Type Inference

for

O’small

Andreas V. Hense
Fachbereich 14
Universitat des Saarlandes

Technischer Bericht Nr. A 06/91

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication and will probably be copyrighted if ac-
cepted. It has been issued as a Research Report for early dissemination of its contents.
In view of the transfer of copyright to the publisher, its distribution prior to publication

should be limited to peer communication and specific requests.

Type Inference for O’SMALL

Andreas V. Hense

Universitat des Saarlandes
Im Stadtwald 15
6600 Saarbriicken 11, Germany

hense@Qcs.uni-sb.de

October 23, 1991

Abstract

Type inference for the A-calculus with records was investigated by Rémy and also by
Wand. In this paper we specialize Wand’s approach in order to obtain principal types.
We develop a novel technique for the treatment of imperative constructs that fits well
with Wand’s type inference. The result is type inference for a A-calculus with records and
imperative features. One application of this result is type checking for the object-oriented
language O’SMALL.

keywords: polymorphic type inference, assignments, recursive types, row variables, sub-
typing, object-oriented programming

1 Introduction

Types are essential for the ordered evolution of large software systems [3]. This holds for all pro-
gramming langunage styles, be they imperative, functional, logical, or object-oriented. Type inference
lelps to avoid writing redundant information.

The type inference for the M-calculus, developed by Hindley and Milner [16, 19], has been extended
in various ways in the past. An extension concerned with imperative features was done for the impure
functional programming language ML [20, 21]. The resulting type checking is surprisingly restrictive
when it comes to assignments. Namely, it is impossible to define a reference to a polymorphic function.
Another extension has to do with subtypes. There are many different approaches [1, 2, 8, 18, 24, 9].
Mixing a general subtyping notion and imperative features can be problematic [2]. This may have

been one of the motives for Rémy [23] and Wand [28] to use extensible record types rather than
subtyping.

In this paper we will see that indeed we are able to have imperative features and extensible record
types, however some limitations suggest that extensible record types are not a complete ersatz for
subtypes. What we gain from our solution is complete! type inference for the language REc. Ric can
be the core of an object-oriented programming language with state. An example for such a language
is O’sMALL [15]. With the translation from O’SMALL to REC, it is possible to see the constructs of
object-oriented programming as mere syntactic sugar. The translation uses wrapper semantics [5] and
is described in section 6. For the semantics of REC we rely on the reader’s intuition. We introduce
O’sMALL by example (section 2) and list its properties relevant to type checking. Sections 4 and 5
show how to extend the type inference system of Wand by imperative constructs, and section 7
discusses what we have achieved in terms of type inference for O’sMALL.

2 O’small by example

We introduce the object-oriented programming language O’sMALL by examples. The O’SMALL pro-
gram in figure 1 is about points and circles with Cartesian coordinates in the plane. Points and circles

class Point inheritsFrom Base

idef var xComp := 0

| var yComp := 0

in meth x() xComp
meth y() yComp
meth move(X,Y) xComp := X+self.x; yComp := Y+self.y
meth distFromOrg() sqrt(sqr(self.x) + sqr(self.y))

meth closerToOrg(point) self.distFromOrg < point.distFromOrg
ni

class Circle inheritsFrom Point
def var radius := 0
in meth r() radius
meth setR(r) radius := r
meth distFromOrg() max(0, super.distFromOrg - self.r)

ni
def var p := new Point
var ¢ := new Circle
in p.move(2,2); c.move(3,3); c.setR(2);
p.closerToOrg(c); {results in FALSE}
p.move(0,-2); c.move(0,-2);
p.closerToOrg(c) {results in FALSE}

ni

Figure 1: O’sMALL program with points and circles

l‘complete’ means that types do not appear in programs.

can be moved. There are two class definitions: Point inherits from Base and Circle from Point. The
class Base is a class “without contents”.

