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Abstract

If u : R
n ⊃ Ω → R

M locally minimizes the functional
∫

Ω h(|∇u|) dx with h

such that h′(t)
t ≤ h

′′(t) ≤ c(t + t
2)ω h′(t)

t for all t ≥ 0, then u is locally Lipschitz
independent of the value of ω ≥ 0.

1 Introduction

We consider local minima u : Ω → R
M ,M ≥ 1, defined on an open set Ω ⊂ R

n, n ≥ 2, of
the variational integral

(1.1) I[u, Ω] =

∫

Ω

H(∇u) dx

and want to establish interior regularity results like the local boundedness of ∇u or even
the local Hölder continuity of the first derivatives. As a matter of fact - when dealing
with the vector case M ≥ 2 - we have to assume that H is of special structure in the
sense that

(1.2) H(Z) = h(|Z|), Z ∈ R
nM ,

for a function h : [0,∞) → [0,∞) of class C2. Integrands of this particular form with
essential contributions to the question of interior regularity have been studied by many
authors: the case h(t) = tp with p ≥ 2 was investigated first by Uhlenbeck [Uh] and later
extended by Giaquinta and Modica [GM], more general functions h are the subject of
Marcellini’s work (see [Ma1-3] and also [MP]), and the case of nearly linear growth, i.e.
h(t) = t ln(1 + t), is due to Mingione and Siepe [MS]. Here we are going to extend the
recent work [ABF] under the following hypotheses imposed on h:

(A1) h is strictly increasing and convex together with h′′(0) > 0 and lim
t↓0

h(t)
t

= 0 ;

(A2) there exists a constant k > 0 such that h(2t) ≤ k h(t) for all t ≥ 0 ;

(A3)

{

for an exponent ω ≥ 0 and a constant a ≥ 0 it holds
h′(t)

t
≤ h′′(t) ≤ a(1 + t2)

ω
2

h′(t)
t

for all t ≥ 0 .
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¿From (A1) it follows that h(0) = 0 = h′(0), h′(t) > 0 for all t > 0. The first inequality

in (A3) shows that t 7→ h′(t)
t

is increasing, moreover we get

(1.3) h(t) ≥
1

2
h′′(0)t2, t ≥ 0 ,

and (1.3) means that we have a problem of at least quadratic growth. The (∆2)-property
formulated as condition(A2) shows by elementary calculations that there exists an expo-
nent m ∈ [2,∞) and a constant c such that

h(t) ≤ c(tm + 1) ,

and by convexity h′(t) grows at most as tm−1. Note that (A1) together with (1.3) gives
that h is a N -function in the sense of [Ad, Section 8.2], for which

(1.4) k h′(t)t ≤ h(t) ≤ th′(t), t ≥ 0 ,

holds. This inequality is a simple consequence of (A2) and the convexity of h. We finally
observe that according to (1.2)

min

{

h′′(|Z|),
h′(|Z|)

|Z|

}

|Y |2 ≤ D2H(Z)(Y, Y ) ≤

max {. . .} |Y |2, Y, Z ∈ R
nM ,

hence by (A3)

(1.5)
h′(|Z|)

|Z|
|Y |2 ≤ D2H(Z)(Y, Y ) ≤ a(1 + |Z|2)

ω
2

h′(|Z|)

|Z|
|Y |2 ,

in particular we can find an exponent q such that

(1.6) D2H(Z)(Y, Y ) ≤ c(1 + |Z|2)
q−2

2 |Y |2 .

As outlined in e.g. [BF1] or [ABF] this inequality can be used to introduce a local regu-
larization.

The reader should also note the following fact: if the function h satisfies (A1), (A2)
together with h′(t)/t ≤ h′′(t) for all t ≥ 0, and if in addition we know h′′(t) ≤ cts for large
values of t and for some exponent s, then we get the second inequality in (A3) letting
ω := s.

Definition 1.1. Let u ∈ W 1
1,loc(Ω; RM). u is said to be a local minimizer of the functional

I from (1.1) if for any subdomain Ω′ with compact closure in Ω it holds I[u, Ω′] < ∞ as
well as I[u, Ω′] ≤ I[v, Ω′] for any v ∈ W 1

1,loc(Ω; RM) such that spt(u − v) ⋐ Ω′.

For a definition of the Sobolev classes W k
p,loc(Ω; RM) and related spaces we refer to [Ad].

Note that local minima actually are elements of the Orlicz-Sobolev class W 1
h,loc(Ω; RM).

