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Abstract
The L∞-estimates of the second derivatives for solutions of the

parabolic free boundary problem with two phases

∆u−∂tu = λ+χ{u>0}−λ−χ{u<0} in B+
1 ×]−1, 0], λ± � 0, λ++λ− > 0,

satisfying the non-zero Dirichlet condition on Π1 := {(x, t) : |x| �
1, x1 = 0,−1 < t � 0}, are proved.

1 Introduction.

In this paper, the optimal regularity for solutions of a parabolic two-phase
problem satisfying the non-homogeneous Dirichlet data is proved. Mathe-
matically the problem is formulated as follows.

Let a function u solve the problem:

H [u] = λ+χ{u>0} − λ−χ{u<0} a.e. in Q+
1 = B+

1 ×] − 1, 0], (1)

u = ϕ on Π1 := {(x, t) : |x| � 1, x1 = 0,−1 < t � 0}, (2)

where H [u] = ∆u− ∂tu is the heat operator, λ± are non-negative constants,
λ+ + λ− > 0, χE is the characteristic function of the set E, B+

1 = {x : |x| <
1, x1 > 0}, and Eq. (1) is satisfied in the sense of distributions.

The local estimates of the the derivatives ∂tu and D2u was proved in [SUW07].
The case ϕ = 0 was considered in [Ura07] and the corresponding estimates
up to Π1 were obtained there. We observe that the case of general Dirichlet
data cannot be reduce to the case ϕ = 0.

We suppose that a given function ϕ depends only on space variables and
satisfies the following conditions:

D3ϕ ∈ L∞(Π1), (3)

∃L > 0 such that |D′ϕ(x)| � L|ϕ(x)|2/3 ∀(x, t) ∈ Π1. (4)

We suppose also that sup
Q+

1

|u| � M with M � 1. Together with (3) it provides

for any δ ∈ (0, 1) the following estimates for u:

‖∂tu‖q,Q+
1−δ

+ ‖D2u‖q,Q+
1−δ

� N1(q, M, δ, ϕ), ∀q < ∞, (5)

sup
Q+

1−δ

|Du| � N2(M, δ, ϕ). (6)

|Du(x, t) − Du(y, t∗)|
|x − y|α + |t − t∗|α/2

� N3(α, M, δ, ϕ), ∀α ∈ (0, 1). (7)
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For the corresponding elliptic two-phase problem with Dirichlet data on Π1

the estimates of the second derivatives of solutions up to Π1 were obtained
by authors in [AU06]. Here we extend the results of [AU06] to the parabolic
case.

Theorem. Let u be a solution of the problem(1)-(2) with a function ϕ sat-
isfying the assumptions (3) and (4). Suppose also that sup

Q+
1

|u| � M .

Then for any δ ∈ (0, 1/4) there exists a positive constant C completely defined
by n, M , λ±, δ, L, and by the Sobolev’s norm of ϕ such that

ess sup
Q+

1−δ

|D2u| � c.

1.1 Notation.

Throughout this paper we use the following notation:
x = (x1, x2, . . . , xn) are points in R

n with the Euclidean norm |x|.
x · y denotes the inner product in R

n.
e1, . . . , en is a standard basis in R

n.
z = (x, t) are points in R

n+1, where x ∈ R
n and t ∈ R

1;
χE denotes the characteristic function of the set E ⊂ R

n+1;
∂E stands for the boundary of the set E;
v+ = max {v, 0}; v− = max {−v, 0};
Br(x

0) denotes the open ball in R
n with center x0 and radius r;

B+
r (x0) = Br(x0) ∩ {x1 > 0};

Qr(z
0) = Qr(x

0, t0) = Br(x
0)×]t0 − r2, t0];

Q+
r (z0) = Qr(z

0) ∩ {x1 > 0}.
When omitted, x0 (or z0 = (x0, t0), respectively) is assumed to be the origin.
We emphasize that in this paper the top of the cylinder Qr(z

0) is included
in the set Qr(z

0).
∂′Qr(z

0) is the parabolic boundary of Qr(z
0), i.e., ∂′Qr(z

0) = Qr(z0)\Qr(z
0).

