Network Complexity

by

> Günter Hotz and Manfred Stadel

A77-06

by

Günter Hotz and Manfred Stadel

Introduction ：The use of computers in executing algorithms always leads to the question of how＂expensive＂these algorithms are．This can mean， for example，the amount of computing time or storage space required by a given algorithm．Such questions are handled in complexity theory； their practical significance is apparent．Upon closer examination these questions are seen to be quite complicated，and everyday problems prove to be extremely difficult to solve．

The first attempt at developing a complexity theory for general compu－ table functions began with the axiomatic approach of Blum＊．In the form of the famous speed－up theorems this approach led，however，to dis－ appointing results．Another approach by Schnorr＊＊with respect to op－ timal Gödel numberings was also taken up by Hartmanis＊＊＊，but appears not to have been further handled．In the direction of a general theory the most far reaching results have been presented by Strassen in his development of the degree－bound．Although this is sharp for several interesting special cases，in general，it underestimates the complexi－ ty of polynomials quite significantly．

For several reasons the complexity of Boolean networks has received special attention．Gord lower bounds for these networks would also lead to good lower bounds for polynomials．The results of Fischer and Schnorr＊＊＊＊show that beyond this，such results could also yield in－ formation about the complexity of general computable functions．Un－ fortunately，until now all of the efforts applied to the complexity of Boolean networks have led to only modest results．For example，see the report by Patterson［9］，and also the papers by Paul［13］and Schnorr［15］，which are quite complicated considering their results． The goal of this paper is to examine complexity measures over an axio－ matic basis．These measures include the complexity measures induced by
＊Blum，M．：＂A Machine Independent Theory of the Complexity of Recursive Functions＂， J．ACM 14，2（1967），322－336．
＊＊Schnorx，C．P．：＂Optimal Enumerations and Optimal Gödel Numberings＂，M．Syst．Th．8（1974）
＊＊＊Hartmanis，J．＋Baker，T．P．：＂On Simple Gödel Numberings and Translations＂in Auto－ mata，Languages and Progranming，2nd Coll．Univ．of Saarbrücken，1974，INCS 14.
＊＊＊＊Fischer，M．J．：Lectures on Network Complexity，pres．at the Univ．of Frankfurt， 1974
Schnorr，C．P．：＂The Network Complexity and the Turing Complexity of Finite Func－ tions＂，Acta Informatica 7，（1976），95－107．
cost functions like the size complexity, depth compiexity, and breadth complexity studied in [16] and [9]. Also included are the applications of entropy [12] [18] and the degree-bound [17].

We develop this theory on the basis of categories with an added monoid multiplication. It will be examined under which conditions the cost-function-induced complexity measures can be aporoximated by general complexity measures. Methods will be developed for constructing complexity measures, and the conditions under which the entropy can be used for the definition of complexity measures will be given. Finally we will briefly mention complexity measures for monotone functions developed over monotone elements.

This paper has its basis in the extended abstract [5]. The formal, more complete, and extended version found in the current paper is primarily the work of the second author.

§1. The Mathematical Representation of Switching Circuits.

In this paper the size complexity, depth complexity, and other complexity measures of Boolean functions represented by switching circuits will be examined. First of all we need a good mathematical representation of switching circuits.

The first idea in this direction is to represent a switching circuit by a digraph in which nodes are labeled with elementary switching elements and the edges represent wires of the circuit. This kind of representation has an important disadvantage: We are not able to distinguish between the different inputs of a switching element. If we consider only bases with commutative switching elements + this is not a handicap. But we do not want to restrict ourselves to commutative bases. Therefore, we must devise a method for distinguishing among the different input wires of the switchingelements.

To do this we may write for each switching element (node in the graph) a line as follows

$$
\mathrm{n}:\left\langle\mathrm{a} ; \mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}\right\rangle
$$

where a is an elementary switching element (label of this node) with indegree k and n_{1}, \ldots, n_{k} are line numbers less than n (the current line number) with the following meaning: The i-th input of a is the output of the switching element coded in line n_{i}.

For the inputs of the whole switching circuit we must write extra lines:

$$
\begin{array}{ll}
1: & x_{1} \\
2: & x_{2} \\
\ldots & \\
1: & x_{1}
\end{array}
$$

where x_{1}, \ldots, x_{1} represent the input variables. Also for the two constants "true" and "false" we need extra lines:

$$
\begin{array}{ll}
l+1: & \text { true } \\
1+2: & \text { false. }
\end{array}
$$

\dagger An elementary switching element is called commutative iff a permutation of the input wires never changes the interpretation of the circuit as a Boolean function. For example \wedge, v, , are commutative switching elements.

Since not all of the wires are outputs of the whole switching circuit, we must give a selecting function o, such that the i-th output is loaded with the output of the switching element coded in line o(i). Note also that this model only allows for elementary switching elements with only one output wire.

Another more algebraic description of switching circuits is given in [4]. There the concept of so called X-categories is introduced. In [3] the X-categories are called "strict monoidial categories" and in [1] they are called "Kronecker categories".

1.1 Definition.

An X-category x is a 3-tupel (x, x, ε) such that
(i) x is a category,
(ii) $x: X \times X \rightarrow X$ is a covariant bifunctor (we write $\mathrm{f} \times \mathrm{X}$ instead of $x(f, g)$ for morphisms $f, g \in \operatorname{Mor}(X)$ and, analogously $u \times v$ for objects $u, v \in O b(X))$,
(iii) $\varepsilon \in \operatorname{GO}(X)$ is a special element, and
(iv) (Mor $\left.(X), x, 1_{\varepsilon}\right)$ is a monoid with x as operation and $1_{\varepsilon}: \varepsilon \rightarrow \varepsilon$, the identity on ε, as unit element.

Property (ii) implies: If $f: u^{\prime} \rightarrow u, f^{\prime}: u^{\prime \prime} \rightarrow u^{\prime}, g: v^{\prime} \rightarrow v_{0}$ $g^{\prime}: v^{\prime \prime} \rightarrow v^{\prime}$ are morphisms in X, then $f \times g: u^{\prime} x v^{\prime} \rightarrow u \times v$ and $f^{\prime} \times g^{\prime}: u^{\prime \prime} \times v^{\prime \prime} \rightarrow u^{\prime} \times v^{\prime}$, and we have the following equation:

$$
\left(f \circ f^{\prime}\right) \times\left(g \circ g^{\prime}\right)=(f \times g) \circ\left(f^{\prime} \times g^{\prime}\right)
$$

Furthermore claim (ii) together with claim (iv) implies that (Ob $(X), x, \varepsilon)$ is also a monoid. Because of (iv) every X-category is a small category (a monoid is always a set).

1.2 Definition.

Let X, Y be two X-categories. A functor $\Phi: X \rightarrow Y$ is called X-functor iff X regarded as a mapping $\operatorname{Mor}(X) \rightarrow \operatorname{Mor}(Y)$ is a monoid homomorphism.

+ lor example a switching element consisting of two parallel mout.ions has more lhan one output wires:

1.3 Definition.

(i) Let X be an X-category and $A \subset \operatorname{Mor}(X)$. A is called a free generating system for X iff the following universal property holds:
If Y is an arbitrary X-category, $\Phi_{1}: \mathrm{Ob}(X) \rightarrow \mathrm{Ob}(Y)$ a monoid homomorphism, and $\Phi_{2}: A \rightarrow \operatorname{Mor}(y)$ a mapping such that $\Phi_{2}(a): \Phi_{1}(u) \rightarrow \Phi_{1}(v)$ for $a: u \rightarrow v \in A$ then there exists a uniquely determined X-functor $\Phi: X \rightarrow Y$ which is an extension of Φ_{1} and Φ_{2}.
(ii) A X-category is called free iff it posses a free generating system.

1.4 Theorem and Notation.

Given any free monoid 0 and an arbitrary set A together with two mappings $\mathrm{S}, \mathrm{T}: \mathrm{A} \rightarrow 0$ there exist a free X-category $F(\mathrm{~A}, 0)$ which is unique up to functorial isomorphism with free generating system A and O as monoid of objects such that every a $\in A$ becomes a morphism $a: S(a) \rightarrow T(a)$ in $F(A, 0)$.

For a PROOF see, for example, [1] or [7].
The following example shows us how a switching circuit may be represented by a free X -category.

1.5 Example.

Let B be a basis generating all of the Boolean functions
 switching circuit there are also some other elementary switching elements such as
(i) crossing of two wires
(ii) branching of a single wire (diagonalization)
(iii) Boolean constant wires
(iv) truncation of a wire

	λ	denoted by c, denoted by d,
$\begin{gathered} \text { true } \\ \mathrm{T} \end{gathered}$	$\begin{gathered} \text { false } \\ T \end{gathered}$	denoted by true and false,
		denoted by

As monoid 0 of objects we will use \mathbb{N}_{0} with addition as operation If \bar{i} is a switching circuit we will interpret f as a morphism
$f: u \rightarrow v$ with $u, v \in \mathbb{N}_{0}^{\dagger}$, where u denotes the number of inputs and v the number of outputs of f. The free generating system A consists of the elements of B and c, d, true, false, t where the mappings S, T are defined as follows:

$$
\begin{array}{ll}
S(\wedge)=S(v)=2, & T(\wedge)=T(v)=1, \\
S(1)=1, & T(1)=1, \\
S(d)=1, & T(d)=2, \\
S(c)=2, & T(c)=2, \\
S(\text { true })=S(\text { false })=0, & T(\text { true })=T(\text { false })=1, \\
S(t)=1, & T(t)=0 .
\end{array}
$$

The operations x and of $F(A, 0)$ are interpreted as follows: If f and g are two circuits $f \times g$ means the circuit built by drawing f on the left of g without connecting any wires.

$\mathrm{f} \times \mathrm{g}$

If f has u inputs and g has u outputs then $f o g$ is defined and means the circuit built by connecting the inputs of f pairwise with the outputs of g without changing their order.

As example consider the following switching circuit:

In $F(A, O)$ this circuit is written as

$$
\operatorname{vo}(\wedge \times \wedge) \circ\left(1_{1} \times 7 \times 1_{2}\right) \circ\left(1_{1} \times d \times 1_{1}\right) .
$$

From now on we denote the so constructed free X-category by $G(B)$.

```
\dagger \mathbb{No}:=\mathbb{N}U{O}.
```

1.6 EXAMPLES (c.f. [4], [2]).

Let M be an arbitrary set. Denote by C_{M} the following X-category:
$\mathrm{Ob}\left(\mathrm{C}_{\mathrm{M}}\right):=\mathbb{N}_{0}$ together with + as monoid operation, $\operatorname{Mor}\left(C_{M}\right):=\left\{f: n \rightarrow m: f\right.$ is a function from M^{n} to $\left.M^{m}\right\}$. Thereby we identify M° with the set $\{e\}$ consisting of a single element e. Identifying $M^{\circ} \times M^{n}$ and $M^{n} \times M^{\circ}$ with M^{n} we may define $f \times g$ for $f, g \in \operatorname{Mor}\left(C_{M}\right)$ in the usual way. Then it is easily proved that (Mor $\left(C_{M}\right), x$) is a monoid and that C_{M} is indeed a (not free) X-category. As a special example we have the X-category $B:=$ $C_{\text {\{true, }}$ false\} of Boolean functions. If G is defined as in 1.5 we have an X-functor $I: G(\{\wedge, \vee\urcorner\},) \rightarrow B:$

$$
\begin{aligned}
& I(\wedge)(x, y)=x \wedge y \\
& I(v)(x, y)=x \vee y, \\
& I(\imath)(x)=\uparrow x, \\
& I(\text { true })(e)=\text { true } \\
& I(\text { false })(e)=\text { false } \\
& I(t)(x)=e, \\
& I(c)(x, y)=(y, x),
\end{aligned}
$$

$$
I(d)(x) \quad=(x, x), \quad \text { where } x, y \in M=\{\text { true }, \text { false }\}
$$

I is called the interpretation of $G(\{\wedge, v, 7\})$ in B. If $f \in$ $\operatorname{Mor}(G(\{\wedge, \mathrm{v}, \mathrm{\imath}\}))$ is a switching circuit then $I(f)$ is the Boolean function represented by f.

As another example let R be an arbitrary ring and denote by P_{R} the subcategory of C_{R} consisting of all polynomial \dagger functions $R^{n} \rightarrow R^{m}\left(n, m \in \mathbb{N}_{0}\right)$. Then P_{R} is also an X-category. An interpretation I: $G(\{+,-, *\}) \rightarrow P_{R}$ is defined in the obvious way.

