Analysis of Preemptively
Scheduled Hard Real-time
Systems

Dissertation

zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultaten
der Universitat des Saarlandes

von

Sebastian Altmeyer

Saarbricken
2012

Dekan: Prof. Dr. Mark Groves

Priifungsausschuf: Prof. Dr. Sebastian Hack (Vorsitzender)
Prof. Dr. Reinhard Wilhelm (Gutachter)
Prof. Dr. Gerhard Fohler (Gutachter)
Laurent Mauborgne, PhD (Gutachter)
Dr. Daniel Grund (akademischer Mitarbeiter)

Tag des Kollogiums: 25. Oktober 2012

Impressum

Copyright: (© 2012 Sebastian Altmeyer

Druck und Verlag: epubli GmbH, Berlin, www.epubli.de
ISBN 978-3-8442-5161-6

ABSTRACT

As timing is a major property of hard real-time, proving timing correctness
is of utter importance. A static timing analysis derives upper bounds on
the execution time of tasks, a scheduling analysis uses these bounds and
checks if each task meets its timing constraints.

In preemptively scheduled systems with caches, this interface between
timing analysis and scheduling analysis must be considered outdated. On
a context switch, a preempting task may evict cached data of a preempted
task that need to be reloaded again after preemption. The additional
execution time due to these reloads, called cache-related preemption delay
(CRPD), may substantially prolong a task’s execution time and strongly
influence the system’s performance.

In this thesis, we present a formal definition of the cache-related pre-
emption delay and determine the applicability and the limitations of a
separate CRPD computation.

To bound the CRPD based on the analysis of the preempted task, we
introduce the concept of definitely cached useful cache blocks. This new
concept eliminates substantial pessimism with respect to former analyses
by considering the over-approximation of a preceding timing analysis.

We consider the impact of the preempting task to further refine the
CRPD bounds. To this end, we present the notion of resilience. The
resilience of a cache block is a measure for the amount of disturbance of
a preempting task a cache block of the preempted task may survive.

Based on these CRPD bounds, we show how to correctly account for the
CRPD in the schedulability analysis for fixed-priority preemptive systems
and present new CRPD-aware response time analyses: ECB-Union and
Multiset approaches.

ii

ZUSAMMENFASSUNG

Da das Zeitverhalten ein Hauptbestandteil harter Echtzeitsysteme ist,
ist das Beweisen der zeitlichen Korrektheit von grofser Bedeutung. Eine
statische Zeitanalyse berechnet obere Schranken der Ausfithrungszeiten
von Programmen, eine Planbarkeitsanalyse benutzt diese und priift ob
jedes Programm die Zeitanforderungen erfiillt.

In préemptiv geplanten Systemen mit Caches, muss die Nahtstelle zwis-
chen Zeitanalyse und Planbarkeitsanalyse als veraltet angesehen werden.
Im Falle eines Kontextwechsels kann das unterbrechende Programm Cache-
daten des unterbrochenen Programms entfernen. Diese Daten miissen
nach der Unterbrechung erneut geladen werden. Die zusétzliche Aus-
flihrungszeit durch das Nachladen der Daten, welche Cache-bezogene
Praemptions-Verzogerung (engl. Cache-related Preemption Delay (CR-
PD)) genannt wird, kann die Ausfiihrungszeit des Programm wesentlich
erh6hen und hat somit einen starken Einfluss auf die Gesamtleistung des
Systems.

Wir présentieren in dieser Arbeit eine formale Definition der Cache-
bezogene Praemptions-Verzogerung und bestimmen die Einschrankungen
und die Anwendbarkeit einer separaten Berechnung der CRPD.

Basierend auf der Analyse des unterbrochenen Programms prasentieren
wir das Konzept der definitiv gecachten niitzlichen Cacheblécke. Ver-
glichen mit bisherigen CRPD-Analysen eleminiert dieses neue Konzept
wesentliche Uberschitzung indem die Uberschéitzung der vorherigen Zeit-
analyse mit in Betracht gezogen wird.

Wir analysieren den Einfluss des unterbrechenden Programms um die
CRPD-Schranken weiter zu verbessern. Hierzu fiithren wir das Konzept
der Belastbarkeit ein. Die Belastbarkeit eines Cacheblocks ist ein Maf fiir
die Storung durch das unterbrechende Programm, die ein niitzlicher
Cacheblock tiberleben kann.

Basierend auf diesen CRPD-Schranken zeigen wir, wie die Cache-
bezogene Préaemptions-Verzégerung korrekt in die Planbarkeitsanalyse

fiir Systeme mit statischen Prioritdten integriert werden kann und présen-
tieren neue CRPD-bewufste Antwortzeitanalysen: die ECB-Union und
die Multimengen-Ansétze.

ACKNOWLEDGEMENTS

This thesis would not have been possible without the help and support
of many people. Foremost, I like to thank Prof. Reinhard Wilhelm for
his advise and guidance and for giving me the opportunity to write
this PhD thesis. I have spent wonderful years at his chair at Saarland
University and learned a lot during this time. I also owe thanks to Prof.
Gerhard Fohler and Laurent Mauborgne for carefully reviewing my thesis
and to Prof. Sebastian Hack and Dr. Daniel Grund as members of the
examination board.

Substantial parts of this thesis originated from collaboration with other
researchers: I like to express my gratitude to Claire Maiza, Jan Reineke
and Robert Davis. It was a real pleasure to work with such bright and
motivated colleagues and friends.

I thank Sascha El-Abed, Michael Gerke, Jorg Herter and Verena Kremer
for carefully proofreading drafts of my thesis. I also like to thank my
friends, and family for their support. I always had sufficient distraction to
regain energy for the often tedious work. Last but not least, I thank Kim
for her love and encouragement, especially during the last few months of
my PhD studies.

vii

1.

Introduction
1.1. Contributions of this Thesis
1.2. Structure

CONTENTS

Abstract Interpretation

2.1.

2.2. Abstract Interpretation
2.3. Fixed-Point Analysis
Background

3.1. Real-Time Scheduling

3.2.

3.3.

Program Analysis
2.1.1. Collecting Semantics

3.1.1. Sporadic Task Model
3.1.2. Priority-Driven Scheduling
3.1.3. Mutual Exclusion.
Memory Hierarchy and Caches
3.2.1. Principle of Locality
3.2.2. Processor Caches
3.2.3. Replacement Policy
Timing and Cache Analysis
3.3.1. Components of a Timing Analysis . . .
3.3.2. Cache Analysis

Context-Switch Costs

4.1.
4.2.

4.3.

The Impact of a Context Switch
Cache-related Preemption Delay
4.2.1. Early Work on CRPD
4.2.2. Formal Definitions
Limitations of the CRPD Approach
4.3.1. Classification of Architectures

4.3.2. CRPD and Cache Replacement Policies

ix

Contents

4.4. Other Approaches to the Analysis of Preemptive Systems 58

5. Bounding Cache-Related Preemption delay—Related Work 61

5.1. Useful Cache Blocks; Lee’s Original Approach 61
5.2. Evicting Cache Blocks 63
5.3. Combining ECBsand UCBs 64
5.4. Deriving the Set of UCBs/ECBs 65

6. Definitely-Cached Useful Cache Blocks 67
6.1. Pessimism in Lee’s Approach 68
6.2. Definitely-Cached UCBs 69
6.2.1. Correctness 71

6.3. Deriving the Set of DC-UCBs 73

7. CRPD for LRU Caches—Resilience Analysis 79
7.1. CRPD for LRU Caches 80
7.2. Resilience of a Cache Block 81
7.2.1. Multiple Preemptions 84

7.2.2. Correctness 85

7.3. Resilience Analysis 87

8. Preemption cost aware Response Time Analysis 95
8.1. Existing Approaches 96
8.1.1. ECB-Only & UCB-Only 97

81.2. UCBUnion 99

8.1.3. Multiset Approaches 102

82. ECB Union, 104
8.3. Multiset Approaches oL 106
8.4. Resource Access Protocols and Preemption Cost 108

9. Evaluation 111
9.1. Target Architecture 111
9.2. Benchmarks, 112
9.3. DC-UCB Analysis 113
9.4. Resilience Analysis 115
9.5. CRPD Aware Scheduling Analysis 118
9.5.1. Randomly Generated Task Sets 119

10. Conclusions 127
10.1. Summary of Contributions 127
10.2. Future Work L oo 129
10.3. Conclusions 129

Contents

Bibliography
Index

List of Figures
List of Tables

A. UCB Analysis

B. Proofs

B.1. DC-UCB Analysis

B.2. Resilience

131
143
145
147

149

Xi

Chapter 1

INTRODUCTION

Safety doesn’t happen by accident.
Unknown

In our everyday life, we are surrounded by small computer systems,
embedded into larger devices such as cars, trains, airplanes, but also
mobile phones, washing machines and refrigerators. Most of these embed-
ded computers are real-time systems, i.e., they are subject to real-time
constraints. Correctness of such systems does not only depend on the
correct result of the computation, but also on the timeliness of the result.
An airbag controller, for instance, has not only to decide whether or not
to inflate the airbag, but has to do so before the driver’s head bangs on
the steering wheel. A drive-by-wire system is not allowed to introduce
long delays, but must translate the driver’s steering motion and pass it
to the wheels in time. A flight control system must quickly compensate
external disturbances to prevent stalls and thus to keep the airplane in
stable flight. Railroad signalling, pacemakers, monitoring in a nuclear
power plant... This list can be extended to plenty of other areas and
examples.

Real-time systems are divided into soft and hard real-time systems
depending on whether a single deadline miss is tolerable (soft) or is
considered a complete failure (hard). As timing behavior is a major
property of such systems, proving timing correctness is of utter importance
during the development process. Functionality of an embedded system

1. Introduction

is typically implemented by a set of tasks distributed to the available
hardware and processing units. Proving timing correctness of the complete
systems is thus traditionally a two-step approach:

1. deriving bounds on the execution times of tasks in isolation, and

2. distributing tasks to the available resources (e.g. processing units)
guaranteeing that all tasks comply with their timing constraints.

Common denomination for theses steps are timing analysis and scheduling
analysis.

Timing Analysis can either be static or dynamic. Which one to apply
depends on the criticality of the system. Dynamic timing analysis, also
known as measurement-based approach, explores a task’s execution time
for varying inputs and initial processor states. As exhaustive measurement
is usually infeasible, it is unlikely that the actual best-case or worst-case
execution time will be encountered. Hence, dynamic timing analysis does
not provide guaranteed bounds on the execution times but only educated
guesses. It is thus used for soft real-time systems or systems with less
stringent timing constraints.

Static timing analysis employs an abstract model of the hardware to
characterize the timing behavior of a task. It derives bounds on the
execution time without any concrete execution of a task but based on
the abstract model. A static timing analysis is required to be safe, i.e.,
execution time bounds must be conservative and is demanded to be precise,
i.e., execution time bounds should be as close as possible to the actual
best-case or worst-case timing behavior. In contrast to measurement-
based approaches, static timing analyses can provide guaranteed bounds
(assuming a sound abstract hardware model). It is thus more apt for hard
real-time systems.

Scheduling Analysis determines if each task complies with its timing
constraints when scheduled according to a predefined scheduling pol-
icy. Timing constraints are typically defined by a task’s period and a
task’s deadline, both determined by the physical environment. Tasks are
scheduled either preemptively, i.e., task’s execution can be temporarily
interrupted, or non-preemptively, i.e., once started each task runs to com-
pletion. Preemptive schedules are potentially more powerful in the sense
that some task sets are only schedulable preemptively. Tasks with short
deadlines—such as interrupts—usually can not postpone their execution
until the completion of the currently running task.

1.1. Contributions of this Thesis

An important class of schedulers are priority driven schedulers where
each task is assigned (either statically or dynamically) a priority. The
scheduler always executes the task with the highest priority among all
currently available tasks.

Traditional Interface

Traditionally, the complete interface between timing analysis and
scheduling analysis is given by bounds on the tasks’ execution times.
Other input to the scheduling analysis—such as deadlines or periods of
tasks—are dictated by the system’s environment and bypass the timing
analysis. However, this interface is inherently pessimistic and can be
considered outdated for modern hardware architectures. Since the advent
of caches in embedded real-time systems, history-sensitive architectural
components go beyond the scope of a task. This holds especially for
preemptively scheduled systems. On a task preemption or context switch,
the preempting task disrupts the current processor state and may evict
useful cached data of the preempted task. After preemption, the execution
time of the preempted task strongly depends on whether previously cached
data is still resident in cache. The additional execution time due to
preemption is denoted context switch costs and the portion of the context
switch costs caused by additional cache reloads cache-related preemption
delay.

Recent studies show a substantial increase of the execution times
due to preemption [10, 14, 78]. Ignoring these costs is thus not an
option as it leads to optimistic results. Instead, most scheduling analyses
assume that the execution time bound already accounts for the additional
context switch costs—as proposed in the seminal paper by Liu and
Layland [53] that laid the foundation of the scheduling theory. This
assumption however is inherently pessimistic for cached systems: A sound
upper bound on the execution time must conservatively account for each
scheduling scenario and each possible number of preemptions.

1.1. Contributions of this Thesis

This thesis advocates a different approach to the analysis of preemptively
scheduled hard real-time systems: Precise modelling and computa-
tion of the context switch costs. Instead of limiting the interface
between timing and scheduling analysis to a single scalar value (upper
bound on the execution time), we propose to extend timing analysis to

1. Introduction

compute precise preemption costs and to integrate these costs into the
scheduling analysis.

The first scheduling analysis explicitly considering preemption costs has
been proposed by Busquets-Mataix et al. [18] (based on the assumption
that each cache entry must be reloaded). This model has been refined
by Lee et al. [49] by computing the worst-case impact on the preempted
task, by Tomiyama et al. [90], and later Tan et al. [86] by considering
preempting and preempted tasks.

We contribute to this line of research in the following ways and aspects:

Formal Model of the Cache-Related Preemption Delay

We provide a formal definition of the cache-related preemption delay.
Advantages of this model are twofold: First, we are able to base all
subsequent analyses on solid ground and prove the correctness of the
proposed CRPD analyses. Second, we provide a clear identification
of the applicability and the limitations of a separate computation of
the context switch costs. We show that in contrast to prior beliefs,
context switch costs of a single preemption can be unbounded in
case of certain cache replacement policies and hardware features.

Concept of Definitely-Cached Useful Cache Blocks

We identify substantial pessimism in the first analysis of the context
switch costs based on the preempted task and propose a new preciser
model using the concept of definitely-cached useful cache blocks (DC-
UCBs). A useful cache block is a memory that is i) cached prior to
a program point and ii) reused afterwards. In case of preemption
at this program point, only useful cache blocks have to be reloaded
and thus can increase the execution time. We improve on the
basic concept by considering possible pessimism of the preceding
timing analysis that derives an upper bound on the execution
time. Furthermore, we prove the correctness of this new model
and propose a static program analysis (based on the framework of
abstract interpretation) to derive the set of DC-UCBs.

Resilience Analysis
We improve the bound on the cache-related preemption delay by
considering the cache usage of the preempting task. This is especially
problematic for set-associative caches. First we show that previous
analyses for this setting are unsound and possibly optimistic. We
then correct these bounds and present a new, precise, and sound
CRPD analysis for set-associative caches. To this end, we introduce
the notion of resilience. The resilience of a useful cache block is a

1.2. Structure

metric for the amount of disturbance by preempting tasks a useful
cache block may suffer without causing an additional cache reload
due to preemption. We also prove the correctness of this concept
and provide a static program analysis to compute the resilience of
the cache blocks.

CRPD-Aware Response Time Analysis

We show how to incorporate bounds on the cache-related preemp-
tion delays in the scheduling analysis for fized-priority preemptive
schedules. Nested preemption requires particular attention. A pre-
empting task may not only evict cache blocks of one task but of
all nestedly preempted tasks. Vice versa, a preempted task may
suffer eviction not only by the directly preempting task but also by
tasks preempting the preempting task. We first provide a thorough
review of the existing approaches and then present a new and pre-
ciser analysis: the so-called FCB-Union. The new analysis derives
upper bounds on the effect of all preempting tasks to the preempted
task. In addition, we show how to eliminate spurious preemption
scenarios to improve the schedulability results even further. We
also present how to correctly consider mutual exclusive access to
shared resources when considering CRPD explicitly.

1.2. Structure

The thesis is structured as follows: We introduce the framework of abstract
interpretation (on which we base all program analyses) in Chapter 2.
Chapter 3 provides further background needed for the understanding
of this thesis. The formal model and explanation of the context switch
costs and the cache-related preemption delay are given in Chapter 4 and
an overview of the related work in Chapter 5. Chapter 6 presents the
concept and the analysis of definitely-cached useful cache blocks, Chapter 7
the resilience analysis, and Chapter 8 the CRPD-aware schedulability
analyses. An evaluation of the new approaches can be found in Chapter 9
and Chapter 10 concludes this thesis.

1. Introduction

Publications Contributing to this Thesis

Parts of the thesis have been published in peer-reviewed conferences,
journals and workshops:

e Sebastian Altmeyer, Robert I. Davis, and Claire Maiza. Improved
Cache related pre-emption aware response time analysis
for fixed priority pre-emptive systems. In Real-Time Systems
(to appear).

e Sebastian Altmeyer, Robert I. Davis, and Claire Maiza. Cache
related pre-emption aware response time analysis for fixed
priority pre-emptive systems. In Proceedings of the 32nd
IEEFE Real-Time Systems Symposium, (RTSS’11), pages 261271,
December 2011.

e Sebastian Altmeyer and Claire Maiza Burguiére. Cache-related
preemption delay via useful cache blocks: Survey and re-
definition. J. Syst. Archit., 57:707-719, August 2011.

e Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience
analysis: Tightening the CRPD bound for set-associative
caches. In Proceedings of the ACM SIGPLAN/SIGBED 2010
conference on Languages, compilers, and tools for embedded systems,
(LCTES ’10), pages 153-162, April 2010.

e Sebastian Altmeyer and Claire Burguiére. A new notion of
useful cache block to improve the bounds of cache-related
preemption delay. In Proceedings of the 21st Euromicro Con-
ference on Real-Time Systems, (ECRTS 09), pages 109-118, July
20009.

e Claire Burguiére, Jan Reineke, and Sebastian Altmeyer. Cache-
related preemption delay computation for set-associative
caches - pitfalls and solutions. In 9th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis, July 2009.

Chapter 2 wm

ABSTRACT INTERPRETATION

All exact science is dominated by the
idea of approximation.
Bertrand Russell (1872 - 1970)

A program execution can be seen as a transformation of one state to
another. The semantics of a program defines a) the set of states and b)
how the program transforms a given state. Static program analysis [66]
argues about certain properties of these states occurring during program
execution, such as the sign of variables or the content of the cache
memory. Many of these properties are undecidable in general such that
the concrete semantics need to be approximated. Naturally, a program
analysis must be sound in order to produce reliable results. Abstract
interpretation |20, 21] provides means to design sound program analyses.
In contrast to traditional program analysis that argues about program
properties directly, abstract interpretation introduces a concrete and an
abstract model of the semantics from which program properties can be
derived. Correctness of the results is proven by showing that the abstract
model is a sound approximation of the concrete model.

In this chapter, we introduce the basic notion of program analysis
and abstract interpretation and provide the corresponding mathematical
foundations. This chapter only serves as a basic introduction required
for the understanding of this thesis. Further reading can be found
in [21, 66, 44] and [75].

2. Abstract Interpretation

2.1. Program Analysis

Programs under examination are represented as control-flow graphs:

Definition 2.1 (Control-Flow Graph)

A control-flow graph (CFG) is a directed graph G = (V, E, ps, pe) with a
finite set V' of nodes, a set E CV x 'V of edges, a start node ps € V and
an end node p. € V. If (pn,pm) € E, pn 15 a predecessor of pm (Pm 1S
successor of p,). Node ps has no predecessor, p. no successor. Note that
we also refer to a node in the control flow graph as a program point.

We assume in addition that a CFG is connected and that p, is the only end
node, i.e., all nodes can be reached from start node ps and all nodes may
reach p.. If a program has several exits p! to p? we enforce the second
condition by introducing an artificial end node p. and corresponding
edges (p’,per). A path within the control-flow graph is defined as follows:

Definition 2.2 (Path)

Let G = (V,E,ps,pe) be a CFG. A path 7 from node py to node py, is
a sequence of nodes ™ = [p1,D2,...,Pk—1,DPk] where ¥i : (p;,pit1) € E.
The symbol € represents the empty path, 11 the set of all paths and wy - o
concatenation of two paths.

2.1.1. Collecting Semantics

We describe the semantics of a program as transitions between program
states. To this end, we define transfer function, path semantics, and the
collecting semantics. Examples of program semantics are cache behavior
and variable assignment.

Definition 2.3 (Transfer functions)

Let G = (V,E,ps,p.) be a CFG and D the set of program states. A
transfer function tf : V — (D — D) assigns the semantics of each node
peV.

The transfer function (or transformer) defines the local semantics of each
node of the CFG. The semantics of a complete path within the CFG is
defined as the composition of the transfer functions.

Definition 2.4 (Path Semantics)
The path semantics [7];¢, of a path 7 is a composition of a transfer
function tf : V. — (D — D) along the path =:

[ﬂ_] _ { idDH]D) Zf’ﬂ' =€
gl [p27"'>pn]tf Otf(pl) ifﬂ’ = Lph""pn]

2.1. Program Analysis

Assume we are interested in the valuation of variables. A program state is
defined as a function assigning each variable of the program a value and
the transformer updates the program states according to the arithmetical
operations of the program.

Sticky Collecting Semantics

This far, we defined the semantics of a program always using transitions
from one state to another. If we apply, for instance, the path semantics
to an initial state, the semantics is only valid for this specific execution
of the program path. However, we are usually interested in deriving
information valid for a set of possible initial states. For this reason, we
define the collecting sticky semantics.

Definition 2.5 (Sticky Collecting Semantics)
The sticky collecting semantics at node p for the set of initial states

Init C D 4s a function Coll: V — 2P defined as

Coll(p U(U{ eg(s Iﬂeﬂmz[s,--.,p]})

s€lnit

The function Coll(p) delivers all possible states at node p, i.e., all states
that may arise at p during the execution of the program with all possible
initial states s € Init. In the case of variable valuation the sticky collecting
semantics delivers all values a variable may obtain at program point p.
Such information can be used for instance to statically exclude division-
by-zero exceptions.

Path-Based Collecting Semantics

However, many program properties cannot be expressed using the sticky
collecting semantics, at least not in a natural way. Liveness of variables
for instance does not depend on the state at a program point p but
on the paths reaching p. We therefore define the path-based collecting
semantics [75].

Definition 2.6 (Path-Based Collecting Semantics)
The path-based collecting semantics is the set of all paths ending in
program point p (forward semantics)

Colly : V — 21

Collf (p) ={7 | TeUAT=[ps,...,D|} (2.1)

2. Abstract Interpretation

or the set of all paths emanating from a program point p (backward
semantics)
Collfy - V — 21

Collii(p)={n | melUAm=]p,...,pn]} (2.2)

The path-based collecting semantics are also referred to as second-order
semantics or trace semantics [75]. The liveness of a variable can be
deduced from the backward path-based collecting semantics by checking
if there exists at least one path on which the value of the variable is used.
Although some program properties require these collecting semantics,
we can also define the path-based collecting semantics using the sticky
collecting semantics. The concrete domain is the set of paths and the
transfer function that appends, resp. prepends a program point to all
paths tfg/%:
tf/7 v - (21 = 2
tfx ()(8) ={m-p | me S} (2.3)
and
L)) ={p-7 | m€ S} (2.4)

The initial program state is the set of paths containing only the empty
path €. Hence,

Coll(p)” = | (U{[ﬂ']tfa(s)hreﬂ/\W:[S,...,p]})
se{e}
—{r | melAT=|ps...,p]} = Coll7(p) (2.5)

and

co(p)” = |J (lrls-()lm e WAT = [p,....p]})
se{e}
={r | rellAn=p,...,p]} = Colli] (p) (2.6)

where Coll(p)~ is the original sticky collecting semantics as in Defini-
tion 2.5 and Coll(p)* is the sticky collecting semantics used backwards,
i.e., starting at the end node pe..

This reduction allows us to consider only the sticky semantics for the
following correctness proofs and to transfer the results to the path-based
semantics. In the following, we thus only consider forward sticky collecting
semantics.

10

2.2. Abstract Interpretation

2.2. Abstract Interpretation

Abstract interpretation is a formal, semantics-based framework to develop
sound program analyses and to support the correctness proofs. It relates
concrete semantics to abstract semantics. Within the framework of
abstract interpretation, domains for the analyses are required to form
partial orders to ensure that each subset of the domain has a least upper
bound [23].

Preliminary Definitions
First, we provide basic definitions needed in the remainder of this chapter.
Definition 2.7 (Partial Order)

A binary relation TC D x D over a set D is a partial order, if and only
if Va,b,c € D holds:

aCa (Reflexivity)
aCbAbCc=alec (Transitivity)
aCbAbCa=a=0 (Antisymmetry)

The partial order C is often used as a notion of precision. We say that
a € D is at least as precise as b € D (or b approximates a) if a C b.

Definition 2.8 (Complete Lattice)

A complete lattice IL is a partially ordered set D, where each subset S C D
has a greatest lower bound ([]) and a least upper bound (|]). The elements
L =[1D,T = | |D are referred to as the bottom and the top element of
D. A complete lattice L is represented as a tuple L = (D, L, T,C, LI,).
The operators LI and M are called join or meet.

Note that each powerset domain 2P together with subset ordering C
forms a complete lattice (22,0, D, <, J,N).

In the context of program analysis and abstract interpretation functions
are often required to exhibit certain properties.

Definition 2.9 (Monotonicity, Distributivity)
Let N with © and M with C' be partially ordered sets. A function
f N — M is monotone, if and only if

Va,be N:aC b= f(a) T f(b)
It is furthermore distributive, if and only if
Va,b€ N : f(aUb) = f(a) U f(b)

11

2. Abstract Interpretation

Abstract Domain and its Relationship to the Concrete Domain

We now consider a powerset domain 2P¢ of concrete states De. The
collecting semantics of this domain delivers the most precise information
any analysis may derive. In general, however, the collecting semantics are
not computable or prohibitively large [43]. Hence, we strive for another
description of the concrete states, namely a domain of abstract states
D 4. Abstract interpretation provides means to relate an abstract domain
with the concrete one. We first argue about correct relations between
both domains. In classical abstract interpretation, a Galois connection is
demanded:

Definition 2.10 (Galois Connection)

Let (De,C) and (Da,C) be partially ordered sets and o : Do — Dy,
v : Dag — D¢ two monotone functions. The tuple (Do, o, v,Dy) is a
Galois connection, if and only if

Vd € D¢ : d T y(a(d)) (2.7)

and
VdeDy: a(y(d) Ed (2.8)

We call the function o abstraction and v concretization.

A Galois connection establishes a relation between two domains [23].
Although one may lose precision by going back and forth between both
domains, no elements are ‘lost’. Applied to the concrete and abstract
domain, if (D¢, a,7,D4) forms a Galois connection, abstraction and
concretization are sound and D4 is an actual representation of D¢. Since
an abstract domain typically exhibits a reduced size compared to the
concrete domain, precision loss is often unavoidable. A weakness of the
definition of Galois connection is that it allows to have two different
abstract states to both represent the same set of concrete states. A
stronger definition is the so called Galois insertion.

Definition 2.11 (Galois Insertion)
A Galois connection (De, a,v,D4) is called Galois insertion, if and only
if
VdeDy :d=aly(d))
Concretising and then abstracting must yield the original abstract state.
Galois connections do not necessarily exist and are also not necessarily

required for the correctness of an abstract domain. Instead, we require
only Condition (2.7) of a Galois connection.

12

2.2. Abstract Interpretation

Figure 2.1.: Illustration of a Galois connection (D¢, a,y,D4). The order
of the domains defines the vertical position of each element:
the higher an element is, the more precise it is.

Definition 2.12 (Sound Abstraction)
Let (D¢, C) and (D4, C) be partially ordered sets and o : Do — Da, vy :
D4 — D¢ two monotone functions. o and v provide a sound abstraction
if and only if

Vd € D¢ : d E y(a(d))

This states that an element of the concrete domain d is conservatively
approximated by a(d).
Correctness of the Abstract Transformer

In addition to a correct relation between two domains, we need to establish
a correctness condition for the abstract transfer function

th:V%(DA*)DA)

which is also referred to as abstract transformer.

Definition 2.13 (Local Consistency)
Given two functions tfo:V — (Do = Do), tf4: V= (Da — Da) and
a concretization v : D4 — De. The two functions are locally consistent,

if and only if

VdeDa:VpeV: (tfc(p)(v(d) SA((fa(p)(d))

Applied to a concrete and an abstract transformer, local consistency
ensures that the abstract transformer preserves all states although it may

13

2. Abstract Interpretation

de tfcle) de
@l

v %
i tfale) i

Figure 2.2.: Illustration of local consistency.

lose precision. In case of a Galois insertion, we can define the so-called
best abstract transformer as yotf o a. Note that the best transformer is
often not computable in practice.

We can now define the abstract counterparts of the path semantics and
the collecting semantics and prove the correctness. We simply have to
replace the set-union |J by greatest-lower bound operator | | within the
definitions and argue about an abstract domain.

Definition 2.14 (Abstract Semantics)
The abstract path semantics [7];r, of a path 7 is a composition of the
transfer function tf 4 : V — (D — D) along the path:

[71'} _ { id]]])_>]1)) ifﬂ' =€
ta [p27"'apn]thOth((p1)) ifﬂzpla"'apn

The abstract collecting semantics for the set of initial states Initqg C Dy
at node p s a function Colly : V — 20 defined as

Cottatp) = || (LHer, () Vlpss o0l € 11})

s€ Inity

In traditional (not abstract-interpretation based) program analysis, the ab-
stract collecting semantics is referred to as meet-over-all paths (MOP) [66].

We prove the correctness of the abstract semantics with respect to
the concrete semantics starting with the correctness of the abstract path
semantics:

Lemma 2.1 (Correctness of the abstract path semantics)

Given a Galois connection (Do, a,y,D4), the abstract path semantics is
a sound over-approzimation of the concrete path semantics if tf and tf 4
are locally consistent.

Vd €Dy : [x]ir. (v(d) € A([mlis . (d))

14

2.2. Abstract Interpretation

Proof
We prove the claim by induction over the length of the path w. In case of
an empty path €, we have

(€l (v(d) = 7(d)
= ([eir, (D))

Induction hypothesis:

Vd € Da : [7]ip. (v(d) € ([7]ir, (d))

holds for all w of length < I.
Induction step m — 7' = (7, p141)

[l (v(d)) = ([7')es, 0 7)(d)

=(7T'P1+1]tfco’7 (d 7TI:7T‘Pl+1
(
(

)(d)
i o tf(piv1) o v)(d) Def. 2.4

C ([rlefe ovotfa(pivr))(d) Local Consistency
C (yolmlis, otfalpir1))(d) Ind. Hypothesis
= (yol[r pisiley,)(d Def. 2.14
=7([7"]es,)(d) 7' =7
O

Correctness of the abstract collecting semantics remains to be shown.
We therefore need to show that the abstract collecting semantics is a
sound over-approximation of the concrete collecting semantics.

Lemma 2.2 (Correctness of the abstract collecting semantics)

Given a Galois connection (D¢, o, v, D 4), the abstract collecting semantics
is a sound over-approximation of the concrete collecting semantics

Vp e V : Coll(p) C v(Colla(p))

iftf and tf 4 are locally consistent and Inita is an over-approximation
of Init (y(Inita) 2 Init).