Πr = {(x, t) : |x| � r, x1 = 0,−r2 < t � 0};
Πr(t

0) = Πr ∩ {t = t0}.
Di denotes the differential operator with respect to xi; ∂t = ∂

∂t
;

D = (D1, D
′) = (D1, D2, . . . , Dn) denotes the spatial gradient;

D2u = D(Du) denotes the Hessian of u;
D3u = D(D2u);
Dν stands for the operator of differentiation along the direction ν ∈ R

n, i.e.,
|ν| = 1 and

Dνu =

n∑
i=1

νiDiu.
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We also emphasize that throughout this paper we will use the symbol ∇ for
the whole gradient in the space R

n
x × Rt, i.e.

∇u := (Du, ∂tu), |∇u| := (|Du|2 + (∂tu)2)1/2.

We adopt the convention regarding summation with respect to repeated in-
dices.

‖ · ‖p, E denotes the norm in Lp(E), 1 < p � ∞;
W 2,1

p (E) is the anisotropic Sobolev space with the norm

‖u‖W 2,1
p (E) = ‖∂tu‖p, E + ‖D(Du)‖p,E + ‖u‖p,E;

For a W 2,1
q -function u defined in Q+

1 , q < ∞, we introduce the following set:

Λ(u) = {(x, t) ∈ Q+
1 : u(x, t) = |Du(x, t)| = 0}.

Hm stands for the m-dimensional Hausdorff measure.

We use letters M , N , and C (with or without indices) to denote various
constants. To indicate that, say, C depends on some parameters, we list
them in the parentheses: C(. . . ). We will write C(ϕ) to indicate that C is
defined by the Sobolev-norms of ϕ.

1.2 Useful facts

For the reader’s convenience and for the future references we recall and ex-
plain some facts:

Fact 1. Each solution of Equation (1) satisfies ∂tu ∈ L∞,loc(Q
+
1 ∪ Π1).

Proof. These statements can be proved analogously to Lemma 3.1 [SUW07],
(see also the proofs of Lemma 4.2 [SUW07] and Lemma 3.1 [Ura07]). �

Fact 2. Let u be a solution of Equation (1). Then the set {u = 0}∩{|Du| 
=
0} is locally in Q+

1 a C1-surface and ∂tu is continuous on that surface. In
addition, the unit normal vector to {u = 0} ∩ {|Du| 
= 0} directed into
{u > 0} has the form

γ(x, t) =
∇u(x, t)

|∇u(x, t)| .

Proof. For a proof of this statement we refer the reader to (the proof of)
Lemma 7.1 [SUW07]. �

Next statement is a parabolic counterpart of Lemma 2 [AU06].
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Fact 3. Let u be a solution of Equation (1), and let e be a direction in R
n.

Then for (x, t) ∈ Q+
1 \ Λ(u) we have

(i) H
[
Deu(x, t)

]
= (λ+ + λ−)

Deu(x, t)

|∇u(x, t)|H
n−1�{u = 0, |Du| 
= 0},

(ii) H
[|u(x, t)|] = λ+χ{u>0} + λ−χ{u<0} + 2

|Du(x, t)|2
|∇u(x, t)| H

n−1�{u = 0, |Du| 
= 0}.

Proof. Both cases follow from direct computation.

i) Consider an arbitrary direction e ∈ R
n
x and a test-function η ∈ C∞

0 (Q+
1 \

Λ(u)). Then Eq. (1) together with Facts 1 and 2, and integration by
parts provide the following identity

〈H[
Deu

]
, η〉 :=

∫
Deu(∂tη + ∆η)dz = −

∫
uDe (∂tη + ∆η) dz

= −
∫

H [u]Deη dz = −λ+

∫
{u>0}

Deηdz + λ−
∫

{u<0}

Deηdz

= λ+

∫
∂{u>0}

η cos (γ̂, e) dHn−1 + λ−
∫

∂{u<0}

η cos (γ̂, e) dHn−1,

where γ = γ(x, t) is the same vector as in Fact 2.

ii) For any test-function η ∈ C∞
0 (Q+

1 \ Λ(u)) the value of distribution
H

[|u(x, t)|] on η equals

〈H[|u|], η〉 :=

∫
{u>0}

u(∂tη + ∆η)dz −
∫

{u<0}

u(∂tη + ∆η)dz.

