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Abstract

Two problems are considered that deal with dynamic data structures on
multiple storage media. In the first problem we want to partition a range tree
into parts of a small size, such that queries and updates visit only a small
number of parts. In this way, the range tree can be maintained in secondary
memory efficiently. The second problem is the reconstruction problem: given a
main memory data structure, design a shadow administration, to be stored in
secondary memory, such that the main memory structure can be reconstructed
after e.g. a system crash.
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1 Introduction

The theory of data structures and algorithms is concerned with the design and
analysis of structures that solve searching problems. In a searching problem, we
have to answer a question (also called a query) about an object with respect to a
given set of objects. A data structure for such a searching problem stores the objects
in such a way that queries can be answered efficiently. The design of data structures
has received considerable attention.

A large part of the research is focussed on designing structures that are stored
in the main memory of a computer, on which all standard computations can be
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performed, and which is usually modeled as a Random Access Machine (RAM).
(See [2].) The memory of a RAM consists of an array, the entries of which can store
pieces of information, such as names, integers, pointers, etc. Each such array entry
can be accessed at constant cost, provided the address of the entry is known. The
main problem is to structure the relations of the basic pieces of information, using
a small amount of space, such that queries can be answered fast.

Until about 1979, many of the main memory data structures that were designed
were static, i.e., it was not possible to insert and delete objects. Exceptions were
data structures that can handle dictionary operations. The oldest are the AVL-trees,
introduced in 1962 by Adel’son-Vel’skif and Landis [1]. In these trees one can search,
insert and delete objects in a number of steps that is logarithmic in the number of
objects that are stored in the tree.

In 1979, the research on general dynamization techniques was initiated by Bent-
ley [4]. This research consists of designing techniques to transform static data struc-
tures into dynamic structures, i.e., structures that do allow insertions and deletions
of objects. Many techniques are available nowadays that can be applied to large clas-
ses of searching problems. As an example, there exists a general theory to dynamize
data structures that solve so-called decomposable searching problems. In a decom-
posable searching problem, the answer to a query with respect to a set of objects can
be obtained by merging the partial answers to the query with respect to a partition
of this set. Any static data structure that solves a searching problem satisfying this
general constraint, can be turned into a dynamic structure. The reader is referred
to Overmars [11] for a detailed account of dynamization techniques.

Another part of the research is concerned with the problem of designing structures
that are stored and maintained in secondary memory. This problem often occurs
in database applications, where data structures are too large to be stored in main
memory, and therefore have to be stored in secondary memory.

Secondary memory is modeled as an array that is divided into blocks. In se-
condary memory, no computing is possible, and the only allowed operations are to
replace a block by another one and to add a new block at the end of the file. All
computations take place in main memory, and the blocks that store information
that is needed during a computation are transported to main memory. If a block is
changed during an operation, it is transported back to secondary memory. For each
block we need in a computation, we have to access secondary memory, which takes
a considerable amount of time in practice.

Therefore, the main problem is to partition the data structure into parts of a
small size, such that each operation needs information from only a few parts. Then,
by storing each part of the partition in one block in secondary memory, we can
perform operations at the cost of only a few disk accesses and a small amount of
data transport.

The best-known example of a data structure for secondary memory applications
is the B-tree, introduced in 1972 by Bayer and McCreight [3]. If a B-tree stores n
objects, and if it is stored in blocks of size m, then the operations search, insert and



delete can be performed at the cost of O(logn/log m) accesses to secondary memory
in the worst case.

In the first part of this paper, we consider the problem of storing and maintaining
a specific data structure—a range tree—in secondary memory. This data structure
was designed for main memory applications. It turns out, however, that the structure
can also efficiently be maintained in secondary memory. Furthermore, we believe that
the techniques applied to this one data structure can also be applied to many more
data structures.

The problem of considering range trees was posed by Mark Overmars, and the
research on this problem was done in close collaboration with him, Mark de Berg
and Marc van Kreveld.

In most studies that have appeared so far, it is assumed that the objects are
represented by only one data structure that is stored either in main memory or in
secondary memory, and all operations are performed on this one structure. In many
situations, however, we need to represent the data more than once—possibly on
different storage media—and have a multiple representation of the data.

In the second part of this paper, we consider one such problem: The reconstruc-
tion problem. After a system crash, or as a result of errors in software, a data
structure that is stored in main memory can be destroyed. Another case, in which
a main memory structure can be destroyed, is the regular termination of an appli-
cation program that uses the structure. In case of an application that is executed
on a system that is also used by other persons, the copy of a data structure in
main memory will be destroyed between two runs of the application program. In
both cases—system crash or regular termination—the data structure has to be re-
constructed from the information stored in secondary memory. This information is
called the shadow administration. So besides the data structure in main memory, we
represent the data in a shadow administration that is stored in secondary memory.

This leads to the problem of designing for a given searching problem, a dynamic
data structure that solves this searching problem, together with a shadow admini-
stration from which the data structure can be reconstructed in case of calamity.

This shadow administration does not have to support the same operations as the
main memory data structure. Only insertions and deletions have to be performed,
whereas on the main structure itself also queries are carried out. Furthermore, we
only require that the shadow administration contains enough information that makes
it possible to reconstruct the main structure.

The reconstruction problem was suggested by Ghica van Emde Boas-Lubsen.
Leen Torenvliet and Peter van Emde Boas investigated this reconstruction and opti-
mization problem for these functions in [19]. A few years later, the authors, together
with Leen Torenvliet and Mark Overmars studied this reconstruction problem in a
more general setting.

The rest of this paper is organized as follows. In Section 2, we introduce the mo-
dels of main and secondary memory. In Section 3 we introduce binary search trees
and the basic data structure of the first part of this paper, the range tree. In Sec-



tion 4, we show how range trees can be maintained in secondary memory, by giving
several efficient partitions. In Section 5, we consider the reconstruction problem.
In Section 5.1, we introduce a realistic general framework that we use to describe
solutions to the reconstruction problem, and we introduce the complexity measures
to express the efficiency of solutions. In Section 5.2, we consider a specific example
of a problem, the union-find problem. For this problem, we design an efficient main
memory data structure—in fact, this structure is optimal in a very general class of
data structures—in such a way that a copy of it can efficiently be maintained in se-
condary memory, thereby leading to a good solution to the reconstruction problem.
In Section 5.3, we apply the recent idea of deferred data structuring to the recon-
struction problem. This leads to another approach in the reconstruction procedure:
after a crash, the data structure is reconstructed “on-the-fly”, i.e., we immediately
proceed with performing queries and updates, and we reconstruct the data structure
during these operations. It should be mentioned that Sections 5.2 and 5.3 contain
results that are also interesting in other areas besides the reconstruction problem.
We finish the paper in Section 6 with some concluding remarks.

2 Storage and computation models

The medium in which all computations take place, and in which also data can be
stored, is called main memory. We model main memory as a Random Access Ma-
chine (RAM). The memory of a RAM consists of an array, the entries of which have
unique indices. The contents of such an array entry can be obtained at constant
cost, provided its address, i.e., its index, is known. We express the complexity of
a computation in main memory in computing time, which is the usual measure—in
terms of words—to express the length of a computation. (In the theory of algorithms
and data structures it is customary to express complexities in terms of words, not
in terms of bits.)

Our second storage medium is secondary memory. Just as for the RAM, secon-
dary memory consists of an array. Now, this array is divided into blocks of a fixed
size. This block-size can be chosen arbitrary. Each such block has a unique address,
and it is possible to access a block directly, provided its address is known.

A data structure is stored in secondary memory by distributing it over a number
of blocks of a predetermined size. In secondary memory no computing is possible.
Therefore, to perform an operation—a query or an update—on a data structure,
we send information from secondary memory to main memory—where computing is
possible—and vice versa. The following update operations are possible in secondary
memory:

e We can replace a block by another block, or a number of (physically) consecu-
tive blocks by at most the same number of blocks.

e We can add a new block, or a number of new blocks, at the end of the file.



Hence, we can only update complete blocks. It is also possible to transport (com-
plete) blocks from secondary memory to main memory. To transport a block to
secondary memory, we have to know the address where the block will be stored. Si-
milarly, a block can be transported to main memory only if its address in secondary
memory is known.

We express the complexity of an operation in secondary memory by two quanti-
ties. In practice, these two quantities dominate the time for the operation. The first
one—which is in general the most time consuming—is the number of disk accesses—
also called seeks—that has to be done: For each segment of consecutive blocks we
transport, we have to do one disk access. Hence, we can transport the entire data
structure in one disk access to secondary memory, provided we store the structure
in consecutive blocks. Also, it takes one disk access to transport a structure that is
stored in secondary memory in consecutive blocks, to main memory. In this latter
case, it is sufficient to know the address—in secondary memory—of the first block
of the segment that stores the structure: We transport all blocks “to the right” of
this first block, in which some information is stored. (Here we assume that blocks
that do not contain information of the structure, are empty.)

The second quantity is the transport time: We assume that an amount of n data
can be transported in O(n) transport time from main memory to secondary memory,
and vice versa. In general the constants in this estimate for the transport time are
incomparable to the constants in computing time.

