
Universität des Saarlandes
Max-Planck-Institut für Informatik

Multiple Choice Allocations with Small

Maximum Loads

Dissertation

zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

vorgelegt von

Megha Khosla

Saarbrücken

March 2014

i

Dekan der

Naturwissenschaftlich-Technischen

Fakultät I Prof. Mark Groves

Vorsitzender Prof. Dr. Matthias Hein

Berichterstatter Prof. Dr. Kurt Mehlhorn

Berichterstatter Prof. Dr. Konstantinos Panagiotou

Beisitzer Dr. Jens M. Schmidt

Tag des Promotionskollquiums 04.03.2014

Abstract

The idea of using multiple choices to improve allocation schemes is now well understood

and is often illustrated by the following example. Suppose n balls are allocated to n bins

with each ball choosing a bin independently and uniformly at random. The maximum

load, or the number of balls in the most loaded bin, will then be approximately logn
log logn

with high probability. Suppose now the balls are allocated sequentially by placing a ball

in the least loaded bin among the k ≥ 2 bins chosen independently and uniformly at

random. Azar, Broder, Karlin, and Upfal [1] showed that in this scenario, the maximum

load drops to log logn
log k +Θ(1), with high probability, which is an exponential improvement

over the previous case.

In this thesis we investigate multiple choice allocations from a slightly different perspec-

tive. Instead of minimizing the maximum load, we fix the bin capacities and focus on

maximizing the number of balls that can be allocated without overloading any bin. In

the process that we consider we have m = bcnc balls and n bins. Each ball chooses k

bins independently and uniformly at random. Is it possible to assign each ball to one

of its choices such that the no bin receives more than ` balls? For all k ≥ 3 and ` ≥ 2

we give a critical value, c∗k,`, such that when c < c∗k,` an allocation is possible with high

probability and when c > c∗k,` this is not the case.

In case such an allocation exists, how quickly can we find it? Previous work on total

allocation time for case k ≥ 3 and ` = 1 has analyzed a breadth first strategy which

is shown to be linear only in expectation. We give a simple and efficient algorithm

which we also call local search allocation(LSA) to find an allocation for all k ≥ 3 and

` = 1. Provided the number of balls are below (but arbitrarily close to) the theoretical

achievable load threshold, we give a linear bound for the total allocation time that holds

with high probability. We demonstrate, through simulations, an order of magnitude

improvement for total and maximum allocation times when compared to the state of

the art method.

Our results find applications in many areas including hashing, load balancing, data

management, orientability of random hypergraphs and maximum matchings in a special

class of bipartite graphs.

Zusammenfassung

Die Idee, mehrere Wahlmöglichkeiten zu benutzen, um Zuordnungsschemas zu verbessern,

ist mittlerweile gut verstanden und wird oft mit Hilfe des folgenden Beispiels illustriert:

Man nehme an, dass n Kugeln auf n Behälter verteilt werden und jede Kugel unabhängig

und gleichverteilt per Zufall ihren Behälter wählt. Die maximale Auslastung, bzw. die

Anzahl an Kugeln im meist befüllten Behälter, wird dann mit hoher Wahrscheinlichkeit

schätzungsweise logn
log logn sein. Alternativ können die Kugeln sequenziell zugeordnet wer-

den, indem jede Kugel k ≥ 2 Behälter unabhängig und gleichverteilt zufällig auswählt

und in dem am wenigsten befüllten dieser k Behälter platziert wird. Azar, Broder, Kar-

lin, and Upfal [1] haben gezeigt, dass in diesem Szenario die maximale Auslastung mit

hoher Wahrscheinlichkeit auf log logn
log k + Θ(1) sinkt, was eine exponentielle Verbesserung

des vorhergehenden Falls darstellt.

In dieser Doktorarbeit untersuchen wir solche Zuteilungschemas von einem etwas an-

deren Standpunkt. Statt die maximale Last zu minimieren, fixieren wir die Kapazitäten

der Behälter und konzentrieren uns auf die Maximierung der Anzahl der Kugeln, die

ohne Überlastung eines Behälters zugeteilt werden können. In dem von uns betrachteten

Prozess haben wir m = bcnc Kugeln und n Behälter. Jede Kugel wählt unabhängig und

gleichverteilt zuällig k Behälter. Ist es möglich, jeder Kugel einen Behälter ihrer Wahl

zuzuordnen, so dass kein Behälter mehr als ` Kugeln erhält? Für alle k ≥ 3 und ` ≥ 2

geben wir einen kritischen Wert c∗k,` an, sodass für c < c∗k,` eine Zuordnung mit hoher

Wahrscheinlich möglich ist und für c > c∗k,` nicht.

Im Falle, dass solch eine Zuordnung existiert, stellt sich die Frage, wie schnell diese

gefunden werden kann. Die bisher durchgeführten Arbeiten zur Gesamtzuordnungszeit

im Falle k ≥ 3 and ` = 1 haben eine Breitensuchstrategie analysiert, welche nur im

Erwartungswert linear ist. Wir präsentieren einen einfachen und effizienten Algorith-

mus, welchen wir local search allocation (LSA) nennen und der Zuteilungen für alle

k ≥ 3 und ` = 1 findet. Sofern die Anzahl der Kugeln unter (aber beliebig nahe an)

der theoretisch erreichbaren Lastschwelle ist, zeigen wir eine lineare Schranke für die

Gesamtzuordnungszeit, die mit hoher Wahrscheinlichkeit gilt. Anhand von Simulatio-

nen demonstrieren wir eine Verbesserung der Gesamt- und Maximalzuordnungszeiten

um eine Größenordnung im Vergleich zu anderen aktuellen Methoden.

Unsere Ergebnisse finden Anwendung in vielen Bereichen einschließlich Hashing, Lastbal-

ancierung, Datenmanagement, Orientierbarkeit von zufälligen Hypergraphen und max-

imale Paarungen in einer speziellen Klasse von bipartiten Graphen.

Acknowledgements

I would like to thank my supervisor Kurt Mehlhorn for providing me an opportunity to

work in his group and for allowing me to pursue my own line of research. His guidance

was of immense help. I thank Konstantinos Panagiotou who guided me in the initial

phase of my PhD. I am thankful to Nikolaos Fountoulakis and Konstantinos Panagiotou

for their collaboration on the first problem of this thesis. I have greatly benefitted from

their experience and our interesting discussions.

I am also thankful to Alexander Hartmann for working with me on one of my favorite

problems. I also thank Tim Byrnes for advising me during my internship in Tokyo.

Though our works could not be placed into this thesis because of its structure I still

consider them as an essential part of my research and PhD.

I thank my parents and my family for being a source of continued emotional support

and teaching me to aim high. I thank the PhD gang of AG1 for starting very interesting

discussions at times. I especially thank Ali for always being ready to review my work

and providing valuable suggestions. I thank all my wonderful friends for pouring in my

ears words of encouragement whenever I needed them.

I thank my loving husband Avishek for always supporting me. Without his constant

encouragement and support I would have never finished this thesis.

iv

Contents

Abstract ii

Zusammenfassung iii

Acknowledgements iv

List of Figures vii

1 Introduction 1

1.1 Multiple Choice Allocation . 1

1.2 Orientation of Hypergraphs . 3

1.3 An Efficient Algorithm . 4

1.4 Organization . 7

2 The Multiple-orientability Thresholds for Random Hypergraphs 8

2.1 Introduction . 8

2.2 Proof Strategy . 9

2.3 Technical Preliminaries . 10

2.3.1 Models of Random Hypergraphs 10

2.3.2 The Poisson Cloning Model for the (`+ 1) -core 10

2.4 Proof of the Upper Bound and the Critical Density 15

2.5 Proof of the Lower Bound . 16

2.6 Conclusion and Future Directions . 42

3 Local Search Allocation 43

3.1 Introduction . 43

3.2 Algorithm Outline and Proof Strategy . 46

3.3 Local Search Allocation and its Analysis 49

3.3.1 The Algorithm . 49

3.3.2 Labels and the Shortest Distances 49

3.3.3 Bounding the Distances . 51

3.3.4 Experimental Results and Discussion 55

3.4 Conclusion and Future Directions . 57

v

Contents vi

Bibliography 61

List of Figures

3.1 Comparison of total number of moves performed by local search and ran-
dom walk methods. 56

3.2 Comparison of maximum number of moves performed by local search and
random walk methods. 57

3.3 Comparison of total number of moves and maximum number of moves
(for fixed number of locations, n = 105) performed by local search and
random walk methods when density c approaches c∗k. 58

3.4 Total number of moves for the cases where bin capacities (maximum load,
s) is greater than 1. The number of balls for all the shown cases is greater
than (c∗k,` − 0.01)n. 59

vii

Dedicated to Avishek

Chapter 1

Introduction

1.1 Multiple Choice Allocation

Balls-into-bins processes describe in an abstract setting several multiple-choice scenarios,

and allow for a systematic and unified theoretical treatment. In general, the goal of these

processes is to allocate a set of independent balls (representing tasks, jobs) to a set of

bins (representing resources, servers) and, thereby, to minimize the maximum load (the

number of balls in the most loaded bin). The idea of using multiple choices to improve

allocation schemes is now well understood and often illustrated by the following example.

Suppose n balls are placed into n bins by allocating each ball to a bin chosen indepen-

dently and uniformly at random. It is well known that, in this case, the maximum load

will be approximately logn
log logn with high probability1. Azar, Broder, Karlin, and Upfal [1]

improved this result by considering the following multiple choice scenario. Suppose that

the balls are placed sequentially, such that for each ball we choose k bins independently

and uniformly at random and place the ball into the less loaded bin (breaking ties arbi-

trarily). In this case, the maximum load drops to log logn
log k + Θ(1), with high probability,

which is an exponential improvement over the previous case. The above result clearly

demonstrates the gain obtained by using more than one choice.

In this thesis we look at the multiple choice process in a slightly different manner. Instead

of minimizing the maximum load we fix the bin capacities and then focus on strategies

which can maximize the number of balls that can be placed without overloading any

bin. We aim to answer the following question.

1Throughout this thesis we use with high probability to mean with probability 1 − n−ζ for some
constant ζ > 0. Also log refers to the natural logarithms.

1

Chapter 1. Introduction 2

Question 1 : What is the maximum number of balls that can be allocated to n bins

so that each ball is assigned to one of its k randomly chosen bins, and no bin has more

than ` balls?

The motivation behind answering such a question is manifold. For example consider

cuckoo hashing [2], a technique used to build large hash tables. We consider here a

slight variation of the original idea, see also the paper [3] by Fotakis, Pagh, Sanders and

Spirakis, where we are given a table with n locations, and we assume that each location

can hold ` items. Each item to be inserted chooses randomly k ≥ 3 locations and has

to be placed in any one of them.

How much load can cuckoo hashing handle before collisions make the successful assign-

ment of the available items to the chosen locations impossible?

In a data management setting we are given n hard disks (or any other means of storing

large amounts of information), which can be accessed independently of each other. We

want to store there a big data set redundantly, that gives us some degree of fault tol-

erance, and at the same time minimize the number of I/O steps needed to retreive the

data (see [4] for more details). To accomplish this, we allocate k copies of each block

randomly on n hard disks.

What is the maximum number of data blocks that can be read with at most ` parallel

queries on each disk ?

As a last example consider load balancing in which balls represent the jobs and the bins

are the machines. Assume that we have n machines each with capacity `. Additionally

each job chooses randomly k machines and need to be assigned to one of them.

What is the maximum number of jobs than can be allocated to n machines such that no

machine receives more than ` jobs ?

We answer the above questions by giving a critical load threshold (dependent on the

number of bins) such that when the number of balls is less than this threshold, an

allocation is possible with high probability and otherwise this is not the case. Assuming

that the number of balls are below the load threshold, the second question then is how

quickly can one find an allocation.

Question 2 : Suppose that there exists an allocation such that each of the m balls is

allocated to one of its k random choices and no bin receives more than ` balls. How

quickly can one find such an allocation ?

We answer the above question for all k ≥ 3 and ` = 1 and provide a simple algorithm

which run in linear time with high probability. We assume an online setting such that

Chapter 1. Introduction 3

each ball chooses k random bins on arrival and it has to be placed as and when it

appears. Such a setting is quite useful in hashing in which items have to be placed when

they appear and no knowledge of their choices is known to the algorithm prior to their

arrival, or in online load balancing in which jobs have to be assigned as soon as they

arrive.