Integration the last two integrals by parts provides

〈H[|u|], η〉 =

∫
{u>0}

(∆u − ∂tu)ηdz −
∫

{u<0}

(∆u − ∂tu)ηdz

+ 2

∫
{u=0,|Du|�=0}

(Du · γ̃) η dHn−1,

where γ̃ = γ̃(x, t) ist the projection of γ(x, t) onto space R
n
x, i.e.,

γ̃(x, t) =
Du(x, t)

|∇u(x, t)| . Application Eq. (1) to the right-hand side of

the above identity finishes the proof. �

4



2 Lipschitz estimate of the normal derivative

at the boundary points

Lemma 1. Let the assumptions of Theorem hold. Then for arbitrary small
δ > 0 there exists constant Nδ such that

|Dτu(x, t) − Dτϕ(x′, t)| � Nδx1, for (x, t) ∈ Q+
1−δ, τ ⊥ e1. (8)

The constant Nδ completely defined by δ, n, M , L, λ±, and by the corre-
sponding Sobolev’s norm of ϕ.

Proof. We fix δ ∈ (0, 1/4) and τ ∈ R
n, τ ⊥ e1.

For arbitrary t0 ∈ (−(1 − δ)2, 0] we consider in the cylinder Qδ,t0 = {(x, t) ∈
R

n+1 : 0 < x1 <
√

δ, |x′| < 1 − δ, t0 − δ2 < t � t0}, the auxiliary functions

v±(x, t) = ±(Dτu(x, t) − Dτϕ(x′)) + |u(x, t)| − |ϕ(x′)|,
and the barrier function

w(x, t) = N4(t
0 − t) + N5

(
x1√
δ
− x2

1

2δ

)
+ N6 ((|x′| − 1 + δ)+)

2
.

Here N4, N5 and N6 are suitable selected positive constants depending only
on the parameters of the problem.
It is easy to see that the inequalities

v±(x, t0) � w(x, t0) in Qδ,t0 ∩ {t = t0} (9)

together with (6) and arbitrary choice of t0 imply the desired estimate (8).
It remains only to note that inequalities (9) can be established along the
same lines as in the proof of Lemma 3 [AU06]. By this reason we omit the
detailed verification of (9) here. �

Lemma 2. Let the assumptions of Theorem hold. Then for arbitrary small
δ > 0 and each t ∈ (−(1 − δ)2, 0] we have the estimate

|D1u(0, x′, t) − D1u(0, y′, t)| � Nδ|x′ − y′|, ∀x′, y′ ∈ Π1−δ(t), (10)

with the same constant Nδ as in Lemma 1.

Proof. If we have the existence of the second derivatives D′(D1u) on the
surface Π1−δ, than Lemma 1 immediately guarantees the boundness of them.
However, the derivatives D′(D1u) are not defined on Π1−δ. By this reason
we have to consider instead of u its mollifier with respect to x′-variables uε.
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It is easy to see that inequality (8) preserves with the same constant Nδ, if
we replace in (8) the derivative Dτu by Dτuε and Dτϕ by Dτϕε, respectively.
In other words, from (8) it follows that

|D′(D1uε)| � Nδ in Q+
1−δ.

The latter inequality means that for t ∈ (−(1 − δ)2, 0] and x′, y′ ∈ Π1−δ(t)
we have, in fact, the estimate

|D1uε(0, x
′, t) − D1uε(0, y

′, t)| � Nδ|x′ − y′|. (11)

Now, letting ε → 0, we get from (11) the desired estimate (10). �

3 Boundary estimates of the second deriva-

tives

Lemma 3. Let the assumptions of Theorem hold, let an arbitrary δ ∈ (0, 1/4)
be fixed, and let z0 = (x0, t0) be an arbitrary point on Π1−δ. Then for any
direction e ∈ R

n and a cylinder Qr(z
0) ⊂ Q1−δ we have

osc
Q+

r (z0)
Deu � Cδr, (12)

where Cδ depends on the same arguments as the constant Nδ from Lemma 1.

Proof. The proof will be divided into three steps.

Step 1. For almost all t ∈ (−(1 − 2δ)2, 0) the function u(·, t) can be
regarded as a solution of an elliptic equation

∆u(x, t) = F (x) ≡ λ+χ{u>0} − λ−χ{u<0} + ∂tu(x, t), x ∈ B+
1−δ.