We already said that in practice the time for one disk access is high. In order
to get an impression, for a typical standard computer, one disk access takes about
15 milliseconds, whereas data transport between main and secondary memory is
performed at a rate of 3 Mbyte per second. Therefore it is essential to limit the
number of disk accesses as much as possible.

3 Binary search trees and range trees

3.1 Binary search trees

The reader is assumed to be familiar with the basic terminology from graph theory,
especially trees. (See e.g. [2].) A binary tree is a rooted tree, in which each node
has either zero or two sons. The link between a node and its son is called an edge.
Nodes without sons are called leaves, whereas nodes that do have sons are called
internal nodes. The two sons of an internal node v are called left son and right son
The node v itself is called the father of the two sons. If v is a node of a binary
tree, we define the subtree of v as the tree having v as its root and that contains
all nodes—including v—that can be reached from v by following edges to sons. The
height of a binary tree is defined as the number of edges in the longest root-to-leaf
path. A binary tree consists of levels, where a level is the set of all nodes that are at
the same distance to the root of the tree. Here the distance of two nodes is defined
as the number of edges on the path that connects these nodes. The levels of a binary



tree are numbered according to their distance to the root of the tree. So the root
itself is at level 0, the sons of the roots are at level 1, etc.

A binary tree that stores a set of objects is called a node search tree, if the objects
are stored in the nodes of the tree—one object in each node—in such a way that for
each internal node v it holds that all objects in the left subtree of v are smaller than
the object stored in v, and all objects in the right subtree of v are larger than that
of v, according to some order.

In this paper, binary trees are almost always used as leaf search trees. That is, if
we use a binary tree to represent a set of objects, we store these objects in the leaves
of the tree, such that for each internal node v, all objects in the left subtree of v
are smaller than those in the right subtree of v. Internal nodes of the tree contain
information to guide searches. (For example, we can store in each internal node the
maximal element in its left subtree.)

Binary search trees can be used to solve the member searching problem. In order
to search for an object ¢, we follow a path in the tree starting at the root. In each
node on this path, we compare ¢ with the information stored at that node, and we
decide whether the search is finished—in case we have found ¢ or end in a leaf—or
proceeds to the left or to the right son. The complexity of this search procedure
depends on the height of the tree. Since the height of a binary search tree storing n
objects is at least logarithmic in n, the best we can hope for is a search complexity
of ©(logn). In the static case, we can build a perfectly balanced binary search tree,
which is a binary tree in which for each internal node v, the number of leaves in the
two subtrees of v differ by at most one. Such trees have logarithmic height, and,
hence, member queries can be performed in O(logn) time.

An insertion or deletion of an object p in a leaf search tree is performed by first
searching for p. This search ends in a leaf v. In case of an insertion, we give v two
new sons, one son containing p, the other containing the object that was stored in v.
We also update the search information that is stored at the nodes on the path to v.
In case of a deletion, let w be the other son of v’s father. Then we delete the two
leaves v and w, and we store the object that was stored in w in its father. Again,
we update the search information of the nodes on the search path. The complexity
of this update procedure is proportional to the height of the tree.

The problem is how to maintain a logarithmic height after objects have been
inserted and deleted in the tree. An interesting class of binary search trees for which
this is possible, was introduced in 1973 by Nievergelt and Reingold [10]:

Definition 1 Let a be a real number, 0 < o < 1/2. A binary tree is called a BB|a]-
tree, if for each internal node v, the number of leaves in the left subtree of v divided
by the number of leaves in the entire subtree of v lies in between o and 1 — a.

We give a simple technique to maintain BB[a|-trees after objects are inserted
or deleted. This technique—the partial rebuilding technique of Lueker [9]—gives an
amortized update complexity of O(logn). Here, amortized complexity is defined
as follows. Suppose we perform a sequence of m updates in a data structure that



initially stores n objects. The value of m is assumed to be large. Let T'(n,m) be
the time to process this sequence. Assume that this sequence is such that T'(n,m) is
maximal among all sequences of length m. Then the amortized update time is defined
as T'(n,m)/m. Hence, in amortized time bounds, we average over long worst-case
sequences of updates.

Suppose we want to insert or delete object p in the leaf search BB[aj-tree T'. We
search for p, until we end in a leaf. Then we insert or delete object p. Next, we
walk back to the root of T', and we find the highest node v that does not satisfy the
balance condition of Definition 1 anymore. We rebalance the tree by rebuilding the
entire subtree of v as a perfectly balanced tree. Clearly, if v is high in the tree, this
takes a lot of time. For example, if v is the root of T, the update takes O(n) time.
In this case, however, it takes {1(n) updates before we again have to rebuild the
entire tree. In this way, the amortized update complexity is bounded by O(logn).
To prove this, we need the following lemma, the proof of which can be found in [11,
page 53].

Lemma 1 Let v be a node in a BB[a/-tree that is in perfect balance. Let n, be the
number of leaves sn the subtree of v at the moment st gets out of balance. Then there
have been at least (1 — 2a)n, — 2 updates in the subtree of v.

Theorem 1 If in a leaf search BB/a/-tree, updates are performed by means of the
partial rebuslding technique, the amortized time for an update is bounded by O(logn).

Proof. Let U(n) denote this amortized update complexity for a BB|a|-tree with
n leaves. To perform an update, we start at the root of the tree, and we decide
whether we proceed to the left or to the right son. If the entire tree is not rebuilt,
we spend O(1) time in the root. Otherwise, we spend O(n) time to rebuild the tree,
since we have the objects already in sorted order. By Lemma 1, this rebuilding has
to be done at most once every {2(n) updates. It follows that the amortized time due
to our visit to the root is bounded by O(1). The amortized time we spend in the
subtree in which the update proceeds, is bounded by U((1 — a)n), since this subtree
has at most (1 — a)n leaves. Hence U(n) < O(1)+U((1 — a)n), from which it follows
that U(n) = O(logn). O

3.2 Range trees

Range trees are used to solve the following problem:

Definition 2 Let V be a set of points in d-dimensional space, and let ([z; : y;],[z2 :
Ya),---,[Ta : va]) be some hyperrectangle. The orthogonal range searching problem
asks for all points p = (p1,p2,..-,pa) tn V, such that z; < p; < y1,z2 < p2 <
Y2,---yTd Spd Syd~

The range searching problem has applications in e.g. computer graphics and
database design. As an example, consider a salary administration, in which the



information for each registered person includes age and salary. We can view each
person as a point in 2-dimensional space, with as first coordinate the age, and as
second coordinate the salary. Then a question like “give all persons with age between
20 and 25, having a salary between $ 30,000 and $ 35,000 a year” is an example of
a range query. Range trees were introduced by Bentley [4] and Lueker [9]:

Definition 3 Let V be a finite set of points in d-dimensional space. A d-dimensional
range tree T, representing the set V, s defined as follows.

1. If d =1, then T is a BB/aj-tree, containing the elements of V in sorted order
in its leaves.

2. If d > 1, then T consists of a BB[a/-tree, called the main tree, which contains
in its leaves the elements of V, ordered according to their first coordinates.
Each internal node w of this main tree contains (a pointer to) an associated
structure, which ts a (d — 1)-dimensional range tree for those elements of V
that are in the subtree rooted at w, taking only the second to d-th coordinate
into account.

Let T be a range tree, representing the set V, and let w be a node of T' (w is a
node of the main tree, or of an associated structure, or of an associated structure of
an associated structure, etc.). Let V,, be the set of those points of V that are in the
subtree of w. Then node w is said to represent the set V,,.

For example, a 2-dimensional range tree for a set V consists of a binary tree,
containing in its leaves the points of V ordered according to their z-coordinates.
For any internal node w of this tree, let V,, be the subset of V represented by w.
Then node w contains (a pointer to) a binary tree, representing the set V,,, ordered
according to their y-coordinates. See Figure 1.

The building algorithm: Let V be a set of n points in d-dimensional space. To
build a range tree for V, we order the points of V according to their d-th coordinates.

Let d > 1. We build a perfectly balanced (d — 1)-dimensional range tree for
the set V, taking only the second to d-th coordinate into account. This range tree
becomes the associated structure of the root of the main tree of the final structure.
Next, we divide the set V in two subsets V; and V;, of equal size, such that the first
coordinates of the points in V] are less than those in V3. This splitting is done in
such a way that the points in both sets V; and V; remain ordered according to their
last coordinates. Then we build recursively two d-dimensional range trees for the
sets V; and V;.

The query algorithm: Orthogonal range queries are solved as follows. We first
consider the one-dimensional case. Let [z, : ;] be a query interval. Then we search
in the binary tree with both z; and y;. Assume w.l.o.g. that z; < y;. We have to
report all leaves that lie between the paths to z; and y;. Let » be that node in the
tree for which z; lies in the left subtree of u, and y; lies in the right subtree of u.
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Figure 1: A two-dimensional range tree

Then for each node v # u on the path from u to z,, for which the search proceeds
to the left son of v, we report the leaves in the right subtree of v. Similarly, for each
node w # u on the path from u to y;, for which the search proceeds to the right son
of w, we report the leaves in the left subtree of w. Finally, we check the two leaves
in which the paths end.

