A partial correctness logic for procedures
(in an AL&OL-like language)

by
Kurt Sieber

A 84/13

Universitdt des Saarlandes
6600 Saarbriicken
West Germany

(submitted for publication)

Abstract:

We extend Hoare's logic by allowing quantifiers and
other logical connectives to be used on the level
of Hoare formulas. This leads to a logic in which
partial correctness properties of procedures (and not
only of statements) can be formulated adequately. In
particular it is possible to argue about free proce-
dures, i.e. procedures which are not bound by a de-
claration but only "specified" semantically. This
property of our logic (and of the corresponding calcu-
lus) is important from both a practical and a theore-
tical point of view, namely:
- Formal proofs of programs can be written in the style
of stepwise refinement.
- Procedures on parameter position can be handled ad-
equately, so that some sophisticated programs can
be verified, which are beyond the power of other

calculi.

The logic as well as the calculus are similar to Rey-
nolds' specification logic. But there are also some
(essential) differences which will be pointed out in

this paper.

1. Introduction

Developing a program by stepwise refinement means

- writing an abstract program that uses procedures
which are not (yet) declared but only specified
by semantical properties,

- independently writing declarations for these pro-
cedures, so that they satisfy their specifications.

If a program is developed in this style, then of course

it should be proved in the same style. In a logic which

allows such proofs, it must be possible

- to specify procedures, i.e. to describe them by purely
semantical properties,

- to verify an abstract program starting from such spe-

cifications.

In order to understand the difficulties arising with this
way of reasoning in Hoare's logic, consider the following
example:

Assume we want to express that a (parameterless) proce-
dure P increases the value of a (global) variable x by 1.

Apparently this can be realized by the Hoare formula
{x =y} P() {x=y+ 1} (1)

(apart from the fact that Hoare formulas only describe
partial correctness). Assume further that P is used in

an abstract program and we want to conclude from (1), say
{x =1} P() {x =2} (2)
which is usually written as a so-called proof line

{x =y} P() fx=y + 1} > {x=1} P() {x=2}. (*)

Then the question arises how to define the semantics of
formulas like (x) (which is "intuitively valid"). It is
well known that the naive approach - where arbitrary pro-
cedures can be inserted for P - fails: If P is declared by

P()
P()

X : =y + 1 or

if x =y then x := x + 1 else x := x + 2 fi,

then - in both cases - the premise (1) is satisfied but

the conclusion (2) is not.

The usual way out is to forbid the variable y

to be

accessed by the procedure P. This can be achieved by

inspecting a context which contains all variables accessed
by P (cf. [dBa 80], [01ld 81]) or by distinguishing bet-

ween program variables (occuring in the programs) and al-

gebraic variables (occuring in the assertionsonly, cf.

[sie 81], [CGH 83]).

Here we propose a more "natural" solution: We distinguish

between value identifiers (a, b, ¢, ...), variable iden-

tifiers (x, y, 2z, ...) and procedure identifiers (P, Q,

R, ...) of various types. Quantifiers for all these iden-

tifiers are allowed and explicit dereferencing from

variables to values is expressed by a symbol "cont". A

quantified value identifier can then be used to refor-

mulate our example (x):

Vc.{cont(x) = c} P() {cont(x) = c + 1}
o> {cont(x) = 1} P() {cont(x)

= 2} (%x)

This formula is valid in the naive interpretation. The

premise now really means that "for all values
correctness holds with respect to cont(x) = c
cont(x) = ¢ + 1, hence it holds in particular
value 1. Note that the procedures declared by
P() : x :=c¢c+ 1 or

P() : if x = c then x := cont(x) + 1 else x
don't satisfy the premise of (xx).

(Of course this last argumentation was rather
will be justified by the formal definition of

in section 3.)

c" partial
and
for the

:= cont(x)

informal;

our logic

+ 2 fi

it

So far, the use of quantifiers can be regarded as a matter

of taste, because they can be replaced by variables which

are not accessed by certain procedures. But it will turn

out that - in connection with procedures on parameter po-

sition - quantifiers even increase the power of the

calculus.

Semantically procedures with parameters are usually con-
sidered as functions of their parameters. In order to
describe a function it is necessary to define its values
for all arguments. From this point of view quantifiers
are useful for all kinds of identifiers which may occur
as parameters.

As an example consider the formula
vc,x. {cont(x) = c} Q(x) {cont(x) = c + 1}

which means that for each parameter x the procedure call
Q(x) increases the value of x by 1. Hence it is satisfied,

if Q is declared by:
Q(y) : y := cont(y) + 1 ’
but it fails for:

Q(y) : y := cont(x) + 1 .

Finally the use of quantifiers for procedure identifiers

can be illustrated with the aid of the formula

va,R. (Vc. {true} R(c) {cont(x) = c + a}
> Vvb. {cont(x) = b} P(a,R) {cont(x) = 2 x b + 11})

which will be used in section 4 to prove a (slight variant

of a) program constructed by E. Olderog (cf. [0ld 81]).

