A Lower Bound for the Worst
Case of Bottom—Up—-Heapsort *

by
R. Fleischer, B. P. Sinhal and C. Uhrig

A 23/90

FB Informatik, Universitat des Saarlandes, 6600 Saarbriicken, Federal Republic of Germany

December 1990

Abstract: Bottom-Up—-Heapsort is a variant of Heapsort. Till now, its worst case complexity
for the number of comparisons is known to be bounded above by 1.5n logn+ O(n), where n is
the number of elements to be sorted; but it was conjectured to be nlogn+O(n). In this paper
we give a construction that proves an asymptotic lower bound of 1.25nlogn — O(n loglogn)
comparisons for the worst case.

* This research was supported by the Alexander von Humboldt-Stiftung, Germany, by the
ESPRIT II Basic Research Action Program, ESPRIT P. 3075 - ALCOM, and by the DFG,
grant SPP ME 620/6.

t on leave from Indian Statistical Institute, Calcutta.

I. Introduction

Bottom~Up-Heapsort is a variant of the classical Heapsort algorithm and was presented in
1989 by Ingo Wegener ([W89]). To fix our ideas, we assume that the array to be sorted has
n elements which are initially arranged in the form of a heap (Heap creation phase) with
the property that i) the i-th element of the array will have (27)-th and (2:+ 1)-th elements
(if they exist) as its left and right children respectively and ii) every element in the heap is
smaller than or equal to the smaller of its two children. The heap creation phase requires
O(n) time (see [Wi64]). After the heap is so created, the smallest element will be at the
root. Then the root element changes place with the last element in the array and the heap
is rearranged with one element less, that means the last position of the heap is considered
to be deleted. This is repeated n times, each time at O(logn) cost (Selection phase).
The rearrangement procedure proceeds as follows. At the beginning, the root contains a
former leaf element. This element is swapped with the smaller of its new children and this
is repeated until it is smaller than both of its children or it is a leaf. At each level two
comparisons are made. In Bottom-Up-Heapsort, the rearrangement procedure is changed
in the following way. We first compute the so called special path ([W89]), that is the path,
on which the sinking element would sink in the original rearrangement procedure. This
is done by only one comparison per level. Then we let the element climb up this path
to its destination position. For this variant of the Heapsort-algorithm, Wegener ([W89])
showed an upper bound of %nlogn + O(n). He also conjectured a tighter upper bound of
nlogn 4+ O(n). We give a construction of a heap that disproves this conjecture and gives
an asymptotic lower bound of %n logn.

This paper is organized as follows. In section II we present the original Heapsort algorithm
and the Bottom—Up—Heapsort algorithm. In section III we give some definitions and repeat
Wegeners proof for the upper bound. Section IV gives an example for our construction
algorithm under the restriction that we first consider only the construction of the right
subtree of the root. Section V contains the restricted construction algorithm in detail. In
section VI we show how to extend the construction to the whole tree and in section VII
we give the proofs and the running time analysis for Bottom—Up—-Heapsort on the created
heap. We conclude with some remarks in section VIII.

I1. Heapsort and Bottom—-Up—-Heapsort

In the original version of Heapsort we consider an array a[l..n| with the elements of an
ordered set S. For our purpose, we assume w.l.o.g. that S = {1,...,n}. The heap property
is fulfilled if (a[t] < a[2i] or 1 > |n/2]) and (a[t] < a[2i + 1] or ¢ > [n/2]). The array is
called a heap if the heap property is fulfilled for all positions. Thus the array is considered
as a binary tree, where the children of position ¢ are the positions 2: (if 2¢ < n) and 2i +1
(if 204+ 1 < n).

The procedure rearrange(m,1) considers only the array positions 1,...,m and looks at the
subtree with root ¢. It transforms this subtree into a heap. We now give the Heapsort
algorithm, following the notations of [W89).

