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FROBENIUS ACTIONS ON THE DE RHAM

COHOMOLOGY OF DRINFELD MODULES

ERNST-ULRICH GEKELER

Abstract. We study the action of endomorphisms of a Drinfeld
A-module φ on its de Rham cohomology HDR(φ,L) and related
modules, in the case where φ is defined over a field L of finite A-
characteristic p. Among others, we find that the nilspace H0 of
the total Frobenius FrDR on HDR(φ,L) has dimension h = height
of φ. We define and study a pairing between the p-torsion pφ of φ

and HDR(φ,L), which becomes perfect after dividing out H0.

Introduction.

The theory of Drinfeld modules (introduced in 1974 by V. G. Drin-
feld as “elliptic modules” [4]) forms the core of the modern arithmetic
of function fields. Work of many researchers (see the bibliography in
[11] for an early account) contributes to establish deep results about
Drinfeld modules and their moduli theory and connections with e.g.
automorphic forms, Galois representations, the Langlands program,
arithmetic groups, abelian varieties, transcendence theory, as well as
to various applications.

One feature is the existence of “cohomology theories”, which asso-
ciate to each Drinfeld A-module φ over a suitable A-field L (see sect.
1 for definitions and requirements) vector spaces analogous with the
Betti, the ℓ-adic, and the de Rham (co-)homology of an abelian vari-
ety. Rightly speaking, these are only first (co-)homology modules in the
Drinfeld module framework (so we don’t dispose of “true” cohomology
theories), but these are provided with all the structure (functoriality,
comparison isomorphisms, GAGA-type theorems, formalism of vanish-
ing cycles) expected from the analogy with the first cohomologies of
abelian varieties [4, 3, 7, 8].

In the present paper, we continue the study of the de Rham module
HDR(φ, L) in the case where the field L of definition of φ has finite
A-characteristic. Here we dispose of different Frobenius actions (geo-
metric, arithmetic, total Frobenius) on HDR(φ, L) and related modules.
We prove two basic results:
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2 ERNST-ULRICH GEKELER

Theorem A (Proposition 2.7, Theorem 2.9). Let φ be defined over the
A-field L of A-characteristic p, let EndL(φ) be its endomorphism ring
and D(φ, L) the L ⊗ A-module of biderivations of φ. Then the natural
action of L⊗EndL(φ) on D(φ, L) is faithful, and for each u ∈ EndL(φ)
the characteristic polynomial χ1⊗u,D(φ,L)(X) of 1⊗u on D(φ, L) agrees
with the characteristic polynomial χu(X) of u (and in particular has
coefficients in A).

An important consequence is Corollary 2.10, which states that the char-
acteristic polynomial χu,HDR(φ,L)(X) of u on HDR(φ, L) is the reduction
of χu(X) modulo p.

Theorem B (Theorem 3.6). Suppose that the definition field L of φ is
perfect, and let FrDR be the semi-linear total Frobenius endomorphism
of HDR(φ, L). Then the nilkernel HDR(φ, L)0 of FrDR has dimension
h = heigth of φ, and for each k (0 ≤ k ≤ h), the kernel of Frk

DR has
dimension k.

These results englobe and sharpen those of Anglès [1], who gives similar
statements in the case of finite fields L. Anglès’ proofs make essential
use of the known structure of EndL(φ) over finite fields, and are limited
to that case.

We further define a natural pairing between the p-torsion pφ of φ and
HDR(φ, L), which is trivial on HDR(φ, L)0 and becomes perfect as a
pairing between pφ and HDR(φ, L)/HDR(φ, L)0 (Theorem 4.7). Up to
dualizing, which is hidden in the self-duality of Jacobians of curves,
this pairing is reminiscent of the familiar map, first defined in [15] and
[16], from the p-torsion of the Jacobian J(X) of an algebraic curve X/L
in characteristic p to its de Rham cohomologyH1

DR(X,L).

Finally, we work out the action of FrDR on HDR(φ, Fp) in the case
where the Drinfeld ring A is a polynomial ring Fq[T ], φ has rank two,
and the definition field L is Fp := A/p with a prime p of A. In that case,
HDR(φ, Fp) is endowed with a canonical basis, and so FrDR determines
a 2 × 2-matrix Mφ ∈ Mat(2, Fp) (and not merely a conjugacy class),
whose coefficients are related to modular forms. We find a description
of Mφ through a simple recursion formula (Proposition 5.8, Corollary
5.10), which also yields the eigenvectors of FrDR and in particular al-
lows to decide whether φ ist ordinary or supersingular.

1. Notations and background

(1.1) We consider a finite field F = Fq with q elements and a function
field K in one variable over K. That is, K is finitely generated of
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transcendence degree one over F, and F is algebraically closed in K.
We fix a place “∞′′ of K and let A be the Dedekind ring of elements
of K with no poles off ∞. The degree function

deg : A −→ N0 ∪ {−∞}

is defined by deg n = logq #(A/n) for 0 6= n ∈ A and deg 0 = −∞.
Typical examples of such “Drinfeld rings” A are given by

(1.2) K = F(T ), the field of rational functions in an indeterminate T ,
“∞” = the usual place at infinity, thus A = Fq[T ]; and

(1.3) K = F(X,Y ), where char(F) 6= 2 and the indeterminates X,Y are
subject to Y 2 = f(X) with a squarefree polynomial f(X) of odd degree
d. If again “∞” is the place at infinity of the associated projective
hyperelliptic curve, then A = F[X,Y ]/(Y 2 − f(X)).

In both cases “deg” is the natural degree function, where deg X = 2,
deg Y = d in (1.3). An A-field L is some field L provided with an
F-algebra homomorphism γ : A −→ L. Thus either γ is injective
and L an extension of K, or ker(γ) is a maximal ideal p. We write
charA(L) = p in the latter and charA(L) = ∞ in the former case.
For an A-field L, we denote the operator x 7−→ xq on commutative
L-algebas B by τ , i.e.,

(1.4) τx = xqτ for x ∈ B,

and write B{τ} for the non-commutative polynomial ring in τ over B
subject to the commutation rule (1.4).

