Universität des Saarlandes

Fachrichtung 6.1 - Mathematik

Preprint Nr. 225

Estimates of the second-order derivatives for solutions to the two-phase parabolic problem

Darya Apushkinskaya and Nina Uraltseva

Estimates of the second-order derivatives for solutions to the two-phase parabolic problem

Darya Apushkinskaya
Saarland University
Department of Mathematics
P.O. Box 151150
66041 Saarbrücken
Germany
darya@math.uni-sb.de

Nina Uraltseva
St. Petersburg State University
Department of Mathematics
Universitetsky prospekt, 28 (Peterhof)
198504 St. Petersburg Russia
uraltsev@pdmi.ras.ru

Edited by
FR 6.1 - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany

Fax: $\quad+496813024443$
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

The L_{∞}-estimates of the second derivatives for solutions of the parabolic free boundary problem with two phases $$
\left.\left.\Delta u-\partial_{t} u=\lambda^{+} \chi_{\{u>0\}}-\lambda^{-} \chi_{\{u<0\}} \text { in } B_{1}^{+} \times\right]-1,0\right], \quad \lambda^{ \pm} \geqslant 0, \lambda^{+}+\lambda^{-}>0,
$$ satisfying the non-zero Dirichlet condition on $\Pi_{1}:=\{(x, t):|x| \leqslant$ $\left.1, x_{1}=0,-1<t \leqslant 0\right\}$, are proved.

1 Introduction.

In this paper, the optimal regularity for solutions of a parabolic two-phase problem satisfying the non-homogeneous Dirichlet data is proved. Mathematically the problem is formulated as follows.

Let a function u solve the problem:

$$
\begin{align*}
H[u] & \left.\left.=\lambda^{+} \chi_{\{u>0\}}-\lambda^{-} \chi_{\{u<0\}} \quad \text { a.e. in } \quad Q_{1}^{+}=B_{1}^{+} \times\right]-1,0\right], \tag{1}\\
u & =\varphi \quad \text { on } \quad \Pi_{1}:=\left\{(x, t):|x| \leqslant 1, x_{1}=0,-1<t \leqslant 0\right\}, \tag{2}
\end{align*}
$$

where $H[u]=\Delta u-\partial_{t} u$ is the heat operator, $\lambda^{ \pm}$are non-negative constants, $\lambda^{+}+\lambda^{-}>0, \chi_{E}$ is the characteristic function of the set $E, B_{1}^{+}=\{x:|x|<$ $\left.1, x_{1}>0\right\}$, and Eq. (1) is satisfied in the sense of distributions.

The local estimates of the the derivatives $\partial_{t} u$ and $D^{2} u$ was proved in [SUW07]. The case $\varphi=0$ was considered in [Ura07] and the corresponding estimates up to Π_{1} were obtained there. We observe that the case of general Dirichlet data cannot be reduce to the case $\varphi=0$.

We suppose that a given function φ depends only on space variables and satisfies the following conditions:

$$
\begin{gather*}
D^{3} \varphi \in L_{\infty}\left(\Pi_{1}\right) \tag{3}\\
\exists L>0 \text { such that }\left|D^{\prime} \varphi(x)\right| \leqslant L|\varphi(x)|^{2 / 3} \quad \forall(x, t) \in \Pi_{1} . \tag{4}
\end{gather*}
$$

We suppose also that sup $|u| \leqslant M$ with $M \geqslant 1$. Together with (3) it provides Q_{1}^{+} for any $\delta \in(0,1)$ the following estimates for u :

$$
\begin{align*}
\left\|\partial_{t} u\right\|_{q, Q_{1-\delta}^{+}}+\left\|D^{2} u\right\|_{q, Q_{1-\delta}^{+}} & \leqslant N_{1}(q, M, \delta, \varphi), \quad \forall q<\infty \tag{5}\\
\sup _{Q_{1-\delta}^{+}}|D u| & \leqslant N_{2}(M, \delta, \varphi) \tag{6}\\
\frac{\left|D u(x, t)-D u\left(y, t^{*}\right)\right|}{|x-y|^{\alpha}+\left|t-t^{*}\right|^{\alpha / 2}} & \leqslant N_{3}(\alpha, M, \delta, \varphi), \quad \forall \alpha \in(0,1) .
\end{align*}
$$

For the corresponding elliptic two-phase problem with Dirichlet data on Π_{1} the estimates of the second derivatives of solutions up to Π_{1} were obtained by authors in [AU06]. Here we extend the results of [AU06] to the parabolic case.

