
Superposition Modulo Theory

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Dissertation

zur Erlangung des Grades
des Doktors der Naturwissenschaften (Dr. rer. nat.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

von

Evgeny Kruglov

Saarbrücken, Oktober 2013

Tag des Kolloquiums: 31. Oktober 2013
Dekan: Prof. Dr. Mark Groves
Vorsitzender des Prüfungsausschusses: Prof. Dr. Gert Smolka
Berichterstatter: Prof. Dr. Ernst Althaus

Prof. Dr. Martin Fränzle
Prof. Dr. Christoph Weidenbach

Akademischer Mitarbeiter: PD. Dr. Thomas Sturm

To all my teachers ...

Acknowledgements

If I have seen farther, it is by
standing on the shoulders of giants.

Isaac Newton

I want to thank everybody who has invested his time and endeavor to deliver
knowledge and educate me: school teachers, university lecturers, colleagues. My
scientific achievements are to the greatest extent the result of your efforts and
influence. Throughout this dissertation I always use the pronoun “we” instead
of “I”: “we have proved”, “we have shown”, etc., — to indicate that each of us
(you and me) have contributed (implicitly or explicitly) to produce the results pre-
sented in the dissertation.

I thank Prof. Dr. Ernst Althaus for his expertise concerning Linear Algebra
and Linear Programming and cooperative work on investigating the Hierarchic
Superposition Modulo Linear Arithmetic calculus SUP(LA).

I thank Prof. Dr. Martin Fränzle and a very friendly research team of excep-
tionally talented and intelligent people, namely: Andreas Eggers, Stefan Kupfer-
schmid, Karsten Scheibler, and Tino Teige, for cooperative work on investigating
the Hierarchic Superposition Modulo Non-Linear Arithmetic calculus SUP(NLA)
and implementing the calculus in SPASS(iSAT).

I also want to thank my colleagues in the Automation of Logic group at the
Max Planck Institute for Informatics for responsive working environment and very
friendly social atmosphere. Special thanks to Arnaud Fietzke for extensive dis-
cussions of various aspects of the Hierarchic Superposition Calculus SUP(T), to
Marek Kosta for partly proofreading the chapter on hierarchic refutational theo-
rem proving, to Willem Hagemann for translating the abstract to German.

To the highest degree I am grateful to my doctoral advisor Prof. Dr. Christoph
Weidenbach, who has offered me such an interesting, exciting, and prolific re-
search topic as Superposition Modulo Theory. I thank him for his persistent guid-
ance, highly valuable advices, rigorous encouragement whenever I lacked any mo-
tivation to continue research, for his patience and support when I was long badly
distressed; none of these can be overestimated.

This work has been partly supported by the German Transregional Collaborative
Research Center SFB/TR 14 AVACS.

Abstract
This thesis is about the Hierarchic Superposition calculus SUP(T) and its applica-
tion to reasoning in hierarchic combinations FOL(T) of the free first-order logic
FOL with a background theory T where the hierarchic calculus is refutationally
complete or serves as a decision procedure. Particular hierarchic combinations
covered in the thesis are the combinations of FOL and linear and non-linear arith-
metic, LA and NLA resp.

Recent progress in automated reasoning has greatly encouraged numerous
applications in soft- and hardware verification and the analysis of complex sys-
tems. The applications typically require to determine the validity/unsatisfiability
of quantified formulae over the combination of the free first-order logic with some
background theories. The hierarchic superposition leverages both (i) the reason-
ing in FOL equational clauses with universally quantified variables, like the stan-
dard superposition does, and (ii) powerful reasoning techniques in such theories
as, e.g., arithmetic, which are usually not (finitely) axiomatizable by FOL formu-
lae, like modern SMT solvers do. The thesis significantly extends previous results
on SUP(T), particularly: we introduce new substantially more effective sufficient
completeness and hierarchic redundancy criteria turning SUP(T) to a complete or
a decision procedure for various FOL(T) fragments; instantiate and refine SUP(T)
to effectively support particular combinations of FOL with the LA and NLA theo-
ries enabling a fully automatic mechanism of reasoning about systems formalized
in FOL(LA) or FOL(NLA).

Zusammenfassung
Diese Arbeit befasst sich mit dem hierarchischen Superpositionskalkül SUP(T)
und seiner Anwendung auf hierarchischen Kombinationen FOL(T) der freien Lo-
gik erste Stufe FOL und einer Hintergrundtheorie T, deren hierarchischer Kalkül
widerlegungsvollständig ist oder als Entscheidungsverfahren dient. Die behandel-
ten hierarchischen Kombinationen sind im Besonderen die Kombinationen von
FOL und linearer und nichtlinearer Arithmetik, LA bzw. NLA.

Die jüngsten Fortschritte in dem Bereich des automatisierten Beweisens ha-
ben zahlreiche Anwendungen in der Soft- und Hardwareverifikation und der Ana-
lyse komplexer Systeme hervorgebracht. Die Anwendungen erfordern typischer-
weise die Gültigkeit/Unerfüllbarkeit quantifizierter Formeln über Kombinationen
der freien Logik erste Stufe mit Hintergrundtheorien zu bestimmen. Die hierar-
chische Superposition verbindet beides: (i) das Beweisen über FOL-Klauseln mit
Gleichheit und allquantifizierten Variablen, wie in der Standardsuperposition, und
(ii) mächtige Beweistechniken in Theorien, die üblicherweise nicht (endlich) axio-
matisierbar durch FOL-Formeln sind (z. B. Arithmetik), wie in modernen SMT-
Solvern. Diese Arbeit erweitert frühere Ergebnisse über SUP(T) signifikant, im Be-
sonderen führen wir substantiell effektiverer Kriterien zur Bestimmung der hinrei-
chenden Vollständigkeit und der hierarchischen Redundanz ein. Mit diesen Kri-
terien wird SUP(T) widerlegungsvollständig beziehungsweise ein Entscheidungs-
verfahren für verschiedene FOL(T)-Fragmente. Weiterhin instantiieren und ver-
feinern wir SUP(T), um effektiv die Kombinationen von FOL mit der LA- und der
NLA-Theorie zu unterstützen, und erhalten eine vollautomatische Beweisproze-
dur auf Systemen, die in FOL(LA) oder FOL(NLA) formalisiert werden können.

Contents

Contents ix

1 Introduction 1

2 Preliminaries 13
2.1 Signatures . 14
2.2 Terms. Formulae. Expressions . 14
2.3 Substitutions. Unifiers . 17
2.4 Multisets. Orderings. Rewrite Systems 19
2.5 Clauses . 21
2.6 Semantics. Homomorphisms. Specifications 23

3 Hierarchic Refutational Theorem Proving 29
3.1 Refutational Theorem Proving . 30

3.1.1 Inference, Reduction, and Splitting Rules 30
3.1.2 Redundancy Criterion . 31
3.1.3 Derivations. Saturation and Refutation 32
3.1.4 Approximation of Theorem Proving Calculi 35

3.2 Hierarchic Specification . 38
3.2.1 Syntax . 39
3.2.2 Semantics . 44

3.3 SUP(T) Calculus . 46
3.4 Completeness of SUP(T) . 50

3.4.1 Overview . 50
3.4.2 Standard Superposition for Ground Clauses SUP 54
3.4.3 Reduced Instances and Extended Clause Sets 59
3.4.4 Hierarchic Redundancy Criterion 73
3.4.5 Lifting and Saturation . 82
3.4.6 Weak Algebras . 88
3.4.7 Sufficient Completeness Criterion 92
3.4.8 Refutational Completeness . 97

3.5 Local Sufficient Completeness . 101
3.5.1 Locally Sufficiently Complete Clause Sets 102
3.5.2 Sufficiently Defining Rewrite Systems 103
3.5.3 Model Existence and Refutational Completeness 110

3.6 Hierarchic Reduction Rules . 116

ix

4 SUP(T) as a Decision Procedure 125
4.1 Introduction . 126
4.2 Deciding Ground FOL(T) . 128

4.2.1 Basification . 128
4.2.2 Derivation Invariants . 131
4.2.3 Model Existence . 140
4.2.4 Termination . 145
4.2.5 Decidability . 155

4.3 Deciding Non-Ground FOL(T) . 158
4.3.1 BSHE(GBST) Class . 158
4.3.2 Derivation Invariants . 159
4.3.3 Model Existence . 161
4.3.4 Termination . 161
4.3.5 Decidability . 164
4.3.6 Relation to Weak Abstraction. Completeness on GBT Class . 166

4.4 Application: Reasoning in Ontologies with Arithmetical Facts 168

5 SUP(LA): Superposition Modulo Linear Arithmetic 171
5.1 Introduction . 172

5.1.1 Hierarchic Specification of FOL(LA) 172
5.1.2 SUP(LA) Application Issues . 173

5.2 Constraint Solving . 175
5.2.1 Basic Notions . 175
5.2.2 Satisfiability Test . 177
5.2.3 Implication Test . 178
5.2.4 Encompassment Matcher Existence 182

5.3 Implementation . 187
5.4 Application: Reasoning about Transition Systems 189

6 SUP(NLA): Superposition Modulo Non-Linear Arithmetic 193
6.1 Introduction . 194

6.1.1 Hierarchic Specification of FOL(NLA) 194
6.1.2 SUP(NLA) Application Issues 196

6.2 Constraint Solving . 198
6.2.1 iSAT Procedure. Strong Satisfaction Check 198
6.2.2 Constraint and Implication Simplification 201

6.3 Application: Reasoning about Collision Avoidance Protocols 204

7 Conclusion and Future Work 209

Bibliography 213

Index 223

C
H
A
P
T
ER 1

Introduction

Small reasons lead to big
consequences.

Look in the root!

Kozma Prutkov

Motivation
Recent progress in automated reasoning has greatly encouraged numerous appli-
cations in soft- and hardware verification and the analysis of complex systems.
The applications typically require to determine the validity/unsatisfiability of for-
mulae over the combination of the free first-order logic FOL with some back-
ground theories T. Often such formulae include quantifiers. Nowadays, there are
efficient theorem provers for the full free first-order logic with equality and quan-
tifiers, as well as techniques and tools realizing reasoning about ground formulae,
or about formulae that can be effectively and efficiently reduced to a ground frag-
ment, in various theories, such as linear and non-linear arithmetic, data struc-
tures, set theory, etc., and combinations thereof. Typically, reasoning in combina-
tions of free first-order logic and background theories is weak: existing methods
that are aimed at handling problems in FOL modulo T are usually deficient in
universality and/or completeness, due to (i) their restriction to very specific ax-
iomatizations of the background theory T or of the free enrichment of T, and/or
(ii) partial prevention or poor treatment of quantifiers, resulting therefore in in-
complete or very specialized procedures.

1

2 Introduction

Our Contribution

This dissertation evolves the methodology of universal and complete reasoning
in general combinations FOL(T) of the free first-order logic FOL with a back-
ground theory T taking as a computational basis the Hierarchic Superposition ap-
proach [BGW92, BGW94] of Bachmair, Ganzinger, and Waldmann.

The Hierarchic Superposition calculus SUP(T) is aimed at reasoning in the full
clausal FOL(T) fragment with equality. It combines the standard “flat” superpo-
sition SUP [HR91, BG94, NR01, Wei01] and a background theory solver in a mod-
ular fashion: while the hierarchic calculus SUP(T) maneuvers the overall proof
search deriving new clauses similarly to how the flat SUP calculus does, it deliv-
ers pure theory formulae arising as side conditions to the background solver, in-
voked thus like a subroutine in a program. The hierarchic SUP(T) calculus greatly
benefits from (i) a sufficient completeness criterion, according to which the hier-
archic calculus is complete for all clause sets that possess a sufficient complete-
ness property; and (ii) a hierarchic redundancy criterion which enables deletion
and simplification of clauses deemed to be redundant in the hierarchic FOL(T)
setting. Bachmair, Ganzinger, and Waldmann have proposed in [BG94] first ver-
sions of a sufficient completeness criterion and a hierarchic redundancy criterion,
the former being rather weak, and the latter a straightforward lifting of the stan-
dard redundancy criterion to the hierarchic FOL(T) level, both loosely treating the
background theory T.

Our main contributions presented in this dissertation comprise the following:

1. We have significantly strengthened the sufficient completeness criterion origi-
nally suggested by Bachmair, Ganzinger, and Waldmann. Our reformulation
of the sufficient completeness criterion covers much larger class of clause
sets for which SUP(T) is complete.

The original sufficient completeness criterion enjoins all ground FOL(T)-
terms of a background T-sort to be reducible to some ground T-terms in all
models of the subset of all ground instances of a given clause set N , where
all T-sort variables in clauses in N are instantiated only with ground T-terms
(the so-called set of all simple ground instances). Basically, we have relaxed
the above requirement by (i) considering not all terms specified above, but
only those which have an occurrence of a free function symbol ranging into
a T-sort only at the top position ((smooth) extension terms, as we call them),
and (ii) evaluating the terms not in all models of the set of all simple ground
instances of N , but only in those which are monomorphic extensions of
models of the background theory T (weak algebras, as we call them).

2. We have presented a new sophisticated hierarchic redundancy criterion which
takes into account redundancy with respect to a background theory T, in
contrast to the hierarchic redundancy criterion suggested by Bachmair, Gan-
zinger, and Waldmann. The new criterion enables substantially more effec-
tive redundancy elimination and simplification techniques.

3. In addition to elaborating a sufficient completeness criterion, we have also
developed a noval Local Sufficient Completeness Criterion, according to which

Introduction 3

for achieving completeness it suffices to sufficiently define only those exten-
sion terms that occur in a given clause set.

The local version of the sufficient completeness criterion suggests a trans-
formation method of turning a given set N of FOL(T) clauses, which is ini-
tially not sufficiently complete, to a modified equisatisfiable set N ′, possess-
ing the local sufficient completeness property, by adding extra clauses to N ,
that enforce reducibility of the required terms to base terms, which are oth-
erwise not sufficiently defined by N itself. In this dissertation, we have ex-
ploited such a technique to show that SUP(T) can decide or can be turned
to a complete procedure for particular fragments of FOL(T).

4. We have developed two basic hierarchic reduction rules: Hierarchic Tautol-
ogy Deletion and Hierarchic Subsumption Deletion, which are compliant
with the hierarchic redundancy criterion. The hierarchic reduction rules, in
contrast to their “flat” versions, take into account the hierarchic nature of
the FOL(T) combination and can therefore detect redundancy with respect
to a background theory T.

These two rules may serve as a basis for defining hierarchic versions of other
reduction rules traditionally used in modern superposition-based theorem
provers, such as: Condensation, Unit Conflict, Matching Replacement Res-
olution, (Non-)Unit Rewriting1, etc.

5. We have shown that the hierarchic superposition calculus SUP(T) is a de-
cision procedure for the ground FOL(T) fragment. Thanks to the modu-
lar design of SUP(T), the decidability result can be easily extended beyond
the ground case: we have defined the Bernays-Schönfinkel Horn class with
equality and ground base sort terms, BSHE(GBST), and proved SUP(T) to
decide the class.

Worthwhile to mention, the decidability results have been obtained leverag-
ing the above local sufficient completeness notion: as sets of ground FOL(T)
clauses are neither sufficiently complete, nor locally sufficiently complete,
in general, completeness is achieved by Basification, a preprocessing pro-
cedure which expands an input clause set N with extra clauses equating
ground smooth extension terms, that appear in N , to unique fresh constants
(parameters), yielding this way a clause set N ′ which is locally sufficiently
complete.

The ground case decidability is not much surprising. Nevertheless, SUP(T)
with Basification incorporated constitute a decision procedure for many non-
trivial theory combinations, important in verification and reasoning in which
can be reduced to the ground fragment, e.g. in Local Theory Extensions [SS05,
IJSS08, ISS10]. The BSHE(GBST) class is strong enough to describe ontolo-
gies with arithmetical facts, and SUP(T) can hence be used for reasoning
about and querying such kind of ontologies.

1Although not reported in this dissertation, we have implemented hierarchic versions of the listed
reduction rules in a system combination SPASS(Z3) of the first-order theorem prover SPASS and SMT-
solver Z3.

4 Introduction

6. We have instantiated and refined the hierarchic superposition calculus SUP(T)
for the hierarchic combination FOL(LA) of FOL and the theory of linear arith-
metic LA.

In particular, we have refined the hierarchic reduction rules and developed
new effective algorithms for checking LA formulae arising as side conditions
of inference and reduction rules of the obtained Superposition Modulo Lin-
ear Arithmetic SUP(LA) calculus.

We have implemented the SUP(LA) calculus in SPASS(LA), a system com-
bination of the automated first-order theorem prover SPASS [WDF+09] and
a background LA-solver. In place of an LA-solver we have used Simplex-
based LP-solver QSopt1, SMT-solver Z3 [dMB08c], QE-based computer-logic
system Redlog [DS97], and Büchi-automata-based toolkit LIRA [BDEK07].
We have shown that SUP(LA) can be successfully used for practical applica-
tions; in particular, as case studies we have considered transition systems.

7. We have also investigated the hierarchic SUP(NLA) calculus for reasoning
about the hierarchic combination FOL(NLA) of FOL and the theory of non-
linear arithmetic NLA over the reals including transcendental functions, such
as exponentiation and trigonometric functions.

In contrast to the SUP(LA) approach, where T-related problems are all de-
cidable, here this is not the case due to undecidability of NLA involving
transcendental functions, yielding that the resulting calculus SUP(NLA) is
not complete, in general, even if a given clause set is (locally) sufficiently
complete. Nevertheless, we have strengthened the (local) sufficient com-
pleteness criterion to account for the NLA reasoning issues, gaining this way
a complete (and sound) calculus for an attractive fragment of FOL(NLA).

As an ingredient towards obtaining a practically working approach, we have
developed a series of simplification and approximation techniques for arith-
metic formulae arising as SUP(NLA) saturates a FOL(NLA) clause set. We
have shown that a particular class of FOL(NLA) formulae is strong enough
to formalize safety properties of hybrid non-linear systems.

We have implemented the SUP(NLA) calculus in SPASS(iSAT), a system com-
bination of SPASS and an SMT solver for non-linear arithmetic iSAT 2. Ap-
plied to various scenarios of traffic collision avoidance protocols, we have
shown by experiments that SPASS(iSAT) can fully automatically proof and
disproof safety properties of such protocols using the very same formaliza-
tion.

1See http://www2.isye.gatech.edu/~wcook/qsopt/.
2See http://isat.gforge.avacs.org/

http://www2.isye.gatech.edu/~wcook/qsopt/
http://isat.gforge.avacs.org/

Introduction 5

Related Work

There are now several calculi combining full first-order logic FOL with a back-
ground theory T, and systems (implementations) supporting reasoning in FOL(T)
available. The main difference between all of them, on the one hand, and our ap-
proach, on the other hand, is that (i) they are restricted to very specific axiomati-
zations of the background theory T or of the free enrichment of T, and/or (ii) they
partially prevent or poorly treat quantifiers, resulting therefore in incomplete or
very specialized procedures. Thus, in contrast to SUP(T), these techniques are
usually deficient in universality and/or completeness.

Below we provide a short description of approaches comparable to SUP(T).

DPLL(Γ + T) (with Speculative Inferences). DPLL(Γ + T) [BLdM09, BLdM11] of
Bonacina, Lynch, and de Moura is a deep integration of (i) a generic superposi-
tion-based inference system Γ and (ii) a DPLL(T)-based SMT-solver. DPLL(Γ + T)
is aimed at reasoning in a combination of background theories T = ⋃

i Ti and an
axiomatized theory R. The general format of an input problem is R ∪P , where R
is a set of non-ground clauses (axioms) without occurrences of T-symbols, and
P a set of ground clauses over T and R (typically, P is obtained by skolemiz-
ing a negated universal conjecture whose validity in R modulo T needs to be
(dis)proved).

DPLL(Γ + T) incorporates an SMT technology called DPLL(T) [NOT06, Seb07,
BSST09]. DPLL(T) is aimed at determining the satisfiability of ground formulae a
combination of background theories T =⋃

i Ti , and integrates a DPLL-based SAT-
solver [DP60, DLL62, ZS00, MMZ+01] and satellite solvers for the theories T1, T2,
. . . Operationally, while the SAT-solver tries to build a candidate (propositional)
model of a given set of ground T-clauses by maintaining and manipulating a set
of propositional variables associated with ground theory literals, the Ti -solvers
check whether the propositional model is consistent with respect to each theory
Ti . The interaction between the Ti -solvers is realized by different equality sharing
methods; the model-based theory combination [dMB08b] method is one of the
most efficient such methods existing (and underlies DPLL(T) in DPLL(Γ + T)).

The inference system Γ serves in DPLL(Γ + T) as a satellite solver for the the-
ory R. Thus, the DPLL(T) part performs on ground clauses and literals, whereas
Γ works on non-ground clauses and unit ground R-clauses (R-literals). For de-
ducing new clauses, Γ takes premises from the current clause set and R-literals
from the current sequence of assigned literals (the sequence represents the can-
didate model built thus far). If (i) T1, T2, . . . are pairwise-disjoint and stably-in-
finite [ABRS09, ABRS05], (ii) R is variable-inactive [ABRS05, BE10, BGN+06] and
disjoint from each theory Ti , and (iii) Γ follows a fair strategy, then DPLL(Γ + T)
is refutationally complete on all input problems R ∪ P , where R and P are as
defined above. In order to deal with quantified formulae which do not com-
ply with all the above requirements, DPLL(Γ + T)-based SMT-solvers rely on E-
matching [dMB07, GBT07], a heuristic technique for instantiating quantified vari-
ables. The heuristic support for quantifiers is the source of DPLL(T)’s incom-
pleteness, hence incompleteness of DPLL(Γ + T), on quantified formulae. One
of the most efficient implementations of DPLL(Γ + T) existing is an SMT Solver
Z3 [dMB08c].

6 Introduction

DPLL(Γ + T) can be further extended with a reversible speculative inference
rule [BLdM09, BLdM11] that adds an arbitrary “guess”-clause that is, in general,
not entailed by the current clause set (whence “speculative” or “unsound”). This
technique allows to get a decision procedure for some particular axiomatizations
R, if DPLL(Γ + T) is guaranteed for certain sequences of speculative inferences
to terminate in the UNSAT state, if the input formula R ∪P is unsatisfiable, or to
finitely saturate the input formula without deriving a contradiction, if R∪P is sat-
isfiable.

A very good overview of DPLL, DPLL(T), DPLL(Γ + T), DPLL(Γ + T) coupled
with Speculative Inferences, and related techniques can be found in [Bon10]. A
good survey on the SMT technology and its applications is given in [DMB11].

Model Evolution (with Equality) Modulo Built-In Theories. Baumgartner and Tinelli
have presented in [BFT08] a new calculus called Model evolution extended with
Linear Integer Arithmetic ME(LIA) dedicated to reasoning in a combination of
FOL and the the theory of Linear Integer Arithmetic LIA.

The calculus is based on the Model Evolution calculus ME [BT03], an instan-
tiation method, originally invented by the same authors as a first-order logic ver-
sion of the propositional DPLL procedure. The ME calculus tries to build a Her-
brand model of a given set of non-equational clauses by maintaining and manipu-
lating a set of literals, called context, which is a finite and compact representation
of a candidate model, in a DPLL fashion by applying unification-based versions
of DPLL’s rules lifted for FOL literals and utilizing the instantiation preorder on
terms.

The extended calculus ME(LIA) supports formulae over LIA enriched with
extra arithmetic constants (parameters) and arbitrary uninterpreted predicates,
where every variable is restricted to range over an integer interval bounded be-
low, and every parameter is restricted to a finite interval over Z. Thus, FOL(LIA)
formulae containing variables over a free domain or free function symbols can-
not be processed by ME(LIA). The ME(LIA) calculus operates in a manner sim-
ilar to that of ME , differing from it in the following aspects: (i) the maintained
context may contain in addition LIA constraints, which can be any first-order LIA
formulae possibly containing parameters; (ii) ME(LIA) uses an LIA-validity deci-
sion procedure as a black-box for checking theory reasoning tasks; and (iii) the
underlying ordering is based on the “strictly less” ordering < on integers instead
of the instantiation ordering on terms used by ME , which coped with the above
quantification restrictions on parameters and variables guarantees the existence
of only finitely many minimal solutions to an LIA formula.

Model evolution with equality modulo built-in theories MEE(T) [BT11] gen-
eralizes both ME and ME(LIA) by supporting first-order equational logic, and
reasoning in an abstract background theory T, which is not restricted in MEE(T)
to the theory of LIA as in ME(LIA). For equational reasoning MEE(T) adopts the
Ordered Paramodulation inference rule [RW69, Wei01]. As the side premise the
rule takes an equation only from the current context, whereas the main premise
is always a clause from the current clause set; the equation used for the inference
is kept with the conclusion to facilitate searching a model. Although MEE(T) en-
ables reasoning in the equational fragment of FOL(T), and therefore supports ar-
bitrary free function symbols (in contrast to ME(LIA)), it still enjoin all free func-

Introduction 7

tions of a non-zero arity to range into a free sort. Thus, MEE(T) lacks treatment
of free function symbols ranging into a base sort.

Constraint Sequent Calculus for FOL with LIA. The Constraint Sequent Calculus
of Rümmer [Rüm08a, Rüm08b] is aimed at reasoning in a combination of the free
first-order logic FOL and the theory of linear integer arithmetic LIA. The core of
the calculus combines the free-variable tableaux with incremental closure [Gie01]
and the Omega quantifier elimination procedure [Pug91]. The former is used
to generate arithmetic constraints over variables and constants (parameters) by
applying Gentzen-style sequent inference rules. The latter is invoked for decid-
ing validity of the produced LIA constraints, which are conjunctions of equations
over variables and constants with quantifier alternations. The calculus admits ar-
bitrary formulae over Linear Integer Arithmetic (Presburger Arithmetic) enriched
with arbitrary uninterpreted predicates, where all variables range into the integers
Z. Thus, neither free function symbols nor variables over a free domain are sup-
ported. The constraint calculus is sound and complete on the classes of purely
universal and of purely existential formulae of the indicated FOL(NLA) fragment.
The method is implemented in the theorem prover Princess1.

Linear Arithmetic Superposition Calculus LASCA. The work [KV07] by Korovin and
Voronkov extends the standard superposition calculus with two extra inference
rules for reasoning about LA equations and inequations. The resulting calculus,
called LASCA, is sound; moreover, the calculus is proved complete under a finite-
ness assumption on the number of rational coefficients appearing in LA-terms in
clauses in a LASCA-derivation from an input set of FOL(LA) clauses. Thus, the
finiteness assumption effectively prevents quantification over the arithmetic do-
main. Still, LASCA admits arbitrary clauses over FOL(LA), where the base signa-
ture of LA is enriched with arbitrary free sorts and free function symbols, but does
not guarantee completeness, in general.

Cancellative Superposition for (Divisible) Abelian Groups. Waldmann’s Cancellative
Superposition and Chaining for totally ordered divisible abelian groups [Wal01]
and Cancellative Superposition for cancellative abelian monoids2 are two refu-
tationally complete superposition calculi, refined for sets of clauses containing
the axiomatizations of totally-ordered divisible abelian groups and cancellative
abelian monoids, respectively. The supported language consists of full free FOL
enrichments of the indicated theories.

Spass+T. SPASS+T [PW06] is a (rather) parallel system combination of the au-
tomated theorem prover SPASS [WDF+09] and a generic SMT-procedure used as
a black-box solver for ground formulae over arithmetic and free function sym-
bols. SPASS+T admits arbitrary clause sets with variables over both arithmetic
and free domains, equality, and free function and predicate symbols ranging into
the arithmetic or the free sort. Operationally, SPASS+T consists of three modules:
(i) control module on the top of (ii) SPASS and (iii) the SMT-procedure. SPASS

1The homepage of Princess: http://www.philipp.ruemmer.org/princess.shtml.
2The theory of the indicated abelian groups and monoids is studied, e.g. , in books [Gil84, Lan93].

http://www.philipp.ruemmer.org/princess.shtml

8 Introduction

passively communicates with the SMT-module via the control module: the con-
troller collects all ground clauses produced by SPASS and transmits them to the
SMT-module. Ground clauses passed to the SMT-solver are generated in SPASS by
exploiting an additional theory instantiation rule. SPASS+T stops execution when-
ever: (i) SPASS finds a proof, (ii) the SMT-procedure proves a received formula
unsatisfiable, or (iii) SPASS finitely saturates the input clause set without deriving
an empty clause, and the SMT module reports satisfiability for all the received
formulae. The first two cases signalize the input clause set to be unsatisfiable.
Because SPASS+T is an incomplete procedure, the third case is inconclusive.

Hierarchic Reasoning in Local Theory Extensions. A hierarchic reasoning method-
ology for (combinations of) local theory extensions has been studied by Sofronie-
Stokkermans [SS05] in cooperation with Ganzinger [GSSW06] and Ihlemann [ISS10]
and Jacobs [IJSS08]. The distinguishing feature of local theory extensions is that
reasoning in them can be reduced to reasoning in the ground fragment.

In the very basic setting, given a background theory T and a set K of non-
ground FOL(T) clauses (axioms), the theory extension T∪K is said to satisfy the
locality condition, if for every set G of ground FOL(T) clauses (G is typically ob-
tained by skolemizing a negated universal conjecture whose validity in K modulo
T needs to be (dis)proved), a formula K ∪G is unsatisfiable modulo T if and only
if the ground formula K [G]∪G is unsatisfiable modulo T, where K [G] is a set of
ground instances of K , such that a term with a free top symbol occurs in K [G]
whenever the term already occurs in K or G .

The theory extension T ∪K is said to satisfy the extended locality condition,
if for every augmented clause Γ∨G , where Γ is an arbitrary T-sentence (closed
formula) and G a set of ground FOL(T) clauses, the formula K ∪Γ∪G is unsatisfi-
able modulo T if and only if the ground formula K [Ψ(K ,G)]∪Γ∪G is unsatisfiable
modulo T, where:

– K [Ψ(K ,G)] is a set of ground instances of K , such that a term with a free top
symbol occurs in K [Ψ(K ,G)] whenever the term already occurs in Ψ(K ,G);
and

– Ψ is a closure operator on the sets of ground terms appearing in its argu-
ments.

Thus, if Ψ is the identity and Γ is empty, the extended condition reduces to the
basic one.

Hierarchic Reasoning in Local Theory Extensions is implemented in a tool
called H-PILoT [ISS09], which tests satisfiability of an input formula K ∪Γ∪G ,
where K , Γ, and G are as specified above, by reducing it to a (ground) T-formula,
whose satisfiability is checked by a specialized SMT-procedure invoked from H-
PILoT as a black-box solver for T.

The algorithm underlying H-PILoT consists of the following three steps:

1. A given input formula K ∪Γ∪G is instantiated to K [Ψ(K ,G)]∪Γ∪G .

2. All ground extension terms t (ground terms with a free top symbol) ap-
pearing in K [Ψ(K ,G)] ∪ Γ∪G are purified in a bottom-up manner by re-
placing them with fresh constants a (T-parameters), resulting in a formula

Introduction 9

K0 ∪Γ0 ∪G0 ∪D , where D consists of all definitions t ≈ a, and K0, Γ0, G0 are
T-formulae.

3. The obtained formula K0∪Γ0∪G0∪D is further reduced by replacing D with
a set of clauses

Con= {
∧

i
ai ≈ bi → a ≈ b | (f (a1, . . . , an) ≈ a), (f (b1, . . . ,bn) ≈ b) ∈ D},

whose purpose is to compute the congruence closure with respect to D . Sat-
isfiability of the T-formula K0 ∪G0 ∪Γ0 ∪Con is then checked by the back-
ground SMT-procedure used as a subroutine in a program.

By locality, if the theory extension T ∪K is local, then the original formula K ∪
Γ∪G is (un)satisfiable modulo T if and only if K [Ψ(K ,G)]∪Γ∪G is (un)satisfiable
modulo T. Consequently, K ∪Γ∪G is (un)satisfiable modulo T if and only if the
T-formula K0 ∪Γ0 ∪G0 ∪Con is (un)satisfiable in T. The algorithm of H-PILoT is
complete for local theory extensions.

Hierarchic Superposition with Weak Abstraction. The most recent work by Baum-
gartner and Waldmann [BW13] is dedicated to strengthening Abstraction, a pre-
processing step which transforms every clause in a given set of FOL(T) clauses to
a format suitable for hierarchic superposition inference rules [BGW94].

Abstraction suggested in the original work [BGW94] by Bachmair, Ganzinger,
and Waldmann is a recursive procedure which “purifies” every clause C in a given
clause set N by (i) replacing all occurrences of a term t = f (t1, . . . , tn) with a free
(resp. theory) top operator symbol f , occurring in C immediately below some the-
ory (resp. free) operator symbol g or in an atom f (t1, . . . , tn) ≈ g (s1, . . . , sm), with a
fresh variable x over the theory domain, and (ii) adding the negative literal x 6≈ t
to the clause, yielding thus a new clause x 6≈ t ∨C [x/t], where C [x/t] is obtained
from C by replacing an occurrence of t with x. Having purified all literals in C in
this way, abstraction yields an equivalent clause C ′ in which all literals are pure,
meaning that each literal is built either over the theory signature, or over the free
enrichment signature, and the only symbols shared by the literals are variables
over the theory domain. The main disadvantage of [BGW94]’s abstraction mech-
anism is that it may actually destroy sufficient completeness of the initial clause
set N , a sufficient condition for completeness of the hierarchic calculus SUP(T)
on N .

The weak abstraction algorithm presented by Baumgartner and Waldmann re-
solves this shortcoming of the original “total” abstraction of Bachmair, Ganzinger,
and Waldmann. The main idea of weak abstraction is to abstract out only pure
non-variable non-constant T-terms. As extension terms are not abstracted out by
weak abstraction, it has also to be performed on every clause derived, in contrast
to “total” abstraction which is exhaustively applied only once to an input clause
set. In [BW13] it is shown that the hierarchic superposition calculus modified in a
straightforward way to fit the new abstraction algorithm is refutationally complete
for all clause sets obtained by weak abstraction from sufficiently complete clause
sets.

Besides, Baumgartner and Waldmann have proposed new sufficient complete-
ness and hierarchic reduction criteria, which are stronger than the original respec-
tive criteria of [BGW94] as they take into account the background theory T. Still,

10 Introduction

the new criteria are not stronger than the ones developed in our work (see Sec-
tion 3.4.4, page 76, and Section 3.4.7, page 96, for a detailed comparison of the
respective criteria suggested by us and in [BGW94] and [BW13]).

Also, Baumgartner and Waldmann offer in [BW13] a new inference rule Define,
capable of dynamically defining ground terms, generated in a SUP(T)-derivation.
The inference rule is a generalization of the Basification mechanism developed
in our work [KW11, KW12] (see Section 4.2.1 for a detailed exposition of Basifica-
tion). The overall approach is implemented in a theorem prover called Beagle1.

In [BW13] the authors claim weak abstraction coupled with the Define rule
benefit in a new completeness result for the class of FOL(T) clauses in which all
theory-sort terms are ground (the so-called GBT class). Unfortunately, the weak
abstraction algorithm applied to a GBT clause set, exhaustively saturated with re-
spect to the Define rule (which is required in [BW13] as one more preprocessing
step to gain completeness), reduces to the original “total” abstraction procedure
of [BGW94]. Moreover, the exhaustive application of the Define rule to a given
GBT clause set N emulates the application of Basification to N , and thus the both
transformations produce the same clause set N ′ out of the given N . In Chap-
ter 4 we show that the SUP(T) calculus with [BGW94]’s “total” abstraction and our
Basification algorithm also constitute a complete procedure for the GBT class (see
discussion in Section 4.3, page 166.).

The SUP(T) calculus of Baumgartner and Waldmann, adjusted to comply with
weak abstraction, has a disadvantage that weakly abstracted clauses may contain
compound impure FOL(T) terms (these are terms which contain theory and free
operators), which demands more complex implementational technicalities and
might thus potentially decrease the overall effectiveness of the approach, because
theory-simplification and elimination of theory-redundancy has to be done in this
case with regard to such impure terms.

In this dissertation, abstraction is regarded simply as a preprocessing step and
does not impose any particular restrictions on applicability of statements and
methods developed here. For this reason, the weak abstraction mechanism of
Baumgartner and Waldmann can be safely integrated into our framework instead
of [BGW94]’s abstraction method, causing no failure regarding achieved theoreti-
cal results.

1See http://users.cecs.anu.edu.au/~baumgart/systems/beagle/

http://users.cecs.anu.edu.au/~baumgart/systems/beagle/

Introduction 11

Outline

The rest of the dissertation is organized as follows:

– In Chapter 2 we give an overview of the most relevant foundations and no-
tations used throughout the dissertation.

– Chapter 3 is devoted to presenting the Hierarchic Superposition calculus
SUP(T) and proving its completeness. In particular, we introduce our ver-
sions of a hierarchic sufficient completeness criterion and hierarchic redun-
dancy criterion. Besides, we develop two basic effective reduction rules
which comply with the requirements of our hierarchic redundancy crite-
rion. The chapter ends with a presentation and investigation of a notion of
local sufficient completeness criterion and a proof that SUP(T) is complete
on locally sufficiently complete clause sets.

– In Chapter 4 we show that SUP(T) can be turned into a decision procedure
for the ground FOL(T) fragment and the non-ground Bernays-Schönfinkel
Horn class BSHE(GBST) with equality and ground base sort terms. The de-
cidability results are mainly due to a preprocessing procedure Basification,
some extra syntactical modification techniques elaborated here, and the no-
tion of local sufficient completeness criterion introduced in Chapter 3. The
chapter ends with a discussion of an example application of the decidabil-
ity result for the BSHE(GBST) class towards reasoning about and querying
ontologies with arithmetical facts.

– Chapter 5 describes the Hierarchic Superposition calculus modulo Linear
Arithmetic SUP(LA), an instance of SUP(T) where the background theory T
is linear arithmetic LA. In particular, we have refined the hierarchic reduc-
tion rules and develop new effective algorithms for checking LA formulae
arising as side conditions of inference and reduction rules of SUP(LA). The
chapter ends with a discussion of different implementations of the calculus
in system combinations SPASS(LA) of the automated theorem prover SPASS

with different satellite LA-solvers, and of application of SUP(LA) to reacha-
bility problems of transition systems.

– In Chapter 6 we study the Hierarchic Superposition calculus modulo Non-
Linear Arithmetic SUP(NLA), an instance of SUP(T) where the background
theory T is non-linear arithmetic NLA over the reals including transcenden-
tal functions. The calculus is implemented in SPASS(iSAT), a system combi-
nation of SPASS and an SMT solver iSAT for non-linear arithmetic. Here, we
elaborate the issues related to the hierarchic combination FOL(NLA) due to
undecidability of NLA involving transcendental functions. Particularly, we
present a series of simplification and approximation techniques for treat-
ing NLA formulae that eventually enables a complete automatic behavior of
SPASS(iSAT) on various scenarios of collision avoidance protocols.

– In Chapter 7 we conclude and discuss possible directions of future work.

C
H
A
P
T
ER 2

Preliminaries

2.1
Signatures

2.2
Terms. Formulae.

Expressions

2.3
Substitutions. Unifiers

2.4
Clauses

2.5
Rewrite Systems.

Multisets. Orderings

2.6
Semantics.

Homomorphisms.
Specifications

In this chapter we introduce the basic no-
tions and definitions exploited throughout the
whole thesis. A more detailed introduction can
be found in [Fit90], [BN98], and [Wei01]. No-
tions specific for particular topics will be given
in the respective chapters.

13

14 Preliminaries

2.1 Signatures

A many-sorted signature Σ is a pairDEFINITION 2.1 Ï
Signature

Σ
def
= (S ,Ω),

consisting of a finite non-empty set S of sort symbols, and a set Ω of operator
symbols, such that

(i) every operator symbol f ∈ Ω has a unique sort declaration f : S1 × ·· ·×Sn →
S, indicating the sorts of arguments and the range sort of f , respectively, for
some S1, . . . ,Sn ,S ∈S and n ≥ 0; and

(ii) for every sort S ∈ S there exists at least one operator symbol f ∈Ω such that
f : S1 ×·· ·×Sn → S, for some S1, . . . ,Sn ∈S and n ≥ 0.

■

The number n in a sort declaration f : S1 × ·· · ×Sn → S is called the arity of f
and denoted by arity(f). A function symbol a : → S of the zero arity is called a
constant. We require that for every sort S ∈ S there exists at least one ground
term1

In addition to the signature Σ, we always assume a variable set X , disjoint
from Ω, such that for every sort S ∈ S there exists a countably infinite subset of
X consisting of variables of the sort S. Every variable x ∈ X has a unique sort
declaration x : S, for some S ∈S , indicating the sort of x.

2.2 Terms. Formulae. Expressions

Given a signature Σ = (S ,Ω), a sort S ∈ S and a variable set Y ⊆ X , where X isDEFINITION 2.2 Ï
Term the variable set underlying the signature Σ, the set TΩ(S,Y) of all terms of the sort

S built over the operator symbols Ω (signature Σ) and variables Y is recursively
defined as the smallest set containing

(i) every variable y , such that y ∈Y and y : S,

(ii) all terms f (t1, . . . , tn), where

– f ∈Ω and f : S1, . . . ,Sn → S,

– ti ∈ TΩ(Si ,Y) and Si ∈S , for every i ∈ {1, . . . ,n}.

■

The sort of a term t is denoted by sort(t). A term not containing a variable is
called ground. For the sake of simplicity we often write:

– TΩ(S ′,Y) for
⋃

S∈S ′ TΩ(S,Y), the set of all terms of sorts in S ′ ⊆ S built over
Σ and variables Y ⊆X ;

– TΩ(Y) for TΩ(S ,Y), the set of all terms over Σ and variables Y ⊆X ;

– TΩ(X) for TΩ(S ,X), the set of all terms over Σ;

– TΩ(S ′) for TΩ(S ′,;), the set of all ground terms over Σ of sorts S ′ ⊆S ;

1The notion of a (ground) term is defined below.

2.2. Terms. Formulae. Expressions 15

– TΩ(S) for TΩ({S},;), the set of all ground terms over Σ of a sort S ∈S ;

– TΩ for TΩ(S), the set of all ground terms over Σ.

An equation over the signature Σ is a multiset of two terms s, t ∈ TΩ(S,X) of the Î DEFINITION 2.3
Equation. Atom. Literalsame sort S= sort(s) = sort(t), written s ≈ t . Any equation is an atom. An atom or

the negation of an atom is called a literal. ■

A literal is positive if it is an atom, and negative, otherwise. A negative literal ¬(s ≈
t), also called disequation, is often written as s 6≈ t . When the matter of discussion
does not depend on the sign of a literal, we write s ≈̇ t , where ≈̇ is either ≈ or 6≈.
Given a literal L = (s ≈̇ t), the complementary literal of L, denoted by L, is defined
as L = (s 6≈ t) if ≈̇ =≈, and L = (s ≈ t) otherwise. For a set M = {L1,L2, . . .} of literals,
M denotes the set {L1,L2, . . .} consisting of M ’s complementary literals.

The above notion of signature does not naturally support predicates. We over-
ride this problem by extending a given signature for every predicate symbol P tak-
ing arguments of sorts S1, . . . ,Sn as follows: (i) add a distinct sort SP to S , (ii) in-
troduce a fresh constant trueP of the sort SP to Ω, and (iii) encode every predicate
P as a function P : S1, . . . ,Sn → SP . Thus, predicative atoms are turned into equa-
tions P (t1, . . . , tn) ≈ trueP , written usually as P (t1, . . . , tn).

The set FΩ of formulae over the signature Σ is the smallest set containing Î DEFINITION 2.4
Formula– the logical constants > and ⊥,

– every atom over Σ,

– applications of boolean connectives: negation ¬F , conjunction F ∧G , dis-
junction F ∨G , implication F →G , and equivalence F ↔G , for any formulae
F,G ∈ FΩ,

– quantifier applications: ∀x.F , ∃x.F , where x ∈X and F ∈ FΩ.

■

A formula not containing a quantifier is called quantifier-free. Implication F →
G and equivalence F ↔ G are abbreviations for ¬F ∨G and (F → G)∧ (G → F),
respectively.

An expression is either a term or a formula. It follows from the definitions
of terms and formulae that expressions have a tree-like structure. For referring
to certain subtrees of an expression, called subexpressions, we use sequences of
natural numbers, called positions.

Subexpression e/p at position p in an expression e ∈ FΩ ∪TΩ(X) is recursively Î DEFINITION 2.5
Subexpression
Position

defined as:

– e/p = e, if p is empty;

– e/p = ei /q , if p = i q , where i q is the concatenation of the two positions i
and q , and eitherq e = f (e1, . . . ,en) and i ∈ {1, . . . ,n}, orq e =¬e1 and i = 1, orq e = e1 ∨e2 or e = e1 ∧e2, and i ∈ {1,2}, or

16 Preliminaries

q e =∀e1.e2 or e =∃e1.e2, where e1 ∈X and i ∈ {1,2},

The set of all positions in e, for each of which the respective subexpression is de-
fined, is denoted by ρ(e). ■

The length of a position p is its length as a sequence, denoted by |p|. If |p| = 0,
i.e. p is empty, then it is called the top position and denoted by p = ε.

Any two positions p, q can be related to each other with respect to the followingDEFINITION 2.6 Ï
Prefix Order prefix orders:

– p above q (or equivalently, q below p), denoted by p ≤ q , if q = pp ′ for
some p ′.

– p is strictly above q (or equivalently, q strictly below p), denoted by p < q ,
if p ≤ q and not q ≤ p. Note that p < q iff q = pp ′ for some p ′ 6= ε;

– p and q parallel, denoted by p ∥ q , if neither p ≤ q nor q ≤ p.

■

An expression e is said to contain another expression e ′ if e ′ is a subexpression
of e, and e ′ is called a strict subexpression of e if, in addition, e ′ 6= e; in the both
cases, e ′ is said to occur in e, which is denoted by e[e ′]. We also write e[e ′]p to em-
phasize that the subexpression e ′ occurs in e at a position p ∈ ρ(e). Ambiguously,
we write e[e ′′] to denote the result of replacing the occurrence of e ′ in e with e ′′

(we also write e[e ′′]p to emphasize that the replacement is done at the position
p). We call e ′ a immediate subexpression of e if e ′ = e/p for some p ∈ ρ(e) and
|p| = 1. We call a subexpression e ′ a subterm if e ′ is a term, and a subformula if e ′

is a formula.
The size of an expression e, written |e|, is the number of all subexpressions

occurring in it; evidently, the size of e equals the cardinality of the set ρ(e), that

is |e| def
= |ρ(e)|. The depth of an expression is the maximal length of a position in

the expression: depth(e)
def
= max{|p| |p ∈ ρ(e)}. The set of all variables occurring in

an expression e is denoted by var(e) and formally defined as var(e)
def
= {x ∈X |x =

e/p, p ∈ ρ(e)}. The expression is ground if var(e) =;.

If e =¬P (f (x, g (a))), then:EXAMPLE 2.7 Ï
– let e ′ = P (f (x, g (a))); e ′ is an immediate subformula of e occurring at po-

sition p = (1), and x and g (a) strict subterms of e occurring at positions
q1 = (1,1,1) and q2 = (1,1,2), respectively;

– the position p is strictly above q1 and q2 as q1 = pp1 = (1)(1,1) = (1,1,1)
and q2 = pp2 = (1)(1,2) = (1,1,2), where p1 = (1,1) and p2 = (1,2) are the
positions of x and g (a), respectively, in the formula e ′ = P (f (x, g (a)));

– the subterms x and g (a) are parallel;

– the subterms x and g (a) occur in the term f (x, g (a)) at positions (1) and (2),
respectively, thus they are immediate subterms thereof;

– the formula e[b]q1 =¬P (f (b, g (a))) is obtained from e by replacing x with b;

2.3. Substitutions. Unifiers 17

– p, q1, q2 ∈ ρ(e) and p1, p2 ∈ ρ(e ′), but also p1 ∈ ρ(e) and p2 6∈ ρ(e), because
e/p1 is defined and equals f (x, g (a)), whereas e/p2 is not defined;

– |p| = 1, |q1| = |q2| = 3, and |p1| = |p2| = 2;

– ρ(e) = {ε, (1), (1,1), (1,1,1), (1,1,2), (1,1,2,1)} and |e| = 6;

– var(e) = {x}.

■

An equivalence relation ∼ on a term set TΩ(X) is a reflexive, transitive, symmetric Î DEFINITION 2.8
Equivalence Relation
Congruence Relation
Equivalence class

binary relation on TΩ(X). Two terms s and t are called equivalent, if s ∼ t .
An equivalence ∼ is called a congruence if s ∼ t implies u[s] ∼ u[t], for all

terms s, t ,u ∈ TΩ(X).
Given a term t ∈ TΩ(X), the set of all terms equivalent to t is called the equiv-

alence class of t by ∼, denoted by [t]∼:

[t]∼
def
= {t ′ ∈ TΩ(X) | t ′ ∼ t }.

■

If the matter of discussion does not depend on a particular equivalence relation
or it is unambiguously known from the context, we simply write [t] instead of [t]∼.

The set of all equivalence classes in TΩ(X) defined by the equivalence relation ∼ Î DEFINITION 2.9
Quotientis called a quotient by ∼, denoted by TΩ/∼:

TΩ/∼ def
= {[t]∼ | t ∈ TΩ(X)}.

■

We write ∼E to denote the smallest congruence relation “containing” a set of
equations E , that is, (l ≈ r) ∈ E implies l ∼E r . The equivalence class [t]∼E of a
term t by the equivalence (congruence) ∼E is usually denoted, for short, by [t]E .
Likewise, we usually write TΩ(X)/E for the quotient TΩ(X)/∼E of TΩ(X) by the
equivalence (congruence) ∼E .

2.3 Substitutions. Unifiers

An occurrence of a variable x in a formula F is called bound, if p ∈ ρ(F) is the
position of the occurrence of x in F , and p = qq ′, such that F /q = Q x.G , where
Q ∈ {∀,∃}. The subformula G is called the scope of the quantifier Q x. In other
words, a variable x is bound if it occurs in the scope of a quantifier Q x. Any other
occurrence of a variable is called free. A formula not containing a free occurrence
of a variable is called closed. If x1, . . . , xn are the variables freely occurring in a
formula F , then ∀x1. · · ·∀xn .F and ∃x1. · · ·∃xn .F are the universal and the exis-
tential closure of F , respectively.

A substitution σ is a mapping from variables X to terms TΩ(X) such that Î DEFINITION 2.10
Substitution(i) σ(x) 6= x for only finitely many variables x, and

(ii) every variable x ∈ X is mapped to a term t ∈ TΩ(S,X) of the same sort S =
sort(x).

18 Preliminaries

■

The application σ(x) of a substitution σ to a variable x is often written in post-
fix notation as xσ. The variable set

dom(σ)
def
= {x ∈X |xσ 6= x}

is called the domain of σ; the term set

im(σ)
def
= {xσ |x ∈ dom(σ)}

is called the image of σ; and the variable set

cdom(σ)
def
=

⋃
t∈im(σ)

var(t)

is called the co-domain of σ. From the above definition of a substitution it follows
that dom(σ) is finite for any substitution σ. The composition of two substitutions
σ and τ is written as a juxtaposition στ, i.e. tστ= (tσ)τ.

We write σ= {x1 7→ t1, . . . , xn 7→ tn} if dom(σ) = {x1, . . . , xn} and xiσ= ti for every
i ∈ {1, . . . ,n}. The substitution σ is also often written as [t1/x1, . . . , tn/xn].

The modification of a substitution σ at a variable x is defined as follows:

σ[x 7→ t](y)
def
=

{
t , if y = x
σ(y), otherwise.

A substitution σ is identified with its extension to expressions and defined as
following:

– ⊥σ=⊥,

– >σ=>,

– (f (t1, . . . , tn))σ= f (t1σ, . . . , tnσ),

– (s ≈ t)σ= sσ≈ tσ,

– (¬F)σ=¬(Fσ),

– (F ◦G)σ= Fσ◦Gσ, where ◦ ∈ {∨,∧},

– (Q x.F)σ=Q z.(Fσ[x 7→ z]), where Q ∈ {∀,∃} and z is a fresh variable.

The result eσ of applying a substitution σ to an expression e is called an in-
stance of e. The substitution σ is called ground if it maps every domain variable
to a ground term. If the application of a substitution σ to an expression e pro-
duces a ground expression eσ, then eσ is called a ground instance of e. The set
of all ground instances of e is denoted by gi(e). A ground substitution σ is called
grounding for an expression e, if eσ is ground. A substitution σ is called a vari-
able renaming if im(σ) ⊆X and for any x, y ∈X , if x 6= y then xσ 6= yσ. The latter
condition for a substitution to be a variable renaming is essentially the same as
the injectivity property. Nevertheless, in the context of substitutions we do not
use the notions like “injectivity” or “bijectivity” in order to avoid any confusion,
because the notions of domain and co-domain of a substitution differ from those
of a function, which are commonly used in such areas as common mathematics
or category theory.

Two terms s and t are said to be unifiable if there exists a substitution σ suchDEFINITION 2.11 Ï
Unifier

Matcher
that sσ = tσ, the substitution σ is called then a unifier of s and t . The unifier σ

2.4. Multisets. Orderings. Rewrite Systems 19

is called a most general unifier, written σ = mgu(s, t), if any other unifier τ of s
and t can be represented as τ= στ′, for some substitution τ′. A substitution σ is
called a matcher from s to t if sσ= t . ■

Notably, most general unifiers are unique up to variable renaming. Given n pairs
of terms (si , ti), a substitution σ is called a simultaneous unifier of (s1, t1), . . .,
(sn , tn) if siσ= tiσ for every i ∈ {1, . . . ,n}. Simultaneous most general unifiers and
matchers are defined accordingly.

2.4 Multisets. Orderings. Rewrite Systems

A multiset over a set X (which can be a set of terms, atoms, literals, clauses, etc., Î DEFINITION 2.12
Multisetor sets thereof) is a mapping M from X to the non-negative integer (natural) num-

ber. ■

Intuitively, M(x) specifies the number of occurrences of x in M . We say that x is
an element of M if M(x) > 0. The union, intersection, and difference of multisets
are defined by the identities:

– (M1 ∪M2)(x) = M1(x)+M2(x),

– (M1 ∩M2)(x) = min{M1(x), M2(x)},

– (M1 \ M2)(x) = min{0, M1(x)−M2(x)}.

A multiset M is finite if the set {x |M(x) > 0} is finite. If M is a multiset and S a set,
we write M ⊆ S to indicate that every element of M is an element of S, and use M \
S to denote the multiset M ′ for which M ′(x) = 0 for any x in S, and M ′(x) = M(x),
otherwise. We often use sequence- or set-like notation to denote multisets and
write, for instance, M , N instead- of M∪N , or M ,L instead of M∪{L}. For example,
{F,G ,G} denotes the multiset M over formulae for which M(F) = 1, M(G) = 2, and
M(H) = 0, for any other formula H .

A partial ordering º is a transitive, reflexive, and antisymmetric binary relation. Î DEFINITION 2.13
OrderingA strict ordering Â is a transitive and irreflexive relation. ■

Every partial ordering º induces a strict ordering Â by t Â s iff t º s and t 6= s. A
strict ordering is said to be total if for any two distinct elements s and t either s Â t
or t Â s. We often write t Â s1, . . . , sn to denote that t Â si , for every i ∈ {1, . . . ,n}. A
strict ordering Â is said to be well-founded if there is no infinite descending chain
s1 Â s2 Â . . . of elements.

We say that an ordering Â:

– is stable under substitutions, if e1 Â e2 implies e1σÂ e2σ, for all expressions
e1,e2 and substitutions σ;

– is compatible with contexts, if e1 Â e2 implies e[e1]p Â e[e2]p , for all expres-
sions e,e1,e2 and all positions p ∈ ρ(e);

– has the subterm property, if e[e ′] Â e ′, for all expressions e and strict subex-
pressions e ′ of e;

20 Preliminaries

A rewrite ordering is a strict ordering that is stable under substitutions and com-DEFINITION 2.14 Ï
Rewrite Ordering

Reduction Ordering
Simplification Ordering

patible with contexts; a reduction ordering, a well-founded rewrite ordering; and
a simplification ordering, a reduction ordering with the subterm property. ■

The lexicographic extension Âlex on tuples of some strict ordering is defined
by (t1, . . . , tn) Âlex (s1, . . . , sn) if ti Â si for some i ∈ {1, . . . ,n}, and t j = s j for every
1 ≤ j ≤ i .

The multiset extension Âmul of a partial ordering Â on a set S is defined as
follows: M Âmul N if M 6= N and for every x such that N (x) > M(x), there exists
some y such that M(y) > N (y) and y Â x. Given a multiset, any smaller multiset
can be obtained by (repeatedly) replacing an element by zero or more occurrences
of smaller elements. If an ordering Â is total (respectively, well-founded), so is its
multiset extension [DM79].

Let Σ= (S ,Ω) be a signature, where S is a set of sorts, Ω a set of operator symbols,DEFINITION 2.15 Ï
Lexicographic
Path Ordering

and X the underlying set of variables.
Let Â be a total strict well-founded ordering on operator symbols in Ω, called

precedence. Lexicographic path ordering Âlpo, LPO for short, is defined as fol-
lows: if t , s are terms in TΩ(X), then t Âlpo s if

1. s = x ∈X , x ∈ var(t), and t 6= s, or

2. t = f (t1, . . . , tn), s = g (s1, . . . , sm), and

a) ti ºlpo s for some i ∈ {1, . . . ,n}, or

b) f Â g and t ºlpo s j for every j ∈ {1, . . . ,m}, or

c) f = g , t ºlpo s j for every j ∈ {1, . . . ,m}, and (t1, . . . , tn) (Âlpo)lex (s1, . . . , sm).

■

The LPO is a reduction ordering. Moreover, if the precedence Â is total on Ω, then
LPO Âlpo augmenting Â is total on the set of ground terms TΩ. Ambiguously, we
will write Â instead of Âlpo.

A binary relation → on terms is called a rewrite relation if it is a rewrite ordering.DEFINITION 2.16 Ï
Rewrite Relation ■

Thus, expanding the notion of a rewrite relation → it can be defined as follows:
s → t implies u[sσ]p → u[tσ]p, for any terms s, t , and u, position p ∈ ρ(u), and
substitution σ.

Rewrite relations are denoted by arrows, possibly under- and/or overscripted.
If → is a rewrite relation, we denote by →0 identity; by ← its inverse; by →+ its
transitive closure; by →∗ its transitive-reflexive closure. We write ↔, ↔+, and ↔∗

for symmetric, transitive symmetric, and reflexive transitive symmetric closure,
respectively.

Two terms t1 and t2 are called joinable if there exists a term s, to which t1 and
t2 rewrite: t1 →∗ s ←∗ t2; this is denoted by t1 ↓ t2. A rewrite relation → is called

– confluent if t1 ←∗ s →∗ t2 implies t1 ↓ t2;

– terminating (or well-founded) if there is no infinite sequence t1 → t2 → . . .;

2.5. Clauses 21

– Church-Rosser if t1 ↔∗ t2 implies t1 ↓ t2.

A term that cannot be rewritten is said to be in normal form or irreducible (with
respect to →). A normal form of s is any irreducible term t for which s →∗ t .

Let Â be a strict ordering on terms. A rewrite rule is an equation l ≈ r between Î DEFINITION 2.17
Rewrite Rules
Term Rewrite System

two terms l and r , such that l Â r , denoted by l → r . A term rewrite system R, or
a TRS for short, is a set of rewrite rules (with respect to the term ordering Â). ■

Given a rewrite system R, the smallest rewrite relation containing R is denoted
by →R . The rewrite relation →R is called the rewrite relation induced by R. Thus,
we write s →R t to indicate that there exist a rewrite rule (l ≈ r) ∈ R, position
p ∈ ρ(s), and matcher σ, such that the subterm of s at p equals lσ, and replacing
lσ in s yields t :

s →R t
def⇐⇒ s/p = lσ and t = s[rσ]p .

We write t = s↓R to denote that t is a normal form of s with respect to the rewrite
relation →R . Notions →0

R , →+
R , →∗

R , etc., are defined accordingly.

A term rewrite system R is called convergent if the rewrite relation →R is confluent Î DEFINITION 2.18
Convergent TRSand terminating. ■

A rewrite relation → is Church-Rosser iff confluent. Convergent rewrite systems Î LEMMA 2.19
[BN98]define unique normal forms.

A rewrite system R terminates iff there exists a reduction ordering Â such that l Â r , Î THEOREM 2.20
[BN98]for each rule l → r in R.

A rewrite system R is called right-reduced if for all rewrite rules l → r in R,
the term r is irreducible by R. A rewrite system R is called left-reduced if for all
rewrite rules l → r in R, the term l is irreducible by R \ {l → r }. A rewrite system is
called reduced if it is left- and right-reduced.

Left-reduced terminating rewrite systems are convergent. Î THEOREM 2.21
[Hue80]

2.5 Clauses

A clause C over a signature Σ is a pair of multisets of Σ-atoms, written Î DEFINITION 2.22
Clause

C
def
= Γ→∆.

The multiset Γ is called the antecedent; the multiset Ω, the succedent. ■

Logically, the atoms in Γ denote negative literals while the atoms in ∆ denote the
positive literals in the clause. All variables of a clause are implicitly universally
quantified. Semantically, a clause

C = {A1, . . . , Am} → {B1, . . . ,Bn}

represents an implication

A1 ∧ . . .∧ Am → B1 ∨ . . .∨Bn ,

22 Preliminaries

or equivalently, a disjunction

¬A1 ∨ . . .∨¬Am ∨B1 ∨ . . .∨Bn .

Sometimes, we interpret clauses as multisets of their literals; thus, given a clause

C = {A1, . . . , Am} → {B1, . . . ,Bn},

we may write

C = {L1, . . . ,Lm+n},

where

{L1, . . . ,Lm+n} = {¬A1, . . . ,¬Am ,B1, . . . ,Bn}.

The class of all clauses over a signature Σ is denoted by C lΣ.
We usually write Γ1,Γ2 instead of Γ1∪Γ2; Γ, A instead of Γ∪{A}; and A1, . . . , Am →

B1, . . . ,Bn instead of {A1, . . . , Am} → {B1, . . . ,Bn}.
The length of a clause C = Γ→ ∆ is the sum of the numbers of atoms in the

antecedent and succedent of C , denoted by |C |, i.e. |C | def
= |Γ|+|∆|. The depth of C

is the maximal depth of its literals: depth(C)
def
= max{depth(L) |L ∈C }.

A term t is said to occur in a clause C , if there is a literal L = (l ≈ r) in C such
that t is a subterm of l or r . A term t is said to occur in a clause set N , if there is
a clause C in N such that t occurs in C .

The clause C is called

– negative (positive) if it contains only negative (positive) literals;

– Horn if its succedent contains at most one atom, i.e. |∆| ≤ 1;

– unit if it consists of a single literal, i.e. |C | = 1;

– empty if it does not contain a literal, i.e. |C | = 0; we write ä to denote an
empty clause (which can be interpreted as an empty disjunction or an im-
plication >→⊥).

In Section 3.2, we also introduce a special type of clauses, called abstracted, Defi-
nition 3.20, which are specific for the hierarchic superposition calculus.

The result of an application of a substitution σ to a clause C = {L1, . . . ,Ln} is
the clause Cσ obtained from C by applying σ to every literal Li of C , thus Cσ =
{L1σ, . . . ,Lnσ}. The set of all ground instances of a clause C is denoted by gi(C).
The set gi(N) of all ground instances of a clause set N is the union of sets of all
ground instances of every clause in N , i.e. gi(N) =⋃

C∈N gi(C).

A selection function Sel assigns to each clause C = Γ→ ∆ a multiset of atoms inDEFINITION 2.23 Ï
Selection Function the antecedent Γ of the clause. The atoms (and corresponding negative literals in

C) returned by Sel(C) are called selected in the clause C . ■

A selection function Sel may select atoms arbitrarily irregardless of ordering1 re-
strictions. Selection functions are aimed to reduce the search space of a calculus.
The strategy, when all atoms are selected in the antecedent of a clause, is called
eager selection. Eager selection is an instance of a positive superposition strat-
egy, which is called this way because in this strategy only positive clauses can be

1Orderings are introduced in Section 2.4.

2.6. Semantics. Homomorphisms. Specifications 23

superposed into other clauses. In Chapter 4, we shall exploit eager selection as it
allows to keep the length of Horn abstracted clauses bounded.

Any ordering on terms can be extended to clauses in the following way. We
consider clauses as multisets of occurrences of equations.

An occurrence of an equation s ≈ t in the antecedent is identified with the multiset Î DEFINITION 2.24
Equation Occurrence{s, s, t , t }, the occurrence of an equation in the succedent is identified with the

multiset {s, t }. ■

Now we overload Â on literal occurrences to be the multiset extension of Â on
terms, and Â on clauses to be the multiset extension of Â on literal occurrences.
Observe that an occurrence of an equation s ≈ t in the antecedent is strictly greater
than an occurrence of s ≈ t in the succedent.

An antecedent or succedent occurrence of an equation s ≈ t is maximal/minimal Î DEFINITION 2.25
(Strictly) Maximal/Minimal
Equation Occurrences/Literals

in a clause C if there is no occurrence of an equation in C that is strictly greater/s-
maller then the occurrence s ≈ t with respect to Â. An antecedent or succedent
occurrence of an equation s ≈ t is strictly maximal/minimal in a clause C if there
is no occurrence of an equation C that is greater/smaller then or equal to the oc-
currence s ≈ t with respect to the ordering Â. A literal is (strictly) maximal/mini-
mal if the corresponding equation occurrence is (strictly) maximal/minimal.

■

2.6 Semantics. Homomorphisms. Specifications

Let Σ= (S ,Ω) be a signature with a set of sorts S and operator set Ω. A Σ-algebra Î DEFINITION 2.26
AlgebraA, also called Σ-interpretation, is a mapping that assigns

– a non-empty carrier setA(S) to every sort S ∈S , such thatA(S1)∩A(S2) =;
for any distinct sorts S1,S2 ∈S ;

– a total function A(f) : A(S1)× ·· · ×A(Sn) → A(S) to every operator f ∈ Ω,
where f : S1 ×·· ·×Sn → S.

The set UA =A(S) =⋃
S∈SA(S) is called the universe of A. ■

Very often, if the signature Σ is irrelevant or clear from the context, we omit the
prefix “Σ-” and use the term “algebra” (“interpretation”) when referring to a Σ-
algebra (Σ-interpretation). Also, we write fA and SA in place of A(f) and A(S).
The class of all Σ-algebras is denoted by AΣ.

A (variable) assignment for an algebra A is a function ν : X → UA such that
ν(x) ∈ SA for every variable x ∈X , where S = sort(x). A modification ν[x 7→ e] of
an assignment ν at a variable x, where e ∈ SA and S = sort(x), is the assignment
defined as following:

ν[x 7→ e](y)
def
=

{
e, if y = x
ν(y), otherwise.

Informally speaking, the assignment ν[x 7→ e] is identical to ν at every variable
except the x, which is mapped by ν[x 7→ e] to e.

The homomorphic extension A(ν) of ν onto terms is a mapping TΩ(X) →UA
defined as

24 Preliminaries

– A(ν)(x) = ν(x), where x ∈X ,

– A(ν)(f (t1, . . . , tn)) = fA(A(ν)(t1), . . . ,A(ν)(tn)), where f ∈Ω.

Given a term t ∈ TΩ(X), the valueA(ν)(t) is called the interpretation of t underA
and ν. If the term t is ground, the value A(ν)(t) does not depend on a particular
choice of ν, for which reason the interpretation of t under A is denoted by A(t).
Sometimes, for A(ν)(t) and A(t) we write tA(ν) and tA, respectively.

An algebra A is called term-generated, if every element e of the universe UA
of A equals the interpretation tA of some ground term t . Note, that for an ar-
bitrary signature there might be no term-generated algebra; for instance, given a
signature Σ = (S = {S1,S2},Ω = { f : S1 → S2, g : S2 → S1}), no Σ-algebra is term-
generated. In this work we consider only such signatures, for which there exists at
least one term-generated algebra.

An algebraA and an assignment ν satisfy a formula F ∈ FΩ, denoted byA,ν |=
F , if

– F =>, or

– F = s ≈ t and A(ν)(s) =A(ν)(t), where s, t ∈ TΩ(X), or

– F =¬G and A,ν 6|=G , where G ∈ FΩ, or

– F = F1 ∨F2 and A,ν |= F1 or A,ν |= F2, where F1,F2 ∈ FΩ, or

– F = F1 ∧F2 and A,ν |= F1 and A,ν |= F2, where F1,F2 ∈ FΩ, or

– F =∃x.G and A,ν[x 7→ e] |=G for some e ∈ SA, where S= sort(x), or

– F =∀x.G and A,ν[x 7→ e] |=G for every e ∈ SA, where S= sort(x).

A formula F is called:

– satisfiable by A under ν (or valid in A under ν) if A,ν |= F ; in this case, F
is also called consistent;

– satisfiable by A if A,ν |= F for some assignment ν;

– valid in A, written A |= F , if A,ν |= F for any assignment ν; in this case, A
is called a model of F ;

– satisfiable if A,ν |= F for some algebra A and some assignment ν;

– unsatisfiable if A,ν 6|= F for any algebra A and any assignment ν; in this
case, F is also called inconsistent; we write ⊥ to denote a contradiction, an
unsatisfiable formula like F ∧¬F or an empty disjunction.

– valid, written |= F , if A,ν |= F for any algebra A and any assignment ν; in
this case, F is also called tautology.

Note, that if F is a sentence, that is a formula not containing a free variable, it is
valid in A if and only if it is satisfiable by A.

Given two formulae F and G , we say F entails G , or G is a consequence of F ,
written F |=G , if for any algebra A and assignment ν, such that A,ν |= F , it holds
that A,ν |= G . The formulae F and G are called equivalent, written F |=| G , if
F |=G and G |= F . We call two formulae F and G equisatisfiable, if F is satisfiable
iff G is satisfiable (not necessarily in the same models). Note that if F and G are
equivalent then they are equisatisfiable, but not other way round. The notions

2.6. Semantics. Homomorphisms. Specifications 25

of “entailment”, “equivalence”, and “equisatisfiability” are naturally extended to
sets of formulae, that are treated as conjunctions of single formulae. Thus, given
formula sets N and M , we say that N entails M , written N |= M , if for any algebra
A and assignment ν, such that A,ν |= F for every F ∈ N , it follows that A,ν |= G
for every G ∈ M . The sets N and M are equivalent, written N |=| M , if N |= M
and M |= N . Given an arbitrary formula F and formula set N , we write N |= F to
denote N |= {F }; analogously, F |= N stands for {F } |= N .

Since clauses are implicitly universally quantified disjunctions of quantifier-
free literals, a clause C is satisfiable by an algebra A, if for the algebra A and
every assignment ν there is a literal L in C , which is satisfied by A under ν. More
formally, a clause C defined as

C = A1, . . . , Am → B1, . . . ,Bn

=¬A1 ∨ . . .∨¬Am ∨B1 ∨ . . .∨Bn ,

is satisfiable by an algebra A, written A |=C , if and only if for any assignment ν it
holds that A,ν 6|= Ai or A,ν |= B j , for some i ∈ {1, . . . ,m} or j ∈ {1, . . . ,n}. Note, that
if C = {L1, . . . ,Lk } is a ground clause, where every Li is a ground literal, then A |=C
if and only if there is a literal L j in C such thatA |= L j . A clause set N is satisfiable
iff all clauses C ∈ N are satisfiable by the same algebra A. Accordingly, if N and M
are two clause sets, N |= M iff every model A of N is also a model of M .

A Herbrand interpretation I is a Σ-algebra, whose universe UI equals a quotient Î DEFINITION 2.27
Herbrand InterpretationTΩ/∼, for some equivalence relation ∼, and which interprets every ground term

over Σ by its equivalence class:

I Herbrand
def⇐⇒ (i) UI = TΩ/∼, and

(ii) fI ([t1]∼, . . . , [tn]∼) = [f (t1, . . . , tn)]∼, for all f ∈Ω.

■

Since a Herbrand interpretation I is uniquely defined by its universe UI = TΩ/∼,
we will often write TΩ/∼ instead of I . If the equivalence ∼ equals ∼E , the smallest
congruence containing a set of equations E , we simply write TΩ/E for the quotient
TΩ/∼E . Evidently, any Herbrand interpretation is term-generated.

The following theorem by Birkhoff states the equivalence between syntactic
and semantic consequences.

Let X be a countably infinite set of variables, E a set of equations. The following Î THEOREM 2.28
Birkhoff’s Theoremproperties are equivalent for all terms l ,r ∈ TΩ(X):

(i) l ↔∗
E r ,

(ii) E |= ∀~x.(l ≈ r),

(iii) TΩ(X)/E |= ∀~x.(l ≈ r),

where ~x = var(l)∪var(r).

From Birkhoff’s Theorem and Theorem 2.19 it follows that a convergent term rewrite
system R entails an equation l ≈ r if and only if the normal forms of the terms
with respect to R are equal:

R |= ∀~x.(l ≈ r) ⇔ l↓R= r↓R .

26 Preliminaries

Let Σ= (S ,Ω) be a signature with sort and operator sets S and Ω, respectively, NDEFINITION 2.29 Ï
Construction of candidate

interpretations [BG94]
Rewrite System RN

Candidate Interpretation IN

a set of ground Σ-clauses and Â a reduction ordering total on ground Σ-terms.
We inductively define ground rewrite systems EC and RC and Herbrand inter-

pretations IC for all clauses C ∈ N . Assume ED and RD have been defined for all
clauses D ∈ N for which D ≺C , then

RC = ⋃
D∈N
D≺C

ED and IC = TΩ/RC ,

where TΩ/RC is a quotient for TΩ by the smallest congruence containing RC . More-
over, if C = Γ→∆, s ≈ t , where:

(i) s ≈ t is strictly maximal in C ,

(ii) s Â t ,

(iii) s irreducible by RC , and

(iv) IC 6|= Γ→∆,

then EC = {s ≈ t }. In this case, C is said to produce the equation (rewrite rule)
s ≈ t , and called productive. Otherwise EC =;.

Finally, we define

RN = ⋃
C∈N

EC and IN = TΩ/RN ,

where TΩ/RN is a quotient for TΩ by the smallest congruence containing RN . The
Herbrand interpretation IN is called a candidate interpretation. ■

The term rewrite system RN is constructed in such a way that it is left-reduced
and terminating, hence convergent. Consequently, if u ≈ v is a ground equation
over Σ, then IN entails the equation iff the terms u and v are joinable or, equiva-
lently, have the same normal form in RN :

IN |= u ≈ v ⇔ u ↓RN v ⇔ u↓RN = v↓RN .

The same holds for RC and IC .

Let Σ= (S ,Ω) and Σ′ = (S ′,Ω′) be two signatures such that Σ⊆ Σ′, that is: S ⊆ S ′,DEFINITION 2.30 Ï
Homomorphism

Homomorphic Algebras
Ω⊆Ω′. Let A be a Σ-algebra, and A′ a Σ′-algebra.

The algebraA is called homomorphic toA′, if there exists a mapping h : UA→
UA′ , such that

(i) h
(
SA

)⊆ SA′ , for every sort S ∈S ; and

(ii) h
(

fA(e1, . . . ,en)
) = fA′

(
h(e1), . . . ,h(en)

)
, for every operator f : S1 × ·· ·×Sn → S

in Ω, where ei ∈ (Si)A for every i ∈ {1, . . . ,n}.

The mapping h is called a homomorphism from A to A′. ■

Let Σ= (S ,Ω) and Σ′ = (S ′,Ω′) be two signatures such that Σ⊆ Σ′, that is: S ⊆ S ′,DEFINITION 2.31 Ï
Monomorphism

Monomorphic Algebras
Ω⊆Ω′. Let A be a Σ-algebra, and A′ a Σ′-algebra.

The algebraA is called monomorphic toA′, if there exists a mapping h : UA→
UA′ , such that

(i) h is a homomorphism from A to A′; and

(ii) h is injective, that is: ∀e1,e2 ∈UA : e1 6= e2 ⇒ h(e1) 6= h(e2).

2.6. Semantics. Homomorphisms. Specifications 27

The mapping h is called a monomorphism from A to A′. ■

From the two definitions above it follows that a homomorphism is a structure-
preserving mapping, a monomorphism preserves, in addition, distinctness.