A Drinfeld A-module φ over the A-field L is a morphism of F-algebras

(1.5)
φ : A −→ L{τ}

a 7−→ φa =
∑

ℓi(a)τ i

such that for each a ∈ A, ℓ0(a) = γ(a), but φ 6= γ. It is known (see [3],
[11] or [14] for the next statements, and for more about the elementary
theory of Drinfeld modules) that there exists a natural number r, the
rank rk(φ) of φ, such that for each a ∈ A the rule degτ (φa) = r ·deg(a)
holds, where “degτ” is the natural degree function on L{τ}. Since the
homomorphism φ is necessarily injective, we often identify A with its
image φ(A) in L{τ}. Via φ, L and the algebraic (resp. separable)
closure L (resp. Lsep) of L are provided with structures as A-modules
different from the tautological structures defined by γ. If r = rk(φ)
and a ∈ A is non-constant and coprime with charA(L), then

(1.6) aφ := {x ∈ L | φa(x) = 0}
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is a free module of rank r over the finite ring A/a. A homomorphism
of Drinfeld modules u : φ −→ ψ over L is some u ∈ L{τ} that satisfies
u ◦ φa = ψa ◦ u for a ∈ A. In particular, the endomorphism ring

End(φ) = EndL(φ) of φ is the centralizer of A
∼=

−→ φ(A) in L{τ}. It is
a projective module over A of rank a divisor of r2, where r = rk(φ).

Let l be a prime ideal of A different from charA(L), and ln = (ℓ) for
some n ∈ N, ℓ ∈ A. From the torsion modules lkφ one constructs the
l-adic Tate module Tl(φ), which is a free module of rank r over the
l-adic completion Al of A (see [4], [3]). It is provided with actions of

(a) the absolute Galois group Gal(Lsep|L) of L;
(b) the endomorphism ring EndL(φ),

which mutually commute. (See [17], [5], [13] for recent deep results.)
We restrict to point out: the attached representation

il : EndL(φ) ⊗A Al −→ EndAl
(Tl(φ))

is faithful (i.e., injective) and to some extent independent of l:

(1.7) Let u ∈ EndL(φ) be given. The characteristic polynomial χu(X)
of il(u) has coefficients in A ⊂ Al and is independent of l. We briefly
call it the characteristic polynomial of u.
(This is implicit in [4, 3] and explicit in [9] sect. 3 in the crucial case
of a finite L.) The above allows to define a norm map

N : EndL(φ) −→ A
u 7−→ det(il(u))

that satisfies N(uv) = N(u)N(v); N(u) = 0 ⇔ u = 0; N(a) = ar for
u, v ∈ EndL(φ) and a ∈ A. An alternative way of defining N was via
reduced algebra norms of EndL(φ) ⊗A K or EndL(φ) ⊗A K∞, both of
which are known to be division algebras over K or K∞, respectively
(loc. cit.).

We next recall the definition of the de Rham cohomology HDR(φ, L) of
φ (see [7, 8]). First, let N(φ, L) be the ideal L{τ}τ of L{τ}, regarded
as a left L-module and a right A-module (under (n, a) 7−→ nφa for
n ∈ N(φ, L), a ∈ A). Since the multiplications with elements of the
common subfield F of L and A agree, N(φ, L) is naturally a module
under

(1.8) AL := L ⊗ A,
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where “⊗” always denotes the tensor product “⊗F” over F. The ring
AL is Dedekind with a distinguished maximal ideal

IL := ker(AL −→ L) .
ℓ ⊗ a 7−→ ℓ · γ(a)

An F-linear biderivation (derivation for short) from A to N(φ, L) is an
F-linear map

η : A −→ N(φ, L)
a 7−→ ηa

subject to the rule ηab = γ(a)ηb + ηaφb (a, b ∈ A). It is inner (strictly
inner) if η is of shape η(n) with n ∈ L{τ} (resp. n ∈ N(φ, L)), where

(1.9) η(n)
a := γ(a)n − nφa.

We let Dsi(φ, L) ⊂ Di(φ, L) ⊂ D(φ, L) be the AL-modules of strictly
inner, inner, all derivations from A to N(φ, L), respectively. As is
shown in [7], sect. 4, N(φ, L) and D(φ, L) are projective AL-modules
of rank r = rk(φ). Furthermore,

(1.10) IL · D(φ, L) = Dsi(φ, L),

and thus the de Rham cohomology module

(1.11) HDR(φ, L) := D(φ, L)/Dsi(φ, L) = D(φ, L) ⊗AL
L

is an L-vector space of dimension r. W write [η] for the class of η ∈
D(φ, L). Then HDR(φ, L) contains the distinguished one-dimensional

subspace Di(φ, L)/Dsi(φ, L) with basis vector [η(1)], where η
(1)
a = γ(a)−

φa.

1.12 Remarks. In our definition of Drinfeld module, we have im-
plicitly chosen a coordinate on the additive group Ga/L. In the well-
known analogy between Drinfeld modules and elliptic curves, this cor-
responds to choosing a Weierstraß equation for an elliptic curve. The
definitions both of Drinfeld modules themselves and of the quantities
N(φ, L), . . . , HDR(φ, L) can be given in a coordinate-free way, and may
be generalized to arbitrary commutative algebras B over A (or even
to non-affine A-schemes X) as domains of φ, instead of A-fields L
only. Then N(φ,B), . . . , HDR(φ,B) become functors, covariant in B
and contravariant in φ, see [7], sect. 3/4.

2. The action of endomorphisms.

Let the Drinfeld A-module φ be defined over the A-field L as be-
fore. The endomorphism ring EndL(φ) acts from the right on N(φ, L)
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(through multiplication) and on D(φ, L) through

η 7−→ η ◦ u, (η ◦ u)a := ηa ◦ u

(η ∈ D(φ, L), u ∈ EndL(φ), a ∈ A), an action which commutes with
left multiplication by elements of L. There result structures of (right)
L ⊗ EndL(φ)-modules on N(φ, L) and D(φ, L) compatible with their
AL-structures (AL = L ⊗ A; recall that “⊗”= “⊗F”). In view of the
formula

(2.1) η(m) ◦ u = η(m◦u)

for m ∈ L{τ}, Dsi(φ, L), Di(φ, L) resp. HDR(φ, L) are L ⊗ EndL(φ)
submodules resp. an L ⊗ EndL(φ)-quotient module.