1.2 Orientation of Hypergraphs

The first question addressed in this thesis can also be phrased in terms of orientation of

graphs or more generally orientations of k-uniform hypergraphs. The n bins are repre-

sented as vertices and each of the m balls form an edge with its k-vertices representing

the k random choices of the ball. In fact, this is a random (multi)hypergraph H∗n,m,k (or

random (multi)graph G∗n,m for k = 2) with n vertices and m edges where each edge is

drawn uniformly at random (with replacement) from the set of all k-multisubsets of the

vertex set. An `-orientation of a graph then amounts to a mapping of each edge to one

of its vertices such that no vertex receives more than ` edges. Note that the properties of

H∗n,m,k are essentially same as that of the simple random hypergraph denoted by Hn,m,k

(or Gn,m for k = 2) where multiple edges are forbidden. So Hn,m,k is a k-uniform hy-

pergraph drawn uniformly at random from the set of all simple k-uniform hypergraphs

with n vertices and m edges.

The case k = 2 and ` ≥ 1 is well-understood. This case corresponds to the classical

random graph Gn,m drawn uniformly from the set of all graphs with n vertices and

m distinct edges. A result of Fernholz and Ramachandran [5] and Cain, Sanders and

Wormald [6] implies that there is a constant c∗2,` such that as n→∞

P
(
Gn,bcnc is `-orientable

)
→

0, if c > c∗2,`

1, if c < c∗2,`

.

In other words, there is a critical value such that when the average degree is below this,

then with high probability an `-orientation exists, and otherwise not.

Similarly, the case ` = 1 and k ≥ 3 is well understood. The threshold for 1-orientability

of random hypergraphs is known from the work of the Fountoulakis and Panagiotou [7, 8],

and Frieze and Melsted [9]. In particular, there is a constant c∗k,1 such that as n→∞

P
(
Hn,bcnc,k is 1-orientable

)
→

0, if c > c∗k,1

1, if c < c∗k,1

.

Chapter 1. Introduction 4

We consider the general case, i.e., k and ` arbitrary. Our result also settles the threshold

for the `-orientability property of random hypergraphs for all k and `.

Theorem 1.1. For integers k ≥ 3 and ` ≥ 2 let ξ∗ be the unique solution of the equation

k` =
ξ∗Q(ξ∗, `)

Q(ξ∗, `+ 1)
, where Q(x, y) = 1− e−x

∑
j<y

xj

j!
.

Let c∗k,` = ξ∗

kQ(ξ∗,`)k−1 . Then

P
(
Hn,bcnc,k is `-orientable

) (n→∞)
=

0, if c > c∗k,`

1, if c < c∗k,`

.

A similar result by using completely different techniques was also shown in a slightly

different context by Gao and Wormald [10], with the restriction that the product k` is

large. So, our result fills the remaining gap, and treats especially the cases of small k and

arbitrary `, which are most interesting in practical applications. Further generalizations

of the concept of orientability of hypergraphs have been considered after our work in [11]

and [12], where tight results are also obtained.

Note: This work was done in collaboration with Nikolaos Fountoulakis and Konstanti-

nos Panagiotou.

1.3 An Efficient Algorithm

We now focus on the second question addressed in this thesis, which is to develop an

algorithm for allocating the given balls into one of their choices without overloading any

bin. The typical performance measures for such an algorithm are (1) total allocation

time, i.e., the total time to allocate all balls and (2) maximum allocation time which is

the maximum time required to allocate any ball. These parameters are also the main

topics in this work.

We start by giving an overview of the already existing algorithms. As we already men-

tioned the problem of finding an optimal allocation (in context of this work) with max-

imum load ` is equivalent to finding an ` orientation of a random graph or hypergraph.

For the case k = 2, several allocation algorithms and their analysis are closely connected

to the cores of the associated graph. The ` core of a graph is the maximum vertex in-

duced subgraph with minimum degree at least `. For example, Czumaj and Stemann [13]

gave a linear time algorithm achieving maximum load O(m/n) based on computation of

Chapter 1. Introduction 5

all cores. The main idea was to repeatedly choose a vertex v with minimum degree and

remove it from the graph, and assigning all its incident edges (balls) to vertex (bin) v.

Cain, Sanders, and Wormald [6] used a variation of the above approach and gave a lin-

ear time algorithm for computing an optimal allocation (asymptotically almost surely).

Their algorithm first guesses the optimal load among the two likely values values (dm/ne
or dm/ne + 1). The algorithm starts with load value say ` = dm/ne. Each time a ver-

tex with degree at most ` and its incident edges are assigned to the bin represented

by v. The above rule also called the mindegree rule will first reduce the graph to its

(` + 1)-core. After that some edge (u, v) is picked according to some priority rule and

assigned to one of its vertices. Again the mindegree rule is applied with respect to some

conditions. In case the algorithm fails it is repeated after incrementing the load value.

Fernholz and Ramachandran [5] used a different approach of dealing with the vertices

with degree greater than the maximum load. Their algorithm also called excess degree

reduction (EDR) always chooses a vertex with minimum degree, d. If d < ` then this

vertex is assigned all its incident edges and is removed from the graph. In case d > 2`

the algorithm fails. Otherwise, EDR replaces d− ` paths of the form (u, v, w) by bypass

edges (u,w) and then orients all remaining edges (≤ `) incident to v towards v.

Note that the above described algorithms requires the complete knowledge of the graph

right from the beginning. In contrast we might need methods to assign balls in an online

manner, i.e., balls make their random choices only on arrival and have to be assigned as

and when they arrive. Such methods usually involve moving of balls among its chosen

locations whenever required. For example, in cuckoo hashing, when an item i appears

it is assigned to one of its free choices. In case all its k choices are occupied, then one of

its chosen locations say loc is selected. One of the items already placed on loc is moved

out and the item i is placed. The moved out item then looks for a free location among

its other choices and the procedure is repeated till an empty location is found.

It is often useful to understand cuckoo hashing in a graph theoretic setting, where each

item corresponds to a vertex on one side of a bipartite graph and locations correspond to

vertices on the other side. There is an edge between each item and its chosen locations.

Then the sequence of moves for assigning an item (described in the previous paragraph)

defines an augmenting path in this graph.

For the online setting, the case k = 2 and ` = 1 is well understood [2, 14]. Note that for

each move (except the first one) there is exactly one choice for the algorithm. The case

k ≥ 3 is more interesting. For k = 3 and ` = 1, Fotakis et. al [3] provides a breadth first

search (BFS) approach. Essentially, if the k choices for the item i are full, one considers

the other choices of the k items in those locations, and if all those locations are filled,

Chapter 1. Introduction 6

one considers the other choices of the items in those locations, and so on. The total

allocation time with this approach is shown to be linear only in expectation.

For the same case, Frieze, Melsted and Mitzemmacher [9], and Fountoulakis, Panagiotou

and Steger [15] analyzed the random walk method, in which one chooses a location

randomly from among the k filled choices of an item. More precisely if the k choices of

an item i are full, one chooses a random location, say loc from among the k locations.

The already placed item, say i′ is moved out to make room for i. The item i′ then

looks for an empty location from among its k − 1 choices. If all its choices are full a

location is again selected randomly and the above procedure is repeated. Both of the

above mentioned works gave polylogarithmic bounds for maximum allocation time.

Optimal allocations can also be computed in polynomial time using maximum flow

computations and with high probability achieve a maximum load of dm/ne or dm/ne+

1 [4].

In this thesis we propose a simple and efficient algorithm which we call local search

allocation (LSA) to find an allocation for the case k ≥ 3 and ` = 1. Our algorithm runs

in linear time with high probability.

Theorem 1.2. Let k ≥ 3. For any fixed ε > 0, set m = (1− ε)c∗k,1n. Assume that each

of the m balls chooses k random bins from a total of n bins. Then with high probability

local search allocation finds an optimal allocation of these balls in time O(n).

A simple reduction suggests that to match the probability bounds given by our algorithm,

BFS would require O(n log n) run time. The random walk method does not provide any

guarantees for the total allocation time. In fact it might run for ever in some worst

case. Our algorithm in contrast finds an allocation (with probability 1) whenever it

exists. We also present experimental results comparing the performance of these two

algorithms. The results reveal that local search allocation is 5 to 10 times faster when

total allocation and maximum allocation times are compared. With a small change our

algorithm can be extended to the case ` ≥ 2. Our simulations for this case predicts that

LSA requires linear time for finding an optimal allocation.

One of the very important applications of our result is a faster algorithm for finding

maximum cardinality matchings in a special class of sparse random bipartite graphs.

A Faster Matching Algorithm

Consider a bipartite graph G = (L ∪ R,E) where L represents the set of m balls and

R is the set of n bins. Each v ∈ L chooses k vertices (independently and uniformly at

Chapter 1. Introduction 7

random) in R as neighbors. The problem of allocating balls into bins now reduces to

finding a perfect matching or a maximum cardinality matching in G.

In random sparse graphs Bast et al. [16] showed that the algorithm of Hopkraft and

Karp requires O(m log n) time, with high probability, to find a maximum matching.

Motwani [17] proved this result for random graphs when the average degree is at least

log(n). Goel, Kapralov and Khanna [18] gave a linear time algorithm for finding perfect

matchings in regular bipartite graphs. Various heuristics for finding maximum matchings

can be found in [19, 20].

Our algorithm computes a perfect matching (whenever it exists) in a k-left regular

random bipartite graph in time O(n) with high probability. This is the most efficient

algorithm (to the best of my knowledge) for this special class of bipartite graphs.

1.4 Organization

The thesis is organized as follows. Each chapter consists of one problem together with its

detailed introduction and obtained results. The directions for future work are presented

at the end of each chapter.

Chapter 2: This chapter deals with the multiple orientability thresholds for random

hypergraphs. For integers k and ` we compute a threshold c∗k,` such that when the

density of a random k-uniform hypergraph (ratio of number of edges to that of vertices)

is below c∗k,` , then the hypergraph is `-orientable with high probability, otherwise this

is not the case.

Indication of source : The contents of Chapter 2 has been previously published

in SODA 2011 [21]. The full version of this work has been submitted to the journal

Combinatorics, Probability and Computing.

Chapter 3: In this chapter we propose and analyze an efficient algorithm which we

call local search allocation to find an optimal allocation of balls-into-bins for the case

k ≥ 3, ` = 1. As a corollary we obtain an efficient algorithm for finding perfect matchings

in a special class of random bipartite graphs.

Indication of source: The contents of Chapter 3 has been previously published in

ESA 2013 [22].

Chapter 2

The Multiple-orientability

Thresholds for Random

Hypergraphs

2.1 Introduction

In this chapter we study the property of multiple orientability of random hypergraphs.

For any integers k ≥ 2 and ` ≥ 1, a k-uniform hypergraph is called `-orientable, if for

each edge we can select one of its vertices, so that all vertices are selected at most `

times. This definition generalizes the classical notion of orientability of graphs, where

we want to orient the edges under the condition that no vertex has in-degree larger than

`. In this paper, we consider random k-uniform hypergraphs Hn,m,k, for k ≥ 3, with n

vertices and m = bcnc edges. The main result of this chapter is the following theorem,

which establishes the existence of a critical density c∗k,` such that when c crosses this

value the probability that the random hypergraph is `-orientable drops abruptly from

1− o(1) to o(1), as the number of vertices n grows.

Theorem 2.1. For integers k ≥ 3 and ` ≥ 2 let ξ∗ be the unique solution of the equation

k` =
ξ∗Q(ξ∗, `)

Q(ξ∗, `+ 1)
, where Q(x, y) = 1− e−x

∑
j<y

xj

j!
. (2.1)

Let c∗k,` = ξ∗

kQ(ξ∗,`)k−1 . Then

P
(
Hn,bcnc,k is `-orientable

) (n→∞)
=

0, if c > c∗k,`

1, if c < c∗k,`

. (2.2)

8

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 9

2.2 Proof Strategy

Our main result follows immediately from the two theorems below. The first statement

says that Hn,m,k has a subgraph of density > ` (i.e., the ratio of the number of edges

to the number of vertices in this subgraph is greater than `) if c > c∗k,`. We denote by

the (` + 1)-core of a hypergraph its maximum subgraph that has minimum degree at

least `+ 1.

Theorem 2.2. Let c∗k,` be defined as in Theorem 2.1. If c > c∗k,`, then with probability 1−
o(1) the (`+ 1)-core of Hn,cn,k has density greater than `.