Now let d > 1 and let ([z1 : y1], (22 : y2],.-.,[2a : ya]) be a query rectangle. Then
we begin by searching with both z; and y; in the main tree. Assume w.l.o.g. that
z; < y1. Let u be that node in the main tree for which z; lies in the left subtree of
u, and y; lies in the right subtree of u. Then we have to perform a range query with
the last d —1 coordinates on all points that lie between z; and y; in the main tree. It
is not difficult to see that it is sufficient to perform recursively a (d — 1)-dimensional
range query in the associated structure of the right son of each node v # u on the
path from u to z; for which the search proceeds to the left son of v, and in the
associated structure of the left son of each node w # u on the path from u to y, for
which the search proceeds to the right son of w. We also have to check the points
in the two leaves of the main tree in which the paths end. The answer to the entire
query is the union of the answers of these partial queries. Note that each point in
the query rectangle is reported exactly once.

The update algorithm: Suppose we want to insert or delete a point p in
the range tree. Then we search with the first coordinate of p in the main tree to
locate its position among the leaves, and we insert or delete p in all the associated
structures we encounter on our search path. If these associated structures are one-
dimensional range trees, we apply the usual insertion/deletion algorithm for binary
trees; otherwise we use the same procedure recursively. Next, we insert or delete



p among the leaves of the main tree. In order to keep the trees balanced, we use
Lueker’s partial rebuilding technique. After we have inserted or deleted p among the
leaves of the main tree, we walk back to the root. During this walk, we locate the
highest node v that is out of balance, i.e., does not satisfy the balance condition of
Definition 1 anymore. Then we rebalance at node v by rebuilding the entire structure
rooted at v as a perfectly balanced range tree.

Just as in Section 3.1, if in this update algorithm node v is the root of the main
tree, we have to rebuild the entire range tree. We saw in Lemma 1, however, that
in this case {}(n) updates must occur before we again have to rebuild the entire
structure. The following theorem—due to Lueker [9]—gives the complexity of a
range tree.

Theorem 2 A d-dimensional range tree for n points, can be built in O(nlogn +
n(logn)?1) time, and requires O(n(logn)?') space. Using this tree, orthogonal
range queries can be solved in O((logn)® +t) time, where t is the number of reported
answers. Insertions and deletions in this tree can be performed sn amortized time

O((logn)9).

Proof. We first prove the bound on the building time. Let V be a set of n points in d-
dimensional space. It takes O(n log n) time to order the points of V according to their
d-th coordinates. Let P(n, d) be the time to build a perfectly balanced d-dimensional
range tree for n points, that are ordered according to their last coordinates. Then
P(n,1) = O(n). Let d > 1. The building of the associated structure of the root
of the main tree takes P(n,d — 1) time. Using a linear time median algorithm (see
[5]), the splitting of the set V' in two equal sized subsets V; and V, can be done in
O(n) time. This splitting can be done such that the points in both sets V; and V,
remain ordered according to their last coordinates. Finally, it takes 2 P(n/2, d) time
to build two d-dimensional range trees for the sets V; and V;.

We have proved that P(n,d) = 2 P(n/2,d) + P(n,d —1) + O(n) for d > 1. It
follows that P(n,d) = O(n(log n)?"!). This proves the bound on the building time.
The bound on the size of the data structure can be proved in a similar way.

The bound on the query time follows by induction on d, since in the above
described query algorithm, the paths in the main tree give rise to O(logn) (d — 1)-
dimensional range queries. A one-dimensional range query takes O(logn + t) time,
since the height of a BB|al-tree is bounded by O(logn). We saw already that each
point in the query rectangle is reported exactly once.

Let U(n,d) be the amortized update time in a d-dimensional range tree for a set
of n points. Then, by Theorem 1, U(n,1) = O(logn). Let d > 1. To perform an
update, we start in the root of the main tree and we update its associated structure.
This takes, amortized, U(n,d — 1) time. Then we repeat the same procedure for the
appropriate son of the root, which is the root of a d-dimensional range tree for at
most (1 — a)n points. Therefore, this takes, amortized, at most U((1 — a)n, d) time.
If the root of the main tree gets out of balance, we rebuild the entire tree, which
takes O(n(logn)?~?) time. According to Lemma 1, this happens at most once every
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1(n) updates. So this rebuilding adds O((logn)?1) to the amortized update time.
We have proved that for d > 1

U(n,d) < U(n,d—1) + U((1 — a)n,d) + O((log n)*™1).

It follows that U(n,d) = O((logn)%). O

4 Maintaining range trees in secondary memory

4.1 The partitioning problem

In this section, we study the problem of storing and maintaining range trees in
secondary memory. If a data structure is too large to be stored in main memory, it
has to be stored in secondary memory. In Section 2, we saw that a data structure
is stored in secondary memory by partitioning it into a number of parts, and by
distributing the parts over blocks of some predetermined size. In order to answer
queries and to perform updates, parts of the data structure that are needed in the
operation are transported from secondary memory to main memory, and vice versa.
Since the complexity of an operation is expressed by the number of disk accesses
and by the amount of data that is transported, it is necessary to partition the data
structure into parts, such that queries and updates pass through only a small number
of parts, each of which has small size. This leads to the following definition.

Definition 4 A partition of a dynamic data structure, representing a set of n points,
is called an (f(n), g(n), h(n))-partition, if:

1. Each part has size at most f(n).

2. There are O(S(n)/f(n)) parts, where S(n) is the amount of space required to
store the data structure.

8. Each query passes through at most g(n) parts.
4. The amortized number of parts through which an update passes is at most h(n).

The relation of this definition to the above should be clear. It states, that we
can store the data structure in secondary memory, such that a query requires at
most g(n) disk accesses and f(n) x g(n) data transport. Also, an update takes—
amortized—at most h(n) disk accesses and f(n) x h(n) data transport.

In this section, we design various partition schemes for range trees. For simpli-
city, we only consider the two-dimensional case. We consider two types of partitions.
The first type are the so-called restricted partitions. In a restricted partition, only
the main tree is partitioned into parts, whereas associated structures are never sub-
divided. In such a partition, a node of the main tree and its associated structure are
contained in the same part. The second type of partitions are those in which also
associated structures are partitioned into parts.

11



4.2 Restricted partitions

We first consider restricted partitions of range trees. Although there exist more
efficient partitions, it is useful to consider these restricted partitions, because they
are a lot easier to implement. Also, the techniques developed here apply to other
data structures. In fact, any data structure that has the form of an augmented
binary tree, with some reasonable properties of the query and update algorithms,
can be partitioned in the way described in this section. Examples of such structures
are segment trees, structures solving set problems like maintaining a convex hull,
maintaining a Voronoi diagram, etc., and structures for adding range restrictions to
searching problems (see e.g. Bentley [4] and Overmars [11]).

Note that in a restricted partition, parts have size {1(n), because the associated
structure of the root of the main tree has size ©(n).

In order to be able to give efficient restricted partitions, we modify the definition
of range tree somewhat. Let V be a set of n points in the plane. We suppose that the
points of V = {p; < p2 < ps < ... < p,} are ordered according to their z-coordinates.
Partition V into subsets Vi = {p1,p2,...,Pa(n)}> V2 = {Ph(n)+1,- - - » P2h(n)}, tc., Where
h(n) = [n/logn].

Definition 5 A modified range tree, representing the set V, ts defined as follows.

1. Each set V; 13 stored sn a two-dimensional range tree T;. In the root of T; we
do not store an associated structure. Let r; be the root of T;. The roots are
ordered according tor; < ry <13 < ....

2. The roots r; are stored in the leaves of a perfectly balanced binary tree T'. Let v
be any node of T, representing the roots r;,r;41,...,7; (v may be a leaf of T').
Then v contains an associated structure, which is a BB[a/-tree, representing
the set V, UV, ;1 U...UV;, ordered according to their y-coordinates.

Query and update algorithms: First, note that the structure of a range tree
is not changed, only the balance conditions are different. Therefore, in a modified
range tree, range queries are solved in the same way as in ordinary range trees. An
insertion or deletion of a point p is performed as follows. First we walk down tree
T, to find the appropriate root r;. During this walk we insert or delete p in all
associated structures we encounter on our search path. Then we insert or delete p
in T;, using the update algorithm for range trees.

Suppose at the moment we build this structure, the set V contains n points.
Then each set V; (except for the “last” one) contains [n/logn| points. As soon as
at least one set V; contains either [n/logn]/2 or 2 [n/logn] points, we rebuild the
entire data structure.

Theorem 3 A modified range tree, representing n points, can be built in O(nlogn)
time, and takes O(nlogn) space to store. Range queries can be solved, using this
tree, in O((logn)? + t) time, where t ts the number of reported answers. Insertions
and deletions in this tree can be performed in amortized time O((logn)?).
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Proof. The bounds for the size, the building time and the query time can be
proved in the same way as in Theorem 2. If the entire data structure is not rebuilt,
an update takes amortized O((logn)?) time, since each set V; contains ©(n/logn)
points. The data structure is rebuilt at most once every }(n/logn) updates. Since
this rebuilding takes O(n log n) time, this adds O((logn)?) to the amortized update
time. O

Theorem 4 For a modified range tree, there ezists an (O(n), loglogn + O(1),
log log n + O(1))-partition.