Suppose that charA(L) = p 6= {0}, and let a, p, η be elements of
A, p, D(φ, L), respectively. We have

γ(a)ηp + ηaφp = ηap = ηpa = ηpφa

(since γ(p) = 0), thus

(2.2) (η ◦ φp)a = ηa ◦ φp = ηp ◦ φa − γ(a)ηp = −η(ηp)
a .

This means that p →֒ A →֒ EndL(φ) acts trivially on HDR(φ, L), which
therefore is an L⊗ (EndL(φ)⊗A Fp)-module. It is obvious that for u ∈
EndL(φ) the coefficientwise congruence of characteristic polynomials

(2.3) χu,D(φ,L)(X) ≡ χu,HDR(φ,L)(X)(modIL)

holds, where u = 1⊗u on the left hand side is regarded as an endomor-
phism of the AL-module D(φ, L), with reduction u ∈ EndL(HDR(φ, L)).
Our objective is to show (Theorem 2.9 below) that the left hand side of
(2.3) agrees with the characteristic polynomial χu(X) of u in the sense
of (1.7). We need some preparations.

2.4 Proposition. Let L be an algebraically closed field that contains
F = Fq, V an n-dimensional L-vector space, and F : V −→ V a
τ -linear map, i.e., f is additive and satisfies

(∗) f(ℓx) = ℓqf(x) (ℓ ∈ L, x ∈ V ).

Put
V0 := {x ∈ V | fn(x) = 0}
V ′

1 := {x ∈ V | f(x) = x}.

Then
(i) V0 is an L-subspace, (ii) V ′

1 an F-subspace of V , and (iii) V =
V0 ⊕ V1, where V1 = L ⊗ V ′

1 .
The same statement holds if f is τ−1-linear (f(ℓx) = ℓq−1

f(x)).

Proof (see [12]). (i) and (ii) are obvious. To prove (iii), we make V
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an L{τ}-module by decreeing τx = f(x) for x ∈ V , which is pos-
sible in view of (∗). Then V0 and LV ′

1 are sub-L{τ}-modules. Let
{x1, . . . , xn1} be an L-basis of LV ′

1 . For x =
∑

ℓixi ∈ LV ′
1 (ℓi ∈ L),

we have f(x) = x ⇔ ℓi ∈ F for i = 1, 2, . . . , n1, which shows that
LV ′

1 = L⊗V ′
1 = V1. Since obviously V0∩V1 = {0}, we have n ≥ n1 +n0

(n0 := dim V0), and it remains to show equality.

For some x ∈ V , let V := L{τ}x be the L{τ}-submodule generated by
x, and consider the similarly defined submodules V 0, V 1 of V . Their
dimensions satisfy (with obvious terminology) the equality n ≥ n1+n0.
Here n = degτ g, where g ∈ L{τ} generates the annihilator of x.
Write g = τh · g0, where g0 has non-zero constant term. Then the
equation f(y) = y has at least qdegτ g0 = qn−h solutions in V , namely
y = kx, where k ∈ L{τ} is specified in Lemma 2.5 below. This yields
n1 ≥ n − h.

Moreover, the elements g0x, τg0x, . . . , τh−1g0x of V 0 are L-linearly in-
dependent, thus n0 ≥ h. Together, we find n = n1 + n0, which implies
V = V 0 ⊕ V 1, and thus finally V = V0 ⊕ V1.

The proof for a τ−1-linear map f : V −→ V is identical, except that
we have to replace τ everywhere (including Lemma 2.5) by τ−1. ¤

2.5 Lemma. Assume L algebraically closed, and let g ∈ L{τ} of de-
gree n > 0 be such that g = τhg0, where g0 has non-vanishing constant
term. Then there are precisely qn−h elements k of L{τ} that satisfy

(1 − τ)k = c · g

with some c ∈ L.

Proof. This is an exercise in calculating in L{τ}, and will be omitted
(see [12] Satz 12). ¤

We recall the following fact from [7] (4.2):

(2.6) There is a canonical and functorial isomorphism of AL-modules

HomAL
(IL, N(φ, L))

∼=
−→ D(φ, L).

Hence the relevant properties of the AL-module D(φ, L) follow from
those of N(φ, L).

2.7 Proposition. The actions of L ⊗ EndL(φ) on N(φ, L) and on
D(φ, L) are faithful.

Proof. It suffices to prove the statement for N(φ, L). EndL(φ) acts
through right multiplication on N(φ, L) = L{τ}τ , which yields a faith-
ful representation of EndL(φ). We are therefore reduced to show:
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Let {ui | 1 ≤ i ≤ k} be an F-linearly independent set in EndL(φ).
Then the set {1⊗ui} of operators on N(φ, L) remains L-linearly inde-
pendent.

Without restriction we may assume that L is algebraically closed.
Thus, suppose

(∗) 0 = n(
∑

i ℓi ⊗ ui) =
∑

i ℓinui

for some ℓ1, . . . , ℓk ∈ L and all elements n ∈ N(φ, L).
Inserting n = τ j and multiplying by τ−j from the left yields

∑

i ℓ
q−j

i ui = 0, j = 1, 2, 3, . . .

That is, the relation space

V = {(ℓ1, . . . , ℓk) ∈ Lk |
∑

i ℓinui = 0 for all n ∈ N(φ, L)}

is stable under the τ−1-linear map (ℓ1, . . . , ℓk) 7−→ (ℓq−1

1 , . . . , ℓq−1

k ).
From (2.4) we get that V has an F-structure (F = Fq), which in view
of the F-linear independence of {ui} implies that V = {0}. ¤

Before we come to the main result of this section, we make the follow-
ing observation:

(2.8) Let F be any field and G a commutative subalgebra of dimension s
of the endomorphism ring EndF (V ) of an r-dimensional F -vector space
such that V is a free G-module (necessarily of dimension t := r/s). For
u ∈ G we have the formula

det(u) = NG
F (u)t,

where NG
F (u) is the algebra norm from G to F , i.e., the determinant of

the F -linear map x 7−→ ux on G.

2.9 Theorem. Let u ∈ EndL(φ) be given, where the Drinfeld A-module
φ over L has rank r and charA(L) = p 6= {0}. The characteristic poly-
nomial χu,D(φ,L)(X) of the AL-endomorphism u = 1 ⊗ u of D(φ, L)
equals χu(X) (cf. 1.7). In particular, it has coefficients in A.

Proof. (1) Again, it suffices in view of (2.6) to show the corresponding
statement for the AL-module N(φ, L).