Heapsort
1) For : = |n/2],...,1: rearrange (n,1). (Heap creation phase).
2] Eof iy = 1y susy 2

interchange a[1] and a[m|;

if m # 2 then rearrange(m — 1,1). (Selection phase).

The rearrange procedure looks as follows.

Procedure rearrange(m,)
1) If i > m/2, STOP.
2) If i < m/2, compute min, the minimum of a[i, a[27] and (27 + 1] (2 comparisons).
If : = m/2, min = min{a[i|, a[21]}.
3
If min = a[z] then STOP
else if min = a[2i] then interchange a[i] and a[2i], rearrange(m, 21)
else interchange a[i] and a[2i + 1|, rearrange(m, 2i + 1).

Bottom—~Up—Heapsort, also denoted by BUH, works like Heapsort, but rearrange is replaced
by the following. We first search for the leaf that we can reach by starting at the root and
going always to the child containing the smaller element. Let us call this leaf the special
leaf and the corresponding path special path. Procedure leaf-search, as defined below, does
this.

Procedure leaf-search(m,i,)

1) 4 =1.

2) while 25 < m do begin
if a[2j] < a[2j + 1] then j := 27
else j:=25+1
end.

3) if 2j = m then j :=m.

We now climb up the special path and look for the destination position of the former leaf
element which is the same position as computed by the rearrange procedure given above.

2

This is done by the procedure bottom-up-search as defined below.

Procedure bottom—up—search(z,j)
(*j is the output of leaf-search(m,i,7)*)
1) while a[i] < a[j] do 5 := [j/2].

Now we have to shift up the elements of the ancestors of the computed position on the
special path. This is done by the procedure interchange given below.

Procedure interchange(i,j)

1) 1 := |log(j/i)], = := alj], alj] = ali].

2) while 7 > ¢ do begin
interchange a[|j/2]] and =z
i =il
end.

Thus for Bottom-Up-Heapsort, we replace rearrange(m,i) in Heapsort by bottom-up-
rearrange(m,1) as defined below.

Procedure bottom—up-rearrange(m,i)
1) leaf-search(m,1,j);

2) bottom-up-search(i, j);

3) interchange(s, 7).

I11. The Upper Bound

Let n be the number of elements in the heap with n = 2¥ —1. Hy is a heap for n elements.
The elements in the heap are the numbers 1,...,n.

The argument for the upper bound ([W89)]) is as follows.

Let us call the elements 1,...,2* small and the elements 271 +1,...,2* — 1 big. (In sec-
tions V and VI respectively we will give other definitions for small and big.) We consider
only the 2571 leaf elements of the heap. Since the tree is a heap, at most 2%~ leaf elements
are small. All large leaf elements are still contained in the heap created after the first 2*~*
deletions. Since the number of these elements is at least 272, their average depth in the
created Hy_, is at least k — 4. Hence the number of comparisons for the first 27! calls of
bottom-up-search is bounded by

1
4x2¥ 2 x2F? = anognJrn

and the time bound follows by summing over all levels.

IV. An Example for Worst Case Construction

Let T1(i) (Tr(z)) be the left (right) subtree of the node at position :. We call the movement
of a leaf element along a special path as a trip.

Let T be a tree and S a set of neighbouring leaves in the tree. Then subtree(S) denotes the
subtree rooted at the nearest common ancestor of the nodes in S, nca(S). It will always
be clear from the context which T is meant.

The subtree ancestors of a set S of neighbouring leaves are the internal nodes of subtree(S).
Ezclusive ancestors of a set S denote the ancestors that only have leaf descendants in S,
Let further m be an integer which we choose later and p = 2™ — 1.

Let us consider only the first 2*~2 deletions. Our goal is to send as many leaf elements as
possible to some positions near the root of the heap, for these elements have to perform a
lot of comparisons. Especially, we want to send the leaf elements of Tr(1) to the topmost
region of Ty, (1). Let us denote this region — we choose it to be a complete binary tree with
exactly p nodes - by TTy(1,p) (Toptree of Ty (1) with p nodes) (Fig. 1).