In view of Fact 2 we have F ∈ L∞(Q+
1−δ). Therefore, for a direction e ∈ R

n

the derivative Deu satisfies the integral identity∫
D(Deu) Dηdx =

∫
F Deηdx, ∀η ∈

◦
W 1

2 (B+
1−δ). (13)

Setting in the above identity e = τ with τ ⊥ e1 and η = (Dτu − Dτϕ)ξ2,

where ξ is a cut-off function in B2r(x
0) ⊂ B1, x

(0)
1 = 0, that is equal to 1 in

Br(x
0), we obtain the inequalities∫

B+
2r(x0)

|D(Dτu(x, t))|2ξ2dx � Cδr
n, τ ⊥ e1. (14)
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Making use of (8) we can easily claim that the constant Cδ in (14) is uniformly
bounded with respect to t-variable.
Finally, we find the derivative D1D1u from Equation (1) and arrive at the
inequality ∫

B+
r (x0)

|D2u(x, t)|2dx � Cδr
n (15)

with uniformly bounded constant Cδ with respect to t-variable.

Step 2. We claim that for any direction e ∈ R
n, and for all t ∈ (−(1−δ)2, 0]

and x ∈ Π1−δ(t) the estimate

osc
B+

r (x)
Deu(·, t) � Cδr (16)

holds true. To prove this, we introduce two auxiliary functions

Ke(2r, t, x) := sup
Π1(t)∩B+

2r(x)

Deu,

ke(2r, t, x) := inf
Π1(t)∩B+

2r(x)
Deu.

The local estimates for solutions of (13) imply the following inequalities

sup
B+

r (x)

Deu(·, t) � Ke + N7‖F‖∞,Q+
1
r + N8(n)

√
r−nJ+(t), (17)

inf
B+

r (x)
Deu(·, t) � ke − N7‖F‖∞,Q+

1
r − N8(n)

√
r−nJ−(t), (18)

with J+(t) and J−(t) defined as

J+(t) :=

∫
B+

2r(x)

((Deu(y, t)− Ke)+)2 dy,

J−(t) :=

∫
B+

2r(x)

((Deu(y, t)− ke)−)2 dy.

Estimating J± with the help of the Poincare inequlity we can conclude that

J± � Cr2

∫
B+

2r(x)

(D(Deu(y, t))2dy � Crn+2, (19)

where the second inequality follows from (15).
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Combining (11), (17), (18) and (19) we arrive at (16).

Step 3. It remains only to verify that D1u satisfies on Π1−δ the Hölder

condition with respect to t with the exponent 1/2.
Towards this end, let us consider for ρ ∈ [0, δ) the representation

u(ρ, x′, t1) − u(ρ, x′, t2) =

ρ∫
0

[D1(s, x
′, t1) − D1(s, x

′, t2)] ds

= ρ
[
D1(0, x

′, t1) − D1(0, x
′, t2)

]
+ I.

(20)

We observe that due to Step 2 |I| � Cδρ
2. Taking additionally in account

the boundedness of the derivatives of ∂tu, we get from (20) the inequality

|D1u(0, x′, t1) − D1u(0, x′, t2)| � Cδ

( |t1 − t2|
ρ

+ ρ

)
. (21)

It is evident that for ρ =
√|t1 − t2| the desired Hölder estimate follows

immediately from (21). �

Proof of Theorem. Let δ ∈ (0, 1/4) and z∗ = (x∗, t∗) ∈ Q+
1−2δ be fixed,

and let ν = Du(z∗)
|Du(z∗)| . Suppose also that e is an arbitrary direction in R

n if

Du(z∗) = 0 and e ⊥ ν otherwise.
Due to our choice of e we have Deu(z∗) = 0 and, consequently, Lemma 3
provides for R = x∗

1 = dist {z∗, Π1} the estimate

sup
QR(z∗)

|Deu| � CδR.

Now we may apply the result due to L. Caffarelli and C. Kenig [CK98] (see
also Lemma 4.2 [Ura07]) to the subcaloric functions (Deu)± in QR(z∗). This
leads to the estimate

|D(Deu)(z∗)| � Cδ,

where Cδ does not depend on R. Since e is an arbitrary direction in R
n sat-

isfying e ⊥ ν, the derivative DνDνu(z∗) can be now estimated from Eq. (1).
Thus, we have

|D2u(z∗)| � Cδ.

�

Remark. It is easy to see that all the arguments hold true if ϕ = ϕ(x, t)
and ∂tϕ as well as D(∂tϕ) are bounded.
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