Objects of class Point have two instance variables representing the Cartesian coordinates of the
point. A point object created with new is in the origin, because its instance variables are initialized to
zero. There are two methods for inspecting the instance variables otherwise invisible from the outside.
The method move changes the position of the receiver. In object-oriented terminology, the O’sMALL
expression p.m(a) stands for the sending of the message m with argument a to the receiver p, e.g.
c.move(3,3) moves a circle object ¢ by a certain amount. There is a method for the distance from
the origin and a method that returns TRUE if the receiver is closer to the origin than the argument.
We can omit the empty parentheses when calling a method without parameters.

The class Circle, which inherits instance variables and methods from Point, has an additional
instance variable for the radius, methods for reading and changing the radius, and it redefines
distFromOrg. For the redefinition of distFromOrg the distFromOrg-definition of the superclass
is referred to by super.distFromOrg. Thus, we can still retrieve what is just being redefined. The
inherited function closerToOrg has not been redefined in the class Circle, and it does not have to
be redefined in order to be consistent. In the body of closerToOrg the message distFromOrg is sent
to self. If the receiver of a closerToOrg-message is a circle the redefined distFromOrg-method is
chosen although closerToOrg has not been redefined. This is called late binding.

The types of the point object p and the circle object ¢ of figure 1 are as follows. We can imagine

the occurring variables as being quantified for each type.

p : [closerToOrg : [distFromOrg : num, R] — bool
distFromOrg: num

move : num — num — unit
x : num
y : num)

¢ : [closerToOrg : [distFromOrg : num, R] — bool
distFromOrg: num

move : num — num — unit
r : num

setR : num — unit

x : num

y : num)]

Record types are denoted by their list of components with the component’s types and optionally an
ellipsis. An ellipsis is labeled by calligraphic letters (row variables (section 3)) and stands for the
infinite set of labels that are not mentioned explicitly. The absence of an ellipsis means, the record
type is not extensible. The type unit corresponds to the domain with one element. unit is the result
type of assignment expressions. If a method ends with an assignment it has a type ending with unit.
As type checking is performed on REC, the types of methods appear in a curried version, although
parameters are in tuples in O’SMALL-programs. The type of x is in fact unit—num, but, as the
parentheses can be omitted when calling this method, we also omit the type on the left hand side of
the arrow.

Some properties of O’SMALL are important for type checking:
e state: Objects have assignable instance variables, visible only in the declaring class (encap-

sulated instance variables). A less common feature is that every variable has to be initialized.
This contrasts to many other languages where uninitialized variables have the value nil.

o classes: Classes are no first-class objects, i.e. they cannot be arguments to functions etc.

e inheritance: O’SMALL has single inheritance 4 la Smalltalk [11] using pseudo variables self
and super. An extension to inheritance with explicit wrappers [14] permitting the modeling of
certain cases of multiple inheritance is possible.

e parameter passing: Message parameters are passed and returned by reference. In the body of
a method, a formal parameter must not occur on the left hand side of an assignment. This is
like “Small” [12], the ancestor of O’SMALL.

e recursion: There is no direct recursion in declarations. Recursion (including mutual recursion)
is achieved by fixed point construction, i.e. via sending messages to self.

3 Purely functional type inference

Wand [28] considers type inference for a A-calculus with records. He extends the approach of Rémy [23]
by record concatenation and unbounded label sets. Thus, a reduction of the type checking of an object-
oriented language without state to Milner’s classical type checking [19] is achieved.

The type of a record is the record of the types of its components:? or, in other words, the type of
a record is a finite function L — (T'ype + absent) where L is an infinite set of labels. This does not
yield an algebraic signature because L is infinite. Rémy [23] turned this into an algebraic signature
and Wand [28] made the extension to infinite label sets, so that we get constructors with the following
kinds:

— : Type x Type = Type
[: Fzeld* x Extension = Type
absent : Field
pres : Type = Field
empty : FExtension

n is the number of labels actually appearing in the program under consideration. Therefore, the
constructor [] is finite. Unbounded label sets are represented finitely by a finite number of explicit
labels and an extension. An empty extension stands for infinitely many labels with absent fields;
an extension variable (row variable) stands for infinitely many labels with fields that can be either
absent or present. Labels are implicit in this notation. Record constants have principal types:

[1 : [llabsent,...,absent, empty]

PR | (TR O A e
_witha= - : [Ilfi,- s far--e» fn, Rl =t = [1lf1,-...,pres(t),..., fu, R]

The f; are variables of kind Field. Extension variables (row variables) are denoted by calligraphic
upper case letters. In _.a the underscore is a place holder for a record argument and the dot stands
for record selection. In _ with a = _ the first underscore is a place holder for the record to be updated
and the second underscore is a place holder for the new value. f, indicates that if a record is updated
at label a, the field may have been either present or absent before.

2this is meant informally and does not imply that types are values.

TAU) —mM8M8M8M— L:o,€A

() AFL:|og4) (?)

VAR) ——— D:Y €42 L

(VAR) Do (Lom)
Ap U{L: FE:

(aps) ApiliorBer

AFALE:c—T
AFE; :05717 AFE;:0

APP
() Al‘(ElEz):T
IF) AFE;:bool AFE;:7 AFEz:T
(Al if E; then E; else E3: 1

AFE;: A U{L: [A, FE;:
(LET) 1:0 L U{ .f ol}FE;:T

AFlet L=E; mE;: 71

A+-E;:0 ApU{D:Z}FE;:7
DEF ApuU{D:XZ},0l €
(DEH) AFdef D=E,inEg: 7 ([V(D= 3], o) €)

AFE:

B e (D:S € A, [A,0] €3)

AFD:=E:unit

Figure 2: Type inference rules

4 Principal types

O’sMALL does not have classes as first-class values. The full generality of Wand’s type inference
system, resulting in the nonexistence of principal types, is not necessary. The absence of principal
types results from expressions containing the record concatenation operator _@ _. The concatenation
operator appears in the translation function (section 6), but — in the case of single inheritance - it
can be eliminated and replaced by fieldwise extension using the constant _ with a = _. Now we are
back to record constants and they have principal types according to section 3.

5 Type inference rules for REC

This is the syntax of REC, the language for which we perform type inference. The variables range
over the following syntactic domains: E expressions, M method names (record labels), L identifiers
bound by) or let, D identifiers bound by def, R records.

E == L |D |R |E1E; |ifE;thenEzelse E3 |ALE |YE |
letL=E1inE2 |defD=E1inEg lD::E
R == [] |RwithM=E |RM

The semantics of REC is call-by-value, because of imperative features. Y is the fixed point operator.
We assume that Y and basic values are in the initial type environment. let declares a value and def
declares a variable. In this context, a variable is a reference to a value. Referencing and dereferencing

is done implicitly. Thus ‘return by reference’ and ‘pass by reference’ of O’SMALL correspond to
passing reference values in REC.

For type inference rules, we follow the notation used in [23]. Let the set of types be denoted by
T; types are first order kinded rational trees over the set of variables V = V¢ U V¥ and the set of
symbols S = CUB, where C = {—, [], absent, pres, empty}, B = {num, bool, unit} is the set of basic
types, V* the set of type variables, and V¥ the set of field variables. Type variables are denoted by
letters «, B, v; they have a subscript _g if they are generic. Types are denoted by letters o, 7; they
have a subscript _, if generic types are admitted, and a subscript _,, if all their type variables are not
generalizable. Non-generalizable type variables are needed for occurrences of imperative variables. A
type is generic if it may contain generic variables.

Definition 5.1 A graft is a mapping from V to T. We use finite grafts only. A graft u is finite
if {a | pa # a} is finite.

Rational trees can be regarded as the application of a finite graft to a variable ¢, whence they are
finitely representable.

Definition 5.2 A generic type 7, is a generic instance of a generic type o iff there exists a graft
w such that 7, = poy.

Grafts [17] operate on rational trees as substitutions operate on terms.

