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Abstract 

This paper will present a method of formal synthesis to design correct recursive 
circuits by using semantics-preserving transformations of nets (SPTNs). Its theoret­
ical base is an algebraic calculus of nets. The calculus of nets is a hardware-specific 
calculus, and the transformations are circuit transformations thernselves. Thus, it 
is much better adapted to the synthesis domain. The start point of the method is a 
conceptually simple specification for the required function. This specification can be 
easily proved to be correct, thereby the perplexed problem of the specification vali­
dation can be avoided. The specification is described compactly and graphically by 
a small kernel of recursive equations, and the synthesis task is simplified to trans­
form these recursive equations in the kernel. Because only semantics-preserving 
transformations are allowed in synthesis procedures, the synthesis result is not ·only 
a hardware implementation, but also a proof of correctness. We will illustrate two 
ways to transform a basic sorter into a odd-even-merging sorter, one being based on 
local incremental transformations and the other being based on global partitions. 
The results show that there are circuits of practical interest, which can derived 
formally by using this method. 

1 Introduction 

Formal methods have widely been used to guarantee the correctness of circuits designed. 
Generally, formal methods can be dassified into three dasses in terms of the applied 
time. An ideal method is pre-synthesis verification. In fact, it is software verification 
for synthesis tools. But software verification can be performed now only for very small 
programs. Another most frequently used method is post-synthesis verification, such as 
model-checking and theorem-proving. A natural extension is to use formal method during 
synthesis. This method is called also formal synthesis. 

Formal synthesis means formally deriving an implementation from a given specifica­
tion within some logical calculus. In contrast to conventional synthesis, only correctness­
preserving transformations are allowed in formal synthesis. Therefore, not only the syn­
thesis result is a hardware implementation, but also its correctness is guaranteed in an 
implicit manner. There are two dasses of transformational derivations, one being based 
on a hardware-specific calculus and the other being based on a general purpose calcu­
lus. In the former, the transformations are circuit transformations themselves, whereas in 
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the latter, the transformations are logical transformations. Some design systems sup­
porting correctness-preserving transformations have been developed, such as RLEXT 
(Register Level EXploration) [KnWi92], DDD (Digital Design Derivation) [BoJ093] and 
RUBY [JoSh90], which are based on hardware-specific calculus, and LAMBDA/DIALOG 
[FFFH89], VERlTAS [HaLD89] and HASH (Higher order logic Applied to Synthesis of 
Hardware) [EiKu95], which are based on general purpose calculus. [Camp89] indicates 
how to use behavior-preserving transformations in high-level synthesis. A method of 
combining functional transformations with deductive theorem-proving techniques can be 
found in [Busc92]. [SaGG92] showed how machine-checked verification can support an 
approach to circuit design based on transformations. [KBES96] gives an excellent survey 
about formal synthesis. 

In this paper, we will present a formal synthesis method based on semantics-preserving 
transformations of nets (SPTNs). Its theoretical base is an algebraic calculus named 
free D-category, which was introduced by G. Hotz in 1965 [Hotz65]. This calculus is 
the first extension of boolean algebra in the direction of representing circuit structures, 
and has been proved to be universal in the sense where each computable function can 
be defined by factorizations. It was later generalized to a bi-category in connection 
with the development of the design system CADIC for parametrized hierarchical cir­
cuits [BeHK87, BeBH90, HoBZ95]. Based on this bi-category, a hardware description 
language 2dL has been developed to describe circuit designs hierarchically and graphi­
cally in CADIC [Moli88, HoRe96] . Consider a circuit laid out into a rectangle. A set 
of its topologicallayouts is called the net of this circuit, if all topologicallayouts in the 
set can be transformed each other by a sequence of geometrical deformations. Net is a 
basic date type of 2dL language. A recursive refinements of initial descriptions of nets 
will produce a final topologicallayout. This is the meaning of "hierarchical design" to be 
used in this paper. 

Our target is to provide a method to design correct recursive circuits. The start point 
of the method is a conceptually simple specification for the required function, such as 
some school methods for arithmetic circuits. This specification can be easily proved to 
be correct. Thus, the perplexed problem of the specification validation can be avoided. 
The specification has a compact and graphical description with a small kernel of recur­
sive equations by using 2dL language. The synthesis task is simplied to transform these 
recursive equations in the kernel by using semantics-preserving transformations of nets. 
The calculus of nets is a hardware-specific calculus, and the transformations are circuit 
transformations themselves. It is much better adapted to the synthesis domain. Differ­
ing from general hardware-specific calculus, the core of transformations of nets is small 
because some transformations are axiomatized and others can be derived from these ax­
iomatized transformations. The transformations can be classified two kinds. The first 
one is universal transformation, which is based on universal algorithms and independent 
of applied fields. The second one is synthesis-specific transformation. Synthesis-specific 
transformations are dependent on applied fields. Different synthesis problems need differ­
ent transformation rules, in which some rules can be obtained from exact algorithms, and 
the others are ad hoc transformations based on heuristic strategies. As an example, we 
will discuss how to use semantics-preserving transformations to derive a correct recursive 
implementation of odd-even-merging sorter from a basic sorter based on the principle of 
insertion. Two design approaches will be provided, one being based on local incremen­
tal transformations and the other being based on global partitions. In the former, both 
algorithmic transformations and ad hoc transformations are used, and in the latter; only 
several ad hoc transformations are needed. 
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The remainder of this report is organized as folIows: Section 2 is abrief introduction 
to the calculus of nets and the hardware description language 2dL. In section 3, we define 
semantics-preserving transformations of nets, and discuss some important transformation 
rules. Two approaches of designing correct recursive odd-even-merging sorter are shown 
in section 4. Finally, section 5 gives conclusions and points out further work. 