If h is a homomorphism from A to A′, and there exists an inverse mapping
h−1 : UA′ → UA that is a homomorphism from A′ to A, then h−1 is called an
inverse homomorphism from A′ to A.

Let Σ= (S ,Ω) and Σ′ = (S ′,Ω′) be two signatures such that Σ⊆ Σ′, that is: S ⊆ S ′, Î DEFINITION 2.32
Isomorphism
Isomorphic Algebras

Ω⊆Ω′. Let A be a Σ-algebra, and A′ a Σ′-algebra.
A homomorphism h from A to A′ is called isomorphism if there exists an in-

verse homomorphism h−1 fromA′ toA. AlgebrasA andA′ are called isomorphic
if there exists an isomorphism from one to another. ■

In other words, A and A′ are isomorphic if there exists a bijective mapping
h : UA→UA′ , such that h is a homomorphism from A to A′, and its inverse h−1

is a homomorphism from A′ to A.

A specification is a tuple Î DEFINITION 2.33
Specification

Sp
def
= (Σ,C),

where Σ is a signature and C a non-empty class of term-generated Σ-algebras. ■

The algebras in C are called models of the specification Sp. If C is the class of all
term-generated Σ-models of a certain set of Σ-formulae N , then we write (Σ, N)
instead of (Σ,C).

The specification Sp is compact if every set of formulae over Σ is satisfiable in
C whenever each of its finite subsets is satisfiable in C , or equivalently, if every
set of formulae over Σ is unsatisfiable in C whenever some of its finite subsets is
unsatisfiable in C .

C
H
A
P
T
ER 3

Hierarchic Refutational Theorem
Proving

3.1
Refutational Theorem

Proving

3.2
Hierarchic Specification

3.3
SUP(T) Calculus

3.4
Completeness of SUP(T)

3.5
Local Sufficient
Completeness

3.6
Hierarchic Reduction

Rules

In this chapter we introduce the hi-
erarchic superposition calculus SUP(T)
which enables the hierarchic combina-
tion of an abstract theory T with first-
order logic. The main goal of the chap-
ter is to show that SUP(T) is a com-
plete calculus. Also, we define and
investigate the notion of a local suffi-
cient completeness criterion and prove
that SUP(T) is complete on locally suffi-
ciently complete clause sets. The chap-
ter ends with a presentation of two ba-
sic effective hierarchic reduction rules.

29

30 Hierarchic Refutational Theorem Proving

3.1 Refutational Theorem Proving

3.1.1 Inference, Reduction, and Splitting Rules

The technical part, “mechanics”, of automated deduction is realized by means of
special rules, called deduction rules, that manipulate a given formula set N by
adding to or deleting formulae from N . The rules are described in a fraction-like
manner. For a rule R, the formulae above the fraction bar are called the premises
of R, denoted by prem(R), and the formulae below the bar the conclusions of R,
denoted by concl(R). There are three basic types of rules:

– inference rules

I F1 . . .Fn

G

that add the conclusion G to the current formulae set N yielding a formula
set N ′ = N ∪ {G}, provided F1, . . . ,Fn ∈ N ;

– reduction rules

R F1 . . .Fn

G1 . . .Gm

that replace in N the premises F1 . . .Fn by the conclusions G1 . . .Gm yielding
a formula set N ′ = N \ {F1, . . . ,Fn}∪ {G1, . . . ,Gm};

– and splitting rules

S F

G
∣∣ G ′

that replace the whole set N by disjunction of two sets N1 = N ∪ {G} and
N2 = N ∪ {G ′}, provided F ∈ N .

Deduction rules are usually constrained by a list of conditions that have to be
satisfied in order to apply the rules and help to reduce the search space. An appli-
cation of an inference, reduction, or splitting rule is called inference, reduction,
or splitting, respectively.

Given a formula set N , inference rules are aimed to derive new formulae (the
conclusion G) from already existing ones (the premises F1 . . .Fn) in N , whereas re-
duction rules are devoted to “simplify” N by replacing formulae in it (the premises
F1 . . .Fn) by some “simpler” ones (the conclusions G1 . . .Gm). As a special case, if
the number of conclusions of a reduction rule is smaller than the number of its
premises, the rule can be actually used to delete formulae from N , reducing thus
the size of N . Splitting rules have a dual nature: on one hand, they replace the
current formula set N by two sets and extend them by new formulae G and G ′,
respectively, serving this way like an inference rule; on the other hand, the new
formulae G and G ′ are “simpler” then the premise F and usually subsume F , so
that F can be deleted right after the splitting rule application, which yields for-
mula sets N ′

1 = N1 \ {F } and N ′
2 = N2 \ {F }, respectively, reducing thus the original

problem to “simpler” subproblems, and serving this way like a reduction rule. The
aim of splitting is to split a clause set into two simpler independent clause sets,
such that they can be considered separately from each other.

3.1. Refutational Theorem Proving 31

A set of inference rules is called an inference system. A set of deduction rules
is called a deduction system. An inference/reduction rule is sound (with respect
to an entailment relation |=) if it yields a formula set N ′ entailed (with respect
to |=) by the original set N , i.e. N |= N ′. A splitting rule is sound if the disjunc-
tion of the resulting formula sets N1 and N2 is entailed by the original set N ,
i.e. N |= N1 ∨ N2. A deduction system is called complete if every formula G en-
tailed by a given formula set N is derivable from N by a sequence of application
of the deduction system’s rules. A deduction system is called refutationally com-
plete, if a contradiction ⊥ is derivable by the deduction system’s rules from any
unsatisfiable formula set. A contradiction might be any unsatisfiable formula, for
instance P ∧¬P . In this work we stick to the clausal fragment (we consider only
formula sets that consist of clauses), so the only contradictory formula in our case
is the empty clause ä.

Most modern refutational theorem proving techniques exhaustively apply in-
ference rules to a given formula set N until a closed set N∞, called saturated1, is
reached, for which conclusion of every inference possible on N∞ is already con-
tained in the set N∞. And if the inference system used is refutationally complete,
the original set N is unsatisfiable if and only if the saturated set N∞ contains the
empty clause ä. But in practice saturated sets tend to be very large, very often
even infinite (actually, saturated sets are finite only for a few classes of formu-
lae), nonetheless most of formulae in a saturated set are not needed for deriving
a contradiction. For this reason, in order to obtain a practically useful result (par-
ticularly, to ensure termination) it is critical to develop methods for determining
redundant formulae and eliminating inferences with redundant premises or pro-
ducing such superfluous conclusions, and, therefore, to introduce a weaker no-
tion of saturation.

In the subsequent sections, we formally describe the notion of a “redundancy
criterion” — an abstract apparatus aimed to define redundancy for a given class
of formulae and inference system. Thereafter, based on the introduced notion of
redundancy criterion we give definitions of a derivation relation, saturation, the-
orem proving calculus, and approximation of theorem proving calculus. In Sec-
tions 3.3, 3.4.2, 3.4.4 we instantiate this formalisation for the standard ground su-
perposition calculus and hierarchic superposition calculus; the main purpose of
this instantiation is showing refutational completeness of the hierarchic calculus.

3.1.2 Redundancy Criterion

A redundancy criterion usually consists of two parts: a redundant formula cri-
terion RF , and a redundant inference criterion RI . Given a formula set N , the
set RF (N) contains all formulae, which are redundant for N (for instance, formu-
lae subsumed by ones in N , or tautologies), and can be therefore deleted from
N (if certain conditions are satisfied). Likewise, the set RI (N) contains all re-
dundant inferences, which are not needed to be performed (under certain condi-
tions). Note, that RF (N) may also contain formulae which do not appear in N ,
and RI (N) may contain inferences with premises beyond N . Here we give a def-
inition of an abstract redundancy criterion, which we later instantiate with con-

1Here we discuss the topic of saturation informally — for a formal definition of a saturated set see
Section 3.1.3

32 Hierarchic Refutational Theorem Proving

crete criteria for standard ground and hierarchic superposition calculi. The usage
of an abstract notion of a redundancy criterion benefits from establishing proper-
ties which hold generally for all derivations regardless of a particular choice of an
inference system or a redundancy criterion. For a specific criterion, it has to be
shown to comply to the abstract notion, so that the general derivation properties
could be exploited without proving them to hold in that particular context.

There are only few works which abstractly define the notion of a redundancy
criterion [BGW94, BG01, Wal02] differring from each other in minor aspects. Next
we give a definition of the abstract notion which better suits the SUP(T) frame-
work (the same definition appears also in [Wal02]).

A pair R= (RI ,RF) is called a redundancy criterion (with respect to an inferenceDEFINITION 3.1 Ï
Redundancy Criterion system I and a consequence relation |=), if the following conditions are satisfied

for all sets of formulae N and M :

(i) N \RF (N) |=RF (N);

(ii) if N ⊆ M , then RF (N) ⊆RF (M) and RI (N) ⊆RI (M);

(iii) if I ∈ I(M) and concl(I) ∈ N ∪RF (N), then I ∈RI (N);

(iv) if M ⊆RF (N), then RF (N) ⊆RF (N \ M) and RI (N) ⊆RI (N \ M).

Inferences in RI (N) and formulae in RF (N) are said to be redundant for (with
respect to) N . ■
The conditions of a redundancy criterion R have the following meaning:

– condition (i) says that, given a formulae set N , the formulae redundant for
N logically follow from the non-redundant subset N \RF (N) of N ;

– the second condition expresses the monotonicity property ofRwith respect
to the set inclusion;

– according to condition (iii), all inferences with a conclusion that is redun-
dant for N or already contained in N are redundant;

– and the last condition states that the formulae/inferences redundant for N
remain so if redundant formulae (all or some of them) are deleted from N .

Very often we shall write just R instead of RF and RI , whenever the matter
of the context’s discussion can be applied for both RF and RI ; for instance, the
monotonicity property of R (condition (ii) in Definition 3.1) can be alternatively
expressed as ‘N ⊆ M implies R(N) ⊆R(M)’.

Note that, conditions (i) and (iv) of Definition 3.1 imply that if M ⊆ RF (N),
then R(N) =R(N \ M), for any formula sets M and N . Indeed, N \ M ⊆ N , hence,
by condition (ii),R(N \M) ⊆R(N), which together with condition (iv) givesR(N) =
R(N \ M).

3.1.3 Derivations. Saturation and Refutation

A set of formulae N is called saturated (with respect to an inference system I andDEFINITION 3.2 Ï
Saturated Set reduction criterion R), if all inferences with non-redundant premises from N are

redundant:

N saturated
def⇐⇒ I(N \RF (N)) ⊆RI (N).

3.1. Refutational Theorem Proving 33

■

Alternatively, the set N can be called (I ,R)-saturated, or just saturated, if I and
R are clear from the context.

An inference system I , a redundancy criterion R, and a consequence relation
|= define a derivation relation ` which determines all possible formula set deriv-
able from a given formulae set N .

A binary relation ` on sets of formulae is derivation relation (with respect to an Î DEFINITION 3.3
Derivation Relationinference system I , redundancy criterion R, and entailment relation |=), if the

following properties are satisfied for all sets of formulae N and M :

(i) if I ∈ I(N), then N ` N ∪ {concl(I)}.

(ii) if N ` M , then N \ M ⊆RF (M);

(iii) if N ` M , then N |= M ;

■

Condition (i) enables adding to the formula set N the conclusion of any in-
ference I with premises from N , whereas condition (ii) enables deleting from N
formulae which are redundant for N . Condition (iii) reflects soundness of the two
above actions.

Next we prove that if M is derived from N , then M is equivalent to N . First we
show that N is a logical consequence of M .

Let N and M be arbitrary formulae sets, then N ` M implies M |= N . Î LEMMA 3.4

Assume N ` M . We split the set N into two parts N1 and N2 defined as follows: Î PROOF

N1 = N ∩M ,
N2 = N \ M .

Evidently, N = N1 ∪ N2. We are to show that M |= N1 and M |= N2. Obviously,
N1 ⊆ M , hence M |= N1. On other hand,

N \ M ⊆ RF (M) // by cond. (ii) of Def. 3.3
⇒ RF (M) |= N2 // as N2 = N \ M ,
⇒ M \RF (M) |= N2 // as M \RF (M) |=RF (M),

by cond. (i) of Def. 3.1
⇒ M |= N2

Thus, M |= N1 and M |= N2, hence M |= N1 ∪N2 = N . ■

Let N and M be arbitrary formulae sets, then N ` M implies M |=| N . Î LEMMA 3.5

By condition (iii) of Definition 3.3 and Lemma 3.4. ■ Î PROOF

A (finite or countably infinite) sequence Î DEFINITION 3.6
DerivationN0 ` N1 ` N2 ` . . .

is called an (I ,R)-derivation (or simply derivation, if I and R are clear from the
context). ■

34 Hierarchic Refutational Theorem Proving

Let N0 ` N1 ` . . . be a derivation. We write N∗ to denote the set of all derivedDEFINITION 3.7 Ï
Derivation Closure
Derivation Limit

Persisting formulae

formulae in the derivation:

N∗ def
=

⋃
i Ni

and call it the closure of the derivation. We write N∞ to denote the set of all
persisting formulae in the derivation:

N∞
def
=

⋃
i

⋂
j≥i N j

and call it the limit of the derivation. ■

A derivation N0 ` N1 ` . . . is called fair, if every inference with non-redundantDEFINITION 3.8 Ï
Fair Derivation premises from the limit of the derivation is redundant with respect to some Ni :

N0 ` N1 ` . . . fair
def⇐⇒ I(N∞ \RF (N∞)) ⊆ ⋃

i RI (Ni).

■

The main feature of a fair derivation is that its limit is always saturated. Next,
we formally prove this property, as in the literature there are different definitions
of a fair derivation, and the combination of definitions of a redundancy criterion,
a fair derivation and a saturated set presented here does not appear anywhere else
including the original work by Bachmair, Ganzinger, and Waldmann on hierarchic
superposition [BGW94].

Let N0 ` N1 ` . . . be a derivation. Then:LEMMA 3.9 Ï
(i) R(N∗) =R(N∞);

(ii) if N0 ` N1 ` . . . is fair, then N∞ is saturated.

Statement (i). On one hand, N∞ ⊆ N∗, thereforeR(N∞) ⊆R(N∗), by Condition (ii)PROOF Ï
of Definition 3.1. On the other hand, the set N∗\N∞ consists of all non-persisting
formulae in N∗, i.e. for every C ∈ N∗ \ N∞, there exists an i ≥ 0 such that C ∈
Ni \ Ni+1. Consider the set Ni \ Ni+1, for an arbitrary i ≥ 0:

Ni \ Ni+1 ⊆ RF (Ni+1) // as Ni ` Ni+1

and by cond. (ii) of Def. 3.3
⊆ RF (N∗) // as Ni+1 ⊆ N∗,

and by cond. (ii) of Def. 3.1
⇒ N∗ \ N∞ ⊆ RF (N∗)
⇒ R(N∗) ⊆ R(N∗ \ (N∗ \ N∞)) // by cond. (iv) of Def. 3.1

= R(N∞) // as N∞ ⊆ N∗

Thus, R(N∞) ⊆R(N∗) and R(N∗) ⊆R(N∞), consequently R(N∞) =R(N∗).
Statement (ii). Let I ∈ I(N∞ \RF (N∞)) be an arbitrary inference with non-

redundant premises from the limit of the derivation, then

I ∈ RI (Ni) // by Def. 3.8,
as N0 ` N1 ` . . . fair,
for some i ≥ 0

⊆ RI (N∗) // as Ni ⊆ N∗,
and by cond. (ii) of Def. 3.1

⊆ RI (N∞) // by (i) of Lemma 3.9
⇒ I(N∞ \RF (N∞)) ⊆ RI (N∞)

3.1. Refutational Theorem Proving 35

From Definition 3.2, we conclude that N∞ is saturated. ■

Let `1 and `2 be two derivation relations defined with respect to the same entail- Î LEMMA 3.10
ment relation |=, inference systems I and I ′, and redundancy criteria R and R′,
respectively. If N `1 N1 `1 N2 `1 . . . and N `2 N ′

1 `2 N ′
2 `2 . . . are two derivations,

and N∞ and N ′∞ are their respective limits, then N∞ |=| N ′∞.

By soundness of a derivation relation (condition (iii) of Definition 3.3) we know Î PROOF
N |= N∞. On other hand,

N \ N∞ ⊆ N∗ \ N∞
⊆ RF (N∗) // as in the proof of Lemma 3.9(i)
= RF (N∞) // by Lemma 3.9(i)

⇒ N∞ |= N

Therefore, N∞ |=| N . Analogously, we obtain N ′∞ |=| N . Consequently, N∞ |=| N ′∞.
■

Note that from Lemma 3.5 it inductively follows that for two derivations N `1

N1 `1 N2 `1 . . . and N `2 N ′
1 `2 N ′

2 `2 . . ., where `1 and `2 are as defined in
Lemma 3.10, it also holds that Ni |=| N ′

j , for any two formula sets Ni and N ′
j from

the respective derivations, i , j ≥ 1.

A triple (I ,R, `) consisting of an inference system I , a redundancy criterion R, Î DEFINITION 3.11
Theorem Proving
Calculus

and a derivation relation ` is called a theorem proving calculus, or simply calcu-
lus. We often write (I ,R) instead of (I ,R, `) if the matter of discussion does not
depend on the particular choice of a derivation relation. ■

To any theorem proving calculus (I ,R), there always correspond (i) a class N
of formula sets, saturating which the calculus is aimed at, and (ii) the underly-
ing entailment relation |=, with respect to which the redundancy criterion R is
defined and regarding to which the inference system I is sound.

A theorem proving calculus (I ,R) is called refutationally complete (for the un- Î DEFINITION 3.12
Refutational Completenessderlying formula set class N), if for every saturated formula set N ∈N it holds,

that if N is unsatisfiable (with respect to the underlying entailment relation |=)
then the contradiction ä is contained in N . ■

3.1.4 Approximation of Theorem Proving Calculi

To show refutational completeness of hierarchic superposition calculus SUP(T)
for clauses over a combination of first-order logic with a background theory T,
we shall basically follow a schema exploited to obtain a completeness result for
the case of the standard superposition for general first-order clauses, namely – by
lifting the completeness result of the standard superposition for ground clauses.
To this end we introduce a concept of approximation between theorem proving
calculi [BGW94] – an abstract technique that allows to establish the complete-
ness property for a given calculus by relating it to another calculus, that is a-priori
known to be refutationally complete.

36 Hierarchic Refutational Theorem Proving

Let (I1,R1) and (I2,R2) be two theorem proving calculi with respective underly-DEFINITION 3.13 Ï
Calculi Approximation ing formula set classes N1 and N2 and entailment relations |=1 and |=2. We say

that (I1,R1) approximates (I2,R2) via a mapping α from N1 to N2, if the follow-
ing conditions are satisfied for every formula set N ∈N1:

(i) if N is (I1,R1)-saturated, then α(N) is (I2,R2)-saturated;

(ii) if N |=1 ⊥1, then α(N) |=2 ⊥2;

(iii) if ⊥2 ∈α(N), then ⊥1 ∈ N ,

where the symbol ⊥i denotes a contradiction for |=i . ■

Let (I1,R1) and (I2,R2) be two theorem proving calculi with respective underlyingTHEOREM 3.14 Ï
Calculi Approximation

Theorem
formula set classes N1 and N2 and entailment relations |=1 and |=2. If (I1,R1)
approximates (I2,R2) via α, and if (I2,R2) is refutationally complete for N2, then
(I1,R1) is refutationally complete for N1.

Let ⊥1 and ⊥2 denote contradictions for |=1 and |=2, respectively. Assume N ∈N1,PROOF Ï
N |=1 ⊥1, and N is saturated with respect to (I1,R1). Then, by condition (i) of Def-
inition 3.13, α(N) is saturated with respect to (I2,R2); moreover, by condition (ii)
of the definition, α(N) |=2 ⊥2. By the assumption, (I2,R2) is refutationally com-
plete for N2, hence ⊥2 ∈ α(N). Consequently, by condition (iii), we have ⊥1 ∈ N .
As N has been picked arbitrarily from N1, we conclude (I1,R1) is refutationally
complete for N1. ■

For many readers, it may be more intuitive to consider the approximation
technique in the contrapositive way. By definition, a refutationally complete cal-
culus has the property that a saturated formula set is unsatisfiable if and only if
it contains a contradictory formula. Equivalently, a saturated set is satisfiable if
and only if it does not contain a contradictory formula. So, in practice (for in-
stance, in the case of standard superposition for general FOL clauses) the model
existence of the saturated (clause) set not containing a contradictory formula (an
empty clause) is a kind of argument exploited for showing refutational complete-
ness. To this end, the conditions in definition of calculi approximation can be
equivalently reformulated as follows: the first condition of Definition 3.13 remains
the same; the second becomes ‘if α(N) is satisfiable with respect to |=2, then N is
satisfiable with respect to |=1’; and the third condition becomes ‘if ⊥1 6∈ N , then
⊥2 6∈α(N)’. The last two conditions are contrapositive reformulations of the orig-
inal ones. Under such formulation, refutational completeness of the approximat-
ing calculus (I1,R1) can be argued as follows. Assume the approximated calculus
(I2,R2) is refutationally complete, and N an arbitrary clause set from N1, which
is saturated with respect to (I1,R1) and does not contain a contradictory formula
⊥1, then:

1. by the first condition, from the saturation of N it follows that α(N) is satu-
rated with respect to (I2,R2);

2. ⊥1 6∈ N implies by the third condition that ⊥2 6∈α(N);

3. from the assumption that (I2,R2) is refutationally complete, and the facts
that α(N) is saturated and does not contain a contradictory formula ⊥2, it
follows that α(N) is satisfiable with respect to |=2;

3.1. Refutational Theorem Proving 37

4. according to the second condition, N satisfiable with respect to |=1.

Thus, any (I1,R1)-saturated set N not containing a contradictory formula is sat-
isfiable, hence (I1,R1) is refutationally complete.

For proving refutational completeness of the hierarchic superposition SUP(T)
we basically stick to the formulation of calculi approximation given in Defini-
tion 3.13; nevertheless, we also informally discuss the completeness property of
SUP(T) from the point of view of the more intuitive contrapositive formulation of
the calculi approximation concept.

38 Hierarchic Refutational Theorem Proving

3.2 Hierarchic Specification

Let Sp = (Σ,C) be a specification consisting of a signature Σ = (S ,Ω) with sortDEFINITION 3.15 Ï
Hierarchic specification

Base specification
Body

Enrichment

set S and operator set Ω, and a class C of term-generated algebras closed under
isomorphism. Let Sp′ = (Σ′, Ax ′) be a specification, where

– Σ′ = (S ′,Ω′) is a signature augmenting Σ, that is:q S ⊆S ′,q Ω⊆Ω′;

– Ax ′ is an axiom (formula) set over Σ′.

A pair HSp= (Sp,Sp′) is called a hierarchic specification, Sp is called a base spec-
ification, and Sp′ is called the body of the hierarchic specification. The triple

(S ′′,Ω′′, Ax ′),

consisting of

– sorts S ′′ =S ′ \S ,

– operator symbols Ω′′ =Ω′ \Ω,

– the set of axioms Ax ′,

is called the enrichment of the hierarchic specification HSp.
The signatures Σ and Σ′ come with the underlying disjoint variable sets X and

X ′, respectively, such that X ′ = X ∪X ′′, where every variable in X is of a sort
S ∈ S , and every variable in X ′′ is of a sort S′′ ∈ S ′′; thus, the variable sets X and
X ′′ are disjoint. For every sort S ∈ S there exists a countably infinite subset of
X consisting of variables of the sort S; for every sort S′′ ∈ S ′′ there also exists a
countably infinite subset of X ′′ consisting of variables of the sort S′′. ■

In this work we stipulate the enrichment’s axiom set Ax ′ to consist of first-
order clauses. We call sorts in S and S ′′ (operators in Ω and Ω′′) base and free
sorts (operators), respectively. We call variables in X and X ′′ base and non-base
variables, respectively.

From now on we always assume a hierarchic specification HSp consisting of
the base specification Sp= (Σ,C) and body Sp′ = (Σ′, Ax ′), and write

– Σ, C , S , Ω, X to denote the base signature, the class of base term-generated
algebras closed under isomorphism, the set of all base sorts, the set of all
base operator symbols, and the set of all base variables (these are all vari-
ables of the base sorts S), respectively;

– S ′′, Ω′′, X ′′ to denote the set of all free sorts, the set of all free operator
symbols, and the set of all non-base variables (these are all variables of the
free sorts S ′′), respectively;

– Σ′, S ′, Ω′, X ′ to denote the body signature, the set of all body sorts, the set
of all body operator symbols, and the set of all body variables (these are all
variables of the base or the free sorts), respectively;

– A and A′ to denote Σ- and Σ′-algebras, respectively.

– AΣ and AΣ′ to denote the classes of all Σ- and Σ′-algebras, respectively.

3.2. Hierarchic Specification 39

3.2.1 Syntax

We distinguish between different types of terms according to the sets of symbols
they are built on.

Types of Terms

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.16
Pure Term
Base Term
Free Term
Non-Base Term

Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are
the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

A Σ′-term t is called pure if all operator symbols occurring in it exclusively
come either from Ω, or Ω′′:

t pure
def⇐⇒ t ∈ TΩ(X ′) ∪ TΩ′′ (X ′)

Pure terms built over base variables and base operators are called base terms:

t base
def⇐⇒ t ∈ TΩ(X)

Pure terms built over variables (base or non-base) and free operators, and which
are not single base variables, are called free:

t free
def⇐⇒ t ∈ TΩ′′ (X ′) \ X

A Σ′-term that is not a base term is called non-base:

t non-base
def⇐⇒ t ∈ TΩ′ (X ′) \ TΩ(X)

■
The definitions of pure, base, free, and non-base terms are naturally extended

to all expressions, including (dis)equations, atoms, literals, and clauses. According
to the given definition, base expressions consist only of base operatorsΩ and base
variables X , however free terms, in contrast, may contain free and base variables,
but if a free term contains a base variable then it must also contain a free symbol
different from the equality ≈.

Among non-base terms there are special terms which have a free top function
symbol ranging into a base sort. We call such terms extension terms as they extend
the base sorts with non-base terms.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.17
Extension Symbols
Extension Terms
Extension-Free Terms
Smooth Terms

Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are
the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

A free function symbol f ∈Ω′′ is called an extension symbol if it ranges into a
base sort S ∈S :

f extension symbol
def⇐⇒ f ∈Ω′′, sort(f) ∈S

A Σ′-term t is called an extension term if its top symbol top(t) is an extension
symbol. The set of all extension terms over Σ′ is denoted by T E

Ω′ (X ′):

T E
Ω′ (X ′) def

= {t ∈ TΩ′ (S ,X ′) | top(t) ∈Ω′′}

40 Hierarchic Refutational Theorem Proving

A Σ′-term t is called extension-free if no subterm of t is an extension term:

t extension-free
def⇐⇒ ∀p ∈ ρ(t) : t/p 6∈ T E

Ω′ (X ′)

A Σ′-term t is called smooth if no strict subterm of t is an extension term:

t smooth
def⇐⇒ ∀p ∈ ρ(t) : p > ε⇒ t/p 6∈ T E

Ω′ (X ′)

■

Thus, a smooth term t may contain an extension symbol f only if t is an ex-
tension term, and hence the extension symbol is the top one f = >(t). The no-
tion of an extension-free term is naturally extended to all expressions, including
(dis)equations, atoms, literals, and clauses.

Let Σ= (S ,Ω) be the signature of linear arithmetic over rationals, with operator setEXAMPLE 3.18 Ï
Ω = {+,−, ·,≤,<, . . .}∪Q, where Q is the set of all rational numbers, and a single
sort S = {S}. Let Σ′ = (S ′,Ω′) be a body signature with sorts S ′ = S ∪ {S′′} and
operators Ω′ = Ω∪ {a,b, f , g ,h}, where a,b : S′′, f : S′′ ×S → S, g : S′′ → S, and
h : S′′ → S′′. Let X = {x, y, . . .} and X ′′ = {z,u, . . .} be base and non-base variable
sets, respectively. Then function symbols f and g are extension symbols, and the
following expressions are:

– base: terms x and 1, atoms x ≈ y and 3·x+2·y < 1, clause (x ≤ 0,−2·x < 3 →);

– free: terms z and g (a), literals z ≈ u and f (a, x) 6≈ x, clause a ≈ b → f (a, x) ≈
g (b);

– non-base: term x+2 · f (a,3 · y), atom g (a) ≤ 2 ·g (b), and any free expression;

– extension-free: a, b, x, z, h(b), h(z), and any base expression;

– extension terms: f (a,0), f (z,1+2 · g (a)), g (a), and g (b);

– smooth terms: a, x, z, h(b), f (h(a),0), f (z,1+2 · x);

– smooth extension terms: f (a,0), f (z,1+2 · x), g (a), and g (b).

■

Any non-base term of a base sort contains an extension subterm. When dis-
cussing completeness of the hierarchic superposition calculus SUP(T), it will be
of a particular importance to ensure that all non-base terms of base sorts can be
reduced to base terms in models of a given clause set N (so-called “sufficient com-
pleteness criterion”, Section 3.4.7). The following lemma shows, that it is sufficient
to ensure the reduction property only for smooth extension terms.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=LEMMA 3.19 Ï
Extension Terms

Lemma
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let S ′′ =S ′ \S and Ω′′ =Ω′ \Ω be the enrichment
sorts and operators, respectively.

Let A′ be an arbitrary Σ′-algebra. Then each ground non-base term t of a base
sort S ∈S is equal under A′ to some ground base term s, if and only if each ground
smooth extension term t ′ is equal under A′ to some ground base term s′:

∀t ∈ TΩ′ (S) \ TΩ.∃s ∈ TΩ : A′(t) =A′(s)
⇔

3.2. Hierarchic Specification 41

∀t ′ ∈ T E
Ω′ .∃s′ ∈ TΩ : t ′ smooth ⇒A′(t ′) =A′(s′).

The “⇒” direction is straightforward as T E
Ω′ ⊆ TΩ′ (S) \ TΩ. Î PROOF

The “⇐” direction. Let t ∈ TΩ′ (S) \ TΩ be an arbitrary ground non-base term of
a base sort. We proceed by induction on the number occE (t) of occurrences of
extension subterms in t , formally defined as follows:

occE (t)
def
= |{p ∈ ρ(t) | t/p ∈ T E

Ω′ }|.
Induction base. Assume occE (t) = 1. Let t ′ be the extension subterm in t . With-
out loss of generality, t ′ = t/p occurs in t at a position p ∈ ρ(t). Any base-sorted
symbol, occurring in t at a position q ∈ ρ(t) above or parallel to p, if any, is base:

∀q ∈ ρ(t) : q ∥ p or q < p ⇒ top(t/q) ∈Ω.

The term t ′ is smooth and, therefore, A′(t ′) =A′(s′) for some ground base term
s′ ∈ TΩ. The term s = t [s′]p , obtained from t by replacing t ′ with s′, contains only
base symbols, hence it is a base term. Thus, A(t) =A(s), where s ∈ TΩ.

Induction hypothesis. Suppose the assertion holds for all terms t ∈ TΩ′ (S) \ TΩ
such that occE (t) ≤ n, for some n ≥ 1.

Induction step. Assume occE (t) = n +1. Let t ′ be a lowest extension subterm
appearing in t , i.e. t ′ = t/p, for some position p ∈ ρ(t) such that

∀q ∈ ρ(t) : q > p ⇒ t/q 6∈ T E
Ω′ .

The term t ′ is smooth and, therefore, A′(t ′) =A′(s′) for some ground base term
s′ ∈ TΩ. The term t [s′]p obtained from t by replacing the occurrence of t ′ at the
position p with s′ contains by one occurrence of an extension term less than t ,
hence, occE (t [s′]p) = n, and, by Induction hypothesis, A′(t [s′]p) =A′(s), for some
ground base term s ∈ TΩ. Consequently, A′(t) =A′(s). ■

Abstracted Clauses

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.20
Abstracted ClauseSp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

A clause C is called abstracted if every literal in C is pure. An abstracted clause
C is usually written in form

C =Λ ∥ Γ→∆,

where Λ consists of base literals, and Γ, ∆ consist of free atoms.

Semantically, an abstracted clause C =Λ ∥ Γ→∆ is an implication∧
Λ∧∧

Γ→∨
∆

between the conjunction of literals in Λ and atoms Γ on one hand side, and dis-
junction of atoms in ∆, on the other, which is equivalent to the disjunction1∨

Λ∨∨
Γ∨∨

∆.

The conjunctions
∧
Λ and

∧
Γ, and disjunction

∨
∆ of an abstracted clause

C are called the constraint, the antecedent and the succedent of C , respectively.

1Recall, that for a (multi)set M of literals, M denotes the (multi)set consisting of M ’s literals
negated.

42 Hierarchic Refutational Theorem Proving

The disjunctions
∨
Λ and

∨
Γ∨∨

∆ are called the base and free parts of C , respec-
tively1. ■

In an abstracted clause C = Λ ∥ Γ→ ∆, the double bar ‖ symbol is used to
separate the base part of a clause from the free one and does not carry itself any
logical meaning. For the sake of conciseness, we usually write Λ, Γ and ∆ for the
constraint, antecedent and succedent of C , respectively. Very often, the free part
of C is equivalently denoted as an implication Γ→ ∆. As usual, Λ, Γ and ∆ may
be empty and are then interpreted as true, true, false, respectively.

Any given disjunction of literals can be transformed into an abstracted clause
of the form Λ ∥ Γ→∆, where Λ only contains base literals and all base terms in Γ,
∆ are just base variables by the following transformation [BGW94], called abstrac-
tion, or purification. Whenever a subterm t , whose top symbol is a base symbol
from Ω, occurs immediately below a free operator symbol, it is replaced by a new
base sort variable x (“abstracted out”) and the equation x ≈ t is added to Γ. Anal-
ogously, if a subterm t , whose top symbol is an extension symbol, occurs imme-
diately below a base operator symbol, it is replaced by a new base variable x and
the equation x ≈ t is added to Γ. This transformation is repeated until all terms
in the clause are pure; then all base atoms are moved to Λ and all free ones to
Γ,∆, respectively. Recall that Γ,∆ are sequences of atoms whereas Λ holds theory
literals. Moreover, we need to “purify” clauses only once — just before saturating
the clauses, since if the premises of an inference are abstracted clauses, then the
conclusion is also abstracted, Theorem 3.33.

Obviously, any abstracted clause is a member of the class C lΣ′ of all Σ′-clauses.
The class of all base clauses (these are clauses with empty free part) is denoted by
C lΣ. Clauses in C lΣ′ \C lΣ are all non-base (these are clauses with non-empty free
part).

Any ordering Â on terms can be extended to abstracted clauses in the follow-
ing way. Like in the flat case, we consider clauses as multisets of occurrences of
(dis)equations (recall that the antecedent and the succedent of a abstracted clause
consist of equations, whereas the constraint may contain also disequations). An
occurrence of an equation s ≈ t in the antecedent is identified with the multi-
set {s, s, t , t }, the occurrence of an equation s ≈ t in the succedent is identified
with the multiset {s, t }; analogously, an occurrence of an equation s ≈ t in the
constraint is identified with {s, s, t , t }, and an occurrence of a disequation s 6≈ t in
the constraint is identified with {s, t }. Now we overload Â on (dis)equation oc-
currences to be the multiset extension of Â on terms, and Â on clauses to be the
multiset extension of Â on (dis)equation occurrences.

An antecedent or succedent occurrence of an equation s ≈ t is maximal (min-
imal) in an abstracted clause C =Λ ∥ Γ→∆ if there is no occurrence of an equa-
tion in Γ→ ∆ that is strictly greater (smaller) then the occurrence s ≈ t with re-
spect to Â. An antecedent or succedent occurrence of an equation s ≈ t is strictly
maximal (strictly minimal) in the clause C if there is no occurrence of an equa-
tion in Γ→ ∆ that is greater (smaller) then or equal to the occurrence s ≈ t with
respect to Â. We do not consider occurrences of (dis)equations in the constraint
of a clause for our maximality criteria. As clauses are abstracted, this is justified by

1Note the difference between the constraint (conjunction of Λ’s literals) and the base part (dis-
junction of Λ’s literals negated) of an abstracted clause.

3.2. Hierarchic Specification 43

considering a suitable path ordering, like LPO, where the operator symbols from
Ω are smaller than all symbols in Ω′′ =Ω′ \Ω.

Given an abstracted clause C = Λ ∥ Γ→ ∆, a selection function1 Sel may as-
signs to C a multiset of atoms only in the antecedent Γ of the clause (literals in
the constraint Λ are not allowed being selected by any selection function).

Weak Abstraction [BW13]. As already discussed in the Introduction chapter, the
abstraction mechanism of [BGW94] is deficient in that it may actually destroy suf-
ficient completeness of an initial clause set N , a sufficient condition for complete-
ness of the hierarchic calculus SUP(T) on N .

The weak abstraction algorithm of Baumgartner and Waldmann [BW13] re-
solves this shortcoming of the original abstraction of Bachmair, Ganzinger, and
Waldmann. The main idea of weak abstraction is to abstract out only pure non-
variable non-constant T-terms. In [BW13] it is shown that the hierarchic superpo-
sition calculus modified in a straightforward way to fit the new abstraction algo-
rithm is refutationally complete for all clause sets obtained by weak abstraction
from sufficiently complete clause sets.

All results presented in this chapter are either formulated for general FOL(T)
clauses, no matter abstracted or not, or do not depend on a particular form of ab-
stracted clauses, as abstraction is regarded here simply as a preprocessing step. For
instance, the Hierarchic Lifting Lemma (Lemma 3.71) and the Hierarchic Satura-
tion Theorem (Theorem 3.72) are formulated for abstracted clauses, because the
inference system H is defined for abstracted clauses. These Lemma and Theorem
are also valid if simply reformulated for weakly abstracted clauses and for the vari-
ant of H inference system of [BW13], which captures the special form of weakly
abstracted clauses in a straightforward way. Thus, the weak abstraction mecha-
nism of Baumgartner and Waldmann can be safely integrated into our framework
instead of [BGW94]’s abstraction method, causing no failure regarding achieved
results.

Simple Substitutions and Instances

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.21
Simple Substitution
Simple Instance

Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively. Let X ′ =X∪X ′′ be the underlying variable
set consisting of base and non-base variables, respectively.

A substitution σ is called simple if every base variable x in the domain of σ is
mapped to a base term:

σ simple
def⇐⇒ ∀x ∈ dom(σ) : x ∈X ⇒ xσ ∈ TΩ(X).

A term t ′ is called a simple instance of a term t , if t ′ = tσ for some simple substi-
tution σ. The term t ′ is a simple ground instance of the t if t ′ is ground. The set
of all simple ground instances of t is denoted by sgi(t):

sgi(t)
def
= {tσ |σ simple, tσ ∈ TΩ′ }.

■
1The notion of a selection function is introduced in Section 2.5, page 21.

44 Hierarchic Refutational Theorem Proving

Note that a term t ′ that is a simple instance of some term t is not necessarily
base. Moreover, t ′ is base if and only if the term t is so. In other words, a simple
instance of a base term is always base, whereas a simple instance s′ of a free term
s is always non-base, but not necessarily free. The notion of simple (ground) in-
stance is naturally lifted to all expressions, particularly to literals, clauses, and sets
thereof.

3.2.2 Semantics

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 3.22 Ï
Σ-restriction A′|Σ Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the

base and body signatures, respectively.

Given a Σ′-algebra A′, the restriction of A′ to Σ, written A′|Σ, is a Σ-algebra A
that agrees with A′ on base sorts and base operator symbols:

A′|Σ def
= A ∈AΣ :

(∀S ∈S .∀ f ∈Ω : SA = SA′ , fA = fA′
)

■

Roughly speaking, the restriction A′|Σ of a Σ′-algebra A′ to Σ is a Σ-algebra
that is obtained from A′ by leaving only the base part of the domain and inter-
pretation of base operator symbols, or equivalently, by removing all free carrier
sets S′′

A′ , for every free sort S′′ ∈ S ′′, and all functions gA′ , for every free operator
symbol g ∈Ω′′. As A′ is total and Σ⊆Σ′, the Σ-algebra A=A′|Σ always exists.

Note that A′|Σ is not necessarily term-generated, even if A′ is term-generated.
Indeed: if, for instance, there exists some element e ′ ∈ SA′ in the universe of A′,
such that all ground terms t , whose interpretations tA′ under A′ equal e ′, have
top symbols g = top(t), and all such g ’s come from the set of free operator sym-
bols Ω′′, then after removing from A′ all functions gA′ , there is no term whose
interpretation under A′|Σ equals e ′.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 3.23 Ï
Hierarchic algebra Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

A Σ′-algebra A′ is called hierarchic if its restriction to Σ is a base algebra. The
class of all hierarchic algebras is denoted by HHSp:

A′ ∈HHSp
def⇐⇒ A′|Σ ∈C .

Given a Σ′-formula F ∈ FΩ′ and a Σ′-algebra A ∈ AΣ′ , we write A′ |=C F if A′ is a
hierarchic model of F :

A′ |=C F
def⇐⇒ A′ ∈HHSp,A′ |= F.

■

Informally speaking, a Σ′-algebra A′ is hierarchic, if A′ extends some base model
A ∈C and neither collapses any its sort nor adds new elements to it.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 3.24 Ï
Model of HSp Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

3.2. Hierarchic Specification 45

A hierarchic algebra A′ is called a model of a hierarchic specification HSp, if
it is a model of the axiom set Ax ′:

A′ a model of HSp
def⇐⇒ A′ |=C Ax ′.

■

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.25
C -consistent
C -entailment

Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).
Let N and M be two sets of Σ′-clauses. We call N consistent relative to C (or,

shortly, C -consistent, or theory-consistent), if there exists a hierarchic model of
N :

N C -consistent
def⇐⇒ ∃A′ ∈HHSp :A′ |= N ,

and otherwise we call it inconsistent relative to C (or C -inconsistent, or theory-
inconsistent), written N |=C ⊥.

We say N implies/entails M relative to C , written N |=C M , if every hierarchic
model of N is also a model of M :

N |=C M
def⇐⇒ ∀A′ ∈HHSp :A′ |= N ⇒A′ |= N .

■

Alternatively, we can say N |=C M if given a base specification Sp and a body
signature Σ′, the hierarchic specification HSp= (Sp, (Σ′, {N → M })) has a model. If
N is a set of base clauses, it is C -consistent if and only if some base algebra A in
C is a model of N . Note that for any clause sets N and M , N |=C M follows from
N |= M , but not other way around, in general.

Refutational theorem proving for hierarchic theories is aimed at answering
one the following questions: given a clause set N over the body signature Σ′,

– is N false in all models of the hierarchic specification HSp?

– does a hierarchic specification (Sp, (Σ′, Ax ′∪N)) have no model? or

– is Ax ′∪N inconsistent relative to C ?

Each of the questions is a reformulation of the others, and, hence, they are all
equivalent. One can think of a more general problem, namely: whether the set of
axioms Ax ′ implies a closed Σ′-formula F (or a set thereof) relative to C :

Ax ′ |=C F,

or in other words, whether F holds in every model of the hierarchic specification
HSp. If ¬F transformed to an equisatisfiable clause set N (meaning, N is satisfi-
able iff ¬F is so), then solving the problem of Ax ′ |=C F is equivalent to answering
any of the above three questions.

46 Hierarchic Refutational Theorem Proving

3.3 SUP(T) Calculus

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are
the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

In Definitions 3.26-3.31 we present the inference rules constituting the Su-
perposition Modulo Theory SUP(T) calculus. All rules are defined for abstracted
clauses and with respect to the hierarchic specification HSp.

The Hierarchic Splitting rule isDEFINITION 3.26 Ï
Hierarchic Splitting

S Λ1,Λ2 ∥ Γ1,Γ2 →∆1,∆2

Λ1 ∥ Γ1 →∆1
∣∣ Λ2 ∥ Γ2 →∆2

where

(i) var(Λ1 ∥ Γ1 →∆1)∩var(Λ2 ∥ Γ2 →∆2) =;,

(ii) ∆1 6= ; and ∆2 6= ;.

■

The Hierarchic Superposition Left rule isDEFINITION 3.27 Ï
Hierarchic

Superposition Left I Λ1 ∥ Γ1 →∆1, l ≈ r Λ2 ∥ s[l ′] ≈ t ,Γ2 →∆2

(Λ1,Λ2 ∥ s[r] ≈ t ,Γ1,Γ2 →∆1,∆2)σ

where

(i) σ= mgu(l , l ′) and σ is simple,

(ii) l ′ is not a variable,

and for some simple grounding substitution ψ

(iii) lσψÂ rσψ,

(iv) sσψÂ tσψ,

(v) (l ≈ r)σψ is strictly maximal in (Γ1 →∆1, l ≈ r)σψ,

(vi) (s ≈ t)σψ is maximal in (s ≈ t ,Γ2 →∆2)σψ and no literal in Γ2 is selected
or

s ≈ t is selected,

(vii) no literal in Γ1 is selected.

■

We do not consider the terms in the theory part of the clauses for our maxi-
mality criteria: as clauses are abstracted, this is justified by considering a suitable
path ordering, like LPO, where precedence is defined in such a way that the op-
erator symbols from Ω are smaller than all symbols in Ω′′ =Ω′ \Ω, or transfinite
KBO [LW07] with weights of base symbols equal to some natural numbers and
weights of free symbols equal to some ordinal numbers. In such an ordering, any
simple ground instance of a base literal, which is again base, is strictly smaller
than any simple ground instance of a free literal, which is non-base.

3.3. SUP(T) Calculus 47

Also, in this work we use reduction orderings, which are enjoin to orient all
extension-terms greater than any extension-free term. Such an orderings can be,
for instance, an LPO, where precedence is defined in such a way that all exten-
sion function symbols are greater than any non-extension symbol, or a transfinite
KBO [LW07] with appropriately chosen weights.

The Hierarchic Superposition Right rule is Î DEFINITION 3.28
Hierarchic
Superposition RightI Λ1 ∥ Γ1 →∆1, l ≈ r Λ2 ∥ Γ2 →∆2, s[l ′] ≈ t

(Λ1,Λ2 ∥ Γ1,Γ2 →∆1,∆2, s[r] ≈ t)σ

where

(i) σ= mgu(l , l ′) and σ is simple,

(ii) l ′ is not a variable,

and for some simple grounding substitution ψ

(iii) lσψÂ rσψ,

(iv) sσψÂ tσψ,

(v) (l ≈ r)σψ is strictly maximal in (Γ1 →∆1, l ≈ r)σψ,

(vi) (s[l ′] ≈ t)σψ is strictly maximal in (s[l ′] ≈ t ,Γ2 →∆2)σψ,

(vii) (s[l ′] ≈ t)σψÂ (l ≈ r)σψ,

(viii) no literal in Γ1, Γ2 is selected.

■

An application of Hierarchic Superposition Left/Right rule may produce a vari-
able assignment (s[r] ≈ t)σ, if l ′ coincides with s, and rσ and tσ are variables. If
in this case r and t are base variables, the resulting variable assignment (s[r] ≈ t)σ
is a base atom and, therefore, is moved to the constraint of the inference’s conclu-
sion, i.e. the superposition left inference yields then the clause (Λ1,Λ2, s[r] ≈ t ∥
Γ1,Γ2 → ∆1,∆2)σ and superposition right — the clause (Λ1,Λ2, s[r] 6≈ t ∥ Γ1,Γ2 →
∆1,∆2)σ. It was not needed in the previous formulation of the calculus [BGW94]
because there no strict separation between base terms and free terms of a clause
was made. However, it is very useful to separate the base from the non-base liter-
als in order to explore the reasoning mechanisms needed for the base specifica-
tion.

Let C1 and C2 be the left and right premises of the superposition left/right
rules, respectively. From the conditions of Definitions 3.27, 3.28 it follows that
C1σ 6ÂC2σ (and C1σ 6ºC2σ in the case of the superposition right rule).

The Hierarchic Equality Resolution rule is Î DEFINITION 3.29
Hierarchic
Equality ResolutionI Λ ∥ Γ, s ≈ t →∆

(Λ ∥ Γ→∆)σ

where

(i) σ= mgu(s, t) and σ is simple,

and for some simple grounding substitution ψ

48 Hierarchic Refutational Theorem Proving

(ii) (s ≈ t)σψ is maximal in (Γ, s ≈ t →∆)σψ and no literal in Γ is selected
or

s ≈ t is selected.

■

The Hierarchic Equality Factoring rule isDEFINITION 3.30 Ï
Hierarchic

Equality Factoring I Λ ∥ Γ→∆, l ≈ r, l ′ ≈ r ′

(Λ ∥ Γ,r ≈ r ′ →∆, l ′ ≈ r ′)σ
where

(i) σ= mgu(l , l ′) and σ is simple,

and for some simple grounding substitution ψ

(ii) lσψÂ rσψ,

(iii) (l ≈ r)σψ is maximal in (Λ ∥ Γ→∆, l ≈ r, l ′ ≈ r ′)σψ,

(iv) no literal in Γ is selected.

■

Standard factoring of non-equality literals is a special variant of the equality
factoring rule where r = r ′ = trueP , for some predicate symbol P which is the top
symbol of l and l ′, and hence the literal (r ≈ r ′)σ is actually trueP ≈ trueP and can
be eliminated.

The Constraint Refutation rule isDEFINITION 3.31 Ï
Constraint Refutation

I Λ1 ∥ → . . . Λn ∥ →
ä

where (Λ1 ∥ →), . . . , (Λn ∥ →) |=C ⊥. ■

The set of premises of the Constraint Refutation rule consists of clauses C1 = (Λ1 ∥
→) to Cn = (Λn ∥ →), each of which is base, i.e. the free part of every Ci is empty.
The rule is performed if no base algebra A ∈ C is a simultaneous model of the
base premises C1, . . . ,Cn ; more formally, (Λ1 ∥ →), . . . , (Λn ∥ →) |=C ⊥, iff for every
base algebra A ∈C it holds that

A 6|=∧
i
∀~xi .¬Λi // where ~xi = var(Λi)

⇔ A |=∨
i
∃~xi .Λi

Thus, the rule applies iff the existential closure ∃~xi .Λi of the constraint of at least
one base clause among C1 = (Λ1 ∥ →), . . . , Cn = (Λn ∥ →) is valid in the base
theory (satisfiable by every base algebra). Equivalently, the rule is not applied, iff
there exists a base algebra A ∈C such that

A 6|=∨
i
∃~xi .Λi

⇔ ∀i ∈ {1, . . . ,n} : A 6|= ∃~xi .Λi

⇔ A |=∧
i
∀~xi .¬Λi

=∧
i

Ci

3.3. SUP(T) Calculus 49

i.e. the rule is not applicable iff there exists a base algebra A ∈C satisfying all the
base clauses C1, . . . , Cn , or equivalently, falsifying the existential closure ∃~xi .Λi of
the constraint of every base clause in C1, . . . , Cn .

Recall that we encode predicates as functions, which is needed to compactly
define the calculus. According to the definition of the SUP(T) inference rules, only
free literals are superposed, therefore encoding base predicates as functions is not
strictly necessary. Still, we do it as it helps to compress the theoretical discus-
sion by saving one extra case (of considering predicative atoms). Whenever the
Constraint Refutation rule is performed and the background T-solver is invoked,
every such base predicative (dis)equation P (t1, . . . , tn) ≈̇ trueP , where ≈̇ ∈ {≈, 6≈},
is passed to the solver as a corresponding predicate P (t1, . . . , tn) or ¬P (t1, . . . , tn),
respectively.

The inference rules Hierarchic Equality Resolution, Hierarchic Equality Factoring, Î DEFINITION 3.32
Inference system HHierarchic Superposition Left/Right, and Constraint Refutation constitute the in-

ference system H. ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î THEOREM 3.33
Abstracted Conclusion
[BGW94]

(Σ,C) and the body Sp′ = (Σ′, Ax ′).
If N is a set of abstracted clauses, then every clause C ∈ concl(H(N))—a conclu-

sion of an H-inference with premises in N —is abstracted.

Discarding separation of base and free parts of clauses and simple unifiers,
the rules Hierarchic Splitting, Hierarchic Superposition Left/Right, and Hierarchic
Equality Resolution are obvious instances of the respective standard superposi-
tion inference rules [BG94, Wei01], therefore the hierarchic rules are sound with
respect to the general entailment relation |=, hence sound with respect to the hi-
erarchic entailment relation |=C (recall that N |= M implies N |=C M). The rule
Constraint Refutation is not sound with respect to the general entailment relation
|= (as for a set of base clauses inconsistent relative to the theory T, there might
exist a non-standard model of T, – a model out of the base model class C , – that
actually satisfies the given set of base clauses), but the rule is evidently sound
with respect to |=C . Thus, the overall inference system consisting of the rules Hi-
erarchic Splitting, Hierarchic Superposition Left/Right, Hierarchic Equality Reso-
lution, and Constraint Refutation is sound with respect to |=C .

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î LEMMA 3.34
H Soundness(Σ,C) and the body Sp′ = (Σ′, Ax ′).

The rules Hierarchic Splitting, Hierarchic Superposition Left/Right, Hierarchic
Equality Resolution, and Constraint Refutation are sound with respect to the hier-
archic entailment relation |=C .

Besides soundness, we need in addition to show refutational completeness of
the SUP(T) calculus. The next section is entirely devoted to this topic.

50 Hierarchic Refutational Theorem Proving

3.4 Completeness of SUP(T)

This section is devoted to proving refutational completeness of the hierarchic su-
perposition calculus SUP(T). The completeness for SUP(T) will be primarily ob-
tained by lifting Bachmair and Ganzinger’s completeness result [BG91, BG94] of
the flat (standard) superposition for ground clauses.

For the rest of the section, we consider a hierarchic specification HSp= (Sp,Sp′)
with the base specification Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ =
(S ,Ω) is the base signature and Σ′ = (S ′,Ω′) is the body signature (please, recall
Definition 3.15 of a hierarchic specification). We put S ′′ = S ′ \S to be the set of
enrichment sorts, andΩ′′ =Ω′\Ω the set of enrichment operators. LetX ′ =X∪X ′′

be the underlying variable set consisting of base and non-base variables, respec-
tively.

3.4.1 Overview

Long story short. The idea of lifting completeness of the standard superposition
for ground clauses is motivated by well-studied clear application of lifting towards
establishing completeness of the standard superposition SUP for general clauses.
So, let us first recall how it is done for the standard superposition. Assume, we are
given a set N of general FOL clauses, saturated with respect to SUP and not con-
taining an empty clause. Obviously, the set gi(N) of all ground instances of clauses
in N also does not contain an empty clause. From the assumption that N is sat-
urated it follows that gi(N) is also saturated, which is a consequence of so-called
Lifting Lemma. Roughly speaking, the lemma states that if there exists a non-
redundant ground inference I ′ with premises from gi(N), then there exists a non-
redundant inference I with premises from N , such that the former is a ground
instance of the latter: I ′ = Iσ, for some ground substitution σ. Any SUP-saturated
ground clause set that does not contain an empty clause has a (Herbrand) model.
Thus, gi(N) has a model, consequently, the set N is satisfiable (under the model
satisfying gi(N)).

We shall lift completeness of the flat superposition for the ground clauses to
hierarchic superposition for general abstracted clauses following a lifting schema
similar to the one exploited for the case of the standard superposition for general
FOL clauses. However, we have to take care of several specialties that are due to
the combination with the background theory T, which does not allow us to directly
use exactly the same lifting mechanism.

– First of all, in contrast to the flat case, where a clause set N is satisfiable
if and only if there exists any algebra that is a model of the set gi(N) of all
ground instances of N , in the hierarchic case we are interested only in those
models of gi(N) that are hierarchic algebras1, i.e. algebras whose restriction
to the base signature Σ is a base algebra from the class C .

– Second, the principle of modularity underlying the hierarchic superposition
calculus dictates a necessity of using only simple substitutions2 to find uni-
fiers of terms in the inference rules of SUP(T), which is essential for keep-

1The notion of a hierarchic algebra is introduced in Definition 3.23, page 44.
2The notion of a simple substitution is introduced in Definition 3.21, page 43.

3.4. Completeness of SUP(T) 51

ing constraints of abstracted clauses pure, as otherwise, if non-simple uni-
fiers admitted, the constraint of an inference’s conclusion may become non-
base, which makes it impossible to use the background theory solver to deal
with such constraints (for instance, in the Constraint Refutation rule and in
the reduction rules Hierarchic Tautology and Subsumption Deletion). For
this reason, we cannot rely on the Lifting Lemma in its standard formula-
tion anymore, because saturation of clauses in N with respect to the hierar-
chic calculus with simple mgu’s, in general, does not imply saturation of all
their ground instances gi(N) with respect to the flat calculus. Maximum to
what we can pretend in this situation is the saturation of the set sgi(N) of all
simple ground instances of N .

– But, then we face a problem of mutual hierarchic model existence: not every
model of the set sgi(N) is a hierarchic model of N , moreover, it might not
even be a “flat” model of N .

For these reasons, merely correlating N to sgi(N), certainly, is not sufficient (in
contrast to the flat case, where correlating N to gi(N) does the job). To this end,
we need to answer a question:

‘To what ground set N ′ should we extend/modify the set sgi(N) such
that N ′ meets the above requirements of mutual saturation and mu-
tual hierarchic model existence relative to N ?’

Next, we informally discuss our approach to resolving the question stated.
But first, let us understand the following notation: we use the pairs (H,RH) and
(F ,RF) to denote the hierarchic and the flat superposition calculi, respectively,
where

– H is the hierarchic inference system, presented in Section 3.3;

– RH = (RHI ,RHF) hierarchic redundancy criterion specifying redundant in-

ferences RHI and redundant formula RHF , respectively; we define RH for-
mally later on in Section 3.4.4;

– F and RF = (RFI ,RFF) stand for the flat inference system and ground re-

dundancy criterion specifying redundant inferencesRFI and redundant for-

mulaRFF , respectively; we introduce the notionsF andRF formally in Sec-
tion 3.4.2.

The mutual saturation requirement can be simply gained by setting the hierar-
chic redundancy criterion accounting for the simple substitutions condition. So,
we set C ∈RHF (N) if sgi(C) ⊆RFF (sgi(N)), i.e. a clause is redundant if all its sim-
ple ground instances are redundant for the set of all simple ground instances of
N . Similarly we define a redundant inference: I ∈RHI (N) if sgi(N) ⊆RFI (sgi(N)).
The latter does not apply to the constraint refutation inference rule, as there is no
“flat” version of it in the standard SUP-calculus, therefore1 we say that a constraint
refutation inference is redundant if an empty clause is already in N .

1It should be noted that this formulation of RH = (RHF ,RHI) is too weak. We shall refine it in
Section 3.4.4, and for the current informal overview of the overall completeness proof we stick to the
above rough definition ofRH = (RHF ,RHI). Actually, Bachmair, Ganzinger, and Waldmann suggested

in their work [BGW94] precisely this definition of RH = (RHF ,RHI).

52 Hierarchic Refutational Theorem Proving

Realization of the requirement of mutual hierarchic model existence needs
more effort. For a term-generated algebra A′ to be a hierarchic model of N , it has
to (i) satisfy the set gi(N) of all ground instances of N , and (ii) its restriction A′|Σ
to the base signature has to be in C . So, for (i) we need to somehow ensure that
every clause in gi(N) is a logical consequence of clauses in the extended ground
set N ′, and for (ii) we have to ensure then that every model A′ of N ′ is hierarchic.
A possibility to satisfy the first requirement is to restrict our attention only to such
clause sets N , whose set sgi(N) of all simple ground instances has the property,
that in every model of sgi(N) every ground non-base term t ′ of a base sort is in-
terpreted the same as some ground base term t , i.e. sgi(N) |= t ′ ≈ t . Then, in every
modelA′ of the set sgi(N) of all simple ground instances of a clause set N possess-
ing this property, every ground substitution is equivalent to some simple ground
substitution, therefore A′ is also a model of the set gi(N) of all ground instances
of N , hence a model of N . Since this is an integral property of a clause set (which
is the only one we stipulate for an input), it is called sufficient completeness with
respect to simple ground instances [BGW94], or simply sufficient completeness.

Now, we need to ensure A′ to be a hierarchic algebra, wherefore A′ must ex-
tend some base algebra A ∈ C and neither delete elements from, nor add new
ones to the universe UA of A. Speaking more formally, A′ is hierarchic, if its re-
striction A′|Σ to the base signature is isomorphic to A ∈ C . Let ẼA be the set of
all positive unit base clauses, each of which consists of a single equation between
two distinct ground base terms that are equal underA, or, put it other way round,
if two distinct ground base terms have the same interpretation inA then an equa-
tion between them is in ẼA. If A′ is a model of ẼA, then A′ is a homomorphic ex-
tension of A. But, this is not sufficient yet, because A′ might still add “junks” into
the base sorts, which constitute the universe of A, or delete some elements from
them. Let D̃A be the set of all negative unit base clauses, each of which consists of
a single disequation between two ground base terms that are not equal under A,
or in other words, if two ground base terms have different interpretation under
A then a disequation between them is in D̃A. If A′ also satisfies D̃A – in addi-
tion to ẼA, – then A′ does not collapse any of base sorts, because, for otherwise,
as every A ∈ C is term-generated, there would exist two ground base terms with
different interpretation under A, but equally interpreted under A′, which cannot
happen if A′ |= D̃A. It is easy to see, that if A′ is a model of ẼA and D̃A, then
A′ is a monomorphic extension of A. The only thing left is preventing A′ from
adding extra elements to the universe of A. This can happen only if the model A′

of sgi(N)∪ẼA∪D̃A evaluates some ground non-base term t ′ of a base sort to some
value that no base term t has under A′. But this is already fixed by the sufficient
completeness property of N , considered in the previous paragraph, according to
which sgi(N) |= t ′ ≈ t .

Putting everything together, we obtain that if the set N enjoys the sufficient
completeness property, then every model A′ of the set N ′ = sgi(N) ∪ ẼA ∪ D̃A,
where A ∈ C a base algebra, is a hierarchic model of N . Since it is not clear a-
priori, if sgi(N) has a hierarchic model, a concern is, ‘what base algebra A should
be taken to construct a set N ′ = sgi(N)∪ ẼA ∪ D̃A?’ If N contains base clauses
(those are all clauses that are built solely over base symbols) then for A we pick
any base algebra satisfying the base subset of N . If the base subset of N is theory-
inconsistent, then due to compactness of the base specification there exist finitely

3.4. Completeness of SUP(T) 53

many base clauses in N that are theory-inconsistent, hence the Constraint Refu-
tation rule applied to these clauses produces an empty clause, which is then also
contained in the set sgi(N), as N is saturated, therefore sgi(N) is unsatisfiable any-
way. If N does not contain base clauses, then we pick any base algebra A ∈ C .
Later on, we show that for anyA picked up this way, the set N ′ = sgi(N)∪ẼA∪D̃A
has a hierarchic model if and only if N does.

Refinements. Evidently, the set ẼA contains a huge number of redundant clauses
which are entailed by other clauses in ẼA. So, we set EA to be the minimal (with
respect to the underlying reduction ordering Â) subset of ẼA that entails every
clause in ẼA. In the presence of EA, the set D̃A also contains much redundancy,
therefore we let DA be the minimal subset of D̃A such that EA∪DA entails every
clause in D̃A (we shall give a formal definition of EA and DA later on in Sec-
tion 3.4.3, and for the present we stick to the above definitions as they suffice for
an informal discussion of SUP(T)’s completeness).

The solution to consider only those clause sets N possessing the property

sgi(N) |= t ′ ≈ t ,

for all ground non-base terms t ′ of a base sort and some ground base terms t , is
too strong, meaning that the class of all such clause sets N is quite small and not
really interesting1. Moreover, the formulation above is a bit superfluous, because,
first, we do not need this property to be defined with respect to every model of
sgi(N), but rather to every model satisfying, in addition, the sets EA and DA; and,
second, according to the Extension Terms Lemma (Lemma 3.19) it suffices to suf-
ficiently define only smooth extension terms2, rather than all non-base terms of
a base sort. For this reason, we consider only those clause sets N for which the
following holds3:

∀A ∈C : sgi(N)∪EA∪DA |= t ′ ≈ t ,

for all smooth extension terms t ′ and some ground base terms t . As it turns out,
every Σ′-algebra A′ satisfying the sets EA and DA, for some base algebra A, is ac-
tually a monomorphic extension of A. As every such A′ is potentially a hierarchic
algebra, we call such algebras weak with respect to C , or simply weak. We give a
formal definition of a weak algebra in Definition 3.73 and discuss the notion in
Section 3.4.6. The final formulation of the sufficient completeness property will
be given with respect to weak algebras in Definition 3.78, and in Section 3.4.7 we
shall discuss the notion in detail.

Outline. In Section 3.4.2 we recall the standard superposition calculus (F ,RF)
for ground clauses, the completeness result of which we shall later on lift to the
hierarchic calculus (H,RH) for general clauses. In Section 3.4.3 we give formal
definitions of the sets EA and DA, and show some useful properties thereof, par-
ticularly, we prove that any ground theory-consistent base clause is a logical con-
sequence of a finite subset of EA ∪DA, and precisely identify clauses in such

1Actually, Bachmair, Ganzinger, and Waldmann suggested in their work [BGW94] precisely this
solution.

2Please, recall Definition 3.17 of an extension term.
3Please, note that base algebras A ∈ C are only used for construction of the clause sets EA and

DA. The entailment relation “|=” above is a subject to all Σ′-algebras, in contrast to “|=C ”.

54 Hierarchic Refutational Theorem Proving

subsets. Thereafter, we introduce notions of R≈
A-reduced terms, substitutions,

and instances. R≈
A is a rewrite system consisting of rewrite rules l → r , for each

of which there is a clause (→ l ≈ r) in EA. The main property of R≈
A-reduced

instances is that every simple ground non-reduced instance Cσ of a clause C
is a logical consequence of the respective R≈

A-reduced instance Cσ′ and finitely
many clauses from EA ∪DA. This property is indispensable for presentation of
hierarchic redundancy criterion and proving the Hierarchic Lifting Lemma. In
Section 3.4.4 we give a formal definition of the hierarchic redundancy criterion
RH = (RHF ,RHI), and prove that RH does really confirm with the notion of a re-
dundancy criterion. In Section 3.4.5 we prove the Hierarchic Lifting Lemma – a
variant of the Lifting Lemma formulated for the hierarchic superposition calculus
(H,RH), and based on it show in the Hierarchic Saturation Theorem that satura-
tion of a set of abstracted clauses N with respect to (H,RH) implies saturation
of the set sgiA(N)∪EA ∪DA with respect to (F ,RF), where sgiA(N) stands for
the set of all simple ground R≈

A-reduced instances of N . In Section 3.4.6 we for-
mally define the notion of a weak algebra, and provide sufficient and necessary
conditions that determine a weak algebra. In Section 3.4.7 we define the Suffi-
cient Completeness property that describes the class of clause sets for which the
hierarchic superposition is refutationally complete. In Hierarchic Model Lemma
we prove that a sufficiently complete clause set has a model if and only if the set
sgiA(N) ∪EA ∪DA is satisfiable, for some base algebra A. In Section 3.4.8 we
finally prove that SUP(T) is refutationally complete mainly based on the H−F
Approximation Theorem where we assert that the hierarchic superposition calcu-
lus (H,RH) approximates the flat superposition for ground clauses (F ,RF), and
in the Hierarchic Completeness Theorem we assert the completeness of SUP(T).

3.4.2 Standard Superposition for Ground Clauses SUP

For the purpose of completeness lifting we only need the ground version of Bach-
mair and Ganzinger’s superposition calculus [BG91, BG94]. Here we recall the set
F of basic inference rules (Definitions 3.35-3.38) constituting the standard su-
perposition calculus SUP for ground clauses. Then, we give a definition of the
standard redundancy criterion RF (Definition 3.40) for ground clauses, based on
which later on in Section 3.4.4 we define the hierarchic redundancy criterion RH.
In the sequel we will often refer to the standard SUP calculus as the flat calculus.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′). Premises and conclusions of all SUP-rules,
presented below, are ground Σ′-clauses.

The ground superposition left rule isDEFINITION 3.35 Ï
Ground Superposition

Left I Γ1 →∆1, l ≈ r s[l] ≈ t ,Γ2 →∆2

s[r] ≈ t ,Γ1,Γ2 →∆1,∆2

where

(i) l Â r ,

(ii) s Â t ,

(iii) l ≈ r is strictly maximal in Γ1 →∆1, l ≈ r ,

3.4. Completeness of SUP(T) 55

(iv) s[l] 6≈ t is maximal in s[l] ≈ t ,Γ2 →∆2 and no literal in Γ2 is selected,
or

s ≈ t is selected,

(v) no literal in Γ1 is selected.

■
For the sake of compatibility with the hierarchic calculus, we impose one fur-

ther restriction on selection functions, namely: only non-base1 negative literals
can be selected in a clause.

Note that from the given definition of the ground superposition left rule it fol-
lows that the right premise of the rule is strictly greater than the left one. Indeed,
l Â r and s Â t , and l is a subterm of s, therefore (s[l] 6≈ t) Â (l ≈ r); moreover, the
literal l ≈ r is strictly maximal in the left premise, hence any other literal in the
left premise is also smaller than s[l] 6≈ t .

The ground superposition right rule is Î DEFINITION 3.36
Ground Superposition
RightI Γ1 →∆1, l ≈ r Γ2 →∆2, s[l] ≈ t

Γ1,Γ2 →∆1,∆2, s[r] ≈ t

where

(i) l Â r ,

(ii) s Â t ,

(iii) l ≈ r is strictly maximal in Γ1 →∆1, l ≈ r ,

(iv) s[l] ≈ t is strictly maximal in Γ2 →∆2, s[l] ≈ t ,

(v) (s[l] ≈ t) Â (l ≈ r),

(vi) no literal in Γ1, Γ2 is selected.

■
Condition (v) of the above definition ensures the right premise to be strictly

greater than the left one.

The ground equality resolution rule is Î DEFINITION 3.37
Ground Equality
ResolutionI Γ, t ≈ t →∆

Γ→∆

where

(i) t ≈ t is maximal in Γ, t ≈ t →∆ and no literal in Γ is selected, or

(ii) t ≈ t is selected.

■
The ground equality factoring rule is Î DEFINITION 3.38

Ground Equality
FactoringI Γ→∆, s ≈ t , s ≈ t ′

Γ, t ≈ t ′ →∆, s ≈ t ′

where

1The notions of pure, base, non-base, and free terms are given in Definition 3.16 on page 39.

56 Hierarchic Refutational Theorem Proving

(i) s Â t ,

(ii) s ≈ t is maximal in Γ→∆, s ≈ t , s ≈ t ′,

(iii) no literal in Γ is selected.

■

The inference rules Ground Equality Resolution, Ground Equality Factoring, andDEFINITION 3.39 Ï
Inference system F Ground Superposition Left/Right constitute the inference system F . ■

Next, we recall the definition of redundant ground clauses and inferences for
the flat case. The definition is adopted for the hierarchic case by sticking to clauses
over the body signature Σ′ of a hierarchic specification HSp.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 3.40 Ï
F-Redundant Clauses

F-Redundant Inferences
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N be a set of ground Σ′-clauses. We define RFF (N) to be the set of all
clauses C such that there exist clauses C1, . . . ,Cn ∈ N which are smaller than C
with respect to Â and entail C :

RFF (N)
def
= {C ∈C lΣ′ | ∃C1, . . . ,Cn ∈ N : C1, . . . ,Cn ≺C ,

and C1, . . . ,Cn |=C }.

We define RFI (N) to be the set of all inferences I such that either a premise of I is
redundant for N or else there exist clauses C1, . . . ,Cn ∈ N which are smaller than
the maximal premise of I with respect to Â and entail the conclusion of I :

RFI (N)
def
= {I ∈F (N) | (i) prem(I)∩RFF (N) 6= ;; or

(ii) ∃C1, . . . ,Cn ∈ N : C1, . . . ,Cn ≺ maxÂ(prem(I)),
and C1, . . . ,Cn |= concl(I)}.

■

Bachmair and Ganzinger have shown that any set of ground clauses N , which
is saturated with respect to F and does not contain an empty clauses, has a (Her-
brand) model IN (construction of IN is presented in Definition 2.29). Also, they
have shown that RF = (RFI ,RFF) is a redundancy criterion with respect to the
inference system F and the general entailment relation |=, and that the calculus
(F ,RF) is refutationally complete [BG94]. We put together these results in the
following lemma and theorem.

If a set N of ground clauses is saturated with respect to (F ,RF) and does not con-LEMMA 3.41 Ï
tain an empty clause, then the candidate interpretation1 IN is a model of N .

The inference system F and the redundancy criterion RF = (RFI ,RFF) satisfy theTHEOREM 3.42 Ï
following properties:

(i) RF is a redundancy criterion with respect to F and |=.

(ii) (F ,RF) is a refutationally complete calculus.

1Please, recall Definition 2.29 of a candidate interpretation IN , page 26.

3.4. Completeness of SUP(T) 57

In Section 3.4.4 we formulate a general hierarchic redundancy criterion that is
obtained by lifting the ground criterion to the general case. For this reason, we
shall often show different properties of general clauses/inferences by considering
their sets of all simple ground instances, reducing thereby the original problem
to the ground case. To this end, we shall heavily use results obtained for the flat
redundancy criterion RF , particularly, we shall need a further property of RF ,
stated in Lemma 3.43, which is a generalisation of the monotonicity property (ii)
in Definition 3.1 of an abstract redundancy criterion.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î LEMMA 3.43
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N and M be two sets of ground Σ′-clauses. If for every clause C ∈ N there
exist clauses C1, . . . ,Cn ∈ M such that

⋃
i Ci |=C and C1, . . . ,Cn ¹C , then:

(i) RFF (N) ⊆RFF (M),

(ii) RFI (N) ⊆RFI (M).

Statement (i). Consider an arbitrary clause C ′ ∈RFF (N). By Definition 3.40, there Î PROOF
exist clauses C ′

1, . . . ,C ′
m ∈ N such that⋃

1≤i≤m
C ′

i |=C ′,

and C ′
i ≺C ′ for every i ∈ {1, . . . ,m}. By assumption, for every such a clause C ′

i there
exist clauses C i

1, . . . ,C i
ni

∈ M such that⋃
1≤ j≤ni

C i
j |=C ′

i ,

and C i
j ¹C ′

i for every j ∈ {1, . . . ,ni }. By transitivity of the entailment relation |= and
ordering ≺, we obtain ⋃

1≤i≤m

⋃
1≤ j≤ni

C i
j |=C ′,

and C i
j ≺ C ′ for every i ∈ {1, . . . ,m} and j ∈ {1, . . . ,ni }. Hence, by Definition 3.40 of

RFF , we have C ′ ∈RFF (M).

Since C ′ has been picked fromRFF (N) arbitrarily, we concludeRFF (N) ⊆RFF (M).

Statement (ii). Consider an arbitrary inference I ∈RFI (N). By the definition

of RFI , either

– C ′ ∈RFF (N) for some C ′ ∈ prem(I); in this case, as we have just shown, C ′ ∈
RFF (M), thus I ∈RFI (M); or

– there exist clauses C ′
1, . . . ,C ′

m ∈ N such that⋃
1≤i≤m

C ′
i |= concl(I),

and C ′
i ≺ maxÂ(prem(I)) for every i ∈ {1, . . . ,m}. By the same argumentation

that we have used to show (i), we assert that there exist clauses C i
1, . . . ,C i

ni
∈ M ,

where i ranges from 1 to m, such that⋃
1≤i≤m

⋃
1≤ j≤ni

C i
j |= concl(I)

58 Hierarchic Refutational Theorem Proving

and C i
j ≺ max(prem(I)) for every i ∈ {1, . . . ,m} and j ∈ {1, . . . ,ni }. Therefore, by

Definition 3.40 of RFI , we have I ∈RFI (M).

Since I has been picked from RFI (N) arbitrarily, and for all possible cases of I

we have shown that I ∈RFI (M), it follows RFI (N) ⊆RFI (M). ■

The F-inference rules are defined such that the conclusion of an inference
is smaller than its largest premise with respect to any reduction ordering [BG90,
BG91, BG94]. In the context of a hierarchic specification, this property has a
stronger formulation: the non-base part1 of the conclusion of an F-inference
with non-base premises is smaller than the non-base part of its largest premise.
The stronger property has a useful implication that any ground non-base clause
C =Π,Γ→Υ,∆, whose non-base part Γ→ ∆ is smaller than or equal to the non-
base part Γ′ →∆′ of the conclusion D = concl(I) =Π′,Γ′ →Υ′,∆′ of an F-inference
I , is smaller than the inference’s largest premise maxÂ(prem(I)), even if the whole
clause C is larger than the whole conclusion D (which is the case if Γ→∆= Γ′ →
∆′ and Π→Υ ÂΠ′ →Υ′), with respect to any reduction ordering Â, under which
all base operator symbols Ω are smaller than non-base ones Ω′\Ω. We will exploit
this property in Section 3.3 when discussing the applicability of the hierarchic re-
duction rules.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 3.44 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

The non-base part of the maximal premise of an F-inference with non-base
premises is greater than the non-base part of the inference’s conclusion.

