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Abstract

We describe the design and implementation of a system combination method

for machine translation output. It is based on sentence selection using binary

classification models estimated on joint, binarised feature vectors. By contrast

to existing system combination methods which work by dividing candidate

translations into n-grams, i.e., sequences of n words or tokens, our frame-

work performs sentence selection which does not alter the selected, best

translation. First, we investigate the potential performance gain attainable

by optimal sentence selection. To do so, we conduct the largest meta-study

on data released by the yearly Workshop on Statistical Machine Translation

(WMT). Second, we introduce so-called joint, binarised feature vectors which

explicitly model feature value comparison for two systems A, B. We compare

different settings for training binary classifiers using single, joint, as well as

joint, binarised feature vectors. After having shown the potential of both

selection and binarisation as methodological paradigms, we combine these

two into a combination framework which applies pairwise comparison of

all candidate systems to determine the best translation for each individual

sentence. Our system is able to outperform other state-of-the-art system

combination approaches; this is confirmed by our experiments. We conclude

by summarising the main findings and contributions of our thesis and by

giving an outlook to future research directions.
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Zusammenfassung

Wir beschreiben den Entwurf und die Implementierung eines Systems zur

Kombination von Übersetzungen auf Basis nicht modifizierender Auswahl

gegebener Kandidaten. Die zugehörigen, binären Klassifikationsmodelle wer-

den unter Verwendung von gemeinsamen, binärisierten Merkmalsvektoren

trainiert. Im Gegensatz zu anderen Methoden zur Systemkombination, die

die gegebenen Kandidatenübersetzungen in n-Gramme, d.h., Sequenzen von

n Worten oder Symbolen zerlegen, funktioniert unser Ansatz mit Hilfe von

nicht modifizierender Auswahl der besten Übersetzung. Zuerst untersuchen

wir das Potenzial eines solches Ansatzes im Hinblick auf die maximale theo-

retisch mögliche Verbesserung und führen die größte Meta-Studie auf Daten,

welche jährlich im Rahmen der Arbeitstreffen zur Statistischen Maschinellen

Übersetzung (WMT) veröffentlicht worden sind, durch. Danach definieren

wir sogenannte gemeinsame, binärisierte Merkmalsvektoren, welche explizit

den Merkmalsvergleich zweier Systeme A, B modellieren. Wir vergleichen

verschiedene Konfigurationen zum Training binärer Klassifikationsmodelle

basierend auf einfachen, gemeinsamen, sowie gemeinsamen, binärisierten

Merkmalsvektoren. Abschließend kombinieren wir beide Verfahren zu einer

Methodik, die paarweise Vergleiche aller Quellsysteme zur Bestimmung der

besten Übesetzung einsetzt. Wir schließen mit einer Zusammenfassung und

einem Ausblick auf zukünftige Forschungsthemen.
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Preface

– Pieter Bruegel the Elder: The Tower of Babel, circa 1563

“Now the whole earth had one language and the same words. And as people migrated from the

east, they found a plain in the land of Shinar and settled there. And they said to one another,

“Come, let us make bricks, and burn them thoroughly.” And they had brick for stone, and

bitumen for mortar. Then they said, “Come, let us build ourselves a city and a tower with its

top in the heavens, and let us make a name for ourselves, lest we be dispersed over the face of the

whole earth.” And the Lord came down to see the city and the tower, which the children of man

had built. And the Lord said, “Behold, they are one people, and they have all one language, and

this is only the beginning of what they will do. And nothing that they propose to do will now be

impossible for them. Come, let us go down and there confuse their language, so that they may

not understand one another’s speech.” So the Lord dispersed them from there over the face of all

the earth, and they left off building the city. Therefore its name was called Babel, because there

the Lord confused the language of all the earth. And from there the Lord dispersed them over

the face of all the earth.”
– Genesis 11:1-9
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Introduction

Language “makes infinite use of finite means”.
– Wilhelm von Humboldt: Über die Verschiedenheit des menschlichen Sprachbaues und ihren Einflußauf

die geistige Entwickelung des Menschengeschlechts [von Humboldt, 1836] as quoted in [Chomsky, 1965]

“The limits of my language mean the limits of my world.”
– Ludwig Wittgenstein: Tractatus Logico-Philosophicus, Proposition 5.6 [Wittgenstein, 1922]

“Language is the source of misunderstandings.”
– Antoine de Saint-Exupéry: Le Petit Prince, Chapter XXI [de Saint-Exupéry, 1943]

1.1 Translation Enables Understanding

Machine translation (MT) is a complex yet fascinating problem. Contrary

to automatic speech recognition (ASR) which is only dependent on frag-

ments of recorded speech in some language L that have to be mapped into

text chunks in the same language, MT approaches also have to somehow

model and capture the implicit transfer of words, phrases and concepts into

another, different target language L2. The latter problem is more complicated

than the former. Due to the generative nature of language, as alluded to by

Wilhelm von Humboldt already in 1836 [von Humboldt, 1836], there exists

a plethora of potential, valid and correct translations for any given sentence.

1



Chomsky adopts this idea of a “creative” aspect of language use in his seminal

work on the theory of syntax [Chomsky, 1965, p. v]. Given this property of

language, it becomes evident that machine translation of text necessarily is a

hard problem. A finding that is neither recent nor new. Instead it seems that

philosophers and linguists alike identified the complexity and difficulties of

natural language processing already long ago and that these still apply.

Adopting Wittgenstein’s argumentation [Wittgenstein, 1922, § 5.6] it is

clear that language is an integral part of human life. This claim holds both

on the level of individual human beings but also for larger, social groups.

Language can enable and support communication, hence fostering collabo-

ration and progress, or represent an obstacle that hinders the free flow of

information and eventually leads to conflict. Without a common language

there is only little communication possible, or none at all. Without adequate

communication it is difficult to form groups or work collaboratively. There-

fore, language and linguistic competences do matter. Wittgenstein himself

refers to the concept of language as a limiting factor, which can be interpreted

as language being a fundamental factor that enlarges—or constraints—the

world of the human being. While language is certainly not the only factor

which influences exchange between human beings, it seems reasonable to

state that an improved understanding among peoples could reduce the num-

ber of crises, wars and economic imbalances. This is what de Saint-Exupéry

captures in his quote from [de Saint-Exupéry, 1943, Chapter XXI]: misun-

derstanding is caused by wrong or missing use of language. Translation as a

linguistic process is a tool that empowers humankind to avoid such problems

and helps to develop a greater and better understanding.

Following the technological advancements of the 20th Century, the amount

of language data such as newspaper articles, television or radio broadcasts or

2



digital content available from the internet is steadily and quickly increas-

ing. In its print edition from February 25, 2010, the British newspaper The

Economist featured an article titled “Data, data everywhere”1 in which the ex-

plosion of digital data is discussed and the implications with regards to stor-

ing all those big data are explained. In summary, the amounts of information

available surpass existing storage capacities, leading to information loss con-

sidering the estimated growth rate of digital data. “Information has gone from

scarce to superabundant” which means that the language technology sector is

faced with challenges concerning what data to use and what not. Also the

question of data persistency needs to be addressed to avoid losing important

pieces of information. As a successor of the industrial society we are now

living in what is called the information society. Knowledge and data are ex-

pressed using natural languages which have to be translated to enable their

usage in different language communities. As the world is faced with a trend

towards globalisation in many areas of human everyday life, translation has

a central role in this process. And given the realities of digital content pro-

duction, translation technology is challenged by massive amounts of such

data.

Translation also constitutes a huge (and ever-growing) economic market.

Estimates by the European Commission indicate that “since 2008 the demand

for the language and translation business in the European Union has been on the

rise, growing from 8.4 billion Euro to about 10 billion Euro today”.2 In 2011

alone, “more than two million pages have been translated for the European Com-

mission”. To achieve this throughput “the EU itself employs as many as 5,300

1Source: http://www.economist.com/node/15557443, retrieved November 24, 2012.
2Quotes originate from Ms. Contino, Head of Unit of Multilingualism and Transla-

tion Studies at the Directorate General for Translation. Taken from a presentation she
gave at DCU on September 13, 2012. See http://dculs.dcu.ie/dcu-language-services-news/

the-translation-industry-and-the-european-union/ for the corresponding news item.
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translators and interpreters – 2,500 of which are working in the Directorate Gen-

eral for Translation (DGT)” with estimated yearly costs of around 300 million

Euro.3 In its ISA programme (Interoperability Solutions for European Public

Administrations), the European Commission reserves funding for the design,

development and deployment of a “Machine Translation Service by the EC”

(MT@EC).4 According to Andreas Eisele, project manager MT at DGT, “a

real-life trial of the MT@EC service has been used by more than 800 users inside

DGT between May 2011 and November 2012 to translate more than four million

pages.”. As part of the MT@EC program, the European Commission plans the

release of more data such as translation memories from the Official Journal of

the EU (DGT-TM) in addition to the already released Acquis Communautaire

(DGT-Acquis) [Steinberger et al., 2006].5

As the European Union aims to “protect linguistic diversity and to promote

knowledge of languages”6 it seems clear that the amount of translation work

the DGT is handling continues to grow, similar to the explosion of digital

data mentioned above. Faced with this challenge, the Directorate General

for Translation explores how machine translation methods can be utilised to

cope with the high volume of translation requests, complementing the work

of human translators and interpreters. Current state-of-the-art MT tools may

not be usable for tasks requiring high quality translation output but they

may well be ready for some of the translation tasks at hand. Given the sheer

amounts of data to be translated the assumption that machine translation

tools would replace human translation professionals has no sound basis. This

especially holds when considering the exponential growth of data compared

to the number of trained translators. Translation technology thus should not

3
http://ec.europa.eu/dgs/translation/faq/index_en.htm

4
http://ec.europa.eu/isa/documents/isa_wp_second_revision_2012_annex_en.pdf

5
http://www.w3.org/International/multilingualweb/luxembourg/slides/31-pilos.pdf

6
http://ec.europa.eu/languages/orphans/faq_en.htm#9
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be perceived as threat but rather as chance. This is nicely stated in a quote

from [Kelly and Zetzsche, 2012]:

“Translation software is not making translators obsolete.
Has medical diagnostic software made doctors obsolete?”
– Nataly Kelly, Jost Zetzsche: Found in Translation: How Language Shapes Our Lives and Transforms the

World [Kelly and Zetzsche, 2012]

Unsurprisingly, research efforts on machine translation technology have

seen a boost over the last decades, e.g., in the EuroMatrix (IST-034291) and

EuroMatrixPlus (ICT-231720) projects or the Network of Excellence T4ME

(FP7-249119)7. Similar to developments in Europe, research funding for

MT projects has also been substantially increased in the USA and Asia. The

same holds true for research groups and laboratories of companies such as

Microsoft, Google or IBM. As a result research on MT has achieved a lot of

progress over the last two decades. Since the 1990s statistical approaches

have largely dominated MT research activities. The increasing availability

of parallel or pseudo-parallel data has enabled data-driven methods that have

evolved into sophisticated and robust translation tools which exhibit strong

performance in terms of translation quality. A comprehensive summary of

the early history of machine translation can be found in [Hutchins, 1986]. An

overview on recent developments in MT research is provided in [Koehn, 2010,

Chapter 1.2]. Section 1.2 gives a quick summary, highlighting several aspects

relevant to this thesis.

In parallel, public awareness related to MT issues has greatly increased.

The EuroMatrix project started a series of so-called “Machine Translation

Marathons” (MTM) in which interested persons could learn about translation

methods and models. Next to its summer/winter school aspect, the MTM
7More information available on individual project websites http://www.euromatrix.net/,

http://www.euromatrixplus.net/, and http://www.meta-net.eu/projects/t4me/
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events also host research talks and invite researchers and students to work

on actual projects. Last but not least there is an open-source convention

in which tools for MT training, translation or evaluation are presented and

discussed. Similar to the continued success of the Linux operating system8

and welcomed by public funding agencies the amount of source code and

data which is released under permissive, open licensing terms has broadened

widely in recent years. In his book “Just for Fun: The Story of an Accidental

Revolutionary”, Linux creator Linus Torvalds explains the reasoning behind

the open source idea:

“The theory behind open source is simple. (...) Anyone can improve
it, change it, exploit it. (...) Think Zen. The project belongs to no
one and to everyone. When a project is opened up, there is rapid
and continual development.”
– Linus Torvalds, David Diamond: Just for Fun: The Story of an Accidental

Revolutionary [Torvalds and Diamond, 2001]

As many of these open-source tools can also be used commercially it is

fair to state that research endeavours had a positive impact on the translation

market, empowering small and medium-sized businesses. Notable systems

that have originated from research funding are:

– the Moses decoder as described in [Koehn et al., 2007];

– the Joshua toolkit, see [Li et al., 2009];

– the cdec framework explained by [Dyer et al., 2010];

– the Jane decoder published as [Vilar et al., 2010].

Next to software packages there also exists a multitude of multi-lingual data

such as parallel corpora, translation memories or terminology databases. We

8
http://www.kernel.org/
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list a selection of freely available parallel corpora that are widely used in

machine translation research below:

– the Canadian Hansards Corpus;9

– the Europarl corpus provided the Parliament of the European Union

and processed as parallel texts suited for MT research [Koehn, 2005];

– the Acquis Communautaire distributed by the JRC of the European

Commission [Steinberger et al., 2006];

– the UN Corpus harvested from United Nations websites as part of the

EuroMatrixPlus project [Eisele and Chen, 2010].

The Linguistic Data Consortium (LDC)10 also collects and distributes a lot

of useful resources. The Evaluations and Language Resources Distribution

Agency (ELDA)11 performs similar functions in Europe. Access to data is an

important prerequisite for machine translation systems. The emergence of

agencies such as the LDC or ELDA and the increasing availability of source

data, thus, has had a catalytic effect on the field of language technology.

After having set the context of this research undertaking we continue

with an overview on machine translation research in Section 1.2. We briefly

describe a selection of different scientific approaches and research paradigms.

A central finding from this analysis is that different translation techniques

have their individual strengths and weaknesses. Often, these qualitative

variations are in fact complementary which, provided our assumption holds,

means that a combination of translation output may yield an improved over-

all quality of the resulting combined or hybrid translation output. Seminal

work by [Frederking and Nirenburg, 1994] conducted as part of the German

Verbmobil project (1993–2000) adopts this conceptual idea and reports on

9
http://www.isi.edu/natural-language/download/hansard/

10
http://www.ldc.upenn.edu/

11
http://www.elda.org/
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improvements in terms of translation quality for the combination of several

source systems.

Following this section, we discuss system combination approaches and

describe the current state of the art in Section 1.3. Several techniques are pre-

sented and discussed. Parallel to the increasing importance and performance

of statistical methods, a common approach in system combination research

is confusion network decoding. Here, candidate translations are chunked into

smaller units and aligned into a connected graph. Using probability scores

obtained from the individual systems (or computed otherwise) this graph

can then be traversed to find the optimal consensus translation. An obvious

limitation of this method is that it may introduce errors, both syntactic and

semantic, due to the implicit partitioning of the candidate sentences into

smaller chunks. Sentence selection mechanisms aim to overcome this prob-

lem by avoiding modifications of the given candidate translations. At the

same time, it is clear that these methods suffer from their disability to inte-

grate knowledge on the sub-sentential level. To remedy these issues, several

hybrid MT approaches have been proposed that aim to integrate multiple

sources of knowledge into a translation engine, either on a shallow linguistic

level or embedded deeply into the decoder.

The evaluation of machine translation quality is an important task in

MT research. We introduce this topic in Section 1.4. Statistical systems

rely on evaluation scores during tuning. MT systems from all underlying

technological paradigms are developed with increasing translation quality

as main goal and thus require techniques for quality assessment. We present

several approaches that allow to perform this assessment. These range from

manual annotations, e.g., on the translation output’s fluency or its perceived

adequacy to fully automatic metrics such as BLEU [Papineni et al., 2002] or

8



Meteor [Denkowski and Lavie, 2011]. We also cover various error distances

such as TER [Snover et al., 2006] or its successor TERplus [Snover et al., 2009].

As automatic methods require the availability of one or several reference

translations, they cannot always be applied. Furthermore, their correlation

to human judgment is not unanimously agreed on. Recently, the evaluation

of translation output without access to reference data has become an area of

active research by itself. We illustrate how these quality estimation techniques

work. Our overview on MT evaluation concludes with a brief discussion of

various tools for quality assessment, translation ranking, and post-editing.

Before turning to the formulation of problem statements, we provide an

overview on machine learning (ML) techniques in Section 1.5. We discuss

their application in machine translation or quality estimation, paying special

attention to potential usefulness for hybrid approaches. Machine learning by

itself is a well established research problem. Research activities have resulted

in a large number of algorithms such as the Perceptron [Rosenblatt, 1958] or

Winnow [Littlestone, 1988] algorithms that learn incrementally from labeled

training data, or more complicated kernel-based methods such as support

vector machines (SVM) as described by [Vapnik, 1995] or the more recent

relevance vector machine (RVM) by [Tipping, 2001]. Binary classification

problems usually can be solved achieving a high performance with respect

to prediction accuracy on unseen input data. In fact, n-ary classification is

often modelled by decomposition into pairwise—thus binary—classification

problems. Machine learning can also be applied for system combination or

quality estimation. Feature vectors are computed on the level of individual

systems which are then used as input for one or several classification models.

Interpretation of classification results is performed in some post-hoc process,

depending on the actual task under investigation. By contrast, we pursue a
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different strategy and re-formulate the feature vector definition to explicitly

model comparison between two given systems A, B. The paradigmatic shift

from single to what we call joint feature vectors is a central contribution of

this thesis work. As we will see later, the application of joint feature vectors

can help to perform sentence selection with high accuracy. Furthermore,

it allows us to adapt sentence selection to specific characteristics of given

system pairs.

We conclude this introductory chapter by formulating the set of research

hypotheses and the corresponding problem statements that will be examined

in the remainder of this thesis work. Afterwards, we briefly summarise the

contents of this chapter and provide an outlook on the upcoming chapters.

1.2 Machine Translation Methods

Machine translation is one of the oldest research problems in the fields of

computer science and artificial intelligence. Initially, it was thought an easy

task, a perception that changed over time as it turned out that the underlying

computational problems are indeed very complex. The decoding process of

a statistical MT decoder needs to find a solution to the following equation.

Definition 1. Let e denote one translation of some given, foreign sentence f under

the current translation model. The statistical translation problem is defined as

finding the best—most probable—translation ê for the observed foreign sentence

f . Formally, this can be expressed as follows:

ê = argmax
e

p(e | f )

The corresponding search problem can in fact be reformulated into an

instance of the infamous Traveling Salesman Problem which is known to be in

the class of so-called NP-complete decision problems. This has been shown by
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[Zaslavskiy et al., 2009]. Simply put, this means that there exists no known

method that guarantees to compute all solutions to the given problem in a

reasonable amount of time. It is, however, possible to approach the solution

using approximation algorithms. Of course, this also means that there are no

guarantees towards the optimality of the achieved results.

An Overview on MT History

After the end of the Second World War in 1945 and with the beginning of

the Cold War between the United States of America and the Soviet Union,

a new demand for translation of Russian texts arose. The parallel advent

of computing machinery led to the belief that machine translation would

soon be able to take over translation duties from human interpreters. The

Georgetown-IBM experiment which took place on January 7, 1954, fuelled

such beliefs by successfully translating sixty Russian sentences into English

in what was called “a Kitty Hawk of electronic translation”. It was assumed

that in “five, perhaps three years hence, interlingual meaning conversion by elec-

tronic process (...) may well be an accomplished fact.”.12 More details on this

seminal event in the history of MT research can be found in [Hutchins, 2004].

The first machine translation systems focused on translation by direct

transfer. The following years showed an increase in both research funding

and activities in the emerging field of computational linguistics. This changed

with the release of the famous ALPAC report [Pierce et al., 1966] in 1966.

The authors expressed doubt that machine translation would actually be

more cost effective than human translation in the near future and without

advances in our knowledge about processing human language. As a result,

12Source: http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html,
retrieved on January 28, 2013.
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funding was drastically cut and the first wave of MT research came to an

abrupt end.

Interest renewed in the 1970s when the first rule-based MT systems (RBMT)

arrived. Such approaches aim to model linguistic phenomena for both source

and target language, following some grammar formalism or linguistic theory.

Translation is implemented by a linguistic transfer step that maps linguistic

structures obtained during the analysis of the source sentence to equivalent

structures in the target language. A final generation phase ensures proper lin-

guistic treatment w.r.t. the specific target language, fixing, e.g., agreement or

word order. Important milestones include the SYSTRAN translation engine

and the Eurotra project, funded by the European Commission. The latter

in hindsight turned out to be a failure as “fully automatic high quality trans-

lation” could not be achieved. This dampened optimism and subsequently

complicated the acquisition of European research funding for MT research.

As the construction of RBMT systems is a lengthy and expensive process,

research on automatic, statistical learning of translation equivalences started.

The underlying idea is that, given a large quantity of English text plus the

corresponding translations into a foreign language, one can statistically infer

translation probabilities for words or larger chunks of text. The fundamental

mathematics for statistical machine translation were developed in the early

1990s at IBM’s Thomas J. Watson Research Center [Brown et al., 1993]. The

concept of statistical machine translation, interestingly, had already been

formulated by Warren Weaver in his famous “Translation” memorandum,

written in July 194913. It was later reprinted and published by William

Locke in [Locke and Booth, 1955]. Statistical methods have since become the

prevalent technological paradigm and primary object of research in the area

13It is also available at http://www.mt-archive.info/Weaver-1949.pdf
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of machine translation.

Recent Research Activities

The 2000s brought an increasing number of statistical MT resources which

could freely be used and, sometimes, even be modified due to openly avail-

able source code. As a side effect, the number of researchers working on

machine translation greatly increased over the last decade. The availability

of shared resources and access to the same tools allowed for a better com-

parison of results and helped to attract new researchers to the field. Notable

additions to the state of the art have been achieved in the following areas:

– continuous space language models [Schwenk et al., 2006];

– factored translation models [Koehn and Hoang, 2007];

– hierarchical translation models [Chiang, 2007];

– paraphrasing for translation [Callison-Burch, 2007];

– improved language modelling [Stolcke, 2002, Federico et al., 2008];

– stream-based models [Levenberg et al., 2010, Levenberg et al., 2011];

– open-source RBMT research [Forcada et al., 2011].

At the same time, a trends towards harmonisation across different decoder

implementations can be observed. This, again, improves comparability of

results and supports collaborative efforts. Machine translation research has

also lead to commercialisation activities in response to the growing demands

of the global translation/localisation markets. An important trend over the

last couple of years lies in a focus shift towards hybrid MT systems. These

systems aim at the combination of resources and techniques from various

technological backgrounds, e.g., rule-based and statistical approaches. In

this thesis, we investigate how hybrid machine translation can be modelled

and implemented using machine learning tools.
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Figure 1.1: Number of MT related events/corresponding trend over time

A Research Field with Growing Impact

Next to research efforts, several workshops and conferences such as, e.g.,

the “Workshop on Statistical Machine Translation” (WMT) have been estab-

lished, further attracting interest in the research topic. The number of pub-

lished papers on translation techniques has seen a rapid growth since the

early 2000s, a manifestation of the field’s growing importance. Figure 1.1

gives an overview on the number of MT related events from 1992 until 2012

as they are listed in the MT Archive. The trend shows how machine transla-

tion research activities—and, thus, interest in MT—increased over the years.