2 Formal Description of Hardware Circuits 

In this section, we will present only the necessary underlying knowledge. More basic 
theory can be found in [Hotz65, Hotz74, Ko1l86, Moli88, HoRe96, HoZh97J. 

2.1 Hardware description language 2dL 

Hardware description language 2dL describes circuit designs hierarchically and graphically 
by abstract floorplans. It is fundamentally two-dimensional. 2dL can be used simultane­
ously to describe functional properties and topological structures of circuits. The basic 
elements of the 2dL langnage are rectangles and polygonal lines in the plane. On the four 
boundaries of a rectangle there are the connectors. We define the four boundaries of each 
rectangle as the northern, southern, western, and eastern boundary, and assurne that the 
connectors on northern and southern boundaries are assigned from left side to right one 
and those on western and eastern boundaries from top side to bottom one. Furthermore, 
each polygonal line links up exactly two connectors. Two different polygonal lines have 
no common point. 

Figure 1: 

Net is a basic date type in 2dL, and abstracted as a set of rectangles and polygonal 
lines. A rectangle is used as the frame of net. Other rectangles represent basic cells or 
macro cells, and are placed within the frame. These cells are called the nodes of the net. 
Polygonal lines represent interconnections between different cells and between cells and 
external contacts. The set of all nets is defined as N. An example of net is shown in 
Figure l. 

Each connector has two attributes, one being the type attribute, and the other being 
the direction attribute. 

Types name the kinds of connectors. The type of a connector s is denoted by r( s). 
There are two kinds of types, one being the atomic types, and the other being the bundled 
types. Examples of atomic types are baal, int., and real, which denote boolean, integer, 
and real number, respectively. Bundled types are built from atomic types by using the 
concatenation operation ".". For example, /iQQl.3 = /iQQl. • /iQQl. . baal is a bundled boolean 
type. We will employ the concept of parametric type. r( s) = QQQln nEIN is an example 
of parametric type. For convenience, we use 11 to represent booln as weil. In many cases, 
we will also use type variable. 

w(s) is used to denote the direction attributes of the connector s. We stipulate that 
each bundled connector has exactly one direction. There are three kinds of directions: 
input, output and bi-direction (or non-direction), which are denoted by 1, -1, and 0, 
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respectively. We define Ü = {O, 1, -1}. Let Sl and S2 be two connectors. If W(Sl) = 
-W(S2) or W(Sl) . W(S2) = 0, the two connectors are called compatib/e to each other in the 
directions. 

The type and direction of a polygonalline z is determined by the connectors that are 
incident to z. Obviously, z can be connected to two connectors Sl and S2 , if and only 
if Sl and 32 are compatible to each other in the directions. If z is connected to bundled 
connectors, it is called a bund/ed po/ygona//ine. Suppose z is connected to two connectors 
Sl and S2' Then, it holds that r(z) = r(sl) = r(s2)' If r(sl) and r(s2) are parametric 
types or type variables, the condition r(z) = r(stl = r(s2) is regarded as a "consistency 
condition of types" . 

2.2 Operations of nets 

Let T be the set of all types. Suppose T' = {(tb t2 , "" tk) I t; E T, i = 1,2, ... , k, kEIN} 
is the set of all strings generated by T. The concatenation between (t1, " ', tk) and 
(t't, .. . ,t'm) E T' is represented by (t1, .. · , tk)· (~, ··· ,t'm) = (t1,· .. ,tk,~,···,t'm) E T'. 
c is used to denote the empty word. Then, (T', ·) is a free monoid generated by T. We 
use .p(t) to denote the range of the type t E T, and consider .p(u . v) as .p(u) x .p(v) for 
u, v E T'. For example, .p(QQQI) = {O, 1}, and .p(QQQI . QQQI) = "ifJ(bool) x .p(QQQI). 

Given BEN. Let N be a mapping N : N -+ (T x Ü)' such that N(B) = 
(N,(B) , Nw(B)). N(B) is called the norihern interface of B . If N,(B) = c, Nw(B) 
is not existent and N(B) is reduced to N(B) = (N,(B)) = c. Similarly, we can define 
southern, western and eastern interfaces for B, and denote them with S(B), W(B), and 
E(B), respectively. 

Two kinds of composition operations are defined on the set of nets, one being the 
horizontal operation e, and the other being the vertical operation <D. 

Let F, GEN. The vertical operation F <D GEN is defined by placing F above G, 
iff S(F) and N(G) satisfy: 

1. Sw(F) * Nw(G) E {O, -1}', where * is the element multiplication of Sw(F) and 
Nw(G) ; 

2. S,(F) = N,(G). 
For the second condition, if both S,(F) and N,(G) have explicit types, they must 

be equaI. If one of them contains parametric type or type variable, the condition can be 
regarded as a consistency condition. 

Similarly, we can define the horizontal operation Fe GEN by placing F on the left 
side of G, provided E(F) and W(G) satisfy 

1. Ew(F) * Ww(G) E {0,-1}', where * is the element multiplication of Ew(F) and 
Ww(G); 

2. E,(F) = W,(G). 
The algebraic structure (N, e, <D) is called a bi-category. The operations <D and e 

are associative. They fulfill the law of distribution which represents two possibilities of 
decomposing the nets (see Figure 2). -

•

.... .......... ~ .~ 11"'" ":r"~ ": 
;::: ::: :::::::.:: .. :~ - i ; i i 
~ .... ~ _. ___ .. ~. ..• ; .... 0 .. ; L.~ _.; 

Figure 2: 
Therefore, it holds: 
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Lemma 1 Given E , F, G, H E N with E e F, GeH, E CD G and F CD H defined, 
respectively. Then, 

(EB F) CD (G eH) = (E CD G) e (F CD H) 

Therefore, all combinational circuits can be formally defined as nets in N: 
(1) C c N; 
(2) V F, GEN. If F 0 G is defined, F 0 GEN; 
(3) V F, GEN. If F e G is defined, Fe GEN. 
Another important operation is the refinement of nets. It is a homomorphic mapping 

in our calculus. We consider the bi-functor "'I = ("'11, "'12) in (N, e, CD). SuppOSe"'l1: 
(T xli)' --t (T xli)' is a monoid homomorphism, for which "'I1(t) = t, Vt E T and "'I1(W) = 
E' ==} W = E' Vw. Then, TJ2 : N --t N is a refinement of nets, iff X(TJ2(F)) = "'I1(X(F)), 
VF E N, where X E {N,S, W,E}. 