Now we can state our main result
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Theorem 1.1. Suppose that (A1-3) and (1.2) hold. Let u ∈ W 1
1,loc(Ω; RM) denote a local

minimizer of the functional I from (1.1). Then ∇u is a locally bounded function.
If in addition we have the Hölder condition

(A4) |D2H(P ) − D2H(Q)| ≤ c
(

1 + |P |2 + |Q|2
)

q−2−γ

2 |P − Q|γ

for some γ ∈ (0, 1) and with q from (1.6) valid for all P , Q ∈ R
nM , then ∇u is Hölder

continuous.

We remark that Theorem 1.1 requires no restriction on the (finite) number ω ≥ 0.
Anyhow, we need the second inequality in (A3) not only for having (1.6), it is also used
in Section 3. Let us further remark that Theorem 1.1 follows from the results in [ABF]
provided ω < 2 and u is locally bounded.

2 Higher integrability of the gradient

Let the hypotheses (A1-3) of Theorem 1.1 hold and consider a local I[·, Ω]-minimizer
u ∈ W 1

1,loc(Ω; RM). The following calculations can be justified by working with a suitable
local regularization as outlined for example in [BF1]. The smoothness of the approximate
solutions can be deduced from [GM] and [Ca], where the local boundedness and the weak
differentiability of their gradients is stated.

Lemma 2.1. ∇u is in the space Lt
loc(Ω; RnM) for any finite exponent t.

Remark 2.1. More precisely Lemma 2.1 means that the derivatives of the approximations
have this integrability property uniformly w.r.t. the approximation parameter which can
be shown in the same way as outlined below.

Proof of Lemma 2.1: Let s ≥ 0, Γ := 1 + |∇u|2 and consider η ∈ C∞
0 (Ω). From

now on we use summation convention w.r.t. indices repeated twice. Starting from the
equation

0 =

∫

Ω

∂α (DH(∇u)) : ∇
(

η2Γ
s
2 ∂αu

)

dx
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we obtain
∫

Ω

D2H(∇u) (∂α∇u, ∂α∇u) η2Γ
s
2 dx

= −

∫

Ω

∂α(DH(∇u)) :
[

∂αu ⊗∇
(

η2Γ
s
2

)]

dx

= −

∫

Ω

D2H(∇u)
(

∂α∇u, ∂αu ⊗∇Γ
s
2

)

η2 dx

−

∫

Ω

∂α(DH(∇u)) :
[

∂αu ⊗∇η2
]

Γ
s
2 dx

= −

∫

Ω

D2H(∇u)
(

∂α∇u, ∂αu ⊗∇Γ
s
2

)

η2 dx

+

∫

Ω

DH(∇u) : ∂α

{[

∂αu ⊗∇η2
]

Γ
s
2

}

dx =: −T1 + T2 .

Here “ : ” is the scalar product of matrices, “⊗ ” stands for the tensor product of vectors.
(1.5) gives

(2.1)

∫

Ω

h′(|∇u|)

|∇u|
Γ

s
2 |∇2u|2η2 dx ≤ −T1 + T2 .

¿From the structure condition (1.2) we infer T1 ≥ 0, since we have the formula

D2H(∇u)(∂α∇u, ∂αu ⊗∇Γ) = aαβ∂αΓ∂βΓ

with coefficients

aαβ :=
1

2
δαβ

h′(|∇u|)

|∇u|
+

1

2

[

h′′(|∇u|) −
h′(|∇u|)

|∇u|

]

∂αu · ∂βu

|∇u|2

generating an elliptic matrix. Therefore (2.1) implies

(2.2)

∫

Ω

η2h′(|∇u|)

|∇u|
Γ

s
2 |∇2u|2 dx ≤ T2 ,

and it remains to estimate T2: using |DH(Z)| ≤ h′(|Z|) we get

|T2| ≤

∫

Ω

2h′(|∇u|)|∇2u|η|∇η|Γ
s
2 dx

+

∫

Ω

2h′(|∇u|)|∇u|η|∇η|sΓ
s
2
−1|∇u||∇2u| dx

+

∫

Ω

h′(|∇u|)|∇u|Γ
s
2 |∇2η2| dx =: S1 + S2 + S3 ,

and by (1.4) it follows

S3 ≤ c

∫

Ω

h(|∇u|)Γ
s
2 |∇2η2| dx ,
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where c denotes a constant which may vary from line and which may also depend on s.
Obviously it holds

S1 + S2 ≤ c(s)

∫

Ω

h′(|∇u|)η|∇2u||∇η|Γ
s
2 dx

= c(s)

∫

Ω

(

h′(|∇u|)

|∇u|

)1/2

η|∇2u|Γ
s
4 Γ

s
4 |∇η| (h′(|∇u|)|∇u|)

1/2
dx ,

and Young’s inequality gives for any ε > 0 (using (1.4))

S1 + S2 ≤ ε

∫

Ω

η2h′(|∇u|)

|∇u|
|∇2u|2Γ

s
2 dx + c(ε, s)

∫

Ω

|∇η|2h(|∇u|)Γ
s
2 dx .