Proof. Each tree T; represents ©(n/logn) points. So it has size O(n) and, hence,
it can form a part of the partition. This gives us O(logn) parts. Each level of the
tree T, together with its associated structures, forms a part, again of size O(n).
Since tree T is perfectly balanced, it has height loglogn + O(1). So this gives us
loglogn + O(1) parts. A query passes through all levels of T, and through at most
2 trees T; (since we store associated structures in the leaves of T'). Hence it passes
through loglogn + O(1) parts. An update passes through loglogn + O(1) parts, if
we do not have to rebuild the data structure. If we have to rebuild the structure,
O(log n) parts are involved. Since this has to be done at most once every {1(n/ logn)
updates, the amortized number of parts through which an update passes is at most
loglogn + O(1) + O((logn)?/n) = loglogn + O(1). O

Theorem 5 For a modified range tree, there ezists an (O(nloglogn),3,2 + o(1))-
partition.

Proof. The tree T, together with its associated structures, forms a part on its own,
of size O(n log log n). Furthermore, we put sets of [loglogn] trees T; together in one
part. A query passes through at most 3 parts: The part containing tree T', and at
most 2 parts containing trees T; (again we use the fact that we also store associated
structures in the leaves of T'). An update passes through exactly 2 parts, if the data
structure is not rebuilt. Since rebuilding of the structure has to be done at most
once every {}(n/logn) updates, and since O(logn/loglogn) parts are involved in
this rebuilding, the amortized number of parts through which an update passes is
2+0(1). O

Next we improve Theorem 4 considerably. We want to partition a modified range
tree into parts of size O(n). Since each tree T; has size O(n), it can form a part on
its own.

We are left with the tree T and its associated structures. We first sketch how these
structures are partitioned. The root of T', together with its associated structure,
forms a part. This removes the top level of T. Now consider the two sons v and w
of the root. Look at the subtree consisting of v and its two sons. It takes, together
with its associated structures, O(n) storage and, hence, can form a part. Similarly
for w. This removes two more levels of T'; so we are left with 8 sons. For each son
u, we make a part consisting of the subtree with root u, of depth 8, where the depth

13



of a tree equals the number of levels. This subtree, of course with its associated
structures, uses O(n) space. We now have removed 11 levels. So we are left with 21!
sons. For each son, we take a subtree of depth 2!!, with associated structures, which
takes O(n) storage. Next we are left with 22"'+!! sons, etc. Note that the tree T is
perfectly balanced. So a node on level i represents ©(n/2‘) points. We describe the
above more precisely.

The partition: Each tree T; forms a part on its own. Let ap = 0 and ap4; = 2%+
ar for k > 0. Let d be the height of tree T', and let m = min{: > O|a; > d}. The tree
T and its associated structures are partitioned as follows. For each k,0 < k < m -1,
there are 2°¢ parts. Each such part is a subtree of T, together with its associated
structures, having its root at level ag, of depth 2°*.

Before we state the result, we introduce a very slowly growing function. Let
(log)*n denote the k-th iterated logarithm. Then we define the function log* n by
log* n := min{k > 1|(log)*n < 1}.

Theorem 6 For a modified range tree, there exists an (O(n), 4log* n+0(1), log* n+
O(1))-partition.

Proof. We saw already that each tree T; has size O(n). Furthermore, there are
O(logn) such trees. Since the tree T is perfectly balanced, we have d = loglogn +
O(1). The tree T is partitioned into

m-—1
Z 98k — 0(2¢m_1) — O(zd) — 0(2108108n+0(1)) — O(log n)
k=0

parts. Each such part is a subtree of T, together with its associated structures,
having its root at level ay, of depth 2%*. Since this root represents n/2% points, such
a part has size O(n).

Now let ([z1 : y1],[z2 : y2]) be a query rectangle, and consider the path in T
from the root to z;. Look at a node v through which this path passes, and let
IT be the part of the partition containing this node. If this path proceeds to the
left son, we have to search the associated structure of the right son of v. If v is
not at the bottom level of II, these left and right sons are also contained in II.
Otherwise, these two sons are contained in two different parts. So, since the number
of parts through which this left path passes is m, the left path of the query passes
through at most 2m + 1 parts (2m parts in tree T, and one part containing a tree
T:). Hence the number of parts through which a query passes is at most 4m + 2.
It can be shown, that m < log*n + O(1). Therefore, a query passes through at
most 4log*n + O(1) parts. Finally, an update passes through m < log*n + O(1)
parts of T and through one part containing a tree T;, if we do not have to rebuild
the data structure. If we take the cost of rebuilding into account, we see that—
amortized—log* n + O(1) + O((logn)?/n) = log* n + O(1) parts are involved in an
update. O
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This result means that we can query and maintain a modified range tree, stored
in secondary memory, by transporting O(log* n) parts of size O(n). Observe that
although log’ n goes to infinity as n does, for all practical values of n, we have
log* n < 5. In fact, log* n < 5 for all n < 265536,

4.3 Changing range trees to make them partitionable

The best restricted partition into parts of size O(n) we have seen so far, is the (O(n),
O(log"* n), O(log* n))-partition of Theorem 6. Although it is proved in [16] that this
is optimal for restricted partitions of normal range trees, we show now that, making
some slight changes, the bounds can be improved.

Let V = {p1 < p2 < ... < pn} be a set of n points in the plane, ordered according
to their z-coordinates. We partition the set V into subsets V; = {p,,..., Ph(n) }>
V2 = {Ph(n)+1- - - » P2n(n) }, etc., where h(n) = [n/logn].

Definition 8 A reduced range tree representing the set V consists of the following.

1. Each set V; s stored in a two-dimensional range tree T;. Let r; be the root of
T:.

2. These roots r; are stored in the leaves of a perfectly balanced binary tree T'.

So in a reduced range tree, nodes that are high in the main tree (i.e., nodes
representing many points) do not have an associated structure.

Query and update algorithms: To perform a query with range ([z; : y1],[z2 :
Y2]), we do the following. We search with z; and y; in tree T for the appropriate roots,
say r; and r;. If i = j, we perform a query, with the rectangle ([z; : y1],[z2 : v2]),
in the range tree T;. Otherwise, if ¢ < j, we perform queries, with the strip ([z; :
00|, [z2 : y2]) in tree T;, and with ([—oo : y1],[z2 : y2]) in tree T;. Furthermore, we
perform one-dimensional range queries, with query interval [z, : y;] in the associated
structures of the roots of the trees T;;,,...,T;_1.

An insertion or deletion of a point p is performed as follows. First, we walk down
tree T, to find the appropriate root r;, and we insert or delete p in the tree T;, using
the update algorithm for range trees. Just as for modified range trees, we comple-
tely rebuild the data structure as soon as one set V; contains either [n/logn]/2 or
2[n/logn]| points.

Theorem 7 A reduced range tree, can be built in O(nlogn) time, and has size
O(nlogn). In this tree, range queries can be solved in O((logn)? + t) time, where
t 15 the number of reported answers. Insertions and deletions sn this tree can be
performed in amortized time O((logn)?).

Proof. The bounds on the building time, the space requirement and the update
time can be proved in the same way as for range trees (cf. Theorem 2). Consider
the query algorithm for reduced range trees as described above. The time to find
the roots r; and r; is proportional to the height of tree T, which is O(loglogn). If
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i = j, we have to query the tree T;, which takes O((log(n/logn))?) = O((logn)?)
time. If i < j, we query the trees T; and T}, which takes O((logn)?) time. Fur-
thermore, the one-dimensional range queries in the associated structures of the roots
of Tit1,...,T;—1 take O(logn x log(n/logn)) = O((logn)?) time, since there are
O(log n) such associated structures, and each has a query time of O(log(n/logn)).
Of course we have to add O(t) to the total query time for reporting the answers.
This proves the theorem. O

The partition of a reduced range tree: We put the tree T, together with
the associated structures of the roots of the trees T; in one part. Furthermore, each
tree T;, without the associated structure of its root, forms one part of the partition.

Theorem 8 For a reduced range tree, there ezists an (O(n), 3,2 + o(1))-partition.

Proof. The part that contains T and the associated structures of the roots of the
trees T;, has size O(logn +logn x (n/logn)) = O(n). It is clear that each T; without
the associated structure of its root has size O(n). There are O(logn) such trees.
Clearly, a query passes through at most 3 parts. Also, if the data structure is not
rebuilt, an update passes through exactly 2 parts. If the structure is rebuilt, which
happens at most once every {}(n/logn) updates, O(log n) parts are involved. Hence
an update passes, amortized, through at most 2 + o(1) parts of the partition. O

4.4 A partition in which updates pass through 3 parts

We now look at general partitions that also allow splitting associated structures. As
a result we can reduce the size of the parts to be asymptotically less than n.