First, let us make the following very important observation. Let C be an arbitraryPROOF Ï
non-base clause. If some literal L is (strictly) maximal in C or selected, then L is
non-base: first, F admits selection only of non-base negative literals, and, second,
any ground non-base literal is strictly greater than any base one.

Assume I is a Ground Equality Resolution inference (Definition 3.37)

I Π,Γ, t ≈ t →Υ,∆

Π,Γ→Υ,∆

where Π and Υ consist of base atoms, and Γ and ∆ of non-base ones. The atom
t ≈ t is non-base. Obviously, Γ, t ≈ t →∆Â Γ→∆.

Assume I is a Ground Equality Factoring inference (Definition 3.38)

I Π,Γ→Υ,∆, s ≈ t , s ≈ t ′

Π,Γ, t ≈ t ′ →Υ,∆, s ≈ t ′

where Π and Υ consist of base atoms, and Γ and ∆ of non-base ones. The atoms
s ≈ t , s ≈ t ′ are non-base, whereas t ≈ t ′ may be base. Since s ≈ t is maximal in
the premise, and s Â t , we conclude t º t ′. Consequently,

s ≈ t º s ≈ t ′ Â t 6≈ t ′.
1Recall, that the (non-)base part of a clause is a clause consisting of all (non-)base literals occur-

ring in the given clause. For an abstracted clause, the base and the non-base parts coincide with the
base and free parts of the clause, respectively. For a simple instance of an abstracted clause, the base
part consists of all instantiated base literals, and the non-base part consists of all instantiated free
literals of the given clause.

3.4. Completeness of SUP(T) 59

Therefore, s ≈ t is greater than or equal to any literal in the conclusion of I . Be-
sides, s ≈ t occurs in the premise more often than in the conclusion. Hence,

Γ→∆, s ≈ t , s ≈ t ′ Â Γ, t ≈ t ′ →∆, s ≈ t ′

Â Γ→∆, s ≈ t ′.

Assume I is a Ground Superposition Left inference (Definition 3.35)

I Π1,Γ1 →Υ1,∆1, l ≈ r Π2, s[l] ≈ t ,Γ2 →Υ2,∆2

Π1,Π2, s[r] ≈ t ,Γ1,Γ2 →Υ1,Υ2,∆1,∆2

where Πi and Υi consist of base atoms, and Γi and ∆i of non-base ones, for each
i ∈ {1,2}. The atoms l ≈ r and s[l] ≈ t are non-base, whereas s[r] ≈ t may be base.
Since l is a subterm of s, we may infer that s 6≈ t Â l ≈ r . From the fact that l ≈ r
is strictly maximal in the left premise, we conclude that s 6≈ t is greater than any
literal in the left premise. Hence,

s[l] ≈ t ,Γ2 →∆2 Â s[r] ≈ t ,Γ1,Γ2 →∆1,∆2

Â Γ1,Γ2 →∆1,∆2

Assume I is a Ground Superposition Right inference (Definition 3.36)

I Π1,Γ1 →Υ1,∆1, l ≈ r Π2,Γ2 →Υ2,∆2, s[l] ≈ t

Π1,Π2,Γ1,Γ2 →Υ1,Υ2,∆1,∆2, s[r] ≈ t

where Πi and Υi consist of base atoms, and Γi and ∆i of non-base ones, for each
i ∈ {1,2}. The atoms l ≈ r and s[l] ≈ t are non-base, whereas s[r] ≈ t may be base.
Since l Â r , it follows that s[l] ≈ t Â s[r] ≈ t . Since the involved literals are strictly
maximal in the respective clauses, and s[l] ≈ t Â l ≈ r , it follows that s[l] ≈ t is
greater than any literal in the left premise. Hence,

Γ2 →∆2, s[l] ≈ t Â Γ1,Γ2 →∆1,∆2, s[r] ≈ t
Â Γ1,Γ2 →∆1,∆2

Thus, the non-base part of the maximal premise of any F-inference with non-
base premises is greater than the non-base part of its conclusion. ■

3.4.3 Reduced Instances and Extended Clause Sets

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are
the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

In the overview to the present section, we have reduced the problem of SUP(T)
completeness to hierarchic model existence of the ground clause set N ′ = sgi(N)∪
ẼA∪ D̃A, where A ∈ C is a base algebra, ẼA a set of positive unit clauses, each
of which consists of an equation between two distinct ground base terms that are
equal under the base algebra A, and D̃A is a set of negative unit clauses, each of
which consists of a disequation between two ground base terms that have differ-
ent interpretation under the A.

Evidently, the set N ′ might contain many clauses that are redundant with re-
spect to the ground redundancy criterion RF . In order to identify those redun-

60 Hierarchic Refutational Theorem Proving

dant clauses in N ′, we define the sets EA and DA of irredundant clauses con-
tained in ẼA and D̃A , such that EA∪DA |= ẼA∪ D̃A, Definition 3.49.

In the presence of clauses in EA ∪DA, a considerable bunch of clauses in
sgi(N) may be also redundant. Thus, any ground base clause C 6∈ EA ∪DA that
is satisfiable under some base algebra A ∈ C is a logical consequence of finitely
many clauses from EA∪DA, each of which is smaller than C , Lemma 3.51, there-
fore any such clause C is redundant.

A simple ground substitution σ allows arbitrary ground base terms to appear
in its image im(σ). Given a base algebra A, any ground base term t represents an
equivalence class [t]A consisting of ground base terms that have the same inter-
pretation in A as t , Definition 3.45. Each equivalence class [t]A has a minimal
element with respect to Â, which we denote by mÂ

A(t). Any equation between
two representatives of such equivalence class is entailed by a finite subset of EA
(clauses in DA play a role only for validating disequations). Then we can show that
every simple ground instance Cσ of a non-base clause C ∈ N is implied by a finite
subset of EA and another simple ground instance Cσ′ of C smaller than (or equal
to) C , Proposition 3.59, where σ′ is a simple ground substitution obtained from σ

by replacing every base (sub)term t in its image im(σ) with the minimal element
mÂ
A(t) of the equivalence class [t]A, Definition 3.54. We use notation sgiA(C) to

denote the set of all simple ground instances Cσ′ of a clause C , where every sim-
ple grounding substitution σ′ is reduced in the above sense; and we write NA to
denote the clause set sgiA(N)∪EA∪DA, Definition 3.56. Thus, each clause C in
sgi(N) \ NA is entailed by finitely many clauses in NA, which all are smaller than
C , Lemma 3.61, hence redundant.

The correctness of term/substitution reduction discussed just above is shown
using the apparatus of the term rewrite systems theory. Particularly for this pur-
pose, we introduce rewrite systems R̃≈

A and R≈
A containing all rewrite rules l → r

for each of which there is a clause (→ l ≈ r) in ẼA or in EA, respectively, Defini-
tion 3.46.

The current subsection is devoted to a formal definition of the sets R≈
A, EA,

DA, sgiA(N), NA, and proving the properties briefly discussed above. The prop-
erties will become particularly important in the section on lifting and saturation,
where they are used to show that all non-liftable ground inferences with premises
in NA are actually redundant, which is indispensable to ensure the mutual satu-
ration condition1.

Assume Sp= (Σ,C) is a base specification, with a base signature Σ= (S ,Ω) and aDEFINITION 3.45 Ï
[t]A

mÂ
A(t)

class of base algebras C .
Let A ∈ C be a base algebra. For every ground base term t ∈ TΩ we define

the equivalence class [t]A of t in A as the set consisting of all ground base terms
s ∈ TΩ that have the same interpretation in A as t :

[t]A
def
= {s ∈ TΩ | sA = tA}.

Assume Â is a reduction ordering total on ground Σ-terms. We write mÂ
A(t) to

denote the smallest term in [t]A with respect to the ordering ordering Â:

mÂ
A(t)

def
= minÂ([t]A).

1The mutual saturation condition is discussed in the overview to Section 3.4, pages 50-51.

3.4. Completeness of SUP(T) 61

■

Since Â is a reduction ordering total on ground terms, for any equivalence
class [t]A the term mÂ

A(t) is unique.
Next we define two rewrite systems which given a base algebra A ∈C induce

the same equality relation on ground base terms as A. The rewrite systems’ prop-
erties discussed below will be of a particular use when presenting the hierarchic
redundancy criterion.

Assume Sp= (Σ,C) is a base specification, with a base signature Σ= (S ,Ω) and a Î DEFINITION 3.46
Rewrite System R̃≈

A
Rewrite System R≈

A

class of base algebras C . Let Â be a reduction ordering total on ground Σ-terms.
Let A ∈ C be a base algebra. We define a rewrite system R̃≈

A as the set of all
rewrite rules between every ground base term t ∈ TΩ and the smallest term in its
equivalence class [t]A different from t :

R̃≈
A

def
= {t → mÂ

A(t) | t ∈ TΩ, t 6= mÂ
A(t)}.

We define a rewrite system R≈
A to be the reduced subset of R̃≈

A, that is, the set of
all rules (l → r) ∈ R̃≈

A such that l is not reducible by R̃≈
A \ {l → r }:

R≈
A

def
= {(l → r) ∈ R̃≈

A | l = l↓R̃≈
A\{l→r }}.

■

Obviously, R̃≈
A is terminating, confluent, and right-reduced. Next we show that

R≈
A induces the same equality relation on ground base terms as R̃≈

A.

Assume Sp = (Σ,C) is a base specification, with a base signature Σ = (S ,Ω) and a Î LEMMA 3.47
class of base algebras C .

Let A ∈ C be a base algebra. The rewrite systems R̃≈
A and R≈

A define the same
set of normal forms.

By contradiction. Let t be an arbitrary term in TΩ. Let Î PROOF

s′ = t↓R̃≈
A

and s = t↓R≈
A

be the normal forms of t with respect to R̃≈
A and R≈

A, respectively. Suppose s 6= s′.
Since R≈

A ⊆ R̃≈
A and R̃≈

A is confluent, we have

s →∗
R̃≈
A

s′′ and s′ →∗
R̃≈
A

s′′,

for some s′′ ∈ TΩ. Since s′ is the normal form of t with respect to R̃≈
A, we have

actually s′′ = s′. Moreover, by assumption, s 6= s′, hence

s →+
R̃≈
A

s′.

Let {s1, . . . , sn} be the set of all terms si ∈ TΩ that are reachable by a single R̃≈
A-

rewrite step from s in a rewriting s →+
R̃≈
A

s′. In other words, any rewriting s →+
R̃≈
A

s′

has form

s →R̃≈
A

si →∗
R̃≈
A

s′,

for some i ∈ {1, . . . ,n}. Let

R = {l1 → r1, . . . , lk → rk }

62 Hierarchic Refutational Theorem Proving

be the set of R̃≈
A-rewrite rules, by means of which a rewrite step s →R̃≈

A
si is possi-

ble, 1 ≤ i ≤ n. Obviously, R ⊆ R̃≈
A.

Let Â be the reduction ordering total on ground terms underlying R̃≈
A and R≈

A.
Let l → r be the rule in R, whose left-hand side l is the smallest with respect to Â
among all l j ’s in R, 1 ≤ j ≤ k. Note that l → r is unique (meaning it is the only rule
in R whose left-hand-side is the l), because r = mÂ

A(l) by definition of R̃≈
A, and Â

is total on ground terms. Moreover, l → r is the only rule in R̃≈
A, that can be used

to rewrite l . Indeed, suppose, for the sake of contradiction, that there is another
rewrite rule (l ′ → r ′) ∈ R̃≈

A such that l ′ 6= l and

l →{l ′→r ′} r ′′,

for some r ′′ ∈ TΩ. Note that l ′ → r ′ must also be contained in R, because it can be
used to rewrite s = s[l ′] to s[r ′]. Since l 6= l ′, the term l ′ occurs in l at a non-top
position p ∈ ρ(l), p 6= ε. Therefore, l ′ is a strict subterm of l , hence, by the subterm
property of Â, we obtain l ′ ≺ l , which contradicts the minimality of l within the
rules of R.

Since l → r is the only rule in R̃≈
A, by means of which l can be rewritten, it

follows that (l → r) ∈ R≈
A. Consequently, l → r can be applied to rewrite s even

further, contradicting the assumption that s is the normal form of t with respect
to R≈

A. ■

Lemma 3.47 and the facts that R̃≈
A is terminating, confluent, and right-reduced,

and R≈
A ⊆ R̃≈

A directly imply the following corollary.

Assume Sp = (Σ,C) is a base specification, with a base signature Σ = (S ,Ω) and aCOROLLARY 3.48 Ï
class of base algebras C .

Let A ∈ C be a base algebra. R≈
A is convergent and right-reduced. R̃≈

A and R≈
A

induce the same equality relation on ground base terms.

Note that any derivation t →∗
R≈
A

s is finite for any ground Σ′-term t ∈ TΩ′ , where

t is not necessarily base. Moreover, if t is a ground base term, then

mÂ
A(t) = t↓R≈

A
.

From definition of R≈
A and Lemma 3.47 it follows also that A(t) =A(s) if and only

if t↓R≈
A
= s↓R≈

A
, for any ground base terms t and s.

Assume Sp= (Σ,C) is a base specification, with a base signature Σ= (S ,Ω) and aDEFINITION 3.49 Ï
Clause Set EA
Clause Set DA

class of base algebras C .
Let A ∈ C be a base algebra. We identify EA with the set of all positive unit

clauses whose literals are the rewrite rules (equations) in the rewrite system1 R≈
A:

EA
def
= {(→ t ≈ t ′) | (t → t ′) ∈ R≈

A}.

We put DA to be the set of all negative unit clauses (t ≈ t ′ →), with t and t ′ being
two distinct ground base terms reduced with respect to the rewrite system R≈

A:

DA
def
= {(t ≈ t ′ →) | t , t ′ ∈ TΩ, t 6= t ′, t = t↓R≈

A
, t ′ = t ′↓R≈

A
}.

■
1Please, recall Definition 3.46 of the rewrite system R≈

A, page 61.

3.4. Completeness of SUP(T) 63

Note that since for any ground base term t it holds that mÂ
A(t) = t↓R≈

A
, the

clause set DA can be equivalently seen as follows:

DA = {(t ≈ t ′ →) | t , t ′ ∈ TΩ, t 6= t ′, t = mÂ
A(t), t ′ = mÂ

A(t ′)}.

Our next goal is to show that any C -consistent ground base clause C not con-
tained in the clause set EA is a logical consequence of finitely many clauses from
EA and DA, each of which is smaller than C , Lemma 3.51. As a preliminary step,
we prove in Proposition 3.50 that an equation between two ground base terms is
C -consistent if and only if it is entailed by finitely many clauses from EA, each
of which is smaller than the equation. In the proofs of Lemma 3.51 and Proposi-
tion 3.50 we exactly identify clauses in EA (and DA) that satisfy the stated prop-
erties. For an illustration, see Example 3.53 on page 66.

Assume Sp = (Σ,C) is a base specification, with a base signature Σ = (S ,Ω) and a Î PROPOSITION 3.50
class of base algebras C . Let Â be a reduction ordering total on ground Σ-terms.

Let A ∈ C be a base algebra, t , t ′ ∈ TΩ two ground base terms. If the clause
(→ t ≈ t ′) is not contained in EA, then t ≈ t ′ is true in A if and only if there exist
finitely many clauses C1, . . . ,Cn ∈ EA, for some n ≥ 0, such that C1, . . . ,Cn |= t ≈ t ′,
and Ci ≺ {t ≈ t ′}, for every 1 ≤ i ≤ n.

The “⇐” direction. Assume C1, . . . ,Cn |= t ≈ t ′ and C1, . . . ,Cn ∈ EA for some base Î PROOF
algebra A ∈C . Then we have:

A |=EA // by def. of EA
|=C1, . . . ,Cn // as C1, . . . ,Cn ∈EA

⇒ A |= t ≈ t ′ // as C1, . . . ,Cn |= t ≈ t ′ by assum.

The “⇒” direction. Assume A |= t ≈ t ′ and (→ t ≈ t ′) 6∈ EA, for two arbitrary
ground base terms t , t ′ ∈ TΩ and some base algebra A ∈ C . As t , t ′ ∈ TΩ and
A |= t ≈ t ′, the terms have the same normal form with respect to the rewrite sys-
tem R≈

A, say s ∈ TΩ, that is the minimal element in the equivalence class [t]A =
[s]A = [t ′]A the terms belong to:

t↓R≈
A
= mÂ

A(t) = s = mÂ
A(t ′) = t ′↓R≈

A
.

Hence, there exist rewritings t →∗
R≈
A

s and t ′ →∗
R≈
A

s from the terms to their normal

form s. Recall that any possible rewriting t →∗
R≈
A

s from t to s (and t ′ →∗
R≈
A

s from

t ′ to s) is finite. We prove the statement of the proposition by induction on the
sum |t →∗

R≈
A

s|+ |t ′ →∗
R≈
A

s| of the lengths of the rewritings.

Induction base. Assume

|t →∗
R≈
A

s|+ |t ′ →∗
R≈
A

s| = 0,

then t = s = t ′ and t ≈ t ′ is a tautology.

Induction hypothesis. Assume lemma holds for any t , t ′ ∈ TΩ such that

|t →∗
R≈
A

s|+ |t ′ →∗
R≈
A

s| ≤ k,

for some k ≥ 0.

Induction step. Assume

|t →∗
R≈
A

s|+ |t ′ →∗
R≈
A

s| = k +1.

64 Hierarchic Refutational Theorem Proving

Without loss of generality, represent the rewriting t →∗
R≈
A

s as follows:

t →R≈
A

s′ →∗
R≈
A

s,

for some ground base term s′ ∈ TΩ obtained from t by a single application of some
rule (l → r) ∈ R≈

A, i.e.

t →{l→r } s′.

By Definition 3.49, the clause (→ l ≈ r) is in EA. Evidently,

(→ l ≈ r) |= t ≈ s′.

Also, as (l → r) ∈ R≈
A, we know that A |= t ≈ s′, consequently A |= s′ ≈ t ′, because

A |= t ≈ t ′ by assumption. Since

|s′ →∗
R≈
A

s|+ |t ′ →∗
R≈
A

s| = k,

it follows by induction hypothesis that there exist clauses C1, . . . ,Cn ∈EA such that

C1, . . . ,Cn |= s′ ≈ t ′

and Ci ≺ {s′ ≈ t ′}, for every 1 ≤ i ≤ n. Consequently, Ci ≺ {t ≈ t ′} as t Â s′, for every
1 ≤ i ≤ n. Since r = mÂ

A(l) (by Definition 3.46 of R≈
A) and ≺ is a reduction ordering,

hence has the subterm property, we know that t º l Â r . Consider the following
cases regarding the order of t and l :

– if t Â l , then evidently {t ≈ t ′} Â {l ≈ r };

– if t ' l , implying t = l , then s′ = r . As r is irreducible in R≈
A, we have s′ = s,

i.e. |t →∗
R≈
A

s| = 1. If |t ′ →∗
R≈
A

s| = 0, then t ′ = s and (t ≈ t ′) = (l ≈ r), which

contradicts the assumption that (→ t ≈ t ′) is not contained in EA. Therefore,
|t ′ →∗

R≈
A

s| > 0 and, consequently, t ′ Â s = r , hence {t ≈ t ′} Â {l ≈ r }.

Putting Cn+1 = (→ l ≈ r), we obtain

C1, . . . ,Cn ,Cn+1 |= t ≈ s′, s′ ≈ t ′,

consequently

C1, . . . ,Cn ,Cn+1 |= t ≈ t ′,

where Ci ∈EA and {t ≈ t ′} ÂCi , for each i ∈ {1, . . . ,n +1}. ■

Assume Sp = (Σ,C) is a base specification, with a base signature Σ = (S ,Ω) and aLEMMA 3.51 Ï
class of base algebras C . Let Â be a reduction ordering total on ground Σ-terms.

Let A ∈C be a base algebra, and C a ground base clause not contained in EA∪
DA. ThenA |=C if and only if there exist finitely many clauses C1, . . . ,Cn ∈EA∪DA,
for some n ≥ 0, such that C1, . . . ,Cn |=C , and Ci ≺C , for every i ∈ {1, . . . ,n}.

The “⇐” direction. The proof for the “if”-statement is the same as that for Propo-PROOF Ï
sition 3.50 if the equation t ≈ t ′ replaced with the clause C .

The “⇒” direction. A ground clause C is true under A if and only if at least one
of its literals is true under A. Assume L = t ≈̇ s is such a literal, where ≈̇ ∈ {≈, 6≈}.
If {t ≈̇ s} ∈ EA ∪DA, then C is not a unit clause (as for otherwise C would be
contained in EA∪DA) and the statement evidently holds in this case. For the rest
of the proof assume {t ≈̇ s} 6∈ EA∪DA. Without restriction of generality, assume
t Â s (the case t = s is trivial). There are two possible cases regarding the sign of L:

3.4. Completeness of SUP(T) 65

– L is positive, i.e. L = t ≈ s. By Proposition 3.50, we know that there exist finitely
many clauses C1, . . . ,Cn ∈ EA such that C1, . . . ,Cn |= t ≈ s and Ci ≺ {t ≈ s}, for
every i ∈ {1, . . . ,n}.

– L is negative, i.e. L = t 6≈ s. ThenA |= L if and only ifA(t) 6=A(s). Let us denote
by t ′ and s′ the minimal elements in the equivalence classes [t]A and [s]A of
t and s, respectively:

t ′ =mÂ
A(t),

s′ =mÂ
A(s).

Obviously, the equations t ≈ t ′ and s ≈ s′ are true in A. From Proposition 3.50
we know that there exist finitely many clauses C1, . . . ,Cn′ and D1, . . . ,Dm′ in
EA, for some n′,m′ ≥ 0, such that

C1, . . . ,Cn′ |= t ≈ t ′,
D1, . . . ,Dm′ |= s ≈ s′,

and

Ci ¹ {t ≈ t ′},
D j ¹ {s ≈ s′},

for every i ∈ {1, . . . ,n′} and j ∈ {1, . . . ,m′}.
Put C ′ = {t ′ 6≈ s′}. According to Definition 3.49, the negative unit clause C ′ is
contained in DA. Thus, we have

C1, . . . ,Cn′ ,D1, . . . ,Dm′ ,C ′ |= t ≈ t ′, s ≈ s′, t ′ 6≈ s′

|= t 6≈ s
= L.

Now we are to to show that all clauses Ci ’s, D j ’s, and C ′ are smaller than
the disequation t 6≈ s, which in its turn implies that they are smaller than the
clause C as required by the lemma.

First, we compare disequation t 6≈ s with the clause C ′ = t ′ 6≈ s′. Since by as-
sumption {t 6≈ s} 6∈EA∪DA, and C ′ ∈DA, we conclude

{t ′ 6≈ s′} 6= {t 6≈ s}.

On other hand, from the fact that t ′ = mÂ
A(t) and s′ = mÂ

A(s) it follows t ′ ¹ t
and s′ ¹ s, consequently

{t ′ 6≈ s′} ¹ {t 6≈ s},

which in conjunction with the previous observation yields

{t ′ 6≈ s′} ≺ {t 6≈ s}.

Second, we compare t 6≈ s with the clauses Ci ’s and D j ’s. From the fact s′ ¹ s
and assumption s ≺ t , it follows

{s ≈ s′} ≺ {t 6≈ s}.

Since D j ¹ {s ≈ s′}, we obtain D j ≺ {t 6≈ s}, for every j ∈ {1, . . . ,m′}.

Consider a clause Ci , for an arbitrary i ∈ {1, . . . ,n′}. Let us represent it as Ci =
(→ li ≈ ri). To compare Ci and {t 6≈ s} we have to compare multisets {li ,ri } and
{t , t , s, s} in the multiset extension of Â. The facts Ci ¹ {t ≈ t ′} and t ′ ¹ t imply

66 Hierarchic Refutational Theorem Proving

t º li Â ri , yielding

{li ,ri } ≺mul {t , t , s, s}.

Thus, Ci ≺ {t 6≈ s}, for every i ∈ {1, . . . ,n′}.

Putting n = n′+m′+1, Cn′+ j = D j for every j ∈ {1, . . . ,m′}, and Cn =C ′, we get

C1, . . . ,Cn |=C

and Ci ≺ C , for every i ∈ {1, . . . ,n} and some finite n ≥ 0, where C1, . . . ,Cn ∈
EA∪DA.

Each case considered satisfies the lemma’s statement, and we are done. ■

From Lemma 3.51 it follows that if a ground base clause C is not entailed by a
base algebraA ∈C , then there exist finitely many ground base clauses D1, . . . ,Dn ∈
EA∪DA, such that the conjunction of C and D1, . . . ,Dn is unsatisfiable (in any al-
gebra):

C ,D1, . . . ,Dn |=⊥.

Indeed, if A 6|= C , then A |= ¬C = ∧m
i=1 Li , where L1, . . . ,Lm are all literals of the

clause C , for some m ≥ 0. Put Ci = {Li }, for every i ∈ {1, . . . ,m}, that is, let every
Ci be a unit clause, whose only literal is the i -th literal of C negated. Thus, A |=
C1, . . . ,Cm . From Lemma 3.51 we know there exist finitely many clauses C i

1, . . . ,C i
ni

∈
EA∪DA such that all C i

j ¹Ci , and C i
1, . . . ,C i

ni
|=Ci , for every i ∈ {1, . . . ,m}. Letting

{D1, . . . ,Dn} = {C 1
1 , . . . ,C m

nm
}, we obtain D1, . . . ,Dn |= ∧m

i=1 Li = ¬C , which holds, in
turn, iff C ,D1, . . . ,Dn |= ⊥. Without loss of generality, assume L j = (s ≈̇ t) be the
maximal literal of C , for some j ∈ {1, . . . ,m}, some ground base terms s, t ∈ TΩ, and

≈̇ ∈ {≈, 6≈}. If L j is negative, i.e. L j = (s 6≈ t), then L j = (s ≈ t), and every clause C j
`

,
where 1 ≤ `≤ n j , is strictly smaller than L j , with respect to the underlying order-
ing Â. But, if L j is positive, i.e. L j = (s ≈ t), and in addition (s ≈ t →) ∈ DA, then

C j = {L j } = (s ≈ t →) = C j
1 Â L j , consequently C j

1 Â C . This is the only case, when
a clause among D1, . . . ,Dn is greater than C . We formulate the observation in the
following corollary.

Assume Sp = (Σ,C) is a base specification, with a base signature Σ = (S ,Ω) and aCOROLLARY 3.52 Ï
class of base algebras C . Let Â be a reduction ordering total on ground Σ-terms.

Let A ∈ C be a base algebra, and C a ground base clause. Then A 6|= C if and
only if there exist finitely many clauses D1, . . . ,Dn ∈ EA∪DA, for some n ≥ 0, such
that C ,D1, . . . ,Dn |= ⊥. Moreover, if the maximal literal of C is not an equation
s ≈ t , such that (s ≈ t →) ∈DA, for some ground base terms s, t ∈ TΩ, then Di ≺ C ,
for every i ∈ {1, . . . ,n}.

Let us illustrate Lemma 3.51 on the following example.

Let T be the theory of linear integer arithmetic, A the standard model of LA, andEXAMPLE 3.53 Ï
C = 1+2+4 < 0 →

a negative unit ground base clause. Recall that 1+2+4 < 0 stands for (1+2+4 < 0) ≈
true<. Let Â be a reduction ordering total on ground Σ-terms with precedence
0 ≺ 1 ≺−1 ≺ 2 ≺−2 ≺ . . . ≺+≺ < . Letting

C1 = → 1+2 ≈ 3

3.4. Completeness of SUP(T) 67

C2 = → 3+4 ≈ 7
C3 = 7 < 0 →

we obtain C1,C2,C3 |= C and Ci ≺ C , for every i ∈ {1,2,3}, where C1,C2 ∈ EA, and
C3 ∈DA. ■

As we have already discussed at the beginning of the current section, a con-
siderable number of clauses in sgi(N) may become redundant in the presence of
clauses in EA∪DA. In order to identify those clauses, we next introduce notions
of R≈

A-reduced terms and substitutions. These notions we use to define then sim-
ple ground R≈

A-reduced instances of the clause N , which, as we shall show later,
constitute the non-redundant subset of sgi(N).

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.54
R≈
A-reduced term

R≈
A-reduced substitution

Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′). Let A ∈C be a base algebra.
A Σ′-term t is called R≈

A-reduced, if it is in the normal form with respect to the
rewrite system1 R≈

A:

t R≈
A-reduced

def⇐⇒ t = t↓R≈
A

.

A substitution σ is called R≈
A-reduced, if every term t ∈ im(σ) in the image of σ is

R≈
A-reduced:

σ R≈
A-reduced

def⇐⇒ ∀ t ∈ im(σ) : t R≈
A-reduced.

■

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.55
Simple ground
R≈
A-reduced instances

Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).
Given a Σ′-term t , a Σ′-clause C , or a set of Σ′-clauses N , the set of all simple

ground R≈
A-reduced instances of t , C , N is defined as:

sgiA(t)
def
= {tσ |σ simple, grounding, and R≈

A-reduced},

sgiA(C)
def
= {Cσ |σ simple, grounding, and R≈

A-reduced},

sgiA(N)
def
= {Cσ |C ∈ N , and σ simple, grounding, and R≈

A-reduced},

respectively. ■

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.56
Extended clause set NASp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

If A ∈C is a base algebra, and N a set of Σ′-clauses, then2

NA
def
= sgiA(N)∪EA∪DA.

■

Our next point is to prove that NA |= sgi(N) and that every clause in the set
sgi(N) \ NA is a logical consequence of a finite number of smaller clauses from
NA, for any clause set N and base algebra A, Lemma 3.61. For proving that, we
need some preliminary properties of R≈

A-reduced terms and substitutions. First,

1Please, recall Definition 3.46 of the rewrite system R≈
A, page 61.

2Please, recall Definition 3.49 of the clause sets EA and DA, page 62.

68 Hierarchic Refutational Theorem Proving

we show that an equation t ≈ t ′ between any two ground Σ′-terms, one of which
is an R≈

A-reduced variant of another, follows from a finitely many smaller clauses
from EA, Proposition 3.57. Then, we prove an analogous property for an equa-
tion tσ ≈ tσ′ between two simple ground instances of a Σ′-term t ∈ TΩ′ (X ′), one
of which is R≈

A-reduced, Proposition 3.58. And the last preliminary step is Propo-
sition 3.59, where we show that any simple ground instance Cσ of a Σ′-clause
follows from the respective R≈

A-reduced simple ground instance Cσ′ of the clause
and a finite subset of EA, with the clauses implying Cσ being all smaller then Cσ.
For an illustration for the last statement see Example 3.60, page 72.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationPROPOSITION 3.57 Ï
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ = Ω′ \Ω be the en-
richment sorts and operators, respectively. Let Â be a reduction ordering total on
ground Σ′-terms.

LetA ∈C be a base algebra, t ∈ TΩ′ a ground Σ′-term, and t ′ = t↓R≈
A

the normal

form of t with respect to the rewrite system R≈
A. If the clause (→ t ≈ t ′) is not con-

tained in EA, then there exist finitely many clauses C1, . . . ,Cn ∈EA, for some n ≥ 0,
such that C1, . . . ,Cn |= t ≈ t ′, and Ci ≺ {t ≈ t ′}, for every i ∈ {1, . . . ,n}.

Assume A is an arbitrary algebra from C . We prove the statement by inductionPROOF Ï
on the depth depth(t) of the term t .

Induction base. Assume depth(t) = 0, then t is actually a constant symbol,
say a.

If a ∈ Ω′′, that is a is a free constant, then t ′ = t = a, because no rule in R≈
A

can be used to rewrite a free term t , as for every (l ≈ r) ∈ R≈
A the terms l and r are

base, Definition 3.46 of R≈
A. Thus, t ≈ t ′ is a tautology, and n = 0.

If, otherwise, a ∈Ω, that is a is a base constant, then t ′ is a base term, andA |=
a ≈ t ′. Therefore, by Proposition 3.50, there exist finitely many clauses C1, . . . ,Cn ∈
EA, such that C1, . . . ,Cn |= a ≈ t ′ and Ci ≺ {a ≈ t ′}, for every i ∈ {0, . . . ,n} and some
n ≥ 0.

Induction hypothesis. Assume, the lemma holds for any ground Σ′-term t ∈
TΩ′ such that depth(t) ≤ k, for some k ≥ 0

Induction step. Assume depth(t) = k + 1. Without loss of generality, assume
t = f (t1, . . . , t`), for some `≥ 1. Since t ′ = t↓R≈

A
, there is a finite rewriting t →∗

R≈
A

t ′

of a length m = |t →∗
R≈
A

t ′|, for some m ≥ 0 (recall that any R≈
A-rewriting from a

ground Σ′-term is finite). If m = 0, then t = t ′ and (→ t ≈ t ′) is a tautology. For
otherwise, put s0 = t and sm = t ′, then the rewriting t →∗

R≈
A

t ′ can be represented

as follows:

t →∗
R≈
A

t ′

= =

s0 →R≈
A

s1 →R≈
A

. . . →R≈
A

sm

where for every i ∈ {0, · · · ,m −1} the (i +1)-st rewrite step is performed via a rule

3.4. Completeness of SUP(T) 69

(li → ri) ∈ R≈
A at a position pi ∈ ρ(si) in si :

si →{li→ri } si+1

= =︷ ︸︸ ︷
si [li]pi →{li→ri }

︷ ︸︸ ︷
si [ri]pi

Let p j be a highest position among p0, . . . , pm , i.e. for every i 6= j either pi is below
p j , or pi and p j are parallel. Consider two possible cases with respect to the
length |p j |:

– |p j | > 0, i.e. no rewrite step has been done at ε. Hence, the top symbols of
t and t ′ are the same symbol f = top(t ′/ε) = top(t/ε), for some f ∈ Ω′, and
t ′ = f (t ′1, . . . , t ′

`
) for some ground Σ′-terms t ′1, . . . , t ′

`
∈ TΩ′ . Every immediate

subterm t ′i of t ′ is the normal form of the respective immediate subterm ti

of t (as otherwise t ′ would not be the normal form of t), and every immedi-
ate subterm ti of t has depth depth(ti) ≤ k. By induction hypothesis, for every
pair ti and t ′i , i ∈ {1, . . . ,`}, there are finitely many clauses C i

1, . . . ,C i
ni

∈ EA, for
some ni ≥ 0, such that

C i
1, . . . ,C i

ni
|= ti ≈ t ′i

and C i
j ¹ {ti ≈ t ′i }, for every j ∈ {1, . . . ,ni }. Putting together all clauses C i

j , with i

ranging from 1 to `, and j from 1 to ni , each equation ti ≈ t ′i is a consequence
thereof:

C 1
1 , . . . ,C`

n` |= t1 ≈ t ′1, . . . , t` ≈ t ′`.

Then for any Σ′-algebra A′ satisfying all the clauses C i
j , we have:

A′ |=C 1
1 , . . . ,C`

n`
⇒ A′ |= t1 ≈ t ′1, . . . , t` ≈ t ′`
⇔ A′(ti) =A′(t ′i) // for each i ∈ {1, . . . ,`}

Hence,

A′(t) =A′(f (t1, . . . , t`))
= fA′ (A′(t1), . . . ,A′(t`))
= fA′ (A′(t ′1), . . . ,A′(t ′`)) // as A′(ti) =A′(t ′i)

for each i ∈ {1, . . . ,`}
=A′(f (t ′1, . . . , t ′`))
=A′(t ′)

⇔ A′ |= t ≈ t ′

As A′ has been picked arbitrarily, we conclude

C 1
1 , . . . ,C`

n` |= t ≈ t ′.

The subterm property of the reduction ordering ≺ yields

{ti ≈ t ′i } ≺ { f (t1, . . . , t`) ≈ f (t ′1, . . . , t ′
`

)},

for every i ∈ {1, . . . ,`}. Consequently, C i
j ≺ {t ≈ t ′}, for all i ∈ {1, . . . ,`} and j ∈

{1, . . . ,ni }.

– |p j | = 0, meaning p j = ε. Therefore, s j = l j and s j+1 = r j for some rule (l j →
r j) ∈ R≈

A. Obviously, s j is a base term as well as every predecessor and succes-
sor of s j in the derivation s0 →∗

R≈
A

sm , including t = s0 and t ′ = sm . This implies

70 Hierarchic Refutational Theorem Proving

that1 t ′ = t↓R≈
A
= mÂ

A(t), hence A |= t ≈ t ′. According to Proposition 3.50, the
statement of the lemma is satisfied for this case too.

For the both cases we have shown that the lemma’s statement holds; and we
are done. ■

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationPROPOSITION 3.58 Ï
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively. Let X ′ =X ∪X ′′ be the underlying variable
set consisting of base and non-base variables, respectively. Let Â be a reduction or-
dering total on ground Σ′-terms.

If A ∈ C is a base algebra, t ∈ TΩ′ (X ′) a Σ′-term, σ a simple grounding sub-
stitution for t , and σ′ the R≈

A-reduced2 σ, then there exist finitely many clauses
C1, . . . ,Cn ∈EA, for some n ≥ 0, such that C1, . . . ,Cn |= tσ≈ tσ′, and Ci ¹ {tσ≈ tσ′}.

We prove the proposition by induction on depth of t .PROOF Ï
Induction base. If depth(t) = 0, then t is either a constant, or a variable. If t

is a constant, then obviously tσ= t = tσ′ and tσ≈ tσ′ is a tautology. Assume t is
a variable, say x ∈ X ′. Let s = xσ and s′ = xσ′. From Definition 3.54 of a simple
grounding R≈

A-reduced substitution, we know s′ = s↓R≈
A

. Consider the following
two possible case:

– if (→ s ≈ s′) ∈EA, then the assertion trivially holds;

– otherwise, if (→ s ≈ s′) 6∈EA, we know from Proposition 3.57 that there exist
finitely many clauses C1, . . . ,Cn ∈ EA, such that C1, . . . ,Cn |= s ≈ s′ and Ci ≺
{s ≈ s′}, for every i ∈ {1, . . . ,n}.

Induction hypothesis. Assume the proposition’s statement holds for any term
t of depth depth(t) ≤ k, for some k ≥ 0.

Induction step. Consider a term t of depth depth(t) = k +1. Without loss of
generality, we represent the term in form t = f (t1, . . . , tm), for some f ∈ Ω′ and
ti ∈ TΩ′ (X ′), for every i ∈ {1, . . . ,m}, where m ≥ 1. From definition of a substitution
application, we know tσ = (

f (t1, . . . , tm)
)
σ = f (t1σ, . . . , tmσ), and analogously for

tσ′. By induction hypothesis, for every pair tiσ and tiσ
′, i ∈ {1, . . . ,m}, there exist

finitely many clauses C i
1, . . ., C i

ni
∈EA, for some ni ≥ 0, such that

C i
1, . . . ,C i

ni
|= tiσ≈ tiσ

′

and C i
j ¹ {tiσ≈ tiσ

′}, for every j ∈ {1, . . . ,ni }. Putting together all clauses C i
j , with

i ranging from 1 to m, and j from 1 to ni , each equation ti ≈ t ′i is a consequence
thereof:

C 1
1 , . . . ,C m

nm
|= t1σ≈ t1σ

′, . . . , tmσ≈ tmσ
′

Then for any Σ′-algebra A′ satisfying all the clauses C i
j , we have:

A′ |=C 1
1 , . . . ,C m

nm

⇒ A′ |= t1σ≈ t1σ
′, . . . , tmσ≈ tmσ

′

⇔ A′(tiσ) =A′(tiσ
′) // for each i ∈ {1, . . . ,m}

1Please, recall Definition 3.45 of mÂ
A(t), page 60.

2Please, recall Definition 3.54 of a R≈
A-reduced substitution, page 67.

3.4. Completeness of SUP(T) 71

Hence,

A′(tσ
)=A′((f (t1, . . . , tm))σ

)
= fA′

(A′(t1σ), . . . ,A′(tmσ)
)

= fA′
(A′(t1σ

′), . . . ,A′(tmσ
′)
)

// as A′(tiσ) =A′(tiσ
′)

for each i ∈ {1, . . . ,m}
=A′((f (t1, . . . , tm))σ′)
=A′(tσ′)

⇔ A′ |= tσ≈ tσ′

As A′ has been picked arbitrarily, we conclude

C 1
1 , . . . ,C m

nm
|= tσ≈ tσ′.

The subterm property of the reduction ordering ≺ yields

{tiσ≈ tiσ
′} ≺ {tσ≈ tσ′},

for every i ∈ {1, . . . ,m}. Consequently, C i
j ≺ {tσ ≈ tσ′}, for every i ∈ {1, . . . ,m} and

j ∈ {1, . . . ,ni }. ■

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î PROPOSITION 3.59
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′). Assume Â is a reduction ordering total
on ground Σ′-terms which orients any non-base term greater than any base one.

Let A ∈ C be a base algebra, C an arbitrary non-base Σ′-clause, σ a simple
grounding substitution for C , and σ′ the R≈

A-reduced σ. Then there exist finitely
many clauses C1, . . . ,Cn ∈ EA, for some n ≥ 0, such that C1, . . . ,Cn ,Cσ′ |= Cσ, and
Ci ≺Cσ, for every 1 ≤ i ≤ n.

Let C consist of literals L1, . . . ,Lm , for some m ≥ 0, and Li = (si ≈̇ ti), where ≈̇ ∈ {≈ Î PROOF
, 6≈}, for every i ∈ {1, . . . ,m}. From Proposition 3.58 it follows that for every si ≈̇ ti

there exist finitely many clauses C i
1, . . . ,C i

ni
such that

C i
1, . . . ,C i

ni
|= siσ

′ ≈ siσ, tiσ
′ ≈ tiσ,

Putting together all clauses C i
j , we have

C 1
1 , . . . ,C m

nm
|= skσ

′ ≈ skσ, tkσ
′ ≈ tkσ,

for any literal Lk = (sk ≈̇ tk) in the clause C , where k ∈ {1, . . . ,m}.

LetA′ be an arbitrary Σ′-algebra satisfying all clauses C 1
1 , . . . ,C m

nm
and the clause

Cσ′. Since Cσ′ is ground, we know that A′ |= Cσ′ if and only if A′ satisfies at
least one of its literals, say a literal L jσ

′ = (s jσ
′ ≈̇ t jσ

′), where ≈̇ ∈ {≈, 6≈}, for some
j ∈ {1, . . . ,m}. On other hand, from the observation above and the assumption that
A′ |=C 1

1 , . . . ,C m
nm

we learn

A′ |= skσ
′ ≈ skσ, tkσ

′ ≈ tkσ,

for any literal Lk = (sk ≈̇ tk) in the clause C . Putting these together and letting
k = j , we obtain

A′ |= s jσ
′ ≈ s jσ, t jσ

′ ≈ t jσ, s jσ
′ ≈̇ t jσ

′

⇒ A′ |= s jσ ≈̇ t jσ

⇔ A′ |= L jσ

⇒ A′ |=Cσ.

72 Hierarchic Refutational Theorem Proving

As A′ is an arbitrary algebra that satisfies the clauses C 1
1 , . . . ,C m

nm
, and Cσ′, we

conclude

C 1
1 , . . . ,C m

nm
,Cσ′ |=Cσ.

Since C is non-base, the clause Cσ is non-base as well, and therefore C i
j ≺Cσ. ■

Let us illustrate Proposition 3.59 by the following example.

Let T be the theory of linear integer arithmetic. Assume we are given an ab-EXAMPLE 3.60 Ï
stracted clause

C = y ≈ x +3 ∥ f (x, z) ≈ g (y, z) → P (x, y)

and a substitution

σ= {x 7→ 1+2, y 7→ 6, z 7→ h(2+2+1)},

where variables x, y are base, and z a free variable; f , g ,h,P free functions and
a free predicate, respectively. Let Â be a reduction ordering total on ground Σ′-
terms with precedence 0 ≺ 1 ≺−1 ≺ 2 ≺−2 ≺ . . . ≺+≺ < ≺ f ≺ g ≺ h ≺ P .

The R≈
A-reduced σ is the substitution σ′ = {x 7→ 3, y 7→ 6, z 7→ h(5)}. The clauses

Cσ and Cσ′ are:

Cσ= 6 ≈ 1+2+3 ‖ f (1+2,h(2+2+1)) ≈ g (6,h(2 ·2+1)) → P (1+2,6)
Cσ′ = 6 ≈ 3+3 ‖ f (3, h(5)) ≈ g (6,h(5)) → P (3, 6)

We want to find clauses C1, . . . ,Cn ∈ EA such that C1, . . . ,Cn ,Cσ′ |= Cσ, and Ci ≺
Cσ, for every 0 ≤ i ≤ n and some n ≥ 0. From Proposition 3.59 we know that there
always exist finitely many such clauses. From the proofs of Propositions 3.59, 3.58,
3.57, and 3.50, we know that the required clauses C1, . . . ,Cn are the clauses in EA
that correspond to the rewrite rules which have been used for reducing σ to σ′.
This way, letting

C1 = → 1+2 ≈ 3,
C2 = → 2+2 ≈ 4,
C3 = → 4+1 ≈ 5

we get

C1,C2,C3,Cσ′ |=Cσ,

where Ci ≺Cσ, for every i ∈ {1,2,3}. ■

The next lemma makes the crucial assertion in this section that every clause
C in sgi(N) \ NA follows from smaller clauses in NA. According to Definition 3.40
of the standard redundancy criterion RF for ground clauses, every such clause C
is redundant for NA.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationLEMMA 3.61 Ï
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′). Assume Â is a reduction ordering total
on ground Σ′-terms which orients any non-base term greater than any base one.

If N is a set of Σ′-clauses, and A ∈C a base algebra, then:

(i) for every clause C ∈ sgi(N)\NA there exist finitely many clauses C1, . . ., Cn ∈ NA,
such that C1, . . . ,Cn |=C and Ci ≺C , for every 0 ≤ i ≤ n and some n ≥ 0;

(ii) NA |= sgi(N).

3.4. Completeness of SUP(T) 73

Statement (i) follows from Lemma 3.51 and Proposition 3.59; statement (ii) is a Î PROOF
direct consequence of (i). ■

In the next section, we introduce the hierarchic redundancy criterion RH for
general Σ′-clauses. The criterion is based on the standard redundancy criterion
RF for ground clauses. Given a set N of general Σ′-clauses, redundant clauses
and inferences for N are defined with respect to the clause set NA = sgiA(N)∪
EA ∪DA, which makes the results of the current section very important for the
subsequent sections devoted to the hierarchic redundancy criterion and lifting
and saturation of sets of general Σ′-clauses.

3.4.4 Hierarchic Redundancy Criterion

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are
the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

A key ingredient for satisfying the mutual saturation condition1 is a correctly
chosen redundancy criterion. In the “flat” case, the general redundancy criterion
is formulated mainly according to the point of view that a non-ground clause/in-
ference is a generalisation of all its ground instances. Thus, a clause C is redun-
dant for a given clause set N , if all its ground instances gi(C) are redundant for
gi(N) with respect to the ground redundancy criterion RFF . This definition com-
plies with the requirement of entailment of redundant clauses by non-redundant
ones, as well as with the other requirements given in Definition 3.1 of an abstract
redundancy criterion (see Section 3.4.2, Theorem 3.42).

As we have already discussed in the overview to Section 3.4, such a formula-
tion is hardly applicable in the hierarchic case: first, we are straitened by simple
substitutions, second, we are interested in C -entailment2 |=C , rather than in the
general one |=. In this connection, we need to develop a hierarchic redundancy
criterion, which reduces the redundancy notion of a redundant clause/inference
to the level of simple ground instances (not all ground instances like in the flat
case), and enjoys entailment relative to C .

Still, we have to take into account the two following points essential for any
redundancy criterion:

– on one hand, it must allow performing sufficiently many non-redundant in-
ferences on a given clause set N to guarantee saturation on the ground level;

– on the other hand, it should define a reasonable bunch of redundant clauses
to keep N as small as possible.

These two requirements are quite opponent to each other. Thus, the hierarchic re-
dundancy criterion originally suggested by Bachmair, Ganzinger, and Waldmann
in [BGW94], where they call a clause C redundant for a given clause set N when-
ever all its simple ground instances sgi(C) are redundant for sgi(N), is sufficient

1The mutual saturation condition is discussed in the overview to Section 3.4 on
pages 50–51

2Please, recall Definition 3.25 of C -entailment, page 45.

74 Hierarchic Refutational Theorem Proving

to ensure the saturation condition, but is too weak and does not allow to delete
numerous redundant clauses above very trivial tautologies and trivially subsumed
clauses. We have developed a more sophisticated criterion better fitting to the in-
dicated restrictions and the intended purposes.

First, we introduce a notion of (R≈
A-reduced) simple ground instances of an

inference, Definitions 3.62-3.63, which we then use to define the hierarchic re-
dundancy criterion RH = (RHF ,RHI) in Definition 3.64. In the next step, we show
that our notion of hierarchic redundancy is more general than the one authored
by Bachmair, Ganzinger, and Waldmann, Lemma 3.66. The rest of the section is
devoted to proving thatRH conforms to the properties of an abstract redundancy
criterion given in Definition 3.1: in Propositions 3.67-3.69 we give some prelimi-
nary statements that then are exploited in Lemma 3.70 asserting RH to be really
a redundancy criterion.

Before we proceed, let us recall the following notations:

– (F ,RF) denotes the standard superposition calculus SUP for ground clauses,
where F is the system of the standard inference rules, and RF is the stan-
dard redundancy criterion for ground clauses (see Section 3.4.2);

– H the system of the hierarchic inference rules (see Section 3.3).

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 3.62 Ï
Simple Ground Instance

of Inference
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let I be a hierarchic superposition inference inH with premises C1, . . . ,Cn and
conclusion C , where the clauses C1, . . . ,Cn have no variables in common. Let I ′ be
a standard superposition inference in F with premises C ′

1, . . . ,C ′
n and conclusion

C ′. If σ is a simple grounding substitution s.t. Cσ=C ′ and Ciσ=C ′
i for all 1 ≤ i ≤

n, then I ′ is called a simple ground instance of inference I . The set of all simple
ground instances of an inference I is denoted by sgi(I). ■

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 3.63 Ï
Simple Ground R≈

A-reduced
Instance of Inference

Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let A ∈ C be a base algebra, and I a hierarchic superposition inference in
H with premises C1, . . . ,Cn and conclusion C , where the clauses C1, . . . ,Cn have
no variables in common. Let I ′ be a standard superposition inference in F with
premises C ′

1, . . . ,C ′
n and conclusion C ′. If σ is a simple grounding R≈

A-reduced
substitution1 s.t. Cσ = C ′ and Ciσ = C ′

i for all 1 ≤ i ≤ n, then I ′ is called a simple
ground R≈

A-reduced instance of inference I . The set of all simple ground R≈
A-

reduced instances of an inference I is denoted by sgiA(I). ■

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 3.64 Ï
H-Redundant Clauses RHF

H-Redundant Inferences RHI
RH

Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

LetA ∈C be a base algebra, and N a set of Σ′-clauses. We defineRHF (N) to be
the set of all Σ′-clauses C such that for every base algebraA ∈C all simple ground

1The notions of the rewrite system R≈
A and R≈

A-reduced terms/substitutions are introduced in
Section 3.4.3, Definitions 3.46 and 3.54, respectively.

3.4. Completeness of SUP(T) 75

R≈
A-reduced instances of C are redundant1 for NA or contained2 in EA or DA:

RHF (N)
def
= {C ∈C lΣ′ | ∀A ∈C : sgiA(C) ⊆RFF (NA)∪EA∪DA}.

We define RHI (N) to be the set of all hierarchic superposition inferences I such
that either I is not a constraint refutation inference and for every base algebra
A ∈C all simple ground R≈

A-reduced instances of I are redundant for NA, or else
I is a constraint refutation inference and ä∈ N :

RHI (N)
def
= {I ∈H(N) | (i) I not a Constraint Refutation inference,

and ∀A ∈C : sgiA(I) ⊆RFI (NA); or
(ii) I a Constraint Refutation inference,

and ä∈ N }.

We write RH to denote the pair (RHI ,RHF). ■

Our goal now is to show that RH = (RHI ,RHF) is a redundancy criterion with
respect to the inference system H and entailment relation |=C . But first we show
that our definition of H-redundant clauses and inferences is stronger than the
one given in the paper of Bachmair, Ganzinger, and Waldmann [BGW94], mean-
ing that a clause or an inference that is redundant with respect to the hierarchic
redundancy criterion given in [BGW94] is also redundant relative to our notion of
the hierarchic redundancy criterion.

In the following proposition we prove that ground clauses/inferences that are
redundant with respect to the set sgi(N) of all simple ground instances of a clause
set N are also redundant with respect to the set NA, for any base algebra A ∈
C . The property is needed in the proof of Lemma 3.66 where we show that a
clause or an inference, that is redundant in the sense of Bachmair, Ganzinger, and
Waldmann, is also redundant relative to Definition 3.64.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î PROPOSITION 3.65
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let A ∈ C be a base algebra, N a set of Σ′-clauses. If a ground Σ′-clause C (an
F-inference I) is redundant for sgi(N), then it is also redundant for NA:

∀A ∈C : RF (sgi(N)) ⊆RF (NA).

Follows from Lemma 3.61(i) and Lemma 3.43. ■ Î PROOF

Now we are in a position to show our redundancy notion being stronger the
one given by Bachmair, Ganzinger, and Waldmann in [BGW94], according to which3

a Σ′-clause C is redundant for a set of Σ′-clauses N if all simple ground instances
of C are redundant for the set of all simple ground instances of N ; and a hierar-
chic H-inference I is redundant for N if either (i) I is not a constraint refutation

1Please, recall Definition 3.40 of the standard redundancy criterion RF = (RFF ,RFI) for ground
clauses, page 56.

2The notions EA, DA, and NA are introduced in Section 3.4.3, Definitions 3.49 and 3.56, respec-
tively.

3The hierarchic redundancy criterion, invented by Bachmair, Ganzinger, and Waldmann, can be
found in [BGW94] on page 203, Definition 14.

76 Hierarchic Refutational Theorem Proving

inference and all simple ground instances of I are redundant for the set of all sim-
ple ground instances of N , or else (ii) I is a constraint refutation inference and an
empty clause ä is in N :

C redundant1, if sgi(C) ⊆RFF (sgi(N)),

I redundant1, if (i) I not a Constraint Refutation inference,

and sgi(I) ⊆RFI (sgi(N)); or
(ii) I a Constraint Refutation inference,

and ä∈ N ,

where RF = (RFF ,RFI) is the standard redundancy criterion for ground clauses,
Definition 3.40. In the following lemma, we do not consider the case of I being a
constraint refutation inference, because this case is the same as in our definition
of an H-redundant inference.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=LEMMA 3.66 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N be a set of Σ′-clauses, C a Σ′-clause, and I an H-inference. Then:

(i) sgi(C) ⊆RFF (sgi(N)) implies sgiA(C) ⊆RFF (NA), for every A ∈C ;

(ii) sgi(I) ⊆ RFI (sgi(N)) implies sgiA(I) ⊆ RFI (NA), for every A ∈ C , if I is not a
constraint refutation inference.

For (i) assume sgi(C) ⊆RFF (sgi(N)), then:PROOF Ï
sgiA(C) ⊆RFF (sgi(N)) // as sgiA(C) ⊆ sgi(C)

⇒ sgiA(C) ⊆RFF (NA) // by Proposition 3.65

For (ii) a proof is the same as for (i) if C replaced with I , and RFF with RFI . ■

Until recently, [BGW94] had been the only work so far dedicated to hierarchic
superposition, where a definition of hierarchic redundancy is given and shown to
be really a redundancy criterion. All subsequent works [AKW09a, EKS+11, KW11,
FW11, FKW12b] are based on this paper, and replicate the definition of hierarchic
redundancy from there. As it turns out, most results presented in these works are
true only with respect to our definition of hierarchic redundancy, but false with
respect to the one of [BGW94]. The reason is that the mentioned works heavily
rely on using reduction rules, which, as claimed, obey the redundancy criterion
of [BGW94], but in fact they do not. However, reduction rules exploited there
agree with our definition, so the papers’ contributions are revived if coped with
the redundancy criterion given here in Definition 3.64.

Comparison to hierarchic redundancy criterion of [BW13]

The most recent work by Baumgartner and Waldmann [BW13] offers another hie-
rarchic reduction criterion very much similar to the one proposed by us, namely:

1. . . with respect to Bachmair, Ganzinger, and Waldmann’s hierarchic redundancy notion.

3.4. Completeness of SUP(T) 77

C redundant, if sgi(C) ⊆RFF (sgi(N)∪Gnd(C))∪Gnd(C),

I redundant, if (i) I not a Constraint Refutation inference,

and sgi(I) ⊆RFI (sgi(N)∪Gnd(C)); or
(ii) I a Constraint Refutation inference,

and ä∈ N ,

where Gnd(C) is the set of all ground base formulae that are satisfied
by every base algebra A ∈C . (Baumgartner, Waldmann [BW13])

From Lemma 3.51 it follows that the set Gnd(C) is entailed by EA ∪DA, for ev-
ery base algebra A ∈ C , but Gnd(C) does not entail EA∪DA, in general. Conse-
quently, the Hierarchic Redundancy Criterion RH proposed in Definition 3.64 is
stronger than (or, in general, is at least as strong as) the one from [BW13].

We proceed to show that RH = (RHI ,RHF) is a redundancy criterion with respect
to the inference system H and entailment relation |=C . To do this we need to
make sure that RH agrees with each condition in Definition 3.1 of an abstract
redundancy criterion. We prove this in Lemma 3.70, and in Propositions 3.67-
3.69 we show some preliminary properties of simple ground instances that are
exploited in the proof of Lemma 3.70. Particularly, in Proposition 3.67 we pro-
vide three sufficient conditions of entailment relative to C of one clause set by
another expressed in terms of simple ground instances of the clause sets. Propo-
sition 3.68 asserts a simple property that for any two clause sets N and M , if a
clause C is contained in sgiA(N) and not in sgiA(M), then C is a simple ground
instance of some clause in N \ M . Proposition 3.69 states that given a clause set
N , the set sgiA(N) \ (RFF (NA) ∪EA ∪DA) of all non-redundant simple ground

R≈
A-reduced instances of N is contained in the set sgiA(N \RHF (N)) of all sim-

ple ground R≈
A-reduced instances of the non-redundant subset of N , or roughly

speaking, non-redundant simple ground R≈
A-reduced instances of N are instances

of non-redundant clauses in N .

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 3.67
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let N and M be sets of Σ′-clauses. If one of the following conditions is fulfilled1:

(i) sgi(N) |= sgi(M), or

(ii) sgiA(N) |= sgiA(M) for every base algebra A ∈C , or

(iii) NA |= sgiA(M) for every base algebra A ∈C ,

then N |=C M.

First we show item (iii) implies N |=C M . So, assume there exists a Σ′-model A′ Î PROOF
of N such that A′|Σ =A for some base algebra A ∈C ; if there is no such a model

1Please, recall Definition 3.49 of the clause sets EA and DA, page 62; Definition 3.54 of a set of all
simple ground R≈

A-reduced instances sgiA, page 67; and Definition 3.56 of a clause set NA, page 67.

78 Hierarchic Refutational Theorem Proving

A′ of N , then N |=C M trivially holds. Assume also NA |= sgiA(M) holds for every
base algebra A ∈C . Then:

A′ |= gi(N) // as A′ |= N by assum.
|= sgiA(N) // as sgiA(N) ⊆ gi(N)

⇒ A′ |= sgiA(N)∪EA∪DA // as A′|Σ =A ∈C by assum.
= NA // by Def. 3.56

⇒ A′ |= sgiA(M) // as NA |= sgiA(M) by assum.
⇒ A′ |= sgiA(M)∪EA∪DA // as A′|Σ =A by assum.

= MA // by Def. 3.56
|= sgi(M) // by Lemma 3.61

Thus, A′ |= sgi(M).
From the assumption A′|Σ = A ∈ C , we know that SA′ = SA holds for every

base sort S ∈S . Consider an arbitrary ground Σ′-term t ′ ∈ TΩ′ of a base sort S ∈S .
Let A′(t ′) = e for some e ∈ SA′ . Since SA′ = SA and C consists of term-generated
algebras, there exists a ground base term t ∈ TΩ such thatA(t) = e =A′(t) =A′(t ′).
From this we conclude that for any grounding substitution σ′ there exists an A′-
equivalent simple grounding substitution σ, in the sense that dom(σ′) = dom(σ),
and ∀x ∈ dom(σ′) :A′(xσ′) =A′(xσ). This implies that each ground instance Cσ′

of any clause C in M is equivalent to some simple ground instance Cσ under A′,
i.e. A′ |=Cσ′ iff A′ |=Cσ. Therefore,

A′ |= sgi(M) iff A′ |= gi(M)
⇒ A′ |= gi(M) // as A′ |= sgi(M)
⇔ A′ |= M

As A′ has been picked arbitrarily, we conclude N |=C M .
Proofs for items (i) and (ii) are similar to (and simpler than) that for (iii). ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 3.68 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N , M be sets of Σ′-clauses. For every base algebra A ∈C it holds that

sgiA(N) \ sgiA(M) ⊆ sgiA(N \ M).

Let A be a base algebra in C , and C ′ a clause in sgiA(N) \ sgiA(M), if any. Ob-PROOF Ï
viously, C ′ ∈ sgiA(N) and C ′ 6∈ sgiA(M). Since C ′ ∈ sgiA(N), there exists a clause
C ∈ N such that Cσ = C ′ for some simple grounding R≈

A-reduced substitution σ,
hence C ′ ∈ sgiA(C). On the other hand, since C ′ 6∈ sgiA(M), there is no D ∈ M
such that Dρ =C ′, for a simple grounding R≈

A-reduced substitution ρ. Therefore,
C 6∈ M , hence C ∈ N \ M , and consequently C ′ ∈ sgiA(N \ M). As A and C ′ have
been picked arbitrarily, the assertion follows. ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 3.69 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N be a set of Σ′-clauses. For every base algebra A ∈C it holds that

sgiA(N) \ (RFF (NA)∪EA∪DA) ⊆ sgiA(N \RHF (N)).

Let A be a base algebra in C , and C ′ a clause in sgiA(N) \ (RFF (NA)∪EA∪DA),PROOF Ï
if any. Obviously, C ′ ∈ sgiA(N), and C ′ 6∈RFF (NA)∪EA∪DA. Since C ′ ∈ sgiA(N),

3.4. Completeness of SUP(T) 79

there exists a clause C ∈ N , s.t. Cσ = C ′, for some simple grounding R≈
A-reduced

substitution σ, hence C ′ ∈ sgiA(C). Thus, we have:

C ′ 6∈RFF (NA)∪EA∪DA
⇒ sgiA(C) 6⊆RFF (NA)∪EA∪DA // as C ′ ∈ sgiA(C)

⇒ C 6∈RHF (N) // by Def. 3.64 of RHF
⇒ C ∈ N \RHF (N) // as C ∈ N

⇒ C ′ ∈ sgiA(N \RHF (N)) // as C ∈ sgiA(C)

Since the algebra A and clause C ′ have been picked arbitrarily, the assertion fol-
lows. ■

Having disposed of the preliminary step that provides all properties needed,
next we prove RH to be a redundancy criterion.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î LEMMA 3.70
Hierarchic
Redundancy Criterion

(Σ,C) and the body Sp′ = (Σ′, Ax ′).
The pair RH = (RHI ,RHF) is a redundancy criterion with respect to1 the infer-

ence system H and entailment relation |=C .

For RH to be a redundancy criterion, it must satisfy all conditions of Defini- Î PROOF
tion 3.1, which in the context of H and |=C are:

(i) N \RHF (N) |=C RHF (N);

(ii) if N ⊆ M , then RHF (N) ⊆RHF (M) and RHI (N) ⊆RHI (M);

(iii) if I ∈H(M) and concl(I) ∈ N ∪RHF (N), then I ∈RHI (N);

(iv) if M ⊆RHF (N), then RHF (N) ⊆RHF (N \ M) and

RHI (N) ⊆RHI (N \ M).

Next, we show every item in turn.
Condition (i). Let N be a set of Σ′-clauses, and C a clause in RHF (N). From Defi-

nition 3.64 ofRHF we know that sgiA(C) ⊆RFF (NA)∪EA∪DA holds for every base
algebra A ∈C . Pick an arbitrary base algebra A ∈C . We split the set sgiA(C) into
two parts M1 and M2 defined as follows:

M1 = sgiA(C)∩RFF (NA)
M2 = sgiA(C)∩ (EA∪DA).

Evidently, sgiA(C) = M1 ∪M2. Since RF is a redundancy criterion, Theorem 3.42,
we have

NA \RFF (NA) |=RFF (NA) // by Cond. (i) of Def. 3.1

|= M1 // as M1 ⊆RFF (NA)

⇒ NA \RFF (NA)∪EA∪DA |= M1 ∪M2 // as M2 ⊆EA∪DA
1Please, recall Definition 3.32 of the hierarchic superposition inference system H, page 49; Def-

inition 3.39 of the standard superposition inference system F , page 56; Definition 3.25 of the en-
tailment relation |=C , page 45; Definition 3.46 of the rewrite system R≈

A, page 61; Definition 3.49 of

clause sets EA and DA, page 62; Definition 3.55 of sets of all simple ground R≈
A-reduced instances

sgiA, page 67; Definition 3.56 of a clause set NA, page 67; Definitions 3.64 and 3.40 of the hierarchic

RH = (RHF ,RHI) and the standard ground RF = (RFF ,RFI) redundancy criterions, pages 74 and 56,
respectively.

80 Hierarchic Refutational Theorem Proving

= sgiA(C)

Consider the set NA \RFF (NA)∪EA∪DA more elaborately:

NA \RFF (NA) ∪ EA∪DA
= (EA∪DA∪ sgiA(N)) \RFF (NA) ∪ EA∪DA // by def. of NA
= (EA∪DA) \RFF (NA) ∪ sgiA(N) \RFF (NA) ∪ EA∪DA
= EA∪DA ∪ sgiA(N) \RFF (NA)

= EA∪DA ∪ sgiA(N) \ (RFF (NA)∪EA∪DA)

⊆ EA∪DA ∪ sgiA(N \RHF (N)) // by Prop. 3.69

= EA∪DA ∪ sgiA(N ′) // where N ′ = N \RHF (N)
= N ′

A
As the algebra A has been picked arbitrarily, it follows that N ′

A |= sgiA(C) holds
for every base algebra A ∈ C . From Proposition 3.67 (iii), it follows N ′ |=C C , or
equivalently, N \RHF (N) |=C C . As C is an arbitrary clause from RHF (N), we con-

clude N \RHF (N) |=C RHF (N).

Condition (ii). Let N and M be sets of Σ′-clauses, such that N ⊆ M . Evidently,
sgiA(N) ⊆ sgiA(M) is true for every base algebra A ∈C . Consequently, NA ⊆ MA
for every A ∈C . Since RF has the monotonicity property (Condition (ii) of Defi-
nition 3.1), we conclude

∀A ∈C :RF (NA) ⊆RF (MA).

Let C be an arbitrary clause from RHF (N). Thus, we have

C ∈RHF (N)

⇔ ∀A ∈C : sgiA(C) ⊆RFF (NA) ∪EA∪DA // by Def. 3.64 of RHF
⇒ ∀A ∈C : sgiA(C) ⊆RFF (MA)∪EA∪DA // as RF (NA) ⊆RF (MA),

by the observ. above

⇔ C ∈RHF (M) // by def. of RHF
Let I be an arbitrary inference from RHI (N) different from constraint refutation,
then:

I ∈RHI (N)

⇔ ∀A ∈C : sgiA(I) ⊆RFI (NA) // by Def. 3.64 of RHI
⇒ ∀A ∈C : sgiA(I) ⊆RFI (MA) // as RF (NA) ⊆RF (MA),

by the observ. above

⇒ I ∈RHI (M) // by def. of RHI
If I is a constraint refutation inference, then ä∈ N – by definition ofRHI . Con-

sequently, ä ∈ M , and I ∈RHI (M) follows. As the clause C and inference I have

been picked arbitrarily, we conclude RHF (N) ⊆RHF (M) and RHI (N) ⊆RHI (M).

Condition (iii). Let N and M be sets of Σ′-clauses. Consider an arbitrary hierar-
chic H-inference I ∈H(M), whose premises prem(I) are C1, . . . ,Cn ∈ M , and con-
clusion concl(I) is C ∈ N ∪RHF (N).

If I is a constraint refutation inference, then, by Definition 3.31, the conclusion
C is actually an empty clause ä. Since there is no clause D ≺ä, it holds, according
to Definition 3.40, that ä 6∈ RFF (NA) for any A ∈ C , consequently ä 6∈ RHF (N).

Therefore, ä∈ N , and I ∈RHI (N) follows by definition of RHI (N).

3.4. Completeness of SUP(T) 81

Assume I is not a constraint refutation inference. Pick an arbitrary base al-
gebra A ∈ C and consider an arbitrary simple ground R≈

A-reduced instance I ′ ∈
sgiA(I) of the inference I , if any. By Definition 3.63 of a simple ground R≈

A-reduced
instance of an inference, premises of I ′ are clauses C1σ, . . . ,Cnσ, and the conclu-
sion is a clause Cσ, for some simple grounding R≈

A-reduced substitution σ. As

C ∈ N ∪RHF (N), we have

Cσ ∈ sgiA(N ∪RHF (N))

= sgiA(N)∪ sgiA(RHF (N))

⊆ sgiA(N)∪RFF (NA)∪EA∪DA // by Def. 3.64 of RHF
= NA∪RFF (NA) // as NA = sgiA(N)∪EA∪DA,

by Def. 3.56 of NA
yielding, by condition (iii) of Definition 3.1 of an abstract redundancy criterion,
that I ′ ∈RFI (NA). Since I ′ is picked from sgiA(I) arbitrarily, we conclude sgiA(I) ⊆
RFI (NA)). As A has been taken arbitrarily from C , we conclude, by definition of

RHI , that I ∈RHI (N).

Condition (iv). Assume N and M are arbitrary sets of Σ′-clauses, such that M ⊆
RHF (N). Let C be an arbitrary clause in RHF (N), and I an arbitrary inference in

RHI (N). Also, suppose I is not a constraint refutation inference. Then by Defini-

tion 3.64 of RH, we know that for any base algebra A ∈C the following hold:

sgiA(I) ⊆ RFI (NA),

sgiA(C) ⊆ RFF (NA)∪EA∪DA, and

sgiA(M) ⊆ RFF (NA)∪EA∪DA.

We split the set sgiA(M) into two parts M1 and M2 defined as follows:

M1 = sgiA(M)∩RFF (NA),
M2 = sgiA(M)∩ (EA∪DA).

Evidently, sgiA(M) = M1 ∪M2. Consider the set RF (NA) more elaborately:

RF (
NA

)⊆RF (
NA \ M1

)
// as M1 ⊆RFF (NA), and

by cond. (iv) of Def. 3.1

=RF (
(EA∪DA∪ sgiA(N)) \ M1

)
// by def. of NA

=RF (
(EA∪DA) \ M1 ∪ sgiA(N) \ M1

)
⊆RF (

EA∪DA∪ sgiA(N) \ M1
)

// by monoton. of RF
=RF (

EA∪DA∪ sgiA(N) \ (M1 ∪M2)
)

// as M2 ⊆EA∪DA
=RF (

EA∪DA∪ sgiA(N) \ sgiA(M)
)

⊆RF (
EA∪DA∪ sgiA(N \ M)

)
// by Prop. 3.68 and

monoton. of RF
=RF (

EA∪DA∪ sgiA(N ′)
)

// where N ′ = N \ M

=RF (
N ′
A

)
// by Def. 3.56

Thus, sgiA(C) ⊆RFF (N ′
A)∪EA∪DA and sgiA(I) ⊆RFI (N ′

A) for any A ∈C , where

N ′ = N \ M . Therefore, by definition of RH, we obtain C ∈ RHF (N \ M) and I ∈
RHI (N \ M).

If I is a constraint refutation inference, then, by Definition 3.64, ä ∈ N . Since
there is no clause C ′ ≺ä, it holds, according to Definition 3.40, that ä 6∈RFF (NA)

82 Hierarchic Refutational Theorem Proving

for anyA ∈C , consequently ä 6∈RHF (N). Hence, concl(I) =ä∈ N \RHF (N) ⊆ N \M .

By Condition (iii), proven above, I ∈RHI (N \ M).

As C and I have been picked arbitrarily, we concludeRHF (N) ⊆RHF (N \M) and

RHI (N) ⊆RHI (N \ M).

The pair RH = (RHF ,RHI) has been shown to comply with every condition of

Definition 3.1, thus RH is a redundancy criterion. And the proof is complete. ■

3.4.5 Lifting and Saturation

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are
the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

One of the two main steps towards proving refutational completeness of SUP(T)
is to guarantee mutual saturation1 of a given set N of abstracted clauses with re-
spect to the hierarchic calculus (H,RH), on one hand, and the respective ground
clause set2 NA – with respect to the flat (standard) ground calculus (F ,RF), on
the other. In the case of the standard superposition calculus SUP, the step is done
mainly via so-called Lifting Lemma. Roughly speaking, the lemma asserts that for
a given set M of general FOL clauses, if there exists a non-redundant ground infer-
ence with premises from gi(M), then there exists a non-redundant general infer-
ence from M , such that the former inference is a ground instance of the latter one.
From this it follows that if M is saturated with respect to the SUP calculus for gen-
eral clauses then gi(M) is saturated with respect to the SUP calculus for ground
clauses, because, for otherwise, if there existed a non-redundant inference from
gi(M), then, according to the Lifting Lemma, there must exist a non-redundant
inference from M , contradicting the assumption that M is saturated.

If we want to follow a similar schema in the hierarchic case, then we need a
variant of the lifting lemma, that would claim for any non-redundant ground stan-
dard inference on NA existence of the corresponding non-redundant hierarchic
inference on N . But then we immediately face a problem of ground inferences
involving base clauses. Recall that the hierarchic superposition inference rules
admit as premises only non-base clauses (except the constraint refutation rule,
which anyway does not have a corresponding rule in flat ground calculus). Thus,
since a ground base clause can be an instance only of a base clause, we get that for
any F-inference with a base premise Cσ ∈ sgiA(N) there is no H-inference with
the corresponding base premise C ∈ N , which violates the lifting lemma. More-
over, the set NA contains clauses, that are not instances of any clause from N :
these are the clauses in EA∪DA (except custom cases when N and EA∪DA share
some clauses).

A possibility to resolve the problem of non-applicability of the standard lift-
ing lemma to the case of ground inferences with base premises is to restrict the
statement of the lemma to such inferences that involve only non-base premises.

1The mutual saturation condition is discussed in the overview to Section 3.4, pages 50-51
2Please, recall Definition 3.20 of an abstracted clause, page 41; Definition 3.46 of a rewrite sys-

tem R≈
A, page 61; Definition 3.54 of a set of all simple ground R≈

A-reduced instances sgiA, page 67;
Definitions 3.49 and 3.56 of clause sets EA, DA, and sgiA(N), pages 62 and 67, respectively.

3.4. Completeness of SUP(T) 83

This is what we do in the Hierarchic Lifting Lemma, which asserts that for any
non-redundant F-inference with non-base premises from NA, there exists a non-
redundant H-inference with premises in N , such that the F-inference is a sim-
ple ground R≈

A-reduced instance of the H-inference, Lemma 3.71, where A ∈ C
is an arbitrary base algebra. Of course, this is not sufficient to gain mutual sat-
uration of N and NA. In Section 3.4.3, in Lemma 3.51 we have shown that any
ground base clause C , that is entailed by the base algebra A and not contained
in EA ∪DA, follows from smaller clauses in EA ∪DA, thus C is redundant for
NA = sgiA(N)∪EA ∪DA, consequently any ground inference with such a base
clause C as a premise is also redundant. As it turns out, any ground inference
with a premise coming from the set EA∪DA is also redundant. We give a formal
proof of these statements in the Hierarchic Saturation Theorem, that asserts the
mutual saturation of N and NA, where A ∈ C is a base algebra satisfying every
base clause in sgi(N), Theorem 3.72. If no base algebra satisfies all base clauses
within sgi(N), then due to compactness of the base specification Sp there are
finitely many such base clauses within sgi(N), so that the Constraint Refutation
rule produces an empty clause out of the corresponding base clauses in N ; we
shall discuss this issue in Section 3.4.8.