Theorem. Let u be a solution of the problem(1)-(2) with a function φ satisfying the assumptions (3) and (4). Suppose also that $\sup |u| \leqslant M$.

Then for any $\delta \in(0,1 / 4)$ there exists a positive constant C completely defined by $n, M, \lambda^{ \pm}, \delta, L$, and by the Sobolev's norm of φ such that

$$
\text { ess } \sup _{Q_{1-\delta}^{+}}^{Q^{+}}\left|D^{2} u\right| \leqslant c .
$$

1.1 Notation.

Throughout this paper we use the following notation:
$x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are points in \mathbb{R}^{n} with the Euclidean norm $|x|$.
$x \cdot y$ denotes the inner product in \mathbb{R}^{n}.
e_{1}, \ldots, e_{n} is a standard basis in \mathbb{R}^{n}.
$z=(x, t)$ are points in \mathbb{R}^{n+1}, where $x \in \mathbb{R}^{n}$ and $t \in \mathbb{R}^{1}$;
χ_{E} denotes the characteristic function of the set $E \subset \mathbb{R}^{n+1}$;
∂E stands for the boundary of the set E;
$v_{+}=\max \{v, 0\} ; \quad v_{-}=\max \{-v, 0\}$;
$B_{r}\left(x^{0}\right)$ denotes the open ball in \mathbb{R}^{n} with center x^{0} and radius r;
$B_{r}^{+}\left(x_{0}\right)=B_{r}\left(x_{0}\right) \cap\left\{x_{1}>0\right\}$;
$\left.\left.Q_{r}\left(z^{0}\right)=Q_{r}\left(x^{0}, t^{0}\right)=B_{r}\left(x^{0}\right) \times\right] t^{0}-r^{2}, t^{0}\right] ;$
$Q_{r}^{+}\left(z^{0}\right)=Q_{r}\left(z^{0}\right) \cap\left\{x_{1}>0\right\}$.
When omitted, x^{0} (or $z^{0}=\left(x^{0}, t^{0}\right)$, respectively) is assumed to be the origin.
We emphasize that in this paper the top of the cylinder $Q_{r}\left(z^{0}\right)$ is included in the set $Q_{r}\left(z^{0}\right)$.
$\partial^{\prime} Q_{r}\left(z^{0}\right)$ is the parabolic boundary of $Q_{r}\left(z^{0}\right)$, i.e., $\partial^{\prime} Q_{r}\left(z^{0}\right)=\overline{Q_{r}\left(z^{0}\right)} \backslash Q_{r}\left(z^{0}\right)$.
$\Pi_{r}=\left\{(x, t):|x| \leqslant r, x_{1}=0,-r^{2}<t \leqslant 0\right\} ;$
$\Pi_{r}\left(t^{0}\right)=\Pi_{r} \cap\left\{t=t^{0}\right\}$.
D_{i} denotes the differential operator with respect to $x_{i} ; \partial_{t}=\frac{\partial}{\partial t}$;
$D=\left(D_{1}, D^{\prime}\right)=\left(D_{1}, D_{2}, \ldots, D_{n}\right)$ denotes the spatial gradient;
$D^{2} u=D(D u)$ denotes the Hessian of u;
$D^{3} u=D\left(D^{2} u\right)$;
D_{ν} stands for the operator of differentiation along the direction $\nu \in \mathbb{R}^{n}$, i.e., $|\nu|=1$ and

$$
D_{\nu} u=\sum_{i=1}^{n} \nu_{i} D_{i} u .
$$

We also emphasize that throughout this paper we will use the symbol ∇ for the whole gradient in the space $\mathbb{R}_{x}^{n} \times \mathbb{R}_{t}$, i.e.

