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Abstract

A dynamic data structure is given that maintains the minimal distance of
a set of n points in k-dimensional space in O((logn)**?) amortized time per
update. The size of the data structure is bounded by O(n(logn)*). Distances
are measured in an arbitrary Minkowski L;-metric, where 1 < ¢t < oco. This is
the first dynamic data structure that maintains the minimal distance in poly-
logarithmic time, when arbitrary updates are performed.

1 Introduction

One of the fundamental type of problems in computational geometry are proximity
problems, where we are given a set of e.g. points and we want to compute the minimal
distance among these points, or we want for each point its nearest neighbor, etc. Such
problems have been studied extensively, and many results are known. The earliest
results were only concerned with planar point sets. For example, it is well-known
that the minimal euclidean distance between n points in the plane can be found
in O(nlogn) time, and this is optimal. Given a set of n planar points, a euclidean
nearest neighbor can be computed for each point in the set, in O(n logn) time, which
is also optimal. These results have been extended to optimal O(nlogn) algorithms
for both problems in arbitrary, but fixed, dimension, using an arbitrary L;-metric.
(See Preparata and Shamos (7], Vaidya [10].)

The L,-metric is defined for ¢ such that 1 < ¢ < co. In this metric, the distance
d:(p, q) between two k-dimensional points p = (p1,...,px) and ¢ = (q1,...,qk) is
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defined by

k 1/t
di(p,q) == (Z lpi — q.-l‘) ,
=1

if 1 <t < o0, and for t = oo, it is defined by

doo (P, ¢) := max |pi — gil.
Important examples are the L;-metric, also known as the Manhattan-metric, the
L,-metric, which is the “usual” euclidean metric, and the L.,-metric, which is also
known as the maximum-norm.

In this paper, we consider the problem of maintaining the minimal distance when
points are inserted and deleted. Dobkin and Suri (3| considered the case when the
updates are sems-online. A sequence of updates is called semi-online, when the
insertions arrive on-line, but with each inserted point we get an integer ! indicating
that the inserted point will be deleted ! updates after the moment of insertion. They
showed that in the plane, such updates can be performed at an amortized cost of
O((logn)?) time per semi-online update. This result was made worst-case by the
author in [8].

For arbitrary updates on the minimal euclidean distance of a set of planar points,
the first non-trivial result was by Overmars [5,6], who gave an O(n) time update al-
gorithm. His method uses O(n log log n) space. Aggarwal, Guibas, Saxe and Shor [1]
showed that in a 2-dimensional Voronoi diagram, points can be inserted and deleted
in O(n) time. This also leads to an update time of O(n) for the minimal distance,
using only O(n) space.

In [9], the author gives an algorithm that computes the O(n?/3) smallest distances
defined by a set of n points in k-dimensional space. This result is used to give a
dynamic data structure of size O(n), that maintains the minimal distance of a set
of n points in k-space at a cost O(n?/3logn) time per update.

In this paper, we give a data structure of size O(n(logn)*), that maintains the
minimal distance in O((log n)**?) amortized time per update. The data structure
is composed of a number of structures that solve similar—but simpler—problems.
More precisely, we first define so-called structures of type ¢ that estimate the distance
between two sets A and B, the points of which have coordinates of opposite sign
in a fixed set of k — ¢ positions. These structures are defined recursively for i =
0,1,...,k — 1. Then, these structures are used to define the final data structure.

The result gives the first fully dynamic data structure that maintains the minimal
distance in polylogarithmic time.

In Section 2, we show how a k-dimensional cube can be found that contains a
prescribed number of points. This algorithm is necessary to build the structure of
type O, that is defined in Section 3. The structure of type O stores two sets A and
B, that lie in two opposite k-dimensional quadrants, and it maintains a variable §
that gives a lower bound on the minimal distance between the sets A and B. If the
minimal distance in A U B is equal to the distance between A and B, then the value



of § is equal to this distance. In Section 4, we define similar structures of type i.
Now, the structure stores sets A and B that lie in spaces that intersect in some
i-dimensional space. These structures are defined inductively, taking the structure
of type 0O as the basis of the construction. The variable § that is maintained by
the structure of type ¢ satisfies the same constraints as that for the structure of
type 0. In Section 5, we give the general data structure for maintaining the minimal
distance of a point set. The structure is defined recursively, and it uses the structure
of type (k — 1) as a building block. We finish the paper in Section 6 with some
concluding remarks.

2 Some preliminary results

To initialize the data structure of type 0, we need a k-dimensional cube, having its
“bottom-left” corner at the origin, that contains a prescribed number of points. In
this section, we give an algorithm to find such a k-cube.

Let V be a set of n points in k-dimensional space, and let m be an integer, such
that 1 < m < n. We assume that all coordinates of the points in V' are non-negative.

We give an algorithm that finds the smallest axes-parallel k-dimensional cube
[0: 3] x...x[0: s], that contains at least m points of V. Points that are on the
boundary of a k-cube, are assumed to be contained in this cube.

Define the following total ordering on k-dimensional points. For points p =
(Pl, see 1pk) and g~ (ql’ se )qk)’

p=<q iff max(py,...,ps) < minfgs,..,q).

Hence, p < g, iff there is an axes-parallel k-cube [0 : 8] X ... X [0 : s], that contains p
on its boundary, and if it contains ¢, then q is also at the boundary. This ordering
is transitive.