(2) It even suffices to show that for each u ∈ EndL(φ), the determinant
detN(φ,L),AL

(1 ⊗ u) of the AL-endomorphism 1 ⊗ u of N(φ, L) equals
1 ⊗ N(u), where N : EndL(φ) −→ A is the norm map of (1.7).

(3) Let u ∈ EndL(φ) be contained in a maximal commutative K-
subalgebra (i.e., subfield) G of the division algebra EndL(φ) ⊗A K.
Then s := [G : K] is a divisor of r, the A-order B := G ∩ EndL(φ) in



FROBENIUS ACTIONS 9

G is projective of rank s over A, and

N(u) = NB
A (u)t = NG

K(u)t

with t := r/s, as follows from considering the faithful representations
il of (1.7) and (2.8).

(4) Let Q be the quotient field of the Dedekind ring AL = L ⊗ A. For
any AL-module or -algebra M , we write MQ for M ⊗AL

Q.
Suppose for the moment that the algebraic closure F

′ of F in B (or in
G, which is the same) equals F. Then L⊗B is an integral domain that
operates faithfully on the AL-module N(φ, L). Upon applying ⊗AL

Q,
the field (L ⊗ B)Q = Quot(L ⊗ B), a Q-algebra of dimension s, is
contained in EndQ(N(φ, L)Q). Hence N(φ, L)Q has dimension t over
Q, and from (2.8) we get

detN(φ,L),AL
(1 ⊗ u) = detN(φ,L)Q,Q(1 ⊗ u) =

N
(L⊗B)Q

Q (1 ⊗ u)t = NB
A (u)t,

which equals N(u) by (3). Hence we are done in this case.

(5) We now deal with the general case, where the constant field F
′ of

B has degree f ≥ 1, say, over F. Let A′ = F
′A

∼=
−→ F

′ ⊗ A be the
subring of B generated by F

′ and A. Under the embedding of EndL(φ)
into L{τ}, F

′ maps to L. Moreover, since the elements of F
′∗ provide

automorphisms, φ takes its values in the subring L{τ f} of L{τ}. We
may regard φ as a Drinfeld A′-module φ′ over the A′-field L, of rank
r′ = r/f . Furthermore, B ⊂ EndL(φ′) ⊂ L{τ f}. As an A′-module, B
is projective of rank s′ = s/f ; in particular, f divides s.

(6) There are canonical isomorphisms

AL = L ⊗ A
∼=

−→ L ⊗F′ A′

and

L ⊗ B
∼=

−→
∏

0≤i<f Bi,
Bi := L ⊗F′,τ i B,

where F
′ is embedded into L via τ i : F

′ −→ L, x 7−→ xqi

. The rings
Bi are integral domains of projective rank s′ = s/f over AL.

(7) For 0 ≤ i < f , let Ni := {
∑

ℓkτ
k | k ≡ i mod f, k > 0} ⊂

N(φ, L) = L{τ}τ . Then

N(φ, L) =
⊕

0≤i<f

Ni

as AL-modules and even as L ⊗ B-modules, and N0 = N(φ′, L) as
L ⊗F′ A′-module.
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(8) For nτ i ∈ Ni and c ∈ F
′, we have nτ ic = cqi

nτ i, that is, cqi

⊗1 = 1⊗c
as operators on Ni. Therefore, the action of L ⊗ B on Ni is via its
quotient Bi, and Ni is a faithful Bi-module.

(9) Each of the AL-modules Ni is projective of rank r′ = r/f . For
N0 this follows from (7); for general i, this may be proved as in [7],
Proposition 4.6 (reducing to the case where A = Fq[T ] by comparing
projective ranks; then {τ k | 1 ≤ k ≤ r, k ≡ i mod f} is an AL-basis
for Ni).

(10) As follows from (8) and (9), Ni,Q is a Q-vector space of dimension
r′, provided with an action of the field Bi,Q, where [Bi,Q : Q] = s′

by (6). Hence dimBi,Q
(Ni,Q) = r′/s′ = r/s = t independently of i.

Therefore N(φ, L)Q is free of rank t over (L ⊗ B)Q =
∏

Bi,Q, which is
a Q-algebra of dimension s in EndQ(N(φ, L)Q). Again we may apply
(2.8), and the sequence of equalities in (4) yields the wanted result
detN(φ,L),AL

(1 ⊗ u) = N(u). ¤

2.10 Corollary. Let the Drinfeld A-module φ be defined over the A-
field L of A-characteristic p, and let u be an endomorphism of φ. Its
characteristic polynomial on HDR(φ, L) equals χu(X) mod p.

Proof. Combine (2.9) with (2.3) and note that IL ∩A = p holds in AL.
¤

3. Frobenius actions.

As with schemes over finite fields (see the exposition in [2], pp. 77–81),
there are different Frobenius auto- and endomorphisms in the context
of Drinfeld modules, which must be carefully distinguished.

Let φ be a Drinfeld A-module defined over an A-field L of A-characteris-
tic p, where deg p = d. We always denote the effect of applying the
qd-th power map

ϕ = ϕp = τ d

to the coefficients of a polynomial f by f (ϕ). There results a Drinfeld

module φ(ϕ), where φ
(ϕ)
a = (φa)

(ϕ), endowed with an isogeny, labelled
F = Fp:

(3.1) F : φ −→ φ(ϕ).

As an element of L{τ}, F is nothing else but ϕ = τ d (see (1.6)); we
call it the geometric Frobenius map. By functoriality, we get maps
FD : D(φ(ϕ), L) −→ D(ϕ,L) and FDR : HDR(φ(ϕ), L) −→ HDR(φ, L).
If L happens to be finite, of degree m over Fp, ϕL = ϕm

p = τ dm yields
an endomorphism FL of φ and endomorphisms FL,D of D(φ, L), FL,DR
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of HDR(φ, L), respectively. According to the general device, FDR is
obtained from

(3.2)
FD : D(φ(ϕ), L) −→ D(φ, L)

η 7−→ η ◦ ϕ

(where (η ◦ ϕ)a = ηa ◦ ϕ for a ∈ A) by passing to the quotient. On the
other hand, there is the map

(3.3)
ϕD : D(φ, L) −→ D(φ(ϕ), L),

η 7−→ η(ϕ)

which is a homomorphism of Fp ⊗ A-modules, and is ϕ-linear, i.e.,
ϕD(ℓx) = ϕ(ℓ)ϕD(x) for ℓ ∈ L. It maps Dsi(φ, L) to Dsi(φ

(ϕ), L),
and thus induces a ϕ-linear map ϕDR : HDR(φ, L) −→ HDR(φ(ϕ), L).
We refer to ϕD, ϕDR as the arithmetic Frobenius maps. Finally, we
consider the composition (the total Frobenius map)

(3.4) FrD : D(φ, L)
ϕD−→ D(φ(ϕ), L)

FD−→ D(φ, L),
η 7−→ η(ϕ) ◦ ϕ = ϕ ◦ η

which on the HDR-level induces

FrDR : HDR(φ, L) −→ HDR(φ, L).
[η] 7−→ [ϕ ◦ η]

Since FrDR is ϕ-linear, Proposition 2.4 applies.