$$
\nabla u:=\left(D u, \partial_{t} u\right), \quad|\nabla u|:=\left(|D u|^{2}+\left(\partial_{t} u\right)^{2}\right)^{1 / 2}
$$

We adopt the convention regarding summation with respect to repeated indices.
$\|\cdot\|_{p, E}$ denotes the norm in $L_{p}(E), 1<p \leqslant \infty$;
$W_{p}^{2,1}(E)$ is the anisotropic Sobolev space with the norm

$$
\|u\|_{W_{p}^{2,1}(E)}=\left\|\partial_{t} u\right\|_{p, E}+\|D(D u)\|_{p, E}+\|u\|_{p, E}
$$

For a $W_{q}^{2,1}$-function u defined in $Q_{1}^{+}, q<\infty$, we introduce the following set:

$$
\Lambda(u)=\left\{(x, t) \in Q_{1}^{+}: u(x, t)=|D u(x, t)|=0\right\} .
$$

\mathcal{H}^{m} stands for the m-dimensional Hausdorff measure.
We use letters M, N, and C (with or without indices) to denote various constants. To indicate that, say, C depends on some parameters, we list them in the parentheses: $C(\ldots)$. We will write $C(\varphi)$ to indicate that C is defined by the Sobolev-norms of φ.

1.2 Useful facts

For the reader's convenience and for the future references we recall and explain some facts:
Fact 1. Each solution of Equation (1) satisfies $\partial_{t} u \in L_{\infty, l o c}\left(Q_{1}^{+} \cup \Pi_{1}\right)$.
Proof. These statements can be proved analogously to Lemma 3.1 [SUW07], (see also the proofs of Lemma 4.2 [SUW07] and Lemma 3.1 [Ura07]).

Fact 2. Let u be a solution of Equation (1). Then the set $\{u=0\} \cap\{|D u| \neq$ $0\}$ is locally in Q_{1}^{+}a C^{1}-surface and $\partial_{t} u$ is continuous on that surface. In addition, the unit normal vector to $\{u=0\} \cap\{|D u| \neq 0\}$ directed into $\{u>0\}$ has the form

$$
\gamma(x, t)=\frac{\nabla u(x, t)}{|\nabla u(x, t)|}
$$

Proof. For a proof of this statement we refer the reader to (the proof of) Lemma 7.1 [SUW07].

Next statement is a parabolic counterpart of Lemma 2 [AU06].

Fact 3. Let u be a solution of Equation (1), and let e be a direction in \mathbb{R}^{n}. Then for $(x, t) \in Q_{1}^{+} \backslash \Lambda(u)$ we have
(i) $H\left[D_{e} u(x, t)\right]=\left(\lambda^{+}+\lambda^{-}\right) \frac{D_{e} u(x, t)}{|\nabla u(x, t)|} \mathcal{H}^{n-1}\lfloor\{u=0,|D u| \neq 0\}$,
(ii) $H[|u(x, t)|]=\lambda^{+} \chi_{\{u>0\}}+\lambda^{-} \chi_{\{u<0\}}+2 \frac{|D u(x, t)|^{2}}{|\nabla u(x, t)|} \mathcal{H}^{n-1}\lfloor\{u=0,|D u| \neq 0\}$.

Proof. Both cases follow from direct computation.
i) Consider an arbitrary direction $e \in \mathbb{R}_{x}^{n}$ and a test-function $\eta \in C_{0}^{\infty}\left(Q_{1}^{+} \backslash\right.$ $\Lambda(u)$). Then Eq. (1) together with Facts 1 and 2, and integration by parts provide the following identity

$$
\begin{aligned}
\left\langle H\left[D_{e} u\right], \eta\right\rangle & :=\int D_{e} u\left(\partial_{t} \eta+\Delta \eta\right) d z=-\int u D_{e}\left(\partial_{t} \eta+\Delta \eta\right) d z \\
& =-\int H[u] D_{e} \eta d z=-\lambda^{+} \int_{\{u>0\}} D_{e} \eta d z+\lambda^{-} \int_{\{u<0\}} D_{e} \eta d z \\
& =\lambda^{+} \int_{\partial\{u>0\}} \eta \cos (\widehat{\gamma, e}) d \mathcal{H}^{n-1}+\lambda^{-} \int_{\partial\{u<0\}} \eta \cos (\widehat{\gamma, e}) d \mathcal{H}^{n-1},
\end{aligned}
$$