15

2. Abstract Interpretation

Proof
Coll(p)
_ LJ t(U{ i1 ()Y [Das -, 1) eH}) Def. 2.5
s€ Ini
c L,J (Uil DI = b8l €TI}) y(Inita) 2 Init
s€ Inity
C LIJ (U{W Tlep, (8))|m =] S,...,p]EH}) Lemma 2.1
s€ Inity
) GU 7(|_|{[7r]th |m = [ps,...,p] € H}) Monotonicity
s€ Inita
(|_| <|_|{ ey, (8)|m = [ps,...,p] € H})) Monotonicity
= V(ZYGOZZZE;)) Def. 2.1

O

Finally, we can formulate conditions each sound abstraction of the
concrete semantics must fulfill:

e the abstract domain D4 is a partially ordered set,
e « and v form a sound abstraction of the abstract domain, and

e tf and tf 4 must be locally consistent.

2.3. Fixed-Point Analysis

Definition 2.5 and 2.14 define the (abstract) semantics of a program. In
general however even the abstract collecting semantics is not efficiently
computable [43]. The number of paths may be infinite or just too
large in practice. Hence, the minimal-fized-point solution (MFP) is
computed [46, 43].

Definition 2.15 (Minimal-Fixed-Point Solution (MFP))
The minimal fixed-point (MFP) MFP : V — (D — D) is the least
fixed-point of the recursive equation system

B N P =Ds
MFP(p) = { LHtf(p)(MEP(p)) | (Pm,p) € E} D # ps

16

2.3. Fixed-Point Analysis

We now describe the conditions an abstraction must fulfill to ensure that
i) the MFP is computable and ii) it results in an approximation of the
collecting semantics Coll 4.

Theorem 2.1 (Knaster-Tarski [87])
In a complete lattice L, each monotone function f :IL — IL has a minimal
fixed-point.

According to Theorem 2.1, a minimal fixed-point as defined by MFP
exists, if the transfer function ¢f is monotone [87].

Definition 2.16 (Ascending Chain)

An ascending chain z is a sequence of elements x; € D of a partially
ordered set (D,C), such that Vi : x; C x;41. A chain stabilizes if 3j :
VIi>j:x =x;.

Theorem 2.2 (Kleenes Fixed-Point Theorem)
Let L = (D, L, T,C,U,M) be a lattice and f : D — D be a monotone
function. If all ascending chains in 1L finally stabilize, then

Tk V> ke fY(L) = (L)
and f¥(1) is the least fized-point of f.

Kleenes’ Theorem 2.2 defines the properties under which the iterative
application of a function finally stabilizes and results in the minimal
fixed-point. Note that there are several algorithms implementing the
MFP Solution and therefore solving the data-flow problem. A detailed
discussion on this topic can be found in [56].

Monotonicity holds for probably all meaningful transfer functions.
However, there are some lattices where ascending chains do not stabilize.
A prominent example is the interval analysis which tries to predict a value
interval [a, b] for each program variable v such that v € [a,b]. For such
analyses, widening and narrowing operators can be defined to restore
computability [22]. A widening-operator sets the data-flow value to an
upper bound (in case of interval analysis co) such that the algorithm
results in a—possibly not-minimal but—valid fixed-point. Narrowing
may then be used to reduce the pessimism introduced by widening.

So far, we only discussed computability of the MFP solution. The
next theorems argue about soundness and precision of MFP compared
to Colls4. Remember that the precision is defined by the relation C (see
Definition 2.7).

17

2. Abstract Interpretation

Theorem 2.3 (Coincidence)
Let L = (D, L, T,E,U,MN) be a lattice and f : D — D be a monotone
function. If all ascending chains in 1L finally stabilize, then

Vp €V : Colla(p) E MFP(p)

The Coincidence-Theorem 2.3 states that MEFP approximates Coll 4, i.e.,
Coll4 C MFP for all possible initial states and all nodes. According to
Theorem 2.4 equality is given, if the transfer function is distributive [46].

Theorem 2.4 (Kildall [46])
Let L= (D, L, T,C,U,M) be a lattice, f: D — D be a monotone function
and . If f is furthermore distribute, then

Vp € V : Colla(p) = MFP(p)
(assuming that each node p € V is reachable from the starting node ps).

We can conclude that a transfer function needs to be monotone in order
to be able to compute an approximation of the collecting semantics. If
all ascending chains within the corresponding lattice stabilize, fixed-point
iteration will result in a correct approximation of the Coll4. If not,
widening and/or narrowing operators must be defined. If in addition, the
transfer function is distributive, MFP equals Coll4.

18

Chapter 3

BACKGROUND

If | have been able to see further, it
was only because | stood on the
shoulders of giants.

Sir Isaac Newton (1643 - 1727)

This chapter presents the basics of different fields necessary for the
understanding of this thesis: real-time scheduling, caches and timing
analysis. Nevertheless, it is not meant as a general introduction but
presents only the relevant information and notation. Parts familiar to
the reader can be skipped.

3.1. Real-Time Scheduling

Embedded systems typically feature more tasks than processors. Thus,
a scheduler is employed to distribute the available processing time to
the tasks. In contrast to schedulers in general-purpose OS, where load-
balancing or fairness is a main objective, real-time schedulers are faced
with timing constraints such as deadlines of tasks. Depending on the
penalty assigned to a deadline miss, real-time systems are divided into
hard or soft. When a deadline miss is considered a complete failure of
the system, it is considered a hard real-time system, when some deadline
misses are tolerable, it is considered a soft real-time system.

Real-time scheduling denotes a large research area with plenty of

19

3. Background

different approaches and methods of which this section only presents the
subset relevant for this thesis: uniprocessor preemptive priority-driven
scheduling with static priority assignment as widely used in real-time
systems. For a general overview on real-time scheduling see [19].

3.1.1. Sporadic Task Model

We assume a fixed set T" of n tasks ' = {ry,...,7,} to be executed on a
single processor. Each task is assigned a worst-case execution time Cj,
a relative deadline D; and minimal inter-arrival time or period T; with
release jitter J;. Fach instance of task execution is called a job. Arrival

< preemption

dispatch

Figure 3.1.: State transitions of a task

release

time ag denotes the time at which the j-th instance of task 7; (or job j
of 7;) becomes ready to execute, and start time sg the time the job is
dispatched by the scheduler and starts to execute. Figure 3.1 shows the
states and transitions of a task. The next job of task 7; arrives at the
earliest after a time span 7; minus jitter J;:

CL{JFI Z (lg + TZ - JZ (31)
Deadline d? of a job is relative to its arrival time:
dl =al + D; (3.2)

Finishing time flj of a job denotes the time at which this job completes
execution and the response time r! denotes the time span from job arrival
to job completion: ‘ A _

rl =f —al (3.3)

7

Response time of a task is given by the worst-case response time of its
jobs: 4
R, = mjax{rf} (3.4)

20

3.1. Real-Time Scheduling

Worst-case execution time C; denotes the maximal execution demand
without preemption cost. The fraction of time a task requires the processor
is denoted as the task’s utilization:

U, =Ci/T; (3.5)
Utilization of a task set I’ = (71,...,7,) is the sum of the utilizations of
all tasks: .
Ur =) CiT; (3.6)
i=1

A task 7; is referred to as schedulable if each of its jobs finishes before
their deadline:
R; < D; — J; & 1; schedulable (3.7)

A task set I' is said to be schedulable if each task 7; € I" is schedulable.

Table 3.1.: Task model properties

{T1,...,7m} Task set of n tasks
Execution Time Demand (WCET)
Minimal Inter-arrival Time
Deadline
Release Jitter
Utilization
Starting Time
Arrival Time
Finishing time
Response Time (Job)
Response Time (Task)

DI g g QT

Figure 3.2.: Illustration of the sporadic task model and the associated
variables

Table 3.1 summarizes and Figure 3.2 illustrates the parameters asso-
ciated with each task/job. We assume independent tasks but weaken

21

3. Background

this restriction and allow tasks to access mutual exclusive sections via
semaphores in Section 3.1.3

Why preemption?

Tasks can be executed either preemptively or non-preemptively. In a non-
preemptively scheduled system, once started, each task runs to completion.
In a preemptively scheduled system, a task’s execution can be temporarily
interrupted to execute another task. Preemptive schedules are potentially
more powerful, i.e, some task sets are only schedulable preemptively.
Tasks with short deadline usually can not postpone their execution until
completion of the currently running task. See the task set shown in
Figure 3.3.

i e wm |

T2

!
I
l

(a) Preemptive Execution, no missed Deadlines.

7

n .])
" 1 2 4 %
(b) N

on-Preemptive Execution, Deadline Miss of task 71 at 4.

Figure 3.3.: Preemptive versus Non-preemptive Scheduling: task set
{Tl,’TQ} with Cl =]., D1 = T1 =2 and CQ = 3, D2 = T2 = 6.

3.1.2. Priority-Driven Scheduling

A priority-driven scheduler always executes the task 7; with the highest
priority pr(r;) among all tasks that are ready to execute. Priorities are
assigned either statically or dynamically. Earliest deadline first (EDF)
scheduling [53] and deadline monotonic (DM) scheduling—also called
Rate Monotonic (RM) [53] in case of implicit deadlines (V; : D; = T;)—are
the main representatives for dynamic and static assignments, respectively.
They are also optimal among scheduling algorithm of their class in the
following sense: if there exists a feasible schedule with static, resp.,
dynamic priority assignment, deadline monotonic, resp., earliest deadline

22

3.1. Real-Time Scheduling

first finds one too. Note that these optimality results only hold for
preemptive systems assuming negligible preemption cost.

Earliest Deadline First (EDF)

Earliest deadline first scheduling [53] always executes the task with the
closest deadline. It maintains a priority queue of the ready tasks ordered
by the proximity of each task’s deadline. For the special case of implicit
deadlines, EDF is always able to schedule a task set if the utilization of
the task set is less than or equal to 1:

Ur <1< T schedulable (3.8)

In the general case with explicit deadlines, the schedulability test is more
complex [40]. For each time span L, the requested processor time must
be less than or equal to L:

VYL >0: ZL(L + T, — D;)/T;]C; < L < T schedulable (3.9)
Both schedulability tests are necessary and sufficient.

Deadline Monotonic (DM)

Deadline monotonic scheduling [52, 100] assigns task priorities in order
of increasing deadlines, giving the task with the shortest deadline the
highest priority. We assume w.l.o.g. that task indices express the priority
order:
D1 <Dy <D3<...<D, (3.10)
and
pr(m) > pr(me) > pr(rs) > ... > pr(m) (3.11)
For implicit deadlines (T; = D;), two linear-time sufficient schedulability

tests based on the utilization of the task set exist. The first one was
presented by Liu and Layland [53]:

Ur < n(2Y™ — 1) = T schedulable (3.12)
with
lim n(2Y/™ —1) = In(2) ~ 0.6932 (3.13)
n—oo

The second schedulability test is the hyperbolic bound test by Bini et
al. [15]:

[[Wi+1) <2 =T schedulable (3.14)

i=1

23

3. Background

Note that both tests are only valid for implicit deadlines and are only
sufficient, not necessary. For a performance evaluation of RM scheduling
based on randomly generated tasks see [51].

Response Time Analysis

A sufficient and necessary test for static priorities is the response time
analysis 8, 41, 25]. Equation (3.7) states that a task is schedulable, if its
worst-case response time R; is less than or equal to its deadline D; less
jitter J;.

The response time R; of a task necessarily contains its execution time
C;. In addition, 7; suffers interference from tasks with higher priority
than 7;. Let 7; be a task with priority higher than ;. Within the response
Ri+J;

T;

time R;, 7; executes at most [—‘ times, each time for at most Cj.

Hence, the response time R; of task 7; is given by:

Ri=0C; + Z ’VRZ;J]-‘ (&) (3.15)
vjehp(i) J

where hp(7;) denotes the set of tasks with higher priority than 7;. The
response time R; appears on the left-hand side and on the right-hand side.
As the right-hand side is monotonically increasing in R;, a fixed-point
computation of R; based on Equation (3.15) can be defined as follows:

RY = ¢ (3.16)

R+ J;
R =Ci+ > [;ﬂ (C}) (3.17)
vjiehp(i) !

Eventually, for each task, the fixed-point computation either stabilizes,
i.e., Rt = R or the response time R! of one task exceeds the deadline
R; > D;. In the first case, we can conclude that each job of task 7; will
finish before its deadline, so each task is schedulable. In the second case,
we can conclude that at least one job of task 7; may miss its deadline, so
the task set is not schedulable.

Note that the response time analysis is valid for any static priority
assignment and also for explicit deadlines. It exhibits pseudo-polynomial
runtime (compared to linear runtime for the Utilization and Hyperbolic
bound), but forms a sufficient and necessary schedulability test (under
the assumption of negligible context switch costs).

24

3.1. Real-Time Scheduling

3.1.3. Mutual Exclusion

In this section, we extend the sporadic task model by mutual exclusive
accesses to shared resources. A sequence of a task 7; accessing such a
shared resource is called critical section.

To ensure consistency of shared resources, at most one task can access
a resource at a time. Semaphores are typically used to implement this
mutually exclusive access: Each shared resource is assigned a semaphore
S; that implements two primitive operations

wait(S;): a task requests access to a shared resource. If the resource’s
semaphore S; is available, a task can enter its critical section and
access the shared resource, while locking S;. If S; is not available,
the task blocks on S; and suspends its execution.

signal(.S;): a task that previously accessed a shared resource assigned to
semaphore S; finishes its critical section and unlocks S; again.

Each critical section accessing a shared resource with semaphore S; thus
begins with wait(S;) and ends with signal(S;). Task states and transitions

are depicted in Figure 3.4.

— preemption

\—/
dispatch

Figure 3.4.: State transitions of a task with shared resources

signal

Execute

release

Priority Inversion Problem

Each task 7; that shares a resource with a task 7; with lower priority
inevitably may suffer delay of the length of the critical section of 7;
accessing the shared resource. Priority inversion denotes the situation
where a task’s execution is prolonged by the execution of a task with
lower priority even though both tasks do not share a common resource.
See Figure 3.5 for an example. Task 71 and 73 both access a shared

25

3. Background

resource guarded by semaphore S. Task 73 first enters its critical section
and locks S. Task 77 is activated at time 2, starts to executes but blocks
on S at time 3. Now 73 resumes execution again, but is preempted by
Ty at time 4. So, the 71 is not only delayed by the critical section of
73 but also by the execution time of 75. Several protocols have been

m [—
72 —
gl e — (I .
0 1 2 3 4 5 6 7 8 9 10 11 12
- Execution :l Resource access

Figure 3.5.: Priority inversion problem

proposed to solve the priority inversion problem. We will now shortly
present the most prominent protocols: priority inheritance, priority
ceiling and stack resource protocol. As only the latter one is able to
handle dynamic priorities, we restrict the following description to static
priority assignment.

Table 3.2.: Shared resources: notation and terminology

SR; shared resource

S semaphore guarding SR;

Access(SR;) set of tasks accessing shared resource SR;

pr nominal priority

or; active priority with pr; > pr;

C(S:) Ceiling priority of semaphore S; (PCP)

S* Currently locked semaphore with highest C(S) (PCP)
CSik critical section of task 7; accessing resource SRy

CPhe worst-case execution time of the critical section cs; j

Priority Inheritance Protocol (PIP)

To prevent priority inversion, the priority inheritance protocol (PIP) [77]
increases the priority of a blocking task 7; to the priority of the task with
the highest priority currently blocked by 7;. It therefore assigns each task
an active priority pr; initially set to the nominal priority pr; (the one
assigned by the scheduling algorithm, e.g. deadline monotonic).

26

3.1. Real-Time Scheduling

The protocol works as follows:

e the task 7; with the highest active priority pr; among all ready
tasks is executed.

e when the running task 7; requests a semaphore .S;:
if S; is free, 7; locks S; and enters its critical section.

if S; is blocked by another task 7;, 7; inherits the priority of
Tt pry = pry.

e when a task 7; exits its critical section, it releases the corresponding
semaphore S; and:

if 7; blocks no other task, the active priority of 7; is set to the
nominal priority pr; := pr;.
otherwise, the active priority of 7; is set to the active priority
of the task 7; with the highest priority of all tasks still blocked
by 71 pr; := pr;.

Note that priority inheritance is transitive.

Although PIP prevents priority inversion, a task may still suffer substan-
tial delay by the blocking time of lower-priority tasks. In the worst-case,
7; may suffer m blocking delays where m denotes the number of shared
resources 7; accesses. Such a situation is called chained blocking. In
addition, nested shared resources may lead to a deadlock situation [19].

Priority Ceiling Protocol (PCP)

Priority Ceiling Protocol (PCP) by Sha et al. [77] improves over PIP in
the sense that a) each task can be delayed by at most one critical section
and b) deadlocks are prevented. Instead of assigning priorities only to
tasks, each semaphore S; is statically assigned a ceiling priority C(.5;).
The ceiling priority is the highest priority of any task accessing the shared
resource guarded by S;:

C(S;) = max{pr; | 7; € Access(SR;)} (3.18)

where Access(SR;) denotes the set of tasks accessing shared resource SR;.
In addition, PCP keeps track of the currently locked semaphore S* with
the highest ceiling priority C'(.5;) of all locked semaphores. The protocol
prevents a task 7; from entering a critical section guarded by S; not only
if S is locked, but also if there is any semaphore currently locked that
could lead to blocking of ;.

The protocol works as follows:

27

3. Background

e the task 7; with the highest active priority pr; among all ready
tasks is executed.

e when the running task 7; requests a semaphore S;:
if pr; > C(S*), 7; locks S} and enters its critical section.

otherwise 7; is blocked by another task 7; holding semaphore
S* and 7; inherits the priority of 7;: prj := pr;.

e when a task 7; exits its critical section, it releases the corresponding
semaphore S; and updates S*. Furthermore,

if 7; blocks no other task, the active priority of 7; is set to the
nominal priority pr; := pr;.

otherwise, the active priority of 7; is set to the priority of the
task 7; with the highest priority of all tasks still blocked by 7;:
P77 1= B

With PCP, the maximal blocking delay a task 7; may suffer is bounded by
the maximal execution time C;R"“ of a critical section SRy, of a lower pri-
ority task 7; that shares a common resource SRy, guarded by a semaphore
with ceiling priority C(S)) higher than or equal to the priority 7;:

B; = max{C;™ | prj < pri ANC(Sk) > pri} (3.19)

Stack Resource Protocol (SRP)

The stack resource protocol (SRP) [9] denotes a set of extensions to PCP.
SRP is applicable in case of dynamic priorities, allows for multi-unit
resources, i.e., resources that enable up to [parallel accesses, and enables
sharing of runtime stack resources. In the simple case we consider here,
where we are only interested in static priority assignment and binary
semaphores that are either locked or free, the improvement of SRP merely
breaks down to the advantage that SRP exhibits less context switches
than PCP. This, however, can also be achieved in the priority ceiling
protocol by adding the following rules:

e When a task enters a critical section, its priority is set to C'(S*).
e When a task leaves the critical section, its former priority is restored.

Thus, a task 7; with priority less than or equal to C'(S*) is prevented from
being activated and not only from entering a critical section. This results
in less context switches besides otherwise equal behavior compared to the
original priority ceiling protocol.

28

3.2. Memory Hierarchy and Caches

Mutual Exclusion and Response Time Analysis

The response time Equation (3.15) can be extended as follows to include

the blocking delay 7; may suffer:

R; + Jj
T;

Ri=Ci+Bi+ Y { 1 (eh (3.20)
Vj€hp(i)
with B; defined by Equation (3.19).

3.2. Memory Hierarchy and Caches

Fast and large memory are desirable, but infeasible due to technical (and
economical) limitations. Instead, existing storages are either large and
slow or small and fast. To emulate a memory which is fast and large at
the same time, memory hierarchies were introduced based on memories
with varying speeds and sizes: Small but fast memories on top, slower but
larger memories below. Each memory level contains a subset of the data
stored in the level below. Scratchpads, caches or buffers are examples
for such intermediate memories. See Figure 3.6 for a simple memory
hierarchy of an embedded architecture.

— < >
O

Figure 3.6.: Typical memory hierarchy often to be found in embedded
systems

3.2.1. Principle of Locality

To decide which memory blocks to store, a memory hierarchy utilizes a
heuristic known as the locality principle [26]:

Spatial Locality neighboring memory blocks are likely to be accessed
contemporary.

Temporal Locality recently accessed memory blocks are likely to be
accessed in the near future again.

29

3. Background

The rationale behind these locality principles is the exploitation of com-
mon characteristics of task executions. Memory accesses are not uniformly
distributed over a task’s data. Sequential code alignment and clustering
of data (arrays etc.) increase the likelihood of accessing neighboring
memory blocks. Loop structures increase the likelihood of reusing re-
cently accessed memory blocks. Spatial locality is realized by storing not
only the currently accessed data but larger chunks of contiguous memory
containing the accessed blocks. Temporal locality is realized by storing
recently accessed data.

In the following, we focus on uni-level processor caches common in
typical embedded systems. For an overview on memory hierarchies and
caches, we refer to Hennesy and Patterson [37]. We also skip description
of memory management units and virtual memory management, as both
concepts are not common in hard real-time systems.

3.2.2. Processor Caches

Typically located on the die of the microprocessor, processor caches serve
data much faster than the main memory which is connected by the
memory bus. Caches operate completely transparently to the processor
semantics, only influencing timing behavior and performance. On a
memory access (no matter if read or write), data is requested from the
cache. In case the accessed memory block is resident in cache, a situation
called cache hit, the processor directly reads from/writes to cache. Only
in case of a cache miss, i.e., data not resident in cache, the requested
data is retrieved from the main memory and then loaded to the cache.
There are three types of cache misses [38]:

Compulsory Misses misses on the first access of a memory block. As
caches are initially empty, the first access to a datum always inflicts
a cache miss.

Capacity Misses misses due to the limited cache capacity. Such misses
occur if the amount of accessed data exceeds the cache size.

Conflict Misses misses due to an unbalanced cache usage, i.e., misses
due to eviction in one cache set, while cache lines of other sets are
still empty.

The delay to retrieve data from main memory is referred to as cache-miss
penalty or block-reload time.

30

3.2. Memory Hierarchy and Caches

Cache Organization

To implement spatial locality, caches do not only store the accessed data,
but load memory blocks of line size L usually substantially larger than
the accessed element. Caches are partitioned into S cache sets, where
each memory block (of size L) maps to exactly one of the cache sets.
Each cache set in turn may contain up to K different memory blocks
at once, where K is referred to as the associativity of the cache. Cache
size is thus given by L - S - K. Such a cache is called a set-associative

Table 3.3.: Cache parameter and domains

Line Size LeN

Associativity KeN

Number of Sets SeN

Cache Size CSeN;CS=L-S-K
Policy P € {LRU,FIFO,PLRU}
Cache-Set State ez

Set of Memory Blocks M

Invalid Line €

Content of a cache Line M, =Mu{l}
Cache-Set Update tP M x ¢P —¢P
Content of a Cache Set ¢ e2M

Number of misses on path 7 and
on an initial cache state ¢
Number of hits on path 7 and
on an initial cache state ¢

miss: Il x Z — N

hits: Il x Z — N

cache. See Figure 3.7. The set of all memory blocks is denoted by M.
We introduce symbol L to represent empty or invalid cache lines.
There are two special cases of set-associative caches:

Direct-Mapped Caches (K = 1) Each memory block can reside in ex-
actly one cache line. Direct-mapped caches exhibit low hardware
implementation cost. However, memory accesses are usually not
uniformly distributed over all cache sets resulting in unnecessary
conflict misses.

Fully-Associative Caches (K = S) Each memory block can reside in any
cache line. Fully-associative caches only need to evict data if all
cache lines of the whole cache are filled. Hardware implementation
of such caches is costly so that only small caches are fully-associative.

31

3. Background

T T BT
T T T T

[t2e] Data |[Teg] Data | Tag

S —[—

—) —

Figure 3.7.: Cache organization on a K-way set associative cache

Cache Tags and Block Addresses

To identify which parts of the main memory are currently cached, caches
must store not only the actual data but also tags to identify the memory
address the data belongs to.

A tag is the smallest possible portion of the memory address sufficient
to reconstruct the original address. As caches always store blocks of
size L, the last log(L) bits of the address do not need to be considered.
The same holds for the previous log(S) bits, as this part of the address
can be reconstructed from the index of the cache set in which data is
stored. The remaining bits form the tag of an address and need to be
stored together with the data. See Figure 3.8.

Tag I Set Index| Offset ‘

Figure 3.8.: Address Computation

Write-Through vs. Write-Back

On a write access, a changed datum must be written back to the main
memory eventually. When to perform this write back depends on the
write policy. The two alternatives are:

Write-Through datum is directly written to main memory, or,

Write-Back datum is marked as dirty and written to main memory when
evicted from cache.

Write policies form another trade-off between hardware cost and perfor-
mance. A write-back cache requires book-keeping of all dirty cache lines.
However, it benefits from fewer memory accesses compared to a write-
through cache, which sends data to main memory on each write access.
Another decision related to write accesses is the question whether or not

32

3.2. Memory Hierarchy and Caches

to store the written data in the cache. The alternatives are called write-
allocate and no write-allocate. Typical combinations are write-through
with no write-allocate (as each write incurs a main memory access) and
write-back with write-allocate.

For timing-critical embedded systems, write-through caches are consid-
ered beneficial as the point in time of each main-memory write depends
statically on the instruction. Write-back caches do not allow for a precise
determination of these memory-writes—or at least, no precise analysis is
known yet.

3.2.3. Replacement Policy

Eventually, all ways of a cache set are filled. On a cache miss, the currently
accessed element has to be stored in the cache while evicting another one.
Which element to replace is determined by the replacement policy. The
most common replacement policies are least-recently used (LRU), first-in
first-out (FIFO) and pseudo least-recently used (PLRU). Note that no
replacement policy is needed for direct-mapped caches as each set has
only one way and each memory block maps to a unique cache position.
In the following, we refer to a position in a cache as the age of a cache
block. These are always meant as logical concepts and do not refer to
the physical position in the cache hardware.

Least-Recently Used (LRU)

LRU policy keeps a list of cached memory blocks ordered by the last use
of each memory block. To keep this order, it conceptually assigns each
cached memory block an age indicating its position in the order. The
most-recently used element has age 0, the least-recently used age K — 1.
It treats misses and hits uniformly. A property considerably useful for
timing analysis and predictability of a cache. Starting with a completely
unknown initial cache state, precise information about the cache content
(and the age of each memory block) can be derived after accessing K
different memory blocks. LRU caches are predominant in academia, but

MRU

C

b/\a/\) ~b~— ~ e~ ~a— ~b~ ~ f- ~e~
LrU|&

Figure 3.9.: Access sequence on a LRU replacement policy

T, 0
o0& T
Q. T
Q.o o,
=
o T
© T e

33

3. Background

due to the implementation cost rather unpopular in modern CPUs for
higher associativities—even though efficient LRU implementations are
feasible [1].

We represent an LRU cache state (€ Z as ordered lists of K elements

[x1,22,...,2k] with the MRU element at front:
RV My x My x...x M, (3.21)
K

The LRU-update is formally defined as follows:
ULRU . M X CLRU — CLRU

The currently accessed element is put at the first position in the cache
(no matter if hit or miss). All younger elements are moved to the right,
i.e., aged by one, possibly evicting the least-recently used element. All
older elements retain their position.

U (m, [21,...,2K]) :=
(M, @1, T, Tyt -, TR M= 2y (3.22)
[m,x1,...,xx—1] otherwise '

First-In First-Out (FIFO)

In FIFO caches, elements are ordered by the time when the element was
loaded to the cache. Although FIFO replacement policy is commonly

First d
cl @ Jc| b
4 —d
b b
Last a a

Figure 3.10.: Access sequence on a FIFO replacement policy

e
-~

a
-~

b

—~

f

—

(§]
—

o T, 0 A
TL0 0
[T ="
o, o,v,C
o, » T
o, » T

implemented by means of a pointer directing to the element evicted next,
we depict FIFO states as ordered list with the first element on top and
the last at bottom—similar to the representation of LRU cache states.
MO My X My X ... x M| (3.23)
K

In case of a miss, the currently accessed element is inserted at the first
position, shifting all others to the right while evicting the right-most one.

34

3.2. Memory Hierarchy and Caches

Hits do not change the cache state.

UFIFO . M X CFIFO — CFIFO

(3.24)

FIFO] [z, zK] m=uz;
U (m, [oy,. 2] '_{ [m,x1,...,2x_1] otherwise

Pseudo Least-Recently Used (PLRU)

PLRU mimics LRU caches with lower implementation cost. PLRU caches
can be best explained using a graphical representation (see Figure 3.11).
Instead of storing an age for each cache line, a binary pointer tree (with
K — 1 bits) determines the element evicted next. On a cache hit, all
pointers on the path to the accessed element m are flipped away from
m to rejuvenate this element. On a cache miss, the indicated element
is replaced while flipping away all pointers on this path. Due to the

r}zhigrjg@%igrig@g@
d d d d d d d e

Figure 3.11.: Access sequence on a PLRU replacement policy

structure, PLRU policies requires K to be a power of two, i.e., K = 27.
We define PLRU update and domain recursively starting with K = 1:

CPLRU(l) ‘M, (325)
UPLRU(l)(m7 CPLRU(l)) ‘=m (3.26)

As K is a multiple of 2, we can define the domain PLRU for K > 1 by
means of PLRU(K/2):

CPLRU(l) . {O, 1} % CPLRU(K/Q) % CPLRU(K/Q) (327)
and also the cache update:
L7 B2 (m, (o), ¢1) m€ G
0, Go, 7 EI2(¢1)) me Gy

]-7 tPLRU(K/z) (CO)a Cl) 1le CO

(

(
UPLRU(K) (m, (b, o, (1)) == EO7 Co, tPLRU(K/2) (¢1)) leg
(
(

17tPLRU(K/2)(m, o), Cl) b=0
0, Co, 7K/ (m (1)) =1
(3.28)

35

3. Background

The first two cases denote cache hits, either in case of a cache hit in
sub-state (y, where the pointer is set to 1 or in case of a cache hit in (4
where the pointer is set to 0. The last two cases denote cache misses where
the element is added to (y or {; depending on the value of the pointer b.
PLRU policy requires a special treatment of invalid lines. In contrast to
FIFO and LRU, an invalid line in an PLRU cache may even survive an
arbitrarily large access sequence [74]. To prevent such permanent invalid
lines, and thus, loss of capacity, refilling invalid lines is preferred in case
of a cache miss.