Machine translation has also become part of everyday life and is used

both for business and leisure. Free services such as Google Translate14 or

Bing Translator15 have changed the way users interact with foreign language

content on the internet. The general perception by lay users is that machine

translation should nowadays be able to produce high quality output. Users

expect quick turnaround times and flawless output, turning the deployment

14
http://translate.google.com/

15
http://www.bing.com/translator/

14



and maintenance of high quality translation services into an even harder

task. MT research, hence, is of high importance—both scientifically and so-

ciologically.

The wealth of machine translation methods and the high level of research

activity promise the discovery of more efficient approaches which are, in the

long run, able to generate such high quality translation output. One area

of research lies in the investigation of so-called system combination methods.

These consider translation output from several machine translation systems

(or several translation hypotheses from a single system) and try to generate a

joint translation with an improved, overall translation quality. The rationale

is that a clever combination of translation fragments should result in better

translation output. A schematic overview on the basic problem setting for

system combination approaches is depicted in Figure 1.2. Such systems are,

in a sense, hybrid MT systems.16 We will cover combination methods in more

detail in the next section.

1.3 System Combination Approaches

As we have seen in the previous section, machine translation is possible using

various methodological paradigms, each having its individual strengths and

weaknesses. Considering the wide range of available methods it makes sense

to think about combining translation output, which is also called multi-engine

machine translation (MEMT) or hybrid MT. Think, for instance, about lexi-

cal coverage in a machine translation model. For statistical systems, it only

depends on the contents of the parallel training data. “The more data, the bet-

16Typically, a system is considered hybrid if it combines translation output which has been
generated by MT systems implementing different technological paradigms, e.g., statistical
and rule-based MT. We use the term hybrid in a broader sense and include system combina-
tion approaches which work on only one methodological paradigm.
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T1 T2 T3
. . . TN

system
combination

S T′

Figure 1.2: Overview on the basic problem setting for system combination

Linguistic phenomena

Syntax, Structural Lexical Lexical Lexical

Paradigm Morphology Semantics Semantics Adaptivity Reliability

RBMT ++ + − −− +
SMT − −− + + −

Table 1.1: Informal comparison of RBMT and SMT methodologies w.r.t. their
strengths and weaknesses. Adapted from a EuroMatrix Plus presentation.

ter” is a phrase often heard in this respect. The situation is different for rule-

based systems. As RBMT engines rely on linguistically informed rules and

knowledge bases whose production is both expensive and time-consuming,

their lexical coverage cannot adapt to new trends as quickly as SMT.

Complementary Strengths and Weaknesses

Quite often errors are complementary among the different MT methods. Thus,

in theory, a clever combination of multiple candidate translations could yield

a translation with improved, overall translation quality. Table 1.1 gives a

quick overview on how 1) rule-based and 2) statistical machine translation

methods handle a selection of linguistic phenomena. Note how strengths

and weaknesses are indeed complementary. The table has been adapted from

FP7 funded research project EuroMatrix Plus (ICT 231720) which conducted
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Algorithm 1 Decision problem for system combination approaches

Require: set of source sentences S,
Require: translation output from N systems, T = {T1,T2, . . . ,TN }.
Ensure: |S | = |T1| = |T2| = . . . = |TN |

1: T ′← compute best translation(S,T ) . Compute best translation given input data

2: return T ′ . Return combined translation output

research on hybrid machine translation. More information on activities in

EM+ WP2 can be found in the corresponding project reports and publica-

tions, e.g., [Federmann et al., 2011] or [Wolf et al., 2011]. One of the lessons

learnt during our work on the combination of RBMT and SMT technology

was that integration on a deeper linguistic level is a complex task. The

addition of parallel data extracted from a given SMT system proved to be

problematic as these phrases contained too little linguistic annotation to

be included in the lexical resources of the rule-based engine. This also

affected the amount of data which could be integrated into the rule-based

MT system—as we had to augment phrase pairs with additional, linguistic

annotation—which in turn meant losing one of the advantages of statistical

learning, namely the power of inference from very large data sets. While the

research in the EuroMatrix Plus project was successful and resulted in sev-

eral interesting extensions of the given rule-based system, there remains a

lot of potential for future improvements.

Combination Approaches

There exists a wide range of system combination approaches. Many of these

aim at solving the decision problem shown in Algorithm 1. Other approaches

may work sequentially or follow some other methodology. In this thesis, we

focus on parallel combination by sentence selection.
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Google Understanding a language is an old dream .
Bing Understanding a language is an old dream of humanity .

Systran Understanding a language is an old dream of mankind .
Lucy The understanding of a language is an old mankind dream .

They differ in design and implementation of compute best translation

which computes the final combination result. A common solution to approach

this problem is the application of confusion network decoding. Using word

alignment techniques, individual candidate translations Ti are aligned to a

pre-selected, designated translation “backbone” or “skeleton”. The candidate

translations form a network, i.e., a connected graph. Edges between different

target words are labeled with transition probabilities—in this case, trans-

lation probabilities or estimated future costs obtained from the decoding

engine—thus spanning the network of all possible generations considering

the alignment and vocabulary from the given set of candidate translations.

An example of a confusion network is shown in Figure 1.3. Note that the

possibility of “empty” or so-called ε transitions allows for the generation of a

large number of translations which were not originally contained in the set

of candidates. A lot of these, however, do not represent valid sentences due to

combinatorial effects such as, e.g., double prepositions, wrong agreement or

other phenomena. On the other hand, confusion network decoding is able to

generate translations which contain good parts from several candidate trans-

lations, provided their transition probabilities promote the corresponding

decoding paths throughout the network.

We will provide a more detailed discussion of this technique as part of

our literature review in Chapter 2. As a side note, it is also possible to

apply confusion network decoding to the task of n-best list re-ranking for

a single machine translation system. System combination using confusion

networks has become the dominant methodological approach in recent years,
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Figure 1.3: Example of a confusion network graph encoding four different
translations of German sentence “Das Verstehen einer Sprache ist ein alter Men-
schheitstraum”. Note how many invalid sentences can be produced. Dashed
arrows illustrate the effect of additional, general ε transitions between nodes
which would contribute further derivations, many of which invalid.

e.g., in the system combination tasks undertaken as part of the Workshop on

Statistical Machine Translation (WMT ’09–’11).

Sentence Selection

As we have remarked in the previous section, transitions in a confusion

network may lead to ungrammatical and erroneous translations. This even

holds if all given source sentences were perfect translations, due to the

“generative” nature of the decoding process. It is also clear that any errors

introduced in the word alignment phase can proliferate and may cause degra-

dations of the resulting translation. The selection of the underlying transla-

tion backbone has an influence on the outcome as well.

Considering these shortcomings there has also been (somewhat scarce)

research on the problem of sentence selection. Given a set of candidate trans-

lations, the combined translation is computed by selecting the best among

the given candidates, in unaltered form: e pluribus unum, immutatum. It
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is obvious that such an approach cannot “fuse” phrasal phenomena from

multiple sentences into the final translation. On the other hand, it also is

impossible that the chosen translation is altered—i.e., potentially degraded

in terms of translation quality—in any way.

Selection mechanisms have been studied by [Hildebrand and Vogel, 2008,

Hildebrand and Vogel, 2009, Hildebrand and Vogel, 2010]. Overall, interest

in this research topic has, however, been limited; most likely due to the

prevalence of aforementioned confusion-network-based methods. Improved

techniques able to solve the selection problem on the sentence level could

also be applied on the level of sub phrases, making them an interesting area

for further research in our view.

1.4 Evaluation of Translation Quality

Machine translation research and MT system development rely on evaluation

methods that measure and compare translation quality. Such assessments can

be performed by human annotators who score one or several translations

w.r.t. to 1) fluency, i.e., answering the question “How likely is this translation

to be a well-formed sentence in language LX?” and 2) adequacy, i.e., answer-

ing the question “How well does this translation convey the intended mean-

ing of the source sentence?”. Usually, both questions are scored using a

1–5 range, where 1 means “Not at all” and 5 denotes “Perfect”. While this

methodology allows for a fine-grained inspection of translation output, the

exact interpretation of scores and the subtle differences between individual

scoring categories make it a time-consuming effort with surprisingly low

inter-annotator agreement.17 Even worse, the notions of both fluency and

17See, e.g., the results paper [Callison-Burch et al., 2007] from WMT ’07 where only fair
agreement, i.e. 0.21 ≤ κ ≤ 0.4, among annotators could be observed for both fluency and
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adequacy are hard to “grasp” and model with automatic means.

As the training and tuning processes of SMT systems require evaluation

metrics which can be computed (relatively) quickly, research turned towards

n-gram overlap scores such as BLEU [Papineni et al., 2002]. These take the

translation output from some system and compare it to one or several given

reference translations by measuring overlap on the level of n-grams. While

such scores are easy to compute and hence attractive from the viewpoint of

algorithmic complexity, their correlation with human annotation results still

remains a topic of active research.18 Notable efforts have been undertaken

as part of the yearly WMT workshops, with special “shared evaluation tasks”

being held from 2008 until 2010. Irrespective of improvements in the field

of automated metrics and despite its known shortcomings, BLEU remains

the most frequently used metric for automatic evaluation to date.

In our experience, the Meteor score [Denkowski and Lavie, 2011] proves

more useful in practice. It applies advanced techniques such as, e.g., word

synonymy lookup using WordNet [Fellbaum, 1998]19 and has also been built

in a way that makes sentence-level scores usable. For this reason, it will be

used prominently in the remainder of this thesis. There also exist several

translation edit/error rates such as TER, PER, WER which implement versions

of the Levenshtein distance on the word level.

A main issue with all reference-based evaluation metrics is the creative

aspect of language: given a single source sentence the set of valid translations

can become very large. It seems infeasible to pre-compute or store all possi-

ble translations. And even if this was possible, there would be no automatic

adequacy evaluation as well as sentence ranking.
18Some metrics, such as the de-facto standard BLEU, do not even generate scores which are

proven to have a high correlation on the sentence level which makes it very hard to use these
scores for error analysis on the sub-corpus level.

19Of course, this can only be applied for languages where such resources are available.
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Figure 1.4: Screenshot of “3-Way Ranking” as implemented by Appraise

way of differentiating between those “possible” translations in terms of trans-

lation quality. Recently, research on generating large reference networks has

been started. See [Dreyer and Marcu, 2012] for more related information. As

the construction of such networks, again, is a very time-consuming task, it

cannot readily be applied to SMT tuning or evaluation.

Human annotation of machine translation output has been extended to

additional evaluation tasks, which are expected to be easier to perform and

to result in higher levels of inter-annotator agreement. Examples for such

annotation tasks are:

– ranking comparison of several translation candidates;

– binary ranking comparison;

– sub-phrase comparison between two translation candidates;

– error classification of one candidate translation;

– (minimal) post-editing of one given translation;

– gisting classification for one translation candidate.
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As part of the research conducted for this thesis, we have developed a tool for

MT evaluation named Appraise [Federmann, 2012b] which implements the

aforementioned tasks. The tool has been released under a permissive open-

source licence and is available online from the author’s GitHub repository.20

A screenshot of the “binary ranking comparison” interface is depicted in

Figure 1.4. Several other tools have been produced and made available as

well, e.g., PET [Aziz et al., 2012]. The main issues with human annotation

of translation output still remain valid: 1) level of inter-annotator agree-

ment and 2) overall annotation speed. Due to the increased availability of

improved user interfaces and specialised tools, these issues will become less

relevant over time, eventually leading to better and more helpful evaluation

of machine translation quality.

1.5 Methods Using Machine Learning

As we have seen, evaluation of machine translation output is a hard task.

This holds both for human annotations which are time-consuming and thus

expensive and for automatic scoring metrics whose correlation with human

judgment is not sufficiently clear yet. Evaluation is difficult because the

differences between a given translation and some reference are hard to be

intuitively grasped by human annotators and challenging to model for auto-

matic processing. As the combination of several translation candidates is

based on the comparison of the individual sentences, we are faced with a

similarly complex problem.

It is clear that any automatic solution requires careful modelling of the

underlying decision problem to stand a chance of successfully generating

improved translation output. Due to the differences between the various

20See https://github.com/cfedermann/Appraise
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machine translation paradigms, research efforts on the application of suit-

able machine learning tools have been intensified. Such ML techniques can

potentially better handle the diverse feature sets produced by the given MT

systems, especially when statistical decoders with large amounts of features

and factors are considered.

Example: Hybrid MT using NP substitution

We give a brief example to further illustrate the aforementioned complex-

ity of multi-paradigm system combination: As part of our research within

the EuroMatrix Plus project, we have worked on several hybrid MT architec-

tures, aiming at targeted substitution of noun phrases within a translation

template provided by a rule-based system. Initial research had shown that

statistically learnt phrase tables often contain “better” (in the sense of more

up-to-date and more fluent) translations for noun phrases than the RBMT

engine under investigation. We implemented a hybrid system which aligned

RBMT and SMT translation output and then replaced noun phrases within

the rule-based template by their corresponding counterparts from the statis-

tical system. See [Federmann et al., 2009].

The substitution process was controlled using a set of decision factors

such as, e.g., part-of-speech agreement or target language model scores to avoid

problems leading to degradations of the original translation template. The

decision flow was designed manually after careful inspection of individual

factors and their contribution towards a “good” or a “bad” translation. Later,

it became clear that more factors would be required to improve the quality

of the substitution process. The addition of such new factors, however, also

required changes to the overall decision flow. These changes turned out to

become more complex with every additional factor added. To cope with
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such complexities, we applied machine learning tools such as decision trees

to automatically infer the importance of individual factors (or features in

machine learning terms). See [Federmann, 2012c, Hunsicker et al., 2012].

Machine Learning for Binary Decision Problems

The field of machine learning is investigated by a large and active research

community. One of the primary ML problems is that of two-class, i.e., binary

classification. There exist many competitive algorithms to solve this problem,

often achieving high prediction accuracy. By re-formulating the decision

problem that has been defined in Algorithm 1 from N -ary selection down

to individual, pairwise comparisons between candidate systems, it would be

possible to make use of state-of-the-art machine learning tools. Considering

the fact that it also is more plausible to find features that allow to distinguish

between two systems (rather than features that work for the complete set of

N candidates) the application of binary classification for system combination

seems a promising undertaking.

Quality Estimation

In fact, machine learning is already applied in the context of quality estimation

(QE) methods. In contrast to evaluation techniques where reference text is

available for comparison, QE approaches aim at predicting a ranking of given

candidate translations without references available. Typical approaches use

linguistic features such as, e.g., parse probabilities, language model scores, or

alignment links for estimating the quality of the given translation. Note that

this estimation process is performed on the level of individual candidate

translations—the aggregation of individual classification results into the final

ranking of candidates is computed in a subsequent, post-hoc computation
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step. Effectively, this means that approaches following this methodology

do not model an explicit comparison between two given systems. The 2012

edition of WMT featured a designated task on quality estimation methods.21

The shared task has also been offered in 2013.22

ML4HMT Workshops

Work package 2 of the T4ME project has investigated how the combination of

translation output obtained from several MT systems can be improved by the

integration of machine learning methods. A series of workshops (ML4HMT

’11/’12)23 including an associated system combination task were organised.

Participants of the shared task received a corpus containing translations from

four MT engines, originating from rule-based and statistical backgrounds.

Additionally, they received meta-data information extracted from each of the

engines. As mentioned before, the set of meta-data, i.e., potential features, is

heterogenous w.r.t. the types of individual features. This makes it complex to

derive an understanding of their impact towards sentence selection. Thus,

machine learning techniques were applied to solve the decision problem.

Results from the shared tasks and descriptions of the participating systems

are reported in [Federmann, 2011, van Genabith et al., 2012]. More details

on the ML4HMT corpus are available in [Federmann et al., 2012].

In summary, machine learning approaches can be utilised to improve

system combination efforts in the context of machine translation. The main

problem on a methodological level is that features for candidate translations

are evaluated in isolation only while final comparison results are produced

in a post-hoc aggregation step. We will show in this thesis that it is beneficial

21See http://statmt.org/wmt12/quality-estimation-task.html
22See http://statmt.org/wmt13/quality-estimation-task.html
23See http://www.dfki.de/ml4hmt/
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to explicitly model pairwise comparison of systems instead.

1.6 Problem Statements

In this introductory chapter we have explained why research on improved

sentence selection algorithms for hybrid machine translation is a worthwhile

undertaking. Even if such selection approaches are not able to combine sub

phrases from several candidates into an improved translation, their ability

to conserve characteristics generated by the source MT engine can be their

competitive advantage. A powerful selection mechanism able to sepa-

rate good translations from bad counterparts is required to implement such

methods. In this thesis we will investigate several related research problems

and discuss suitable solutions as well as observations from our experimental

findings and their implications towards the state of the art. We also provide

a brief overview on the contributions of this thesis and related publications.

Research Questions

This thesis aims at answering the following research questions:

– What level of translation quality can be achieved by using sentence

selection approaches instead of confusion network decoding?

– What advantages do sentence selection algorithms have compared to

n-gram combination approaches?

– What system combination quality is theoretically achievable?

– What is the benefit of applying machine learning using joint, comparison-

based binarisation of features compared to single feature vectors?

– What algorithms can be applied for training and tuning a hybrid MT

system based on pairwise, binary classification?
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Thesis Contributions

The major contributions of this thesis are:

– We conduct the largest meta-study on WMT results published by the

Workshop on Statistical Machine Translation (2007–2013);

– The definition of joint, comparison-based binarisation of features for

machine learning of binary classification between several candidate

translations;

– We show that sentence selection approaches can perform at the same

level of translation quality as existing system combination methods;

– Our evaluation software for assessment of machine translation quality,

Appraise, has become the official evaluation system of WMT 2013.

Related Publications

This thesis combines the following selection of peer-reviewed publications:

– Experiments on system combination and integration of rule-based and

statistical methods into hybrid MT approaches have been submitted to

the Workshops on Statistical Machine Translation 2007–2012;

– Our methodology—including the definition of joint, comparison-based

binarisation of feature vectors—has been published in the proceedings

of the 35th Annual German Conference on Artificial Intelligence in

Saarbrücken, Germany [Federmann, 2012a] and in the proceedings of

the Tenth Conference of the Association for Machine Translation in the

Americas in San Diego, USA [Federmann, 2012d];

– The Appraise system for manual evaluation of MT output has been

published in the proceedings of the Seventh International Conference
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on Language Resources and Evaluation in [Federmann, 2010] and in

the Prague Bulletin of Mathematical Linguistics [Federmann, 2012b];

– Appraise has become the official evaluation system of the Workshop on

Statistical Machine Translation in WMT 2013 [Bojar et al., 2013];

– The ML4HMT corpus has been published in the Prague Bulletin of

Mathematical Linguistics [Federmann et al., 2012]. Results from the

corresponding shared tasks have been published as joint proceedings of

LIHMT ’11 and ML4HMT ’11 in Barcelona, Spain [Federmann, 2011]

and in the proceedings of the 24th International Conference on Com-

putational Linguistics in Mumbai, India [van Genabith et al., 2012];
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1.7 Chapter Summary

In this chapter we have motivated the problem of machine translation pay-

ing special attention to system combination approaches or hybrid methods.

We have learnt that language technologies such as, e.g., MT have given rise

to huge commercial markets and areas of high importance. Consequently,

there is an active research community addressing algorithmic complexity

and improving translation methods. Considering these widespread activities

we have argued that system combination methods can lead to improved,

overall translation output. We have presented confusion network decoding

and sentence selection approaches. The latter have not yet been applied too

often but they can be used in combination with machine learning methods

with promising results. We briefly discussed MT evaluation techniques and

ML algorithms before formulating the problem statements for this thesis and

the contributions we have achieved to improve the state of the art.

The remainder of this thesis is structured as follows: Chapter 2 provides

an overview on relevant background literature and introduces the current

state of the research field. In Chapter 3, we investigate theoretical perfor-

mance of sentence selection based approaches to system combination. We

conduct the largest meta-study on results published from WMT 2007–2013.

In Chapter 4, we introduce the notion of joint, comparison-based binarisa-
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tion of feature vectors which represent one of the key contributions of this

thesis. We compare them to single feature vectors, aiming to verify their

superiority. In Chapter 5 we define a theoretical framework for system com-

bination using machine learning and describe the experiments we have con-

ducted to evaluate the quality of our combination approach. We provide

comparison to results from state-of-the-art machine translation systems. We

conclude in Chapter 6, highlight the contributions achieved during our the-

sis work and giving an outlook to future research questions that arise from

our findings.
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Literature

“Reading is to the mind what exercise is to the body.”
– Richard Steele: in The Tatler, March 18, 1710.

“All men by nature desire knowledge.”
– Aristotle: Metaphysics.

2.1 Introduction

We have already discussed many fundamental publications on which the

research work described in this thesis is based on in Chapter 1. In this

chapter, we provide brief summaries of selected publications in five topic

areas: 1) machine translation, 2) corpora and data sets, 3) hybrid systems,

4) quality evaluation, and 5) machine learning. For each of these topic areas,

we discuss key publications in the relevant literature in chronological order.

The remainder of this chapter is structured as follows: in Section 2.2 we

describe research on MT methods. Second, we present relevant corpora and

data sets (Section 2.3) and discuss hybrid systems (Section 2.4). Afterwards,

we explain evaluation techniques in Section 2.5 before describing machine

learning (Section 2.6). We conclude with a summary in Section 2.7.
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2.2 Machine Translation

[Brown et al., 1993] Being one of the very foundations of statistical machine

translation methodology, this paper describes what is nowadays called

the IBM models for word alignment and translation between languages.

[Chiang, 2007] This paper introduces the notion of hierarchical phrase-

based translation which has seen widespread use in recent years. The

addition of sub phrases inside phrases allows for improved translation

quality in terms of BLEU scores. Formally, the hierarchical model from

this article represents a synchronous context-free grammar which is

learnt from parallel corpora without syntactic annotations.

[Koehn et al., 2007] In this paper, the authors describe the Moses toolkit

for statistical machine translation. Moses has attracted an active com-

munity of both researchers and software developers and is generally

considered an open-source success story.

[Li et al., 2009] presents Joshua which is a Java-based toolkit for parsing-

based machine translation. Similar to aforementioned Moses toolkit,

Joshua has gathered a loyal following over time. Joshua first shifted

focus on hierarchical and syntax-based translation models.

[Dyer et al., 2010] The authors describe the design and implementation of

cdec which is a toolkit for statistical machine translation as well as

other structured prediction models. By contrast to other frameworks,

it was developed with machine learning in mind. Also, it is designed

to scale from limited resources up to large cluster systems.