There is a difference between the representation of a switching circuit by a free X-category and the method discussed at the beginning of this section. The following two switching circuits have the same representation as digraphs with ordered inputs but are different morphisms in $G(\{\wedge, \vee\urcorner\}$,$) :$
\dagger A function $f: R^{n} \rightarrow R^{m}$ is called polynomial iff there exist m polynomials $p_{1}, \ldots, p_{m} \in R\left[x_{1}, \ldots, x_{n}\right]$ such that $f\left(x_{1}, \ldots, x_{n}\right)=$ $\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$ for all $\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$.

Another pair of such circuits is:

Because of this problem we will define special sorts of X categories and use them for representing of switching circuits. First, Hotz has introduced such special X-categories, called the free D-categories (c.f. [4]).
1.7. Definition (c.f. [1]).

Let X be an X-category. We call X
(i) a symmetric X-category (S-category for short) iffy for any two objects $u, v \in O b(X)$ there exist a morphism
$c_{u, v}: u \times v \rightarrow v \times u \in \operatorname{Mor}(X)$ (called a crossing morphism) such that the following axioms hold:
(S1) If $\mathrm{f}: \mathrm{u} \rightarrow \mathrm{r}$ and $\mathrm{g}: \mathrm{v} \rightarrow \mathrm{s}$ are morphisms in More (X) then $c_{r, s} o(f \times g)=(g \times f){ }^{\circ} c_{u, v}$.

(S2) $\mathrm{c}_{\mathrm{v}, \mathrm{u}}{ }^{\circ \mathrm{C}} \mathrm{u}_{\mathrm{u}, \mathrm{v}}=1_{\mathrm{u} \times \mathrm{v}}$ for all $\mathrm{u}, \mathrm{v} \in \mathrm{Ob}(\mathrm{X})$.

(S3) $\left(1_{\mathrm{v}} \times \mathrm{c}_{\mathrm{u}, \mathrm{w}}\right) \circ\left(\mathrm{c}_{\mathrm{u}, \mathrm{v}} \times 1_{\mathrm{w}}\right)=\mathrm{c}_{\mathrm{u}, \mathrm{v} \times \mathrm{w}}$ for aZZ $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{Ob}(\mathrm{X})$.

(ii) an X-category with finite direct products (D-category for short) iff for every $u \in O B(X)$ there are morphisms $t_{u}: u \rightarrow \varepsilon$ (called truncations) such that for any two objects $v, w \in$ $\mathrm{Ob}(X)$ the following diagram is a direct product diagram in X.

If X is a D-category we introduce the following notations:
(a) Let $\mathrm{u} \in \mathrm{Ob}(X)$ and consider the following diagram in X :

There is a uniquely determined morphism $\mathrm{d}_{\mathrm{u}}: \mathrm{u} \rightarrow \mathrm{uxu}$ (called diagonalization) which makes the diagram commutative:
(D2) $1_{u}=\left(1_{u} \times t_{u}\right) \circ d_{u}=\left(t_{u} \times 1_{u}\right) \circ d_{u}$.
(b) Let $\mathrm{u}, \mathrm{v} \in \mathrm{Ob}(X)$ and consider the following diagram in X :

There exists a uniquely determined isomorphism $c_{u, v}$: $\mathrm{u} \times \mathrm{v} \rightarrow \mathrm{vxu}$ (called crossing) which makes the diagram commutative:
(D3)

$$
1_{u} \times t_{v}=\left(t_{v} \times 1_{u}\right) \circ c_{u, v} \text { and } t_{u} \times 1_{v}=\left(1_{v} \times t_{u}\right) \circ c_{u, v}
$$

1.8 Proposition.

Let X be an S-category. Then the following hold:
(SO) $c_{u, \varepsilon}=c_{\varepsilon, u}=1_{u}$ for aZZ u $\in O b(X)$.

(S4) $\left(c_{v, w} \times 1_{u}\right) \circ\left(1_{v} \times c_{u, w}\right) \circ\left(c_{u, v} \times 1_{w}\right)=\left(1_{w} \times c_{u, v}\right) \circ\left(c_{u, w} \times 1_{v}\right) \circ\left(1_{u} \times c_{v, w}\right)$ $u, v, w \in O b(X)$.

Proof. (c.f. [1]).
(SO) $c_{u, \varepsilon}=c_{u, \varepsilon \times \varepsilon}=\left(1_{\varepsilon} \times c_{u, \varepsilon}\right) \circ\left(c_{u, \varepsilon} \times 1_{\varepsilon}\right)=c_{u, \varepsilon} o c_{u, \varepsilon}$

$$
\begin{align*}
& \Rightarrow 1_{u} \stackrel{c_{u, \varepsilon} o c_{\varepsilon, u}=c_{u, \varepsilon} o c_{u, \varepsilon} o c_{\varepsilon, u} \stackrel{c_{u, \varepsilon}}{=}}{\Rightarrow 1_{u}=1_{u}{ }^{\circ c_{\varepsilon, u}}=c_{\varepsilon, u}}
\end{align*}
$$

$\left(S 3^{\prime}\right)\left(c_{u, w} \times 1_{v}\right) \circ\left(1_{u} \times c_{v, w}\right)=\left(c_{u, w} \times 1_{v}\right) \circ\left(1_{u} \times c_{v, w}\right)^{\circ} c_{w, u \times v^{\circ}} C_{u \times v, w}$

$$
\begin{equation*}
=\left(c_{u, w} \times 1_{v}\right) \circ\left(1_{u} \times c_{v, w}\right) \circ\left(1_{u} \times c_{w, v}\right) \circ\left(c_{w, u} \times 1_{v}\right) \circ c_{u \times v, w} \tag{S3}
\end{equation*}
$$

$$
\begin{equation*}
=\left(c_{u, w} \times 1_{v}\right) \circ\left(c_{w, u} \times 1_{v}\right) \circ c_{u \times v, w}=c_{u \times v, w} \tag{S2}
\end{equation*}
$$

(S4) $\left(c_{v, w} \times 1_{u}\right) \circ\left(1_{v} \times c_{u, w}\right) \circ\left(c_{u, v} \times 1_{w}\right)=\left(c_{v, w} \times 1_{u}\right) \circ c_{u, v \times w}$

$$
\begin{equation*}
=c_{u, w \times v^{o}}\left(1_{u} \times c_{v, w}\right) \tag{S1}
\end{equation*}
$$

$$
\begin{equation*}
=\left(1_{w} \times c_{u, v}\right) \circ\left(c_{u, w} \times 1_{v}\right) \circ\left(1_{u} \times c_{v, w}\right) \tag{S3}
\end{equation*}
$$

If we represent switching circuits by free S-categories which are defined in a way analogous to free X-categories (as will be shown later) then the two circuits

becomes the same morphism in the S-category (use axiom S1). Also the following two circuits have the same description in these S-category (axiom S1):

and

But the two circuits

and

are still different as morphisms in a free S-category. Therefore we will often use free D-categories for describing switching circuits.

1.9 Proposition.

Let X be a D-category. Then X is an S-category and the following hold:
(DO) $t_{\varepsilon}=1_{\varepsilon}$ and $t_{u \times v}=t_{u} \times t_{v}$ for alZ $u, v \in O b(X)$. Further if
$f: u \rightarrow \varepsilon \in \operatorname{Mor}(X)$ then $f=t_{u}$. This means that t_{u} is the only morphism $u \rightarrow \varepsilon$ in $\operatorname{Mor}(X)$.
(D1) Let $\mathrm{f}: \mathrm{u} \rightarrow \mathrm{v} \times \mathrm{w}, \mathrm{g}: \mathrm{u} \rightarrow \mathrm{v} \times \mathrm{w}$ be two morphisms in Mor (X). If

$$
\left(1_{v} \times t_{W}\right) \circ f=\left(1_{v} \times t_{W}\right) \circ g \text { and }\left(t_{v} \times 1_{W}\right) \circ f=\left(t_{v} \times 1_{W}\right) \circ g
$$ then $\mathrm{f}=\mathrm{g}$.

(D4) $\left(1_{u} \times d_{u}\right) \circ d_{u}=\left(d_{u} \times 1_{u}\right) \circ d_{u}$ for $a l Z \quad u \in O b(X)$.

(D5) $\quad c_{u, u} o d_{u}=d_{u}$ for alz $u \in O b(X)$.

(D6) ($\left.1_{u} \times c_{u, v} \times 1_{v}\right) \circ\left(d_{u} \times d_{v}\right)=d_{u \times v}$ for all $u, v \in O b(x)$.

(D7) (fxf)od $=d_{v}$ of for all morphisms $f: u \rightarrow v \in \operatorname{Mor}(X)$.

Proof,
The axioms (S2) and (S3) follow directly from the universal property of direct product diagrams. For example to prove (S2) consider the diagram

in X which is commutative for both morphisms ${ }^{1} u \times v, ~ c v_{v} u^{\circ} C_{u, v}$: $u \times v \rightarrow u \times v ; ~ t h i s ~ i m p l i e s ~ t h a t ~ t h e y ~ m u s t ~ b e ~ i d e n t i c a l . ~$
(S1) will be proved after (DO).
(DO) Consider the following diagram in X (recall $t_{\varepsilon}=t_{\varepsilon} \times 1_{\varepsilon}=$ ${ }^{1} \varepsilon \times t_{\varepsilon}$, and $\varepsilon=\varepsilon \times \varepsilon$):

There must exist a (unique) morphism f: $\varepsilon \rightarrow \varepsilon$ such that $1_{\varepsilon}=$ $t_{\varepsilon} \circ f=t_{\varepsilon}$.

Next we will prove that $f: u \rightarrow \varepsilon \in \operatorname{Mor}(X)$ implies $f=t_{u}$. Then $t_{u \times v}=t_{u} \times t_{v}$ is clear. Consider the diagram (recall $1_{u}=1_{u} \times t_{\varepsilon}$, $t_{u}=t_{u} \times 1_{\varepsilon}$, and $u \times \varepsilon=u$):

There must exist a unique morphism $g: u \rightarrow u \times \varepsilon=u$ such that $1_{u}=1_{u} \circ g=g$ and $f=t_{u} o g$. It follows $f=t_{u}$.
$(S 1):$ Let $f: u \rightarrow u^{\prime}, g: v \rightarrow v^{\prime}$ be two morphisms in Mor (X).
Then $\left(1_{u}, \times t_{V},\right) \circ(f \times g)=f \times t_{v}$ and $\left(t_{u},{ }^{\prime} 1_{V}\right.$,) o $(f \times g)=t_{u} \times g$. This is true for $t_{V}, o g: v \rightarrow \varepsilon \in \operatorname{Mor}(X)$ and therefore by (DO) $t_{v}, \circ g=t_{v}$ and analogously $t_{u}, o f=t_{u}$. Now we see that $f \times g$: $u \times v \rightarrow u^{\prime} \times v^{\prime}$ is the unique morphism making the following diagram commutative:

Now (S1) is easily proved by combining this diagram with the diagram defining $c_{v, u}$.
(D1) and (D4) to (D5) may similarly be proved using the universal properties of direct product diagrams and the definitions of d_{u} (D2) and $c_{u, v}$ (D3).

1.10 Definition.

(i) By K we will denote the category of all X-categories as objects together with all X-functors as morphisms. ${ }^{\dagger}$
(ii) By S we will denote the category of all s-categories as objects together with all X-functors which preserve the crossing morphisms. If $\Phi: X \rightarrow Y$ is an X-functor and x, y are s-categories then Φ preserves the arossing mor-
 We will call such functors as S-functors.

[^0](iii) By D we will denote the full subeategory of K comai:sting of all D-categories as objects.
(iv) Let 0 be a fixed monoid (with x as operation). Then we will denote by $\boldsymbol{K}(0), \mathbf{S}(0), \boldsymbol{D}(0)$ the subcategories of $K, S, D r e s p . c o n s i s t i n g$ of X-categories X with $\mathrm{Ob}(X)$ $=0$ as objects and such X-functors which are the identity mapping id: $0 \rightarrow 0$ on the objects.

1.11 Remark.

A functor $\Phi: X \rightarrow Y \in \operatorname{Mor}(D)$ preserves crossings, truncations, diagonalizations, and finite direct products. So D is also a full subcategory of S.

Proof,

Because (DO) is satisfied in y we have $\Phi\left(t_{u}\right)=t_{\Phi(u)}$ for all $u \in O b(X)$. Therefore Φ preserves the direct product diagrams

Since another direct product $w \in O b(X)$ of u and v is isomorphic to $u \times v$ it can easily be proved that ϕ preserves all finite direct products. From the universal properties of direct products it then follows that Φ also preserves the crossings, and diagonalizations.