Figure 1

We first consider a small example as in Fig. 2 where ¥ = 5 and p = 1. The numbers
beside the nodes are the stored elements. The contents of the nodes are immaterial at
those positions where no values are shown.

Figure 2

In this heap, during the first deletion step of BUH element 6 will be placed at position 2,
where it replaces element 2. But note that before any other element will be placed at some
position in T7L(1,1), all ancestor elements of the rightmost leaf have to be eliminated
from the heap. In our example the next 3 trips (in general the next k — 2 trips) have to go
through Tr(1). Thus it is cleverer to choose p bigger and thereby ensure that we can send
more than one element in consecutive trips to 7Ty (1, p). Therefore we divide the deletions
of the first 25~2 elements into phases P;, where each phase consists of a pair P; = (5;, G)
of sets of leaf nodes, so that the leaf elements in S; all make their trips through T (1)
followed by the trips of all nodes in G; through Tg(1).

Consider the following example for k = 14 and p = 7 in Fig. 3.

0, B g
TTL(1,7) 4 s oo
,.‘u) 705 40 17
41 33 18
s 5 g a 43 " a1 3t 21 19
46 AT 48 36 37 38 39 22 23 24 20
Tr(4) Tpr(4) TL(8) TR(S) 50 5152 53 54 6666 bb bb b 32 2626 27 28 29 30 31

Figure 3

The elements 2, ...,8 are placed in TTy(1,7). The next 16 smallest elements (9, ...,24) are
all placed at the ancestor nodes of S;. Then we place the next 7 elements (25, ...,31) in S,
in descending order from right to left. Our aim is that the elements in the nodes of a S;
will all make their trips through T (1) to a position in T'T (1, p). This is certainly fulfilled
in our example for the elements in 5.

All S; have the same number of leaf nodes, namely p. The elements in the nodes of G; (G
stands for ’gap’ between two successive sets of p trips through 7T (z)) make all their trips
consecutively through Tg(1). They do the job of eliminating all ancestor elements of S;
from the heap. We count only the comparisons necessary for elements in nodes of a S;.
Since we want to send the next elements in S;,; as soon as possible, we essentially choose
the elements in G; and in their exclusive ancestors as big (marked as b in Fig. 3).

But in the example there are also some elements in G, and their ancestors which are small.
This has the following reason. We have to eliminate all ancestor elements of S;. Some
of them are also ancestors of S;;; (e.g., the elements 9,...,16 in Fig. 3). These elements
must be replaced by small elements, the others are replaced by big elements. The trips
which replace the small ancestor elements by small elements should not start in S;,; since
then they would destroy the whole structure. We force them to start in G; by placing
some small elements in the exclusive ancestors of GG; and, if necessary, in G; itself. In the
example these are the elements 32,...,39.

This strategy is now repeated until we have no further empty leaf in T(1). We formally
describe the construction process in the next section.

V. The Construction

Let us assume that k is very large and that we have already chosen m (and so p). By
saying ’'place some elements’ we would always mean that the concrete placement does not
matter but that the heap property is always preserved.

Remark: In this section, an element is called small, if it is placed in one of the steps 0) to
14). If it belongs to the remaining elements handled in step 15), it is called big.

Heapconstruction
0) Place the element 1 at the root.

1) Place the p smallest elements 2,...,p + 1 in the topmost positions of T (1).
Remark: In section VI we will specify the exact placement.

2) Identify the p rightmost leaves (the elements of S;) and all their ancestors, excluding
the root.

Remark: The number of these ancestors is k — m — 2 + p, since S; has exactly p subtree
ancestors and there are k—m — 2 nodes between the root of H; and the root of subtree(S,).

3) Place the next k£ — m — 2 + p smallest elements starting from the value p + 2 at these
ancestors of 5;.