where $\gamma=\gamma(x, t)$ is the same vector as in Fact 2.
ii) For any test-function $\eta \in C_{0}^{\infty}\left(Q_{1}^{+} \backslash \Lambda(u)\right)$ the value of distribution $H[|u(x, t)|]$ on η equals

$$
\langle H[|u|], \eta\rangle:=\int_{\{u>0\}} u\left(\partial_{t} \eta+\Delta \eta\right) d z-\int_{\{u<0\}} u\left(\partial_{t} \eta+\Delta \eta\right) d z
$$

Integration the last two integrals by parts provides

$$
\begin{aligned}
\langle H[|u|], \eta\rangle & =\int_{\{u>0\}}\left(\Delta u-\partial_{t} u\right) \eta d z-\int_{\{u<0\}}\left(\Delta u-\partial_{t} u\right) \eta d z \\
& +2 \int_{\{u=0,|D u| \neq 0\}}(D u \cdot \tilde{\gamma}) \eta d \mathcal{H}^{n-1}
\end{aligned}
$$

where $\tilde{\gamma}=\tilde{\gamma}(x, t)$ ist the projection of $\gamma(x, t)$ onto space \mathbb{R}_{x}^{n}, i.e., $\tilde{\gamma}(x, t)=\frac{D u(x, t)}{|\nabla u(x, t)|}$. Application Eq. (1) to the right-hand side of the above identity finishes the proof.

2 Lipschitz estimate of the normal derivative at the boundary points

Lemma 1. Let the assumptions of Theorem hold. Then for arbitrary small $\delta>0$ there exists constant N_{δ} such that

$$
\begin{equation*}
\left|D_{\tau} u(x, t)-D_{\tau} \varphi\left(x^{\prime}, t\right)\right| \leqslant N_{\delta} x_{1}, \quad \text { for }(x, t) \in Q_{1-\delta}^{+}, \quad \tau \perp e_{1} \tag{8}
\end{equation*}
$$

The constant N_{δ} completely defined by $\delta, n, M, L, \lambda^{ \pm}$, and by the corresponding Sobolev's norm of φ.

Proof. We fix $\delta \in(0,1 / 4)$ and $\tau \in \mathbb{R}^{n}, \tau \perp e_{1}$.
For arbitrary $t^{0} \in\left(-(1-\delta)^{2}, 0\right]$ we consider in the cylinder $Q_{\delta, t^{0}}=\{(x, t) \in$ $\left.\mathbb{R}^{n+1}: 0<x_{1}<\sqrt{\delta},\left|x^{\prime}\right|<1-\delta, t^{0}-\delta^{2}<t \leqslant t^{0}\right\}$, the auxiliary functions

$$
v^{ \pm}(x, t)= \pm\left(D_{\tau} u(x, t)-D_{\tau} \varphi\left(x^{\prime}\right)\right)+|u(x, t)|-\left|\varphi\left(x^{\prime}\right)\right|
$$

and the barrier function

$$
w(x, t)=N_{4}\left(t^{0}-t\right)+N_{5}\left(\frac{x_{1}}{\sqrt{\delta}}-\frac{x_{1}^{2}}{2 \delta}\right)+N_{6}\left(\left(\left|x^{\prime}\right|-1+\delta\right)_{+}\right)^{2} .
$$

Here N_{4}, N_{5} and N_{6} are suitable selected positive constants depending only on the parameters of the problem.
It is easy to see that the inequalities

$$
\begin{equation*}
v^{ \pm}\left(x, t^{0}\right) \leqslant w\left(x, t^{0}\right) \quad \text { in } \quad Q_{\delta, t^{0}} \cap\left\{t=t^{0}\right\} \tag{9}
\end{equation*}
$$

together with (6) and arbitrary choice of t^{0} imply the desired estimate (8). It remains only to note that inequalities (9) can be established along the same lines as in the proof of Lemma 3 [AU06]. By this reason we omit the detailed verification of (9) here.