1.12 Definition.

Let X be an S-category (D-category) and $A \subset \operatorname{Mor}(X)$. A is called a free S-generating system (free D-generating system) for X iff the following universal property holds:

If Y is an arbitrary S-category (D-category), Φ_{1} : $\mathrm{Ob}(\mathrm{X}) \rightarrow \mathrm{Ob}(\mathrm{Y})$ a monoid homomorphism, and $\Phi_{2}: \mathrm{A} \rightarrow \operatorname{Mor}(\mathrm{Y})$ a mapping such that $\Phi_{2}(\mathrm{a}): \Phi_{1}(\mathrm{u}) \rightarrow \Phi_{1}(\mathrm{v})$ if $\mathrm{a}: \mathrm{u} \rightarrow \mathrm{v}$ $\in A$, then there exists a uniquely defined S-functor (X-functor) $\Phi: X \rightarrow Y$ which is an extension of Φ_{1} and Φ_{2}.
(ii) An S-category (D-category) is called free iff it possess a free S-generating system (D-generating system).

1.13 Theorem and Notation.

(i) Given any free monoid O and an arbitrary set A together with two mappings $\mathrm{S}, \mathrm{T}: \mathrm{A} \rightarrow 0$ there exists $a-u p$ to an isomorphism in S - uniquely determined free S-category $F_{S}(A, 0)$ with free S-generating system A and O as monoid of objects such that every a $\in A$ becomes a morphism a: $S(a) \rightarrow T(a) \in \operatorname{Mor}\left(F_{S}(A, 0)\right)$.
(ii) Given any free monoid O and an arbitrary set A together with two mappings $S, T: A \rightarrow 0$ such that $\varepsilon \notin T(A)$ there exists a - up to an isomorphism in D - uniquely determined free D-category $F_{D}(A, 0)$ with free D-generating system A and O as monoid of objects such that every a $\in A$ becomes a morphism $a: S(a) \rightarrow T(a) \in \operatorname{Mor}\left(F_{D}(A, 0)\right)$.

SkETCH OF A Proof (c.f. [1], [2], [4]).
(i) Let $0=\Sigma^{*}$ with an alphabet Σ. Define

$$
A^{\prime}:=A \dot{U}\left\{c_{s, t}: s, t \in \Sigma\right\} \dagger
$$

and extend S, T to $S, T: A^{\prime} \rightarrow 0$ by $S\left(C_{s, t}\right):=s \times t$ and $T\left(c_{s, t}\right):=t \times s$. Let X be the free X-category $X:=F\left(A^{\prime}, 0\right)$ (c.f. 2.4). Then $c_{s, t}$ becomes a morphism $c_{s, t}: s \times t \rightarrow t \times s$ $€ \operatorname{Mor}(X) ; s, t \in \Sigma$. Define $c_{u, \varepsilon}:=c_{\varepsilon, u}:=1_{u}$ for all u $\epsilon 0$. Further define $c_{s, u}$ inductively using (S3) and then $c_{v, u}$ using ($S 3^{\prime}$) for $u, v \in O$. Now let R be the congruence

[^1]relation in Mor (X) generated by the axioms (S1), (S2), and (S3). Let $\Psi: X \rightarrow X / R$ be the canonical functor and define $F_{S}(A, O):=X / R$. It is clear that X / R is an S-category.
(ii) Define
\[

$$
\begin{aligned}
& A^{\prime}:=A \dot{U}\left\{t_{s}: s \in \Sigma\right\} \\
& \dot{u}\left\{d_{s}: s \in \Sigma\right\} \\
& \dot{U}\left\{c_{s, t}: s, t \in \Sigma\right\}
\end{aligned}
$$
\]

and extend S, T to $S, T: A^{\prime} \rightarrow 0$ by $S\left(t_{S}\right)=S\left(d_{S}\right):=S$, $S\left(c_{S, t}\right):=s \times t, T\left(t_{S}\right):=\varepsilon, T\left(d_{S}\right):=s \times s$, and $T\left(c_{s, t}\right):=t \times s$. Let X be the free X-category $X:=F\left(A^{\prime} ; 0\right)$. Define $c_{u, v}$, d_{u}, and t_{u} for arbitrary $u, v \in O$ in an analogous way as in (i) using (S3), (S3'), (DO), and (D6). Let R be the congruence relation on Mor (X) generated by the axioms (S1), (S2), (S3), and by (DO), ..., (D7). Let $\psi: X \rightarrow X / R$ be the canonical functor and define $F_{D}(A, 0):=X / R$. Then X / R is a D-category. For two given morphisms $f: w \rightarrow u$ and $g: w \rightarrow v$ in $\operatorname{Mor}(X / R) h:=(f \times g)$ od makes the following diagram commutative ((DO) and (D2)), and by (D1) must be unique.

In the both cases (i) and (ii) now we have to prove that A may be considered as a subset of X / R and that A then is a free S generating system (D-generating system) for X / R. We sketch the proof for (ii), a proof for (i) is similar.

Let Y be an arbitrary D-category, $\Phi_{1}: 0 \rightarrow O b(y)$ a monoid homomorphism, and $\Phi_{2}: A \rightarrow \operatorname{Mor}(y)$ a mapping such that $\Phi_{2}(a):$ $\Phi_{1}(S(a)) \rightarrow \Phi_{1}(T(a)) \in \operatorname{Mor}(y)$ for $a \in A . \Phi_{2}$ may be extended to
a mapping $\Phi_{2}: A^{\prime} \in \operatorname{Mor}(y)$ in an obvious way such that the images of $c_{s, t}, d_{s}$, and t_{s} are the crossings, diagonalizations, and truncations in Y. Since A^{\prime} is a free generating system for X there exists a unique X-functor $\Phi^{\prime}: X \rightarrow Y$ extending Φ_{1} and Φ_{2}^{\prime}. Since all the relations in R also holds in Y we have an X-functor $\Phi: X / R \rightarrow Y$ making the following diagram commutative:

Clearly Φ is an extension of Φ_{1} and Φ_{2}.
Now we will prove that $\left.\Psi\right|_{A}: A \rightarrow \operatorname{Mor}(X / R)$ is injective. Let M be a set such that $\operatorname{card}(M)>\operatorname{card}(A)$ and let C_{M} be as in example 1.6. It is easily proved that C_{M} is a D-category. Then we may define

$$
\Phi_{1}: 0 \rightarrow O b\left(C_{M}\right)=N_{0} \text { by } \Phi_{1}(u):=|u|^{\dagger} \text { for all } u \in 0
$$

and

$$
\Phi_{2}: A \rightarrow \operatorname{Mor}\left(C_{M}\right) \text { such that } \Phi_{2}(a): \Phi_{1}(S(a)) \rightarrow \Phi_{1}(T(a)) .
$$

Since $\operatorname{card}(M)>\operatorname{card}(A)$, and $\Phi_{1}(T(a)) \geq 1$, we are able to define Φ_{2} in such a way that it is injective. Then $\left.\Phi^{\prime}\right|_{A}$ is injective too and therefore $\left.\Psi\right|_{A}$ must be injective.

For describing a switching circuit as a morphism in a free D-category it is not essential how the circuit paths are factored. However because of (D7) the following two circuits also have the same description.

$+|u|$ denotes the number of letters in $u \in \Sigma^{*}$.

But if we are not interested in the outdegree of switching elements this is not a handicap. Our earlier method of describing switching circuits by a digraph together with a linear oxder on the inputs of the nodes (switching elements) is a special representation of the morphisms in $F_{D}\left(A, \mathbb{N}_{0}\right)$. We only had to consider

$$
n:<a ; n_{1}, \ldots, n_{k}>\quad(a \in A)
$$

as an abbreviation of the morphism

$$
l_{n}:=\left(1_{n-1} \times a\right) \circ f_{n+k-2}, n_{k} \circ f_{n+k-3, n_{k}-1} \circ \ldots o f_{n-1}, n_{1},
$$

where

$$
f_{\nu, \mu}:=\left(1_{\mu} \times c_{1, \nu-\mu}\right) \circ\left(1_{\nu} \times d_{1} \times 1_{\nu-\mu}\right)
$$

is the morphism which connects the μ-th wire of v parailel wires with a new wire to the right of them. For example if

$$
6:\langle\wedge ; 2,4\rangle
$$

is a line then ℓ_{6} is the morphism

The first 1 lines representing the input variables will be omitted, and the two lines for the constants true and false are

$$
\begin{aligned}
& \ell_{1+1}:=1_{1} \times \text { true } \\
& \ell_{1+2}:=1_{1+1} \times \text { false } .
\end{aligned}
$$

Then the switching circuit represented by m such lines is the morphism

$$
\text { ool } \mathrm{m}^{\circ} \ldots \text { ol }_{1+1}
$$

where o is the output selecting function written as a morphism $\operatorname{in} F_{D}\left(A, \mathbb{N}_{0}\right)$.

There are several other representations and normal forms of the morphisms of an X-category, S-category, or D-category. For them we reffer the reader to [1]. As an example every morphism f in a D-category may be factored as $f=\mathrm{f}^{\prime} \circ \mathrm{f}$ " where $f^{\prime \prime}$ is constructed using only diagonalizations as switching elements and in f^{\prime} no diagonalizations occur. then f^{\prime} may be considered as the usual formula notation describing f.

The following definition generalizes the concept of Boolean and arithmetic functions in the sense of Strassen's Ω-algebras [16].

1.14 Definition.

Let M be a set. A function $\omega: \mathrm{M}^{\mathrm{n}} \rightarrow \mathrm{M}$ is called an n-ary operation on $M(n \in \mathbb{N})$. Let Ω be a set of operations on M together with a mapping $S: \Omega \rightarrow \mathbb{N}$ such that $\omega \in \Omega$ is an $S(\omega)-$ ary operation on M . Now we define $\mathrm{A}:=\mathrm{M} \cup \Omega$ and extend S to a mapping $S: A \rightarrow \mathbb{N}_{0}$ by setting $\mathrm{S}(\mathrm{x})=\mathrm{O}$ for all $\mathrm{x} \in \mathrm{M}$. Further we define another mapping $T: A \rightarrow \mathbb{N}_{0}$ such that $T(a)=1$ for all a $\in A$. Using theorem 1.13 we get the free D-category $F_{D}\left(A, \mid N_{0}\right)$. Let C_{M} be defined as in example 1.6 and define an interpretation I: $F_{D}\left(A, \mathbb{N}_{0}\right) \rightarrow C_{M}$ as follows:

I is the identity mapping on the objects and
$I(\omega)\left(x_{1}, \ldots, x_{S(\omega)}\right)=\omega\left(x_{1}, \ldots, x_{S(\omega)}\right)$ for alz $\omega \in \Omega$,
$x_{1}, \ldots, x_{S(\omega)} \in M$, $I(x)(e)=x \quad$ for aZZ $x \in M$.

This means that the elements of M are interpreted as constant functions $\{e\} \rightarrow$. Now we denote by $P_{M, \Omega}$ the image of the functor I. Clearzy $P_{M, \Omega}$ is a D-category.

1.15 Examples.

(i) If $M=\{$ true, false $\}$ and $\Omega=\{\wedge, \vee, \tau\}$ where \wedge, v, and 7 are the wellknown Boolean operations on M then $P_{M, \Omega}=B$ (c.f. example 1.5).
(ii) If $M=\{$ true, false $\}$ and $\Omega=\{\wedge, v\}$ then $P_{M, \Omega}=B^{m}$, the D-category of all monotone Boolean functions.
(iii) If $M=R$ is a ring and $\Omega=\{+,-, *\}$ is the set of the ring operations, then $P_{M, \Omega}=P_{R}$ is the D-category of all polynomial functions over R.

§2. Complexity Measures on X-categories.

In this section S denotes a fixed additive commutative ordered monoid with unit element O satisfying the following condition:
$s \geq 0$ for all $s \in S$.
In this case we call s a positive monoid. For example S may be the additive semigroup \mathbb{N}_{0} together with the natural order.

2.1. Definition,

Let X be an X-category. A complexity measure on X with values in S is a function $C: M o r(X) \rightarrow S$ satisfying the folZowing axioms:
(C1) $\mathrm{c}\left(1_{\mathrm{u}}\right)=0$ for all objects $u \in \mathrm{Ob}(X)$.
(C2) $C(f \circ g) \leq C(f)+C(g)$ for $a l l f, g \in \operatorname{Mor}(X)$ such that fog is defined.
(C3) $c(f \times g) \leq c(f)+c(g)$ for aZZ $f, g \in \operatorname{Mor}(X)$.
In the future we will often denote a complexity measure c by | ...|.