Before we proceed with the proofs, let us recall the following notations:

– (F ,RF) denotes the standard superposition calculus SUP for ground clauses,
Definition 3.40 on page 56, where F the system of the standard inference
rules, and RF the standard redundancy criterion for ground clauses; see
Section 3.4.2 for a detailed exposition of (F ,RF).

– (H,RH) stands for the hierarchic superposition calculus SUP(T) for general
abstracted clauses, Definition 3.64 on page 74, where H the system of the
hierarchic inference rules, and RH the hierarchic redundancy criterion; see
Sections 3.3 and 3.4.4 for a detailed exposition of (H,RH).

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î LEMMA 3.71
Hierarchic Lifting Lemma(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base

and body signatures, respectively. Let S ′′ =S ′ \S and Ω′′ =Ω′ \Ω be the enrichment
sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

Let A ∈ C be a base algebra, and N a set of abstracted clauses1. If I ′ is a non-
redundant standard F-inference with non-base premises in NA, then there exists a
non-redundant hierarchicH-inference I with premises in N such that I ′ is a simple
ground R≈

A-reduced instance of I :

for every2 I ′ ∈F (NA∩ (C lΣ′ \C lΣ)) \RFI (NA),

exists an I ∈H(N) \RHI (N),
such that I ′ ∈ sgiA(I).

1Please, recall Definition 3.20 of an abstracted clause, page 41; Definition 3.25 of the entailment
relation |=C , page 45; Definition 3.32 of the hierarchic superposition inference system H, page 49;
Definition 3.39 of the standard superposition inference system F , page 56; Definition 3.46 of the
rewrite system R≈

A, page 61; Definition 3.49 of clause sets EA and DA, page 62; Definition 3.55

of sets of all simple ground R≈
A-reduced instances sgiA, page 67; Definition 3.56 of a clause set

NA, page 67; Definitions 3.64 and 3.40 of the hierarchic RH = (RHF ,RHI) and the standard ground

RF = (RFF ,RFI) redundancy criterions, pages 74 and 56, respectively.

84 Hierarchic Refutational Theorem Proving

We demonstrate the lemma’s statement in detail for the equality resolution (Def-PROOF Ï
inition 3.37 and 3.29) and the superposition left (Definition 3.35 and 3.27) infer-
ence rules; analysis of the other rules is similar.

First, let us make the following very important observations. Let C be an ab-
stracted clause. If a simple ground instance C ′ of C is non-base, then C is non-
base as well, i.e. it contains a literal with an occurrence of an operator from Ω′′

or a variable from X ′′. Moreover, we claim that if some literal L′ is (strictly) max-
imal in C ′ or if it is selected, then the corresponding literal L in C is non-base
as well (recall that F admits selection only of non-base negative literals). Indeed,
any ground non-base literal is strictly greater than any base one, hence L′ is non-
base, and besides, ground non-base literals can be simple instances only of non-
base literals, because simple substitutions map base variables to base terms, so a
simple instance of a base literal is always base, therefore L is non-base too. Also,
since the set EA∪DA consists only of base clauses, the set of non-base clauses in
NA =EA∪DA∪sgiA(N) is actually a subset of sgiA(N), therefore each premise of
any inference I ′ ∈F (NA∩ (C lΣ′ \C lΣ)) is a simple ground R≈

A-reduced instance of
some non-base clause in N .

As already stated in Section 3.4.2 devoted to the standard superposition for
ground clauses, the inference systemsH and F share the same selection function,
i.e. a literal L′ is selected in C ′ ∈ sgiA(C) if and only if the corresponding literal L
is selected in C ∈ N .

Consider a non-redundant ground equality resolution inference I ′:

I Γ′, t ′ ≈ t ′ →∆′

Γ′ →∆′

with a premise C ′
1 ∈ NA∩ (C lΣ′ \ C lΣ), and conclusion C ′

0, respectively. From the
observation above, we know C ′

1 ∈ sgiA(C1), for some non-base clause C1 ∈ N . We
show now that there is a Hierarchic Equality Resolution inference on C1 by ensur-
ing that all conditions in Definition 3.29 are satisfied. Without loss of generality,
assume

C1 =Λ ∥ Γ, s ≈ t →∆,

whereΛ=Π∪Υ consists of positiveΠ and negativeΥ base literals. As C ′
1 ∈ sgiA(C1),

there exists an R≈
A-reduced substitution θ such that C ′

1 =C1θ, particularly

– Γ′ =Πθ∪Γθ,

– ∆′ =Υθ∪∆θ, and

– (t ′ ≈ t ′) = (s ≈ t)θ.

The atom (s ≈ t) appears in the free part of C1, as according to condition (i) in
the definition of the ground rule the atom t ′ ≈ t ′ is maximal, and, therefore, by
the observation we have made in the beginning of the proof, s ≈ t is non-base as
well. The substitution θ is a simple ground R≈

A-reduced unifier of s and t , hence
there exists a simple most general unifier σ = mgu(s, t) of s and t . This satisfies

2Recall that C lΣ′ denotes the class of all clauses over the body signature Σ′, and C lΣ the class of
all clauses over the base signature Σ. Thus, C lΣ is the class of all base clauses, and C lΣ′ \ C lΣ stands
for the class of all non-base clauses.

3.4. Completeness of SUP(T) 85

condition (i) of the hierarchic rule. Moreover, θ = σψ for some simple grounding
substitution ψ; this fact and conditions (i) and (ii) of the ground rule directly yield
condition (ii) of the hierarchic rule is satisfied as well. Thus, there is a Hierarchic
Equality Resolution inference I

I Λ ∥ Γ, s ≈ t →∆

(Λ ∥ Γ→∆)σ

with premise C1 and conclusion C0 such that C ′
i =Ciθ, for every i ∈ {0,1}, therefore

I ′ ∈ sgiA(I). Moreover,

I ′ 6∈RFI (NA) // by lemma’s cond.

⇒ sgiA(I) 6⊆RFI (NA) // as I ′ ∈ sgiA(I)

⇒ I 6∈RHI (N) // by Def. 3.64 of RHI
Consequently, I ∈H(N) \RHI (N).

Let I ′ be a non-redundant ground superposition left inference

I Γ′1 →∆′
1, l ′′ ≈ r ′ s′[l ′′] ≈ t ′,Γ′2 →∆′

2

s′[r ′] ≈ t ′,Γ′1,Γ′2 →∆′
1,∆′

2

with premises C ′
1,C ′

2 ∈ NA∩ (C lΣ′ \ C lΣ), and conclusion C ′
0, respectively. By the

same argumentation as in the case of an equality resolution inference, we learn
C ′

1 ∈ sgiA(C1) and C ′
2 ∈ sgiA(C2), for some non-base variable-disjoint clauses C1,C2 ∈

N . Without loss of generality, assume

C1 =Λ1 ∥ Γ1 →∆1, l ≈ r,
C2 =Λ2 ∥ s[l ′] ≈ t ,Γ2 →∆2,

where Λi =Πi ∪Υi consists of positive Πi and negative Υi base literals, for every
i ∈ {1,2}. As C ′

1 ∈ sgiA(C1) and C ′
2 ∈ sgiA(C2), there exist two simple grounding R≈

A-
reduced substitutions θ1 and θ2 such that C ′

1 =C1θ1 and C ′
2 =C2θ2. As C1 and C2

are variable-disjoint, there exists a simple grounding R≈
A-reduced substitution θ

such that C ′
1 =C1θ and C ′

2 =C2θ, particularly

– Γ′i =Πiθ∪Γiθ,

– ∆′
i =Υiθ∪∆iθ,

for every i ∈ {1,2}, and

– (l ′′ ≈ r ′) = (l ≈ r)θ,

– (s′[l ′′] ≈ t ′) = (s[l ′] ≈ t)θ.

We have to distinguish two cases:

– the overlap in I ′ takes place at or below a variable position, i.e. l ′′ occurs in
s′ at a position p = p1p2, and s/p1 is some variable x. Let s′′ be the sub-
term of s′ at the position p1, that is s′′ = s′/p1, then s′′/p2 = l ′′. We define a
substitution τ as follows:

τ(y) =
{

s′′[r ′]p2 , if y = x,
θ(y), oth.,

i.e. τ is a modification of the θ, such that for every variable different from x,
we take the respective value of θ, and for x we take s′′ with the occurrence of
l ′′ at the position p2 in it replaced with r ′ (note that there can be more than

86 Hierarchic Refutational Theorem Proving

one occurrence of l ′′ in s′′, but we replace only the one at p2). Evidently,
C2τ ≺ C2θ and C2τ ∈ sgiA(C2). It is easy to see that C ′

1,C2τ |= C ′
0. These

mean that I ′ is actually redundant for NA, which contradicts the lemma’s
assumption, hence the case considered is impossible.

– otherwise, l ′′ occurs in s′ at some position p, such that p is also a position
in s and s/p = l is not a variable. The substitution θ is a simple ground R≈

A-
reduced unifier of l and l ′, hence there exists a simple most general unifier
σ= mgu(l , l ′) of l and l ′. This satisfies condition (i) of the hierarchic rule. By
assumption, l ′ is not a variable, satisfying condition (ii). Moreover, θ = σψ

for some simple grounding substitution ψ; this fact and conditions (i)-(v) of
the ground rule directly yield conditions (iii)-(vii) of the hierarchic rule are
satisfied as well. Thus, there is a Hierarchic Superposition Left inference I

I Λ1 ∥ Γ1 →∆1, l ≈ r Λ2 ∥ s[l ′] ≈ t ,Γ2 →∆2

(Λ1,Λ2 ∥ s[r] ≈ t ,Γ1,Γ2 →∆1,∆2)σ

with premises C1, C2 and conclusion C0 such that C ′
i = Ciθ, for every i ∈

{0,1,2}, therefore I ′ ∈ sgiA(I). Analogously to the case of an equality resolu-
tion inference, we also conclude I ∈H(N) \RHI (N).

■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=THEOREM 3.72 Ï
Hierarchic Saturation

Theorem
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let A ∈ C be a base algebra, and N a set of abstracted clauses1. If A satisfies
the set N ∩C lΣ of all base2 clauses within N , and N is saturated with respect to
(H,RH), then NA is saturated with respect to (F ,RF).

We have to show that if N is saturated then every F-inference from clauses in NAPROOF Ï
is redundant with respect to NA, i.e. that it is contained in RFI (NA).

Let us split the set NA =EA∪DA∪sgiA(N) into three subsets M1, M2, and M3

defined as follows:

M1 = NA∩ (C lΣ′ \C lΣ) (the subset of non-base clauses)
M2 = NA∩ (C lΣ \ (EA∪DA)) (the subset of base clauses

not contained in EA∪DA)
M3 = NA∩ (EA∪DA) (the subset of base clauses

=EA∪DA contained in EA∪DA)

Evidently, NA = M1 ∪M2 ∪M3. Consider the following three possible types of F-
inferences on NA:

1. inferences with every premise in M1,

1Please, recall Definition 3.20 of an abstracted clause, page 41; Definition 3.25 of the entailment
relation |=C , page 45; Definition 3.32 of the hierarchic superposition inference system H, page 49;
Definition 3.39 of the standard superposition inference system F , page 56; Definition 3.46 of the
rewrite system R≈

A, page 61; Definition 3.49 of clause sets EA and DA, page 62; Definition 3.55

of sets of all simple ground R≈
A-reduced instances sgiA, page 67; Definition 3.56 of a clause set

NA, page 67; Definitions 3.64 and 3.40 of the hierarchic RH = (RHF ,RHI) and the standard ground

RF = (RFF ,RFI) redundancy criterions, pages 74 and 56, respectively.
2Recall that C lΣ denotes the class of all clauses over the base signature Σ, and C lΣ′ the class of all

clauses over the body signature Σ. Thus, C lΣ is the class of all base clauses, and C lΣ′ \C lΣ stands for
the class of all non-base clauses.

3.4. Completeness of SUP(T) 87

2. inferences with at least one premise in M2, and

3. inferences with at least one premise in M3.

From Lemma 3.71 it follows that if there is a non-redundant F-inference with
premises in M1 = NA ∩ (C lΣ′ \ C lΣ), then there also exists a non-redundant H-
inference with premises in N . Hence, any F-inference with non-base premises is
redundant, as for otherwise it would be contradictory to the assumption that N is
saturated.

The set M2 = NA ∩ (C lΣ \ (EA ∪DA)) is obviously a subset of sgi(N)∩C lΣ =
sgi(N ∩C lΣ), which is true under A by assumption. According to Lemma 3.51,
every base clause, that is true in A and not contained in EA∪DA, is entailed by
strictly smaller clauses in EA∪DA, thus it is in RFF (NA); any inference involving

such a clause is in RFI (NA). Therefore, any inference with a premise from M2 is
redundant.

So, what is left to consider, is the case of an F-inference with a premise from
M3 = EA ∪DA. We demonstrate this in detail for the equality resolution (Defi-
nition 3.37) and the left superposition rules (Definition 3.35); the analysis of the
other rules is quite similar.

The ground equality resolution rule is not applicable to clauses from EA∪DA,
because every clause from EA is a positive unit clause, and every clauses from
DA is a negative unit clause, whose the only literal is a disequation between two
distinct ground Σ-terms (Definition 3.49 of DA), hence, not unifiable.

Let I ′ be a ground superposition left inference

I Γ′1 →∆′
1, l ′′ ≈ r ′ s′[l ′′] ≈ t ′,Γ′2 →∆′

2

s′[r ′] ≈ t ′,Γ′1,Γ′2 →∆′
1,∆′

2

with premises C ′
1 and C ′

2, and conclusion C ′
0, respectively. Obviously, a clause

from DA cannot be the first premise of I . Assume the first premise is a clause
from EA, say

C ′
1 = (→ l ′′ ≈ r ′),

then, according to Definition 3.49 of EA, we know l ′′ 6= r ′ and r ′ = l ′′↓R≈
A

, thus

l ′′ 6= l ′′↓R≈
A

, i.e. l ′′ is not R≈
A-reduced (we shall use this fact later on in the proof).

The second premise C ′
2 must be then a base clause. Indeed, suppose C ′

2 is a non-
base clause. Then there exists a non-base clause C2 ∈ N defined as

C2 =Λ2 ∥ s[l ′] ≈ t ,Γ2 →∆2

where Λ2 = Π∪Υ consists of positive Π and negative Υ base literals, such that
C ′

2 =C2θ, for some simple grounding R≈
A-reduced substitution θ, particularly:

– Γ′2 =Πθ∪Γ2θ,

– ∆′
2 =Υθ∪∆2θ,

– (s′[l ′′] ≈ t ′) = (s[l ′] ≈ t)θ.

The equation s[l ′] ≈ t does not belong to Λ2, because (i) s′ ≈ t ′ is maximal in the
non-base clause C ′

2, (ii) any ground base literal is strictly smaller than any ground
non-base literal, hence s′ ≈ t ′ is non-base, and (iii) no simple substitution can
introduce free symbols to a base term, therefore s[l ′] ≈ t is non-base. Since C2

is an abstracted clause, every base-sorted symbol occurring in s is either a base

88 Hierarchic Refutational Theorem Proving

variable or a free operator. Since θ is R≈
A-reduced, every base subterm occurring

in s′ = sθ is also R≈
A-reduced, and so is l ′′, contradicting the fact that l ′′ is not

reduced, shown just above. For the same reason, C2 is not a clause from DA,
because by the definition of DA the hand-sides of the only disequation in each
clause from DA are in their normal forms, or, equivalently speaking, R≈

A-reduced.
Thus, C ′

2 is a base clause not contained in EA, nor in DA. By the observation
above regarding inferences involving base clauses, we conclude the inference I ′ is
redundant.

Now, assume the second premise C ′
2 of I ′ is a clause from DA (obviously, C ′

2
cannot be a clause from EA), say

C ′
2 = (s′[l ′′] ≈ t ′ →).

As the term l ′′ is base, l ′′ ≈ r ′ is strictly maximal in the first premise C ′
1 of I ′, and

l ′′ Â r ′, we conclude C ′
1 is a base clause. If C ′

1 ∈ EA then the case considered is
impossible (as we have shown just above), for otherwise C ′

1 ∈ M2, which implies
the inference I ′ is redundant, as we have also shown above. ■

3.4.6 Weak Algebras

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are
the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

In Sections 3.4.4-3.4.5 we have shown how the mutual saturation condition1

is satisfied for the hierarchic SUP(T) calculus. Besides the mutual saturation con-
dition, we have also to ensure the mutual hierarchic model existence condition.
One of its preconditions is that a model of a set NA = sgiA(N)∪EA∪DA has to
be a model of N , where A ∈ C is a base algebra. To support the condition, we
have restricted the class of admissible clauses sets to ones possessing the suffi-
cient completeness property2, according to which in every model of sgi(N) each
non-base term3 t ′ of a base sort S ∈S has to be interpreted as some base term t :

∀ t ′ ∈ TΩ′ (S) \ TΩ.∃ t ∈ TΩ : sgi(N) |= t ′ ≈ t .

However, such formulation of the property is superfluous and too restrictive, be-
cause we need this property to hold only for those models of sgi(N) that satisfy
also the set EA∪DA, and it suffices to ensure the property only for ground smooth
extension terms. Thus, the formulation can be refined as follows:

∀ t ′ ∈ T E
Ω′ .∃ t ∈ TΩ : t ′ smooth ⇒ sgi(N)∪EA∪DA |= t ′ ≈ t ,

for all base algebras A ∈C , where T E
Ω′ is the set of all ground extension terms.

Here, we introduce a notion of an algebra weak relative to the base class C .
A Σ′-algebra A′ is weak relative to C if it monomorphically extends some base
algebra A ∈ C , Definition 3.73, meaning that A′ has to extend A in a structure-

1The mutual saturation condition and the mutual hierarchic model existence condition are dis-
cussed in the overview to Section 3.4 on pages 50-51

2The sufficient completeness property has been informally discussed in the overview to Sec-
tion 3.4; it will be formally defined in Section 3.4.7 entirely dedicated to presenting the property.

3Please, recall Definitions 3.16 and 3.17 of different kinds of terms (base, non-base, etc.), page 39.

3.4. Completeness of SUP(T) 89

preserving way mapping distinct elements of the universe UA of A to distinct el-
ements of own universe UA′ . In the Weak Algebra Theorem we assert that an alge-
bra is weak if and only if it is a model of the set EA∪DA for some base algebra A,
Theorem 3.76. Thus, the sufficient completeness criterion can be reformulated in
terms of weak algebras as follows:

∀A′ ∈WHSp.∀ t ′ ∈ T E
Ω′ .∃ t ∈ TΩ(S) : A′ |= sgi(N), t ′ smooth ⇒A′ |= t ′ ≈ t ,

where WHSp is the class of all weak algebras relative to C .

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.73
C -Weak AlgebraSp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

A Σ′-algebra A′ ∈ AΣ′ is1 called weak relative to C (or, shortly, C -weak alge-
bra), if there exists a base algebra A ∈C monomorphic2 to A′. We write WHSp to
denote the class of all algebras weak with respect to C :

WHSp
def
= {A′ ∈AΣ′ | ∃A ∈C :A monomorphic to A′}.

■

From now on, as the class C of base algebras is given beforehand, if A′ is a weak
algebra with respect to C , we call it just weak, for the sake of conciseness.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.74
WHSp-consistent
WHSp-entailment

Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).
Let N and M be two sets of Σ′-clauses. We call N consistent relative to WHSp

(or, shortly, WHSp-consistent), if there exists a weak model of N :

N WHSp-consistent
def⇐⇒ ∃A′ ∈WHSp : A′ |= N ,

and otherwise we call it inconsistent relative to WHSp (or, shortly, WHSp-inconsistent),
written N |=W ⊥.

We say N implies/entails M relative to WHSp, written N |=W M , if every weak
model of N is also a model of M :

N |=W M
def⇐⇒ ∀A′ ∈WHSp : A′ |= N ⇒A′ |= N .

■

Clearly, the set of all hierarchic algebras is a subset of the set of all weak algebras,
where the corresponding monomorphism is the identity. Consequently, N |=W M
implies N |=C M , but not the other way around, in general.

Since the class C consists of base algebras that all are term-generated, from
the definition above it follows that an algebra A′ is weak with respect to C , iff
there exists a base algebra A ∈C and a monomorphism h : UA→UA′ from A to
A′, such that

fA′
(
h((t1)A), . . . ,h((tn)A)

)= h
(
(f (t1, . . . , tn))A

)
for all ground base terms f (t1, . . . , tn) ∈ TΩ, where f ∈Ω a base operator symbol of
arity n ≥ 0.

1AΣ′ denotes the class of all Σ′-algebras.
2Recall the definition of a monomorphic algebra in Definition 2.31.

90 Hierarchic Refutational Theorem Proving

Note, that our definition of a weak algebra significantly differs from the one
given in [AKW09b], where we required for a weak algebra A′ to have a homomor-
phism (not a monomorphism!) h : UA→UA′ for each base algebraA ∈C , which is
actually a very strong requirement. In Definition 3.73 we soften the requirement
to existence of at least one base algebra monomorphic to A′.

Our main aim regarding weak algebras is to prove that an algebra A′ is weak
relative to C if and only if A′ is a model of the clause set EA∪DA, for some base
algebra A ∈ C . For doing so we need one further property on interpretation of
base terms under weak algebras given in the following proposition.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 3.75 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let A′ be a weak algebra, A ∈ C a base algebra homomorphic to A′, and h
a homomorphism from A to A′. For all ground base terms t ∈ TΩ it holds that
tA′ = h(tA).

We give a proof by induction on depth of t .PROOF Ï
Induction base. If depth(t) = 0, then t is a base constant, say a ∈Ω. Thus,

tA′ = aA′

= h(aA) // as h is a hom. from A to A′

= h(tA).

Induction hypothesis. Assume the statement holds for any ground base term t ∈
TΩ, such that depth(t) ≤ k, for some k ≥ 0.

Induction step. Consider a term t with depth(t) = k+1. Without loss of generality,
assume t = f (t1, . . . , tn), for some base operator symbol f ∈Ω of arity n ≥ 0, then

tA′ = fA′
(
(t1)A′ , . . . , (tn)A′

)
= fA′

(
h((t1)A), . . . ,h((tn)A)

)
// by ind. hyp.

= h
(

fA
(
(t1)A, . . . , (tn)A

))
// as h is a hom. from A to A′

= h(tA)

■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=THEOREM 3.76 Ï
Weak Algebra Theorem (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base

and body signatures, respectively.
A Σ′-algebra A′ is weak if and only if1 EA ∪DA is satisfiable in A′, for some

base algebra2 A ∈C :

A′ ∈WHSp ⇔ ∃A ∈C :A′ |=EA∪DA.

The “⇒” direction. Assume, A′ is a weak algebra. According to Definition 3.73,PROOF Ï
there exists a base algebraA ∈C that is monomorphic toA′, hence homomorphic

1Please, recall Definition 3.49 of a clause set EA, page 62.
2Please, note that the base algebra A is only used for construction of clause sets EA and DA and

is not a subject to any logical entailment condition, in contrast to A′ which has to entail EA ∪DA
with respect to the general entailment relation |=.

3.4. Completeness of SUP(T) 91

toA′. Assume h is a monomorphism fromA toA′, hence a homomorphism from
A to A′.

Let C be an arbitrary clause from EA; without loss of generality, represent it as
C = (→ l ≈ r), for some ground base terms l ,r ∈ TΩ; then

lA′ = h(lA) // by Prop. 3.75
= h(rA) // as A |=C , hence lA = rA
= rA′ // by Prop. 3.75

Let D be an arbitrary clause from DA; without loss of generality, represent it
as D = (l ′ ≈ r ′ →), for some ground base terms l ′,r ′ ∈ TΩ. As A |= DA, we know
l ′A = e1 6= e2 = r ′

A, for some e1,e2 ∈UA. Consequently,

l ′A′ = h(l ′A) // by Prop. 3.75
6= h(r ′

A) // as l ′A 6= r ′
A and h injective

= r ′
A′ // by Prop. 3.75

Thus, A′ |=C ,D . As C and D have been picked arbitrarily, it followsA′ |=EA∪DA.

The “⇐” direction. Assume, A′ is a Σ′-algebra that satisfies EA ∪DA, for some
base algebra A ∈ C . We show that A′ is a weak algebra by finding a mapping h
that is a monomorphism (injective homomorphism) from A to A′.

Every algebra in C is term-generated, hence for every element e ∈ UA in the
universe ofA there exists a ground base term t ∈ TΩ such thatA(t) = e. According
to Definition 3.45, [t]A denotes the equivalence class of t with respect to A; more
formally:

[t]A
def
= {s ∈ TΩ |A(s) =A(t)}.

As usual, we also write [t]A to denote a single representative of the class. Recall,
that for any s, s′, t ∈ TΩ, if s, s′ ∈ [t]A then EA |= s ≈ s′, which is a consequence of
Corollary 3.50. Recall also, that interpretation of the base sorts S constitute the
universe of A:

UA = ⋃
S∈S

SA.

We define a mapping h : UA 7→UA′ as follows: for every base sort S ∈S , and every
element e ∈ SA:

h(e)
def
= A′([t]A),

where1 t ∈ TΩ is a ground base term such that A(t) = e. That is, for every ele-
ment e in UA, the mapping h takes an arbitrary ground base term, whose inter-
pretation under A equals e, and returns its interpretation under A′. Since A is
term-generated, h is total, i.e. h is defined for every e ∈UA. We next show that h
is well-defined, that is h returns the same value regardless of a particular choice
of a representative of the equivalence class [t]A. Let s, s′ ∈ [t]A be arbitrary dis-
tinct representatives of the class. As we have observed above, EA |= s ≈ s′. Since
A′ |= EA, we have A′ |= s ≈ s′, consequently A′(s) =A′(s′) = e ′ for some e ′ ∈UA′ .
As s and s′ have been picked arbitrarily, all representatives of [t]A have the same

1Please, note that [t]A denotes the equivalence class of t under A or an arbitrary representative
of the class, whereas tA denotes the interpretation of t underA; thus, the notions [t]A and tA should
not be confused!

92 Hierarchic Refutational Theorem Proving

value e ′ under A′, thus h is well-defined. Moreover, all terms in [t]A are of the
same sort S = sort(t), hence h(e) ∈ SA′ , consequently, h(SA) ⊆ SA′ for every base
sort S ∈S .

Now, we show h is structure-preserving. Let f ∈Ω be an arbitrary base oper-
ator symbol of arity n ≥ 0, such that f : S1 × . . .×Sn → S, and e1, . . . ,en arbitrary
elements of the universe of A, such that ei ∈ (Si)A for every i ∈ {1, . . . ,n}, then

fA′
(
h(e1), . . . ,h(en)

)
= fA′

(A′([t1]A), . . . ,A′([tn]A)
)

// by def. of h, for some t1, . . . , tn ∈ TΩ
s.t. A(ti) = ei for all i ∈ {1, . . . ,n}

= fA′ (A′(t1), . . . ,A′(tn)) // as ∀ s, s′ ∈ [ti]A :A′(s) =A′(s′)
=A′(t) // where t = f (t1, . . . , tn) ∈ TΩ
=A′([t]A) // as ∀ s, s′ ∈ [t]A :A′(s) =A′(s′)
= h(e) // by def. of h, where e = tA
= h(tA)
= h

(
fA((t1)A, . . . , (tn)A)

)
= h

(
fA(e1, . . . ,en)

)
Thus, h is a homomorphism from A to A′, and A is homomorphic to A′.

The only point left to show is injectivity of h. Let e1 and e2 be two distinct
elements of the universe of A: e1,e2 ∈ UA and e1 6= e2. As A is term-generated,
there exist terms t1, t2 ∈ TΩ such that A(t1) = e1, A(t2) = e2. Put t ′i = ti↓R≈

A
be the

normal form of each ti with respect to the rewrite system1 R≈
A, for every i ∈ {1,2}.

As2 A |= EA |= ti ≈ t ′i , for every i ∈ {1,2}, we have t ′1 6= t ′2, as for otherwise e1 =
A(t1) =A(t ′1) =A(t ′2) =A(t2) = e2 contradicting e1 6= e2. By Definition 3.49 of DA,
we know (t ′1 ≈ t ′2 →) ∈DA. Consequently,

A′(t ′1) 6= A′(t ′2) // as A′ |=DA
⇒ A′(t1) 6= A′(t2) // as A′ |=EA, and EA |= ti ≈ t ′i , for each i ∈ {1,2}
⇒ h(e1) 6= h(e2) // by Prop. 3.75

Thus, h is an injective homomorphism from A to A′, hence a monomorphism
from A to A′. By Definition 3.73 we conclude A′ is a weak algebra. ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=COROLLARY 3.77 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let Σ′-algebraA′ be a weak algebra. Two base algebrasA1,A2 ∈C are monomor-
phic to A′ if and only if A1 and A2 are isomorphic.

3.4.7 Sufficient Completeness Criterion

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are
the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

In this section we discuss the main component contributing to refutational
completeness of the SUP(T) calculus – the sufficient completeness criterion. The

1Please, recall Definition 3.46 of the rewrite system R≈
A, page 61.

2Please, recall Definition 3.49 of the clause sets EA and DA, page 62.

3.4. Completeness of SUP(T) 93

criterion imposes on an input set N of general Σ′-clauses a condition, according
to which every ground smooth extension term must have the same interpretation
as some ground base term in all weak models of the set sgi(N) of all simple ground
instances of N . The criterion helps to gain two goals, discussed in the overview to
the section “Completeness of SUP(T)”: on one hand, it assures every weak model
of all simple ground instances sgi(N) of the set N to be a model of all its ground
instances gi(N), hence a model of N , and, on the other hand, it provides a suffi-
cient condition for a model of the set1 NA = sgiA(N)∪EA∪DA to be hierarchic,
hence a hierarchic model of N .

First, we give a definition of a sufficiently complete clause set, Definition 3.78.
Then, in the Hierarchic Model Lemma we assert that a given clause set N is theory-
consistent if and only if the ground clause set NA has a Σ′-model, where A is a
base algebra from C .

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 3.78
Sufficiently Complete
Clause Set

Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively.

A set N of Σ′-clauses is called sufficiently complete with respect to simple in-
stances, if for every weak model A′ of sgi(N) and every ground smooth extension
term1 t ′ there exists a ground base term t such that A′ |= t ′ ≈ t . We write SCHSp

to denote the class of all such sets of clauses:

SCHSp
def
= {N ∈C lΣ′ | (∀A′ ∈WHSp)(∀ t ′ ∈ T E

Ω′)(∃ t ∈ TΩ) :
t ′ smooth, A′ |= sgi(N) ⇒ A′ |= t ′ ≈ t }.

■

For the sake of conciseness, we call clause sets in SCHSp just sufficiently com-
plete. Expanding the notion of a weak model, the definition of the class of all
sufficiently complete clause sets can be reformulated as follows:

SCHSp
def
= {N ∈C lΣ′ | (∀A ∈C)(∀ t ′ ∈ T E

Ω′)(∃ t ∈ TΩ) :
t ′ smooth ⇒ sgi(N)∪EA∪DA |= t ′ ≈ t }.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î LEMMA 3.79
Hierarchic Model Lemma(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base

and body signatures, respectively.
Let N ∈ SCHSp be a sufficiently complete clause set, and A′ ∈ AΣ′ an arbitrary

Σ′-algebra. The algebra A′ is a hierarchic model of N if and only if it satisfies the
clause set NA, for some base algebra2 A ∈C :

∀N ∈SCHSp.∀A′ ∈AΣ′ : (A′ |=C N ⇔ ∃A ∈C :A′ |= NA)

The “⇒” direction. Assume A′ |= N , for some Σ′-algebra A′ ∈AΣ′ . As A′ is a hier- Î PROOF

1Please, recall Definitions 3.16 and 3.17 of different kinds of terms (base, non-base, etc.), page 39;
Definition 3.23 of a hierarchic algebra/model, page 44; Definition 3.25 of the entailment relation |=C ,
page 45; Definition 3.46 of the rewrite system R≈

A, page 61; Definition 3.49 of clause sets EA and

DA, page 62; Definition 3.55 of sets of all simple ground R≈
A-reduced instances sgiA, page 67; Defini-

tion 3.56 of a clause set NA, page 67; Definition 3.73 of a weak algebra, page 89.
2Please, note that the base algebra A is only used for construction of the clause set NA =

sgiA(N)∪EA∪DA and is not a subject to any logical entailment condition, in contrast to A′ which
has to entail NA.

94 Hierarchic Refutational Theorem Proving

archic model of N , we know A′ ∈HHSp, consequently A′|Σ =A for some base al-
gebra A ∈C . Therefore, A′ |=EA∪DA. From A′ |= N it follows that A′ |= sgiA(N).
Summing up, A′ |=EA∪DA∪ sgiA(N) = NA.

The “⇐” direction. Let A ∈C be an arbitrary base algebra. Assume NA is satisfi-
able, then there exists a term-generated Σ′-algebraA′ that satisfies NA. According
to Lemma 3.61 (ii), NA |= sgi(N), hence A′ |= sgi(N). Moreover, as EA∪DA ⊆ NA,
we know A′ |=EA∪DA, yielding by Theorem 3.76 A′ is a weak algebra. Therefore,
from the fact that N is sufficiently complete, and the Extension Terms Lemma
(Lemma 3.19), it follows that for every ground non-base term t ′ of a base sort
there exists a ground base term t such that A′ |= t ′ ≈ t . It is easy to see that from
this and the fact that A′ |= sgi(N), it follows that A′ |= gi(N), consequently A′ |= N .

Our next claim is that the restrictionA′|Σ ofA′ to the base signature Σ is a base
algebra from the class C . To prove A′|Σ ∈ C , we show that A′|Σ is isomorphic to
the base algebra A by providing a mapping h from the universe UA of A to the
universe UA′|Σ of A′|Σ and proving h to be a bijective homomorphism, i.e. that
h and h−1 are homomorphisms from A to A′|Σ and from A′|Σ to A, respectively.
Let h be defined analogous to that in the proof of Theorem 3.76, that is, for every
base sort S ∈S , and every element e ∈ SA ⊆UA,

h(e)
def
= A′|Σ([t]A),

where1 t ∈ TΩ is a ground base term such that A(t) = e. That is, for every element
e in UA, the mapping h takes an arbitrary ground base term, whose interpretation
under A equals e, and returns its interpretation under A′|Σ. As all base algebras
in C are term-generated, the mapping h is total. Since the algebra A′|Σ is the
Σ-restriction of A′, the two algebras agree on base terms TΩ and have the same
interpretation of base sorts S , i.e. :

∀ s ∈ TΩ : A′|Σ(s) =A′(s),
∀S ∈S :A′|Σ(S) =A′(S).

In the proof of Theorem 3.76 we have shown that all terms in the equivalence
class2 [t]A have the same interpretation under A′. As [t]A contains only base
terms, and the algebras A′|Σ and A′ agree on every ground base term, we con-
clude thatA′|Σ interprets all terms in [t]A equally as well, hence h is well-defined:

∀ s, s′ ∈ [t]A : A′|Σ(s) =A′|Σ(s′),

Thus, for all S ∈S , e ∈ SA , and t ∈ TΩ, such that A(t) = e, we have:

h(e) = A′|Σ([t]A)
= A′([t]A)

Now, we show h is structure-preserving. Let f ∈Ω be an arbitrary base oper-
ator symbol of arity n ≥ 0, such that f : S1 × . . .×Sn → S, and e1, . . . ,en arbitrary
elements of the universe of A, such that ei ∈ (Si)A for every i ∈ {1, . . . ,n}, then

fA′|Σ
(
h(e1), . . . ,h(en)

)
= fA′|Σ

(A′|Σ([t1]A), . . . ,A′|Σ([tn]A)
)

// by def. of h, for some t1, . . . , tn ∈ TΩ

1Please, note that [t]A denotes the equivalence class of t under A or an arbitrary representative
of the class, whereas tA denotes the interpretation of t under A; thus, the notions [t]A and tA should
not be confused!

2Please, recall Definition 3.45 of a equivalence class [t]A, page 60.

3.4. Completeness of SUP(T) 95

s.t. A(ti) = ei for all i ∈ {1, . . . ,n}
= fA′|Σ

(A′|Σ(t1), . . . ,A′|Σ(tn)
)

// as ∀ s, s′ ∈ [ti]A :A′|Σ(s) =A′|Σ(s′)
=A′|Σ(t) // where t = f (t1, . . . , tn) ∈ TΩ
=A′|Σ([t]A) // as ∀ s, s′ ∈ [t]A :A′|Σ(s) =A′|Σ(s′)
= h(e) // by def. of h, where e = tA
= h(tA)
= h

(
fA((t1)A, . . . , (tn)A)

)
= h

(
fA(e1, . . . ,en)

)
Thus, h is a homomorphism from A to A′|Σ, and A is homomorphic to A′|Σ.

The task now falls into two subgoals, where we have to show that

1. h−1 exists, for which we have to ensure that

(i) h is surjective, that is that every element of the h’s co-domain is mapped
to by at least one element of the h’s domain, or more formally: for every
base sort S ∈ S and every element e ′ ∈ SA′|Σ there exists an e ∈ SA such
that h(e) = e ′;

(ii) h is injective, meaning that every element of the h’s co-domain is mapped
to by at most one element of the h’s domain, or more formally: for any
e1,e2 ∈ UA if h(e1) = h(e2) then e1 = e2, or equivalently, if e1 6= e2 then
h(e1) 6= h(e2);

2. h−1 is a homomorphism from A′|Σ to A.

For the surjection part, assume e ′ ∈ SA′|Σ , where S ∈S is an arbitrary base sort.
As SA′|Σ = SA′ andA′ is term-generated, there exists a ground term s ∈ TΩ′ (S) such
that A′(s) = e ′. We distinguish two cases:

– s is a ground base term, i.e. s ∈ TΩ(S) ⊆ TΩ′ (S). Thus,

e ′ = A′(s)
= A′|Σ(s) // as ∀ s ∈ TΩ :A′(s) =A′|Σ(s)
= A′|Σ([s]A) // as ∀ t , t ′ ∈ [s]A :A′|Σ(t) =A′|Σ(t ′)
= h(e) // by def. of h, where e =A(s)

– s is a ground non-base term, i.e. s ∈ TΩ′ (S)\TΩ. Since A′ is a weak algebra and
N sufficiently complete with respect to simple instances, we know from Defi-
nition 3.78 and the Extension Terms Lemma (Lemma 3.19) that there exists a
ground base term t ∈ TΩ(S) such that A′ |= s ≈ t , therefore e ′ = A′(t), which
reduces the case to the previous one.

For the injection part, let e1 and e2 be two distinct elements of the universe
of A: e1,e2 ∈UA and e1 6= e2. As A is term-generated, there exist terms t1, t2 ∈ TΩ
such that A(t1) = e1, A(t2) = e2. Put t ′i = ti↓R≈

A
be the normal form of each ti with

respect to the rewrite system1 R≈
A, for every i ∈ {1,2}. AsA |=EA |= ti ≈ t ′i , for every

i ∈ {1,2}, we have t ′1 6= t ′2, as for otherwise e1 = A(t1) = A(t ′1) = A(t ′2) = A(t2) =
e2 contradicting e1 6= e2. By Definition 3.49 of DA, we know (t ′1 ≈ t ′2 →) ∈ DA.
Consequently,

A′(t ′1) 6= A′(t ′2) // as A′ |= NA and DA ⊆ NA
1Please, recall Definition 3.46 of the rewrite system R≈

A, page 61.

96 Hierarchic Refutational Theorem Proving

⇒ A′(t1) 6= A′(t2) // as A′ |= NA, EA ⊆ NA, and EA |= ti ≈ t ′i
⇒ A′|Σ(t1) 6= A′|Σ(t2) // as ∀ t ∈ TΩ :A′(t) =A′|Σ(t)
⇒ A′|Σ([t1]A) 6= A′|Σ([t2]A) // as ∀ t ∈ TΩ.∀ s, s′ ∈ [t]A :A′|Σ(s) =A′|Σ(s′)
⇒ h(e1) 6= h(e2) // by def. of h, where ei =A(ti),

for each i ∈ {1,2}

Thus, h is injective and surjective, hence bijective, consequently the inverse map-
ping h−1 exists.

The final task is to show that h−1 is a homomorphism from A′|Σ to A. Since h
is a bijective mapping from UA to A′|Σ (and, hence, h−1 is total and well-defined)
and a homomorphism from A to A′|Σ (and, hence, h(SA) ⊆ SA′|Σ for every base
sort S ∈ S), it follows that h−1(SA′|Σ) ⊆ SA for every base sort S ∈ S . So, the only
thing left to show is that h−1 is structure-preserving, for which we have to ensure
that

h−1(fA′|Σ (e ′1, . . . ,e ′n)) = fA(h−1(e ′1), . . . ,h−1(e ′n))

holds for every base operator symbol (f : S1× . . .×Sn → S) ∈Ω, and all elements of
the A′|Σ’s universe e ′1, . . . ,e ′n , such that e ′i ∈ (Si)A′|Σ for every i ∈ {1, . . . ,n}. Assume
f and all e ′i are arbitrary operator symbol and elements of the A′|Σ’s universe,
respectively, satisfying the conditions right above, then:

fA
(
h−1(e ′1), . . . ,h−1(e ′n)

)
= fA

(
h−1(h(e1)), . . . ,h−1(h(en))

)
// by surjectivity of h,

where all ei ∈UA s.t. h(ei) = e ′i
and ei ∈ (Si)A, for all i ∈ {1, . . . ,n}

= fA(e1, . . . ,en) // as h−1 is the inverse of h
= fA

(A(t1), . . . ,A(tn)
)

// as A term-generated,
where all ti ∈ TΩ s.t. A(ti) = ei

=A(f (t1, . . . , tn))
=A(t) // where t = f (t1, . . . , tn)

= h−1(h(A(t))
)

= h−1(A′|Σ([t]A)
)

// by def. of h

= h−1(A′|Σ(t)
)

// as ∀ s, s′ ∈ [t]A :A′|Σ(s) =A′|Σ(s′)
= h−1(A′|Σ(f (t1, . . . , tn))

)
= h−1

(
fA′|Σ

(A′|Σ(t1), . . . ,A′|Σ(tn)
))

= h−1
(

fA′|Σ
(A′|Σ([t1]A), . . . ,A′|Σ([tn]A)

))
// as ∀ s, s′ ∈ [ti]A :A′|Σ(s) =A′|Σ(s′)

= h−1
(

fA′|Σ
(
h(e1), . . . ,h(en)

))
// by def. of h, where e1, . . . ,en as

defined above

= h−1(fA′|Σ (e ′1, . . . ,e ′n)
)

// as h(ei) = e ′i for each i ∈ {1, . . . ,n}

Thus, h−1 is a homomorphism from A′|Σ to A; and we are done. ■

Comparison to sufficient completeness criteria of [BGW94] and [BW13]

The most recent work by Baumgartner and Waldmann [BW13] offers another suf-
ficient completeness criterion very much similar to the one proposed by us, namely:

3.4. Completeness of SUP(T) 97

A set N of Σ′-clauses is sufficiently complete with respect to simple in-
stances iff for every Σ′-model A′ of sgi(N)∪Gnd(C) and every ground
non-base term t ′ of a base sort there is a ground base term t such that
A′ |= t ′ ≈ t , where Gnd(C) is the set of all ground base formulae that
are satisfied by every base algebra A ∈C .

(Baumgartner, Waldmann [BW13])

On one hand, from the Extension Terms Lemma (Lemma 3.19) it follows that ev-
ery ground non-base term t ′ of a base sort is equal under a Σ′-algebra to some
ground base term t , if and only if each ground smooth extension term s′ is equal
under the same algebra to some ground base term s. Thus, it does not make any
difference if a completeness criterion enjoins all non-base terms of a base sort or
only smooth extension terms to be sufficiently defined. On the other hand, from
Lemma 3.51 it follows that the set Gnd(C) is entailed by EA∪DA, for every base
algebra A ∈C , but Gnd(C) does not entail EA∪DA, in general. Consequently, the
sufficient completeness criterion proposed in Definition 3.78 is stronger than (or,
in general, is at least as strong as) the one from [BW13].

The original sufficient completeness criterion of Bachmair, Ganzinger, and Wald-
mann [BGW94] imposes even a stronger condition:

A set N of Σ′-clauses is sufficiently complete with respect to simple
instances iff for every Σ′-model A′ of sgi(N) and every ground non-
base term t ′ of a base sort there is a ground base term t such that
A′ |= t ′ ≈ t . (Bachmair, Ganzinger, Waldmann [BGW94])

Evidently, the set of models of either sgi(N)∪Gnd(C) (as in [BW13]), or sgi(N)∪
EA∪DA (as suggested by us) is in general smaller than the set of models of sgi(N).
Therefore, the sufficient completeness criterion originally proposed in [BGW94] is
weaker than the one of [BW13] or the one suggested by us in Definition 3.78.

3.4.8 Refutational Completeness

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are
the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

In Section 3.1.4 we have introduced the concept of calculi approximation, Def-
inition 3.13, aimed to serve as an abstract mechanism for proving refutational
completeness of a calculus (I1,R1), the approximating one, by relating it to an-
other calculus (I2,R2), the approximated one, that is a-priori known to be refuta-
tionally complete. Each calculus (Ii ,Ri), i ∈ {1,2}, comes with implicitly given:

– a class Ni of formula sets, saturating which the calculus is aimed at, and

– an underlying entailment relation |=i , with respect to which a redundancy
criterion Ri is defined.

The approximation is carried out via so called approximation function α – a map-
ping from N1 to N2. According to the definition of calculi approximation, the cal-

98 Hierarchic Refutational Theorem Proving

culus (I1,R1) approximates (I2,R2) if each of the following conditions is satisfied
for every formula set N ∈N1:

(i) if N is saturated with respect to (I1,R1), then α(N) is saturated with respect
to (I2,R2),

(ii) if N |=1 ⊥1, then α(N) |=2 ⊥2, and

(iii) if ⊥2 ∈α(N) and N is saturated, then ⊥1 ∈ N ,

where ⊥i is a contradictory formula with respect to the entailment relation |=i , for
every i ∈ {1,2}. In Theorem 3.14 we have shown that if the approximated calculus
(I2,R2) is complete for N2, then the approximating calculus (I1,R1) is complete
for N1.

We want to lift the completeness result of the standard superposition1 (F ,RF)
for ground clauses (with respect to the general entailment relation |=) to the case
of the hierarchic superposition (H,RH) for sufficiently complete clauses (with re-
spect to the entailment relation |=C), using the calculi approximation mechanism.
To this end, we aim at approximating (F ,RF) by (H,RH). As the flat superposi-
tion is refutationally complete, the approximation of (F ,RF) by (H,RH) yields by
Theorem 3.14 that the hierarchic superposition is refutationally complete as well.
For this we need to find an approximation function confirming with the condi-
tions listed above. Let this be the function αH-F defined as follows.

The function αH-F defined as1DEFINITION 3.80 Ï
H-F Approximation Function

αH-F

αH-F (N)
def
=

NA, if (i) N an (H,RH)-saturated set

of abstracted Σ′-clauses, and
(ii) ∃A ∈C : A |= N ∩C lΣ

{ä}, oth.

is2 called the H-F approximation function. ■
Informally speaking, if the given set N is saturated and the subset N ∩C lΣ of all
base clauses within N is theory-consistent, then the function returns a set NA,
where A is any base algebra that satisfies the base subset of N ; otherwise, the
function returns a set {ä} consisting of a single empty clause. In the following
theorem we prove that SUP(T) approximates the ground superposition via the
function αH-F .

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=THEOREM 3.81 Ï
H-F Approximation (Σ,C) and the body Sp′ = (Σ′, Ax ′). Assume Sp is compact.

The hierarchic superposition calculus (H,RH) approximates the flat ground
superposition calculus (F ,RF) via the approximation function αH-F .

Let SCHSp be the class of sufficiently complete clause sets. We have to prove thatPROOF Ï
1Please, recall Definition 3.20 of an abstracted clause, page 41; Definition 3.25 of the entailment

relation |=C , page 45; Definition 3.32 of the hierarchic superposition inference system H, page 49;
Definition 3.39 of the standard superposition inference system F , page 56; Definitions 3.64 and 3.40
of the hierarchic RH = (RHF ,RHI) and the standard ground RF = (RFF ,RFI) redundancy criterions,
pages 74 and 56, respectively; Definition 3.56 of a clause set NA, page 67.

2Recall that C lΣ′ denotes the class of all clauses over the body signature Σ′, and C lΣ the class of
all clauses over the base signature Σ. Thus, C lΣ is the class of all base clauses, and C lΣ′ \ C lΣ stands
for the class of all non-base clauses.

3.4. Completeness of SUP(T) 99

the following three conditions of Definition 3.13 hold for the current context: (i) if
N ∈ SCHSp is saturated with respect to (H,RH), then αH-F (N) is saturated with

respect to (F ,RF); (ii) if N |=C ⊥, then αH-F (N) |=⊥; (iii) if ä∈αH-F (N) and N is
saturated then ä∈ N .

Assume N is saturated with respect to (H,RH). If there exists some base alge-
bra A ∈C that satisfies the set N ∩C lΣ of all base clauses within N , then, accord-
ing to Definition 3.80, αH-F (N) = NA. Saturation of αH-F (N) follows in this case
by Theorem 3.72. If there is no base algebra A ∈ C satisfying sgi(N)∩C lΣ, then
αH-F (N) = {ä}, which is trivially saturated. This proves condition (i).

Next we show condition (iii), whereupon continue with (ii). Assume N is sat-
urated with respect to the hierarchic calculus (H,RH) and ä∈αH-F (N). We have
to consider two cases1:

– there exists a base algebraA ∈C that satisfies N∩C lΣ. Then αH-F (N) = NA,
and ä∈ NA. Obviously, ä∉ EA∪DA, hence ä∈ NA \ (EA∪DA) = sgiA(N),
consequently ä∈ N ;

– there is no algebraA ∈C satisfying N∩C lΣ, i.e. N∩C lΣ is theory-inconsistent.
As the base specification Sp is compact, there is a finite theory-inconsistent
subset M of N ∩C lΣ. A Constraint Refutation inference with premises M
derives ä. Since N is saturated by assumption, the inference must be re-
dundant with respect to RH, which holds, according to Definition 3.64 of
RH, if and only if an empty clause ä is already in N .

We prove (ii) by contraposition, wherefore we have to show that if αH-F (N) is
satisfiable then N is consistent relative to2 C , or equivalently, N has a hierarchic
model. Suppose αH-F (N) is satisfiable. Obviously, αH-F (N) is different from {ä},
hence, according to the definition of the approximation function αH-F , the set
αH-F (N) equals NA for some base algebra A ∈ C . As N is sufficiently complete
and NA satisfiable, we conclude by the Hierarchic Model Lemma (Lemma 3.79)
that N has a hierarchic model. This completes the proof. ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î THEOREM 3.82
Hierarchic Completeness
Theorem

(Σ,C) and the body Sp′ = (Σ′, Ax ′). Assume Sp is compact.

The hierarchic superposition calculus (H,RH) is refutationally complete for all
sets of clauses that are sufficiently complete.

For the proof we set: Î PROOF

– (I1,R1) equals (H,RH), and |=1 and N1 equal |=C and SCHSp, respectively,
where SCHSp is the class of all clause sets that are sufficiently complete;

– (I2,R2) equal (F ,RF), and |=2 andN2 equal |= and GCΣ′ , respectively, where
GCΣ′ is the class of all ground Σ′-clause sets,

– α=αH-F , where αH-F is the H-F approximation function, Definition 3.80.

1Please, recall Definition 3.49 of clause sets EA and DA, page 62; Definition 3.55 of sets of all
simple ground R≈

A-reduced instances sgiA, page 67; Definition 3.56 of a clause set NA, page 67
2Please, recall Definition 3.23 of a hierarchic algebra/model, page 44; Definition 3.25 of consis-

tency relative to C , page 45.

100 Hierarchic Refutational Theorem Proving

According to Theorem 3.81, (I1,R1) approximates (I2,R2) via α. Moreover, ac-
cording to Theorem 3.42, (I2,R2) is refutationally complete forN2. Consequently,
by Theorem 3.14, (I1,R1) is refutationally complete for all sets in N1, i.e. (H,RH)
is refutationally complete for all sufficiently complete clause sets. ■

3.5. Local Sufficient Completeness 101

3.5 Local Sufficient Completeness

Thus far we have shown that the hierarchic superposition calculus SUP(T) is refu-
tationally complete for all sets of clauses enjoying the sufficient completeness cri-
terion according to which a clause set has to sufficiently define all ground exten-
sion terms. Next we show that for achieving completeness it suffices to sufficiently
define only those extension terms that occur in irredundant clauses of a given
clause set. We call clause sets, possessing the property that all extension terms
occurring in their irredundant clauses are sufficiently defined, locally sufficiently
complete, Definition 3.84.

Overview. Let M = N∞ be the limit of a fair SUP(T)-derivation N = N0 ` N1 `
. . ., where N is a locally sufficiently complete set of abstracted Σ′-clauses. Since
N0 ` N1 ` . . . is fair, it follows that M is saturated, by Lemma 3.9. Assume M
does not contain an empty clause ä. According to Theorem 3.72, the ground
clause set MA = sgiA(M)∪EA∪DA is saturated with respect to the standard SUP
calculus for ground clauses (F ,RF), where A ∈ C is a base algebra satisfying
sgi(M)∩C lΣ, the base subset of sgi(M). By Lemma 3.41, MA has a Herbrand model
IMA = TΩ′/RMA , where RMA is a rewrite system constructed from the maximal lit-
erals of productive clauses in MA, and TΩ′/RMA the quotient for ground Σ′-terms
TΩ′ by the smallest congruence relation containing RMA (see Definition 2.29 for
further details regarding construction of IMA and RMA). In general, the Herbrand
interpretation IMA is not a hierarchic algebra, as it may allow “junks” into base
sorts (that is, elements of the base part of the universe, that no base terms are
equal to).

We tackle this issue by constructing a new rewrite system R ′ based on the Her-
brand model IMA . The main purpose of the rewrite system R ′ is to sufficiently de-
fine those terms which are not sufficiently defined by IMA by equating such terms
to (arbitrary) base terms. Moreover, R ′ has to be constructed in a safe way such
that the corresponding Herbrand interpretation I ′ = TΩ′/R ′ would be a hierarchic
model of the initial clause set N . To this end, R ′ has to preserve the interpretation
of (i) those extension terms that occur in N , and (ii) non-base terms that contain
no extension subterms. Besides, in order to ease a proof of I ′ |= N , we want the
resulting rewrite system R ′ to be convergent.

Outline. The current section is split into three parts. In Section 3.5.1, we give a
formal definition of a locally sufficient complete clause set, Definition 3.84. As
a prerequisite, we first present the notions of smooth substitutions and instances,
Definition 3.83.

In Section 3.5.2, we formally describe the three constituting parts REF , RE ,
RSD of the desired rewrite system R ′, Definition 3.85, and study the most essen-
tial properties of the rewrite system R ′ = REF ∪RE ∪RSD , namely: (i) sufficient
completeness of R ′, Proposition 3.88; (ii) convergency, Proposition 3.89; (iii) and
preservation of the original meaning of all extension terms occurring in an initial
locally sufficiently complete clause set N , Proposition 3.91.

In Section 3.5.3, we prove the main property of locally sufficiently complete
sets of abstracted clauses that any such clause set N has a hierarchic model when-
ever a fair SUP(T) derivation does not produce an empty clause ä and the set

102 Hierarchic Refutational Theorem Proving

of all base clauses within the limit of the derivation is theory-consistent, Theo-
rem 3.93. And we finish the discussion of local sufficient completeness by estab-
lishing refutational completeness of SUP(T) for all locally sufficiently complete
set of abstracted clauses provided the base specification Sp is compact, Theo-
rem 3.94.

3.5.1 Locally Sufficiently Complete Clause Sets

We begin with the definition of smooth substitutions and smooth instances. These
notions are needed to formally define the class of locally sufficiently complete
clause sets.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 3.83 Ï
Smooth Substitution

Smooth Instance
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively. Let X ′ =X∪X ′′ be the underlying variable
set consisting of base and non-base variables, respectively.

A substitution σ is called smooth if no term in its image contains an extension
subterm:

σ smooth
def⇐⇒ ∀t ∈ im(σ).∀p ∈ ρ(t) : t/p 6∈ T E

Ω′ (X ′).

A term t ′ is called a smooth instance of a term t , if t ′ = tσ for some smooth sub-
stitution σ. The set of all smooth ground instances of t is denoted by smgi(t):

smgi(t)
def
= {tσ |σ smooth, tσ ∈ TΩ′ }.

■

The notion of a smooth (ground) instance is naturally lifted to inferences and
all expressions, particularly to literals, clauses, and sets thereof. Note that any
smooth substitution is simple, but not the other way around, in general. More-
over, given an expression e and its smooth instance e ′ = eσ, where σ is a smooth
substitution, a subterm t ′ = e ′/p of e ′ at a position p ∈ ρ(e ′) is an extension term
if and only if the subterm t = e/p of e at the same position p ∈ ρ(e) is so; in other
words, the application of a smooth substitution does not introduce new extension
symbol occurrences.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 3.84 Ï
Locally Sufficiently

Complete Clause Sets
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively.

A set N of Σ′-clauses is called locally sufficiently complete with respect to
smooth instances if for every weak model A′ ∈WHSp of the set sgi(N) of all simple
ground instances of N , every base algebra A ∈C monomorphic1 to A′, and every
ground extension term2 t ′ occurring in the set3 smgi(N) \RFF (smgi(N)∪EA∪DA)
of all smooth ground instances of N non-redundant for smgi(N)∪EA∪DA there

1The existence of such base algebra A is guaranteed, because, by definition, for any weak algebra
A′ there is a base algebra A which is monomorphic to A′; see Definition 3.73 of a weak algebra,
page 89.

2Please, recall Definitions 3.16 and 3.17 of different kinds of terms, page 39.
3Please recall Definition 3.49 of clause sets EA and DA, page 62, and Definition 3.40 of the stan-

dard redundancy criterion RF for ground clauses, page 56.

3.5. Local Sufficient Completeness 103

exists a ground base term t such that t ′ equals t under A′. We write LSCHSp to
denote the class of all such sets of clauses:

LSCHSp
def
=

{
N ∈C lΣ′ | (∀A′ ∈WHSp)(∀A ∈C)(∀ t ′ ∈ T E

Ω′)(∃ t ∈ TΩ) :q A is monomorphic to A′,q t ′ occurs in smgi(N) \RFF (smgi(N)∪EA∪DA), andq A′ |= sgi(N) ⇒ A′ |= t ′ ≈ t
}

■

For the sake of conciseness, if a clause set N is locally sufficiently complete with
respect to smooth instances, we simply say that N is locally sufficiently complete.

Expanding the notion of a weak model and using the Weak Algebra Theo-
rem (Theorem 3.76), the definition of the class of all locally sufficiently complete
clause sets can be equivalently reformulated as follows:

LSCHSp = {
N ∈C lΣ′ | (∀A ∈C)(∀ t ′ ∈ T E

Ω′)(∃ t ∈ TΩ) :

t ′ occ. in smgi(N) \RFF (smgi(N)∪EA∪DA) ⇒ sgi(N)∪EA∪DA |= t ′ ≈ t
}

Using Lemma 3.61(ii) and the fact that sgiA(N) ⊆ sgi(N), the definition can be
equivalently rewritten even further:

LSCHSp = {
N ∈C lΣ′ | (∀A ∈C)(∀ t ′ ∈ T E

Ω′)(∃ t ∈ TΩ) :

t ′ occ. in smgi(N) \RFF (smgi(N)∪EA∪DA) ⇒ NA |= t ′ ≈ t
}
,

where NA = sgiA(N)∪EA∪DA, and sgiA(N) is the set of all simple ground R≈
A-

reduced instances of N (see Definitions 3.55 and 3.56 of (the set of all) simple
ground R≈

A-reduced instances and a set NA, respectively).

3.5.2 Sufficiently Defining Rewrite Systems

As discussed at the very beginning of the current section, our concern is to con-
struct a rewrite system R ′, such that the corresponding Herbrand interpretation
I ′ = TΩ′/R ′ would be a hierarchic model of an input locally sufficiently complete
clause set N . Next we formally define the constituents REF , RE , RSD of a required
rewrite system R ′ = REF ∪RE ∪RSD . The purpose of the rewrite system RE is to
preserve the interpretation of those extension terms that occur in N , whereas REF

is aimed at preserving the interpretation of terms that contain no extension sub-
terms (extension-free terms). The purpose of RSD is to sufficiently define those
extension terms that are not sufficiently defined by N .

We define the rewrite systems REF , RE , RSD with respect to an abstract Σ′-
algebraA′ and a reduction ordering Â total on ground Σ′-terms. Afterwards, given
a locally sufficiently complete clause set N , we instantiate A′ with an appropriate
weak model of the set sgi(N), that agrees with conditions of the definition of a
locally sufficiently complete clause set.

To define a rewrite system REF we make use of an auxiliary rewrite system
R̃EF which contains all rewrite rules between every ground extension-free term t
and the minimal element mÂ

A′ (t) in the equivalence class [t]A′ of t inA′; the class
[t]A′ consists of all ground Σ′-terms whose interpretation under A′ equals that of

104 Hierarchic Refutational Theorem Proving

t :

[t]A′
def
= {s ∈ TΩ′ | sA′ = tA′ }

mÂ
A′ (t)

def
= minÂ([t]A′)

A rewrite system REF relates to R̃EF same as R≈
A relates to R̃≈

A (see Section 3.4.3,
Definition 3.46).

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 3.85 Ï
Rewrite systems:

R̃EF REF RE RSD
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively. Let Â be a reduction ordering total on
ground Σ′-terms, and A′ ∈AΣ′ a Σ′-algebra.

We define a ground rewrite system R̃EF as the set of all rewrite rules between
every ground extension-free term t ∈ TΩ′ and the smallest term in its equivalence
class [t]A′ different from t :

R̃EF def
= {t → mÂ

A′ (t) | t ∈ TΩ′ , ∀p ∈ ρ(t) : t/p 6∈ T E
Ω′ , t 6= mÂ

A′ (t)}

We define a rewrite system REF to be the reduced subset of R̃EF , that is, the
set of all rules (l → r) ∈ R̃EF such that l is not reducible by R̃EF

A \ {l → r }:

REF def
= {(l → r) ∈ R̃EF

A | l = l↓R̃EF
A \{l→r }}.

We define a ground rewrite system RE as the set of all rewrite rules (l → r) with
unique left-hand-sides, such that l is a ground smooth extension term reduced
with respect to the rewrite system REF , and r is an arbitrary ground base term
that equal under A′ to l :

(l → r) ∈ RE def⇐⇒ l ∈ T E
Ω′ and r ∈ TΩ such that:q ∀(l ′ → r ′) ∈ RE : l = l ′ ⇒ r = r ′,q A′ |= l ≈ r,q l smooth, andq l = l↓REF

We define a ground rewrite system RSD as the set of all rewrite rules (l → r)
with unique left-hand-sides, such that l is a ground smooth extension term, that
is reduced with respect to the rewrite system REF and not equal under I to any
base term, and r is an arbitrary ground base term:

(l → r) ∈ RSD def⇐⇒ l ∈ T E
Ω′ and r ∈ TΩ such that:q ∀(l ′ → r ′) ∈ RSD : l = l ′ ⇒ r = r ′,q ∀t ∈ TΩ : A′ 6|= l ≈ t ,q l smooth, andq l = l↓REF

■

Please note, that the rewrite systems R̃EF , REF , RE , and RSD are always well-
defined irregardless of the underlying algebra A′. Some of the rewrite systems
R̃EF , REF , RE , or RSD might be empty for a particular A′, but RE ∪RSD can be
empty only if the enrichment operator set Ω′′ =Ω′ \Ω contains no extension sym-
bol (i.e. no free function symbol ranging into a base sort).

3.5. Local Sufficient Completeness 105

Next we assert two important properties of rewrite systems R̃EF and REF , namely:
they define the same set of normal forms and induce the same equality relation
on ground Σ′-terms. The properties will be required to show that the Herbrand
interpretation I ′ = TΩ′/R ′ is a hierarchic model of a locally sufficiently complete
clause set N , where R ′ = REF ∪RE ∪RSD .

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 3.86
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Rewrite systems R̃EF and REF define the same set of normal forms.

Analogous to the proof of Lemma 3.47. ■ Î PROOF

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î COROLLARY 3.87
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

R̃EF and REF induce the same equality relation on ground Σ′-terms.

Follows from Definition 3.85 of R̃EF and REF , Proposition 3.86, and Birkhoff’s The- Î PROOF
orem (Theorem 2.28). ■

Next we show that a rewrite system R ′ = REF ∪RE ∪RSD is itself sufficiently
complete, in the sense that it rewrites any extension term to a base term, and
convergent, if underlied by an appropriate ordering.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 3.88
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Assume Â is a reduction ordering total on ground
terms which orients any extension term greater than any extension-free one.

If Â is the ordering underlying a rewrite system R ′ = REF ∪RE ∪RSD , then in
any model of R ′ all ground smooth extension terms are equal to some base terms:

∀ t ∈ T E
Ω′ .∃ s ∈ TΩ : t smooth ⇒ R ′ |= t ≈ s.

Since in Â any term containing an extension subterm is greater than any extension- Î PROOF
free term, any ground extension-free term can be rewritten in R ′ only to a ground
extension-free term. Moreover, ground extension-free terms can be rewritten in
R ′ only by rules from REF . Consequently, given a ground smooth extension term
t , any term t ′ obtained from t as the result of a rewriting t →∗

REF t ′ is also a

ground smooth extension term. Thus, for any such t , its normal form t↓REF is
a ground smooth extension term. By Definition 3.85, there exists a rewrite rule
(l → r) ∈ RE ∪RSD , such that l = t↓REF and r ∈ TΩ. Thus, t →∗

R ′ r . By Birkhoff’s
Theorem (Theorem 2.28), it implies that R ′ |= t ≈ r . ■

From the Extension Terms Lemma (Lemma 3.19) it follows that all models of
R ′ = REF ∪RE ∪RSD interpret any ground non-base term of a base sort the same
as some base term:

∀ t ∈ TΩ′ (S) \ TΩ.∃ s ∈ TΩ : R ′ |= t ≈ s.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î PROPOSITION 3.89
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′). Assume Â is a reduction ordering total on

106 Hierarchic Refutational Theorem Proving

ground Σ′-terms which orients any extension term greater than any extension-free
one, and any non-base term greater than any base one.

The rewrite system R ′ = REF ∪RE ∪RSD is convergent, if Â is the ordering un-
derlying R ′.

According to Theorem 2.21, a rewrite system is convergent if it is terminating andPROOF Ï
left-reduced. According to Theorem 2.20, a rewrite system is terminating iff the
left-hand-side of every rule in it is greater than its right-hand-side with respect to
some reduction ordering.

According to Definition 3.85, the rewrite system REF is a subset of a rewrite
system R̃EF . The right-hand-side r of any rule (l → r) ∈ R̃EF is the smallest term in
the equivalence class [l]A′ of l , for the underlying algebra A′, and l 6= r , therefore
l Â r . Consequently, l Â r for any rule (l → r) ∈ REF . The left-hand-side l of any
rule (l → r) ∈ RE ∪RSD is a ground extension term, hence non-base, and the right-
hand-side r a ground base term. In the reduction ordering Â, any ground non-
base term is greater than any ground base one, hence l Â r for every rule (l → r) ∈
RE ∪RSD . These implies R ′ = REF ∪RE ∪RSD is terminating.

The rewrite systems REF , RE , RSD are left-reduced apart: REF is left-reduced
by construction, each of RE and RSD is left-reduced, because the left-hand-side
of any rule in them is a unique smooth extension term. We are to show that the
union of the rewrite systems is left-reduced as well. Consider three arbitrary rules
(l1 → r1) ∈ REF , (l2 → r2) ∈ RE , and (l3 → r3) ∈ RSD :

– the left-hand-sides l2 and l3 are in its normal form with respect to REF ,
therefore, no rewriting from l2 or l3 by l1 → r1 is possible;

– a rewriting from l1 by (l2 → r2) or (l3 → r3) is impossible, because l2 and l3

are extension terms and l1 contains no extension subterm;

– a rewriting from l2 by (l3 → r3) or from l3 by (l2 → r2) below the top position
is impossible, because no strict subterm of l2 or l3 is an extension term since
l2 and l3 are smooth.

– a rewriting from l2 by (l3 → r3) or from l3 by (l2 → r2) at the top position
is impossible, because l2 is equal under the underlying algebra A′ to some
base term (namely, r2) whereas l3 is equal under A′ to no base term, hence
l2 6= l3.

Since the rules (l1 → r1), (l2 → r2), and (l3 → r3) have been selected from the re-
spective rewrite systems arbitrarily, we conclude that the left-hand-side of any
rule from one of REF , RE , or RSD is in its normal form with respect to the other
two rewrite systems. Consequently, R ′ = REF ∪RE ∪RSD is left-reduced. ■

In the following two propositions, we show that given a Σ′-algebraA′, a rewrite
system R ′ = REF ∪RE ∪RSD built with respect to A′ agrees with A′:

1. on all extension-free terms, and

2. on all extension terms occurring in the set smgi(N)\RFF (smgi(N)∪EA∪DA)
of all smooth ground instances of locally sufficiently complete clause set N
that are non-redundant for smgi(N)∪EA∪DA, whenever A′ is a model of
sgi(N).

3.5. Local Sufficient Completeness 107

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 3.90
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Assume Â is a reduction ordering total on ground
Σ′-terms which orients any extension term greater than any extension-free one, and
any non-base term greater than any base one.

Let A′ be a Σ′-algebra, and R ′ = REF ∪RE ∪RSD a rewrite system built with
respect to A′ and the ordering Â. Any two ground extension-free terms t , t ′ ∈ TΩ′

are equal under A′ if and only if their normal forms in R ′ coincide:

∀t , t ′ ∈ TΩ′ : t , t ′ extension-free ⇒ (A′ |= t ≈ t ′ ⇔ t↓R ′= t ′↓R ′)

First, let us make the following observation regarding rewritings in R ′ = REF ∪RE ∪ Î PROOF
RSD . Let t ∈ TΩ′ be an arbitrary ground extension-free Σ′-term. Since extension
terms are greater in Â than any extension-free term, any rewriting t →∗

R ′ t ′, for
some n ≥ 1, can only be performed using rules l → r such that l and r contain no
extension subterms. Therefore, all such rules come from the rewrite system REF ⊆
R ′. Since the left-hand-side of any rule (l ′ → r ′) ∈ RE ∪RSD is an extension term,
it follows that any rewriting t →∗

R ′ t ′ is identical to the corresponding rewriting
t →∗

REF t ′. Consequently, the normal forms of t in R ′ and REF are the same: t↓R ′

= t↓REF .

The “⇐” direction. Assume t , t ′ ∈ TΩ′ are ground extension-free terms, then:

t↓R ′ = t ′↓R ′

⇔ t↓REF = t ′↓REF // by the observ. above

⇔ REF |= t ≈ t ′ // by Birkhoff’s Theorem (Thm. 2.28),

// as REF ⊆ R ′ convergent, Prop. 3.89

⇒ A′ |= t ≈ t ′ // as A′ |= REF by construction of REF

The “⇒” direction. Assume A′ |= t ≈ t ′. Let1 t ′′ = mÂ
A′ (t) = mÂ

A′ (t ′) be the min-
imal term in the equivalence class [t]A′ = [t ′]A′ of t and t ′ in A′. Since t and t ′

are extension-free, the rewrite system R̃EF contains the rewrite rules (t → t ′′) and
(t ′ → t ′′). Consequently:

t↓R̃EF = t ′↓R̃EF = t ′′ // as R̃EF is right-reduced

⇔ t↓REF = t ′↓REF // by Prop. 3.86

⇔ t↓R ′ = t ′↓R ′ // by the observ. above

■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 3.91
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Assume Â is a reduction ordering total on ground

1Please recall that for any ground Σ′-term t , we write mÂ
A′ (t) to denote the minimal term in [t]A′ ;

where [t]A′ stands for the equivalence class of t in A′; the class [t]A′ consists of all ground terms
whose interpretation under A′ equals that of t :

[t]A′ def
= {s ∈ TΩ′ | sA′ = tA′ }

mÂ
A′ (t)

def
= minÂ([t]A′)

108 Hierarchic Refutational Theorem Proving

Σ′-terms which orients any extension term greater than any extension-free one, and
any non-base term greater than any base one.

Let A′ ∈ WHSp be a weak algebra, and R ′ = REF ∪RE ∪RSD a rewrite system
built with respect to A′ and the ordering Â. Let N ∈ LSCHSp be a locally suffi-
ciently complete clause set. IfA′ is a model of the set sgi(N) of all simple ground in-
stances of N , then every ground extension term t ∈ T E

Ω′ , occurring in the set smgi(N)\

RFF (smgi(N)∪EA ∪DA) of all smooth ground instances of N non-redundant for
smgi(N)∪EA∪DA, rewrites in R ′ to a ground base term s ∈ TΩ such that A′ |= t ≈ s:

A′ |= sgi(N) ⇒ (∀t ∈ T E
Ω′ : t occurs in smgi(N) \RFF (smgi(N)∪EA∪DA) ⇒

∃s ∈ TΩ : t↓R ′ = s and A′ |= t ≈ s
)
.

First, let us make the following observation regarding rewritings in R ′ = REF ∪RE ∪PROOF Ï
RSD . Let t ∈ TΩ′ be an arbitrary ground extension-free Σ′-term. Since extension
terms are greater in Â than any extension-free term, any rewriting t →∗

R ′ t ′, for
some n ≥ 1, can only be performed using rules l → r such that l and r contain
no extension subterms. Therefore, all such rules come from the rewrite system
REF ⊆ R ′. Since the left-hand-side of any rule (l ′ → r ′) ∈ RE ∪RSD is an extension
term, it follows that any rewriting t →∗

R ′ t ′ is identical to the corresponding rewrit-
ing t →∗

REF t ′. Consequently, the normal forms of t in R ′ and REF are the same:

t↓R ′= t↓REF . Moreover, any rule in REF rewrites an extension-free term to another

extension-free term, because left-hand-sides of all rules in REF are extension-free
terms, and any extension-free term is smaller in Â than any extension term.

Let t ∈ T E
Ω′ be an arbitrary ground extension term occurring in the set smgi(N)\

RFF (smgi(N)∪EA ∪DA). As N is locally sufficiently complete and A′ |= sgi(N),
we know from Definition 3.84 of a locally sufficiently complete clause set that
A′ |= t ≈ s′, for some ground base term s′ ∈ TΩ.

Next we show that t↓R ′= s = s′↓R ′ , for some ground base term s ∈ TΩ such
that A′ |= s ≈ s′, by induction on the number occE (t) of occurrences of extension
subterms in t , formally defined as follows:

occE (t)
def
= |{p ∈ ρ(t) | t/p ∈ T E

Ω′ }|.
Induction base. Assume occE (t) = 1. Then t is a smooth extension term. Let t ′ be
the normal form of t in REF :

t ′ = t↓REF

⇒ A′ |= t ′ ≈ t // as REF ⊆ R̃EF and A′ |= R̃EF ,
// and by Birkhoff’s Theorem

⇔ A′ |= t ′ ≈ s′ // as A′ |= t ≈ s′

⇒ (t ′ → s′′) ∈ RE // by Def. 3.85 of RE ,
// for some s′′ ∈ TΩ such that A′ |= s′ ≈ s′′

⇒ t ′ →RE s′′

Let s = s′′↓R ′ be the normal form of s′′ in R ′. Moreover, since s′′ is extension-free,
we conclude by the observation above that s = s′′↓R ′= s′′↓REF . Thus, we have:

t →∗
REF t ′ →RE s′′ →∗

REF s,

Since REF ⊆ R̃EF , A′ |= R̃EF by construction, and A′ |= t ≈ s′ ≈ s′′, we conclude
A′ |= s′′ ≈ s and therefore A′ |= t ≈ s. As R ′ is convergent, Proposition 3.89, the

3.5. Local Sufficient Completeness 109

term s is the unique normal form of t in R ′. As any ground base term is smaller
in Â than any non-base term, and s′′ is a ground base term, we conclude that s is
also base. Altogether, t↓R ′ = s, A′ |= t ≈ s, and s ∈ TΩ.