3.5 Corollary. Suppose that L is algebraically closed. Then HDR(φ, L) =
H0 ⊕ H1 as an L-vector space, where

H0 = HDR(φ, L)0 = {x ∈ HDR(φ, L) | Frr
DR(x) = 0}

H1 = HDR(φ, L)1 = {x ∈ HDR(φ, L) | FrDR(x) = x} ⊗Fp
L.

For general L, the subspaces HDR(φ, ÃL)i (i = 0, 1) of HDR(φ, L) are
galois-stable and therefore already defined over the perfect hull L′ of L
in its algebraic closure L.

We will show:

3.6 Theorem. Let the Drinfeld A-module φ be defined over the A-field
L with charA(L) = p. Suppose that L is perfect, and let h be the height
ht(φ) of φ (that is, 1 ≤ h ≤ r = rk(φ) and r − h is the rank of the
p-adic Tate module Tp(φ) of φ). Then dim HDR(φ, L)0 = h and more-
over, for 0 ≤ k ≤ h we have dim ker(Frk

DR) = k.

3.7 Remark. The theorem covers the most important cases where L
is finite (where a slightly weaker form has been given in [1], Theorem
4.4) or algebraically closed. The perfectness assumption is necessary
for the assertion as given; the case of imperfect L is more complicated
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and needs further investigation.

3.8 Corollary (cf. [1], Cor. 4.3). Let φ be defined over the finite
A-field L of characteristic p, and let χφ,L(X) ∈ A[X] be the charac-
teristic polynomial χFL

(X) of its Frobenius endomorphism FL. Write
χφ,L(X) =

∑

aiX
i (0 ≤ i ≤ r, ar = 1). Then min{i | ai 6≡ 0 mod p} =

ht(φ) = dim HDR(φ, L).

Proof. This follows from combining (3.6) with (2.10), taking into ac-
count that FL,DR is a power of FrDR. ¤

As a first step towards the proof of (3.6), we consider a critical special
case.

3.9 Proposition. Theorem 3.6 is valid in the case where A = Fq[T ]
is a polynomial ring and charA(L) = (T ).

Proof. Under our assumptions, the Drinfeld module φ is uniquely de-
termined by

φT =
∑

h≤i≤r

ℓiτ
i = f · τh ∈ L{τ},

where ℓh 6= 0 6= ℓr, r = rk(φ), h = ht(φ). Furthermore, specifying
η ∈ D(φ, L) is the same as specifying ηT ∈ N(φ, L) = L{τ}τ . It is
easy to see ([7], Lemma 5.1) that the composite map

V := {ηT ∈ N(φ, L) | degτ ητ ≤ r} →֒ D(φ, L) −→ HDR(φ, L)

is an isomorphism, i.e., V is a set of representatives for HDR(φ, L).
Thus for each η ∈ D(π, L), there exists a unique n ∈ N(φ, L) such that

ηT − η
(n)
T = ηT + n · φT

belongs to V . (Recall that η
(n)
a = γ(a)n−n·φa, which is −n·φa for a ∈ A

divisible by T .) The map FrD on D(φ, L) is simply left multiplication
by τ . Hence the kernel of Frk

DR on HDR(φ, L) corresponds to the
subspace of those ηT ∈ V that satisfy

(1) τ kηT = −n · φT = −nfτh

for some n ∈ N(φ, L). Suppose that k > h. Then (1) is equivalent
with

(2) τ k−hη
(τh)
T = −nf.

Since f has non-zero constant term and L is perfect, n is left divis-

ible by τ k−h, and already η
(τh)
T = −ñf for some ñ. This shows that

ker(Frk
DR) = ker(Frh

DR).
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Let U ⊂ V be the h-dimensional L-subspace

U := {g ∈ V | g = −nf, n ∈ N(φ, L)}.

Then, again by the perfectness of L, the map

U −→ U ′ := {g′ ∈ V | g′(τh) ∈ U} −→ ker(Frh
Dr)

g 7−→ g(τ−h) g′ 7−→ [η] such that ηT = g′

is τ−h-linear and bijective, which in particular gives the equality of
dimensions. Similarly, for k < h, (1) becomes

(3) η
(τk)
T = −nfτh−k,

where degτ n ≤ k, and the ηT thus described run through a k-dimensional
subspace of V . ¤

We now reduce the

Proof of Theorem 3.6 to the special case just treated.
Let φ of rank r and height h be defined over the perfect A-field L
of A-characteristic p, with d := deg p and structure homomorphism
γ : A −→ Fp →֒ L. Let e be the order of p in the class group of A, so
pe = (T ) with some T ∈ A, and let A0 be the subring Fq[T ] of A. The
prime (T ) of A0 splits in A as

(1) (T ) = pe,

and thus A is a free A0-module of rank de. Accordingly, the Dedekind
ring AL = L⊗A is a free module of rank de over A0

L = L⊗A0 = L[T ].
The distinguished ideal I0

L of A0 (see (1.8)) is the ideal generated by
T ; it splits in AL as

(2) AL · I0
L = (

∏

1≤i≤d

I
(i)
L )e =: Je,

where I
(i)
L is the kernel of the ring homomorphism

(3)
AL −→ L

ℓ ⊗ a 7−→ ℓγ(a)qi .