Note that this implies the statement in the first line of (2.2), as by the pigeonhole

principle it is impossible to orient the edges of a hypergraph with density larger than `

so that each vertex has indegree at most `.

The above theorem is not very difficult to prove, as the core of random hypergraphs and

its structural characteristics have been studied quite extensively in recent years, see for

example the results by Cooper [23], Molloy [24] and Kim [25]. However, it requires some

technical work, which is accomplished in Section 2.4. The heart of this work is devoted

to the “subcritical” case, where we show that the above result is essentially tight.

Theorem 2.3. Let c∗k,` be defined as in Theorem 2.1. If c < c∗k,`, then with probability 1−
o(1) all subgraphs of Hn,cn,k have density smaller than `.

Proof of Theorem 2.1. Let us construct an auxiliary bipartite graph B = (E ,V; E),

where E represents the m edges and V = {1, . . . , n}×{1, . . . , `} represents the n vertices

of Hn,m,k. Also, {e, (i, j)} ∈ E if the eth edge contains vertex i, and 1 ≤ j ≤ `. Note

that Hn,m,k is `-orientable if and only if B has a left-perfect matching, and by Hall’s

theorem such a matching exists if and only if for all I ⊆ E we have that |I| ≤ |Γ(I)|,
where Γ(I) denotes the set of neighbors of the vertices in I in V.

Observe that Γ(I) is precisely the set of ` copies of the vertices that are contained in

the hyperedges corresponding to items in I. So, if c < c∗k,`, Theorem 2.3 guarantees that

with high probability for all I we have |I| ≤ |Γ(I)| and therefore B has a left-perfect

matching. On the other hand, if c > c∗k,`, then with high probability there is a set I
such that |I| > |Γ(I)|; choose for example I to be the set of items that correspond to

the edges in the (` + 1)-core of Hn,m,k. Hence a matching does not exist in this case,

and the proof is completed.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 10

2.3 Technical Preliminaries

2.3.1 Models of Random Hypergraphs

We refer to a hyperedge of size k as a (k-)edge and call a hypergraph with all its hyper-

edges of size k a k-graph. For the sake of convenience we will carry out our calculations

in the Hn,p,k model of random k-graphs. This is the “higher-dimensional” analogue

of the well-studied Gn,p model, where each possible (k-)edge is included independently

with probability p. More precisely, given n ≥ k vertices we obtain Hn,p,k by including

each k-tuple of vertices with probability p, independently of every other k-tuple.

Standard arguments show that if we adjust p suitably, then the Hn,p,k model is essentially

equivalent to the Hn,cn,k model. Let us be more precise. Suppose that P is a convex

hypergraph property, that is, whenever we have three hypergraphs H1, H2, H3 such

that H1 ⊆ H2 ⊆ H3 and H1, H3 ∈ P, then also H2 ∈ P. We also assume that P is

closed under automorphisms. Any monotone property is also convex and, therefore, the

properties examined in Theorem 2.3. The following proposition is a generalization of

Proposition 1.15 from [26, p.16] and its proof is very similar to the proof of that.

Proposition 2.4. Let P be a convex property of hypergraphs, and let p = ck/
(
n−1
k−1

)
,

where c > 0. If P (Hn,p,k ∈ P)→ 1 as n→∞, then P (Hn,cn,k ∈ P)→ 1 as well.

Proof. Let m′ and m′′ maximizes P (Hn,m,k ∈ P) for m ≤ cn and m ≥ cn respectively.

Let Ep denote the edge set in Hn,p,k. We then have

P (Hn,p,k ∈ P) ≤ P
(
Hn,m′,k ∈ P

)
P (|Ep| ≤ cn) + P (|Ep| > cn) .

By central limit theorem we have P (|Ep| ≤ cn)
n→∞

= 1/2, and therefore

1 = lim
n→∞

P (Hn,p,k ∈ P) ≤ 1

2
lim
n→∞

P
(
Hn,m′,k ∈ P

)
+

1

2
,

which implies that limn→∞ P
(
Hn,m′,k ∈ P

)
= 1. Similarly limn→∞ P

(
Hn,m′′,k ∈ P

)
= 1.

The convexity of P then yields P (Hn,cn,k ∈ P)→ 1.

2.3.2 The Poisson Cloning Model for the (` + 1) -core

The (` + 1)-core of a hypergraph is its maximum subgraph that has minimum degree

(at least) `+ 1. At this point we introduce the main tool for our analysis. The cloning

model with parameters (N,D, k), where N and D are integer valued random variables,

is defined as follows. We generate a graph in three stages.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 11

1. We expose the value of N ;

2. if N ≥ 1 we expose the degrees d = (d1, . . . , dN), where the di’s are independent

samples from the distribution D;

3. for each 1 ≤ v ≤ N we generate dv copies, which we call v-clones or simply clones.

Then we choose uniformly at random a matching from all perfect k-matchings on

the set of all clones, i.e., all partitions of the set of clones into sets of size k. Note

that such a matching may not exist – in this case we choose a random matching

that leaves less than k clones unmatched. Finally, we construct the k-graph Hd,k

by contracting the clones to vertices, i.e., by projecting the clones of v onto v itself

for every 1 ≤ v ≤ N .

Note that the last stage in the above procedure is equivalent to the configuration

model [27, 28] Hd,k for random hypergraphs with degree sequence d = (d1, . . . , dn).

In other words, Hd,k is a random multigraph where the ith vertex has degree di.

One particular case of the cloning model is the so-called Poisson cloning model H̃n,p,k

for k-graphs with n vertices and parameter p ∈ [0, 1], which was introduced by Kim [25].

There, we choose N = n with probability 1, and the distribution D is the Poisson

distribution with parameter λ := p
(
n−1
k−1

)
. Note that D is essentially the vertex de-

gree distribution in the binomial random graph Hn,p,k, so we would expect that the

two models behave similarly. The following statement confirms this, and is implied by

Theorem 1.1 in [25].

Theorem 2.5. If P
(
H̃n,p,k ∈ P

)
→ 0 as n→∞, then P (Hn,p,k ∈ P)→ 0 as well.

One big advantage of the Poisson cloning model is that it provides a very precise descrip-

tion of the (`+ 1) core of H̃n,p,k. Particularly, Theorem 6.2 in [25] implies the following

statement, where we write “x± y” for the interval of numbers (x− y, x+ y).

Theorem 2.6. Let λk,`+1 := minx>0
x

Q(x,`)k−1 . Assume that ck = p
(
n−1
k−1

)
> λk,`+1.

Moreover, let x̄ be the largest solution of the equation x = Q(xck, `)k−1, and set ξ := x̄ck.

Then, for any 0 < δ < 1 the following is true with probability 1−n−ω(1). If Ñ`+1 denotes

the number of vertices in the (`+ 1)-core of H̃n,p,k, then

Ñ`+1 = Q(ξ, `+ 1)n± δn.

Furthermore, the (`+ 1)-core itself is distributed like the cloning model with parameters

(Ñ`+1, Po≥`+1(Λc,k,`), k), where Po≥`+1(Λc,k,`) denotes a Poisson random variable con-

ditioned on being at least (`+ 1) and parameter Λc,k,`, where Λc,k,` = ξ + β, for some β

satisfying |β| ≤ δ.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 12

In what follows, we say that a random variable is an `-truncated Poisson variable, if

it is distributed like a Poisson variable, conditioned on being at least `. The following

theorem, which is a special case of Theorem II.4.I in [29] from large deviation theory,

bounds the sum of i.i.d. random variables. We apply the result to the case of i.i.d. (`+1)-

truncated Poisson random variables, which are nothing but the degrees of the vertices

of the (` + 1) core. As an immediate corollary we obtain tight bounds on the number

of edges in the (` + 1)- core of H̃n,p,k. Moreover, it also serves as our main tool in

counting the expected number of subsets (with some density constraints) of the (`+ 1)-

core, assuming that the degree sequence has been exposed. Such estimates are required

for the proof of Theorem 2.3 and will be presented in the next section.

Theorem 2.7. Let X be a random variable taking real values and set c(t) = logE(etX),

for any t ∈ R. For any z > 0 we define I(z) = supt∈R{zt − c(t)}. If X1, . . . , Xs are

i.i.d. random variables distributed as X, then for s→∞

P

(
s∑
i=1

Xi ≤ sz

)
= exp (−s inf{I(x) : x ≤ z}(1 + o(1))) .

The function I(z) is non-negative and convex.

The function I(z) (also known as the rate function of the random variable X) in the

above theorem measures the discrepancy between z and the expected value of the sum of

the i.i.d. random variables in the sense that I(z) ≥ 0 with equality if and only if z equals

the expected value of X. The following lemma applies Theorem 2.7 to (`+ 1)-truncated

Poisson random variables.

Lemma 2.8. Let X1, . . . , Xs be i.i.d. (` + 1)-truncated Poisson random variables with

parameter Λ. For any z > `+ 1, let Tz be the unique solution of z = Tz · Q(Tz ,`)
Q(Tz ,`+1) and

IΛ(z) = z(log Tz − log Λ)− Tz + Λ− logQ(Tz, `+ 1) + logQ(Λ, `+ 1). (2.3)

Then IΛ(z) is continuous for all z > ` + 1 and convex. It has a unique minimum

at z = µ = Λ · Q(Λ,`)
Q(Λ,`+1) , where IΛ(µ) = 0. Moreover uniformly for any z such that

`+ 1 ≤ z ≤ µ, we have as s→∞

P

(
s∑
i=1

Xi ≤ sz

)
≤ exp(−sIΛ(z)(1 + o(1))).

Proof. We shall first calculate c(t) = logE(etX), where X is an (`+1)-truncated Poisson

random variable with parameter Λ. We note that

exp(c(t)) =

∑
j≥`+1e

tj · e−ΛΛj

j!

Q(Λ, `+ 1)
= e−Λ · eΛet ·

∑
j≥`+1

e−Λet (etΛ)j

j!

Q(Λ, `+ 1)
= eΛet−Λ · Q(Λet, `+ 1)

Q(Λ, `+ 1)
.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 13

Differentiating zt− c(t) with respect to t we obtain

(zt− c(t))′ = z − log

(
eΛet−Λ · Q(Λet, `+ 1)

Q(Λ, `+ 1)

)′
= z − Λet − (logQ(Λet, `+ 1))′

= z − Λet +
Λet · (Q(Λet, `+ 1)−Q(Λet, `))

Q(Λet, `+ 1)
.

Substituting T = Λet we get

(zt− c(t))′ = z − T +
T · (Q(T, `+ 1)−Q(T, `))

Q(T, `+ 1)
= z − T · Q(T, `)

Q(T, `+ 1)
.

Setting this expression to zero and solving for T gives the value of Tz as in the statement

of the lemma. The uniqueness of the solution for z > ` + 1 follows from the fact that

the function x · Q(x,`)
Q(x,`+1) is strictly increasing with respect to x (cf. Claim 2.24) and, as

x approaches 0, it tends to `+ 1. Letting tz be such that Tz = Λetz , we obtain

−c(tz) = −Tz − logQ(Tz, `+ 1) + Λ + logQ(Λ, `+ 1)

and

tzz = z(log Tz − log Λ).

The function −c(t) is concave with respect to t (cf. Proposition VII.1.1 in [29, p. 229]);

also adding the linear term zt does preserve concavity. So tz is the point where the

unique maximum of zt − c(t) is attained over t ∈ R. Combining the above we obtain

IΛ(z) as stated in the lemma. For z = ΛQ(Λ,`)
Q(Λ,`+1) we have Tz = Λ which yields IΛ(µ) = 0.

As far as IΛ(`+ 1) is concerned, note that strictly speaking this is not defined, as there

is no positive solution of the equation `+ 1 = T · Q(T,`)
Q(T,`+1) . We will express IΛ(`+ 1) as

a limit as T → 0 from the right and show that

P

(
s∑
i=1

Xi ≤ s(`+ 1)

)
= exp(−sIΛ(`+ 1)).

We define

IΛ(`+ 1) := lim
T→0+

((`+ 1) log T − T − logQ(T, `+ 1))− (`+ 1) log Λ + Λ + logQ(Λ, `+ 1).

But

lim
T→0+

((`+ 1) log T − T − logQ(T, `+ 1)) = lim
T→0+

log
T `+1

eTQ(T, `+ 1)

= lim
T→0+

log
T `+1

T `+1

(`+1)! + T `+2

(`+2)! + · · ·
= lim

T→0+
log

1
1

(`+1)! + T
(`+2)! + · · ·

= log(`+ 1)! ,

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 14

and therefore

IΛ(`+ 1) = log(`+ 1)!− (`+ 1) log Λ + Λ + logQ(Λ, `+ 1).