3 Semantics-Preserving Transformations of Nets 

In this section, we will discuss the properties of the algebraic calculus of nets, the classifica­
tion of semantics-preserving transformations and how to generate correct transformation 
rules by using the production system of transformations. 

3.1 Interpretation of net 

In order to be able to treat the general cases, such as bistable circuits and oscillating 
circuits, in which there are no-monotone information flows, we use relation to interpret 
semantics of nets. That is, the semantics of a net is given by the set of all possible 
configurations of its external connectors. In these configurations the circuit is stable. The 
formal definition of the semantics of nets can be found in [HoRe96]. Simple relations can 
be combined irito more complex ones. The relations of all single node within a net compose 
the relation of the net. This construction defines a mapping of nets. A bi-category is a bi­
functor cp, a structure respecting mapping. A semantics-preserving transformation ci> is a 
substitution of subnet F within a net by another subnet F' such that (1) X(F) = X(F'), 
XE {N, S, W, E}; (2) The semantics relations defined by cp(F) and cp(F') are the same. 
Special semantics-preserving transformations can be described by bi-functors, which are 
mappings from N to N. We use recursion of such bi-functors to define nets hierarchically. 

3.2 Classification of transformations 

The calculus of nets is hardware-specific calculus, and the transformations are the circuit 
transformations themselves. It was proved that, for combinational circuits, there is a 
complete set of semantics-preserving transformations of nets [Hotz65, Clau71]. [Moli88] 
further indicated that the complete set of semantics-preserving transformations is not an 
enumerable relation system in the general case. But differing from general hardware­
specific calculus, the calculus of nets has small core of transformations, because some 
transformations are axiomatized and the other transformations can be derived from these 
axiomatized transformations by using general algebraic rules. 

Transformations can be classified in terms of applied fields or approaches generating 
transformation rules. According to applied fileds, they can be classified two classes, one 
being universal transformations and the other being synthesis-specific transformations. 
Based on approaches generating transformations, they can be classified also two classes, 
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one being algorithmic transformations based on exact algorithms and the other being 
ad hoc transformations based on heuristic strategies. 

3.2.1 Universal transformations 

Universal transformations are usually algorithmic transformations, and independent of 
the applied objects. Some universal transformation most in use are introduced as folIows: 
(a) ITE Transformation 

An important universal transformation is the "If-Then-Else" operation. Given F E N. 
Suppose u = (tb"" tk) and v = (t~, ... , t~) E T'. Let x have boolean type and f be the 
semantics of F. Then, we have 

f(u, x) = x . f(u, 1) + x· f(u, 0) 

This is a description of "H-Then-Else" for the semantics f with respect to x. We call it 
the [TE transformation. Figure 3 gives its diagram. 

~, 
TI 

11 t~ 

o 

<=> 
'-r:::F::..r.'::T' 

Figure 3: 

Especially, if u and v are two strings of boolean type bool, the ITE transformation is 
reduced to the so-called Shannon transformation: 

f(u, x) = x 1\ f(u, 1) V x 1\ f(u, 0) 

In this case, ITE transformation is a generalized decision diagram of BDD [LaBr92). 
The net ITE[n) is composed of n multiplexers, and can be constructed recursively by 

two subcircuits ITEl~J and ITEr~l. ITE I consists of one multiplexer MUX, and serves 
as base of the induction. The net Order[n) has the function to order the input sequence 
{tl, t21"', tt, ti+1l"', tn - ll tn } into the output sequence {tl, tj+b t2, t~+2,"" ti' tn }. 

Their graphical equations are shown in Figure 4. 

(b) Replacing: 

• • 
I~-! - I [ill]! ! ! ! 
- llEl~ 1TE1~ - """,.,> 

rrEllIl-> 

I I I I • ! • , 
Figure 4: 

cB -
" 

Figure 5: 
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(c) Merging: 

Figure 6: 

3.2.2 Synthesis-specific transformations 

In synthesis-specific transformations, some are algorithmic transformations and another 
are ad hoc transformations. 

ad hoc transformations are widely used in formal synthesis practice. They usually 
come from designer's experiences and are mainly based on heuristic strategies. Generally, 
they are individual transformations and lack interrelations. The correctness of ad hoc 
transformations can be proved by manual proof or by mechanical checkers. 

To a great extent , algorithmic transformations in synthesis-specific transformations 
are dependent on synthesis procedures. The correctness oftransformations Can be guaran­
teed by algorithms themselves, but their applied ranges are limited within given objects. 
However, we notice that there are interrelations among these transformations. Some 
transformation rules can be derived by another known rules. For synthesis problem spe­
cially designated, some simple rules can be composed of only several active and passive 
nets. Based on these simple rules, we can further derive some complex rules. Therefore, 
we can obtain the required rules by a production system of transformations. 

3.3 Production system of transformation rules 

If a net F E N is used to generate another net, F is called a producer. If two nets have 
same semantics, we call them equivalent. A production system of transformation rules is 
a smallest set of producers, which can be used to derive a required set of equivalent nets. 
Arbitrary a pair of nets in the set of equivalent nets make up a pair of semantics-preserving 
transformations of nets. 

