-0012
	fb1990-06-0013