Definition 7 Let g(n) and h(n) be integer functions, such that 1 < g(n) < n,1 <
h(n) < n, and g(n) x h(n) > n/logn. Let V = {p; < p2 < ... < p,} be a set of n
points in the plane, ordered according to thesr x-coordinates. We partition the set V
into subsets Vi = {p1,...,Pg(n)}, V2 = {Dg(n)+1,- - -1 P2g(n) }, €tc. Order the points of V
according to thesr y-coordinates. Let V = {q1 < g2 < ... < gn} be the resulting set.
We partition this set into subsets Wy = {q1,...,qnn)}, W2 = {@h(n)+1,---» @)}
etc. A (g(n), h(n))-range tree is defined as follows.

1. FEach set V; 1s stored sn a two-dimensional range tree T;. Let r; be the root of

T;.
2. these roots are stored in the leaves of a perfectly balanced binary tree T'. Let
v any node of T, representing the roots r;,ri41,...,7;. Then v represents the

set Vi; = V,UV,yU...UV,. Let I, = {k|V;; " W, # 0}. node v contains an
associated structure, representing the set V;;, having the following form. There
is a top tree T,, which is a BB[a/-tree, containing the set I, in its leaves.
Furthermore, each leaf k of this top tree, contains a BB[a/-tree T,,, containing
in its leaves the points of V;; N W,,, ordered according to their y-coordinates.
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Figure 2: A (g(n), h(n))-range tree. T,...,Tn/4(n) are 2-dimensional range trees, the
other trees are binary trees.

Observe that the associated structure of a node v of the tree T contains the points
of Urer, (Vi; N W) = V;;, ordered according to their y-coordinates. Also, for such a
node v, we have |I,| = O(n/h(n)). If r is the root of tree T, the set I, contains all
values of indices for which there is a set W,. Therefore, the top tree T associated
with the root is perfectly balanced. See Figure 2 for a pictorial representation of a
(¢9(n), h(n))-range tree.

Query and update algorithms: Since (g(n), h(n))-range trees have the same
structure as ordinary range trees, the query algorithm for this data structure will be
clear. An insertion or deletion of a point p is performed as follows. First we walk
down tree T', to find the appropriate root ;. During this walk, we have to update all
associated structures we encounter on the search path. The first associated structure
we encounter is that of the root r of T. We search in its top tree T}, to find the set
W, in which p has to be inserted or deleted. Then we update the corresponding tree

".- Now for each node v # r of T, that is on our search path, we do the following.
We search in the top tree T, for k. (We know the value of k.)

1. Suppose that k is present in this top tree. Then we insert or delete p in the
tree T),. If T, becomes empty, we delete k from the top tree T.

2. Otherwise, k is not present in the top tree. (Then, point p is not present in the
data structure, and therefore the update is an insertion: If p was present, then
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k was present in the top tree T.. If we had to delete the point p, we would have
noticed that it is not present during the update of the associated structure of
the root r, and the update procedure would have stopped.) In this case, we
insert k into the top tree, together with a tree T}, containing p.

Finally, point p is inserted or deleted in the appropriate range tree T;, using the
update algorithm for range trees.
In order to keep the data structure balanced, we completely rebuild it as soon as

one set V; contains either g(n)/2 or 2 g(n) points, or as soon as one set W; contains
either h(n)/2 or 2 h(n) points.

Theorem 9 Let g(n) and h(n) be as before. A (g(n),h(n))-range tree, representing
n points, can be built in O(nlogn) time, and takes O(nlogn) space to store. Using
this tree, range queries can be solved in O((logn)?+1t) time, where t is the number of
reported answers. Insertions and deletions in this tree can be performed in amortized

time O((log n)? + (nlogn)/ min(g(n), h(n))).

Proof. Each tree T; represents O(g(n)) points. Hence it has size O(g(n) log g(n)).
Since there are O(n/g(n)) such trees, they take together O(nlogg(n)) space. The
tree T takes O(n/g(n)) space. Each top tree T, where v is a node of T, has size
O(n/h(n)). Hence all top trees together have size O((n/g(n)) x (n/h(n))). Con-
sider a fixed level of T. The trees T, of the associated structures on this level
together represent the set V, and, hence, they have size O(n). Since T has height
O(log(n/g(n))), all these trees T, together take O(n log(n/g(n))) space. Hence the
size of the entire data structure is bounded by

O(nlog g(n)) + O((n/g(n)) x (n/h(n))) + O(nlog(n/g(n))) = O(nlogn),

since g(n) x h(n) > n/logn. The bounds on the building, query and update time
can be proved in an analogous way. O

The partition: We partition a (g(n), h(n))-range tree as follows. Each tree T;
forms a part on its own. Next we put the tree T together with all top trees T in one
part of the partition. Finally, for each fixed k, the trees T!,, where v ranges over all
nodes in T', are put together in one part. (Use Figure 2 to get an impression of this
partition.)

Theorem 10 A (g(n), h(n))-range tree, representing a set of n points, can be par-
titioned into parts of size ©(f(n)), where

f(n) = max (g(n) log g(n), (r/g(n)) x (n/h(n)), h(r)log(rn/g(n))) ,

such that a query passes through at most 5+ O(t/h(n)) parts, where t is the number
of reported answers, and the amortized number of parts through which an update
passes ts at most 3 + O((nlogn)/(f(n) x min(g(n), h(n)))).
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Proof. Each tree T; forms a part of size O(g(n) log g(n)). This gives us O(n/g(n))
parts. The tree T has size O(n/g(n)). There are O(n/g(n)) top trees, and each of
them has size O(n/h(n)). So the part of the partition containing T and all top trees
has size O(n/g(n)) + O((n/9(n) X (n/h(n))) = O((n/g(n)) x (n/h(n))). Take a
fixed k. All trees T!,, where v ranges over the nodes in T, form one part. Consider
a level of T. Let vy,vs,...,v,, be the nodes on this level. The trees T, .,...,T, ,
together represent the set W,, which has size O(h(n)). So for this fixed k, all trees

¥, together have size O(h(n)log(n/g(n))), since tree T has height O(log(n/g(n))).
Since there are O(n/h(n)) possible values for k, this gives us O(n/h(n)) parts, each
of size O(h(n) log(n/g(n))).

To summarize, we have O(n/g(n)) parts of size O(g(n) log g(n)), one part of size
O((n/g(n)) x (n/Rh(n))), and O(n/h(n)) parts of size O(h(n)log(n/g(n))). Then, in
order to get the desired partition, we merge parts into O((n logn)/f(n)) new parts
of size O(f(n)).

Now consider an insertion or a deletion of a point, such that the data structure
is not rebuilt. Let W} be the set in which the point is inserted or deleted. Then
this update passes through exactly three parts: The part containing T and the
top trees; the part containing the trees T.,; and a part containing the appropriate
range tree T;. If the structure is rebuilt, O((nlogn)/f(n)) parts are involved in the
update. Since this has to be done at most once every Q}(min(g(n), h(r))) updates,
it follows that the amortized number of parts through which an update passes is at
most 3+ O((nlogn)/f(n) x 1/ min(g(r), h(n))). The bound on the number of parts
through which a query passes can be proved in a similar way. O

Now we choose the functions g(n) and h(n) such that the sizes of the parts are
minimal.

Corollary 1 Let g(n) = h(n) = [n¥3/(logn)'/?]. In a (g(n),h(n))-range tree,
updates can be performed in amortized time O(n'/® x (logn)*/®). This range tree
can be partitioned into parts of size ©((nlogn)?/®), such that a query passes through
at most 5 + O(t x (logn)'/3/n*3) parts, where t is the number of answers to the
query, and the amortized number of parts through which an update passes is at most
3+0(1).

5 The reconstruction problem

5.1 A model for the reconstruction problem

To study and analyze solutions to the reconstruction problem, we use the following
conceptual model:

e DS is a dynamic data structure, stored in main memory.

e SH is a shadow administration from which the data structure DS can be re-
constructed. This shadow administration is also stored in main memory.
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e In secondary memory, we store a copy CSH of the shadow administration SH.

e Finally, there is extra information INF, that is used to update the shadow
administration SH and its copy CSH. This extra information is not needed
to reconstruct the data structure, and, hence, it may be destroyed in a system
crash. Therefore, it is only stored in main memory.

In practice SH often is not necessary and changes can be made immediately in
CSH.

Let DS be a dynamic data structure, and let SH, CSH and INF be the corre-
sponding additional structures. To perform an update we carry out the following
steps:

1. The data structure DS is updated.
2. The structures SH and INF are updated.
3. The copy CSH in secondary memory is updated.

Steps 1 and 2 take place in main memory. Therefore, all standard operations are
allowed for these two steps of the update procedure. The complexity of these steps
is expressed in computing time.

In step 3, data in secondary memory has to be updated. The structure CSH is
distributed over a number of blocks in secondary memory. After the update of SH,
we know which parts of CSH have to be updated. We update CSH by replacing all
blocks in which some information has to be changed by the corresponding updated
parts of SH. The complexity of this operation is given by the number of disk
accesses that has to be done; the amount of transport time which is proportional to
the amount of data that is transported; and the amount of computing time needed
to collect the information that is transported.