[Forcada et al., 2011] This paper discusses Apertium which is a free and

open-source platform implementing rule-based machine translation.

The system features a shallow-transfer MT engine and produces trans-

lations in a series of sequential processing steps.
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2.3 Corpora and Data

[Fellbaum, 1998] WordNet is a large lexical database of English. It contains

sets of cognitive synonyms, so-called synsets, for a large set of English

words. Such information can be beneficial in the context of machine

translation (to find additional, synonymous lexical phrase pairs) or as

part of quality evaluation (it is, for instance, used by Meteor).

[Koehn, 2005] The Europarl corpus is a collection of proceedings from the

European Parliament. It includes versions in 21 European languages

and has become one of the most widely used training corpora for MT.

[Steinberger et al., 2006] This paper presents the JRC-Acquis corpus which

is comprised of European Union documents in 22 official European lan-

guages. Data is taken mostly from the legal domain.

[Eisele and Chen, 2010] This paper presents the MultiUN corpus which is a

multilingual corpus compiled from publicly available documents from

the United Nations. It features Arabic, Chinese, and Russian as well as

four other European languages.

[Avramidis et al., 2012] The authors describe the ML4HMT corpus. It is

a richly annotated, multilingual parallel corpus for hybrid machine

translation research. The corpus has been used as part of the ML4HMT

workshop series in 2011 and 2012. It contains translations from MT

systems implementing different methodological paradigms.
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2.4 Hybrid Systems

[Frederking and Nirenburg, 1994] Seminal paper on system combination.

The authors describe an implementation which is able to combine trans-

lation output, typically sub phrases, from three candidate systems.

[Hildebrand and Vogel, 2008] The authors present a system combination

approach which is based on a sentence selection method. Considering

n-best lists as input they compute the resulting combined translation

by selecting one of the hypotheses available from the n-best list. This

approach is theoretically comparable to our method.

[Federmann et al., 2009] In this paper, the authors describe a combination

approach based on factored word substitution. One of the candidate

translations is used as “translation template”. Using a parser and word

alignment information, the system can then substitute in noun phrases

from additional candidate systems, generating a hybrid translation.

[Federmann, 2011] The author presents results from the ML4HMT 2011

workshop and shared translation task. Results are reported in terms

of automatic metric scores and an extensive, manual evaluation imple-

mented using Appraise. An interesting finding from the results is that

the Meteor evaluation metric is the only metric which correlates well

with human judgments.

[Wolf et al., 2011] The paper describes a tool for terminology extraction,

based on statistical word alignment. Using terminology lists obtained

using this tool, the lexical database of an existing, rule-based MT engine

is extended over time, resulting in a hybrid machine translation system.

[Federmann, 2012a] Being part of the research conducted for this thesis, in

this publication we present results from experiments with an initial

version of our hybrid system combination framework.
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2.5 Quality Evaluation

[Papineni et al., 2002] BLEU is the de-facto standard for all machine trans-

lation evaluation campaigns. It is based on n-gram overlap statistics

with one or several references.

[Doddington, 2002] This paper defines the so-called NIST score for auto-

matic evaluation of machine translation quality. It is based on co-

occurrence statistics on the n-gram level and derived from BLEU.

[Denkowski and Lavie, 2011] The authors describe Meteor, an automatic

metric for reliable optimisation and evaluation of machine translation

output. Meteor scores candidate translations by aligning them to one or

several references. Using these alignment links, the metrics computes

overlap with the reference data. Meteor has proven to be an evaluation

metric which produces reliable scores on the segment level.

[Aziz et al., 2012] This paper describes the design and implementation of

PET, a tool for post-editing and the qualitative assessment of machine

translation output. The authors’ main focus lies in post-editing of MT

output. As with many recent tools, the software and its source code are

freely available.

[Dreyer and Marcu, 2012] The authors describe HyTER, a method which

performs machine translation evaluation based on meaning-equivalent

semantics. HyTER is capable of compactly encoding an exponential

number of correct translations. Potentially, this allows to better cope

with ambiguities in the translation process.

[Federmann, 2012b] This paper presents Appraise, an open-source toolkit

for manual evaluation of machine translation quality. Appraise has

been developed as part of the research conducted for this thesis and

has become the official evaluation system in WMT 2013.
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2.6 Machine Learning

[Rosenblatt, 1958] A fundamental publication introducing the perceptron

algorithm which can be used for incrementally learning a model which

is able to perform linear classification.

[Vapnik, 1995] This seminal work describes support vector machines which

can be used to train binary classification models, non-linearly mapping

from input vectors to a very high-dimension feature space in which a

linear decision surface can be constructed.

[Tipping, 2001] An alternative to the aforementioned SVMs, the relevance

vector machine is of comparable classification quality. In theory, it is

able to achieve this with fewer support vectors (or relevance vectors, as

they are called in this approach). RVMs represent a theoretical alterna-

tive for support vector machines.

[Fan et al., 2008] The authors discuss liblinear which is a library for large

linear classification. For linear machine learning problems which can

be tackled without using kernel functions and the infamous kernel

trick, liblinear provides an extremely efficient solution, typically out-

performing libSVM.

[Chang and Lin, 2011] This paper presents libSVM which is a popular toolkit

implementing support vector machines as introduced in [Vapnik, 1995].

[Pedregosa et al., 2011] The authors describe scikit-learn, a Python-based

framework for machine learning. It provides wrappers to, e.g., libSVM

and liblinear and also takes care of, e.g., data normalisation and cross

validation. We use scikit-learn in our experiments for the verification

of our research hypotheses.
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2.7 Chapter Summary

In this chapter we have briefly summarised relevant background literature

which has inspired and influenced the research work we have conducted

for this thesis. Additional review of the state of the art has already been

given throughout introductory Chapter 1. We have provided a chronologi-

cal overview on selected relevant publications from the fields of 1) machine

translation, 2) corpora and data sets, 3) hybrid combination systems, 4) qual-

ity evaluation, and 5) machine learning.

In the next chapters we describe how these ingredients can be combined

to yield an effective framework for system combination based what we intro-

duce as joint, comparison-based binarisation of feature vectors. These can be

used to estimate binary classification models for sentence selection.
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System Combination using

Optimal Sentence Selection

“A University should be a place of light, of liberty, and of learning.”
– Benjamin Disraeli: speech before the House of Commons, March 11, 1873.

“Nothing great was ever achieved without enthusiasm.”
– Ralph Waldo Emerson: Essays, 1841. ‘Circles’.

3.1 Introduction

As we have seen, system combination of machine translation output can be

addressed in multiple ways. We have previously focused on two different

combination techniques: 1) confusion networks and 2) sentence selection. The

first has seen extensive research work in recent years, most notably dur-

ing 2009–2011 when the yearly Workshop on Statistical Machine Transla-

tion (WMT) offered a dedicated system combination task. It is clear that

confusion network decoding achieves good performance w.r.t. output trans-

lation quality. Interestingly, the second approach has remained largely ne-

glected in machine translation research. We investigate the potential perfor-

mance gain attained by selection among a set of different candidate transla-

tions in the remainder of this chapter.
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Problem Statement

Let us first define the specific problem we are investigating:

There seems to be a general preference towards using confusion network

decoding for system combination. Is this forever carved in stone? Can

we actually use sentence selection approaches for system combination?

While there has been some limited research on the application of sentence

selection approaches for system combination [Hildebrand and Vogel, 2008,

Hildebrand and Vogel, 2009, Hildebrand and Vogel, 2010], we wanted to find

empirical proof that such methods could be able to outperform translation

quality of the respective source systems on real data. It is clear that any

method for system combination which only integrates better candidates on

the sentence level, in theory, monotonously improves overall translation qual-

ity. The interesting question is whether data collected in real application

scenarios such as, e.g., the yearly WMT shared tasks supports our initial

assumption that there are good candidate translations contained in globally

bad systems. For this, we aim to measure how much of an improvement

in terms of translation quality can be observed if one was able to perform

optimal classification of candidate translations. To the best of our know-

ledge, there exists no such study in the literature.

This chapter is structured as follows: in Section 3.2 we state our research

hypotheses. Second, we describe the methodology (Section 3.3) we have used

in our experiments which are discussed afterwards (Section 3.4). Finally,

we present results (Section 3.5) and some observations before ending with a

summary of our findings and a conclusion in Section 3.6.
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3.2 Research Hypotheses

In order to make sense as a methodological paradigm for addressing system

combination problems, we have to check whether sentence selection methods

can theoretically result in an improved overall translation quality, compared

to the quality of the individual source systems from which we synthesise the

combined translation. Hence, our first working hypothesis is:

Hypothesis 1. Sentence selection methods can outperform their source systems

on real data.

While this is trivial from a theoretical point of view (especially when

considering that our perfect oracle-based section can only improve over the

single-best system as it will only choose other candidate translations if they

are locally optimal, i.e., better than the single-best translation) the interest-

ing question is whether independent data collected over time shows that

(empirically) the sentence-based combination of several candidate transla-

tions outperforms the single-best system. This basically answers the ques-

tion whether globally bad systems can contribute to an overall improvement

in terms of translation quality.

Second, we intend to investigate whether sentence selection depends on

external factors such as the underlying technological paradigm of the indi-

vidual candidate systems or the language pair under investigation. It seems

obvious that this should not be the case, however we have yet to see if we can

find empirical proof for such claim.

Hypothesis 2. Sentence selection approaches show improvement potential across

language pairs or underlying technological paradigms of the source systems.
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Finally, we want to find out whether translation systems which perform

bad on the overall system level can be beneficial in the context of sentence

selection. Again, the initial assumption is that they can likely contribute

something to our final combination results. If and how much remains to be

seen in our experiments. Our final working hypothesis is:

Hypothesis 3. Even systems which perform bad on the global system level can

contribute helpful segment translations.

3.3 Methodology

Definitions

Averaged Meteor

We have already indicated our preference for the Meteor evaluation metric1

as it has shown a better correlation with human judgment in our experi-

ments over the course of several years (see, e.g., [Federmann, 2011]). The

computation of Meteor scores on the system level is effectively based on the

performance on both document and segment level.

Notation 1. We denote the Meteor score on the segment level as Meteorsegment.

In order to speed up computation in our selection experiments, we choose

to define a new variant of Meteor which we call “averaged Meteor”. As the

name indicates, an averaged Meteor score for the system level is computed

by averaging the individual segment scores for the test set.

Formally, we define this as follows:

1We used Meteor v1.4 which is available from http://www.cs.cmu.edu/˜alavie/METEOR/.
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Definition 2 (Averaged Meteor). We compute an averaged Meteor score by

averaging the scores of all N segments contained in the current test set:

MeteorAVG({segment1, . . . , segmentN })
def=

1
N

N∑
i=1

Meteor(segmenti) (3.1)

Notation 2 (MeteorAVG). We denote the averaged Meteor score as MeteorAVG.

In practice, the use of an averaged Meteor score can result in a slight over-

estimation of the real Meteor score as it would have been computed by the

Meteor tool on the same data. This is caused by the fact that we ignore factors

such as sentence length and the fragmentation penalty. It does, however, not

have too big an influence on the final scores (and it speeds up computation)

and is hence neglected in our research work. Michael Denkowski, one of the

authors of the Meteor score, stated in an email:

“Meteor computes a corpus-level score using the same formula
for sentence-level scoring. Subject to a slight approximation, which
has to do with one special case in the fragmentation penalty, this
is equivalent to the average of sentence-level scores.”
– Michael Denkowski: Email, August 21, 2013.

Given a large corpus of source text and the corresponding translations

produced by multiple machine translation systems, we want to estimate how

much of an improvement in terms of translation quality (as measured by

our freshly defined MeteorAVG score) we can obtain by performing optimal

sentence selection. This is, of course, a theoretical gedankenexperiment as we

are only focused on the method’s performance without implementing the

process that would compute Meteor scores (or rather estimate them given

that we would not have reference text in application scenarios) on unseen

data. We assume that we can compute Meteorsegment scores and perform our
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experiments on data sets for which we have access to the corresponding ref-

erence texts.

Definition 3 (Optimal Sentence Selection). Given a set of multiple candidate

translations C = {candidate1, . . . , candidateK }, with cardinality K ≥ 2, for the

same source segment S, we perform optimal sentence selection by selecting

the candidate ci which maximises the segment-level Meteor score as computed

by Meteorsegment. Formally:

Select(C) def= argmax
c∈C

Meteorsegment(c) (3.2)

Combination with Optimal Classification

The basic idea of our experiments in this chapter can be summarised in the

following way:

1. Compute standard Meteor scores for all candidate translations. This

will result in scores on 1) system, 2) document, and 3) segment level;

2. Sort candidate systems according to some order;

3. Given the ordered set ofN candidate systems, compute allN−1 “k-best”

combinations and measure their respective MeteorAVG scores;

4. Compute potential performance gain by comparing resulting scores to

the single-best candidate system score.

Note how we use the admittedly fuzzy term “some order”: essentially, our

combination method works on an ordered set of N candidate systems. For

these, we compute the N − 1 “k-best” combinations where “better” refers to

the order of the set of candidate systems, e.g., candidate1 is assumed to be

“better” than candidate2 and so on. We apply three different combination

strategies which are described next.
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Top-k Combination

As the name implies, the top-k combination strategy aims at combining

translation systems ordered “best to worst” by their respective system-level

Meteor translation quality. As our optimal selection can only ever change a

segment translation if some other system has a better local segment score,

this combination approach is guaranteed to always outperform the single-

best translation system (which is Top-k1). Remember that we are assum-

ing optimal classification to be available in this chapter. In real experiments

without access to reference texts, segment-level Meteor scores have to be

estimated in some way. We come back to that later in this thesis.

Given a set of candidate systems xi ∈ Systems, we define the (ordered) set

of top-k systems (for 2 ≤ k ≤N ) in the following way:

Top-k def= {x1, . . . ,xk |MeteorAVG(xi) ≥MeteorAVG(xj )∀1 ≤ i < j ≤ k} (3.3)

This combination method should enable us to verify Hypothesis 1.

Worst-k Combination

Conversely, we define the worst-k combination strategy for systems xi ∈

Systems which does allow to investigate how many good segments can be

found within the subset of translation systems which perform bad on the

system level, effectively seeking empirical proof for Hypothesis 3.

Worst-k def= {x1, . . . ,xk |MeteorAVG(xi) ≤MeteorAVG(xj )∀1 ≤ i < j ≤ k} (3.4)

Note that due to the fact that we start with the two worst candidate systems

according to the system-level Meteor score, this combination approach need

not outperform the single-best translation system for small values of k. The

addition of the final system (Worst-kN which is actually Top-k1) should at

least result in this system’s level of performance.
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Algorithm 2 Optimal sentence selection for N candidate systems

Require: set of translations from N candidate systems S = {S1,S2, . . . ,SN }.
Ensure: |S1| = |S2| = . . . = |SN |

1: T ′←∅

2: for each segment id i,1 ≤ i ≤ # of segments do
3: segment-translations← {S1,i , . . . ,SN,i} . Extract translations for current segment id

4: T ′ = T ′ ∪ Select(segment-translations) . Select by maximising Meteorsegment score

5: end for

6: return T ′ . Return combined translation output

Alternate-k Combination

Third, we define a so-called alternate-k combination approach. For this,

we alternate between good and bad translation systems to see how such a

collection of systems can perform. As is the case for the Top-k strategy, this

method has a worst-case lower-bound of MeteorAVG(Top-k1).

Alternate-k def=


{T op-k1,Worst-k1, . . . ,Worst-kbN/2c} if N even

{T op-k1,Worst-k1, . . . ,T op-kdN/2e} else
(3.5)

Algorithm 2 illustrates how we can compute a combined translation from

a set ofN candidate translations using optimal sentence selection. We iterate

over the set of segments and select the candidate translation maximising

the local Meteorsegment score for the current segment under investigation.

We show an implementation of this algorithm in form of Python code in

listing 3.1. It requires a set of two or more translation systems as system ids

in some order as input. We assume a global dictionary SYSTEM SCORES which,

for each system (as identified by the respective system id) maps from all

individual segment identifiers to the corresponding segment scores.
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Listing 3.1: Python implementation of sentence selection

1 def combine systems ( system ids ) :
2 ”””
3 Combines systems by maximising segment− l e v e l Meteor score .
4

5 Global d i c t i o n a r y SYSTEM SCORES maps from segment id to score .
6 ”””
7 i f len ( system ids ) < 2 :
8 return compute meteor avg ( system ids [ 0 ] )
9

10 # Create mutable copy of the f i r s t system ’ s segment s c o r e s .
11 data = SYSTEM SCORES[ system ids [ 0 ] ] . copy ( )
12 for key , value in data . items ( ) :
13 b e s t v a l u e = value
14 fo r other system in system ids [ 1 : ] :
15 t r y :
16 other va lue = SYSTEM SCORES[ other system ] [ key ]
17 i f o ther va lue > b e s t v a l u e :
18 b e s t v a l u e = other va lue
19

20 except KeyError :
21 continue
22

23 i f b e s t v a l u e > value :
24 data [ key ] = b e s t v a l u e
25

26 segment scores = data . values ( )
27 del data
28 return sum( segment scores ) / len ( segment scores )
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3.4 Experiments

In order to investigate the potential performance gains attained by opti-

mal sentence selection, we need a large corpus of translations including the

corresponding reference text. This corpus needs to contain translation out-

put generated by a plethora of individual MT systems, implementing various

technological paradigms. Furthermore, we require that this corpus and its

individual translations have been collected over the course of several years

by an independent party to avoid bias.

Data

Luckily, such data exists as it is released, year after year, as part of the Work-

shop on Statistical Machine Translation (WMT). We take the data packages

from 2007 until 2013 and build a joint research corpus from these.2 Ad-

ditionally, we make use of the data we have collected during the ML4HMT

Workshops in 2011 and 2012 [Federmann, 2011, van Genabith et al., 2012].

We will provide a brief overview on the individual data sets below.

WMT 2007

Data for WMT 2007 has been produced from March 23 until April 6, 2007.

The workshop featured a shared translation task with two different test sets:

test2007 which contains 2,000 sentences taken from EuroParl [Koehn, 2005],

and nc-test2007 which features a total of 2,007 sentences collected from the

news commentary domain. The shared task covered the following languages:

Czech, German, Spanish, French, and English. For more information refer to

official results summary paper [Callison-Burch et al., 2007].

2We intend to make our joint corpus publicly available at LREC 2014.
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WMT 2008

Data for WMT 2008 has been produced from March 14 until March 21,

2008. The workshop again featured a shared translation task, this time with

three different test sets: test2008 which contains 2,000 sentences from the

EuroParl corpus, nc-test2008 featuring 2,028 sentences taken from the news

commentary domain, and finally newstest2008 with a size of 2,051 sentences

extracted from major news outlets such as the BBC, Der Spiegel, or Le Monde.

The shared task added Hungarian and a non-English language pair, namely

Spanish↔German in both translation directions. Official workshop results

are available from [Callison-Burch et al., 2008].

WMT 2009

Data for WMT 2009 has been produced from December 8 until December 12,

2008. The workshop added a dedicated system combination task which took

place from December 22, 2008 until January 5, 2009. Both tasks focused on

news translation as the only test set: newstest2009 contains 2,525 sentences

from the news domain. The shared task covered the following languages:

Czech, German, Spanish, French, Hungarian, and English. The combination

task investigated performance of combinations of the translations which had

been generated in the translation task. The official results summary paper is

available from [Callison-Burch et al., 2009].

WMT 2010

Data for WMT 2010 has been produced from March 1 until March 5, 2010.

The workshop once again featured a system combination task and focused on

news translations as the single test set: newssyscombtest2010 which contains

exactly 2,034 sentences from the news domain. Both shared tasks covered the
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following languages: Czech, German, Spanish, French, and English, however

dropping Hungarian which was part of previous workshops. By contrast to

previous editions of the workshop series, WMT 2010 substantially increased

the amount of available training materials. For more information refer to the

official overview paper which is available from [Callison-Burch et al., 2010].

WMT 2011

Data for WMT 2011 has been produced from March 14 until March 20, 2011.

The workshop for the third time featured a system combination task. Also,

there was a so-called featured translation task, in which participants worked

on translating Haitian Creole SMS messages (collected in the aftermath of the

2010 Haitian earthquake) into English. As was the case for previous editions,

it focused on translation of news stories. The single test set, newstest2011,

contains 3,003 sentences from this domain. The shared task covered these

languages: Czech, German, Spanish, French, and English. The official results

paper is available from [Callison-Burch et al., 2011].

WMT 2012

Data for WMT 2012 has been produced from February 27 until March 2,

2012. Next to the usual translation task, the workshop feature a dedicated

metrics task as well as a shared task on quality estimation without reference

text. The translation task focused on news translations as the single test set:

newstest2012 contains 3,003 sentences. It covered the following languages:

Czech, German, Spanish, French, and English. For more details refer to the

workshop summary paper which is available as [Callison-Burch et al., 2012].
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WMT 2013

Data for WMT 2013 has been produced from April 29 until May 3, 2013. The

workshop continued all three shared tasks from the previous year, namely

translation, metrics, and quality estimation task. The translation task focused

a single test set: newstest2013 consists of 3,000 sentences take from the news

domain. Next to Czech, German, Spanish, French, and English, the shared

task added Russian as an additional language. Manual evaluation has been

implemented using Appraise which is a contribution of this thesis. Official

results are available in [Bojar et al., 2013].

ML4HMT

Data for the ML4HMT workshops in 2011 and 2012 has been produced from

May 20 until October 10, 2011 and from August 23 until October 28, 2012,

respectively. Test sets were adapted from previously released WMT data

sets, namely newstest2008, from which the final 1,026 sentences are used, for

ML4HMT 2011 and newstest2011 containing 3,003 sentences for ML4HMT

2012. The shared tasks covered the Spanish→English language pair. For

more information see [Federmann, 2011, van Genabith et al., 2012].
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Selection Experiments

Language pair Systems Combinations Sentences Words

Czech→English 56 144 144,357 3,063,615
German→English 149 423 372,753 8,273,536
Spanish→English 132 363 327,217 7,435,008
French→English 148 417 363,775 8,285,114
Hungarian→English 3 6 7,575 169,034
Any→English 3 6 6,102 135,559

English→Czech 81 213 205,357 3,610,335
English→German 140 396 358,276 7,374,138
English→Spanish 120 339 298,168 6,964,052
English→French 132 378 329,878 7,755,776

Total 964 2,685 2,413,458 53,066,167

Table 3.1: Statistics for optimal sentence selection experiments

3.5 Results

General Overview

Table 3.1 summarises the data used in our experiments with optimal sen-

tence selection. It details the number of 1) candidate systems, 2) combina-

tions tested, 3) total sentences, and 4) total words per language pair. Except

for language pairs Hungarian→English and Any→English, we have tested a

large amount of systems and corresponding combinations. In total, we have

experimented with 964 candidate systems and 2,685 combinations. A de-

tailed inspection of our observations can be found on the following pages.