Given the set V, apply the linear time algorithm of Blum et al. [2] to find an m-th
point p = (p1,...,pk) of V, according to this ordering. More precisely, find a point
p € V, such that there are at least m — 1 points ¢ € V for which ¢ < p, and there are
at least n — m points r € V for which p < r. Then the k-cube [0:s] x ... x [0: 3],
where s = max(py,...,px), is the cube we want. Now walk along the points of V,
and for each point g, check whether ¢ < p. If it does, it is contained in the cube.

Lemma 1 Let V be a set of n points tn k-space, having non-negative coordinates,
and let m be an integer, such that 1 < m < n. In O(n) time, using O(n) space, we
can find the smallest azes-parallel k-cube [0 : s] X ... X [0 : s], that contains at least
m points of V. In the same amount of time and space, we can find the m points of
V that are contained in this cube.

Proof: The complexity bounds are clear. So we only have to prove that the al-
gorithm finds the smallest k-cube that contains at least m points of V. Let S



be the cube that is found by the algorithm. Suppose there is a smaller cube
[0: 8] x...x[0: s] containing at least m points. Since the point p that is se-
lected by the algorithm is on the boundary of the cube S, this point is neither
contained nor on the boundary of this smaller cube. Hence, there are at least m
points ¢ € V for which ¢ < p and p A ¢. Therefore, p does not have rank m in the
ordering <. This is a contradiction. O

The following lemma shows that if we have a k-cube containing m points, then we
have an upper bound on the minimal distance, during a sequence of O(m) updates.

Lemma 2 Let V be a set of n points in k-space, and let m be an integer, such that
1 < m < n. Suppose we have a k-dimensional cube with side-lengths s, that contains
at least m points of V. Then, during a sequence of [m/(k + 1)*] — 2 insertions and
deletions of points sn V, the minimal L,-distance between points in V 1s less than s.

Proof: Assume w.l.o.g. that the k-cube is equal to [0 : s] x ... x [0 : s]. Partition
this cube into (k + 1)* subcubes

[t18/(k+1) : (32 +1)s/(k+1)] x ... x [txs/(k+ 1) : (2 +1)s/(k + 1)],

where the i; are integers such that 0 < i; < kand 1 < j < k. At least one such
subcube contains [m/(k + 1)*] points of V. During a sequence of [m/(k + 1)*] — 2
updates, this subcube contains at least two points. Hence, during this sequence,
there are two points in V' that have a distance, which is at most the L,-diameter of
this subcube. Since the L,-diameter of the subcube is at most k x s/(k +1) < s, the
minimal L,-distance among all pairs of distinct points in V is less than s. O

3 The type 0 data structure

In the final data structure that maintains the minimal distance, we need several data
structures that solve similar—but simpler—problems. In this section, we give the
first of these structures.

Let A and B be two sets of points in k-space. We assume that the points of A and
the points of B lie in opposite k-dimensional quadrants. Therefore, we may assume
w.l.o.g. that all coordinates of the points in A are non-positive, and all coordinates
of the points in B are non-negative. (If the origin belongs to A U B, then it belongs
to A.) We want to maintain the minimal distance between points in A and points in
B, when updates of the following type are performed. Only points having all their
coordinates non-positive, or having all their coordinates non-negative, are inserted
and deleted. In the first case, we say that the update “occurs” in set A. Otherwise,
the update “occurs” in set B.

The data structure does not always have to give the minimal distance between A
and B. It only has to, if the minimal distance between the points in the set AU B is
equal to the distance between A and B. The reason for this is the following: Later,



this data structure will be part of the data structure that maintains the minimal
distance between all points. The part of the structure of the present section takes
care of the distance between two subsets A and B. Another part of the data structure
will take care of the distances between points in A, and yet another part considers
distances in the set B. If the distance between A and B is “large”, then the structure
of this section is not relevant; other parts of the final structure will give the minimal
distance in the complete set. If, however, the distance between A and B is equal to
the minimal distance in the complete set, then the structure of this section delivers
this minimal distance.

So, A and B are sets of points in k-space. All coordinates of the points in A resp.
B are non-positive resp. non-negative. The cardinality of A resp. B is denoted by a
resp. b. It may be possible that a = 0 or b = 0. However, a + b > 0.

We fix 1 <t < o0, and we measure all distances in the L,-metric. The minimal
distance between points in 4 and points in B, is denoted by d(A, B), whereas d(A U
B, A U B) denotes the minimal distance between all points in A U B. (We define
d(A,0) :=d(0,B) := c0.)

We give a dynamic data structure that maintains a variable § € R U {oo}, such
that

é > d(4, B), (1)
if d(A, B) = d(AU B, AU B), then § = d(A4, B). (2)
We say that the structure stores the pair (A4, B), and we call the structure of type 0,

because the regions in which the sets A and B lie, intersect in one point.
Throughout this paper, we fix a constant C that is sufficiently large.

The data structure of type 0: If a + b < C, then we store the set A resp.
B in a search tree T, resp. Tg. Furthermore, there is a variable §, that is equal to

d(A, B).
Suppose that a + b > C. Assume that a < b. (Otherwise, interchange A and B.)
Consider the smallest axes-parallel k-cube C; :=[0:s] X ... x [0 : s] that contains

at least [b/2] points of B. Let C_ be the k-cube [—s : 0] x ... x [—s : 0]. Let A’
resp. B' be the set of those points in A resp. B that are in the interior of the cube
C_ resp. C;. (Note that A and/or B may be empty.)

The data structure of type O for the pair (A, B) consists of the following. There
are search trees T, and Tjp, storing the sets A and B. Furthermore, there is a
pointer to a recursively defined structure of type 0 for the pair (A', B'). Let §' be
the variable that is maintained by this structure. Then the value of § corresponding
to the structure for the pair (4, B) is equal to §'.