Now, we take sorting net as example to illustrate how a production system of trans­
formations can be constructed. 

We have convention that for an n-element sorting net, elements Xl, X2, .•• , Xn enter 
to top, and output from bot tom in order Zl, Z2, ... , Zn from left to right. The comparator 
GMP is a basic active net. lt sorts its two input elements Xl and X2 in order, i.e., Zl = 
min{xl,x2} and Z2 = max{xl,x2}' For convenience, we can use a horizontal connection 
between two lines to represent GM P as shown in Figure 7(a). We will alternatively use 
two representations below. An example of 3-element insertion sorting net represented by 
the GMP cells and the symbols respectively is given in Figure 7(b). !fnets A and B can 
be derived each other by using semantics-preserving transformation rules of nets, we use 
sign "A ~ B" to represent it. 

( a) (b) 

Figure 7: 
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3.3.1 Producing 3-element sorting nets 

A 2-element sorting net consists of only an active cell GMP. In order to obtain all 3-
element sorting nets, we construct a production system, which consists of three basic cells: 
two cross !ine cell Gross, one vertical !ine cell "I" and the basic comparator GM P (see 
Figure 8). Where, the cell Gross has function Gross(a, b) = (b, a). 

DJ 
Figure 8: 

Based on these basic cell, we can generate all 3-element minimum-comparison net-
works by using the insertion algorithm of sorting networks as folIows: 

Sortl[3] = (GMPe I) <D (I eGMP) <D (GMPe I) 
Sort2[3] = (GMP e I) <D (Gross el) <D (I e GMP) <D (Gross e I) <D (I e GMP) 
Sort3[3] = (I e GMP) <D (I e Gross) <D (GMP e I) <D (I e Gross) <D (GMP e I) 
Sort4[3] = (I e Gross) <D (GMP e I) <D (I e Gross) <D (GMP e I) <D (I e GMP) 
Sort5[3] = (Gross e I) <D (I e GMP) <D (Gross e I) <D (I e GMP) <D (GMP e I) 
Sort6[3] = (I e GMP) <D (GMP e I) <D (I e GMP) 

Thier schematic equations are shown in Figure 9. We define 
SOR:I'3 = {Sortl[3], Sort2[3] , Sort3[3], Sort4[3], Sort5[3], Sort6[3]} 

SOR:I'3 is a set of equivalent nets for 3-elemnet sorters. It is complete, and arbitrary two 
nets in SOR:I'3 compose a pair of semantics-preserving transformations. 

rn1J CM C~ [mJ CM'~ I
',' " ~" , " 
~p C~ 

501"1.1[3] So<!2(31 5ort3[3J 

rn:n I:: " rnn [I":;" 
LI1iJ CMP l1ilJ CMP 

CMP CMP 

'I ~ ~ ~ ~ q 

Son4)31 SortS[3] 50n6[3] 

Figure 9: 

3.3.2 Producing 4-element sorting nets 

With the aid of 3-element sorters we can derived same 4-element sorters. Now we prove 
an useful Lemma. 

Lemma 2 The 4-element odd-even-merging sorter can be derived from 4-element basic 
sorter by using the class of 3-element equivalent transformations. 
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Proof: 

Now, we have x~ :::; x~ and x; ~ x~. 
(1) If x; :S x4, the comparator GM P(x;, X4) ean be eliminated because ofno exchange 

between x~ and x~; 
(2) If xi > x~ , it holds that x; :S x4 < xi :S X2, which can be implemented just by 

GMP(xi,x;) and GMP(X2,X4), Thus, the comparator GMP(X;,X4) ean be eliminated 
as weil. Q.E.D. 

Based on the Lemma 2, we can get the following Corollary: 

Corollary 1 If Xl, X2 are sorted, then it holds that: 

4 Designing Recursive Odd-Even-Merging Sorter: 
A Case Study 

In this section, we will discuss how to design eorrect recursive odd-even-merging sorter 
by using semanties-preserving transformations of nets. Two ways will be provided, one 
being based on local incremental transformations and the other being based on global 
partitions. The specifieation is a recursive basic sorter. It is eonstrueted by using the 
principle of insertion, and obviously correet. Because semantics will be preserved during 
synthesis, the design result gives not only an implementation of odd-even-merging sorter 
but also a proof of correctness. 

4.1 Basic sorter 

A simple way to construct a sorting network is to use the principle of insertion [Knut73}. 
Given n elements Xl, X2,' •. , Xn. Suppose that the first n-1 elements Xl, X2, ••• , Xn-l have 
been sorted, the element X n ean be inserted into its proper place by using n-l eomparators 
as shown in Figure 10(a). The Figure 10(b) gives an example ofthe 6-element basic sorter. 
The eorrectness of this design is obvious. We call it basic sorter. 

" Buic " , s.ru", '. , N_'" ,., 
.,~~., 
11~ ~ 

•• '- "- ~ 

'. '., 

(a) (b) 

Figure 10: 
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We define BLSort[n] as the implementation of the basic sorter. Bl...Sort [n] can be 
designed recursively by using the following equations: 

BLSort[n] 
BLSort[2] 

Row1[n] 
Row1[2] 

(Bl...Sort[n - 2] e 12) <D Row1[n] 
- CMP 

- (In-2 e CM P) <D (Row1[n - 1] e Il 
- CMP 

Their schematic representations are shown in Figure 11. 