Our main interest has been the verification of our research hypotheses as

defined earlier in this chapter (Section 3.2). Based on our experiments, we

can confirm that Hypothesis 1, Sentence selection methods can outperform their

source systems on real data., holds. In fact, we are able to report improvements

for all language pairs, test set, and data set combinations. While this has been

expected, we now have found empirical evidence for this statement.
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Figure 3.1: Sentence selection performance for WMT 2007 data.

WMT 2007

Figure 3.1 shows the results for our sentence selection experiments with data

from WMT 2007. Optimal selection does indeed outperform the single-

best translation system, irrespective of test set or language pair. Test set

test2007 sees an average potential relative gain of +18.9% compared to the

“Best” system while second test set nc-test2007 achieves +11.3%. Note how

English→Czech performs much worse (with around 0.2 MeteorAVG score)

than the inverse direction (scoring around 0.35). Translation into German

seems to be difficult and results in only moderate scores in the 0.25 range.

For both test sets, translation quality of language pair English→German

could be drastically improved by performing an optimal sentence selection

approach, to 0.33 for test set test2007, a +23.9% increase, and to 0.28 for test

set nc-test2007, a +16.3% jump in terms of translation quality. We observe

the overall biggest performance gain for test set nc-test2007 for language pair

Spanish→English where we measure an improvement of +22.3%.
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Figure 3.2: Sentence selection performance for WMT 2008 data.

WMT 2008

Figure 3.2 gives the results for our experiments with data from WMT 2008.

Again, we are able to observe an improvement for all language pairs and test

sets. Test set test2008 achieves an average gain of +17.0%, test set nc-test2008

sees an improvement of +12.2%, while test set newstest2008 reports an aver-

age of +17.5%. The fact that English→Hungarian does not show any pos-

itive change is related to the fact that only a single candidate system gen-

erated translation output for this translation direction. Translation qual-

ity of this language pair is around 0.15 MeteorAVG score; we are confident

that our combination approach would outperform this baseline provided

an additional translation was available. Language pair Spanish→German

fails to report any improvement for the same reasons. Similar to our find-

ings from the previous workshop, language pairs English→Czech as well as

English→German achieve low scores when compared to the other language

pairs. The biggest jump in performance gain can be observed for language

pair English→German and test set newstest2008, a +21.3% increase.

56



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

cz-en
.n

ew
stest2009

d
e-en

.n
ew

stest2009

es-en
.n

ew
stest2009

fr-en
.n

ew
stest2009

h
u

-en
.n

ew
stest2009

en
-cz.n

ew
stest2009

en
-d

e.n
ew

stest2009

en
-es.n

ew
stest2009

en
-fr.n

ew
stest2009

en
-h

u
.n

ew
stest2009

M
et

eo
r 

Sc
or

e

Language pairs/Test sets

Best
Worst

Optimal

Figure 3.3: Sentence selection performance for WMT 2009 data.

WMT 2009

Figure 3.3 shows the results for our sentence selection experiments with data

taken from the WMT 2009 workshop. This workshop was the first to feature

only one test set, namely newstest2009 for which we achieve an average im-

provement of +14.0%. Translation from English into complex languages such

as Czech and Hungarian remain difficult as can be seen from the compara-

bly low MeteorAVG scores, around 0.2 for English→Czech and around 0.17

for English→Hungarian. By contrast to WMT 2008, this time we are able

to report a performance gain for the latter language pair also. Interestingly,

both individual source systems perform roughly on the same level of transla-

tion quality (see how “Best” and “Worst” bars are identical). However, their

combination outperforms this non-ambiguous baseline. The overall biggest

improvement in terms of MeteorAVG score can be observed, once again, for

language pair English→German. In 2009, a giant increase of +23.9% can be

measured which is among the biggest gains observed in our experiments.
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Figure 3.4: Sentence selection performance for WMT 2010 data.

WMT 2010

Figure 3.4 depicts the results from our experiments with optimal sentence

selection on data derived from WMT 2010. Again, there exists only a single

test set which is called newssyscombtest2010. As the name implies, it is used

for both the shared translation task and the system combination task as well.

The average performance gain by optimal selection is measured as +13.5%.

Across languages pairs, we observe improved scores in the 0.3 MeteorAVG

range, except for notoriously difficult language pairs English→Czech (around

0.22) and English→German (around 0.25). Judged by these numbers, it seems

that machine translation quality has seen a boost in WMT 2010. The biggest

jump in performance gain due to optimal sentence selection can be mea-

sured for language pair English→Czech, an improvement of +19.5%. Lan-

guage pair Any→English (labeled as xx-en in the figure) represents a meta-

combination using results from the system combination task as candidate

systems. The resulting improvement is modest at around +4.29% which

might be caused by the small number of candidate systems for this task.
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Figure 3.5: Sentence selection performance for WMT 2011 data.

WMT 2011

Figure 3.5 shows results from our sentence selection experiments on data

from WMT 2011. The single test set is called newstest2011. The average

performance gain which is attained using optimal selection is measured as

+17.2%, an increase of +27.4% in comparison to 2010 with an average gain

of +13.5%. Improved scores reach the 0.37–0.43 MeteorAVG range for most

language pairs, except English→Czech (around 0.28) and English→German

(around 28.9). As was the case in the previous year, we are able to observe

a jump in translation quality of the given candidate systems and, thus, an

increase in potential gain by optimal sentence selection. The largest gain

can be observed for language pair English→German, seeing an increase of

22.3%. English→Czech is very close with an improvement of +21.1%. It

seems that both language pairs are still more difficult than other language

pairs which correlates to their huge potential gains. It is also noteworthy that

the qualitative spectrum of participating translation systems has widened;

the average difference between the best and the worst systems has grown.
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Figure 3.6: Sentence selection performance for WMT 2012 data.

WMT 2012

Figure 3.6 shows the results for our sentence selection experiments with

data taken from the WMT 2012 workshop. We see that (similar to pre-

vious years) language pairs English→Czech and English→German remain

the hardest language pairs with lowest corresponding Meteor scores. This

workshop again features only one test set, namely newstest2012 for which we

achieve an average improvement of +17.6%. The lowest performance gain is

observed for language pair Czech→English at 0.36 (a relative improvement

of +12.3%). The overall biggest improvement in terms of MeteorAVG score

can be observed, once again, for language pair English→German. In 2012,

we measure an increase of +21.8%, resulting a Meteor score around 0.29.
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Figure 3.7: Sentence selection performance for WMT 2013 data.

WMT 2013

Finally, Figure 3.7 lists the results for our sentence selection experiments

with data taken from the WMT 2013 workshop. Once again, language pairs

English→Czech and English→German remain the hardest language pairs

with lowest corresponding Meteor scores, Russian is added to the shared

translation task as a new language. This workshop features a single test

set, namely newstest2013 for which we achieve an average improvement of

+19.2%. The lowest performance gain is observed for English→Russian at

0.45 (a relative improvement of +11.5%). The corresponding single-best

score at around 0.40 is already pretty strong, which explains that no bigger

improvement can be achieved. The overall biggest improvement in terms of

MeteorAVG score can be observed for language pair English→Czech. In 2013,

we measure an increase of +29.2%, resulting a Meteor score around 0.30.
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Figure 3.8: Sentence selection performance for ML4HMT data.

ML4HMT

Figure 3.8 shows the results we have obtained with data taken from the

ML4MT shared tasks. Test set ml4hmt11 achieves an average improvement of

+7.07% and test set ml4hmt12 performs slightly better with a potential gain

of +7.89%. The third test set, namely newstest2011, does include the origi-

nal translations which have been used by shared task participants to build

their systems. It achieves an average performance boost of +10.5%. This

allows to draw two conclusions. First, it becomes clear that combined trans-

lations from ML4HMT 2012 did not optimally integrate information made

available by the supplied training materials. Second, it becomes apparent

that the best combination system did not outperform the single-best source

system. It seems that pre-dominant use of confusion networks has resulted

in a loss of information. Interestingly, the only system implementing sen-

tence selection achieves the best Meteorsystem score. This supports our initial

assumption that sentence selection can outperform confusion networks.
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Dependency on Languages

So far, we have already seen that sentence selection approaches can outper-

form the single-best candidate system. We now want to analyse our results

with a special focus on the language pair under investigation.

Czech→English

Table 3.2 provides details of our results for language pair Czech→English.

We can see that optimal sentence selection results in stable improvements

for all individual test sets. The biggest performance gain has been measured

for test set newssyscombtest2010, an increase of +11.7%. Note that this is also

the test set with most candidate systems which seems to beneficial to our

method due to the increased inventory of candidate translations to choose

from. The average improvement is +8.05%.

German→English

Table 3.3 shows the results for language pair German→English. Again, we

are able to observe improvements across all test sets. By contrast to previous

language pair Czech→English, the performance gains are larger, measuring

from +12.2% for test set nc-test2007 up to +18.5% for test set test2008. The

average performance gain is +15.1%.

Spanish→English

Table 3.4 depicts results for language pair Spanish→English. As this is the

only language pair which is featured in the ML4HMT shared tasks, we have

the largest overall number of test sets across language pairs. Performance

gains range from +7.07% for test set ml4hmt11 up to +22.3% for test set

test2007. The average improvement is +12.6%.

63



French→English

Table 3.5 gives detailed results for experiments with data from language pair

French→English. Consistent improvements can be observed, ranging from

+11.1% for test set test2008 to +16.7% for test set newstest2008. The overall

average performance gain is +13.1%.

Hungarian→English

Table 3.6 provides an overview on language pair Hungarian→English. Only

one test set exists for this language pair, namely newstest2009, for which we

observe an improvement of +11.7%.

Russian→English

Table 3.13 gives results for language pair Russian→English. As this language

pair has only been used as part of WMT 2013, there exists only one test set

(newstest2013 with an overall performance gain of +11.5%.

Any→English

Table 3.7 shows results from the meta-combination task for the Any→English

“language pair”. There is only a single test set available, newssyscombtest2010,

which achieves a performance gain of +4.29%.

English→Czech

Table 3.8 reports optimal sentence selection performance for language pair

English→Czech. We see improvements across all test sets, ranging from

+7.95% for test set nc-test2007 up to +19.5% for test set newssyscombtest2010.

The overall average gain is +16.4%.

64



English→German

Table 3.9 depicts results for language pair English→German. Improvements

are massive, ranging from +16.3% for test set nc-test2007 to +23.9% for test

set test2007. This is the best performing language pair in our experiments,

reaching an average performance gain of +20.3%.

English→Spanish

Table 3.10 gives an overview on results for language pair English→Spanish.

Performance gains are consistent across test sets, measuring from +10.1% for

test set newssyscombtest2010 up to +21.3% for test set test2008. The average

improvement is +16.6%.

English→French

Table 3.11 provides a detailed look on our experiments for language pair

English→French. Improvements range from +12.7% for test set nc-test2007

to +21.3% for test set test2007. The average performance gain is +16.7%.

English→Russian

Table 3.12 shows results for language pair English→Russian which has been

added as part of WMT 2013. The average improvement is +18.2%
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Czech→English

Test set Systems Best Worst Optimal

nc-test2007 3 0.354 0.328 (-7.48%) 0.371 (+4.82%)

nc-test2008 4 0.353 0.278 (-21.1%) 0.378 (+7.23%)

newstest2008 3 0.274 0.264 (-3.80%) 0.300 (+9.27%)

newstest2009 3 0.305 0.286 (-6.34%) 0.327 (+7.24%)

newssyscombtest2010 13 0.328 0.266 (-18.9%) 0.366 (+11.7%)

newstest2011 12 0.350 0.282 (-19.4%) 0.386 (+10.3%)

newstest2012 6 0.321 0.290 (-9.65%) 0.360 (+12.3%)

newstest2013 12 0.345 0.300 (-13.0%) 0.404 (+17.1%)

Average 5 0.323 0.284 (-11.5%) 0.348 (+8.05%)

Table 3.2: Test set performance for language pair Czech→English

German→English

Test set Systems Best Worst Optimal

nc-test2007 5 0.353 0.254 (-28.1%) 0.396 (+12.2%)

test2007 7 0.360 0.295 (-18.2%) 0.405 (+12.4%)

newstest2008 13 0.305 0.241 (-21.0%) 0.359 (+17.7%)

test2008 14 0.358 0.252 (-29.5%) 0.424 (+18.5%)

newstest2009 15 0.312 0.227 (-27.2%) 0.361 (+15.9%)

newssyscombtest2010 31 0.347 0.241 (-30.6%) 0.394 (+13.7%)

newstest2011 26 0.332 0.279 (-15.9%) 0.384 (+15.9%)

newstest2012 16 0.330 0.247 (-25.3%) 0.389 (+17.8%)

newstest2013 23 0.360 0.291 (-19.3%) 0.425 (+18.0%)

Average 16 0.340 0.258 (-23.9%) 0.393 (+15.8%)

Table 3.3: Test set performance for language pair German→English
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Spanish→English

Test set Systems Best Worst Optimal

ml4hmt11 4 0.338 0.315 (-6.61%) 0.362 (+7.07%)

ml4hmt12 6 0.326 0.308 (-5.37%) 0.352 (+7.89%)

newstest2011 10 0.335 0.308 (-7.94%) 0.370 (+10.5%)

nc-test2007 7 0.421 0.375 (-10.9%) 0.460 (+9.39%)

test2007 8 0.399 0.335 (-15.9%) 0.488 (+22.3%)

newstest2008 13 0.316 0.299 (-5.54%) 0.369 (+16.6%)

test2008 15 0.388 0.305 (-21.2%) 0.459 (+18.4%)

newstest2009 9 0.345 0.309 (-10.6%) 0.379 (+9.72%)

newssyscombtest2010 16 0.379 0.317 (-16.4%) 0.422 (+11.3%)

newstest2011 16 0.355 0.278 (-21.8%) 0.420 (+18.3%)

newstest2012 12 0.372 0.301 (-19.3%) 0.435 (+16.9%)

newstest2013 17 0.375 0.290 (-22.7%) 0.434 (+16.0%)

Average 11 0.362 0.312 (-13.7%) 0.412 (+13.7%)

Table 3.4: Test set performance for language pair Spanish→English

French→English

Test set Systems Best Worst Optimal

nc-test2007 7 0.376 0.294 (-21.9%) 0.423 (+12.4%)

test2007 7 0.376 0.294 (-21.9%) 0.423 (+12.4%)

newstest2008 14 0.314 0.278 (-11.4%) 0.366 (+16.7%)

test2008 17 0.391 0.312 (-20.1%) 0.434 (+11.1%)

newstest2009 15 0.357 0.279 (-21.9%) 0.399 (+11.5%)

newssyscombtest2010 30 0.353 0.301 (-14.7%) 0.405 (+14.8%)

newstest2011 24 0.361 0.317 (-12.3%) 0.427 (+18.2%)

newstest2012 15 0.353 0.315 (-10.7%) 0.409 (+16.0%)

newstest2013 19 0.371 0.313 (-15.7%) 0.436 (+17.4%)

Average 16 0.361 0.300 (-16.7%) 0.413 (+14.5%)

Table 3.5: Test set performance for language pair French→English
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Hungarian→English

Test set Systems Best Worst Optimal

newstest2009 3 0.251 0.233 (-6.85%) 0.280 (+11.7%)

Average 3 0.251 0.233 (-6.85%) 0.280 (+11.7%)

Table 3.6: Test set performance for language pair Hungarian→English

Any→English

Test set Systems Best Worst Optimal

newssyscombtest2010 3 0.397 0.380 (-4.30%) 0.414 (+4.29%)

Average 3 0.397 0.380 (-4.30%) 0.414 (+4.29%)

Table 3.7: Test set performance for language pair Any→English

English→Czech

Test set Systems Best Worst Optimal

nc-test2007 2 0.200 0.189 (-5.40%) 0.216 (+7.95%)

nc-test2008 6 0.211 0.128 (-39.5%) 0.248 (+17.1%)

newstest2008 6 0.186 0.108 (-41.6%) 0.219 (+18.0%)

newstest2009 5 0.203 0.171 (-15.6%) 0.242 (+19.3%)

newssyscombtest2010 19 0.228 0.177 (-22.7%) 0.273 (+19.5%)

newstest2011 14 0.232 0.174 (-24.9%) 0.281 (+21.1%)

newstest2012 13 0.215 0.167 (-22.3%) 0.261 (+21.6%)

newstest2013 14 0.231 0.182 (-21.2%) 0.298 (+29.2%)

Average 7 0.206 0.155 (-25.0%) 0.240 (+16.4%)

Table 3.8: Test set performance for language pair English→Czech
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English→German

Test set Systems Best Worst Optimal

nc-test2007 6 0.244 0.185 (-24.2%) 0.284 (+16.3%)

test2007 7 0.271 0.208 (-23.2%) 0.336 (+23.9%)

newstest2008 11 0.217 0.198 (-8.90%) 0.268 (+23.7%)

test2008 13 0.262 0.187 (-28.7%) 0.306 (+16.5%)

newstest2009 11 0.225 0.198 (-12.1%) 0.278 (+23.7%)

newssyscombtest2010 22 0.249 0.196 (-21.4%) 0.293 (+17.6%)

newstest2011 35 0.236 0.185 (-21.7%) 0.289 (+22.3%)

newstest2012 15 0.239 0.200 (-16.3%) 0.291 (+21.8%)

newstest2013 21 0.261 0.220 (-15.6%) 0.329 (+26.1%)

Average 15 0.245 0.197 (-19.1%) 0.297 (+21.3%)

Table 3.9: Test set performance for language pair English→German

English→Spanish

Test set Systems Best Worst Optimal

nc-test2007 7 0.337 0.309 (-8.34%) 0.386 (+14.5%)

test2007 7 0.337 0.262 (-22.5%) 0.408 (+21.0%)

newstest2008 12 0.263 0.241 (-8.29%) 0.316 (+20.4%)

test2008 15 0.321 0.236 (-26.3%) 0.389 (+21.3%)

newstest2009 9 0.300 0.218 (-27.2%) 0.330 (+10.1%)

newssyscombtest2010 20 0.325 0.252 (-22.5%) 0.364 (+12.1%)

newstest2011 23 0.316 0.256 (-18.9%) 0.369 (+16.8%)

newstest2012 11 0.323 0.273 (-15.7%) 0.372 (+15.1%)

newstest2013 18 0.316 0.267 (-15.6%) 0.373 (+18.0%)

Average 13 0.315 0.257 (-18.4%) 0.368 (+16.6%)

Table 3.10: Test set performance for language pair English→Spanish
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English→French

Test set Systems Best Worst Optimal

nc-test2007 8 0.314 0.244 (-22.4%) 0.354 (+12.7%)

test2007 8 0.329 0.277 (-15.9%) 0.399 (+21.3%)

newstest2008 13 0.264 0.215 (-18.6%) 0.311 (+17.8%)

test2008 14 0.326 0.165 (-49.4%) 0.378 (+15.9%)

newstest2009 12 0.290 0.228 (-21.3%) 0.337 (+16.3%)

newssyscombtest2010 22 0.306 0.239 (-21.9%) 0.356 (+16.4%)

newstest2011 22 0.335 0.239 (-28.6%) 0.384 (+14.8%)

newstest2012 15 0.303 0.263 (-12.9%) 0.360 (+19.0%)

newstest2013 21 0.314 0.259 (-17.4%) 0.377 (+20.3%)

Average 15 0.309 0.237 (-23.2%) 0.362 (+17.2%)

Table 3.11: Test set performance for language pair English→French

English→Russian

Test set Systems Best Worst Optimal

newstest2013 18 0.399 0.357 (-10.4%) 0.445 (+11.5%)

Average 18 0.399 0.357 (-10.4%) 0.445 (+11.5%)

Table 3.12: Test set performance for language pair English→Russian

Russian→English

Test set Systems Best Worst Optimal

newstest2013 23 0.346 0.262 (-24.3%) 0.409 (+18.2%)

Average 23 0.346 0.262 (-24.3%) 0.409 (+18.2%)

Table 3.13: Test set performance for language pair Russian→English
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Development over Time

We now shift focus again and investigate how performance gains by oracle-

based sentence selection have evolved over time.

Figure 3.9 depicts the evolution of average performance gains attained

by optimal sentence selection for language pairs translating into English and

involving Czech, German, Spanish, and French. We can clearly see that our

approach achieves improvements independent of the language pair under

investigation. Performance gains range from +5% up to +23% and seem to

stabilise around +15% in 2010.

Figure 3.10 provides the same information for all language pairs translat-

ing from English into the aforementioned languages. Again, we observe con-

sistent performance gains, ranging from around +7% and peaking at around

+23%. The general level of potential improvement seems higher than in the

previous graph. This may indicate that the computation of translations from

English is more difficult still and results in lower MeteorAVG scores for which

it is then easier to achieve bigger performance gains. This also supports

the assumption that the lack of linguistic resources such as, e.g., synonymy

knowledge bases similar to WordNet has a negative impact on the overall

performance and utility of the Meteor metric.

In summary, the results from our sentence selection experiments clearly

support our working hypothesis that the method is applicable irrespective of

the creation date of the individual candidate translations.
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Figure 3.9: Average performance gain for sentence selection performance for
translation into English over time, measured from 2007–2013.
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Figure 3.10: Average performance gain for sentence selection performance
for translation from English over time, measured from 2007–2013.
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Observations

Before concluding this chapter with a summary of our findings we want to

briefly present some interesting observations from our experiments. These

are depicted in Figure 3.11 which provides more details.

WMT 2007: German→English

This language pair shows that even very bad candidate systems may be ben-

eficial for sentence selection approaches and very well can contain segment

translations which can outperform the single-best baseline translation. Note

how the worst-2 setting nearly reaches the single-best Meteor score for this

language pair. Adding the third worst candidate system outperforms this

baseline score. This provides empirical evidence that even bad translation

systems do in fact contain “nuggets” to mine for. This also confirms our re-

search Hypothesis 3.

WMT 2008: English→German

This language pair shows that large performance gains can be achieved by

implementing a simple sentence selection approach. In our experiments,

we observed an overall improvement of +23.7% which turned a somewhat

modest baseline score of 0.217 points MeteorAVG into a much better combined

score of 0.268.

WMT 2009: English→Hungarian

For this language pair both participating systems, namely morpho and uedin

perform on the same level of quality, around 0.17 MeteorAVG score. Still,

the combination of both systems can outperform the individual candidate

systems, achieving an improvement of +14.4%.
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Figure 3.11: Top: combination of two very bad systems for German→English
from WMT 2007 nearly outperforms the single-best baseline translation.
Middle: combination for English→German from WMT 2008 yields a mas-
sive +23.7% performance gain. Bottom: combination of two equal systems for
English→Hungarian from WMT 2009 results in a +14.4% increase in quality.
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3.6 Chapter Summary

In this chapter we have investigated whether sentence selection can be used

as a method for system combination in the context of machine translation

of written text. For this, we have simulated optimal sentence selection on

data sets taken from the yearly Workshop on Statistical Machine Translation

(WMT) and the ML4HMT workshop series. We have defined three research

hypotheses and then verified them one by one.