Of course, we have to prove that the value of § satisfies (1) and (2). We will
prove this in Lemma 4, after we have given the update algorithm.

Building the structure of type 0: If a + b < C, then store A and B in search



trees T4 and T, and compute § := d(4, B).

Suppose that a + b > C. Assume w.l.o.g. that a < b. Use the algorithm of
Section 2 to compute the k-cube C, and the set B'. Given the side-lengths of C,,
compute the set A'. Then build the structure of type O for the pair (4', B'), using
the same algorithm recursively.

This gives search trees T and T for the sets A' and B’, and a variable §'. Copy
these search trees, and insert the points of A\ A' in the copy of T4, and the points
oF B\ B' in the copy of Ts. This gives two trees T4 and Tp containing the sets A
and B. Finally, set § := §'.

In the next lemma, we give an upper bound on the building time for the structure
of type 0. In this lemma, and in the following ones, we give complexity bounds of
the form O(f(a + b)) for some function f. These asymptotic bounds are valid for
any pair of integers a > 0 and b > 0, such that a + b is sufficiently large.

Lemma 3 The data structure of type 0 for the pair (A, B) can be built in time
O((a + b) log(a + b)).

Proof: Let T'(a,b) denote the building time for sets A and B of sizes a and b. We do
not count here the time needed to insert the points of A\ A' and B\ B’ in the copies
of the search trees. If a + b < C, then clearly T'(a,b) is bounded by a constant. So,
suppose that a+b > C. Assume w.l.o.g. that a < b. By Lemma 1, it takes O(b) time
to find the k-cube C, and the set B'. Note that we can compute simultaneously the
set B\ B' in O(b) time. Once the side-length of the cube C, is known, the sets A'
and A\ A' can be computed in O(a) time.

Suppose that |B'| > [b/2]. Then—since all points in B’ are in the interior of
C,—there exists a smaller cube [0: s']| X ... X [0: s'] containing at least [b/2] points
of B. This is a contradiction, because C, is the smallest such cube. Therefore,
IB| < [b/2].

Since |A'| < a and |B'| < [b/2], it takes at most T'(a, [b/2]) time to build the
structure of type O for the pair (4', B'). Copying the two search tree takes O(a + b)
time.

Hence, T'(a,b) = O(a +b) + T(a, [b/2]) if a < b. If a > b, then the same relation
holds with a and b interchanged. It follows that T'(a,b) = O((a + b) log(a + b)).

Since each point of A and B is inserted exactly once in a search tree, the total
time for completing the search trees for all (sub)structures of type 0 is bounded by
O((a + b) log(a + b)). (The time for copying the search trees was counted already.)

We have shown that the entire algorithm spends O((a + b) log(a + b)) time. O

The update algorithm: To insert or delete a point p in a structure of type 0
for the pair (A, B), we do the following:

1. If a + b < C, update the search tree T4 or Ty that stores the set A or B in
which the update occurs, and recompute the value of § := d(4, B).



2. Suppose that a + b > C. Assume w.l.o.g. that the the update occurs in the set
B. (Otherwise, interchange A and B.)

(a) If the update is a deletion of point p, and if |A| + |B \ {p}| < C, then
delete p from the tree Tp, and compute the value of § := d(A4, B \ {p}).
Discard the structure of type O for the pair (4', B').

(b) Otherwise, first update the search tree Ts. If p ¢ C,, set 6§ := §', where
&' is the variable that is maintained by the structure of type O for the pair
(A',B'). If p € C,, update the structure for the pair (A4', B') recursively.
This structure maintains a variable §'. Then, set § := §'.

3. After (a +b)/(4 (k + 1)*) — 2 updates are performed in this way, we start over
again. That is, we completely rebuild the structure of type O for the pair
(A, B), and we continue performing updates as described above.

Lemma 4 At any time, the value of § satisfies (1) and (2).

Proof: If a+b < C, then the value of § is equal to d(4, B). It is clear that § satisfies
the requirements of (1) and (2).

So assume that a + b > C. Furthermore, assume inductively that the value of the
variable §' that is maintained by the structure for the pair (A4', B') is correct.

After the structure for the pair (4, B) is built, we have § = §'. It follows from the
update algorithm that at any moment the values of § and §' are equal. (This is also
true if the structure for the pair (A’', B') is rebuilt.) By the induction hypothesis, we
have

§' > d(4', B'), (3)
if d(A', B') = d(A' U B', A' U B'), then §' = d(4', B"). (4)

Since A' C A and B' C B, we have d(4',B') > d(A, B). Therefore, it follows
from (3), and from the fact that § = §', that § > d(A, B). Hence, § satisfies (1).

Now suppose that d(A, B) = d(AU B,AU B). By Lemma 2, during a sequence
of [m/(k + 1)*] — 2 updates, the value of d(4, A) or d(B, B) is less than s, where
m = [max(ag,bp)/2], and ag and by are the sizes of A and B at the moment the
structure for the pair (A4, B) is built. (Here, d(B, B) < s if ag < b, and d(A4,A4) < s
if by < ap. In case ay < by, Lemma 2 is applied to the points of B that are in the
interior or on the boundary of the cube C..) Since

[m/(k + l)k] -22 max(ao, bo) 9% M

= 2(k+1)* _4(k+1)"_2’

it follows that during a sequence of (ag + b)/(4 (k + 1)*) — 2 updates, the value of
d(A, A) or d(B, B) is less than s. Clearly, at the start of the algorithm, or after a
rebuilding operation, also at least one of d(4, A) and d(B, B) is at most s. Hence,
at any moment, d(A U B,A U B) < s. But then, by our assumption, we have



d(A,B) < s. Since points in A and B \ B' are “separated” by the k-cube C,, we
have d(A \ A', B) > s. Similarly, d(A4, B \ B') > s. Therefore,

d(A, B) = min (d(4', B'),d(A \ 4', B),d(A, B\ B')) = d(4', B).