Collecting our estimates and returning to (2.2), we find after appropriate choice of ε

∫

Ω

η2h′(|∇u|)

|∇u|
|∇2u|2Γ

s
2 dx

≤ c(s)

∫

Ω

h(|∇u|)Γ
s
2

[

|∇η|2 + |∇2η2|
]

dx .(2.3)

For s = 0 the r.h.s. of (2.3) is just the energy of u on spt(η), hence for

Ψ0 :=

∫ |∇u|

0

(

h′(t)

t

)1/2

dt

we have by (2.3)

(2.4) ∇Ψ0 ∈ L2
loc(Ω; Rn) .

¿From the monotonicity of t 7→ h′(t)
/

t and from (1.4) it follows

(2.5) h(|∇u|) ≤ cΨ2
0 ,

(2.6) Ψ0 ≤ ch(|∇u|)1/2 .

Clearly (2.6) implies together with (2.4) that

(2.7) Ψ0 ∈ W 1
2,loc(Ω) .

If n = 2, then (2.7) shows Ψt
0 ∈ L1

loc(Ω) for any t < ∞, and the claim of Lemma 2.1
follows from (2.5) and (1.3). So let us suppose that n ≥ 3. In this case (2.5) and (2.7)

give h(|∇u|)
n

n−2 ∈ L1
loc(Ω), so that by (1.3) |∇u|2

2

n−2 h(|∇u|) ∈ L1
loc(Ω), and we see that

the r.h.s. of (2.3) is finite for the choice s1 := 4
n−2

. Letting

Ψ1 :=

∫ |∇u|

0

[

h′(t)

t
ts1

]1/2

dt
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we get from (2.3)

(2.8) ∇Ψ1 ∈ L2
loc(Ω) ,

and using a variant of (2.6) valid for Ψ1, (2.8) shows in analogy to (2.7) that

Ψ1 ∈ W 1
2,loc(Ω) .

Suppose now by induction that we have finiteness of the r.h.s. of (2.3) for a number sk.
Then as before

Ψk :=

∫ |∇u|

0

(

h′(t)

t
tsk

)1/2

dt ∈ W 1
2,loc(Ω) ,

and if we observe Ψk ≥ c (h(|∇u|)|∇u|sk)1/2, we obtain

h (|∇u|) |∇u|
4

n−2 |∇u|sk
n

n−2

(1.3)

≤ ch(|∇u|)
n

n−2 |∇u|sk
n

n−2 ≤ cΨ
2n

n−2

k ,

so that the r.h.s. of (2.3) is also finite by Sobolev’s theorem for sk+1 := 4
n−2

+ sk
n

n−2
.

Since sk → ∞ (starting with s0 = 0, s1 = 4
n−2

), the claim of Lemma 2.1 is established.
¤

3 Interior gradient bounds

We use the notation from the previous section and recall that actually we work with a
sequence of regularizations. We claim

Lemma 3.1. Under the hypotheses (A1-3) the function ∇u is locally bounded.

Proof: The local boundedness of ∇u follows via De Giorgi-type arguments as applied
in [Bi], Theorem 5.22, or [ABF]. For k > 0 and balls Bρ(x0) ⊂ Ω let A(k, ρ) := {x ∈
Bρ(x0) : Γ > k}. Then we have for η ∈ C∞

0 (Bρ(x0))

0 =

∫

Bρ(x0)

D2H(∇u)
(

∂α∇u,∇
[

η2∂αu max(Γ − k, 0)
])

dx

which by the structure condition (1.2) turns into the estimate

(3.1)

∫

A(k,ρ)

η2aαβ∂αΓ∂βΓ dx ≤ −2

∫

A(k,ρ)

aαβ∂αΓ∂βηη(Γ − k) dx .

On the r.h.s. of (3.1) we can apply the Cauchy-Schwarz inequality to the symmetric
bilinear form induced by (aαβ) with the result

(3.2)

∫

A(k,ρ)

η2aαβ∂αΓ∂βΓ dx ≤ c

∫

A(k,ρ)

aαβ∂αη∂βη(Γ − k)2 dx .
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Let r < r̂, Br̂(x0) ⋐ Ω, and choose η = 1 on Br(x0), 0 ≤ η ≤ 1, spt η ⊂ Br̂(x0),
|∇η| ≤ c

/

(r̂ − r). From

∫

A(k,r)

(Γ − k)
n

n−1 dx ≤

∫

Br̂(x0)

(

η[Γ − k]+
)

n
n−1 dx

([. . .]+ denoting the positive part) and Sobolev’s theorem we get

(3.3)

∫

A(k,r)

(Γ − k)
n

n−1 dx ≤ c
[

I
n

n−1

1 + I
n

n−1

2

]

,

where

I
n

n−1

1 :=

[
∫

A(k,r̂)

|∇η|(Γ − k) dx

]
n

n−1

≤ c(r̂ − r)−
n

n−1

[
∫

A(k,r̂)

(Γ − k) dx

]
n

n−1

,

I
n

n−1

2 :=

[
∫

A(k,r̂)

η|∇Γ| dx

]
n

n−1

.