Lemma 2. Let the assumptions of Theorem hold. Then for arbitrary small $\delta>0$ and each $t \in\left(-(1-\delta)^{2}, 0\right]$ we have the estimate

$$
\begin{equation*}
\left|D_{1} u\left(0, x^{\prime}, t\right)-D_{1} u\left(0, y^{\prime}, t\right)\right| \leqslant N_{\delta}\left|x^{\prime}-y^{\prime}\right|, \quad \forall x^{\prime}, y^{\prime} \in \Pi_{1-\delta}(t) \tag{10}
\end{equation*}
$$

with the same constant N_{δ} as in Lemma 1.
Proof. If we have the existence of the second derivatives $D^{\prime}\left(D_{1} u\right)$ on the surface $\Pi_{1-\delta}$, than Lemma 1 immediately guarantees the boundness of them. However, the derivatives $D^{\prime}\left(D_{1} u\right)$ are not defined on $\Pi_{1-\delta}$. By this reason we have to consider instead of u its mollifier with respect to x^{\prime}-variables u_{ε}.

It is easy to see that inequality (8) preserves with the same constant N_{δ}, if we replace in (8) the derivative $D_{\tau} u$ by $D_{\tau} u_{\varepsilon}$ and $D_{\tau} \varphi$ by $D_{\tau} \varphi_{\varepsilon}$, respectively. In other words, from (8) it follows that

$$
\left|D^{\prime}\left(D_{1} u_{\varepsilon}\right)\right| \leqslant N_{\delta} \quad \text { in } \quad Q_{1-\delta}^{+} .
$$

The latter inequality means that for $t \in\left(-(1-\delta)^{2}, 0\right]$ and $x^{\prime}, y^{\prime} \in \Pi_{1-\delta}(t)$ we have, in fact, the estimate

$$
\begin{equation*}
\left|D_{1} u_{\varepsilon}\left(0, x^{\prime}, t\right)-D_{1} u_{\varepsilon}\left(0, y^{\prime}, t\right)\right| \leqslant N_{\delta}\left|x^{\prime}-y^{\prime}\right| \tag{11}
\end{equation*}
$$

Now, letting $\varepsilon \rightarrow 0$, we get from (11) the desired estimate (10).

3 Boundary estimates of the second derivatives

Lemma 3. Let the assumptions of Theorem hold, let an arbitrary $\delta \in(0,1 / 4)$ be fixed, and let $z^{0}=\left(x^{0}, t^{0}\right)$ be an arbitrary point on $\Pi_{1-\delta}$. Then for any direction $e \in \mathbb{R}^{n}$ and a cylinder $Q_{r}\left(z^{0}\right) \subset Q_{1-\delta}$ we have

$$
\begin{equation*}
\underset{Q_{r}^{+}\left(z^{0}\right)}{\operatorname{osc}} D_{e} u \leqslant C_{\delta} r, \tag{12}
\end{equation*}
$$

where C_{δ} depends on the same arguments as the constant N_{δ} from Lemma 1.

Proof. The proof will be divided into three steps.
Step 1. For almost all $t \in\left(-(1-2 \delta)^{2}, 0\right)$ the function $u(\cdot, t)$ can be regarded as a solution of an elliptic equation

$$
\Delta u(x, t)=F(x) \equiv \lambda^{+} \chi_{\{u>0\}}-\lambda^{-} \chi_{\{u<0\}}+\partial_{t} u(x, t), \quad x \in B_{1-\delta}^{+} .
$$

In view of Fact 2 we have $F \in L_{\infty}\left(Q_{1-\delta}^{+}\right)$. Therefore, for a direction $e \in \mathbb{R}^{n}$ the derivative $D_{e} u$ satisfies the integral identity

$$
\begin{equation*}
\int D\left(D_{e} u\right) D \eta d x=\int F D_{e} \eta d x, \quad \forall \eta \in \stackrel{\circ}{W_{2}^{1}}\left(B_{1-\delta}^{+}\right) . \tag{13}
\end{equation*}
$$