The precise meaning of the formula is not important here,

but note that it describes the effect of the procedure

P under a certain semantical condition for the procedure
parameter R. This property of the formula is essential,
because in E. Olderog's program in €ach recursion a new
procedure is declared and inserted on parameter position.
"Classical" Hoare-like calculi which - like ours - use a

first order oracle, fail in proving this program, because they

require some syntactical "similarity" for the different

procedures occuring on a certain parameter position (cf.
[0la 811, [01ld 83]). Hence it was only proved in calculi
based on a higher order assertion language like those of

[01d 84], [paJ 83], in which semantical properties of pro-

cedure parameters are implicitely expressed with the
aid of predicate variables. But even these calculi fail,
when the complexity of the program is increased by addi-
tionally declaring a new variable in each recursion (cf.
section 4), because they can deal with "simple side

effects" only (a notion introduced in [Lan 83]).

We conclude with some remarks about related approaches

(in which also quantifiers are used on the level of Hoare
formulas).

(a) In [CGH 83] a calculus is presented, which only works
for procedures without global variables. Nevertheless

this paper contains some ideas about a completeness proof,
which can possibly be applied to our calculus.

(b) The proof system of [Hal 83] again differs from ours
by using a higher order assertion language (which is not
even precisely defined!).

(c) The most similar approach is Reynolds' specification
logic ([Rey 81], [Rey 82]).

But there is one essential difference: Reynolds considers
call-by-name as the basic mechanism for parameter passing.
As a consequence he only uses identifiers which stand for

integer expressions or variable expressions (and not for

integers or variables). If now e is such an identifier,

then a formula like
Ve. {cont(x) = e} P() {cont(x) = e + 1}

does not have the "desired" meaning, because in particular

e can be replaced by cont(x), which leads to
{true} P() {false}.

Hence it is again necessary (like in usual Hoare logic) to
impose a restriction on e, e.g. that the value of e does
not depend on the value of x (called "non-interference" in
specification logic). This means that one important advan-
tage of using quantifiers - which was illustrated above

with the formula (**) - has been lost in specification logic,

and that difficulties with procedure parameters reappear

(cf. section 11 in [Rey 82]).

On the other hand it should be mentioned that specification
logic is of course much more general than our approach,
e.g. type coercion is considered and higher order predi-

cates are used.

2. The programming language

We consider a fully typed ALGOL-like language in which
arbitrary nesting of blocks and (mutually recursive)
procedure declarations is possible. Procedures may have
value-parameters (call-by-value), var-parameters (call-
by-reference) and procedure parameters of all types. But
note that self application is impossible, because every
procedure has its (finite) type. Sharing (between para-
meters or between parameters and global variables) is
allowed without restrictions. Global variables and pro-

cedures are handled by the static scope rule.
We begin with syntactical definitions.

First a set Type of typest is defined by:

T ::= value | var | bool | stat | (T1+T2) | Ty Xeeo X T .

stat is intended to be the type of statements and para-
meterless procedures; hence the subsets Proctype of pro-
cedure types and Partype of parameter types are defined by:
proctype ::= stat | (partype1 X. .. X partypen - stat)
partype ::= value | var | proctype

For every parameter type T a set IdT of Zdentifiers id
of type T is given, in particular:

- Id is the set of value identifiers a, b, ¢ ...,
value

- IdVar is the set of variable <identifiers X, Y, Z ...,

-) : . oy
€ Proctype IdT is the set of procedure identifiers P, Q,
Additionally a signature Q is needed, containing function

symbols £ and predicate symbols pr of various arities.

On this basis the constructs C of the programming language
(and the type of each construct C, denoted type(C)) can

be defined as follows.

R...

Terms t:

t ::=c | cont(x) | f(t1,...,tn) where n is the arity of f.
(Remember the meaning of "cont".)

type(t) = ((var - value) - value) for all terms t.

Formulas p(q,r,s):
P::=x =1y | t, = t, I ap' | (p1 A P,) | Vc.p
I pr(t1,...,tn) where n is the arity of pr.

(x = y is intended to express sharing in contrast to

cont (x) = cont(y); this is necessary, because formulas will

be also used as assertions in Hoare formulas. The same argu-
menf applies to quantifiers, but note that they are restric-
ted to value identifiers c.)

type(p) = ((var - value) - bool) for all formulas p.

Statements St:

St ::= x :=t | if p then St, else St, fi | (St,:St,)

1
| begin var x;St end | begin E;St end

2

| Proc(par1,...,parn) where par,,...,par_ must
be of "adequate" type.
(Of course the parantheses in (St1;St2) are omitted if

possible, otherwise they are replaced by "begin...end".)

type(St) = stat for all statements St.

Procedures Proc:

Proc ::= P | Pb
)

type(Proc is inherited from P or Pb.

Parameters par:

par ::= x | t | Proc

Again the type is inherited.

Procedure bodies Pb:

Pb ::= St | A id1,...

In the first case type(Pb) = stat, in the second case

,idn.St where id1,...,idn are different.

type (Pb) = (T1 Xeoo X T 2 stat) where Ti is the type of idi.

Procedure declarations E:

E ::= P1 = Pb1;...;Pm = Pbm where P1""’Pm are different

and type(Pi) = type(Pbi).

type(E) = type(P1) Xeoo X type(Pm); P1""’Pm are called
the procedure identifiers declared by E, the set (or the
tuple) of these identifiers is denoted decl(E).

This concludes the syntactic definitions.