Hence, d(A', B') = d(AUB, AU B). It is clear that d(AUB, AUB) < d(4'UB', A'U
B') < d(A',B'). Hence, d(A',B') = d(A'UB', A'UB'). Then it follows from (4) that
§' = d(A',B'). Since § = ¢', and d(A, B) = d(4', B'), we have § = d(A, B). This
proves that § satisfies the requirement of (2). O

Lemma 5 In the data structure of type 0 for the pair (A, B), points can be inserted
and deleted, at a cost of O((log(a + b))?) amortized time per update.

Proof: Let U(a,b) denote the amortized update time for sets A and B of sizes a
and b. If a + b < C, then U(a,bd) is bounded by a constant. The same holds if
a+b—1<C and the update is a deletion.

Assume that a + b > C. Here, a and b are the current sizes of the sets A and B.
Let ag resp. by be the size of the set A resp. B at the start of the algorithm, i.e., at
the moment the structure for the pair (4, B) is built. Assume w.l.o.g. that ag < by.
During a sequence of (ag + by)/(4 (k + 1)*) — 2 updates, we have |A'| < |A| = a, and
ag + b 2bg 2bo 7
b=|B|>2bp— 7 +2>2bp— ——s 2 by— — = = bo.

IB] 2 bo kD T T k) o 16 8
We saw already in the proof of Lemma 3 that initially |B'| < [b9/2] < 1 + bo/2.
Therefore, during the sequence of (ag + bo)/(4 (k + 1)*) — 2 updates:
bo ag + bo bo 2bo bo 2b0 5

—_— < — = — by.
+ +4 + 0

B €l et . g &0 3
Bt s+ tevr 252 igr =2 16 s

It follows that at any moment

If in the update the data structure for the pair (4, B) is not rebuilt, we spend
an amount of time that is bounded by

O(log(a + b)) + U(|4'|,|B'l) < O(log(a + b)) + U(a, 5b/7),

where the logarithmic factor is the time needed to update the appropriate search
tree Ty or Tg. After (ao +bo)/(4 (k + 1)*) — 2 updates, we rebuild the structure. By
Lemma 3, this takes O((a + b) log(a + b)) time. It follows that the amortized update
time U (a,b) satisfies the following recurrence:

O((a + b) log(a + b))
(a0 +50)/(4(k+1)%) -2

U(a,b) = O(log(a + b)) + U(a,5b/7) +



Since a + b = ©(ag + bo), this is equivalent to
U(a,b) = O(log(a + b)) + U(a,5b/7), (5)

if initially ap < by. If a9 > by, then the above relation holds with a and b interchanged.

We prove that U(a,b) = O((log(a+b))?). Let a be the constant in the logarithmic
factor in (5). Choose a constant 3, such that U(a,bd) < B(log(a + b))? for all a and b
for which a + b < C, and such that Blog8/7 > a. Let a + b > C, and assume that
U(a',b') < B(log(a' +¥'))? for all @' and b’ for which a' + b’ < a + b. Assume w.l.o.g.
that initially ap < bp. Then

Uf(a,b) alog(a + b) + U(a,5b/7)
alog(a + b) + B(log(a + 5b/7))*
alog(a + b) + Blog(a + b) log(a + 5b/7)

B(log(a + b))?,

provided we can prove that a + B log(a + 5b/7) < Blog(a + b), or, equivalently,

a+bd
ﬂlog (;:-s—b/—’z) Z a. (6)

We have assumed that ag < by. During a sequence of (ag + bo)/(4 (k + 1)*¥) — 2
updates, we have

VANEE VAN VAN VAN

ao + bo 2bo 2b0 9
Cao+ BTN gyt O _2<hy+ 0Dy
aStbot Ty 2Shtirr 2Shtig =gh

We saw already that b > 7by/8. Hence,

9. 98 9
<Zbh<22p=_p.
asgbsgzb=y (")
It follows that
a+b 25/7 25/7 8
—_ =1 —_— > — =
PERTy AR y Ry e yT A

and therefore
a+b

8
— T 1> ey
Alog (a + 5b/7) 2 flog 7
By our choice of 3, we have $log8/7 > a, which proves (6).

We have shown that U(a,b) < S(log(a + b))? for all a and b. This proves the
lemma. O

Lemma 6 The size of the data structure of type 0 for the pair (A, B) is bounded by
O(a +b).



Proof: Let S(a,b) be the size of the data structure for sets A and B of sizes a and b.
If a + b < C then S(a,b) is bounded by a constant. Otherwise, if a +b > C,

S(a,b) < O(a+b) + S(a,55/7),

if initially the size of A is less than that of B. If initially |A| > |B|, then the same
recurrence holds with a and b interchanged. Using the fact that during a sequence
of (ag + bo)/(4 (k + 1)*) — 2 updates we always have a < 9b/7, if initially |A| < |B|
(see (7)), it can be shown by induction that S(a,b) = O(a +b). O

4 The type i data structure

In this section, we recursively define the structure of type i, that maintains the
“distance” between two point sets, the points of which have coordinates of opposite
sign in a set of k — 1 positions. The variable that is maintained by this structure
satisfies the same requirements as in (1) and (2). (So the structure does not always
give the minimal distance. That is why “distance” was between brackets.) The
structure uses the structure of type (i — 1) as a building block.