Sensitivity of Replacement Policies

Reineke [72, 73] has recently examined properties of different replacement
policies regarding timing analysis. Among these properties, the sensi-
tivity plays an important role in our context. Sensitivity refers to the
possible variation of the number of hits or misses depending on the initial
cache state. The sensitivity of a replacement policy is determined by a
multiplicative and an additive factor. For instance, LRU policy is (1,K)

Table 3.4.: Sensitivity of LRU, PLRU, and FIFO for associativity 2,4,

and 8.
Miss-Sensitivity Hit-Sensitivity
2 4 8 2 4 8
LRU | (1,2) (1,4) (1,8) | (1,2) (1,4) (1,8)
FIFO | (2,2) (4,4) (8,8) | (0,0) (0,0) (0,0)
PLRU | (1,2) oo oo | (1,2) (1,3 (&2

miss-sensitive, where K is the associativity. This means that the number
of misses on path 7 and initial cache state (7 is at most K plus one time
the number of misses on the same path but with another initial cache
state (2. In general, a policy is (¢, s) miss-sensitive, if for any path and
any two initial cache states the following holds:

miss® (7, (1) < cx misst (m,(o) + s (3.29)

where miss” (m,) denote the number of misses of policy P on path m
and cache state . Note that the bound in Equation (3.29) is tight, i.e., if
policy P is (¢, s) miss-sensitive, then there exists a path 7 and two cache
states (1, (2, such that miss(m, (1) = cxmiss(m, (2) +s. The hit-sensitivity
is defined accordingly; a policy is (¢, s) hit-sensitive, if for any path and

36

3.3. Timing and Cache Analysis

any two initial cache states the following holds:
hits” (7, ¢1) > ¢ x hits” (n, (o) — s (3.30)

where hits” (m,¢) denote the number of hits of policy P on path 7 and
cache state . Table 3.4 shows the hit-, and miss-sensitivity of different
replacement policies for associativities 2,4 and 8. co indicates that the
variation in the number of misses/hits is not bounded. Note that the
values are given assuming a fully-associative cache but can be lifted to
set-associative caches by multiplying the additive (subtractive) factor by
the number of sets. The multiplicative factor remains the same.

The sensitivity is related to the analysis of preemptively scheduled
systems, since a preemption results in a change of the cache state of the
preempted task, while the subsequent execution path after preemption
remains unchanged.

3.3. Timing and Cache Analysis

Real-time systems are subject to timing constraints, induced by the
surrounding environment. In case of hard real-time systems, failing these
constraints is considered a system failure. Hence, considerable effort is
taken in order to prove the timing correctness.

This is usually done in two steps: a timing analysis derives bounds on
the execution time of tasks which are then used in a subsequent scheduling
analysis to prove the correctness of the system’s timing behavior. This
section provides an introduction to timing analysis relevant for this thesis.
For a complete overview see [97] or [101].

3.3.1. Components of a Timing Analysis

A task’s timing behavior depends on the initial processor state (including
the cache) and on the input. This dependency results in a variation of the
possible execution of the task. In general, it is computationally infeasible
to explore all different executions and thus, to derive the exact worst-case
execution time (WCET), resp. best-case execution time (BCET). Instead,
a static timing analysis can be used to derive bounds on the execution
time based on abstract models of the system. Note that the term WCET
is often used inconsistently as the worst-case execution time and as a
bound on the worst-case execution time. To clearly distinguish between
the value and its bound, we use WCET for the value and WCET? for
the upper bound; the same holds for BCET and BCET?.

37

3. Background

Variation of execution time
l 1 1
I }
[T
0 BCET?” BCET WCET WCET? time

Figure 3.12.: Variation of the execution times, BCET, WCET and bounds
on BCET and WCET

For the sake of simplicity we assume a) that the initial hardware state
only depends on the initial cache state ¢ and that b) the input variation
is reflected by a variation of the execution path 7. Let ET(m, () be the
execution time of the path 7 on initial state (:

ET = ET 31

wc ge%li’én((m,¢)) (3.31)

BCET = i (ET(m,¢)) (3.32)

V¢ € Z,m € I1: BCET? < ET(r,¢) < WCET? (3.33)

Conceptually, timing analysis abstracts from the concrete program se-
mantics to reduce the state space and thus, to render a derivation of
timing bounds feasible. Two main abstractions are given by the micro-
architectural analysis and the cache analysis:

Micro-architectural (pipeline) Analysis The microarchitectural analy-
sis forms an abstract pipeline model that abstracts from all non-
timing relevant features. For instance, the concrete operands of an
add-instruction do not influence the timing, while the type of the
operands (floating point, integer) does. The complexity of the model
strongly depends on the complexity of the pipeline. In the simplest
case, counting instructions suffices while complex hardware features
such as speculative execution and branch prediction, require a more
sophisticated hardware model [30, 36] (cf. Timing Anomaly).

Cache Analysis The cache analysis [62, 95, 63, 31| forms an abstract
model of the cache and the cache content. It aims at a classification
of memory accesses into hits or misses. As the cache is of utter
importance for a system’s performance, a precise cache analysis is
required for tight timing bounds. We detail an LRU cache analysis
in the next section.

Both analyses in combination are used to derive bounds on the execution
times of basic blocks.

38

3.3. Timing and Cache Analysis

Further components of a static timing analysis

Besides the microarchitectural-analysis and the cache-analysis, a typical
timing analysis framework contains the following components:

o Control Flow Reconstruction that reconstructs the control-flow
graph (CFG) of the analyzed program from the executable [44, 88|*.

e Value Analysis that computes effective addresses of memory ac-
cesses [22] and bounds on the number of loop iterations or recur-
sions [58].

e Path Analysis that combines execution time bounds on the basic
blocks with the loop bounds to compute the longest path within
the CFG (typical using integer linear programming [91, 89)]).

l CFG Reconstruction l

f—)

Static Analyses

Value Analysis Path Analysis
Cache Analysis

ILP Generation
ILP Solver

Pipeline Analysis
;’ WCET Bound

Figure 3.13.: Structure of a timing analysis

Figure 3.13 depicts the tool-chain of a typical timing analysis [29, 30],
such as the aiT timing analyzer?, a static timing analysis used in the
automotive and aeronautics industry. For further details on this approach
to static timing analysis see [35] and for an overview of currently available

LA precise static timing analysis must resort to the level of the linked executable as
only this level contains all timing relevant properties.
’http://www.absint.com/

39

http://www.absint.com/

3. Background

timing analyses, see [39, 97]. Note that bounding the execution time of
a task is infeasible in general as it includes solving the halting problem.
Hence, static timing analysis is only applicable to a subset of all programs.
Fortunately, hard real-time tasks are often designed with analysability
in mind avoiding certain programing features such as function pointer,
unbounded recursion, and dynamic memory allocation.

Timing Anomaly

A timing anomaly [55, 74] denotes counter-intuitive behavior of a processor
architecture where a local best-case entails a global worst-case. Typical
example is a cache miss leading to a globally shorter execution time
than a cache hit. Figure 3.14 depicts a timing anomaly due to branch
misprediction. In case of a cache hit, the result of the branch prediction is
only available after the execution of the next, falsely predicted instruction
has started. A roll-back of this instruction is necessary and leads to a
longer execution time compared to a situation of a cache miss, where
the result of the branch prediction is available before the memory access
was served. The additional execution time may not be bounded by a

|
1

(cache hit I instr. i[roll back I instr. 1]

I instr. 1 j

[cache miss

i
|
|
branch address
available

Figure 3.14.: Example of a timing anomaly

constant but be proportional to the total execution time, a situation
referred to as domino effect. An architecture can be classified depending
on whether it exhibits timing anomalies. [98]: A fully timing composable
architecture exhibits no timing anomaly, a compositional architecture
with constant-bounded effect exhibits timing anomalies but no domino
effects and a non-compositional architecture exhibits timing anomalies
and domino effects. ARMYT, TriCore and PowerPC are claimed to be
representatives of these classes of architectures. Timing anomalies have
been proven to exist for TriCore and PowerPC, the latter also with
domino effects [12]. A formal proof of the classification of TriCore and
ARMY7, however, is yet to be found.

40

3.3. Timing and Cache Analysis

3.3.2. Cache Analysis

The cache analysis is a main component of the timing analysis. We present
Ferdinand’s LRU cache analysis [31] based on abstract interpretation. For
the sake of simplicity, we assume a fully-associative cache. An analysis
for a set-associative cache is then given by S parallel analyses for S fully-
associative caches. Note that most cache analyses [31, 47, 91, 62, 95, 80]
assume LRU replacement. Only recently, cache analyses for FIFO and
PLRU have been published [32, 33].

Before we start with the domain and the abstraction of the analysis, we
need to discuss how the cache analysis is used within the timing analysis
and what its requirements are.

Classification of Memory Accesses

To determine the execution time of basic blocks, timing analysis needs to
classify memory accesses into cache hits or cache misses. As timing anal-
ysis is required to deliver runtime guarantees for all possible executions,
it can assume a cache hit (miss) for a memory access, only if this memory
access always results in a hit (miss). The more memory references clas-
sified as always hits, the lower the upper bound WCET? and the more
accesses classified as always misses, the higher the lower bound BCET?Z.
Such a classification can not be complete; for one thing, some accesses
inflict a cache miss in one execution trace and a hit in another trace,
and for another thing, cache analysis relies on abstraction as deriving
all possible concrete cache states is computationally infeasible. We thus
end up with the classification described in Table 3.5 and a classification
function with the following signature:

Classify : M x V' — {ah,am,nc} (3.34)

Table 3.5.: Memory access classification
always hit (ah) | memory access always results in a cache hit
always miss (am) | memory access always results in a cache miss
not classified (nc) | no classification to always hit or always miss

Effective Memory Addresses

Most cache analyses rely on exact knowledge about the referenced memory
blocks; in order to decide if a memory block is cached or not, one usually

41

3. Background

has to know the memory block. Hence, a cache analysis for instruction
caches is thus often easier to implement. The effective memory address
solely depends on the instruction and is static during program execution.
A prior address analysis to determine the effective address of a memory
reference is not required.

Concrete Cache Semantics

Recall the definition of an LRU cache state described in Section 3.2: an
LRU cache state (€ Z is an ordered list of K elements [z, 23, ..., k]
with the most-recently used (MRU) element z; at the first position.
C:MLXMLX...XML (335)
K

The cache update on an access to M was defined as follows:

'[ULRU . M X ZLRU - ZLRU

U (m, [21,...,2K]) :=
(M, 15 i1, Tig1,s -, O] M= (3.36)
[m,z1,...,TK—1] otherwise ’

The newly accessed element is put to the first position in the cache (no
matter if hit or miss). All younger elements are moved to the right, i.e.,
aged by one, possibly evicting the least-recently used element. All older
elements retain their position. We also refer to the position of an element
in the cache as the age of an element:

age: M — {0,..., K — 1,00} (3.37)
Age

where oo indicates that an element is not cached. We define a helper
function to extract the ages from a given cache state:

age : Z"%Y — Age

with
i ifm=ux

oo otherwise (338)

aw(0) = . {
We can define the LRU update function as a function on program points
peV:
thRU . V N (ZLRU — ZLRU)

P .

42

3.3. Timing and Cache Analysis

tfp " (p) = ACU™ (4(p),) (3.39)

(where #(p) extracts the accessed memory block at program point p) and
lift this function to complete paths w € II:

thRU . H RN (ZLRU RN ZLRU)

ifr=c¢

() =ac :

PO =X Sy)50 i rm
(3.40)

The collecting cache semantics are defined as follows:

Coll*®V . vV — 272

Coll"™ (p,,) = | J (U{[w]tfm(s)w paths 7 from p, to pn}> (3.41)

s€ Init

where Init C Z™%Y is the set of possible initial cache states. Equa-
tion (3.42) provides the classification based on the collecting cache se-
mantics.

ah V¢ € Coll"™(p):Ji:m=u;
Classify(m,p) := { am V¢ € Coll"™(p) : Pi:m = 2, (3.42)
nc otherwise

A memory block m is classified as always hit at program point p, if m
is cached in all cache states of the collecting cache semantics at p. It is
classified as always miss, if there is no cache state that contains m. The
collecting cache semantics delivers the most precise classification. Com-
puting the collecting semantics, however, is computationally infeasible
for realistically sized programs.

Abstract Semantics

The abstract LRU cache domain uses bounds on the age of memory
blocks instead of concrete ages. The abstract cache analysis consists of
two separate analyses, a may-cache analysis and a must-cache analysis.
The may-cache contains all memory blocks that may be cached at p and
the must-cache contains all memory blocks that are definitely cached at
p whenever execution reaches program point p. Hence, the may-cache
is used to predict cache misses by guaranteeing the absence of memory
blocks while the must-cache is used to predict cache hits by guaranteeing
the presence of memory blocks in the cache.

43

3. Background

May-Cache To bound the set of possibly cached elements, the may-
cache keeps for each memory block an upper bound

age™® : Age

on its concrete age. An abstract may-cache age™® represents the set of

concrete cache states where the concrete age of each element m is at least
age™® (m):

Y (age™™) = {¢ | Vm € M :age(Q)(m) = age™™(m)} (3.43)
with the corresponding abstraction function «:

a™™(C) = Am. min(age(C) (m)) (3.44)

On control flow joins, i.e., when two abstract cache states are combined,
the may-cache assumes the youngest age of an element:

|_| : Age x Age — Age

age; |_| age, = Am. min(age, (m), agey(m)) (3.45)

The transformer of the abstract may-cache is defined as follows:

tfmY .V — Age — Age

tf* (p)(age) :=
X (m) m:(ﬁ()p) (4(p))
age(m age(m) > age(fi(p

A3 age(m) + 1 age(m) < age(#(p)) A age(m) < K — 1 (>-40)
00 otherwise

where #(p) is the accessed memory block at program point p. The newly
accessed element is given age bound 0 as it is now the MRU element
(first case). All older elements retain their age bound (second case) and
all younger elements age by one (third case). The interesting case is the
treatment of elements with the same age bound as the accessed one, i.e.,
age(#(p)) = age(m). In a may-cache, these elements age by one: In any
concrete cache state, only one element is cached at position age(f(p)).
If this element was f(p), all other elements are at a later position and
will be after the access to f(p). If any other element m was cached at

44

3.3. Timing and Cache Analysis

age(t(p)), we can be sure that f(p) was older and so m ages by one on
the access to #(p). Note that the analysis only needs to keep track of
elements with finite age (fourth case).

We say that control flow information age; is more precise than age,, if
all age bounds in age; are at least the age bounds in age,.

age; C™Y age, < Vm € M : age,(m) > agey(m) (3.47)

Must-Cache To derive a set of definitely cached elements, the must-
cache keeps for each memory block a lower bound

ag must . Age

on its concrete age. Conversely to the may-cache analysis, an abstract
must-cache state age™ st represents the set of concrete cache states where
the concrete age of each element m is at most age™"*(m):

(age™) = {¢ | Vm € M : age(¢)(m) < age™"(m)} (3.48)
with the corresponding abstraction function «:

a(C) = Am. Igleax(age(C)(m)) (3.49)

On control flow joins, the must-cache conservatively keeps the oldest age
of an element:
I_I : Age x Age — Age

age, |_| age, = Am.max(age;(m), age,(m)) (3.50)

The transformer of the abstract must-cache is defined as follows:

tf™St V5 Age — Age

tf™ (p)(age) ==
; (m) m:(ti()p) (4(p))
age(m age(m) > age(i(p
Am. age(m)+1 age(m) < age(f(p)) Nage(m) < K —1 (3.51)
00 otherwise

The only difference to the may-cache transfer function (Equation (3.46))
is the treatment of elements that have the same age bound as the accessed
element. As the must-cache analysis computes upper bounds on the ages,

45

3. Background

the accessed element f(p) was either younger than any element m with the
same age bound and hence, accessing f(p) has not changed the position
of m, or m was younger and ages by one on the access to f(p). In both
cases, the age bound of m does not need to be increased.

We say that control flow information age; is more precise than age,, if
all age bounds in age; are at most the age bounds in ages,.

age, C™* age, < Vm € M : age,(m) < age,(m) (3.52)

Initial Cache States: If the cache can be assumed to be empty prior to
program execution (either at system start-up or after a cache flush), the
initial cache state for both analyses is given by:

age}r:;g/mu“ = Am.oo (3.53)
Otherwise, the initial cache is given by the abstraction of the set of initial
concrete states Init.

agerns fmust _ may/must (Init) (3.54)

If the set of concrete initial cache states is not restricted in any way, the
initial may-cache state assumes that all elements are cached

agepns = Am.0 (3.55)

and the initial must-cache state can not guarantee any element to be
cached.
must

agepit = dm.oco (3.56)

Classification based on the abstract cache analysis Given the upper
and lower bounds on the ages of the memory blocks, the memory access
classification is given as follows:

ah agey™t(m) < K —1
Classify(m,p) := ¢ am age,'™(m) > K —1 (3.57)
am otherwise

where agey’' ay/must (m) is the lower /upper age bound of m at p derived

by the must/may-cache analysis.

Let ETCI(’]T, ¢) be the execution time of the path 7 on initial state ¢
assuming a cache hit at each memory reference classified as always hit
and assuming a cache miss at each memory reference classified as always
miss. As static timing analysis relies on this abstract cache model, the
following holds:

V¢ € Z,m €1: BCET? < ETC(n,¢) < WCET? (3.58)

46

3.3. Timing and Cache Analysis

Example

Consider for example the following program (Collatz-conjecture test for
value n):

do {
a: if (@%2) {
b: n=mn +1;
c: n=n/2
} else {
d: n=n/2
}

e: } while (n>1)

We assume a 4-way fully associative LRU cache and that each instruction
(a to e) is stored in its own memory block. An abstract cache state is
represented by 4 sets: [{b}, {a}, 0, 0] indicates that b is assigned abstract
age 0, a abstract age 1 and all other memory blocks are assigned age co.
The control-flow graph of the example program is depicted in Figure 3.15,
with the result of the must-cache analysis associated to each program
point. The upper value denotes the must-cache information before, the
lower value after execution of the program point.

0,0,0,0)

0,0,0,0]

s [{CL}, @’ @7 @] exit
{a},0,0,0]
({6}, {a},0,0]
{a},0,0,0]
({d}, {a},0,0]
({6}, {a},0,0]
[{c}, {b},{a}, 0]
L [0,0,{a},0]
{e},0,0,{a}]

Figure 3.15.: Example of the must-cache analysis: control flow graph of
the example program and associated must-cache information

47

3. Background

Virtual Unrolling

The must-cache analysis is not able to predict any cache hits in this
example, which is correct as we have to conservatively assume an empty
initial cache. Although, after one iteration of the loop, a will be cached
and will remain so for the rest of the execution. The same holds for
e. However, the analysis is not able to distinguish between the first
loop iteration (cold misses) and the nth iteration where only conflict
misses occur. To remedy this problem and to increase the precision of the
analysis, virtual loop unrolling [57] can be applied. Virtual loop unrolling
artificially increases the control flow graph of the program in order to
separate the first 7 iterations of a loop from the remaining i + x iterations.
Figure 3.16 depicts the control flow graph of the example program after
applying virtual loop unrolling with depth one. The second accesses are
now correctly predicted as cache hits.

0,0,0,0]

[0,0,0,0] .t
{a}.0,0,0)

[{a},0,0,0]
[{6}, {a},0,0]
[{a},0,0,0]
[{d}, {a},0,0]
[{0}, {a},0,0]
({e},{b}, {a}, 0]

0,0, {a},0]
{e},0,0,{a}]

exit

[{e},0,0,{a}]
[{a},{e},0,0]

({a}, {e},0.0]
({0}, {a}, {e}, 0]
({a}, {e},0.0]
[{d}, {a}, {e}, 0]
({0}, {a}, {e}, 0]
[{c}: {0}, {a}, {e}]

0,0, {a},{e}]
{e},0,0,{a}]

Figure 3.16.: Example of virtual loop unrolling: must-cache information
after virtual loop unrolling.

48

Chapter 4 wm

CONTEXT-SWITCH COSTS

Mathematics allows for no hypocrisy
and no vagueness.
Stendhal (1783 - 1843)

In preemptive scheduling, a context switch occurs when a high priority
task preempts a low priority one. In such a case, the execution time of
the preempted task is increased. This increase is referred to as context
switch costs.

This chapter provides a formal definition of the context switch costs, the
cache-related preemption delay and its relation to the total execution time
of a task under preemption. Furthermore, we present the requirements
and limitations of a separate computation of the context switch costs.
Note that this chapter is partially published in [7] and [17].

4.1. The Impact of a Context Switch

Context switch costs denote the additional execution time of a task due
to the effects of preemption. First approaches in the area of schedula-
bility analysis for hard real-time systems assumed they are negligible or
subsumed by the execution time bound:

The runtime [...] can be interpreted as the mazimum processing time for
a task. In this way [...] the cost of preemptions can be taken into account.
Liu & Layland [53]

49

4. Context-Switch Costs

This assumption simplified substantially the analysis and the design
of preemptive systems, but is invalid for modern systems employing
caches. Context switches can have a major impact on the performance of
preemptively scheduled tasks.

In case of a context switch, three main factors increase the execution
time (see Figure 4.1):

e the pipeline has to be flushed at preemption and refilled afterwards,

e the scheduler is invoked and decides which task to execute next,
and

e preempting tasks may evict cache entries of the preempted one,
which have to be reloaded later on.

Note that the context switch costs do not include the execution time(s)
of the preempting task(s).

‘ execution of ‘
1 preempting task !

~ -
~ -

£ i vt g
< 14|] [) 73 77 =
% T 0 =
preemption resume
pipeline flush/pipeline refill I invocation of the scheduler

additional cache-miss penalty

Figure 4.1.: Schematic view of a context switch

The first two sources (pipeline/scheduler) are considered constant (at
least for some processors, see Section 3.3) and occur along with preemption.
The cost for the scheduler invocation can be seen as part of the preempting
task as it occurs even in case of the non-preemptive execution.

The effect of cache eviction, however, is postponed until a later point
in time. Thus, correlations between a cache miss and a prior preemption
are hard to identify. The additional execution time caused by additional
cache misses due to preemption is usually referred to as cache-related
preemption delay (CRPD).

50

4.2. Cache-related Preemption Delay

4.2. Cache-related Preemption Delay

The impact of a preemption on the cache is explained in Figure 4.2.
Figure 4.2a shows a non-preempted sequence of memory accesses given a
direct-mapped cache with four cache sets. In the middle of the sequence
7 (between the two accesses to d), the cache contains all memory blocks
a to d. Hence, the last four accesses will result in cache hits. Except
for the compulsory misses when data is accessed for the first time, no
conflict misses occur. Figure 4.2b shows the same sequence preempted in
the middle. Due to the cache disturbance caused by the preempting task,
e.g., accesses to x and y, two cache blocks have been evicted and need to
be reloaded when accessed next. Two more misses occur compared to the
non-preempted execution. The example also shows that the cache-related

————— | . . e
a* b* c* d* d b a

(a) Non-preempted execution

cache content exeCUt}On of , cache content
a,b,c,d) '\ preempting task ' (a,z,y,d

N ,

N LT3 7

(b) Preempted execution

Figure 4.2.: Non-preempted (a) versus preempted (b) execution trace
assuming a direct-mapped cache of size 4. Letters a to d
denote memory blocks, a star (%) marks a cache miss.

preemption delay occurs at a later point in the task execution.

4.2.1. Early Work on CRPD

In 1994, as caches became common in real-time systems, Basumallick
and Nilsen [11] identified the need to consider and estimate the extrinsic
cache behavior, as they name the context switch costs. Busquets-Mataix
et al. [18] proposed the first schedulability analysis (that we detail in
Chapter 8) including context switch costs. Although they identify different
possibilities to precisely bound the context switch costs, they focus on
the scheduling analysis only and use a very pessimistic bound: the delay

51

4. Context-Switch Costs

to refill the entire cache. The first precise bound on the context switch
costs based on a static analysis was proposed by Lee et al. [49]. They
introduced the concept of useful cache blocks and coined the term cache-
related preemption delay. A static analysis of the preempting task was
presented by Tomiyama and Dutt [90], a combined analysis of preempted
and preempting task by Tan and Mooney [86].

These papers can be regarded as the milestones or the initial work
in this research area. We will detail the different approaches to bound
the cache-related preemption delay in Chapter 5 and the CRPD aware
response time analysis in the first section of Chapter 8.

4.2.2. Formal Definitions

This section provides formal definitions of preemption, cache-related pre-
emption delay and execution time under preemption that we later on
need to prove the correctness of the different analyses presented in this
thesis.

Let 7 be the execution trace of the preempted task 75, the sub-trace
before preemption point p is denoted by 71 and the sub-trace after p by
7o (m = 71 - m2). Furthermore, let ¢ be the cache state of task 7 at point
p before preemption and ¢’ after preemption, i.e., the resulting cache
state after the preempting execution trace 7 of 7.

Cache-related preemption delay is given by the number of additional
misses of the execution of trace mo on cache state { times cache-miss
penalty or block-reload time CRT (compared to the execution of trace my
in cache state ().

CRPDp = (miss(ma, (') — miss(ma,()) - CRT (4.1)

where miss(m, () gives the number of misses of path 7 on initial cache
state (.

In the following, we provide definitions for preemptions and cache-
related preemption delay.

Definition 4.1 (Preemption)
A preemption pr is a pair consisting of a preemption point p € V and
preempting access sequence T:

pr:V x 27

We define a preemption point to denote always the last instruction of
the preempted task that is still executed prior to task suspension. Thus,

52

4.2. Cache-related Preemption Delay

the preemption at point p occurs in fact directly after the execution of
program point p.

A preempted execution of task 7 is a triple consisting of an execution
trace 7 of T, a set of preemptions PR C 2" and an initial cache state (.
The set of n preemptions PR = {(q1,71), (g2, 72), ..., (qn,7n)} divides
the execution trace ™ = [ps, ..., p.| into a sequence of n + 1 sub-traces
o to my:

Vico 1 i =[G, - -+ Git1] (42)

with go = ps and g1 = pe.

We are now interested in the different cache states each sub-trace
executes on (for both cases, preempted (P) and non-preempted (N P)
execution). The first sub-trace always executes on the initial cache
state (init- The resulting cache state (¢f(mo)((init)) determines the initial
cache state for the next sub-trace. We thus end up with a recursive
definition:

NP _
0 - Cinit
NP NP
G =tf(m)(GE)
The first sub-trace executes on the initial cache state ¢ also in case of
preemptive execution. As there have not been any preemptions yet, there
are no differences. The difference comes with the next step, where the

initial cache state for the next sub-trace depends not only on the result
of the prior sub-trace but also on the preemption trace 7

Céj = Cinit
¢F = tf(7g,)(tf(mim1) ()

Note that cache state transformer tf : II — (Z — Z) was defined in
Chapter 3.3.2.

(4.3)

(4.4)

Definition 4.2 (Cache-related Preemption Delay)
Cache-related preemption delay of execution trace m € 2™ on initial cache
state ¢ preempted by PR € 2F7 is given by:

n

CRPD” (r,¢(, PR) = (Z(miss(ﬂ'i,gp) — miss(m;, zNP))> - CRT

=0

In prior work, CRPD often refers to the delay for one preemption only.
Such a definition is inherently imprecise as preemptions may interact,
i.e., the costs of one preemption may depend on prior preemptions. We

53

4. Context-Switch Costs

use the superscript 7' to denote the total CRPD and to clearly state the
difference to the CRPD for a single preemption.

Remember that ET (7, (, PR) denotes the execution time of trace m
on initial cache state { assuming non-preemptive execution. We now
introduce ETY (7, (, PR) to denote the execution time with preemption
by PR.

Equation (4.5) presents the actual use of the cache-related preemption
delay.

ETF(x,¢,PR) < ET(r,¢) + CRPD” (,¢, PR) (4.5)

The total execution time under preemption is determined by the time of
non-preempted execution plus the additional delay due to preemption.
However, the actual execution time under preemption may be less than
the value given by Equation (4.5). The delay of cache-reloads may overlap
with other delays and thus, does not or does not fully contribute to the
total execution time. In case of a pipelined processor for instance, a
reload may happen in parallel to a time-intensive floating point operation
without further increasing the total execution time.

Note that the constant cost for a single preemption as caused by the
scheduler or the pipeline (see Section 4.1) is attributed and thus added
to the execution of the preempting task. This simplifies the subsequent
schedulability analysis. Note furthermore that a separate computation
of the cache-related preemption delay entails a strong restriction on the
processor, namely the restriction to timing composable architectures or
compositional architectures with constant-bounded effect. For complex ar-
chitectures exhibiting timing anomalies and domino effects, Equation (4.5)
may be optimistic and thus lead to unsound results.

4.3. Limitations of the CRPD Approach

A separate computation of the CRPD is restricted to fully timing com-
posable architecture or compositional architectures with constant-bounded
effects. Only for such architectures, we can assign each additional cache
miss a corresponding timing penalty, denoted by CRT in Equation (4.5).
The classification of architectures [98] depends on the complexity of the
processor components and on the cache.

4.3.1. Classification of Architectures

The occurrence of timing anomalies and domino effects determines the
classification of the architectures. According to Wilhelm et al. [98] there

54

4.3. Limitations of the CRPD Approach

are three types of architectures (see Section 3.3):

Fully timing composable architectures
No timing anomalies may occur. The cache-miss penalty CRT for
additional misses due to preemption is solely determined by the
cache latency and thus, given by the time to reload a cache block.

Compositional architectures with constant-bounded effect
Timing anomalies but no domino effects can occur. The penalty
CRT contains at least the block-reload time but must also account
for any additional timing penalty a cache miss may inflict.

Non-compositional architectures
As domino effects may occur, no constant bound for an additional
cache miss exist. A separate computation of the CRPD is not
applicable [76].

Besides the need to determine the cache-miss penalty for preemption
misses, we also need to be able to bound the total number of additional
misses. This mostly depends on the cache and the cache replacement poli-
cies. Note that the domino effects are mostly caused by cache-replacement
policies.

4.3.2. CRPD and Cache Replacement Policies

First CRPD analyses either assumed direct-mapped caches or LRU re-
placement policy. Computation for other replacement schemes have been
ignored [49] or declared to be trivial [79].

Observation 4.1

In case of FIFO and PLRU, the number of additional misses due to a
single preemption is not bounded by the associativity of the cache but may
be proportional to the total execution time.

Observation 4.1 inhibits a separate computation of the cache-related
preemption delay. The methods considered and published so far always
assume that each preemption has a bounded impact only—a property
that only holds for LRU caches where a bound on a single preemption
is always given by the associativity of the cache. In general, the miss-
sensitivity 72, 73] of the replacement policy determines if a bound exists.
If a replacement policy has a miss-sensitivity greater than one, no fixed
CRPD bound exists (see Section 3.2).
In the following, we will justify Observation 4.1.

55

4. Context-Switch Costs

Pseudo Least Recently Used (PLRU)

We start with pseudo least-recently used policy that mimics LRU with
lower implementation overhead. A pointer tree is used to indicate the
element evicted next. See Section 3.2 for a detailed description. The

a X X X X X X X X
rc {i cgrci cﬂrcgrci citrcirc
b Lrb b L Db b b [b b b
d d d d a a a d d
c
(a) Preempted execution
a a a a a a a a a
rc rc/l\)f c/i ci C/Ej c/i C/C\lf C/EI c
b b bl [[b] L Db bl |, [b b b
d d d d d d d d d

(b) Non-preempted execution

Figure 4.3.: Access sequences with unbounded preemption delay for
PLRU. A x marks a cache miss. Sub-figure (a) shows the
evolution on the cache in case of preemption with access to
2 and (b) without preemption.

corresponding access sequence for PLRU caches that causes an arbitrarily
high CRPD is described by the regular expression

(bcabed)* (4.6)

As the sequence contains only elements already cached prior to preemption,
no cache misses occur in case of non-preempted execution. During
preemption, however, the element z replaces a. Since the sequence
rejuvenates the element x such that it remains cached, the other four
elements a, b, ¢, d have to compete for the remaining three places. This
leads to an arbitrary number of misses.