4) Place the next p smallest elements at the leaf position of §; from right to left in
descending order.

Remark: All these elements will make their trips through T7(1) and will be placed in
TTL(1,p). If we place them in S; from right to left in descending order, they will need at
least as many comparisons as in any other case, but for the asymptotic time bound this
does not matter. In section VI, however, it will be necessary to place the elements in this
order.

5)i:=1.
6) Let g denote the number of elements in G;. g:=k —m — 2+ p.
7) 1dentify all leaves in G, the next p leaves (that is S;y,) and all ancestors of S;,;.

8.) Let 7 be the rightmost leaf of S;1;. Identify the nearest common ancestor of S; and 7,
denoted by nca(S; U {r}).

Remark: Note that as long as there are small elements in ancestors of 5; below this nca,
the trips will not start from a leaf to the left of G;.

9) Count the number of ancestors of S; below nca(S; U {r}), denoted by c.

10) Place the next g—c smallest possible elements in the exclusive ancestors and, if required,
also in the leaf positions of G;.

Remark: These are the elements that are necessary to eliminate the ancestors of S; above
the nca(S; U {r}) without destroying the structure of the heap to the left of G;. Because
of these elements, no trip will start from a node of S;y; during the deletions of the nodes
in Gj.

'Smallest possible’ (instead of smallest) takes care of the fact that we eventually may have
to place some small elements at some non—exclusive ancestors of G; in order to reach the
exclusive ancestors of G; under preservation of the heap property.

11) Fill up the ancestral positions of S;;; that have not received any value so far.

12) Compute g as the number of elements of G4, as follows: g = g — c + |A(S;41)| where
A(Si4+1) denotes the set of all ancestors of S;;; below nca(S; U {r}).

13) ii=1+1.
14) If there are still more than g+ p leaves in Tr(1) then place the next p smallest elements
at the positions of S; from right to left in descending order and go to 7.).

15) Fill up all empty positions of Hj with the remaining elements and STOP.

10

VI1. The Extension to the whole tree

We now want to change the construction so that it can be extended to T, (1), that means,
we now consider the deletions of leaves from the left subtree T, (1) and we want to send
small leaf elements of T (1) to TTg(1,p).

Remark: In this section, an element that is placed in one of the steps 1) to 20) is called
small; if it belongs to the remaining elements handled in step 21), it is called bsg.

In the construction algorithm of section V, we created as many complete S—sets as possible.
Let now S; be the last created S-set and » > 0 be the number of the remaining leaves in
TR(I).

Note that when BUH begins with the deletions in S;;; (which is in T (1)), we want to
have the following situation:

The elements actually placed in TTp(1,p) are the former leaf elements of S;. Since the
elements of Si;; shall replace the elements in TTr(1,p), the elements in TTg(1, p) have to
be the smallest in the heap. In particular, they have to be smaller than those in 77, (1, p).
Thus they have to be bigger than the elements initially placed in S;+; and smaller than
those in 5].

So there are essentially two problems to solve:

1) Before the bottom—up-heapsort algorithm reaches the deletions of S;y; (which is in
Tr (1)), the p smallest elements of the then heap have to be placed in TTgr(1,p).

2) At the same time, the elements in TT7(1,p) have to fit in the aimed structure so that
the leaves in a G; of T (1) do not start their trips from left of G;. So the last elements
inserted in TT (1, p) have to be chosen carefully.

In order to solve the mentioned problems, we replace step 15) in Heapconstruction by the
following steps 15) to 21).

15) If there are more than g + p leaves in Tr(1) then place the next p smallest elements in
S; and go to 7.).

16) Compute r. If r < g, we identify the g leaves (some of them may be in Tp(1)) and go
to 18).

17) Now r > g holds. Let all the r remaining leaves build G;; place the next smallest
elements in the ancestors of G; and the leaves, if necessary, so that all trips of the elements
in G; go through T»(1).