If c satisfies the stronger condition
(C2') $C(f \circ g) \leq \operatorname{Max}(c(f), C(g))$ if fog is defined (f,g $\in \operatorname{Mor}(X)$) instead of (C2), we call c a breadth measure on x, and if c satisfies
(C3') $c(f x g) \leq \operatorname{Max}(c(f), c(g)) \quad(f, g \in \operatorname{Mor}(X))$
instead of (C3), we call c a depth measure on X.
If X is an S-eategory (D-category) we call a complexity measure c on X an S-complexity measure (D-complexity measure) iff $c\left(c_{u, v}\right)=O\left(c\left(t_{u}\right)=c\left(d_{u}\right)=c\left(c_{u, v}\right)=0\right)$ for all $u, v \in O b(X)$.

2.2 Examples،

Let $X=F(A, 0)\left(X=F_{S}(A, 0)\right)$ be a free X-category (free S-category) and $L: A \rightarrow S$ an arbitrary function. We may interpret S as an X-category where 0 and x both mean the addition + in S and o is always defined. The monoid $O b(S)$ consists of a single element ε. Therefore, S is also an S-category with $c_{\varepsilon}, \varepsilon$ $:=1_{\varepsilon}$. Extending the function L to an X-functor (S-functor)

L: $X \rightarrow S$

gives us a complexity measure L on X with values in S for which the following equations hold:
(i) $L\left(1_{u}\right)=O \quad\left(L\left(c_{u, v}\right)=0\right.$ in addition) (u,v $\left.\in O b(X)\right)$.
(ii) $L(f \circ g)=L(f)+L(g) \quad$ iE fog is defined (f,g $\in \operatorname{Mor}(X)$).
(iii) $L(f \times g)=L(f)+L(g) \quad(f, g \in \operatorname{Mor}(X))$.

Such a complexity measure on free X-categories (free S-categories) is called a cost function. Since $L\left(t_{v} \circ f\right)=L\left(t_{u}\right)=0$
$(f: u \rightarrow v \in \operatorname{Mor}(X))$ in a free D-category there exist only trivial cost functions (that means $L(f)=0$ for all $f \in \operatorname{Mor}(X)$).

If X denotes the free X-category $G(A)$ of switching circuits over the basis A and $L: A \rightarrow S$ is the cost of a single switching element (in A), then for a circuit $f \in \operatorname{Mor}(X) L(f)$ denotes the cost of this circuit. The cost of a single switching element may be the price we must pay for it or the energy this element uses on the average for working correctly. In both cases S may be the positive monoid \mathbb{R}_{0}^{+}of the nonnegative real numbers. But we also may combine the two cost functions as $L: A \rightarrow \mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+}$ such that the first component of $L(a)$ is the price and the second component is the energy consumption. In this case the semigroup S is not a submonoid of \mathbb{R}_{0}^{+}. The order on $S=\mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+}$ is the lexicographical order. This is analogous to valuations of rank > 1 in algebra.

Another important example is given in [5]: Let M be a finite set and X a sub-X-category of C_{M} such that Mor (X) consists only of isomorphisms (bijections) on C_{M}. Let $\Pi=\left(\pi_{u}\right) u_{\mathrm{N}} \mathbb{N}_{0}$ be a sequence of partitions such that

$$
M^{u}=\underset{\alpha \in_{\pi_{u}}}{ } \alpha \text { where } \alpha \cap \beta=\varnothing \text { for different. } \alpha, \beta \in \pi_{u}
$$

Define an entropy function $H: \operatorname{Mor}(X) \rightarrow \mathbb{R}_{0}^{+}$by

$$
H_{\Pi}(f):=-\sum_{\alpha} \frac{\operatorname{card}(\alpha)}{\operatorname{card}\left(M^{u}\right)} \sum_{\beta} \frac{\operatorname{card}(f(\alpha) \cap \beta)}{\operatorname{card}(\alpha)} \log \frac{\operatorname{card}(f(\alpha) \cap \beta)}{\operatorname{card}(\alpha)}
$$

for $f: u \rightarrow v \in \operatorname{Mor}(X)$ where x runs over π_{u} and B runs over π_{v}.

Then in $[5]$ is proved that $H: \operatorname{Mor}(X) \rightarrow \mathbb{R}_{0}^{+}$defined by
$H(f)=\sup \left\{H_{\Pi}(f): \Pi\right.$ sequence of partitions as above $\}$
is a complexity measure. This complexity measure is used to get lower bounds on the complexity of permutations (matrix transposition for example) and merging networks (c.f. [13] and [18]).

In algebra we define valuations on rings. Here, one of the axioms is $|x \cdot y|=|x| \cdot|y|$ where an equallity instead of an inequallity is postulated. Therefore in the theory of valuations on a ring or on a field we have a lot of results characterizing the set of possible valuations. But in our case we have the following difficulties:

2.3 Remarks.

Let X be an X-category and $C: \operatorname{Mor}(X) \rightarrow S$ a complexity measure on X. If $\varphi: S \rightarrow S$ denotes an arbitrary monotone subZinear function $w i t h ~ \varphi(O)=O$, then $\varphi o c: \operatorname{Mor}(X) \rightarrow S$ is also a complexity measure on x.

Proof: easy calculation. =

2.4 Example.

If S is the positive semigroup \mathbb{R}_{0}^{+}, then $\varphi: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$defined as $\varphi(x)=\log (1+x)$ is monotone and convex and satisfies $\varphi(0)$ $=0$. If in general $\varphi, \psi: S \rightarrow S$ are monotone and convex with $\varphi(O)=\psi(O)=0$ then $\varphi \circ \psi: S \rightarrow S$ is also such a function. If we have one complexity measure $c: \operatorname{Mor}(X) \rightarrow S$ we are able to construct a lot of other complexity measures, such as $\varphi \circ c, \varphi \circ \varphi o c$, $\varphi о \varphi о \varphi о с, \ldots$ which are all not very different. from c.

Therefore we will later define "strict complexity measures". But before considering the set of all complexity measures on a fixed X-category X we will prove some theorems about complexity measures.
$+$
A function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is called sublinear iff $\psi(x+y) \leq \psi(x)+\psi(y)$.

2.5 Theorem and Notation,

Let $\Phi: X \rightarrow Y$ be an X-functor defined over X-categories X and Y.
(i) If $\mathrm{c}: \mathrm{Mor}(\mathrm{y}) \rightarrow \mathrm{S}$ is a complexity measure on y, then $\Phi^{-1}(\mathrm{c})$: $\operatorname{Mor}(x) \rightarrow$ S defined by

$$
\Phi^{-1}(c)(f):=c(\Phi(f)) \quad(f \in \operatorname{Mor}(X))
$$

is a complexity measure on X.
(ii) Let S be such, that for every subset $M \subset S$ inf(M) exists respective to the order on S. If ϕ considered as a mapping $\mathrm{Ob}(X) \rightarrow \mathrm{Ob}(Y)$ is bijective and $\mathrm{C}: \operatorname{Mor}(X) \rightarrow \mathrm{S}$ is a complexity measure on X, then $\Phi(c): \operatorname{Mor}(y) \rightarrow S$ defined by

$$
\Phi(c)(f):=\inf \left\{c\left(f^{\prime}\right): \Phi\left(f^{\prime}\right)=f\right\} \quad(f \in \operatorname{Mor}(Y))
$$

is a complexity measure on y. If $\inf (\phi)=\infty$ does not exist in S but Φ is aiso surjective on the morphisms, then $\Phi(\mathrm{c})$ can be defined in the same way.

Proof.
(i) obvious.
(ii) (C1): Since Φ is surjective on the objects, for every $u \in O b(Y)$ there is $a u^{\prime} \in O b(X)$ with $\Phi\left(1_{u^{\prime}}\right)=1_{u}$. Therefore $\Phi(\mathrm{c})\left(\mathrm{l}_{\mathrm{u}}\right)=0$.
$(C 2): \Phi(C)(f \circ g)=\inf \{c(h): \Phi(h)=f \circ g\}$ $\leq \inf \left\{C\left(f^{\prime} \circ g^{\prime}\right): \Phi\left(f^{\prime}\right)=f\right.$ and $\left.\Phi\left(g^{\prime}\right)=g\right\}$ since Φ is injective on the objects $\leq \inf \left\{C\left(f^{\prime}\right): \Phi\left(f^{\prime}\right)=f\right\}$ $+\inf \left\{c\left(g^{\prime}\right): \Phi\left(g^{\prime}\right)=g\right\}$ $=\Phi(c)(f)+\Phi(c)(g)$.
(C3): similar to (C2) without using the assumption, that Φ is injective on the objects.

The following example shows us that the supposition that Φ is bijective on the objects is necessary.

2.6 Example.

Consider the following two free X -categories:
$X=F\left(\left\{f, g_{x}, g_{2}\right\},\left\{r, s_{1}, s_{2}, t\right\}^{*}\right), \quad y=F\left(\left\{f^{\prime}, g^{\prime}\right\},\{u, v, w\}^{*}\right)$.

Let $\Phi: X \rightarrow Y$ be the following X-functor:

$$
\begin{array}{ll}
\Phi(r):=u, & \Phi(f):=£^{\prime}, \\
\Phi\left(s_{1}\right):=\Phi\left(s_{2}\right):=v, & \Phi\left(g_{1}\right):=\Phi\left(g_{2}\right):=g^{\prime}, \\
\Phi(t):=w . &
\end{array}
$$

If $c: \operatorname{Mor}(X) \rightarrow S:=\mathbb{R}_{0}^{+} U\{\infty\}$ is defined by

$$
c(f):=c\left(g_{1}\right):=0, \quad c\left(g_{2}\right):=1
$$

(c.f. 2.2) then we have

$$
\Phi(c)\left(g^{\prime} \circ f^{\prime}\right)=\inf \left\{c(h): \Phi(h)=g^{\prime} \circ f^{\prime}\right\}=1
$$

since $\Phi^{-1}(h)=\left\{g_{1} \circ f\right\}$ but

$$
\Phi(c)\left(g^{\prime}\right)=\Phi(c)\left(f^{\prime}\right)=0,
$$

and so $\Phi(c)$ cannot be a complexity measure on y.
The above problem arose because Φ was not injective on
$\mathrm{Ob}(X) \rightarrow \mathrm{Ob}(y)$. It is also clear that if Φ is not surjective on the objects $\Phi(c)$ cannot satisfy the axiom (C1).

Because of theorem 2.5 we are able to define the size complexity of Boolean functions. Let $I: G(\{\wedge, v\urcorner\},) \rightarrow B$ the interpretion defined in §1. On $G(\{\wedge, \vee\rceil\}$,$) we are able to define a cost$ function L with values in \mathbb{N}_{0} such that $L\left(d_{u}\right)=L\left(c_{u, v}\right)=L\left(t_{u}\right)$ $=O\left(u, v \in \mathbb{N}_{0}\right)$ and $L(\Lambda)=L(v)=L\left(r_{1}\right)=1$ (c.f. 2.2.). Then $I(L)$ is the size complexity on B.

Throughout the rest of this section we will consider only X-categories in $K(0)$ for a fixed monoid 0 . Further we will assume $S=\mathbb{R}_{0}^{+} U\{\infty\}$, which we may also consider as a semiring. Then we define:

2.7 Definition.

We denote by C the following category:

$$
\begin{aligned}
& \mathrm{Ob}(C):=\{(X, c): X \in \mathrm{Ob}(\mathbb{K}(0)) \text { and } \mathrm{c} \text { is a complexity } \\
&\text { measure on } \left.X \text { with vaiues in } \mathbb{R}_{0}^{+} \cup\{\infty\}\right\} \\
& \operatorname{Mor}(C):=\left\{\Phi:(X, c) \rightarrow\left(X^{\prime}, C^{\prime}\right): \Phi: X \rightarrow X^{\prime} \in \operatorname{Mor}(\mathbb{K}(O))\right. \\
& \text { and } \exists \lambda \in \mathbb{R}^{+} \operatorname{such} \text { that } c^{\prime}(\Phi(f)) \leq \lambda \cdot c(f) \\
&\text { for all } f \in \operatorname{Mor}(X)\} .^{+}
\end{aligned}
$$

If id: $X \rightarrow X$ is the identity functor $\left(X \in K(0)\right.$) and c_{1}, c_{2} are two complexity measures on X, then we witl write

$$
c_{1} \succcurlyeq c_{2} \quad \text { iff } \quad i d:\left(x, c_{1}\right) \rightarrow\left(x, c_{2}\right) \in \operatorname{Mor}(X) .
$$

Further $c_{1} \approx c_{2}$ iff $c_{1} \succcurlyeq c_{2}$ and $c_{1} \preccurlyeq c_{2}$.