First-In First-Out (FIFO)

Similar to PLRU, we can easily construct an access sequence and a
preemption scenario that leads to an arbitrarily high CRPD in case of

56

4.3. Limitations of the CRPD Approach

FIFO replacement policy (see Figure 4.4). The corresponding access

FirSt X*7y* - : E < % < < =
N 4 4 4 2 4 4 o
Last X y a C b a C
*

a

(a) Preempted execution

First b a C* c b c a,* a C a 13>|<
4 4 4 2 4 4 o
Last b b C c

a

(b) Non-preempted execution

Figure 4.4.: Access sequence with unbounded preemption delay (FIFO).
A x marks a cache miss. Sub-figure (a) shows the evolution
on the cache in case of preemption with accesses to z and y
and (b) without preemption.

sequences for FIFO caches that causes an arbitrarily high CRPD is
described by the regular expression

ba(cba)* (4.7)

After the access to a and b, the same elements are cached in both cases,
but the order differs. This little change on the order of cached elements
will never even out and eventually cause an arbitrarily high number of
additional misses due to preemption. Note that the access sequence also
leads to misses in the non-preemptive case. However, the number of
misses per iteration differs (3 in case of non-preempted execution versus
5 in case of preempted execution).

Least Recently Used (LRU)

Each of the access sequences with unbounded preemption delay in case
of PLRU, FIFO and MRU have a bounded delay in case of LRU. Two
different LRU states converge after at most K distinct accesses, where
K is the cache associativity. The LRU replacement policy does not
distinguish between a cache miss and a cache hit in the sense that the
least recently accessed memory block is always moved to the (logical)
first position, all younger elements are aged by one. In addition, the age

57

4. Context-Switch Costs

of an element can only decrease if this element was accessed—in all other
cases, the age of a memory block is monotonically increasing. Thus, two
different cache states converge after at most K different accesses, and so,
at most K additional misses due to preemption can occur. For further
information on cache-replacement policies, see [72]

4.4. Other Approaches to the Analysis of
Preemptive Systems

Besides a separate computation of the CRPD, other approaches exist to
handle preemption overhead due to caches. These approaches can be
divided into the following groups:

(i) avoid inter-task cache interference by cache partitioning.

(ii) derive timing bounds including the context switch costs.
(iii) adapt the scheduling policy to reduce number of preemptions.
(iv)

The following sections details these different approaches.

replace caches by more predictable hardware.

Cache Partitioning/Cache Locking

Cache partitioning [61, 99, 69, 48] and cache locking [70, 92, 93] are
techniques to completely avoid cache-related preemption delay. In the
first case, each task is assigned a dedicated part of the cache to guarantee
that a preempting task can not evict cache blocks of another one. Cache
partitioning is implemented either in hardware by means of a memory
management unit (which is not common in hard-real time systems) or in
software with the help of adapted compilers, often resulting in substantial
code-changes required to ensure that the task only accesses its dedicated
cache-partition [61]. In the second case, cache locking [92], cache lines
are locked such that a preempting task can not evict locked data. In
static cache locking, data is loaded to cache and locked for the entire
task execution while dynamic cache locking only locks data for some
predefined code regions. Both techniques trade inter-task with intra-task
cache conflicts, hence paying for the reduced cache-related preemption
delay by a possible increase of the worst-case execution time of some
tasks. To our best knowledge, cache partitioning, resp. cache locking
techniques have not yet been compared to a precise CRPD analysis.

58

4.4. Other Approaches to the Analysis of Preemptive Systems

Instead, techniques have been compared against each other [70, 54] and
against uncached systems [92, 93]. Note that cache partitioning and cache
locking only avoid cache-related preemption delay. Timing anomalies and
domino effects may also be caused by other history sensitive processor
features such as branch-target buffers. Hence, both techniques are also
not applicable in case of non-compositional architectures.

Preemption Cost as Part of the Execution Time Bound

Liu and Layland’s [53] assumption of negligible context switch costs can
be restored by subsuming these costs in the execution time bound. An
analysis to compute such an extended timing bound has been proposed
by Schneider [76]. The analyses relies on the pessimistic assumption that
a preemption occurs at each program point, evicting each useful cache
block (the last assumption was weakened in [5] considering the specific
memory mapping). The execution time bound is valid for each preemption
scenario, but overly pessimistic. However, this is the only approach to the
analysis of preemptive systems in case of non-compositional architectures.

Reducing Number of Preemptions

Obviously, non-preemptive scheduling does not suffer from additional
preemption costs. As some task sets, however, are only schedulable pre-
emptively, completely avoiding preemption is not an alternative. Instead,
the overall preemption costs can be reduced by reducing the number
of preemptions. Scheduling policies aiming at such a reduction employ
adapted scheduling policies [27] or settle in between fully preemptive and
non-preemptive systems. Examples of the latter class are non-preemption
groups [24], preemption thresholds [45, 71, 94], FP-FIFO scheduling [59]
and co-operative scheduling where preemption is restricted to a set of
possible preemption points or disabled for a predefined time (also of-
ten referred to as deferred preemption). Recently, Bertagno [13, 14] et
al. extended co-operative scheduling by an algorithm that selects optimal
preemption points for co-operative scheduling. However, these approaches
constitute an alternative only to the applied scheduling policy, not to the
computation of CRPD bounds. As preemptions may still occur, bounds
on the CRPD are still required.

Hardware Alternatives—Scratchpads

Recent research aims at the design of more predictable hardware archi-
tectures. Examples are the Pret Machine [28] and the Prompt Design

59

4. Context-Switch Costs

Principles [96]. The use of scratchpad memories [67] as an alternative
to caches is common in many of these approaches. Initially meant to
reduce power consumption of an embedded device [82], scratchpads are
nowadays advocated as means to increase a system’s predictability. Simi-
lar to caches, scratchpads are small but fast memories located close to
the processor. Contrary to the dynamic behavior of caches, the decision
which data to store in a scratchpad is taken statically at pre-runtime.
Hence, scratchpads are not transparent to a system designer (such as
caches) but map to the address space resulting in non-uniform access
latencies. Scratchpads were used preferably in static non-preemptive
systems. Recent implementations, however, also allow efficient use in
preemptive systems [83]. Nevertheless, scratchpad memories have not
yet replaced caches—and probably will not in the near future. For one
thing, many systems employ caches and scratchpads side by side, and
for another thing, scratchpads are only used in architectures specifically
designed for embedded systems. Many system designs, however, must
resort to low-cost, off-the shelf general-purpose hardware.

60

Chapter 5

BOUNDING CACHE-RELATED
PREEMPTION DELAY
(RELATED WORK)

From the errors of others, a wise
man corrects his own.
Publilius Syrus (1st century BC)

This chapter provides a survey of the state of the art in the computation
of the cache-related preemption delay (CRPD). It also serves as starting
point for the CRPD analyses presented in Chapter 6 and Chapter 7 as
well as for the CRPD-aware response time analyses in Chapter 8. Note
that this chapter is published in [7]

5.1. Useful Cache Blocks; Lee’s Original

Approach
In 1996, Lee et al. [49] introduced the concept of useful cache blocks to
bound the CRPD: in case of preemption at program point p, a memory

block m that may be cached at p and may still be cached at its next
reuse may cause an additional cache miss.

61

5. Bounding Cache-Related Preemption delay—Related Work

Definition 5.1 (Useful Cache Block (UCB))
A memory block m is called useful at program point p, if

a) m may be cached at p and

b) m may be reused at program point p’ that may be reached from p
without eviction of m on this path.

The function
UCB:V — 2M

assigns each program point the corresponding set of UCBs, i.e., UCB(p)
1s the set of useful cache blocks at program point p, and

UCB® :V — 2M
picks those UCBs at a program point that map to cache set s with

J veB(p) = UCB(p)

Note that Definition 5.1 adheres to the original definition of UCBs by Lee
at al. (relying on the rather vague information of may be cached, may
be reused). The refined version of useful cache blocks that we present in
Chapter 6 resorts to the path semantics.

From this definition, we can directly step forward to a bound on the
cache-related preemption delay as given by Equation (5.1).

CRPDY” . (V =2y xV - N

CRPDY™(UCB, P) = CRT - |UCB(P)| (5.1)

The cardinality of the set of useful cache blocks at p gives an upper bound
on the number of additional cache misses due to preemption. Each of
these misses incurs an additional delay of CRT cycles. A global bound
on the preemption cost for preemption at any point in the program is
given by the worst-case preemption point p € V, i.e., the preemption
point causing the highest delay:

CRPD"" : (V — 2M) 5 N

CRPD"®(UCB) = max{CRPDE™(UCB, P)} (5.2)

62

5.2. Evicting Cache Blocks

Without any further ado, we can plug-in the bound on the CRPD to
determine a bound on the execution time of a task under preemption:

WCET?® + n- CRPDV°®(UCB) (5.3)

where n is the number of preemptions. The correctness of the formula
relies on two assumptions. First, timing analysis provides a valid bound
on the uninterrupted execution time of a task, here denoted by WCET?,
independent of the initial cache state ¢ and the actual execution trace m:

WCET® > ET(r,¢) (5.4)

Second, Equation (5.2) provides a bound on the CRPD for any single
preemption and so, n times this value bounds the total CRPD:

|PR| - CRPD"°*(UCB) > CRPD” (r, ¢, PR) (5.5)

5.2. Evicting Cache Blocks

Each memory block of the preempting task that is cached during the
task’s execution may potentially evict cache blocks of the preempted task.
We call such memory blocks evicting cache blocks.

Definition 5.2 (Evicting Cache Blocks (ECB))
A memory block of the preempting task on path 7 is called an evicting
cache block, if it is accessed during the execution of the path 7. The
function

ECB" .11 — 2M

extracts the evicting cache blocks on a path, i.e., EC’BH(ﬁ') delivers the
set of all memory blocks accessed on path 7. The set of all evicting cache
blocks of a task 7; is then defined as the union of the ECBs of all paths
of task 7;:

ECB,, = |J ECB"(#)

#€ll;

We denote the set of evicting cache blocks that map to cache set s by
ECB® C 2™ with \J, ECB® = ECB.

Although direct-mapped caches can be considered a special case of a K
way set-associative cache with K = 1, deriving a precise bound on the
cache-related preemption delay for direct-mapped caches turns out to be

63

5. Bounding Cache-Related Preemption delay—Related Work

much easier. Tomiyama et al. [90] proposed to count the number of cache
sets to which at least one evicting cache block maps.

CRPD®°® ;. 2M 4 N

CRPD"“®(ECB) = CRT - |{s | ECB® # 0}| (5.6)

Equation (5.6) is only valid for direct-mapped caches. To our best
knowledge, no approach for set-associative caches solely based on the
number of evicting cache blocks has been proposed.

Busquets-Mataix et al. [18] identified first the possibility to use the
number of cache blocks of the evicting task to compute a bound on the
CRPD, yet Tomiyama et al. [90] proposed the first analysis based on the
evicting cache blocks.

5.3. Combining ECBs and UCBs

Again, we start with direct-mapped caches. Negi [64] and Tan [86]
proposed to refine Equation (5.6) by counting only those cache sets that
may contain a useful cache block of the preempted task 7; (where 7;
denotes the preempting task):

CRPDYT™C8 (V5 2M) 3 oM » | 4 N

CRPDYC™**°*(UCB,,, ECB,,) =
CRT - |{s | ECB: #0 AUCB: (p) # 0} (5.7)

CRPDVEPEECE - (1 5 oM oM 4 N

CRPDV"**“®(UCB,,,ECB;,) =
max{CRPD™***(UCB,,,ECB.,)} (5.8)
pe

Tan and Mooney [86] presented a generalization of Equation (5.7) for
LRU caches. For each cache set s and each program point p, they compute
the minimum of the UCBs at p, the ECB and the associativity (K) of
the cache:

CRPDVCB<ECE - (5 oMy oM N

64

5.4. Deriving the Set of UCBs/ECBs

CRPD}®**°*(UCB,,, ECB,,) =
CRT -) min([UCB, (p)|, [ECB;. |, K) (5.9)

Although Equation (5.9) seems to be logical generalization of Equa-
tion (5.7), it does not provide a valid upper bound on the cache-related
preemption delay.

Observation 5.1
In case of set-associative caches, the number of ECBs is not a bound on
the number of additional misses due to preemption.

The example from Figure 5.1 proves Observation 5.1 and also provides a
counterexample to Equation (5.9). We assume a 4 way set-associative
LRU cache. After preemption with only one ECB z, the cache contains
all but one cached element of before. However, each new access will lead
to a cache miss and evict the element accessed next. This domino effect
leads to a total of 4 cache misses and all of them due to preemption with
one ECB only.

MRU X
Clt 1d
bl “~ R e
N __ _ - -
LRU® DI S SN b
R I I I I . X . I I I I N
T T T T T T T T
a* b* c* d* a* b* c* d*
————————— M === === R i [B i e

Figure 5.1.: Optimism of the naive UCB/ECB combination for LRU
caches: execution trace on a 4 way LRU cache with preemp-
tion with one ECB but 4 additional cache misses.

5.4. Deriving the Set of UCBs/ECBs

UCB Analysis

To determine whether a memory block is useful at a given program point
p, we need to ascertain whether there exists a path on which p is useful.
To this end, we split each path through p into two parts: one that ends
in p and one that starts in p.

For each memory block m, we derive for the first path (the one that
ends in p), the number of accesses from the last use of m to program

65

5. Bounding Cache-Related Preemption delay—Related Work

point p, and for the second path (the one that starts in p), the number of
accesses from program point p to its next reuse. If the number of accesses
to different memory blocks on the path ending in p is larger than the
associativity of the cache, we can conclude that m is not cached at p. If
the number of accesses to different memory blocks on the path starting
in p is larger than the associativity of the cache, we can conclude that
m will not survive in the cache (if it was cached at p). We denote the
number of accesses on path to, resp. on path from program point p as the
forward age (age™), resp. backward age (age®). As we are interested in
an over-approximation of the set of UCBs, we keep the minimal ages at
the joins. Hence, forward and backward ages are computed according to
the may-cache analysis described in Chapter 3.3 (in case of the backward
age, the may analysis is employed as a backwards analysis). The set of
UCBEs is then given as follows:

UCB(p) € {m | age™ (p)(m) < K}N{m | age™(p)(m) < K} (5.10)

Lee’s original UCB-analysis employs abstract cache states very simi-
lar to the abstract cache semantics (see Section 3.3). For the sake of
completeness, we describe the complete UCB analysis in Appendix A.

Negi et al. [64] and later Staschulat et al. [80] proposed analyses based
on the collecting cache semantics (see Section 3.2, Equation (3.41)). Such
analyses are potentially more precise, yet computationally infeasible for
realistically sized programs [43].

ECB Analysis

The analysis of ECBs is comparably simple. It suffices to collect all
memory blocks accessed during a task’s execution. Although the set of
evicting cache blocks is defined as the set of all memory blocks possibly
accessed during a task’s execution, the impact of the preempting task
on the useful cache blocks in each cache set is always limited by the
associativity. Hence, it suffices to consider only up to associativity-many
ECBs per cache set and so, the may-cache analysis can be used for the
derivation of the ECBs.

66

Chapter 6

DEFINITELY-CACHED USEFUL
CACHE BLOCKS

All truths are easy to understand
once they are discovered; the point is
to discover them.

Galileo Galilei (1564 - 1642)

In 1996, Lee et al. [49] proposed the first static analysis of the cache-
related preemption delay. To this end, they introduced the concept of
useful cache blocks to denote cache blocks of the preempted task that
may need to be reloaded in case of preemption. Since then, this concept
has been applied and extended in various way while keeping the basic
idea unmodified.

In this chapter, we identify substantial pessimism in the CRPD analyses
based on useful cache blocks. We introduce a new, precise concept for
the CRPD analysis, the definitely-cached useful cache blocks (DC-UCB),
and prove the correctness of the analysis. All CRPD equations provided
in Chapter 5 are also valid for DC-UCBs. Note that the results presented
in this chapter are partially published in [2].

67

6. Definitely-Cached Useful Cache Blocks

6.1. Pessimism in Lee’s Approach

Timing analysis for non-preemptive execution and the CRPD analysis are
treated in isolation. Although this approach provides some natural sepa-
ration of concerns, it is inherently imprecise. To detail this imprecision,
we have to take a close look at the cache analysis used in both cases.

As presented in Section 3.3, a static timing analysis uses an under-
approximation of the cache contents to predict the number of cache
hits and an over-approximation to predict the number of cache misses
(see Table 3.5). The corresponding analyses are the must-cache analysis
(under-approximation) and the may-cache analysis (over-approximation).
A cache miss can only be excluded if the memory access is classified as
always hit by the must-cache analysis:

always hit (ah) memory access always results in a cache hit
always miss (am) memory access always results in a cache miss
not classified (nc) no classification as always hit or always miss

To provide a conservative bound on the cache-related preemption delay,
an over-approximation of the cache content is needed. Each memory
block that may be cached may lead to an additional cache miss due to
preemption. Hence, Lee et al. [49] rely on the results of a may-cache
analysis.

may-cache ({a, e}, {b, f},{c,g},{d,e})
must-cache (0,0, 0,0) !

- } }]
T T T T

a b c d l
|
|
|
|
|

]]]
T T T T

a b ¢ d

- } }]
T T T T

e f g h

program point p

Figure 6.1.: Over-approximation of WCET and CRPD analysis. Execu-
tion of a preempted task and a direct-mapped cache with 4
cache sets.

What happens to the memory accesses part of the may, but not of
the must-cache (i.e., neither classified as always miss nor as always hit)?
Such an access is considered a cache miss both within timing analysis

68

6.2. Definitely-Cached UCBs

and within CRPD analysis. Hence, these accesses may contribute twice
to the overall execution time bound under preemption. The imprecision
of the cache analysis accumulates and results in a pessimistic total bound.
See Figure 6.1 for an example. We assume a direct-mapped cache with 4
cache sets and preemption at program point p. The second accesses to a,
b, ¢ and d are considered to inflict cache misses by the timing analysis
and by the CRPD analysis.

6.2. Definitely-Cached UCBs

A bound on the cache-related preemption delay is used in most cases—if
not in all—in combination with a bound on the execution time. Remember
that we are aiming at a bound on the execution time of a task under
preemption. We are thus only interested in the additional delay due to
preemption (with respect to the non-preempted execution time). To this
end, we change the definition of useful cache blocks to compute only this
additional delay. We need to restrict the set of useful cache blocks to
accesses considered hits by the timing analysis.

Definition 6.1 (Definitely-cached UCB on a path)

Let 7 be a execution path, p and p’ two program points on 7 with p prior
to p’ and ¢ a cache state. A memory block m is called a definitely-cached
useful cache block (DC-UCB) at program point p on path m with initial
cache state ¢, if

a) m is cached at p,

b) m is reused at program point p’ that is reached from p and is cached
along the path to its reuse, and,

¢) m is considered a cache hit at p’ by the timing analysis.

The function

DC-UCB" : Tl x Z xV — 2M
assigns each program point on a path the corresponding set of DC-UCBs,
i.e., DC- UC’BH(ﬂ', ¢,p) is the set of definitely cached useful cache blocks
at program point p on path w and initial cache state (.
Definition 6.2 (Definitely-cached UCB at a program point)
A memory block m is called a definitely-cached useful cache block (DC-

UCB) at program point p, iff there is at least one path 7 such that m is a
DC-UCB at p on path w. The function

DC-UCB:V — 2M

69

6. Definitely-Cached Useful Cache Blocks

assigns each program point the corresponding set of definitely-cached useful
cache blocks, i.e., DC-UCB(p) is the set of definitely cached useful cache
blocks at program point p.

m € DC-UCB(p) & 3Ir €I, € Z : m € DC-UCB"(x, ¢, p)

DC-UCB’ : V — 2M : assigns each program point the set of DC-UCBs
mapping to cache set s.

Definitely-cached useful cache blocks rely on the memory access classifica-
tion of the timing analysis (see Section 3.3). A cache block may only be
considered to inflict an additional cache miss, if it was treated as a cache
hit within the timing analysis. Obviously, the set of DC-UCBs is a subset
of the set of UCBs at any program point p: DC-UCB(p) C UCB(p).
Consider the example illustrated in Figure 6.1. The set of UCBs at p
contains all four memory accesses a to d, the set of DC-UCBs none. A
preemption at p may inflict four misses not present in the non-preempted
execution. But all of them are already considered cache misses by the
timing analysis.

Remark

Note that Lee et al. [50] implicitly use the notion of DC-UCB in UCB
analysis of data caches: they focus only on static addressing of data
accesses; dynamic accesses are considered as cache misses by their timing
analysis. Hence, the computed CRPD bound only denotes the additional
cache misses due to preemption in case of unknown memory accesses
(e.g., if no precise effective memory address is available, see Section 3.3).

The CRPD bounds based on DC-UCBs are defined analogously to
those based on UCBs. Equation (6.1) defines a bound on the CRPD for
preemption after program point p

CRPDY® : (V = 2M) x V = N
CRPDY™*(DC-UCB, p) = CRT - [DC-UCB(p)| (6.1)

A global bound on the preemption cost for preemption at any point in
the program is described by Equation (6.2)

CRPD"" : (V — 2M) 5 N
CRPD"“?(DC-UCB) = meag{CRPD}CB(DC-UCB,p)} (6.2)
P
The bound on the execution time under preemption is defined analogously:

WCET? + n - CRPDV?(DC-UCB) (6.3)

70

6.2. Definitely-Cached UCBs

6.2.1. Correctness

A preemption-cost bound based on the set of definitely-cached useful
cache blocks does not necessarily bound the actual preemption cost. This
means that there exists an execution path, an initial cache state and a
set of preemptions such that the actual preemption costs are larger than
the bound computed using DC-UCBs:

3r,¢, PR : n- CRPDY®(DC-UCB) < CRPD (7, ¢, PR) (6.4)

Thus, to prove the correctness of the DC-UCB approach, we have to
show that Equation (6.3) bounds the execution time of a task under
preemption. Note that we assume LRU or direct-mapped caches.

Theorem 6.1

The execution of a task under preemption is bounded by the execution time
bound for non-preemptive execution and n times DC-UCB CRPD-bound
as derived by Equation (6.2) (where n denotes the number of preemptions):

vr,(, PR : ET(n,(, PR) < WCET® + |PR| - CRPD"°*(DC-UCB)

We prove this theorem in two steps. First, we prove the correctness of
the UCB approach and then establish the connection to DC-UCBs.

Theorem 6.2
Each additional cache miss m at p' due to preemption by the set PR is
contained in the set of UCBs of at least one preemption point.

Proof

Let p be the earliest preemption point prior to program point p'. Such
a preemption point prior to the additional cache miss must exist as
we assume that both execution traces (non-preemptive and preemptive
execution) start with the same initial cache state. The first difference
in execution can thus only occur after the first preemption. We need to
prove that

a) m has not been accessed on path [p,...,p']
b) m has been cached at p

¢) m is cached along the path to its reuse [p,...,p'] in case of non-
preempted execution

We prove claim a) by contradiction. Assume there is an access to m at
program point p within the path from p to p’. In this case, m would have

71

6. Definitely-Cached Useful Cache Blocks

the same cache position at p and so also p’. After the access to m at p,
m is stored at the first position in the cache (remember that we assume
LRU or direct-mapped caches). From p on, the cache position of m is
equal in both cases, preempted and non-preempted execution—again due
to the restriction to LRU/direct-mapped caches and the property that a
cache hit and cache miss result in the same cache update. Thus, as we
have a cache hit in the non-preemptive execution, we also have a cache
hit in the preemptive case. This is a contradiction to the assumption that
m is an additional cache miss at p'. From a), we can deduce b) and c)
directly: as there has been no access to m from p to p’ but a cache hit at
p’, m must be cached at p and can not be evicted on this path. Thus m is

a UCB at p. O

Hence, each memory block that causes an additional cache miss due to
preemption is contained in the set of UCBs of at least one preemption
point. As the proof relies on specific properties of LRU caches, Theo-
rem 6.1 is not valid for FIFO or PLRU caches: Misses and hits may result
in different cache updates and thus, cache change at preemption point
p may have an unbounded effect as shown in Section 4.3. We can now
proof the correctness of Theorem 6.1

Proof

By construction of the timing analysis, we know that the derived timing
bound is an upper approximation of the execution time of a task under
each possible initial cache state and actual execution path:

Vr,(: ET(n,¢) < WCET® (6.5)

Recall the classification of memory accesses to always hit, always miss
and not classified from Section 3.3. Based on this classification, a timing
analysis conservatively assumes that each cache access that can not be
proven to inflict a cache hit may also inflict a cache miss. Hence, the
timing bound WCET? is also valid for any execution of the task, where
each cache block not classified as always hit inflicts a cache miss. Let
ETC denote the execution time of such an execution:

v, ¢ ETYw, ¢) < WCET® (6.6)

We now compare the execution trace w of a task where assuming a cache
miss for each cache access to an element not classified as always hit with
the same execution trace assuming preemption at PR. Let m be a memory
block accessed at p' that inflicts an additional miss due to preemption.
We can conclude that m must have been considered a cache hit at p’ by

72

6.3. Deriving the Set of DC-UCBs

the timing analysis. Furthermore, Theorem 6.1 states that there is a
preemption point p, such that m € UCB(p).

ET*(n,(, PR)
<ET%m.¢)+ Y CRT-|DC-UCB(p)l
(p,m)EPR

< WCET® + Y CRT-|DC-UCB(p)| Eq. (6.6)
(p,m)EPR

= WCET” + Y CRPD{*(DC-UCB,p) Eq. (6.1)
(p,m)EPR

< WCET® + Y CRPD"*"(DC-UCB) Eq. (6.2)
(p,m)EPR

WCET® + |PR|- CRPDV°?

6.3. Deriving the Set of DC-UCBs

If an element is classified as always hit (ah) at its reuse, it is also classified
as always hit along the path to its reuse. This insight allows for a simple
DC-UCB analysis. It suffices to intersect the set of UCBs at program point
p (as derived for instance by the UCB analysis presented in Appendix A)
with the must-cache information at p (i.e., the set of memory blocks with
upper age bound < associativity).

DC-UCB(p) C UCB(p) N {m | Classify(m,p) = ah} (6.7)

As the example depicted in Figure 6.2 shows, this approach may be
imprecise. Timing analysis needs to consider both paths reaching the
second access to memory block a. Thus, it can not guarantee a to be a
hit. However, on the upper path after the first access to a, a is considered
to be cached on the sub-path. If we compute the set of DC-UCBs using
Equation (6.7), we would consider a to be a DC-UCB on this path,
although it is already considered a cache miss at its next access.
Therefore, we present an alternative derivation of the DC-UCBs. A
backwards analysis that computes at each program point p a set of
memory blocks, such that for each memory block m € DC-UCB(p) there

73

6. Definitely-Cached Useful Cache Blocks

preemption
|

|
T
a

Figure 6.2.: Pessimism of a naive DC-UCB analysis: In case the set of
DC-UCBs is computed by an intersection of the set of UCBs
with the must-cache, memory block a is falsely considered a
DC-UCB.

exists a path on which m is reused at its next access p,, and m is classified
as always hit at py,:

m € DC—UCB(pZ) ~ 3[}71‘, Ce ,pn] ell:
#(prn) = m A Classify(m, p;) = ah A V?;il (pj) #m (6.8)

As this property is important for the DC-UCB analysis, we define a
function Els that checks for this property:

Els: V x M — {true, false}

true if T =[p1,...,pn] T Allpn) =m
Els(m,m) = AClassify(m, p) = ah A V}L:_ilﬁ(p) #m
false otherwise
(6.9)
We formulate this analysis as an abstract interpretation.

Concrete Semantics

The set of DC-UCBs at program point p is the set of memory blocks, for
which Property (6.8) holds on at least one concrete path 7 € II starting
in p. As we argue about paths, we resort to the path-based backwards
collecting semantics, i.e., the set of all concrete paths that emanate from
a program point:
Collfy : V — 21
Collif(p)={m | mellAT=p,...,pn]} (6.10)

For the sake of completeness, we also present the concrete transformer
defined as a function that prepends the current program point to each
path of the control flow information:

tfo:V — (2™ — 2

74

6.3. Deriving the Set of DC-UCBs

tfc@)(S):={p-m | € S} (6.11)

Given the collecting semantics at program point p, the precise set of
DC-UCBs can be extracted by means of the function Els:

DC-UCB(p) = {m | I € Collj{ (p) : Els(m,m)} (6.12)

Abstract DC-UCB Analysis

As the collecting semantics are prohibitively large, we present an abstract
analysis using an efficient representation. Instead of computing all paths
emanating from a program point and then extracting the set of DC-UCBs,
the abstract analysis computes an approximation of the DC-UCBs directly.
The domain of the analysis is the powerset of the set of memory blocks:

D:2M (6.13)

with subset ordering C. The abstract DC-UCB analysis is a backwards
analysis with the following transformer:

tf vV — (2™ — 2M)

S i(p) =L
tf(p)(S) = SU{t(p)} Classify(#(p),p) =ah (6.14)
S\{#(p)} Classify(t(p),p) # ah

In case the instruction at program point p accesses no memory block,
i.e., #(p) = L, we do not change the control flow information. If program
point p accesses an element #(p) classified as always hit at p, we add this
element to the set of DC-UCBs; from now on, there is a path satisfying
Property (6.8) for the accessed memory block. If the accessed element
#(p) is not classified as always hit, we remove this element from the set of
DC-UCBs as each new path (with p prepended) violates Property (6.8)
for memory block #(p).

Theorem 6.3 (Monotonicity)
The abstract transformer of the DC-UCB analysis tf is monotone:

VpeV:Va,be2M:aCb=tf(p)la) Ctf(p)(b)
See Appendix B for a proof of Theorem 6.3. As we are interested in a

safe over-approximation of the set of DC-UCBs at each program point,
we need to compute the union of the set of DC-UCBs at all joins.

75

6. Definitely-Cached Useful Cache Blocks

Connecting Abstract and Concrete Domain

The concretization ~y for the abstract domain is given by a set of all paths,
such that Property (6.8) only holds for elements that are contained in
the set of DC-UCBs:

i 2M ol

v(S):={nr | mell:Yme (M\S):-Els(r,m)} (6.15)

In other words, v(S) contains all paths from II except those on which
memory blocks not contained in S are considered a DC-UCB. The func-
tion 7y allows us to state the local consistency of the abstract DC-UCB
transformer (with respect to the path-based semantics):

Theorem 6.4 (Local Consistency)
The abstract transformer tf and the concrete transformer tf o are locally
consistent:

vse2M i p eV (tfo(p)(1(S)) S A ((tf())(S))

Proof of Theorem 6.4 can be found in Appendix B.
The abstraction of a set of paths is given by the set of memory blocks
for which Property (6.8) holds on at least one path:

a2 — oM
a(S):={m | Ir € S :Els(m,m)} (6.16)

The functions « and v are sound, i.e., abstracting a set of paths and then
concretizing the results yields a superset of the initial set of paths.

Theorem 6.5 (Soundness of the Abstraction)
The tuple (vy,2Mm) is a sound abstraction of (21,) with subset-ordering,
i.e.,

VS e2m: ST ~(a(S))
holds.

Hence, a set of paths S is conservatively approximated by «(.S). Thus,
Theorem 6.5 relates the concrete to the abstract semantics and allows to
compute the set of DC-UCBs in the abstract domain.

Given the soundness of the abstraction and local consistency of ¢f and
tf o, we can conclude that the results of the abstract analysis are a sound
over-approximation of the set of DC-UCBs at program point p. Note
that a fixed-point is computable as the domain M (resp. M) is finite
and tf is monotone (see Theorem 2.1 and 2.2).

76

6.3. Deriving the Set of DC-UCBs

Example

Figure 6.3 depicts an example of the DC-UCB analysis on a virtual
unrolled control-flow graph (see Section 3.3). Memory blocks a and e are
DC-UCBs after the first access to a, resp. to e; from these points on, a
path exists to a next reference to a, resp. b such that this next access is
classified as always hit (second accesses to a and e). According to the
previous notion, a, e and b, ¢, d were useful.