Sentence selection has proven to be an effective technique which can out-

perform the single-best translation baseline for a given set of candidate trans-

lations. This holds irrespective of external factors such as, e.g., language pair

under investigation, quality of the individual candidate translations, or the

underlying technological paradigms of the candidate systems. This implies

that it is worthwhile pursuing experiments with sentence selection in real

world application scenarios. By contrast to the research conducted in this

chapter, such application needs proper classification between candidate sys-

tems which has to be modelled and learnt from training data.

We describe a method for training such classification systems for use with

a sentence selection approach for system combination in the next chapter.
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Joint, Comparison-Based

Binarisation of Features

“The best way to predict the future is to invent it.”
– Alan Kay: in 1971, at the Palo Alto Research Center (PARC).

“The aim of science is not to open the door to infinite wisdom,
but to set a limit to infinite error.”
– Bertold Brecht: Life of Galilei, 1939.

4.1 Introduction

In the previous chapter, we have described the results from our large-scale

oracle experiments on WMT data. These results clearly indicate that system

combination of MT output can be implemented using sentence selection as

the methodological paradigm. In this chapter, we shift focus and investigate

how such a selection approach can be best modelled using machine learning

techniques. More specifically, we define a novel type of feature vectors which

can be used with binary classification, e.g., with support vector machines

(SVM) as introduced by [Vapnik, 1995]. By contrast to models which store

feature values for single systems X only, we propose a new kind of joint

feature vector which encodes feature values extracted from two systems A, B.
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This technique allows us to explicitly model system comparison on the

level of feature vectors. Intuitively, it seems plausible that the availability

of all feature values for both systems under investigation should improve

accuracy or performance of the resulting classification model. We carefully

scrutinise this assumption in the remainder of this chapter.

Problem Statement

Let us first define the specific problem we are investigating:

Given single feature vectors and corresponding joint feature vectors

on the same data. Can we observe improvements in terms of faster

training time or better accuracy when using joint feature vectors?

The problem of binary classification has seen extensive research over the past

two decades. Hence, there exists a plethora of powerful machine learning

methods which can be applied to solve such problems. The introduction of

joint feature vectors has been inspired by the idea that, in order to properly

compare two systems based on their individual feature values, any machine

learning tool should have access to the joint set of feature values from both

systems. This allows to use two target classes, +1 for “system A is better than

system B” and −1 for the opposite event, and can theoretically be used with

any machine learning approach which is based on feature vectors.

This chapter is structured as follows: in Section 4.2 we state our research

hypotheses. Second, we describe the methodology (Section 4.3) we have used

in our experiments which are discussed afterwards (Section 4.4). Finally, we

present results (Section 4.5) before ending with a summary of our findings

and a conclusion in Section 4.6.
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4.2 Research Hypotheses

We want to verify that the application of joint feature vectors results in a

higher prediction accuracy or faster training time when used in combination

with state-of-the-art machine learning approaches. As a first step, we have

to investigate whether such joint feature vectors can outperform and hence

have an advantage over single feature vectors which have typically been used

so far. An example is their application in the field of quality estimation.

Here, each of the candidate systems is modelled using a set of single feature

vectors which are then used to learn a classification model which estimates,

usually by regression techniques, the overall quality of the given system. In

our view, such methods waste potential in so far as they ignore “local”, i.e.,

sentence-level differences which could be observed by pairwise comparison

of the systems’ feature values. While the resulting regression score can well

be an effective estimate of the system’s quality, it seems plausible that, by

making the individual feature values from two systems available inside one

joint feature vector, a more fine-grained distinction among candidate systems

can be achieved.

Thus, our first research hypothesis in this chapter thus is as follows:

Hypothesis 4. Explicit modelling of pairwise system comparison using what we

call joint feature vectors can outperform single feature vectors in terms of both

resulting prediction accuracy and faster training times for large data sets.

Second, we have further refined our notion of joint feature vectors by

performing a binarisation on outcome of the comparison of the individual

feature values for the two systems under investigation. We describe the exact

definition of such feature vectors in the upcoming section. In a nutshell,

however, the concept is easily explained like this: Given two sets X, Y of
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feature values for a pair of systems A, B, we compute the joint, binarised

feature vector by computing the binary result of all comparisons between

“compatible” feature values. This means we store 1 in case the feature value

Xi for system A is better than the corresponding feature value Yi from system

B, 0 (or −1) otherwise. A nice side effect of this method is that we usually have

quite a good understanding of the feature spaces for our feature values (as

we have defined those features before, we should know which score or value

is supposed to be “better”) and can hence easily implement an appropriate

comparison operator for each of these.

It seems reasonable to assume that joint, binarised feature vectors can

outperform their joint counterparts. For joint feature vectors, the machine

learning approach which is used has to guess which of the feature values cor-

respond to each other and actually describe the same property of the two

translations. While it is not impossible to learn such relationships from

enough training data, we believe that it is better to perform comparison-

based binarisation instead while the relationship between Xi and Yi is still

known. Thus, our second working hypothesis is the following:

Hypothesis 5. Binarisation of the comparison results obtained by comparing the

individual feature values from two systemsA, B can outperform the corresponding

joint feature vectors.

We verify both hypotheses in the remainder of this chapter. In order to

do so, we simulate perfect feature values (similar to our oracle approach in

Chapter 3) and train classification models based on 1) single feature vectors

with four features per vector, 2) joint feature vectors with eight features per

vector, and finally 3) joint, binarised feature vectors which again have only

four features per vector due to the comparison of feature values from the two
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systems. To make the problem increasingly harder, we add random Gaussian

noise to the feature vectors, effectively increasing the number of features per

vector up to a total of 10,000 noisy values per vector.

4.3 Methodology

Definitions

First, we have to properly define the subject of investigation. We define the

notions of 1) single, 2) joint, and 3) joint, comparison-based binarisation of

feature vectors. Afterwards we discuss how instances of such feature can be

created from translation output obtained from a set of different candidate

systems.

Definition 4 (Single Feature Vectors). A feature vector X ∈Rn which does only

contain feature values fi(A),1 ≤ i ≤ n which have been extracted from a single

candidate translation A, not considering any other translation B, is called single

feature vector.

Formally, we define Xsingle(A) ∈Rn as follows:

Xsingle(A) def=



f1(A)

f2(A)
...

fn(A)


(4.1)

By contrast, joint feature vectors (as the name implies) are composed of two

sets of feature values which have been extracted from two candidate systems

A, B. Such feature vectors X ∈ R2n first contain the individual feature values

from system A, followed by the individual feature values from system B.

Effectively, we are “concatenating” two single feature vectors Xsingle(A) and

Xsingle(B) when constructing a vector Xjoint(A,B).
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Definition 5 (Joint Feature Vectors). A feature vector X ∈ R2n which is com-

prised of feature values fi(A),1 ≤ i ≤ n followed by feature values fi(B),1 ≤ i ≤ n

which have been extracted from two candidate translations A, B, is called joint

feature vector.

Formally, we define Xjoint(A,B) ∈R2n like this:

Xjoint(A,B) def=

Xsingle(A)

Xsingle(B)

 (4.2)

Or, written verbosely:

Xjoint(A,B) def=



f1(A)
...

fn(A)

f1(B)
...

fn(B)


(4.3)

The binarisation step of a so-called joint, binarised feature vector computes

the comparison results for all compatible feature values from two candidate

translations A, B, i.e., all values cmp(fi(A), fi(B)),1 ≤ i ≤ m. The outcome

of any such comparison operator cmp can be in range {−1,0,1}. While this,

strictly spoken, implies that our resulting feature vectors contain ternary fea-

ture values, we stick to the original binary name as it was used in the early

phases of this dissertation work when cmp(x,y) was implemented as x ≥ y,

hence only producing binary results.

Definition 6 (Joint, Comparison-Based Binarisation of Features). A feature

vector X ∈ R
n which is comprised of feature values which compare individual

feature values fi(A) and fi(B),1 ≤ i ≤ n which have been extracted from two can-

didate translations A, B and store a binary (or ternary) result as corresponding

feature value, is called joint, binarised feature vector.
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Formally, we define Xbinarised(A,B) ∈Rn like this:

Xbinarised(A,B) def=



cmp(f1(A), f1(B))

cmp(f2(A), f2(B))
...

cmp(fn(A), fn(B))


(4.4)

The difference between binary and ternary feature values

As we have seen, it is possible to define the comparison operator cmp(x,y)

which is used to produce the “binarised” feature values for Xbinarised(A,B)

s.t. it either has a binary or a ternary output range. The need for a ternary

solution comes from the fact that the comparison of feature values can in

fact result in a draw, i.e., fi(A) = fi(B). This is especially true for integer

or float scores, or any other format for which numerical equality is defined.

For many machine learning techniques, however, it is beneficial (and hence

recommended) to scale individual feature values to range [0,1]. This may

result in a more efficient training process which is, of course, a desirable

property for any machine learning problem.

In our experiments with joint, comparison-based binarisation of feature

vectors, we have found that using comparison operators with ternary range

works nicely. This holds for both rescaling the resulting feature values to

range [−1,1], using target values of {−1,0,1} and also for rescaling to range

[0,1], using target values of {0,0.5,1}. For machine learning algorithms which

strictly require a binary feature value range, i.e., either {−1,1} or {0,1}, there

are three conversion strategies for feature value comparison:

1. Use x ≥ y as comparison operator cmp(x,y). This makes sense as the

comparison of two equal systems can be seen in a reflexive way, mean-

ing that both systems are, at the same time, better than the other. It
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is questionable, though, if the resulting feature vectors can contribute

much to the desired classification model. Their “semantic content” just

does not help to find out which of the two given systems is deemed the

better one;

2. A second option is to remove any feature vectors which would require

a ternary output range for any of their feature values from the training

data. While this seems a reasonable choice, it can result in a massive

reduction of feature vector instances in the training data and, thus, a

worse prediction accuracy of the resulting classification model;

3. Some machine learning approaches allow for sparse feature vectors.

These may omit feature values for a subset of the defined features. In

our scenario, we would omit any feature value for which fi(A) = fi(B)

and then normalise to the desired target range, either {−1,1} or {0,1}.

After having defined the fundamental concepts of this chapter, we now

describe the experiments we have conducted in order to verify the research

hypotheses stated in Section 4.2.

4.4 Experiments

In order to investigate the performance of the three types of feature vectors

defined in the previous section, we conduct a series of experiments which

are described below. In these experiments, we use perfect feature values, ob-

tained by an oracle and available in all feature vector types, and then train

classification models with various machine learning techniques. We use k-

fold cross validation to compute the prediction accuracy of the resulting

models. Based on these data, we can find out whether our working hypothe-

ses actually hold and verify or falsify them.
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Data

We work on (anonymised) data taken from the NIST OpenMT12 shared task.

The data set consists of 127 sentence translations obtained from a total of 15

individual translation systems. The text domain was newswire text which

was translated from Chinese into English. Using the supplied reference text,

we compute four “perfect” feature values for each of the translations:

1. Meteor [Denkowski and Lavie, 2011] computed on the segment level;

2. Meteor computed on the corpus level. By contrast to the MeteorAVG

scores reported in the previous chapter, where runtime was an issue

s.t. we wanted to prevent lengthy re-computation of the Meteor scores,

we use the “full” corpus-level scores reported by the Meteor tool.

3. NIST [Doddington, 2002] computed on the corpus level; and

4. BLEU [Papineni et al., 2002] also computed on corpus level.

In our research on hybrid machine translation and evaluation of machine

translation output, we have found that Meteor often has the best correlation

with human judgment. Furthermore, it is the only metric which can generate

meaningful segment scores.1 For these reasons, the preceding enumeration

of features also determines our preferred ordering of these features. When

comparing two systems based on these, we first compare feature 1, Meteor on

the segment level. Only if both systems score the same we consider feature 2,

Meteor on the corpus level. This recursive definition of our decision function

continues down to the level of BLEU scores on the corpus level. We will

provide a proper definition in the next chapter where we define our hybrid

combination framework.

1There exist other metrics which have reliable sentence scores, e.g., s-BLEU or TER. These
could also be used instead of or in combination with Meteor.
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Metric Scores

System Meteorsystem Meteorbest Meteorworst NIST BLEU

#1 0.2994 1.0000 0.1218 7.9417 0.3187
#2 0.2405 1.0000 0.0000 5.3019 0.1937
#3 0.2418 0.9143 0.0726 6.1327 0.1641
#4 0.3154 1.0000 0.1288 8.3071 0.3476
#5 0.3047 1.0000 0.1553 8.0122 0.3238
#6 0.2846 0.9280 0.1282 7.6076 0.2925
#7 0.2700 0.5465 0.0460 6.8932 0.2539
#8 0.2773 0.8480 0.0987 7.2073 0.2502
#9 0.2935 1.0000 0.1103 7.6039 0.2885

#10 0.2750 1.0000 0.0825 7.1198 0.2392
#11 0.3011 1.0000 0.1060 7.7787 0.3073
#12 0.2804 1.0000 0.0958 7.0356 0.2754
#13 0.2871 1.0000 0.1194 7.4073 0.2592
#14 0.2994 1.0000 0.1115 7.7210 0.2881
#15 0.3002 1.0000 0.1090 7.8369 0.3034

Average 0.2847 0.9491 0.0991 7.3271 0.2737

Table 4.1: Data set statistics for our feature vector experiments

Table 4.1 gives an overview on the individual quality of the 15 candi-

date systems from our data set. We present the overall Meteorsystem score

as well as both the best and the worst individual segment scores, Meteorbest

and Meteorworst, respectively. Following the definition of our feature values

above, we also list NIST and BLEU scores for each system.

Single versus joint feature vectors

It is difficult to use single feature vectors to implement pairwise comparison

of candidate translations A, B. For classification models in machine learning,

multi-class problems, still represent a harder problem than classification

problems with only two target classes +1 and −1. Also, there exist more ma-

chine learning tools to solve binary classification problems which suggests
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that it makes sense to use such a method to estimate the performance level

of single feature vectors.

In our experiments, we implement such a two class scenario by creating

a total of N (N−1)
2 = 105 sub data sets for our N = 15 candidate systems. Each

of these data sets represents a pairwise comparison of two systems A, B. Our

target class +1 denotes that, according to the evidence in the feature values,

system A is better than system B. Conversely, system B would then get a

target class of −1 as, based on the evidence in the feature values, it performs

worse than system A.

For each of the 105 sub problems, we compute classification models (which

differ in the amount of noise, the kernel type, and machine learning approach

used) and evaluate their prediction accuracy using k-fold cross validation.

We compute the average accuracy accuracyAVG
def= 1

105Σ
105
i=1accuracyi and use

this score to compare the performance of single feature vector models against

models based on joint feature vectors. We also record the time it takes to

train the classification models, measuring how long the training process for

all noise levels and cross-validation fold settings takes.

We use scikit-learn [Pedregosa et al., 2011], a Python-based framework

which provides access to several, state-of-the-art machine learning tools, to

implement our experiments. Specifically, we use the wrappers scikit-learn

provides to access 1) libSVM [Chang and Lin, 2011] and 2) a more efficient

implementation of linear classifiers named liblinear [Fan et al., 2008]. The

former toolkit implements SVM models and is available as svm.SVC (we only

use the classification variant), the latter is an optimised version of libSVM,

implemented as svm.LinearSVC. Next to the core machine learning models,

we also make use of scikit-learn’s implementation of k-fold cross validation

and stratified folding.
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Joint versus joint, binarised feature vectors

By their very design, joint feature vectors are capable of explicitly modelling

the comparison of two candidate systems—this is exactly the task we have

defined them for. In order to compare joint feature vectors to their binarised

counterparts, we compute two data sets:

1. first, one containing joint feature vectors for a total of N ∗ K = 13,335

feature vector instances which correspond to all feature vectors for

N = 105 system comparisons and k = 127 sentences for each system.

Each of the feature vectors contains exactly 2×4 = 8 feature values plus

an increasing number of noisy features. We provide more details on the

noise levels below; and

2. a second data set which contains a totalN ∗ K = 13,335 joint, binarised

feature vector instances, again corresponding to all feature vectors for

all system comparisons and sentences for which we have translations

to consider. Similar to the first data set, we also add increasing levels

of noise to this data set.

An immediate observation can be made in contrast to the methodology

applied for our experimental setup concerning classification models trained

on single feature vector instances: instead of training the classifier on a total

of N = 105 individual classification models with a maximum of 2 ∗K = 254

feature vector instances (remember that each pair of systems yields two fea-

ture vectors per sentence for single feature vectors), we can leverage the full

amount ofN ∗ K = 13,335 feature vector instances when working with (both

types of) joint feature vectors. This represents an increase of factor ×105 in

terms of training data—which is a massive increase that may help to obtain

more accurate prediction models. “There is no data like more data!”
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The impact of noise

Training a machine learning classification model on training instances which

consist of only four or eight feature values may not be a sufficiently hard

challenge for either of the three feature vector types. This especially holds

true considering that we use perfect feature values which are directly related

to the respective target class. Hence we make the problem more difficult

by adding noisy feature values. These are randomly drawn from a discrete

uniform distribution in the closed set {−1,0,1} (or {0,1} in case of strictly

binary feature values). We add increasingly larger amounts of noise to our

feature vectors and then train new classification models on the augmented

set of training instances.

In total, we test ten different setups with the following noise levels:

- noise = 0: the baseline case with no additional noise. In theory, all

feature vector types should perform best for this setup as there is no

random noise which can interfere with the estimation of the classifier;

- noise = 10: a modest amount of 10 noisy features (factor ×2.5);

- noise = 20: a modest amount of 20 noisy features (factor ×5);

- noise = 50: a medium amount of 50 noisy features (factor ×12.5);

- noise = 100: a medium amount of 100 noisy features (factor ×25);

- noise = 200: a medium amount of 200 noisy features (factor ×50);

- noise = 500: a large amount of 500 noisy features (factor ×125);

- noise = 1,000: a large amount of 1,000 noisy features (factor ×250);

- noise = 5,000: a huge amount of 5,000 noisy features (factor ×1,250);

- noise = 10,000: a huge amount of 10,000 noisy features (factor ×2,500).

This amount of noise does have a huge impact both on training time re-

quired for classifier estimation as well as the resulting accuracy.
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4.5 Results

Single versus joint feature vectors: Accuracy

Table 4.2 shows the accuracy we observe for classification models trained

using single feature vectors. Noise level ranges from 0 to 100 only as the

small amount of training instances, 2×127 = 254 for single vectors and only

127 in case of the corresponding joint feature vectors, does not allow the

resulting models to achieve more than chance prediction accuracy for larger

numbers of noisy features. We apply k-fold cross validation with k ∈ {3,5,10}.

The addition of noisy features degrades the accuracy of the classifier.

Without noise, we observe an average accuracyAVG = 0.69 for k = 3 folds.

For both k = 5 and k = 10 folds, this value is slightly better at 0.70. Each

iteration then increases the amount of noise which is added to the feature

vector, resulting in a decrease of prediction accuracy. For noise level 100 and

k = 5 folds, accuracy reaches the minimum value at 0.56.

Table 4.3 gives the corresponding accuracy values we measure for models

which have been built using joint feature vectors. As a general observation we

can state that such classifiers achieve a higher maximum quality, 0.76 instead

of 0.69. Otherwise, scores and their degradation caused by the addition of

increasing levels of noise are comparable to the case of single feature vectors.

Models based on joint feature vectors seem to have a slight edge on their

single vector counterparts, but are not much better for noisy features.

Figure 4.1 plots prediction accuracy against the amount of noisy features.

The (Top) graph refers to single feature vectors. The (Middle) graph shows

results for joint feature vectors. The (Bottom) graph contrasts the two best

models from both methods. The joint model on k = 3 folds outperforms the

best single model until noise level 20. This supports Hypothesis 4.
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Single versus joint feature vectors: Training time

Table 4.4 lists the training time for each of the single vector models we train.

Without noise, only using the set of 2 × 127 = 254 training vector instances,

the estimation of the resulting classification model is complete in a matter of

seconds. For k = 3 folds, we measure roughly 1.8 seconds. Of course, this

increases for larger folds as there is more computation required for these. We

observe around 3.9 seconds for k = 5 and 7.8 seconds for k = 10.

The introduction of additional noisy features slows down the training

process of the classifier. For noise level 10, training time rises by a factor of

×7 to around 14.1 seconds. Again, larger folds take longer to complete. We

observe an increase by factor ×8 to 30.9 seconds for five folds. For k = 10

we record a total of 70.1 seconds, which is a jump by a factor of ×9. These

patterns continue for each of the iterations of our experiment.

Table 4.5 shows how training time evolves for classification models based

on joint feature vectors. Again, training time without noise is a matter of

seconds, 1.2 seconds for k = 3 folds. 2.3 and 4 seconds for k = 5 and k = 10

folds, respectively. Joint feature vectors without noise outperform their sin-

gle vector counterparts (again supporting Hypothesis 4). The addition of

noisy features further adds to this observation. For k = 3 folds, every of

the measured training times for joint feature vectors, from noise level 0–100,

takes less time than the training time for our single vector model with noise

level 10: around 5.2 seconds versus around 14.1 seconds for the classifier

using single feature vectors. The same holds for k = 5 and k = 10 folds.

Figure 4.2 visualises these numbers. The (Top) graph plots training time

of single vector models against the amount of noisy features. The (Middle)

graph provides the same information for joint feature vectors while, again,

the (Bottom) graph contrasts the best models from both methods.
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Accuracy single vectors

Noise level 3 folds 5 folds 10 folds

0 0.69 (± 0.08) 0.70 (± 0.08) 0.70 (± 0.08)

10 0.67 (± 0.10) 0.68 (± 0.09) 0.69 (± 0.08)

20 0.66 (± 0.10) 0.67 (± 0.10) 0.68 (± 0.09)

50 0.60 (± 0.07) 0.62 (± 0.08) 0.63 (± 0.08)

100 0.57 (± 0.08) 0.56 (± 0.07) 0.57 (± 0.07)

Table 4.2: Accuracy of single feature vectors

Accuracy joint vectors

Noise level 3 folds 5 folds 10 folds

0 0.73 (± 0.08) 0.75 (± 0.07) 0.76 (± 0.07)

10 0.72 (± 0.08) 0.74 (± 0.06) 0.74 (± 0.07)

20 0.66 (± 0.09) 0.70 (± 0.08) 0.71 (± 0.08)

50 0.59 (± 0.08) 0.60 (± 0.07) 0.62 (± 0.08)

100 0.58 (± 0.10) 0.58 (± 0.09) 0.57 (± 0.09)

Table 4.3: Accuracy of joint feature vectors

Training time single vectors [min:s:µs]

Noise level 3 folds 5 folds 10 folds

0 00:01.8544 00:03.9197 00:07.8316
10 00:14.1451 00:30.8937 01:10.0839
20 00:19.4627 00:43.8604 01:43.9383
50 00:44.2777 01:49.7188 04:33.0468

100 00:28.0203 01:41.4304 05:51.3853

Table 4.4: Training time of single feature vectors

Training time joint vectors [min:s:µs]

Noise level 3 folds 5 folds 10 folds

0 00:01.2411 00:02.2835 00:04.0302
10 00:02.5407 00:04.8859 00:10.9712
20 00:04.4051 00:08.9651 00:22.2281
50 00:05.2053 00:14.6410 00:42.7394

100 00:04.1371 00:09.1414 00:23.7568

Table 4.5: Training time of joint feature vectors
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Figure 4.1: Top: accuracy for single feature vector classification models with
increasing noise level. Middle: accuracy for joint feature vector classification
models with increasing noise level. Bottom: comparison of the two most
accurate models of both single and joint feature vector classification (for 10
folds). Note how the joint feature vectors model trained on 3 folds has a
comparable accuracy, regardless of the decrease in folds.
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Figure 4.2: Top: training time for single feature vector classification models
with increasing noise level. Middle: training time for joint feature vector
classification models with increasing noise level. Bottom: comparison of the
two fastest models of both single and joint feature vector classification (for
3 folds). Note how the joint feature vectors model trained on 10 folds has a
comparable runtime, regardless of the increase in folds.
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Joint versus joint, binarised feature vectors

We present results from our experiments comparing joint feature vectors to

their binarised counterparts on the upcoming pages. The accuracy of binary

classification models can be presented graphically using so-called receiver

operating characteristics (ROC), or simply ROC curves. A ROC curve plots

the fraction of true positives out of all positively labeled targets (this fraction

is usually called TPR, true positive rate) against the fraction of false positives

out of all negatively labeled targets (analogously, this is called FPR or false

positive rate), at various threshold parameters which control the estimation

process of the classification model under investigation.