Note in particular that

- complete procedure bodies may occur in procedure calls
(on "call position" as well as on parameter position),

- procedure declarations have the form
P « Aid1,...,idn.St instead of P(id1,...,idn) : St.

These conventions are necessary for defining a substitu-

tion of procedure identifiers by procedure bodies.

The semantics of our language is defined in a purely de-
notational style, i.e. without any operational concepts
like - say - the copy rules of [01ld 81].

As usual the basis of the semantics definition is an inter-
pretation I = (D, IO) where D is a nonempty set of datas

(6 € D) and IO assigns functions and predicates on D to

the symbols of Q. Additionally an infinite set Adr (o € Adr)
of addresses (storage locations) is assumed to be available.
A (total) function o : Adr -» D is then called a (storage)
state, the set of all states is denoted I, and relations
pc L xI are called (nondeterministic) state transfor-

mations.

The semantical domains are partial orders (po's) which do
not necessarily contain bottom elements. Those which have
one (denoted L) are called strict (due to [GTW2 771) ;

those which are ordered by the equality are called trivial.
If D and E are partial orders, then D x E denotes their
cartesian product with the componentwise defined ordering
and if additionally M is a set, then (M - E) denotes the

set of functions from M to E with the argumentwise defined

ordering.

With these notations a semantical domain DT is defined

for each type T, such that:

(1) Dvalue = Dy
(ii) DVar = Adr,
(ii1) Dbool = Bool = {true, false},

(each made into a trivial po by the equality);

(iv) D is an "adequate" set of state transformations,

stat
containing in particular the empty set ¢ <« I x I,

(made into a strict po by the subset relation "c"

(v) D = D Xx...xD_ ,
Ty X eee X Ty T4 Th

(vi) D is an "adequate" subset of (DT - DT),
1 2

(each made into a po by the induced ordering).

(T1+T2)

Note that DT is strict for all procedure types T, because
DStat is strict.

The precise definition of Dotat and D(T1+T2)

is left open
here. We only give some informal remarks:

The crucial point of the semantics definition is the connec-
tion of local variables with global (i.e. free) procedures.

Consider e.g. the block
begin var x; P(x) end.

We want to define the semantics of the variable declara-
tion by allocating to the identifier x a "new" address,

which is not "global" for P, i.e. which is "not accessed
by P itself". But in our purely denotational framework P

is interpreted as a function £ € D , hence it

(var»stat)
is necessary to define the set of addresses "accessed"

by such a function, i.e. to define the notion of "access"
on the semantical level. A precise solution of this problem
can be found in [HMT 83], here we only want to present the
main idea.

There are three kinds of access (of a procedure to a vari-
able):

- access by writing: the contents of the variable is
(possibly) changed by the (nondeterministic) procedure;

- access by reading: the initial contents of the variable
has an influence on the output of the procedure;

- access by a sharing effect: This can be illustrated

with the aid of an example. Let P be declared by

P « Ay.begin y := cont(x) + 1;
if cont(x) = cont(y) then y := 1 else y := 2 fi

end.

Then there is neither a writing nor a reading access of
P to x, but nevertheless x has a certain (semantical)
influence on P: While the call P(x) sets its parameter

x to 1, each other call P(y) sets its parameter y to 2.

It is not necessary to distinguish exactly between these
three kinds of access, but we are only interested in the
following notions and facts:

The set Glob(f) of global addresses of f contains all
addresses which are accessed by f (by writing, reading
or a sharing effect). The set Out(f) of output addresses
of £ only contains those elements of Glob(f) which are
accessed by writing. The definition of each semantical
domain B, (1€ Proctype) guarantees that Glob(f) (and
hence Out(f)) is finite for every f € D_. This makes

it possible to select a "new" address in the semantics

definition of variable declarations.

We want to present the most interesting clauses of this
semantics definition. For this purpose we first need
the following definition.

The set Env of environments € is defined by

(Id_ »~ D),

= n
Env 1€ Partype T T

i.e. every environment € is a family of mappings

E_[: IdT -+ DT.

The meaning of each syntactical construct C of type T is
then defined as a function M(C): Env - D_-

Note in particular that (due to our definition of types):

- M(t)(e) ¢ £ >~ D for every term t,
- M(p)(€) : L - Bool for every formula p,
- M(St)(e) € & x I for every statement St.

The most interesting clauses of the definition of M are:

(i) block with variable declaration:

M(begin var x;St end) (¢)
= {(0la/8]1, 0'[0/8]) | (0,0') € M(Ax.St) (g) (a)}"
where o is an arbitrary address, not occuring in
Glob(M(Ax.St) (g)).
Intuitively this definition means that a is a "new" address
and that the block statement is executed in three steps:
- the initial contents § of a is replaced by a random
value o (a),
- M(Ax.St) (g) (a) = M(St) (e[x/al)’ is executed
(transforming o to ¢'),
- the initial contents § of o is restaured.
This careful definition of the variable declaration seman-
tics guarantees that
- the semantics is indeed independent of the particular
choice of «,
- @ js not accessed (in the sense explained above) by

the state transformation M(begin var x;St end) (g).

(ii) block with procedure declaration:

M(begin E;St end) (e) = M(St) (e [B/M(E) (e) 1)
where P = decl (E)

" As usual the variant f[m/n] of a function f : M =» N
is defined by fm/nl(m) = n
fm/n](m') = £(m') for all m' # m.