RowI[DJ 

I, 

"'I["->~ 
~ 

tl 

.u,,"'·> rn:J 
(a) (b) (c) (d) 

Figure 11: 

(1 ) 
(2) 
(3) 
(4) 

In the above design, BLSort[n] is constructed by adding one row of C M P cells in 
each recursive step. If n is restricted only within even numbers, we can construct the 
basic sorter by adding two rows of comparators CM P in each recursive step. In this case, 
the recursive equations are changed into: 

B2..8ort[n] - (B2..8ort[n - 2] e 12) <D Row2[n] (5) 
B2..8ort[2] - CMP (6) 

Row2[n] - (In-4e 1 eCMPe Il <D (In_4eCMPeCMP) <D (In-4 e 1 eCMPe Il 
<D (Row2[n - 2] eie Il (7) 

Row2[4] = (I e CMPe Il <D (CMPe CMP) <D (I e CMP e I) <D (CMPe 1 e IX8) 

Their schematic representations are shown in Figure 12 . 

> 

(a) 

.. 
---. .. 

(b) 

Figure 12: 

· ....... ,,·00 
(c) (d) 

4.2 Incremental design based on local transformations 

Incremental design is a synthesis method used widely by circuit design engineers. Differ­
ing from the general incremental design, our method will allows to use only semantics­
preserving transformations of nets. 

4.2.1 ad hoc transformations 

Aiming at the recursive design of sorter, we need several extra ad hoc transformations, 
which are based on heuristic strategies during design procedure. 
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Lemma 3 Ij Xl, X2, X3 and Yl, Y2 are sorted, respectively, then there eri8ts: 

Proof: On the left side, we have: 
Zl = (X3 /\ Y2) /\ (X2 V Yl) /\ Xl = Xl 11 Y2 

Zz =X2/\Yl 

Z3 = ((X3/\ Y2) /\ (X2 VYtl) V Xl = (X2/\ Y2) V (X311 Yl) V Xl 
Z4 = (X3 /\ Y2) V X2 V Yl 
Z5 = X3 V Y4 

On the right side there are: 
Zl = Xl /\ X3 /\ Y2 = Xl /\ Y2 

Z2 = X2/\ Yl 
Z3 = ((X3/\ Y2) V Xl) /\ (X2 V YI) = (X3 11 Y2/\ (X2 V YI)) V (XI/\ (X2 V Yl)) 

= (X2 /\ Y2) V (X3 /\ Ytl V Xl 
Z4 = ((X3 /\ Y2) V xtl V X2 V YI 
Z5 = X3 VY4 Q.E.D. 

Lemma 4 Suppose Xl, X2,·· ., xn and YI, Y2,···, Ym are sorted, respectively (n, m = 
2k, k E lN). Then, it holds that: 

z....a.-.'_I r , 1.,.1 
z •• ,..., .... ?, , I: 

Proof: With the aid of induction. 
For "In (n = 2i, i E lN). When m = 2, because Xl> X2, · · ., Xn are sorted, the conclusion 

is true in terms of Lemma 3. 
Suppose the conclusion is true when m = k. If m = k + 2, we have 
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I-- .... 

I-- ····-F 

v v v v v I;' I •••• • ••• 
~, f- ~ .... 

C C C, C I C C)+l Cn+2 

f-F .... 

f-- .... -

lW=fl 
I- -

ZI Z2Z3l4Z,Z6 .... Zll-2 Zn Zß+2 Zn.f4 

Zn-l ZD+l Zn+3 

Yk-2 Yk Yk+2 

YI;..3 YIt- ! Yk+] 

~ 12 
+ JI2 

e n t-
+. 

Zn+k_ j:n+k-l Zn+k+ I 

Zn+k_ZZn+k Zn+k+2 

Where Vi ~ Vi+l, Wi ~ Wi+l and Vi ~ Wi, (i = 1,2,'" 1 ntk
). 

(1) If Wi :::; Vi+!, the conclusion holds obviously. 
(2) If Wi > Vi+!, we call that there is an inversion 1i,,+I. Define the set I = {Ii,i+ di = 

1,2, · ··, n!k - I}. Suppose Wj = Yk. Because k is an even number, there is no inversion 
in the subsequence 82 = (Vj+l1 Wj+l, Vj+2, Wj+21 ... 1 v!!..±!. , W!!±!). Consider the following , , 
cases: 

(a) If both Yk+! and Yk+2 are larger than w!!.±.!., then no new inversion will be generated, , 
and the order of elements in the subsequence 8 , = (VI,WI , V2,W2,'" ,Vj,Wj) will not be 
changed. Therefore, n = k - 1 comparators C" C2, .•. , Cn+k-I can be eliminated. 

(b) If Yk+1 < v"t' and Yk+2 > v"t" since Yk+2 > Yk+1 > Yk> Yk+1 can be inserted only 
in 8 2 , and maybe generated inversion. But, the order of elements in 8 , is not changed. 
So, n = k - 1 comparators C" C2 , ••• , Cn+k - I can be eliminated. 

(c) Similarly, we can prove the conclusion when Yk+1 < Yk+2 < w!!.±.!.. Q.E.D. , 

4.2.2 Semantics-preserving design 

Our start point is the specification B2...5'ort[n) of the basic sorter. A recursive implemen­
tation of odd-even-merging sorter OE...5'ort[n) will be derived from B2...5'ort[n) by using 
several rules of semantics-preserving transformations. The derivation will be aided by 
induction. 

The principle of odd-even-merging sorter is to use a odd-even-merging procedure to 
two sorted sequences. Thus, we assume that OE...5'ort[n) consists of two ~-element odd­
even-merging sorters OE...5'ort[~l and one n-element merger Merg [n). That is, 

n n 
OE...5'ort[n) = (OE...5'ort['2) e OK8ort['2)) <D Merg[n) (9) 

which provides a recursive equation for designing OE...5' ort[ n). The corresponding 

12 



schematic representation is shown in Figure 13(b). Therefore, our task is just to find 
recursive equations needed by designing Merg[n]. 

Step 1: Given a sequence Xl,X2 , '" ,xn . When n = 4, according to Lemma 2 we 
have B2_Sort[4] = OKSort[4] (see Figure 13(a)). Thus, the conclusion is true. 