In particular, I
(d)
L is the distinguished maximal ideal IL of A. Restrict-

ing the ring homomorphism φ to A0 yields a Drinfeld A0-module φ0

over L. Its invariants are

(4)
rk(φ0) = rkA0(A)rk(φ) = rde
ht(φ0) = rkA0(A)ht(φ) = hde,

as is easily seen by comparing the respective torsion submodules of φ
and φ0. We regard A as a subring of EndL(φ0); thus D(φ0, L) and
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HDR(φ0, L) are naturally AL-modules. ¿From (2.6) we get

(5)
D(φ, L) = HomAL

(IL, N(φ, L))
↓

D(φ0, L) = HomA0
L
(I0

L, N(φ0, L)) = HomAL
(Je, N(φ, L)),

where the last equality comes from AL ⊗A0
L

I0
L = ALI0

L = Je and

Frobenius reciprocity. Both D(φ, L) and D(φ0, L) are projective AL-
modules of rank r.

Since a derivation η ∈ D(φ, L) is uniquely determined by ηa for any
a ∈ A − Fq, we have D(φ, L) ∩ Dsi(φ

0, L) = Dsi(φ, L), which implies
that the canonical map

(6) HDR(φ, L) −→ HDR(φ0, L)

induced from (5) is injective. Again from (5) we see that

(7) HDR(φ, L) = {x ∈ HDR(φ0, L) | ILx = 0}.

Let B be the image of AL in EndL(HDR(φ0, L)), that is

(8) B = AL ⊗A0
L

A0
L/I0

L = AL/Je =
∏

1≤i≤d

AL/I
(i)e
L ,

where we use the canonical isomorphisms as identifications. It is an
Artin algebra of dimension de over L. By (5) (since D(φ0, L) is AL-
projective of rank r), HDR(φ0, L) is B-free of rank r. In view of
dimL{x ∈ AL/Je | ILx = 0} = 1, each B-free constituent of HDR(φ0, L)
contributes by 1 to dimL HDR(φ, L). We will see in a moment that a
similar statement holds for the kernels of powers of FrDR.

According to (8), HDR(φ0, L) splits into B-isotypical components H(i)

(1 ≤ i ≤ d), each of L-dimension re and free over B(i) = AL/I
(i)e
L of

dimension r. We have

(9) H(i) = {x ∈ HDR(φ0, L) | I
(i)e
L x = 0}

and

HDR(φ, L) = socle of the B(d)-module H(d).

We write FrDR for the map (3.4) on HDR(φ, L), which is induced by

left multiplication with ϕp = τ d on D(φ, L), and Fr
(0)
DR for the corre-

sponding map on HDR(φ0, L), induced by left multiplication with τ on

D(φ0, L). Hence FrDR = Fr
(0)d
DR restricted to HDR(φ, L).

(10) We have

Fr
(0)
DR(H(i)) ⊂ H(i−1),
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where the superscript i should be read modulo d. In particular, Fr
(0)d
DR

respects the decomposition

HDR(φ0, L) = ⊕H(i).

Proof of (10). Let a =
∑

ℓk⊗ak be an element of I
(i)
L (ℓk ∈ L, ak ∈ A),

i.e.,
∑

ℓkγ(ak)
qi

= 0. Then
∑

ℓq−1

k γ(ak)
qi−1

= 0, so a′ :=
∑

ℓq−1

k ⊗ ak ∈ I
(i−1)
L . Accordingly, a ∈ I

(i)e
L implies a′ ∈ I

(i−1)e
L .

Assume now that x ∈ H(i). For a ∈ I
(i)e
L as above, 0 = xa =

x(
∑

ℓk⊗ak) =
∑

ℓkxφak
and (Fr

(0)
DR(x))a′ =

∑

ℓq−1

k τxφak
= τ(

∑

ℓkxφak
) =

Fr
(0)
DR(xa) = 0.

That is, Fr
(0)
DR(x) is annihilated by I

(i−1)e
L , and (10) is shown.

¿From (3.9) we read off that ker(Fr
(0)d
DR ) has dimension d; moreover,

(11) ker(Fr
(0)d
DR ) =

⊕

1≤i≤d

(ker(Fr
(0)d
DR ) ∩ H(i)),

where each term has dimension one.

Proof of (11). The existence of the direct sum decomposition follows
from (10). For the dimension statement, we distinguish the cases

(a) there exists j such that the one-dimensional space ker(Fr
(0)
DR) is

contained in H(j);

(b) ker(Fr
(0)
DR) ∩ H(i) = {0} for all i.

In case (a), all the maps induced from Fr
(0)
DR:

H(i) −→ H(i−1) −→ · · · −→ H(i−d) = H(i)

are bijective except for one, which has a kernel of dimension one, which
gives the assertion. In case (b), it follows from the commutative dia-
gram

H(i)
Fr

(0)
DR−→ H(i−1)

Fr
(0)d
DR ↓ ↓ Fr

(0)d
DR

H(i)
Fr

(0)
DR−→ H(i−1).

Viz, since the horizontal maps are bijective, the kernels of all vertical
maps have the same dimensions, which sum up to d.

Similarly, we see that for exponents k ∈ N,

(12)
dim(ker(Fr

(0)dk

DR )) ∩ H(i) = k, 1 ≤ k ≤ he
he, k ≥ he.
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We now restrict to considering the direct decomposition

(13) H(d) = H
(d)
0 ⊕ H

(d)
1

(see (2.4)) into the nilspace of Fr
(0)d
DR on H(d) and its canonical comple-

ment. (As L is perfect, the decomposition is defined over L by Galois

descent.) Both H
(d)
0 and H

(d)
1 are B(d)-submodules and B(d)-free since

B(d) = AL/Ie
L is local. From (8) and (9) we see that H

(d)
0

∼= (ALIe
L)h

with socle S ∼= (Ie−1
L /Ie

L)h of dimension h. Since S is the nilspace of
FrDR on HDR(φ, L), we have established that dim HDR(φ, L)0 = h.
Then Frh

DR must vanish on HDR(φ, L)0, which, together with (12) and

Fr
(0)d
DR = FrDR on HDR(φ, L), implies dim ker(Frk

DR) = k as long as
k ≤ h. Theorem 3.6 is proved. ¤

4. A pairing between p-torsion and de Rham cohomology.

We let A be any Drinfeld ring as described in (1.1), L an A-field of
A-characteristic p 6= {0} with algebraic closure L and φ a Drinfeld A-
module over L, of rank r and height h ≤ r. From (4.4) on we assume
that L is perfect.