This definition says that the procedure declaration E

is evaluated (to the least fixpoint of a functional,

cf. next clause) "at declaration time" and that the
resulting objects (of procedure type) are bound to the
procedure identifiers P (in order to use them in a
procedure call). This shows that our programming language
works with static scope of variable and procedure iden-

tifiers.

(iii) procedure declaration:

Let E be the declaration P1 <= Pb1;...;Pm <« Pbm and let
T be the type of P, . Then M(E) (¢) is defined as the

least fixpoint of the function

(Nyreeerny) = (M(Pbq) (e [Py/nq] ... [Pm/nm]),

M(Pb) (e [P;/n] ... [Pm/nm])).

Unfortunately our semantics does not fit into the classi-
cal framework of Scott's theory: A sequence of elements

fn € DT (1t € Proctype) for which every set Glob(fn) is
finite, may have a least upper bound f with infinitely

many global addresses. Hence the partial orders DT are

not complete and - moreover - the semantics of the variable
declaration leads to functions which are not continuous.
These (technical but difficult) problems are discussed

and solved in [HMT 83] by using a "refined" version of

Scott's theory.

The connection between [HMT 83] and our approach is as
follows: Our set Glob(f) corresponds to their "support

of f", apart from one (small but serious) difference.

We have separately defined a set Out(f) of output addesses,

out(f) = U (Out (£ (p))~Out(p))

e.g. for each £ € D
e Ds tat

(stat-stat) *

(i.e. o is called an output address of f if its contents
is changed by a call f(p) without the aid of p). In [HMT 83]

this set is not defined and its finiteness is not required.

On the other hand this set plays an important role in
our proof system, so that this difference of the two
semantical approaches has serious consequences (cf.
example (iv) of section 3, the definition of the formu-
la strange(x, P), the variable declaration axiom and
example (ii) of section 4).

3. The logic

The basic objects of our partial correctness logic are
(classical) Hoare formulas. Other formulas are construc-
ted from them by two kinds of operators, namely
- the usual logical operators 1, A, V
(v, o, =, 3 are considered as abbreviations) ;
- a substitution operator <E> for every procedure decla-
ration E.
More precisely we define the set of generalized Hoare
formulas h by:
h ::= {p} St {g} | +h"' | (h1 A h2) | vid.h' | <E>h'.

In order to define the semantics of these formulas, a
formal definition of partial correctness is needed:

A state transformation p €¢ I x I is called partially
correct with respect to the predicates w, n' : I -» Bool,
if w(o) = true implies w' (0') = true for all pairs

(c,0') € p.

Now a meaning M(h) : Env - Bool can be assigned to every
generalized Hoare formula h by:
(i) M({p} st {q}) (e) = true
« M(St) (¢) 1is partially correct with respect
to M(p) (e¢) and M(q) (g)
(remember that M(p) (¢) and M(q) () are predicates);

(ii) M(ah) (ge) = true « M(h)(e) = false;

(iii)M(h1 A hz)(s) = true e»M(h1)(e) = true and M(hz)(e)

true;

(iv) M(vid.h) (¢) = true « M(h) (e[lid/n]) = true for alln € Dr’

where T is the type of id;

(v) M(<E>h) (e) = true <« M(h) (¢[P/M(E) (e)]) = true,
where P = decl(E)
(i.e. <E>h means that h is true "after" the declara-

tion E).

Some comments are necessary:
- Note that in our logic the Hoare formulas are evaluated

and combined (with the aid of logical operators) on the

- 15 =

level of environments, and not (like in dynamic logic,
cf. [Har 79]) on the level of states.

- Recall that M(h) (like all semantical definitions)
depends on the underlying interpretation I of the

signature &, i.e. (in a more precise notation) it

is a function MI(h) : EnvI - Bool.

With this last notation we define: h is valid in I
(notation: r=I h) if MI(h)(e) = true for all € € EnvI.
We now present some examples illustrating the use of our
logic. It is assumed that the interpretation I assigns
the usual meaning to the symbols O, 1, ..., +, *, ...

In all examples a detailed interpretation of the formulas
is left to the reader.

(1) Let E be the declaration
P « if cont(x) = c then x := cont(x)+1 else x := cont(x)+2
and let h be the formula
{cont(x) = c} P() {cont(x) = c + 1}.
Then I= [<E>h holds, but <E>Vc.h is not valid in I
(as already indicated in section 1).
On the other hand the declaration E' defined by

P e x := cont(x) + 1 yields k=I <E'>Vc.h.

(ii) Let h be as in (i) and let h' be the formula
{cont(x) = 1} P() {cont(x) = 2}.
Then Vc.h o h' is valid in I, but h © h' is not.
This possibility of substituting (only) quantified
identifiers indicates the predicate logical character
of our formulas, which will also come out in the
axioms and rules of the calculus (in section 4). More-
over - together with (i) - we get a first hint how
to accomplish (formal) stepwise refinement proofs:
<E'>VYc.h means that the procedure P declared by E'
satisfies the semantical property Vc.h. The formula
Yc.h o h' says that this (general) property implies
the (special) instance h', which is possibly needed
for the proof of an "abstract program" calling the

procedure P. Hence it must be possible to conclude

<E'>h' from these two formulas; this will be accomplished

by the "stepwise refinement axiom" of section 4.