81..so1\(41 OEßMI4] 

~ ~ 

100000.nj [0U0nI.nj 
06...$oct('I~ ~ I'" 

I "'-1[-) I 

( a) (b) 

Figure 13: 
Step 2: Suppose when n = ~, (m = 2k, k E lN), there exists 

m m 
B2-Sort[z] = OE-Sort[z] (10) 

Let n = m . We rewrite the recursive equations of B2-Sort[m] as follows (see Equations 
5 as weil) : 

B2_Sort[m] = (B2-Sort[m - 2] e 12) <D Row2[m] (11) 

Because B2-Sort [m] sorts an arbitrary input sequence Xl,X2,'" ,Xm to a sorted sequence 
Zt, Z2,' . " Zm, we can first sort two subsequences XI, X2, ... , x!!!. and X!!!.+b X.!!1+21· . " Xm , , , 
by using two odd-even-merging sorters OE-Sort[~], respectively. Thus, we have the 
equivalent representation Be-Sort[m]: 

m m 
Be-Sort[m] = (OE-Sort[Z] e OE-Sort[Z]) <D B2-Sort[mJ (12) 

Its schematic representation is shown in Figure 14. 

rUMl""l r"-""'lm'21 
I '" I '" I ........ ml I 

• 
Figure 14: 

Step 3: Consider the cell Row2[m] in B2-Sort[mJ, whose recursive equation is shown 
in the equation 7. According to Corollary 1, Row2[4J is equivalent to Rows[4], where 

Rows[4] = (leleCMP) <D (leCrossel) <D (CMPeCMP) <D(leCrosse]) <D (leCMPe]) 
(13) 

We substitute the core Row2[4] by Rows[4], and obtain the equivalent recursive equation: 

Rows[m] = (Im-4 eie 1 e CMP) <D (Im-4 e 1 eCrosse]) <D (Im-4 e CMPeCMP) 
<D (Im-4 eie Cross e ]) <D (Im-4 eie CM pe]) <D (Rows[m - 2] eie ]) 

Because Xm-l and Xm are sorted, the comparator CMP(xm_t,Xm) can be eliminated. 
The equation is simplized to: 

Rows[m] = (Im-4 eie Cross e I) <D (Im-4 e C M Pe C M P) <D (Im-4 eie Cross e ]) 
<D (Im- 4 eie CMP e]) <D (Rows[m - 2] eie]) (14) 
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Figure 15: 

The corresponding schemantic representations are given in Figure 15. 
Step 4: Using Lemma 3. the comparator G in Rows[m) can be moved to the position 

under Rows[m - 2). The new recusive equation is called Rowt[m). We have 

Rowt[m) - Clm-4 eie Gross e I) <D (Im-4 e GM Pe GM P) a:> (Im-4 eie Gross e I) 
<D (Rowt[m - 2) eie I) <D (Im-3 e GM Pe I) (15) 

Rowt[2] - I e I (16) 

Its schematic equations are shown in Figure 16(a)). Move the comparators on the lowst 
row from Rowt[m - 2). and define them together with the comparator G as the new cell 
GOMP[m-2). The rest part of Rowt[m-2J is called Rowh[m-2J. Therefore, we obtain: 

Rowt[m) - Rowh[m) <D (I e GOM P[m - 2) e I) (17) 

Rowh[mJ - (Im-4 eie Gross el) a:> (Im-4 e GMP e GMP) (18) 

<D (Im-4 eie Gross e I) a:> (Rowh[m - 2) eie I) (19) 

Rowh[2J - lei (20) 

GOMP[mJ - GOMP[m - 2) e GMP (21) 

GOMP[2J - GMP (22) 

Their schematic equations are shown in Figure 16. 

.""", {I] 

(. ) (b) 

Figure 16: 

Step 5: Substituting Rowt[mJ for Row2[m] in Equation 11 and defining the new 
circuit as Bt...8ort[m). we obtain the recursive equations: 

Bt...8ort[m) = (Bt...8ort[m - 2) e 12) a:> Rowt[m) (23) 

According to Lemma 4, the cells GOMP[m - 4). GOMP[m - 6). .. ·,GOMP[21 in 
Bt...8ort[m - 2J can be eliminated. Defining the rest part of BLSort[m - 21 as 
Bh...8ort[m - 2). we obtain: 

Bt...8ort[mJ - Bh...8ort[mJ e CI e GO M P[m - 2J e I) 
Bh...8ort[m) - (Bh...8ort[m - 2J e I) <D Rowh[m) 

The corresponding schematic equations are given in Figure 17. 
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Figure 17: 

Step 6: It can be seen that Bh-Bort(m] consists of two ~-element basic 
sorts B2-Bort[';'], which sort the odd-sequence VI, v3,"', Vm-I and the even-sequence 
V2, V., .. " Vm , respectively. We introduce two wiring cells, one being OddEven[m] and 
the other being Shuf fle[m]. The former separates the input sequence Vb V2, " " vm into 
two subsequences, and place the odd-sequence Vb V3, ... ,Vm_1 in the left side and the 
even-sequence V2 , V., ... ,Vm in the right side. The latter is the inversion of the above 
transformation. With using these cells, we can separate two basic sorters B2-Bort[~], 
and obtain the recursive equations: 

Bh-Bort[m] 

OddEven[m] 

OddEven[4] 

Shuf fle[m] 

Shuf fle[4] 

m m 
- OddEven[m] <D (B2-Bort['2] e B2-Bort['2]) <D Shuf fle[m] (26) 

m m m m 
(OddEven['2] e OddEven['2]) <D (I T e Cross['4' '4] e IT) (27) 

I e Cross e I (28) 
m m m m 

- (lTeCross['4''4]eIT)<D(Shuffle['2]eShuffle['2]) (29) 

- I e Cross e I (30) 

Their schematic equations are given in Figure 18. 