On the other hand, the independence of the Xi’s guarantees that

P

(
s∑
i=1

Xi ≤ s(`+ 1)

)
=[P (X1 = `+ 1)]s =

 e−ΛΛ`+1

(`+1)!

Q(Λ, `+ 1)

s

= exp(−sIΛ(`+ 1)).

Also, according to Theorem 2.7 the function IΛ(z) is non-negative and convex on its

domain. So if z ≤ µ, then inf{IΛ(x) : x ≤ z} = IΛ(z) and the second part of the lemma

follows.

Theorem II.3.3 in [29] along with the above lemma then implies the following corollary.

Corollary 2.9. Let X1, . . . , Xs be i.i.d. (`+1)-truncated Poisson random variables with

parameter Λ and set µ = E(X1). For any ε > 0 there exists a constant C = C(ε) > 0

such that as s→∞

P

(∣∣∣∣ s∑
i=1

Xi − sµ
∣∣∣∣ ≥ sε

)
≤ e−Cs.

With the above results in hand we are ready to prove the following corollary about the

density of the (`+ 1)-core.

Corollary 2.10. Let Ñ`+1 and M̃`+1 denote the number of vertices and edges in the

(` + 1)-core of H̃n,p,k. Also let ck = p
(
n−1
k−1

)
. Then, for any 0 < δ < 1, with probability

1− n−ω(1),

Ñ`+1 = Q(ξ, `+ 1)n± δn, (2.4)

M̃`+1 =
ξQ(ξ, `)

kQ(ξ, `+ 1)
Ñ`+1 ± δn, (2.5)

where ξ := x̄ck and x̄ is the largest solution of the equation x = Q(xck, `)k−1.

Proof. The statement about Ñ`+1 follows immediately from the first part of Theorem 2.6.

To see the second statement, we condition on certain values of Ñ`+1 and Λc,k,` that

lie in the intervals stated in Theorem 2.6. In particular, we can assume that the total

degree of the core of H̃n,p,k is the sum of independent (`+ 1)-truncated Poisson random

variables d1, . . . , dÑ`+1
with parameter Λc,k,` = ξ + β for |β| < δ2/2. Let D be the sum

of the di’s. Therefore, Corollary 2.9 yields for any ε > 0 and a constant C(ε) > 0

P
(
|D − E (D)| ≥ εÑ`+1

)
≤ e−C(ε)Ñ`+1 .

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 15

The claim then follows from the fact that

E (D) =
Λc,k,`Q(Λc,k,`, `)

Q(Λc,k,`, `+ 1)

and the continuity of the above expression by choosing ε sufficiently small.

2.4 Proof of the Upper Bound and the Critical Density

The aim of this section is to determine the value c∗k,` and prove Theorem 2.2. We proceed

with the proof of Theorem 2.2, i.e., we will show that the (`+1)-core of H̃n,p,k has density

at least ` if p = ck/
(
n−1
k−1

)
and c > c∗k,`. Let 0 < δ < 1, and denote by Ñ`+1 and M̃`+1

the number of vertices and edges in the (`+ 1)-core of H̃n,p,k. Applying Corollary 2.10

we obtain that with probability 1− n−ω(1)

Ñ`+1 = Q(ξ, `+ 1)n± δn and

M̃`+1 =
ξQ(ξ, `)

kQ(ξ, `+ 1)
Ñ`+1 ± δn,

where ξ = x̄ck and x̄ is the largest solution of the equation x = Q(xck, `)k−1. The value

of c∗k,` is then obtained by taking M̃`+1 = `Ñ`+1, and ignoring the additive error terms.

The above values imply that the critical ξ∗ is given by the equation

ξ∗
Q(ξ∗, `)

kQ(ξ∗, `+ 1)
= ` =⇒ k` = ξ∗

Q(ξ∗, `)

Q(ξ∗, `+ 1)
. (2.6)

This is precisely (3.1). So, the product k` determines ξ∗ and x̄ satisfies x̄ = Q(x̄ck, `)k−1 =

Q(ξ∗, `)k−1. Therefore, the critical density is

c∗k,` =
ξ∗

x̄k
=

ξ∗

kQ(ξ∗, `)k−1
. (2.7)

Proof of Theorem 2.2. The above calculations imply that uniformly for any 0 < δ < 1,

with probability 1− o(1)

M̃`+1

Ñ`+1

=
1

k

ξQ(ξ, `)

Q(ξ, `+ 1)
±Θ(δ).

In particular, if c = c∗k,`, then M̃`+1/Ñ`+1 = ` ± Θ(δ). To complete the proof it is

therefore sufficient to show that the ratio ξQ(ξ,`)
Q(ξ,`+1) is an increasing function of c. Note

that this is the expected value of an (` + 1)-truncated Poisson random variable with

parameter ξ, which is increasing in ξ (cf. Corollary 2.25). Recall that ξ = x̄ck. We

conclude the proof by showing the following claim.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 16

Claim 2.11. The quantity ξ = x̄ck is increasing with respect to c. So, for some fixed c,

with probability 1− o(1)

M̃`+1

Ñ`+1

< ` , if c < c∗k,` and
M̃`+1

Ñ`+1

> ` , if c > c∗k,`.

Indeed, recall that x̄ satisfies x̄ = Q(x̄ck, `)k−1. Equivalently, x̄ck = ck · Q(x̄ck, `)k−1.

We have

ck =
ξ

Q(ξ, `)k−1
. (2.8)

The derivative of the function F (ξ) := ξ
Q(ξ,`)k−1 with respect to ξ is given by

Q(ξ, `)−k (Q(ξ, `)− (k − 1)ξ · P (Po(ξ) = `− 1)) .

An easy calculation shows that F ′(ξ) is positive when ξ satisfies the inequality

∑
i≥`

ξi−`

i!
>

k

(`− 1)!
,

and negative otherwise. We therefore conclude that F (ξ) is a convex function. Moreover,

by the assumption in Theorem 2.6 we have ck > minx>0(x/Q(x, `)k−1). This implies

the function ξ ·Q(ξ, `)−(k−1) is strictly increasing in the domain of interest. Note that

by (2.8) the first derivative of ξ with respect to c is given by k/F ′(ξ) which is positive

by the above discussion, thus proving our claim.

2.5 Proof of the Lower Bound

Let us begin with introducing some notation. For a hypergraph H we will denote

by VH its vertex set and by EH its set of edges. Additionally, we write vH = |VH |
and eH = |VH |. For U ⊂ VH we denote by vU , eU the number of vertices in U and the

number of edges joining vertices only in U . Finally, dU is the total degree in U , i.e., the

sum of the degrees in H of all vertices in U . We say that a subset U of the vertex set

of a hypergraph is `-dense, if eU/vU ≥ `. By a maximal `-dense subset we mean that

whenever we add a vertex to such a set, then its density drops below `.

In order to prove Theorem 2.3 we will to show that whenever c < c∗k,`, the random

graph Hn,bcnc,k does not contain any `-dense subset with probability 1 − o(1). We will

accomplish this by proving that such a hypergraph does not contain any maximal `-

dense subset with probability 1− o(1). Note that this is sufficient as any `-dense subset

will be contained in some maximal `-dense subset. We shall use the following property.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 17

Proposition 2.12. Let H be a k-uniform hypergraph with density less than ` and let U

be a maximal `-dense subset of VH . Then there is a 0 ≤ θ < ` such that eU = ` · vU + θ.

Also, for each vertex v ∈ VH \ U the corresponding degree d in U , i.e., the number of

edges in H that contain v and all other vertices only from U , is less than `− θ.

Proof. If θ ≥ `, then we have eU ≥ ` · (vU + 1). Let U ′ = U ∪ {v}, where v is any vertex

in VH \ U . Note that such a vertex always exists, as U 6= VH . Let d be the degree of v

in U . Then
eU ′

vU ′
=
eU + d

vU + 1
≥ eU
vU + 1

≥ `,

which contradicts the maximality of U in H. Similarly, if there exists a vertex v ∈ VH \U
with degree d ≥ `−θ in U , then we could obtain a larger `-dense subset of VH by adding

v to U .

We begin with showing that whenever c < `, the random graph Hn,cn,k does not contain

small maximal `-dense subsets. In particular, the following lemma argues about subsets

of size at most 0.6n.

Lemma 2.13. Let c < ` and k ≥ 3, ` ≥ 2. With probability 1− o(1), Hn,bcnc,k contains

no maximal `-dense subset with less than 0.6n vertices.

Proof. We first prove the lemma for all k ≥ 3 and ` ≥ 2 except for the case (k, `) = (3, 2)

by using a rough first moment argument. The probability that an edge of Hn,cn,k is

contained completely in a subset U of the vertex set is given by(
|U |
k

)
/

(
n

k

)
≤
(
|U |
n

)k
.

Let k/n ≤ u ≤ 0.6 and for x ∈ (0, 1) let H(x) = −x log x− (1− x) log(1− x) denote the

entropy function. Then

P (∃`-dense subset with un vertices) ≤
(
n

un

)
·
(
cn

`un

)
(uk)`un ≤ en((`+1)H(u)+k`u log u).

(2.9)

We first show that the exponent attains its maximum at u = k/n or u = 0.6. Let

umax = 1 − (`+ 1)/k`. We note that the second derivative of the exponent in (2.9)

equals

(k`(1− u)− (`+ 1))/(u(1− u)),

which is positive for k ≥ 3, ` ≥ 2 and u ∈ (0, umax]. Hence the exponent is convex for u ≤
umax, implying that it attains a global maximum at u = k/n or at u = (k`− (`+ 1))/k`.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 18

Moreover, for any k ≥ 4, ` ≥ 2 we have umax > 0.6. The case k = 3 and ` ≥ 3 is slightly

more involved. Note that umax ≥ 5/9 in this case. The second derivative of the exponent

is negative for u ∈ (umax, 1), implying that the function is concave in the specified range.

But the first derivative of the exponent is (`+ 1) log((1− u)/u) + 3`(1 + log(u)), which

is at least 2.8`− 0.41 > 0 for u = 0.6. Hence, the exponent is increasing at u = 0.6.

We can now infer that for k = 3, ` ≥ 3 and k ≥ 4, ` ≥ 2 , the exponent is either

maximized at u = k/n or at u = 0.6. Note that

(`+ 1)H

(
k

n

)
+
k2`

n
log

(
k

n

)
= −(k2`− (`+ 1)k) log n

n
+O

(
1

n

)
.

Also for k ≥ 4 and ` ≥ 2 we obtain

(`+ 1)H(0.6) + k` · 0.6 log(0.6) ≤ (`+ 1)H(0.6) + 4` · 0.6 log(0.6)

≤ H(0.6)− 0.56` ≤ −0.44,

and for k = 3 and ` ≥ 3

(`+ 1)H(0.6) + k` · 0.6 log(0.6) ≤ (`+ 1)H(0.6) + 3` · 0.6 log(0.6)

≤ H(0.6)− 0.24` ≤ −0.04.

So, the maximum is obtained at u = k/n for n sufficiently large, and we conclude the

case in which (k, `) 6= (3, 2) with

P (∃ `-dense subset with ≤ 0.6n vertices) ≤
0.6∑

u=k/n

n−k
2`+(`+1)k = O(n−8).

For the case (k, `) = (3, 2) a counting argument as above involving the 2-dense sets does

not work, and we will use the property that the considered set are maximal 2-dense.

By (2.7) we obtain c∗3,2 < 1.97. Let p = c′/
(
n−1

2

)
, where c′ = 3 · c ≤ 3 · c∗3,2 ≤ 5.91. A

simple application of Stirling’s formula reveals

P (Hn,p,3 has exactly cn edges) = (1 + o(1))(2πcn)−1/2.

Let U be a maximal 2-dense subset of Hn,cn,3. As the distribution of Hn,cn,3 is the same

as the distribution of Hn,p,3 conditioned on the number of edges being precisely cn we

infer that

P (Hn,cn,3 contains a maximal 2-dense subset U with at most 0.6n vertices) =

O(
√
n) · P (Hn,p,3 contains a maximal 2-dense subset U with at most 0.6n vertices) .