(iii) The following example illustrates the use of
quantified variable identifiers, which are particularly
interesting in connection with sharing effects.

Let E be the declaration
P « Ay. begin y := cont(x) + 1;

if cont(x) = cont(y) then y := 1 else y := 2 fi
end ,
let h be the formula ({true} P(x) {cont(x) = 1}
and h' the formula {true} P(y) f{cont(y) = 2}.

Then <E>h is valid in I (because of sharing), but
<E>Vx.h ist not. Moreover <E>h' is not valid in I, be-
cause it fails in the case of sharing, nor is <E>Vy.h'.

A valid formula describing the non sharing case is:

<E> Vy. {1y = x} P(y) {cont(y) = 2}.

Substituting x for y in this formula and applying the

stepwise refinement lemma mentioned in example (ii) yields:

<E> {1 x = x} P(x) {cont(x) = 2},

which is valid in I (but meaningless).

This treatment of variable identifiers (which again

shows the predicate logical character of our formulas)

is possible, because variable identifiers stand for
addresses and in particular different identifiers can
denote the same address. In many other Hoare-like svstems
such an unrestricted substitution of variable identifiers
is not allowed, because the underlying semantics is
defined without the aid of addresses (cf. [0ld 81]).

(iv) The last example illustrates the difficulties which
can arise from the connection of local variables and
global procedures.

Let St be the statement
begin var x; x := 1; begin E; P(R); R() end end
where E is the declaration R « y := cont(x).

We want to prove that I= {true} St {cont(y) = 1}. The

I
argumentation remains a bit informal because of our

vague definition of the semantics.

First note that P is global w.r.t. St, hence it can be

assumed that (the address assigned to) x is not accessed

by (the function assigned to) P. As moreover R does not

access x by writing (but only by reading), also P(R) can-

not change the contents of x. Because x initially
contains 1, this value is finally assigned to y by
the call of R, and this proves the validity of the

formula.

Note that the argumentation of example (iv) was only
possible because the set of output addresses of P is
defined seperately (as mentioned at the end of section
2). If this is not the case (like in [HMT 831,

[Hal 83]) then the validity of the above-mentioned for-
mula is (at least) questionable.

Note moreover that this validity is not only a matter
of taste. If St occurs within a procedure Q where a
new procedure P is created in each recursion and
inserted on parameter position of Q (like in example
(iii) of section 4) then the formula might be a step
in the proof of a "complete program" (without global

procedures) .

We conclude this section with some preparations for the

calculus:

(i) First we need a definition of free (resp. bound)
occurence and of substitution for the constructs C
of our programming language and the formulas h of
our logic. The binding mechanisms are: quantifiers,
A-abstraction (i.e. formal parameters), variable
declarations and procedure declarations. The sets
free (C) and free(h) of identifiers which are not
bound by one of these mechanisms are defined induc-

tively, e.g.:

_m
free(P1 - Pb1;...;Pm « Pbm) = iE/ free(Pbi) ~ {P1,...,P 1,

1
free(begin E;St end) = (free(E) U free(St)) ~ decl(E).
Now it is possible to define a substitution of
- a value identifier c by a term t,

- a variable identifier x by a variable identifier vy,

m

- a procedure identifier P by a procedure Proc
of the same type.

The substitutions are defined "as usual", i.e.

bound identifiers must be possibly renamed, in

order to avoid new bindings.

The formulas which are obtained from h are denoted

ht, hy and hProc
c X P

constructs C.

respectively, similarly for

As usual a substitution theorem holds:

- M(h$) (e) = M(h) (elc/M(t) (e)]) if t is variable free,
- M(hd) (e) = mM(h) (elx/e(n) D),
- M(hT%) (e) = M(h) (e[P/M(Proc) (e)]).

Again everything generalizes to constructs C and
to a simultaneous substitution of two or more iden-

tifiers.

The theorem shows that the substitution operator <E>
can be considered as an abbreviation: If decl(E) =
{P1,...,Pm}, then <E>h is obtained from h by sub-
stituting for each Pi the procedure body

lid1,...,idn. begin E;Pi(id1,...,idn) end.

This will be the point of view in section 4.

For our variable declaration axiom we need a for-

mula strange(x,P) such that

M(strange(x,P)) (€) = true e e(x) € Out(e(P))
(cf. section 2)

It can be defined by induction on the type of P.

For type (P) stat it is the formula:
c} P() {cont(x) = c}

and for type (P) = (T1 Xo o o XT T):

Vc. {cont(x)

Vid1,...,id strange(x,idi)

> ve. {T /_\V o x=id, A cont(x)=c} P(id,,...,id) {cont(x)=c}).

l—___..

A 4
n TiEProctype

(iii)

Note that strange(x,P) is just an abbreviation for a
generalized Hoare formula. The other authors who need

a similar axiom or rule ([Hal 83], [Rey 82]) have in-
troduced a new formula in order to express the (stronger)
property €(x) € Glob(e(P)) (or a similar condition).

We conjucture that our variable declaration axiom is

still strong enough in spite of the weaker assumption.