-üt!J 
J 1 1 1 

(. ) (b) (, ) 

Figure 18: 
Step 7: Because 

m m 
B2-Bort['2] - OE-Bort['2] 

m m m 
(OE-Bort['4] e OE-Bort['4]) <D Merg['2] (31) 

Puting it into the Equation (26), we obtain the recursive equation: 

Bh-Bort[m] = 
m m m 

OddEven[m] <D (OE-Bort['4] e OE-Bort['4] e OE-Bort['4] 
m m m 

eOE..8ort['4]) <D (Merg['2 e Merg['2) <D Shuf fle[m] (32) 

Because the four sub-sequences (Vb V3, "', VT-l), (Vf+ll V!f+3,'" I vm-d , (V2, V4 ,"', Vi) 
and (V'l'+2, V'l'H ,' .. ,vm ) all are sorted, the four sorters OE..8ort[~l can be eliminated. 
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Therefore, we have: 

m m 
Bh..8ort[m] = OddEven[m] CD (Merg[2" ] e Merg[2"]) CD Shuf fle [m] (33) 

The schematic equations are shown in Figure 19. 
• • 

(a) (b) 

Figure 19: 

Step 8: Since 

Be..8ort[m] 
m m 

(OE..8ort[2"] e OE..8ort[2"]) CD BLSort[m] 

- (OE..8ort[;] eOE..8ort[;]) CD (Bh_Sort[m] CD (I e COMP[m - 2] e 1)) 
m m m m 

- (OE..8ort[2"] e OE..8ort[2"]) CD (OddEven[m] CD (Merg[2"] e Merg[2"]) 

CD Shuffle[m] CD (I e COMP[m - 2] e I)) (34) 

Let 
m m 

Merg[m] = OddEven[m] CD (Merg[2"]eMerg[2" ]) CDShuf fle [m] CD (lecOMP[m-2]el) 
(35) 

we obtain 
mI2 mI2 - -

I I 
OE..Sortlml2J O~Son[m12J 

OE.-5ort[mJ -> 

···· ·~·I·· ··· ·· ···· · ·· ····j·""'···· 
I OddEven[ml 

mnJ Imn 
I Mcg{mJ2) I M,,,{mJ2) I 

""'I 1mJ2 
I Shufflc[mJ 

Mcra[mJ >! I m·2 

1 COMP[m-21 1 
. _---- ............ + ............ - -- _. 

1 1 

Figure 20: 

Be..8ort[m] = OE..8ort[m] 

Up to now, we obtain a recursive equation array to design odd-even-merging sorter 
OE..8ort[m]: 

m m 
OE..8ort[m] = (OE..8ort[2"] e OE..8ort[2"]) CD Merg[m] 
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Merg [mJ 
m m 

- OddEven[mJ<D (Merg["2J e Merg["2]) 

<D Shuf fl e[mJ <D (I e COMP[m - 2J e I) 

Their schematic equations are shown in Figure 20, in which the dotted line part is 
just the recursive equation of M erg[mJ. 

Now, we complete the semantics-preserving derivation from the basic sorter 
B2-Bort[mJ to OE-Bort[mJ. The derivation procedure is not only to guarantee the cor­
rectness, but also is constructive. The derivation result naturally gives the recursive 
equation to construct merging cell Merg[mJ. This is just one of advantages using our 
formal method to design recursive circuits. 

4.3 Design based on global partitions 

Now consider the basic sorter B1-Bort[2n J (see Figure 11). Since the order of its input 
elements does not affect the result, we can add two circuits B1-Bort[2n - 1J as shown in 
Figure 21. 

Figure 21: 

Here we get the first similarity to the circuit OE-Bort[2n J. 
Assuming that OE-Bort[2n - 1J {o} B1-Bort[2n- 1J (OE-Bort[1J = Bl-Bort[1]), we need 

only to prove that Merg[2n J {o} B1-Bort[2n J. 
Note that the circuit BLSort[2n J consists of n - 1 'slices', where the j-th slice is 

the circuit Slice[jJ. We define the operation Cut that 'cuts' the circuits B1-Bort[nJ and 
Slice[nJ in two peaces: 

Cut(CMP, 1) := 1
2 

that means, it substitutes C M P with two verticallines. Applying it at Slice[nJ, we get: 

Cut(Slice[i + k], i) := Slice[iJ e Slice[kJ 

It cuts the i-th CMP in Slice[i + kJ (see Figure 22) 
Cwl(S( ... IL .. j -

i 'I' I, I, 
e", - .', " sr"l I I' I' 

Figure 22: 
Now we define Cut(B1-Bort[n+1], l). lt cuts each j-th slice of B1-Bort[n+1J according 

to Cut(Slice[jJ, I): 

Cut(B1-Bort[n + 1], I) {o} Cut(BI-Bort[n], l) <D Cut(Slice[n + 1], I) 

Figure 23 shows an example of Cut(B1-Bort[4J, 2). 
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CUl(BU'ort(4j 2) , 'I 
Slice 1 CMP 

~ 
CMP 

Slice 2 
CMP CMP 

CMP CMP 

Slice 3 ~ I!ii 
CMP CMP 

Figure 23: 

Lemma 5 For \In E IN, the following transformation holds: 

Proof: It is easy to check that the transformation holds for n = 4: 

Cut(B1..Sort[4], i) <* B1...8ort[i] e Bl...8ort[4 - i] (i = 1,3) 

-c..(B 

I' ], 
I B • .ß< .+~ 

I. I, 

IJ«t[II+l].n) 

r---I"·------Ir.'--' 
~ I BIJOJt(n] I BCSortl1J 

I. 11 

Figure 24: 