Induction hypothesis. Suppose the assertion holds for all terms t ∈ T E
Ω′ occur-

ring in smgi(N) \RFF (smgi(N)∪EA∪DA) such that occE (t) ≤ n, for some n ≥ 1.

Induction step. Assume occE (t) = n+1. Let t ′1, . . . , t ′m be all the outermost strict
extension subterms of t , that is, t ′i = t/pi ∈ T E

Ω′ for some non-top positions pi ∈
ρ(t) such that:

∀q ∈ ρ(t) : pi > q > ε ⇒ t/q 6∈ T E
Ω′ .

for all i ∈ {1, . . . ,m}. Because all t ′i are strict subterms of t , we know that each

t ′i occurs in the set smgi(N) \RFF (smgi(N)∪EA ∪DA), and 1 ≤ occE (t ′i) ≤ n. By
Induction hypothesis, there exist ground base terms s′i ∈ TΩ such that:

t ′i↓R ′ = s′i , and
A′ |= t ′i ≈ s′i

for every i ∈ {1, . . . ,m}. Consequently, there is a rewriting:

t [t ′1, . . . , t ′m] →∗
R ′ t [s′1, . . . , s′m]

The term t [s′1, . . . , s′m], obtained from t = t [t ′1, . . . , t ′m] by rewriting in R ′ the outer-
most occurrences of t ′1, . . . , t ′m to s′1, . . . , s′m , respectively, is a ground smooth exten-
sion term, i.e. the only extension symbol occurring in t [s′1, . . . , s′m] is the top sym-
bol. Let t ′′ be the normal form of t [s′1, . . . , s′m] with respect to the rewrite system
REF , that is

t ′′ = t [s′1, . . . , s′m]↓REF

Since A′ |= REF , we conclude

A′ |= t [s′1, . . . , s′m] ≈ t ′′

Moreover, every single rewrite step in a rewriting t [s′1, . . . , s′m] →∗
REF t ′′ takes place

below the top position, because any rule in REF rewrites an extension-free term
to another extension-free term (according to the observation above). Hence, t ′′ is
a smooth extension term. Besides,

A′ |= t ′i ≈ s′i // for every i ∈ {1, . . . ,m}
⇒ A′ |= t ≈ t [s′1, . . . , s′m]
⇔ A′ |= t [s′1, . . . , s′m] ≈ s′ // as A′ |= t ≈ s′

⇔ A′ |= t ′′ ≈ s′ // as A′ |= REF and t [s′1, . . . , s′m] →∗
REF t ′′

⇒ (t ′′ → s′′) ∈ RE // by Def. 3.85 of RE ,
// for some s′′ ∈ TΩ such that A′ |= s′ ≈ s′′

⇒ t ′′ →RE s′′

Let s = s′′↓R ′ be the normal form of s′′ in R ′. Since s′′ is extension-free, we con-
clude by the observation above that s = s′′↓R ′= s′′↓REF . Thus, we have:

t →∗
R ′ t [s′1, . . . , s′m] →REF t ′′ →RE s′′ →∗

REF s

From A′ |= REF , A′ |= {t ≈ t [s′1, . . . , s′m], t ′′ ≈ s′, s′ ≈ s′′}, and s′′ →∗
REF s, it follows

that A′ |= t ≈ s. As R ′ is convergent, the term s is the unique normal form of t in
R ′. As any ground base term is smaller in Â than any non-base term, and s′′ is a

110 Hierarchic Refutational Theorem Proving

ground base term, we conclude that s is also base. Altogether, t↓R ′ = s, A′ |= t ≈ s,
and s ∈ TΩ. ■

Note that in the above Proposition, the normal form s of t in the rewrite system
R ′ = REF ∪RE ∪RSD is obtained only by applying rewrite rules from REF ∪RE and
no rule from RSD , that is:

s = t↓R ′ = t↓REF ∪RE .

3.5.3 Model Existence and Refutational Completeness

Assume M = N∞ is the limit of a fair SUP(T)-derivation from a locally sufficiently
complete set N of abstracted clauses, and ä 6∈ M . Since M is the limit of a fair
derivation, the clause set M is saturated. By the Hierarchic Saturation Theorem
(Theorem 3.72), the clause set1 MA = sgiA(M) ∪EA ∪DA is saturated with re-
spect to the flat superposition calculus (F ,RF), for a base algebra A ∈ C that
satisfies the base subset of M . From ä 6∈ M it follows that ä 6∈ MA. According to
Lemma 3.41, MA has a Herbrand model IMA = TΩ′/RMA . We want to show that
the Herbrand interpretation I ′ = TΩ′/R ′ is a hierarchic model of the initial clause
set N , where R ′ = REF ∪RE ∪RSD and REF , RE , and RSD are constructed with
regard to the Herbrand model IMA .

In the next proposition, we assert that every weak model A′ ∈WHSp of the set
of all simple ground instances of the limit N∞ is a model of the set of all simple
ground instances of the initial clause set N . We need this property to ensure that
the candidate Herbrand model IMA does also satisfy the set sgi(N). Note that
soundness of the H-inference rules and of the hierarchic redundancy criterion
RH with respect to the C -entailment relation |=C is not sufficient to guarantee
IMA |= sgi(N), as the Herbrand model IMA is not hierarchic, in general.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 3.92 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N0 be a set of abstracted Σ′-clauses, N0 ` N1 ` . . . an H-derivation, and N∞
the limit of the derivation. Then2 sgi(N∞) |=W sgi(N0), i.e. every weak model of the
set of all simple ground instance of the derivation limit N∞ entails the set of all
simple ground instance of the initial clause set N0.

Put N = N0 and M = N∞. Let A′ ∈ WHSp be an arbitrary weak model of sgi(M) =PROOF Ï
sgi(N∞). According to the Weak Algebra Theorem (Theorem 3.76), there exists a
base algebra A ∈C such that3 A′ |=EA∪DA.

Obviously, sgi(M) |=W sgi(N ∩M), and thus A′ |= sgi(N ∩M). Consider the set
N \M . Every clause in N \M has been deleted at some point in the derivation N0 `

1Please, recall Definition 3.49 of clause sets EA and DA, page 62; Definition 3.55 of sets of all
simple ground R≈

A-reduced instances sgiA, page 67; Definition 3.56 of a clause set NA, page 67.
2Please, recall Definitions 3.73 and 3.74 of a weak model and the |=W -entailment, respectively,

page 89.
3Please, recall Definition 3.49 of clause sets EA and DA, page 62; Definition 3.55 of sets of all

simple ground R≈
A-reduced instances sgiA, page 67; Definition 3.56 of a clause set NA, page 67; Def-

initions 3.40 and 3.64 of the redundancy criteria RF and RH, pages 56 and 74, respectively.

3.5. Local Sufficient Completeness 111

N1 ` . . ., therefore all clauses in N \ M are redundant for the closure N∗ =⋃
i Ni of

the derivation:

N \ M ⊆RHF (N∗) // by Def. 3.3 of der. relation `,
// and Def. 3.7 of der. limit N∞

=RHF (M) // as M = N∞ and by Lemma 3.9(i)

⇒ sgiA(N \ M) ⊆RFF (MA)∪EA∪DA // by Def. 3.64 of RHF
⇒ MA |= sgiA(N \ M) // from Def. 3.40 of RFF ,

// where MA = sgiA(M)∪EA∪DA
⇔ MA |= sgiA(N \ M)∪EA∪DA // as EA∪DA ⊆ MA
⇔ MA |= sgi(N \ M) // by Lemma 3.61(ii)
⇒ A′ |= sgi(N \ M) // as MA = sgiA(M)∪EA∪DA,

// sgiA(M) ⊆ sgi(M), A′ |= sgi(M),
// and A′ |=EA∪DA

FromA′ |= sgi(N∩M) andA′ |= sgi(N \M) it follows thatA′ |= sgi(N). AsA′ ∈WHSp

has been picked arbitrarily, we conclude1 sgi(M) |=W sgi(N). ■

Having disposed of all the preliminary steps, we prove now the main property
of locally sufficiently complete sets of abstracted clauses, namely that any such
clause set N ∈LSCHSp has a hierarchic model whenever a fair SUP(T) derivation
does not produce an empty clause ä and the set of all base clauses within the
limit of the derivation is theory-consistent.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î THEOREM 3.93
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Assume Â is a reduction ordering total on ground
Σ′-terms which orients any extension term greater than any extension-free one, and
any non-base term greater than any base one.

Let N∞ equal the limit of a fair SUP(T)-derivation N0 ` N1 ` . . . with Â as the
underlying ordering, where N0 ∈ LSCHSp is a locally sufficiently complete set of
abstracted Σ′-clauses. Assume there exists a base algebra A ∈ C satisfying the set
N∞∩C lΣ of all base clauses within N∞. If N∞ does not contain an empty clause
ä, then N0 has a hierarchic model.

Put N = N0 and M = N∞. Since M is the limit of a fair derivation N0 ` N1 ` . . ., Î PROOF
the clause set M is saturated, Lemma 3.9. By the Hierarchic Saturation Theorem
(Theorem 3.72), the clause set2 MA = sgiA(M)∪EA∪DA is saturated with respect
to the flat superposition calculus (F ,RF). From ä 6∈ M it follows that ä 6∈ MA.
According to Lemma 3.41, MA has a Herbrand model IMA = TΩ′/RMA . We are
to show that the Herbrand interpretation I ′ = TΩ′/R ′ is a hierarchic model of the
initial clause set N = N0, where R ′ = REF ∪RE∪RSD and REF , RE , and RSD are con-
structed with regard to the Herbrand model IMA in accordance to Definition 3.85.

The rest of the proof is split into three parts, in which we show that: first, I ′

is a model of the set smgi(N) of all smooth ground instances of the initial clause

1Note that sgi(Ni+k) |=W sgi(Ni) follows by analogous argumentation, where i ,k ≥ 0.
2Please, recall Definition 3.49 of clause sets EA and DA, page 62; Definition 3.55 of sets of all

simple ground R≈
A-reduced instances sgiA, page 67; Definition 3.56 of a clause set NA, page 67.

112 Hierarchic Refutational Theorem Proving

set N = N0; second, I ′ is a model of the set gi(N) of all ground instances of N ,
consequently, a model of N ; and, third, I ′ is hierarchic algebra.

Subgoal I ′ |= smgi(N). First, let us make the following observation regarding rewrit-
ings in R ′ = REF ∪RE ∪RSD . Let t ∈ TΩ′ be an arbitrary ground extension-free
Σ′-term. Since extension terms are greater in Â than any extension-free term,
any rewriting t →∗

R ′ t ′, for some n ≥ 1, can only be performed using rules l → r
such that l and r contain no extension subterms. Therefore, all such rules come
from the rewrite system REF ⊆ R ′. Since the left-hand-side of any rule (l ′ → r ′) ∈
RE ∪RSD is an extension term, it follows that any rewriting t →∗

R ′ t ′ is identical to
the corresponding rewriting t →∗

REF t ′. Consequently, the normal forms of t in R ′

and REF are the same: t↓R ′= t↓REF .

First, we show that IMA is a model of the set sgi(N) of all simple ground in-
stances of the initial clause set N = N0. Consider the Herbrand interpretation
IMA more elaborately:

IMA |= MA
⊇ EA∪DA // as MA = sgiA(M)∪EA∪DA

⇒ IMA ∈ WHSp // by the Weak Algebra Theorem (Thm. 3.76)

Moreover

MA |= sgi(M) // by Lemma 3.61(ii)
⇒ IMA |= sgi(N) // by Prop. 3.92

Next, we show that I ′ |= smgi(N). Consider an arbitrary clause C ∈ smgi(N) \
RFF (smgi(N)∪EA ∪DA) from the set of all simple ground instances of N non-
redundant for smgi(N)∪EA∪DA. The clause C is satisfied by IMA as C ∈ smgi(N) ⊆
sgi(N). We know IMA |=C if and only if IMA satisfies some literal L = (t1 ≈̇ t2) ∈C ,
where ≈̇ ∈ {≈, 6≈}. Consider two possible case regarding the sign of L:

1. L is positive, i.e. L = (t1 ≈ t2). Let t i
1, . . . , t i

ni
be all the outermost1 occurrences

of extension subterms of each ti , where ni ≥ 0 for each i ∈ {1,2}. As N is a
locally sufficiently complete clause set, and, as shown above, IMA |= sgi(N)
and IMA ∈WHSp, we know from Proposition 3.91 that for every term t i

j there

exists a ground base term si
j ∈ TΩ such that the normal form of t i

j in R ′

equals si
j , and t i

j and si
j are equal under IMA :

t i
j ↓R ′ = si

j and

IMA |= t i
j ≈ si

j ,

for each i ∈ {1,2} and j ∈ {1, . . . ,ni }. Therefore, for t1 and t2 there are the
following rewritings in R ′:

t1 = t1[t 1
1 , . . . , t 1

n1
] →∗

R ′ t1[s1
1 , . . . , s1

n1
] = t ′1

t2 = t2[t 2
1 , . . . , t 2

n2
] →∗

R ′ t2[s2
1 , . . . , s2

n2
] = t ′2

where each term t ′i = ti [si
1, . . . , si

ni
] is obtained from ti = ti [t i

1, . . . , t i
ni

] by rewrit-

ing the outermost occurrences of the extension terms t i
1, . . . , t i

ni
to the base

terms si
1, . . . , si

ni
, respectively. The obtained terms t ′1 and t ′2 contain no ex-

1An occurrence of an extension subterm t ′ = t/p of a term t at a position p ∈ ρ(t) is outermost, if
no subterm of t at a position q < p is an extension term: ∀q ∈ ρ(t) : q < p ⇒ t/q 6∈ T E

Ω′ (X ′).

3.5. Local Sufficient Completeness 113

tension subterms, hence they are extension-free. Thus, we have:

IMA |= t1 ≈ t ′1, t2 ≈ t ′2 // as IMA |= t i
j ≈ si

j for each i ∈ {1,2}, j ∈ {1, . . . ,ni }

⇒ IMA |= t ′1 ≈ t ′2 // as IMA |= t1 ≈ t2

⇔ t ′1↓R ′ = t ′2↓R ′ // by Prop. 3.90, as t ′1 and t ′2 extension-free
⇔ t1↓R ′ = t2↓R ′ // as ti →∗

R ′ t ′i , for each i ∈ {1,2}
// and R ′ convergent by Prop. 3.89

⇔ I ′ |= t1 = t2 // by Birkhoff’s Theorem (Thm. 2.28)
// as R ′ convergent

2. L is negative, i.e. L = t1 6≈ t2. By the same arguments as used for the case
of positive L, we conclude that the terms t1 and t2 can be rewritten in R ′

to some extension-free terms t ′1 and t ′2 such that IMA |= t1 ≈ t ′1 and IMA |=
t2 ≈ t ′2. On the other hand:

IMA |= t1 6≈ t2

⇔ IMA |= t ′1 6≈ t ′2 // as IMA |= t1 ≈ t ′1, t2 ≈ t ′2
⇔ IMA 6|= t ′1 ≈ t ′2
⇔ t ′1↓R ′ 6= t ′2↓R ′ // by Prop. 3.90, as t ′1 and t ′2 extension-free
⇔ t1↓R ′ 6= t2↓R ′ // as ti →∗

R ′ t ′i , for each i ∈ {1,2}
// and R ′ convergent by Prop. 3.89

⇔ I ′ |= t1 6= t2 // by Birkhoff’s Theorem as R ′ convergent

Thus, I ′ |= L, consequently I ′ |=C . As C has been picked arbitrarily, we conclude
I ′ |= smgi(N) \RFF (smgi(N)∪EA∪DA).

Next step is to show that I ′ |= smgi(N). Let D = {t1 ≈̇ t2} be an arbitrary clause
from EA∪DA, where ≈̇ ∈ {≈, 6≈}. Since EA∪DA are sets of ground base clauses,
the terms t1 and t2 are extension-free terms. Consequently:

IMA |= t1 ≈̇ t2 // as IMA |= MA ⊇EA∪DA
⇔ t1↓R ′ =̇ t2↓R ′ // by Prop. 3.90, as t ′1 and t ′2 extension-free,

// where =̇ is = , if ≈̇ is ≈ ,
// and =̇ is 6= , if ≈̇ is 6≈

⇔ I ′ |= t1 ≈̇ t2 // by Birkhoff’s Theorem as R ′ convergent

Since D has been picked arbitrarily from EA ∪DA, we conclude I ′ |= EA ∪DA.
By the Weak Algebra Theorem (Theorem 3.76), the algebra I ′ is weak. On other
hand, we have:

I ′ |= smgi(N) \RFF (smgi(N)∪EA∪DA) // as shown above

⇔ I ′ |= (
smgi(N)∪EA∪DA

)
\RFF (smgi(N)∪EA∪DA) // as I ′ |=EA∪DA

|= smgi(N)∪EA∪DA // by Thm. 3.42, and
// by Def. 3.1 of RF

⇒ I ′ |= smgi(N)

Subgoal I ′ |= N . Assume A′ is an arbitrary model of R ′. According to Proposi-
tion 3.88, any ground extension term is interpreted under A′ as some base term.
Consequently, by the Extension Terms Lemma (Lemma 3.19), any ground non-
base term of a base sort is interpreted under A′ as some base term:

∀ t ∈ TΩ′ (S) \ TΩ.∃ s ∈ TΩ : A′(t) =A′(s).

From this we conclude that for any ground substitution σ there exists an A′-

114 Hierarchic Refutational Theorem Proving

equivalent smooth ground substitution σ′, in the sense that dom(σ′) = dom(σ),
and ∀x ∈ dom(σ′) :A′(xσ′) =A′(xσ). This implies that for any clause D ∈ N , each
ground instance Dσ ∈ gi(N) is equivalent under A′ to some smooth ground in-
stance Dσ′ ∈ smgi(N) of the same clause D , that is, A′ |= Dσ′ iff A′ |= Dσ. There-
fore, A′ |= smgi(N) iff A′ |= gi(N) iff A′ |= N . As A′ has been picked arbitrarily, I ′ is
a model of R ′ by construction, and I ′ |= smgi(N), we conclude I ′ |= N .

Subgoal I ′ ∈ HHSp. Put N ′ equal to the set of all ground positive unit clauses
constructed from the equations (rewrite rules) in R ′:

N ′ def
= { → s ≈ t | (s → t) ∈ R ′}.

Evidently, I ′ |= N ′. As we have shown above, I ′ |= EA ∪DA. Hence, since N ′ is
ground, we conclude I ′ |= N ′∪EA∪DA = sgiA(N ′)∪EA∪DA = N ′

A. From Proposi-
tion 3.88 and Definition 3.78, it follows that N ′ is sufficiently complete. According
to the Hierarchic Model Lemma (Lemma 3.79), the Herbrand interpretation I ′ is
a hierarchic model of N ′

A, hence a hierarchic algebra.

From I ′ |= N and I ′ ∈HHSp, we conclude I ′ is a hierarchic model of N . ■

We end up with a refutational completeness result of the SUP(T) calculus for
all locally sufficiently complete sets of abstracted clauses provided the base spec-
ification Sp is compact.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=THEOREM 3.94 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Assume Sp is compact. Assume Â is a reduction
ordering total on ground Σ′-terms which orients any extension term greater than
any extension-free one, and any non-base term greater than any base one.

The SUP(T) calculus with Â as the underlying ordering is refutationally com-
plete for all locally sufficiently complete sets of abstracted Σ′-clauses.

Let N ∈LSCHSp be an arbitrary locally sufficiently complete set of abstracted Σ′-PROOF Ï
clauses. Let N0 ` N1 ` . . . be a fair SUP(T) derivation from N = N0, and N∞ the
limit of the derivation. By Lemma 3.9, the limit N∞ is saturated. Consider two
possible cases regarding N∞:

– If ä∈ N∞, then N0 |=C ⊥, as SUP(T) is sound with respect to the C -entailment
relation |=C .

– Otherwise, let A ∈ C be a base algebra that satisfies the set N∞∩C lΣ of all
base clauses within N∞. The existence of A follows from the compactness
of the base specification Sp.

Indeed, suppose for the sake of contradiction, that N∞∩C lΣ is satisfiable by
no base algebra in C , then by compactness there exists finitely many base
clauses C1, . . . ,Cn ∈ N∞ ∩C lΣ, for some n ≥ 1, such that C1, . . . ,Cn |=C ⊥,
where Ci = (Λi ∥ →), for each i ∈ {1, . . . ,n}. Hence, there is a Constraint
Refutation inference, Definition 3.31:

I Λ1 ∥ → . . . Λn ∥ →
ä

3.5. Local Sufficient Completeness 115

As N∞ is saturated, the inference is redundant. According to Definition 3.64
of the hierarchic redundancy criterion RH, a Constraint Refutation infer-
ence is redundant if and only if an empty clause is present in the clause set,
a contradiction.

According to Theorem 3.93, N0 has a hierarchic model.

■

116 Hierarchic Refutational Theorem Proving

3.6 Hierarchic Reduction Rules

We want to extend the two rules tautology and subsumption deletion, which are
the primary reduction rules in the superposition SUP framework for general FOL
clauses [Wei01], onto the case of the hierarchic superposition SUP(T) calculus for
abstracted FOL(T) clauses. The extended rules are to be applied in two stages: in
first stage the free parts of abstracted clauses are subject to the conditions of the
standard rules like if they were general FOL clauses, and in the second stage the
constraints of the abstracted clauses are checked to meet extra conditions, suffi-
cient to recognize the whole clauses redundant. Such schema reflects the struc-
ture of abstracted clauses and reuses the standard well-studied redundancy de-
tection techniques developed for the FOL clausal fragment.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′). Consider an abstracted clause C :

C =Λ ∥ Γ→∆

=¬∧
Λ∨¬∧

Γ∨∨
∆

The clause C is a tautology relative to C (valid in all hierarchic algebras), if the
free part ¬∧

Γ∨∨
∆ or the base part ¬∧

Λ of it is so. The condition on the free
part can be approximated by the standard tautology check: indeed, |= ¬∧

Γ∨∨
∆

implies |=C ¬∧
Γ∨∨

∆. The base part ¬∧
Λ is a tautology relative to C if and only

if

∀A′ ∈HHSp : A′ |= gi(¬∧
Λ)

⇔ A′ |= sgi(¬∧
Λ)

⇔ ∀A ∈C : A |= sgi(¬∧
Λ) // as sgi(¬∧

Λ) a base formula
⇔ A |= ∀~x.¬∧

Λ // as all A ∈C term-gen.,
// where ~x = var(Λ)

⇔ A 6|= ∃~x.
∧
Λ

⇔ ∃~x.
∧
Λ |=C ⊥

i.e. if the existential closure of the constraint is unsatisfiable in the base theory.
Consider two abstracted clauses C1 and C2 such that the free part of C1 sub-

sumes the free part of C2:

C1 = Λ1 ∥ Γ1 →∆1 = ¬∧
Λ1 ∨¬∧

Γ1 ∨∨
∆1,

C2 = Λ2 ∥ Γ2 →∆2 = ¬∧
Λ2 ∨¬∧

Γ2 ∨∨
∆2,

Γ1σ⊆ Γ2 and ∆1σ⊆∆2,

for some matcher σ. Next, we determine conditions which have to be imposed on
the constraints of the clauses, so that the clause C1 entails C2 relative to C , under
the assumption that the free part of C1 subsumes the free part of C2. Suppose
C1 6|=C C2, then there exists a hierarchic algebra A′ ∈HHSp such that A′ |=C1 and
A′ 6|=C2. So,

A′ 6|=C2

⇔ A′ 6|= gi(C2)
⇔ A′ 6|= sgi(C2) // as A′ ∈HHSp

⇔ A′ 6|=C2φ // for some simple ground
// subst. φ with dom(φ) = var(C2)

⇔ A′ 6|= ¬∧
Λ2φ and

A′ 6|= ¬∧
Γ2φ∨∨

∆2φ

3.6. Hierarchic Reduction Rules 117

As Γ1σ⊆ Γ2 and ∆1σ⊆∆2, fromA′ 6|= ¬∧
Γ2φ∨∨

∆2φ we concludeA′ 6|= ¬∧
Γ1σφ∨∨

∆1σφ, which under the assumption that A′ |=C1 implies

A′ |= ¬∧
Λ1σφ

⇔ A′ |= gi(¬∧
Λ1σφ)

⇔ A′ |= sgi(¬∧
Λ1σφ) // as A′ ∈HHSp

⇔ A′ |= ¬∧
Λ1σφδ // for every simple ground subst. δ

// with dom(δ) = var(Λ1σ) \ var(C2)

Thus, if Γ1σ ⊆ Γ2 and ∆1σ ⊆ ∆2 for some matcher σ, then C1 6|=C C2 if and only
if there exist some hierarchic algebra A′, some simple ground φ with dom(φ) =
var(C2) such that for every simple ground δ with dom(δ) = var(Λ1σ) \ var(C2) the
following holds

A′ 6|= (Γ2 →∆2)φ, and A′ 6|= ¬∧
Λ2φ, and A′ |= ¬∧

Λ1σφδ.

Consequently, C1 |=C C2 if and only if for every hierarchic algebra A′ and ev-
ery simple ground φ there exists some simple ground δ with domains as defined
above such that

A′ |= (Γ2 →∆2)φ, or A′ |= ¬∧
Λ2φ, or A′ 6|= ¬∧

Λ1σφδ,

or equivalently,

if A′ 6|= (Γ2 →∆2)φ, then A′ |= (
∧
Λ2φ→∧

Λ1σφδ),

that is, every hierarchic algebra A′, that does not entail a ground instance of the
C2’s free part, validates the implication between the respective ground instance of
the C2’s constraint and some corresponding ground instance of C1σ’s constraint.
This criterion is not practically tractable, in general. We weaken it to fit the theory
T fragment (so that it could be checked by a T-solver alone) as follows:

– First of all, due to the principle of modularity, according to which the free
reasoning and theory reasoning are hidden from each other, for validating
the constraints implication we have to consider all hierarchic algebras A′ ∈
HHSp, and not only those ones which do not entail (Γ2 →∆2)φ.

– Besides, the subsumption matcher σ may map a base variable occurring in
Λ1 to a non-base term, turning thus Λ1σ to a non-base formula. In order to
avoid such cases, we restrict the free part subsumption by simple matchers1.

– With a simple matcher σ, the implication
∧
Λ2φ→∧

Λ1σφδ becomes a base
formula. Checking validity of a base formula with respect to all hierarchic
algebras A′ ∈HHSp reduces to checking validity with respect to all base al-
gebras A ∈C .

– Since all base algebras in C are term-generated, the application of substi-
tutions φ and δ can be replaced by the appropriate quantification of the
domain variables of φ and δ.

1As the free part of C1 may contain base variables which do not appear in its constraint Λ1, a more
effective solution is to prohibit the (non-simple) matcher σ from mapping the variables occurring
in Λ1 to non-base terms (all other variables, including base ones, may be mapped by σ arbitrarily).
All current implementations of SPASS(T) [AKW09a, EKS+11, FHW10, FW11, FKW12b] use this softer
subsumption matcher requirement.

118 Hierarchic Refutational Theorem Proving

Thus, we obtain the following sufficient condition for C1 |=C C2:

|=C ∀~x.∃~y .(
∧
Λ2 →∧

Λ1σ),(3.1) Ï
where σ a simple free parts subsumption matcher,~x = var(C2)∩X and~y = var(Λ1σ)\
var(C2). Please, observe the structure of the variable vectors ~x and ~y : the vectors
correspond to the substitutions φ and δ respectively, thus ~x consists of all base
variables occurring in C2 (not only of those contained in the constraint Λ2), and ~y
consists only of those Λ1σ’s variables that do not appear in C2. Defining the vec-
tors as~x = var(Λ2) and ~y = var(Λ1σ)\var(Λ2) would be wrong, because the clause
C2 may contain base variables which do not occur in its constraint Λ2, but occur
in Λ1σ; quantifying such variables existentially may yield deleting non-redundant
clauses. As an illustration, consider the following example.

Let the background theory T be rational linear arithmetic. Consider two ab-EXAMPLE 3.95 Ï
stracted clauses:

C1 = x + y > 0 ‖ → P (x, y)
C2 = x ′ > 0 ‖ → P (x ′, y ′)

It is easy to see that neither C1 6|=C C2 nor C2 6|=C C1. Nevertheless, for a free parts
subsumption matcher σ= [x 7→ x ′, y 7→ y ′], the following formula is LA-valid:

∀x ′.∃y ′. (x ′ > 0 → x ′+ y ′ > 0),

whereas

∀x ′, y ′. (x ′ > 0 → x ′+ y ′ > 0),

is LA-inconsistent. The former corresponds to the wrong quantification schema,
according to which ~x = var(Λ2) = {x ′} and ~y = var(Λ1σ) \ var(Λ2) = {y ′}; the latter
corresponds to the correct one, according to which ~x = var(C2) = {x ′, y ′} and ~y =
var(Λ1σ) \ var(C2) =;. ■

Next, we formally define the hierarchic reduction rules and prove that they
agree with the hierarchic redundancy criterion.

The Hierarchic Tautology Deletion rule isDEFINITION 3.96 Ï
Hierarchic

Tautology Deletion R Λ ∥ Γ→∆

if

(i) |= Γ→∆, or

(ii) ∃~x.
∧
Λ |=C ⊥, for ~x = var(Λ).

■

Thus, the Hierarchic Tautology Deletion rule is applicable if at least one of the
rule’s conditions is fulfilled. The first condition requires the free part of the premise
to be a tautology. According to the second condition the existential closure of the
constraint of the premise has to be unsatisfiable in the base theory. Alternatively,
the second condition can be equivalently reformulated as follows:

|=C ∀~x.¬∧
Λ

|=| ∀~x.
∨
Λ

3.6. Hierarchic Reduction Rules 119

where ~x = var(Λ), and Λ the set of all Λ’s literals negated. That is, the rule applies
if the negation ¬∧

Λ of the constraint Λ, or equivalently the base part1 ∨
Λ of the

premise, is valid in the base theory.

The Hierarchic Subsumption Deletion rule is Î DEFINITION 3.97
Hierarchic
Subsumption DeletionR Λ1 ∥ Γ1 →∆1 Λ2 ∥ Γ2 →∆2

Λ1 ∥ Γ1 →∆1

where, for a simple matcher σ,

(i) Γ1σ⊆ Γ2, ∆1σ⊆∆2,

(ii) |=C ∀~x.∃~y .(
∧
Λ2 → ∧

Λ1σ), for ~x = var(C2)∩X and ~y = var(Λ1σ) \ var(C2),

(iii) (Λ2 ∥ Γ2 →∆2) 6= ä.

■

The first two conditions of the Hierarchic Subsumption Deletion Rule are called
respectively: free part subsumption condition and encompassment condition (as
it requires for every variable assignment ν satisfying

∧
Λ2 the existence of a vari-

able assignment ν′ that satisfies
∧
Λ1σ, such that ν′(x) = ν(x) for every x ∈ var(Λ2);

thus, such ν′ “encompasses” ν on all variables var(Λ2)). The third condition of the
Hierarchic Subsumption Deletion is called the non-emptiness condition and is
stipulated by the fact, that the rule missing the condition would allow subsum-
ing an empty clause by an unsatisfiable base clause. Indeed, the free parts of a
base and an empty clause equal an empty set; the constraint of an empty clause
is an empty set and is, thus, an empty conjunction, which equals > by construc-
tion; and, finally, the constraint of an unsatisfiable base clause is true in any base
model. Consider, for instance, the hierarchic combination FOL(LA): the clause
(2 · (10+ 1) ≈ 22 ∥ →) subsumes an empty clause ä, because 2 · (10+ 1) ≈ 22 is
true in any model of arithmetic, and |=C (>→ 2× (10+1) ≈ 22) is thus true. The
rule Hierarchic Subsumption Deletion can not be applied for the example due to
condition (iii) of the rule. In practice, the condition does not make much sense
as all/most theorem provers stop executing whenever an empty clause is derived;
the condition is intended rather for theoretical purposes.

Note that y ∈ var(Λ1σ) \ var(C2) implies y 6∈ var(Γ1,∆1). If the base theory en-
ables quantifier elimination, then every such variable y could in fact be elimi-
nated in Λ1, and the encompassment condition would reduce to

|=C ∀~x.(
∧
Λ2 → ∧

Λ1σ),

for ~x = var(C2)∩X = var(C1,C2)∩X . In Chapters 5 and 6, presenting the appli-
cation of the SUP(T) calculus to reasoning in the hierarchic combinations where
the background theory is linear and non-linear arithmetic, we will propose a suf-
ficient criterion that decides the encompassment condition by determining the
existence of a simple matcher τ which maps the variables ~y to base terms over
variables of Λ2 such that

|=C ∀~x.(
∧
Λ2 → ∧

Λ1στ),

holds. We call such τ an encompassment matcher.

1Please, recall Definition 3.20 of an abstracted clause and, in particular, of its constituents.

120 Hierarchic Refutational Theorem Proving

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationLEMMA 3.98 Ï
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′). Assume Â is a reduction ordering total
on ground Σ′-terms which orients any non-base term greater than any base one.

The reduction rule Hierarchic Tautology Deletion enjoys the hierarchic redun-
dancy criterion RHF .

Let N be a set of abstracted Σ′-clauses. Consider a Hierarchic Tautology DeletionPROOF Ï
reduction with a premise C ∈ N :

R Λ ∥ Γ→∆

We are to show that C ∈RHF (N), so that deleting C from N is eligible. According
to the definition of the rule, either

(i) |= Γ→∆, or

(ii) ∃~x.
∧
Λ |=C ⊥, for ~x = var(Λ),

holds.

If the first condition of the rule is satisfied, then we have:

|= Γ→∆

=¬∧
Γ∨∨

∆

|= ¬∧
Λ∨¬∧

Γ∨∨
∆

=Λ ∥ Γ→∆

=C

Therefore, the clause C is a tautology, hence sgiA(C) ⊆RFF (NA) for any base alge-

bra A ∈C , consequently C ∈RHF (N).

If Condition (ii) is fulfilled, then we have:

∃~x.
∧
Λ |=C ⊥ // where ~x = var(Λ)

⇔ |=C ∀~x.(¬∧
Λ) // i.e. ∀~x.(¬∧

Λ) a taut. for |=C

Put C ′ =∨
Λ be a clause consisting of all Λ’s literals negated; C ′ |=| ¬∧

Λ. Then

|=C C ′

⇔ ∀A ∈C :A |= sgi(C ′)

Pick an arbitrary base algebraA ∈C and arbitrary clause D ∈ sgi(C ′). From Lemma 3.51
it follows that there exist finitely many clauses C1, . . . ,Cn ∈ EA ∪DA, for some
n ≥ 0, such that C1, . . . ,Cn |= D , and Ci ¹ D , for every i ∈ {1, . . . ,n}. Therefore

D ∈RFF (EA∪DA)∪EA∪DA
⇒ sgi(C ′) ⊆RFF (EA∪DA)∪EA∪DA

If Γ∪∆=;, then C =C ′ and

sgi(C) ⊆RFF (EA∪DA)∪EA∪DA.

Otherwise, if Γ∪∆ 6= ;, then C ′ ⊂ C and every clause Cσ ∈ sgi(C) is implied by
the corresponding clause C ′σ ∈ sgi(C ′), where σ is a simple ground substitution.
Besides, C ′σ is smaller than Cσ with respect to Â. This yields

sgi(C) ⊆RFF (EA∪DA).

3.6. Hierarchic Reduction Rules 121

Combining the two above cases, we obtain:

sgi(C) ⊆RFF (EA∪DA)∪EA∪DA
⇒ sgi(C) ⊆RFF (NA)∪EA∪DA // as EA∪DA ⊆ NA,

and by Cond. (ii) of Def. 3.1
and Theorem 3.42

⇒ sgiA(C) ⊆RFF (NA)∪EA∪DA // as sgiA(C) ⊆ sgi(C)

As the base algebra A ∈ C has been picked arbitrarily from C , we conclude by
Definition 3.64 of RHF that C ∈RHF (N). ■

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î LEMMA 3.99
Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′). Assume Â is a reduction ordering total
on ground Σ′-terms which orients any non-base term greater than any base one.

Let N and M be two sets of abstracted clauses. If an abstracted clause C2 is
subsumed by an abstracted clause C1 ∈ N , then any H-inference deriving from M
the clause C2 is redundant for N :

∀ I ∈H(M) : concl(I) =C2 ⇒ I ∈RHI (N).

Consider a Hierarchic Subsumption Deletion reduction: Î PROOF

R Λ1 ∥ Γ1 →∆1 Λ2 ∥ Γ2 →∆2

Λ1 ∥ Γ1 →∆1

with premises C1,C2 ∈ N , respectively. According to Definition 3.97 of the rule, the
following conditions are satisfied:

(i) Γ1σ⊆ Γ2, ∆1σ⊆∆2.

(ii) |=C ∀~x.∃~y .(
∧
Λ2 → ∧

Λ1σ), for ~x = var(C2)∩X and ~y = var(Λ1σ) \ var(C2).

(iii) (Λ2 ∥ Γ2 →∆2) 6= ä.

Since all algebras in C are term-generated, condition (ii) holds if and only if
for an arbitrary base algebra A ∈ C , and an arbitrary simple ground substitution
φ with dom(φ) = var(C2) ∩X , there exists a simple ground substitution δ with
dom(δ) = var(Λ1σ) \ var(C2), such that:

A |= (
∧
Λ2 → ∧

Λ1σ)φδ
⇔ A |=∧

Λ2φδ → ∧
Λ1σφδ

⇔ A |=∧
Λ2φ → ∧

Λ1σφδ // as ~y ∩var(Λ2) =;
⇔ A |= ¬(

∨
Λ1σφδ)∨∨

Λ2φ

Putting C ′
1 =

∨
Λ1σ and C ′

2 =
∨
Λ2 (that is, letting the clauses C ′

1 and C ′
2 to consist

of the literals in Λ1σ and Λ2 negated, respectively), we obtain:

A |= (¬C ′
1φδ∨C ′

2φ) // where C ′
1φδ and C ′

2φ ground clauses
⇔ A 6|=C ′

1φδ or A |=C ′
2φ

By Corollary 3.52 we knowA 6|=C ′
1φδ if and only if there exist finitely many clauses

D1
1, . . . ,D1

m ∈EA∪DA such that

D1
1, . . . ,D1

m ,C ′
1φδ |=⊥;

moreover, if a maximal literal in C ′
1φδ is not an equation s ≈ t , such that the clause

(s ≈ t →) is in DA, then D1
i ≺ C ′

1φδ, for every i ∈ {1, . . . ,m}. From Lemma 3.51 it

122 Hierarchic Refutational Theorem Proving

follows that A |= C ′
2φ if and only if there exist finitely many clauses D2

1, . . . ,D2
n ∈

EA∪DA such that

D2
1, . . . ,D2

n |=C ′
2φ,

and D2
i ¹C ′

2φ, for every i ∈ {1, . . . ,n}. Putting

M1 =
{

{D1
1, . . . ,D1

m}, if A 6|=C ′
1φδ

;, oth.

M2 =
{

{D2
1, . . . ,D2

n}, if A |=C ′
2φ

;, oth.

we obtain:

M1,C ′
1φδ |=⊥ or M2 |=C ′

2φ

⇒ M1, M2,C ′
1φδ |=C ′

2φ

⇔ M1, M2,
∨
Λ1σφδ |=∨

Λ2φ

⇔ M1, M2,¬∧
Λ1σφδ |= ¬∧

Λ2φ

⇒ M1, M2, (¬∧
Λ1σφδ∨¬∧

Γ1σφφ
′∨∨

∆1σφφ
′)

|= (¬∧
Λ2φ∨¬∧

Γ2φφ
′∨∨

∆2φφ
′) // from Cond. (i), for every

// simple ground subst. φ′

// with dom(φ′) = var(C2)∩X ′′

⇔ M1, M2,C1σφδφ
′ |=C2φφ

′

Combined substitutions ω1 = σφδφ and ω2 = φφ′ are simple and ground-
ing for the clauses C1 and C2, respectively. Let ω′

1 be the R≈
A-reduced ω1. By

Proposition 3.59, there exist finitely many clauses D3
1, . . . ,D3

k ∈EA, for some k ≥ 0,
such that D3

1, . . . ,D3
k ,C1ω

′
1 |= C1ω1 and D3

i ¹ C1ω1, for every i ∈ {1, . . . ,k}. Putting,
M3 = {D3

1, . . . ,D3
k }, we have

M1, M2, M3,C1ω
′
1 |=C2ω2.

Since the base algebra A and the substitutions φ and φ′ have been picked arbi-
trarily, we conclude that every simple ground R≈

A-reduced instance of C2 follows
from a finite subset of EA∪DA and a simple ground R≈

A-reduced instance of C1,
for any base algebra A ∈C .

Let I be anH-inference deriving C2, and I ′ ∈ sgiA(I) an arbitrary simple ground
R≈
A-reduced instance of I . Without loss of generality, assume I ′ = Iω2. Let C =

maxÂ(prem(I ′)) be the maximal premise of I ′. Since H-inference rules admit only
non-base clauses as premises, the premises of I ′ are also non-base. Let us repre-
sent the clause C as

C =Π,Γ→Υ,∆,

where Π→Υ is the base part of the clause, and Γ→∆ the non-base one. Accord-
ing to Proposition 3.44, the non-base part of C2ω2 is smaller than the non-base
part of C :

Γ→∆Â (Γ2 →∆2)ω2

⊇ (Γ1 →∆1)σω1

º (Γ1 →∆1)ω′
1

Consequently,

Γ→∆Â (Λ1 ∥ Γ1 →∆1)ω′
1

⇒ Π,Γ→Υ,∆Â (Λ1 ∥ Γ1 →∆1)ω′
1

3.6. Hierarchic Reduction Rules 123

Thus, C Â C1ω
′
1. Evidently, C is also greater than any clause D ∈ M1 ∪ M2 ∪ M3.

Thus, the conclusion C2ω2 of the inference I ′ logically follows from finitely many
clauses, each of which is smaller than the maximal premise C of the inference.
Since M1 ∪M2 ∪M3 ∪C1ω

′
1 ⊆ NA, we conclude by Definition 3.40 of F-redundant

inferences that the inference I ′ is redundant for NA:

I ′ ∈RFI (NA).

Since the inference I ′ and the base algebra A ∈ C have been picked arbitrarily,
it follows that all simple ground R≈

A-reduced instances of I are redundant, and,
therefore, by Definition 3.64 of H-redundant inferences, I is redundant for N :

I ∈RHI (N),

and the proof is complete. ■

C
H
A
P
T
ER 4

SUP(T) as a Decision Procedure

4.1
Introduction

4.2
SUP(T) Calculus

4.3
Deciding Ground

FOL(T)

4.4
Deciding Non-Ground

FOL(T)

4.5
Application: Reasoning

in Ontologies with
Arithmetical Facts

In this chapter we show that the SUP(T) cal-
culus is a decision procedure for the ground
FOL(T) fragment as well as a non-ground
FOL(T) fragment where non-base variables
can only be instantiated by constants. This
answers the so far open question whether
SUP(T) can actually decide the ground case.
It was already known that SUP(T) is com-
plete and for some cases even a deci-
sion procedure for certain non-ground frag-
ments such as the combination of FOL and
(non)linear arithmetic [AKW09a, EKS+11],
and the analysis of fragments resulting from
the translation of first-order probabilistic
and (extended) timed automata [FHW10,
FKW12b, FKW12a, FW11]. In Section 4.1
we make an introduction into specifics of
SUP(T) application to ground problems. In
Section 4.2, we prove SUP(T) to be a deci-
sion procedure for the ground FOL(T) frag-
ment. In Section 4.3 we show that SUP(T)
can decide beyond the ground fragment.
The paper ends with a presentation of an
example application of the achieved results
for reasoning in ontologies with arithmetical
facts, Section 4.4.
This chapter is an extended version
of [KW11, KW12].

125

126 SUP(T) as a Decision Procedure

4.1 Introduction

The hierarchic superposition calculus SUP(T) over a theory T enables sound rea-
soning on the hierarchic combination FOL(T) of a theory T with full first-order
logic. If a FOL(T) clause set enjoys a sufficient completeness criterion, the cal-
culus is even complete. Clause sets over the ground fragment of FOL(T) are not
sufficiently complete, in general. In this chapter we show that any clause set over
the ground FOL(T) fragment can be transformed into a sufficiently complete one,
and prove that SUP(T) terminates on the transformed clause set, hence consti-
tutes a decision procedure provided the existential fragment of the theory T is
decidable. Thanks to the hierarchic design of SUP(T), the decidability result can
be extended beyond the ground case. We show SUP(T) is a decision procedure
for the non-ground FOL fragment plus a theory T, if every non-constant function
symbol from the underlying FOL signature ranges into the sort of the theory T,
and every term of the theory sort is ground. This actually closes a gap for SUP(T)
that was already shown a decision procedure for certain FOL(T) fragments with
variables [FW11, FKW12b], whereas the ground case has not been yet solved.

The given definition of the sufficient completeness criterion, Definition 3.78,
is very strong, but still the calculus may be complete for some clause sets, that do
not enjoy the criterion. In practice, we only need to sufficiently define only those
non-base terms of the base sort that actually occur in a given clause set N . For
a finite clause set N sufficient completeness can be obtained by transforming N
into a clause set N ′, in which every non-base term t of the base sort occurs in
a positive unit clause of the form t ≈ t ′, where t ′ is a base term. If by a proper
instantiation of the SUP(T) calculus the existence of such equations remains an
invariant for any SUP(T) derivation N0 ` N1 ` . . ., where N0 is the clause set N ′

abstracted, sufficient completeness is preserved and the overall approach is com-
plete. Completeness of the calculus for clause sets over the fragments we consider
in the current work is achieved exactly in this way – by sufficiently defining all
non-base terms of the base sort that do occur in a given clause set (the approach
is further described in the following sections).

Here is an example, for which the hierarchical calculus is not complete, but whereEXAMPLE 4.1 Ï
completeness can be recovered by sufficiently defining present terms. Let the
background theory T be rational linear arithmetic; <,≥,0 ∈ Ω, and f , a ∈ Ω′′; the
function symbol f ranges into the base sort S, and a into the free sort S′′. Con-
sider two clauses

(1) → f (a) ≥ 0
(2) → f (a) < 0

which are abstracted to

(1′) x 6≥ 0 ‖ f (a) ≈ x →
(2′) x 6< 0 ‖ f (a) ≈ x →

Recall that variables in clauses are universally quantified, hence all clauses are
variable disjoint. Clearly, the set of these two clauses is unsatisfiable relative to C ,
however no SUP(T) inference is possible. Note that hierarchic equality resolution
is not applicable as σ = {x 7→ f (a)} is not a simple substitution. The two clauses

4.1. Introduction 127

are not sufficiently complete, because the clause set does not imply simple in-
stances of the term f (a) to be equal to some base term.

Note that the set is satisfiable in a modelA′, that extends the base sort with an
extra “junk” element, which we denote by “♦”, exclusively generated by the term
f (a), i.e. tA′ =♦ iff t = f (a); and interprets the predicates “<” and “≥” such that:

– ♦≥A′ 0A′ and ♦<A′ 0A′ are true; and

– A′ |= s < s′ iff s < s′ holds in the theory of linear arithmetic (analogously for
≥), for any ground base terms s, s′TΩ.

The model A′ is not hierarchic, as its restriction A′|Σ to the base signature is a
non-standard model of linear arithmetic (because of the junk “♦”).

The equality of f (a) to a base term can, for example, be forced by the addi-
tional clause

(3) → f (a) ≈ 0

which is abstracted to

(3′) y ≈ 0 ‖ → f (a) ≈ y

Now the three clauses are sufficiently complete. For the clauses there is a refuta-
tion where Hierarchic Superposition Left Inferences between the clauses (1) and
(3), and (2) and (3) yield respectively (note the move of base variable assignments
y ≈ x from the free parts of the conclusions to the constraints):

(4) x < 0, y ≈ 0, y ≈ x ‖ →
(5) x ≥ 0, y ≈ 0, y ≈ x ‖ →

which are equivalent to

(4′) 0 < 0 ‖ →
(5′) 0 ≥ 0 ‖ →

respectively. A Constraint Refutation application to the clause (4) (or equivalently
to (4′)) results in the empty clause �. ■

128 SUP(T) as a Decision Procedure

4.2 Deciding Ground FOL(T)

In this section we prove that the SUP(T) calculus is a decision procedure for the
ground FOL(T) fragment.

4.2.1 Basification

A key idea of the approach to decide the ground FOL(T) fragment we describe
here is to sufficiently define ground base sort terms, occurring in an input clause
set and whose top symbol is a free function symbol, by extending the clause set
by extra positive unit clauses consisting of an equation between every such a
term and a fresh (i.e. not occurring in the clause set) base constant (parameter)
uniquely introduced for the term, thus obtaining a sufficiently complete clause
set which is satisfiable relative to T iff the original one is so. Here we assume
that the background theory T provides such free (Skolem) constants. Semanti-
cally, they play the role of existentially quantified variables, i.e., for our decision
result to be effective the base theory must provide decidability for the existential
fragment. This is, for example, the case for the theory of linear arithmetic, consid-
ered as the running example. Furthermore, extending the background theory with
new constant symbols may cause losing compactness of the overall approach.
We show that following a certain strategy, the SUP(T) calculus may produce only
finitely many irredundant clauses in the fragment considered, so compactness is
not needed any more.

Given a set N of Σ′-clauses, an extension term t ∈ T E
Ω′ (X ′) is called basified,

if the set N contains a positive unit clause C ∈ N consisting of an equation t ≈ a,
where a is a base constant (theory parameter). The clause C is called basifying (for
the term t). A clause set N is called basified if every extension term t , occurring in
N , is basified by a clause in N .

Every set N of Σ′-clauses can be transformed into an equisatisfiable basified
clause set in the following way: traverse every literal in every clause in N from
innermost (i.e. discover the literal’s term tree bottom up) and search for occur-
rences of ground extension subterms; whenever such a term t is being observed,
there are two possible ways of proceeding:

– if this is the first occurrence of t considered, then: (i) introduce a fresh base
constant a :→ S of the same base sort sort(t) = S ∈ S , (ii) replace the occur-
rence of t with a, and (iii) extend the input clause set N with a basifying
clause C = (→ t ≈ a);

– for otherwise, replace the current occurrence of t with the parameter a, that
has been introduced previously up to this point, when the first occurrence
of t has been discovered.

As the transformation of terms is performed from innermost to outwards, in
every term t basified, there is no subterm whose top symbol is an extension sym-
bol, thus no further basification in the new basifying clauses is needed. Besides,
all subsequent occurrences of the same term t appearing in the input clause set
N are replaced with the same base parameter a exclusively introduced for t . If a
clause set N is basified, then every ground extension term t occurring in N is suf-
ficiently defined via a basifying clause (→ t ≈ a) ∈ N . From a semantics perspec-

4.2. Deciding Ground FOL(T) 129

tive, the base parameters can be thought of as base-sorted variables existentially
quantified on the top of the overall problem.

Let N be a given set of ground clauses to be basified, containing just one clause: Î EXAMPLE 4.2

N = { P (f (h(1+ g (a)))) → f (h(1))+ g (a) ≥ 0 }

where the background theory T is rational linear arithmetic; +,≥,0,1 ∈ Ω, and
P, f , g , a,h ∈ Ω′′; the function symbols f , g range into a base sort S ∈ S , and a,h
into a free sort S′′ ∈S ′′.

Assume the literal ¬P (f (h(1+ g (a)))) is discovered first. Its (only) innermost
extension subterm is g (a). First, a fresh base parameter a is introduced; second,
the current occurrence of g (a) is replaced with a; and then a basifying clause (→
g (a) ≈ a) is added, yielding the following clause set:

{ P (f (h(1+a))) → f (h(1))+ g (a) ≥ 0,
→ g (a) ≈ a }

Next, the basification procedure processes the subterm f (h(1+ a)) by, likewise,
introducing a fresh parameter, replacing the subterm with the new parameter, and
adding the respective basifying clause, resulting in the following clause set:

{ P (b) → f (h(1))+ g (a) ≥ 0,
→ g (a) ≈ a,
→ f (h(1+a)) ≈ b }

At this point, every subterm of the first literal becomes basified, so the second
literal f (h(1))+ g (a) ≥ 0 is being processed. Assume the subterm f (h(1)) is con-
sidered first. After basifying the subterm in the above manner, we obtain:

{ P (b) → c+ g (a) ≥ 0,
→ g (a) ≈ a,
→ f (h(1+a)) ≈ b,
→ f (h(1)) ≈ c }

In the next step, the subterm g (a) is to be basified. Since another occurrence of
the term has been already processed, and for which a unique base parameter has
been introduced, the parameter a, no new parameter is produced now and no
basifying clause is added, and the current occurrence of g (a) is replaced with the
a, yielding the following clause set N ′:

N ′ = { P (b) → c+a≥ 0,
→ g (a) ≈ a,
→ f (h(1+a)) ≈ b,
→ f (h(1)) ≈ c }

The obtained clause set N ′ can be split into two parts: NI and NB . The set NI is
the set of the basified clauses from the initially given clause set N , the set NB is
the set of clauses basifying those in NI . So, for the example above, we obtain:

NI = { P (b) → c+a≥ 0 },
NB = { → g (a) ≈ a,

→ f (h(1+a)) ≈ b,
→ f (h(1)) ≈ c }

■

130 SUP(T) as a Decision Procedure

From Example 4.2, one can see that basification of a ground clause set N re-
sults in a set N ′ = NI ∪ NB , where NI is the set of the basified clauses from N ,
and NB is the set of clauses basifying those in NI , such that every base sort term
in NI is a ground base term possibly containing new parameters, and every base
sort term in NB is either a ground smooth extension term, or a ground base term
possibly containing new parameters. In fact, this observation is true for any set
of clauses, in which all terms of a base sort are ground, because basification ap-
plies only to extension terms that are ground. We formalize this property in the
following proposition.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.3 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let N be a set of clauses in which all base sort terms are ground. Let N ′ =
NI ∪NB be a clause set obtained from N by basification, where NI is the set of the
basified clauses from N , and NB is the set of clauses basifying those in NI . Every
base sort term occurring in a clause from NI is base and ground. The only literal
L = t ≈ a in any clause from NB is an equation between a base parameter a and a
ground smooth extension term t ∈ T E

Ω′ .

Consider an arbitrary clause (∥→ t ≈ a) ∈ NB . The clause is basifying for somePROOF Ï
ground extension term t occurring in a clause from N . Since basification runs
from innermost in a backward depth-first-search manner, at the iteration of basi-
fication, when the first occurrence of t is basified, all strict subterms of t have
been basified already and replaced thus by base parameters. Therefore, t is a
ground smooth extension term, implying that any strict base sort subterm of t
is base and ground.

Let L = t1 ≈̇ t2 be an arbitrary literal from a clause C ∈ N , where ≈̇ ∈ {≈, 6≈}.
We want to determine the structure of the literal L′ = t ′1 ≈̇ t ′2, which the literal
L becomes after basification in the corresponding clause C ′ ∈ NI . Regarding the
structure of t1 – analogously for t2 – there are two possible cases:

1. no subterm of t1 is an extension term, implying that any base sort subterm
of t1 is actually base and ground; in this case, there is no subterm in t1 to
be basified, therefore t1 remains unchanged: t ′1 = t1.

2. t1 contains an extension subterm s; in this case, every such a subterm s is
ground and, hence, replaced with a base parameter, yielding a term t ′1 with
no extension subterm, implying that any base sort subterm of t ′1 is base and
ground.

■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=COROLLARY 4.4 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let N be a set of clauses in which all base sort terms are ground. Let N ′ be a
clause set obtained from N by basification, and L = t1 ≈̇ t2 a literal in a clause from

4.2. Deciding Ground FOL(T) 131

N ′, where ≈̇ ∈ {≈, 6≈}. Every subterm of each ti with a base top operator symbol is a
ground base term:

∀p ∈ ρ(ti) : top(ti /p) ∈Ω⇒ ti /p ∈ TΩ,

for every i ∈ {1,2}.

Immediately follows from Proposition 4.3. ■ Î PROOF

For a given clause set N , basification of N produces an equisatisfiable clause
set N ′; moreover, every model of N ′ is a model of N (but not the other way round,
in general). Moreover, if all base sort terms occurring in clauses from N are ground,
then from Proposition 4.3 it follows that all extension terms occurring in N ′ are
sufficiently defined and occur only in positive literals of the form t ≈ a, where a is
a base parameter. On other hand, basification does not allow to sufficiently define
all possible extension terms over the signature of N , in general. Thus, N ′ may still
miss sufficient completeness. In Section 4.2.3, we will discuss this issue in detail;
particularly, we will show that defining only those extension terms that occur in
N ′ suffices to guarantee refutational completeness for the fragments considered.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î LEMMA 4.5
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N be a set of clauses, and N ′ be obtained from N by basification, then:

(i) N ′ and N equisatisfiable;

(ii) N ′ |= N .

The set N ′ contains one extra clause for each unique ground extension term
appearing in N , and its size asymptotically equals the size of N in the number of
symbols in N . Basification takes loglinear (i.e. n logn) time in the number n of
symbols in N .

4.2.2 Derivation Invariants

Abstraction introduced in Section 3.2 is used to split a clause into base and free
parts such that each part consists of base and free literals, respectively, and the
only symbols shared by the parts of an abstracted clause are base variables. After
a given clause set N has been basified into a clause set N ′ = NI ∪NB , the set N ′ is
to be abstracted. In this section we investigate structural invariants of constraints
and free literals in clauses derived by the SUP(T) calculus from a clause set ob-
tained by basification and abstraction from a set N of clauses in which all base
sort terms are ground. Considering such sets N (instead of just ground FOL(T)
clause sets) allows us to directly extend obtained results onto the non-ground
fragment studied in Section 4.3.

Consider the basified clause set N ′ = NI ∪NB from the previous example: Î EXAMPLE 4.6

NI = { P (b) → c+a≥ 0 },
NB = { → g (a) ≈ a,

→ f (h(1+a)) ≈ b,
→ f (h(1)) ≈ c }

132 SUP(T) as a Decision Procedure

Abstraction yields the following clause set (recall that all variables are universally
quantified):

N ′
I = { x ≈ b,c+a< 0 ‖ P (x) → },

N ′
B = { x ≈ a ‖ → g (a) ≈ x,

x ≈ b, y ≈ 1+a ‖ → f (h(y)) ≈ x,
x ≈ c, y ≈ 1 ‖ → f (h(y)) ≈ x }

■

Constraints and Base Variables

According to Corollary 4.4, any term t , occurring in a clause C = Γ→ ∆ from the
clause set N ′ and whose top symbol is a base operator symbol, is a base term
(meaning that t contains no free symbol), therefore no free operator symbol may
appear in C below a base one, hence only base terms are abstracted out. Conse-
quently, every base variable x in the abstracted clause C ′ = Λ′ ∥ Γ′ → ∆′ is intro-
duced during abstraction and assigned to some ground base term t via an equa-
tion x ≈ t in Λ′. Thus, abstraction populates the constraint Λ′ of the clause C ′ by
literals of two types:

– assignments x ≈ t of a base variable x to a ground base term t , arising as the
result of abstracting out base subterms occurring in C immediately below a
free operator symbol; and

– base literals s ≈̇ t , where s and t are ground base terms and ≈̇ ∈ {≈, 6≈}, which
have been already present in the clause C ∈ N ′ prior to abstraction and
moved then to the constraint of C ′ at the final step of abstraction1; the literal
gets negated when moved to the constraint if it comes from the succedent
of C .

Since no free term is abstracted out, the number of literals in each subset of the
free part of the abstracted clause C ′ = Γ′ →∆′ may only decrease in comparison to
that of the corresponding original clause C =Λ ∥ Γ→∆, i.e. |Γ′| ≤ |Γ| and |∆′| ≤ |∆|.

Next, we show that the above properties regarding base variables and the struc-
ture of the clauses’ constraints are actually invariants for any SUP(T) derivation
N0 ` N1 ` N2 ` . . ., where N0 is obtained by basification and abstraction from N .
The discovered properties will become particularly important when proving ter-
mination of SUP(T), Section 4.2.4.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.7 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

1Recall that predicates are encoded as functions; for instance, the literal c+a< 0 from the example
above is an abbreviation for the equation < (c+a,0) ≈ true<. Encoding of predicates as functions is
needed to compactly define the calculus. According to the definition of the SUP(T) calculus, only
free literals are superposed, therefore encoding base predicates as functions is not strictly necessary.
Still, we do it as it helps to compress the theoretical discussion by saving one extra case (of considering
predicative atoms), like in Proposition 4.11. Whenever the Constraint Refutation rule is performed and
the background T-solver is invoked, every such base predicative (dis)equation P (t1, . . . , tn) ≈̇ trueP ,
where ≈̇ ∈ {≈, 6≈}, is passed to the solver as a corresponding predicate P (t1, . . . , tn) or ¬P (t1, . . . , tn),
respectively.

4.2. Deciding Ground FOL(T) 133

Let N ′′ be obtained by basification and abstraction from a set N of Σ′-clauses in
which all terms of a base sort are ground. Let C =Λ ∥ Γ→∆ be an arbitrary clause
in N ′′. For every base variable x ∈ var(C)∩X there exists a ground base term t ∈ TΩ
such that1 the constraint Λ of C contains an equation x ≈ t .

Without loss of generality, assume N ′ = NI∪NB is obtained from N by basification, Î PROOF
and N ′′ = N ′

I ∪N ′
B obtained from N ′ by abstraction, where N ′

I and N ′
B correspond

to NI and NB , respectively.

Consider an arbitrary clause D ∈ NI and an arbitrary literal L = (t1 ≈̇ t2) ∈ D ,
where t1 and t2 are two terms and ≈̇ ∈ {≈, 6≈}. Let C ∈ N ′

I be the clause resulting
from abstraction of D . By Corollary 4.4, any subterm of each ti with a base top
operator symbol is a ground base term. Moreover, according to Proposition 4.3, L
contains no extension subterm. Hence, either t1 and t2 are ground base terms, or
they are non-base terms of a free sort with no occurrence of a base variable. In
the first case, the literal L is moved by abstraction to the constraint of C (where it
gets negated if it appears positively in D). For the second case, assume si

1, . . . , si
mi

are all the occurrences of base terms appearing in each ti immediately below a
free operator symbol, for each i ∈ {1,2} and some mi ≥ 0; we denote this fact by
ti [si

1, . . . , si
mi

] (if a base term s occurs in ti more than once, say k > 1 times, then it

appears among si
1, . . . , si

mi
also k times). Abstraction of t1 ≈ t2

– replaces si
1, . . . , si

mi
with fresh base variables xi

1, . . . , xi
mi

, respectively, yielding

a literal t ′1 ≈ t ′2, where t ′i = t [xi
1, . . . , xi

mi
], for each i ∈ {1,2}; and

– populates the constraint of C with assignments xi
1 ≈ si

1, . . ., xi
mi

≈ si
mi

, for
each i ∈ {1,2}.

Thus, the set of all base variables occurring in the abstracted literal L′ = t ′1 ≈ t ′2
consists of the fresh variables xi

j , each of which is assigned to a ground base term

si
j via an equation xi

j ≈ si
j in the constraint of C , for all i ∈ {1,2} and j ∈ {1, . . . ,mi }.

Applying the above argument to all free literals in C , the assertion follows for all
base variables occurring in the free part of C . Since all base variables are intro-
duced during abstraction and contained in free literals, the assertion follows for
all base variables in C .

Consider an arbitrary clause D ∈ NB . Let C ∈ N ′
B be the clause resulting from

abstraction of D . According to Proposition 4.3, D is a positive unit clause (→ t ≈
a), where a is a base parameter and t a ground smooth extension term. According
to Corollary 4.4, all t ’s subterms with a base top operator symbol are base and
ground. Assume s1, . . . , sm are all the occurrences of base terms appearing in t
immediately below a free operator symbol, for some m ≥ 0; we denote this fact by
t [s1, . . . , sm] (if a base term s occurs in t more than once, say k > 1 times, then it
appears among s1, . . . , sm also k times). Abstraction of t ≈ a

– replaces a and s1, . . . , sm with fresh base variables x, y1, . . . , ym , respectively,
yielding a literal t ′ ≈ x, where t ′ = t [x1, . . . , xm]; and

– populates the constraint with assignments x ≈ a, and x1 ≈ s1, . . ., xm ≈ sm .

1Recall that TΩ stands for the set of all ground base terms. Notation for different types of term
sets is introduced in Section 2.2, page 14, and Section 3.2 (Definition 3.16), page 39.

134 SUP(T) as a Decision Procedure

Thus, basification of D results in a clause

C = x ≈ a, x1 ≈ s1, . . . , xm ≈ sm ∥ → t ′ ≈ x,

in which every base variable is assigned to a ground base term via an equation in
the constraint of C . ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.8 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′). Let Â be a reduction ordering total on ground
Σ′-terms.

Let N ′′ be obtained by basification and abstraction from a set N of Σ′-clauses
in which all terms of a base sort are ground. The clause set N ′′ is locally sufficiently
complete1.

Without loss of generality, assume N ′ = NI∪NB is obtained from N by basification,PROOF Ï
where NI is the set of the basified clauses from N , and NB is the set of clauses
basifying those in NI , and N ′′ = N ′

I ∪N ′
B obtained from N ′ by abstraction, where

N ′
I and N ′

B correspond to NI and NB , respectively.
Consider an arbitrary smooth ground instance C ∈ smgi(N ′′) of a clause C ′ ∈

N ′′, such that C = C ′σ, for some smooth ground substitution σ. The clause C
contains an extension term if and only if the clause C ′ does, as any term in the
image of any smooth ground substitution is extension-free. In the proof of Propo-
sition 4.7 we have shown that all extension terms appearing in N ′′ occur in clauses
N ′

B . Hence, C ′ ∈ N ′
B . In the proof of Proposition 4.7 we have also shown and any

C ′ ∈ N ′
B has the following form:

C ′ = (x0 ≈ a, x1 ≈ t1, . . . , xn ≈ tn ∥ → t [x1, . . . xn] ≈ x0)

where:

– Λ= (x0 ≈ a, . . . , xn ≈ tn) is the constraint of the clause,

– t ∈ T E
Ω′ (X) a smooth extension Σ′-term, whose variables var t = {x1, . . . , xn}

are all base, if any,

– x0 a base variable,

– each ti a ground base term.

Let s0, . . . , sn ∈ TΩ be the base ground terms such that xiσ= si , for each i ∈ {0, . . . ,n}.
Put t0 = a. Then the clause C =C ′σ has the following form:

C = (s0 ≈ t0, . . . , sn ≈ tn ∥ → t [s1, . . . , sn] ≈ s0)
= (s0 6≈ t0 ∨ . . .∨ sn 6≈ tn ∨ t [s1, . . . , sn] ≈ s0)

Let A′ ∈ WHSp be an arbitrary weak algebra, and A ∈ C an arbitrary base algebra
monomorphic2 to A′. Assume A′ |= sgi(N ′′). Consequently, A′ |= C ∈ smgi(N ′′) ⊆
sgi(N ′′). Consider two possible cases:

1. ifA′ |= si ≈ ti for each i ∈ {0, . . . ,n}, thenA′ |=C if and only ifA′ |= t [s1, . . . , sn] ≈
s0.

1Please recall Definition 3.84 of a locally sufficiently complete clause set, page 102.
2The existence of such base algebra A is guaranteed, because, by definition, for any weak algebra

A′ there is a base algebra A which is monomorphic to A′; see Definition 3.73 of a weak algebra,
page 89.

4.2. Deciding Ground FOL(T) 135

2. otherwise, A′ 6|= s j ≈ t j for some j ∈ {0, . . . ,n}. Put D = (s j ≈ t j →). Evidently,
D is a ground base clause and A′ |= D . Consequently, A |= D (as, for oth-
erwise, A |= s j ≈ t j ; Proposition 3.51 and Theorem 3.76 imply A′ |= s j ≈ t j ,
a contradiction). According to Lemma 3.51, A |= D if and only if there ex-
ist finitely many clauses C1, . . . ,Cm ∈ EA ∪DA such that Ck ¹ D , for every
k ∈ {1, . . . ,m}, and C1, . . . ,Cm |= D . Consequently, Ck ≺ Cσ, for every k ∈
{1, . . . ,m}, and C1, . . . ,Cm |= Cσ, hence C ∈RFF (EA ∪DA) ⊆RFF (smgi(N ′′)∪
EA∪DA), by Definition 3.40 of the flat redundancy criterion RF .

Since C ∈ smgi(N ′′), A′ ∈ WHSp, and A ∈ C have been picked arbitrarily, we con-
clude that N ′′ is locally sufficiently complete. ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 4.9
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, N0 is obtained by basification
and abstraction from a set N of Σ′-clauses in which all terms of a base sort are
ground; let C =Λ ∥ Γ→ ∆ be an arbitrary clause in Ni , i ≥ 0. Then for every base
variable x ∈ var(C)∩X there exists a ground base term t ∈ TΩ such that an equation
x ≈ t is in the constraint Λ of C .

We give a proof by induction on the length of derivation of Ni . Î PROOF
Induction Base. For N0 the assertion holds by Proposition 4.7.
Induction Hypothesis. Assume the assertion holds for all clause sets Ni derived

from N0, where i ≤ n, for some n > 0.
Induction Step. Let Nn+1 = Nn∪C , where C is a conclusion of an inference rule

application to some clauses in Nn . Consider the Hierarchic Equality Resolution
rule, Definition 3.29,

I Λ ∥ Γ, s ≈ t →∆

(Λ ∥ Γ→∆)σ

with the premise C1 ∈ Nn and conclusion C , respectively. As σ is simple and the
premise is abstracted, the substitution σ can unify a base variable only with an-
other base variable. The variables var(C1) \ dom(σ) are not affected by σ, and
cdom(σ) ⊆ var(s, t) ⊆ var(C1). Therefore, every base variable x ∈ var(C)∩X comes
from the clause C1, and x = yσ, where y is a base variable (not necessarily dif-
ferent from x) from var(C1) ∩X . By induction hypothesis, every base variable
y ∈ var(C1)∩X in C1 is assigned to some ground base term t ′ ∈ TΩ via an equation
(y ≈ t ′) ∈Λ in the constraint Λ of C1, hence (y ≈ t ′)σ= (x ≈ t ′σ) ∈Λσ, where Λσ is
the constraint of C . Since t ′ is ground, we obtain (x ≈ t ′) ∈Λσ.

Consider the inference rule Hierarchic Superposition Right, Definition 3.28,

I Λ1 ∥ Γ1 →∆1, l ≈ r Λ2 ∥ Γ2 →∆2, s[l ′] ≈ t

(Λ1,Λ2 ∥ Γ1,Γ2 →∆1,∆2, s[r] ≈ t)σ

with the premises C1,C2 ∈ Nn and conclusion C , respectively. Analogously to
the case of Hierarchic Equality Resolution, we learn that every base variable x ∈
var(C)∩X comes from a clause C1 or C2, and x = yσ, where y is a base variable
(not necessarily different from x) from var(C1,C2)∩X . Likewise, we conclude that

136 SUP(T) as a Decision Procedure

an equation (x ≈ t ′) is contained in the constraint (Λ1,Λ2)σ of C , for some ground
base term t ′ ∈ TΩ. Analysis of the Hierarchic Superposition Left rule is similar.

Consider the Hierarchic Splitting rule, Definition 3.26,

S Λ1,Λ2 ∥ Γ1,Γ2 →∆1,∆2

Λ1 ∥ Γ1 →∆1
∣∣ Λ2 ∥ Γ2 →∆2

with the premise C ∈ Nn and conclusions C1 and C2, respectively. By induction
hypothesis, we know that for every base variable x ∈ var(C)∩X the equation (x ≈
t) ∈ (Λ1,Λ2), for some t ∈ TΩ. As, by Definition 3.26 of the rule, Λ1,Γ1,∆1 on one
hand, and Λ2,Γ2,∆2, on the other, are variable-disjoint, it holds that for every base
variable x ∈ var(Ci)∩X , there exists a term t ∈ TΩ, such that the atom (x ≈ t) ∈Λi ,
for each i ∈ {1,2}.

The case of the Constraint Refutation rule is trivial as the rule’s conclusion is
an empty clause. An application of a reduction rule Hierarchic Tautology Deletion
or Hierarchic Subsumption Deletion yields a clause set Nn+1 which is a subset of
Nn , hence the induction step trivially holds for the reductions. ■

An application of the Hierarchic Superposition Left/Right rule can produce an
assignment of two variables, say (x ≈ y). If the variables are base, we replace
(x ≈ y) with (s ≈ t), where s and t are the ground base terms, which the vari-
ables are respectively assigned to (Proposition 4.9), and move the equation (s ≈ t)
to the constraint of the conclusion, where it gets negated in the case of applying
the Hierarchic Superposition Right rule. We call this transformation the variables
assignments grounding.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 4.10 Ï
Variables Assignments

Grounding
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively. Let X ′ =X∪X ′′ be the underlying variable
set consisting of base and non-base variables, respectively.

Let C =Λ ∥ Γ→ ∆ be an abstracted clause, (x ≈ y) ∈ Γ∪∆ an equation in the
free part of the clause between two base variables x, y ∈ var(Γ,∆)∩X , that are as-
signed to some ground base terms s, t ∈ TΩ via equations (x ≈ s), (y ≈ t) ∈Λ in the
constraint of the clause. Deletion of every such an equation x ≈ y from the free
part Γ→ ∆ of the clause C and adding a ground equation s ≈ t if (x ≈ y) ∈ Γ, or
a ground disequation s 6≈ t if (x ≈ y) ∈ ∆, to the constraint Λ is called variables
assignments grounding. We write VAG(C) to denote the result of variables assign-
ments grounding applied to the clause C . ■

Obviously, VAG(C) is equivalent to C . The variables assignments grounding is
implicitly applied to every derived clause.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.11 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained by basifi-
cation and abstraction from a set N of Σ′-clauses in which all terms of a base sort
are ground; let C = Λ ∥ Γ→ ∆ be an arbitrary clause in Ni , i ≥ 0. If variables as-
signments grounding is applied to every clause derived, then every literal in Λ is
either

4.2. Deciding Ground FOL(T) 137

– an assignment x ≈ t , or

– a (dis)equation s1 ≈̇ s2,

where x ∈X is a base variable, t , s1, s2 ∈ TΩ ground base terms, ≈̇ ∈ {≈, 6≈}.

We give a proof by induction on the length of derivation of Ni . Î PROOF
Induction Base. For N0 a proof is the same as that of Proposition 4.7.
Induction Hypothesis. Assume the assertion holds for all clause sets Ni derived

from N0, where i ≤ n, for some n > 0.
Induction Step. Let Nn+1 = Nn ∪C , where C is a conclusion of an inference

rule application to some clauses in Nn . Consider a Hierarchic Superposition Left
inference, Definition 3.27,

I Λ1 ∥ Γ1 →∆1, l ≈ r Λ2 ∥ s[l ′] ≈ t ,Γ2 →∆2

(Λ1,Λ2 ∥ s[r] ≈ t ,Γ1,Γ2 →∆1,∆2)σ

with the premises C1,C2 ∈ Nn and conclusion C , respectively. The constraint Λ=
(Λ1,Λ2)σ of C is the conjunction of the premises’ constraints with the substitution
σ applied onto them, therefore every literal L′ ∈Λ equals Lσ, for some L ∈Λ1∪Λ2.
As σ is simple and the premises are abstracted, the substitution σ can unify a base
variable only with another base variable. By induction hypothesis, every literal
L ∈Λ1 ∪Λ2 is either:

– an assignment x ≈ t , then Lσ = (x ≈ t)σ = (y ≈ t), where y = xσ ∈ X and
t ∈ TΩ; or

– a (dis)equation s1 ≈ s2, then Lσ= (s1 ≈ s2)σ= (s1 ≈ s2), where s1, s2 ∈ TΩ.

If the rule produces an assignment x ≈ y of two base variables in the free part
of the conclusion, it is moved to the constraint and grounded by the variables as-
signments grounding transformation, so that it becomes s1 ≈ s2, for some ground
base terms s1, s2 ∈ TΩ.