In order to formulate the fixpoint induction principle
we must characterize a subset of generalized Hoare
formulas, which express admissible predicates (cf.
[Man 74]). More precisely for every finite set
{P1,...,Pm} of procedure identifiers a set of so-
called specifications spec for PoseeosPy is defined

syntactically which all have two semantical properties:

For every environment €
- M(spec)(e[P1/L1]...[Pm/Lm]) = true and

- the predicate OE defined by
oe(f1""’fm) = M(spec)(e[P1/f1]...[Pm/fm]

is admissible.
The precise syntactical definition is omitted here;
a similar restriction is imposed on the formulas in

Reynolds' axiom of recursion ([Rey 82]).

4. The proof system

Our proof system consists of three groups of axioms
and rules.

I. Logical axioms and rules:
They are needed for "purely logical reasoning" on the

level of generalized Hoare formulas.

(a) Tautology-rule:

h1’...,hn

— if (h1 AveoA hn):oh is a tautology.
h

(b) Substitution-axioms:

(i) Vc.h o hg if t is variable free.

(ii) Vvx.h o hY
X
(iii) VP.h o hgroc

(c) (V)-rule:

h o h'

——— if id € free(h).
h o vid.h'

II. Axioms and rules for partial correctness:
They are needed for manipulating the assertions p and q
of a Hoare formula {p} St {q} without referring to the

special structure of St.

(a) Invariance-axiom:

{p} st {p} if p does not contain the symbol "cont".
(b) (A)=-axiom:

({p} st {g} A {r} st {s}) o {p A r} St {g A s}
(c) (v)-axiom:

({p} st {gq} A {r} st {s}) o {p v r} St {g v s}
(d) (V)=-axiom:

ve. {p} St {g} = {Vvc.p} St {vc.q} if c € free(St)
(e) (3)-axiom:

vc. {p} St {gq} » 8c.p} St 3c.qg} if c € free(St)

- 21 -

(£) (D) -rule:

rop , g>s

{p} st {q} o {r} St {s}

III. Language specific axioms and rules:
They are used to deal with the "operations" of the pro-

gramming language like composition or recursion.

(a) (:=)-axioms:
(i) Vx,c. {true} x := ¢ {cont(x) = c}
(ii) Vy,c. {y=x A cont(y)=c} x:=t {cont(y)=c}

(b) (;)-axiom:
({p} St, {g} A {q} St, {r}) o {p} St,ist, {r}

(c) (if)-axiom:
({p A 1} St {g} A {p A1} St, {ql)

> {p} if r then St, else St, fi {q}

(d) (PD) ~axiom (for Erocedure declarations):

<E> {p} St {q} o {p} begin E;St end {q}

(e) (VD)-axiom (for variable declarations):

A - =
VX&(Hzfree(st)strange(x,P)):{pA1x YqA---AX y,} st {a})

> {p} begin var x;St end {q}
if x § free(p) U free(q) VU {y1,...,yn}

(£) (FPI)-axiom (for fixpoint induction):

Pb“'ouolpbm . . .
‘c/P.|,...,Pm.(spec:specp1'._.'Pm)> <P1w Pb1,...,PHl«Pbm>spec

if spec is a specification for P1,...,P (cf. section 3).

m

(g) (A)-axiom:

{p} Stggfff:::igzr“ @ > (o} A id,...,id .St(par,,...,par,) {q)

if no par; is a term which contains variables.

(h) call-by-value-axiom:
Ve.{p A t = c} St {q} > {p} St_ {q}
if c € free(p) U free(t) U freel(q)
and St is an assignment or a procedure call without

procedure bodies.

Instead of giving comments on the axioms and rules
we want to illustrate their use with the aid of some
examples. For this purpose we first present a derived

axiom:

(SR) —axiom:

(<E>spec A VP1,...,Pm.(spec > h)) o <E>h
if decl(E) = {P1”"’Pm}'

This axiom reflects the idea of stepwise refinement:
If the formula h expresses partial correctness of an
"abstract program", using the free procedure identifiers

P1""’Pm’ then E<h> can be proved in two steps:

- h is proved under the assumption spec, which expresses
certain semantical properties of the procedures;

- spec is proved for the procedures declared by E.

The derivation of this axiom is easy: Recall that the
operator <E> is considered as a syntactical substitution;
now apply the substitution axiom (iii) and the tautology

rule.

We now present three derivations in the form of "deriva-
tion trees". We always concentrate on the most difficult
"branches" of the tree; e.g. proofs for assignments are
ommited at all. (Indeed proving the partial correctness
of an assignment is tedious with the "pure" calculus;
another derived axiom would be needed for reasonable

derivations.)

We start with a procedure computing the factorial function

(as a warming up example):

(1) Let E be the declaration P « Ax,a.St where St
is the following statement:
if a = O then x := 1 else P(x,a-1); x := cont(x)xa fi,
and let spec be the specification
vx,a. {true} P(x,a) {cont(x) = al}.
Then the (valid) formula <E>spec can be derived as

follows

- 23 =

(1) <E>spec
T———— (FPI)-axiom, (V)-rule
(2) spec o Vx,a. {true} Ax,a.St(x,a) {cont(x)=al!}
T¥——— (V)-rule, (A)-axiom
(3) spec o {true} St {cont(x) = al}
---- (if)-axiom, (;)-axiom, tautology-rule
(4) {trueaa = 0} x := 1 {cont(x) = al!}

(5) spec> {true A 7a=0} P(x,a-1) {cont(x)=(a-1)!Aqa=0}
(6) {cont(x)=(a-1)!A7a=0} x := cont(x)*a {cont(x)=al}

We restrict our attention to the procedure call (5):

(5)

-—--- (A)-axiom, tautology-rule

(7) spec o {true} P(x,a=-1) {cont(x) = (a-1)!}
(8) {~a=0} P(x,a-1) {1a=0}

(7) is an instance of the substitution axiom (i), and (8)

is an instance of the invariance axiom. a

The second example illustrates the connection between

global procedures and local variables. It was already

considered from the semantical point of view in section

3.