Let ¢ be an integer, such that 0 <i < k — 1. Let A and B be two sets of points
in k-dimensional space. We assume that the points of A and B have coordinates of
opposite sign in a fixed set of k —¢ positions. Therefore, we may assume w.l.o.g. that
the points of A lie in the space R := (—oco : 0]*~* x R', and the points of B lie in
R} :=[0: 00)** x R'. Hence, the regions in which A and B lie are separated by an
i-dimensional space.

We want to maintain the “minimal distance” between points in A and points
in B, when updates of the following type are performed. Only points that lie in
R; UR]S are inserted and deleted. If a point in R; is inserted or deleted, then the
update “occurs” in set A. Otherwise, the update “occurs” in set B.

The cardinality of A resp. B is denoted by a resp. b. It may be possible that
a=0o0rb=0,but,a+5b>0.

Again, we fix 1 <t < oo, and we measure all distances in the L,-metric. The
minimal distance between points in A and points in B, is denoted by d(A, B), whereas
d(A U B, AU B) denotes the minimal distance between all points in AU B. (Note
that d(4,0) = d(0, B) = o0.)

We give a dynamic data structure of type 7, that maintains a variable § € RU{oo},
such that

§ > d(4, B), (8)
if d(A, B) = d(AU B, AU B), then & = d(4, B). 9)

As before, we say that the structure stores the pair (4, B).
In the rest of this section, we use the same constant C as in the previous section.
This constant is assumed to be sufficiently large.
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The data structure of type i is defined inductively. The structure of type 0 was
defined in the previous section. So let 0 < i < k — 1, and assume that the structure
of type (i — 1) is defined already.

The data structure of type i: If a + b < C, then we store A and B in search
trees T, and Ts. Furthermore, there is a variable §, that is equal to d(4, B).

Suppose that a + b > C. Assume that a < b. (Otherwise, interchange A and B.)
Split the set B in two subsets B; and Bj, of size [b/2] resp. |b/2], such that all
(k —%+ 1)-th coordinates of the points in B; are at most equal to those of the points
in B;. The sets B, and B; are separated by some (k — 1)-dimensional hyperplane
zr_i+1 = l. Split the set A into sets A; and A,, where all points in A; have an
(k — i+ 1)-th coordinate which is less than [, and all points in A; have an (k—i+1)-
th coordinate which is at least .

Note that A; C (—oo : 0]** x (=00 : ] x R*™, 43 C (—00 : 0]*~* x [ : 00) x R*™1,
B; C[0:00)* % x (—o0:1] x R, B C [0:00)** x [l : 00) x R*"1. Therefore, the
points in the sets 4; and B, have coordinates of “opposite” sign in the first k —1 +1
positions. (In the (k — ¢ + 1)-th position, the coordinates have opposite sign w.r.t.
their difference to l.) Similarly for the sets A; and B,. Furthermore, for v = 1,2,
A, C R; and B, C R}.

The data structure of type i for the pair (4, B) consists of the following. There
are search trees T4 and T, storing the sets A and B. There are two pointers to
structures of type (i — 1), one structure for the pair (A;, B,) and the other structure
for the pair (A2, B;). These structures maintain variables 6, resp. é2;. Furthermore,
there are two pointers to recursively defined structures of type ¢, one structure for
the pair (A4;,B;) and one structure for the pair (A;,B;). Let &;; resp. é;; be the
variables that are maintained by these two structures. The value of § corresponding
to the structure of type i for the pair (4, B) is equal to the minimum of the variables
811, 632, 612 and &3;.

Building the structure of type i: If a + b < C, then store A and B in search
trees T4 and T, and compute § := d(A4, B).

Suppose that a+b > C. Assume w.l.o.g. that a < b. First store the sets A and B
in balanced search trees T4, and Ts. Next, use a linear time algorithm to find the
median of the (k — ¢ + 1)-th coordinates of the points in B. Then partition the sets
A and B according to this median into sets A4,, A;, B; and B;. Build the structures
of type (i — 1) for the pairs (A, B;) and (Az, By). Let 8,2 resp. é;; be the variables
that are stored with these two structures. Next, build the two structures of type i
for the pairs (A;,B;) and (A;, B;), using the same algorithm recursively. Let 6;,
and §,, be the variables that are stored with these structures.

The value of § for the structure for the pair (A4, B) is set to the minimum of the
variables 511, 632, 512 and 621.

In the rest of this section, we shall prove the following theorem:
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Theorem 1 Let i be an integer such that 0 <t < k — 1. Let A and B be sets of
points in k-space. Assume that the points of A and B have coordinates of opposite
stgn in a fized set of k — i positions. Let a = |A| and b = |B|, where a > 0, b > 0,
and a + b > 0.

The data structure of type i for the pair (A, B) maintains a variable § that satisfies
requirements (8) an (9). The structure has size O((a + b)(log(a + b))*), and can be
buslt in O((a + b)(log(a + b))**!) time. In this structure, points can be inserted and
deleted at a cost of O((log(a + b))**?) amortized time per update.

This theorem will be proved by induction on i. It follows from the results in
Section 3, that the theorem holds for : = 0. So let 1 < < k — 1, and assume that
the theorem holds for ¢ — 1. We shall prove that then the theorem also holds for 1.

Lemma 7 The data structure of type i for the pair (A, B) can be built in time
O((a + b)(log(a + b))***).