After a system crash, or as a result of program errors, the contents of main
memory (i.e., DS, SH and INF) will be destroyed. To reconstruct the structures,
we transport the copy CSH of the shadow administration to main memory. This
copy takes over the role of the destroyed shadow administration SH. Then we
reconstruct from SH the structures DS and INF. After the reconstruction, we
proceed with query answering and performing updates.

The reconstruction procedure takes a number of disk accesses, O(S¢gsy (n)) trans-
port time, where Sggy (n) is the size of CSH, and an amount of computing time.
We assume here that the copy CSH is stored in consecutive blocks. Therefore, the
number of disk accesses in the reconstruction procedure is equal to one.

An important issue in the reconstruction procedure is how we store the copy CSH
in main memory. Note that data structures contain pointers, which we consider to
be indices of memory locations. In order to guarantee that these pointers “point”
to the correct objects, each indivisible piece of information of CSH should be stored
in exactly the same location in main memory as its corresponding piece of SH was,
before the information was destroyed. In general, this is not possible, because the
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crash may also have destroyed physical parts of main memory where the information
was stored. In this case, we can of course store the information in another part of
main memory, in such a way that all addresses are shifted by the same amount.

We assume for simplicity, however, that a crash only destroys the pieces of infor-
mation; the memory locations themselves are not destroyed. Hence, these locations
can be used after the crash to store information again.

We store in secondary memory with each piece of information of CSH, the address
of its corresponding piece in main memory. In this way, the size of the structure CSH
is at most twice as large as the size of SH. Note that now the structure CSH is not
an exact copy, since it contains more information. To reconstruct the structures, we
transport CSH to main memory, and we store the information in the same positions
as SH was, using the addresses. Then all pointers indeed have the correct meaning,
and we can reconstruct DS and INF. It follows that the computing time needed
to reconstruct the structures is 1(Scsy (n)), since in main memory an amount of
Scsu (n) information has to be written in the correct positions.

5.2 An example: the union-find problem

The unson-find problem is one of the basic problems in the theory of algorithms
and data structures. In this problem we are given a collection of n disjoint sets
Vi, Va,...,V,, each containing one single element, and we have to carry out a se-
quence of operations of the following two types:

1. UNION (A, B,C): combine the two disjoint sets A and B into a new set na-
med C.

2. FIND(z): compute the name of the (unique) set that contains z.

The union-find problem has many applications, and many algorithms use the
problem in some way as a subroutine. Examples are algorithms for computing mi-
nimum spanning trees, solving an off-line minimum problem, computing depths in
trees and determining the equivalence of finite automata. (See [2].)

In this section we are interested in the single-operation time complexity of the
union-find problem. Blum [6] has given a data structure of size O(n), in which each
UNION operation can be performed in O(k+log, n) time, and each FIND operation
in O(log, n) time. Here k is a parameter, possibly depending on n. He also gives
a very general class B of data structures, that contains many implementations of
known algorithms for the union-find problem:

The class B: Data structures in class B are linked structures that are considered
as directed graphs. The algorithms that use these data structures for solving the
union-find problem should satisfy the following constraints:

1. For each set and for each element, there is exactly one node in the data struc-
ture that contains the name of this set or element.
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2. The data structure can be partitioned into subgraphs, such that each subgraph
corresponds to a current set. There are no edges between two such subgraphs.

3. To perform an operation FIND(z), the algorithm gets the node v that con-
tains z. The algorithm follows paths in the graph, until it reaches the node
that contains the node of the corresponding set.

4. To perform a UNION or a FIND operation, the algorithm may insert or delete
any edges, as long as Condition 2 is satisfied.

Theorem 11 (Blum [6]) Lei DS be any data structure in class B. Suppose that
each UNION operation can be performed in O(k) time. Then there is a FIND

operation that needs time
~ logn
logk + loglogn /

In this section, we give a variant of Blum’s structure that gives a better trade-off
between the times for UNION and FIND operations. This structure depends on a
parameter, and for many values of this parameter it is optimal in the class B.

The data structure consists of a number of trees, and has the property that for
a UNION operation we only have to visit the roots of two trees, together with their
direct descendants. Furthermore, a FIND operation does not change the structure.
This property implies that we can efficiently maintain a copy of the data structure
in secondary memory, leading to a good solution to the reconstruction problem.

5.2.1 The union-find data structure

Let V be a set of n elements for which we want to solve the union-find problem. That
is, we want to maintain a partition of V under a sequence of UNION and FIND
operations, where initially each set in the partition contains exactly one element.

Definition 8 Let k be an integer, 2 < k <n. A tree T is called a UF (k)-tree, if

1. the root of T has at most k sons,

2. each node tn T has esther 0 or more than k grandsons. (Here, a grandson of a
node v 18 a son of a son of v.)

Each set A in the partition of V is stored in a separate UF(k)-tree, as follows:
The elements of A are stored in the leaves of the tree. In the root, we store the name
of the set, the height of the tree, and the number of its sons. Each non-root node
contains a pointer to its father, and the root contains pointers to all its sons. Note
that the root contains at most k pointers. A UF (k)-tree storing a set of cardinality
one, consists of two nodes, a root and one leaf.

The find-algorithm: To perform an operation FIND(z), we get at constant
cost the leaf that contains element z. Then we follow father-pointers, until we reach
the root of the tree, where we read the name of the set that contains z.
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The union-algorithm: To perform the operation UNION (A, B, C), we get at
constant cost the root r resp. s of the tree that contains the set A resp. B. We
distinguish three cases.

Case 1. The trees containing A and B have equal height, and the total number
of sons of r and s is < k: Assume w.l.o.g. that the number of sons of s is less than
or equal to the number of sons of r. We change the father-pointers from all sons of
s into pointers to r, and we store in r pointers to its new sons. Next, we discard the
root s, together with all its information. Finally, we adapt in » the number of its
sons and the name of the set. It is clear that the resulting tree is again a UF (k)-tree.

Case 2. The trees containing A and B have equal height, and the total number
of sons of r and s is > k: In this case, we create a new root ¢. In this new root, we
store pointers to » and s; the name of the new set C; the height of the new tree,
which is one more than the corresponding value stored in r; and the number of sons,
which is 2. In the old roots » and s, we discard all information, and we add pointers
to their new father ¢. Again, the resulting tree is a UF (k)-tree.

Case 3. The trees containing A and B have unequal height: Assume w.l.o.g.
that the tree of B has smaller height than the tree of A. Let v be an arbitrary son
of ». Then we change the father-pointers from all sons of s into pointers to v. The
root s, together with all its information, is discarded. Also, we adapt the name of
the set stored in . Note that the height of the tree and the number of sons of » does
not change. Again, it is not difficult to see that the resulting tree is a UF (k)-tree.

Theorem 12 Let k and n be integers, such that 2 < k < n. Using UF (k)-trees, the
unson-find problem on n elements can be solved, such that

1. each UNION takes O(k) time,
2. each FIND takes O(log, n) time,

3. the data structure has size O(n).

Proof. We saw already that the UNION-algorithm correctly maintains UF (k)-
trees. Note that we can determine in constant time in which of the three cases we
are, since all information for deciding this is stored in the roots. Cases 1 and 3 of
the UNION-algorithm take O(k) time in the worst case. Case 2 can be handled in
O(1) time.

The size of a UF (k)-tree is linear in the number of its leaves, which shows that
the entire data structure has size O(n).

The time needed for a FIND operation is bounded above by the height of a
UF (k)-tree. The problem is that Definition 8 does not imply that the height of
a UF (k)-tree is bounded above by O(log, n). In fact, the reader is encouraged to
construct a UF (k)-tree having a height that is proportional to n/k. Of course, we
only have to give an upper bound on the heights of the trees that are made by the
UNION-algorithm. It can be shown, that the trees that are made by the UNION-
algorithm, have height at most 1 + 2[log, n]. (For a proof of this fact, see [14,15].)
Therefore, each FIND operation takes O(log, n) time in the worst case. O
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Since the given data structure is contained in Blum’s class B, Theorems 11 and
12 yield:

Corollary 2 The data structure of Theorem 12 ts optimal in Blum’s class B of
structures for the unson-find problem, for all values of k satisfying k = }((logn)¢)
for some ¢ > 0.

5.2.2 An efficient shadow administration

We store a copy of the data structure in secondary memory as follows. We reserve
a number of consecutive blocks of some predetermined size (see below), and we
distribute the structure over these blocks. Together with each indivisible piece of
information, we store in secondary memory the address of the corresponding piece
in main memory.

Since the root of a UF(k)-tree has at most k sons, the total size of this root,
together with all its sons and all the information stored in these nodes (i.e., pointers,
name of the set, height of the tree and number of sons), and all their addresses in
main memory, is bounded above by ck for some constant c. Also, there is a constant ¢’
such that the size of the entire data structure, together with all the addresses, is at
most c'n.