(ii)

(1)

Let St be the statement

begin var x; X := 1; begin E; P(R); R() end

where E is the declaration R < y := cont(x).

We want to prove {true} St {cont(y) = 1}.

For this purpose we need the following specification
spec for R:

Vc. {oont(x)=c} R() {cont(x)=c} A Vb.{cont(x)=b} R() {cont(y)=b}
and the formula strange (x,P)

V R. (Vc. {cont (x)=c}R() {cont(x)=g>Vc. {cont(x)=c}P(R) {cont(x)=c})

Then we get the following derivation

{true} St {cont(y) = 1}

---- (VD)-axiom, (V)-rule

strange(x,P) o {true}x:=1;beginE;P(R);R()end{cont(y)=1}

---- (;)=-axiom, tautology rule

(3) {true} x:=1 {cont(x) = 1}
(4) strange(x,P)>{cont(x)=1}begin E;P(R);R()end{cont(y)=1}

- 24 -

(3) is trivial.

(4)
?—-—— (PD) —axiom
(5) strange(x,P)><E>{cont(x)=1} P(R);R() {cont(y)=1}

—=--- (SR)-lemma, (V)-rule, tautology rule
(6) <E>spec
(7) strange(x,P) >(speco>{cont(x)=1} P(R);R() {cont(y)=1})

The derivation of (6) is routine, we concentrate on (7):

(7)
---- (;)=-axiom, tautology rule
(8) (strange(x,P)aspec)>{cont(x)=1}P(R) {cont(x)=1}
(9) spec o {cont(x) = 1}R() {cont(y) = 1}
(8) and (9) can be derived with the aid of the tautology

rule and the substitution axioms.

The last example is a (slight variant) of a procedure
constructed by E. Olderog in order to illustrate the

limits of his own calculus (in [0l1l4 811]1).

(iii) Let E be the declaration P <« Pb,
where Pb is the procedure body
A a,R. begin Q « Ac.R(c+1);St end
and St is the statement
if a < cont(x) then P(a+1,Q) else R(a+1) fi.

We want to prove <E>h, where h is the formula
Vb. {cont (x)=b} P(0,Ac.x:=c) {cont(x)=2xb+1}.
For this purpose we choose the following specifi-
cation spec for P:
va,R.(Vc. {true} R(c) {cont(x) = c + a}
> Vb. {cont(x)=baasb} P(a,R) {cont(x)=2*b+1})

Then we get the following derivation
(1) <E>h
—=--- (SR)-axiom, (V)-rule
(2) <E>spec
(3) spec o h

- 25 -

The derivation of (3) is relatively easy: The
main step is the substitution of a by O and of R

by Ac.x:=c. We concentrate on (2):

(2) <E>spec

-—-- (FPI)-axiom, (V)-rule

(4) spec >(Vc. {true} R(c) {cont(x) = c + a}

S Vb. {cont (x) =baa<b} Pb(a,R) {cont(x) = 2*b+1})

---- tautology rule, (V)-rule, (A)-axiom

(5) (spec A Vc. {true} R(c) {cont(x) = c + a})
1 > {cont(x) = bAas<b} begin Q « Ac.R(c+1);St end

{cont(x) = 2xb + 1}
—--- (PD)-axiom, (SR)=-axiom, (V)-rule
—(6) (spec A Vc. {true} R(c) {cont(x) = c + a})
> <0 « Ac. R(ct1)> Ve. {true} Q(c) {cont(x) = ctat+l}
—(7) (spec A Vc.{true} R(c) {cont(x) = c + a})

> (Ve. {true} Q(c) {cont(x) =c + a + 1}
o> {cont(x) = b A a £ b} St {cont(x)=2 *x b + 1})

(6) is routine. As far as (7) is concerned, note

that:

- spec together with the specification of Q is
sufficient to deal with the then-part of the
statement St (where the main step is a substi-
tution of R by Q and of a by a + 1)

- the specification of R is sufficient to deal
with the else-part (because a = cont(x) = Db

in this case)

As mentioned in the introduction, example (iii) has

been proved with the aid of calculi using higher order
oracles (in [0ld 84], [DaJd 83]). In order to obtain a
program which even exceeds the power of these calculi,

just replace the declaration of Q by:
var y; Q= Ac.begin y:=c;R(cont(y)+1) end .

This does not change the semantics of P, and in our
calculus the formula h of example (iii) can still be
proved. (The variable declaration is just removed with
the aid of the (VD)-axiom, the information strange(x,P)

is not needed.)