Analysis of the other inference rules (except Constraint Refutation and Hier-
archic Splitting) is similar. The Hierarchic Splitting rule produces two clauses,
whose constraints are subsets of the premise’s constraint, which enjoys the stated
property by induction hypothesis. The induction step trivially holds for an appli-
cation of the Constraint Refutation inference rule. Also, the induction step trivially
holds for an application of the reduction rules Hierarchic Tautology Deletion and
Hierarchic Subsumption Deletion. ■

Free Literals

Next, we study the structure of free literals in clauses derived from a clause set
obtained by basification and abstraction from a set clauses in which all terms of
a base sort are ground. The main property of free literals in clauses in such a
derivation is that an extension symbol f ∈Ω′′, sort(f) ∈ S may occur only in pos-
itive literals of the form t ≈ x, where x ∈X is a base variable, and the top symbol
of t is the only occurrence of f in t . This property will be required for showing
model existence for a saturated clause set that does not contain an empty clause,
Section 4.2.3.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 4.12

138 SUP(T) as a Decision Procedure

(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained by basifi-
cation and abstraction from a set N of Σ′-clauses in which all terms of a base sort
are ground; let C be an arbitrary clause in the derivation. All extension terms oc-
curring in C , if any, are smooth and appear only in literals of the form t ≈ x, where
t ∈ T E

Ω′ (X ′) is an extension term and x ∈X a base variable.

We give a proof by induction on the length of the derivation.PROOF Ï
Induction Base. Without loss of generality, assume N ′ = NI ∪ NB is obtained

from N by basification, and N0 = N ′
I ∪N ′

B obtained from N ′ by abstraction, where
N ′

I and N ′
B correspond to NI and NB , respectively.

According to Proposition 4.3, no clause in NI contains an extension term,
hence the statement trivially holds for clauses in N ′

i .
Consider an arbitrary clause D ∈ NB . Let C ∈ N ′

B be the clause resulting from
abstraction of D . According to Proposition 4.3, D is a positive ground unit clause
(→ t ≈ a), where a is a base parameter and t = f (t ′1, . . . , t ′n) a ground smooth ex-
tension term. According to Corollary 4.4, all t ’s subterms with a base top operator
symbol are base. Assume s1, . . . , sm are all the occurrences of base terms appear-
ing in t immediately below a free operator symbol, for some m ≥ 0; we denote this
fact by t [s1, . . . , sm] (if a base term s occurs in t more than once, say k > 1 times,
then it appears among s1, . . . , sm also k times). Abstraction of t ≈ a

– replaces a and s1, . . . , sm with fresh base variables x, y1, . . . , ym , respectively,
yielding a literal t ′ ≈ x, where t ′ = t [x1, . . . , xm] = f (t ′′1 , . . . , t ′′n); and

– populates the constraint with assignments x ≈ a, and x1 ≈ s1, . . ., xm ≈ sm .

Thus, basification of D results in a clause

C = x ≈ a, x1 ≈ s1, . . . , xm ≈ sm ∥ → f (t ′′1 , . . . , t ′′n) ≈ x,

where f (t ′′1 , . . . , t ′′n) ∈ T E
Ω′ (X) is a smooth extension term, and x ∈X a base variable.

Induction Hypothesis. Assume the assertion holds for every clause in all sets
Ni derived from N0, where i ≤ n, for some n > 0.

Induction Step. Let Nn+1 = Nn∪C , where C is a conclusion of an inference rule
application to some clauses in Nn . We consider the inference rules Hierarchic
Equality Resolution and Hierarchic Superposition Right in detail; analysis of the
other rules is similar. But first, we show an important structural property of the
image im(σ) of a unifier σ which takes part in an arbitrary inference on Nn .

According to definitions of the SUP(T) inference rules, the unifier σ is simple,
hence every base variable in the domain of σ is mapped to a base term, actually,
to a base variable as the clauses are abstracted:

∀x ∈ dom(σ)∩X : xσ ∈X .

By induction hypothesis, an extension term may appear in the premises from Nn

only below the equality symbol ≈ (therefore, an extension term does not appear
below a symbol ranging into a free sort), consequently no term a non-base vari-
able is mapped to has an extension subterm. Thus, no term in the image of σ
contains an extension subterm:

∀t ∈ im(σ).∀p ∈ ρ(t) : t/p 6∈ T E
Ω′ (X ′).

4.2. Deciding Ground FOL(T) 139

Consequently, any term obtained by an application of σ contains only those oc-
currences of extension symbols that are present in the term the substitution is
applied to:

∀t ′ ∈ TΩ′ (X ′), ∀p ∈ ρ(t ′σ) : t ′σ/p ∈ T E
Ω′ (X ′) ⇒ top(t ′σ/p) = top(t ′/p).

Consider a Hierarchic Equality Resolution inference, Definition 3.29,

I Λ ∥ Γ, s ≈ t →∆

(Λ ∥ Γ→∆)σ

with the premise C1 ∈ Nn and conclusion C , respectively. Consider an arbitrary
atom Aσ ∈ Γσ∪∆σ. If the corresponding atom A ∈ Γ∪∆ does not contain an
occurrence of an extension term, then, by the observation made about σ, neither
does Aσ. If A contains an extension term, then, by induction hypothesis, A ∈ ∆
and A = (t ≈ x), where t ∈ T E

Ω′ (X ′) is a smooth extension term and x ∈ X a base
variable. By the observation made about σ, we conclude tσ is again a smooth
extension term, and xσ a base variable.

Consider the inference rule Hierarchic Superposition Right, Definition 3.28,

I Λ1 ∥ Γ1 →∆1, l ≈ r Λ2 ∥ Γ2 →∆2, s[l ′] ≈ t

(Λ1,Λ2 ∥ Γ1,Γ2 →∆1,∆2, s[r] ≈ t)σ

with the premises C1,C2 ∈ Nn and conclusion C , respectively.

Consider an arbitrary atom Aσ ∈ Γ1σ∪Γ2σ∪∆1σ∪∆2σ. Similarly to the case
of the Hierarchic Equality Resolution inference, we conclude that Aσ contains an
extension term, if and only if Aσ is an equation from ∆1σ∪∆2σ between a smooth
extension term and a base variable.

Now, we are to determine the structure of the literal (s[r] ≈ t)σ. Consider the
term l from the premise C1. There are the following two possible cases regarding
occurrences of extension symbols in l ≈ r :

– In l ≈ r there is an occurrence of an extension term. By induction hypothe-
sis, one of the term l or r is a smooth extension term, another a base vari-
able. According to condition (iii) of the rule’s definition, lσψ Â rσψ, for a
simple grounding substitution ψ. The combined substitution σψ is simple
and grounding, hence an application of σψ onto a base variable in dom(σψ)
results in a ground base term. Since all ground base terms are smaller than
any non-base term, we conclude that r is a base variable, say x ∈ X , and
l ∈ T E

Ω′ (X ′) is a smooth extension term. From induction hypothesis, it also
follows that s is a smooth extension term, and t a base variable, say y ∈X .
Thus, we have

(s[r] ≈ t)σ
(x ≈ y)σ
x ′ ≈ y ′,

for some base variables x ′, y ′ ∈X . Since x ′ ≈ y ′ is a base literal it is moved
negated to the constraint of the conclusion.

– Otherwise, from induction hypothesis it follows that l and r and all their
subterms are non-extension terms. Consider two subcases:q if in s ≈ t there is an occurrence of an extension term, then we like-

140 SUP(T) as a Decision Procedure

wise conclude that s ∈ T E
Ω′ (X ′) is a smooth extension term, and t a

base variable, say t = x, for some x ∈X . Since l , and hence l ′, is of a
free sort, l ′ is a strict subterm of s. The term s[r] obtained from s by
replacing l ′ with r , is also a smooth extension term. From the observa-
tion made about σ, we conclude that s[r] ∈ T E

Ω′ is a smooth extension
term, and tσ= xσ ∈X a base variable.q otherwise, from induction hypothesis it follows that s and t contain no
extension subterm. Consequently, by the observation made about σ,
the terms s[r]σ and tσ contain no extension subterm as well.

Thus, every free literal in the conclusion C either has no occurrence of an ex-
tension term, or is an equation between a smooth extension term and a base vari-
able.

Consider the Hierarchic Splitting rule, Definition 3.26,

S Λ1,Λ2 ∥ Γ1,Γ2 →∆1,∆2

Λ1 ∥ Γ1 →∆1
∣∣ Λ2 ∥ Γ2 →∆2

with the premise C ∈ Nn and conclusions C1 and C2, respectively. The asser-
tion evidently holds for the conclusions, because they are subsets of the premise,
which satisfies the assertion by the induction hypothesis.

The case of the Constraint Refutation rule is trivial as the rule’s conclusion is
an empty clause. An application of a reduction rule Hierarchic Tautology Deletion
or Hierarchic Subsumption Deletion yields a clause set Nn+1 which is a subset of
Nn , hence the induction step trivially holds for the reduction rules. ■

4.2.3 Model Existence

In Sections 4.1 and 4.2.1 we have shown that ground clause sets are not suffi-
ciently complete, in general. Basification resolves this problem by sufficiently
defining terms which appear in the original set, turning thus the original clause
set to a locally sufficiently complete one. According to Proposition 4.8, local suf-
ficient completeness is preserved during abstraction. A locally sufficiently com-
plete set N of abstracted clauses has a hierarchic model if the limit N∞ of a fair
SUP(T) derivation from N does not contain an empty clause and the set of all
base clauses in N∞ is theory-consistent, Theorem 3.93. In Section 4.3 right after
the proof of Theorem 4.54, we will show that the base subset of the limit N∞ of
a fair SUP(T)-derivation N0 ` N1 ` . . ., where N0 = N is obtained by basification
and abstraction from a set of Σ′-clauses in which all base sort terms are ground,
is theory consistent whenever ä 6∈ N∞, yielding by Theorem 3.93 the existence of
a hierarchic model of N .

Here we present another technique of finding a hierarchic model. The be-
low approach differs from the one demonstrated in Section 3.5 in various aspects,
particularly in the structure of the constructed hierarchic (Herbrand) model and
the requirements imposed on the underlying ordering Â (here Â is not obliged to
orient all extension terms greater than any other term containing no extension
subterm).

4.2. Deciding Ground FOL(T) 141

Overview. Let M = N∞ be the limit of a fair SUP(T)-derivation N0 ` N1 ` . . .,
where N0 is obtained by basification and abstraction from a set of ground Σ′-
clauses. Since N0 ` N1 ` . . . is fair, it follows that M is saturated, by Lemma 3.9.
Assume M does not contain an empty clause ä. According to Theorem 3.72,
the ground clause set MA = sgiA(M)∪EA ∪DA is saturated with respect to the
standard SUP calculus for ground clauses (F ,RF), where A ∈ C is a base alge-
bra satisfying sgi(M)∩C lΣ, the base subset of sgi(M). By Lemma 3.41, MA has
a Herbrand model IMA = TΩ′/RMA , where RMA is a rewrite system constructed
from the maximal literals of productive clauses in MA, and TΩ′/RMA the quotient
for ground Σ′-terms TΩ′ by the smallest congruence relation containing RMA (see
Definition 2.29 for further details regarding construction of IMA and RMA). In
general, the Herbrand interpretation IMA is not a hierarchic algebra, as it may al-
low “junks” into base sorts (that is, elements of the base part of the universe, that
no base terms are equal to). We tackle this issue by extending the rewrite system
RMA with additional rewrite rules RSD

MA
to a rewrite system R ′

MA
= RMA ∪RSD

MA
.

The main purpose of rewrite rules in RSD
MA

is to sufficiently define those terms
which are not sufficiently defined by RMA by equating such terms to (arbitrary)
base terms. Our goal is to construct RSD

MA
in a safe way such that the correspond-

ing Herbrand interpretation I ′
MA

= TΩ′/R ′
MA

is a hierarchic model of MA, hence
a hierarchic model of the original set of clauses.

The basic idea behind the construction of the rewrite system RSD
MA

is to as-

sign all smooth extension terms t ′, which are not sufficiently defined under RMA ,
to arbitrary base terms t (for two different extension terms t ′1 and t ′2, the corre-
sponding base terms t1 and t2 do not have to be necessarily different). Besides,
we want the resulting rewrite system R ′

MA
to be consistent with the clause set MA

and convergent.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 4.13
Rewrite system RSD

NSp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively.

Let N be a set of ground Σ′-clauses. Assume IN = TΩ′/RN is a candidate Her-
brand interpretation1 for N . We define a ground rewrite system RSD

N as the set
of all rewrite rules with unique left-hand-sides, from every ground smooth exten-
sion term l ∈ T E

Ω′ , that is not equal under IN to any base term and reduced with
respect to the rewrite system RN , to an arbitrary ground base term r ∈ TΩ:

(l → r) ∈ RSD
N

def⇐⇒ l ∈ T E
Ω′ and r ∈ TΩ such that:q ∀(l ′ → r ′) ∈ RSD

N : l = l ′ ⇒ r = r ′,q ∀t ∈ TΩ : IN 6|= l ≈ t ,q l smooth, andq l = l↓RN

■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 4.14
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

1Construction of RN and IN is given in Definition 2.29, page 26.

142 SUP(T) as a Decision Procedure

Let N be an arbitrary set of ground Σ′-clauses. In any model of R ′
N = RN ∪RSD

N ,
any ground smooth extension term is equal to some base term:

∀ t ∈ T E
Ω′ .∃ s ∈ TΩ : t smooth ⇒ R ′

N |= t ≈ s.

Follows from Definition 4.13 of RSD
N and Birkhoff’s Theorem (Theorem 2.28). ■PROOF Ï

From the Extension Terms Lemma (Lemma 3.19) it follows that all models of
R ′

N = RN ∪RSD
N interpret any ground non-base term of a base sort the same as

some base term:

∀ t ∈ TΩ′ (S) \ TΩ.∃ s ∈ TΩ : R ′
N |= t ≈ s.

Let M = N∞ be the limit of a fair SUP(T)-derivation N0 ` N1 ` . . ., where N0

is obtained by basification and abstraction from a set of ground Σ′-clauses, and
A ∈ C a base algebra. In order to study properties of the rewrite systems RSD

MA
and R ′

MA
, we need to determine the structure of equations (rewrite rules) in RMA ,

which are, by construction, the maximal literals of productive clauses in MA =
sgiA(M)∪EA∪DA.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.15 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let N0 ` N1 ` . . . a SUP(T)-derivation, where N0 is obtained by basification and
abstraction from a set of ground Σ′-clauses, and C an arbitrary clause in sgi(Ni),
for some i ≥ 0. All extension terms occurring in C , if any, are smooth and appear
only in literals of form t ≈ s, where t ∈ T E

Ω′ is an extension term and s ∈ TΩ a ground
base term.

Follows from Proposition 4.12 and the facts that (i) every Ni in the derivation mayPROOF Ï
contain only base variables, and (ii) simple substitutions map base variables only
to base terms. ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.16 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let M = N∞ be the limit of a fair SUP(T)-derivation N0 ` N1 ` . . ., where N0 is
obtained from a set of ground Σ′-clauses by basification and abstraction. Let A ∈C
an arbitrary base algebra. The rewrite system R ′

MA
= RMA ∪RSD

MA
is convergent.

According to Theorem 2.21, an arbitrary rewrite system R is convergent if it isPROOF Ï
terminating and left-reduced. According to Theorem 2.20, R is terminating iff the
left-hand-side of every rule in R is greater than its right-hand-side with respect to
some reduction ordering.

From Definition 2.29 we know, that l Â r for every rule (l → r) ∈ RMA . Accord-
ing to Definition 4.13, the left-hand-side l of any rule (l → r) ∈ RSD

MA
is a ground

extension term, hence non-base, and the left-hand-side r a ground base term.
In any reduction ordering admissible for SUP(T), any ground non-base term is
greater than any ground base one, therefore l Â r , for every (l → r) ∈ RSD

MA
. Hence,

R ′
MA

is terminating.

The rewrite systems RMA and RSD
MA

are left-reduced apart: RMA is left-reduced

by construction, RSD
MA

is left-reduced, because the left-hand-side of any rule in it

4.2. Deciding Ground FOL(T) 143

is a unique smooth extension term. We are to show that the union of the rewrite
systems is left-reduced as well. Consider two arbitrary rules (l → r) ∈ RMA and
(l ′ → r ′) ∈ RSD

MA
:

– According to Definition 4.13 of RSD
MA

, the left-hand-side l ′ is in its normal

form with respect to RMA : l ′ = l ′↓RMA
. Therefore, no rewriting from l ′ by

l → r is possible.

– A rewriting from l by l ′ → r ′ is impossible at the top position, because, oth-
erwise, l ′ could be rewritten, in turn, by l → r .

– By Definition 2.29 of RMA , the rule l → r is actually an equation (positive
literal) from a clause from EA∪DA∪ sgiA(M) = MA. Obviously, l → r does
not come from DA. If l → r comes from EA, then l and r are ground base
terms. If l → r comes from sgiA(M) ⊆ sgi(M), then, according to Proposi-
tion 4.15, if l contains an extension subterm, then l is actually a smooth
extension term. In both cases, no strict subterm of l is an extension term,
and, hence, no rewriting from l by l ′ → r ′ is possible below the top position.

Since the rules (l → r) and (l ′ → r ′) have been selected arbitrarily, we conclude
that the left-hand-sides of all rules in RMA are in their normal forms with respect
RSD

MA
, and vice versa. Consequently, R ′

MA
is left-reduced. ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î THEOREM 4.17
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let M = N∞ equal the limit of a fair SUP(T)-derivation N0 ` N1 ` . . ., where N0

is obtained from a set of ground Σ′-clauses by basification and abstraction. Assume
there exists a base algebraA ∈C satisfying the set M∩C lΣ of all base clauses within
M. If M does not contain an empty clause ä, then M has a hierarchic model.

Since M is the limit of a fair derivation N0 ` N1 ` . . ., the clause set M is saturated, Î PROOF
Lemma 3.9. By the Hierarchic Saturation Theorem (Theorem 3.72), the clause set
MA =EA∪DA∪sgiA(M) is saturated with respect to the flat superposition calcu-
lus (F ,RF). From ä 6∈ M it follows that ä 6∈ MA. According to Lemma 3.41, MA
has a Herbrand model IMA = TΩ′/RMA . We are to show that a Herbrand interpre-
tation I ′

MA
= TΩ′/R ′

MA
is a hierarchic model of M , where R ′

MA
= RMA ∪RSD

MA
.

The rest of the proof is split into three parts, in which we show that: first, I ′
MA

is a model of the ground clause set MA; second, I ′
MA

is a model of M ; and, third,
I ′

MA
is hierarchic algebra.

Subgoal I ′
MA

|= MA. Let us, first, make the following two observations regard-
ing rewritings by RMA . In any SUP(T)-admissible ordering Â, any ground non-
base term is greater than any ground base one, hence a ground base term can
be rewritten in RMA only to another ground base term. Moreover, according to
Proposition 4.15 all maximal literals in productive clauses in sgiA(M) ⊆ sgi(M),
which contain an extension subterm, are equations between an extension term
and a ground base term. Clauses in EA may produce only equations between two
ground base terms, and no clause in DA is productive, hence a non-extension
term can be rewritten in RMA only to another non-extension term.

144 SUP(T) as a Decision Procedure

Consider an arbitrary clause C ∈ MA. The clause C is entailed by IMA if and
only if IMA satisfies some literal L = (s ≈̇ t) ∈ C , where ≈̇ ∈ {≈, 6≈}. Consider two
possible case regarding the sign of L:

– L is positive, i.e. L = s ≈ t , then

IMA |= s ≈ t
⇔ s ↔∗

RMA
t // by Birkhoff’s Theorem (Thm. 2.28)

⇒ s ↔∗
R ′

MA
t // as RMA ⊆ R ′

MA

⇔ I ′
MA

|= s ≈ t // by Birkhoff’s Theorem,

// where I ′
MA

= TΩ′/R ′
MA

– L is negative, i.e. L = s 6≈ t , then

IMA |= s 6≈ t
⇔ IMA 6|= s ≈ t
⇔ s =∗

RMA
t // by Birkhoff’s Theorem

⇔ s↓RMA
6= t↓RMA

// as RMA convergent

As L is negative, the clause C , obviously, does not come from EA, con-
sequently C ∈ DA ∪ sgiA(M). Put s′ = s↓RMA

and t ′ = t↓RMA
. If C ∈ DA,

then s and t are ground base terms, hence, by the observation made about
rewritings by RMA , so are s′ and t ′. If C ∈ sgiA(M) \ DA, then by Proposi-
tion 4.15 s and t are non-extension terms, hence, by the observation made
about rewritings by RMA , so are s′ and t ′. In both cases, the terms s′ and t ′

cannot be rewritten by RSD
MA

any further, as, by Definition 4.13 of RSD
MA

, the

left-hand-side of any rule in RSD
MA

is an extension term. Therefore:

s↓R ′
MA

= s′ 6= t ′ = t↓R ′
MA

⇔ s =∗
R ′

MA
t // as R ′

MA
convergent, Prop. 4.16

⇔ I ′
MA

|= s 6≈ t // by Birkhoff’s Theorem,

// where I ′
MA

= TΩ′/R ′
MA

Thus, I ′
MA

|= L, consequently I ′
MA

|=C . As C has been picked arbitrarily, we con-
clude I ′

MA
|= MA.

Subgoal I ′
MA

|= M . By Lemma 3.61, MA |= sgi(M), hence I ′
MA

|= sgi(M). Assume
A′ is an arbitrary model of R ′

MA
. According to Proposition 4.14, any ground ex-

tension term is interpreted under A′ as some base term. Consequently, by the
Extension Terms Lemma (Lemma 3.19), any ground non-base term of a base sort
is interpreted under A′ as some base term:

∀ t ∈ TΩ′ (S) \ TΩ.∃ s ∈ TΩ : A′(t) =A′(s).

From this we conclude that for any grounding substitution σ′ there exists an A′-
equivalent simple grounding substitution σ, in the sense that dom(σ′) = dom(σ),
and ∀x ∈ dom(σ′) :A′(xσ′) =A′(xσ). This implies that for any clause D ∈ M , each
ground instance Dσ′ ∈ gi(M) is equivalent under A′ to some simple ground in-
stance Dσ ∈ sgi(M) of the same clause D , that is, A′ |= Dσ′ iff A′ |= Dσ. Therefore,
A′ |= sgi(M) iff A′ |= gi(M) iff A′ |= M . As A′ has been picked arbitrarily, I ′

MA
is a

4.2. Deciding Ground FOL(T) 145

model of R ′
MA

by construction, and I ′
MA

|= sgi(M), we conclude I ′
MA

|= M .

Subgoal I ′
MA

∈ HHSp. Put M equal to the set of all ground positive unit clauses
constructed from the equations (rewrite rules) in R ′

MA
:

M
def
= { → s ≈ t | (s → t) ∈ R ′

MA
}.

Evidently, I ′
MA

|= M . From I ′
MA

|= MA we know I ′
MA

|=EA∪DA. Hence, since M
is ground, we conclude I ′

MA
|= M ∪EA∪DA = sgiA(M)∪EA∪DA = MA. From

Proposition 4.14 and Definition 3.78, it follows that M is sufficiently complete.
According to the Hierarchic Model Lemma (Lemma 3.79), the Herbrand interpre-
tation I ′

MA
is a hierarchic model of MA, hence a hierarchic algebra.

From I ′
MA

|= M and I ′
MA

∈ HHSp, we conclude I ′
MA

is a hierarchic model of
M . ■

4.2.4 Termination

Here we show that the SUP(T) calculus, if following a particular strategy, termi-
nates on all clause sets obtained from ground clause sets by basification and ab-
straction1. We prove the termination by first showing the following three state-
ments: (i) every non-Horn clause can be split into Horn clauses; (ii) every base
variable occurring in a clause is assigned to some ground base term via the con-
straint of the clause, and the number of such base terms is limited by a certain
finite number; since all variables are base, the number of different variables in a
clause is bounded; and (iii) the maximum size of literals is also limited (with an
appropriately chosen ordering). Then, we show that these statements and the fact
that the enrichment signature is finite imply that after finitely many new clauses
have been derived any further clause inferred is the same as some clause previ-
ously derived (up to variable renaming).

Limiting the Length of Derived Clauses by Exhaustive Splitting

A bounded length of clauses in any SUP(T) derivation can be gained by splitting
all clauses into Horn clauses and using eager selection for SUP(T) inferences. In
Proposition 4.19 we prove that all clauses derived from a set of Horn clauses by
SUP(T) inferences with eager selection do not exceed a certain length.

First, we show that a clause set, basified and abstracted, can actually be split
into Horn clauses. Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is
obtained from a set N of ground Σ′-clauses by basification and abstraction. In
Propositions 4.9 and 4.11, we have shown that for any clause C =Λ ∥ Γ→∆ in the
derivation the following hold:

– every base variable x ∈ var(C)∩X is assigned to some ground base term t
via an equation (x ≈ t) ∈Λ in the constraint Λ of C ;

– the constraint Λ consists of literals of the two types:q assignments x ≈ t of a base variable x to a ground base term t , and

1Although all variables occurring in such clause sets are base, we formulate the properties for
explicitly distinguished base variables. This enables us to directly extend the results obtained for the
ground FOL(T) to non-ground fragments involving non-ground free terms containing free-sorted vari-
ables, Section 4.3.

146 SUP(T) as a Decision Procedure

q (dis)equations s1 ≈̇ s2, where s1 and s2 are ground base terms and ≈̇ ∈
{≈, 6≈}.

From the structure of Λ, we see that no two distinct variables x, y ∈ var(Λ) oc-
cur in the same literal, which means that the constraint Λ can always be split into
n variable disjoint subsets, where n = |var(Λ)|, the number of distinct variables
occurring in Λ. Now, assume x is an arbitrary base variable occurring in the free
part of C more than once, say k > 1 times; let us denote this by C =Λ ∥ (Γ→∆)[x :
k]. The variable x is assigned to some ground base term t ∈ TΩ via an equation
(x ≈ t) ∈ Λ. If we replace all subsequent occurrences of the variable x in Γ and
∆ with fresh unique base variables x2, . . . , xk and extend the constraint Λ with
literals x2 ≈ t , . . . , xk ≈ t , we obtain an equivalent clause

Λ′, x2 ≈ t , . . . , xk ≈ t ∥ (Γ′ →∆′)[x : 1, x2 : 1, . . . , xk : 1],

where x and each xi occur in Γ′ and ∆′ only once. Applying this transformation to
every base variable in C that has multiple occurrences in the free part, gives us a
clause C ′ =Λ′′ ∥ Γ′′ →∆′′ which is equivalent to C and where every base variable
x ∈ var(C ′) has at most one occurrence in the free part Γ′′ → ∆′′ of the clause,
implying that no two free literals share a base variable. We call the exhaustive
application of the transformation to all variables in the clause variables cloning.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 4.18 Ï
Variables Cloning Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the

base and body signatures, respectively. Let X ′ =X∪X ′′ be the underlying variable
set consisting of base and non-base variables, respectively.

Let C = Λ ∥ Γ→ ∆ be an abstracted clause, x ∈ var(Λ) a base variable occur-
ring in the constraint of the clause k > 1 times and assigned to a ground base term
t ∈ TΩ via an equation (x ≈ t) ∈Λ in the constraint of the clause. Replacement of
every occurrence of every such a variable x with fresh base variables x2, . . . , xk ∈X
of the same sort sort(x) = sort(x2) = . . . = sort(xk) in all literals in Λ except the lit-
eral (x ≈ t), and extension of Λ with equations x2 ≈ t , . . . , xk ≈ t is called variables
cloning. We write VC(C) to denote the result of variables cloning applied to the
clause C . ■

Note that the obtained clause C ′ = VC(C) enjoys the statements of Proposi-
tions 4.9 and 4.11. Since all variables in C ′ are base, literals in the free part of C ′

are all variable-disjoint. After applying variables cloning to a non-Horn clause, it
can be split into Horn clauses by a sequence of the Hierarchic Splitting rule appli-
cations.

As any non-Horn clause in N0 can be split into Horn clauses, we assume form
now on that all clauses in N0 are Horn, without loss of generality. Actually, it is
sufficient to apply splitting only once exhaustively to clauses in N0, and then the
calculus generates only further Horn clauses.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.19 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation with eager selection. If N0 is
a Horn clause set, then every clause C ∈ Ni , i ≥ 1, contains at most as many free
literals as the longest premise of the inference, deriving C , does.

4.2. Deciding Ground FOL(T) 147

An application of the Hierarchic Equality Resolution rule to a clause C ∈ N0 obvi- Î PROOF
ously yields a Horn conclusion with a decremented number of free literals. Con-
sider the inference rules Hierarchic Superposition Left/Right. With eager selec-
tion, all negative literals are selected in the antecedent of every clause in N0,
therefore an inference is possible only between either two positive unit clauses
(Hierarchic Superposition Right), or between a positive unit clause and a Horn
clause (Hierarchic Superposition Left), yielding in each case a Horn clause with
the number of literals equal, at most, to the number of literals in the longest
premise1. Applying this argument inductively, the assertion follows for every clause
set Ni in the derivation N0 ` N1 ` N2 ` ■

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 4.20
Number nLSp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

Given a set M of abstracted clauses, we write nL(M) to denote the maximum
number of free literals in a clause from M :

nL(M)
def
= maxC∈M {|Γ|+ |∆| |C =Λ ∥ Γ→∆}

■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î COROLLARY 4.21
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation with eager selection. If N0 is a
Horn clause set, then the number of free literals in any clause C ∈ Ni , for any i ≥ 0,
is at most nL(N0).

Since basification, abstraction, and splitting, which produce N0 out of a given
set N of ground Σ′-clauses, can only decrease the number of free literals in a
clause C ′ ∈ N0 in comparison to the number of all literals in the corresponding
clause C ∈ N , we conclude that the maximum number of free literals in a clause
in a SUP(T) derivation with eager selection N0 ` N1 ` N2 ` . . . is smaller than (or
equal to) the maximum length of a clause in N :

nL(Ni) ≤ maxC∈N (|C |) Î (4.1)

Limiting the Number of Variables in Derived Clauses

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 4.22
Number nVSp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the

base and body signatures, respectively.
Given a set M of abstracted clauses, we write nV (M) to denote the overall

number of ground base terms, to each of which there is an assignment of a vari-
able via an equation in the constraint of a clause in M :

nV (M)
def
=

∣∣ ⋃
C∈M

{t ∈ TΩ |C =Λ ∥ Γ→∆, (x ≈ t) ∈Λ}
∣∣

■

For the clause set N ′′ from the previous example (page 131), we have nV (N ′′) = 5, Î EXAMPLE 4.23

1Actually, the number of free literals is smaller than in the longest premise, only if the infer-
ence produces an assignment of two base variables which is then grounded by variables assignments
grounding and moved to the constraint of the conclusion.

148 SUP(T) as a Decision Procedure

and the terms, to which base variables are assigned, are (in the order of appear-
ance): b,a,1+a,c,1. ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.24 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained by basifi-
cation and abstraction from a set N of Σ′-clauses in which all terms of a base sort
are ground. Then nV (Ni) ≤ nV (N0), for every i ≥ 0.

For the case i = 0 the assertion trivially holds. Let Ni+1 = Ni ∪C , where C is thePROOF Ï
conclusion of an inference with premises in Ni . Assume nV (Ni) ≤ nV (N0), induc-
tion hypothesis. In the proofs of Propositions 4.9 and 4.11, we have shown that
every ground base term s, appearing in the constraint of C , comes from one of
the inference’s premises. Therefore, every term t , for which there is an assignment
x ≈ t in the constraint of C , is inherited from Ni , implying that nV (Ni+1) ≤ nV (Ni),
hence, by induction hypothesis, nV (Ni+1) ≤ nV (N0). ■

Note that Proposition 4.24 requires no eager selection for the derivation, or N0

being a Horn clause set (hence, no splitting or variables cloning), or variables as-
signments grounding in clauses derived.

According to Proposition 4.11, for an arbitrary clause C = Λ ∥ Γ→ ∆ in the
derivation N0 ` N1 ` N2 ` . . . with variables assignments grounding applied to all
derived clauses, it holds that every base literal inΛ containing a variable x is of the
form x ≈ t , where t ∈ TΩ. Assume the variable x occurs in Λ more than once, say
k > 1 times, then L1 = (x ≈ t1), . . . , Lk = (x ≈ tk) are all literals in Λ with an entry of
x, where t1, . . . , tk ∈ TΩ. By replacing all occurrences of x in each Li except L1 with
the term t1, we obtain literals L′

2 = (t1 ≈ t2), . . . , L′
n = (t1 ≈ tn); then the following

clause

(Λ\ {L2, . . . ,Ln}∪ {L′
2, . . . ,L′

n}) ∥ Γ→∆,

whose constraint is obtained fromΛ by replacing each Li with L′
i , for all i ∈ {2, . . . ,k},

is equivalent to the original clause C . Applying this transformation to every vari-
able that has multiple occurrences in Λ, we obtain an equivalent clause C ′ =Λ′ ∥
Γ→∆, in which every base variable x ∈ var(C ′) is assigned to a single ground base
term t ∈ TΩ via an equation (x ≈ t) ∈Λ′. We call the exhaustive application of the
transformation to all variables in the clause variable assignments propagation.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 4.25 Ï
Variable Assignments

Propagation
Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively. Let X ′ =X∪X ′′ be the underlying variable
set consisting of base and non-base variables, respectively.

Let C =Λ ∥ Γ→∆ be an abstracted clause, x ∈ var(Λ) a base variable occurring
in the constraint of the clause C and assigned to a ground base term t ∈ TΩ via
an equation (positive literal) L = (x ≈ t) ∈ Λ in the constraint. Replacement of
every such a variable with such a term t in all literals in Λ except the literal L is
called variable assignments propagation. We write VAP(C) to denote the result
of variable assignments propagation applied to the clause C . ■

Now, assume x, y ∈ var(C ′)∩X are two arbitrary distinct base variables in the
obtained clause C ′ = VAP(C). The constraint Λ′ contains two literals x ≈ s, y ≈ t ,

4.2. Deciding Ground FOL(T) 149

for some ground base terms s, t ∈ TΩ, which are uniquely defined. If s = t , then
the clause C ′[x/y] obtained from C ′ by replacing every occurrence of y with x is
equivalent to C ′. Note that Λ′[x/y] contains two identical literals x ≈ s, one of
which can be safely removed. After exhaustively merging all variables that are as-
signed to the same term, we obtain a clause C ′′ =Λ′′ ∥ Γ′ →∆′, which is equivalent
to C ′, hence, equivalent to C , and in which any two distinct base variables are as-
signed to distinct ground base terms via respective equations in the constraint Λ′′

of C ′′:

x 6= y ⇒ {x ≈ s, y ≈ t } ⊆Λ′′ and s 6= t ,

for any two base variables x, y ∈ var(C ′′)∩X and some ground base terms s, t ∈
TΩ. We call the exhaustive application of the transformation to all variables in the
clause variables merging.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 4.26
Variables MergingSp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the

base and body signatures, respectively. Let X ′ =X∪X ′′ be the underlying variable
set consisting of base and non-base variables, respectively.

Let C =Λ ∥ Γ→∆ be an abstracted clause, x, y ∈ var(Λ) two distinct base vari-
ables occurring in the constraint of the clause C and assigned to the same ground
base term t ∈ TΩ via equations (x ≈ t), (y ≈ t) ∈Λ in the constraint. Replacement
of every such a variable y with such a variable x in all literals in Λ is called vari-
ables merging. We write VM(C) to denote the result of variables merging applied
to the clause C . ■

Note that variable assignments propagation and variables merging are com-
patible with Propositions 4.9 and 4.11. Although it is not mentioned in the def-
initions of the SUP(T) inference rules, we implicitly apply variables assignments
grounding, variable assignments propagation, and variables merging to all clauses
in the derivation. The cascade of the three transformations is called the grounding-
propagation-merging of variables.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 4.27
MPG TransformationSp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let C = Λ ∥ Γ → ∆ be an abstracted clause. Application of the cascade of
the three transformations1 (in the given order): variables assignments grounding,
variable assignments propagation, and variables merging is called the grounding-
propagation-merging of variables. We write MPG(C) to denote the result of ap-
plying the combined transformation to a clause C :

MPG(C)
def
= VM(VAP(VAG(C))).

For the sake of conciseness, we use a term MPG transformation2 for the com-
bined operation. ■

1The transformations variables assignments grounding, variable assignments propagation, and
variables merging are introduced in Definitions 4.10, 4.25, and 4.26, pages 136, 148, and 149, respec-
tively.

2We dedicate this transformation, which plays a central role for establishing decidability results of
SUP(T), to the Max Planck Society for the Advancement of Science (German: Max-Planck-Gesellschaft
zur Förderung der Wissenschaften e.V.; abbreviated MPG).

150 SUP(T) as a Decision Procedure

It is worthwhile to notice, that variables merging is antagonistic to variables
cloning1, but the former is performed after application of an inference rule, whereas
the latter is done prior to applying the Hierarchic Splitting rule, so that the two op-
erations are not in conflict to each other, particularly because splitting is applied
exhaustively before any other inference takes place.

Since every time a clause is derived all its base variables, which are assigned
to the same term, are merged, the number of base variables in any clause derived
is bounded by the number of different base terms, to which there are assignments
in the constraint of the derived clause; and the number of all such terms, as we
have shown in Proposition 4.24, is not increasing.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=COROLLARY 4.28 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained by basifi-
cation and abstraction from a set N of Σ′-clauses in which all terms of a base sort
are ground. If the MPG transformation is applied to every clause in the derivation,
then the number of all base variables in any clause in the derivation is at most2

nV (N0):

|var(C)∩X | ≤ nV (N0),

for any clause C ∈ Ni , i ≥ 0.

Since all variables in a clause C ∈ Ni in a SUP(T) derivation N0 ` N1 ` N2 ` . . .,
where N0 is obtained from a set of ground Σ′-clauses by basification and abstrac-
tion, are base, we conclude that the number of all variables in C is bounded by
nV (N0):

var(C) ≤ nV (N0).

Limiting the Size of Literals in Derived Clauses

A key condition to ensure a finite saturation of a given clause set N0 by the SUP(T)
calculus is to keep the size of literals limited. Here we present a reduction ordering
that limits the growth of the literals’ size in any SUP(T) derivation underlied by the
ordering.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 4.29 Ï
Hierarchic lexicographic
path ordering HLPO(γ)

Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the
base and body signatures, respectively. Let X ′ =X∪X ′′ be the underlying variable
set consisting of base and non-base variables, respectively.

Let γ : TΩ′ (X ′) → N be a total function. The hierarchic lexicographic path or-
dering ÂH(γ) augmenting the function γ is defined by: t ÂH(γ) s iff:

1. γ(t) > γ(s), or

2. γ(t) = γ(s) and t Âlpo s,

1The variables cloning transformation is introduced in Definition 4.18, page 146.
2Please, recall Definition 4.22 of the number nV (N0), page 147.

4.2. Deciding Ground FOL(T) 151

where Âlpo is the standard lexicographic path ordering1. ■

In general, the above HLPO(γ) ordering is not stable under substitutions. How-
ever in the context of simple substitutions and an appropriately defined function
γ, it actually becomes a reduction ordering which is well-founded and total on
ground terms.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 4.30
Function ωSp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are

the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

We define a function ω : TΩ′ (X ′) → N, which given a Σ′-term t ∈ TΩ′ (X ′) re-
turns the number of free operator symbol occurrences in it, as follows:

ω(t)
def
=

∣∣{p ∈ ρ(t) | top(t/p) ∈Ω′′}
∣∣.

The function ω extends onto atoms and literals as

ω(s ≈̇ t)
def
= ω(s)+ω(t),

where s, t ∈ TΩ′ (X ′) and ≈̇ ∈ {≈, 6≈}. ■

An instance of the Hierarchic lexicographic path ordering HLPO(ω) augment-
ing the function ω compares two terms by, first, comparing the number of free
operator symbol occurrences in the terms, and, second, if the number of free op-
erator symbol occurrences is the same, by comparing the terms with respect to
the standard LPO.

In the context of the SUP(T) calculus for the ground FOL(T) fragment, terms
involved in inferences may contain only base variables. Moreover, SUP(T) admits
only simple substitutions, hence the variables may be substituted only with base
terms. Next, we show that ÂH(ω) is a reduction ordering under these conditions.
Lemma 4.31 and Proposition 4.33 followed hold only in the context of the ground
FOL(T) fragment – for the non-ground case we give corresponding statements in
Section 4.3.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î LEMMA 4.31
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

The hierarchic lexicographic path ordering ÂH(ω) augmenting the function ω

is a reduction ordering for all Σ′-terms over base variables TΩ′ (X) with respect to
simple substitutions.

We need to show that ÂH(ω) is irreflexive, transitive, and well-founded binary rela- Î PROOF
tion that is compatible with contexts, stable under simple substitutions, and has
the subterm property. Let t , s,r ∈ TΩ′ (X) be arbitrary Σ′-terms over base variables
X .

Irreflexivity of ÂH(ω) follows from that of > and Âlpo.

1Please, recall Definition 2.15 of the standard LPO.

152 SUP(T) as a Decision Procedure

Transitivity. Assume t ÂH(ω) s ÂH(ω) r . We are to show that t ÂH(ω) r . Note that
ω(t) ≥ω(s) ≥ω(r). Consider two possible cases:

(i) if the terms have the same number of free operator symbol occurrences:

ω(t) = ω(s) = ω(r),

then

t Âlpo s Âlpo r,

and t Âlpo r follows by transitivity of Âlpo, consequently t ÂH(ω) r ;

(ii) ω(t) >ω(s) or ω(s) >ω(r), then ω(t) >ω(r), consequently t ÂH(ω) r .

Well-foundedness. Let t1, t2, . . . be arbitrary terms from TΩ′ (X) such that

t1 ÂH(ω) t2 ÂH(ω)

We are to show that any such a descending chain of terms is finite. We prove it by
induction on the number ω(t1) of free operator symbol occurrences in the largest
term t1 in the chain.

Induction Base. If ω(t1) = 0, then

ω(t1) = ω(t2) = . . . = 0.

Therefore

t1 Âlpo t2 Âlpo . . . ,

and the chain t1 ÂH(ω) t2 ÂH(ω) . . . is finite by well-foundedness of Âlpo.

Induction Hypothesis. Assume that any descending chain

t1 ÂH(ω) t2 ÂH(ω) . . . ,

where ω(t1) ≤ n for some n ≥ 0, is finite.

Induction Step. Assume ω(t1) = n +1. There are two possible cases:

(i) if the terms have the same number of free operator symbol occurrences:

ω(t1) = ω(t2) = . . . = n +1,

then the case is analogous to the induction base;

(ii) otherwise, there exists an index ` > 1 such that ω(t1) > ω(t`). Let k be the
smallest index such that ω(t1) ≥ω(tk)+1. Since

ω(t1) = ω(t2) = . . . = ω(tk−1),

we know that

t1 Âlpo t2 Âlpo . . . Âlpo tk−1.

By well-foundedness of Âlpo, the left subchain

t1 ÂH(ω) t2 ÂH(ω) . . . ÂH(ω) tk−1

is finite (and so is k). By induction hypothesis, the right subchain

tk ÂH(ω) tk+1 ÂH(ω) . . .

is finite as well.

Thus, any descending chain t1 ÂH(ω) t2 ÂH(ω) . . . is finite, and, hence, ÂH(ω) is well-
founded.

4.2. Deciding Ground FOL(T) 153

Compatibility with contexts. Let r = f (r1, . . . ,rn), for some operator symbol f ∈Ω′

of arity n ≥ 1, and some Σ′-terms r1, . . . ,rn ∈ TΩ′ (X) over base variables X . Assume
t ÂH(ω) s. Consider terms

r ′ = r [t]i ,
r ′′ = r [s]i ,

obtained from the r by replacing its i -th immediate subterm r /i = ri by t and s,
respectively, for some 1 ≤ i ≤ n. Then

ω(r ′) = ω(r)−ω(r /i)+ω(t),
ω(r ′′) = ω(r)−ω(r /i)+ω(s).

If ω(t) >ω(s), then ω(r ′) >ω(r ′′), thus r ′ ÂH(ω) r ′′ by condition 1 of Definition 4.29.
If ω(t) = ω(s), then t Âlpo s and ω(r ′) = ω(r ′′). Let us compare r ′ and r ′′ with
respect to Âlpo. Since r ′/ j = r ′′/ j , for every 1 ≤ j ≤ n, j 6= i , and

r ′/i = t Âlpo s = r ′′/i ,

we obtain, by condition 2a of Definition 2.15 of the standard LPO, that r ′ Âlpo r ′′/ j ,
for every 1 ≤ j ≤ n. Moreover,

(r ′/1, . . . ,r ′/n) (Âlpo)lex (r ′′/1, . . . ,r ′′/n),

hence, by condition 2c of Definition 2.15, we obtain r ′ Âlpo r ′′, yielding, by condi-
tion 2 of Definition 4.29, that r ′ ÂH(ω) r ′′. Thus, ÂH(ω) is compatible with contexts.

Stability under simple substitutions. Assume t ÂH(ω) s. Let σ be an arbitrary
simple substitution. Since all variables occurring in t and s are of a base sort,
they can be mapped by σ only to base terms, therefore ω(tσ) =ω(t) and ω(sσ) =
ω(s). If ω(t) >ω(s), then ω(tσ) >ω(sσ) and tσÂH(ω) sσ. If ω(t) =ω(s), then t Âlpo

s. Since Âlpo is stable under substitutions, we know tσ Âlpo sσ. Consequently,
tσ ÂH(ω) sσ, by condition 2 of Definition 4.29. Thus, ÂH(ω) is stable under simple
substitutions.

Subterm property. Let t = f (t1, . . . , tn), for some operator symbol f ∈Ω′ of arity
n ≥ 1, and some Σ′-terms t1, . . . , tn ∈ TΩ′ (X) over base variables X ; let s = ti be
an immediate subterm of t , for some i ∈ {1, . . . ,n}. If f ∈ Ω′′, then ω(t) ≥ ω(s)+
1, consequently ω(t) > ω(s) and t ÂH(ω) s. Otherwise, f ∈ Ω, and ω(t) ≥ ω(s). If
ω(t) > ω(s), then t ÂH(ω) s. Otherwise, ω(t) = ω(s), but since Âlpo possesses the
subterm property, we know t Âlpo s, consequently t ÂH(ω) s. Thus, ÂH(ω) possesses
the subterm property. ■

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 4.32
Number nFSp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

Given a set M of abstracted clauses, we write nF (M) to denote the maximum
number of free operator symbol occurrences in a free literal among all clauses in
M :

nF (M)
def
= maxC∈M {ω(L) | L ∈ (Γ→∆), C =Λ ∥ Γ→∆}.

■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 4.33
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

154 SUP(T) as a Decision Procedure

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained from a
set of ground Σ′-clauses by basification and abstraction. If ÂH(ω) is the underlying
ordering, then for every free literal L in any clause C ∈ Ni , i ≥ 0, the number ω(L)
of free operator symbol occurrences is at most nF (N0).

We give a proof by induction on the length of derivation of Ni .PROOF Ï
Induction Base. For N0 the assertion trivially holds.
Induction Hypothesis. Assume the assertion holds for all clause sets Ni derived

from N0, where i ≤ n, for some n > 0.
Induction Step. Let Nn+1 = Nn ∪C , where C is a conclusion of an inference

rule application to some clauses in Nn . Let us first make the following observa-
tion: for any simple substitution σ and any term t ∈ TΩ′ (X) built over operators
Ω′ and base variables X , the term tσ contains as many free operator symbols as
the term t does, i.e. ω(tσ) = ω(t), because (i) there is no non-base variable in t ,
and (ii) simple substitutions can map base variables only to base terms. Consider
a Hierarchic Superposition Right inference, Definition 3.28,

I Λ1 ∥ Γ1 →∆1, l ≈ r Λ2 ∥ Γ2 →∆2, s[l ′] ≈ t

(Λ1,Λ2 ∥ Γ1,Γ2 →∆1,∆2, s[r] ≈ t)σ

with the premises C1,C2 ∈ Nn and conclusion C , respectively. Thus,

lσ= l ′σ // by Cond. ((i)) of Def. 3.28
⇒ ω(lσ) =ω(l ′σ)
⇒ ω(l) =ω(l ′) // as l , l ′ ∈ TΩ′ (X) and σ simple

Moreover,

rσ 6ÂH(ω) lσ // by Cond. ((iii)) of Def. 3.28
⇒ ω(rσ) ≤ω(lσ) // acc. to Def. 4.29 of ÂH(ω)

⇒ ω(r) ≤ω(l) // as l ,r ∈ TΩ′ (X) and σ simple

Therefore,

ω(s[r]σ) =ω(s[r]) // as s[r] ∈ TΩ′ (X) and σ simple
≤ω(s[l]) // as ω(r) ≤ω(l)
=ω(s[l ′]) // as ω(l) =ω(l ′)

⇒ ω
(
(s[r] ≈ t)σ

)≤ω(s[l ′] ≈ t)
≤ nF (N0) // by Induction Hypothesis

For any other literal Lσ in the inference’s conclusion, where L is the corresponding
literal from a premise, we have ω(Lσ) =ω(L) ≤ nF (N0), by Induction Hypothesis.
The analysis of the other rules is similar. ■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=LEMMA 4.34 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let S ′′ =S ′ \S and Ω′′ =Ω′ \Ω be the enrichment
sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

Let N0 be obtained from a finite set N of ground Σ′-clauses by basification and
abstraction. If N0 is a Horn clause set, then any fair SUP(T) derivation N0 ` N1 `
N2 ` . . . with eager selection, MPG transformation, and reduction ordering ÂH(ω) is
terminating.

4.2. Deciding Ground FOL(T) 155

According to Proposition 4.11, any literal in the constraint of a clause in the deriva- Î PROOF
tion is either a (dis)equation s1 ≈̇ s2 between some ground base terms s1, s2 ∈ TΩ,
where ≈̇ ∈ {≈, 6≈}, or an assignment x ≈ t of a base variable x ∈X to a ground base
term t ∈ TΩ. In the proof of Proposition 4.11 we have shown that the terms s1, s2, t
are all inherited from N0, meaning that no new base term is produced by an in-
ference. In Proposition 4.28, we have shown that a clause in the derivation may
contain at most nV (N0) different base variables. For finitely many different terms
s1, s2, t and a limited number of variables, there can be only finitely many differ-
ent literals of the above form, therefore there can be only finitely many different
constraints Λ, up to variable renaming and removal of duplicate literals.

According to Corollary 4.21, any clause in the derivation may contain at most
nL(N0) free literals, each of which, according to Proposition 4.33, may have at
most nF (N0) operator symbol occurrences, limiting thus the size of free literals.
As all variables in the derivation are base, the number of different variables in the
free part of a clause is also limited by nV (N0). For the finite set Ω′′ of free oper-
ator symbols occurring in N0, a limited number and size of literals, and limited
number of variables, there exist only finitely many different free parts Γ→ ∆, up
to variable renaming.

Combining the two observations above, we conclude that there can be only
finitely many different clauses Λ ∥ Γ→ ∆ in the derivation N0 ` N1 ` N2 ` . . .,
up to variable renaming. Thus, after sufficiently (and finitely) many clauses have
been derived, any inference from Ni , for some i ≥ 0, produces a clause that is
already present in Ni , up to variable renaming, hence the inference is redundant.
Since only irredundant inferences have to be performed, the derivation N0 ` N1 `
N2 ` . . . is terminating. ■

Please, note that fact that only finitely many different constraints Λ can be de-
rived, up to variable renaming and removal of duplicate literals, implies that only
finitely many different base clauses are derivable. To establish the existence of a
finite number of different constraints, we have only used the properties stated in
Propositions 4.11 and 4.28, which hold for all derivations N0 ` N1 ` N2 ` . . . with
the MPG transformation, where N0 is obtained by basification and abstraction
from a set N of Σ′-clauses in which all terms of a base sort are ground. Hence,
any SUP(T) derivation with the MPG transformation from any such clause set N0

produces only finitely many diferent base clauses, up to a very trivial subsump-
tion.

4.2.5 Decidability

According to the definition of SUP(T) inference rules, Section 3.3, an empty clause
ä can be produced only by an application of the Constraint Refutation rule, which
is to apply to a set of base clauses (which are abstracted clauses with the free part
empty). As every base variable x is assigned to a ground base term t , Proposi-
tion 4.9, any non-ground base clause can be grounded by propagation of all as-
signments x ≈ t . The term t may contain base parameters introduced at the basi-
fication step. The parameters are essentially base variables existentially quantified
on the top of the overall clause set. Thus, an application of the Constraint Refuta-

156 SUP(T) as a Decision Procedure

tion rule1

I C1[a1
1, . . . ,a1

m1
] . . . Cn[an

1 , . . . ,an
mn

]

ä
where a1

1, . . . ,an
mn

are all base parameters occurring in the premises C1, . . . ,Cn (any

two parameters ai
j and ai ′

j ′ do not have to be necessarily different), reduces to
checking satisfiability of a base formula

∃ y1
1 , . . . , yn

mn
: C1[y1

1 , . . . , y1
m1

]∧ . . . ∧Cn[yn
1 , . . . , yn

mn
],

in which the base parameters are replaced with respective fresh base variables
y1

1 , . . . , yn
mn

∈X , which are all existentially quantified over the theory domain. For
this reason, the only requirement we impose on the theory T (base specification
Sp) is the decidability of its existential fragment.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=THEOREM 4.35 Ï
Ground FOL(T)

Decidability
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

If the ∃∗ fragment is decidable in Sp, then the SUP(T) calculus with eager se-
lection, MPG transformation, reduction ordering ÂH(ω), and variables cloning and
splitting preferred to other inferences, is a decision procedure for the ground clause
FOL(T) fragment2.

Basification, presented in Sections 4.2.1, transforms a finite set N of ground Σ′-PROOF Ï
clauses into a finite equisatisfiable clause set N ′, such that every model of N ′ is a
model of N , Lemma 4.5.

Let N ′′ be a clause set obtained from N ′ by abstraction. In Section 4.2.4 we
have shown that every clause in N ′′ can be split into Horn clauses, if variables
cloning is first applied to it. Let N 1

0 , . . . , N n
0 be the sets of Horn clauses obtained by

exhaustively applying splitting to N ′′. The clause set N ′′ has a hierarchic model
if and only if some N i

0, i ∈ {1, . . . ,n}, does so. According to Lemma 4.34, any fair
SUP(T) derivation N i

0 ` N i
1 ` N i

2 ` . . . with eager selection, MPG transformation,
and the reduction ordering ÂH(ω) is terminating. Let N i

k be the last clause set in

the derivation N i
0 ` N i

1 ` . . . ` N i
k , for some k ≥ 0. The set N i

k is the limit of the

derivation. Moreover, N i
k is finite. By Lemma 3.9, the clause set N i

k is saturated.

If ä 6∈ N i
k , then the set N i

k ∩C lΣ of all base clauses within N i
k is theory-consistent.

Indeed, suppose for the sake of contradiction that N i
k ∩C lΣ is theory-inconsistent.

As N i
k is finite, the set N i

k ∩C lΣ is also finite. Therefore, a constraint refutation

inference derives ä from N i
k ∩C lΣ. Since N i

k is saturated, the inference must be

redundant with respect to RH, which holds, according to Definition 3.64 of RH,
if and only if an empty clause ä is already in N i

k , a contradiction. Let A ∈C be an

arbitrary base algebra satisfying the set N i
k ∩C lΣ. By Lemma 4.17, the clause set

N i
k has a hierarchic model. This model is also a model of N i

0. If ä ∈ N i
k , then N i

k
is unsatisfiable due to soundness of SUP(T).

As the base theory supports a decision procedure for the ∃∗ fragment, Con-
straint Refutation can be decided, therefore satisfiability of every N i

0 can be deter-
mined, hence satisfiability of N ′′ and N can be determined as well. Thus, the

1The Constraint Refutation rule is introduced in Definition 3.31, page 48.
2The ground clause FOL(T) fragment is represented by the class GCΣ′ of all sets of ground Σ′-

clauses.

4.2. Deciding Ground FOL(T) 157

SUP(T) calculus with eager selection, MPG transformation, reduction ordering
ÂH(ω), and variables cloning and splitting preferred to other inferences, is a de-
cision procedure for the ground clause FOL(T) fragment. ■

Note that the usage of the hierarchic LPO ÂH(ω) yields an upper bound on the
maximum size of free literals and, hence, guarantees the existence of only finitely
many different free literals over a finite set Ω′′ of free operator symbols and a lim-
ited number of variables. Thus, even if the length of the free part of a clause not
limited, there can be only finitely many different free parts Γ→ ∆, up to variable
renaming and duplication of literals. This observation supports an alternative
strategy involving neither splitting nor eager selection: indeed, the two ingredi-
ents are not really needed for termination, but what is required in return is an
additional Hierarchic Factoring rule, which is necessary to guarantee hierarchic
model existence in the absence of the splitting rule.

Note that the Hierarchic Completeness Theorem (Theorem 3.82) requires the
base specification to be compact, which is needed for ensuring the existence of a
base model of the base subset set of the saturated clause set (see the proof of the
H-F Approximation Theorem on page 98 for further details). Basification may
lead losing compactness of the base specification. Nevertheless, the compactness
requirement is obsolete for the fragments considered here as all possible SUP(T)
derivations from clause sets over these fragments are finite.

158 SUP(T) as a Decision Procedure

4.3 Deciding Non-Ground FOL(T)

In this section we consider an application of SUP(T) to a non-ground FOL(T) frag-
ment, for which SUP(T) is a decision procedure as well. Due to the hierarchic
design of SUP(T), the decidability result for the ground FOL(T) fragment can be
easily extended to some non-ground fragments. Here we present an instance of
such an extension.

4.3.1 BSHE(GBST) Class

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 4.36 Ï
BSHE(GBST) class Sp= (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ= (S ,Ω) and Σ′ = (S ′,Ω′) are the

base and body signatures, respectively.

We call the class consisting of all Horn clause sets, where

(i) every non-predicate operator symbol of non-zero arity ranges into a base sort,
and

(ii) all base sort terms are ground,

the Bernays-Schönfinkel Horn class with equality and ground base sort terms,
for short BSHE(GBST). ■

If N is a clause set from the BSHE(GBST) class, then any literal occurring in a
clause from N may contain a base or free predicate symbol, equality symbol, vari-
ables of a free sort which all occur immediately below a free predicate or equality
symbol, base function symbols, extension symbols, and constant symbols either
of a base or a free sort. Thus, any non-predicative compound term occurring in
N is ground and of a base sort.

Let N be a clause set containing just one clause:EXAMPLE 4.37 Ï
N = { f (a)+2 > b, P (u,3 f (a),c) → Q(u,b) },

where the background theory T is the rational linear arithmetic; +,>,2,3 ∈Ω, and
P,Q, f , a,b,c ∈Ω′′; the function symbols f ,b ranging into the base sort S, and a,c
ranging into a free sort S′′ ∈ S ′′; u ∈ X ′′ is a non-base variable. The set N agrees
with Definition 4.36 of the BSHE(GBST) class.

As usual, the input clause set N is first basified resulting in a clause set N ′ =
NI ∪NB :

NI = { a+2 > b, P (u,3a,c) → Q(u,b) },
NB = { → f (a) ≈ a,

→ b ≈ b }

and then abstracted into a clause set N ′′ = N ′
I ∪N ′

B :

N ′
I = { a+2 > b, x ≈ 3a, y ≈ b ‖ P (u, x,c) → Q(u, y) },

N ′
B = { x ≈ a ‖ → f (a) ≈ x,

x ≈ b ‖ → b ≈ x }.

■

4.3. Deciding Non-Ground FOL(T) 159

Let N be an arbitrary clause set from the BSHE(GBST) class. From now on we
write N ′ = NI ∪NB to denote the clause set obtained from N by basification, where
NI is the set of the basified clauses from N , and NB is the set of clauses basifying
those in NI ; and N ′′ to denote the clause set N ′ abstracted. Let N0 ` N1 ` N2 ` . . .
be a SUP(T) derivation with MPG transformation, where N0 = N ′′. Most results for
the ground fragment stated in propositions and corollaries of the previous section
hold also for the BSHE(GBST) class, and their proofs are valid in the current con-
text as well, therefore here we only reformulate the related properties to fit the
BSHE(GBST) class without providing proofs.

4.3.2 Derivation Invariants

The presence of non-base variables interferes neither basification nor abstrac-
tion because they may occur only immediately below equality or free predicate
symbols. Therefore, terms occurring in basified BSHE(GBST) clause sets have the
same structural properties as in the case of basified ground FOL(T) clause sets.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 4.38
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let N be a clause set from the BSHE(GBST) class. Let N ′ = NI ∪NB be a clause
set obtained from N by basification, where NI is the set of the basified clauses from
N , and NB is the set of clauses basifying those in NI . No extension term appears in
a clause from NI . The only literal L = t ≈ a in any clause from NB is an equation
between a base parameter a and a ground smooth extension term t ∈ T E

Ω′ .

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î COROLLARY 4.39
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let N be a clause set from the BSHE(GBST) class, N ′ a clause set obtained from
N by basification, and L = t1 ≈̇ t2 a literal in a clause from N ′, where ≈̇ ∈ {≈, 6≈}.
Every subterm of each ti with a base top operator symbol is a ground base term:

∀p ∈ ρ(ti) : top(ti /p) ∈Ω⇒ ti /p ∈ TΩ,

for every i ∈ {1,2}.

Likewise, basification of a BSHE(GBST) clause set N produces an equisatisfi-
able clause set N ′ such that every model of N ′ is a model of N .

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î LEMMA 4.40
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N be a BSHE(GBST) clause set.If N ′ is obtained from N by basification, then:

(i) N ′ and N equisatisfiable;

(ii) N ′ |= N .

The derivation invariants regarding the structure of constraints hold in the
context of the BSHE(GBST) class too.

160 SUP(T) as a Decision Procedure

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.41 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained by basi-
fication and abstraction from a BSHE(GBST) clause set; let C = Λ ∥ Γ→ ∆ be an
arbitrary clause in Ni , i ≥ 0. Then for every base variable x ∈ var(C)∩X there exists
a ground base term t ∈ TΩ such that an equation x ≈ t is in the constraint Λ of C .

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.42 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained by basi-
fication and abstraction from a BSHE(GBST) clause set; let C = Λ ∥ Γ→ ∆ be an
arbitrary clause in Ni , i ≥ 0. If variables assignments grounding1 is applied to ev-
ery clause derived, then every literal in Λ is either

– an assignment x ≈ t , or

– a (dis)equation s1 ≈̇ s2,

where x ∈X is a base variable, t , s1, s2 ∈ TΩ ground base terms, ≈̇ ∈ {≈, 6≈}.

In the BSHE(GBST) fragment the only function symbols ranging into a free
sort are free constants. Therefore a non-base variable can be substitute either
with another non-base variable or a free constant. For this reason, the structural
properties of free literals stated in Propositions 4.12 and 4.15 extend also onto the
BSHE(GBST) class.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.43 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained by basifi-
cation and abstraction from a BSHE(GBST) clause set, and C an arbitrary clause in
the derivation. All extension terms occurring in C , if any, are smooth and appear
only in literals of form t ≈ x, where t ∈ T E

Ω′ (X ′) is an extension term and x ∈ X a
base variable.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.44 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively.

Let N0 ` N1 ` . . . a SUP(T)-derivation, where N0 is obtained by basification and
abstraction from a BSHE(GBST) clause set, and C an arbitrary clause in sgi(Ni), for
some i ≥ 0. All extension terms occurring in C , if any, are smooth and appear only
in literals of form t ≈ s, where t ∈ T E

Ω′ is an extension term and s ∈ TΩ a ground
base term.

1Please, recall Definition 4.10 of variables assignments grounding, page 136.

4.3. Deciding Non-Ground FOL(T) 161

4.3.3 Model Existence

Let N0 ` N1 ` . . . a SUP(T)-derivation, where N0 is obtained by basification and
abstraction from a BSHE(GBST) clause set. Proposition 4.44 allows us to exploit
the mechanism used to ensure the hierarchic model existence for the ground frag-
ment here as well. Indeed, the only requirement imposed on a clause set MA,
where M = N∞ is the limit of the derivation N0 ` N1 ` . . ., is the appearance of ex-
tension terms only in positive literals of form t ≈ s, where t is a smooth extension
term and s a ground base term. If the requirement is satisfied, the rewrite system
R ′

MA
= RMA∪RSD

MA
is convergent, where RMA is a rewrite system constructed from

the maximal literals of productive clauses in MA, Definition 2.29, and the rewrite
system RSD

MA
sufficiently defines terms which are not sufficiently defined by RMA ,

Definition 4.13. Convergency of R ′
MA

is needed to show that the Herbrand inter-
pretation I ′

MA
= TΩ′/R ′

MA
is a hierarchic model of N .

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 4.45
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let M = N∞ be the limit of a fair SUP(T)-derivation N0 ` N1 ` . . ., where N0 is
obtained by basification and abstraction from a BSHE(GBST) clause set. Let A ∈C
an arbitrary base algebra. The rewrite system R ′

MA
= RMA ∪RSD

MA
is convergent.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î THEOREM 4.46
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let M = N∞ equal the limit of a fair SUP(T)-derivation N0 ` N1 ` . . ., where N0

is obtained by basification and abstraction from a BSHE(GBST) clause set. Assume
there exists a base algebraA ∈C satisfying the set M∩C lΣ of all base clauses within
M. If M does not contain an empty clause ä, then M has a hierarchic model.

4.3.4 Termination

Since we consider only Horn clauses, the set N0 is already Horn (as neither basi-
fication nor abstraction add atoms to the succedent of a clause), hence no split-
ting (and variable cloning) needs to be applied in any derivation from N0. Thus,
the properties regarding the maximal number of free literals stated in Proposi-
tion 4.19 and subsequent Corollary 4.21 are true for the BSHE(GBST) fragment as
well. Also, the assertions on the number of base variables in clauses derived stand
in this context too.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 4.47
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained by basifi-
cation and abstraction from a BSHE(GBST) clause set. Then1 nV (Ni) ≤ nV (N0), for
every i ≥ 0.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î COROLLARY 4.48
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base

1We write nV (M) to denote the overall number of ground base terms, to each of which there is an
assignment of a variable via an equation in the constraint of a clause in the set of abstracted clauses
M (see Definition 4.22, page 147).

162 SUP(T) as a Decision Procedure

and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained by basifi-
cation and abstraction from a BSHE(GBST) clause set. If the MPG transformation1

is applied to every clause in the derivation, then the number of all base variables in
any clause in the derivation is at most2 nV (N0):

|var(C)∩X | ≤ nV (N0),

for any clause C ∈ Ni , i ≥ 0.

However, we have to take a special care of free variables. For this reason, we
introduce another instance of the hierarchic lexicographic path ordering, Defini-
tion 4.29, which limits the number of non-base variables in a derived clause and
ensures a bounded literal growth. Since all free function symbols of non-zero ar-
ity range into a base sort S ∈ S , any term of a free sort S′′ ∈ S ′′ occurring in the
input clause set N is either a non-base variable x ∈X ′′, or a free constant a ∈Ω′′.
Clearly, this property is preserved by basification, abstraction, and any inference
rule application, and holds thus for all Ni in N0 ` N1 ` N2 ` Therefore, dur-
ing the derivation a non-base variable x ∈X ′′ can be unified either with another
non-base variable y ∈X ′′, or with a free constant a ∈Ω′′. If a non-base variable is
unified with a free constant, the number of free operator symbol occurrences in
the superposed term can actually grow. To cope with this, we need to count in ad-
dition the number of non-base variable occurrences. Here we exploit an instance
of HLPO(γ), where for γ we use the function φ defined as follows.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specificationDEFINITION 4.49 Ï
Function φ Sp = (Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are

the base and body signatures, respectively. Let S ′′ = S ′ \S and Ω′′ =Ω′ \Ω be the
enrichment sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying
variable set consisting of base and non-base variables, respectively.

We define a function φ : TΩ′ (X ′) → N, which given a Σ′-term t ∈ TΩ′ (X ′) re-
turns the number of non-base symbol’s occurrences in t , as follows:

φ(t)
def
=

∣∣{p ∈ ρ(t) | top(t/p) ∈Ω′′∪X ′′}
∣∣.

The function φ extends onto atoms and literals as

φ(s ≈̇ t)
def
= φ(s)+φ(t),

where s, t ∈ TΩ′ (X ′) and ≈̇ ∈ {≈, 6≈}. ■

The function φ counts also occurrences of non-base variables, in contrast to
the function3 ω, which counts only free operator symbol occurrences. The result-
ing instance ÂH(φ) of HLPO is a reduction ordering for the BSHE(GBST) fragment,
with respect to simple substitutions.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp=PROPOSITION 4.50 Ï
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base

1Please, recall Definition 4.27 of the MPG transformation, page 149.
2Please, recall Definition 4.22 of the number nV (N0), page 147.
3The function ω is introduced in Definition 4.30, page 151.

4.3. Deciding Non-Ground FOL(T) 163

and body signatures, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

If all non-constant function symbols in Ω′′ range into base sorts, then the hier-
archic lexicographic path ordering ÂH(φ) augmenting the function φ is a reduction
ordering for Σ′-terms TΩ′ (X ′) with respect to simple substitutions.

Let t , s,r ∈ TΩ′ (X ′) be arbitrary Σ′-terms, r = f (r1, . . . ,rn), where n ≥ 1. Argu- Î PROOF
mentation for the properties irreflexivity, transitivity, well-foundedness, context
compatibility, and the subterm property is exactly the same as in Proposition 4.31
with the only difference being in using the function φ in place of ω (the presence
of non-base variables does not harm the arguments of Proposition 4.31 regarding
the listed properties).

The proof of stability under simple substitutions is slightly different—due to
the presence of non-base variables. Assume t ÂH(φ) s. Let σ be a simple substi-
tution. Any base variable x ∈ var(t)∩X—analogously for s—can be mapped by
σ only to a base term, and since base terms may contain only base symbols, we
learn φ(xσ) = 0 = φ(x). As the only non-variable terms of a free sort are con-
stants, any non-base variable y ∈ var(t)∩X ′′ can be mapped by σ either to a non-
base variable or a free constant, hence φ(yσ) = 1 = φ(y). Thus, an application
of σ to variables of t does not change the number of occurrences of free sym-
bols, and, therefore, φ(t) = φ(tσ); analogously φ(s) = φ(sσ). If φ(t) > φ(s), then
φ(tσ) > φ(sσ) as well, hence tσ ÂH(φ) sσ. If φ(t) = φ(s), then φ(tσ) = φ(sσ), and
it must also hold that t Âlpo s. Since Âlpo is stable under substitutions, we know
tσÂlpo sσ, consequently, tσÂH(φ) sσ. So, ÂH(φ) augmenting φ is stable under sim-
ple substitutions. ■

We redefine the function nF , Definition 4.32, in the following way.

Assume HSp = (Sp,Sp′) is a hierarchic specification with the base specification Î DEFINITION 4.51
Number nFSp= (Σ,C) and the body Sp′ = (Σ′, Ax ′).

Given a set M of abstracted clauses, we write nF (M) to denote the maximum
number of occurrences of free operator symbols and non-base variables in a free
literal among all clauses in M :

nF (M)
def
= maxC∈M {φ(L) | L ∈ (Γ→∆), C =Λ ∥ Γ→∆}.

■

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î PROPOSITION 4.52
(Σ,C) and the body Sp′ = (Σ′, Ax ′).

Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation, where N0 is obtained by basifi-
cation and abstraction from a BSHE(GBST) clause set. If ÂH(φ) is the underlying
ordering, then for every free literal L in any clause C ∈ Ni , i ≥ 0, the number φ(L) of
occurrences of free operator symbols and non-base variables is at most nF (N0).

Analogous to Proposition 4.33. ■ Î PROOF

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î LEMMA 4.53
(Σ,C) and the body Sp′ = (Σ′, Ax ′), where Σ = (S ,Ω) and Σ′ = (S ′,Ω′) are the base
and body signatures, respectively. Let S ′′ =S ′ \S and Ω′′ =Ω′ \Ω be the enrichment

164 SUP(T) as a Decision Procedure

sorts and operators, respectively. Let X ′ = X ∪X ′′ be the underlying variable set
consisting of base and non-base variables, respectively.

Let N0 be obtained by basification and abstraction from a BSHE(GBST) finite
clause set. Then any SUP(T) derivation N0 ` N1 ` N2 ` . . . with eager selection,
MPG transformation, and reduction ordering ÂH(φ) is terminating.

According to Proposition 4.42, any literal in the constraint of a clause in the deriva-PROOF Ï
tion is either a (dis)equation s1 ≈̇ s2 between some ground base terms s1, s2 ∈ TΩ,
where ≈̇∈ {≈, 6≈}, or an assignment x ≈ t of a base variable x ∈ X to a ground
base term t ∈ TΩ. The terms s1, s2, t are all inherited from N0, meaning that no
new base term is produced by an inference. According to Proposition 4.48, a
clause in the derivation may contain at most nV (N0) different base variables. For
finitely many different terms s1, s2, t and a limited number of variables, there can
be only finitely many different literals of the above form, therefore there can be
only finitely many different constraints Λ, up to variable renaming.

According to Corollary 4.21, any clause in the derivation may contain at most
nL(N0) free literals, each of which, according to Proposition 4.52, may have at
most nF (N0) occurrences of free operator symbols and non-base variables, limit-
ing thus the size of free literals. According to Corollary 4.48, the number of base
variables is also limited by the number nV (N0). For a finite set Ω′′ of free oper-
ator symbols occurring in N0, a limited number and size of literals, and limited
number of variables, there exist only finitely many different free parts Γ→ ∆, up
to variable renaming.

Combining the two observations above, we conclude that there can be only
finitely many different clauses Λ ∥ Γ→∆, up to variable renaming, in the deriva-
tion N0 ` N1 ` N2 ` Thus, any inference from Ni , for some i ≥ 0, with a con-
clusion C that can be matched to a clause D ∈ Ni by variable renaming, is redun-
dant. After sufficiently (and finitely) many clauses have been derived, any further
inference is thus redundant. Since only irredundant inferences have to be per-
formed, N0 ` N1 ` N2 ` . . . is terminating. ■

4.3.5 Decidability

According to Proposition 4.42, every base variable x ∈X , occurring in a clause in a
SUP(T) derivation N0 ` N1 ` N2 ` . . . from a clause set N0 obtained by basification
and abstraction from an input BSHE(GBST) clause set, is assigned to is assigned
to a ground base term t ∈ TΩ, if variables assignments grounding is applied to ev-
ery clause in the derivation. Any non-ground base clause in the derivation can be
thus grounded by propagation of all assignments x ≈ t . The term t may contain
base parameters introduced at the basification step. The parameters are essen-
tially base variables existentially quantified on the top of the overall clause set.
Thus, an application of the Constraint Refutation rule1

I C1[a1
1, . . . ,a1

m1
] . . . Cn[an

1 , . . . ,an
mn

]

ä
where a1

1, . . . ,an
mn

are all base parameters occurring in the premises C1, . . . ,Cn (any

two parameters ai
j and ai ′

j ′ do not have to be necessarily different), reduces to

1The Constraint Refutation rule is introduced in Definition 3.31, page 48.

4.3. Deciding Non-Ground FOL(T) 165

checking satisfiability of a base formula

∃ y1
1 , . . . , yn

mn
: C1[y1

1 , . . . , y1
m1

]∧ . . . ∧Cn[yn
1 , . . . , yn

mn
],

in which the base parameters are replaced with respective fresh base variables
y1

1 , . . . , yn
mn

∈X , which are all existentially quantified the theory domain. Similarly
to the ground FOL(T) case, the only requirement we impose on the theory T for
the BSHE(GBST) class is the decidability of its existential fragment.

Assume HSp= (Sp,Sp′) is a hierarchic specification with the base specification Sp= Î THEOREM 4.54
BSHE(GBST) Decidability(Σ,C) and the body Sp′ = (Σ′, Ax ′).

If the ∃∗ fragment is decidable in Sp, then the SUP(T) calculus with eager selec-
tion, MPG transformation, and reduction ordering ÂH(φ) augmenting the function
φ is a decision procedure for the BSHE(GBST) class.

Basification, presented in Section 4.2.1, transforms a finite set N of BSHE(GBST) Î PROOF
clauses into a finite equisatisfiable clause set N ′, such that every model of N ′ is a
model of N , Lemma 4.40.