We reserve in secondary memory [(c'n)/(ck)] consecutive blocks of size 2ck,
starting at block 0. The copy of the data structure will be stored in these blocks.
We call a block free if at least half of the block is empty. The following lemma can
easily be proved.

Lemma 2 Among the reserved blocks, there s always at least one free block.

Initially we have n trees, each of them having one root and one leaf. We store
these trees in main memory. Copies of the trees are distributed over the reserved
blocks. For each tree, the root and its son, together of course with all their informa-
tion and their positions in main memory, are stored in the same block. We store in
main memory in the root of each tree, the address of the block in secondary memory
that contains the copy of this root. Finally, we maintain in main memory a stack
containing the addresses of the free blocks. By Lemma 2, this stack is never empty.
The stack will only be used for updating the structure in secondary memory; it is
not used for reconstructing the data structure. Therefore it may be destroyed in a
crash. Note that the amount of space in main memory remains bounded by O(n).

Since a FIND operation does not change the data structure, such an operation
does not affect the shadow administration.

A UNION operation is first performed on the structure in main memory accor-
ding to the algorithm of Section 5.2.1. Then the shadow administration in secondary
memory is updated. We take care that at each moment the following holds:

Invariant: For each UF (k)-tree, the root and all its sons, together with
all the information stored in these nodes, and all their positions in main
memory, are stored in the same block in secondary memory.
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Clearly, this invariant holds initially. (In the sequel we shall not state each time
explicitly that if we put information in a block, we also store with it its position in
main memory. It is clear how this can be done.)

The union-algorithm: The operation UNION (A, B, C) is performed as follows.
Let r resp. s be the root of the tree containing the set A resp. B.

Case 1. The trees containing A and B have equal height, and the total number
of sons of r and s is < k: Assume w.l.o.g. that the number of sons of s is less than or
equal to the number of sons of ». In the block containing » we remove this root and
all its sons. (Note that we can read the address of this block in the root r that is
stored in main memory.) If this block becomes free, we put its address on the stack.
In the block containing s we do the same. Next we take the address of a free block
from the stack, and in that block we add the root, together with its sons, of the
new tree. If this block remains free we put its address back on the stack. In main
memory, we store in the root of the new tree, the address of the block containing its
copy.

Case 2. The trees containing A and B have equal height, and the total number
of sons of » and s is > k: In the block containing r we remove this root, together
with all the information stored in it. If the block becomes free, we put its address
on the stack. In the block containing s we do the same. Then we add the new root,
together with its sons r» and s and all the information that these three nodes contain,
to a free block, the address of which we take from the stack. If this block remains
free its address is put back on the stack. In main memory we store in the new root
the address of the block containing its copy.

Case 3. The trees containing A and B have unequal height: Assume w.l.o.g.
that the tree of B has smaller height than the tree of A. In the block containing »
we change the name of the set from A to C. In the block containing s, we change the
pointers of the sons of s, and we remove the root s together with all its information.
If this block becomes free we put its address on the stack.

The reconstruction algorithm: To reconstruct the data structure, we trans-
port the entire file to main memory, and we rebuild the stack of free blocks. Then
each indivisible piece of information of the data structure is stored in the array
location where it was before the information was destroyed. This guarantees that
each pointer “points” to the correct position in main memory. Now we can proceed
performing UNION and FIND operations.

The following theorem summarizes the result.

Theorem 13 Let k and n be integers, such that 2 < k < n. For the data structure
of Theorem 12, solving the union-find problem on n elements, there erists a shadow
administration

1. of size O(n),

2. that can be masntained after a UNION operation at the cost of at most three
disk accesses, O(k) computing time and O(k) transport time.
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The data structure can be reconstructed at the cost of one disk access, O(n) transport
time and O(n) computing time.

5.3 Another approach: deferred data structuring

In the approach we have taken so far for solving the reconstruction problem, we
first completely rebuild the data structure DS and the corresponding structures SH
and INF, after a crash. Then we proceed with query answering and performing
updates. Hence, if the reconstruction time is high, it takes a lot of time before we
can proceed again. To avoid this problem, we introduce another approach to the
reconstruction problem. The idea is to maintain in secondary memory the objects
that are represented by the data structure DS. If we want to reconstruct this data
structure, we transport the objects to main memory. Then we immediately continue
with answering queries and performing updates. The data structure is built “on-the-
fly” during these operations. With each operation, those parts of the data structure
that do not exist at that moment, but that are needed in the operation, are built.
These parts can then be used for future operations.

This technique of building a data structure is due to Karp, Motwani and Rag-
havan (8], who call it deferred data structuring, although they do not apply this
technique to the reconstruction problem. Their motivation to design deferred data
structures is to solve a sequence of queries, where the length of the sequence is not
known.

5.3.1 The static deferred binary search tree

We first recall the static solution of [8] for the member searching problem.

Let V be a set of n objects drawn from some totally ordered universe U. We are
asked to perform—on-line—a sequence of member queries. In each such query we
get an object ¢ of U, and we have to decide whether or not g € V..

The algorithm that answers these queries builds a binary search tree as follows.
Initially there is only the root, containing the set V. Consider the first query gq.
We compute the median m of V, and store it in the root. Then we make two new
nodes u and v. Node u will be the left son of the root, and we store in it all objects
of V that are smaller than m. Similarly, v will be the right son of the root, and
we store in it the objects of V that are larger than m. Then we compare the query
object ¢ with m. If ¢ = m we know that ¢ € V, and we stop. Suppose ¢ < m. Then
we proceed in the same way with node u. That is, we find the median of all objects
stored in u, we store this median in u, we give u two sons with the appropriate
objects, and we compare ¢ with the new median. This procedure is repeated until
we either find a node in which the “local” median is equal to ¢, in which case we are
finished, or end in a node storing only one object not equal to ¢, in which case we
know that ¢ g V.

The first query takes O(n + n/2 + n/4 + ---) = O(n) time, since in each node
we have to find a median, which can be done in linear time [5]. During this first
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query, however, we have built some structure that can be used for future queries:
In the second query, we have to perform only one comparison in the root to decide
whether we have to proceed to the left or right son. In fact, in any node we visit
that is visited already before, we spend only one comparison.

This is the general principle in deferred data structuring: If we do a lot of work
to answer one query, we do it in such a way that we can take advantage from it in
future queries.

We now describe the algorithm in more detail. Each node v in the structure
contains a list L(v) of objects, two variables N(v) and key(v), and two pointers.
Some of these values may be undefined. The value of N(v) is equal to the number
of objects that are stored in the subtree with root v. The meaning of the other
variables will be clear from the algorithms below.

Initialization: At the start of the algorithm there is one node, the root r. The
list L(r) stores all objects of V. (This list is not sorted.) The value of N(r) is equal
to n, which is the cardinality of V', and the value of key(r) is undefined.

Expand: Let v be a node having an undefined variable key(v). In this case, the
list L(v) will contain at least 2 objects, and the value of N(v) will be equal to |L(v)|.
The operation ezpand is performed as follows:

First we compute the median m of L(v), and we determine the sets V; = {z €
L(v)|z < m} and V; = {z € L(v)|z > m}. Then we set key(v) := m and L(v) := 0.
Next we make two new nodes v; and v;. Node v; will be the left son of v, so we
store in v a pointer to v,. If |Vj| > 1, we set L(v,) := Vi, N(vq) := |V;| and
key(vy) := undefined. If |V}| = 1, we set L(v;) := 0, N(v;) := 1 and key(v,) := s,
where s is the (only) object of V;. (Of course, if V; = 0, we do not create the
node v,.) Similarly for v,.

Answering one query: Let g be a query object, i.e., we want to know whether
or not ¢ € V. Then we start at the root, and we follow the appropriate path in the
deferred tree, by comparing ¢ with the values of key in the nodes we encounter. If
one of these key values is equal to ¢ we know that ¢ € V and we are finished.

If we encounter a node v having an undefined variable key(v), we expand node v,
as described above. Then we proceed our query by comparing ¢ with the value
of key(v). If ¢ = key(v), we know that ¢ € V, and we can stop. Otherwise, if
g < key(v), we expand the left son of v, and we continue in the same way. If this
left son does not exist, we know that ¢ ¢ V. Similarly, if ¢ > key(v).

The following theorem gives the complexity of the algorithm. For a proof, see
Section 5.3.2.

Theorem 14 A sequence of k member querses in a set of n objects can be solved in
total time O(nlogk) if k < n, and O((n + k) logn) if k > n.

5.3.2 A dynamic solution

Consider the deferred tree of the preceding section. At some point in the sequence

of queries, the structure consists of a number of nodes. Take such a node v.
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Suppose key(v) is defined. Then the list L(v) is empty, the value of N(v) is equal
to the number of objects that are stored in the subtree with root v, and the value
of key(v) is equal to the median of the objects stored in this subtree.

If key(v) is undefined, node v contains a list L(v) storing a subset of V—those
objects that “belong” in the subtree of v—and the variable N (v) has the value |L(v)|,
which is at least two.