Proof: Let T'(a,b) denote the building time of the structure of type ¢ for sets A
and B of sizes a and b. If a + b < C, then T(a,bd) is bounded by a constant.
Suppose that a + b > C. Assume w.l.o.g. that a < b. It takes O(aloga + blogb) =
O((a + b) log(a + b)) time to store the sets A and B in two balanced search trees.
The time to partition the sets A and B into sets A,, A;, B, and B; is bounded by
O(a + b). By the induction hypothesis, the two data structures of type (i — 1) for
the pairs (4;, B;) and (A3, B;) can be build in O((a + b)(log(a + b))*) time.

It takes T'(|A1],|Bi|) + T(]Az|, |Bz|) time to build the two structures of type 4 for
the pairs (4;,B;) and (A3, B;). This expression is equal to T'(|A,|, [6/2]) + T'(a —
|A1|1 Lb/ZJ)

It follows that there is an a;, 0 < a; < a, such that
T(a,b) = O((a + b)(log(a + b))°) + T (a1, [6/2]) + T(a — a1, [b/2]),

if a <b. If @ > b, then the same recurrence holds with a and b interchanged. It can
easily be shown that T'(a,b) = O((a + b)(log(a + b))**!). This proves the lemma. O

The update algorithm: To insert or delete a point p in a structure of type i
for the pair (A4, B), we do the following:

1. If a + b < C, update the search tree T4 or Tp that stores the set A or B in
which the update occurs, and recompute the value of § := d(A4, B).

2. Suppose that a + b > C. Assume w.l.o.g. that the update occurs in set B.
(Otherwise, interchange A and B.)

(a) If the update is a deletion of point p, and if |A|+|B\ {p}| < C, then delete
p from the tree Tp, and compute the value of § := d(A4, B\ {p}). Discard
the structures for the pairs (A4;, B1), (A2, B2), (41, B;) and (43, By).

12



(b) Otherwise, first update the search tree Ts. If p has a (k — i + 1)-th coor-
dinate that is at most equal to the initial median of the (k — i + 1)-th
coordinates, then update the structure of type (: —1) for the pair (4;, By),
and recursively update the structure of type i for the pair (4;, B;). Other-
wise, if p has a (k — 7 + 1)-th coordinate that is larger than the initial
median, update the structure of type (i — 1) for the pair (4, B;), and
recursively update the structure of type i for the pair (4;, B,).
Afterwards, set the value of 6—corresponding to the structure for the pair
(A, B)—to the minimum of the variables §;1, 822, §;2 and &3;.

3. After (a +b)/(4 (k + 1)*) — 2 updates are performed in this way, we start over
again. That is, we completely rebuild the structure of type i for the pair (4, B),
and we continue performing updates as described above.

Lemma 8 At any time, the value of § satisfies (8) and (9).

Proof: If a + b < C, then the value of § is equal to d(A4, B). Clearly, § satisfies the
requirements of (8) and (9).

So assume that a + b > C. Furthermore, assume inductively that the values of
the variables §;; and §,; that are maintained by the structures of type i for the pairs
(A1, B1) and (A3, B;) are correct. By the induction hypothesis, the values of the
variables §,; and §;; corresponding to the structures of type (i — 1) for the pairs
(A;, B;) and (A, B,) satisfy requirements (8) and (9).

After the structure for the pair (A4, B) is built, the value of § is equal to the
minimum of the values of §;;, 622, §12 and 83;. It follows from the update algorithm
that at any moment the value of § is equal to this minimum. (This is also true if
one of the structures for the pairs (A,, B,) is rebuilt.)

Let u and v be such that § = §,,. Then, by requirement (8), we have §,, >
d(A., B,). Since d(A, B) < d(A., B,), it follows that d(A,B) < é,, = §. Hence, §
satisfies (8).

Now suppose that d(A4, B) = d(AU B, AU B). In order to prove requirement (9),
we have to show that § = d(A, B). We have shown already that § > d(A, B). So it
remains to be shown that § < d(4, B). Clearly,

d(A, B) = min (d(Al, Bl), d(Az, Bz), d(Al, Bg), d(Az, Bl)) .
Let u and v be such that d(4, B) = d(A,, B,). We have
d(AUB,AUB) < d(A,U B,, A, UB,) < d(Aq,B,) = d(A,B) = d(AU B,AU B).

Hence, all inequalities above are in fact equalities. Therefore, d(Ay, B,) = d(A4, U
B,,A., U B,). It follows from (9) that é,, = d(A, B,). Therefore, § < §,, =
d(A., B,) = d(A, B). This finishes the proof. O

Lemma 9 In the data structure of type i for the pair (A, B), points can be inserted
and deleted, at a cost of O((log(a + ))**?) amortized time per update.
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Proof: Let U(a,b) denote the amortized update time for a data structure of type i
for the pair (A, B), where the sets A and B have sizes a and b. If a + b < C, then
U(a,b) is bounded by a constant. The same holds if a + 5 — 1 < C and the update
is a deletion.

Assume that a + b > C. Here, a and b are the current sizes of the sets A and B.
Let ag resp. by be the size of the set A resp. B at the moment the structure of type i
for the pair (A, B) is built. Assume w.l.o.g. that ag < bp. In the same way as in the
proof of Lemma 5, it can be shown that during a sequence of (ao +bo)/(4 (k +1)*) —2
updates, we have |A,| < |A| = a, and |B,| < 5b/7, for u = 1,2.