Definition 5.3 An imperative table T is a finite set of types (the possible types). A type oy, is
a common instance of an imperative table & = {oy,,...,0,,} (in symbols: T | 0,,) iff

Vi<i<n3p: pioy =0m

The type inference rules of figure 2 are applied to triples (A4, E, 7;) denoted by A+ E : 1,. A is the
environment of assumptions of the form L : o4 or D : . A; denotes all assumptions in A except
those for identifier z. E is an expression. We note

o [A, 0] the generalization of o with the assumption A. All generalizable variables of o that do
not occur in A are grafted by new generic variables.

e |o,4] the instantiation of 0. All generic variables of o, are grafted by new non-generic variables.

The inference is split into two parts. The type inference for records (R) is described in section 3,
and the type inference for the rest of the language in figure 2. How do the two parts fit together?
We can regard record expressions as constants already contained in an initial environment A4, and
thus as “defined by let”. Therefore the rule (TAU) applies to records. We assume that some further
predefined functions are already contained in the assumptions A. The fixed-point operator is among
them, and has type (1 — 7) — 7.

Readers familiar with type inference systems of purely functional languages will note the absence
of a generalization and an instantiation rule [7]. Instead generalization and instantiation are done
precisely when variables are declared or when they are used. This is common practice in systems for
imperative languages [27]. In contrast to functional languages where the two formulations lead to the
same set of inferable types, there are differences here.

We will focus on the “imperative” inference rules, because the others are more or less standard:

(VAR) When an assignable variable is encountered, its type must be a common instance of the
possible types in . The type variables of the common instance are not generalizable.

(DEF) When an assignable variable D is declared, a new imperative table I that contains o, is
constructed. The other generic types in X should be those that are inferred on the right hand
side of assignments to D.

(ASS) When an assignable variable D is assigned a value, we check whether the type of the right
hand side is contained in the possible types of D.

The algorithin has an effective way of constructing the imperative tables, and does not have to
take a guess. In the algorithm the checking of imperative tables is delayed until the end of the scope
of a variable, because only then do we know all possible types and all occurrences of the identifier.

6 The translation function

We have claimed that REC can serve as a basis language for object-oriented programming languages.
We give a translation from O’sMALL to REC. Comments and examples for the following basic
definitions can be found in [15].

Definition 6.1 We define a higher-order function _[_]_: (@ = 8 =) —» (§ — a) — (6§ —
B) — & — v that makes of a binary operator _*_: a — 8 — v its self-distributing version denoted

by _[*]-:(6 = a) = (§ = B) — 6 — v and defined by: a[*]| b= As.(a s) (b s)

Definition 6.2 A record is a finite mapping from a set of labels to a set of values. A record is
Ty v
denoted by with labels z; and values v;. All labels that are not in the list are
Ty > Uy
mapped to L. The empty record, where all labels are mapped to L, is denoted by []. Selection of
a component z in record r is denoted by r.z.

Definition 6.3 Let dom(r) = {z | r(z) #1}. The left-preferential concatenation of records is
defined by:

r(z) if ¢ € dom(r)

(ros)(z) =< s(z) if € dom(s) — dom(r)
1 otherwise

Definition 6.4 -b_: (Object — Object) — (Object — Object) takes a function on objects and
an object, and yields an object. It is defined by: fob=(fb)®b

As a result, the inheritance function® _ [—D_—, - : Wrapper — (Class — Class) together with a wrapper
w is suited for modifying classes, i.e.:

([»] w): Class — Class

3denoted in infix or prefix, and used with a slightly specialized type

The syntax of O’SMALL may be inferred from the definition of the translation function or it
may be found in [15]. The translation function is denoted by angular brackets and has the type
{-) : O’smaLL — REC . Although the concatenation operator & is used implicitly in the clause
for inheritance, we can do without it and replace it by a finite sequence of “with’s”. The translation
of primitives is not listed here:

K;...K, C)

class I; inheritsFrom I def V in M))
def Vy...Vy, in M)

var I := E))

let {K;)) in ...let (K,)) in ((C))