- 26 =

But from a syntactical point of view the new program con-
tains a "serious side effect", because y is global in
the body of Q and local in the body of P (cf. [Lan 83]).
Hence in each recursion a new procedure Q is generated
(and inserted on parameter position), which has one ad-
ditional global variable. This phenomenon does not fit
into the framework of [0ld 84] or [DaJd 83].

5. Conclusion

As usual the question arises now, if our proof system
is sound and in some sense complete. The soundness can
be proved without difficulties. Completeness - even re-
lative completeness in the sense of [Coo 78] - cannot
be expected for the partial correctness theory of the
full programming language. This was proved in [Cla 79]
by showing that for such a powerful language the diver-
gence problem (i.e. the question if a program does not
terminate for any input) is unsolvable even for finite
interpretations. Hence we must look for less powerful

sublanguages, in order to get completeness results.

Several adequate sublanguages can be found in [01ld 81]:
With our calculus we can simulate so-called standard
proofs in E. Olderog's system H(C6O), provided that all
procedures have finite mode (i.e. self application is
not allowed). But of course this result does not ex-
ploit the power of our logic and calculus. A more in-
teresting candidate for a sublanguage would be Clarke's
L4 (cf. [Cla 79], [DaJ 83]), in which procedures with
global variables are not allowed, a restriction which
makes the divergence problem solvable for finite inter-
pretations. A first hint how to obtain a completeness
proof for a similar calculus can be found in [CGH 83],
and we hope that their idea can be applied to our proof

system.

In spite of this lack of reliable completeness results
we hope that this paper has convinced the reader that

our proof system is natural and powerful.

Acknowledgement: I am grateful to E. Olderog for his

comments on an earlier version of this paper.

- 28 -

References:

[cla 79]

[CGH 83]

[Coo 78]

[dBa 80]

[DaTg 83]

[GTW277]

[Hal 83]

[Har 79]

[HMT 83]

[Lan 83]

[Man 74]

[01d 81]

Clarke, E.M.: Programming language constructs
for which it is impossible to obtain good Hoare-
like axioms. JACM 26, 129 - 147, 1979

Clarke, E.M., German, S.M. and Halpern, J.Y.:
Reasoning about procedures as parameters. Proc. of
the CMJ Workshop on Logics of Programs, LNCS 164, 206-220, 1983

Cook, S.A.: Soundness and completeness of an
axiom system for program verification. SIAM Journ.
on Comp. 7, 70 - 90, 1978

de Bakker, J.W.: Mathematical theory of program
correctness. Prentice-Hall, 1980

Damm, W. and Josko, B.: A sound and relatively*
complete Hoare-logic for a language with higher
type procedures. Acta Informatica 20, 59 - 102,
1983

Goguen, J.A., Thatcher, J.W., Wagner, E.G. and
Wright, J.B.: Initial algebra semantics and
continuous algebras. JACM 24, 68 - 95, 1977

Halpern, J.Y.: A good Hoare axiom system for an
ALGOL-1like language. Proc. 11th POPL Conf.,
262 - 271, 1983 '

Harel, D.: First order dynamic logic, LNCS 68,
Springer-Verlag, 1979

Halpern, J.Y., Meyer, A.R. and Trakhtenbrot,
B.A.: The semantics of local storage, or what
makes the free-list free? Proc. 11th POPL Conf.,
245 - 257, 1983

Langmaack, H.: Aspects of programs with finite
modes. Proc. of the FCT-Conference, LNCS 158,
241 - 254, 1983

Manna,Z.: Mathematical theory of computation.
McGraw-Hill, 1974

Olderog, E.R.: Sound and complete Hoare-1like
calculi based on copy rules. Acta Informatica
16, 161 - 197, 1981

[o1la

[01ld

[Rey

[Rey

[Sie

83]

84]

811

82]

811]

- 29 =

Olderog, E.R.: A characterization of Hoare's
logic for programs with PASCAL-like procedures.
Proc. 15th ACM Symp. on Theory of Computing,
320 - 329, 1983

Olderog, E.R.: Correctness of programs with
PASCAL-like procedures without global variables.
TCS 30, 49 - 90, 1984

Reynolds,J.C.: The craft of programming. Pren-
tice-Hall International Series in Comp. Sc. 1981

Reynolds, J.C.: Idealized ALGOL. Tools and notions
for program construction. D. Néel ed., Cambridge
University Press, 121 - 161, 1982

Sieber, K.: A new Hoare-calculus for programs
with recursive parameterless procedures. Bericht
A 81/02, Universitdt Saarbriicken, 1981

	fb1984-13_0001
	fb1984-13_0002
	fb1984-13_0003
	fb1984-13_0004
	fb1984-13_0005
	fb1984-13_0006
	fb1984-13_0007
	fb1984-13_0008
	fb1984-13_0009
	fb1984-13_0010
	fb1984-13_0011
	fb1984-13_0012
	fb1984-13_0013
	fb1984-13_0014
	fb1984-13_0015
	fb1984-13_0016
	fb1984-13_0017
	fb1984-13_0018
	fb1984-13_0019
	fb1984-13_0020
	fb1984-13_0021
	fb1984-13_0022
	fb1984-13_0023
	fb1984-13_0024
	fb1984-13_0025
	fb1984-13_0026
	fb1984-13_0027
	fb1984-13_0028
	fb1984-13_0029
	fb1984-13_0030
	fb1984-13_0031