For k ≥ 1 we have on A(k, r̂)

h′(|∇u|)

|∇u|
≤ cΓ

ω−2

2 h(|∇u|) , h′′(|∇u|)
(A3)

≤ cΓ
ω−2

2 h(|∇u|) ,

h′(|∇u|)

|∇u|
≥ cΓ−1h(|∇u|) , h′′(|∇u|)

(A3)

≥ cΓ−1h(|∇u|) .

If we use these inequalities in combination with the ellipticity estimate

1

2
min

{

h′(|∇u|)

|∇u|
, h′′(|∇u|)

}

|τ |2 ≤ aαβτατβ ≤

1

2
max {. . .} |τ |2, τ ∈ R

n ,
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we find after applying Hölder’s inequality

I
n

n−1

2 =

[
∫

A(k,r̂)

η|∇Γ|h(|∇u|)1/2Γ−1/2Γ1/2h(|∇u|)−1/2 dx

]
n

n−1

≤

[
∫

A(k,r̂)

η2|∇Γ|2h(|∇u|)Γ−1 dx

]
1

2

n
n−1

·

[
∫

A(k,r̂)

Γh(|∇u|)−1 dx

]
1

2

n
n−1

≤ c

[
∫

A(k,r̂)

aαβ∂αΓ∂βΓη2 dx

]
1

2

n
n−1

·

[
∫

A(k,r̂)

Γh(|∇u|)−1 dx

]
1

2

n
n−1

(3.2)

≤ c

[
∫

A(k,r̂)

aαβ∂αη∂βη(Γ − k)2 dx

]
1

2

n
n−1

·

[
∫

A(k,r̂)

Γh(|∇u|)−1 dx

]
1

2

n
n−1

≤ c(r̂ − r)−
n

n−1

[
∫

A(k,r̂)

(Γ − k)2Γ
ω−2

2 h(|∇u|) dx

]
1

2

n
n−1

·

[
∫

A(k,r̂)

Γh(|∇u|)−1 dx

]
1

2

n
n−1

.

Another application of Hölder’s inequality yields

I
n

n−1

1 ≤ c(r̂ − r)−
n

n−1

[
∫

A(k,r̂)

(Γ − k)2Γ
ω−2

2 h(|∇u|) dx

]
1

2

n
n−1

·

[
∫

A(k,r̂)

Γ
2−ω

2 h(|∇u|)−1 dx

]
1

2

n
n−1

,

and therefore we get returning to (3.3)
∫

A(k,r)

(Γ − k)
n

n−1 dx ≤ c(r̂ − r)−
n

n−1

·

[
∫

A(k,r̂)

(Γ − k)2Γ
ω−2

2 h(|∇u|) dx

]
1

2

n
n−1

[
∫

A(k,r̂)

Γh(|∇u|)−1 dx

]
1

2

n
n−1

.(3.4)

Since by (A2) h(t) ≤ ctm on [1,∞) for some exponent m ≥ 2 and since we have (1.3), we
can choose exponents q and µ > 0 such that

(1 + t2)
ω−2

2 h(t) ≤ c(1 + t2)
q−2

2 ,
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(1 + t2)h(t)−1(≤ const) ≤ c(1 + t2)
µ

2 for t ≥ 1. But then (3.4) exactly is inequality (24)
in Lemma 5.23 of [Bi] and we can follow the calculations from p.158 of [Bi] (using Lemma
2.1) to get the claim of Lemma 3.1.

¤

Having shown the local boundedness of ∇u, we fix Ω′
⋐ Ω and a number K s.t. |∇u| ≤

K on Ω′. Then - following the construction of Mingione and Siepe [MS] - we can find an
integrand F : R

nM → R such that F (Z) = H(Z) for |Z| ≤ 2K and D2F (Z)=̂(1 + |Z|2)
s
2

for some s ≥ 2. If D2H satisfies the Hölder condition (A4), then so does F , and the
C1,α-regularity of u follows from [GM], Theorem 3.1. Further details are given in [BF2],
end of Section 2.1.

¤

Remark 3.1. Going through the arguments of this section and of the previous one it is
not hard to show that Theorem 1.1 remains valid if the first inequality in (A3) is replaced
by the slightly weaker requirement ε̄h′(t)/t ≤ h′′(t) for all t ≥ 0 and for some number
ε̄ ∈ (0, 1). We leave the details to the reader.
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