It is easily checked that G is indeed a category. Theorem 2.5 shows us that the following are morphisms in \mathbf{C}.

2.8 Proposition,

$$
\text { Let } \Phi: X \rightarrow Y \text { be a morphism in the category } K(0) \text {. }
$$

(i) If c is a complexity measure on y, then $\Phi:\left(X, \Phi^{-1}(c)\right) \rightarrow(y, c) \in \operatorname{Mor}(C)$.
(ii) If c is a complexity measure on X, then

$$
\Phi:(x, c) \rightarrow(y, \Phi(c)) \in \operatorname{Mor}(c) .
$$

Proof,
Take $\lambda=1 . \quad$.

$$
+\mathbb{R}^{+}:=\mathbb{R}_{0}^{+} \cup\{0\}=\{x \in \mathbb{R}: x>0\}
$$

2.9 Proposition.

Let $\Phi: X \rightarrow Y$ be a morphism in the category $K(0)$.
(i) If c_{1}, c_{2} are complexity measures on Y and $c_{1} \geqslant c_{2}$, then we have $\Phi^{-1}\left(c_{1}\right) \succcurlyeq \Phi^{-1}\left(c_{2}\right)$ on X.
(ii) If $\mathrm{c}_{1}, \mathrm{c}_{2}$ are complexity: measures on X and $\mathrm{c}_{1} \geqslant \mathrm{c}_{2}$, then we have $\Phi\left(c_{1}\right) \not \Phi\left(c_{2}\right)$ on y.

Proof.
(i) $\Phi^{-1}\left(C_{2}\right)(f)=C_{1} \Phi(f) \leq \lambda \cdot C_{1}(\Phi(f))=\lambda \cdot \Phi^{-1}\left(C_{j}\right)(f)$.
(ii) $\Phi\left(C_{2}\right)(f)=\inf \left\{C_{2}\left(f^{\prime}\right): \Phi\left(f^{\prime}\right)=f\right\}$ $\leq \inf \left\{\lambda \cdot C_{1}\left(f^{\prime}\right): \Phi\left(f^{\prime}\right)=f\right\}=\lambda \cdot \Phi\left(C_{1}\right)(f)$.

In the following we will prove some simulation theorems using the following definition:
2.10 Definiton.

Let c be a complexity measure on an X-category X with values in $\mathbb{R}_{0}^{+} U\{\infty\}$. Then \mathbf{c} is called nondegenerate iff for all $\mathrm{f} \in \operatorname{Mor}(\mathrm{X})$ $c(f) \neq \infty$.

2.11 Proposition.

Let $X=F(A, 0)$ be a free X-category with finite generating system A, C_{1} a cost function on X, and C_{2} an arbitrary complexity measure on X. Assume that C_{1}, C_{2} both are nondegenerate. If $c_{1}(a)=0 \Rightarrow c_{2}(a)=0 \forall a \in A$ then $c_{1} \succcurlyeq c_{2}$.

Proof.
Let $\lambda:=\operatorname{Max}\left\{\frac{c_{2}(a)}{C_{1}(a)}: \quad a \in A\right.$ such that $\left.c_{1}(a) \neq 0\right\}$. This maximum exists since A is finite and we have $0<\lambda<\infty$ since ci, ca both are nondegenerate. Let $f \in \operatorname{Mor}(X)$. We will prove by induction on the length of a sequential representation (c.f. [7]) of f, that $C_{2}(f) \leq \lambda \cdot C_{1}(f)$.
(i) If $f=1_{u}$ for some object $u \in O$, then $c_{2}(f)=0=c_{1}(f)$.
(ii) If $f=\left(1_{u} \times a \times 1_{v}\right) \circ g$ with $u, v \in 0, a \in A$ and $g \in \operatorname{Mor}(x)$, then we have

$$
\begin{aligned}
c_{2}(f) & \leq c_{2}(a)+c_{2}(g) \\
& \leq \lambda \cdot c_{1}(a)+\lambda \cdot c_{1}(g) \quad \begin{array}{l}
\text { by definition of } \lambda \text { and } \\
\text { induction hypothesis }
\end{array} \\
& =\lambda \cdot\left(c_{1}(a)+c_{1}(g)\right) \\
& =\lambda \cdot c_{1}\left(\left(\eta_{\mathrm{u}} \times a \times 1_{\mathrm{V}}\right) \circ g\right)=\lambda \cdot c_{1}(f) \text { since } c_{1} \text { is a cost } \\
& \text { function on } x .
\end{aligned}
$$

2.12 First Simulation Theorem.

Let X be a finitely generated free X-category and C_{1}, C_{2} two non degenerate cost functions on X with $c_{1}(f)=0 \Leftrightarrow c_{2}(f)=0$ for alt $f \in \operatorname{Mor}(X)$. Then we have $c_{1} \approx c_{2}$.

Proof,
Since every cost function is a complexity measure, we have from 3.11 that $c_{1} \not C_{2}$ and $c_{2} \nRightarrow c_{1}$. Therefore $c_{1} \approx c_{2}$.

2.13 Theorem (MAXimality of the size complexity) (c.f. [5]).

Let $\Phi: X \rightarrow Y \in \operatorname{Mor}(\mathbb{K}(0))$ where X is a finitely generated free X-category and Φ is surjective on the morphisms. Further, Let c_{1} be a non degenerate cost function on X and C_{2} be an arbitrary non degenerate complexity measure on Y such that $c_{1}(f)=0 \Rightarrow c_{2}(\Phi(f))=0$ for all $f \in \operatorname{Mor}(X)$. Then $c_{2} \preccurlyeq \Phi\left(c_{1}\right)$.

In the case $\Phi=I, X=G(\{\wedge, v, \gamma\})$, and $Y=B$ this means: Every non degenerate complexity measure c on B with $c\left(d_{u}\right)=$ $c\left(t_{u}\right)=c\left(c_{u, v}\right)=0$ for all $u, v \in O b(B)=\mathbb{N}_{0}$ is (without a constant factor λ) a lower bound for the size complexity in
B. Further, two non degenerate size complexity measures c_{1} and C_{2} on B are equivalent $\left(C_{1} \approx C_{2}\right)$ iff $C_{1}(f)=O \Leftrightarrow C_{2}(f)=0$ for all $f \in \operatorname{Mor}(X)$.

Proof.
$\Phi^{-1}\left(c_{2}\right)$ is a non degenerate complexity measure on X with $c_{1}(f)=0 \Rightarrow \Phi^{-1}\left(c_{2}\right)(f)=c_{2}(\Phi(f))=0$ for all $f \in \operatorname{Mor}(X)$. Then 2.11 implies that $\Phi^{-1}\left(c_{2}\right) \preccurlyeq c_{1}$ and because of 2.9 we get $\Phi\left(\Phi^{-1}\left(c_{2}\right)\right) \preccurlyeq \Phi\left(c_{1}\right)$. Now we will prove that under the supposition that Φ, regarded as a mapping ϕ : Mor $(X) \rightarrow$ Mor (Y) is surjective, we have $c_{2}=\Phi\left(\Phi^{-1}\left(c_{2}\right)\right.$). Let. $f \in \operatorname{Mor}\left(y^{\prime}\right)$. Then we have

$$
\begin{aligned}
\Phi\left(\Phi^{-1}\left(\mathrm{c}_{2}\right)\right)(\mathrm{f}) & =\inf \left\{\Phi^{-1}\left(\mathrm{C}_{2}\right)\left(\mathrm{f}^{\prime}\right): \Phi\left(f^{\prime}\right)=\mathrm{f}\right\} \\
& =\inf \left\{\mathrm{c}_{2}\left(\Phi\left(\mathrm{f}^{\prime}\right)\right): \Phi\left(\mathrm{f}^{\prime}\right)=\mathrm{f}\right\} \\
& =\mathrm{C}_{2}(\mathrm{f})
\end{aligned}
$$

since there exists an $f^{\prime} \in \operatorname{Mor}(X)$ with $\Phi\left(f^{\prime}\right)=f^{\prime}$.

2.14 Open Problem.

Find complexity measures which can easily be computed, but still give good lower bounds on the size complexity.

Most of the well known examples of such complexity measures which are easily computed are depth measures and therefore not good lower bounds for the size complexity. Another example which yields nonlinear lower bounds is the entropy function (c.f. 2.2) =

2.15 Theorem.

Let X be an X-category and $r: \operatorname{Mor}(X) \rightarrow \mathbb{R}_{0}^{+} U\{\infty\}$ an arbitrary function satisfying $r\left(1_{u}\right)=0$ for all $u \in O B(X)$.
(i) $\quad c_{r}: \operatorname{Mor}(X) \rightarrow \mathbb{R}_{0}^{+} U\{\infty\}$ defined by

$$
\begin{aligned}
c_{r}(f):=\sup \{ & \left(\left(1_{u} \times f \times 1_{v}\right) \circ h\right)-r(h): u, v \in O b(X) \\
& \left.h \in \operatorname{Mor}(X) \text { such that }\left(1_{u} \times f \times 1_{v}\right) \text { oh is defined }\right\}
\end{aligned}
$$

is a complexity measure on X satisfying $C_{r}(f) \geq r(f)$ for all $f \in \operatorname{Mor}(X)$.
(ii) $r^{c}: \operatorname{Mor}(X) \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$ defined by

$$
r^{c(f)}:=\sup \left\{r\left(h o\left(1_{u} \times f \times 1_{v}\right)\right)-r(h): u, v \in O b(X),\right.
$$

$h \in \operatorname{Mor}(X)$ such that $h o\left(1_{u} \times f \times 1_{v}\right)$ is defined $\}$ is a complexity measure on X satisfying $r^{C}(f) \geq r(f)$ for all $f \in \operatorname{Mor}(X)$.

Proof,

We will only prove (i), a proof of (ii) is similar.
(C1): $C_{r}\left(1_{W}\right)=\sup _{u, r, h}\left\{r\left(\left(1_{u} \times 1_{W} \times 1_{V}\right) \circ h\right)-r(h)\right\}=\sup _{h}\{r(h)-r(h)\}$

$$
=0 .
$$

$(C 2): \quad c_{r}(f \circ g)=\sup _{u, v, h}\left\{r\left(\left(1_{u} \times(f \circ g) \times 1_{v}\right) \circ h\right)-r(h)\right\}$

$$
\begin{aligned}
& \leq \sup _{u, v}\left\{r\left(\left(1_{u} \times f \times 1_{v}\right) \circ\left(\left(1_{u \times g \times 1}\right) \circ h\right)\right)-r\left(\left(1_{u \times g \times 1}\right) \circ h\right)\right\} \\
& \quad+\sup _{u, v}\left\{r\left(\left(1_{u} \times g \times 1_{v}\right) \circ h\right)-r(h)\right\} \\
& \leq c_{r}(f)+c_{r}(g) .
\end{aligned}
$$

(C3): Let $\mathrm{f}: \mathrm{w}_{1} \rightarrow \mathrm{w}_{1}, \mathrm{~g}: \mathrm{w}_{2} \rightarrow \mathrm{w}_{2}^{\prime} \in \operatorname{Mor}(\mathrm{X})$.

$$
\begin{aligned}
c_{r}(f \times g)= & \sup _{u, v, h}\left\{r\left(\left(1_{u} \times f \times g \times 1_{v}\right) \circ h\right)-r(h)\right\} \\
\leq & \sup _{u, v, h}\left\{r \left(\left(1_{u} \times f \times 1_{w \frac{1}{2} \times v}\right) \circ\left(\left(1_{u \times w_{1}} \times g \times 1_{v}\right) \circ h\right)\right.\right. \\
& \left.-r\left(\left\{1_{u \times w_{1}} \times g \times 1_{v}\right) \circ h\right)\right\} \\
& \quad+\sup _{u, v, h}\left\{r\left(\left(1_{u \times w_{1}} \times g \times 1_{v}\right) \circ h\right)-r(h)\right\} \\
\leq & c_{r}(f)+c_{r}(g) .
\end{aligned}
$$

Let $f: w \rightarrow w^{\prime} \in \operatorname{Mor}(X)$. Taking $u=v=\varepsilon$ and $h=1_{w}$ we get $c_{r}(f)$ $\geq r(f)$.