Remark: The trips in G; are not allowed to destroy the actual structure of T (1).
At this point the nodes in S; are yet to receive any concrete value.

18) This is the step that solves problem 1) mentioned above, that means we now want to
place the p elements which have to be placed in TTg(1, p) before the deletions of the nodes
in 514, take place. But before we give the placing rule, we want to motivate it.

Let now k and m be chosen such that each subtree of a leave of T'Tgr(1,p) contains at
least one set S; completely. Then each node in TTg(1,p) initially contains certainly a
small element. Let us first suppose that Hj is constructed according to Heapconstruction
of section V. Under this assumption we now consider the steps of BUH on Hy.

11

For each node v of TTg(1,p) there is a step, in which v receives for the first time a big
element. If we consider the chronological order of these steps we can recognize a pattern.

Lemma: For all nodes v of TTg(1, p):
a) When v receives a big element for the first time, its right neighbour already contains a
big one.

b) If v then is a left child, its direct ancestor will receive a big element during the next
deletion step.

Proof: Note that we delete the S—sets from right to left. During the deletions of the nodes
in a G; we replace all those ancestor elements of S; that are not also ancestor elements of
Si+1; an ancestor element of both S; and S;4; is replaced by a small element (because of
step 10)).

a) Each subtree of a leaf of TTg(1,p) contains at least one S; completely. Then the same
also holds for each internal node of TTg(1,p). Let S; be such a S-set for the node v. If
BUH starts with the deletions of the nodes in S;, the right neighbour of v cannot be an
ancestor of a still existing S-set (the S; for j < 1 are all deleted then) and so it contains
already a big element.

b) When a node v which is a left child receives a big element for the first time, its former
small element is placed in its direct ancestor. Since its right neighbour already contains
a big element and its direct ancestor can not be an ancestor of a still existing S-set, this
node will receive a big element during the next deletion step.

X

The lemma shows the following. The replacement of the small elements in TT'r(1, p) takes
place in rounds where in each round the elements in a group of nodes are replaced. In
the first round the rigthmost leaf in TTg(1, p) receives a big element. In the :~th round,
first the rightmost leaf of TTgr(1,p) that still contains a small element (that is the i:-th
leaf counted from right to left) gets a big one. Then if the node is a left child, its direct
ancestor will get a big element and so on.

12

We give an example for p = 15; the numbers above the nodes give the node posi-
tions (and not the contained elements).

1

Figure 4

The mentioned groups in the example are the sets: {31}, {30,15}, {29}, {28,14,7}, {27},
{26,13}, {25}, {24,12,6,3}. Note, that the nodes in each group build a path. Each leaf
of TTr(1,p) represents a group and each group has a group root, namely the node with
the smallest index within the group. The maximal cardinality of a group is m.

Now let us return to the Heapconstruction of this section. Instead with big elements as in
the lemma we want to fill up TTg(1,p) with the next p smallest elements available after
step 17). Especially we want that after the replacement of all small elements of a group
by some of these p elements, the contents of the nodes in the group remains unchanged
till BUH reaches S;.;. Therefore we order the groups from right to left according to the
positions of the corresponding leaves. We now place the p smallest elements available after
step 17) in the subtrees of these groups. In each subtree are so many elements placed
as the number of those contained in the corresponding group. Furthermore the elements
are placed instead of some big elements, which were placed by Heapconstruction of section
V, and they are only placed at internal nodes, since leaf elements could go into wrong
subtrees. Finally the elements are placed in descending order from the right group to
the left, that means the elements placed in the subtree of a group are all bigger than all
elements placed in any subtree of a group to the left of it. So when a group is filled by
the steps of BUH with these elements, no further trip will go through a node of this group
until the deletions of S;4+, take place.

This solves problem 1).