Implementation Issues

In contrast to the basic UCB analysis, we do not need to adapt this
analysis to set-associative caches. The complete cache structure is hidden
in the memory access classification queried by the DC-UCB analysis, i.e.,
we do not need to run S DC-UCB analyses in parallel (where S is the
number of cache sets). The DC-UCB analysis is part of the aiT timing
analyzer for the ARMY target architecture [42].

7

6. Definitely-Cached Useful Cache Blocks

exit

exit

Figure 6.3.: Example of the DC-UCB Analysis

78

Chapter 7

CRPD ror LRU
CACHES— RESILIENCE ANALYSIS

It's so much easier to suggest
solutions when you don’t know too
much about the problem.

Malcolm Forbes (1919 - 1990)

We have seen in Chapter 5 that no valid bound on the cache-related
preemption delay for LRU caches based on ECBs and UCBs has been
published so far. Not even a bound based solely on the ECBs has been
proposed; only for the special case of direct-mapped caches valid and
sound bounds exist.

In this chapter, we tackle this problem and present valid CRPD analyses
for LRU caches that incorporate both sides, the preempting task and the
preempted task. We start with a simple, shallow combination assuming
that one ECB always displaces all UCBs of the same cache set. This
assumption is sound but pessimistic; a useful cache block may survive a
preemption even if the preempting task uses the same cache set. Hence,
we present a second, in depth combination of UCBs and ECBs and
introduce the notion of resilience of a UCB. The resilience determines the
amount of disturbance due to preemption, i.e., the number of additional
accesses such that a cache block remains useful.

In addition to the notion of resilience and the CRPD bounds for LRU

79

7. CRPD for LRU Caches—Resilience Analysis

caches, we present a resilience analysis based on abstract interpretation
and prove its correctness. Note that the approaches in this chapter can
be applied to both notions of UCBs, the original concept by Lee et al. [49]
and the concept of DC-UCBs presented in the previous chapter. The
results presented in this chapter are partially published in [6].

7.1. CRPD for LRU Caches

From Observation 5.1 we know that a single evicting cache block suffices
to displace all useful cache blocks of the same cache set. If we have only
the set of ECBs at hand to determine an upper bound on the number
of additional reloads, we have to assume that up to associativity-many
reloads happen in each cache set to which at least one ECB maps:

CRPD®°® . 2M 4 N

CRPD"**(ECB) = CRT - (Zx)

s | K ifECB®#0
T'ZY 0 ifECB*=0

Note that considering only the effect of the preempting task, i.e., the
evicting cache blocks of the preempting task, abstracts from the actual
preemption point. Hence, we do not need to compute the maximum over
all preemption points to derive a global CRPD bound. Correctness of
Equation (7.1) is obvious. If the preempting task accesses no cache blocks
mapping to cache set s, the cache state of set s remains unchanged and no
additional cache miss in s can occur. If there is an ECB mapping to s, we
assume the worst-case, i.e., each cached memory block of the preempted
task is evicted and causes an additional reload. This assumption can be
easily relaxed by just considering the actual set of useful cache blocks at
cache set s:

(7.1)

CRPDYP4ECE (V5 2M) oM vV 5 N
CRPDYCP“E°®(UCB, ECB, p) = CRT - (Zw)
(7.2)

0 if ECB® = 0)
CRPDVCB<ECE - (5 oMy oM N

o { [UCB®(p)| if ECB® #0

80

7.2. Resilience of a Cache Block

MRU X
C\ 1d
N 7
b S 777/_\‘_7ﬁ e C
LRU® Ne— 7 b
R I I I I he X e I I I N
T T T T T T T
a* b* c* d* b c d
————————— Ml === === ———mmmm= T2 === ===

Figure 7.1.: Pessimism of the shallow ECB/UCB combination: Execution
trace on a 4-way LRU cache with preemption with one ECBs
and three UCBs, but no additional cache misses.

CRPDCPC*(UCB, ECB) = max{CRPDE"***"(UCB, ECB, p)}

(7.3)
Note that in contrast to Equation (7.1), we now consider different pre-
emption points and thus, need to compute the worst-case preemption
point again.

Equation (7.2) provides a valid upper bound on the CRPD for LRU
caches based on UCBs and ECBs, but with unsatisfactory precision.
Figure 7.1 depicts a simple scenario in which Equation (7.2) computes a
total CRPD bound of 3, but no additional cache misses occur. One ECB
simply does not suffice to evict a useful cache block at preemption point
p and also does not lead to a subsequent additional miss. In the next
section, we provide an analysis that aims at getting rid of this pessimism.

7.2. Resilience of a Cache Block

To improve the bound on the cache-related preemption delay for LRU
caches, we need to identify useful cache blocks that are not evicted even
if some evicting cache blocks map to the same cache set. To this end,
we introduce the resilience of a cache block as a measure for the amount
of disturbance a cache block may suffer without causing an additional
miss due to preemption. The disturbance a cache block suffers is upper
bounded by the set of evicting cache blocks. So, the resilience res(m) of
a cache block m is the maximal number of additional misses, such that m
remains cached and useful until its next access. Hence, if the disturbances,
i.e., the number of ECBs, is less than or equal to the resilience of UCB m,
m remains useful after preemption and will not inflict an additional cache
miss due to preemption. Obviously, the resilience of a useful cache block
on a path depends on the associativity of the cache and the age of the

81

7. CRPD for LRU Caches—Resilience Analysis

A
age(c) =0 age(c) =2
res(c) =1

| |
--- T T T T T T T -

a* b* c* d* b c d

T 1
age(c) =0 age(c) =3
|ECB| + 2

(b) preempted execution

Figure 7.2.: Notion of the Resilience of an UCB: Execution trace on
an 4 way LRU cache and preemption with one ECBs and
three UCBs, but no additional cache misses. All UCBs are
1-resilient.

cache block directly before its next reuse. Consider the example depicted
in Figure 7.2. Memory block ¢ is loaded to the cache at its first access
and later on reused on its second access. At this second access, memory
block ¢ has age 2 (see Figure 7.2a). In a cache with associativity 4, ¢
can survive one more access but not two. Hence, resilience of ¢ at this
position is 1. In case of preemption with one ECB memory block c is still
cached at its next reuse (see Figure 7.2b).

Definition 7.1 (Resilience on a Path)
Let be an execution path of the preempted program and a cache state.
The resilience function on a path

res' :TIx ZxV x M —N
1s defined as follows
H(Tr7C7p/7 m) =

K —age(tf**([p1,....,p’'D(Q)(m) =1 if m € UCB(r,(,p)
AT = [p1,-..,Pn]
00 if m ¢ UCB(w,(,p)

TeES

where p' is the next reuse of m (if this reuse exists in), K the associa-
tivity of the cache and age(tf**"([p1,...,p’])(C))(m) the cache-position
of m at p' on path m and initial cache state .

82

7.2. Resilience of a Cache Block

Remember that ¢ is the LRU cache transformer and age the helper
function that extracts the ages from a cache state as defined in Section 3.3.
Note that we define resilience for any memory block and not only for UCBs.
As only UCBs may inflict additional cache misses due to preemption, the
resilience of any non-useful block is infinite: No matter how many ECB
map to the same cache set, no additional cache miss happens.

Definition 7.2 (Resilience on a Program Point)

The resilience res(p, m) of memory block m at program point p is the
minimum over the resiliences of m on all paths running through p and
all initial cache states:

res: V x M — N

res(pom) = _min {resl(r ¢, pym)}

A bound on the cache-related preemption delay based on resilience at
program point p is given as follows:

CRPDF® : (V = 2M)x (Vx M - N) x2M xV » N

CRPD%*(UCB, res, ECB, p) =
CRT - " [UCB*(p) \ {m | res(p,m) > [ECB*[}| (7.4)

CRPD™ : (V = 2M)x (Vx M - N) x2M N
CRPD™™(UCB, res, ECB) = ma‘;{{CRPDEES (UCB, res, ECB,p) (7.5)
pe

Remember that ECB® and UCB? denote the evicting/useful cache blocks
mapping at cache set s. The set of useful cache blocks is reduced by
those memory blocks that are not evicted by |[ECB®| many evicting cache
blocks. We consider once again the example from Figure 7.1. The set
UCB(p) contains the memory blocks b, ¢, d, all of them have resilience of
1, memory block a has an infinite resilience and there is only one cache

83

7. CRPD for LRU Caches—Resilience Analysis

set. We now plug these values into Equation (7.5):

CRPD%*(UCB, res, ECB, p)
= CRT - [UCB(P) \ {m | res(p,m) > |[ECB|}|
— CRT - |{b,c.d} \ {m | res(p,m) > [{a}]}
= CRT - [{b,c,d} \ {m | res(p,m) > 1}|
= CRT - [{b,¢,d} \ {a,b,c,d}|
= CRT - |0
=0
We can conclude that Equation (7.5) computes a precise CRPD bound—in
contrast to all former approaches.

7.2.1. Multiple Preemptions

As mentioned in Chapter 4, preemptions may interact. See the example
in Figure 7.3. Both preemptions considered in isolation do not inflict any
additional cache misses. However, in combination two more misses due
to preemption occur. Remember, we have defined the concrete CRPD
as the total number of additional misses due to all preemptions and not
just due to a single preemption (see Chapter 4).

MR d b y
X b
d| X

Lnua\ %—v \b cli %—v \d
\

]]]]
- } - =

a* b* c* d* b

\ \

| |

| |

b1 D2

Figure 7.3.: Interacting preemptions: each preemption (at p; and ps) has
individual cost of 0, but combined cost of 3 (assuming a
4-way LRU cache)

There are different ways to include multiple preemptions and to account
for interacting preemptions. We aim for a simple solution where we
simulate nested preemptions. In the example from Figure 7.3, we can use
the original CRPD bound for the preemption at p; as no prior preemption
may interact with the first one:

CRPDRES (UCB, res, (ECBH(frl)) : pl) -0 (7.6)

84

7.2. Resilience of a Cache Block

We assume that the second preemption was a nested preemption by
and 75. Hence, we use the union of the ECBs of 7; and 75 to compute
the preemption cost:

CRPD} (UCB, res, (ECB(71) UECB" (7)) o) =2 (7.7)

To generalize this, we assume that the i-th preemption interacts with all
prior preemptions 1 to ¢ — 1.

CRPD” (r,¢, PR) <

PR
> CRPDP™ | UCB, res, | JECB"(#;),pi | (7.8)
i=1 j<i

This approach assumes knowledge about the order of the preempting
tasks and the preemptions points. Scheduling analysis, as we will see
in Chapter 8, usually can not deliver such information. What it usually
can deliver is an over-approximation of the preempting tasks and of the
number of preemptions.

Theorem 7.1
For any initial cache state ¢, any execution path m and any set of pre-
emptions PR:

CRPD" (7,¢, PR) <
|PR| - CRPD""S (UC’B, res, | J EC’BTk) (7.9)
T EPT
where PT is the set of preempting tasks.

Equation (7.9) does not provide the most precise CRPD bound, but uses
only information given by the scheduling analysis. More precise bounds
require more information.

7.2.2. Correctness

We prove Theorem 7.1 in two steps. We first prove that each cache miss
due to preemption is accounted for in the preemption cost attributed to
the nearest preemption point prior to the cache miss (assuming nested
preemption by all preempting tasks) and then proceed to the total CRPD
bound for all preemptions in PR.

85

7. CRPD for LRU Caches—Resilience Analysis

Theorem 7.2
Each additional cache miss at p' accessing m due to preemption by the
set

PR = {(qhﬁ-l)a) (qnaﬁ-’ﬂ)}

is contained in the set

UCB (pi) \ {m | res(ps,m) > | U ECB(#;)|}

J<i
of the nearest preemption point p; prior to p'.

Proof
We prove Theorem 7.2 by contradiction. Assume there exists a cache
miss at m such that

m ¢ UCB(pi) \ {n | res(pi,n) > ||] ECB(#)[}

J<i

Let p" be the last access to m prior to preemption point p, p' the next
access to m after p, and PT C {1,...,i} be the indices of preemptions
with preemption points between p'’ and p;. By Theorem 6.2, we know that
m € UCB(p;). Hence,

res(pi,m) > | U ECB(%;)|

J<i

As m inflicts a cache miss at p', we know that the number of accesses to
distinct elements on path [p”,...,p'] and on the access sequence of the
preempting tasks is larger than the associativity. Note that the age of
m at p' age(tf*""([p1,...,0'])(C))(m) is independent of the initial cache
state ¢ as p” accesses m.

K < age(tf*""([p",....oNC)(m) +| |J ECB"(#;)]

JEPT
SK —age(tf**([p",....PNQ))m) < | |J ECB"(#;)|
jEPT
=K — age(t/*""([p",....pN()(m) < || ECB"(%;)]
j<i
=res(p;, m) < | U ECBH(frj)|
Jj<i
This contradicts our assumptions. [l

86

7.3. Resilience Analysis

We can now proceed to the proof of Theorem 7.1.

Proof

CRPD" (7,¢, PR)

PR

< Y CRPDy™ | UCB, res,|) ECB(#;),p: Theo. 7.2
i=1 J<i
PR

< Y CRPD™ | UCB, res,|) ECB(#;) Eq. (7.5)
i=1 Jj<i

< |PR-|CRPD"™ | UCB,res,|_ ECB(#;)
J

< |PR-|CRPD""s (UCB, res, | J ECBTk> Def. 5.2
T, EPT

where PT is the set of preempting tasks. O

7.3. Resilience Analysis

The resilience of a useful cache block m at a node p is determined by the
age of m at its next access p':

K — (age(tf" " ([p1,---.PN(C))(m) + 1) (7.10)

Note that we need to increment the age by one since age(m) € {0, ... K —
1,00}, i.e., 0 denotes the first position in the cache, K — 1 the last and
oo that the element is not cached. As we are interested in a lower bound
on the resilience (in order not to classify too many blocks as surviving),
we must compute upper bounds on the age. However, we only need
to consider the age of a memory block on paths on which this block
is considered useful. Consider the control flow depicted in Figure 7.4.
Memory block m is only reused on the upper right, not on the lower right
path. We thus only need to consider the upper path for the computation
of the resilience, even for the resilience of m on the common sub-path on
the left side.

87

7. CRPD for LRU Caches—Resilience Analysis

]

T

T res(m) =1 — i i % --
F———-—res(m) = oo

Figure 7.4.: Resilience under different paths, assuming a 4 way LRU
cache.

Concrete Semantics

For the computation of the resilience, we start again with the concrete
semantics. Similar to the basic UCB analysis (see Appendix A), we split
all paths through p in two sets: a set of paths ending in p and a set of
paths emanating from p. The first set is given by the path-based forwards
collecting semantics:

Collyy : V — 21
Coll (p) ={r | me AT =[ps,...,p|} (7.11)

while the latter set is given by the path-based backwards collecting
semantics:
Collf; : vV — 21

Collif(p) ={r | melIAT=p,...,pn]} (7.12)

with the concrete transformer ¢f g/ e
tFE/ 7V s (2T s 2T

tfc (p)(S)={m-p | m€ S} (7.13)
and

tfo (p)(S) ={p -7 | me S} (7.14)

that appends/prepends a program point to each path of the incoming
flow information.

To derive the resilience of a cache block from the collecting path-based
semantics, we need two auxiliary functions:

age™ /7 (Il — Age

88

7.3. Resilience Analysis

The function age” counts all different elements on path = backwards
(i.e., starting at the last program point in p) to the last access to m. In
case no such access exists, it returns oo:

‘Uj<iﬁ(pj)‘ if m= [le-wpi] 'WIAﬁ(pi) =m

age’ (m)(m) = ¢ W:@\f ff;;iwi—l}:ﬁ(pj)#m
NG e{l,...,n}:4(p;) #m
(7.15)

Conversely, age” counts all memory blocks on path 7 forwards to the
first next access to m and returns oo if no such access exists.

(Ujsi8y)l ifm=m-[pi,....pn] - 7' Al(pi) =m
AYje{l,...,i—1}:H(p;) #m
S ™= [P1,---,Dn]
AVjeA{L,....n}: ﬁ(pj) #m
(7.16)
We refer to a@eﬁ/_)(ﬂ) (m) as the concrete forward/backward age of m
on path .
A lower bound on the resilience of block m is thus given as by the
associativity minus the sum of forward and backward age:

a5 (m)(m) =

res,(m) > K — (max{age™ (7)(m) | 7 € Colli (p) Am € UCB(p)}+
max{age ' (7)(m) | 7 € Coll (p) Am € UCB(p)}+1) (7.17)

where K is the associativity. Again, we need to increment the sum of the
ages by one as age € {0,... K —1,00}. Note that Equation (7.17) is only
well defined for useful memory block m € UCB,,.

Abstract Domain

Instead of computing all paths to/from p and then computing the re-
silience, we directly bound for each memory block m the concrete ages
age” and age . Note that we omit the direction of the analysis in the
following as forward analysis and backward analysis are equivalent.

In order to correctly bound the age of a UCB m, we need to derive a
bound on the age of block m under the constraint that m is useful. We
refer to this bound as the constrained age of m. In addition, we need an
unconstrained age bound of m in order to correctly update the ages of
the other memory blocks. We refer to this bound as the unconstrained
age of m.

89

7. CRPD for LRU Caches—Resilience Analysis

We start with the transformer for the unconstrained age. As we are
interested in upper bounds on the ages, we employ a must-cache analysis
using the very same transfer function (see Section 3.3):

tfua 'V — Age — Age

tfua(p)(ua) :=
wa(m) mfti)(p) (4(p))
ua(m ua(m) > ua(f(p
Am. ua(m) +1 uah(m) <wua(f(p)) Nua(m) < K —1 (7.18)
%) otherwise

The accessed element f(p) is assigned age zero, all younger elements
(as the accessed element) age by one. The ages of all older elements or
elements of the same age remain unchanged.

The transformer for the constrained age also takes the unconstrained
age as input.
tfoa:V — (Age x Age — Age)

tfca (p)(ca, ua) =
) = f(p) v m ¢ UCB(p)
Am.{ ca(m) (m) > ua((p))Vea(m) =K —1 (7.19)

As the constrained age may under-approximate the actual age, we require
the unconstrained age of the accessed element to update the constrained
ages of the other elements. The constrained age only matters for useful
cache blocks. We can therefore assign the age of other blocks arbitrarily
which we do by assigning each non-useful cache block the constrained age
zero. Furthermore, we know that the age of a useful cache block m is at
least K — 1 (as we assume the next access to m is a hit). We thus have
the additional constrain ca(m) = K — 1 in the second case.

Both ages, unconstrained and constrained, are upper bounds. Hence,
C and | | for unconstrained and constrained age are defined according to
the must-cache analysis:

uay C uag < Vm € M : uai(m) < uas(m) (7.20)

uay |_|ua2 = Am. max(uai(m), uaz(m)) (7.21)

90

7.3. Resilience Analysis

and
cay C cag & Vm € M : cai(m) < caz(m) (7.22)

cay |_| caz = Am. max(cai(m), caz(m)) (7.23)

The domain of the resilience analysis is a tuple of the two age-bound
functions:

D = Age x Age (7.24)
with combined transfer function defined as follows:
tf res(P)(ca,ua) = (tf,q(p)(ua), tf . (p)(ca, ua)) (7.25)

and C and | | of the domain as the corresponding pairwise operator on
the ages:

(uay,car) C (uag, cas) < ua; C uag A cag C cas (7.26)

(uay,cay) |_|(ua2, caz) = (uay |_| uas, cay |_| cag) (7.27)

We also need monotonicity of the abstract transformer in order to show
that a fixed-point of the resilience analysis exists.

Theorem 7.3 (Monotonicity)
The abstract transformer of the resilience analysis tf is monotone, i.e.,

VpeV:Va,beD:alb=tf, (p)(a)Ctf,..(p)b)

The proof can be found in Appendix B.

Using the constrained ages, we can define a bound on the resilience of
block m as the maximum of zero and the associativity K minus the sum
of forward and backward constrained age:

resp(m) > max(K — (ca, (m)+ ca,’ (m) +1),0) (7.28)

Connecting Abstract and Concrete Domain

The set of concrete paths represented by a pair of constrained and
unconstrained ages is given by the set of all paths that respect the age
bound. For the concretization, we have to distinguish again between
forward and backward analysis, as the concretization of the forward
analysis considers all paths emanating from a program point p:

77 ((ua,ca)) = {(p-m) €I | ¥Vm e M : (age” (p-m)(m) < ca™ (m))
V (age” (p-m)(m) <ua”(m) Am ¢ UCB,(m))} (7.29)

91

7. CRPD for LRU Caches—Resilience Analysis

while the backward analysis considers all paths ending in a program
point p:

7 ((ua,ca)) = {(r-p) € 1L | ¥m € M : (age" (- p)(m) < ca*(m))
V (586" (v - p)(m) < ua* (m) Am ¢ UCBy(m))} (7.30)
Using v and v, we can state the local consistency of the abstract
transformer.

Theorem 7.4 (Local Consistency)
The abstract transformer tf and the concrete transformer tf are locally
consistent:

V(ua,ca) €D Vp € V : (tfc(p))((ua,ca)) C y(Lf ou(p))(ua, ca))

The proof can be found in Appendix B.

For the abstraction functions, we also have to distinguish between
forward and backward analysis. The unconstrained age of a memory
block m is given by the maximal age over all paths, while the constrained
only considers the paths on which the memory block m is considered
useful. The constrained age of m is zero if no such paths exists, i.e., m is
not useful on any path:

a”(8) = (Am.max{age (p-7)(m) | (p-7) € S},
Am.max{age (p-7)(m) | (p-7) € SAmeUCB(p)})U{0}) (7.31)

a“(8) = (Am.max{age" (7 - p)(m) | (7-p) € S},
Am.max{age” (p-7)(m) | (7-p) € SAm e UCB(p)})U{0}) (7.32)
We now formulate the soundness of the abstraction, i.e., that a set of

concrete paths S is conservatively approximated by «(S). Again, the
proof can be found in Appendix B.

Theorem 7.5 (Soundness of the Abstraction)
The tuple (v,D) is a sound abstraction of (21, o) with subset-ordering:

vS €2 S T y(a(9))

The abstract domain and « do not represent the most precise abstraction.
Assume a program that consists of a single program point p, and so the
set of paths IT contains only the empty path and the path [p]:

IT = {e, [pl} (7.33)

92

7.3. Resilience Analysis

Yet, an abstract unconstrained age ua may assign the element #(p) ac-
cessed at p age 2:

ua(fi(p)) =2 (7.34)

Although on all paths in II, the age of #(p) is at most zero. So, the value
(ua, ca) is less precise than a(y((ua, ca))).

Example

Figure 7.5 depicts an example of the resilience analysis (forward age,
backward age, and pair of UCB/resilience). We represent the domain of
the analysis as a set of mappings {(z, (ca,ua))} of memory blocks to pair
of ages (constrained and unconstrained) with default mapping (o0, c0).
I.e., each memory block that does not map to a pair of ages explicitly,
maps to (co,00) by default. Figure 7.5 only depicts the control-flow
information after a program point.

93

7. CRPD for LRU Caches—Resilience Analysis

(Ca‘vua)*} (Ca’ua)‘i UCBs

N {(@. (2,2)
(@ (0,00} (e, (1.09)) | {(@. 1)}
(@, (0.50))}

{(a, (1, 1)) | {(a,(1,1))
Cd) (d,(0,0))}| (e, (0,00))} {(a,1)}

Ce @@V e 5 90)] {(e0)
(@ (LD) 1 0,00} (a1}
(e, (0,00)}] 7

{(d.(2,2)
(e; (1, D) [{(e; (2:2))}] {(e;0)}
(a,(0,00))}

UCBs (ca,ua)™ (ca,ua)*

{(d, (3,00))
(e,(2,2) [{(e;(1,1)
{(e,;0)} (a, (1,00))|(c, (0,00))}
(b, (0,00))}

{(e,(3,3))

(a, (2.0))
{0} | 1 ooy |1 .03

(¢, (0,00))}

{(e; (2,2))
(a, (1,00))
(d, (0,00))}

{(e; (0,0))}| {(e, 1}

{(a,(3,00))
(e, 0,000} | ‘ /

Figure 7.5.: Example of the Resilience Analysis; Forward and Backward

Ages (Counstrained, Unconstrained), UCBs and corresponding
resilience.

94

Chapter 8 wm

PREEMPTION COST AWARE
RESPONSE TIME ANALYSIS

| love deadlines. | like the whooshing
sound they make as they fly by.
Douglas Adams (1952 - 2001)

In the previous chapters, we have discussed how to derive sound and
precise bounds on the cache-related preemption delay. This chapter now
presents how to incorporate these bounds in the response time analyses
for fized-priority based schedules. We start with a discussion and thorough
review of the existing approaches and then proceed to a new, more precise
analysis: the so-called ECB-Union approach that derives an upper bounds
of the effect of all preempting tasks on the preempted task. In addition,
we show how to eliminate spurious preemption scenarios to improve the
schedulability results even further.

In the following, we use the notation introduced in Chapter 3.1 (execu-
tion time C;, period P;, deadline D;) extended by Table 8.1. The new
symbols are explained (if necessary) at their first occurrence. Note that
the results presented in this chapter are partially published in [3] and [4].

95

8. Preemption cost aware Response Time Analysis

8.1. Existing Approaches

In Chapter 3.1, we have discussed response time analysis [8, 41] as
the standard schedulability test for fixed-priority preemptive systems.
Recursive Equation (8.1) repeats the basic principle of the fixed-point
iteration to derive a task’s response time R. If the response time of a
task is less than or equal to its deadline, we can conclude that this task
will never miss its deadline. If this holds for all tasks, we say that the
task set is schedulable.

R, + J;
Ri=Ci+ Y, {Tﬂ (eh (8.1)
vjehp(i) J

Equation (8.1) does not consider any cache-related preemption delay
explicitly. Hence, such delay must be subsumed by the execution demand
bound C' implicitly.

To include the preemption cost in the response time analysis, Busquets
and Wellings [18] proposed to extend Equation (8.1) by a value v, ; to
represent the preemption cost of a job of task 7; executing during the
response time of task 7; (with j < 4):

R, + J;
R, =C;+ Z | { T,]—‘ (Cj +i.5) (8.2)
Vj€hp(i)

Petters et al. [68] and later Staschulat et al. [81] based their analysis on
the following Equation:

R+ J;
Ri=Ci+ <{Tj]—‘ Cj + %‘,j) (8.3)

Vjehp(z)

where 7; ; denotes the preemption cost of all jobs of task 7; executing
during the response time of task 7; (with j <). Although the difference
to Equation (8.2) is only subtle, it proves beneficial—as we show later—
to use 7;; as a bound on the overall impact of all jobs of 7; on the
response time R; instead of a bound of just one job of 7;. Note that
when preemption costs are considered explicitly, the worst-case scenario
is not necessarily given by a synchronous release of all higher priority
tasks [60] and Equation (8.2) and (8.3) form only sufficient, not exact
schedulability tests.

The following sections present a review and analysis of the existing
approaches. We use a notation that may differ strongly from some of

96

8.1. Existing Approaches

the presented papers. Furthermore, some of the presented approaches
are based on flawed CRPD equations. In these cases, we have directly
replaced flawed equations by the correct CRPD formulas presented in the
previous chapters.

Regarding the examples, we always assume a direct-mapped cache with
4 cache sets. So, useful/evicting cache blocks are represented as 4-tuples.
For instance, UCB; = (a,b, —, —) means that a, resp. b is a useful cache
block of task 7; mapping to cache set 1, resp. 2 while no UCBs of task 7;
map to cache set 3 or 4. We also abstract from the preemption points
and define one set of UCBs for the whole task (except for one example
where we explicitly mention different preemption points). Note that these
simplifications are used only to simplify the example but do not impose
actual restriction to the presented approaches.

Table 8.1.: Sets of tasks: notation and terminology
hp(7) {j | 7<i} tasks with higher priority than 7
hep(i) {j | j<i} tasks with higher or equal priority as 7;
Ip(4) {71 7>1} tasks with lower priority than 7;
lep(4) {j|j=>1i} tasks with lower or equal priority as 7;
aff(i,7) hep(i) Nlp(j) tasks affected by 7; during execution of 7;

8.1.1. ECB-Only & UCB-Only

We already mentioned Busquets and Wellings [18] as the first to extend
the basic response time equation. They proposed to use only the set of
evicting cache blocks of the preempting task as a bound on the preemption
cost:

8P = CRPD"*(ECB;,) (8.4)

We refer to this approach as ECB-Ounly. Note that in [18] Busquets
and Wellings conservatively bound the set of ECBs and assume that
the complete cache content was evicted due to preemption and must be
refilled.

Lee et al. [49] tackled the problem from the side of the preempted
task. They used the number of useful cache blocks of the preempted task.
However, the highest preemption cost may not necessarily occur when the
current task 7;, for which the response time is computed, is preempted.
It is possible that the preemption cost of 7; preempting a task 7, with
intermediate priority j < k < i forms the worst-case scenario. The set of
tasks that may affect the response time of 7; but have lower priority than

97

8. Preemption cost aware Response Time Analysis

7; is denoted with aff(i, j). As a result, one has to take the maximum of
the preemption cost over all tasks from the set aff(i, j):

ucb ECB
AP = m CRPD UCB.., 8.5
Yi,j Vkea%)((i,j) { ()} (8.5)

We refer to this approach as UCB-Only.

ECB-Only and UCB-Only share the same disadvantage. By considering
one side only, either the preempting task or alternatively the preempted
task, precision is lost. Not each useful cache block is necessarily evicted
due to preemption and not each evicting cache block necessarily evicts a
useful cache block. Figure 8.1 illustrates this pessimism.

UCB; ECB;

m _ (G,b,—,—) (aabv_v_)
= (= =9:h) (== 9,h)
0 1 2 3 4
_Execution

Figure 8.1.: Ganttchart demonstrating the over-approximation of ECB-
Only and UCB-Only: two tasks 71 and 75 with C; = 1 and
Cy = 2. As the ECBs of task 71 map to different cache sets
as the UCBs of 75, no useful cache blocks are evicted due to
preemption and so, CRPD = 0. ECB-Only and UCB-Only
derive bounds of 2 - CRT in this example.

Why not using a simple combination?

A naive approach to reduce the pessimism of the UCB-Only and ECB-
Only approaches is to combine both and to use the precise CRPD bound
of task 7; preempting task 7;:

~i; = CRPDYSP**3(UCB,,, ECB,,) (8.6)

Computing the response time using Equation (8.6) is optimistic. Consider
the example depicted in Figure 8.2a. When computing the response time
R3, only the cost of 7 preempting 73 and 75 preempting 73 are considered.
The worst-case scenario, however, occurs when 7 preempts 7o.
Equation (8.7) presents a slightly more complex combination of UCBs
and ECBs that covers the previous optimism by computing the maximum

98

8.1. Existing Approaches

preemption cost of task 7; preempting task 7; or any intermediate task

(€ aff(i, j)).

Yij = ngﬁfﬁ,j) {CRPD"“*“*°*(UCB;,, UCB;,)} (8.7)
However, also this approach is optimistic. It misses the situation of a
nested preemption constituting the worst-case preemption scenario as
depicted in Figure 8.2b. Task 7 evicts useful cache blocks from both
tasks 7 and 73. Response time analysis using Equation (8.7) results in
optimistic total CRPD of 1, as it considers only 7 preempting 15 or 73
with cost 1 each and 7 preempting 73 with cost 0. However, 2 additional
reloads due to preemption are necessary in the worst-case. Note that
Equation (8.7) was proposed by Tan and Mooney [84].