2.16 Remarks

(i) If $r: \operatorname{Mor}(X) \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$ is atready a complexity measure on X then $c_{r}=r_{r}=r$.
(ii) Let A be a finite generating system for x. If |...|denotes the size complexity on X and $r: \operatorname{Mor}(X) \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$ satisfies
(a) $r\left(1_{u}\right)=0 \quad$ for $a z z u \in O b(X)$,

(c) $r(a \circ h) \leq|a|+r(h)$ for all a $\in A, h \in \operatorname{Mor}(X)$
then we have $c_{r} \leqslant 1 \ldots 1$.

Proof.
(i) $\left.r\left(1_{u} \times f \times 1_{V}\right) 0 h\right\rangle-r(h) \leq r(f)$ since r is a complexity measure. It follows that $r(f) \leq C_{r}(f) \leq r(f)$ and similar $r=r_{r}$.
(ii) Let $m:=\max \{|a|: a \in A\}$. If $f \in \operatorname{Mor}(X)$ has a representation of lenght I respective to A then $c_{r}(f) \leq I \cdot m$. This can easily be proved by induction on 1 using the suppositions
(b) and (c). It follows that c_{r} is non degenerate and therefore (by theorem 2.13) $c_{r} \approx 1 . . .1$.

The second remark in 2.16 is often used to get lower bounds for the size complexity. Exampies are Strasser's degree bound [17] or Paul's 2.5 n lower bound [13].

The following is analogous to a theorem of Strassen (c.f. [16]).
2.17 Second Simulation Theorem (c.f. [5]).

Consider the following diagram in C :

and assume that there exists an X-functor $\Psi: y \rightarrow y^{\prime}$ such that the following diagram in $K(0)$ is commutative:

Then Ψ is a morphism in C too; that is $\Psi^{-1}\left(\Phi^{\prime}\left(c^{\prime}\right)\right) \preccurlyeq \Phi(c)$.

Proof,

$$
\begin{aligned}
\Phi^{\prime}\left(C^{\prime}\right)(\Psi(f))= & \inf \left\{C^{\prime}\left(f^{\prime}\right): \Phi^{\prime}\left(f^{\prime}\right)=\Psi(f)\right\} \\
\leq & \inf \left\{C^{\prime}(\chi(g)):\left(\Phi^{\prime} \circ \chi\right)(g)=\Psi(f)\right\} \\
& \quad(\text { since } B \subset A \operatorname{implies} \inf (A) \leq \inf (B)) \\
= & \inf \left\{C^{\prime}(X(g)):(\Psi \circ \phi)(g)=\Psi(f)\right\} \\
\leq & \inf \{\lambda \cdot C(g): \Psi(\Phi(g))=\Psi(f)\} \\
& \quad(\text { since } X \in \operatorname{Mor}(C)) \\
\leq & \lambda \cdot \inf \{c(g): \Phi(g)=f\} \\
& \quad(\text { since } B \subset A \operatorname{implies~} \inf (A) \leq \inf (B)) \\
= & \lambda \cdot \Phi(c)(f) .
\end{aligned}
$$

2.18 Example,

Let $\psi: R \rightarrow R^{\prime}$ be a ring homomorphism (R, R^{\prime} rings). Then we may define the X-categories P_{R} and P_{R}, as in example 1.6. We denote the natural interpretations of $G(\{+,-, *\})$ in P_{R} ($P_{R^{\prime}}$ resp.) by I (I^{\prime} resp..). The ring homomorphism ψ induces an X-functor $\Psi: P_{R} \rightarrow P_{R}$, such that the following diagram in $\mathbb{K}\left(\mathbb{N}_{0}\right)$ is commutative:

Let L be a cost function on $G(\{+,-, *\})$ with $L(+), L(-), L(*)$ $\neq 0$ and $L\left(d_{1}\right)=L\left(c_{1,1}\right)=L\left(t_{1}\right)=0$. Then $I(L)\left(I\left(L^{\prime}\right)\right.$ resp. $)$ is
the size complexity on $P_{R}\left(P_{R}\right.$, resp.) or, in other words, the computational complexity relative to the ring R (R^{\prime} resp.). Now the second simulation theorem tells us that $\Phi^{-1}\left(I^{\prime}(L)\right)$ $\leqslant I(L)$. If for example $R=Z$ and $R^{\prime}=Z / n Z$ then computing in \mathbb{Z} is not easier than computing in $\mathbb{Z} / n \mathbb{Z}$. In a similar way we get n^{3} as a lower bound for matrix multiplication over \mathbb{Z} using only the monotone operations + and - from the same lower bound for monotone Boolean matrix multiplication ([8],[10]). For further examples see [5].

§3. The \mathbb{R}^{+}-Module of all the Complexity Measures on a Fixed X-Category.

In this section 0 will be a fixed finitely generated free monoid and all of the complexity measures considered here will have values in the semiring \mathbb{R}_{0}^{+}.
3.1 Proposition and Notation (c.f. [5]).

Let $X \in O b(K(0))$ be an X-category. We denote by
$C(X):=\left\{C: \operatorname{Mor}(X) \rightarrow \mathbb{R}_{0}^{+}: C\right.$ is a complexity measure on $\left.X\right\}$
the set of all complexity measures on X. Let $c_{1}, c_{2} \in K(0)$
and $\lambda \in \mathbb{R}_{0}^{+}$. Then the following holds:
(i) $C_{1}+C_{2} \in C(X)$ where $\left(C_{1}+C_{2}\right)(f):=C_{1}(f)+C_{2}(f)$ for all f $\in \operatorname{Mor}(X)$.
(ii) $\lambda \cdot \mathrm{C}_{1} \in \mathbb{C}(X)$ where $\left(\lambda \cdot C_{1}\right)(f):=\lambda \cdot C_{1}(f)$ for all $f \in \operatorname{Mor}(X)$. Thus $C(X)$ is a module over the semining \mathbb{R}_{0}^{+}.

Proof: elementary calculations. ■
Denoting by M the category of all \mathbb{R}^{+}-modules and linear mappings we get the following theorem:

3.2 Theorem.

$C: K(0) \rightarrow M$ defined by
$C(X):=\left\{c: \operatorname{Mor}(X) \rightarrow \mathbb{R}^{+}: c\right.$ is a complexity measure on $\left.X\right\}$

$$
\text { for } x \in O b(K(0)) \text {, }
$$

$\mathcal{C}(\Phi)(c):=\Phi^{-1}(c)$ for $\Phi: Y \rightarrow X \in \operatorname{Mor}(K(0))$ and $c \in \boldsymbol{C}(X)$
is a contravariant functor from the category of all X-categories to the category of all \mathbb{R}_{0}^{+}-modules.

Proof: elementary calculations.

The following remark was made by one of our students (Thiet Dung Huynh) during a seminar lecture:
Let $\Phi: X \rightarrow Y \in \operatorname{Mor}(\mathbb{K}(0))$. If Φ is surjective then $\boldsymbol{C}(\Phi)$ is injective. If $c_{1}, c_{2} \in \boldsymbol{C}(y)$ such that $\boldsymbol{C}(\Phi)\left(c_{1}\right)=\boldsymbol{C}(\Phi)\left(C_{2}\right)$ then we have

$$
\begin{aligned}
& \Phi^{-1}\left(c_{1}\right)(f)=\Phi^{-1}\left(c_{2}\right)(f) \\
\Rightarrow & \text { for all } f \in \operatorname{cor}(X) \\
\Rightarrow & c_{1}(\Phi(f))=c_{2}(\Phi(f))
\end{aligned} \begin{array}{ll}
& \text { for all } f \in \operatorname{Mor}(X) \\
\Rightarrow & c_{1}=c_{2}(g)
\end{array} \quad \text { for all } g \in \operatorname{Mor}(y) \text { since } \Phi
$$

If now y is an arbitrary (finitely generated) x-category then we have a surjective X-functor

$$
\Phi: X \rightarrow Y
$$

where X is a free (finitely generated) X-category. Since $\mathcal{C}(\Phi)$ is injective we may consider $C(y)$ as a submodule of $\boldsymbol{C}(X)$. Therefore in studying all the complexity measures on all (finitely generated) X-categories in $O b(K(0))$ it is enough to consider the complexity measures on (finitely generated) free X-categories. But on the other hand, for the same reason, it is harder to classify the complexity measures on a free X-category than on a special X-category. For example, Dcomplexity measures on a D-category y have properties which are not satisfied by all complexity measures on the free X-category X generating y, even if they have zero-values on the switching elements interpreted as crossings, truncations, and diagonalizations.

3.3 Theorem.

Let $|\ldots|$ be a D-compiexity measure on a D-ategory X with $\mathrm{Ob}(X)=\mathbb{N}_{0}$. Then the following holds:
(i) $|f \times g|=|g \times f|$ for ąて $f: u \rightarrow u^{\prime}, g: v \rightarrow v^{\prime} \in \operatorname{Mor}(X)$.
(ii) $|f| \leq|f \times g|$ for atz $f: u \rightarrow u^{\prime}, g: v \rightarrow v^{\prime} \in \operatorname{Mor}(X), u \neq 0$.
(iii) $\left|1_{u} \times \mathrm{f} \times 1_{\mathrm{v}}\right|=|\mathrm{f}|$ for alt $\mathrm{f}: \mathrm{w} \rightarrow \mathrm{w}^{\prime} \in \operatorname{Mor}(\mathrm{X}), \mathrm{w} \neq 0$.

Proof,
(i) $|f \times g|=\left|c_{v^{\prime}, u^{\prime}} \circ(g \times f) \circ c_{u, v}\right| \leq|g \times f|$ for $\left|c_{u, v}\right|=\left|c_{v^{\prime}, u},\right|$ $=0$, and vice versa.
(ii) Let $h_{v}: 1 \rightarrow v$ be defined inductively as follows $(v \in \mathbb{N})$:

$$
\begin{aligned}
h_{1} & :=1_{1}, \\
h_{v+1} & :=\left(1_{1} \times h_{v}\right) o d_{1} .
\end{aligned}
$$

Then $\left(1_{1} \times t_{v}\right) \circ h_{1+v}=1_{1}$ and therefore

$$
\begin{aligned}
f & =\left(1_{u}{ }^{*} \times t_{v}\right) \circ(f \times g) \circ\left(t_{u-1} \times h_{1+v}\right), \quad\left(u-1 \in \mathbb{N}_{0} \text { since } u \neq 0\right. \\
|f| & \leq|f \times g| \text { by }(\mathrm{C} 2) .
\end{aligned}
$$

(iii) $|\mathrm{f}| \leq\left|1_{\mathrm{u}} \times \mathrm{f} \times 1_{\mathrm{V}}\right| \leq|\mathrm{f}|$ by (ii) and (C3).
3.3 (iii) gives an answer to a question in [5], p. 408 f .

3.4 Theorem and Notation.

(i) Let $X \in \mathrm{Ob}(\mathbf{K}(0))$ and \approx the equivalence relation on $\mathbf{C}(X)$ defined in 2.7. Then $\approx i$ is a congruence relation on $\mathbf{C}(x)$ considered as an \mathbb{R}_{0}^{+}-module. We define $\widetilde{\mathbf{C}}(X):=\boldsymbol{C}(X) / \approx$.
(ii) Let $\Phi: Y \rightarrow X \in \operatorname{Mor}(\mathbb{K}(0))$ then there exists a canonical module homomorphism $\widetilde{\mathbf{C}}(\Phi): \widetilde{C}(X)+\widetilde{C}(y)$ such that the following diagram is commutative, and $\mathcal{C}: K(0) \rightarrow M$ becomes a functor.