Assume N0 is a clause set obtained from N ′ by abstraction. As N is a Horn
clause set, N0 is so as well. Let N0 ` N1 ` N2 ` . . . be a SUP(T) derivation with ea-
ger selection, MPG transformation, and the underlying ordering ÂH(φ) augmenting
the function φ. According to Lemma 4.53, the derivation is terminating. Let Nk be
the last clause set in the derivation, for some k ≥ 0. The set Nk is the limit of the
derivation. Moreover, Nk is finite. By Lemma 3.9, the clause set Nk is saturated. If
ä 6∈ Nk , then the set Nk∩C lΣ of all base clauses within Nk is theory-consistent. In-
deed, suppose for the sake of contradiction that Nk ∩C lΣ is theory-inconsistent.
As Nk is finite, the set Nk ∩C lΣ is also finite. Therefore, a constraint refutation
inference derives ä from Nk ∩C lΣ. Since Nk is saturated, the inference must be
redundant with respect to RH, which holds, according to Definition 3.64 of RH,
if and only if an empty clause ä is already in Nk , a contradiction. Let A ∈C be an
arbitrary base algebra satisfying the set Nk ∩C lΣ. By Lemma 4.46, the clause set
Nk has a hierarchic model. This model is also a model of N0. If ä ∈ Nk , then Nk

is unsatisfiable due to soundness of SUP(T).
As the base theory supports a decision procedure for the ∃∗ fragment, Con-

straint Refutation can be decided, therefore satisfiability N0 can be determined,
hence satisfiability of N ′ and N can be determined as well. Thus, the SUP(T) cal-
culus with eager selection, MPG transformation, and reduction ordering ÂH(φ) is
a decision procedure for the ground clause FOL(T) fragment. ■

Similarly to the ground FOL(T) case, where we use the reduction ordering
ÂH(ω) augmenting the function ω, in the BSHE(GBST) case the usage of the hi-
erarchic LPO ÂH(φ) augmenting the function φ also yields an upper bound on the
maximum size of free literals and, hence, guarantees the existence of only finitely
many different free literals over a finite set Ω′′ of free operator symbols and a lim-
ited number of variables. Thus, even if the length of the free part of a clause not
limited, there can be only finitely many different free parts Γ → ∆, up to vari-
able renaming and duplication of literals. This observation supports an alterna-
tive strategy which does not require the input clause set to consist only of Horn
clauses, but what is required in return is an additional Hierarchic Factoring rule,

166 SUP(T) as a Decision Procedure

which is necessary to guarantee hierarchic model existence if non-Horn clauses
admitted.

For the sake of simplicity, we have restricted our attention to a Horn clause
fragment of FOL(T), where every non-constant function symbol from the under-
lying FOL signature ranges into the sort of the theory T and all base sort terms
are ground. Actually, SUP(T) can decide the general clause fragment as well, be-
cause since in this case the only function symbols ranging into the free sort are
constants, every non-Horn clause can be split into Horn clauses by instantiating
every subsequent occurrence of the same variable by the free constants, reducing
the original non-Horn problem to a Horn one.

4.3.6 Relation to Weak Abstraction. Completeness on GBT
Class

We finish the discussion of SUP(T) decidability by addressing SUP(T) complete-
ness for the ground base sort terms fragment GBT [BW13]. The GBT class com-
prises all Σ′-clauses, in which all terms of a base sort are ground. The GBT class
is thus larger than both the ground and the BSHE(GBST) fragments. Although
SUP(T) is, evidently, not a decision procedure for the GBT class1, the hierarchic
calculus is still strong enough to guarantee completeness for the GBT fragment.

Let N0 ` N1 ` N2 ` . . . be fair SUP(T) derivation with exhaustive application of
the MPG transformation, where N0 = N is obtained by basification and “full” ab-
straction2 from a set of Σ′-clauses in which all base sort terms are ground. Assume
the limit N∞ of the derivation does not contain an empty clause ä. By Lemma 3.9,
the limit N∞ is saturated.

According to Proposition 4.11, any literal in the constraint of a clause in the
derivation is either a (dis)equation s1 ≈̇ s2 between some ground base terms s1, s2 ∈
TΩ, where ≈̇ ∈ {≈, 6≈}, or an assignment x ≈ t of a base variable x ∈X to a ground
base term t ∈ TΩ. In the proof of Proposition 4.11 we have shown that the terms
s1, s2, t are all inherited from N0, meaning that no new base term is produced by
an inference. In Proposition 4.28, we have shown that a clause in the derivation
may contain at most nV (N0) different base variables. For finitely many different
terms s1, s2, t and a limited number of variables, there can be only finitely many
different literals of the above form, up to variable renaming, therefore there can be
only finitely many different constraints Λ, up to variable renaming and removal of
duplicate literals. This implies that only finitely many different base clauses can be
produced in N0 ` N1 ` N2 ` . . ., up to very straightforward redundancy deletion.
Consequently, the limit N∞ of the derivation may contain only finitely many dif-
ferent base clauses, say C1, . . . ,Cn , for some n ≥ 0, where Ci = (Λi ∥ →), for each
i ∈ {1, . . . ,n}. Therefore, there exists a base algebraA ∈C that satisfies every clause
Ci . Indeed, suppose for the sake of contradiction, that the set {C1, . . . ,Cn} is satis-
fiable by no base algebra in C , i.e. C1, . . . ,Cn |=C ⊥. Hence, there is a Constraint

1If the background theory T is empty, SUP(T) reduces to the standard superposition calculus SUP
for general FOL clauses and GBT reduces to the general FOL fragment, which is known to be semi-
decidable.

2We refer to the abstraction algorithm introduced in Section 3.2 as “full” abstraction, in contrast
to weak abstraction of Baumgartner and Waldmann [BW13].

4.3. Deciding Non-Ground FOL(T) 167

Refutation inference, Definition 3.31:

I Λ1 ∥ → . . . Λn ∥ →
ä

As N∞ is saturated, the inference is redundant. According to Definition 3.64 of the
hierarchic redundancy criterion RH, a Constraint Refutation inference is redun-
dant if and only if an empty clause is present in the clause set, a contradiction.

According to Proposition 4.8, the clause set N is locally sufficiently complete
(see Definition 3.84. By Theorem 3.93, the set N has a hierarchic model. This
implies refutational completeness of the SUP(T) calculus combined with basifi-
cation for all GBT clause sets.

168 SUP(T) as a Decision Procedure

4.4 Application: Reasoning in Ontologies with
Arithmetical Facts

One of possible applications of the above decidability result is reasoning (satu-
ration and querying) in ontologies with arithmetical facts, such as time stamps,
size/amount information, etc. Suda, Weidenbach, and Wischnewski have shown
in [SWW10, Wis12] that the ontology YAGO1 can be expressed in terms of the
Bernays-Schönfinkel Horn class with equality, abbreviated BSHE, and presented
a variant of superposition that decides the class. Typical examples of clauses in
the representation of the ontology are (the examples are taken from [SWW10]):

→ bornIn(AlbertEinstein,Ulm) // for “Albert Einstein was
born in Ulm”

→ human(AngelaMerkel) // for “Angela Merkel is a human”
human(x) → mammal(x) // for “Every human is a mammal”

The ontology can be queried with questions like “who are the people who died in
New York at the same place where their children were born?”, which is formally
encoded as the following conjecture

∃x, y, z.diedIn(x, y)∧hasChild(x, z)∧bornIn(z, y)∧ locatedIn(y,NewYork)

which after negating becomes the clause

diedIn(x, y),hasChild(x, z),bornIn(z, y), locatedIn(y,NewYork) →
with all variables universally quantified.

If the ontology is further extended with arithmetical information, such as, for
instance:

→ overInY (WWII ,1945) // for “The World War II
ended in 1945”

→ diedInY (KarlTheGreat,814) // for “Karl The Great died in 814”

→ gdp(Russia,2011,2.4 ·1012) // for “The GDP1 of Russia was
$2.4 trillion in 2011”

→ population(USA,2012,313.8 ·106) // for “The population of USA was
313.8 million in 2012”

then it can be addressed with queries like:

– “Was the GDP of Germany steadily growing every year by at least 3% in
2008-2010?”, which is encoded as the conjecture:

∀x1, x2, y1, y2.gdp(Germany, y1, x1),gdp(Germany, y2, x2),
2008 ≤ y2, y2 ≤ 2010, y2 = y1 +1 → x2 ≥ 1.03 · x1

– “Was the GDP of Germany at least 3% higher than that of any other country
in Europe in the years 2008-2010?”:

∀u.∀x1, x2, y.gdp(Germany, y, x1),gdp(u, y, x2), locatedIn(u,Europe),
u 6≈ Germany,2008 ≤ y, y ≤ 2010 → x1 ≥ 1.03 · x2

1YAGO (Yet Another Great Ontology) is the first automatically retrieved ontology out of Wikipedia
and WordNet with accuracy of about 97% [SKW07]; a well-known ontology in the information retrieval
community.

1GDP – Gross domestic product.

4.4. Application: Reasoning in Ontologies with Arithmetical Facts 169

If O denotes the clause representation of the ontology, and F a conjecture
above, then the set O∪¬F is in the BSHE(GBST) class. If the property F holds in
the ontology, i.e. F follows fromO, then the clause setO∪¬F is unsatisfiable, and
it is satisfiable otherwise. The background theory T is the theory of linear arith-
metic, for which satisfiability of the existential closure of a quantifier-free formula
is decidable. According to Theorem 4.54, satisfiability of O∪¬F is decidable by
SUP(T) underlain by eager selection and reduction ordering ÂH(φ) augmenting φ.

Now the query answering mechanisms presented in [WW12] can actually be
extended according to the above decidability result to yield also a decision proce-
dure for the extended language.

C
H
A
P
T
ER 5

SUP(LA): Superposition Modulo
Linear Arithmetic

5.1
Introduction

5.2
Constraint Solving

5.3
Implementation

5.4
Application: Reasoning
about Transition Systems

In this chapter we instantiate and re-
fine the hierarchic superposition calcu-
lus SUP(T) for the theory of linear arith-
metic LA. In Section 5.1 we define the
hierarchic specification of the combina-
tion of FOL and LA, and exhibit the es-
sential specialties of SUP(LA). In Sec-
tion 5.2, we present a solution to the
issues regarding application of SUP(LA)
to the hierarchic FOL(LA) combination
that are turned there into effective pro-
cedures via a mapping to Linear Pro-
gramming tasks. Key aspects of the
overall implementation of SPASS(LA)
are provided in Section 5.3. In Sec-
tion 5.4 we present experimental re-
sults of applying SPASS(LA) to reach-
ability problems of transition systems
and discuss application of SUP(T) to
container data structure axiomatiza-
tions using the example of lists.
The essential parts of this chapter have
been presented in [AKW09a, AKW09b]

171

172 SUP(LA): Superposition Modulo Linear Arithmetic

5.1 Introduction

In this chapter we instantiate and refine the hierarchic superposition calculus in-
troduced in Chapter 3 for the theory of linear arithmetic. In particular, we refine
the reduction rules definitions and develop new effective algorithms for redun-
dancy elimination taking the linear arithmetic theory into account.

5.1.1 Hierarchic Specification of FOL(LA)

First, we define a hierarchic specification and its ingredients, base specification
and body, for the hierarchic combination FOL(LA) of first-order theory FOL with
the theory of linear arithmetic LA. The notions (re)defined here are valid from now
on till the end of Chapter 5.

We write Σ to denote the signature of LA defined as follows:

Σ= (Q,Ω)

where:

– Ω is the set of arithmetic operators given as:

Ω = { +,−,×, // arithmetic functions
≤,<,≈,>,≥, // arithmetic relations
Q } // rational numbers (numeric constants)

– Q the only arithmetic sort,

with the underlying set X of all variables of the arithmetic sort Q.

We set the class C of base algebras to consist of the standard model M of
linear arithmetic (and all algebras isomorphic to it). For the sake of simplicity, we
simply write M in place of C . The model M maps the arithmetic sort Q to the
set Q of all rational numbers1, i.e. M(Q) = Q, and interprets the functions and
relations in Ω as intended. Clearly, the algebra M is term-generated (as there is
a one-to-one correspondence of M universe’s elements to numeric constants in
Q⊂ TΩ). We write Sp to denote the base specification of linear arithmetic, defined
as

Sp= (Σ,M)

The operators and the sorts of Σ are further extended with free (uninterpreted)
operators to Ω′ ⊇Ω and S ′ 3Q, respectively; the set of arithmetic variables is ex-
tended with non-base variables to X ′ ⊇X . Recall, that every non-base variable in
X ′′ =X ′ \X , if any, is of a free sort S′′ ∈S ′ \Q, whereas free operator symbols may
have arguments of the arithmetic sort or range into it. These constitute a FOL(LA)
signature Σ′:

Σ′ = (S ′,Ω′)

underlied by the set of variables X ′.
Let Ax ′ be a set of formulae built over Σ′. The pair

Sp′ = (Σ′, Ax ′)

1We ambiguously write Q to denote the subset of Ω consisting of all arithmetic constants (syntac-
tical objects) and the set of rationals (the universe of M).

5.1. Introduction 173

defines the body of a hierarchic FOL(LA) specification

HSp= (Sp,Sp′).

As usual, we call operators in Ω′′ =Ω′ \Ω, sorts in S ′′ =S ′ \Q, and axioms Ax ′

the enrichment. In contrast to the LA specification Sp, the enrichment

(S ′′,Ω′′, Ax ′)

is not fixed beforehand and is defined by an input clause set N : the symbols in N
that do not otherwise occur in Σ define S ′′ and Ω′′. For the sake of simplicity, in
the rest we set Ax ′ = ;, which, according to the discussion of alternative formu-
lations of refutational theorem proving for hierarchic theories (see Section 3.2), is
not a limitation, but rather a more convenient way of arguing in the context of the
combination of FOL with NLA.

Thus, refutational theorem proving for the hierarchic combination FOL(LA) is
aimed at answering a question, whether a given clause set N over the FOL(LA)
signature Σ′ is inconsistent relative to M, i.e. is there no model of N whose re-
striction to the LA signature Σ is (isomorphic to) M. Since M is the only model
of LA, we write |=M to denote the entailment relative to the theory of LA (please,
recall Definition 3.25 of the entailment relative to a base theory).

The following is a typical abstracted clause over the hierarchic specification HSp: Î EXAMPLE 5.1

x ≈ z1 +40, y ≈ z1 −3.5, z2 ≤ 60 ∥ T (f (y), y ′) → S(x, x ′),

where x, y, z1, z2 ∈X are LA variables; x ′, y ′ ∈X ′′ non-base variables; T,S ∈Ω′′ free
predicate operators; f ∈ Ω′′ a free function symbol ranging from rationals into a
free sort. ■

5.1.2 SUP(LA) Application Issues

Next, we consider the most important peculiarities of the application of the hier-
archic calculus to FOL(LA) clauses. Application of the hierarchic versions of the
standard rules (Hierarchic Equality Resolution, Hierarchic Superposition, etc..) to
FOL(LA) clauses does not require LA reasoning, because:

– the rules apply independently from premises’ constraints (as the rules’ con-
ditions are stipulated exclusively by the free parts of premises), and

– the conclusion’s constraint is simply an instance of the conjunction of the
premises’ constraints, which can be easily computed by concatenating the
constraints and applying the free part unifier; since the unifier is simple, its
application reduces to identifying a subset of the constraints’ variables.

In contrast, the Constraint Refutation rule and hierarchic reduction rules are fur-
ther subjected to restrictions on the premises’ constraints, that require performing
calculations with respect to the background theory. Recall the Constraint Refuta-
tion rule, Definition 3.31:

I Λ1 ∥ → . . . Λn ∥ →
ä

where (Λ1 ∥ →), . . . , (Λn ∥ →) |=C ⊥. In Section 3.3 we have shown that the con-
dition of the rules holds if and only if the existential closure ∃~xi .

∧
Λi of the con-

straint of at least one base clause among C1 = (Λ1 ∥ →), . . . , Cn = (Λn ∥ →), where

174 SUP(LA): Superposition Modulo Linear Arithmetic

~xi = var(Λi), is valid in the base theory (satisfiable by every base algebra). For the
LA theory considered here, which is compact and where the clauses, e.g., do not
share parameters, it is sufficient to consider the case n = 1, thereby reducing the
condition of the rule to simply testing whether the existential closure ∃~x1.

∧
Λ1 is

satisfiable in the single model M of LA.
Consider the Hierarchic Tautology Deletion rule, Definition 3.96:

R Λ ∥ Γ→∆

if

(i) |= Γ→∆, or

(ii) ∃~x.
∧
Λ |=C ⊥, for ~x = var(Λ).

According to the second condition the existential closure of the base part of the
premise has to be unsatisfiable in the base theory, which for the LA theory case
reduces to checking unsatisfiability/validity of ∃~x.

∧
Λ in the single model M of

LA.
Consider the Hierarchic Subsumption Deletion rule, Definition 3.97:

R Λ1 ∥ Γ1 →∆1 Λ2 ∥ Γ2 →∆2

Λ1 ∥ Γ1 →∆1

where, for a simple matcher σ,

(i) Γ1σ⊆ Γ2, ∆1σ⊆∆2,

(ii) |=C ∀~x.∃~y .(
∧
Λ2 → ∧

Λ1σ), for ~x = var(C2)∩X and ~y = var(Λ1σ) \ var(C2),

(iii) (Λ2 ∥ Γ2 →∆2) 6= ä.

The third condition of the Hierarchic Subsumption Deletion rule is stipulated by
the fact, that the rule missing the condition would allow subsuming an empty
clause by an unsatisfiable base clause. The condition is intended rather for the-
oretical purposes and does not make much sense in practice as all/most theo-
rem provers stop executing whenever an empty clause is derived. Note that y ∈
var(Λ1σ)\var(C2) implies y 6∈ (var(Γ1)∪var(∆1)). If the base specification enables
quantifier elimination, then every such y could be eliminated in Λ1 ∥ Γ1 →∆1 and
the encompassment condition (Condition (ii)) of the rule would become

|=C ∀~x.(
∧
Λ2 → ∧

Λ1σ),

for ~x = var(C2)∩X ⊇ var(Λ1σ). However, for the theory of linear arithmetic elimi-
nation of variables ~y = var(Λ1σ) \ var(C2) is in the worst case exponential. In Sec-
tion 5.2 we propose a polynomial transformation to linear programming for find-
ing a simple theory matcher τ with dom(τ) = var(Λ1δ) \ var(C2) and cdom(τ) ⊆
var(Λ2) ⊆ var(C2), that maps the variables ~y = var(Λ1σ) \ var(C2) to base terms,
which are linear arithmetic combinations over variables from Λ2, such that

|=C ∀~x.(
∧
Λ2 → ∧

Λ1στ),(5.1) Ï
for ~x = var(C2) ∩X ⊇ var(Λ1στ). Such matcher τ is called an encompassment
matcher. Existence of an encompassment matcher τ is sufficient to satisfy the
encompassment condition of the rule and can be determined in case of LA in
(weakly) polynomial time in the size of the two constraints Λ1, Λ2.

5.2. Constraint Solving 175

5.2 Constraint Solving

As discussed in Section 5.1, we have to provide procedures for (un)satisfiability
and for an implication test for linear arithmetic, potentially modulo an encom-
passment matcher getting rid of extra constraint variables. In this section, we
solve the intended problems leveraging Linear Programming techniques.

5.2.1 Basic Notions

In the following, we use the standard notation from linear algebra and linear pro-
gramming theory and assume that the reader is familiar with these topics. A stan-
dard reference is [Sch89].

Vectors denoted with ~a, ~b, ~c or ~d refer to vectors of rational numbers, vectors
~x, ~y or ~z denote vectors of variables; ~p and ~β may stand for either a rational or
a variable vector. ~aT denotes the transposed vector of ~a, ai stands for the i -th
element of ~a. Matrices are denoted with capital letters like A, B , G , H , S, T and
P , where A, B , H and G denote matrices of rational values and P , S, T may stand
for matrices of either rational values or variables; Ai is used to denote the i -th row
of a matrix A. Given an arbitrary variable vector ~x, we assume that all entries xi

of ~x are pairwise distinct; the same concerns matrices of variables.
We use the following notation to denote combined vectors and matrices:

– ~a =
(
~a′
~a′′

)
for a combined vector ~a consisting of elements of the vector ~a′

succeeded by elements of the vector ~a′′;

– A =
(

A′
A′′

)
for a combined matrix A consisting of rows of the matrix A′ suc-

ceeded by rows of the matrix A′′.

A ground substitution ν :X →Qmapping arithmetic variablesX to rationalsQ
is called a base assignment. Given a vector~t = (t1, . . . , tn)T , the result of applying
a base assignment ν to~t is the vector~tν= (t1ν, . . . , tnν)T . We write ~a ◦ b to show
that ai ◦ b for every entry ai of ~a, where ◦ ∈ {≤,<,≈,>,≥}.

A simple substitution τ is called an affine substitution, if every term in its image Î DEFINITION 5.2
Affine Substitutionis a linear combination of some variables and a rational constant:

yτ
def
= α1x1 + ·· · + αn xn︸ ︷︷ ︸

lin. combination

+ β︸︷︷︸
const.

for every y ∈ dom(τ) and some αi ,β ∈Q and xi ∈X , for all i ∈ {1, . . . ,n}, n ≥ 1. ■

Systems of Linear Inequations

A linear (in)equation is of the form ~aT~x ◦ c with coefficients ~a ∈Qn , right-hand-
side c ∈ Q, and sense ◦ ∈ {≤,<,≈,>,≥}. We can equivalently rewrite ~aT~x ≈ c to
~aT~x ≤ c ∧~aT~x ≥ c and ~aT~x ≥ c to −~aT~x ≤−c.

A system of linear (in)equations (SLI – for short) is the conjunction of a set of
linear (in)equations, denoted by

A~x •~c,

where A ∈Qm×n is a rational matrix with m rows Ai ∈Qn ,~c ∈Qm a vector of right-
hand-sides, and • a vector of m senses •i ∈ {≤,<,≈,>,≥}. The feasible region of

176 SUP(LA): Superposition Modulo Linear Arithmetic

an SLI Λ= A~x •~c is the set of all points satisfying every (in)equation in the system,
denoted by

Feas(Λ)
def
= {~xν | ν :X →Q,M |= A~xν •~c},

where M is the model of LA. An SLI Λ is called satisfiable, if its feasible region
Feas(Λ) is non-empty. We say that an (in)equation ~aT~x ≤ c or an SLI Λ holds (or
is valid) for a base assignment ν, meaning that the respective object is consistent
when the assignment ν is applied to it, for instance: 1x1 − 2x2 ≤ 3 holds for ν =
[x1 7→ 1, x2 7→ 2]. For short, the feasible region can be written as

Feas(Λ) = {~xν | A~xν •~c}.

Any system of linear (in)equations can be transformed into the standard form

Λ =
(

A′~x ≤ ~c ′
A′′~x < ~c ′′

)
with the corresponding feasible region

Feas(Λ) = {~xν | A′~xν≤~c ′, A′′~xν<~c ′′}.

LP Problems

A linear programming (LP) problem is one of maximizing or minimizing a lin-
ear function subject to a system of linear (in)equations. A general form of an LP
problem is

maximize: b1x1 + ·· · + bn xn

subject to: a11x1 + ·· · + a1n xn •1 c1,
...

am1x1 + ·· · + amn xn •m cm ,

where:

– x1, . . . , xn are variables,

– •1, . . . ,•m ∈ {≤,≈,≥} senses of the (in)equations, and

– bi , ai j , c j ∈Q rational coefficients, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.

The “maximize” can alternatively be “minimize”.
The linear function b1x1 + ·· · +bn xn that we seek to maximize (minimize) is

called the objective function, and b1, . . . ,bn are called the objective coefficients.
The (in)equations ai 1x1 + ·· · + ai n xn •i ci (for i = 1, . . . ,m) are referred to as the
elementary constraints, the values c1, . . . ,cm are called the right-hand side values.

It is convenient to express an LP problem in the matrix form:

maximize: ~bT~x
subject to: A~x • ~c.

where:

– matrix A consists of rows (ai 1, . . . , ai n), for all 1 ≤ i ≤ m,

– ~c = (c1, . . . ,cm)T , and

– • = (•1, . . . ,•m)T .

The matrix A is called the constraint matrix, the vector ~c the right-hand-side
vector.

5.2. Constraint Solving 177

An LP problem is called feasible, if the SLI A~x • ~c is satisfiable, i.e. if there
exists a base assignment ν of variables ~x to rationals satisfying every (in)equation
in A~x •~c; such an assignment ν is called satisfying .

An optimal solution of an LP problem is determined by a satisfying assign-
ment ν, under which the value of the objective function b1x1ν+·· ·+bn xnν attains
the largest value. An LP problem might have no optimal solution at all, if (i) it is
infeasible or (ii) unbounded in the direction of gradient1 of the objective function.
In the second case, the LP problem is said to have an unbounded solution.

It is well known that feasibility of a linear program can be tested in weakly
polynomial time using the Ellipsoid method. For further details we refer to [Sch89].

Constraint Representation

Let C =Λ ∥ Γ→∆ be an abstracted clause over FOL(LA). We can identify the con-
straint Λ of the clause, given as a SLI

Λ= A~x •~c,

for a rational matrix A ∈Qm×n , variable vector~x, rational vector~c ∈Qm , sense vec-
tor • ∈ {≤,<,≈,>,≥}m , and n and m the numbers of variables and (in)equations
in Λ, respectively, with the subset of Qn of the feasible region of Λ, i.e. the set

Feas(Λ) = {~xν | A~xν •~c}.

For the sake of conciseness, we assume that Λ is in the standard form, without
loss of generality.

5.2.2 Satisfiability Test

Let C =Λ ∥ Γ→ ∆ be an abstracted clause over FOL(LA). The constraint Λ of the
clause is satisfiable, iff the feasible region Feas(Λ) of Λ is non-empty. Hence, the
satisfiability of a constraint of a clause can be related to testing feasibility of a lin-
ear program. We present an algorithm to check the satisfiability of an SLI, called
Satisfiability Test.

If the constraint Λ contains no strict inequation:

Λ= (
A~x ≤~c)

the corresponding linear program is defined on the set of inequations in Λ with
an arbitrary objective function:

maximize: 0
subject to: A~x ≤ ~c

Î (5.2)

Let Λ= (
A~x ≤~c)

be a system of linear inequations. The SLI is satisfiable if and only Î THEOREM 5.3
if the LP problem defined by (5.2) is feasible.

If a constraint Λ contains strict inequalities:

Λ=
(

A′ ~x ≤~c ′
A′′~x <~c ′′

)
1The gradient of an objective function b1x1+·· ·+bn xn is the vector (b1, . . . ,bn)T of the function’s

coefficients.

178 SUP(LA): Superposition Modulo Linear Arithmetic

the corresponding linear program is constructed in the following way: we add one
extra variable δ ≥ 0 to every strict inequation, turn the strict inequations to non-
strict, and maximize δ over the obtained system of inequations:

maximize: δ

subject to: A′~x ≤ ~c ′,
A′′~x +δ ≤ ~c ′′,

δ ≥ 0,

(5.3) Ï

If the LP problem has a strictly positive optimal solution or an unbounded solu-
tion, then Λ is satisfiable. In order to increase the numerical stability of the test,
it can also be executed for every strict inequation separately.

Let Λ =
(

A′~x ≤ ~c ′
A′′~x < ~c ′′

)
be a system of linear inequations. The SLI is satisfiable if andTHEOREM 5.4 Ï

only if the LP problem defined by (5.3) has a strictly positive optimal solution or an
unbounded solution.

5.2.3 Implication Test

Let Λ1 and Λ2 be two systems of linear inequations. Assume the set of variables
of Λ1 is contained in that of Λ2, i.e. var(Λ1) ⊆ var(Λ2). We say Λ2 implies Λ1 if the
feasible region of Λ2 is contained in the feasible region of Λ1. Next we show how
this containment problem can be reduced to testing feasibility of a linear pro-
gram. We present an algorithm used to establish SLIs containment, called Impli-
cation Test. More formally, we discuss our approach to solve the following prob-
lem: given two SLIs

Λ1 =
(

A′ ~x ≤ ~c ′
A′′~x < ~c ′′

)
and Λ2 =

(
B ′ ~x ≤ ~d ′

B ′′~x < ~d ′′

)
determine whether Λ2 implies Λ1.

First, we discuss the case when all inequations are non-strict, which is based
on the well known Farkas’ Lemma (see e.g. [Sch89]), whereupon we extend the
Farkas’ Lemma to the case of mixed strict and non-strict inequations, which is
then used to solve the general case.

Let Λ = (
B~x ≤ ~d

)
be a satisfiable system of m linear inequations, ~aT~x ≤ c an in-LEMMA 5.5 Ï

Farkas’ Lemma [Sch89]
(affine variant)

equation. Every point in the feasible region Feas(Λ) satisfies the inequation, if and
only if there exists a rational vector ~p ∈Qm such that:

(i) ~p ≥ 0,

(ii) ~pT B =~aT , and

(iii) ~pT ~d ≤ c.

Informally speaking, the Farkas’ Lemma states that (the feasible region of) Λ
is contained in (the feasible region of) ~aT~x ≤ c if the vector ~a is a sum of non-
negative (condition (i)) portions of rows Bi (condition (ii)) such that the sum of
the respective portions of the right-hand-sides di is at most c (condition (iii)),
or, equivalently saying, if a non-negative linear combination of inequations in Λ

5.2. Constraint Solving 179

equals an inequation ~aT~x ≤ c ′ with the rhs c ′ smaller than or equal to c:

~pT
(
Λ

) = (
~pT (B~x) ≤ ~pT ~d

)
= (

~aT~x ≤ c ′︸︷︷︸
≤c

)
An SLI Λ2 implies an SLI Λ1 if and only if every point in the feasible region

of Λ1 satisfies all inequations in Λ2. Based on this observation and the Farkas’
Lemma we conclude in the following corollary necessary and sufficient conditions
under which an SLI implies another SLI, for the case when the both SLIs do not
contain strict inequations.

Let Λ1 = (
A~x ≤~c)

and Λ2 = (
B~x ≤ ~d

)
be two systems of m1 and m2 linear inequa- Î COROLLARY 5.6

tions, respectively. If Λ2 is satisfiable, then Λ2 implies Λ1, if and only if for every
inequation Ai~x ≤ ci in Λ1 there exists a rational vector ~p ∈Qm2 such that:

(i) ~p ≥ 0,

(ii) ~pT B = Ai , and

(iii) ~pT ~d ≤ ci .

Let Λ1 and Λ2 be defined as in Corollary 5.6. Rewriting the rows ~pT , defined
in the corollary for each inequation Ai~x ≤ ci , as a matrix of unknowns P , we can
determine whether Λ2 implies Λ1 by testing feasibility of the following LP prob-
lem:

maximize: 0
subject to: PB ≈ A

P ~d ≤ ~c
P ≥ 0

Î (5.4)

Putting nx equal the number of variables in ~x, the above LP problem contains

m = m1nx +m1 +m2m1

= m1(nx +m2 +1)

(in)equations over

n = m1m2

variables (which constitute the matrix P). Note, that we are only interested in
the existence of a solution to the above LP problem and do not need to compute
concrete values of the unknown multipliers in the matrix P .

Let Λ1 = (
A~x ≤~c)

and Λ2 = (
B~x ≤ ~d

)
be two systems of linear inequations. If Λ2 Î THEOREM 5.7

SLIs Implication
(non-strict case)

is satisfiable, then Λ2 implies Λ1 if and only if the LP problem defined by (5.4) is
feasible.

Also, alternatively we could solve the following m1 smaller LP problems, where
m1 is the number of inequations in Λ1:

maximize: 0
subject to: ~pT B ≈ Ai

~pT ~d ≤ ci

~p ≥ 0

Î (5.5)

180 SUP(LA): Superposition Modulo Linear Arithmetic

for each inequation Ai~x ≤ ci in Λ1 independently from each other: Λ2 implies Λ1

iff each of the LP problems is feasible. Each of the LP problems contains nx +1+
m2 (in)equations over m2 variables (which constitute the vector ~p).

In the following lemma we provide an extension of the Farkas’ Lemma to the
case of strict inequations.

Let Λ =
(

B ′~x ≤ ~d ′
B ′′~x < ~d ′′

)
be a satisfiable system of m′ non-strict and m′′ strict linear in-LEMMA 5.8 Ï

Farkas’ Lemma
for strict inequations

equations, respectively, containing the trivial inequation 0 < 1. Let ~aT~x ◦ c be an
inequation, where ◦ ∈ {≤,<}. Every point in the feasible region Feas(Λ) of Λ sat-
isfies the inequation, if and only if there exists two rational vectors ~p ′ ∈ Qm′

and
~p ′′ ∈Qm′′

such that:

(i) ~p ′, ~p ′′ ≥ 0,

(ii) ~p ′T B ′+~p ′′T B ′′ =~aT ,

(iii) ~p ′T d ′+~p ′′T d ′′ ≤ c, and

(iv) ~p ′′ 6= 0, if ◦ is < .

Two alternative proofs have been suggested by us in [Kru08] (Theorems 5.4 and 5.7)PROOF Ï
and [AKW09a, EKK+11] (Lemma 2)1. ■

Assume Λ=
(

B ′~x ≤ ~d ′
B ′′~x < ~d ′′

)
, then set a matrix B and vectors ~d and • as follows:

B =
(

B ′

B ′′

)
~d =

(
~d ′

~d ′′

)
• =

≤
...

<
...

 }
m′}
m′′

such that Λ= (B~x • ~d), where m′ and m′′ are the numbers of non-strict and strict
inequations in Λ, respectively. Put ~p =

(
~p ′
~p ′′

)
. Informally speaking, the above ex-

tension of the Farkas’ Lemma differs from the affine variant (Lemma 5.5) in con-
dition (iv), according to which at least one strict inequation in Λ (including 0 < 1)
has to contribute into the non-negative linear combination ~pT

(
Λ) of Λ’s inequa-

tions, such that

~pT
(
Λ

) = ~pT
(

B~x • ~d)
= (

~pT (B~x) ◦ ~pT ~d
)

= (
~aT~x ◦ c ′︸︷︷︸

≤c

)
where ◦ ∈ {≤, <}. In this case, it is guaranteed that if c ′ = c, then the sense of the
combination is strict.

Based on the Farkas’ Lemma for strict inequations we conclude in the follow-
ing corollary necessary and sufficient conditions of implying an SLI by another for
the general case when the both SLIs may contain strict inequations.

Let Λ1 =
(

A′~x ≤ ~c ′
A′′~x < ~c ′′

)
and Λ2 =

(
B ′~x ≤ ~d ′
B ′′~x < ~d ′′

)
be two systems of m′

1 and m′
2 non-strict andCOROLLARY 5.9 Ï

m′′
1 and m′′

2 strict linear inequations, respectively. Let A =
(

A′
A′′

)
and ~c =

(
~c ′
~c ′′

)
. If Λ2

is satisfiable and contains the trivial inequation 0 < 1, then Λ2 implies Λ1, if and

1The proof appearing in [Kru08] exploits the very basic notions of Linear Algebra, whereas the
one from [AKW09a, EKK+11] takes advances of the theory of Optimization. Thus, the latter is shorter
in comparison to the former, but, on the other hand, is more sophisticated and involving.

5.2. Constraint Solving 181

only if for every inequation Ai~x ◦ ci in Λ1, where ◦ ∈ {≤,<}, there exist two rational
vectors ~p ′ ∈Qm′

2 and ~p ′′ ∈Qm′′
2 such that:

(i) ~p ′, ~p ′′ ≥ 0,

(ii) ~p ′T B ′+~p ′′T B ′′ = Ai ,

(iii) ~p ′T d ′+~p ′′T d ′′ ≤ ci , and

(iv) ~p ′′ 6= 0, if ◦ is < .

Let Λ1 and Λ2 be as defined in Corollary 5.9. Rewriting the rows ~p ′T and ~p ′′T

defined in the corollary for each non-strict inequation A′
i~x ≤ c ′i as matrices of un-

knowns P 1 and P 2, and rewriting the rows ~p ′T and ~p ′′T defined in the corollary for
each strict inequation A′′

i ~x < c ′′i as matrices of unknowns P 3 and P 4, respectively,
we can determine whether Λ2 implies Λ1 by testing the following linear program:

maximize: δ

subject to: P 1 B ′ + P 2 B ′′ ≈ A′

P 3 B ′ + P 4 B ′′ ≈ A′′

P 1 ~d ′ + P 2 ~d ′′ ≤~c ′
P 3 ~d ′ + P 4 ~d ′′ ≤~c ′′
P 1, P 2, P 3, P 4 ≥ 0

P 41 − δ ≥ 0
δ ≥ 0

Î (5.6)

where 1 = (1, . . . ,1)T is the all ones vector of dimension m′′
2 (the number of strict

inequations in Λ2). If the LP problem has an optimal solution different from
zero or an unbounded solution, then the implication holds. Note again, that we
are only interested in the existence of a solution to the above LP problem and
do not need to compute concrete values of the multipliers forming the matrices
P 1,P 2,P 3,P 4 of unknowns. Putting nx equal the number of variables in ~x, the
above LP problem contains

m = (m′
1 +m′′

1)nx +m′
1 +m′′

1 + (m′
1 +m′′

1)(m′
2 +m′′

2)+2
= m1nx +m1 +m1m2 +2 // where mi = m′

i +m′′
i , for ∀i ∈ {1,2}

= m1(nx +m2 +1)+2

(in)equations over

n = (m′
1 +m′′

1)(m′
2 +m′′

2)+1
= m1m2 +1

variables (which constitute the matrices P 1, . . . ,P 4 and the variable δ).

Let Λ1 =
(

A′~x ≤ ~c ′
A′′~x < ~c ′′

)
and Λ2 =

(
B ′~x ≤ ~d ′
B ′′~x < ~d ′′

)
be two systems of linear inequations, where Î THEOREM 5.10

SLIs Implication~y and ~z share no variable. If Λ2 is satisfiable and contains the trivial inequation
0 < 1, then Λ2 implies Λ1 if and only if the LP problem defined by (5.6) has an
optimal solution different from zero or an unbounded solution.

Also, alternatively we could solve the following m′
1 LP problems for each non-

strict inequation A′
i~x ≤ c ′i and m′′

1 LP problems for each strict inequation A′′
j~x < c ′′j

in Λ1 independently from each other; Λ2 implies Λ1 iff each of the LP problems

182 SUP(LA): Superposition Modulo Linear Arithmetic

has a non-zero solution:

maximize: 1
subject to: ~p ′T B ′ + ~p ′′T B ′′ ≈ A′

i
~p ′T ~d ′ + ~p ′′T ~d ′′ ≤ c ′i

~p ′, ~p ′′ ≥ 0

maximize: δ

subject to: ~p ′T B ′ + ~p ′′T B ′′ ≈ A′′
j

~p ′T ~d ′ + ~p ′′T ~d ′′ ≤ c ′′j
~p ′, ~p ′′ ≥ 0

~p ′′T 1 − δ ≥ 0
δ ≥ 0

(5.7) Ï

Each of the above LP problems for non-strict inequations contains

m′ = m′
1nx +m′

1 + (m′
2 +m′′

2)
= m′

1(nx +1)+m2 // where m2 = m′
2 +m′′

2

(in)equations over m2 variables (which constitute the vectors ~p ′ and ~p ′′). Each of
the above LP problems for strict inequations contains

m′′ = m′′
1 nx +m′′

1 + (m′
2 +m′′

2)+2
= m′′

1 (nx +1)+m2 +2

(in)equations over m2 + 1 variables (which constitute the vectors ~p ′, ~p ′′ and the
variable δ).

To illustrate Corollary 5.9, let us consider the following SLIs:EXAMPLE 5.11 Ï

Λ1 =
(

x1 + 2x2 + 3x3 ≤ 5
2x1 + 4x2 + x3 < 4

)

Λ2 =
 x1 + 2x2 + 3x3 ≤ 4

0.5x1 + x2 − x3 < 0
0 < 1

Putting

P 1 = (1) P 2 = (0 0)

P 3 = (1) P 4 = (2 0)

we obtain:

P 1 (
1 2 3

)︸ ︷︷ ︸
B ′

+P 2
(
0.5 1 −1

0 0 0

)
︸ ︷︷ ︸

B ′′

= (
1 2 3

)︸ ︷︷ ︸
A′

P 1 (
4
)︸︷︷︸
~d ′

+P 2
(
0
1

)
︸︷︷︸
~d ′′

≤ (
5
)︸︷︷︸

~c ′

P 3 (
1 2 3

)︸ ︷︷ ︸
B ′

+P 4
(
0.5 1 −1

0 0 0

)
︸ ︷︷ ︸

B ′′

= (
2 4 1

)︸ ︷︷ ︸
A′′

P 3 (
4
)︸︷︷︸
~d ′

+P 4
(
0
1

)
︸︷︷︸
~d ′′

≤ (
4
)︸︷︷︸

~c ′′

Therefore, Λ2 implies Λ1. ■

5.2.4 Encompassment Matcher Existence

In Section 5.1 we have shown that the encompassment condition of the Hierarchic
Subsumption Deletion rule (Definition 3.97, condition (ii)) can be approximated
by assuring existence of a simple matcher τ, called encompassment matcher, which
makes the condition

|=C ∀~x.(
∧
Λ2 → ∧

Λ1τ),

5.2. Constraint Solving 183

to hold, where dom(τ) = var(Λ1)\var(C2) and cdom(τ) ⊆ var(Λ2) ⊆ var(C2), for the
constraints Λ1 and Λ2 of the reduction’s premises C1 and C2. Here we present a
procedure that decides if there exists an encompassment matcher τ which is an
affine substitution (Definition 5.2), that maps the variables that solely occur in Λ1

(and do not appear in Λ2) to a sum of a linear combination of variables of Λ2 and
a rational constant. We stick to affine encompassment matchers because in this
case we can use the effective algorithms from Section 5.2.3 to determine whether
Λ2 implies Λ1τ for some τ.

First, we consider the case when given SLIs Λ1 and Λ2 contain only non-strict
inequations:

Λ1 = (
A~x + G~y ≤ ~c)

and Λ2 = (
B~x + H~z ≤ ~d

) Î (5.8)

where the vectors ~y and ~z do not share variables. Let m1 and m2 be the numbers
of rows in Λ1 and Λ2, respectively; and nx , ny , and nz equal the sizes of the vari-
able vectors ~x, ~y , and ~z, respectively. Consider an arbitrary affine matcher τ such
that

~yτ = S~x +T~z +~β Î (5.9)

where S ∈ Qny×nx and T ∈ Qny×nz are matrices of coefficients of linear combina-
tions over variables ~x and ~y respectively, and ~β ∈ Qny a vector of rational con-
stants. Thus, application of τ to each every variable yi ∈~y yields

yiτ = Si~x +Ti~z +βi .

Let us determine the result of applying τ onto the SLI Λ1:

Λ1τ = (
A~x + G~y ≤ ~c)

τ

= (
A~x + G~yτ ≤ ~c)

= (
A~x + G(S~x +T~z +~β) ≤ ~c)

= (
(A+GS)~x + GT~z ≤ ~c − G~β

)
Assume Λ2 is satisfiable. According to Corollary 5.6, Λ2 implies Λ1τ if and only if
for every inequation

(A+GS)i~x + (GT)i~z ≤ ci − (G~β)i

in Λ1τ, where (A+GS)i and (GT)i denote the i -th row in the matrices A+GS and
GT , respectively, and (G~β)i denotes the i -th entry in the vector G~β, there exists a
rational vector ~p ∈Qm2 such that:

(i) ~p ≥ 0,

(ii) ~pT B = (A+GS)i and ~pT H = (GT)i , and

(iii) ~pT ~d ≤ ci − (G~β)i .

Put P , S, T be matrices of unknowns of size m1 ×m2, ny ×nx , and ny ×nz ,
respectively, and β a vector of unknowns of size ny . We can determine whether
there exists an encompassment matcher τ such that Λ2 implies Λ1τ by testing
feasibility of the following LP problem:

maximize: 0
subject to: P B ≈ A + G S

P H ≈ GT
P ~d ≤ ~c − G ~β

P ≥ 0

Î (5.10)

184 SUP(LA): Superposition Modulo Linear Arithmetic

This LP problem contains

m = m1nx +m1nz +m1 +m1m2

= m1(nx +nz +m2 +1)

(in)equations over

n = m1m2 +nx ny +nz ny +ny

= m1m2 +ny (nx +nz +1)

variables (which constitute the matrices P , S, T and vector β). Note, that we are
only interested in the existence of a solution to the above LP problem and do not
need to compute concrete values of the unknowns in P , S, T , β. In contrast to
the case when var(Λ1) ⊆ var(Λ2) (i.e. when no encompassment matcher needs to
be established), here we cannot reduce the LP problem to solving several smaller
LP problems, because, in general, the unknown coefficients in S, T and β of τ are
common for all inequations in Λ1τ and therefore have to be subjected jointly.

Let Λ1 = (
A~x +G~y ≤~c)

and Λ2 = (
B~x + H~z ≤ ~d

)
be two systems of linear inequa-THEOREM 5.12 Ï

Affine Encompassment
Matcher Existence
(non-strict case)

tions, where ~y and ~z share no variable. If Λ2 is satisfiable, then there exists an
affine encompassment matcher τ such that Λ2 implies Λ1τ if and only if the LP
problem defined by (5.10) is feasible. ■

Now, assume the given clause constraints Λ1 and Λ2 may contain strict in-
equations; without loss of generality, let they be defined as follows:

Λ1 =
(

A′ ~x + G ′ ~y ≤~c ′
A′′ ~x + G ′′ ~y <~c ′′

)
and Λ2 =

(
B ′ ~x + H ′ ~z ≤ ~d ′

B ′′ ~x + H ′′~z < ~d ′′

)
(5.11) Ï

where the vectors ~y and~z do not share variables, and Λ2 contains the trivial strict
inequation 0 < 1. Let m′

1, m′′
1 and m′

2, m′′
2 be the numbers of non-strict and strict

inequations in Λ1 and Λ2, respectively. As before, nx , ny , and nz equal the sizes of
the variable vectors ~x, ~y , and ~z, respectively. Let τ be an arbitrary affine matcher
as defined by (5.9):

~yτ = S~x + T~z + ~β,

for some S ∈ Qny×nx , T ∈ Qny×nz , and ~β ∈ Qny . The result of applying τ onto the
SLI Λ1 gives

Λ1τ =
(

(A′ + G ′S) ~x + G ′T ~z ≤~c ′ − G ′ ~β
(A′′ + G ′′S)~x + G ′′T ~z <~c ′′ − G ′′ ~β

)
(5.12) Ï

Let matrices A and G and vectors ~c and • be defined as follows:

A =
(

A′

A′′

)
G =

(
G ′

G ′′

)
~c =

(
~c ′

~c ′′

)
• =

≤
...

<
...

 }
m′

1}
m′′

2

Then (5.12) reduces to

Λ1τ = (
(A+GS)~x + GT~z • ~c − G~β

)
(5.13) Ï

Assume Λ2 is satisfiable and includes the trivial inequation 0 < 1. According to
Corollary 5.9, Λ2 implies Λ1τ, if and only if for every inequation in Λ1τ, there
exist two rational vectors ~p ′ ∈Qm′

2 and ~p ′′ ∈Qm′′
2 such that:

(i) ~p ′, ~p ′′ ≥ 0,

5.2. Constraint Solving 185

(ii) ~p ′T B ′ + ~p ′′T B ′′ = (A+GS)i and ~p ′T H ′ + ~p ′′T H ′′ = (GT)i ,

(iii) ~p ′T d ′ + ~p ′′T d ′′ ≤ ci − (G~β)i , and

(iv) ~p ′′ 6= 0, if •i is < ,

where (A′+GS)i and (GT)i denote the i -th row in the matrices A′+GS and GT ,
respectively, and (G~β)i denotes the i -th entry in the vector G~β.

Put P 1, P 2, P 3, and P 4 be matrices of unknowns of size m′
1 ×m′

2, m′
1 ×m′′

2 ,
m′′

1 ×m′
2, and m′′

1 ×m′′
2 respectively; S, T matrices of unknowns of size ny ×nx , and

ny ×nz , respectively; and β a vector of unknowns of size ny . We can determine
whether there exists an encompassment matcher τ such that Λ2 implies Λ1τ by
testing feasibility of the following LP problem:

maximize: δ

subject to: P 1 B ′ + P 2 B ′′ ≈ A′ + G ′ S
P 3 B ′ + P 4 B ′′ ≈ A′′ + G ′′ S
P 1 H ′ + P 2 H ′′ ≈ G ′T
P 3 H ′ + P 4 H ′′ ≈ G ′′T
P 1 ~d ′ + P 2 ~d ′′ ≤~c ′ − G ′ ~β
P 3 ~d ′ + P 3 ~d ′′ ≤~c ′′− G ′′ ~β
P 1, P 2, P 3, P 4 ≥ 0

P 41 − δ ≥ 0
δ ≥ 0

Î (5.14)

where 1= (1, . . . ,1)T is the all-ones vector of size m′′
2 (the number of strict inequa-

tions in Λ2). This LP problem contains

m = m′
1nx +m′′

1 nx +m′
1nz +m′′

1 nz +m′
1 +m′′

1 + (m′
1 +m′′

1)(m′
2 +m′′

2)+2
= (m′

1 +m′′
1)(nx +nz)+m′

1 +m′′
1 + (m′

1 +m′′
1)(m′

2 +m′′
2)+2

= m1(nx +nz +m2)+2 // where mi = m′
i +m′′

i , for ∀i ∈ {1,2}

(in)equations over

n = m′
1m′

2 +m′
1m′′

2 +m′′
1 m′

2 +m′′
1 m′′

2 +nx ny +nz ny +ny

= (m′
1 +m′′

1)(m′
2 +m′′

2)+nx ny +nz ny +ny

= m1m2 +nx ny +nz ny +ny

variables (which constitute the matrices P 1, . . . ,P 4,S,T , vector β, and variable δ).
If the LP problem has an optimal solution different from zero or an unbounded
solution, then then there exists a required encompassment matcher τ. Again, we
are only interested in the existence of a solution to the above LP problem and do
not need to compute concrete values of unknowns in P 1, . . . ,P 4, S, T , β. Like in
the non-strict case the above LP problem cannot be reduced to several smaller LP
problems, because the unknown coefficients S, T and β of τ are common for all
inequations of Λ1τ and therefore have to be subjected jointly.

Let Λ1 =
(

A′~x + G ′~y ≤ ~c ′
A′′~x + G ′′~y < ~c ′′

)
and Λ2 =

(
B ′~x + H ′~z ≤ ~d ′
B ′′~x + H ′′~z < ~d ′′

)
be two systems of linear inequa- Î THEOREM 5.13

Affine Encompassment
Matcher Existence

tions, where ~y and ~z share no variable. If Λ2 is satisfiable and contains the trivial
inequation 0 < 1, then there exists an affine encompassment matcher τ such that
Λ2 implies Λ1τ if and only if the LP problem defined by (5.14) has an optimal so-
lution different from zero or an unbounded solution.

Consider the example depicted in Figure 5.1. In the left figure, we show the feasible Î EXAMPLE 5.14

186 SUP(LA): Superposition Modulo Linear Arithmetic

x

z

x

1

1 1

1
Λ1 Λ1τ

Λ2

y

Figure 5.1: Graphical Depicture of SLIs Implication Regarding Encompassment
Matcher. (Source of figure: [AKW09a])

region of the SLI Λ1.

Λ1 =

x ≥ 0

y ≥ 0
y ≤ 1

2x + 2y ≤ 3

 Λ1τ=

x ≥ 0

−x + 0.5z ≥ −1
−x + 0.5z ≤ 0

z ≤ 1

 Λ2 =

z > 0

−x + z ≤ 0
−x + 0.5z > −1

z < 1

Choosing τ such that

yτ=−1x + 0.5z + 1

gives the SLI Λ1τ whose feasible region is shown in light gray in the right figure.
The feasible region of Λ1τ contains the feasible region of Λ2 shown in dark gray
in the right figure, therefore Λ2 implies Λ1τ. ■

5.3. Implementation 187

5.3 Implementation

The free part of the inference rules of the hierarchic superposition calculus de-
scribed in Section 3.3 is identical to the standard calculus, except that only simple
substitutions are considered. For the theory part of clauses an implementation
needs to provide instantiation and union of two clause constraints. The opera-
tions resulting from subsumption or tautology deletion are much more involved
because here the clause constraints need to be mapped to linear programming
problems. The existence of solutions to the linear programs eventually decides on
the applicability of the reduction rules. As reductions are more often checked than
inferences computed, it is essential for an efficient implementation to support
the operations needed for reductions. Therefore, we decided to actually store the
clause constraint not in a symbolic tree like representation, as it is done for first-
order terms, but directly in the input format data structure of LP solvers, where
for the published SPASS(LA) binary1 we rely on QSopt2. QSopt uses the simplex-
method to solve systems of linear constraints which is not polynomial time but
very efficient in practice. Alternatively, we could use an interior-point method to
become polynomial while staying efficient in practice.

A key aspect in implementing SPASS(LA) is the representation of the clause
constraints. We decided to use a representation that is close to standard LP solver
interfaces such that performing the satisfiability test can be done by calling the
LP solver directly with our constraint representation. The LP format is a “column-
oriented” sparse format, meaning that the problems are represented column by
column (variable) rather than row by row ((in)equation) and only non-zero coeffi-
cients are stored. Furthermore, the SPASS variable normalization in clauses, done
for sharing on the free theory part, fits perfectly to this format. All variables oc-
curring in clauses are subsequently named starting with the “smallest” variable.
In addition, the other operations on the free part eventually ranging into the con-
straints like the application of substitutions and the union of constraints are effi-
ciently mapped to the column-oriented representation.

Besides QSopt, we have also tried combinations of SPASS with other solvers
capable of reasoning in linear arithmetic, namely: Z3, LIRA, Redlog.

Z3 is a very powerful SMT solver [dMB08c] integrating a variety of theories:
linear and nonlinear arithmetic, bitvectors, arrays, datatypes, uninterpreted func-
tions; and also supporting quantifiers based on such techniques as E-matching
(for arrays, partial orders, etc.), heuristic and model-based quantifier instantia-
tion (for the essentially uninterpreted fragment), quantifier elimination (for linear
real/integer arithmetic, recursive datatypes, and partially non-linear arithmetic).
Though extensive support for quantifiers, Z3 is not refutationally complete for
combinations with uninterpreted functions.

LIRA [EK06, BDEK07] decides the first-order logic over mixed integer/real ad-
dition using automata: finite deterministic automata (FDA) for integer arithmetic,
and weak deterministic Büchi automata (WDBA) for mixed real-integer arithmetic.

Redlog [DS97] implements symbolic algorithms on first-order formulas with
respect to user-chosen first-order languages and theories including real numbers,
integers, complex numbers, p-adic numbers, quantified propositional calculus,

1See http://spass-prover.org/prototypes.
2See http://www2.isye.gatech.edu/~wcook/qsopt/.

http://spass-prover.org/prototypes
http://www2.isye.gatech.edu/~wcook/qsopt/

188 SUP(LA): Superposition Modulo Linear Arithmetic

term algebras. The core of the system combines the quantifier elimination algo-
rithms of Weispfenning [LW93, Wei94, Wei97] and simplification of quantifier-free
formulae, operating on both Boolean structure and algebraic relationships of the
formulae [DS95].

In our experiments, each of the tools has had to decide whether an LA formula
of one the the following two kinds is valid:

– the existential closure of a conjunction of LA literals

∃~x.
∧
Λ,

arising as a prerequisite of applying the Constraint Refutation rule (Defini-
tion 3.31) and Hierarchic Tautology Deletion rule (Definition 3.97), where
~x = var(Λ); and

– the ∀∗∃∗-closure of implication between two conjunctions of LA literals

∀~x.∃~y .(
∧
Λ2 → ∧

Λ1),

required to check if the encompassment condition of the Hierarchic Sub-
sumption Deletion rule (Definition 3.97) is fulfilled, where ~x = var(C2)∩X
and ~y = var(Λ1) \ var(C2).

LIRA has shown the slowest performance and executed absolutely unaccept-
able on any implication formula containing more or less big numbers (for in-
stance, 1000) or rationals, simply running out of memory. Redlog has demon-
strated a very good performance on both kinds of formulae. Z3 has proven to be
the fastest solver. Nevertheless, in contrast to the results presented in [FNORC08],
the LP solver QSopt turns out to be even faster than Z3 for our satisfiability and
implication tests. Although we did not do enough experiments to arrive at a final
conclusion, the usage of solvers in SPASS(LA) differs from the SMT scenario, be-
cause we do not incrementally/decrementally change the investigated LA theory
as done by SMT solvers but ask for solving different “small” LA problems contain-
ing typically not more that 10–30 (dis)equations. Remarkably, Z3 and Redlog have
answered every implication query exactly the same as QSopt has done for the cor-
responding encompassment matcher existence LP problem, although the latter is
only an approximation of the original encompassment condition of the Hierarchic
Subsumption Deletion rule.

Recently, Bromberger [Bro12] has developed a specialized LA solver mainly fo-
cused on the implication test. This solver relies on the Simplex-based algorithm
for SMT [DdM06], adjusted to employ the logical structure of implications. Be-
sides, the new solver uses a sharing method which reduces memory consumption
for storing clause constraints, and includes two simple, but quite powerful criteria
for detecting unsatisfiable implications. The experimental results given in [Bro12]
show that this approach drastically increases the overall efficiency of constraint
reasoning within the SUP(LA) concept and outperforms any other solver used for
the intended LA task.

5.4. Application: Reasoning about Transition Systems 189

5.4 Application: Reasoning about Transition Sys-
tems

In the following we present two examples showing that our notion on tautology
and subsumption deletion is strong enough to decide formal safety properties of
transition systems and our implementation SPASS(LA) is able to perform satura-
tions in a reasonable amount of time. Furthermore, the proofs for the two pre-
sented properties of the examples are both satisfiability proofs and hence rely on
the completeness of the calculus which is an important feature distinguishing our
combination approach from others. Both examples are contained in the experi-
mental SPASS(LA) version1.

The transition system of the water tank controller depicted in Figure 5.2 is
meant to keep the level of a water tank below 240 units, provided the initial level
at state S0 is less or equal 240 units. There is a non-controllable inflow from the
outside of the system that adds at most 40 units per cycle to the water tank and a
controllable outflow valve that can reduce the content of the tank by 40 units per
cycle.

We model reachability of the transition system by introducing two place pred-
icates in the variables of the water tank level xL and the inflow xi for each state
and translate the transitions into implications between states. So, the transitions
between the states of the automaton are formalized as follows:

– S0 to S1: ∀u, v.
(
S0(u, v)∧u ≥ 200 → S1(u, v)

)
,

– S0 to S3: ∀u, v.
(
S0(u, v)∧u < 200 → S3(u, v)

)
,

– S1 to S2: ∀u, v, w.
(
S1(u, v)∧w ≥ 0∧w ≤ 40 → S2(u, w)

)
,

– S2 to S0: ∀u, v.
(
S2(u, v) → S0(u + v −40, v)

)
,

– S3 to S4: ∀u, v, w.
(
S3(u, v)∧w ≥ 0∧w ≤ 40) → S4(u, w)

)
,

– S4 to S0: ∀u, v.
(
S4(u, v) → S0(u + v, v)

)
,

Normal form translation and abstraction yields the following clauses:

u ≥ 200 ‖ S0(u, v) → S1(u, v)
u < 200 ‖ S0(u, v) → S3(u, v)

w ≤ 40, w ≥ 0 ‖ S1(u, v) → S2(u, w)
u′ ≈ u + v −40 ‖ S2(u, v) → S0(u′, v)
w ≤ 40, w ≥ 0 ‖ S3(u, v) → S4(u, w)

u′ ≈ u + v ‖ S4(u, v) → S0(u′, v)

The conjecture is translated into the formula

∀u, v.
(
u ≤ 240 → S0(u, v)

) → ∃u′, v ′.
(
S0(u′, v ′)∧u′ > 240

)
meaning that starting with an initial state S0 with a level below 240 units we can
reach a state S0 with a level strictly above 240 units. SPASS(LA) finitely saturates
this conjecture together with the theory of the transition system without finding
the empty clause in less than one second on any reasonable PC hardware. Due to
completeness and the minimal model property of superposition with respect to
existentially quantified conjunctions of atoms [HW10] this shows that the level of

1See http://spass-prover.org/prototypes/

http://spass-prover.org/prototypes/

190 SUP(LA): Superposition Modulo Linear Arithmetic

0 ≤ z ≤ 40

x′
i := z

0 ≤ z ≤ 40

x′
i := z

S1

S3 S4

S2
xL ≥ 200

xL < 200

S0

x′
L := xL + x′

i − 40

x′
L := xL + x′

i

Figure 5.2: Water Tank Controller. (Source of figure: [AKW09a])

the water tank is always below 240 units. Obviously, the hierarchic superposition
calculus is complete for this example, because there are no free function symbols
at all.

SPASS(LA) may also prove reachability conjectures. For instance, the conjec-
ture

∀u, v
(
u ≤ 240∧S0(u, v)

) ⇒ ∃u′, v ′.
(
S4(u′, v ′)∧u′ ≤ 160

)
means that starting with an initial state S0 with a level below 240 units we can
reach a state S4 with a level below or equal 160 units. SPASS(LA) finitely saturates
this conjecture together with the theory of the transition system and finds a proof
in less than one second. Due to completeness this shows that the level of the
water tank can get 160 units or below.

For a number of classes of transition systems, it can actually be shown that the
translation used here always results in a fragment where the hierarchic superpo-
sition calculus is complete [Non00, Dim09].

Note that the above clause set is out of reach for current SMT based approaches
as their underlying calculus is typically not complete with respect to non-ground
clauses and their instantiation based techniques are not able to show satisfiability.
For example, Z3 “gives up” on the above (and the below) clause set. Both Z3 and
any other Nelson-Oppen style solver are not complete for the two clause sets. The
enhanced prover Z3(SP) [dMB08a] is also not complete on both clause sets.

The bakery protocol is aimed at assuring mutual exclusion between two or
more processes. We analyze the protocol for two processes; the corresponding
automaton is depicted in Figure 5.3. The protocol works as follows. If a process
Pi gets into the critical section criti , it takes a number that is greater then the
number of the other process and moves from the state sleepi into waiti . If the
other process does not try to get into the critical section, i.e. if the number of the
other process is 0, the process may move on into criti . Otherwise the process that
has taken a number first may move into the critical section. The other process
waits until the critical section gets free and moves on afterwards. Exiting the crit-
ical section signs that the critical section has gotten free by setting the number of
the exiting process to 0.

We build the transition system for the two processes as the Cartesian prod-

5.4. Application: Reasoning about Transition Systems 191

x′ := y + 1

sleep2 wait2
x ≥ 0, y ≥ 0

P2 :
y′ := x + 1 x = 0 or y < x

y′ := 0

crit1sleep1

y = 0 or x < y
wait1

x ≥ 0, y ≥ 0
P1 :

x′ := 0

crit2

Figure 5.3: Bakery Protocol. (Source of figure: [AKW09a])

uct of the two subautomata representing the processes shown in Figure 5.3 and
then model the transitions and states analogous to the water tank example. (For a
thorough exposition of the constructing a multiple automata product we refer the
reader to [Hen96]). The conjecture for the combined transition system

∀u, v.
(
u ≥ 0∧ v ≥ 0∧Sl1Sl2(u, v)

) → ∃u′, v ′.Cr1Cr2(u′, v ′)

states that if u and v are both greater than 0 and the processes in their respective
sleep states, then the critical section of both processes can be reached simulta-
neously. Again, SPASS(LA) saturates this conjecture together with the theory of
the two processes without finding the empty clause in less than one second. This
shows that the protocol is safe, i.e. the critical sections cannot be reached simul-
taneously by the both processes.

In [AKW09b] we have also discussed that the SUP(LA) calculus can be applied
to analysis of container data structures. The main challenge to make SUP(LA)
work on such kind of problems is to ensure sufficient completeness. We used
there the well-known example of axiomatization of lists [ABRS09] to show that
sufficient completeness can be gained by adding extra clauses, which define ex-
tension terms occurring in the axiomatization, and adding extra literals to the ax-
iom clauses to preserve the intended semantics. The obtained complete axiom set
is subject to the same superposition based techniques for decidability results as
they have been suggested, e.g., in [ABRS09] for the standard superposition calcu-
lus. Sufficient completeness can also be obtained using the described encodings
for other container data structures, such as arrays, making SUP(LA) a complete
calculus for the hierarchic combination of LA over the rationals and arrays.

We have presented an instance of the hierarchic superposition calculus with LA
and provided effective algorithms for subsumption and tautology deletion. Com-
pared to other approaches combining LA with first-order logic, the hierarchic su-
perposition calculus is complete, if the actual clause sets enjoys the (local) suf-
ficient completeness criterion. We showed that for the theories of transition sys-
tems over LA and container data structures the (local) sufficient completeness cri-
terion can be fulfilled. The calculus is implemented in a first prototype version
called SPASS(LA). By two examples we show that it can already be effectively used
to decide satisfiability of clause sets that are out of scope for other approaches, in
particular SMT-based procedures.

C
H
A
P
T
ER 6

SUP(NLA): Superposition
Modulo Non-Linear Arithmetic

6.1
Introduction

6.2
Constraint Solving

6.3
Application: Reasoning

about Collision Avoidance
Protocols

In this chapter we instantiate and refine
the hierarchic superposition SUP(T)
calculus to hierarchic combination of
first-order theory FOL and non-linear
arithmetic NLA over the reals includ-
ing transcendental functions. In Sec-
tion 6.1 we define the hierarchic spec-
ification of the combination of FOL and
NLA, and exhibit the essential special-
ties of SUP(NLA). In Section 6.2, we
present a solution to the issues re-
garding application of SUP(NLA) to the
hierarchic FOL(NLA) combination and
discuss our implementation of the re-
sulting approach in a system combi-
nation of automated theorem prover
SPASS and SMT-solver iSAT. In Sec-
tion 6.3 we present experimental results
of applying SPASS(iSAT) to (dis)prove
safety properties of various traffic colli-
sion avoidance protocols.
The essential parts of this chapter have
been presented in [EKS+11].

193

194 SUP(NLA): Superposition Modulo Non-Linear Arithmetic

6.1 Introduction

In this chapter we instantiate the hierarchic superposition SUP(T) calculus to hi-
erarchic combination of first-order theory FOL and non-linear arithmetic NLA
over the reals including transcendental functions. The combination of FOL and
NLA is undecidable, nevertheless we show that under certain conditions SUP(NLA)
can be turned into a sound and complete procedure for FOL(NLA) with practi-
cally useful applications. In most aspects, SUP(NLA) follows the schema exploited
to obtain the SUP(LA) combination, but the undecidability of non-linear arith-
metic causes a necessity to take special care of cases when the background NLA-
solver is unable to certainly solve problems passed to it. Yet, a comprehensive
preprocessing of NLA-problems considerably helps the solver to solve them. We
have implemented the resulting approach in a system combination of automated
theorem prover SPASS and SMT-solver iSAT. The obtained tool SPASS(iSAT) has
been successfully applied to (dis)prove safety properties of various traffic colli-
sion avoidance protocols using the very same formalization in a fully automatic,
“push-button” manner.

6.1.1 Hierarchic Specification of FOL(NLA)

Here we define a hierarchic specification and its ingredients, base specification
and body, for hierarchic combination FOL(NLA) of first-order theory FOL with
non-linear arithmetic NLA. The notions (re)defined here are valid from now on
until the end of Chapter 6.

We write Sp to denote the signature of NLA defined as follows:

Sp= (R,Ω)

where:

– Ω the set of arithmetic operators given as:

Ω= {+,−,×, // basic arithmetic functions
abs,min,max, // absolute, minimum, and maximum functions
sin,cos, // trigonometric functions
exp,nrt,pow, // exponential, n-th root, and power functions
≤,<,≈,>,≥, // arithmetic relations
R} // real numbers (numeric constants)

– R the only arithmetic sort,

with underlying set X of all variables of the arithmetic sort R.

We set the class C of base algebras to consist of the standard modelM of non-
linear arithmetic (and all algebras isomorphic to it). For the sake of simplicity, we
simply writeM in place of C . The modelMmaps the arithmetic sort R to the set
R of all real numbers1, i.e. M(R) =R, and interprets the functions and relations in
Ω as intended. Clearly, the algebra M is term-generated (as there is a one-to-one
correspondence of M universe’s elements to numeric constants in R ⊂ TΩ). We

1We ambiguously write R to denote the subset of Ω consisting of all arithmetic constants (syntac-
tical objects) and the set of reals (the universe of M).

6.1. Introduction 195

write Sp to denote the base specification of non-linear arithmetic, defined as

Sp= (Sp,M)

The operators and the sorts of Sp are further extended with free (uninter-
preted) operators to Ω′ ⊇Ω and S ′ 3R, respectively; the set of arithmetic variables
is extended with non-base variables to X ′ ⊇X . Recall, that every non-base vari-
able in X ′ \X , if any, is of a free sort S′′ ∈ S ′ \ R, whereas free operator symbols
may have arguments of the arithmetic sort or range into it. These constitute a
FOL(NLA) signature Σ′:

Σ′ = (S ′,Ω′)

underlied by the set of variables X ′.
Let Ax ′ be a set of formulae built over Σ′. The pair

Sp′ = (Σ′, Ax ′)

defines the body of a hierarchic FOL(NLA) specification

HSp= (Sp,Sp′).

As usual, we call operators in Ω′′ =Ω′ \Ω, sorts in S ′′ =S ′ \R, and axioms Ax ′

the enrichment. In contrast to the NLA specification Sp, the enrichment

(S ′′,Ω′′, Ax ′)

is not fixed beforehand and is defined by an input clause set N : the symbols in N
that do not otherwise occur in Sp define S ′′ and Ω′′. For the sake of simplicity, in
the rest we set Ax ′ = ;, which, according to the discussion of alternative formu-
lations of refutational theorem proving for hierarchic theories (see Section 3.2), is
not a limitation, but rather a more convenient way of arguing in the context of the
combination of FOL with NLA.

Thus, refutational theorem proving for the hierarchic combination FOL(NLA)
is aimed at answering a question, whether a given clause set N over the FOL(NLA)
signature Σ′ is inconsistent relative toM, i.e. is there no model of N whose restric-
tion to the NLA signature Sp is (isomorphic to) M. Since M is the only model of
NLA, we write |=M to denote the entailment relative to the theory of NLA (please,
recall Definition 3.25 of the entailment relative to a base theory).

The following is a typical clause over the hierarchic specification HSp: Î EXAMPLE 6.1

D = (
M(x1, y1, x2, y2, t), δ≥ 0 →
M(x1 + t , y1 − (cos(t +δ)− cos(t)),

x2 − t , y2 + cos(t +δ)− cos(t),
t +δ)

)
where all xi and yi , t and δ are variables, and M a free predicate operator. Ab-
straction of the clause D yields

D ′ = (
δ≥ 0,
x ′

1 ≈ x1 + t , y ′
1 ≈ y1 − (cos(t +δ)− cos(t)),

x ′
2 ≈ x2 − t , y ′

2 ≈ y2 + cos(t +δ)− cos(t),
t ′ ≈ t +δ‖
M(x1, y1, x2, y2, t) →
M(x ′

1, y ′
1, x ′

2, y ′
2, t ′)

)
■

196 SUP(NLA): Superposition Modulo Non-Linear Arithmetic

6.1.2 SUP(NLA) Application Issues

Next, we consider the most important peculiarities of the application of the hi-
erarchic calculus to FOL(NLA) clauses. Similar to the case of SUP(LA), see Sec-
tion 5.1.2, application of the hierarchic versions of the standard rules (Hierarchic
Equality Resolution, Hierarchic Superposition, etc..) to FOL(NLA) clauses does
not require NLA reasoning at all, because:

– the rules apply independently from premises’ constraints (as the rules’ con-
ditions are stipulated exclusively by the free parts of premises), and

– the conclusion’s constraint is simply an instance of the conjunction of the
premises’ constraints, which can be easily computed by concatenating the
constraints and applying the free part unifier; since the unifier is simple, its
application reduces to identifying a subset of the constraints’ variables.

In contrast, the Constraint Refutation rule and hierarchic reduction rules are fur-
ther subjected to restrictions on the premises’ constraints, that require performing
calculations with respect to the background theory. Recall the Constraint Refuta-
tion rule, Definition 3.31:

I Λ1 ∥ → . . . Λn ∥ →
ä

where (Λ1 ∥ →), . . . , (Λn ∥ →) |=C ⊥. In Section 3.3 we have shown that the con-
dition of the rules holds if and only if the existential closure ∃~xi .

∧
Λi of the con-

straint of at least one base clause among C1 = (Λ1 ∥ →), . . . , Cn = (Λn ∥ →), where
~xi = var(Λi), is valid in the base theory (satisfiable by every base algebra). For the
NLA theory considered here, which is compact and where the clauses, e.g., do not
share parameters, it is sufficient to consider the case n = 1, thereby reducing the
condition of the rule to simply testing whether the existential closure ∃~x1.

∧
Λ1 is

satisfiable in the single model M of NLA.

Consider the Hierarchic Tautology Deletion rule, Definition 3.96:

R Λ ∥ Γ→∆

if

(i) |= Γ→∆, or

(ii) ∃~x.
∧
Λ |=C ⊥, for ~x = var(Λ).

According to the second condition the existential closure of the base part of the
premise has to be unsatisfiable in the base theory, which for the NLA theory case
reduces to checking satisfiability of ∃~x.

∧
Λ in the single model M of NLA.

Recall that the hierarchic superposition calculus is complete if the base the-
ory is compact and all extension terms are sufficiently defined, Theorems 3.82
and 3.94. Compactness follows from the fact that the base theory is given by a
standard model M of NLA. However, even if all extension terms are sufficiently
defined, in practice it happens that satisfiability of an NLA constraint Λ cannot
be decided. But in order to establish a base clause Λ ∥→ to be a contradiction,
NLA reasoning on Λ must not return the inconclusive answer UNKNOWN. This

6.1. Introduction 197

is indispensable for proving a conjecture. Taking this into account, we use the
following more practical formulation of the completeness theorem.

Let N be a (locally) sufficiently complete set of FOL(NLA) clauses. Then N is unsat- Î THEOREM 6.2
SUP(NLA)
Practical Completeness

isfiable if SUP(NLA) derives�; N is satisfiable, if the SUP(NLA) calculus terminates
and the saturated set N∗ does not contain � nor a clause Λ ∥→.

This completeness theorem takes care of the fact that in practice an NLA pro-
cedure will not be able to decide the satisfiability of a constraint, in general. Then
it may happen that clauses of the form Λ ∥→ can neither be refuted nor deleted
and have to be kept. Thus being able to practically decide constraint satisfiabil-
ity is crucial for precision. For termination the same applies to constraint impli-
cation, needed for subsumption. Consider the Hierarchic Subsumption Deletion
rule, Definition 3.97:

R Λ1 ∥ Γ1 →∆1 Λ2 ∥ Γ2 →∆2

Λ1 ∥ Γ1 →∆1

where, for a simple matcher σ,

(i) Γ1σ⊆ Γ2, ∆1σ⊆∆2,

(ii) |=C ∀~x.∃~y .(
∧
Λ2 → ∧

Λ1σ), for ~x = var(C2)∩X and ~y = var(Λ1σ) \ var(C2),

(iii) (Λ2 ∥ Γ2 →∆2) 6= ä.

The third condition of the Hierarchic Subsumption Deletion rule is stipulated by
the fact, that the rule missing the condition would allow subsuming an empty
clause by an unsatisfiable base clause. The condition is intended rather for the-
oretical purposes and does not make much sense in practice as all/most theo-
rem provers stop executing whenever an empty clause is derived. Note that y ∈
var(Λ1σ) \ var(C2) implies y 6∈ (var(Γ1)∪var(∆1)). In contrast to the theory of LA,
the base specification Sp of the non-linear arithmetic with transcendental func-
tions does not enable quantifier elimination, and hence such variables ~y cannot
be all eliminated in Λ1σ, in general. Nevertheless, we have developed a series of
transformations to be applied to the constraints Λ1σ and Λ2, which leads to an
equivalent formula

∀~x ′.∃~y ′.(
∧
Λ′

2 → ∧
Λ′

1) Î (6.1)

with ~x ′ ⊆~x and ~y ′ ⊆~y . If ~y ′ =;, then formula (6.1) reduces to

∀~x ′.(
∧
Λ′

2 → ∧
Λ′

1)

which is valid in the theory of NLA whenever its negation

¬(∀~x ′.(
∧
Λ′

2 → ∧
Λ′

1)
)

|=| ∃~x ′.(
∧
Λ′

2 ∧ ¬∧
Λ′

1)

is unsatisfiable, and this can be already checked by iSAT. Otherwise, if ~y ′ is non-
empty, checking the validity of formula (6.1) in the theory of NLA is out of the
scope of iSAT possibilities due to quantifier alternation. Nonetheless, the linear
relaxation of (6.1) yields an LA formula which can be examined by an appropriate
SMT solver for linear arithmetic; in our experimentation we have used Z3 for this
purpose. We discuss the mentioned transformations in detail in Section 6.2.2.