If in the update the data structure for the pair (A, B) is not rebuilt, we spend
O(log(a + b)) time to update the search tree that stores the set in which the update
occurs. By the induction hypothesis, we spend O((log(a + b))**!) time to update the
appropriate structure of type (¢ — 1). Finally, we spend at most U(a,5b/7) time to
update the structure of type ¢ for the pair (A, B,). Here, u = 1 if the update occurs
in A; or By, and u = 2 otherwise. It follows that in case the data structure is not
rebuilt, we spend an amount of time that is bounded by

O ((log(a + b))***) + U(a, 5b/7).

After (ao + b)/(4 (k + 1)*) — 2 updates, we rebuild the structure. By Lemma 7,
this takes O((a + b)(log(a + b))'*!) time. Hence, the amortized update time U(a, d)
satisfies the following recurrence:

O((a + b)(log(a + b))**")
(a0 +bo)/(4 (k + 1)) — 2~

U(a,b) = O ((log(a + b))**") + U(a, 5/7) +
Since a + b = ©(ao + by), this is equivalent to
U(a,b) = O ((log(a + 1))"**) + U(a, 55/7),

if initially ag < bg. If ag > bg, then the same relation holds with a and b interchanged.

From this recurrence, it can be shown in the same way as in the proof of Lemma 5,
that U(a,d) = O((log(e + 1))**?). O

Lemma 10 The size of the data structure of type i for the pair (A, B) is bounded
by O((a + b)(log(a + b))*).

Proof: Let S(a,b) be the size of the data structure of type i for sets A and B of
sizes a and b. Assume w.l.o.g. that |4| < |B|, at the moment the data structure is
built. If a + b < C, then S(a,b) is bounded by a constant. Otherwise, if a + b > C,
then it follows—using the induction hypothesis—that

$(a,b) = O ((a + b)(log(a + ))"*) + S(a1,by) + S(a — a1, b— by),

for some 0 < a; < a and 2b/7 < b, < 5b/7. (In the same way as in the proof of
Lemma 5, it follows that both B; and B; have size at most 5b/7. Hence, 2b/7 <
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|B,| < 5b/7, u = 1,2, and therefore, 2b/7 < b; < 56/7.) If initially |A| > |B|, then
the same relation holds with a and b interchanged. From this, it can be shown that
S(a,b) = O((a + b)(log(a +B))*). O

Lemmas 7, 8, 9 and 10 together prove that Theorem 1 holds for i:. Then, by
induction, the theorem holds for all z such that 0 <: <k —1.

5 The final data structure

Now we are ready to give the dynamic data structure for maintaining the minimal
distance in a set of k-dimensional points.

Let V be a set of n points in k-space. We fix 1 < ¢t < oo, and we measure all
distances in the L;-metric.

The data structure: If n < C, then we store the set V in a search tree Ty.
Furthermore, there is a variable §, that is equal to d(V, V).

Suppose that n > C. Split the set V in two subsets V; and V;, of sizes [n/2]
resp. |n/2], such that the first coordinates of all points in V; are at most equal to
those in V.

Note that V; C (oo : 1] x R*! and V; C [l : 00) x R*"!, for some I. Hence, the
points of V; and V; have coordinates of “opposite” sign in the first position.

The data structure for the set V consists of the following. There is a balanced
search tree Ty that stores the set V. There is a pointer to a structure of type (k— 1)
for the pair (V1,V;). Let 8,2 be the variable that is maintained by this structure.
Furthermore, there are two pointers to recursively defined structures, one structure
for the set V;, and the other for the set V;. Let §;; resp. 632 be the variables that are
maintained by these two structures. The value of § corresponding to the structure
for the set V is equal to the minimum of the variables é;;, 622 and é;2.

We will prove later, that § is indeed equal to the minimal distance in the set V.

Building the structure: If n < C, then store V in a search tree Ty, and
compute § := d(V, V).

Suppose that n > C. Use a linear time algorithm to find the median of the first
coordinates of the points in V. Then partition the set V' according to this median
into sets V; and V,. Build the structure of type (k — 1) for the pair (V;,V;). Let
6,2 be the variable that is stored with this structure. Next, build the two structures
for the sets V; and V3, using the same algorithm recursively. Let §;; and é22 be the
variables that are stored with these structures. Then the value of é for the structure
for the set V is set to the minimum of the variables §;;, 822 and é;,.

Lemma 11 The data structure for the set V can be buslt in O(n(log n)**!) time.
Proof: Let T(n) denote the building time for a set V' of size n. If n < C, then T'(n)
is bounded by a constant. So, assume that n > C. It takes O(nlogn) time to store
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the set V in a balanced search tree. The time to partition V into sets V; and V; is
bounded by O(n). By Theorem 1, the data structure of type (k — 1) for the pair
(Vi,V2) can be build in O(n(logn)*) time. Finally, it takes T'([n/2]) + T'(|n/2])
time to build the structures for the sets V; and V;. It follows that

T(n) = O (n(logn)*) + T([n/2]) + T(|n/2]).
From this, it can easily be shown that T'(n) = O(n(log n)**!). O

The update algorithm: To insert or delete a point p in the data structure, we
do the following:

1. If n < C, update the search tree Ty, and recompute the value of § := d(V,V).
2. Suppose that n > C.

(a) If the update is a deletion of point p, and if |V \ {p}| < C, then delete
p from the tree Ty, and compute the value of § := d(V \ {p},V \ {p}).
Discard the structures for the sets V; and V3, and for the pair (V;, V2).

(b) Otherwise, first update the search tree Ty. Then, update the structure
of type (k — 1) for the pair (V;,V2). If point p has a first coordinate that
is at most equal to the initial median of the first coordinates in V, then
recursively update the structure for the set V;. Otherwise, if p has a first
coordinate that is larger than this initial median, recursively update the
structure for the set V;.