Proof,
(i) Let $c_{1}, c_{2} \in \mathbf{C}(X)$ with $c_{1} \leqslant c_{2}$. Then there is a $\lambda \in \mathbb{R}^{+}$ such that $C_{1}(f) \leqslant \lambda \cdot C$ (f) for all $f \in \operatorname{Mor}(X)$. If C $\in \boldsymbol{C}(X)$ is another complexity measure we have for all $f \in \operatorname{Mor}(X):$

$$
\begin{aligned}
\left(c_{1}+c\right)(f) & \leq \lambda \cdot c_{2}(f)+c(f) \leq \lambda^{\prime} \cdot\left(c_{2}(f)+c(f)\right) \\
& =\lambda^{\prime} \cdot\left(c_{2}+c\right)(f)
\end{aligned}
$$

where $\lambda^{\prime}:=\operatorname{Max}\{\lambda, 1\}$. Therefore $c_{1}+c \approx c_{2}+c$. If $\mu \in \mathbb{R}_{0}^{+}$then clearly $\mu \cdot C_{1} \approx \mu \cdot c_{2}$. Thus it follows that \approx is a congruence relation on $C(X)$.
(ii) We only must show that $c_{1} \approx c_{2}$ implies $\Phi^{-1}\left(c_{1}\right) \approx \Phi^{-1}\left(c_{2}\right)$. Let $c_{1}, c_{2} \in \mathbb{C}(X)$ with $c_{1} \leqslant c_{2}$ that means there exists a $\lambda \in \mathbb{R}^{+}$such that $c_{1}(f) \leq \lambda \cdot C_{2}(f)$ for all $f \in \operatorname{Mor}(X)$. It follows

$$
\Phi^{-1}\left(c_{1}\right)(g)=c_{1}(\Phi(g)) \leq \lambda \cdot c_{2}(\Phi(g))=\lambda \cdot \Phi^{-1}\left(c_{2}\right)(g)
$$

for all $g \in \operatorname{Mor}(X)$. Therefore $\Phi^{-1}\left(c_{1}\right) \leqslant \Phi^{-1}\left(c_{2}\right)$ and analogously $\Phi^{-1}\left(c_{2}\right) \leqslant \Phi^{-1}\left(c_{1}\right)$.

Let $X \in \mathrm{Ob}(\mathbb{K}(0))$ and $c \in \mathbb{C}(X)$ such that c is not bounded above by a constant. If $\varphi: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$is the function $\varphi(x)=$ $\log (1+x)$ defined in 2.4 then the complexity measures c, $\varphi \circ c, \varphi \circ \varphi \circ c, . .$. are pairwise inequivalent. Furthermore they are algebraically indepedent over \mathbb{R}. If we call the maximal number of algebraically indepedent elements in an \mathbb{R}^{+}-module the dimension of that module then $\mathbf{C}(X)$ has in general infinite dimension.

As noted in example 2.4 above we will now define strict complexity measures.
§4. Strict complexity measures.

4.1 Definition.

Let X be an X-category and c a complexity measure on X. c is called a strict complexity measure iff it satisfies (CS3) $C(f \times g)=c(f)+c(g)$ for alZ $f, g \in \operatorname{Mor}(X)$.

Since it seems to be very difficult to get good lower bounds on the size complexity of Boolean functions we consider monotone Boolean functions. Let B^{m} denote the subcategory of B having only monotone Boolean functions as morphisms. Clearly B^{m} is a D-category. Let

$$
I: G(\{\wedge, v\}) \rightarrow B^{m}
$$

be the natural interpretation. If L is the following cost function then $I\left(L_{1}\right)$ is a strict complexity measure (for a proof see [6] or [12], for another proof see 4.7).

$$
\begin{aligned}
& L(\wedge):=L(v):=1, \\
& L\left(t_{1}\right):=L\left(d_{1}\right):=L\left(c_{1}, 1\right):=0 .
\end{aligned}
$$

From example 2.4 it is clear that there exists complexity measures which are not strict. The following example shows that even the size complexity must not be a strict complexity measure. Further this example shows that there are non strict complexity measures on B^{m}. Therefore monotonicity is not only a property of the X-category but also of the complexity measure considered; however we do not know whether "strict" is enough to characterize "monotone" complexity measures.

4.2 Example.

Let R be a finite ring and consider P_{R}. Let $I: G(\{+,-, \cdot\})$
$\rightarrow P_{R}$ be the natural interpretation and $1 \ldots .1=I(L): \operatorname{Mor}\left(P_{R}\right)$
$\rightarrow \mathbb{R}^{\dagger}$ where L ist the following cost function on $G(\{+,-,\}$.$) :$

$$
\begin{aligned}
& L(+):=L(-):=L(\cdot):=1, \\
& L\left(t_{1}\right):=L\left(d_{1}\right):=L\left(c_{1.1}\right)=0 .
\end{aligned}
$$

For an $n \times n$ matrix $A \in R^{n \times n}$ define the morphism $f_{A}: n \rightarrow n \in$ $\operatorname{Mor}\left(P_{R}\right)$ by $f_{A}(v)=A \cdot v$ for all column vectors $v \in R^{n}$. If B is another $n \times n$ matrix over R then we have

$$
A \cdot B=\underbrace{\left(f_{A} \times f_{A} \times \ldots \times f_{A}\right.}_{n \text { times }})(B)
$$

where B is considered as a sequence of n column vectors from R^{n}. By Strassen's matrix multiplication we know that

$$
\underbrace{\left|f_{A} \times f_{A} \times \ldots \times f_{A}\right|}_{n \text { times }} \mid=O(n \log 7)
$$

If we take B instead of P_{R} we know that

$$
\underbrace{\mid f_{A} \times f_{A} \times \ldots \times f_{A}}_{n \text { times }} \mid=O\left(n^{\log 7} \log n \log \log n \log \log \log n\right) .
$$

On the other hand $f_{A}=f_{B} \Leftrightarrow A=B$ for two matrices $A, B \in R^{n \times n}$, and therefore there are at least $x^{n^{2}}$ different morphisms f_{A} with $A \in R^{n \times n}$ where $r=\operatorname{card}(R)$. Further, a simple counter argument shows that there are at most $\left(3(1+n+r)^{2}\right)^{1}$ morphisms $f \in \operatorname{Mor}\left(P_{R}\right)$ such that $|f| \leq 1$. Now there must exist a matrix $A \in R^{n \times n}$ such that

$$
\left(3(1+n+r)^{2}\right)^{I} \geq r^{n^{2}} \text { where } 1=\left|f_{A}\right|
$$

If $r>1$ it follows that $I=\left|f_{A}\right|$ grows asymptoticaly at least as fast as $\frac{n^{2}}{\log n}$ and therefore

$$
n\left|f_{A}\right|>\underbrace{\left|f_{A} \times f_{A} \times \ldots \times f_{A}\right|}_{n \text { times }} \text { for } n \text { large enough. }
$$

Using B instead of P_{R} the same holds true. Thus since $f_{A} \in$ $\operatorname{Mor}\left(B^{m}\right)$ we see that the restriction of the size complexity on B is not a strict complexity measure on B^{m}.

Another such example is the fast Fourier transformation.
In [12] Paul has shown that for every $\varepsilon>0$ there are morphisms $f \in \operatorname{Mor}(B)$ such that

$$
|f \times f| \leq(1+\varepsilon) \cdot|f| .
$$

For giving a precise meaning to the proposition "the size complexity measure on B is not strict" we define strict equivalence classes of complexity measures:

4.3 Definition.

Let X be an X-category and $\widetilde{\mathrm{c}} \in \widetilde{C}(X)$. We calt \tilde{c} strict iff there is a strict complexity measure $c \in \tilde{c}$. We use the notation "the size complexity measure on X is strict" iff there is a strict complexity measure on X which is equivalent to a non degenerate size complexity measure on X having no zero values on elementary switching elements (without truncations, crossings, diagonatizations, and constant morphisms).

```
4.4 Proposition.
    The size complexity measure on }\mp@subsup{P}{\textrm{R}}{}\mathrm{ for a finite ring R is
not strict.
```


Proof,

Assume that there is a strict complexity measure c which is equivalent to the size complexity $|\ldots|$ with $|+|=|\cdot|$
 and $|\ldots| \leq \lambda^{\prime} \cdot c$. Consider example 4.2 and let $n \in \mathbb{N}$ such that $|\underbrace{\mid f_{A^{x} \ldots} \ldots f_{A}}_{n \text { times }}| \leq \frac{1}{2} \frac{n}{\lambda \lambda^{\prime}}\left|f_{A}\right|$ for a matrix $A \in R^{n \times n}$. Then we have the following contradiction:

$$
\begin{aligned}
\underbrace{\underbrace{}_{A} \times \ldots \times f_{A}}_{n \text { times }}) & \leq \lambda \mid \underbrace{\left|f_{A} \times \ldots \times f_{A}\right|}_{n \text { times }} \\
& \leq \frac{1}{2} \frac{n}{\lambda^{\prime}}\left|f_{A}\right| \\
& \leq \frac{1}{2} n c\left(f_{A}\right)=\frac{1}{2} c(\underbrace{f_{A} \times \ldots \times f_{A}}_{n})
\end{aligned}
$$

On the other hand there are a lot of examples where the size complexity is strict.

Let M be a set and Ω a set of unary and binary operations on M. In the following we will prove in some special cases that the size complexity measure on $P_{M, \Omega}$ is strict. The proofs will use the technic of considering a "first mixed switching element".

4.5 Lemma.

Let M and Ω be as above, $A:=M \cup \Omega$ and $I: F_{D}\left(A, \mathbb{N}_{0}\right) \rightarrow P_{M, \Omega}$ the natural interpretation. Then every $h \in \operatorname{Mor}\left(F_{D}\left(A, \mathbb{N}_{0}\right)\right)$ such that $I(h)=f \times g$ with $f: u \rightarrow u ', g ; v \rightarrow v^{\prime} \in \operatorname{Mor}\left(P_{M, \Omega}\right)$ may be written as
(i) $\mathrm{h}=\mathrm{p} \times \mathrm{q}$ with $\mathrm{I}(\mathrm{p})=\mathrm{f}$ and $\mathrm{I}(\mathrm{q})=\mathrm{g}$ or as
(ii) $h=h^{\prime} \circ\left(1_{w_{1}} \times \omega \times 1_{w_{2}}\right) \circ(p \times q)$ with $p: u \rightarrow w_{1}, q: v \rightarrow w_{2}$, $h: w_{1}+w_{2}-1 \rightarrow u^{\prime}+v^{\prime} \in \operatorname{Mor}\left(F_{D}\left(A, \mathbb{N}_{0}\right)\right)$ and a binary operation $\omega \in \Omega$, such that $\left.I\left(t_{w_{1}-1} \times 1_{1}\right) \cdot p\right)$ and $\mathrm{I}\left(\left(1_{1} \times t_{\mathrm{w}_{2}-1}\right) \cdot \mathrm{q}\right)$ both are not constant functions.

In the second case w is called a first mixed switching element in the circuit h respective to the partition $u+v$ of the input wires of h.

Proof: Induction on the size of h using the relations $S 1, \ldots$, S3 and DO, ..., D7 satisfied in a D-category.

4.6 Theorem.

Let R be a free semiring. Then the size complexity measure on $P_{R} i s$ strict.

Sketch of a PRoof,
Let $f: u \rightarrow u^{\prime}, g: v \rightarrow v^{\prime} \in \operatorname{Mor}\left(P_{R}\right)$ and let $h \in \operatorname{Mor}\left(F_{D}(R U\{+, \cdot\}\right.$, $\left.\mathbb{N}_{0}\right)$) a minimal switching circuit such that $I(h)=f \times g$ where
I: $F_{D}\left(R U\{+, \cdot\}, \mathbb{N}_{0}\right) \rightarrow P_{R}$ is the natural interpretation as in
Lemma 4.5 above. If $h=p \times q$ with $I(p)=f$ and $I(q)=g$
there is nothing to prove. Otherwise let ω be a first mixed
switching element. Since h is minimal h^{\prime} is minimal too. Further there must exist a path from ω to one of the output wires of h^{\prime} (otherwise we may simplify the circuit h and eliminate ω in it using DO). Since R is free the only chance to lose the dependece of the output of ω along this path is multiplying by the constant O. (This argument is wrong if R is a ring and "-" is a switching element!) But instead of

we may use
with lower cost. Therefore there is an output wire of h^{\prime} such that $I\left(\left(t_{W_{1}} \times 1_{1} \times t_{W_{2}}\right) \circ h^{\prime}\right)$ depends on the output of w ($w 1, w_{2} \in \mathbb{N}_{0}$ such that $\left.w_{1}^{\prime}+1+w_{2}^{\prime}=u^{\prime}+v^{\prime}\right)$. This means $I\left(\left(t_{w f} \times 1_{1} \times t_{w_{2}^{\prime}}\right) o h^{\prime}\right)$ is a polynomial $H^{\prime} \in R\left[X_{1}^{\prime}, \ldots, X_{w_{1}-1}^{\prime}\right.$, $\left.Z^{\prime}, Y_{W_{2}-1}^{\prime}, \ldots, Y_{1}^{\prime}\right]$ in which there is at least one monomial containing Z^{\prime} and having a nonzero coefficient. Let If) $=\left(P_{1}, \ldots, P_{W_{1}}\right)$ with polynomials $P_{i} \in R\left[X_{1}, \ldots, X_{u}\right]$ and $I(q)=\left(Q_{W_{2}}, \ldots, Q_{1}\right)$ with polynomials $Q_{i} \in R\left[Y_{1}, \ldots, Y_{V}\right]$. Now we get the polynomial $H:=I\left(\left(t_{w_{1}^{\prime}} \times 1_{1} \times t_{w_{2}^{\prime}}\right) \circ h\right)=$ $\left(t_{w_{1}^{\prime}} \times 1_{1} \times t_{w_{2}^{\prime}}\right) \circ(f \times g)$ by substituting P_{i}^{1} for $X_{i}^{2}\left(1 \leq i \leq w_{1}-1\right)$,
Q_{i} for $Y_{i}^{\prime}\left(1<i \leq w_{2}-1\right)$ and $P \quad \omega Q^{\prime}$ for Z in H^{\prime}. Q_{i} for $Y_{i}^{\prime}\left(1 \leq i \leq W_{2}-1\right)$ and $P_{W_{1}} \omega Q_{W_{2}}$ for Z^{\prime} in H^{\prime}. Since $P_{W_{1}}$ and $Q_{W_{2}}$ both are not constant functions over R there are monomials with nonzero coefficients containing at least one $X_{i}(1 \leq i \leq u)$ and monomials containing at least one $Y_{i}(1 \leq i \leq v)$. This is a contradiction to $H=$ $\left(t_{w_{1}^{\prime}} \times 1_{1} \times t_{w_{2}^{\prime}}\right) \circ(f \times g)$ since the identity theorem for polynomials over a free semiring holds.