4.1 Definition. We let

pφ :=
⋂

p∈p

pφ = {x ∈ L | φp(x) = 0 ∀p ∈ p}

be the p-torison of φ, an Fp-module of dimension r − h.
For 0 6= p ∈ p fixed, we define the pairing

〈 , 〉p : pφ × D(φ, L) −→ L
(x, η) 7−→ 〈x, η〉p := ηp(x)

.

4.2 Proposition. The symbol 〈 , 〉 has the following properties:

(i) 〈 , 〉p is bi-additive;
(ii) 〈x, η〉p is A-linear in x;
(iii) 〈x, η〉p is AL-linear in η;
(iv) 〈x, η〉p = 0 if η ∈ Di(φ, L); so 〈 , 〉p defines a pairing

pφ × HDR(φ, L) −→ L

that vanishes on Di(φ, L)/Dsi(φ, L) →֒ HDR(φ, L);
(v) for σ ∈ Gal(Lsep|L) we have 〈σ(x), η〉p = σ(〈x, η〉p);
(vi) for a ∈ A, 〈 , 〉ap = γ(a)〈 , 〉p;
(vii) let u : φ −→ ψ be an isogeny (non-trivial homomorphism) from

φ to a Drinfeld A-module ψ over L, x ∈ pφ, η ∈ D(ψ,L). Then

〈u(x), η〉p = 〈x, η ◦ u〉p,

where the left hand side refers to the pairing for ψ.
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Proof. (i) is obvious, as is L-linearity in the second variable η. For the
other items, we first recall the identity for a ∈ A, η ∈ D(φ, L):

(4.3) ηp ◦ φa = ηpa = ηap = γ(a)ηp + ηa ◦ φp.

It immediately implies (ii), (iii) and (vi). Let now n ∈ L{τ} and
η(n) ∈ Di(φ, L) be the associated derivation. For x ∈ pφ, 〈x, η(n)〉p =

η
(n)
p (x) = γ(p)n(x) − n(φp(x)) = 0 since γ(p) = 0 = φp(x), thus (iv).

The remaining assertions (v) and (vii) are obivous, e.g. 〈u(x), η〉p =
ηp(u(x)) = (η ◦ u)p(x) = 〈x, η ◦ u〉p. ¤

¿From now on, we suppose that L is perfect. Let

(4.4) HDR(φ, L) = HDR(φ, L)0 ⊕ HDR(φ, L)1 = H0 ⊕ H1

be the decomposition asserted by Corollary 3.5, with dimL H0 = h =
ht(φ).

4.5 Proposition. For any p ∈ p we have 〈pφ,H0〉p = 0.

Proof. Let x ∈ pφ and η ∈ D(φ, L) be such that its class [η] belongs
to H0. Then Frh

D(η) = η(n) for some n ∈ N(φ, L). As FrD is left
multiplication with τ d (d := deg p), this means that τhdηp = −nφp.
Therefore, τhdηp(x) = −n(φp(x)) = 0, which gives 0 = ηp(x) = 〈x, η〉p.
¤

In view of 4.2 (vi), the pairing 〈 , 〉p depends on p only via a factor
in Fp →֒ L. From now on, we choose p ∈ p as a uniformizer, i.e., an
element of A with p-adic valuation one, and label the resulting pairing
〈 , 〉p by 〈 , 〉. (For the cost of some more notation, we could avoid that
ambiguity and write a canonical pairing, using differentials.) By (4.5),

we may restrict the second argument of 〈 , 〉 to elements of H1

∼=
−→

HDR(φ, L)/H0. Recall that pφ is an Fp-vector space of dimension r−h
(r = rk(φ), h = ht(φ)), while H1 has L-dimension r − h. The pairing
〈 , 〉 has a unique L-bilinear extension, labelled by the same symbol, to
the corresponding L-spaces:

(4.6) 〈 , 〉 : pφ ⊗Fp
L × HDR(φ, L)1 −→ L.

The result of this section is

4.7 Theorem. The pairing in (4.6) is perfect. That is, it identifies
each of these vector spaces with the dual of the other one.

Proof. Since both spaces have the same dimension r − h, it suffices to
show that the right kernel of 〈 , 〉 is zero. Let η ∈ D(φ, L) be such
that its class [η] in HDR(φ, L) pairs with pφ to zero. We are going to
show that Frh

D(η) = η(n) for some n ∈ N(φ, L), which will give the
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conclusion.

Suppose first that p = (p) is principal, and that 〈 , 〉 = 〈 , 〉p. The
polynomial φp is right (and left, since L is perfect) divisible by τhd = ϕh

p.
Write

φp = u ◦ ϕh = ϕh ◦ v

with ϕ = ϕp; both u and v have non-vanishing constant terms, and

v = u(ϕ−h) has pφ as its kernel. The fact that 〈pφ, η〉 = 0 means
ηp = n ◦ v for some n ∈ L{τ}τ = N(φ, L), i.e.,

ϕh ◦ ηp = ϕh ◦ n ◦ v = n(ϕh)(ϕh ◦ v) = n(ϕh) ◦ φp.

That is, ϕh ◦ηp = η
(n′)
p for n′ = −n(ϕh), which in fact implies Frh

D(η) =
ϕh ◦ η = η(n′) is strictly inner as wanted.

Essentially the same argument works in the general case, where p fails
to be principal. Let p ∈ p− p2, and choose a ∈ A− p congruent to zero
modulo the ideal (p)p−1. Then φa maps pφ = {x ∈ L | φp(x) = 0} onto

pφ. For x ∈ pφ we have from (4.3) the relation

ηp(φa(x)) = ηap(x) = γ(a)ηp(x),

where the left hand side vanishes due to the choice of a and the as-
sumption 〈pφ, η〉 = 0. Hence that assumption implies that ηp(x) = 0
even holds for x ∈ pφ ⊃ pφ. Repeating the argument from before, we
find

Frh
D(η) = η(n′),

where n′ = −n(ϕh), ηp = n ◦ v, φp = ϕh ◦ v. ¤

5. An example.

In this section, we work out the case of rank-2 Drinfeld A-modules
φ, where A = Fq[T ] is a polynomial ring and L is the A-prime field
Fp = A/p. Here p is a prime of degree d, γ : A −→ L = Fp is the
reduction, and φ is given by

(5.1) φT = γ(T ) + gτ + ∆τ 2,

where g ∈ L, ∆ ∈ L∗ may be chosen without restrictions. Similarly,
specifying η ∈ D(φ, L) is the same as specifying ηT ∈ N(φ, L). In that
situation, a basis of HDR(φ, L) may be described independently of p and
φ, viz:

(5.2) Each η ∈ D(φ, L) is congruent modulo Dsi(φ, L) to a unique
reduced derivation, i.e., one that satisfies degτ ηT ≤ 2.
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Hence the classes [iη] of iη with iη = τ i (i = 1, 2) form an L-basis of
HDR(φ, L). The Frobenius ϕ = τ d acts on D(φ, L) by multiplication

η 7−→ η ◦ ϕ, (η ◦ ϕ)a = ηa ◦ ϕ = ϕ ◦ ηa.