I; = (Aself.Asuper.((def V in M))) [>] (I2))
def (V) in ...def (V,,)) in (M)

(D) = (E)

M;...M,) =[] with {(My)) ... with {(M,))

meth I(I;...1,) C) = (1) = A (I). ... 2 (I.). (C)
Cy;...;Cal) = let newVar = {(C1)) in {(C3;...;Cn))
I:=E) = (1) := (E)

if E then C; else C3)) if (E)) then ((C,)) else {(C2))

def Vy...V, in C)) def (V1)) in ...def (V,.)) in ((C))
new E) Y (E)

E, O Ez)) = (E1) (O) (E2)

(
EI(E;...En)) = ((E)-(I)) (E1)) ---(En)

The expression before the inheritance operator in the second clause is a wrapper. self and super
are A-abstracted. When methods are translated they are curried. Correspondingly, message sends
(record selection) are translated into a curried version. newVar is a distinct new variable for every
C; that is translated; it is a dummy variable that cannot be used.

mn

SRR AR RN AN RN

7 Assessment

7.1 Recursive types

Figure 3 is a natural example* and demonstrates the need for recursive types. The objects of class
Pair together with the relation 1eq define a preorder. The objects of class OrderedPair together with
the relation leq and the equality eq define a partial order, because the equality has been redefined
and now leq becomes antisymmetric. The type t of the object p is circular and defined by the
following equation:

t =leq: [leq:t— bool, x: num,y: num, R] — bool
leq: [leq : ¢t — bool, x : num, y : num, R] — bool
set: num — num — unit
X : num
y : num]

The recursion in the type of ¢ stems from the redefinition of the equality in the class OrderedPair.
The argument e of self.leq must understand a message leq where the same self is an argument.

Let us see where the circular type comes from. The type check algorithm, which is not described
in this paper, proceeds in the following way when it checks the method eq in the class OrderedPair.
self gets the message leq(e) and thus e : o and self : [leq: o« — 3,R]. Now e gets the message
leq(self) and thus e : [leq:y — §,S]. Now the two types of e must be unified: e : [leq:y — §,5]

4a modification of an example in [14]

class Pair inheritsFrom Base
def var xComp:=0
var yComp:=0

in meth set(a,b) xComp := a; yComp := b
meth x() xComp
meth y() yComp

meth leq(p) (self.x + self.y) <= (p.x + p.y)
meth eq(p) self.x = p.x and self.y = p.y
ni

class OrderedPair inheritsFrom Pair
meth eq(e) self.leq(e) and e.leq(self)

def var p := new OrderedPair
in

p.set(7,3)
ni

Figure 3: O’SMALL program with recursive types

and self : [leq: [leq : v — §,S5] — B,R]. Also v must be unified with the type of self. The type
of self contains vy already, and we get a circular type.

The verification whether the type of self and the type of the actually provided record of methods
can be unified, is done at object creation time. It is possible to send messages to self that are not
defined in the class. This results in an abstract class [10]. The type checker accepts abstract classes
but rejects the creation of their objects (see also section 7.3).

7.2 Imperative features

We can have references to polymorphic functions like f in figure 4. This is more general than in
ML [6, 26].

class Id inheritsFrom Base
meth id(x) X

def var £ := new Id
var g := f

in £.1d(3);
f.id(true)

ni

Figure 4: O’SMALL program with assignments

As the types of occurrences of imperative variables have non-generalizable type variables, the
object g cannot be used in the same fashion as £. g can only be applied either to 3 or to true but
not to both.

10

I'here are limitations Lo our type system with respect to records. "Che program of figure 5, which
does not produce a run time error, is refused by the type checker. The types of a and b cannot be
unified because b has a method n that a does not have. The row variable mechanism, that works for
arguments of methods, does not work for objects that are known “in advance”, because these objects
have non-extensible record types, and the different possible types are unified in our algorithm. It is
not possible to give extensible record types to objects, because then, record selection of absent fields
would be accepted by the type checker.