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 19

To complete the proof it is therefore sufficient to show that the latter probability is

o(n−1/2). By Proposition 2.12 the event that Hn,p,3 contains a maximal 2-dense subset

U implies that there exists a θ ∈ {0, 1} such that eU = 2 · vU + θ and all vertices in

VH \ U have degree less than 2 − θ in U . We will show that the expected number of

such sets with at most 0.6n vertices is o(1). We accomplish this in two steps. Note

that if a subset U is maximal 2-dense, then certainly |U | ≥ 5. Let us begin with the

case s := |U | ≤ n1/3. There are at most ns ways to choose the vertices in U , and at

most s3(2s+θ) ways to choose the edges that are contained in U . Hence, for large n the

probability that Hn,p,3 contains such a subset with at most bn1/3c vertices is bounded

by

bn1/3c∑
s=5

1∑
θ=0

nss6s+3θp2s+θ <

bn1/3c∑
s=5

2nss6s+3p2s =

bn1/3c∑
s=5

2

ns6

(
c′(
n−1

2

))2
s

· s3

≤ n

bn1/3c∑
s=5

2
(
c′2n(1+6/3)−4

)s
≤ n

bn1/3c∑
s=5

(
n−1+o(1)

)s
= n−4+o(1).

Let us now consider the case n1/3 ≤ |U | ≤ 0.6n. We note that

log p = log

(
c′(
n−1

2

)) = log
2c′

n2
+ Θ

(
1

n

)
.

Also, there are
(
n
un

)
≤ enH(u) ways to select U . Moreover, the number of ways to choose

the 2un+ θ edges that are completely contained in U is

((
un
3

)
2un+ θ

)
≤
(

e(un)3

6(2un+ θ)

)2un

= exp

{
2un log

(
e(un)2

12

)
+O(1)

}
.

Finally, the probability that a vertex outside of U has a degree less than 2− θ in |U | is

at most

(1− p)(
un
2) +

(
un

2

)
p(1− p)(

un
2)−1 = e−u

2c′(1 + u2c′)(1 +O(1/n)).

Combining the above facts we obtain that the probability Pu that Hn,p,3 contains a

maximal 2-dense subset U with 2un vertices is

Pu ≤
1∑
θ=0

(
n

un

)((
un
3

)
2un+ θ

)
p2un+θ(1− p)(

un
3)−2un−θ ·

(
e−u

2c′(1 + u2c′)(1 +O(1/n))
)(1−u)n

≤ exp

{
n

(
H(u) + 2u log

(
eu2n2

12

)
+ 2u log p

)
− p

((
un

3

)
− 2un− 1

)
+ (1− u)n(−u2c′ + log(1 + u2c′)) +O(1/n)

}

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 20

≤ exp

{
n

(
H(u) + 2u log

(
ec′u2

6

)
− u3c′

3
+ (1− u)(−u2c′ + log(1 + u2c′))

)
+O(1/n)

}
.

If we fix u, the derivative of the exponent with respect to c′ is given by

2u

c′
− u3

3
+ (1− u)

(
−u2 +

u2

1 + u2c′

)
c′≤5.91
≥ 2u

6
− u3

3
+ (1− u)

(
−u2 +

u2

1 + 6u2

)
=
u

3
− u3

3
− u2 +

u2

1 + 6u2
+ u3 − u3

1 + 6u2

=
u

3
+

2u3

3
− 6u4

1 + 6u2
− u3

1 + 6u2

=
u

3
+

4u5 − 6u4

1 + 6u2
− u3

3(1 + 6u2)

=u

(
1

3
− u2/3 + 6u3 − 4u4

1 + 6u2

)
u≤0.6
≥ u

(
1

3
− 0.29

)
u>0
> 0,

thus implying that for all u ∈ (0, 0.6] the exponent is increasing with respect to c′.

Therefore, it is sufficient to consider only the case when c′ = 5.91.

The derivative of the exponent with respect to u equals log(c′2u3(1 − u)) + 6 − log 6 −
log(1+u2c′)−((1− u)2u3c′2/(1 + u2c′)). As the function log(c′u3)+(2u4c′3/(1+u2c′)) is

increasing and log
(
(1− u)/(1 + u2c′)

)
−(2u3c′2/(1+u2c′)) is decreasing in u, there is at

most one n−2/3 ≤ u0 ≤ 0.6 where the derivative of the exponent vanishes. Moreover the

derivative of the exponent at u = 0.6 is positive. Therefore, u0 is a global minimum, and

the bound on Pu is maximized at either at u = n−2/3 or at u = 0.6. Elementary algebra

then yields that the left point is the right choice, giving the estimate Pu = o(2−n
1/3

),

and the proof concludes by adding up this expression for all admissible n−2/3 ≤ u ≤ 0.6.

In order to deal with larger subsets we switch to the Poisson cloning model. Let C

denote the (` + 1)-core of H̃n,p,k, where p = ck/
(
n−1
k−1

)
, and note that Theorem 2.5 and

Proposition 2.4 guarantee that H̃n,p,k and Hn,cn,k are sufficiently similar. Observe that

any minimal `-dense set in H̃n,p,k is always a subset of C, as otherwise, by removing

vertices of degree at most ` the density would not decrease. In other words, C contains

all minimal `-dense subsets, and so it is enough to show that the core does not contain

any `-dense subset. Therefore, from now on we will restrict our attention to the study

of C.

Assume that the degree sequence of C is given by d = (d1, . . . , dÑ`+1
), where we denote

by Ñ`+1 the number of vertices in C. Thus, the number of edges in C is

M̃`+1 = k−1

Ñ`+1∑
i=1

di.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 21

For q, β ∈ [0, 1] let Xq,β = Xq,β(C) = Xq,β(d) denote the number of subsets of C

with bβÑ`+1c vertices and total degree bqkM̃`+1c.

Let ξ∗ = x̄∗c∗k,` k, where x̄∗ is the largest solution of the equation x = Q(xc∗k,`k, `)
k−1,

and note that ξ∗ satisfies (2.6). Moreover, let ξ be given by ξ = x̄ck, where x̄ is the

largest solution of the equation x = Q(xck, `)k−1. As ξ is increasing with respect to c (cf.

Claim 2.11), there exists a δ > 0 and a γ = γ(δ) > 0 such that c = c∗k,`−γ and ξ = ξ∗−δ.
Also γ → 0 as δ → 0 by continuity of the largest solution of x = Q(xck, `)k−1.

In the sequel we will assume that δ > 0 is fixed (and sufficiently small for all our estimates

to hold), and we will choose c < c∗k,` such that c = c∗k,` − γ and ξ = ξ∗ − δ. Set

n`+1 = Q(ξ, `+ 1)n and m`+1 =
ξQ(ξ, `)

kQ(ξ, `+ 1)
n`+1. (2.10)

By applying Corollary 2.10 (and using δ3 instead of δ) we obtain that with probability

1− n−ω(1)

Ñ`+1 = n`+1 ± δ3n and M̃`+1 = m`+1 ± δ3n. (2.11)

Moreover, by applying Theorem 2.6 we infer that C is distributed like the cloning model

with parameters Ñ`+1 and vertex degree distribution Po≥`+1(Λc,k,`), where

Λc,k,` = ξ ± δ3 = ξ∗ − δ ± δ3, (2.12)

Recall that the definition of ξ∗ implies that k` = ξ∗Q(ξ∗,`)
Q(ξ∗,`+1) . Let ek,` denote the value

of the first derivative of xQ(x,`)
k`Q(x,`+1) with respect to x at x = ξ∗. By applying Taylor’s

Theorem to xQ(x,`)
Q(x,`+1) around x = ξ∗ we obtain

m`+1 = (1− ek,` · δ + Θ(δ2))` · n`+1, where
ξQ(ξ, `)

Q(ξ, `+ 1)
= k`(1− ek,` · δ + Θ(δ2)).

(2.13)

Recall that Hd,k is a random hypergraph where the ith vertex has degree di. We start by

bounding the probability that a given subset of the vertices in Hd,k is maximal `–dense.

In particular, we will work on the Stage 3 of the exposure process, i.e., when the number

of vertices and degree sequence of the core have already been exposed. We will show

the following.

Lemma 2.14. Let k ≥ 3, ` ≥ 2 and d = (d1, . . . , dN) be a degree sequence and

U ⊆ {1, ..., N} such that |U | = bβNc. Moreover, set M = k−1
∑N

i=1 di and q =

(kM)−1
∑

i∈U di. Assume that M < ` · N . If Pd,k denotes the probability measure on

the space of k-uniform hypergraphs with degree sequence given by d, B(β, q) denotes the

event that U is a maximal `-dense set in Hd,k, and H(x) = −x log x− (1−x) log(1−x)

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 22

denotes the entropy function, then

Pd,k(B(β, q)) ≤ O(M `+0.5)

(
M

`|U |

)
e−kMH(q)(2k − 1)M−`|U |.

Proof. Recall that Hd,k is obtained by beginning with di clones for each 1 ≤ i ≤ N and

by choosing uniformly at random a perfect k-matching on this set of clones. This is

equivalent to throwing kM balls into M bins such that every bin contains k balls. In

order to estimate the probability for B(β, q) assume that we color the kqM clones of

the vertices in U with red, and the remaining k(1− q)M clones with blue. Let θ be an

integer such that 0 ≤ θ < `. So, by applying Proposition 2.12 we are interested in the

probability for the event that there are exactly Bθ = `|U |+ θ bins with k red balls. We

estimate the above probability as follows. We begin by putting into each bin k black

balls, labeled with the numbers 1, . . . , k. Let K = {1, . . . , k}, and let X1, . . . , XM be

independent random sets such that for 1 ≤ i ≤M

∀K′ ⊆ K : P
(
Xi = K′

)
= q|K

′|(1− q)k−|K′|.

Note that |Xi| follows the binomial distribution Bin(k, q). We then recolor the balls

in the ith bin that are in Xi with red, and all others with blue. So, the total number

of red balls is X =
∑M

i=1 |Xi|. Note that E (X) = kqM , and that X is distributed as

Bin(kM, q). A straightforward application of Stirling’s formula then gives

P (X = kqM) = P (X = E (X)) = (1 + o(1))(2πq(1− q)kM)−1/2.

Let Rj be the number of Xi’s that contain j elements. Then

Pd,k(B(β, q)) ≤
`−1∑
θ=0

P (Rk = Bθ|X = kqM) =
`−1∑
θ=0

P (X = kqM ∧Rk = Bθ)

P (X = kqM)

= O
(√

M
) `−1∑
θ=0

P (X = kqM ∧Rk = Bθ) .

(2.14)

Let pj = P (|Xi| = j) =
(
k
j

)
qj(1− q)k−j . Moreover, define the set of integer sequences

A =

{
(b0, . . . , bk−1) ∈ Nk :

k−1∑
j=0

bj = M −Bθ and

k−1∑
j=0

jbj = kqM − kBθ
}
.

Then

P (X = kqM ∧Rk = Bθ) ≤
`−1∑
θ=0

∑
(b0,...,bk−1)∈A

(
M

b0, . . . , bk−1, Bθ

)
·

k−1∏
j=0

p
bj
j

 · pBθk .

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 23

Now observe that the summand can be rewritten as(
M

Bθ

)
qkqM (1− q)k(1−q)M ·

(
M −Bθ

b0, . . . , bk−1

) k−1∏
j=0

(
k

j

)bj
.

Also,

∑
(b0,...,bk−1)∈A

(
M −Bθ

b0, . . . , bk−1

) k−1∏
j=0

(
k

j

)bj
≤

k−1∑
j=0

(
k

j

)M−Bθ

= (2k − 1)M−Bθ .

Thus, we have

P (X = kqM ∧Rk = Bθ) ≤
`−1∑
θ=0

(
M

Bθ

)
qkqM (1− q)k(1−q)M (2k − 1)M−Bθ

≤
`−1∑
θ=0

M θ

(
M

`|U |

)
e−kMH(q)(2k − 1)M−`|U | · (2k − 1)−θ

≤ `M `

(
M

`|U |

)
(2k − 1)M−`|U |e−kMH(q).

The claim then follows by combining the above facts and (2.14).

As already mentioned, the above lemma gives us a bound on the probability that a

subset of the (` + 1)-core with a given number of vertices and total degree is maximal

`-dense, assuming that the degree sequence is given. In particular, we work on the

probability space of Stage 3 of the exposure process. In order to show that the (`+ 1)-

core contains no `-dense subset, we will estimate the number of such subsets. Recall

that Xq,β(d) denotes the number of subsets of Hd,k with bβÑ`+1c vertices and total

degree bq · kM̃`+1c. Let also X
(`)
q,β denote the number of these sets that are maximal `-

dense. As an immediate consequence of Markov’s inequality we obtain the following

corollary.