Setting in the above identity $e=\tau$ with $\tau \perp e_{1}$ and $\eta=\left(D_{\tau} u-D_{\tau} \varphi\right) \xi^{2}$, where ξ is a cut-off function in $B_{2 r}\left(x^{0}\right) \subset B_{1}, x_{1}^{(0)}=0$, that is equal to 1 in $B_{r}\left(x^{0}\right)$, we obtain the inequalities

$$
\begin{equation*}
\int_{B_{2 r}^{+}\left(x^{0}\right)}\left|D\left(D_{\tau} u(x, t)\right)\right|^{2} \xi^{2} d x \leqslant C_{\delta} r^{n}, \quad \tau \perp e_{1} \tag{14}
\end{equation*}
$$

Making use of (8) we can easily claim that the constant C_{δ} in (14) is uniformly bounded with respect to t-variable.
Finally, we find the derivative $D_{1} D_{1} u$ from Equation (1) and arrive at the inequality

$$
\begin{equation*}
\int_{B_{r}^{+}\left(x^{0}\right)}\left|D^{2} u(x, t)\right|^{2} d x \leqslant C_{\delta} r^{n} \tag{15}
\end{equation*}
$$

with uniformly bounded constant C_{δ} with respect to t-variable.
Step 2. We claim that for any direction $e \in \mathbb{R}^{n}$, and for all $t \in\left(-(1-\delta)^{2}, 0\right.$] and $x \in \Pi_{1-\delta}(t)$ the estimate

$$
\begin{equation*}
\underset{B_{r}^{+}(x)}{\operatorname{osc}} D_{e} u(\cdot, t) \leqslant C_{\delta} r \tag{16}
\end{equation*}
$$

holds true. To prove this, we introduce two auxiliary functions

$$
\begin{aligned}
K_{e}(2 r, t, x) & :=\sup _{\Pi_{1}(t) \cap B_{2 r}^{+}(x)} D_{e} u, \\
k_{e}(2 r, t, x) & :=\inf _{\Pi_{1}(t) \cap B_{2 r}^{+}(x)} D_{e} u .
\end{aligned}
$$

The local estimates for solutions of (13) imply the following inequalities

$$
\begin{align*}
& \sup _{B_{r}^{+}(x)} D_{e} u(\cdot, t) \leqslant K_{e}+N_{7}\|F\|_{\infty, Q_{1}^{+}} r+N_{8}(n) \sqrt{r^{-n} J_{+}(t)}, \tag{17}\\
& \inf _{B_{r}^{+}(x)} D_{e} u(\cdot, t) \geqslant k_{e}-N_{7}\|F\|_{\infty, Q_{1}^{+}} r-N_{8}(n) \sqrt{r^{-n} J_{-}(t)}, \tag{18}
\end{align*}
$$

with $J_{+}(t)$ and $J_{-}(t)$ defined as

$$
\begin{aligned}
& J_{+}(t):=\int_{B_{2 r}^{+}(x)}\left(\left(D_{e} u(y, t)-K_{e}\right)_{+}\right)^{2} d y, \\
& J_{-}(t):=\int_{B_{2 r}^{+}(x)}\left(\left(D_{e} u(y, t)-k_{e}\right)_{-}\right)^{2} d y
\end{aligned}
$$

Estimating $J_{ \pm}$with the help of the Poincare inequlity we can conclude that

$$
\begin{equation*}
J_{ \pm} \leqslant C r^{2} \int_{B_{2 r}^{+}(x)}\left(D\left(D_{e} u(y, t)\right)^{2} d y \leqslant C r^{n+2}\right. \tag{19}
\end{equation*}
$$

where the second inequality follows from (15).