Again in the general case one is not sure if the assignment has taken place, but if the only message
sent to a is m without arguments this cannot go wrong. In this example, objects of the subclass B
are of a subtype of the types of objects of the superclass A — i.e. if we define a subtype relation
appropriately. The problem is that we do not know of any simple way of integrating an explicit
subtype notion into the current framework. [24] may be valuable in this direction of research.

class A inheritsFrom Base
meth m() 0

class B inheritsFrom A
meth n() 0

def var a := new A

var b := new B

in

ni

Figure 5: O’SMALL program with inextensible types

7.3 Abstract classes

The recognition of abstract classes is a result of the type of classes (section 6): A class has type
Object—Object. The type on the left hand side of the arrow (the ezpected type) is the type of self
reference. The type on the right hand side of the arrow (the provided type) is the type of the methods
defined in the class. When a class is declared, the two types may be completely incompatible, and
the type checker may still accept the class. When an object of the class is created, a fixed point
operation takes place, and the two types are unified. Now, common components must be compatible.
The expected type is always extensible, whereas the provided type is always non-extensible. If the
provided type has a component that is not in the expected type, no problem occurs. However, if
the expected type has a component that is not in the provided type, there is a type clash resulting
form the non-extensibility of the provided type. The type checker has thus found an abstract class.
If a subclass defines the missing components appropriately, objects of the subclass can be created.
Summing up, it may be said that abstract classes are recognized “lazily”, i.e. the creation of instances
of abstract classes is refused.

In figure 6 class A is abstract. A has a subclass B that is not abstract. B has an instance b. The
inferred types are as follows:

11

class A inheritsFrom Base
meth f£(n)
i if n=1 then 1 else self.g(n-1) + 1 fi

class B inheritsFrom A
meth g(n)
if n=1 then 1 else self.f(n-1) + 1 fi

def var b := new B
in

b.£(9)
ni

Figure 6: An abstract class

A [g: int —int, R] — [f: int — int]
B : [f:int —int, g:int —int, S] — [f:int — int, g: int — int]
b [f: int — int, g : int — int]

8 Conclusion

We have presented type inference rules for a A-calculus with records and imperative features. By
eliminating the concatenation operator from the language of Wand we got principal types for the
purely functional language. Whether the principal-type property extends to imperative features
remains to be shown. We have implemented a prototypical type checking algorithm in ML [20, 13]
using ML-Yacc [25]. This algorithm realizes the type checking of references to polymorphic functions
by delayed unification and by restricting assignments to the declarative scope of variables. It is not
contained in this paper, as it is not clear if principal types exist.

The types of objects of subclasses are not in a subtype relation to the types of objects of their
superclasses [4]. The test whether a class is abstract comes as a gift with our type inferencer.

Our type system is best compared to Palsberg’s and Schwartzbach’s type inferencer [22], because
their example language is almost identical to O’SMALL. Their type inferencer is based on an entirely
different technique, using subtyping and fixed-point derivation rather than unification. A common
point is the absence of flow analysis. Their system is more flexible and can check programs that
we have to refuse, but it is not incremental. That means that the addition of a single class to a
system entails the reconsideration of the whole system. In our approach each class has to be checked
once, at the most. Our system is thus especially useful for incremental work, as is the case in rapid

prototyping.

Acknowledgements I am grateful to Reinhold Heckmann, Fritz Miiller, Joachim Philippi, Georg
Sander, Gert Smolka, and Reinhard Wilhelm for comments on drafts of this paper. Thanks to Frank
Pfenning for helpful hints concerning the inference rules.

12

References

)

I{. Bruce and P. Wegner. Subtype polymorphism and inheritance in object-oriented languages.
SIGPLAN Notices, 21(10):163-172, 1986.

L. Cardelli. Structural subtyping and the notion of power type. In Symposium on Principles of
Programming Languages, pages 70-79. ACM, Jan. 1988.