Corollary 2.15. Let B(q, β) be defined as in Lemma 2.14, and let d be the degree

sequence of the core of H̃n,p,k. Then

P
(
X

(`)
q,β > 0 | d

)
≤ Xq,β(d)Pd,k(B(q, β)).

By applying Lemma 2.13 we obtain that Hn,cn,k does not obtain any `-dense set with

less that 0.6n vertices. This is particularly also true for C, and so it remains to prove

Theorem 2.3 for sets of size bigger than 0.6n ≥ 0.6Ñ`+1. We also observe that it is

sufficient to argue about subsets of size up to, say, (1 − ek,`δ/2)Ñ`+1, as (2.13) implies

that for small δ all larger subsets have density smaller than `. Moreover, the total degree

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 24

D of any `-dense subset with βÑ`+1 vertices is at least k` · βÑ`+1, i.e.,

D = k · qM̃`+1 ⇒ k` · βÑ`+1 ≤ k · qM̃`+1.

By (2.11) and (2.13), we infer M̃`+1 = `(1−Θ(δ)) which combined with above inequality

implies that q ≥ (1 + Θ(δ))β. Note that as each of the vertices in C has degree at least

`+ 1, the total degree of the (`+ 1)-core with a `-dense subset with βÑ`+1 vertices and

degree q · kM̃`+1 satisfies

kM̃`+1 ≥ q · kM̃`+1 + (`+ 1)(Ñ`+1 − βÑ`+1)

⇒ q ≤ 1− (`+ 1)(1− β)Ñ`+1

kM̃`+1

(2.11),(2.13)

≤ 1− (`+ 1)(1− β)

k`
,

where the last inequality holds for any small enough δ. Therefore, we fix β and q as

follows.

0.6 < β < 1− ek,`δ/2 and (1 + Θ(δ))β ≤ q ≤ 1− (`+ 1)(1− β)

k`
. (2.15)

With Lemma 2.14 and Corollary 2.15 in hand we are ready to show the following.

Lemma 2.16. Let m`+1 and n`+1 be as defined in (2.10) and E be the event that (2.11)

holds. Then

P
(
X

(`)
q,β > 0

)
= E (Xq,β|E) (2k − 1)m`+1−`βn`+1 · e`n`+1H(β)−km`+1H(q)+O(δ3n) +O

(
n−3

)
.

Proof. Let E1 be the event that Xq,β ≤ n3E(Xq,β | E). Markov’s inequality immediately

implies that P (E1 | E) ≥ 1− n−3. If ~d is a vector, we write ~d ∈ {E ∩ E1} to denote that

~d is a possible degree sequence of C if the events E and E1 are realized. We have

P
(
X

(`)
q,β > 0

)
≤ P

(
X

(`)
q,β > 0 | E1 ∩ E

)
+ P

(
E1

)
+ P

(
E
)

=
∑

~d∈{E∩E1}

P
(
X

(`)
q,β > 0 | E1 ∩ E and d = ~d

)
· P
(
d = ~d | E1 ∩ E

)
+O(n−3)

=
∑

~d∈{E∩E1}

P
(
X

(`)
q,β > 0 | d = ~d

)
· P
(
d = ~d | E1 ∩ E

)
+O(n−3)

Cor. 2.15
=

∑
~d∈{E∩E1}

Xq,β(~d)P~d,k(B(q, β)) · P
(
d = ~d | E1 ∩ E

)
+O(n−3)

= n3 E (Xq,β | E) ·
∑

~d∈{E∩E1}

P~d,k(B(q, β))P
(
d = ~d | E1 ∩ E

)
+O(n−3).

Note that the assumption ~d ∈ {E ∩ E1} implies that the number of vertices Ñ`+1 of ~d is

n`+1 ± δ3n and the number of edges M̃`+1 is m`+1 ± δ3n, by E . Further note that for

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 25

small enough δ

M̃`+1 ≤ m`+1 + δ3n ≤ (1−Θ(δ))`n`+1 + δ3n ≤ `Ñ`+1 −Θ(δ)n

Using Stirling’s formula we obtain(
M̃`+1

`βÑ`+1

)
<

(
`Ñ`+1

`βÑ`+1

)
= exp(`n`+1H(β) +O(δ3n)).

Thus, applying Lemma 2.14 we obtain uniformly for all ~d ∈ {E ∩ E1} that

Pd̄,k(B(q, β)) =(2k − 1)m`+1−βn`+1 · e`n`+1H(β)−km`+1H(q)+O(δ3n).

The claim follows.

The following lemma bounds the expected value of Xq,β conditional on E .

Lemma 2.17. There exists δ0 > 0 such that whenever δ < δ0

E (Xq,β|E) < exp

(
n`+1H(β)− n`+1(1− β)Iξ∗

(
k`(1− q)

1− β

)
+ 0.4 · k`

ξ∗
· n`+1δ +O(δ2n)

)
,

where Iξ∗
(
k`(1−q)

1−β

)
is the rate function as defined in (2.3).

Proof. Let t = bβÑ`+1c. Conditional on E there are
(
Ñ`+1
t

)
= en`+1H(β)+O(δ3n) ways to

select a set with t vertices. We shall next calculate the probability that one of them has

the claimed property, and the statement will follow from the linearity of expectation.

Let U be a fixed subset of the vertex set of C that has size t. We label the vertices as

1, . . . , Ñ`+1 so that the vertices which are not in U are indexed from t+ 1 to Ñ`+1. Let

the random variable di denote the degree of vertex i. We recall that d1, d2, . . . , dÑ`+1
are

i.i.d. (` + 1)-truncated Poisson variables with parameter Λ = Λc,k,` = ξ ± δ3 and mean

µΛ = Λ Q(Λ,`)
Q(Λ,`+1) . By Taylor’s expansion of µλ around ξ we obtain

µΛ = ξ
Q(ξ, `)

Q(ξ, `+ 1)
±Θ(δ3).

We will calculate the probability of the event
∑t

i=1 di = qkM̃`+1 conditional on E .

This is equivalent to calculating the probability of the event
∑Ñ`+1

i=t di = k(1 − q)M̃`+1

conditional on E which by using (2.10) is same as the event

Ñ`+1∑
i=t+1

di

Ñ`+1 − t
= ξ

Q(ξ, `)

Q(ξ, `+ 1)
· 1− q

1− β
±Θ(δ3).

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 26

Let us abbreviate z = ξ Q(ξ,`)
Q(ξ,`+1) ·

1−q
1−β ± Θ(δ3). Using the lower bound of q from (2.15)

we obtain

µΛ − z = ξ
Q(ξ, `)

Q(ξ, `+ 1)
· β

1− β
Θ(δ)±Θ(δ3) > 0.

As IΛ(x) is a non-negative convex function and IΛ(µΛ) = 0, IΛ(x) is a decreasing function

for x < µΛ. Therefore, by Lemma 2.8

P

 Ñ`+1∑
i=t+1

di = z(Ñ`+1 − t) | E

 = exp (−n`+1(1− β) · IΛ(z)(1 + o(1)))

and

IΛ(z) = z(log Tz − log Λ)− Tz + Λ− logQ(Tz, `+ 1) + logQ(Λ, `+ 1),

where Tz is the unique solution of z = Tz · Q(Tz ,`)
Q(Tz ,`+1) . Note that

∂IΛ(z)

∂Λ
= − z

Λ
+ 1 +

e−ΛΛ`

`!

Q(Λ, `+ 1)
= − z

Λ
+

Q(Λ, `)

Q(Λ, `+ 1)
=
µΛ − z

Λ
.

But recall that Λ = ξ± δ3 = ξ∗− δ± δ3. So using Taylor’s expansion around ξ∗ to write

IΛ(z) in terms of Iξ∗(z) we obtain

IΛ(z) =Iξ∗(z)−
(
µξ∗ − z
ξ∗

)
(δ ± δ3)±O(δ2) = Iξ∗(z)−

µξ∗

ξ∗
· q − β

1− β
δ ±O(δ2).

The last equality holds as z = µξ∗
1−q
1−β (1 − ek,`δ + Θ(δ2)). Since β > 0.6 we have

q − β < 0.4. Also µξ∗ = k`. Therefore,

IΛ(z) ≥ Iξ∗(z)−
k`

ξ∗
· 0.4

1− β
δ −±O(δ2). (2.16)

We will now approximate Iξ∗(z) in terms of Iξ∗
(
k` 1−q

1−β

)
. Note that

∂Iξ∗(z)

∂z
= log Tz − log ξ∗.

By Taylor’s expansion of I∗ξ (z) around z0 := k` 1−q
1−β we obtain

Iξ∗(z) = I∗ξ

(
k`

1− q
1− β

)
+ δ · ek,`

(
k`

1− q
1− β

)(
log

ξ∗

Tz0

)
±O(δ2). (2.17)

By Claim 2.24 the function µt is increasing with respect to t. This implies that Tz0 < ξ∗

as z0 < k`, whereby log ξ∗

Tz0
> 0. Also recall that ek,` denotes the value of the partial

derivative of 1
k` ·

tQ(t,`)
Q(t,`+1) with respect to t at t = ξ∗. Again, Claim 2.24 implies that this

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 27

is positive. We therefore obtain

Iξ∗(z) > I∗ξ

(
k`

1− q
1− β

)
−Θ(δ2) (2.18)

Combining (2.16), (2.17) and (2.18) we obtain

IΛ(z) > I∗ξ

(
k`

1− q
1− β

)
− k`

ξ∗
· 0.4

1− β
δ −O(δ2).

The proof is then completed by using the fact that P (E) = 1− n−ω(1).

Lemma 2.16 along with Lemmas 2.14 and 2.17 yield the following estimate.

Lemma 2.18. There exists δ0 > 0 such that whenever δ < δ0

P
(
X

(`)
q,β > 0

)
< O(n−3) + F (β, q; `),

where

F (β, q; `) = (2k − 1)m`+1−`βn`+1

· exp

(
(`+ 1)n`+1H(β)− km`+1H(q)− n`+1(1− β)Iξ∗

(
k`(1− q)

1− β

)
+ 0.4 · k`

ξ∗
· n`+1 · δ +O(δ2n)

)
,

We can now complete the proof of Lemma 2.19 by showing the above probability is o(1).

We proceed as follows. Let us abbreviate

f(β, q) := (`+ 1)H(β) + ` · (1− β) log(2k − 1)− k` ·H (q)− (1− β)Iξ∗

(
k`(1− q)

1− β

)
.

By using Lemma 2.18 we infer that

1

n`+1
logF (β, q; `) ≤ f(β, q) + ek,` · δ · k`

(
H (q)− log(2k − 1)

k
+

0.4

ek,` · ξ∗

)
+O(δ2).

By Claim 2.26 ek,` > 0.77/ξ∗. So

1

n`+1
logF (β, q; `) ≤ f(β, q) + ek,` · δ · k`

(
H (q)− log(2k − 1)

k
+ 0.52

)
+O(δ2).

(2.19)

We will now prove the main tool for the proof of Theorem 2.3.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 28

Lemma 2.19. There exists δ̂ = δ̂(k, `) > 0 such that if δ < δ̂ the following holds. With

probability 1 − n−ω(1), for any 0.6 < β ≤ 1 − ek,`δ/2 and β < q ≤ 1 − (`+1)(1−β)
k` , we

have X
(`)
q,β = 0.

Proof. To deduce this lemma, we first bound f(β, q).

Claim 2.20. For any k ≥ 3 and ` ≥ 2, there exist ε0, C > 0 such that for any ε < ε0 the

following holds. For any 0.6 < β ≤ 1− ε, and q as in Lemma 2.19, we have

f(β, q) ≤ −Cε.

The proof of Lemma 2.19 will be complete as long as we show that for δ small enough

the rest of the right-hand side of (2.19) is negative. Firstly, let δ1 = δ1(k, `) be such that

for any δ < δ1 we have 1−ek,`δ/2 > 0.999. We will consider a case distinction according

to the value of q.

If q < 0.99, then β < 0.99 as well, and Claim 2.20 implies that f(β, q) ≤ −0.01 · C,

where C > 0 depends on k and `. Then let δ2 = δ2(k, `) > 0 be such that for δ < δ2, we

have

ek,` · δ · k`
(
H (0.6)− log(2k − 1)

k
+ 0.52

)
+O(δ2) < 0.005 · C.