4.7 Theorem.

Let ($\mathrm{R},+, \cdot)$ be an ordered semiring. Assume that R is positive (that means $\mathrm{x} \geq 0$ for all $\mathrm{x} \in \mathrm{R}$) and that there exists a maximal element $\infty \in R$ (such that $x \leq \infty$ for all $\mathrm{x} \in \mathrm{R})$. Consider the natural interpretation $I: F_{D}(\{+, \cdot, 0, \infty\}$, $\left.\mathbb{N}_{0}\right) \rightarrow C_{R}$ and denote its image by P_{R}^{\prime} (note that here we do not allow arbitrary constants as switching elements). Then the size complexity on P_{R}^{\prime} is strict.

Proof,

Let $f: u \rightarrow u^{\prime}, g: v \rightarrow v^{\prime} \in \operatorname{Mor}\left(P_{R}^{\prime}\right)$ and let $h \in$ $\operatorname{Mor}\left(F_{\mathrm{D}}\left(\{+, \cdot, 0, \infty\}, \mathbb{N}_{0}\right)\right)$ a minimal switching circuit such that $I(h)=f \times g$. Assume further that h has a minimal number of mixed switching elements. Let ω be a first mixed switching element in h and let p, q, and h^{\prime} as in Lemma 4.5. Further let $I(p)=\left(P_{1}, \ldots, P_{W_{1}}\right)$ with polynomials $P_{i} \epsilon$ $R\left[X_{1}, \ldots, X_{u}\right], I(q)=\left(Q_{W_{2}}, \ldots, Q_{1}\right)$ with polynomials $Q_{i} \in$ $R\left[Y_{1}, \ldots, Y_{V}\right]$, and $I\left(h^{\prime}\right)=\left(H_{1}^{\prime}, \ldots, H_{u}^{\prime}, H_{u^{\prime}+1}^{\prime}, \ldots, H_{u}^{\prime}+v^{\prime}\right)$ with polynomials $H_{i}^{\prime} \in R\left[X_{1}^{\prime}, \ldots, X_{W_{1}-1}^{\prime}, Z^{\prime}, Y_{W_{2}-1}^{\prime}, \ldots, Y_{1}^{\prime}\right]$. As a consequence of the assumption that only O and ∞ are allowed as constants, the polynomials $P_{W_{1}}$ and $Q_{W_{2}}$ (which are not constant by lemma 4.5) have no constant terms and therefore $P_{W_{1}}(0, \ldots, 0)=0, P_{W_{1}}(\infty, \ldots, \infty)=\infty$ and $Q_{W_{2}}$ similar.

Let $\omega=$. and consider $H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, P_{W_{1}} \cdot Q_{W_{2}}, Q_{W_{2}-1}, \ldots, Q_{1}\right)$ $=H_{i} \in R\left[X_{1}, \ldots, X_{u}, Y_{1}, \ldots, Y_{V}\right]$. If $1 \leq i \leq u u^{i}$ then $H_{i}=$ $\left.H_{i}\right|_{Y_{1}}=0, \ldots, Y_{V}=0$ and we have

$$
\begin{aligned}
& H_{i}\left(P_{1}, \ldots, P_{W_{1}-1}, P_{W_{1}}{ }^{*} Q_{W_{2}}, Q_{W_{2}}, \ldots, Q_{1}\right) \\
&=H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, O, O, \ldots, O\right) \\
& \leq H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, O, Q_{W_{2}-1}, \ldots, Q_{1}\right) \\
& \leq H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, P_{W_{1}} \cdot Q_{W_{2}}, Q_{W_{2}-1}, \ldots, Q_{1}\right) .
\end{aligned}
$$

These inequalities hold since R is an ordered semiring and therefore all polynomial functions $R^{n} \rightarrow R$ are monotone. Now it follows

$$
\begin{aligned}
& H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, P_{W_{1}} \cdot Q_{W_{2}}, Q_{W_{2}-1}, \ldots, Q_{1}\right) \\
& \quad=H_{i}^{\prime}\left(P_{1}, \ldots, P_{w_{1}-1}, O, Q_{W_{2}-1}, \ldots, Q_{1}\right) .
\end{aligned}
$$

If $u^{\prime} \leq i \leq u^{\prime}+v^{\prime}$ we get the same equation. This proves that the first mixed switching element ω may be replaced by the constant O. This is a contradiction to the assumption that h has a minimal number of mixed switching elements.

If $\omega=+$ we have $H_{i}=\left.H_{i}\right|_{Y_{1}=\infty}, \ldots, Y_{v}=\infty$ for $1 \leq i \leq u^{\prime}$ and therefore

$$
\begin{aligned}
& H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, P_{W_{1}}+Q_{W_{2}}, Q_{W_{2}-1}, \ldots, Q_{1}\right) \\
&=H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, \infty, \infty, \ldots, \infty\right) \\
& \geq H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, \infty, Q_{W_{2}-1}, \ldots, Q_{1}\right) \\
& \geq H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, P_{W_{1}}+Q_{W_{2}}, Q_{W_{2}-1}, \ldots, Q_{1}\right) .
\end{aligned}
$$

This leads to the equation

$$
\begin{aligned}
& H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, P_{W_{1}}+Q_{W_{2}}, Q_{W_{1}-1}, \ldots, Q_{1}\right) \\
& =H_{i}^{\prime}\left(P_{1}, \ldots, P_{W_{1}-1}, \infty, Q_{W_{2}-1}, \ldots, Q_{1}\right)
\end{aligned}
$$

which holds for all $i, 1 \leq i \leq u^{\prime}+v^{\prime \prime}$. We may replace w by the constant ∞ and receive a contradiction too.

4.8 Korollar.

The size complexity on B^{m} is strict.

Proof: B^{m} satisfies the suppositions of theorem 4.7.

The following example shows, that allowing arbitrary constants as switching elements, the theorem 4.7 becomes wrong.

4.9 Example.

Let $R=$ \{true, false\} \times \{true, false\} the cartesian product. R becomes a semiring if we define $(x, y)+\left(x^{\prime}, y^{\prime}\right)$ $:=\left(x \vee x^{\prime}, y \vee y^{\prime}\right)$ and $(x, y) \cdot\left(x^{\prime}, y^{\prime}\right):=\left(x \wedge x^{\prime}, y \wedge y^{\prime}\right)$. Further the lexicographical order (based on "false < true") makes R to a positive ordered semiring with maximal element $\infty \quad:=$ (true, true).

Now let $f^{\prime}:\{\text { true, false }\}^{n} \rightarrow\left\{\right.$ true, false $\in \operatorname{Mor}\left(B^{m}\right)$ be a Boolean function. Clearly f ' may be extenced to a function $f: R^{n} \rightarrow R$ by $f((x, y)):=\left(f^{\prime}(x), f^{\prime}(y)\right)$. Let $|\ldots|$ denote the size complexity on B^{m} and $\|\ldots\|$ the size complexity on P_{R}. Then we have $\left|f^{\prime}\right|=\|f\|$ (a switching circuit for f is also a switching circuit for f^{\prime} and vice versa). Let $\mathrm{f}_{1}, \mathrm{f}_{2}$ $\epsilon \operatorname{Mor}\left(P_{R}\right)$ be the functions represented by the following two switching circuits:

Then $\left\|f_{1}\right\| \geq\left|f^{\prime}\right|=\|f\|$ and $\left\|f_{2}\right\| \geq\left|f^{\prime}\right|=\|f\|$. On the other hand $f_{1} \times f_{2}$ may be computed using the following switching circuit:

Therefore $\left\|f_{1} \times f_{2}\right\| \leq\|f\|+O(n)$. If we now take f complex enough we have shown that $\|. .$.$\| is not a strict complexity$ measure.

4.10 Open Problems.

1) Give a characterization of alt strict complexity measures on a fixed X-category.
2) Find a definition of "monotone X-categories" as a generalization of B^{m}.
3) Find a definition of "monotone complexity measures" on a (monotone) X-category.
[1] Budach,L. + Hoehnke,H.J.: Automaten und Funktoren, Akademie-Verlag, Ferlin (1975).
[2] Claus,V.: Ein Vollständigkeitssatz für Programme und Schaltkreise, Acta Informatica 1 (1971), 64-78.
[3] Eilenberg, S. + Kelly,G.M.: Closed Catesories, Proc. Conf. Categorial Algebra (La Jolla 1965), Berlin 1966.
[4] Hotz, G.: Eine Algebraisierung des Syntheseoroblems von Schaltkreisen. I und II, Elektron. Inform, Verarb. + Kyb. 1 (1965), 185-205 + 209-231.
[5] Hotz,G.: Komolexitätsmaße £ür Ausärücke, in "Automata, Languages and Programming", 2nd Colloquium, 1974, Lecture Notes in Computex Science 14, Springer 1974.
[6] Hotz, G. : Monotone Boolean Nets, (1976) unoublished.
[7] Hotz,G. + Claus,V.: futoamtentheorie und formale Sprachen = III Formale Sprachen, BI, Mannheim (1971).
[8] Mehlhorn, K.: Monotone Switching Circuits and Boolean Matrix product, Computing 16 (1976) 99-111.
[9] Paterson,M.S.: New Bounds on Formula Size, in "Theoretical Coroputer Science", 3ra GI Conference, Darmstadt 1977, Lecture Notes in Computer Science 48, Springer, Beriin (1977).
[10] Daterson,M.S.: Complexity of Monotone Networks for Boolean Matrix product, University of Warwich, TR 2, 1974 (to appear in Theoretical Computer Science).
[11] Paul, E : A 2.5 N lower Bound for the Combinatorial Comrlesity of Boolean Functions, Proc. 7th Ann. ACM Symp. on Th. OE Conp., filbuquerque (1975), 27-36.
[12] Paul, $\overline{\text { IF }}:$ Realizing Boolean Functions on Disjoint sets of Variables, Theoretical Comp. Sc. 1, (1976), 383-396.
[13] Paul,W. + Stoss,H.J.: Zur Komplexität von Sortierproblemen, Acta Informatica 3 (1974) 217-225.
[14] Savage,J.E.: The Complexity of Computing, Wiley-Interscience, New York, 1976.
[15] Schnorr, C.P.: Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen, Computing 13 (1974) 155-171.
[16] Strassen, V.: Berechnung und Programen I, II, Acta Informatica $]$ (1972), 320-335 and 2 (1973), 64-79.
[17] Strassen,v.: Die Berechnungshomplexität von elementarsymetrischen Funktionen und von Interpolationskoeffizienten, Num.Math 20 (1973) 238-251.
[18] YaO, A.C. + Yao,F.F.: Lower Bounds on Merging Networks, J.of EC:i, Vol. 23, 3 (1976), 566-571.

[^0]: \dagger Recall that X -categories are small categories.

[^1]: $\dagger \dot{u}$ denotes the disjoint union.