UCB; ECB;

T (| [(=== =)ab =)
O T e o) (e fim)
sl M kD (kD
0123456 7891011
Il Execution [Preemption Delay

(a) 71 preempting 72 causes higher costs than 71 preempting 73
and T2 preempting 3.

UCB; ECB;

T1 [(=, b,¢,—) (—,b,c,—)
T2 -::_ (67f7_7_) (67f7_7_)
s O (- kD (kD)

o 1 2 3 4 5 6 7 8

(b) Nested preemption: 71 preempting 7o preempting 73, causes
higher costs than any non-nested preemption.

Figure 8.2.: Ganttchart demonstrating pitfalls due to nested preemption:
task set {71, 70,73} with C; =1, Cy = 2, C5 = 3 and a block
reload time of 1.

8.1.2. UCB Union

To include nested preemption, Tan and Mooney proposed in [85] to use an
upper bound on the number of useful cache blocks (of all preempted tasks)

99

8. Preemption cost aware Response Time Analysis

a preempting task 7; may evict. In this case, the worst-case preemption
point of a task does not only depend on its useful cache blocks and the
evicting cache blocks of the preempting task, but also on the UCBs of
all other preempted tasks. Assume for instance an execution of three
tasks on a system with direct-mapped cache with 4 cache sets and the
following sets of UCBs/ECBs:

ECB; = (a,b,¢,d)
UCBs = (e, f,—, —)
UCBs(p1) = (Z 3=)
UCB;3(p2) = (—, -)

Task 73 has two different possible preemption points with two disjoint
sets of UCBs. Task 7 may evict 3 UCBs (one of 73 and two of 72), worst
case preemption point for a direct preemption of 73 by 71, however, is p;
with two evicted useful cache blocks. This means that it is insufficient to
consider only one preemption point of task 3.

Tan and Mooney avoid a precise derivation of the worst-case preemption
points by computing the union of all UCBs at all preemption points of
the preempted task:

(8.8)

UCB” = |] UCB(p) (8.9)
peV
In this case, a slight variation of Equation (7.2) delivers a valid CRPD

bound:
CRPDYPU . oM oM _, N

CRPD"""(UCBY, ECB) = CRT - <Zx>
(8.10)

s [|[UCBY®| if ECB® # ()
10 if ECB® = ()

Note that Tan and Money originally based their approach on the flawed
CRPD bound Equation (5.9) presented in Chapter 5.

We can now proceed to the computation of 4P As only useful
cache blocks of tasks with equal or higher priority than 7; may increase
the response time R;, we only need to consider tasks with intermediate
priority, i.e., tasks from the set aff(i, 5)):

Reb-W — CRT - CRPD"P™ J ucBy |, ECB; (8.11)
keaff(i,j)

100

8.1. Existing Approaches

So, ’y}f;?b'u represents the worst-case impact a job of task 7; can have on

all (useful cache blocks of) tasks with lower priority than 7; down to 7.
We refer to this approach as UCB-Union.

This approach has two main deficiencies. First, a single preemption
affects only the useful cache blocks at one preemption point. Equa-
tion (8.11) considers all useful cache blocks of all possibly affected tasks.
Second, some UCBs that may be evicted at most once are considered to
be evicted several times. Figure 8.3 shows such an example. Consider
the response time of task 73.

74" = CRT - CRPDVP5® |J UcBy |,ECB,
keaff(3,1)
= CRT - CRPDVP**°® ((UCBj U UCBY) , ECB,)
= CRT - CRPDVB“*® ({¢, f k, 1}, {a,b,c,d}) = 4

75 = CRT - CRPDUOP+e? |J UCBY|.ECB,
keaff(3,2)
= CRT - CRPDV¢P¢ECR (UCB;)J7 ECBl)
= CRT - CRPD"°P“*® ({k,1},{g,h}) = 2
The UCB-Union approach derives a total preemption cost of 6, actual

cost are 4. Either UCBs {e, f, k,1} are evicted once (nested preemption)
or UCBs {k, !} are evicted twice.

UCB; ECB;

1 [| (a,b,c,d) (a,b,c,d)
I W (e,f,— =) (e, f,9,h)
] DN | (= =k, 1) (4,5, k1)

01 2 3 45 6 7 8 910

Figure 8.3.: Pessimism of the UCB-Union approach. The task set consists
of 3 tasks {1, 72,73} with C; =1, Cy = C3 =2, and CRT =
1. For the response time R3, Equation (8.11) computes total
preemption costs of 6, whereas the actual cost is only 4.

Although stated otherwise in [3], UCB-Union does not necessarily

dominate ECB-Only. This only holds if for each task, there is at least
one program point such that all UCBs of the whole task are also UCBs

101

8. Preemption cost aware Response Time Analysis

at this program point, i.e., for the simplified model of one set of UCBs
per task.
¥;3p : UCB;(p) = UCBY

8.1.3. Multiset Approaches

Instead of assigning each job of a task the preemption cost this job inflicts,
Petters et al. [68] and later also Staschulat et al. [81] assign an overall
bound to each task directly: +y; ; does not refer to the cost of a single
preemption by task 7; but to the cost of all preemptions of task 7; during
the response time R; of task 7;. So, Equation (8.3) is used to compute
the response time analysis in this case. To simplify the notation in the
following equations, we use

(8.12)

E(R;) = ﬁ”ﬂ

T;

as a bound on the number of jobs of task 73, during the response time
R;. Figure 8.4 illustrates the advantage of this approach. During the
response time Rg3, at most one job of task 5 (E2(R3) = 1) is activated
and during the response time R at most one job of task 7 (Eq(R2) = 1).
Assume that solely task 71 preempting task 7o inflicts additional cache
reloads. Only if we assign preemption cost to each task and not to each
job, we can correctly take into account that the preemption cost of 7
preempting 7o delays the finishing time of a job of task 73 at most once.

Figure 8.4.: Advantages of the Multiset approach: Assigning preemption
cost to the jobs of a task (instead of to the task directly) may
lead to an over-approximation.

Petters’ Approach

First, we build a multiset M containing the cost of each preemption as
often as this preemption can occur. As Petters et al. [68] use only the set

102

8.1. Existing Approaches

of UCBs of the preempting task as a bound on the CRPD, we have the
following equation:

M= U |CRPDY“®(UCB;,)| (8.13)
keaff(i,j) \E;j(Rr)Er(R;)

Since at most Fy(R;) jobs of task 7 can be released during the response
time R;, preemption cost of 7; preempting 75 can contribute at most
E;(Ry)Ek(R;) times.

The cost of all preemptions by jobs of task 7; during the response time
R; is then given by the E;(R;) largest values of M:

E;(R:)
WP = CRT - > |M'| (8.14)
=1

where M' denotes the I-th largest element from the multiset M.

Staschulat’s Approach

Staschulat et al. [81] proposed to exploit the fact that each additional
preemption of task 7; may result in a smaller preemption cost than the
last one: The worst-case preemption point is given by the program point
with the largest number of UCBs. For a second preemption, program
point with the second largest number of UCBs can be assumed, for the
third preemption the third largest and so on. Furthermore, Staschulat
et al. [81] aim for an inclusion of the precise cost of 7; preempting 7.
Hence, they proposed to define the multiset as follows:

M =

U U {CRPDUCB&ECB(”(UCBk, ECB;)|n € [1; Ej(Rk)}}
keaff(i,j \Exr(R:)
(8.15)

where CRPDUCB&ECB(Z)(UCBk,ECBj) denotes the preemption cost for
the [-th preemption of task 74, by 7;. In order to correctly account for
nested preemptions, Staschulat et al. [81] increase the number of elements
taken from the set M. They need to account for each job of a task that
may suffer eviction by the preempting task 7;. Hence, they do not only
consider the E;(R;) highest preemption cost, but the ¢ highest ones,

103

8. Preemption cost aware Response Time Analysis

where ¢ is given by the number of jobs of tasks from the set aff(i, 7) that
are executed during the response time R;:

q= Z Ey(R;) (8.16)

Vkeaff(i,j)

with Equation (8.17) to compute A/Zs’tj.a:

q
¥ =CRT-) |M'| (8.17)
=1

where M! is the I-th largest element from the multiset M.

Improvement of the I-th preemption does not compensate for the over-
approximation of the number of preemptions taken into account. As
our evaluation and other measurements have shown [14], considering the
l[-largest CRPD bound in case of the [-th preemption only improves over
the largest CRPD bound in case of very large [. First, program points
close to each other have a similar number of useful cache blocks. They
may not only be one single preemption point with the maximal number
of UCBs but plenty. Second, preemption points within a loop have to be
considered as often as the loop iterates.

8.2. ECB Union

We have this far seen different approaches to derive the response time of a
task. Especially accounting for nested preemption contains several pitfalls.
The UCB-Union approach provides a sound response time analysis but
suffers (besides other pessimism) from the over-approximation of the
set of useful cache blocks UCBY. We will now present the ECB-Union
approach that complements UCB-Union.

Instead of considering the precise set of ECBs of a preempting task
and bounding all possibly affected UCBs (as UCB-Union does), ECB-
Union considers the precise number of UCBs of the preempted task. It
then always assumes that the preempting task 7; has itself already been
preempted by all tasks with higher priority. This nested preemption of
the preempting task is represented by the union of the ECBs of all tasks
with higher priority than 7;:

ecb-u __ UCB&ECB)
W= mex CRPD UCB;, | |J ECB,
’ hehep(j)

(8.18)

104

8.2. ECB Union

Similarly to the UCB-Only approach, we need to compute the maximal
CRPD cost over the set aff(i, j), as task 7; may preempt any task with
lower priority and all tasks with priority higher than or equal to 7; may
increase the response time R;. So, Vﬁgb'u represents the preemption
cost of a job of 7; together with all tasks with priority higher than 7;
preempting any job 73, with intermediate priority: j < h < i. ECB-Union
is a direct improvement over UCB-Only and dominates this approach.
However, it is incomparable to UCB-Union. There are examples such
that one approach outperforms the other and vice-versa. For the task set
depicted in Figure 8.3, the ECB-Union approach correctly computes a
precise CRPD bound of 2. As each of the two tasks 71 and 75 occupy
all 4 cache sets alone, computing the union of ECB; and ECBy does not
introduce any pessimism.

Ve = e CRPDY5 | UCB,, lJ ECB,
’ hehep(j)
= max{CRPD"“"**°® (UCB,, ECB;) ,
CRPDV"**® (UCB3, ECB; UECB,)}
=max{2,2} =2

ygf;-“:%na? CRPD*****® | UCB,, [|J ECB,
(3} hehep(j)

= max{CRPD"“*“*“" (UCB3, ECB; U ECB3)}
= max {2} =2
Figure 8.5 presents a task set, for which ECB-Union over-approximates
the preemption cost (and UCB-Union is precise). The latter approach
assumes that UCBs ¢ and k are evicted twice although only task 7 can

evict these UCBs and 7; is executed at most once during the response
time of 73.

ecb-u UCB&ECB
= m CRPD UCB;, | l ECB
131 vhets3) ‘ h
hehep(j)

= max{CRPD"“*“*°® (UCBy, ECB;),
CRPDV“"**® (UCB3, ECB; U ECB,)}
= max {0,2} =2

105

8. Preemption cost aware Response Time Analysis

ygf;-uzvr&a{é} CRPDVe®B¢EeE [UCB;, U ECB,,

hehep(j)
— max{CRPD"*°® (UCB,, ECB; U ECB,)}
=max {4} =4
UCB; ECB;
T1 - ((l,b,—,—) (a1b7_7_)
T2 -::- (_1_7_7_)(_7_797h)

=] | (3,60 (i,5,k,0)

01 2 3 4 5 6 7 8 910

Figure 8.5.: Pessimism of the ECB-Union approach: The task set consists
of 3 tasks {7’1,7’2,7’3} with Cl = 1, 02 = Cg =2and CRT = 1.
Equation (8.18) computes for R3 a total preemption cost of
6, whereas the actual cost is only 4.

Resilience Analysis

Resilience analysis as presented in Chapter 7 fits directly into the com-
putation of v%P1. We just need to replace the former CRPDVCBECE
bound by CRPD"** (Equation (7.9)):

N p— CRPD®*® | UCB;, res;, U ECBy, (8.19)
’ keaff(i,j) hehep(j)

In Chapter 7, we have discussed problems of the resilience analysis in case
of multiple preemptions by different tasks. Fortunately, Equation (8.19)
always considers nested preemption by all tasks with higher or equal
priorities. Hence, the computed CRPD bounds based on resilience are
safe upper bounds on the actual preemption cost.

Note that the resilience analysis is not applicable to the UCB-Union
approach where we have to assume that one ECB suffices to displace all
useful cache blocks.

8.3. Multiset Approaches

As discussed before, assigning the complete preemption cost to a task
instead of to a job of the task reduces further pessimism. In addition, we

106

8.3. Multiset Approaches

now have two approaches, ECB-Union and UCB-Union, at hand that can
correctly and precisely consider both sides, preempting and preempted
task. Thus, we extend ECB-Union and UCB-Union to the corresponding
multiset approaches.

Let Cost; ; denote the cost for a job of task 7; preempting task ;. This
cost may increase the response time of task 7; up to E;(Ry)Ek(R;) times
(for each k € aff(i,). The multiset M represents the cost for all possible
preemptions of 7; that may increase the response time of task 7;

M= J J Costy, (8.20)

keaff(i,j) \E;(Rkr)Er(R;)

’yi)n;ultiset is then given by the E;(R;) largest values in M.
Ej(Ri)
WP = CRT - > M| (8.21)

=1

where M! is the [-th largest value in M.

The multiset approaches then just differ by how Costy ; is computed.
Note that by construction, any multiset approach dominates its basic
counterpart.

ECB-Union Multiset

CostfP™ = CRPDV****® | UCBy, | | ECB,, (8.22)
hehep(j)

ECB-Union Multiset with Resilience

Cost{P™ 7 = CRPD*** | UCBy, resy, [| ECB, (8.23)
hehep(j)

UCB-Union Multiset

CostpP™ = CRPD""™ |J ucBy | ECB, (8.24)
heaff(k,j)

Figure 8.6 depicts a task set for which the multiset approaches (ECB-
Union Multiset and UCB-Union Multiset) outperform their basic counter-
parts. Assume that task 75 is executed at most once during the response

107

8. Preemption cost aware Response Time Analysis

time R, i.e., Fo(R3) = 1; task 71 at most once during the response time
Rs, ie., E1(R2) = 1; but 71 up to 3 times during the response time Ryg,
i.e.,, E1(R3) = 3. UCB-Union and ECB-Union derive the correct upper
bound of 2 for the preemption cost of a job of task 75. As E;(R3) = 3,
this value is assumed to contribute three times to the response time Rj
by Equation (8.2) resulting in total preemption overhead of 6. As this
upper bound 2 is added at most once to the multiset M, the multiset
approaches derive precise overall preemption cost of 2

UCB; ECB;

T1 - - - (a7b7_7_) (avbv_v_)
T2 -_____- (eva_v_) (6,f,—7—)
(£ NS N W (== kD) (4, k1)

o 2 4 6 8 10 12 14 16 18 20

Figure 8.6.: Pessimism of the ECB-Union/UCB-Union approaches.

8.4. Resource Access Protocols and
Preemption Cost

We now extend preemption cost aware response time equations to handle
mutually exclusive accesses to shared resources. We assume these accesses
to be scheduled according the stack resource protocol (SRP) (see [9] or
Section 3.1.3). Response time analysis is extended by a blocking value B;
denoting the mazimal blocking task 7; is subject to. Blocking time B; is
given by the maximum execution time for which any task & € Ip(¢) holds
a resource shared with a task j € hep(¢) with priority higher than or
equal to i (See Equation (3.19) in Section 3.1). Equation (8.25) includes
blocking factor in the preemption cost aware response time analysis.

{RﬁJj

J

Ri=Ci+Bi+

] Cty) (825)
vjehp(i)

This equation (or the multiset equivalent) has been proposed in pre-
vious work [18, 50, 81, 85]. Except for the ECB-Only approach [18§],
Equation (8.25) may be optimistic. Consider the example depicted in
Figure 8.7. Tasks 75 and 73 share a common resource z. Task 73 starts
to execute and enters its critical section at 1. When task 75 is released at

108

8.4. Resource Access Protocols and Preemption Cost

time 2, its execution is blocked by 73. Task 7 is released and executed at
time 3, preempts 735 during its access to the shared resource, and evicts
UCB ¢ and j. Hence, not only the non-preemptive execution time of the
access to the shared resource, but also the additional preemption delay
of task 71 preempting the resource access of 73 delays the finishing time
of 7. Note that the basic priority ceiling protocol (PCP) allows a task to
execute until it tries to access the shared resource and then blocks the
task. The stack resource protocol (SRP) directly prevents task activation
until all of its resources are available. We have based the example on the
latter one as it exhibit less preemptions and thus, is more apt to be used
in practise. Yet, explanation and formulas are valid for both protocols.

UCB; ECB;
T B === =)(ab, =)
72 B . ===)= =0, h)
] [T I (g = =) (B4, k1)
01 2 3 4 5 6 7 8 9 10 11 12
B Execution [Resource access [] Preemption Delay

Figure 8.7.: Ganttchart demonstrating the optimism of the naive blocking
time aware response time analyses: Preemption delay occurs
during resource access of task 73. Finishing time of 75 is
thus not only delayed by the B; but also by the additional
preemption delay 7 preempting 73.

Adding blocking factor B; is only sufficient if the preemption costs are
computed by the ECB-Only approach which assumes that each ECB evicts
the worst-case number of UCBs—no matter which task is preempted. All
other approaches also consider the preempted task. Thus, we have to
extend the set aff(i, j) of tasks that can affect the response of task 7; and
may be preempted by task 7;. Without accesses to a shared resource,
aff(i, j) is defined as the set of tasks with priority lower than 7; and higher
than or equal to 7;: aff(é, j) = Ip(j) Nhep(i). In case we allow accesses to
shared resources, we also have to consider tasks with priority lower than
7; that share a resource res guarded by a semaphore S,.s with ceiling
priority C(Sy.s) higher than or equal to 7; but lower than 7; (as we are
only interested in tasks that may be preempted by 7;). The set of these
tasks is denoted by b(, j) and defined as follows:

b(i,7) ={l | 3esires : 1 €1p(i) A C(Syes) € aff(i, j)} (8.26)

109

8. Preemption cost aware Response Time Analysis

where res is a resource, cs; res a critical section of task 7; accessing res
and S,..s the guarding semaphore. Using Equation (8.26), we can define
the extended set of affecting tasks aff (i,7) that includes the preemption
cost during task blocking:

aft® (i, j) = (Ip(j) N hep(4)) U b(4, j) (8.27)

Regarding the example from Figure 8.7, we see that response time analyses
using UCB-Ounly (8.5), UCB-Union (8.11), and ECB-Union (8.18) now
consider also the preemption cost of 71 preempting 73 for the computation
of RQ.

For the multiset approaches (8.24), (8.22) and (8.23), it remains to
discuss how often jobs of the blocking task may contribute to the response
time. Let 7, be the task blocking task 7;. The priority ceiling protocol
as well as the stack resource protocol ensure that each task is blocked at
most once by a task of lower priority. Hence, at most one job of 7, needs
to be considered. Furthermore, we can bound the number of jobs of 7;
during blocking access of 7, by E;(R;).

MbP = U U Costy,; | U U U Costy,;

keafl(i,j) \E;(Re)Ex(R:) keb(i,j) \E;(Ri)
(8.28)

110

Chapter 9

EVALUATION

It doesn't matter how beautiful your
theory is, it doesn’t matter how
smart you are. If it doesn't agree
with experiment, it's wrong.

Richard P. Feynman (1918 - 1988)

In this chapter we evaluate the precision of the methods and analyses
presented in this thesis. We compare the DC-UCBs analysis against the
original concept, the resilience analysis against the simple combination
of UCBs and ECBs (and against the unsound CRPD bound of [86]) and
also the different CRPD-aware response time analyses against each other.

We start with a discussion of the target architecture (ARMY) and the
set of benchmarks (Milardalen Benchmark suite, Papabench).

9.1. Target Architecture

We use an ARMYT processor!. The ARMY is a simple, low cost 32-bit
RISC architecture. It is used in a wide area of embedded systems such as
cell phones, game consoles, pocket calculators but also in environments
with hard real-time constraints such as in the automotive industry. It
features a three stage pipeline (fetch, decode and execute).

Thttp://www.arm.com/products/CPUs/families/ARM7Family . html

111

http://www.arm.com/products/CPUs/families/ARM7Family.html

9. Evaluation

Note that ARMYT does not refer to one specific processor but to a
family of processor designs (of which ARM7-TDMI is probably the most
important) that can be licensed by semiconductor companies. ARM
processor thus exist in different variation and with different caches. We
assume a frequency of 100 MHz and memory latency of 8us. We have
selected three cache configurations as depicted in Table 9.1. As only
benchmarks of limited sizes are available, we have also selected small
caches of 4kB and 8kB size. For the sake of simplicity, we consider

Table 9.1.: Selected cache configurations
Cache Type Sets Line Size Total Size

Config 1: direct-mapped 256 16 Byte 4kB
Config 2: 4-way LRU 64 16 Byte 4kB
Config 3: 8-way LRU 64 16 Byte 8kB

instruction caches only and assume perfect data caches, i.e., each data
access is served in 1 cycle. Although this assumption is unrealistic, it
allows to take precise information into account. For instance, the set of
ECBs is determined by the code size and does not require any further
analysis and the effective address of each memory access is static. We
furthermore assume that the remaining context switch costs, i.e., pipeline
and scheduler related costs are subsumed in the execution time bound of
each task. Due to its simple structure, the ARMY is considered timing
anomaly free [98]. Cache-miss penalty is thus determined solely by the
memory latency.

9.2. Benchmarks

The Mélardalen Benchmark Suite [34] is a set of 32 benchmarks dedicated
to the evaluation of WCET tools. It can be considered the standard
benchmark suite for timing analyses. It consists of various test programs
and covers a wide range of different programs especially designed for
embedded systems. Table 9.2 presents a subset of the Mélardalen bench-
mark suite with a short description of the tasks (according to [34]), code
sizes and execution time bounds. Note that the timing bounds are valid
for each cache configuration. Due to the limited sizes of the benchmarks,
no intra-task cache eviction occurs. In fact all but one benchmark com-
pletely fit into a cache of size 4kB. These programs however do not form
a meaningful task set. We therefore also included PapaBench [65], a set

112

9.3. DC-UCB Analysis

Table 9.2.: Milardalen Benchmark Suite

Task Description Code Size | WCET
minmax | Derives min/max of set of integers 608B 298 s
insertsort Insertion sort on array of size 10. 384B 223 s
fibcall Tterative Fibonacci calculation). 2568 | 117us
fac | Non-recursive Faculty Computation 256 B 67us

bs Binary search (array of size 15). 320B | 1.46ms
bsort100 Bubblesort program. 544B | 11.3ms
ns Test for deeply nested loops 576 B 637us
matmult Matrix multiplication (20x20). 864B | 8.5ms
fir Finite impulse response filter. 928B | 465us

cre Cyclic redundancy check . 1216B | 2.7ms

select Selects Nth largest number. 1280B 75Tus
gsort-exam | Non-recursive quick sort algorithm. 1440B 800us
sqrt Square root by Taylor series. 3680B | 2.1ms

qurt | Computation of quadr. equations. 41608 | 2.9ms

of benchmarks based on a real-time application, the control software of
an unmanned aircraft vehicle. It consists of a set of tasks distributed
statically over two processors (MCUQ and MCU1) and executed either in
manual or automatic flight control mode. For the evaluation, we have
selected the largest of the possible configurations of PapaBench bench-
marks, i.e., tasks in manual mode on MCUQ. Table 9.3 presents a short
description of these tasks, the periods of the tasks (according to [65]),
code size and execution time bound. Again, timing bounds are valid for
each cache configuration (due to the limited sizes of the benchmarks). All
benchmarks have been compiled using the gcc arm cross-compiler?. The
execution time bounds have been derived by the aiT timing analyzer®
for ARMT7. The ARM-Processor has no floating point unit, floating
point arithmetic is instead implemented in software. Tasks that rely on
such computations, squrt for instance, require library functions and thus
have an increased code size.

9.3. DC-UCB Analysis

We start the evaluation with the analysis of the preempting task and
identify the improvement of the DC-UCB analysis compared to the
original definition of useful cache blocks [49]. The results of the DC-UCB
analysis strongly depend on the precision of the cache analysis. If no

2http://www.gnuarm. com/
Shttp://www.absint.com/

113

http://www.gnuarm.com/
http://www.absint.com/

9. Evaluation

Table 9.3.: Papabench Benchmark Suite (Processor MCU0, Automatic

Mode)
Task Description Period | Priority | Code Size | WCET
I5 | interrupt spi 1 50ms 1 304B 129us
16 | interrupt spi_ 2 50ms 144B 681s
T12 stabilization 50ms 29768 3.2ms
I4 | interrupt _modem | 100ms 2888 148us

53608 5.9ms
3008B 3ms

192B 105ps
3296B 3.4ms
1232B 82618

T11 reporting task 100ms
T10 | receive_gps_data | 250ms
T7 | link fbw send | 250ms
T6 climb_ control 250ms
T5 | altitude_control | 250ms

© 00~ O U WN

memory accesses can be classified as always hit, the set of DC-UCBs will
be empty. To avoid such an unfair comparison, we have employed virtual
inlining and loop unrolling to improve the precision of the cache analysis.
Figure 9.1 and Figure 9.2 show the maximal number of UCBs/DC-UCBs

Pos
.

250
200]
150
100
: [l
< G G Gy %, %

s, s,
- %, 9@0(\ (A 9(/'2‘

C— Number of UCBs EXXX Number of DC-UCBs

Figure 9.1.: Maximal number of UCBs/DC-UCBs; Milardalen Bench-
marks

at some program point of each task. Note that results are the same for
all cache configurations as no intra-task cache eviction occurs.

In general, the number of UCBs and DC-UCBs strongly depend on the
effectiveness of the temporal locality of a cache and thus, on the structure
of the tasks: multiple function invocations and loop structures result in a
high number of UCBs. Straight-line code on which each instruction is
executed at most once results in a low number of UCBs. While nearly
all tasks from Maélardalen Benchmark suite contain loops, only 3 of the

114

9.4. Resilience Analysis

120

100

80

60

40

20

0 e PR R PR R, e | PR R e S
g G @9 % % /) % s % %

C— Number of UCBs EXXX Number of DC-UCBs

Figure 9.2.: Maximal number of UCBs/DC-UCBs; PapaBench

9 tasks from PapaBench do. This explains the stronger variation of the
results for PapaBench and the low number of UCBs for some tasks.

The original concept of useful cache blocks is highly pessimistic, es-
pecially for larger tasks that spent considerable execution time in loops
(squrt, qurt and T10, T12). The concept of definitely-cached useful cache
blocks reduces the bounds by up to 80%. Improvement decreases as
the overall number of useful cache blocks decrease. Note that due to
spatial locality, i.e., cache line size larger than instruction size, nearly
each memory block is useful at some point in the task.

9.4. Resilience Analysis

Figure 9.1 and Figure 9.2 show the preemption costs only considering
the preempted task. We now combine these bounds with the effect of
the preempting task and evaluate the precision of the different methods.
We therefore compare the resilience analysis to the bounds on the cache-
related preemption delay based on i) the set of UCB (Equation (5.2)), ii)
the simple combination of UCBs and ECBs (Equation (7.2)) and iii) the
unsound combination by Tan and Mooney (Equation (5.9)). Note that
all results are based on the set of definitely cached UCBs.

In our first setting, we use benchmarks from the Mélardalen benchmark
suite to evaluate the precision of the different methods in case of a single
preemption. We have selected fibcall (smallest number of ECBs) and
qurt (highest number of ECBs) as the preempting tasks. Figure 9.3
shows the results. If tasks are preempted by fibcall, resilience analysis

115

preempted by fibcall

60

9. Evaluation

——
REORRRRARS
———
T
BRESEESEEEA]
)
Q o
5 % @
8 ¢
— <
S -
= w N
J . = = <
t =5 m 3 mm o -
3 o= g I~ 3
=) 3 & & o
-d > " Y o
2 5 » < o 2
° o0 & o
19 4= ° L 9]
2 n (2 > +
E 2 2 < = R 2
g 2 0O 2 £
g 2. g
ER B
19 2 o 3 2 2
SR = Ry
= & ELA B g RO
g8 ® &
— 2 < O — 2
Lo =
=]
B8 —
o I 0 ® -
R 53] b
- : m o
- f@o s fQo
N >
& A
& <
[=NelololNole) jeleBoloNoloNo)
0¥ MmN S F N~

Malardalen Bench-

)

isses

Exd Min (UCB,ECB)

= UCB
(b) Cache Configuration 3:

[Resilience Analysis
EXXR Tan’s Analysis

Bound on the number of additional m
marks

Figure 9.3.
116

9.4. Resilience Analysis

preempted by I5

25
20
15
10
5
0 - Inzzez | -
% 2, 2 2 2
25
20
15
10
5
0 N i o | e p—
‘% 2, 2 2, 2
C— Resilience Analysis &2 Min (UCB,ECB)
EXXX Tan’s Analysis = UCB
(a) Cache Configuration 2:
preempted by I5
25
20
15
10
5
) oz i | o | L m fozes |
N
preempted by T12
25
20
15 W
10
5
0 XEcmm KE R X
“ 0, g, a5 %
C— Resilience Analysis &z Min (UCB,ECB)
EXXX® Tan’s Analysis s UCB
(b) Cache Configuration 3:
Figure 9.4.: Bound on the number of additional misses; PapaBench

117

9. Evaluation

is able to prove in all but two cases (sgrt and qurt) that no additional
misses occur. All other analyses are more pessimistic. Only for qurt,
Tan’s analysis derives a smaller but possibly optimistic bound than the
bound derived by the resilience analysis. In this scenario, the results are
independent of the associativity, i.e., results do not vary when changing
the associativity from 4 to 8. Tasks qurt evicts more useful cache block
and thus, preemption by task qurt results in higher values. Only the
resilience analysis benefits from a higher associativity (see for instance
select and gsortezam). Results of the other analyses do not change, while
the bound on the number of additional misses based on the resilience
analysis drops from 31 to 2 (select) and from 36 to 5 (gsortezam).

In the second setting, we assume that I'5, resp. T'12, preempts any task
with lower priority. Figure 9.3 shows the result. We can draw similar
conclusion from this scenario. Resilience analysis substantially improves
the bounds on the number of additional misses. For instance, resilience
analysis derives a bound of 10 additional misses for task T5 and cache
configuration 2. All other analyses assume that all UCBs (20) are evicted.
Results improve even further for cache configuration 3; resilience analysis
is able to prove that no additional misses occur whereas bounds of the
other analysis do not change.