Here recall that β ≥ 0.6. So for any δ < min{δ0, δ1, δ2}, (2.19) implies that

1

n`+1
logF (β, q; `) ≤ −0.005 · C.

Assume now that q ≥ 0.99. The monotonicity of the entropy function implies that

H (q)− log(2k − 1)

k
+ 0.52 ≤ H(0.99)− log(2k − 1)

k
+ 0.52

k≥3
< −0.072.

Now with 0.6 ≤ β ≤ 1−ek,` ·δ/2 as in Lemma 2.19, the bound of Claim 2.20 substituted

in (2.19) yields
1

n`+1
logF (β, q; `) ≤ −Cek,` · δ/2 +O(δ2).

In turn, this is at most −Cek,` · δ/4, if δ < δ3 = δ3(k, `). The above cases imply that

if δ < min{δ0, δ1, δ2, δ3} =: δ̂, then with probability 1 − e−Ω(n`+1) − O(n−3) we have

X
(`)
q,β = 0, for all β and q as in Lemma 2.19.

With the above result at hand we can finally complete the proof of Theorem 2.3.

Proof of Theorem 2.3. Firstly, note that it is enough to argue that with probability

1 − o(1) the (` + 1)-core does not contain any maximal `-dense subset; this follows

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 29

from the discussion after Lemma 2.13, which we do not repeat here. Moreover, by

Theorem 2.5 and Proposition 2.4, it is enough to consider the (` + 1)-core C of H̃n,p,k,

where p = ck/
(
n−1
k−1

)
. The proof is completed by applying Lemma 2.19, as we can

choose δ > 0 as small as we please.

The rest of the chapter is devoted to the proof of Claim 2.20 and contains a detailed

analysis of the function f . We proceed as follows. We will fix arbitrarily a β and we

will consider f(β, q) solely as a function of q. Then we will show that if q0 = q0(β) is a

point where the partial derivative of f with respect to β vanishes, then f(β, q0) ≤ −C1ε.

Additionally, we will show that this holds for f(β, β) and f
(
β, 1− (`+1)(1−β)

k`

)
.

Bounding f(β, q) at its critical points

Let β be fixed. We will evaluate f(β, q) at a point where the partial derivative with

respect to q vanishes. To calculate the partial derivative with respect to q, we first

need to determine the derivative of I(z) with respect to z. According to Lemma 2.8,

Iξ∗(z) = z (log Tz − log ξ∗)− logQ(Tz, `+ 1)− Tz + logQ(ξ∗, `+ 1) + ξ∗, where Tz is the

unique solution of z = Tz · Q(Tz ,`)
Q(Tz ,`+1) . Differentiating this with respect to z we obtain

I ′ξ∗(z) = log Tz − log ξ∗ +
z

Tz

dTz
dz
− dTz

dz
− Q(Tz, `)−Q(Tz, `+ 1)

Q(Tz, `+ 1)

dTz
dz

= log Tz − log ξ∗ +
z

Tz

dTz
dz
− Q(Tz, `)

Q(Tz, `+ 1)

dTz
dz

= log Tz − log ξ∗.

(2.20)

However, in the differentiation of f we need to differentiate Iξ∗(k`(1− q)/(1− β)) with

respect to q. Using (2.20), we obtain

∂Iξ∗
(
k`(1−q)

1−β

)
∂q

= − k`

1− β
(logHq − log ξ∗) ,

where Hq is the unique solution of the equation

k`(1− q)
1− β

=
Hq ·Q(Hq, `)

Q(Hq, `+ 1)
.

Observe that the choice of the range of q is such that the left-hand side of the above

equation is at least `+ 1. So, Hq is well-defined. Also, an elementary calculation shows

that the derivative of the entropy function, H ′(q) is given by log
(

1−q
q

)
. All the above

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 30

facts together yield the derivative of f(β, q) with respect to q

∂f(β, q)

∂q
= k`

(
− log

(
1− q
q

)
+ log

Hq

ξ∗

)
.

Therefore, if q0 is a critical point, that is, if ∂f(β,q)
∂q

∣∣∣
q=q0

= 0, then with T0 = Hq0 , q0

satisfies

T0 = ξ∗
1− q0

q0
and

k`(1− q0)

1− β
=

T0Q(T0, `)

Q(T0, `+ 1)
. (2.21)

At this point, we have the main tool that will allow us to evaluate f(β, q0). We will use

(2.21) in order to eliminate T0 and express f(β, q0) solely as a function of q0.

Claim 2.21. For any given β ∈ (0.6, 1), if q0 = q0(β) satisfies (2.21), then

f(β, q0) = log

(
e(`+1)H(β)qk`0

(
(2k − 1) (1− q0)

q0

)`(1−β)

·
(

(1− β)(k`− ξ∗)
k`q0 − ξ∗(1− β)

)1−β)
.

(2.22)

Proof. Note that

I

(
k`(1− q0)

1− β

)
=
k`(1− q0)

1− β
log

T0

ξ∗
+ log

(
eξ
∗
Q(ξ∗, `+ 1)

eT0Q(T0, `+ 1)

)
(2.21)

=
k`(1− q0)

1− β
log

(
1− q0

q0

)
+ log

(
eξ
∗
Q(ξ∗, `+ 1)

eT0Q(T0, `+ 1)

)
.

Therefore,

−(1− β)I

(
k`(1− q0)

1− β

)
=− k`(1− q0) log

(
1− q0

q0

)
+ (1− β) log

(
eT0Q(T0, `+ 1)

eξ∗Q(ξ, `+ 1)

)
=− k`(1− q0) log (1− q0) + k` log (q0)− k`q0 log (q0)

+ (1− β) log

(
eT0Q(T0, `+ 1)

eξ∗Q(ξ, `+ 1)

)
.

Also, the definition of the entropy function implies that

−k`H (q0) = k`q0 log (q0) + k`(1− q0) log (1− q0) .

Thus

−(1− β)I

(
k`(1− q0)

1− β

)
− k`H (q0) = log

(
qk`0

(
eT0Q(T0, `+ 1)

eξQ(ξ∗, `+ 1)

)1−β)
. (2.23)

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 31

Let z0 := k`(1−q0)
1−β . Now we will express eT0Q(T0, `+ 1) as a rational function of T0 and

z0. Solving (2.21) with respect to eT0Q(T0, `+ 1) yields

eT0Q(T0, `+ 1) = eT0
T0Q(T0, `)

z0
=
eT0T0

z0

(
Q(T0, `+ 1) + e−T0

T0
`

`!

)
.

Therefore,

eT0Q(T0, `+ 1) =
T0

`

`!

(
z0

T0
− 1

)−1

.

Note that

z0 − T0 =
k`(1− q0)

1− β
− ξ∗(1− q0)

q0
=

(1− q0)(k`q0 − ξ∗(1− β))

(1− β)q0
.

Thus we obtain

log(eT0Q(T0, `+ 1)) = log

(
T0

`+1

(z − T0)`!

)
(2.21)

= log

((
ξ∗(1− q0)

q0

)`+1

· (1− β)q0

(1− q0)(k`q0 − ξ∗(1− β))`!

)
= log

(
(ξ∗)`+1

`!

(
1− q0

q0

)`
· 1− β
k`q0 − ξ∗(1− β)

)
.

Also, by definition of ξ∗ we have k = ξ∗Q(ξ∗,`)
`Q(ξ∗,`+1) which is equivalent to k` = ξ∗

(
1 + e−ξ

∗
(ξ∗)`/`!

Q(ξ∗,`+1)

)
and implies eξ

∗
Q(ξ∗, `+ 1) = (ξ∗)`+1/`!

k`−ξ∗ . Substituting this into (2.23) and adding the re-

maining terms, we obtain (2.22).

We will now treat q0 as a free variable lying in the interval where q lies into, and we

will study f(β, q0) for a fixed β as a function of q0. In particular, we will show that

for any fixed β in the domain of interest f(β, q0) is increasing. Thereafter, we will

evaluate f(β, q0) at the largest possible value that q0 can take, which is 1 − (`+1)(1−β)
k` ,

and show that this value is negative.

Claim 2.22. For any k ≥ 3, ` ≥ 2 and for any β > 0.6 we have

∂f(β, q0)

∂q0
> 0.

Proof. The partial derivative of f(β, q0) with respect to q0 is

∂f(β, q0)

∂q0
=
k`

q0
− ` 1− β

1− q0
− `1− β

q0
− k`(1− β)

k`q0 − ξ∗(1− β)
.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 32

Since q0 ≤ 1− (`+1)(1−β)
k` , we obtain

1− q0 ≥
(`+ 1)(1− β)

k`
⇒ − 1− β

1− q0
≥ − k`

`+ 1
.

Also q0 ≥ β and ξ < k`. Therefore,

k`q0 − ξ(1− β) > k`β − k`(1− β) = 2βk`− k` = k`(2β − 1).

Substituting these bounds into ∂f(β,q0)
∂q0

yields

∂f(β, q0)

∂q0
>
k`

q0
− k`2

`+ 1
− `(1− β)

q0
− 1− β

2β − 1
=

k`− `(1− β)

q0
− k`2

`+ 1
− 1− β

2β − 1

≥ k` k`− `(1− β)

k`− (`+ 1)(1− β)
− k`2

`+ 1
− 1− β

2β − 1
≥ k

(
`− `2

`+ 1
− 1− β
k(2β − 1)

)
= k

(
`

`+ 1
− 1− β
k(2β − 1)

)
.

But
`

`+ 1
>

1− β
k(2β − 1)

,

as k`(2β − 1) > (` + 1)(1 − β), which is equivalent to β > (k`+ `+ 1)/(2k`+ `+ 1).

Elementary algebra then yields that (k`+ `+ 1)/(2k`+ `+ 1) is a decreasing function

in k and `. In particular its maximum is 0.6 for k = 3 and ` = 2. Since β > 0.6 the

above holds.

We begin with setting q0 := 1 − (`+1)(1−β)
k` into f(β, q0) and obtain a function which

depends only on β, namely

h(β) : = log

(((2k − 1)(`+ 1)

k`− (`+ 1)(1− β)

)`
k`− ξ∗

k`− (1 + `+ ξ∗)(1− β)

)1−β (
1− (`+ 1)(1− β)

k`

)k`
+ log(β−(`+1)β).

Bounding f(β, q) globally

To conclude the proof of Claim 2.20 it suffices to show that there exist ε0 and C > 0

such that for any ε < ε0 the following bounds hold

h(β), f(β, 1− (`+ 1)(1− β)/k`), f(β, β) ≤ −Cε, (2.24)

for all 0.6 ≤ β ≤ 1 − ε. These three inequalities will be shown in Claims 2.28, 2.29

and 2.30, respectively.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 33

We will first bound k`− ξ∗ which we will require to bound the above functions.

Claim 2.23. Let k ≥ 3, ` ≥ 2 and ξ∗ satisfies (2.6). Then ξ∗ > k` − 0.36. Moreover,

k`− ξ∗ < 0.19 for k = 3, ` ≥ 4 and k ≥ 4, ` ≥ 2.

Proof. Recall that k` = ξ∗Q(ξ∗,`)
Q(ξ∗,`+1) . By definition we have

k`

ξ∗
=

Q(ξ∗, `)

Q(ξ∗, `+ 1)
= 1 +

P (Po(ξ∗) = `)

Q(ξ∗, `+ 1)
= 1 +

1∑
i≥1

(ξ∗)i

(`+1)...(`+i)

. (2.25)

Let

S :=
∑
i≥1

(ξ∗)i

(`+ 1) . . . (`+ i)
and Si :=

(ξ∗)i

(`+ 1) . . . (`+ i)
.

Substituting ξ∗ = k`
1+1/S we obtain

Si =

(
1

1+1/S

)i(
1
k + 1

k`

)
. . .
(

1
k + i

k`

) . (2.26)

By (2.26) we have

S > S1 =
k` · SS+1

`+ 1
=⇒ S > k`

`+ 1
− 1 ≥ 1. (2.27)

So ξ∗ = k`
1+1/S >

k`
2 and thus ξ∗ ≥ 3`/2. Therefore we obtain

S > k`/2

`+ 1
+

(k`/2)2

(`+ 1)(`+ 2)
+

(k`/2)3

(`+ 1)(`+ 2)(`+ 3)
.

The right-hand side is clearly increasing in k and `. Therefore, substituting k = 3 and

` = 2 we obtain S > 2.2, implying that

ξ∗ > (11/16)k` ≥ (33/16)`. (2.28)

In order to improve the bound upon k` − ξ∗ we use the fact that k` − ξ∗ = ξ∗/S and

show that Sξ∗ > 1.