A ROC curve displays FPR on the x-axis and plots TPR on the y-axis.

The diagonal from (0,0)–(1,1), i.e., from the lower left corner to the upper

right corner of the graph, represents the so-called line of no-discrimination.

This line represents the results of random guessing, i.e., a classification model

which is practically useless. Any point above the diagonal represents a model

with a “better than random” classification quality. Conversely, any point

below the diagonal signals a model which performs very poorly, even worse

than random. A perfect classification would be represented by point (0,1). In

essence: the further the plotted ROC curve is above the diagonal, the better

are the underlying classification models.

Our experiments with joint and joint, binary feature vectors focus on the

comparison of the influence of the comparison-based binarisation on the re-

sulting classification models’ prediction accuracy. We compute models for

subsets of the full data set which contains 13,335 feature vectors forN = 105

comparisons of 127 individual sentences. Our subset size ranges from 2,000

to 12,000. We use cross validation with k = 5 folds and add increasing

amounts of noise to the feature vectors, similar to our methodology when
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comparing single and joint feature vectors.

Classification models based on svm.LinearSVC

The first series of ROC curves (Figures 4.3–Figure 4.7) shows how prediction

accuracy of joint feature vectors differs from the quality of the corresponding

classification models trained on joint, binarised feature vectors. Graphs on

the left side give an overview on the performance of joint feature vectors,

for noise levels 0, 100, 1,000, and 10,000 from top to bottom. Likewise,

the graphs on the right side show the same information for joint, binarised

feature models. The plots also give the Mean ROC area, which is a “score”,

ranging from 0.0 to 1.0. Large mean ROC area values represent models with

very good discrimination capabilities. The closer this value gets to 0.5, the

less reliable the predictions of the corresponding model are.

Figure 4.3 presents results from classification models trained on a subset

of 2,000 sentences. We use a linear model and apply svm.LinearSVC from

scikit-learn for classifier estimation. The mean ROC area values for joint

feature vectors range from 0.99, which essentially is near perfect prediction

accuracy, down to 0.53, only minimally better than random guessing. Mod-

els trained using joint, binarised feature vectors show a better performance

with mean ROC area values ranging from 0.99 to 0.73. While the latter value

certainly is not stellar, it still is much better than the corresponding value

from the model trained on joint feature vectors. It is also noteworthy that the

introduction of increasingly more noisy features does not have as much of a

negative effect on joint, binarised feature vectors as it has on their joint coun-

terparts. Binarisation of feature comparison results seems to be beneficial,

supporting Hypothesis 5. Other plots on pages 4.4–4.7 offer similar insights.

We describe the performance of a second, potentially more powerful SVM
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implementation, namely svm.SVC, in combination with two different kernel

types, “linear” and “rbf” (which stands for radial basis function), next.

Classification models based on svm.SVC with linear kernel

In principle, the combination of svm.SVC as implemented by libSVM with a

linear kernel should yield results which are very similar to the experiments

conducted with svm.LinearSVC. As previously mentioned, the latter is only

a more efficient implementation of linear models, especially with thousands

of feature values per feature vector. The improved runtime performance, of

course, comes at a cost; this becomes clear when evaluating the ROC curves

plotted in (Figures 4.8–Figure 4.12). Note that each and every of the plots

achieves a higher prediction accuracy than the corresponding models trained

using svm.LinearSVC. As expected, the increased complexity of the svm.SVC

estimation results in greater runtime requirements. The choice among the

two implementations is hence based on application requirements.

Figure 4.8 presents results from classifiers based on a subset of 2,000

sentences, similar to plots on page 98 but for the svm.SVC implementation.

The mean ROC area values for joint feature vectors range from 0.99, which is

near perfect prediction accuracy, down to 0.53, which is only slightly better

than random guessing. Models trained using joint, binarised feature vectors

show a better performance with mean ROC area values ranging from 0.99

to 0.83. The latter being +0.10 larger than the corresponding value depicted

in Figure 4.3 (Bottom, right). Also note that joint, binarised feature vectors

only drop for k = 10,000 noisy features, otherwise showing stellar accuracy

values of 0.99, except for noise level 5,000 (not pictured) which achieves an

accuracy of 0.91. Again, it seems that comparison-based binarisation better

copes with noise.
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Figure 4.3: Subset: 2,000, Kernel: linear, Type: LinearSVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.4: Subset: 4,000, Kernel: linear, Type: LinearSVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.5: Subset: 6,000, Kernel: linear, Type: LinearSVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.6: Subset: 9,000, Kernel: linear, Type: LinearSVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.7: Subset: 12,000, Kernel: linear, Type: LinearSVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Similar to our previous findings, prediction accuracy improves relative to

increasing subset (or training set) size. While joint vectors get slightly better,

the binarised variants perform much better. Mean ROC area for Figure 4.12

(Bottom right) remains at 0.99, compared to a joint score of only 0.58, a much

worse value.

Classification models based on svm.SVC with rbf kernel

Finally, we discuss results from our experiments with classification models

trained using the rbf kernel. As mentioned before, the term rbf stands for

radial basis function, i.e., the kernel function e−γ‖x−x
′‖2 . Parameter γ has to

be greater than 0. The use of an rbf kernel allows the support vector ma-

chine to create a nonlinear classifier by applying the so-called kernel trick.

The kernel function transforms feature values into a Hilbert space of infi-

nite dimensions, potentially resulting in a binary classification model which

is able to achieve better discrimination capabilities on the given training

data. Estimation of such a classifier is more costly than that of a simple,

linear model and hence requires more memory and runtime. As the training

process is an offline process, these factors might not be problematic in real

life application scenarios, though.

Figure 4.13 depicts the performance from classification models trained

on a subset of 2,000 sentences. Plots on the left side give an overview on the

accuracy of joint feature vectors, their counterparts on the right side show

the superior quality of joint, binarised feature vectors. Mean ROC area for

joint feature vectors ranges from 0.93 for k = 0 noisy features down to 0.50

for the maximum noise level of k = 10,000. Joint, binarised feature vectors

show an excellent performance, especially considering the small subset size,

and remain near perfect at 0.99 up to a noise level of 1,000. The minimum

103



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic example

Mean ROC (area = 0.99)
Luck

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic example

Mean ROC (area = 0.99)
Luck

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic example

Mean ROC (area = 0.97)
Luck

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic example

Mean ROC (area = 0.99)
Luck

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic example

Mean ROC (area = 0.60)
Luck

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic example

Mean ROC (area = 0.99)
Luck

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic example

Mean ROC (area = 0.53)
Luck

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic example

Mean ROC (area = 0.83)
Luck

Figure 4.8: Subset: 2,000, Kernel: linear, Type: SVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.9: Subset: 4,000, Kernel: linear, Type: SVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.10: Subset: 6,000, Kernel: linear, Type: SVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.11: Subset: 9,000, Kernel: linear, Type: SVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.12: Subset: 12,000, Kernel: linear, Type: SVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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value is observed at 0.81 for a massive amount of k = 10,000 noisy features,

which is better than the performance of a classifier trained on joint feature

vectors with a much smaller noise level of 100.

This trend continues with increasing subset size. As observed before,

prediction accuracy for both feature vector types increases. Joint, binarised

vectors perform better, only diminishing to 0.96 for maximum noise level.
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Figure 4.13: Subset: 2,000, Kernel: rbf, Type: SVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.14: Subset: 4,000, Kernel: rbf, Type: SVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.15: Subset: 6,000, Kernel: rbf, Type: SVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.16: Subset: 9,000, Kernel: rbf, Type: SVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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Figure 4.17: Subset: 12,000, Kernel: rbf, Type: SVC
Left: accuracy for classification with joint feature vectors with noise levels 0,
100, 1,000, and 10,000 (top to bottom). Right: accuracy for corresponding
models trained using joint, binarised feature vectors.
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4.6 Chapter Summary

In this chapter we have investigated if joint feature vectors which encode

the set of feature values for two candidate systems A, B can outperform sin-

gle feature vectors only containing features for individual systems. We have

stated two research hypotheses and then carefully verified them in a series

of experiments, measuring the performance of the binary classifiers in terms

of accuracy and time required for model estimation. Similar to the previ-

ous chapter, we opted for simulated feature values which have an optimal

correlation with the respective target class values.

Our first working hypothesis, joint feature vectors can outperform single

feature vectors, is confirmed by our experiments. Accuracy of single feature

vectors is slightly worse than that of the corresponding models trained on

joint feature vectors. Increasing levels of noise diminish accuracy. Still, joint

feature vectors are better in terms of training time.

After having verified the usefulness of joint feature vectors, we examined

whether the comparison-based binarisation of feature values can improve

prediction accuracy of the resulting binary classification models. Results

from our experiments confirm this, hence our second hypothesis, Comparison-

based binarisation of feature values can outperform the corresponding joint feature

vectors also holds.
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The next chapter presents a framework for system combination using

joint, comparison-based binarisation of feature vectors, combining results

from Chapters 3 and 4.
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System Combination Framework

“A good plan violently executed Now is better than a perfect plan
next week.”
– George S. Patton: War As I Knew It, 1947.

“What was once thought can never be unthought.”
– Friedrich Dürrenmatt: The Physicists, 1962.

“No good model ever accounted for all the facts since some data
was bound to be misleading if not plain wrong.”
– James D. Watson: as cited by Francis Crick in Some Mad Pursuit, 1988.

5.1 Introduction

In previous chapters we have shown that 1) sentence selection approaches

have a large potential for system combination of machine translation output

(Chapter 3), and that 2) binary classifiers based on joint, comparison-based

binarisation of feature vectors present a powerful technique to implement

pairwise comparison of candidate systems (Chapter 4). In this chapter, we

combine these findings into a framework performing sentence selection to

produce hybrid machine translation output. Of course, its selection process
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is driven by classification models which are trained using joint, comparison-

based binarisation of feature vectors.

Problem Statement

As with previous chapters, we first formulate an overall problem statement

to properly define the matter of investigation. As the fundamental parts of

our system combination approach have already been defined and discussed,

we can now focus on bringing the individual pieces together. The ultimate

goal is to propose a machine learning framework for hybrid machine trans-

lation. This gives the following problem statement:

Given that sentence selection seems to have a promising potential and

further considering the positive performance of joint, comparison-

based binarisation of feature vectors, can we combine these into a

competitive system combination framework for machine translation

output?

Following the line of argumentation first introduced in Chapter 1, we want to

implement a sentence-selection-based approach in order to preserve both syn-

tactic and semantic properties of the chosen translation output. The obvious

drawback in comparison to, e.g., confusion networks is that such a system

can never generate combination output which is “fused” from good sub-

segments of several candidate translations. Our methodological paradigm

can never outperform the translation quality of the single-best candidate

translation which is contained in the set of input sentences.

On the other hand, in Chapter 3 we have shown that, even without the

potential of combining phrase-level properties of the individual candidate

translations, oracle-based sentence selection has an impressive potential. In-
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terestingly, even globally bad systems may contribute a fraction of good trans-

lations. Furthermore, it is conceivable that, in future work, our combination

framework can be extended to also support combinations on the phrase level,

e.g., by choosing one system as the translation “template” which may choose

phrase translations from other candidate systems using binary classifiers.

This chapter is structured as follows: in Section 5.2 we state our research

hypothesis. Second, we describe the methodology (Section 5.3) we have used

in our experiments which are discussed afterwards (Section 5.4). Finally,

we present results (Section 5.5) and some examples before ending with a

summary of our findings and a conclusion in Section 5.6.

5.2 Research Hypothesis

First let us define the research hypothesis of this chapter. Based on the

assumption that sentence selection on the document level can be used to

combine multiple candidate translations into a new, combined translation,

we want to investigate whether an implementation of such an approach which

is based on binary classification models trained using joint, comparison-

based binarisation of feature vectors can be defined and how successful it

can be. In essence, we are trying to verify that the fundamental findings of

Chapters 3 and 4 can be turned into a competitive combination approach.

Of course, the creation of such a combination system is only the first

step. Once trained, we have to compare its performance against other system

combination approaches. Specifically, we are interested in the comparison

to state-of-the-art methods based on confusion networks. If you recall our

motivation in Chapter 1, such approaches account for the majority of sys-

tem combination research in the last decade. Hence, they are a baseline we

have to compare our method against in order to rightfully claim that a sen-
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tence selection approach trained with joint, comparison-based binarisation

of feature vectors is competitive.

This leads to the following research hypothesis:

Hypothesis 6. It is possible to define and implement a sentence selection approach

for system combination which is based on binary classification models trained with

joint, comparison-based binarisation of feature vectors that is competitive with

state-of-the-art system combination methods.

We verify this hypothesis in the remainder of this chapter.

5.3 Methodology

Motivation

Our methodology utilises machine learning to estimate binary classification

models which can be used to solve a sentence selection problem, namely to

identify the optimal translation for a given source sentence. In order to reduce

the complexity of this problem, we use a divide and conquer approach and

define an algorithm which computes the best translation by considering all

pairwise comparisons of systems A, B. This further has the advantage that

binary classification is a very well studied area of machine learning, meaning

that there exist a lot of techniques to optimise the classification models used

for our selection task. In fact, we are flexible regarding the actual machine

learning paradigm which is used for training the classifiers. Based on the re-

sults from Chapter 4 we apply comparison-based binarisation on the feature

values for both systems A, B, effectively making use of joint, comparison-

based binarisation of feature vectors during model estimation. Following the

train of thought of our thesis research, this will allow us to efficiently handle

the underlying classification problem.
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Figure 5.1: Schematic overview of our sentence-selection-based combination
approach. Given a set of k translations for some N translation engines, we
compute the final translation by selecting the “best” candidate translations.
Selection is based on the results of a machine learning classifier.

Figure 5.1 illustrates the problem we are faced with. Given translation

output (at the document level) from several machine translation engines, we

want to create a combined translation by choosing the best translation option

per sentence. Our method applies machine learning to train a classifier that

then can be used to perform candidate selection on the sentence level.

We first want to provide an informal overview of our methodology for

hybrid machine translation. We use the terms hybrid machine translation

and system combination interchangeably in this thesis. Our architecture is

based on classifiers trained using state-of-the-art machine learning tools. We

require the availability of a set of n translations from several MT systems that

are treated as “black boxes”, meaning that we can only access the individual

systems’ translation output but do not have means to extract system-internal

features such as scores, preferences, or similar properties of the translations.
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For training of the binary classification model (or models as we can train indi-

vidual classifiers for all pairwise comparisons of systems A, B) we need training

and development sets including the corresponding reference text. Without

references we cannot order candidate translations according to their respec-

tive quality to label the training data which is a mandatory step in supervised

machine learning.

Using the development data (consisting of candidate translations from

n translation systems and the corresponding source and reference texts) we

perform the following processing steps to generate a hybrid translation for

some given test set:

1. Compute a total order of individual system output on the development

set using some order relation based on quality assessment of the trans-

lations with automatic metrics. This can also be extended to include

results from manual evaluation (though it may be costly to actually

add human judgment to the overall process);

2. Decompose the aforementioned system ranking into a set of pairwise

comparisons for any two pairs of systems A, B. As we do not allow for

ties in our system comparisons1, the two possible values A > B, A < B

also represent our machine learning classes +1/−1, respectively;

3. Annotate the translations with feature values derived from NLP tools

such as language models, word alignment models, lexical phrase tables,

part-of-speech taggers, or parsers;

4. Create a data set for training a machine learning classifier which is able

to estimate (based on the features) which of two given systems A, B is

1Of course, the possibility that translations for two systemsA, B are equal according to the
chosen quality metrics exists. In such cases we would either drop the corresponding system
pair from our set of training instances or define one of the systems to be the winner, e.g., by
assigning target class +1 for all values A ≥ B. One can also use ternary target classes +1/0/−1.
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better according to the available features;

5. Train such a machine learning classification model using, e.g., libSVM,

see [Chang and Lin, 2011];

Steps 1–5 represent the training phase in our framework. The availability of

a training set including references is required as this is needed to allow the

definition of an ordering relation which subsequently defines the training

instances for the machine learning framework of choice. After training, we

can use the resulting binary classifier as follows:

6. Apply the resulting classification model to the candidate translations

from the given test set. This will predict pairwise estimates +1/−1 for

each possible pair of systems A, B;

7. Perform round-robin system elimination to determine the best system

from the set of candidate translations for each of the segments. It may

be necessary to resolve conflicts at this stage, e.g., if two or more sys-

tems achieved the same number of +1 “wins” during the previous step;

8. Using this data, synthesise the final, hybrid translation output.

Steps 6–8 represent the decoding phase in which the trained classification

model is applied to a set of unseen translations without any reference text

available. By computing pairwise winners for each possible pair of systems

and each individual sentence of the test set, we determine the single best

system on the sentence level.

As this allows to integrate good translations from otherwise bad systems,

we expect the methodology to improve over its individual source systems;

provided the choice of features used in such experiments has a good enough

correlation with the target class labels. Notably, there are two prerequisites

that are necessary in order to make the proposed approach work:
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– We need to define a sufficiently good order relation; and

– Based on this order we have to train a binary classification model.

We address both issues later in this chapter.

Fundamentals

Before we can dive into the details of the hybrid combination framework, we

first have to define several fundamental concepts, notations, and operators.

Our method is based on machine learning techniques which solve binary

classification problems. The classifiers are based on models learnt on the an-

notation output obtained from feature functions. These are defined as follows:

Definition 7 (Feature function). A feature function f takes some input i ∈ I

and computes so-called feature values or feature scores x ∈ X, mapping from

input domain I into output range X. Formally:

f : I → X

Notation 3 (f eaturef ,X). For convenience, we define the following notation to

denote that we compute a feature value x in output range X from some input i:

f eaturef ,X(i) = f (i)

If the actual feature function f does not matter in the given context, we may

choose to omit it and just use f eatureX(i) instead. This denotes that “some”

feature function f ′ is used to compute feature values from output range X.

Notation 4 (Feature value). The output values of a feature function are called

feature values or feature scores. We use both terms interchangeably throughout

the thesis document.
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Notation 5 (Feature space). The output range of some feature function is re-

ferred to as the corresponding feature space. Any such feature space can either

be partially or totally ordered.

A feature space is formally defined like this:

Definition 8 (Partially ordered feature space). A feature space X is a set with

an ordering relation ≤X that is:

- reflexive: i.e., ∀a ∈ X : a ≤X a;

- transitive: i.e., ∀a,b,c ∈ X : if a ≤X b and b ≤X c then a ≤X c;

- antisymmetric: i.e., ∀a,b ∈ X : if a ≤X b and b ≤X a then a = b.

Such an ordering relation defines a partially ordered feature space. Note that,

as the ordering relation is only partial, there can be elements a,b ∈ X which cannot

be compared using ≤X . Such elements are called incomparable.

Definition 9 (Totally ordered feature space). If the ordering relation ≤X of a

feature space as defined in Definition 8 is also:

- total: i.e., ∀a,b ∈ X : a ≤X b or b ≤X a.

it defines a totally ordered feature space instead. The difference is that the

total order guarantees that all elements a,b ∈ X can be compared using ≤X and

therefore are comparable.

Definition 10 (Selection operator ∆). The selection operator ∆ for feature

values takes two feature scores and computes which of these is “better” in the

respective feature space.

We define the operator as follows:

∆ :X ×X → {⊥}∪ {−1,0,1}

125



The output of the ∆ operator is defined like this:

∆(f eatureX(A), f eatureX(B)) =



1 f eatureX(A) > f eatureX(B)

0 f eatureX(A) = f eatureX(B)

−1 f eatureX(A) < f eatureX(B)

⊥ features scores are incomparable

where the given feature values f eatureX(A), f eatureX(B) are both elements of the

same feature space X. The comparison result of the two scores is encoded using

integers taken from {−1,0,1} if they are comparable under ≤X . Otherwise we use

⊥ to denote that the feature values are incomparable. Note that our definition

of totally ordered feature spaces guarantees that all feature scores a,b ∈ X are

comparable under ≤X , effectively changing the operator’s signature to:

∆ :X ×X → {−1,0,1}

For natural or real numbers, this comparison typically means evaluating the sign

of the difference between the given feature values, d = f eatureX(A)−f eatureX(B),

effectively computing ∆(f eatureX(A), f eatureX(B)) as sgn(d).

Definition 11. The classification operator Γ takes the comparison results of N

feature values for two individual candidate translations and computes which of

these is better according to the underlying model M.

Formally, the operator is defined as follows:

ΓM : {−1,0,1}N → {+1,−1}

The output of the Γ operator is based on the model’s prediction, formally:

ΓM(f1, f2, . . . , fN ) =M.predict(f1, f2, . . . , fN )
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Ranking Candidate Translations

Notation 6 (Corpus-level Metric). A quality assessment metric M which has

been optimised for correlation on the corpus level is called a corpus-level metric.

We use subscript C to denote this, e.g., MeteorC refers to the Meteor metric being

used on corpus level.

Notation 7 (Sentence-level Metric). Similarly, quality metrics can also have

been optimised for correlation on the sentence level. We use subscript S to denote

such a sentence-level metric, e.g., MeteorS refers to the Meteor metric being

used on the sentence level.