198 SUP(NLA): Superposition Modulo Non-Linear Arithmetic

6.2 Constraint Solving

Mapping iSAT to the above reasoning tasks in the context of SUP(NLA), there are
two problems to be solved: the formula with quantifier alternation needed for the
redundancy check which is not an SMT formula and the case iSAT answers UN-
KNOWN. The former is solved by first reducing the number of existentially quan-
tified variables through equational propagation. Then we test whether a linear
relaxation of the result where the non-linear functions are considered as uninter-
preted functions can already be proven (here we use Z3 [dMB08c]). If this does
fail and there are no existentially quantified variables left, we pass the result to
iSAT. All simplification is implemented on the SPASS side. The latter problem is
solved by an extension of iSAT called strong satisfaction check. A disadvantage of
the interval based reasoning approach of iSAT is the loss of precision when inter-
vals are propagated through equations. Equations frequently induce point solu-
tions. Here, without the strong satisfaction check, iSAT would terminate with an
UNKNOWN answer, providing narrow intervals. The strong satisfaction extension
then takes those narrow intervals and tries to compute a certificate for a (point)
solution. It turns out that this extension turned most of iSAT’s UNKNOWN answers
in the SUP(NLA) context into definite YES answers.

Here we give an overview of the main steps of the iSAT algorithm and describe
the core idea of the strong satisfaction check, Section 6.2.1. In Section 6.2.2 we
present the constraint transformation techniques aimed at simplifying the inputs
of iSAT, including single constraint and constraint implication formulae, arising
as the background theory tasks during a SPASS(iSAT) run on FOL(NLA) problems.

6.2.1 iSAT Procedure. Strong Satisfaction Check

In order to explain how iSAT works, we need to introduce few auxiliary notions
typical for SMT solving in the domain of NLA theory. After having disposed of this
preliminary step we continue with presenting the iSAT procedure and the strong
satisfaction check.

Preliminaries. A ground substitution ν : X → Q mapping arithmetic variables X
to reals R is called a base assignment. An interval assignment/valuation ι is a
mapping from base variables X to intervals over R. A base assignment ν is said to
be contained in an interval assignment ι if xν ∈ xι for all x ∈ dom(ν); in this case,
the interval assignment ι is said to contain the base assignment ν.

An SMT formula with respect to the theory of non-linear arithmetic over the
reals, or simply SMT formula for short, is an arbitrary quantifier-free Boolean
combination of atoms over the NLA signature Σ, for instance

φ= (
sin(y2) ≤ 0.1 → (x ≤ 0∨ z >

√
x2 + y2)

)
.

An SMT formula φ is satisfiable if there exists a base assignment ν such that
var(φ) ⊆ dom(ν) and M |= φν, where M is the model of NLA; in this case, the
base assignment ν is called satisfying for φ. An SMT formula φ is inconsistent
under an interval assignment ι if and only if ι contains no base assignment satis-
fying φ, i.e. if φ is false at every point in the interval assignment ι. Please, note that
this language is very expressive as total division z = x/y can be coded as multipli-

6.2. Constraint Solving 199

cation x = y · z ∧ y 6= 0, the constant π can be coded as the solution to the variable
x in the formula φ ≡ x > 3.1∧ x < 3.2∧ sin(x) = 0 and the integers as solutions to
the variable y in φ∧ sin(x · y) = 0.

A primitive constraint e is an NLA atom containing at most one total1 arith-
metical operation symbol and at most three variables, for instance: x ≥ sin(y),
x = y + z, z < 3.7. A primitive constraint e is called consistent under an interval
assignment ι if ι contains a base assignment ν satisfying e, i.e. if xν ∈ xι, for all
x ∈ var(e), and M |= eν.

An SMT formula is said to be in conjunctive form, or CF for short, if it is a con-
junction of disjunctions of primitive constraints2; the disjunctions of a CF SMT
formula are called clauses. Thus, an CF SMT formula φ is satisfiable if and only
if there exists some base assignment ν satisfying at least one primitive constraint
in each clause of φ. Please note, that given an interval valuation ι, a CF SMT for-
mula φ can be inconsistent under ι, even if in each clause of φ there is a primitive
constraint e consistent under ι.

The iSAT procedure. iSAT is an SMT solver for the theory of non-linear arithmetic
involving transcendental functions like exponential and trigonometric functions
which is undecidable in general. The iSAT algorithm is a generalization of the
Davis-Putnam-Logemann-Loveland (DPLL) procedure [DP60, DLL62] (with clause
learning) using interval constraint propagation (ICP) [BG06]. iSAT manipulates
interval valuations (assignments) of the variables by alternating deduction and
splitting phases, interspersed with non-chronological backtracking whenever an
empty interval valuation is detected. Next we give a brief presentation of the iSAT
algorithm and strong satisfaction check (for a formal exposition, we refer an in-
terested reader to [FHR+06, FHT+07]; a very detailed and easy-to-read survey is
given in [Tei12]).

iSAT accepts an arbitrary input SMT formula and automatically rewrites it into
conjunctive form. All variables in the given input formula have to be accompa-
nied with their respective bounded intervals3. Nevertheless, if the variable bounds
cannot be estimated, the lower and upper interval bounds can be chosen arbitrar-
ily small and arbitrarily large, respectively.

During the deduction phase, iSAT searches for clauses in which all but one
atom are inconsistent under the current interval valuation. Such atoms are called
unit atoms. Then, the discovered unit atoms are used to deduce new interval
bounds by repeatedly applying ICP until no new interval can be obtained. This
step is essentially similar to the unit propagation in SAT solving. Since ICP may
yield infinitely many interval contraction steps, the process of deducing new in-
tervals is stopped if the difference between the values of new and old bounds is
below some user-defined progress parameter δ.

1Totality is needed to obviate the issue with undefined values of partial operations. Practically,
this is not a strong requirement as most common partial arithmetic operators can be expressed by
their inverse operation, for example, the constraint y = 1/x in which 1/x is undefined for x = 0 can be
rephrased as y · x = 1∧x 6= 0.

2Any SMT formula can be converted into an equi-satisfiable CF SMT formula in linear
time [Her10].

3From a practical point of view, the requirement for variable bounds is not a strong restriction as
variables encoding such physical quantities as distance, attitude, or velocity are naturally limited.

200 SUP(NLA): Superposition Modulo Non-Linear Arithmetic

If the interval of some variable x becomes empty, then a conflict resolution
procedure is called to analyze the reason for the conflict in a very similar way as in
the DPLL procedure. If the conflict cannot be resolved iSAT stops execution with
result NOsignalizing that the given formula is unsatisfiable. Otherwise, a conflict
clause is built (learnt) from the reason of the conflict and added to the formula,
followed by a non-chronological backjump by at least one level back, undoing
some of the decisions and their accompanying deductions performed so far.

iSAT finds a solution, if at least one atom in each clause is satisfied by every
point in the current interval valuation. In this case the solver stops with result
YES. In general, equations like x = y · z can only be satisfied by point intervals.
However, reaching such point intervals by ICP cannot be guaranteed for continu-
ous domains. One option to mitigate this problem is to stop the search when all
intervals have a width smaller than a certain threshold, the so-called minimum
splitting width ε. The resulting interval valuation can be considered as an ap-
proximate solution. Since the given problem cannot be decided, iSAT answers
UNKNOWN.

iSAT performs a decision by splitting an interval, if after the deduction phase
neither a conflict nor an (approximate) solution has been found. A decision heuris-
tics is used to select one of the intervals whose width is still greater than or equal
to the minimum splitting width ε. The search is then resumed using this new
interval bound which potentially triggers new deductions as described above.

Strong Satisfaction Check. As we have already discussed, the ICP methods used
by iSAT core to deduce a satisfying interval valuation is very weak to find a solu-
tion over a continuous domain for an SMT formula containing equations, because
equations can only be satisfied by point intervals, in general. The drawback of this
uncertainty is that it may happen that clauses of the form Λ ∥→ can neither be
refuted nor deleted and have to be kept, which may lead to an inability to prove a
conjecture (refute a given clause set). This issue is of a particular importance for
our SPASS(iSAT) case study, as the axiomatization of the experimental problems
(see Section 6.3) heavily involves equational NLA atoms. Here we briefly describe
the essential algorithmic details of the strong satisfaction check aimed at mitigat-
ing the problem of ICP weakness to deduce point solutions. For a formal expo-
sition of the strong satisfaction check algorithm and essential technical details of
its steps we refer the reader to [FHT+07] as well as [Ked08, EKS+11].

The strong satisfaction check procedure takes an approximate solution ι (an
interval valuation, a “box” with interval assignments for every variable), that is
provided every time iSAT returns an UNKNOWN answer, and tries to build a cer-
tificate of the existence of a solution to the current CF SMT formula φ in the fol-
lowing way:

– In the first step, the procedure selects from each clause in φ a primitive con-
straint consistent under the approximate solution1 ι, putting them into the
set S = E(S)∪ I (S) consisting of the selected equations and inequations, re-
spectively.

1Please, note that a set of primitive constraints, each of which is consistent under the interval
valuation ι, might still be inconsistent under ι

6.2. Constraint Solving 201

– In the next step, treating all equations E(S) contained in the set S as assign-
ments, the procedure orients them such that:q no variable is defined more than once (for instance, in {x = sin(y), x =

y + z} the variable x is doubly defined, and only once in {x = sin(y),
y = x − z}); andq the assignments are acyclic (for instance, in {x = sin(y), y = x−z} there
is a cycle “x depends on y , and y depends on x”, but not in {x = sin(y),
z = x − y}).

After having oriented the equations in E(S), every variable in E(S) becomes
either defined (by an assignment in which it occurs on the left-hand-side)
or undefined.

– In the last step, the intervals y ι of the undefined variables y are safely prop-
agated via the system of reoriented equations building this way a new in-
terval valuation ι′ such that intervals xι′ are computed for every variable
x ∈ var(E(S)).

In Section 6.3 we show that the strong satisfaction check is one of the crucial
ingredients ensuring a conclusive behavior of SPASS(iSAT) on our experimental
problems.

6.2.2 Constraint and Implication Simplification

The iSAT procedure is be able to decide the satisfiability of a constraint, in gen-
eral, returning the inconclusive answer UNKNOWN. For disproving, i.e. having
SUP(NLA) terminate on a set of clauses without finding an empty clause, it is cru-
cial to be able to decide (sufficiently many) subsumption implication checks. For
our case study the first-order part of the clauses is inherently recursive, for in-
stance, the continuous linear movement clause is of the form

Λ ∥ L(x1, y1, x2, y2, t) → L(x ′
1, y ′

1, x ′
2, y ′

2, t ′)

where the positive and negative occurrence of the L literal have a first-order uni-
fier. It turns out that SUP(NLA) termination can only be achieved by success-
ful subsumption applications that require a pipelining of NLA simplification re-
lated to the form of constraints generated by the superposition calculus. Here, we
present a series of simplifications that helps to gain a precise terminating behav-
ior of SUP(NLA) for our experimental case study of collision avoidance protocols
(Section 6.3).

Every time a new clause Λ ∥ Γ→∆ is derived, the following simplifications are
repeatedly performed on the constraint Λ of the clause:

– Constant propagation: if Λ contains a literal

L = (ax ≈ b),

where a,b ∈R and x ∈X , then the substitution σ= [x 7→ b/a] is applied onto
every literal in the constraintΛ except L. Moreover, if the variable x does not
occur in the free part Γ→ ∆ of the clause, then the literal L is deleted after
applying σ onto literals of Λ.

202 SUP(NLA): Superposition Modulo Non-Linear Arithmetic

– Deletion of duplicates: if the constraint contains syntactically equivalent
literals, say

Λ = {L1, . . . ,Lk ,Lk+1, . . . ,Ln},

where Li = L j , for all k +1 ≤ i , j ≤ n, then only one of them is kept yielding
a modified constraint Λ′:

Λ′ = {L1, . . . ,Lk ,Lk+1}.

– Product distribution over sum: every term

s = t · (
n∑

i=1
ti)

occurring in Λ, where t , t1, . . . , tn ∈ TΩ(X), is transformed to the term

s′ =
n∑

i=1
(t · ti).

– Reduction of homogeneous summands: every term

s =
n∑

i=1
(ai t)+ t ′

occurring in Λ, where a1, . . . , an ∈R and t , t ′ ∈ TΩ(X), is reduced to

s′ = at + t ′,

where a is computed as the sum of all coefficients ai : a =∑n
i=1 ai .

– Reduction of homogeneous multipliers: every term

s =
k ′∏

i=1
bi ·

k∏
i=1

t ai · t ′

occurring in Λ, where a1, . . . , ak ,b1, . . . ,bk ′ ∈ R and t , t ′ ∈ TΩ(X), is reduced
to

s′ = bt a · t ′,

where a is computed as the sum of all coefficients ai : a = ∑k
i=1 ai , and b is

computed as the product of all coefficients bi : b =∏k ′
i=1 bi .

If the Hierarchic Subsumption Deletion rule, Definition 3.97, is to be applied
to two abstracted FOL(NLA) clauses C1 =Λ1 ∥ Γ1 →∆1 and C2 =Λ2 ∥ Γ2 →∆2, we
check the encompassment condition of the rule

|=C ∀~x.∃~y .(
∧
Λ2 → ∧

Λ1σ),

where σ is the free part simple subsumption matcher, ~x = var(C2)∩X , and ~y =
var(Λ1σ) \ var(C2), by consecutively performing the following steps:

1. Exhaustive simplification is first applied to the implication’s succedent Λ1σ,
which comprises the following steps:

a) first, every variable-to-constant assignment x ≈ a occurring in the im-
plication’s antecedent Λ2, where x ∈ X and a ∈ R, is propagated onto
the implication’s succedent Λ1σ; then,

b) the transformed succedent is repeatedly reduced by applying each of
the above simplifications; and finally,

6.2. Constraint Solving 203

c) every literal of the simplified succedent that has a syntactical equiva-
lent in Λ2 is deleted.

The above three steps yield a constraint Λ′
1. Note that this simplification

technology has a very high potential for the SUP(NLA) calculus because
constraints of newly generated clauses are always copies of the constraints
from the parent clauses subject to a unifier mapping variables to variables.

2. Linear Relaxation. Every occurrence of the transcendental function sym-
bols sin, cos, exp, nrt, pow is replaced in Λ′

1 and Λ2 with fresh uninterpreted
function symbols sin′, cos′, exp′, nrt′, pow′, respectively. After that, every
occurrence of terms with the top symbol being one of abs, min, or max is
recursively rewritten in the following way:

abs(t) ite(t ≥ 0, t , −t)
min(s1, . . . , sn) ite(s1 ≤ min(s2, . . . , sn), s1, min(s2, . . . , sn))
max(s1, . . . , sn) ite(s1 ≥ max(s2, . . . , sn), s1,max(s2, . . . , sn)),

where “ite” stands for the operator “if then else” available in most SMT sys-
tems. These result in two modified constraints Λ2 and Λ1. Then we check if
the formula

¬(∀~x.∃~y ′.(
∧
Λ2 → ∧

Λ1)
)

|=| ∃~x.∀~y ′.(
∧
Λ2 ∧ ¬∧

Λ1) Î (6.2)

where ~y ′ = var(Λ1) \ var(C2) = var(Λ1) \ var(C2) is unsatisfiable in the model
of linear arithmetic plus uninterpreted functions by passing it to the SMT
solver Z3. If Z3 affirms unsatisfiability of Formula (6.2), then the initial en-
compassment condition holds.

3. Otherwise, i.e. if Z3 does not affirm unsatisfiability of Formula (6.2) at the
previous step, and if, besides, ~y ′ = var(Λ1) \ var(C2) is empty, then we call
iSAT to check whether the formula

¬(∀~x.(
∧
Λ2 → ∧

Λ′
1)

)
|=| ∃~x.(

∧
Λ2 ∧ ¬∧

Λ′
1) Î (6.3)

is unsatisfiable in the theory of NLA. If iSAT affirms unsatisfiability of For-
mula (6.3), then the initial encompassment condition holds.

In Section 6.3 we show that the above schema exploited for checking the en-
compassment condition is the crucial ingredient which guarantees finding a model
by SPASS(iSAT) on our experimental problems.

204 SUP(NLA): Superposition Modulo Non-Linear Arithmetic

6.3 Application: Reasoning about Collision Avoid-
ance Protocols

The application scenario (Section 6.3) is a collision avoidance protocol for moving
objects (e.g., robots, aircrafts). The idea of the protocol is to prevent a collision,
more precisely, a situation where the objects get too close. In order to achieve this
goal, the movement of the objects is put into a maneuver mode, once their dis-
tance falls below a given limit. The maneuver mode then takes care by perform-
ing appropriate movement in form of sine curves to get the objects across each
other and release them afterwards to their initial behavior. We studied the fol-
lowing three scenarios: (i) two objects in 2D space starting with linear movement,
(ii) two objects in 3D space starting with linear movement, and (iii) two objects
in 3D space starting with arbitrary movement. For all scenarios we can fully au-
tomatically prove and disprove (given different parameters) the collision freeness
of the protocol. The protocol and the collision freeness property are modelled by
a set of FOL(NLA) Horn clauses such that this set is satisfiable iff the protocol is
collision free. If not, an unsatisfiability SUP(NLA) proof yields a counterexample.

The idea behind the protocol for the basic 2D scenario is the following: ini-
tially there are two objects moving on straight lines in 2D-space (see Figure 6.1a);
when the distance between the objects gets less or equal to some fixed value, they
start maneuvering by sin-like trajectories such that at the beginning of the ma-
neuver one of them goes up, the other goes down. The maneuver lasts for one
period of sin, after that the objects continue straight line moving. Depending
on the three involved parameters initial distance, distance to start the maneuver,
and distance required for safety, the protocol yields or does not yield a collision.
More precisely, the behavior of the objects is modelled by a set of FOL(NLA) Horn
clauses such that the minimal model of those clauses describes exactly the set of
reachable states by the protocol. The minimal Horn clause model is identical to
the SUP(NLA) model assumption for a set of Horn clauses. First-order predicates
are used to model the reachable states.

Axiomatisation of AACAS, 2D. In the 2D case two aircrafts are initially moving in
straight lines, one from left to the right, another – from right to the left. When
distance between them gets small enough, they start manoeuvring in a sin-like
trajectories, such that the aircraft, which is higher at the manoeuvre start, is going
first up, then down, and another – first down, then up. During the manoeuvre
distance between the aircrafts is required to remain safe:

– Safe start:
|x1 −x2| ≥ 10, t = 0 ∥→ L(x1, y1, x2, y2, x1, y1, x2, y2, t).

– Linear movement:
δ≥ 0, t ′ = t +δ, x ′

1 = x1 +δ, x ′
2 = x2 −δ,

√
(x ′

1 −x ′
2)2 + (y1 − y2)2 ≥ 6 ∥

L(x1, y1, x2, y2, x0
1 , y0

1 , x0
2 , y0

2 , t) →
L(x ′

1, y1, x ′
2, y2, x0

1 , y0
1 , x0

2 , y0
2 , t ′).

– Switching to the manoeuvre mode:√
(x1 −x2)2 + (y1 − y2)2 = 6, tm = 0 ∥

6.3. Application: Reasoning about Collision Avoidance Protocols 205

(a) 2D Scenario

(b) 3D Scenario: linear initial movement (c) 3D Scenario: arbitrary initial move-
ment

Figure 6.1: Movement Scenarios. (Source of figures: [EKS+11])

L(x1, y1, x2, y2, x0
1 , y0

1 , x0
2 , y0

2 , t) →
M(x1, y1, x2, y2, tm , p, x0

1 , y0
1 , x0

2 , y0
2 , t).

– Manoeuvring.

First aircraft is higher than the second one:
y1 ≥ y2,δ≥ 0, p ≥ 3.14, p ≤ 3.15,cos(p

2) = 0, t ′m = tm +δ, t ′m ≤ 2 ·p,
∆y = cos(tm)− cos(t ′m), x ′

1 = x1 +δ, y ′
1 = y1 +∆y , x ′

2 = x2 −δ, y ′
2 = y2 −∆y ∥

M(x1, y1, x2, y2, tm , p, x0
1 , y0

1 , x0
2 , y0

2 , t) →
M(x ′

1, y ′
1, x ′

2, y ′
2, t ′m , p, x0

1 , y0
1 , x0

2 , y0
2 , t).

First aircraft is lower than the second one:
y1 < y2,δ≥ 0, p ≥ 3.14, p ≤ 3.15,cos(p

2) = 0, t ′m = tm +δ, t ′m ≤ 2 ·p,
∆y = cos(tm)− cos(t ′m), x ′

1 = x1 +δ, y ′
1 = y1 −∆y , x ′

2 = x2 −δ, y ′
2 = y2 +∆y ∥

M(x1, y1, x2, y2, tm , p, x0
1 , y0

1 , x0
2 , y0

2 , t) →
M(x ′

1, y ′
1, x ′

2, y ′
2, t ′m , p, x0

1 , y0
1 , x0

2 , y0
2 , t).

– Distance requirement:√
(x1 −x2)2 + (y1 − y2)2 < 4 ∥ M(x1, y1, x2, y2, tm , p, x0

1 , y0
1 , x0

2 , y0
2 , t) →√

(x1 −x2)2 + (y1 − y2)2 ≥ 4.

The protocol is safe if there is no reachable state in the minimal model that
causes a collision. This is obviously not a first-order property but can be attacked
by superposition based reasoning as long as the safety condition has the closed
form ∃~x φ where all first-order predicates in φ occur solely positively. In this case
the negation of the safety condition results in a set of purely negative clauses.
Then adding such a set to a set of Horn clauses the following holds [HW10]: (i) if
� is derived, then the safety condition does not hold and a counter example can
be extracted from the superposition proof; (ii) if SUP(NLA) terminates and neither
� nor a clause Λ ∥→ is derived, then the safety condition holds (see also Theo-
rem 6.2). This is exactly the way we proved (disproved) non-collision, by adding

206 SUP(NLA): Superposition Modulo Non-Linear Arithmetic

clauses of the form√
(x1 −x2)2 + (y1 − y2)2 < 4 ∥ M(x1, y1, x2, y2, tm , p, x0

1 , y0
1 , x0

2 , y0
2 , t) →

to the axiomatization.

Axiomatisation of AACAS, 3D. The 3D instance basic protocol extends the move-
ment to 3D, where initially the objects are moving in parallel horizontal planes,
and during the maneuver they are changing their heights following a sine-wave
trajectory, see Figure 6.1b. The advanced 3D scenario adds to the basic scenario
arbitrary initial 3D movement, see Figure 6.1c. Where in particular for this draw-
ing we assume that the ends and starts of the arrows are time synchronization
points between the objects. During the manoeuvre distance between the aircrafts
is required to remain safe.

– Safe start:
|x1 −x2| ≥ 10 ∥→ L(x1, y1, z1, vx1 , vy1 , x2, y2, z2, vx2 , vy2 , x1, y1, z1, x2, y2, z2).

– Movement in an arbitrary direction:
(v ′

x1
= 1, v ′

y1
= 0∨ v ′

x1
= 0, v ′

y1
= 1∨ v ′

x1
=−1, v ′

y1
= 0∨ v ′

x1
= 0, v ′

y1
=−1),

(v ′
x2

= 1, v ′
y2

= 0∨ v ′
x2

= 0, v ′
y2

= 1∨ v ′
x2

=−1, v ′
y2

= 0∨ v ′
x2

= 0, v ′
y2

=−1),√
(x ′

1 −x ′
2)2 + (y ′

1 − y ′
2)2 + (z ′

1 − z ′
2)2 ≥ 6 ∥

L(x1, y1, z1, vx1 , vy1 , x2, y2, z2, vx2 , vy2 , x0
1 , y0

1 , z0
1 , x0

2 , y0
2 , z0

2) →
L(x ′

1, y ′
1, z ′

1, v ′
x1

, v ′
y1

, x ′
2, y ′

2, z ′
2, v ′

x2
, v ′

y2
, x0

1 , y0
1 , z0

1 , x0
2 , y0

2 , z0
2).

– Switching to the manoeuvre mode:√
(x1 −x2)2 + (y1 − y2)2 + (z1 − z2)2 = 6, tm = 0 ∥

L(x1, y1, z1, vx1 , vy1 , x2, y2, z2, vx2 , vy2 , x0
1 , y0

1 , z0
1 , x0

2 , y0
2 , z0

2) →
M(x1, y1, z1, vx1 , vy1 , x2, y2, z2, vx2 , vy2 , tm , p, x0

1 , y0
1 , z0

1 , x0
2 , y0

2 , z0
2).

– Manoeuvring. First AC is higher than the second one:
z1 ≥ z2,δ≥ 0, t ′m = tm +δ, x ′

1 = x1 + vx1 ·δ, y ′
1 = y1 + vy1 ·δ, x ′

2 = x2 + vx2 ·δ,
y ′

2 = y2 + vy2 ·δ, p ≥ 3.14, p ≤ 3.15,cos(p
2) = 0, t ′m ≤ 2 ·p,∆z = cos(tm)−cos(t ′m),

z ′
1 = z1 +∆z , z ′

2 = z2 −∆z ∥
M(x1, y1, z1, vx1 , vy1 , x2, y2, z2, vx2 , vy2 , tm , p, x0

1 , y0
1 , z0

1 , x0
2 , y0

2 , z0
2) →

M(x ′
1, y ′

1, z ′
1, vx1 , vy1 , x ′

2, y ′
2, z ′

2, vx2 , vy2 , t ′m , p, x0
1 , y0

1 , z0
1 , x0

2 , y0
2 , z0

2).

First AC is lower than the second one:
z1 < z2,δ≥ 0, t ′m = tm +δ, x ′

1 = x1 + vx1 ·δ, y ′
1 = y1 + vy1 ·δ, x ′

2 = x2 + vx2 ·δ,
y ′

2 = y2 + vy2 ·δ, p ≥ 3.14, p ≤ 3.15,cos(p
2) = 0, t ′m ≤ 2 ·p,∆z = cos(tm)−cos(t ′m),

z ′
1 = z1 −∆z , z ′

2 = z2 +∆z ∥
M(x1, y1, z1, vx1 , vy1 , x2, y2, z2, vx2 , vy2 , tm , p, x0

1 , y0
1 , z0

1 , x0
2 , y0

2 , z0
2) →

M(x ′
1, y ′

1, z ′
1, vx1 , vy1 , x ′

2, y ′
2, z ′

2, vx2 , vy2 , t ′m , p, x0
1 , y0

1 , z0
1 , x0

2 , y0
2 , z0

2).

– Distance requirement:√
(x1 −x2)2 + (y1 − y2)2 + (z1 − z2)2 < 4 ∥

M(x1, y1, z1, vx1 , vy1 , x2, y2, z2, vx2 , vy2 , tm , p, x0
1 , y0

1 , z0
1 , x0

2 , y0
2 , z0

2) →√
(x1 −x2)2 + (y1 − y2)2 + (z1 − z2)2 ≥ 4.

For all three scenarios we have proved and disproved safety by modifying the
above mentioned parameters accordingly. Table 6.1 shows the timing for SPASS(iSAT)
runs on all scenarios in seconds. The input as well as the output files are available

6.3. Application: Reasoning about Collision Avoidance Protocols 207

2D 3D
linear linear arbitrary

Proof 10 9 41
Model 6 6 58

Table 6.1: Time Statistics.

None SSC IA IS CS

Result Proof Unknown Proof Proof -
Time (sec.) 45 520 38 290 out

Constr.
sat

unsat
unknown

356
11

0

20
16

440

364
19

0

355
11

1

-
-
-

Impl.
holds

not holds
unknown

281
3040

0

296
3071

3

256
4218

0

280
6047

29

-
-
-

Table 6.2: NLA Simplification Impact for Proof Finding

None SSC IA IS CS

Result Model Unknown - Model -
Time (sec.) 35 36 out 188 out

Constr.
sat

unsat
unknown

367
31

0

20
28

350

-
-
-

368
29

3

-
-
-

Impl.
holds

not holds
unknown

296
3073

1

296
3071

3

-
-
-

297
6160

44

-
-
-

Table 6.3: NLA Simplification Impact for Model Finding

from the SPASS homepage (www.spass-prover.org/prototypes). For each sce-
nario we have ran one parameter setting where the protocol is collision free and
SPASS(iSAT) finds a model and one setting where the objects collide, leading to
a proof found by SPASS(iSAT). All runs were have been performed on computers
equipped with Intel X5460 CPUs, 8 GB of main memory running Linux. Concern-
ing all experiments we have done, more than 95% of the time has been spent by
iSAT for solving NLA constraint proof obligations.

Table 6.2 shows the impact of our simplification pipeline for finding a proof in
an unsafe parameter setting for the 3D arbitrary movement scenario. The first
row shows which NLA simplification techniques developed in this paper have
been omitted. So “None” means we have applied all, “SSC” means we have dis-
abled the strongsat extension, “IA” means we have disabled the linear abstraction
for implication testing, “IS” means we have disabled constraint simplification on
the generated implication problems, and “CS” means we have disabled the ba-

www.spass-prover.org/prototypes

208 SUP(NLA): Superposition Modulo Non-Linear Arithmetic

sic constraint simplification techniques. Then the rest of the table shows the re-
sults of these settings on the testing of NLA problems during the run. If the basic
constraint techniques have been disabled, SPASS(iSAT) does not terminate on the
problem. Note that disabling an NLA simplification technique typically results in
extra clauses that cannot be subsumed nor detected as a tautology. Therefore, the
set of generated and kept clauses for the different cases is different.

Table 6.3 shows the respective impact of our simplification pipeline for finitely
saturating the clause set in a safe parameter setting for the same scenario. Here
both disabling CS or IA leads to non-termination. Disabling SSC leads to termina-
tion where the saturated clause set contains a clause Λ ∥→ for which iSAT without
the strongsat extension cannot decide satisfiability of the constraint and returns
UNKNOWN.

Concerning the generated NLA constraint problems, Section 6.2, we have also
tried to attack them by applying state-of-the-art computer algebra systems. To
this end we have replaced iSAT by Maple1. But this approach has not been as
successful as the iSAT combination as in many cases Maple has not been able
to find a solution and therefore the overall solving process for the considered ex-
periments here has failed. Redlog [DS97] shows a similar behavior. By appropri-
ate approximations of the transcendental functions a reasonable portion of the
constraints can be decided, however, in particular the crucial constraints (empty
clauses, subsumption check) turn out to be specifically hard.

Collision avoidance protocols have been studied as benchmarks for various
hybrid system analysis and verification tools (e.g. [HHMWT00, PC07, TPS98]). They
are related to our collision avoidance protocol. However, these results are hard to
compare as the models differ. For example, we have also considered an explicit
3D model where the above approaches all have developed 2D models.

We have developed the first sound and complete combination of FOL(NLA) in-
cluding an implementation, where in particular, we can cope with UNKNOWN re-
sults by an NLA procedure (Theorem 6.2, Tables 6.2, 6.3). In order to decrease the
number of UNKNOWN answers when executing the SUP(NLA) calculus we have
suggested dedicated simplification techniques. All together with an implementa-
tion via SPASS(iSAT) the approach supports fully automatic verification of various
scenarios of a non-trivial collision avoidance protocol. We are confident that by
continuing the development of the suggested simplification techniques the per-
formance of the overall procedure can be further significantly increased.

1Maple is a computer algebra system published by Maplesoft. For more details refer to http:
//www.maplesoft.com/products/maple/

http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/products/maple/

C
H
A
P
T
ER 7

Conclusion and Future Work

Summary

In this work we have extended the state of the art of reasoning in hierarchic com-
binations of the free first-order logic FOL and a background theory T. Built on
the Hierarchic Superposition approach of Bachmair, Ganzinger, and Waldmann,
we have substantially advanced previous (rather scarce and solitary) results on
SUP(T). To the best of our knowledge, we are the first who have pioneered imple-
menting the hierarchic calculus SUP(T), where for the background theory T we
have considered linear and non-linear arithmetic, given rise to a new direction in
applied research concerned with practical aspects of implementation of the hier-
archic superposition calculus. In detail, our contributions are as follows:

– We have developed new versions of the hierarchic sufficient completeness
criterion and the hierarchic redundancy criterion, which take into account
the background theory and are therefore substantially more effective than
the ones existed before.

– We have developed two basic reduction rules Hierarchic Tautology Deletion
and Hierarchic Subsumption Deletion, which comply with the new hierar-
chic redundancy criterion and constitute a good basis for lifting other “flat”
reduction rules to the level of hierarchic first-order combinations.

– We have developed and investigated a noval Local Sufficient Completeness
criterion, that expresses a much more relaxed condition sufficient to guar-
antee completeness of SUP(T). The most advantageous feature of the Local
Sufficient Completeness criterion is that it suggests a transformation tech-
nique of turning an input problem initially lacking sufficient completeness
to a sufficiently complete one.

– We have shown that SUP(T) can be turned into a decision procedure for the
ground FOL(T) fragment and the non-ground BSHE(GBST) class of Bernays-

209

210 Conclusion and Future Work

Schönfinkel Horn clauses with equality and ground base sort terms. One of
the ingredients of obtaining the decidability results is the Basification proce-
dure, presented by us, whose intention is to make an input problem locally
sufficiently complete, such that SUP(T) assuredly finds a proof if one exists.
The decidability result for the BSHE(GBST) class allows reasoning about and
querying ontologies with arithmetical facts.

– We have implemented the SUP(LA) calculus for the hierarchic combination
of FOL with theory of linear arithmetic LA in system combinations SPASS(LA)
of the automated first-order theorem prover SPASS and several background
LA-solvers. Having several implementations of SUP(LA) helped us to better
understand practical issues of the calculus and identify potentially prolific
improvements of used implementational concepts.

– By examples we have shown that SUP(LA) can already be effectively used to
decide satisfiability of clause sets that are out of scope for other approaches,
in particular SMT-based procedures.

– We have also implemented the SUP(NLA) calculus for the hierarchic com-
bination of FOL with theory of non-linear arithmetic NLA over the reals
including transcendental functions in a system combination SPASS(iSAT),
where for the NLA reasoning tasks we use an SMT solver for non-linear
arithmetic iSAT.

– We have elaborated the issues related to the hierarchic SUP(NLA) calculus
which are due to undecidability of NLA with transcendental functions. To
tackle this problem, we have presented a series of simplification and ap-
proximation techniques for treating NLA formulae that has eventually en-
abled a complete automatic behavior of SPASS(iSAT) on various scenarios
of collision avoidance protocols.

On one hand, our research delivers fundamental contributions: the crucial
part of it is devoted to proving theoretical aspects of the Hierarchic Superposition
calculus; on the other hand, we have shown that SUP(T) can be successfully used
for practical applications. From a methodological point of view, the dissertation is
useful as it (i) provides rigorous formal proofs in detail exposing the most essential
gists of the presented approach, (ii) assists with schemata of showing complete-
ness and decidability of the SUP(T) calculus applied to various FOL(T) fragments,
and (iii) suggests transformation techniques which, coped with the SUP(T) calcu-
lus, yield a complete procedure. For this reason, we recommend the dissertation
to everybody concerned with SUP(T)-based hierarchic refutational theorem prov-
ing, including scientists and students.

Future Work

Possible directions for future research include:

– The superposition calculus SUP can be turned into a decision procedure for
a number of decidable first-order fragments, e.g., [BGW93, JMW98, ARR03,
HSG04, BE07, BE08, ABRS09], and is thus a good basis for actually proving
decidability of fragments and obtaining efficient implementations. In this
connection, one of possible research topics is to extend the obtained results

Conclusion and Future Work 211

for SUP(T) to the combination of several theories. As long as these theories
can be represented in FOL (e.g., lists, arrays) such a combination is straight-
forward. On the other hand the hierarchic approach cannot be easily ex-
tended to deal simultaneously with several different theories outside the
free part in a straight forward way as it is the case for SMT based proce-
dures using the Nelson-Oppen method, even if queries are ground. Here
further research is needed.

– Another topic for future investigation is the combination of FOL over ex-
plicit finite domain clause sets with a combination of background theories
T = T1∪. . .∪Tn . A restrictive superposition calculus has been proven to be a
decision procedure for FOL over finite domain fragment [HW07]. The sweet
point of the combination of FOL over finite domain with T , but with non-
constant function symbols ranging into the free sort, is that any clause set
(even non-ground) over the fragment is sufficiently complete by the trans-
formations suggested in [HW07]. This is due to the fact that the cardinality
clause

x ≈ a1 ∨·· ·∨x ≈ am

representing the finite domain {a1, . . . , am} is reflected by the clauses

f (~x) ≈ a1 ∨·· ·∨ f (~x) ≈ am for any f ∈Ω′′ \ {a1, . . . , am}

which imply sufficient completeness for any clause set over this fragment.

– Our experiments with the FOL(LA) combination involving base parameters1

show that very often SUP(LA) produces constraints of a regular shape. From
this perspective, taking advantages of automatic generation of invariants
studied in [FKW12b, FKW12a] seems to be beneficial for SUP(LA) applied
to FOL(LA) fragments with finite domains.

– Development of more sophisticated reduction rules. The flat superposition-
based reasoning drastically benefits from exploiting the reduction rule called
Contextual Rewriting [NN93, Wei01, Wis12]. We expect that lifting the rule
to the level of the hierarchic FOL(T) combination would allow to achieve
terminating saturation by SUP(T) on a large class of FOL(T) clauses.

– Engineering of a universal interface between SPASS and an arbitrary back-
ground theory solver, bringing the realization of the principle of modularity
of the hierarchic SUP(T) calculus to a highest degree.

– Development of effective data structures and specialized algorithms sup-
porting efficient practical implementations of the hierarchic SUP(T) calcu-
lus. The recent work [Bro12] of Bromberger (supervised by Sturm, and Wei-
denbach) devoted to adaption of Dutertre and de Moura’s Simplex-based
algorithm [DdM06] for SUP(LA) specific LA reasoning tasks has shown that
a deep integration of a tuned LA procedure into SPASS(LA) can save 94% of
the runtime spent by the solver on reduction elimination.

– Practical application of SUP(T) for analysis of programs, encryption proto-
cols, data transmission protocols, right policies, hardware, hybrid systems,
etc.

1Not reported in this dissertation.

212 Conclusion and Future Work

Until recently, all research of the superposition modulo theory calculus SUP(T)
has been done by members of our research group1. We expect that this disser-
tation and recent developments of our research group will attract considerable
attention of other scientists around the world exciting them for further investiga-
tion of the hierarchic superposition calculus which will abundantly result in new
theoretical achievements in the area of Automated Deduction and successful ap-
plications of the SUP(T) approach to solving practically important problems.

1The “Automation of Logic” group at the Max Planck Institute for Informatics, Saarbrücken, Ger-
many. Actually, two of the three inventors of SUP(T), namely, Harald Ganzinger and Uwe Waldmann,
are recent or present members of the group.

Bibliography

[ABRS05] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and
Stephan Schulz. On a rewriting approach to satisfiability proce-
dures: Extension, combination of theories and an experimental ap-
praisal. In Bernhard Gramlich, editor, FroCoS 2005, volume 3717 of
LNCS, pages 65–80. Springer, 2005.

[ABRS09] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and
Stephan Schulz. New results on rewrite-based satisfiability proce-
dures. ACM Trans. Comput. Log., 10(1):129–179, 2009.

[AKW09a] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Super-
position modulo linear arithmetic SUP(LA). In Silvio Ghilardi and
Roberto Sebastiani, editors, Frontiers of Combining Systems: 7th In-
ternational Symposium, FroCoS 2009, volume 5749 of Lecture Notes
in Artificial Intelligence, pages 84–99, Trento, Italy, September 2009.
Springer.

[AKW09b] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Super-
position modulo linear arithmetic SUP(LA). Report of SFB/TR 14
AVACS 53, December 2009. http://www.avacs.org.

[ARR03] Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. A
rewriting approach to satisfiability procedures. Information and
Computation, 183(2):140–164, 2003.

[BDEK07] Bernd Becker, Christian Dax, Jochen Eisinger, and Felix Klaedtke.
LIRA: Handling constraints of linear arithmetics over the integers
and the reals. In Werner Damm and Holger Hermanns, editors,
Computer Aided Verification, 19th International Conference, Pro-
ceedings, volume 4590 of Lecture Notes in Computer Science, pages
307–310. Springer, 2007.

[BE07] Maria Paola Bonacina and Mnacho Echenim. Rewrite-based satisfi-
ability procedures for recursive data structures. Electronic Notes in
Theoretical Computer Science, ENTCS, 174(8):55–70, 2007.

[BE08] Maria Paola Bonacina and Mnacho Echenim. On variable-inactivity
and polynomial tau-satisfiability procedures. Journal of Logic and
Computation, 18(1), 2008.

213

214 Bibliography

[BE10] Maria Paola Bonacina and Mnacho Echenim. Theory decision by
decomposition. Journal of Symbolic Computation, 45(2):229–260,
2010.

[BFT08] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. ME(LIA) -
model evolution with linear integer arithmetic constraints. In LPAR
2008, volume 5330 of LNCS, pages 258–273. Springer, 2008.

[BG90] Leo Bachmair and Harald Ganzinger. On restrictions of ordered
paramodulation with simplification. In CADE, pages 427–441, 1990.

[BG91] Leo Bachmair and Harald Ganzinger. Rewrite-based equational the-
orem proving with selection and simplification. Research Report
MPI-I-91-208, Max-Planck-Institut für Informatik, September 1991.
Revised version in the Journal of Logic and Computation 4, 3 (1994),
pp. 217–247.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-based equational the-
orem proving with selection and simplification. Journal of Logic and
Computation, 4(3):217–247, 1994. Revised version of Max-Planck-
Institut für Informatik technical report, MPI-I-91-208, 1991.

[BG01] Leo Bachmair and Harald Ganzinger. Resolution theorem proving.
In John Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning, pages 19–99. Elsevier and MIT Press, 2001.

[BG06] F. Benhamou and L. Granvilliers. Continuous and interval con-
straints. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, Foundations of Artificial Intelligence,
chapter 16, pages 571–603. Elsevier, 2006.

[BGN+06] Maria Paola Bonacina, Silvio Ghilardi, Enrica Nicolini, Silvio Ranise,
and Daniele Zucchelli. Decidability and undecidability results for
nelson-oppen and rewrite-based decision procedures. In Ulrich
Furbach and Natarajan Shankar, editors, Proceedings of the 3rd In-
ternational Joint Conference on Automated Reasoning, IJCAR 2006,
volume 4130 of Lecture Notes in Computer Science, pages 513–527.
Springer, 2006.

[BGW92] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Theorem
proving for hierarchic first-order theories. In Hélène Kirchner and
Giorgio Levi, editors, Algebraic and Logic Programming, Third Inter-
national Conference, Volterra, Italy, September 2-4, 1992, Proceed-
ings, volume 632 of Lecture Notes in Computer Science, pages 420–
434. Springer, 1992.

[BGW93] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Superpo-
sition with simplification as a decision procedure for the monadic
class with equality. In Georg Gottlob, Alexander Leitsch, and
Daniele Mundici, editors, Computational Logic and Proof Theory,
Third Kurt Gödel Colloquium, volume 713 of LNCS, pages 83–96.
Springer, August 1993.

Bibliography 215

[BGW94] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational
theorem proving for hierarchic first-order theories. Applicable Al-
gebra in Engineering, Communication and Computing (AAECC),
5(3/4):193–212, April 1994. Earlier Version: Theorem Proving for
Hierarchic First-Order Theories, in Giorgio Levi and Hélène Kirch-
ner, editors, Algebraic and Logic Programming, Third International
Conference, LNCS 632, pages 420–434, Volterra, Italy, September 2–
4, 1992, Springer-Verlag.

[BLdM09] Maria Paola Bonacina, Christopher Lynch, and Leonardo Mendonça
de Moura. On deciding satisfiability by DPLL(Γ+T) and unsound
theorem proving. In Renate A. Schmidt, editor, Automated Deduc-
tion - CADE-22, 22nd International Conference on Automated De-
duction, Montreal, Canada, August 2-7, 2009. Proceedings, volume
5663 of LNCS, pages 35–50. Springer, 2009.

[BLdM11] Maria Paola Bonacina, Christopher Lynch, and Leonardo Mendonça
de Moura. On deciding satisfiability by theorem proving with spec-
ulative inferences. Journal of Automated Reasoning, 47(2):161–189,
2011.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[Bon10] Maria Paola Bonacina. On theorem proving for program check-
ing: historical perspective and recent developments. In Temur Kut-
sia, Wolfgang Schreiner, and Maribel Fernández, editors, Proceed-
ings of the 12th International ACM SIGPLAN Conference on Princi-
ples and Practice of Declarative Programming,PPDP-12, pages 1–12.
ACM, 2010.

[Bro12] Martin Bromberger. Adapting the simplex algorithm for superposi-
tion modulo linear arithmetic. Bachelor thesis, Universität des Saar-
landes, Saarbrücken, 2012.

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. Satisfiability modulo theories. In Armin Biere, Marijn J. H.
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Sat-
isfiability, volume 185 of Frontiers in Artificial Intelligence and Ap-
plications, chapter 26, pages 825–885. IOS Press, February 2009.

[BT03] Peter Baumgartner and Cesare Tinelli. The model evolution calcu-
lus. In Proceedings of the 9th International Conference on Automated
Deduction,CADE-19, volume 2741 of Lecture Notes in Computer Sci-
ence, pages 350–364. Springer, 2003.

[BT11] Peter Baumgartner and Cesare Tinelli. Model evolution with
equality modulo built-in theories. In Nikolaj Bjørner and Vior-
ica Sofronie-Stokkermans, editors, Proceedings of the 23rd Interna-
tional Conference on Automated Deduction, CADE-23, volume 6803
of Lecture Notes in Computer Science, pages 85–100. Springer, 2011.

216 Bibliography

[BW13] Peter Baumgartner and Uwe Waldmann. Hierarchic superposition
with weak abstraction. In Maria Paola Bonacina, editor, CADE-24,
volume 7898 of LNAI. Springer, 2013.

[DdM06] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-
arithmetic solver for DPLL(T). In Thomas Ball and Robert B. Jones,
editors, Computer Aided Verification, 18th International Confer-
ence, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,
volume 4144 of Lecture Notes in Computer Science, pages 81–94.
Springer, 2006.

[Dim09] Dilyana Dimova. On the translation of timed automata into first-
order logic, 2009. Supervisors: A. Fietzke, C. Weidenbach.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A Ma-
chine Program for Theorem Proving. Communications of the ACM,
CACM, 5(7):394–397, 1962.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with
multiset orderings. Commun. ACM, 22(8):465–476, 1979.

[dMB07] Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient e-
matching for SMT solvers. In Frank Pfenning, editor, Proceedings of
the 21st International Conference on Automated Deduction, CADE-
21, volume 4603 of Lecture Notes in Computer Science, pages 183–
198. Springer, 2007.

[dMB08a] Leonardo Mendonça de Moura and Nikolaj Bjørner. Engineering
DPLL(T) + saturation. In IJCAR 2008, volume 5195 of LNCS, pages
475–490. Springer, 2008.

[dMB08b] Leonardo Mendonça de Moura and Nikolaj Bjørner. Model-based
theory combination. Electronic Notes in Theoretical Computer Sci-
ence, ENTCS, 198(2):37–49, 2008.

[dMB08c] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient
SMT solver. In TACAS 2008, volume 4963 of LNCS, pages 337–340.
Springer, 2008.

[DMB11] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo the-
ories: Introduction and applications. Communications of the ACM,
54(9):69–77, 2011.

[DP60] M. Davis and H. Putnam. A Computing Procedure for Quantifica-
tion Theory. Journal of the ACM, 7(3):201–215, 1960.

[DS95] Andreas Dolzmann and Thomas Sturm. Simplification of
quantifier-free formulas over ordered fields. Journal of Symbolic
Computation, 24:209–231, 1995.

[DS97] Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra
meets computer logic. ACM SIGSAM Bulletin, 31(2):2–9, June 1997.

Bibliography 217

[EK06] Jochen Eisinger and Felix Klaedtke. Don’t care words with an ap-
plication to the automata-based approach for real addition. In
Thomas Ball and Robert B. Jones, editors, Computer Aided Verifi-
cation, 18th International Conference, Proceedings, volume 4144 of
Lecture Notes in Computer Science, pages 67–80. Springer, 2006.

[EKK+11] Andreas Eggers, Evgeny Kruglov, Stefan Kupferschmid, Karsten
Scheibler, Tino Teige, and Christoph Weidenbach. Superposition
modulo non-linear arithmetic. Report of SFB/TR 14 AVACS 80, Au-
gust 2011. http://www.avacs.org.

[EKS+11] Andreas Eggers, Evgeny Kruglov, Karsten Scheibler, Stefan Kupfer-
schmid, Tino Teige, and Christoph Weidenbach. SUP(NLA) –
combining superposition and non-linear arithmetic. In Viorica
Sofronie-Stokkermans and Cesare Tinelli, editors, Frontiers of Com-
bining Systems, 8th International Symposium, FroCos 2011, Lecture
Notes in Computer Science. Springer, 2011. Accepted.

[FHR+06] Martin Fränzle, Christian Herde, Stefan Ratschan, Tobias Schubert,
and Tino Teige. Interval constraint solving using propositional SAT
solving techniques. In Youssef Hamadi and Lucas Bordeaux, edi-
tors, Proceedings of the CP 2006 First International Workshop on the
Integration of SAT and CP Techniques, pages 81–95, 2006.

[FHT+07] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and
Tobias Schubert. Efficient solving of large non-linear arithmetic
constraint systems with complex Boolean structure. JSAT, 1(3–
4):209–236, 2007.

[FHW10] Arnaud Fietzke, Holger Hermanns, and Christoph Weidenbach.
Superposition-based analysis of first-order probabilistic timed au-
tomata. In Proceedings of the 17th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, LPAR’10,
pages 302–316, Berlin, Heidelberg, 2010. Springer-Verlag.

[Fit90] Melvin Fitting. First-order logic and automated theorem proving.
Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[FKW12a] Arnaud Fietzke, Evgeny Kruglov, and Christoph Weidenbach. Au-
tomatic generation of inductive invariants by SUP(LA). Research
Report MPI-I-2012-RG1-002, Max-Planck Institute for Informatics,
Saarbrücken, Germany, March 2012.

[FKW12b] Arnaud Fietzke, Evgeny Kruglov, and Christoph Weidenbach. Auto-
matic generation of invariants for circular derivations in SUP(LA).
In Proceedings of the 18th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, volume 7180 of
Lecture Notes in Computer Science, pages 197–211. Springer, March
2012.

218 Bibliography

[FNORC08] Germain Faure, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodríguez-Carbonell. Sat modulo the theory of linear arithmetic:
Exact, inexact and commercial solvers. In Hans Kleine Büning and
Xishun Zhao, editors, Theory and Applications of Satisfiability Test-
ing - SAT, volume 4996 of Lecture Notes in Computer Science, pages
77–90. Springer, 2008.

[FW11] Arnaud Fietzke and Christoph Weidenbach. Superposition as a de-
cision procedure for timed automata. In Stefan Ratschan, editor,
Proceedings of the Fourth International Conference on Mathematical
Aspects of Computer and Information Sciences, MACIS 2011, pages
52–62, 2011.

[GBT07] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified ver-
ification conditions using satisfiability modulo theories. In Frank
Pfenning, editor, Proceedings of the 21st International Conference on
Automated Deduction, CADE-21, volume 4603 of Lecture Notes in
Computer Science, pages 167–182. Springer, 2007.

[Gie01] Martin Giese. Incremental closure of free variable tableaux. In Ra-
jeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceed-
ings of the First International Joint Conference on Automated Rea-
soning, IJCAR 2001, volume 2083 of Lecture Notes in Computer Sci-
ence, pages 545–560. Springer, 2001.

[Gil84] Robert Gilmer. Commutative Semigroup Rings. Chicago Lectures in
Mathematics. University of Chicago Press, 1984.

[GSSW06] Harald Ganzinger, Viorica Sofronie-Stokkermans, and Uwe Wald-
mann. Modular proof systems for partial functions with Evans
equality. Information and Computation, 204(10):1453–1492, 2006.

[Hen96] Thomas Henzinger. The theory of hybrid automata. In Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science,
LICS ’96, pages 278–292, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[Her10] Christian Herde. Efficient Solving of Large Arithmetic Constraint Sys-
tems with Complex Boolean Structure: Proof Engines for the Analysis
of Hybrid Discrete–Continuous Systems. Doctoral dissertation, Carl
von Ossietzky Universität Oldenburg, 2010.

[HHMWT00] Thomas Henzinger, Benjamin Horowitz, Rupak Majumdar, and
Howard Wong-Toi. Beyond hytech: Hybrid systems analysis us-
ing interval numerical methods. In Nancy Lynch and Bruce Krogh,
editors, HSCC 200, volume 1790 of LNCS, pages 130–144. Springer
Berlin / Heidelberg, 2000.

[HR91] Jieh Hsiang and Michaël Rusinowitch. Proving refutational com-
pleteness of theorem-proving strategies: The transfinite semantic
tree method. Journal of the ACM, 38(3):559–587, 1991.

Bibliography 219

[HSG04] Ullrich Hustadt, Renate A. Schmidt, and Lilia Georgieva. A survey
of decidable first-order fragments and description logics. Journal of
Relational Methods in Computer Science, 1:251–276, 2004.

[Hue80] Gérard P. Huet. Confluent reductions: Abstract properties and ap-
plications to term rewriting systems. Journal of the ACM, 27(4):797–
821, 1980.

[HW07] Thomas Hillenbrand and Christoph Weidenbach. Superposition for
finite domains. Research Report MPI-I-2007-RG1-002, Max-Planck
Institute for Informatics, Saarbruecken, Germany, April 2007.

[HW10] Matthias Horbach and Christoph Weidenbach. Superposition for
fixed domains. ACM Transactions on Computational Logic, 11(4):1–
35, 2010.

[IJSS08] Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans.
On local reasoning in verification. In C. R. Ramakrishnan and Jakob
Rehof, editors, Proceedings of TACAS 2008, volume 4963 of LNCS,
pages 265–281. Springer, 2008.

[ISS09] Carsten Ihlemann and Viorica Sofronie-Stokkermans. System de-
scription: H-pilot. In Renate A. Schmidt, editor, Proceedings of the
22nd International Conference on Automated Deduction,CADE-22,
volume 5663 of Lecture Notes in Computer Science, pages 131–139.
Springer, 2009.

[ISS10] Carsten Ihlemann and Viorica Sofronie-Stokkermans. On hierarchi-
cal reasoning in combinations of theories. In Proceedings of the
5th International Joint Conference on Automated Reasoning, IJCAR
2010, volume 6173 of Lecture Notes in Computer Science, pages 30–
45. Springer, 2010.

[JMW98] Florent Jacquemard, Christoph Meyer, and Christoph Weidenbach.
Unification in extensions of shallow equational theories. In Tobias
Nipkow, editor, Rewriting Techniques and Applications, 9th Inter-
national Conference, RTA-98, volume 1379 of LNCS, pages 76–90.
Springer, 1998.

[Ked08] Nadine Keddis. Strong satisfaction. Bachelorthesis, Albert-Ludwigs-
Universität Freiburg, September 2008.

[Kru08] Evgeny Kruglov. Superposition modulo linear arithmetic. Master’s
thesis, Universität des Saarlandes, March 2008.

[KV07] Konstantin Korovin and Andrei Voronkov. Integrating linear
arithmetic into superposition calculus. In Jacques Duparc and
Thomas A. Henzinger, editors, CSL 2007, volume 4646 of LNCS,
pages 223–237. Springer, 2007.

220 Bibliography

[KW11] Evgeny Kruglov and Christoph Weidenbach. SUP(T) decides first-
order logic fragment over ground theories. In Stefan Ratschan, ed-
itor, Proceedings of the Fourth International Conference on Mathe-
matical Aspects of Computer and Information Sciences, MACIS 2011,
pages 126–148, 2011.

[KW12] Evgeny Kruglov and Christoph Weidenbach. Superposition decides
the first-order logic fragment over ground theories. Mathematics in
Computer Science, December 2012.

[Lan93] Serge Lang. Algebra (3. ed.). Addison-Wesley, 1993.

[LW93] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier
elimination. Comput. J., 36(5):450–462, 1993.

[LW07] Michel Ludwig and Uwe Waldmann. An extension of the knuth-
bendix ordering with lpo-like properties. In Proceedings of the 14th
international conference on Logic for programming, artificial intel-
ligence and reasoning, LPAR’07, pages 348–362, Berlin, Heidelberg,
2007. Springer-Verlag.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT solver.
In Jan Rabaey, editor, Proceedings of the 38th Design Automation
Conference, DAC 2001, pages 530–535. ACM, 2001.

[NN93] Pilar Nivela and Robert Nieuwenhuis. Saturation of first-order (con-
strained) clauses with the saturate system. In Claude Kirchner, ed-
itor, Proceedings of the 5th International Conference on Rewriting
Techniques and Applications, RTA-93, volume 690 of Lecture Notes
in Computer Science, pages 436–440. Springer, 1993.

[Non00] Andreas Nonnengart. Hybrid systems verification by location elimi-
nation. In Nancy A. Lynch and Bruce H. Krogh, editors, HSCC 2000,
volume 1790 of Lecture Notes in Computer Science, pages 352–365.
Springer, 2000.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solv-
ing sat and sat modulo theories: From an abstract davis–putnam–
logemann–loveland procedure to DPLL(T). J. ACM, 53:937–977,
November 2006.

[NR01] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based the-
orem proving. In John Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning (in 2 volumes), pages 371–443.
Elsevier and MIT Press, 2001.

[PC07] André Platzer and Edmund Clarke. The image computation prob-
lem in hybrid systems model checking. In Alberto Bemporad, Anto-
nio Bicchi, and Giorgio Buttazzo, editors, HSCC 2007, volume 4416
of LNCS, pages 473–486. Springer Berlin / Heidelberg, 2007.

Bibliography 221

[Pug91] William Pugh. The omega test: a fast and practical integer program-
ming algorithm for dependence analysis. In Joanne L. Martin, ed-
itor, Proceedings Supercomputing’91, 1991, pages 4–13. IEEE Com-
puter Society / ACM, 1991.

[PW06] Virgile Prevosto and Uwe Waldmann. SPASS+T. In Geoff Sut-
cliffe, Renate Schmidt, and Stephan Schulz, editors, ESCoR: FLoC’06
Workshop on Empirically Successful Computerized Reasoning, vol-
ume 192, pages 18–33, 2006.

[Rüm08a] Philipp Rümmer. Calculi for Program Incorrectness and Arithmetic.
PhD thesis, University of Gothenburg, 2008.

[Rüm08b] Philipp Rümmer. A constraint sequent calculus for first-order logic
with linear integer arithmetic. In Proceedings, 15th International
Conference on Logic for Programming, Artificial Intelligence and
Reasoning, volume 5330, pages 274–289, 2008.

[RW69] George Robinson and Lawrence Wos. Paramodulation and theorem
proving in first order theories with equality. J. ACM, pages 135–150,
1969.

[Sch89] Alexander Schrijver. Theory of linear and integer programming.
John Wiley & Sons, Inc., 1989.

[Seb07] Roberto Sebastiani. Lazy satisability modulo theories. JSAT, 3(3-
4):141–224, 2007.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a
core of semantic knowledge. In Proceedings of the 16th international
conference on World Wide Web, WWW ’07, pages 697–706, New York,
NY, USA, 2007. ACM.

[SS05] Viorica Sofronie-Stokkermans. Hierarchic reasoning in local theory
extensions. In Proceedings of the 20th International Conference on
Automated Deduction, CADE-20, volume 3632 of Lecture Notes in
Computer Science, pages 219–234. Springer, 2005.

[SWW10] Martin Suda, Christoph Weidenbach, and Patrick Wischnewski. On
the saturation of yago. In Proceedings of the 5th international con-
ference on Automated Reasoning, IJCAR’10, pages 441–456, Berlin,
Heidelberg, 2010. Springer-Verlag.

[Tei12] Tino Teige. Stochastic Satisfiability Modulo Theories: A Symbolic
Technique for the Analysis of Probabilistic Hybrid Systems. Doctoral
dissertation, Carl von Ossietzky Universität Oldenburg, Department
of Computing Science, Germany, 2012. Supervisors: Prof. Dr. Martin
Fränzle and Prof. Dr.-Ing. Holger Hermanns.

[TPS98] Claire J. Tomlin, George J. Pappas, and Shankar Sastry. Conflict reso-
lution for air traffic management: A study in multi-agent hybrid sys-
tems. IEEE Transactions on Automatic Control, 43(4):509–521, April
1998.

222 Bibliography

[Wal01] Uwe Waldmann. Superposition and chaining for totally ordered di-
visible abelian groups. In Rajeev Goré, Alexander Leitsch, and To-
bias Nipkow, editors, IJCAR 2001, volume 2083 of LNAI, pages 226–
241. Springer, 2001.

[Wal02] Uwe Waldmann. Cancellative abelian monoids and related struc-
tures in refutational theorem proving (Part I). Journal of Symbolic
Computation, 33(6):777–829, June 2002.

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Martin
Suda, and Patrick Wischnewski. Spass version 3.5. In CADE-22, vol-
ume 5663 of LNAI, pages 140–145. Springer, 2009.

[Wei94] Volker Weispfenning. Quantifier elimination for real algebra - the
cubic case. In Malcolm A. H. MacCallum, editor, Proceedings of the
International Symposium on Symbolic and Algebraic Computation,
ISSAC, pages 258–263. ACM, 1994.

[Wei97] Volker Weispfenning. Quantifier elimination for real algebra - the
quadratic case and beyond. Appl. Algebra Eng. Commun. Comput.,
8(2):85–101, 1997.

[Wei01] Christoph Weidenbach. Combining superposition, sorts and split-
ting. In Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning, volume 2, chapter 27, pages 1965–2012. Else-
vier, 2001.

[Wis12] Patrick Wischnewski. Efficient Reasoning Procedures for Complex
First-Order Theories. Doctoral dissertation, Universität des Saarlan-
des, Saarbrücken, November 2012.

[WW12] Christoph Weidenbach and Patrick Wischnewski. Satisfiability
checking and query answering for large ontologies. In Pascal
Fontaine, Renate Schmidt, and Stephan Schulz, editors, PAAR-2012:
IJCAR’12 Workshop on Practical Aspects of Automated Reasoning,
pages 163–177, 2012.

[ZS00] Hantao Zhang and Mark E. Stickel. Implementing the davis-putnam
method. Journal of Automated Reasoning, 24(1/2):277–296, 2000.

Index

Notation
L (complimentary literal)15
≈ . 15

≈̇ . 15
6≈ . 15

> . 15
⊥ (logical constant)15
⊥ (contradiction) 24
¬ . 15
∨ . 15
∧ . 15
→ (implication) 15
↔ (equivalence) 15
∃ .15
∀ . 15
tr ueP . 15
∼ . 17

∼E .17
Â . 19

Âlex .20
Âlpo . 20
ÂH(γ) . 151
Âmul .20
º . 19

p > q . 16
p ≥ q . 16

p ∥ q .16
` . 33
|= . 24

|=C . 44, 45
|=W . 89

→ (rewrite relation)20
→R . 21
→+ . 20
→∗ . 20
← . 20

→0 . 20
↔ . 20
↔+ . 20
↔∗ . 20
s ↓ t . 20
s↓R (normal form) 21

|C | (clause length) 22
|p| (position length) 16
|t | (term size) . 16
[t/x] .18
[t]A . 60
[t]∼ . 17

[t]E .17
[t]∼E . 17

t/p . 16
t [s] . 16

t [s]p . 16
x 7→ t . 18
tA . 24
A′|Σ . 44
Λ ∥ Γ→∆ . 42
α (approximation function) 36

αH-F . 98
ρ (position set operator) 16
HHSp . 44
A . 23, 38

A′ . 38
AΣ .23, 38

AΣ′ . 38
Ax ′ . 38
C lΣ . 22, 42
C lΣ′ . 42
C . 27, 38
DA . 62
EA . 62
F . 56

223

224 Index

FΩ . 15
H .49
HSp . 38
I (inference)30
LSCHSp . 103
MPG . 149
M . 172
N (clause/formula set) 25

N∞ . 34
N∗ . 34
NA . 67

Ω . 14, 38
Ω′ . 38
Ω′′ .38

Q . 172
R (reduction) 30
R≈
A . 61

R̃≈
A . 61

RE . 104
R̃EF . 104
REF . 104
RSD

N . 141
RSD . 104
R (redundancy criterion) 32

RF . 32
RI . 32
RF .56
RFF . 56

RFI . 56

RH . 75
RHF . 75

RHI . 75
S | (splitting) 30
SCHSp .93

LSCHSp . 103
Σ . 14, 38

Σ′ . 38
S . 14, 38

S . 14
S ′ . 38
S ′′ . 38
Q .172

Sp . 27, 38
Sp′ . 38
HSp . 38

TΩ/∼ . 17
TΩ(X)/E . 17

TΩ(X)/∼E .17
TΩ(S,X) .14

TΩ .15
TΩ(S) . 15
TΩ(S) . 14
TΩ(S ,X) . 14
TΩ(X) . 14

UA . 23
VAG . 136
VAP . 148
VC . 146
VM . 149
X . 14, 38

X ′ . 38
X ′′ . 38

cdom . 18
concl . 30
depth . 16, 22
dom . 18
ε (top position) 16
gi . 18
h . 89
im . 18
mÂ
A(t) . 60

mgu . 18
nF . 153, 163
nL . 147
nV . 147
ω . 151
prem . 30
sgi . 43

sgi(I) . 74
sgi(N) . 43
sgiA . 67

sgiA(I) . 74
sgiA(N) .67

smgi . 102
smgi(N) . 102

φ . 162
var . 16

A
abstracted .42

abstracted out 42
Abstraction . 42
Algebra .23

hierarchic . 44
homomorphic to 26

Index 225

isomorphic 27
monomorphic to 27
term-generated 24
universe of 23
weak . 89
weak relative to C 89

Antecedent . 21
Approximation

Calculi
theorem of 36

function
α . 36
αH-F .98

H-F
theorem of 98

of theorem proving calculi . . 36
Assignment

base 175, 198
satisfying198

interval . 198
modification of 23
variable . 23

Atom . 15

B
Base . 38
base . 39
basified . 128
basifying . 128
Body . 38

C
Calculi

approximation 36
H-F . 98

Calculus .35
Church-Rosser . 21
Class

of . . . algebras
Σ′-algebras AΣ′ 38
Σ-algebras AΣ38
Σ-algebras AΣ23
base algebras C 38
hierarchic algebras HHSp 44
weak algebras WHSp 89

of . . . clause sets
ground Σ′-clause sets GCΣ′ 99

locally sufficiently completeLSCHSp

103
sufficiently complete SCHSp 93

of . . . clauses
Σ-clauses C lΣ 22
base clauses C lΣ 42
non-base clauses C lΣ′\C lΣ 42

Clause .21
abstracted 42

antecedent of 42
base part of 42
constraint of 42
free part of 42
succedent of 42

antecedent of 21
basifying .128
depth of .22
empty . 22, 31
Horn . 22
length of . 22
negative .22
positive . 22
productive 26
F-redundant 56
H-redundant 75
set

basified 128
DA . 62
EA .62
NA . 67
sufficiently complete 93
sufficiently complete locally 103

set of all ground instances of 22
succedent of 21
unit . 22

Closure
existential .17
universal . 17

compact . 27
compatible with contexts 19
complete . 31

refutationally 31, 35
sufficiently 93

locally . 103
Completeness

hierarchic
theorem of 99

refutational 35

226 Index

Conclusion .30
confluent . 20
Congruence . 17
Conjunctive form199
Consequence . 24
consistent . 24

C -consistent 45
WHSp-consistent89
relative to C 45
relative to WHSp 89
theory-consistent 45, 89

Constraint . 42
primitive .199

Constraint Refutation 48
Contradiction 24, 31
convergent . 21

D
Deduction

system . 31
Derivation . 33

closure of . 34
fair . 34
limit of . 34

Derivation relation 33
Disequation .15

E
Enrichment . 38
Entailment . 24

C -entailment 45
WHSp-entailment 89
relative to C 45
relative to WHSp 89

Equality factoring
ground . 55
hierarchic . 48

Equality resolution
ground . 55
hierarchic . 48

Equation . 15
occurrence of 23

equisatisfiable . 24
Equivalence . 17

class .17
Equivalence class [t]A60
equivalent . 17, 24
Expression . 15

depth of .16
size of . 16
subexpression 16

extension . 40
extension-free . 40

F
Formula . 15

closed . 17
SMT . 198

inconsistent under an interval
assignment 198

satisfiable 198
subformula 16

free . 39

G
ground . 16

H
Herbrand Interpretation25
Hierarchic

Lifting Lemma 84
HLPO ÂH(γ) . 151
homomorphic . 26
homomorphic to 26
Homomorphism 26

inverse . 27

I
inconsistent .24

C -inconsistent 45
WHSp-inconsistent 89
relative to C 45
relative to WHSp 89
theory-inconsistent 45, 89
under interval assignment . 198

Inference .30
F-redundant 56
H-redundant 75
system . 31
F . 56
H . 49

Instance .18
ground . 18
simple . 43
simple ground

R≈
A-reduced 67

smooth . 102

Index 227

Interpretation 23, 24
candidate . 26
Herbrand . 25

irreducible . 21
isomorphic . 27
Isomorphism . 27

J
joinable . 20

L
Lemma

Extension Terms 40
Farkas’

affine variant 178
for strict inequations 180

Hierarchic Lifting 84
Hierarchic Model 93
Hierarchic Redundancy Criterion

79
lexicographic . 20
Lifting . 84
Literal . 15

maximal 23, 42
strictly 23, 42

minimal 23, 42
strictly 23, 42

negative .15
positive . 15
selected . 22

LP problem . 176
constraint matrix of 176
elementary constraints of . . 176
feasible . 177
matrix form of176
objective coefficients of 176
objective function of 176
optimal solution of 177
right-hand-side values of . . 176
right-hand-side vector of . . 176
satisfying assignment 177
unbounded solution of 177

LPO . 20

M
Matcher . 18

encompassment 119, 174
maximal . 23

strictly . 23
minimal . 23

strictly . 23
Model . 24

hierarchic, lemma 93
of HSp . 45
of specification 27

monomorphic . 27
Monomorphism 27
MPG transformation 149
Multiset . 19
Mutual Hierarchic Model Existence Con-

dition 51
Mutual Saturation Condition51

N
non-base . 39
Normal form . 21

O
Operator . 14

symbol . 14
Ordering . 19

lexicographic extension of . . 20
lexicographic path20

hierarchic ÂH(γ) 151
multiset extension of 20
partial .19
reduction . 20
rewrite . 20
simplification 20
strict . 19
total . 19
well-founded 19

P
persisting . 34
Position . 16
Precedence . 20
Predicate . 15
Prefix order . 16

above . 16
strictly . 16

below . 16
strictly . 16

parallel .16
Premise . 30
produce . 26

228 Index

productive . 26
pure . 39
Purification . 42

Q
Quantifier . 15

scope of .17
quantifier-free . 15
Quotient . 17

R
reduced . 21

left-reduced 21
R≈
A-reduced 67

right-reduced 21
Reduction . 30
Redundancy

criterion . 32
Redundancy criterion

hierarchic RF 75
standard (“flat”) RF56

redundant
F-redundant 56
H-redundant 75

Σ-Restriction .44
Rewrite

relation . 20
Church-Rosser 21
confluent 20
induced by R21
terminating 20
well-founded 20

rule . 21
system . 21

convergent 21
R≈
A .61

R̃≈
A .61

RE . 104
R̃EF . 104
REF . 104
RSD

N . 141
RSD . 104
reduced 21

Rule
deduction .30
inference .30
reduction . 30
splitting . 30

S
satisfiable . 24

equisatisfiable 24
saturated . 33
selected . 22
Selection . 22

eager . 22
function . 22

Signature .14
base . 38
body . 38

simple .43
SLI . 175

feasible region of 175
Implication Test 178
Satisfiability Test 177
satisfiable176
standard form of 176
valid . 176

smooth .40, 102
Sort . 14

symbol . 14
sound . 31
Specification . 27

base . 38
compact . 27
hierarchic . 38

body of . 38
enrichment of38

model of . 27
Splitting . 30

hierarchic . 46
stable under substitutions19
Subexpression . 16

immediate 16
strict . 16

Substitution .17
co-domain of 18
domain of 18
ground . 18
grounding 18
image of . 18
modification of 18
R≈
A-reduced 67

simple . 43
affine . 175

smooth . 102
Subsumption Deletion

Index 229

Hierarchic 119
encompassment condition 119
free part subsumption condi-

tion . 119
non-emptiness condition 119

Subterm property19
Succedent .21
Superposition

calculus
ground . 54
hierarchic 46

left
ground . 54
hierarchic 46

right
ground . 55
hierarchic 47

Symbol
extension . 40

T
Tautology . 24
Tautology Deletion

Hierarchic 118
Term . 14

base . 39
basified . 128
depth of .16
extension . 40
extension-free 40
free . 38, 39
ground . 14
non-base .39
pure . 39
R≈
A-reduced 67

simple instance of 43
smooth . 40
smooth instance of102
subterm .16

immediate 16
strict .16

Term rewrite system 21
Theorem

Abstracted Conclusion 49
Affine Encompassment Matcher

Existence 185
non-strict case 184

Birkhoff’s . 25

Calculi Approximation 36
H-F-Approximation 98
Hierarchic Completeness . . . 99
Hierarchic Saturation86
SLIs Implication 181

non-strict case 179
Weak Algebra 90

Theorem proving calculus35
TRS .21

U
unifiable . 18
Unifier . 18

most general18
unsatisfiable . 24

V
valid .24
Valuation

interval . 198
Variable

Assignments Propagation . . 148
Variables Cloning 146
Variables Merging 149
bound .17
free .17
renaming . 18
Variable Grounding-Propagation-

Merging 149
Variables Assignments Grounding 136

W
well-founded . 20

	Contents
	Introduction
	Preliminaries
	Signatures
	Terms. Formulae. Expressions
	Substitutions. Unifiers
	Multisets. Orderings. Rewrite Systems
	Clauses
	Semantics. Homomorphisms. Specifications

	Hierarchic Refutational Theorem Proving
	Refutational Theorem Proving
	Inference, Reduction, and Splitting Rules
	Redundancy Criterion
	Derivations. Saturation and Refutation
	Approximation of Theorem Proving Calculi

	Hierarchic Specification
	Syntax
	Semantics

	SUP(T) Calculus
	Completeness of SUP(T)
	Overview
	Standard Superposition for Ground Clauses SUP
	Reduced Instances and Extended Clause Sets
	Hierarchic Redundancy Criterion
	Lifting and Saturation
	Weak Algebras
	Sufficient Completeness Criterion
	Refutational Completeness

	Local Sufficient Completeness
	Locally Sufficiently Complete Clause Sets
	Sufficiently Defining Rewrite Systems
	Model Existence and Refutational Completeness

	Hierarchic Reduction Rules

	SUP(T) as a Decision Procedure
	Introduction
	Deciding Ground FOL(T)
	Basification
	Derivation Invariants
	Model Existence
	Termination
	Decidability

	Deciding Non-Ground FOL(T)
	BSHE(GBST) Class
	Derivation Invariants
	Model Existence
	Termination
	Decidability
	Relation to Weak Abstraction. Completeness on GBT Class

	Application: Reasoning in Ontologies with Arithmetical Facts

	SUP(LA): Superposition Modulo Linear Arithmetic
	Introduction
	Hierarchic Specification of FOL(LA)
	SUP(LA) Application Issues

	Constraint Solving
	Basic Notions
	Satisfiability Test
	Implication Test
	Encompassment Matcher Existence

	Implementation
	Application: Reasoning about Transition Systems

	SUP(NLA): Superposition Modulo Non-Linear Arithmetic
	Introduction
	Hierarchic Specification of FOL(NLA)
	SUP(NLA) Application Issues

	Constraint Solving
	iSAT Procedure. Strong Satisfaction Check
	Constraint and Implication Simplification

	Application: Reasoning about Collision Avoidance Protocols

	Conclusion and Future Work
	Bibliography
	Index