13

19) Now fill the nodes in Ty (1) according to the same strategy as used by Heapconstruction
given in section V, that means create as many S-sets as possible by steps similar to the
steps 6) to 14) but in T (1) instead of Tr(1). Ignore the fact, that the nodes of 77T (1, p)
already have some elements (namely the elements 2,...,p + 1). Treat them as if they were
empty.

Remark: Note, that in the case r < g (in step 16)) we eventually have to start in T (1)
with some leaves in G.

20) Having finished the construction place the elements that, according to step 19), are in
the nodes of TTy(1,p), in the so far empty nodes of S; in descending order from right to
left, since these are the elements which must be placed in T'Ty (1, p) before we delete S;y;.
The nodes in TT (1, p) now again contain the elements placed in step 1).

21) Fill up all the empty positions of Hi with the remaining elements and STOP.

Note, that each element in S; has a definite destination node in T'TL(1,p). From the
construction algorithm (the elements in S; are those being placed in step 19) in TT}, (1, p))
follows that these elements are not consecutive numbers and that they have to be placed
in TTy(1,p) in reverse preorder, that means in preorder from right to left.

This fact induces some restrictions on the placement of elements in T7T}, (1, p) right at the
very beginning (step 1)) of Heapconstruction. This is explained below.

Let us suppose, that we have a heap whose elements are arranged in preorder. If we
replace the elements by bigger ones where these are inserted in descending order, it is easy
to prove, that the resulting tree is organized in reversed preorder. The same holds vice
versa. Let us consider an example for p = 7.

Figure 5

14

Let us replace the elements by 8,...,14 in descending order. The resulting tree is

8

Figure 6

Now we replace the elements by 15,...,21 and we get

15

17 18 20 21

Figure 7

It is also easy to see, that an inserted element is placed directly at its destination node.
So we get an alternating sequence of preordered and reverse preordered trees.

Thus, if | is odd, we start at the beginning (that is step 1) in Heapconstruction) with
the elements 2,...,p + 1 in preorder and if [is even in reverse preorder in TT;(1,p). The
elements in S; will then be placed directly in their destination nodes.

This solves problem 2).

15

VII. Analysis

In order to analyze the running time, we prove the following lemma.

Lemma: For all suitable z:

a) The deletions of the elements placed in G; have no influence on the contents of the
leaves to the left of G;.

b) All elements of S; in Tr(1) and T (1) will be inserted in T'T;(1,p) and TTr(1,p)
respectively.

Proof: We use induction on 1:

1= 1:

a) According to step 3) of the construction algorithm, the first ¢ elements are necessarily
placed at nodes in A(S;). If any of the next g — c leaf elements would start its trip to the
left of Gy, this would contradict step 10) of the construction algorithm, as one easily sees.

b) This is obvious.

t— 1+ 1

a) The argument is the same as in the case 1 = 1.

b) Suppose, we just deleted the last node of S;. Following our construction algorithm, the
only elements, that are smaller than those now placed in TTy(1,p) (resp. TTr(1,p)) are
the elements in the ancestors of S;. But all these elements will be eliminated from the
heap by deleting the nodes of G;. The elements in S;; remain unchanged (because of part
a)). So the next p trips have to go through T (1) (resp. Tr(1)) and since the elements in
Si+1 are smaller than those below TTy(1,p) (TTr(1,p)), they usually replace the former
elements of S; (The only exception is when there is a transition from Tr(1) to T (1)).

]

Now in order to prove a lower bound on Ci, we prove an upper bound on the length of
G;. Note, that |G1| = p+ k —m — 2 and |A(S;)| = p + a; for some a; > 0,a9 = 0. Let
z=k—m-2.

According to step 13) of our construction algorithm, we find that |Giy,| = [Gi| —c +
|A(Si+1)|. Now note, that z is an upper bound for |G;| — ¢, since |G;| — ¢ is the number
of nodes on the path from the root to nca(S; U {r}), excluding the root. So we have

IG,;l <z +'|A(Si)|.