9.5. CRPD Aware Scheduling Analysis

As the Mélardalen benchmarks do not form a meaningful task set, we
evaluate the precision of the various CRPD-aware response time analyses
for the PapaBench benchmark suite and for randomly generated task sets.
We have derived the response times for each task and each cache configu-
ration based on the different analyses presented in Chapter 8. Bounds on
the response time of task T10 and T5 for the different approaches and
different cache configurations are shown in Figure 9.5. Due to the low
processor utilization of the task set, only very few distinct preemption
scenarios can occur and each task preempts a lower priority task at most
once. Hence, the multiset approaches result in the same response time
as their basic counterparts. We have therefore omitted theses results in
the graph. Despite the low processor utilization and the limited num-
ber of UCBs (compared to Mélardalen Benchmarks), preemption cost
increase the response time by up to 10% (compared to response time
ignoring preemption cost). In all cases, ECB-Union performs best and,
if applicable, resilience analysis improves the results even further. The
resilience analysis is also the only analysis that benefits from an increased

118

9.5. CRPD Aware Scheduling Analysis

T10
720
700 N N N
680 3
4 660
640
620
600
o, o, o,
% K K
ke ° 54
T5
1100
1050
1000
4 950
900
850
800 o o
. %
® &
> 5
— No Preemption Cost B ECB-Union E==<Y UCB-Only
EXXx® ECB-Union-Resil mmmm UCB-Union rzzz2 ECB-Only

Figure 9.5.: Bounds on the response time of T5 and T10 (in us)

associativity.

The lowest bounds are given for cache configuration 1: in case of direct-
mapped caches, one ECB evicts at most one useful cache block whereas
in case of an k-associative cache, up to k additional misses may occur.

9.5.1. Randomly Generated Task Sets

In addition to the evaluation based on the concrete set, we also evaluated
the precision of the different scheduling analyses based on a large number
of randomly generated task sets with varying cache configurations and
varying task-set parameters. The task sets were generated using the
following setting:

e Default number of tasks was 10.

e Task utilizations were randomly generated (according to a uniform
distribution using the UUnifast [16] algorithm).

e Task periods were generated according to a log-uniform distribution
(minimal possible period of 5ms and maximal possible period of

119

9. Evaluation

500ms as common in automotive and aerospace hard real-time
applications).

e Task execution times were set according to the generated utilization
and period: C; = U; - T;.

e Implicit task deadlines, i.e., D; = T;. Note that results for con-
strained deadlines, i.e., D; € [2C;;Ty] are similar (with fewer task
sets deemed schedulable by all approaches).

e Priorities were assigned in deadline monotonic order.

We have selected cache configuration 1, i.e., direct-mapped cache with
256 cache sets. Preemption costs were generated using the following
parameters (default values given in parentheses):

e The cache-miss penalty (CRT = 8us).

e Cache usage (of each task in isolation), i.e., the number of ECBs,
was generated using the UUnifast [16] algorithm (assuming a total
cache utilization CU = 10). In such a case, UUnifast may produce
values larger than 1 which means a task fills the whole cache. We
assumed the ECBs of each task to be consecutively arranged starting
at a random cache set s € [0; S —1], i.e., from s to s+|ECB| mod S
(where S is the number of cache sets).

e Number of UCBs for each task was generated according to a uniform
distribution ranging from 0 to the number of ECBs times a reuse
factor: [0, RF - |[ECB]J|. The factor RF (= 30) can be adapted
to resemble different types of applications (for instance from data
oriented applications usually with little reuse to control-based ap-
plications with heavy cache reuse).

Staschulat’s approach relies on the assumption that for the ¢-th preemption
only the i-th highest number of UCBs has to be considered. To mimic
such a reduction, we assumed that the number of UCBs decrease by one
per preemption. The UCB computation for the benchmarks and other
measurements [14] indicate that only for very high number of preemptions,
a reduced number of UCBs can be assumed. Hence, reducing the number
of UCBs by one per preemption must be considered optimistic and in
favor of Staschulat’s approach (Equation (8.17)).

In each experiment, we have varied the task-set utilization (ignoring
preemption cost) from 0.025 to 0.975 in steps of 0.025 and generated 1000

120

9.5. CRPD Aware Scheduling Analysis

task sets for each utilization value. Schedulability of those task set was
then determined using the different CRPD aware response time analyses.

All graphs show the results of each approach except for the resilience-
based analyses. In this section, we are only interested in the improvement
due to improved response time analyses, not due to different CRPD
analyses (therefore also cache configuration 1). We also added a necessary
schedulability test by means of simulation. We simulated execution of
tasks starting from near simultaneous release, i.e., task were released
in order of priority with lowest priority first to increase the number of
preemptions. The task set was deemed unschedulable if at least one
task misses its deadline. This results in an upper bound on the task set
schedulability including preemption cost.

Base Configurations

The results for the base configurations is depicted in Figure 9.6. For low

1000 “\t:?uff

—+— No Preemption Cost
Simulation-UB
---%--- Combined
B ECB-U Mult
UCB-U Mult
ECB-Union
-- -@-- UCB-Union
- Petters
-4 UCB-Only
—— ECB-Only
Staschulat

*

800

=)

=}

[S}]
I

400 -

Schedulable Tasksets

200

Utilization

Figure 9.6.: Evaluation of the base configuration. Number of task sets
deemed schedulable at the different total utilizations.

utilizations, all methods except ECB-Only and Staschulat’s approach
deem most task sets schedulable whereas for high utilizations, nearly all
task sets are deemed unschedulable by all approaches. For utilizations
from 0.4 to 0.8, ECB-Union and the new multiset approaches strongly
improve upon previous methods by about 20%. Note that the task
utilizations do not include preemption cost.

121

9. Evaluation

Varying Parameter

This section evaluates the sensitivity of the response time analyses to a
variation of the parameters. We have fixed all parameters (to the values
of the base configuration) except one and varied the remaining parameter.
We used the weighted schedulability measure W, (p) [10] to show the
variation of the results. The weighted schedulability measure W, (p) [10]
for schedulability test y is a function of a parameter p. It combines the
data for all task sets generated for a specific value of p weighted by the
utilization of each task set. Let S, (7,p) be the binary result (1 or 0) of
schedulability test y for a task set 7 and parameter value p then:

Wy(p) = Q_u(r) - Sy(r,p))/ D ulr) (9-1)
V1

VT

where u(7) is the utilization of task set 7. We present results for varying
cache utilization, cache reuse and number of tasks as those are the
predominant parameters.

Cache Utilization has the strongest impact on the total cache-related
preemption delay. The two extremes are i) all tasks fit into the cache, i.e.,
cache utilization is less than one and ii) each tasks completely fills the
cache. In the first case, no additional misses due to preemption occur,
and in the second case, the overall preemption delay solely depends on
the number of UCBEs, i.e., the cache reuse factor. Figure 9.7 shows the
weighted schedulability measure for each approach as a function of the
cache utilization. At a low cache utilization, only very few UCBs are
evicted as the set of ECBs of each task is low. We observe that the
UCB-Union (that computes an upper bound on the number of UCBs) is
less pessimistic than the ECB-Union approach. With increasing cache
utilization, results of the ECB-Union approach improve and finally out-
perform the UCB-Union approach: As each task uses a larger proportion
of the cache, it proves beneficial to consider the precise set of UCB and
bounding the set of ECBs (as done by ECB-Union), instead of using the
precise number of ECBs and bound the number of possibly evicted UCBs
(UCB-Union). The Multiset approaches perform significantly better than
the basic counterparts (except for Staschulat’s approach), but show a sim-
ilar dependency with respect to a change of the cache utilization. Results
of ECB-Union Multiset improve (and finally outperform) UCB-Union
Multiset approach as the cache-utlization increases.

122

9.5. CRPD Aware Scheduling Analysis

Varying Cache Utilization

—+— No Pre-emption Cost
Simulation-UB

---%-- Combined

& ECB-U Mult

UCB-U Mult
ECB-Union

-- -@-- UCB-Union

—#-- Petters

~---4-—- UCB-Only

—%— ECB-Only
Staschulat

Weighted Measure

i
i

o & % o)
Cache Utilization

Figure 9.7.: Weighted schedulability measure; varying cache utilization
from 0 to 20, in steps of 2.

Cache-Reuse influences the overall preemption delay in a similar way
as the cache-utlization. If no blocks are reused, i.e., the set of UCB is
empty for each task, no additional misses due to preemption occur. If all
blocks are reused, the preemption delay solely depends on the number
of ECBs. Figure 9.8 shows the weighted schedulability measure for each
approach as a function of the reuse factor. At a low reuse factor, only
very few cache blocks are useful. Considering the precise number of useful
cache blocks proves beneficial in this situation and hence, ECB-Union
outperforms UCB-Union. The opposite applies with an increased cache
utilization. Again, the Multiset counterparts show the same behavior
than the basic approaches. As the cache-reuse only affects the number of
UCBs, the performance of the ECB-only approach is constant.

Number of Tasks also influences the overall schedulability. As the num-
ber of tasks increase, also the number of preemptions and so, the overall
preemption cost increase. See Figure 9.9 for the weighted schedulability.
Especially Staschulat’s approach shows a very strong performance degra-
dation as more jobs need to be considered. Note that the improvement

123

9. Evaluation

Varying UCB Percentage

—+— No Pre-emption Cost
Simulation-UB
---%-- Combined
- ECB-U Mult
UCB-U Mult
ECB-Union
-- @-- UCB-Union

O —#&-- Petters

"i“ ~---4-—- UCB-Only

® . —v— ECB-Only
0.6 DN Staschulat

Weighted Measure

0 | | | | | | | | | J

© o o % % % % v % % Y,
UCB Percentage

Figure 9.8.: Weighted schedulability measure; varying reuse factor from
0% to 100%, in steps of 10%.

of UCB-Union with respect to ECB-Union can be explained by the cache
utilization. We have seen that UCB-Union performs best in case of low
cache utilization (See Figure 9.7). As we have fixed the cache-utilization
but increased the number of tasks, it becomes less likely that ECBs map
to the UCBs of the preempting tasks. This resembles a situation with
lower cache utilization.

124

9.5. CRPD Aware Scheduling Analysis

Varying Number of Tasks

—+— No Pre-emption Cost
****** Simulation-UB
---%-- Combined
ECB-U Mult
UCB-U Mult
ECB-Union
UCB-Union
Petters
UCB-Only
ECB-Only
Staschulat

Weighted Measure

Number of Tasks

Figure 9.9.: Weighted schedulability measure; varying number of tasks
from 2 = 2! to 2° = 64.

125

Chapter 10 wm

CONCLUSIONS

Science is like sex: sometimes

something useful comes out, but that

is not the reason we are doing it.
Richard P. Feynman (1918 - 1988)

In preemptively scheduled systems with caches, the traditional interface
between timing analysis and scheduling analysis must be considered
outdated. The cache-related preemption delay may substantially prolong
a task’s execution time and influence the system’s performance. Ignoring
the CRPD is not an option, subsuming CRPD within the execution time
bound is imprecise.

10.1. Summary of Contributions

This thesis presents a formal definition of the cache-related preemption
delay, (including an analysis of the limitations of a separate CRPD
computation), analyses to bound the CRPD (for direct-mapped caches,
for LRU caches, based on preempted task and preempting task), and
shows how to correctly account for the CRPD in schedulability analysis
for fized-priority preemptive systems. Evaluation has shown that the new
methods strongly improve upon former approaches.

The cache miss penalty is unbounded for processors with timing anoma-
lies and domino effects, the number of additional misses due to a single

127

10. Conclusions

preemption is unbounded in case of FIFO and PLRU caches. Hence,
a separate CRPD computation is only applicable to timing composable
architecture or compositional architectures with constant-bounded effect
and direct-mapped or LRU caches.

The concept of definitely-cached useful cache blocks removes substantial
pessimism caused by double-counting of potential cache misses. Instead
of deriving absolute bounds on the preemption cost, it suffices to consider
the over-approximation of a preceding timing analysis and to derive a
bound on the number of additional misses with respect to the worst-case
execution time bound.

To improve the CRPD bounds, the effect of the preempting task can be
taken into account. This, however, contains several pitfalls: the number
of cache sets used by the preempting task is not a valid bound on the
number of additional misses due to preemption in case of set-associative
caches. We have corrected prior optimistic bounds and introduced in this
thesis the concept of resilience of a useful cache block. The resilience is a
measure for the disturbance of a preempting task a useful cache block of
the preempted task may survive.

CRPD aware response time analysis needs to correctly account for
nested preemption. This is comparably simple if one focuses on one side
only, i.e., only on the preempting or alternatively only on the preempted
task. To incorporate both sides and thus to include precise CRPD bounds,
one can either consider the precise effect of the preempting task and upper
bound the impact to all preempted tasks (UCB-Union [86]) or consider
the precise impact on a preempting task and upper bound the effect of all
possibly preempting tasks (ECB-Union). These analyses can be improved
even further by considering the total effect of a preempting task on the
response time of another task and not just by assigning each job of the
preempting task a preemption delay (multiset approaches). Last but
not least, we have shown how to extend the CRPD-aware response time
analyses to systems with mutual exclusive access to shared resources.

Each of the new methods presented in this thesis strongly improve upon
prior analysis. Furthermore, we have proven the correctness of the CRPD
bounds based on definitively-cached useful cache blocks and resilience.

128

10.2. Future Work

10.2. Future Work

Despite the undeniable impact of the cache-related preemption delay to
the overall performance of preemptively scheduled systems, most research
still abstracts from this low-level behavior and assumes a single execution
time bound. It remains to determine how pessimistic this assumption is
and how results may change when considering preemption delays. Some
scheduling schemes such as deferred preemption, preemption thresholds
or FP-FIFO scheduling may not only allow for a precise integration, but
also for an minimization of the preemption cost. An optimal selection of
preemption points or priority levels can reduce the preemption overhead
and thus increase the schedulability of such systems.

Cache partitioning, cache locking or scratchpads can be alternatives
to standard caches as assumed in this thesis. A comparison of these
methods may give a system designer valuable information about which
implementation to use in case of preemptive scheduling. Also different
cache layout techniques influence the preemption cost. Finding an optimal
or at least near-optimal layout promises to improve the schedulability.

10.3. Conclusions

For hard real-time systems, preemptive scheduling is not only an optional
design choice but often unavoidable. For instance, tasks may miss dead-
lines if scheduled non-preemptively or system interrupts are required and
can not be disabled. A correct and sound computation of the context
switch cost and the cache-related preemption delay is thus a prerequisite
for static timing analysis of preemptively scheduled systems with caches.
For any practical use, however, CRPD bounds must not only be sound
but also precise. Strongly underutilized systems are a waste of resource
and may lead to unacceptable hardware costs. As we have accomplished
to determine provably sound and precise CRPD bounds, the applicability
of static timing analysis has been extended to preemptively scheduled
systems.

129

[1]

3]

4]

[5]

BIBLIOGRAPHY

Bryan Ackland, Alex Anesko, Douglas Brinthaupt, Steven J.
Daubert, Asawaree Kalavade, Jiirgen Knobloch, Ed Micca, Mallik
Moturi, Christopher J. Nicol, Jay H. O’Neill, Joe Othmer, Eduard
Sackinger, Kanwar J. Singh, J. Sweet, Christopher J. Terman, and
Joseph Williams. A single-chip, 1.6-billion, 16-b MAC/s multi-
processor DSP. IEEE Journal of Solid-state Circuits, 35:412-424,
2000.

Sebastian Altmeyer and Claire Burguiére. A new notion of useful
cache block to improve the bounds of cache-related preemption
delay. In Proceedings of the 21st Euromicro Conference on Real-
Time Systems, (ECRTS ’09), pages 109-118, July 20009.

Sebastian Altmeyer, Robert I. Davis, and Claire Maiza. Cache
related pre-emption aware response time analysis for fixed priority
pre-emptive systems. In Proceedings of the 32nd IEEE Real-Time
Systems Symposium, (RTSS ’11), pages 261-271, December 2011.

Sebastian Altmeyer, Robert I. Davis, and Claire Maiza. Improved
cache related pre-emption aware response time analysis for fixed
priority pre-emptive systems. Real-Time Systems, (to appear), 2012.

Sebastian Altmeyer and Gernot Gebhard. WCET analysis for pre-
emptive systems. In Proceedings of the 8th International Workshop
on Worst-Case Execution Time (WCET) Analysis, pages 105-112,
July 2008.

Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience
analysis: Tightening the crpd bound for set-associative caches. In
Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on
Languages, compilers, and tools for embedded systems, (LCTES
'10), pages 153-162, April 2010.

131

BIBLIOGRAPHY

7]

8

9

[10]

[11]

[12]

[13]

[14]

[15]

132

Sebastian Altmeyer and Claire Maiza Burguiére. Cache-related
preemption delay via useful cache blocks: Survey and redefinition.
J. Syst. Archit., 57:707-719, August 2011.

Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and
Andy J. Wellings. Applying new scheduling theory to static priority
pre-emptive scheduling. Software Engineering Journal, 8:284-292,
1993.

Theodor P. Baker. Stack-based scheduling for realtime processes.
Real-Time Systems, 3:67-99, April 1991.

Andrea Bastoni, Bjorn Brandenburg, and James Anderson. Cache-
related preemption and migration delays: Empirical approximation
and impact on schedulability. In 6th International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications,
(OSPERT ’10), pages 33-44, July 2010.

Swagato Basumallick and Kelvin Nilsen. Cache issues in real-time
systems. In Proceedings of the First ACM SIGPLAN Workshop
Languages, Compilers, and Tools for Real-Time Systems, (LCTES
’94), June 1994.

Christoph Berg. PLRU cache domino effects. In 6th Intl. Workshop
on Worst-Case Execution Time (WCET) Analysis, July 2006.

Marko Bertogna, Giorgio Buttazzo, Mauro Marinoni, Gang Yao,
Francesco Esposito, and Marco Caccamo. Preemption points place-
ment for sporadic task sets. In Proceedings of the 22nd FEuromicro
Conference on Real-Time Systems, (ECRTS ’10), pages 251-260,
2010.

Marko Bertogna, Orges Xhani, Mauro Marinoni, Francesco Espos-
ito, and Giorgio Buttazzo. Optimal selection of preemption points
to minimize preemption overhead. In Proceedings of the 23rd Eu-
romicro Conference on Real-Time Systems, (ECRTS ’11), pages
217227, July 2011.

Enrico Bini, Giorgio Buttazzo, and Giuseppe Buttazzo. A hyper-
bolic bound for the rate monotonic algorithm. In Proceedings of
the 13th Furomicro Conference on Real-Time Systems, (ECRTS
’01), pages 5969, July 2001.

BIBLIOGRAPHY

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

Enrico Bini and Giorgio C. Buttazzo. Measuring the performance
of schedulability tests. Real-Time Systems, 30:129-154, 2005.

Claire Burguiére, Jan Reineke, and Sebastian Altmeyer. Cache-
related preemption delay computation for set-associative caches
- pitfalls and solutions. In 9th Intl. Workshop on Worst-Case
Ezecution Time (WCET) Analysis, July 2009.

Jose Busquets-Mataix, Juan Serrano, Rafael Ors, Pedro Gil, and
Andy Wellings. Adding instruction cache effect to schedulability
analysis of preemptive real-time systems. In Proceedings of the 2nd
IEEE Real-Time Technology and Applications Symposium, (RTAS
'96), pages 204-214, April 1996.

Giorgio C. Buttazzo. Hard Real-time Computing Systems: Pre-
dictable Scheduling Algorithms And Applications (Real-Time Sys-
tems Series). Springer-Verlag TELOS, Santa Clara, CA, USA,
2004.

Patrick Cousot and Radhia Cousot. Static determination of dynamic
properties of programs. In Proceedings of the Second International
Symposium on Programming, pages 106-130, April 1976.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, (POPL ’77), pages 238-252, 1977.

Patrick Cousot and Nicolas Halbwachs. Automatic discovery of
linear restraints among variables of a program. In Proceedings
of the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, (POPL *78), pages 84-96, 1978.

Brian A. Davey and Hilary A. Priestley. Introduction to Lattices
and Order (2. ed.). Cambridge University Press, 2002.

Robert Davis, Nick Merriam, and Nigel Tracey. How embedded
applications using an rtos can stay within on-chip memory limits.
In Proceedings of the Work in Progress and Industrial Experience
Session, Euromicro Conference on RealTime Systems, pages 43-50,
June 2000.

133

BIBLIOGRAPHY

[25]

[26]

27]

(28]

[29]

[30]

31]

32]

33]

[34]

134

Robert Davis, Attila Zabos, and Alan Burns. Efficient exact schedu-
lability tests for fixed priority real-time systems. IEFE Trans.
Comput., 57:1261-1276, September 2008.

Peter J. Denning. The locality principle. Commun. ACM, 48:19-24,
July 2005.

Radu Dobrin and Gerhard Fohler. Reducing the number of pre-
emptions in fixed priority scheduling. In Proceedings of the 16th
Euromicro Conference on Real-Time Systems, ECRTS ’04, pages
144-152, July 2004.

Stephen A. Edwards and Edward A. Lee. The case for the precision
timed (PRET) machine. In Proceedings of the 44th annual Design
Automation Conference, (DAC ’07), pages 264-265, 2007.

Andreas Ermedahl. A Modular Tool Architecture for Worst-Case
Ezecution Time Analysis. PhD thesis, Universitatis Upsaliensis,
2003.

Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Flo-
rian Martin, Michael Schmidt, Henrik Theiling, Stephan Thesing,
and Rheinhard Wilhelm. Reliable and Precise WCET Determina-
tion for a Real-Life Processor. In Embedded Software Workshop,
volume 2211, pages 469-485, 2001.

Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Mar-
tin Alt. Cache behavior prediction by abstract interpretation. Sci.
Comput. Program., 35(2-3):163-189, 1999.

Daniel Grund and Jan Reineke. Precise and efficient FIFO-
replacement analysis based on static phase detection. In Proceedings
of the 22nd Euromicro Conference on Real-Time Systems, (ECRTS
’10), pages 155-164, July 2010.

Daniel Grund and Jan Reineke. Toward precise PLRU cache analysis.
In Bjorn Lisper, editor, Proceedings of 10th International Workshop
on Worst-Case Execution Time (WCET) Analysis, pages 28-39,
July 2010.

Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Bjoérn Lisper.
The Maélardalen WCET benchmarks - past, present and future.
In Proceedings of the 10th International Workshop on Worst-Case
Ezecution Time Analysis, pages 137-147, July 2010.

BIBLIOGRAPHY

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Reinhold Heckmann, Christian Ferdinand, Absint Angewandte, and
Informatik Gmbh. Worst-case execution time prediction by static
program analysis. In 18th International Parallel and Distributed
Processing Symposium, (IPDPS ’04), pages 26-30, April 2004.

Reinhold Heckmann, Marc Langebach, Stephan Thesing, and Rein-
hard Wilhelm. The influence of processor architecture on the design
and the results of wcet tools. Proceedings of the IEEE, 91(7):1038—
1054, 2003.

John L. Hennessy and David A. Patterson. Computer architecture
(2nd ed.): a quantitative approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1996.

Marc D. Hill and Alan J. Smith. Evaluating associativity in cpu
caches. IEEFE Trans. Comput., 38:1612-1630, December 1989.

Niklas Holsti, Jan Gustafsson, Guillem Bernat, Clément Ballabriga,
Armelle Bonenfant, Roman Bourgade, Hugues Cassé, Daniel Cordes,
Albrecht Kadlec, Raimund Kirner, Jens Knoop, Paul Lokuciejewski,
Nicholas Merriam, Marianne de Michiel, Adrian Prantl, Bernhard
Rieder, Christine Rochange, Pascal Sainrat, and Markus Schordan.
WCET 2008 — Report from the Tool Challenge 2008. In Proceedings
of the 8th Intl. Workshop on Worst-Case Ezxecution Time (WCET)
Analysis, pages 149-171, July 2008.

Kevin Jeffay and Donald L. Stone. Accounting for interrupt handling
costs in dynamic priority task systems. In Proceedings of the 14rd
IEEFE Real-Time Systems Symposium, (RTSS ’93), pages 212-221,
December 1993.

Mathai Joseph and Paritosh Pandya. Finding Response Times in
a Real-Time System. The Computer Journal, 29(5):390-395, May
1986.

Martin Kaiser. Bounding task switch costs by cache analysis. Mas-
ter’s thesis, University of Saarland, 2009.

John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis
frameworks. Acta Inf., 7:305-317, 1977.

Daniel Késtner and Stephan Wilhelm. Generic control flow recon-
struction from assembly code. In Proceedings of the joint conference
on Languages, compilers and tools for embedded systems: software

135

BIBLIOGRAPHY

[45]

[46]

147]

(48]

[49]

[50]

[51]

52|

136

and compilers for embedded systems, (LCTES/SCOPES ’02), pages
46-55, June 2002.

Ukur Keskin, Reinder J. Bril, and Johan J. Lukkien. Exact response-
time analysis for fixed-priority preemption-threshold scheduling.
In Work-in-Progress Session Emerging Technologies and Factory
Automation, pages 1-4, September 2010.

Gary A. Kildall. A unified approach to global program optimiza-
tion. In Proceedings of the 1st annual ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, (POPL ’73),
pages 194-206, 1973.

Sung-Kwan Kim, Sang Lyul Min, and Rhan Ha. Efficient worst
case timing analysis of data caching. In Proceedings of the 2nd
IEEE Real-Time Technology and Applications Symposium, (RTAS
’96), pages 230-240, April 1996.

David B. Kirk and Jay K. Strosnider. Smart (strategic memory
allocation for real-time) cache design. In Proceedings of the 20st
IEEE Real-Time Systems Symposium, (RTSS ’90), pages 322-330,
December 1990.

Chang-Gun Lee, Joosun Hahn, Sang Lyul Min, Rhan Ha, Seongsoo
Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analy-
sis of cache-related preemption delay in fixed-priority preemptive
scheduling. In Proceedings of the 17th IEEE Real-Time Systems
Symposium, (RTSS ’'96), pages 264-274, December 1996.

Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan
Ha, Seongsoo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang
Kim. Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling. IEEE Trans. Comput., 47(6):700-713, 1998.

John P. Lehoczky, Lui Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average case
behavior. In Proceedings of the 11th IEEE Real-time Systems
Symposium, (RTSS ’89), pages 166-171, December 1989.

Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Performance
FEvaluation, 2(4):237 — 250, 1982.

BIBLIOGRAPHY

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Chung Laung Liu and James W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environment. J. ACM,
20(1):46-61, January 1973.

Tiantian Liu, Minming Li, and Chun Xue. Instruction cache locking
for multi-task real-time embedded systems. Real-Time Systems,
48:166-197, 2012.

Thomas Lundqvist and Per Stenstrom. Timing anomalies in dy-
namically scheduled microprocessors. In Proceedings of the 20th
IEEE Real-Time Systems Symposium, (RTSS ’99), pages 12-22,
December 1999.

Florian Martin. PAG—an efficient program analyzer generator.
International Journal on Software Tools for Technology Transfer,
2(1), 1998.

Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian
Ferdinand. Analysis of loops. In Kai Koskimies, editor, CC, volume
1383 of Lecture Notes in Computer Science, pages 80-94. Springer,
1998.

Florian Martin Martin, Martin Alt, Reinhard Wilhelm, and Chris-
tian Ferdinand. Analysis of loops. In Proceedings of the 7th In-
ternational Conference on Compiler Construction, (CC 98), pages
80-94, August 1998.

Steven Martin, Pascale Minet, and Laurant George. Non pre-
emptive fixed priority scheduling with fifo arbitration: uniprocessor
and distributed cases. Technical report, INRIA Rocquencourt,
December 2007.

Patrick Meumeu Yomsi and Yves Sorel. Extending rate monotonic
analysis with exact cost of preemptions for hard real-time systems.
In Proceedings of the 19th FEuromicro Conference on Real-Time
Systems, (ECRTS ’07), pages 280-290, July 2007.

Frank Mueller. Compiler support for software-based cache parti-
tioning. SIGPLAN Not., 30(11):125-133, 1995.

Frank Mueller. Timing analysis for instruction caches. Real-Time
Systems, 18:209-239, 2000.

137

BIBLIOGRAPHY

[63]

[64]

[65]

(6]

(67]

[68]

[69]

[70]

[71]

138

Frank Mueller and David B. Whalley Marion Harmon. Predicting
instruction cache behavior. In ACM SIGPLAN Workshop on Lan-
guage, Compiler, and Tool Support for Real-Time Systems, 1994.

Hemendra Singh Negi, Tulika Mitra, and Abhik Roychoudhury.
Accurate estimation of cache-related preemption delay. In Proceed-
ings of the 1st ACM international conference on Hardware/software
codesign and system synthesis, (CODES-+ISSS ’03), pages 201-206,
October 2003.

Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean-Paul Bahsoun,
and Marianne De Michiel. Papabench: a free real-time benchmark.
In Proceedings of the 6th Intl. Workshop on Worst-Case Execution
Time (WCET) Analysis, July 2006.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles
of Program Analysis. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1999.

Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Ef-
ficient utilization of scratch-pad memory in embedded processor
applications. In Proceedings of the 1997 European conference on
Design and Test, (EDTC ’97), pages 7-17, 1997.

Stefan M. Petters and Georg Farber. Scheduling analysis with
respect to hardware related preemption delay. In Proceedings of the
Workshop on Real-Time Embedded Systems, December 2001.

Sascha Plazar, Paul Lokuciejewski, and Peter Marwedel. Wecet-
aware software based cache partitioning for multi-task real-time
systems. In 9th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis, 2009.

Isabelle Puaut and David Decotigny. Low-complexity algorithms
for static cache locking in multitasking hard real-time systems.
In Proceedings of the 23rd IEEE Real-Time Systems Symposium,
(RTSS ’02), pages 114-124, December 2002.

John Regehr. Scheduling tasks with mixed preemption relations for
robustness to timing faults. In Proceedings of the 23rd IEEE Real-
Time Systems Symposium, (RTSS ’02), pages 315-325, December
2002.

BIBLIOGRAPHY

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

Jan Reineke. Caches in WCET Analysis. PhD thesis, Universitét
des Saarlandes, Saarbriicken, November 2008.

Jan Reineke and Daniel Grund. Sensitivity of cache replacement
policies. Reports of SFB/TR 14 AVACS 36, SFB/TR 14 AVACS,
March 2008. ISSN: 1860-9821, http://www.avacs.org.

Jan Reineke, Bjorn Wachter, Stefan Thesing, Reinhard Wilhelm,
Tlia Polian, Jochen Eisinger, and Bernd Becker. A definition and
classification of timing anomalies. In Proceedings of the 6th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis, July
2006.

David A. Schmidt. Trace-based abstract interpretation of opera-
tional semantics. Lisp Symb. Comput., 10:237-271, May 1998.

Jorn Schneider. Cache and pipeline sensitive fixed priority schedul-
ing for preemptive real-time systems. In Proceedings of the 21st
IEEE Real-Time Systems Symposium, (RTSS ’00), pages 195-204,
December 2000.

L. Sha, Raj Rajkumar, and John P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE Trans.
Comput., 39:1175-1185, September 1990.

Johan Stérner and Lars Asplund. Measuring the cache interference
cost in preemptive real-time systems. In Proceedings of the 200/
ACM SIGPLAN/SIGBED conference on Languages, compilers, and
tools for embedded systems, (LCTES ’04), pages 146-154, June
2004.

Jan Staschulat and Rolf Ernst. Multiple process execution in cache
related preemption delay analysis. In Proceedings of the jth ACM
international conference on Embedded software, (EMSOFT ’04),
pages 278-286, September 2004.

Jan Staschulat and Rolf Ernst. Scalable precision cache analysis for
real-time software. Trans. on Embedded Computing Sys., 6(4):25,
2007.

Jan Staschulat, Simon Schliecker, and Rolf Ernst. Scheduling
analysis of real-time systems with precise modeling of cache related
preemption delay. In Proceedings of the 17th Euromicro Conference
on Real-Time Systems, (ECRTS ’05), pages 4148, July 2005.