An update algorithm: We only give the insert algorithm. Deletions can be
performed similarly. See [13,14]. Suppose we have to insert an object z. Then
we start searching for z in the deferred tree, using the key values stored in the
encountered nodes. In each node v we encounter, we increase the value of N(v) by
one, since the object z has to be inserted in the subtree of v.

If we end in a leaf, we insert z in the standard way, by creating a new node for
it, and we set the variables L, N and key to their correct values. (A node v in the
deferred tree is called a leaf if N(v) = 1. So a node that is not expanded—such a
node does not have any sons—is not a leaf.) Note that if = is already present in
the deferred tree, we will have encountered it. In that case, we have to decrease the
values of the increased N(v)’s by one.

If we do not end in a leaf, we reach a node w with an undefined key value. Since
we have to check whether z is already present in the structure, we have to walk along
the list L(w). (The list L(w) is not sorted!) If z is present, we decrease the increased
N (v)’s. Otherwise, if = is 2 new object, we add it to the list, and increase N (w) by
one. Note that the walk along L(w) takes O(|L(w)|) time. Hence a number of such
insertions would take a lot of time. Then, our general principle—if we do a lot of
work, we do it in such a way that it saves work in future operations—is violated.
Therefore, after we have checked whether z is a new object, and—in case it is—after
we have added z to the list L(w), we expand node w. So if we again have to insert
an object in the subtree of w, the time for this insertion will be halved.

We are left with the problem of keeping the deferred tree balanced. For the class
of BB|a]-trees, the balance criterion depends only on the size of its subtrees. For our
deferred trees, the size of each subtree—whether it has been completely built already
or not—is known at each moment: It is stored in the variable N(v). Therefore, we
can generalize Lueker’s partial rebuilding technique to deferred binary search trees:

The partial dismantling technique: Our data structure is a deferred BB|a]-
tree. Updates are performed as described above. Rebalancing is carried out as
follows. After the insertion or deletion, we walk back to the root of the deferred tree
to find the highest node v that is out of balance. Then we dismantle the subtree
with root v. That is, we collect all objects that are stored in this subtree, and put
them in the list L(v). Furthermore, we set key(v) := undefined. Note that the value
of N(v) is already equal to |L(v)|. Finally, we discard all nodes in the subtree of v
(except for v itself).

Such a dismantling operation takes O(N (v)) time. Hence, if v is high in the tree,
this will take a lot of time. By Lemma 1, however, this does not occur too often.
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Theorem 15 A sequence of k < n member queries, snsertions and deletions in a
set of initially n objects can be performed in total time O(n log k).

Proof. Let f(n,k) denote the total time to perform a sequence of kK member queries
and updates in a set of initially n objects, with the above algorithms. According
to Lemma 1, there is a constant ¢, such that during a sequence of < cn updates,
the root of the deferred tree always satisfies the balance condition of Definition 1.
So in a sequence of k < cn queries and updates, the root of the tree is expanded
exactly once. The total time we spend in the root in such a sequence is therefore
bounded by O(n + k) = O(n). If k, operations are performed in the left subtree, we
spend an amount of time there bounded by f(n/2, ki), since the left subtree initially
contains n/2 objects. Similarly, we spend an amount of f(n/2,k — k;) time in the
right subtree. It follows that

f(n, k) < max {f(n/2,k) + f(n/2,k = ki)} +en if k < en,

for some constant ¢;. Each query or update takes O(m) time if m is the number
of objects. Therefore, a sequence of k operations takes O(k(n + k)) time, since the
number of objects is always < n + k. It follows that f(n,k) < c;k? if k > cn, for
some constant c,.

It can easily be shown by induction that f(n,k) = O(nlog k + k?). So a sequence
of k < \/n queries and updates takes O(n log k) time.

After \/n operations, we have spent already (}(n log /n) = 1(n log n) time. The-
refore, we build in the y/n-th operation a binary tree for the objects that are present
at this moment. So the \/n-th operation takes O(nlogn) time. The future operati-
ons are performed in this complete structure in the standard non-deferred way. This
proves the theorem. O

There are other techniques to dynamize static deferred data structures. These
techniques are generalizations of known methods for “ordinary”, i.e., non-deferred,
data structures. See [7,13,14].

5.3.3 Applications to the reconstruction problem

We now apply the technique of deferred data structuring to the reconstruction pro-
blem. Let DS be a dynamic data structure representing a set V of n objects. Sup-
pose that the structure DS can be built in a deferred way. We take for DS a shadow
administration that stores the objects of V in sorted order.

So let SH be a sorted list that stores the objects of the set V. Let INF be
a balanced binary search tree that contains the objects of V in sorted order in its
leaves. Each leaf—storing say object p—contains a pointer to object p in the list SH.

For the update algorithm of SH and INF, see [14]. We concentrate on the
reconstruction procedure. Suppose all information in main memory is destroyed.
Then we transport the structure SH from secondary memory to main memory, and
we build the binary tree INF. This can be done in one disk access, O(n) transport
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time and O(n) computing time. (Note that SH is a sorted list. Therefore the tree
INF can be built in linear time.)

At this moment, main memory contains the objects in soried order. We imme-
diately proceed with answering queries and performing updatcs in the structure DS,
in a deferred way. Therefore, the first operations take a lot of time, but the operati-
ons will be executed faster and faster the more operations are performed. The data
structure DS will be reconstructed gradually during the operations. Note that we
now start with the objects in sorted order; in Sections 5.3.1 and 5.3.2, we started
with an unsorted set of objects.

As an illustration, consider the range counting problem. Here, we are given a set V
of n points in the d-dimensional real vector space. For a given query hyperrectangle
([z1 :y1)y-- ., [®d : ya]) , we have to report the number of points in V that are in this
rectangle. That is, we want the number of points p = (py,...,p4) in V, such that
£y <Sp1 <Y1,y %8d S pa < Ya

A somewhat extended form of range tree can be used for solving range counting
queries in O((log n)?) time. This structure has size O(n(log n)?"!), and can be built
in O(n(logn)4~1) time.

Using a similar technique as in Subsection 5.3.1, it can be shown that a static
deferred version of this structure exists, such that a sequence of £ < n range counting
queries can be solved in O(n(logk)?~! + k(log n)?) time, if the points are ordered
according to one of their coordinates. (See also [8].)

Using the partial dismantling technique of the preceding section, a dynamic de-
ferred solution for the range counting problem can be obtained. In fact, then the
update algorithm for the dynamic deferred structure is almost the same as the update
algorithm for range trees. The result is expressed in the following theorem.

Theorem 16 A sequence of k < n range counting queries, insertions and deletions
in a set of instsally n points in d-dimensional space, snitially ordered according to
one of their coordinates, can be performed in total time O(n(log k)?~! + k(log n)?).

So we have a dynamic deferred data structure for the range counting problem.
Now take as a shadow administration the points represented by the structure, or-
dered according to one of their coordinates. Then after a crash, we reconstruct the
ordered list SH of points and the binary tree INF, and we immediately proceed
with performing operations in the deferred way. Of course, with each update, we
also maintain the shadow administration. In this new approach, the first operation
takes O(n) time. The data structure will become, however, more complete, and the
operations will be executed faster and faster the more operations are performed. In
fact, by Theorem 16, we can perform ©(n/logn) operations in O(n(logn)?"!) time.

Using the approach, in which we completely reconstruct the data structure before
we proceed with query answering and performing updates, it takes O(n(logn)?!)
computing time before we can proceed, since the structure has size O(n(logn)?!).
Then the first n/logn operations also take O(n(logn)?"!) time, because each ope-
ration takes, amortized, O((log n)?) time.
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Hence, in the approach of the current section, the first n/logn operations take
the same amount of time as we would have needed in the old approach. In this new
approach, however, we do not have to wait O(n(logn)?"!) time before we can start
with the operations.

6 Concluding remarks

We have given an overview of two data structuring problems: maintaining a dynamic
data structure in secondary memory and the reconstruction problem. In [12,14],
many more partitions of range trees are given. In [16], lower bounds are proved,
from which it follows that many restricted partitions are optimal.

In [14,18], more techniques are given for designing shadow administrations. For
example, there are general techniques to design shadow administrations for the data
structures solving large classes of searching problems, such as decomposable sear-
ching problems and order decomposable set problems.

In the present paper, we have considered only one multiple representation pro-
blem. Another case where data is represented more than once is investigated in
[14,17]: When we have a network of processors, each having its own memory, there
are situations in which each processor holds its own copy of a particular data struc-
ture. Updates have to be made in all copies. When the time for an update is high,
this is an unfavorable situation. In this situation, we are better off dedicating one
processor the task of maintaining the data structure and broadcasting the actual
changes to the other processors. Again we have a situation in which there is a mul-
tiple representation of the data. One data structure should allow for updates, and a
set of other structures answer queries. Of course, the query data structures must be
structured in such a way that they can perform updates, but they get the update in
a kind of “preprocessed” form that is easier to handle.

This multiple representation problem is related to the reconstruction problem.
Indeed, most of the techniques for designing shadow administrations can be gene-
ralized to this second multiple representation problem. For details, the reader is
referred to [14,17].
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