L. Cardelli. Typeful programming. Technical Report 45, Systems Research Center, May 1989.

W. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In Symposium on Principles
of Programming Languages, pages 125-135, San Francisco, Jan. 1990. ACM.

W. R. Cook. A denotational semantics of inheritance. Technical Report CS-89-33, Brown
University, Dept. of Computer Science, Providence, Rhode Island 02912, May 1989.

L. Damas. Type Assignment in programming languages. PhD thesis, University of Edinburgh,
1985. CST-33-85.

L. Damas and R. Milner. Principal type-schemes for functional programs. In Symposium on
Principles of Programming Languages, pages 207-212. ACM, 1982.

Y.-C. Fuh and P. Mishra. Type inference with subtypes. Lecture Notes in Computer Science,
300, 1988. European Symposium on Programming.

Y.-C. Fuh and P. Mishra. Polymorphic subtype inference: Closing the theory-practice gap.
Lecture Notes in Computer Science, 352:167-183, 1989. TAPSOFT ’89.

A. Goldberg and D. Robson. Smalltalk-80: the Language and its Implementation. Addison-
Wesley, 1983. revised in 1989.

A. Goldberg and D. Robson. Smalltalk-80: the Language. Addison-Wesley, 1989.

M. Gordon. The Denotational Description of Programming Languages: An Introduction.
Springer-Verlag, New York/Heidelberg/Berlin, 1979.

R. Harper, D. MacQueen, and R. Milner. Standard ML. Laboratory for Foundations of Computer
Science Report Series ECS-LFCS-86-2, University of Edinburgh, Mar. 1986.

A. V. Hense. Denotational semantics of an object-oriented programming language with explicit
wrappers. Technical Report A 11/90, Universitdt des Saarlandes, Fachbereich 14, June 1990.

A. V. Hense. Wrapper semantics of an object-oriented programming language with state. In
T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software, volume 526 of Lecture
Notes in Computer Science, pages 548-568. Springer-Verlag, Sept. 1991.

R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:29-60, Dec. 1969.

G. Huet. Résolution d’équations dans les langages d’ordre 1,2,...,w. PLhD thesis, Université
Paris 7, 1976. Thése de doctorat d’état.

L. A. Jategaonkar and J. C. Mitchell. ML with extended pattern matching and subtypes. In
Symposium on Lisp and Functional Programming, 1988.

R. Milner. A theory of type polymorphism in programming. Journal of computer and system
sciences, 17(3):348-375, 1978.

13

[20] R. Milner. The standard ML core language. In Polymorphism The ML/LCF/Hope Newsletter,
1985. Vol. II, No.2.

[21] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, Cambridge,
1990.

[22] J. Palsberg and M. Schwartzbach. Object-oriented type inference. Technical Report DAIMI
PB-345, Aarhus University, Mar. 1991.

(23] D. Rémy. Typechecking records and variants in a natural extension of ML. In Symposium on
Principles of Programming Languages, pages 77-88. ACM, 1989.

[24] R. Stansifer. Type inference with subtypes. In Symposium on Principles of Programming Lan-
guages, pages 88-97. ACM, Jan. 1988.

[25] D. R. Tarditi and A. W. Appel. ML-Yacc, version 2.0, Documentation for release version.
Carnegie Mellon University, Apr. 1990.

[26] M. Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, University of
Edinburgh, May 1988. CST-52-88 also published as ECS-LFCS-88-54.

[27] M. Tofte. Type inference for polymorphic references. Information and Computation, 89(1):1-34,
1990.

[28] M. Wand. Type inference for record concatenation and multiple inheritance. Information and
Computation, 93(1):1-15, July 1991.

	fb1991-06-0001
	fb1991-06-0002
	fb1991-06-0003
	fb1991-06-0004
	fb1991-06-0005
	fb1991-06-0006
	fb1991-06-0007
	fb1991-06-0008
	fb1991-06-0009
	fb1991-06-0010
	fb1991-06-0011
	fb1991-06-0012
	fb1991-06-0013
	fb1991-06-0014