139

BIBLIOGRAPHY

(82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

[90]

140

Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel.
Assigning program and data objects to scratchpad for energy re-

duction. In Proceedings of the conference on Design, automation
and test in Europe, (DATE ’02), pages 409-419, March 2002.

Vivy Suhendra, Abhik Roychoudhury, and Tulika Mitra. Scratch-
pad allocation for concurrent embedded software. In Proceedings
of the 6th IEEE/ACM/IFIP international conference on Hard-
ware/Software codesign and system synthesis, (CODES+ISSS ’08),
pages 37-42, October 2008.

Yudong Tan and Vincent Mooney. Integrated intra- and inter-task
cache analysis for preemptive multi-tasking real-time systems. In
Proceedings of the 8th International Workshop SCOPES 2004, pages
182-199, 2004.

Yudong Tan and Vincent Mooney. Timing analysis for preemptive
multi-tasking real-time systems with caches. Trans. on Embedded
Computing Sys., 6(1):7, 2007.

Yudong Tan and Vincent J. Mooney. Timing analysis for preemptive
multi-tasking real-time systems with caches. In Proceedings of the
conference on Design, automation and test in Europe, (DATE ’04),
pages 1034-1039, February 2004.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its appli-
cations. Pacific Journal of Mathematics, 5(2):285-309, 1955.

Henrik Theiling. Extracting safe and precise control flow from
binaries. In Proceedings of the Seventh International Conference on
Real-Time Systems and Applications, (RTCSA ’00), pages 23-33,
December 2000.

Henrik Theiling. ILP-based Interprocedural Path Analysis. In Pro-
ceedings of the Workshop on Embedded Software, Grenoble, France,
October 2002.

Hiroyuki Tomiyama and Nikil D. Dutt. Program path analysis
to bound cache-related preemption delay in preemptive real-time
systems. In Proceedings of the 8th ACM international workshop on
Hardware/software codesign, (CODES ’00), pages 67—71, September
2000.

BIBLIOGRAPHY

[91]

[92]

193]

[94]

[95]

[96]

[97]

98]

Yau tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance
estimation of embedded software with instruction cache modeling.
In ACM Trans. on Design Automation of Electronic Systems, pages
380-387, 1995.

Xavier Vera, Bjorn Lisper, and Jingling Xue. Data caches in
multitasking hard real-time systems. In Proceedings of the 24th
IEEE International Real-Time Systems Symposium, (RTSS ’03),
pages 154-164, December 2003.

Xavier Vera, Bjorn Lisper, and Jingling Xue. Data cache locking
for tight timing calculations. ACM Transactions on Embedded
Computing Systems, 7(1):4:1-4:38, December 2007.

Yun Wang and Manas Saksena. Scheduling fixed-priority tasks with
preemption threshold. In Proceedings of the Sixth International
Conference on Real-Time Computing Systems and Applications,
(RTCSA ’99), pages 328-338, 1999.

Randall T. White, Christopher A. Healy, David B. Whalley, Frank
Mueller, and Marion G. Harmon. Timing analysis for data caches
and set-associative caches. In Proceedings of the 3rd IEEE Real-
Time Technology and Applications Symposium, (RTAS '97), pages
192-202, June 1997.

Reinhard Wilhelm. Prompt design principles for predictable multi-
core architectures. In Proceedings of th 12th International Workshop
on Software and Compilers for Embedded Systems, (SCOPES ’09),
pages 31-32, April 2009.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David Whalley, Guillem Bernat, Chris-
tian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenstrom.
The worst-case execution-time problem—overview of methods and
survey of tools. ACM Trans. Embed. Comput. Syst., 7:36:1-36:53,
May 2008.

Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling,
Markus Pister, and Christian Ferdinand. Memory hierarchies,
pipelines, and buses for future architectures in time-critical embed-
ded systems. Trans. Comp.-Aided Des. Integ. Cir. Sys., 28:966-978,
July 2009.

141

BIBLIOGRAPHY

[99] Andrew Wolfe. Software-based cache partitioning for real-time
applications. J. Comput. Softw. Eng., 2(3):315-327, 1994.

[100] Areej Zuhily and Alan Burns. Optimality of (d-j)-monotonic priority
assignment. Information Processing Letters, 103:247-250, 2007.

[101] Richard Zurawski. Embedded Systems Handbook, Second Edition:
Embedded Systems Design and Verification. CRC Press, Inc., Boca
Raton, FL, USA, 2nd edition, 2009.

142

abstract interpretation 5, 7, 41, 73-77,

80, 87-93
abstract transformer 13, 44, 45, 75, 90
best ... 14
abstraction 12, 76, 92
architecture
composable with const. bounded
effect 40, 54, 55, 128
fully timing composable .40, 54,
55, 128
non-compositional40, 55, 59
ascending chain 17

best-case execution time (BCET) . 2,
37

blocking time

bottom element

cache
associativity ..31, 55, 64, 66, 73,
80-82, 86, 89, 91, 118, 119
direct-mapped 31, 51, 55, 63, 64,
69, 72, 97, 112, 119, 120

fully-associative 31
line sizel 31
miss

capacity, 30

compulsory, 30

conflict, 30

penalty, 30, 50, 52, 54, 55, 62,

112, 120, 127

replacement policy 33

first-in first-out (FIFO), 33, 34,
56

INDEX

least-recently used (LRU), 33,
55, 57, 64, 65, 72, 79-93, 112,
115-118
pseudo LRU (PLRU), 33, 35,
56
sensitivity, 36, 55
set-associative
write policy
cache analysis 38, 41-48, 68, 69, 113,

114
may-cache 43, 44, 66, 68
must-cache 43, 45, 68, 73, 89, 90
cache locking 58
cache partitioning 58

cache-related preemption delay ..3-5,
49-58, 61-65, 67-73, 79-87,
95-110, 113-124, 127
classification of memory accesses ..41
always hit (ah) ...41, 68, 72-75,
114

always miss (am) 41, 68, 72

not classified (nc)41, 68, 72

complete lattice 11

concretization 12, 76, 91

context switch cost .. 3, 5, 24, 49-60,
112

control-flow graph 8, 39, 47, 48, 77, 93
control-flow reconstruction 39
critical section

definitely-cached useful cache block 4,
5, 67, 69-77, 111, 113-115,
128
distributivity

143

INDEX

domino effect 40, 54, 55, 127

dynamic timing analysis

evicting cache block ...63-66, 79-87,

97-111
Galois
connection 12, 15
insertion 12
interval analysis 17

join operator ...11, 44, 45, 75, 90, 91

local consistency 13, 76, 92
locality principle 29
spatiall 29
temporal 29, 114
meet-over-all paths (MOP) 14
memory address 32
effective 41, 42, 112
memory hierarchy 29

micro-architectural analysis
minimal fixed-point (MFP) 16, 76, 91
monotonicity 11, 75, 91
mutual exclusion 5, 25, 108-110, 128

Narrowing 17
path ... o 8
path analysis 39
preemption 52
priority ceiling protocol (PCP) ...27,
109-110

priority inheritance protocol (PIP) 26
priority inversion 25
real-time systems 1, 19

hard 1, 19

Soft ... 1,19
resilience ...4, 5, 79, 81-93, 106, 111,

115-118, 121, 128

144

response time analysis ...24, 95-111,
118-124
schedule
deadline monotonic (DM) 22, 23,
120

dynamic priority assignment .22
earliest deadline first (EDF) .22,
23

fixed priority assignment .5, 22,
24, 26, 95-110, 127

rate monotonic (RM) 22
scheduling analysis 2
scratchpads 29, 60
semantics

abstract collecting 14

abstract path 14

collecting 43

collecting cache 42, 43, 66

path-based collecting ..9, 74, 88

sticky collecting 9
semaphore 25, 26, 109
shared resources 5, 25, 108, 128
sound abstraction 13, 16, 76, 92

stack resource protocol (SRP)28,

108-110
static timing analysis 2, 37, 63, 68-70,
73, 127
timing anomaly 40, 54, 127
top element 11
transfer function 8
useful cache block 52,

59, 61-67, 69, 70, 72, 79-93,
97-111, 113-124

value analysis 39
virtual inlining 114
virtual loop unrolling48, 77, 114
wideningl 17
worst-case execution time (WCET) 2,

37

2.1.
2.2.

3.1.
3.2.

3.3.
3.4.
3.5.
3.6.

3.7.
3.8.
3.9

3.10.
3.11.
3.12.

3.13.
3.14.
3.15.
3.16.

4.1.
4.2.
4.3.
4.4.

5.1

LIST OF FIGURES

Mlustration of a Galois connection 13
[lustration of local consistency. 14
State transitions of a task 20
Illustration of the sporadic task model and the associated

variables L Lo 21
Preemptive versus Non-preemptive Scheduling 22
State transitions of a task with shared resources 25
Priority inversion problem 26
Typical memory hierarchy often to be found in embedded

systems ... 29
Cache organization on a K-way set associative cache . . . 32
Address Computation 32
Access sequence on a LRU replacement policy 33
Access sequence on a FIFO replacement policy 34
Access sequence on a PLRU replacement policy 35
Variation of the execution times, BCET, WCET and

bounds on BCET and WCET 38
Structure of a timing analysis 39
Example of a timing anomaly 40
Example of the must-cache analysis. 47
Example of virtual loop unrolling. 48
Schematic view of a context switch 50
Non-preempted versus preempted execution trace 51

Access sequence with unbounded preemption delay (PLRU) 56
Access sequences with unbounded preemption delay for
FIFO. 57

Optimism of the naive UCB/ECB combination for LRU
caches L 65

145

LIST OF FIGURES

146

6.1.
6.2.
6.3.

7.1.
7.2.
7.3.
7.4.
7.5.

8.1.

8.2.
8.3.
8.4.
8.5.
8.6.
8.7.

9.1.

9.2.
9.3.

9.4.
9.5.
9.6.
9.7.
9.8.

9.9.

Over-approximation of WCET and CRPD analysis 68
Pessimism of a naive DC-UCB analysis. 74
Example of the DC-UCB Analysis 78
Pessimism of the shallow ECB/UCB combination 81
Notion of Resilience 82
Interacting preemptions 84
Resilience under different paths 88
Example of the Resilience Analysis 94
Ganttchart demonstrating the over-approximation of ECB-

Only and UCB-Only 98
Ganttchart demonstrating pitfalls due to nested preemption 99
Pessimism of the UCB-Union approach 101
Advantages of the Multiset approach 102
Pessimism of the ECB-Union approach 106

Pessimism of the ECB-Union/UCB-Union approaches. . . 108
Ganttchart demonstrating the optimism of the naive block-
ing time aware response time analyses. 109

Maximal number of UCBs/DC-UCBs; Mélardalen Bench-

marks Lo 114
Maximal number of UCBs/DC-UCBs; PapaBench 115
Bound on the number of additional misses; Méalardalen
Benchmarks L. 116
Bound on the number of additional misses; PapaBench . . 117
Bounds on the response time of T5 and T10 (in us) . . . 119
Evaluation of the base configuration. Number of task sets
deemed schedulable at the different total utilizations. . . . 121
Weighted schedulability measure; varying cache utilization
from 0 to 20, instepsof 2. 123
Weighted schedulability measure; varying reuse factor from
0% to 100%, in steps of 10%. 124
Weighted schedulability measure; varying number of tasks
from2=2"t026=64. 125

3.1.
3.2.
3.3.
3.4.

3.5.

8.1.

9.1.
9.2.
9.3.

LIST OF TABLES

Task model properties 21
Shared resources: notation and terminology 26
Cache parameter and domains 31
Sensitivity of LRU, PLRU, and FIFO for associativity 2,4,

and 8. 36
Memory access classification 41
Sets of tasks: notation and terminology 97
Selected cache configurations 112
Malardalen Benchmark Suite 113
Papabench Benchmark Suite (Processor MCU0, Automatic

Mode) 114

147

Appendix A mm

UCB ANALYSIS

The set of UCBs at program point p is the set of memory blocks cached
at p and reused at a program point p’ later than p. To compute this set,
we split all paths through p in two sets: a set of paths starting in p and a
set of paths emanating from p.

Concrete Semantics

The first set is given by the path-based forwards collecting semantics:
Coll : V — 21

Coll (p) = {r | me AT =[ps,....p]} (A1)

while the latter set is given by the path-based backwards collecting
semantics:
Collfy : V — 21

Collf(p)={r | melIAT=[p,...,pn]} (A.2)
with the concrete transformer ¢ f g/ e
tre! 7 v = (21 — 2

tfc (p)(S)={m-p | m€ S} (A.3)
and
tfe ()(S) :={p-7 | 7€ S} (A4)

149

A. UCB Analysis

that appends/prepends a program point to all path of the incoming flow
information. To extract the set of UCBs from the collecting path-based
semantics, we need two auxiliary functions.

age™/ 7 111 - Age

The function age™ counts all different elements on path 7 backwards
(i.e., starting at the last program point in p) to the last access to m. In
case no such access exists, it returns oo:

(Uit it 7= [p1,..opi] -7 Ab(pi) = m
P NVjed{l,...,i—1}:4(p;) #m
oo T = [P1,- - DPnl

/\V] € {]wan} : ﬁ(pj) #m

(A.5)

Conversely, age counts all memory blocks on path 7 forwards to the
first next access to m and returns oo if no such access exists. Note that
this implementation implicitly assumes an initially empty cache.

|Ujsi 8l ifm=m-[pi,....pn] -7 Al(ps) =m
s NVjed{l,...,i—1}:4(p;) #m
o0 Fz[pla-“apn]
NV e{l,...,n}:t(p;) #m
(A.6)
We refer to age(m)(m) as the concrete age of m on path 7.
The set of UCBs at program point p is then bounded by the set of all
blocks for which the number of accesses to distinct blocks at least on one
path to p and at least on one path from p is less than K:

UCB(p) C {m | 3m € Collj] : age(m)(m)” < K
A Jmg € Coll : age(ma)(m)~} (A7)

Note that this is a true superset of the set of UCBs at p as Equation (A.7)
may also subsume spurious paths.

Abstract Domain

In the following, we omit the direction of the analysis, as forward and
backward analyses are equivalent.

Instead of computing all paths to/from p and then extracting the set
of UCBs, we directly bound for each memory block m the number of
different memory blocks accessed since last access/until next access to

150

m. As soon as an element reaches an age K or larger, we do not to keep
track of its precise age anymore. In fact, the UCB analysis can be seen
as a forward and backward may-cache analysis (see Chapter 3.3):

tf:V — (Age — Age)

tf(p)(age) :=
X (m) m:(()p) (4(p))
age(m age(m) > age(fi(p
AT\ age(m) + 1 age(m) < age(t(p)) A age(m) < K -1 (*8)
00 otherwise

Also C and | | are defined according to the may-cache analysis:
age; C age & Vm € M : age,(m) > agey(m) (A.9)

age |_| age = Am. min(age; (m), age,(m)) (A.10)

UCB(p) C {m | 3Im € Collj : age(m)(m)* < K
A dmy € Colly : age(ma)(m) "}
C{m | age, (m) < K Aage,’(m)} (A.11)

where age;~(m) denotes the computed forward and age,’ (m) the backward
age of m at program point p.
Concretization/Abstraction

The set of paths represented by an abstract state is the set of paths that
respect the age bounds for each memory block. As we are aiming for an
over-approximation of the set of UCBs, we compute lower bounds on the
ages:

v(age) ={m | Vm € M : age(m) < age(r)(m)} (A.12)

Conversely, the abstract age-bound of a memory block is given by the
least concrete age of this block on any path:

a(S) = dm. min{|age(n)(m)| | 7€ S} (A.13)

151

A. UCB Analysis

Theorems and Proofs
Theorem A.1 (Monotonicity)

The abstract transformer of the UCB analysis tf is monotone, i.e.,
Vp € V :Vage,, age; € Age: age, T age, = tf(p)(age,) E tf(p)(agey)

Proof (Monotonicity (Theorem A.1))

Let p € V and m € M be arbitrary and m’ be the accessed element at
program point p. We know that for each memory block, the age bound
age, (m) is at the least age bound ages(m), i.e.

VYm € M : age,(m) > agey(m)
We prove Theorem A.1 using case distinction on age,(m).

m =m’ In this case, both age bounds are set to zero, hence:
tf(p)(age;) = 0 =tf(p)(age,)

age;(m) = oo Since m # m’, we can conclude that tf(p)(age;) = oo.
Hence,

tf(p)(age;) = 0o > tf(p)(age,)

age; (m) > agey(m) We know that m is not accessed by p and age,(m) is
finite. As agey(m) is also finite, we can conclude that the abstract
transformer increases the age bound at most by one:

tf(p)(agey) < agey(m) +1 = tf(p)(age,)
age;(m) = agey(m) If both age bounds are the same, we use a case dis-

tinction on the age bound of m' (given that age,(m') > ages(m’):

age;(m’) = agey(m’) As the age bounds age, and agey are equal in
both cases m and m', the abstract transformer also results in
equal age bounds for m:

tf(p)(age;) = tf(p)(age,)

age,(m’) > ages(m’) In this case, we can conclude that the ab-
stract transformer only increases the age bound age,, if also
age; is increased. Le. if agey(m) > agey(m’) holds, so does
age;(m) > age;(m’), and hence:

tf(p)(age;) > tf(p)(agey)

152

O

Theorem A.2 (Local Consistency)
The abstract transformer tf and the concrete transformer tf - are locally
consistent, i.e.,

Vage € Age:Vp eV : (tfc(p))(v(age)) € ((tf(p))(age))

Proof (Local Consistency (Theorem A.2))

We prove Theorem A.2 by contradiction. Note that we only prove the

forward direction. The proof for the backward analysis is equivalent.
Assume

Jage € Age:Fp e V= (tfc(p)(v(9)) £ ((tf(p)(S))

Let 7 be a path in tf-(p))(7v(S)) not contained in v((tf(p))(S)) and m/’
be the element accessed at p: As tf-(p) only append p to all paths, we
can conclude that path 7 can be written as m = & - p with # € ~(95).
Furthermore, we know by the construction of ~y:

Vm € M : age(w)(m) > age(m)

As ¢ v((tf(p))(age)), we know that exists a memory block m, such that
age(m)(m) < (tf(p)(age))(m). We use a case distinction on m and its
concrete age:

m =m' By construction of the abstract transformer, we can conclude
that

age(m)(m) = 0 = (tf(p)(age))(m)

age(m)(m) = oo As the concrete age is 0o, the abstract age bound can
not be larger, and so:

age(m)(m) = (tf (p)(age))(m)

age(7)(m) < age(w,m’) In this case, the concrete age of m on path w
is increased by one compared to the concrete age on w. Since
age(#)(m) > age(m) and also the abstract age is increased by at
most one, we know:

age(m)(m) = (tf(p)(age))(m)

153

A. UCB Analysis

age(7)(m) > age(wr,m’) The abstract transformer increases the age bound
of m, only if age(m) < age(m’) holds. This, however, can only hold
if age(t)(m) > age(m). Hence,

age(m)(m) = (tf(p)(age))(m)

Theorem A.3 (Soundness of the Abstraction)

vS e 2" S Cy(al(S))

Proof (Soundness of the Abstraction (Theorem A.3))

We prove Theorem A.3 by contradiction. Note that we only prove the
forward direction. The proof for the backward analysis is equivalent.
Assume there exists a path m € S such that ™ ¢ v(a(S)). Hence, there
must a memory block m such that the concrete age age(m)(m) is less then
(a(S))(m). This, however, is not possible as m € S and (a(S))(m) =
min{age(7)(m) | # € S}. O

154

— \ DpeNdiX B -

PROOFS

B.1. DC-UCB Analysis

Proof (Monotonicity (Theorem 6.3))
We prove Theorem 6.3 using case distinction on the classification of the
accessed element. We know that a C b:

Case 1 (4(p) = L)

Case 2 (Classify(§(p),p) = ah)

tf(p)(a) = aU {t(p)}
Cou{tip}
=tf(p)(b)

Case 3 (Classify(8(p),p) # ah)

tf(p)(a) = a\ {#(p)}
Co\{t(p)}
=tf(p)(b)

155

B. Proofs

O

Proof (Local Consistency (Theorem 6.4))
We prove Theorem 6.4 by contradiction. Assume for a set S € 2M and a
program point p € V.

tfe@)(r(S)) L A((EfP)(S))
Let w € 11 be a path with

m e (tfc(P)(v(9))

and
T ¢ y((tf(p)(S))

We now perform a case distinction on the memory reference of p.

Case 1 (#(p) = L) As p has no memory reference, a path w satisfies
Els(w,m) for a memory block m if and only if it also satisfies
Els(p - m,m) with p prepended. Hence,

(tfc(@)(v(5)) = ~(S)

Abstract transformer only updates the control flow information in
case of a memory reference. Hence

(tf(P)(S) =S Av((tf(p)(S)) =~(5)

and thus,

(tfo(p)(v(S)) S A ((Ef(p)(9))

Case 2 (Classify(#(p),p) = ah) Let m be the memory reference at p, i.e.,
m = §(p). We know that

tf(p)(S) = SuU{m}

and Els now holds for memory block m on each path © with p
prepended, i.e.,
Y : Els(p - m,m)

while Els retains its value for all other memory blocks
VYn # m : Els(p - m,n) = Els(m,n)
Assume there is a path

€ (tfc)(v(S) A7 & v((tf(p)(9))

156

B.1. DC-UCB Analysis

& y((tf(p))(S))
=7 ¢ y(SU{m})
=Ine M\ (Su{m}): Els(7,n)
=3Ine M\ (SU{m}): Els(p-m,n)
=Ine M\ (Su{m}): Els(m,n)

This contradicts the assumption as
7w € v(S)
and

Vn #m: Els(p-m,n) = Els(m,n)

Case 3 (Classify(#(p),p) # ah) Let m be the memory reference at p, i.e.,
m = f(p). We know that

tf(p)(S) = S\ {m}

and FEls now does not hold for memory block m on any path © with
p prepended, i.e.,
YV =Els(p - m,m)

while Els retains its value for all other memory blocks
Vn #m : Els(p - m,n) = Els(r,n)
Assume there is a path
T e (tfeP)(v(9) AT ¢v(Ef(p)(S))

T & y((tf(p)(S))
=7 ¢ y(S\ {m})
=3Ine M\ (S\{m}): Els(w,n)
=Ine M\ (S\{m}): Els(p-m,n)
=3Ine M\ (S\{m}): Els(m,n)

This contradicts the assumption since ™ € v(S), Vn # m : Els(p -
m,n) = Els(m,n) and ¥ : =Els(p - m,m).

As each case of the (exhaustive) case-distinction leads to a contradiction
to the assumption, we have proven the assumption wrong. O

157

B. Proofs

Proof (Soundness of the Abstraction(Theorem 6.5))

We prove the theorem by contradiction. Assume there is an arbitrary
path # € S with ©# ¢ v(a(S)). As 7 is not in y(a(S)), we can conclude
that there exists a memory block m for which Els(7,m) holds (i.e., m is
a DC-UCB on path) that is not contained in the abstraction a(S):

Im ¢ «S) : Els(m,m)

By the definition of «, however, we know that m is contained in «(S) if
there is a path for which Els(w,m) holds. Since & € S and Els(&,m), we
can conclude that the assumption was wrong. [l

B.2. Resilience

Proof (Monotonicity (Theorem 7.3))

As the transformer of resilience analysis tf,., using the transformer on
the constrained age tf,., and on the unconstrained ages tf,,, we will
prove the monotonicity of tf., and tf,, separately.

Unconstrained Age Letp €V and m € M be arbitrary and m’ be the
accessed element at program point p. We know that for each memory
block, the age bound uai(m) is at the least age bound uaz(m), i.e.,

Vm € M : uai(m) > uaz(m)
We prove the monotonicity of tf,a using case distinction on uay(m).

m =m’ In this case, both age bounds are set to zero, hence:
tfua(p)(ual) =0= tfua(p) (U‘G’Q)

uai(m) = oo Since m # m', we can conclude that tf,,(p)(ua;) = co.
Hence,

tfua(p)(ual) =00 2> tfua(p)(UQQ)

uai(m) > uaz(m) We know that m is not accessed by p and uai(m) is
finite. As uag(m) is also finite, we can conclude that the abstract
transformer increases the age bound at most by one:

tfua(p)(an) < an(m) +1= tfua(p) (ual)

uaq (m) = uaz(m) If both age bounds are the same, we use a case distinc-
tion on the age bound of m' (given that uai(m’) > uaz(m’):

158

B.2. Resilience

uaq(m’) = uaz(m’) As the age bounds ua; and uas are equal in
both cases m and m’, also the abstract transformer results in
equal age bounds for m:

tfua (p) (ua’l) = tfua (p) (an)

uai(m’) > uaz(m’) In this case, we can conclude that the abstract
transformer only increases the age bound uas, if also uay is
increased. Le., if uas(m) > uas(m’) holds, so does uay(m) >
uay(m’), and hence:

tfua(p)(war) = tf o (p)(uas)

Constrained Age Letp € V and m € M be arbitrary and m’ be the
accessed element at program point p. We know that for each memory
block, the unconstrained age bound uai(m) is at the least unconstrained
age bound uas(m), i.e.,

Ym € M : uai(m) > uaz(m)

and the constrained age bound cai(m) is at the least unconstrained age
bound caz(m), i.e.,

Ym € M : cay(m) > caz(m)
We prove the monotonicity of tf .a using case distinction on cai(m).

m=m'Vvm' ¢ UCB(p) In this case, both age bounds are set to zero,
hence:

tfca(p)(ual) =0= tfca(p)(U‘QQ)

cai(m) > caz(m) We know that m is not accessed by p and uwai(m) is
finite. As caz(m) is also finite, we can conclude that the abstract
transformer increases the age bound at most by one:

tfca(p)(CG’Qﬂ 'I_I,GQ) < Ca?(m) +1= tfca(p)(cala 'Ll,(Ll)

cai(m) = cag(m) If both age bounds are the same, we use a case distinc-
tion on the unconstrained age bound of m' (given that ua,(m’) >
uag(m’):
uay(m’) = uaz(m’) As the age bounds ua; and uas are equal in
both cases m and m’, also the abstract transformer results in
equal age bounds for m:

t.fca(p)(cah U(ll) = tfca(p)(ca27 ’LLOQ)

159

B. Proofs

uay(m') > uagz(m') In this case, we can conclude that the abstract
transformer only increases the age bound cas, if also cay is
increased. Le., if caz(m) > uaz(m') holds, so does cai(m) >
uaq(m’), and hence:

tfca(p) (cal? ual) > tfca(p)(ca27 UCLQ)

O

Proof (Local Consistency (Theorem 7.4))

We prove local consistency of tf,., by contradiction. Note that we only
prove the forward direction. The proof for the backward analysis is
equivalent. Assume a pair of ages (ua,ca) and a program point p € V

such that
tf o) (1(8)) L Y((tf res(p)) (ua, ca))
Let w be a path such that

™€ tfo(p))(y(ua, ca)) Am & y((tf es(p)) (ua, ca))

and m' be the element accessed at p:

As tfo(p) only append p to all paths, we can conclude that path can
be written as m = @ - p with @ € v(S). Furthermore, we know by the
construction of v for the unconstrained ages

Vm € M : age(7t)(m) > ua(m)
and for the constrained ages:
Ym € M : m € UCB(p) = age(7t)(m) > ca(m)

Asm & Y((tf ;es(D))(ua, ca)), we know that exists a memory block m, such
that

age(m)(m) > (tf,q(p)(ua))(m)
V (age(m)(m) > (tf.q(p)(ca,ua))(m) Am e UCB(p)) (B.1)
We use a case distinction on m and its concrete age:

m =m' By construction of the abstract transformer, we can conclude
that

age(m)(m) = 0 = (tf,q(p)(ua))(m) = (tf .o (p)(ca, ua))(m)

160

B.2. Resilience

age(7)(m) < age(wt)(m') In this case, the concrete age of m on path
is increased by one. The transformer tf,, retains the bound of
m, only if ua(m) < wa(m’) holds. This, however, can only hold
if age(7)(m) < uwa(m). Hence, if the unconstrained bound is not
increased by one it was definitely larger than the concrete age. And
s0:

age(m)(m) < (tf(p)(age))(m)

If m € UCB(w) then also m € UCB(7) (as we know that m #m’).
Here, we can apply the same argumentation as for the unconstrained
age and conclude:

m € UCB(p) = ae(r)(m) < (£ .a(p)(ca, ua))(m)

age(w)(m) > age(nt)(m') In this case, the concrete age of m on path 7 is
not increased. Hence,

age(m)(m) = age(7)(m) < (tf(p)(age))(m)

If m € UCB(r) then also m € UCB(%) (as we know that m # m’)
and so:

m € UCB(p) = age(m)(m) < (tf ., (p)(ca, ua))(m)

Note that the case distinction is exhaustive as
@Ge(7) (m) = age(A)(m') > m = m’
This finishes the proof. O

Proof (Soundness of the Abstraction (Theorem 7.5))

We prove Theorem 7.5 by contradiction. Note that we only prove the
forward direction. The proof for the backward analysis is analog. Let
a(S) = (ua, ca). Assume there ezists a path m € S such that m ¢ v(a(S)).
Hence, there must a memory block m such that the concrete age age(m)(m)
is larger then the unconstrained age ua(m) or m is useful on m and the
concrete age age(w)(m) is larger then the constrained age ca(m) This,
however, is not possible as m € S and the unconstrained age ua(m) =
max{age(n)(m) | # € S} is defined as the mazimal concrete age on any
path while the constrained age Am.max{age(w)(m) | (w-p) € SAm €
UCB(p))} is defined as the mazimal concrete age on any path on which
m 1s useful. O

161

	Introduction
	Contributions of this Thesis
	Structure

	Abstract Interpretation
	Program Analysis
	Collecting Semantics

	Abstract Interpretation
	Fixed-Point Analysis

	Background
	Real-Time Scheduling
	Sporadic Task Model
	Priority-Driven Scheduling
	Mutual Exclusion

	Memory Hierarchy and Caches
	Principle of Locality
	Processor Caches
	Replacement Policy

	Timing and Cache Analysis
	Components of a Timing Analysis
	Cache Analysis

	Context-Switch Costs
	The Impact of a Context Switch
	Cache-related Preemption Delay
	Early Work on CRPD
	Formal Definitions

	Limitations of the CRPD Approach
	Classification of Architectures
	CRPD and Cache Replacement Policies

	Other Approaches to the Analysis of Preemptive Systems

	Bounding Cache-Related Preemption delay—Related Work
	Useful Cache Blocks; Lee's Original Approach
	Evicting Cache Blocks
	Combining ECBs and UCBs
	Deriving the Set of UCBs/ECBs

	Definitely-Cached Useful Cache Blocks
	Pessimism in Lee's Approach
	Definitely-Cached UCBs
	Correctness

	Deriving the Set of DC-UCBs

	CRPD for LRU Caches—Resilience Analysis
	CRPD for LRU Caches
	Resilience of a Cache Block
	Multiple Preemptions
	Correctness

	Resilience Analysis

	Preemption cost aware Response Time Analysis
	Existing Approaches
	ECB-Only & UCB-Only
	UCB Union
	Multiset Approaches

	ECB Union
	Multiset Approaches
	Resource Access Protocols and Preemption Cost

	Evaluation
	Target Architecture
	Benchmarks
	DC-UCB Analysis
	Resilience Analysis
	CRPD Aware Scheduling Analysis
	Randomly Generated Task Sets

	Conclusions
	Summary of Contributions
	Future Work
	Conclusions

	Bibliography
	Index
	List of Figures
	List of Tables
	UCB Analysis
	Proofs
	DC-UCB Analysis
	Resilience