Afterwards, set the value of §—corresponding to the structure for the set
V—to the minimum of the variables §;;, 622, and 6;,.

3. After n/(4 (k+1)*) — 2 updates are performed in this way, we start over again.
That is, we completely rebuild the structure for the set V, and we continue
performing updates as described above.

Lemma 12 At any time, the value of § 1s equal to the minimal distance in the set V.

Proof: If n < C, then the value of § is equal to d(V,V). So assume that n > C.
Furthermore, assume inductively that §;; = d(V;,V;) and 63, = d(Va,V2). By Theo-
rem 1, the value of §;; corresponding to the structure of type (k — 1) for the pair
(V1, V3) satisfies requirements (8) and (9) given in Section 4.

After the structure for the set V is built, the value of § is equal to the minimum
of the values of 8;;, 63, and §;3. It follows from the update algorithm that at any
moment the value of § is equal to this minimum.

Clearly, §1; = d(1,Vi) > d(V,V) and 632 = d(V3,V2) > d(V,V). By re-
quirement (8) of Section 4, we have §;; > d(V;,V2) > d(V,V). It follows that
§ = min(8y1, 822, 612) > d(V, V). So it remains to be shown that § < d(V,V).

Let p,q € V, such that d(p,q) = d(V,V). First suppose that p and ¢ are in
the same subset V,, where v € {1,2}. It is clear that d(V,V) < d(V,,V,). Also,
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d(V,,V,) < d(p,q). Therefore, we have d(p,q) = d(V,,,V,) = buu. Since § < §,,, it
follows that § < d(p,q) = d(V,V).

If p and ¢ are not in the same subset, then we may assume w.l.o.g. that p € V;
and ¢ € V;. We have d(p, q) = d(V,V) < d(V4,V2) < d(p,q), and, hence, d(V,V) =
d(V1,Vs). It follows from requirement (9) of Section 4, and from the fact that V =
Vi U V3, that §;; = d(V4, V), and hence §;2 = d(V, V). Since § < &2, it follows that
§ < d(V,V).

We have shown that at any moment § = d(V, V), which completes the proof. O

Lemma 13 In the data structure, points can be inserted and deleted, at a cost of
O((log n)**?) amortized time per update.

Proof: Let U(n) denote the amortized update time for a data structure storing a
set V of n points. If n < C, then U(n) is bounded by a constant. The same holds if
n — 1 < C and the update is a deletion.

Assume that n > C. Here, n denotes the current size of the set V. Let ng be
the size of the set V at the moment the structure is built. In the same way as in
the proof of Lemma 5, it can be shown that during a sequence of no/(4 (k +1)*) — 2
updates, we have |V, | < 5n/7, for u = 1,2.

If in the update the data structure for the set V is not rebuilt, we spend O(logn)
time to update the search tree Ty. By Theorem 1, we spend O((log n)**!) time to
update the structure of type (k — 1) for the pair (V;,V;). Finally, we spend at most
U(5n/7) time to update the structure for the appropriate set V,. Here, u =1 if the
update occurs in V;, and u = 2 otherwise. It follows that in case the data structure
is not rebuilt, we spend an amount of time that is bounded by

O ((logn)***) + U (5n/7).

After no/(4 (k + 1)*¥) — 2 updates, the data structure is rebuilt. By Lemma 11, this
takes O (n(log n)"“) time. It follows that the amortized update time U(n) satisfies
the following recurrence:

O(n(logn)**1)
no/(4 (k + 1)) -2’

U(m)=0 ((log n)"“) +U(5n/7) +
or, because n = O(ny),
U(n) =0 ((log n)"“) + U(5n/7).
From this, it follows that U(n) = O((logn)**?). O
Lemma 14 The size of the data structure is bounded by O(n(logn)*).

Proof: Let S(n) be the size of the data structure for a set of size n. If n < C,

then S(n) is bounded by a constant. Otherwise, if n > C, then it follows—using
Theorem 1—that

5(n) = O (n(logn)*™*) + S(ny) + S(n — n1),
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for some 2n/7 < n; < 5n/7. (Since both V; and V; have size at most 5n/7, we have
2n/7 < n; < 5n/7.) From this relation, it follows that S(n) = O(n(logn)*). O

This completes the description of the data structure and its update algorithm.
We summarize the results we have obtained in the following theorem.

Theorem 2 There exists a data structure that masntasns the minimal L,-distance of
a set of n points in k-dimensional space, at a cost of O((log n)**?) amortized time per
update. The data structure has size O(n(logn)*), and can be built in O(n(logn)*+?!)
time.

6 Concluding remarks

We have given a data structure that maintains the minimal L,-distance of a set
of points in polylogarithmic time, when arbitrary updates are performed. This is
the first structure that achieves a polylogarithmic update time. In the k-dimensional
case, the structure has size O(n(logn)*) and an update takes O((log n)**?) amortized
time.

The best linear size data structure known at present, is given in [9]. This structure
maintains the minimal L,-distance in a k-dimensional point set in O(n?/3logn) time,
even in the worst case.

The basic open problem is, of course, to improve the above results. In particular,
it would be interesting to have a data structure of linear size that maintains the
minimal distance in polylogarithmic time.

The solution given in this paper does not use the notion of sparseness, whereas
almost all algorithms that compute minimal distances do use this notion. (See e.g.
[4,7,9].) Therefore, it would be interesting to know whether the technique introduced
here can be applied to related problems where the maximum or minimum of a two-
variable function has to be maintained when objects are inserted and deleted. (See
[3,8] for a general approach to such problems for a special type of updates.)
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