In order to rank the given candidate translations, we first have to define

an ordering relation over the space of translation outputs. For this, we apply

the following evaluation metrics which are the de-facto standards for auto-

mated assessment of machine translation quality. We consider:

1. The Meteor score as described in [Denkowski and Lavie, 2011]. We

work with scores from the sentence and from the corpus level;

2. The NIST n-gram co-occurence score, published by [Doddington, 2002],

on the corpus level; and

3. The BLEU score as defined in [Papineni et al., 2002] which is the most

widely used evaluation metric in MT, used on the corpus level.

While both BLEU and NIST scores are designed to have a high correlation

with results from manual evaluation on the corpus level, the Meteor met-

ric can also be used to compare translations on the level of individual sen-

tences.2 We use this property when defining our order ord(A,B) on transla-

tions, as shown in equations 5.1 and 5.2.

ord(A,B) def= ordX(A,B) (5.1)
2There exist other metrics which produce usable output on the sentence level, e.g., s-

BLEU. These could also be used instead of Meteor.
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where X ∈ {MeteorS ,MeteorC ,NISTC ,BLEUC ,⊥}. Suffix S denotes a sentence-

level quality metric score while suffix C represents a corpus-level score. ⊥

denotes the “empty” metric which is the “minimal” element in the set of

available metrics.

ordX(A,B) def=


+1 ifXA > XB

−1 ifXA < XB

ordX′ (A,B) otherwise,X > X ′

(5.2)

If candidate translations A, B are indistinguishable by current metric X, we

recursively delegate the decision problem to metric X ′ where X ′ < X denotes

the “next-best” metric in our (ordered) set of available metrics: MeteorS ,

MeteorC , NISTC , BLEUC . By definition,

ord⊥(A,B) = 0 (5.3)

which means that candidate translations A, B are of equal translation quality

according to the quality metrics used. Pairs of systems with ord(A,B) = 0 can

either be removed from the set of instances used for training the machine

learning classifier or we can fall back to using a pre-defined fallback strategy

that decides which of the two systems is supposed to be better.

Algorithm 3 on page 133 presents an algorithm for computing a ranking

between N candidate systems, based on the output of an ordering relation

ordX . We initialise in line 1. Afterwards, lines 2–4 compute automated met-

rics’ scores which are used by ordX to perform the pairwise comparison of

candidate translations. Ranking items (a,b, i,o) encode which of the two sys-

tems a, b is better, according to ordX , for segment i. System a is better for

o = + 1, system b if o = − 1. Otherwise, systems are equal according to

ordX . They are computed from line 5 to 10 for all pairs of systems a, b and

segments i. In line 11, we return the set of ranking items.
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Feature Binarisation

Given a set of feature vectors from N candidate systems, we need to com-

pute joint, binarised feature vectors for all pairwise comparisons of systems

A, B. Algorithm 4 on page 134 explains how we can compute such joint, bi-

narised feature vectors based on single feature vectors. First, we initialise in

line 1. Then, we iterate over all pairs of feature vectors Fa, Fb. For each of

these pairs, we loop over the set of individual segments and, finally, compare

each of the feature values using our selection operator ∆. The resulting value

δ ∈ {⊥} ∪ {−1,0,1} represents the binarised “variant” of the two correspond-

ing feature values Fa,i,f and Fb,i,f . We return a set of binarised feature items

(a,b, i, f ,δ) in line 10. These encode which of the two systems a, b is better

in terms of feature f extracted from segment i. A δ value of +1 denotes that

system a is better in this respect. The same holds for system b if δ = − 1.

Equal feature values result in a value of 0, incomparable features force a ⊥

result. Depending on whether we aim for a binary or a ternary classification

model, equal feature values may have to be removed. Incomparable feature

values should always be removed before we can start training a classification

model on our binarised features.

Classifier Estimation

We can now compute 1) sets of ranking items and 2) sets of binarised feature

items. The former encodes the ordering of all pairs of candidate systems A, B

for all segments i of the training set, the latter allows to generate joint, bina-

rised feature vectors from which a binary classification model can be trained.

In machine learning terms, the set of ranking items is equivalent to the target

class values y while the set of binarised feature values roughly corresponds
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to the training vectors X. Given a machine learning method train-classifier3

and the two data sets, the estimation of a binary classifier is straightforward.

Algorithm 5 describes the estimation process in detail.

We initialise our data structures in lines 1–2. X collects training vectors in

joint, binarised format and y stores target class values y ∈ {−1,+1}. We iterate

over all pairs of systems a, b and all segments i in lines 3–4. In lines 5–8, we

compute the corresponding joint, binarised feature vector. We update our

training vector and target class sets in lines 9 and 10. The classification model

is then estimated with train-classifier in line 13 and returned in line 14.

System Combination using Binary Classification

Assuming we have successfully trained a binary classification modelM based

on joint, comparison-based binarisation of feature vectors as introduced in

the Chapter 4, we can generate a combined translation from N translation

engines by selecting the best candidate translation per sentence, guided by

the decisions made by our classifierM. While this sounds simple, we have to

consider the prediction rate of the underlying classification model—it has a

direct influence on the translation quality of the resulting output. The closer

our model’s prediction accuracy is to random guessing, the less likely it is

that our system combination approach functions properly. Therefore it is

recommended to optimise classification models during training.

Our sentence selection mechanism is faced with the following problem:

given candidate translations from N translation engines, it has to apply the

ΓM operator to all possible, pairwise comparisons of candidate translations

and then determine the “best” translation available for each of the input sen-

tences. Algorithm 6 on page 136 shows how system combination based on

3This can be, e.g., the fit method of a svm.SVC or a svm.LinearSVC object instance, when
implementing estimation with scikit-learn.
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binary classification is implemented. A schematic overview of the selection

problem on segment level is depicted in Figure 5.2.

Running ΓM(A,B) for some given binary classification model M and all

pairwise comparisons of N candidate translations, memorising the number

of wins per system, can result in two different outcomes:

1. There is a unique winner. This is depicted in Figure 5.3; or

2. Several systems have an equal number of wins. This means that we

have to apply a conflict resolution strategy in order to identify the final

winning system. See Figure 5.4.

We explain both scenarios in the following section.

Case 1: Single Winner

If a single candidate translation is identified as the unique winner for the

given input sentence, we simply copy it over to the combined translation, as

shown in Figure 5.3, and then proceed to the next sentence.

Case 2: Multiple Winners

If we have observed the best number of wins for two or more systems, we

have to apply a conflict resolution strategy to identify the best system for the

current input sentence. The following sub-cases need to be considered:

– There are two best systems X, Y ;

– Three or more systems are in the set of best systems.

The first sub-case is easy to handle. Due to the nature of the implementation

of our machine learning classifier, we are guaranteed to receive a clear-cut de-

cision for each possible, pairwise comparison of systems as our classifier will
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return either +1 or −1. Also, by the design of our sentence selection mecha-

nism, we know that we have already computed all these pairwise comparison

decisions. Hence, we can simply look up the results of ΓM(X,Y ) and choose

the winner of this comparison as the overall best system for the current input

sentence.

The second sub-case is a more problematic. While it may be possible that

one of the systems has been judged as better than all the other systems avail-

able in the set of winning translation engines for the current input sentence,

this is a property which is in no way guaranteed as there might be circular

dependencies such as, e.g., X > Y , Y > Z, and Z > X, which cannot be resolved

so easily.

If one such system X can be identified, it becomes the winner of this

comparison as the overall best system for the current input sentence and

we are done. If this distinction is not possible, as is the case for circular

dependencies, we have to fall back to pre-defined knowledge from the training

phase and choose one of the candidates as “the best option”.
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Algorithm 3 Computing a ranking for N candidate systems

Require: set of translations from N candidate systems S = {S1,S2, . . . ,SN };
Require: reference text R;
Require: ordering relation ordX , considering metrics defined in X.
Ensure: |S1| = |S2| = . . . = |SN | = |R|

1: metrics←∅, ranking←∅

2: for each system Sa;1 ≤ a ≤N do
3: metrics← compute-metric-scores(Sa) . Metric scores are required for ordX

4: end for

5: for each pair of systems Sa,Sb;1 ≤ a < b ≤N do
6: for each segment id i;1 ≤ i ≤ # of segments do
7: o← ordmetrics(Sa,i ,Sb,i) . Rank systems for current segment, o ∈ {−1,0,1}

8: ranking = ranking ∪ (a,b, i,o) . Store resulting ranking item

9: end for
10: end for

11: return ranking . Return full set of ranking items

translation A1 translation B1 translation C1

???

classify(sysA, sysB) = ???
 classify(sysA, sysC) = ???
classify(sysB, sysC) = ???

3

C. Federmann • A Machine-Learning Framework For Hybrid Machine Translation • KI 2012

system-wins(sysA) = ???
system-wins(sysB) = ???
system-wins(sysC) = ???

Figure 5.2: Problem for the sentence selection mechanism: given a set of N
translation candidates, select the “best” translation, according to the binary
classification model, which is available for the current input sentence.
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Algorithm 4 Feature binarisation for N candidate systems

Require: set of feature vectors from N candidate systems F = {F1,F2, . . . ,FN };
Require: selection operator ∆ : X ×X → {⊥}∪ {−1,0,1}.
Ensure: |F1| = |F2| = . . . = |FN |

1: binarised←∅

2: for each pair of feature vectors Fa,Fb;1 ≤ a < b ≤N do
3: for each segment id i;1 ≤ i ≤ # of segments do
4: for each feature id f ;1 ≤ f ≤ # of features do
5: δ← ∆(Fa,i,f ,Fb,i,f ) . Compare current feature values, δ ∈ {⊥}∪ {−1,0,1}

6: binarised = binarised ∪ (a,b, i, f ,δ) . Store resulting binarised feature item

7: end for
8: end for
9: end for

10: return binarised . Return full set of binarised items

5.4 Experiments

Features for Classifier Estimation

We have experimented with many different feature values during the re-

search for this thesis. Irrespective of the actual approach that is implemented

in a given machine translation system, the creation of its translation output

usually requires several, often heterogeneous, features. These can be:

– simple scores, e.g., for language model, parser, or lexical phrase table

probabilities;

– more complex data structures such as hierarchical parse trees or word

alignment links; or

– even full parse forests or n-best lists containing both translations and

corresponding feature values.
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Algorithm 5 Classifier estimation for N candidate systems

Require: set of binarised feature items binarised;
Require: set of ranking items ranking;
Require: machine learning training method train-classifier.
Ensure: |binariseda,b,i | = |rankinga,b,i |;1 ≤ a < b ≤N ;1 ≤ i ≤ # of segments

1: X←∅ . Stores binarised feature vectors for pairwise comparisons

2: y←∅ . Store corresponding target class values +1/−1

3: for each pair of system ids a,b;1 ≤ a < b ≤N do
4: for each segment id i;1 ≤ i ≤ # of segments do

5: f eaturesa,b,i ←∅

6: for each feature id f ;1 ≤ f ≤ # of features do
7: f eaturesa,b,i = f eaturesa,b,i ∪ binariseda,b,i,f
8: end for

9: X = X ∪ f eaturesa,b,i
10: y = y ∪ rankinga,b,i
11: end for
12: end for

13: classif ier← train-classifier(X,y) . Estimate classifier on joint, binarised feature vectors

14: return classif ier . Return binary classification model

Given this wide range of features and their diversity, it is very difficult to get

an intuitive understanding of the inner workings of the MT engine in ques-

tion; thus, further research work on the combination of machine translation

systems into better combination systems seems to be of high importance to

the field. To overcome the aforementioned problems with incomprehensi-

ble feature values, we have proposed a method that is driven by machine

learning tools, hence leaving both the exact interpretation and weighting of

features to the machine learning algorithms used, relying on their discrimi-
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Algorithm 6 System combination using a binary classification model M

Require: binary classification model M;
Require: set of binarised items binarised for some test set;
Require: classification operator ∆M .
Require: machine learning training method train-classifier.

1: result←∅ . Stores best system per segment

2: for each segment id i;1 ≤ i ≤ # of segments do
3: wins←∅ . Stores number of wins per system

4: for each pair of system ids a,b;1 ≤ a < b ≤N do
5: f eaturesa,b,i ←∅
6: for each feature id f ;1 ≤ f ≤ # of features do
7: f eaturesa,b,i = f eaturesa,b,i ∪ binariseda,b,i,f
8: end for

9: prediction = ∆M(f eaturesa,b,i) . Predict target class

10: if prediction == +1 then
11: wins← wins∪ a . System a wins

12: else
13: wins← wins∪ b . System b wins

14: end if
15: end for

16: result = result ∪ compute-winner(wins)
17: end for

18: return result . Return set of best systems per segment

native power which eventually will find weights that can help to create com-

bined translations from the given candidate translations with a good quality.

We did not deeply investigate feature engineering and optimisation for the

results reported in this Chapter, leaving that to future work.

We create the training data set for classifier estimation using a selection of

features. Feature values are extracted from the given candidate translations
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using external tools which are applied to all candidate systems. This allows

to extract feature values which are comparable between candidates. While

there are many possible features which could be added to our feature set, we

mostly focused on the following choice, leaving more focused research on

feature values for system combination to future work:

- number of target tokens;

- ratio of target/source tokens;

- number of target parse tree nodes;

- ratio of target/source parse tree nodes;

- number of target parse tree depth;

- ratio of target/source parse tree depth;

- n-gram language model score for order n ∈ {1, . . . ,5};

- language model perplexity for order n ∈ {1, . . . ,5}.

- lexical translation probabilities from phrase tables.4

These features represent a combination of (shallow) parsing, language model

scoring as well as machine translation techniques and are derived from the

set of features that are most often used in the respective system combination

literature such as, e.g., [Gamon et al., 2005, He et al., 2010a, He et al., 2010b,

Avramidis, 2011, Okita and van Genabith, 2011, Callison-Burch et al., 2012].

Experiment #1: NIST Data

In order to assess the performance of the our system combination methodol-

ogy, we conduct several experiments and measure the translation quality of

the resulting hybrid translation output. Note that in the data sets used for

4We use constraint decoding as implemented by a customised version of the Moses SMT
decoder to compute comparable probability scores for all candidate systems, regardless of
their internal scores. This allows for a fair comparison between systems.
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experimentation individual system names are anonymised as the translation

output is part of a shared translation task. We work on training data from

the NIST OpenMT12 system combination task, using a held out part of the

training data set as reference to evaluate translation quality.

We train binary classification models using libSVM for two language pairs:

Arabic→English and Chinese→English. For the first pair we work on trans-

lation output generated by n = 10 different systems, for the latter pair there

are n = 15 systems to consider. Note that these numbers differ from the total

number of systems per language pair as some systems chose not to be part

of the system combination task. The source text originates from the news

domain.

We apply our order relation on the given translations to determine a sys-

tem ranking on the sentence level, similar to what Algorithm 3 describes. Us-

ing this information, we then compute pairwise system comparisons as target

class labels and annotate individual translations with parser output and lan-

guage model scores. We use the Stanford Parser [Green and Manning, 2010,

Klein and Manning, 2003, Levy and Manning, 2003] to parse both the source

text and the corresponding translations. For language model scoring, we use

the SRILM toolkit [Stolcke, 2002] training a 5-gram target language model

on English Gigaword data. We do not consider source language language

models in this work.

Experiment #2: ML4HMT 2012

Datasets

The organisers of the ML4HMT-12 shared task provide two data sets, among

these one for the language pair Spanish→English which is the focus in our

submission. Participants are given a development bilingual data set aligned
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at a sentence level. Each ”bilingual sentence” contains:

1. the source sentence;

2. the target (reference) sentence; and

3. the corresponding translations from four individual component MT

systems, based on different machine translation paradigms. Two rule-

based systems, Apertium as described in [Forcada et al., 2011] and Lucy

Translator [Alonso and Thurmair, 2003], and two different variants of

Moses [Koehn et al., 2007], a standard phrase-based SMT decoder and

a hierarchical, phrase-based system.

The output has been automatically annotated with system-internal meta-

data information derived from the translation process of each of the systems.

In total, with the development data we receive 20,000 translations per system

for training. The test set contains 3,003 sentences and is taken from WMT

2011 (“newstest2011”). Our system competes against five other shared task

submissions for the Spanish→English translation task; we will describe these

systems below:

DCU-Alignment This submission [Wu et al., 2012] incorporates alignment

information as additional meta-data into their system combination module

which does not originally utilise any alignment information provided by the

individual MT systems producing the candidate translations. The authors

add alignment information provided by one of the MT systems, the Lucy

Translator rule-based MT engine, into the internal, monolingual, alignment

process.

DCU-QE1 This system [Okita et al., 2012a] incorporates a sentence-level

Quality Estimation (QE) score as meta-data into their system combination
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module. It measures the quality of translations without references. The core

idea is to incorporate this knowledge into the system combination module

through an improved backbone selection.

DCU-QE2

The third submission [Okita et al., 2012a] also uses a sentence-level Quality

Estimation score to do the data selection process. The combined output tends

to preserve the translation quality as is expected, which results in a high

Meteor score. This approach is comparable to the research conducted in this

thesis.

DCU-DA

This system [Okita et al., 2012b] is based on unsupervised topic/genre clas-

sification results as meta-data, feeding into the system combination module.

Since this module has access to topic/genre information, an MT system can

take advantage of this information.

DCU-LM

This submission incorporates latent variables as meta-data into the system

combination module. Information about those latent variables are supplied

by a probabilistic neural language model.

DFKI

Finally, our submission [Federmann, 2012e] implements a method for sys-

tem combination based on joint, comparison-based binarisation of feature

vectors. It can be used to combine several black-box source systems.
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translation A1 translation B1 translation C1

translation A1

classify(sysA, sysB) = +1
 classify(sysA, sysC) = +1
classify(sysB, sysC) = +1
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system-wins(sysA) = 2
system-wins(sysB) = 1
system-wins(sysC) = 0

Figure 5.3: Unique winner by majority decision. We simply copy the winning
option the final translation output.

translation A1 translation B1 translation C1

???

classify(sysA, sysB) = +1
 classify(sysA, sysC) = -1
classify(sysB, sysC) = +1

5
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system-wins(sysA) = 1
system-wins(sysB) = 1
system-wins(sysC) = 1

Figure 5.4: Multiple systems could have won. Some conflict resolution or
fallback strategy needs to be applied in order to find the best system.

141



5.5 Results

Experiment #1: NIST Data

Table 5.1 presents results for language pair Arabic→English taken from our

experiments with the NIST training data set from OpenMT12. As previously

mentioned, we used a held out part of the training data to act as reference

in our experiments. We can observe that our combination approach works

very well and is able to outperform the single-best system #1. The latter had

a best NIST score of 10.1578 while our method achieves 10.3584, a relative

increase of +1.97% in terms of NIST score. The same holds true when consid-

ering second evaluation metric BLEU. Again, our approach outperforms the

single-best BLEU score from system #1, 0.4523 versus 0.4300, a large jump

by +5.19%. Overall, it seems that sentence selection functioned nicely with

this data set. This might be related to the fact that most of the source systems

performed well for both evaluation metrics. Hence, the effect of misclassifi-

cation is not as critical as for data sets which include candidate translations

with more extreme differences.

Table 5.2 gives results for language pair Chinese→English. This time we

observe a different performance of our method. By contrast to the previous

language pair, sentence selection achieves mixed results, a mediocre 8th rank

in terms of NIST score at 7.7636, a decrease of −10.76% compared to the

single-best score of system #1, and a slightly better 5th rank in terms of BLEU

score, 0.2663 decreasing by −12.52% compared to the top value. It seems that

our feature vectors did not allow to discriminate well enough between good

and bad systems. Considering that this data set contains 1) more systems

than in the previous experiments which 2) also are more diverse in terms of

translation quality, the prediction accuracy of our model did not suffice.
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Arabic→English

System NIST Score BLEU Score

system #1 10.1578 0.4300
system #2 10.0379 0.4251
system #3 9.8845 0.4179
system #4 9.8841 0.4132
system #5 9.8675 0.4109
system #6 9.8408 0.4070
system #7 9.7120 0.4012
system #8 9.6853 0.3996
system #9 9.6417 0.3982

system #10 9.4226 0.3799
system #11 8.5721 0.3160
system #12 8.1091 0.2746

SVM-combo 1st 10.3584 1st 0.4523

Table 5.1: Translation quality measured using NIST and BLEU scores for
language pair Arabic→English. Note how our SVM-combo system is able to
outperform the individual baseline systems for both metrics.

Chinese→English

System NIST Score BLEU Score

system #1 8.6996 0.3044
system #2 8.4245 0.2927
system #3 8.1160 0.2813
system #4 8.0534 0.2795
system #5 7.9788 0.2587
system #6 7.8969 0.2545
system #7 7.7679 0.2518
system #8 7.6965 0.2369
system #9 7.6461 0.2489

system #10 7.5181 0.2265
system #11 7.4819 0.2580
system #12 7.4045 0.2276
system #13 7.2969 0.2472
system #14 6.8456 0.1957
system #15 6.2852 0.1497
system #16 6.1679 0.1867

SVM-combo 8th 7.7636 5th 0.2663

Table 5.2: Translation quality measured using NIST and BLEU scores for
language pair Chinese→English. Here, our SVM-combo system only achieves
8th rank in terms of NIST score, 5th rank according to the BLEU metric.
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Spanish→English

Score DCU-Alignment DCU-QE2 DCU-DA DCU-LM DCU-QE1 DFKI

Meteor 0.30692 0.32226 0.32124 0.31684 0.31712 0.32303
NIST 7.4296 7.4291 7.6771 7.5642 7.6481 7.2830

BLEU 0.2614 0.2524 0.2634 0.2562 0.2587 0.2570

Table 5.3: Translation quality of ML4HMT-12 submissions measured using
Meteor, NIST, and BLEU scores for language pair Spanish→English.

Figures 5.5 and 5.6 give a graphical overview on experimental results for

language pair Arabic→English showing NIST and BLEU scores, respectively.

Figures 5.7 and 5.8 present the same information for second language pair

Chinese→English. The green line represents the single-best score for each of

the automatic metrics, the red line denotes the single-worst such score.

Experiment #2: ML4HMT 2012

Similar to the first edition of the ML4HMT shared task (ML4HMT-11), all

submissions to the shared task are evaluated using three automatic scoring

metrics, i.e., Meteor [Denkowski and Lavie, 2011], NIST [Doddington, 2002],

and BLEU [Papineni et al., 2002], which are all well-renowned evaluation

metrics commonly used for MT evaluation. Table 5.3 summarises the results

for all participating systems. Our approach, labeled DFKI, achieves best

overall performance in terms of Meteor, with a value of 0.323. DCU-QE2

and DCU-DA are close, though. This supports our Hypothesis 6, The per-

formance of our system combination approach is competitive compared to other

methods. We have meanwhile experimented with multiple binary classifica-

tion models, up to one model per pairwise comparison A, B: on the same

ML4HMT-12 data, such a more specialised suite of classifiers allows to in-

crease to 0.336. While still being far away from the theoretical upper bound

(0.367) it represents a +4.67% increase (relative) compared to other systems.
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Figure 5.5: NIST Scores for language pair Arabic→English. SVM-combo
shows the performance of our sentence selection approach for hybrid MT.
Note how we are able to outperform the single-best system #1.
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Figure 5.6: BLEU Scores for language pair Arabic→English. As above,
SVM-combo presents the performance of our method. Again, we are able
to outperform the single-best system #1, achieving 0.45 instead of 0.43.
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Figure 5.7: NIST Scores for language pair Chinese→English. SVM-combo
shows the performance of our classification-based method for system
combination. By contrast to language pair Arabic→English, we are not able
outperform the single-best system #1. In fact we only achieve 8th rank.
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Figure 5.8: BLEU Scores for language pair Chinese→English. Similar to
above, SVM-combo represents our sentence selection approach. Again, we
are not able to outperform the single-best system #1, only reaching rank #5.
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5.6 Chapter Summary

In this chapter we have combined the idea of system combination using a

sentence selection mechanism and the novel notion of joint, comparison-

based binarisation of feature vectors into a framework for hybrid machine

translation. We have stated our research hypothesis and carefully verified it.