Now let us compute an upper bound for |A(S;)|.

Lemma: Let T be a complete binary tree with 2¥ — 1 nodes and S a set of p neighbouring
leaves. The maximum number of ancestors of S in T is not bigger than p + 2k.

Proof: Let p; be the number of ancestors of S of height i. Since all ancestors of the same
height i are neighbours, p;+1 < |pi/2] + 2; let h be the height of subtree(S). Then

16

A
ZPiSP-i-Zh

i=1

Together with the ancestors on the path from the root of T to subtree(S), this number
is smaller than p + 2k. Since |S;| = p for all ¢ and z < k, it follows that for all i:
|Gi| + 15| < 2p + 3k.

n

Each S; contributes at least p(k — m) comparisons to C} and so

2k—2
2 2l‘2p+3ka(k -m)

If we choose m such that k! < p < k'*! for some fixed [>> 1, the asymptotic lower bound
is nlogn — O(nloglogn).

Finally, note that the construction of the sections V and VI is always possible. Concerning
step 10), there are always enough nodes in G; and its exclusive ancestors to place the g —c¢
small elements, because |G;| =g > g —c.

Furthermore, if we choose k big enough, the number of phases in a subtree rooted at a leaf
of TTr(1,p) is at least 1 and all nodes in TTr(1,p) of the constructed heap will contain
small elements.

The maximal cardinality of a group mentioned in section VI, step 18) is m. If we observe,
that in each G; at least ¢ > p leaves contain big elements, we can be sure that there are at
least m internal nodes in each subtree at a leaf in TTg(1, p) suitable to place the elements
of step 18).

17

VIII. Conclusions

The lower bound proof presented in this paper is optimal in the sense, that if we consider
only the first 2¥~! deletions, we cannot get a better bound. We didn’t say anything about
the concrete placement of the big elements, but it seems to be difficult to iterate the heap
structure for the resulting heaps Hy_;, Hir_a, Nevertheless we conjecture that the
upper bound of %n log n is sharp.

Acknoledgements
The authors would like to express their sincerest thanks to Kurt Mehlhorn for first pointing

out the problem and also for his constant inspiration and continuous support to carry out
this work. We also would like to thank Miklos Santha for helpful discussions.

18

IX. References

[C87a]

[C8Tb]

[MDRS9)

[M84]

[Ws9)

(W90

[Wi64|

S. Carlsson: A variant of HEAPSORT with almost optimal number of com-
parisons. Information Processing Letters 24, 247 — 250, 1987

S. Carlsson: Average—case results on HEAPSORT. BIT 27, 2 - 17, 1987

C.J.H. Mc Diarmid and B.A. Reed: Building heaps fast. Journal of Algorithms
10, 352 - 965, 1989

K. Mehlhorn: Data Structures and Algorithms Vol. 1, Sorting and Searching.
Springer—Verlag, Berlin, 1984

I. Wegener: BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT bea-
ting on average QUICKSORT (if n is not very small). Submitted to Journal
of Algorithms, 1989

I. Wegener: The worst case complexity of Mc Diarmid and Reed’s variant of
BOTTOM-UP-HEAPSORT is less than nlogn + 1.1n. 77, 1990

J.W.J. Williams: Algorithm 232. Communications of the ACM 7, 8347 - 348,
1964

	fb1990-23-0001
	fb1990-23-0002
	fb1990-23-0003
	fb1990-23-0004
	fb1990-23-0005
	fb1990-23-0006
	fb1990-23-0007
	fb1990-23-0008
	fb1990-23-0009
	fb1990-23-0010
	fb1990-23-0011
	fb1990-23-0012
	fb1990-23-0013
	fb1990-23-0014
	fb1990-23-0015
	fb1990-23-0016
	fb1990-23-0017
	fb1990-23-0018
	fb1990-23-0019
	fb1990-23-0020