Combining (11), (17), (18) and (19) we arrive at (16).
Step 3. It remains only to verify that $D_{1} u$ satisfies on $\Pi_{1-\delta}$ the Hölder condition with respect to t with the exponent $1 / 2$.
Towards this end, let us consider for $\rho \in[0, \delta)$ the representation

$$
\begin{align*}
u\left(\rho, x^{\prime}, t_{1}\right)-u\left(\rho, x^{\prime}, t_{2}\right) & =\int_{0}^{\rho}\left[D_{1}\left(s, x^{\prime}, t_{1}\right)-D_{1}\left(s, x^{\prime}, t_{2}\right)\right] d s \tag{20}\\
& =\rho\left[D_{1}\left(0, x^{\prime}, t_{1}\right)-D_{1}\left(0, x^{\prime}, t_{2}\right)\right]+\mathcal{I}
\end{align*}
$$

We observe that due to Step $2|\mathcal{I}| \leqslant C_{\delta} \rho^{2}$. Taking additionally in account the boundedness of the derivatives of $\partial_{t} u$, we get from (20) the inequality

$$
\begin{equation*}
\left|D_{1} u\left(0, x^{\prime}, t_{1}\right)-D_{1} u\left(0, x^{\prime}, t_{2}\right)\right| \leqslant C_{\delta}\left(\frac{\left|t_{1}-t_{2}\right|}{\rho}+\rho\right) . \tag{21}
\end{equation*}
$$

It is evident that for $\rho=\sqrt{\left|t_{1}-t_{2}\right|}$ the desired Hölder estimate follows immediately from (21).

Proof of Theorem. Let $\delta \in(0,1 / 4)$ and $z^{*}=\left(x^{*}, t^{*}\right) \in Q_{1-2 \delta}^{+}$be fixed, and let $\nu=\frac{D u\left(z^{*}\right)}{\left|D u\left(z^{*}\right)\right|}$. Suppose also that e is an arbitrary direction in \mathbb{R}^{n} if $D u\left(z^{*}\right)=0$ and $e \perp \nu$ otherwise.
Due to our choice of e we have $D_{e} u\left(z^{*}\right)=0$ and, consequently, Lemma 3 provides for $R=x_{1}^{*}=\operatorname{dist}\left\{z^{*}, \Pi_{1}\right\}$ the estimate

$$
\sup _{Q_{R}\left(z^{*}\right)}\left|D_{e} u\right| \leqslant C_{\delta} R .
$$

Now we may apply the result due to L. Caffarelli and C. Kenig [CK98] (see also Lemma 4.2 [Ura07]) to the subcaloric functions $\left(D_{e} u\right)_{ \pm}$in $Q_{R}\left(z^{*}\right)$. This leads to the estimate

$$
\left|D\left(D_{e} u\right)\left(z^{*}\right)\right| \leqslant C_{\delta}
$$

where C_{δ} does not depend on R. Since e is an arbitrary direction in \mathbb{R}^{n} satisfying $e \perp \nu$, the derivative $D_{\nu} D_{\nu} u\left(z^{*}\right)$ can be now estimated from Eq. (1). Thus, we have

$$
\left|D^{2} u\left(z^{*}\right)\right| \leqslant C_{\delta} .
$$

Remark. It is easy to see that all the arguments hold true if $\varphi=\varphi(x, t)$ and $\partial_{t} \varphi$ as well as $D\left(\partial_{t} \varphi\right)$ are bounded.

Acknowledment. This work was partially supported by the Russian Foundation of Basic Research (RFBR) through the grant number 08-01-00748.

References

[AU06] D. E. Apushkinskaya and N. N. Uraltseva. Boundary estimates for solutions of two-phase obstacle problems. Probl. Math. Anal., (34):3-11, 2006. English transl. in J. Math. Sci. (N.Y.), 142 (1): 1723-1732, 2007.
[CK98] Luis A. Caffarelli and Carlos E. Kenig. Gradient estimates for variable coefficient parabolic equations and singular perturbation problems. Amer. J. Math., 120(2):391-439, 1998.
[SUW07] Henrik Shahgholian, Nina Uraltseva, and Georg S. Weiss. The parabolic two-phase membrane problem: Regularity in higher dimensions, 2007.
[Ura07] N. N. Uraltseva. Boundary estimates for solutions of elliptic and parabolic equations with discontinuous nonlinearities. In Nonlinear equations and spectral theory, volume 220 of Amer. Math. Soc. Transl. Ser. 2, pages 235-246. Amer. Math. Soc., Providence, RI, 2007.