Hypothesis 6,

It is possible to define and implement a competitive sentence selection

approach for system combination which is based on binary classifi-

cation models trained using joint, comparison-based binarisation of

feature vectors.

holds as we have been able to implement our framework for the experiments

in this chapter and as we have been able to observe competitive performance

compared to competing baseline or combination systems in our experiments.

In essence, we have been successful in our attempt to define and implement

a system combination method based on binary classification estimated using

joint, comparison-based binarisation of feature vectors.
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Conclusion

“I never think of the future. It comes soon enough.”
– Albert Einstein: interview given on the Belgenland, December 1930.

“We can be heroes
Just for one day.”
– David Bowie: Heroes, 1997.

“New opinions are always suspected, and usually opposed,
without any other reason but because they are not already common.”
– John Locke: An Essay Concerning Human Understanding, 1690.

In this thesis, we have described the design and implementation of a system

combination framework using binary classification models which have been

estimated using joint, comparison-based binarisation of feature vectors. We

have first presented oracle experiments to empirically establish upper bounds

for sentence selection in Chapter 3. Afterwards, we have introduced and

evaluated the idea of joint, comparison-based binarisation of feature vectors

in Chapter 4. In Chapter 5, we have presented the resulting system combi-

nation framework. In this chapter, we provide a summary of our findings,

comparing our research hypotheses to the results from our experiments, and

we give an outlook to future research topics which result from this thesis.
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6.1 Performance of Sentence Selection

Sentence selection is a main component of our system combination frame-

work. By contrast to confusion network decoding, we do not divide given

candidate translations into n-grams, i.e., sub-segments below the sentence

level which are then recombined to form a (hopefully) improved translation.

Instead, we leave segments/sentences intact and choose one of the available

candidates for each individual segment, in unaltered form: e pluribus unum,

immutatum.

Our first research hypothesis states that sentence selection methods can

theoretically result in an improved overall translation quality, compared to

the quality of the individual source systems from which we synthesise the

combined translation.

Hypothesis 1. Sentence selection methods can outperform their source systems

on real data.

We have verified this hypothesis by conducting an extensive experiment

on data from the yearly Workshop on Statistical Machine Translation (WMT).

Our research considers translations from 2007 until 2013, thus being the

largest meta-study on official WMT results so far. Based on our findings, we

can confirm Hypothesis 1; empirically, sentence selection methods are well

able to outperform their individual source machine translation systems.

Next, we want to find out if empirical performance gains of selection-

based methods for system combination can be observed across the techno-

logical paradigms of the given candidate systems or the language pair under

investigation.
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Hypothesis 2. Sentence selection approaches show improvement potential across

language pairs or underlying technological paradigms of the source systems.

We are able to verify this hypothesis in our experiments. Theoretical

performance gains achievable by optimal sentence selection are not related

to the language pair or the methodology of the source systems. For the latter

finding (which has not been discussed in Chapter 3), see [Federmann, 2012d]

which presents the corresponding experiments.

A final matter of investigation is the contribution of bad candidate trans-

lations. We want to find out whether translation systems which perform

bad on the overall system level can be beneficial in the context of sentence

selection. We assume that they can likely contribute something to our final

combination results. Our final working hypothesis in Chapter 3 is:

Hypothesis 3. Even systems which perform bad on the global system level can

contribute helpful segment translations.

We find evidence supporting this hypothesis. Sometimes, even the com-

bination of the k-worst candidate translations can outperform the single-best

source system. This implies that even globally bad systems do, at times,

contain information nuggets to mine for.

6.2 Joint, Comparison-Based Binarisation of Features

The second fundamental contribution of this thesis is the introduction of

joint, comparison-based binarisation of feature vectors. These explicitly model

comparison of two systems A, B and, hence, are more effective for training

binary classification models which are used for such comparison operations.
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Before considering the binarisation step, however, we investigate the per-

formance of joint feature vectors by comparison to the corresponding single

feature vectors. The corresponding research hypothesis reads as follows:

Hypothesis 4. Explicit modelling of pairwise system comparison using what

we call joint feature vectors can outperform single feature vectors in terms of both

resulting prediction accuracy and faster training times for large data sets.

In our experiments, we observe that joint feature vectors have an edge

on their single feature vector counterparts. This dwindles, however, with

increasing amounts of random noisy features. Even for these, joint feature

vectors are faster to train which verifies our working hypothesis.

The binarisation of joint feature vectors based on the comparison of in-

dividual feature values further optimises them for binary comparison of sys-

tems. Our evidence shows that joint, comparison-based binarisation of fea-

ture vectors can outperform their joint counterparts. For joint feature vectors

which are composed of feature values for two candidate systems, the machine

learning approach which is used has to guess which of the feature values cor-

respond to each other and actually describe the same property of the two

translations. Joint, comparison-based feature binarisation explicitly encodes

such relationships. Thus, our second research hypothesis in Chapter 4 is:

Hypothesis 5. Binarisation of the comparison results obtained by comparing

the individual feature values from two systems A, B can outperform the corre-

sponding joint feature vectors.

We compare joint feature vectors and joint, comparison-based binarisa-

tion of feature vectors based on so-called ROC curves. These plot the true
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positive rate (TPR) against the false positive rate (FPR), at various threshold

parameters which control the estimation process of the classification model

under investigation. Performance of joint, comparison-based binarisation of

feature vectors is much better than that of the corresponding joint feature

vectors. This even holds for large numbers of noisy features, which confirms

our hypothesis.

6.3 System Combination Framework

Based on the successful verification of our research hypotheses regarding

1) the potential performance of sentence selection for system combination,

and 2) the effectiveness of joint, comparison-based binarisation of feature

vectors, we propose a framework for system combination in Chapter 5. This

effectively combines results from Chapters 3 and 4. In essence, we are trying

to verify that the fundamental findings from these chapters can be turned

into a competitive combination approach.

Hypothesis 6. It is possible to define and implement a sentence selection approach

for system combination which is based on binary classification models trained with

joint, comparison-based binarisation of feature vectors that is competitive with

state-of-the-art system combination methods.

The definition and implementation of such a framework is the main con-

tribution of Chapter 5. Our final research hypothesis aims at the compar-

ison of our methodology and state-of-the-art methods based on confusion

networks. These have been most actively investigated in the last decade

and, thus, are a baseline we have to compare our method against in order

to rightfully claim that a sentence selection approach trained using joint,

comparison-based binarisation of feature vectors is competitive.
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Based on the findings from our experiments, we are able to confirm this

hypothesis. System combination based on binary classification models which

have been estimated using joint, comparison-based binarisation of feature

vectors can outperform other state-of-the-art methods. We have observed

this 1) for our experiments on NIST OpenMT12 data, and 2) for the ML4HMT

2012 shared task where our implementation performed best in terms of Me-

teor scores.

In summary, we have defined and implemented a novel method for sys-

tem combination in the context of machine translation. It is based on sen-

tence selection following the decisions of one or several binary classification

models. The classifiers are estimated using a joint, binarised feature combi-

nation approach which explicitly models comparison of systems A, B on the

level of feature vectors.

We are able to observe improvements of both sentence selection and bi-

narisation of feature vectors on a theoretical level. Also, our method achieves

competitive performance in experiments on real data. Thus, we are able to

confirm Hypothesis 6.

Limitations of our Work

In the work conducted for this thesis, we have investigated whether a sentence

selection method for system combination of machine translation output can

achieve competitive performance compared to state-of-the-art approaches

based on confusion networks. Our results show that the Meteor metric,

which provides usable scores on the sentence level, can (in combination with

NIST and BLEU for increased robustness in case of equality under Meteor) be

used to achieve this. Other automatic metrics which produce reliable scores

for individual segments can theoretically also be applied instead of Meteor.
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Combinations are also possible. We leave this area for future research.

Furthermore, we have not provided an exhaustive search for linguistic

features which can be used with this method. It is important to note that our

concept of joint, comparison-based binarisation of feature values can be used

with any feature value which produces comparable output values. This means

that most features which can be interpreted in isolation by human annotators

are, in fact, usable with our approach. More detailed experiments which

compare the performance of our approach to other system combination and

machine learning methods using a fixed set of shared (and, thus, comparable)

feature values are required to conclusively show that our method is better.

While our empirical evidence suggests that our approach has competitive

performance, additional research is needed to formally prove this. Again, we

leave these experiments to future work.

6.4 Future Research Work

In the future several extensions of the research work described in this thesis

are possible. We discuss three interesting ways of continuation. These are

1) investigation of features for improved system combination, 2) application

of our selection methodology on the level of phrases, or 3) combination with

quality estimation as input feature. All three may allow to further refine our

system combination approach.

Better Features for System Combination

In our research work, we have used a selection of linguistic features which

evaluate characteristic properties of candidate translations. Such features

include language model scores, lexical phrase table probabilities, or feature

values derived from parsing source text and candidate translations. While we
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have identified several useful features during the course of our experiments,

an in-depth inspection of these has not been the focus of our research. A

more focused and detailed investigation can likely result in more profound

findings in this respect. Machine learning tools can be used in combination

with methods for feature selection to determine an optimal subset of features

for the classification task at hand.

Going to Phrase Level

In our motivation in Chapter 1, we have stated that any sentence selection

approach has the drawback of not being able to integrate good phrases from

different candidate translations. This is due to the very design of sentence

selection which does not alter the selection translation in any way. Of course,

it would be interesting to more closely investigate how a selection-based sys-

tem combination approach as ours can be extended to perform selection on

the level of phrases. We have previously worked on a methodologically simi-

lar method for hybrid machine translation, see [Federmann et al., 2009]. Us-

ing one of the candidate translations as output template we can compute

phrase alignments to the other candidates. Using such alignment links it

seems possible to combine in good phrases from several systems. Of course,

output quality heavily depends on the quality of the alignment process. Fur-

thermore, we lose the guarantee w.r.t. preservation of syntactic and semantic

features of the resulting, combined translation. The effects of such a modifi-

cation, hence, are an interesting research topic.

Integrating Quality Estimation

Finally, it seems a good idea to combine the system combination framework

presented in this thesis with current results from the field of quality estima-
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tion. Such methods aim at estimating the quality of a given translation with-

out having access to the reference. This is exactly the application scenario

we face when applying our combination methodology. Instead of using lin-

guistic feature for our joint, comparison-based binarisation of feature vectors

which feed into our binary classification models, we can use non-linguistic

feature values derived from one or several quality estimation models. De-

pending on the discriminative capabilities of the individual estimators, this

meta-combination should work nicely. In fact, it would allow us to benefit

from advances made in the research field of quality estimation and poten-

tially reduce our dependency on more and better linguistic features.
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After having summarised our findings and given an outlook on future

work, we conclude with a brief summary of the major contributions we have

achieved in our thesis research.

6.5 Thesis Contributions

The major contributions of this thesis are:

– We have conducted the largest meta-study on WMT results published

by the Workshop on Statistical Machine Translation (2007–2013);

– The definition of joint, comparison-based binarisation of features for

machine learning of binary classification between several candidate

translations;

– We have shown that sentence selection approaches can perform at

the same level of translation quality as existing, state-of-the-art system

combination methods;

– Our evaluation software for assessment of machine translation quality,

Appraise, has become the official evaluation system of WMT 2013.
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Appendices





A
Data for Optimal Sentence Selection

We have conducted the largest meta-study on data collected by the yearly

Workshops on Statistical Machine Translation (WMT). We have defined and

investigated different combinations of the given set of candidate systems,

implementing three different combination strategies, namely Top-k, Worst-k,

and Alternate-k. For each of these combination sets, we then computed

MeteorAVG scores simulating optimal sentence selection to measure what per-

formance gain could be attained. All data which has been collected and

aggregated during our experiments is available from the author’s GitHub

repository at http://www.github.com/cfedermann/.
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B
Data for Binarisation Experiments

Table B.1 gives all results from our comparison of joint feature vectors and

their joint, binarised counterparts. Both are estimated using svm.LinearSVC

and trained for subset size 2,000–12,000 with noise level increasing from

0 up to 10,000. Note the superior performance of joint, binarised feature

vectors, especially for large amounts of noise.

Likewise, Table B.2 gives results from our comparison of joint feature vec-

tors and their joint, binarised counterparts. By contrast, classification models

are estimated using svm.SVC and trained for subset size 2,000–12,000 with

noise level increasing from 0 up to 10,000. While joint feature vectors see an

improvement in terms of prediction accuracy, they are still outperformed by

joint, binarised feature vectors.

Finally, Table B.3 presents results from our comparison of joint feature

vectors and their joint, binarised counterparts estimated with svm.SVC using

an rbf kernel. Again, we train models for subset size 2,000–12,000 with noise

level increasing from 0 up to 10,000. Similar to our previous findings, the

performance of joint, binarised feature vectors is superior.
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C
Appraise

Evaluation of Machine Translation output to assess translation quality is

a difficult task. Automatic metrics such as BLEU [Papineni et al., 2002] or

Meteor [Denkowski and Lavie, 2011] are commonly used in minimum error

rate training [Och, 2003] for tuning of MT systems. Also, they are used

as evaluation metrics. The main problem in designing automatic quality

metrics for MT is to achieve a high correlation with human judgments on

the same translation output. While current metrics show promising perfor-

mance in this respect, manual inspection and evaluation of MT results is still

equally important. The manual analysis of a given, machine translated text

is a time-consuming and laborious process; it involves training of annota-

tors, requires detailed and clear-cut annotation guidelines, and—last but not

least—an annotation software that allows annotators to get their job done

quickly and efficiently.

In this chapter, we describe Appraise, an open-source tool that allows to

perform manual evaluation of Machine Translation output. Appraise can

be used to collect human judgments (or any other annotation) on translation

output, implementing several annotation tasks. We will describe the tool in

more detail on the following pages.1

1This chapter is based on [Federmann, 2012b], with updates regarding WMT 2013.
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Motivation

As we have mentioned before, the collection of manual judgments on MT

output is a tedious task; this holds for simple tasks such as translation rank-

ing but also for more complex challenges like word-level error analysis or

post-editing of translation output. Annotators tend to lose focus after sev-

eral sentences, resulting in reduced intra-annotator agreement and increased

annotation time. In our experience with manual evaluation campaigns it has

shown that a well-designed annotation tool helps to overcome such issues.

Development of the Appraise software package started back in 2009 as

part of the EuroMatrixPlus project where the tool was used to quickly com-

pare different sets of candidate translations from our hybrid machine trans-

lation engine to get an indication whether our system improved or degraded

in terms of translation quality. A first version of Appraise was released and

described by [Federmann, 2010].

System Description

In a nutshell, Appraise is an open-source tool for manual evaluation and

annotation of machine translation output. It allows to collect human judg-

ments on given translation output, implementing annotation tasks such as

(but not limited to):

- translation quality checking;

- ranking of translations;

- error classification;

- manual post-editing.

We will provide a more detailed discussion of these tasks in Section C.
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The software features an extensible XML import/output format and can

easily be adapted to new annotation tasks. The software also features support

for the automatic computation of inter-annotator agreement scores, allowing

quick access to evaluation results. We currently support computation of the

following inter-annotator agreement scores:

- Krippendorff’s α as described by [Krippendorff, 2004];

- Fleiss’ κ as published in [Fleiss, 1971], extending [Cohen, 1960];

- Bennett, Alpert, and Goldsteins S as defined in [Bennett et al., 1954];

- Scott’s π as introduced in [Scott, 1955].

Agreement computation is based on code which has been implemented by

the NLTK project [Bird et al., 2009]. Additional agreement metrics can be

added easily—in fact, we implemented our own version of κ during the WMT

2013 evaluation campaign to maintain compatibility with previous editions

of the shared task; the visualisation of agreement scores or other annotation

results can be adapted to best match the corresponding task design.

Appraise has been implemented using the Python-based Django web frame-

work2 which takes care of low-level tasks such as “HTTP handling”, database

modeling, and object-relational mapping. We use Bootstrap3 as basis for the

design of the application and implemented it using long-standing and well-

established open-source software with large communities supporting them

in the hope that this will also benefit the Appraise software package.

We have opened up Appraise development and released the source code

on GitHub at https://github.com/cfedermann/Appraise. Anybody with a

free GitHub account may fork the project and create an own version of the

software. Due to the flexibility of the git source code management system,

2See http://www.djangoproject.com/ for more information
3Available from http://getbootstrap.com/
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it is easy to re-integrate external changes into the master repository, allowing

other developers to feed back bug fixes and new features, thus improving

and extending the original software. Appraise is available under an open,

BSD-style license.4

Annotation Tasks

We have developed several annotation tasks which are useful for evaluation

of machine translation output. The following task types are implemented in

the GitHub version of Appraise:

1. Ranking The annotator is shown 1) the source sentence and 2) a set of

several (n ≥ 2) candidate translations. It is also possible to additionally

present the reference translation. Wherever available, one sentence of

left/right context is displayed to support the annotator in the process.

We also have implemented a special 3-way ranking task which works

for pairs of candidate translations and gives the annotator an intuitive

interface for quick A > B, A = B, or A < B classification.

2. Error Classification The annotator is presented 1) the source sentence

and 2) a candidate translation which has to be inspected with respect

to errors contained in the translation output. We use a refined version

of the classification described in [Vilar et al., 2006]. Error annotation

is possible on the sentence level as well as for individual words. The

annotator can choose to skip translations containing “too many errors”

and is able to differentiate between “minor” and “severe” errors.

4See https://raw.github.com/cfedermann/Appraise/master/appraise/LICENSE
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3. Quality Estimation The annotator is given 1) the source sentence and

2) one candidate translation which has to be classified as Acceptable,

Can easily be fixed, or None of both. We also show the reference sentence

and again present left/right context if available. This task can be used

to get a quick estimate on the acceptability of a set of translations.

4. Post-editing The annotator is shown 1) the source sentence including

left/right context wherever available and 2) one or several candidate

translation. The task is defined as choosing the translation which is

“easiest to post-edit” and then performing the post-editing operation

on the selected translation.

In some of our experiments with Appraise, we found that annotators

did not necessarily choose the overall best candidate translation for

post-editing but often selected worse translations which, however, could

be post-edited more quickly.

Changes for WMT 2013

In order to use Appraise for the human evaluation campaign conducted as

part of the shared translation task at WMT 2013, we updated the toolkit in

several ways. We added a new ranking mode which more closely resembled

what previous WMT evaluation campaigns had implemented and connected

the Appraise evaluation toolkit to Amazon’s Mechanical Turk framework for

crowd-based annotation. Results from the WMT 2013 manual evaluation

campaign are discussed in the official results paper by [Bojar et al., 2013].

An extension to other crowd-sourcing frameworks is planned and estimated

to be finished in time for WMT 2014.
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van Genabith, J., Melero, M., and Pecina, P. (2012). A Richly Annotated,
Multilingual Parallel Corpus for Hybrid Machine Translation. In Proceed-
ings of the Eight International Conference on Language Resources and Evalu-
ation (LREC’12), pages 2189–2193, Istanbul, Turkey. European Language
Resources Association (ELRA).

[Aziz et al., 2012] Aziz, W., de Sousa, S. C. M., and Specia, L. (2012). PET:
a Tool for Post-editing and Assessing Machine Translation. In Proceed-
ings of the Eight International Conference on Language Resources and Evalu-
ation, LREC ’12, pages 3982–3987, Istanbul, Turkey. European Language
Resources Association (ELRA).

[Bennett et al., 1954] Bennett, E. M., Alpert, R., and Goldstein, A. C. (1954).
Communications Through Limited-response Questioning. Public Opinion
Quarterly, 18(3):303–308.

[Bird et al., 2009] Bird, S., Klein, E., and Loper, E. (2009). Natural Language
Processing with Python: Analyzing Text with the Natural Language Toolkit.
O’Reilly, Beijing.

173



[Bojar et al., 2013] Bojar, O., Buck, C., Callison-Burch, C., Federmann, C.,
Haddow, B., Koehn, P., Monz, C., Post, M., Soricut, R., and Specia, L.
(2013). Findings of the 2013 Workshop on Statistical Machine Transla-
tion. In Proceedings of the Eighth Workshop on Statistical Machine Transla-
tion, WMT ’13, pages 1–44, Sofia, Bulgaria. Association for Computational
Linguistics.

[Brown et al., 1993] Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer,
R. L. (1993). The Mathematics of Statistical Machine Translation: Param-
eter Estimation. Computational Linguistics, 19(2):263–311.

[Callison-Burch, 2007] Callison-Burch, C. (2007). Paraphrasing and Transla-
tion. PhD thesis, University of Edinburgh, Edinburgh, Scotland, UK.

[Callison-Burch et al., 2007] Callison-Burch, C., Fordyce, C., Koehn, P.,
Monz, C., and Schroeder, J. (2007). (meta-) Evaluation of Machine Trans-
lation. In Proceedings of the Second Workshop on Statistical Machine Trans-
lation, WMT ’07, pages 136–158, Prague, Czech Republic. Association for
Computational Linguistics.

[Callison-Burch et al., 2008] Callison-Burch, C., Fordyce, C., Koehn, P.,
Monz, C., and Schroeder, J. (2008). Further Meta-Evaluation of Machine
Translation. In Proceedings of the Third Workshop on Statistical Machine
Translation, WMT ’08, pages 70–106, Columbus, Ohio, USA. Association
for Computational Linguistics.

[Callison-Burch et al., 2010] Callison-Burch, C., Koehn, P., Monz, C., Peter-
son, K., Przybocki, M., and Zaidan, O. (2010). Findings of the 2010 Joint
Workshop on Statistical Machine Translation and Metrics for Machine
Translation. In Proceedings of the Joint Fifth Workshop on Statistical Machine
Translation and MetricsMATR, WMT ’10, pages 17–53, Uppsala, Sweden.
Association for Computational Linguistics. Revised August 2010.

[Callison-Burch et al., 2012] Callison-Burch, C., Koehn, P., Monz, C., Post,
M., Soricut, R., and Specia, L. (2012). Findings of the 2012 workshop on
statistical machine translation. In Proceedings of the Seventh Workshop on
Statistical Machine Translation, WMT ’12, pages 10–51, Montréal, Canada.
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