We assurne that the transformation Cut(B1...8ort[n+l], n) <* B1...8ort[n]eB1...8ort[l] 
holds for some fixed n and I (Figure 24). Now consider Cut(B1...8ort[n+l + 1], n) (Figure 
25): 

- I 

• J' I' I I 
B • BLSort(lt) BUonlll 

• I, I • I , 
S{ +1+1) S(II] I S(I+l) 

I· 11., I' I t.l 

Figure 25: 
Since B1...8ort[n] <D Slice[n] <* B1...8ort[n] and (B1...8ort[l] e I) <D Slice[l + 1] -

B1...8ort[n + 1], we have (see Figure 26 as weIl): 

Cut(B1...8ort[n + I + 1]) <* B1...8ort[n] e B1...8ort[1 + 1] 

Figure 26: 

So, there are Cut(B1...8ort[n + I], n) <* B1...8ort[n] e B1...8ort[n] for \In, I EINand 
Cut(B1...8ort[2n ], 2") <* B1...8ort[2"-1] e B1...8ort[2"-1] Q.E.D. 

Assurne that B1...8ort[2"-1] <* Merg[n - 1], (B1...8ort[2] = Merg[l]) . Then, we get 

B1...8ort[2"] <* Merg[n - 1] e Merg[n - 1] 
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From this assumption and Gut(BLSort[2n ], 2n - l ) <* BLSort[2n- l ] e BLSort[2n- l ], we 
have 

BLSort[2n
] <* M erg[n - 1] e Merg[n - 1] 

Now consider a circuit in Figure 27. The sequences A, B, AI, A2, G, D and S are 
defined as folIows: 

A = (al, a2 , ... , a2n-,), B = (bI, b2, ... , b2n-'), 
Al = (al)a3 , ... ,a2n- l_l,~,b4, ... ,b2"-1)J 
A2 = (a2 1 a4, ... , a2n-1, blJ b31 ... , b2n-l_d, 
C = (Cl l C2, .. . , C2n-1), D = (dlJ d21 .. " d2n- l), 
S = (S11 $2 , "'J $2n ) 

(note that for Vi, k E N , i + k S; 2n - l , ai ~ a;+k and bi ~ bi+k) . The sequence 

Figure 27: 
(AI, A 2 ) is exactly the same as the output sequence of OddEven[n], so we can substitute 
the circuit O[n] with OddEven[n]. 

Assuming that BLSort[2n - l ] sorts the input elements correctly (obviously, BLSort[2] 
does) , we get an obvious result: the maximal and the minimal elements of the sequence 
{A;B} are 81 = max{al ,bd and min{a2n-"b2n-'}. 

Consider the case when C2 = bl . Following combinations are possible: 

2. d2 = b2 ~ C2 = bl ~ b2 = d2· 

That means, C2 ~ di for j E {2, ... , 2n- I } . Analogously, we can prove: d1 ~ Cj for 
j E {3, ... , 2n - I }. 

Generalizing this principle, we can prove: to get the 2i-th and 2i - I-th highest 
elements (i E {I, ... , 22n- 2}) ofthe sequence {A; B}, we have to calculate GM P{C2i, d2i-d 
for i E {I , ... , 22n- 2 }. Thus, to get a correct sorting system, we have to substitute the 
circuits B[n] and O[n] by OddEven[n] and Shuf fle <D (I eGOMP[n - 2] e I) (see Figure 
20), respectively. That means, 

BLSort[2n ] 

<* OddEven[n] <D (Bl..Sort[2n - l ] e BLSort[2n - l ]) 

<D Shuf fle <D (I e GOMP[n - 2] e I) 
OddEven[n] <D (OE.Bort[2n- l ] e OE.Bort[2n- l ]) 

<D Shuf fle <D (I e GOMP[n - 2] e I) 
OE.Bort[2n ] 

5 Conclusions 

Deriving correct recursive circuits using semantics-preserving transformations is a feasible 
way. We have derived a recursive basic sorter into a recursive odd-even-merging sorter 

19 



by using two approaches, one being based on local incremental transformations and the 
other being based on global partitions. The results show that there are circuits of practical 
interest, which can derived formally by using this method. 

The algebraic caleulus of nets is a hardware-specifie calculus, and the transforma­
tions are the cireuit transformations themselves. Thus, it is mueh better adapted to 
the synthesis domain. The ealeulus of nets has a small eore of transformations. Some 
transformations are axiomatized and others can be derived from these axiomatized trans­
formations by using exact algorithms or general algebraie mies. Universal transformations 
are usually algorithmie ones, and independent of applied fields. Synthesis-speeifie trans­
formations are, to a great extent, dependent on applied domains. In syntliesis-specifie 
transformations, some are algorithmic ones and some ad hoc ones. The correctness of al­
gorithmic transformations can be guaranteed by the correctness of exact algorithms and 
algebraic mies. ad hoc transformations are usually based on heuristic strategies, and their 
correetness ean be proved by manual proofs or mechanical checkers. 

The specification validation can be solved by using conceptually simple speeification 
for the required function, such as some school methods for arithmetic circuits. In many 
cases, the correctness of conceptually simple speeifications is obvious, or can be easily 
proved. Beeause the specification ean be deseribed eompaetly and graphieally with a 
small kernel of recursive equations by using 2dL language, the synthesis task is simplified 
to transform only these recursive equations in the kerne!. 

Our formal synthesis method is not automatie but must be eontrolled by designers. 
Therefore, it is necessary to establish an interactive synthesis environment. Such an 
environment is being developed under the CADIC framework. The environment includes a 
library of semantics-preserving transformation mies, and eontains tools for the hierarchical 
inspection of designs and to support the applications of transformations to parts of the 
design. The library of transformation mies will continually be expanded by deriving new 
semantics-preserving transformation mies in the practice. 
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