Note that in this special situation we need not distinguish between left
and right multiplication with ϕ, so FrD : D(φ, L) −→ D(φ, L), η 7−→
η◦ϕ is AL-linear and FrDR : HDR(φ, L) −→ HDR(φ, L), [η] 7−→ [η◦ϕ]
is L-linear.

(5.3) For k ≥ 0 write

τ k+2 = akτ + bkτ
2 + γ(T )nk − nk ◦ φT

with uniquely determined nk ∈ N(φ, L), ak, bk ∈ L. Then

(5.4)
FrDR([1η]) = ad−1[

1η] + bd−1[
2η]

FrDR([2η]) = ad[
1η] + bd[

2η],

that is, with respect to the basis {[1η], [2η]}, FrDR is represented by the
matrix

Mφ :=

(

ad−1 ad

bd−1 bd

)

∈ Mat(2, L).

To get our hands on (ak, bk) we perform calculations in the ring R =
A[g, ∆, ∆−1], where the quantities g and ∆ are considered as formal
indeterminates over A. Similar to (5.3), there exist unique elements
νk of R{τ}τ and αk, βk ∈ R such that

(5.5) τ k+2 = αkτ + βkτ
2 + Tνk − νk · φT

hold with φT = T +gτ +∆τ 2. The coefficients nk,i of νk =
∑

1≤i≤k nk,iτ
i

are determined by comparing coefficients in (5.5). Putting [i] for the

element T qi

− T of A, we find the following equations, which allow to
recursively solve for nk,i (in decreasing order in i starting with nk,k)
and αk, βk, where k ≥ 2:

(5.6)

nk,k = −∆−qk

(i = k + 2)

gqk

nk,k + ∆qk−1
nk,k−1 = 0 (i = k + 1)

[i]nk,i + gqi−1
nk,i−1 + ∆qi−2

nk,i−2 = 0 (3 ≤ i ≤ k)
[2]nk,2 + gqnk,1 = βk (i = 2)
[1]nk,1 = αk (i = 1)

For small k, we find directly:

(5.7)

k αk βk

0 0 1

1 − [1]
∆q −( g

∆
)q

2 [1] gq2

∆q2+q
− [2]

∆q2 + ( g

∆
)q2+q
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On a first view, (5.6) doesn’t yield a direct relationship between the
αk, βk for varying k. Such a relation is supplied by the next result.

5.8 Proposition. For k ≥ 2 the αk, βk satisfy

αk = −( g

∆
)qk

αk−1 −
[k]

∆qk αk−2

βk = −( g

∆
)qk

βk−1 −
[k]

∆qk βk−2.

Proof (sketch). We may compare the different systems (5.6) for k and
k +1, which yields recursions for the nk,i with respect to k. From these
and the last two equations of (5.6), we find the stated recursions for
the αk and βk. We omit the complicated but elementary details. ¤

5.9 Remark. The ring R = A[g, ∆, ∆−1] is a ring of “meromor-
phic modular forms for rank-two Drinfeld A-modules”, see [6] sect. 5;
“meromorphic” since denominators ∆ are allowed. It is natural to as-
sign g and ∆ the weights q − 1 and q2 − 1, respectively, which defines
a grading on R. Then the above αk and βk are modular forms of re-
spective weights w(αk) = −(qk+1 − 1)q, w(βk) = −(qk − 1)q2, as is
immediate from (5.8) (or directly from (5.6)).

We collect the results.

5.10 Corollary. The Frobenius matrix Mφ of (5.4) is obtained from

Md =

(

αd−1 αd

βd−1 βd

)

∈ Mat(2, R)

by reduction modulo p (and inserting values for g, ∆). The modular
forms αk, βk are homogeneous polynomials in g and ∆ divided by ∆n(k),
where n(k) = q + q2 + · · ·+ qk, and may be determined by the recursion
(5.8) along with the initial values given in (5.7).

Proof. Only the assertion about the denominator ∆n(k) remains to be
shown. It is straightforward from (5.8). ¤

5.11 Corollary.

(i) The matrix Mφ is of shape
(

ad−1, − g

∆
ad−1

bd−1, − g

∆
bd−1

)

,

of rank one.

(ii) It always has the eigenvector

(

g
∆

)

with eigenvalue 0, corre-

sponding to the element [g 1η + ∆ 2η] in the kernel of FrDR.
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(iii) We have the equivalences
tr(Mφ) = 0 ⇔ Mφ nilpotent ⇔ HDR(φ, L) = H0

⇔ φ supersingular (see [9] sect. 4).

(iv) Suppose φ is not supersingular. Then

(

ad−1

bd−1

)

is an eigenvector

for the non-vanishing eigenvalue, corresponding to the element
[ad−1

1η + bd−1
2η] of HDR(φ, L).

Proof. The shape of Mφ results from (5.10) and (5.8), since [d] ≡
0(mod p). On the other hand, Mφ cannot be the zero matrix by (3.6),
thus (i). Items (ii) and (iv) are immediate from (i), and (iii) re-
sults from (i) together with the properties characterizing supersingu-
larity given e.g. in [9] sect. 4. ¤

5.12 Remark. From (5.10) one can derive a recursive procedure for
the determination of tr(Mφ), or, what amounts to the same, the Hasse
invariant H(φ) of φ (see [10] sect. 3). However, that procedure is equiv-
alent to the one described loc. cit. Prop. 3.7, for which the present
considerations therefore provide a new proof.
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posium internacional de topologia algebraica Mexico 1958, 24–53, Universidad
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