S
ξ∗

=
∑
i≥1

(ξ∗)i−1

(`+ 1) . . . (`+ i)
=

1

`+ 1

∑
i≤`

(ξ∗)i−1

(`+ 2) . . . (`+ i)
+
∑
i≥`+1

(ξ∗)i−1

(`+ 2) . . . (`+ i)

(2.28)
>

1

`+ 1

`+
∑
i≥`+1

(2`)i−1

(`+ 2) . . . (`+ i)

 .

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 34

For ` ≥ 3 observe that the term for i = `+ 1 is

(2`)i−1

(`+ 2)(`+ 3) . . . (2`+ 1)
>

2` · 2`
(2`− 1)(2`+ 1)

> 1

For ` = 2 we have
∑

i≥`+1
(2`)i−1

(`+2)...(`+i) >
∑5

i=3
43

(2+i)(2+i−1)...5 > 1. By (2.25), we have

k`− ξ∗ = 1∑
i≥1

(ξ∗)i−1

(`+1)...(`+i)

, and so

1

k`− ξ∗
>
∑
i≥`+1

(ξ∗)i−1

(`+ 1) . . . (`+ i)
>
∑
i≥`+1

(k`− 1)i−1

(`+ 1) . . . (`+ i)
.

Let Si(k, `) = (k`−1)i−1

(`+1)...(`+i) . Clearly Si(k, `) is increasing with respect to k. Taking the

derivative with respect to ` we obtain that

∂

∂`
Si(k, `) = Si(k, `)

(
k(i− 1)

k`− 1
− 1

`+ 1
− 1

`+ 2
− . . .− 1

`+ i

)
> Si(k, `)

(
i− 1

`
− 1

`+ 1
− 1

`+ 2
− . . .− 1

`+ i

)
=
Si(k, `)

`

(
1

`+ 1
+

2

`+ 2
+ . . .+

i

`+ i
− 1

)
>
Si(k, `)

`

(
i− 1

`+ i− 1
+

i

`+ i
− 1

)
i≥`+1
>

Si(k, `)

`

(
1

2
+

`+ 1

2`+ 1
− 1

)
> 0.

Therefore, for all i ≥ `+ 1, Si(k, `) increases with respect to `. Numerical computations

show that

(
∑
i≥`+1

Si(3, 3))−1 < 0.34 , (
∑
i≥`+1

Si(3, 4))−1 < 0.15 and (
∑
i≥`+1

Si(4, 2))−1 < 0.19.

For the case (k, `) = (3, 2) we obtain k`− ξ∗ < 0.36 by direct computation.

Claim 2.24. For every t ≥ 1, the function x → xQ(x, t − 1)/Q(x, t) is increasing for

x > 0.

Proof. Set

gt(x) :=
1

(t− 1)!
· 1

1
t! + x

(t+1)! + x2

(t+2)! + · · ·
.

Then

xQ(x, t− 1)

Q(x, t)
=
x(Q(x, t) + P (Po(x) = t− 1))

Q(x, t)
= x+ gt(x).

To see the claim it thus suffices to show that

−g′t(x) < 1.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 35

But

−g′t(x) =
1

(t− 1)!

1
(t+1)! + 2x

(t+2)! + 3x2

(t+3)! + · · ·(
1
t! + x

(t+1)! + x2

(t+2)! + · · ·
)2 .

We, therefore, need to prove that

1

(t− 1)!

(
1

(t+ 1)!
+

2x

(t+ 2)!
+

3x2

(t+ 3)!
+ · · ·

)
<

(
1

t!
+

x

(t+ 1)!
+

x2

(t+ 2)!
+ · · ·

)2

.

(2.29)

We compare the coefficients on both sides one by one. Note that

1

(t− 1)!(t+ 1)!
<

1

t!2
⇔ t < t+ 1.

Moreover,
2

(t− 1)!(t+ 2)!
<

2

t!(t+ 1)!
⇔ t < t+ 2.

Next, the coefficient of xs for s ≥ 2 on the right-hand side is
2
∑b s−1

2
c

i=0
1

(t+i)!(t+s−i)! + 1

(t+d s−1
2
e)!2

, if s is even,

2
∑b s−1

2
c

i=0
1

(t+i)!(t+s−i)! , if s is odd
.

Note that in any case we have (essentially) s+ 1 summands. So it suffices to show that

each one of them is larger than the 1/(s+ 1)th of the coefficient of xs on the left-hand

side, that is, 1
(t−1)!(t+s+1)! . But this is the case, as for any 0 ≤ i ≤ s.

1

(t− 1)!(t+ s+ 1)!
<

1

(t+ i)!(t+ s− i)!
⇔ (t+ i) · · · t < (t+ s+ 1) · · · (t+ s− i+ 1).

This now concludes the proof of the claim.

We immediately obtain the following corollary.

Corollary 2.25. Let k ≥ 3, ` ≥ 2 and ξ∗ satisfies (2.6). Then ξ∗ Q(ξ∗,`)
Q(ξ∗,`+1) is increasing

with respect to ξ∗.

Claim 2.26. Let ek,` be the value of derivative of xQ(x,`)
k`·Q(x,`+1) with respect to x at x = ξ∗.

Then ek,` >
0.77
ξ∗ .

Proof. We write

xQ(x, `)

Q(x, `+ 1)
=
x(Q(x, `+ 1) + P (Po(x) = `))

Q(x, `+ 1)
= x+

1
`!

1
(`+1)! + x

(`+2)! + x2

(`+3)! + · · ·
.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 36

By definition

ek,` · k` = 1− 1

`!

1
(`+2)! + 2ξ∗

(`+3)! + 3ξ∗2

(`+4)! + · · ·(
1

(`+1)! + ξ∗

(`+2)! + ξ∗2

(`+3)! + · · ·
)2 = 1− (k`− ξ∗) ·

1
(`+2)! + 2ξ∗

(`+3)! + 3ξ∗2

(`+4)! + · · ·
1

(`+1)! + ξ∗

(`+2)! + ξ∗2

(`+3)! + · · ·

= 1− (k`− ξ∗) ·

1−
`+1

(`+2)! + (`+1)ξ∗

(`+3)! + (`+1)ξ∗2

(`+4)! + · · ·
1

(`+1)! + ξ∗

(`+2)! + ξ∗2

(`+3)! + · · ·

= 1− (k`− ξ∗) ·

1− `+ 1

ξ∗
·

1−
1

(`+1)!

1
(`+1)! + ξ∗

(`+2)! + ξ∗2

(`+3)! + · · ·

= 1− (k`− ξ∗)

(
1− `+ 1

ξ∗
+
k`− ξ∗

ξ∗

)
= 1− (k`− ξ∗)

(
−`+ 1

ξ∗
+
k`

ξ∗

)
.

Thus,

ek,` =
1

k`
− k`− ξ∗

k`

(
−`+ 1

ξ∗
+
k`

ξ∗

)
=

1

k`
+
`+ 1

ξ∗
− `+ 1

k`
− k`− ξ∗

ξ∗

=
1

ξ∗
− k`− ξ∗

ξ∗
+
k`− ξ∗

ξ∗k
.

One can check that for (k, `) = (3, 2), ek,` >
0.77
ξ∗ and for (k, `) = (3, 3), ek,` >

0.89
ξ∗ . For

other values we use

ek,` · ξ∗ > 1− (k`− ξ∗).

which by second part of Claim 2.23 is at least 0.81.

Claim 2.27. For any k ≥ 3 and ` ≥ 2 we have ξ∗ < k` and

ξ∗ > k`− e−k`(k`) · (k`− 0.36)`

`!

(
1− exp

(
−(k`− `+ 0.64)2

2k`− 0.72

))−1

.

Proof. We have k · ` = ξ∗ · Q(ξ∗,`)
Q(ξ∗,`+1) . As Q(ξ∗,`)

Q(ξ∗,`+1) > 1 for all ξ∗ and `, we deduce that

ξ∗ < k`. By Claim 2.23 we know that for all k ≥ 3 and ` ≥ 2, ξ∗ > k`− 0.36. In order

to improve upon the above bound, note first that

ξ∗ = k` · Q(ξ∗, `+ 1)

Q(ξ∗, `)
= k`− k`P (Po(ξ∗) = `)

Q(ξ∗, `)
≥ k`− k`P (Po(k`− 0.36) = `)

Q(k`− 0.36, `)
.

(2.30)

Let X be a Poisson random variable with parameter µ = k` − 0.36 . Thus, Q(k` −
0.36, `) = 1− P (X ≤ `− 1) . We define δ = 1− (`− 1)/µ. Now, for any t < 0 we have

P (X ≤ `− 1) =P (X ≤ (1− δ)µ) = P
(
etX ≥ et(1−δ)µ

)
≤

E
(
etX
)

et(1−δ)µ
=

exp(−µ+ µ · et)
exp(t(1− δ)µ)

.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 37

Setting t = log(`− 1)− log(µ) we have

P (X ≤ `− 1) <

(
e−δ

(1− δ)(1−δ)

)µ
< exp

(
−(µ− `+ 1)2

2µ

)
. (2.31)

The combination of (2.30) and (2.31) lead us to the stated lower bound.

In what follows we use the following definition

t(k, `) :=

(
1− 0.36

k`

)`(
1− exp

(
−(k`− `+ 0.64)2

2k`− 0.72

))−1

.

We are now ready to deduce the inequalities in (2.24), starting with a bound on h(β).

Claim 2.28. For any k ≥ 3 and ` ≥ 2 there is a C1 > 0 such that for any 0 < ε < 1 and

any 0.6 ≤ β ≤ 1− ε we have h(β) ≤ −C1ε.

Proof. By Claim 2.27, we have k` − t(k, `) · e
−k`(k`)`+1

`! < ξ∗ < k`. Using these bounds

for ξ∗ we obtain

eh(β) < β−(`+1)β

(
(2k − 1)(`+ 1)

k`− (`+ 1)(1− β)

)`(1−β)
(

t(k, `) · e
−k`(k`)`+1

`!

k`− (`+ k`+ 1)(1− β)

)1−β

×
(

1− (`+ 1)(1− β)

k`

)k`
=

(
2k − 1

ek · β
β

(1−β)

)`(1−β)(
1− (`+ 1)(1− β)

k`

)−`(1−β)

·
(

1− (`+ k`+ 1)(1− β)

k`

)−(1−β)

×

(
(`+ 1)` · t(k, `)

β
β

(1−β) `!

)1−β (
1− (`+ 1)(1− β)

k`

)k`
.

(2.32)

Using the inequality (1− x)−1 ≤ exp
(
x+ x2

1.4

)
for x ≤ 0.4 we can deduce

β
−β
1−β = (1− (1− β))

−β
1−β ≤ eβ+

(1−β)β
1.4 . (2.33)

Also,(
1− (`+ 1)(1− β)

k`

)−1

≤ exp

{
(`+ 1)(1− β)

k`
+

(`+ 1)2(1− β)2

1.4(k`)2

}
,(

1− (1 + `+ k`)(1− β)

k`

)−1/`

≤ exp

{
(1− β)(1 + `+ k`)

k`2
+

(1− β)2(1 + `+ k`)2

k2`3

}
,(

1− (`+ 1)(1− β)

k`

)k`
< exp

(
−(`+ 1)(1− β)− (`+ 1)2(1− β)2

2k`

)
.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 38

By Stirling’s formula and (2.33) we have

(`+ 1)`

`! · β
β

1−β
<

(1 + 1/`)` exp(`)√
2π`

exp

(
β +

β(1− β)

1.4

)
.

Now combining the last two terms in (2.32) we obtain

(
(`+ 1)` · t(k, `)

β
β

(1−β) `!

)1−β (
1− (`+ 1)(1− β)

k`

)k`
<

(
(1 + 1/`)` · t(k, `)√

2π`

)1−β

exp

(
β(1− β) +

β(1− β)2

1.4
− (1− β)− (`+ 1)2(1− β)2

2k`

)
=

(
(1 + 1/`)` · t(k, `)√

2π`

)1−β

exp

(
β(1− β) +

β(1− β)2

1.4
− (1− β)−

(
1 +

1

`

)
(`+ 1)(1− β)2

2k

)
.

Also recall that

t(k, `) =

(
1− 0.36

k`

)`(
1− exp

(
−(k`− `+ 0.64)2

2k`− 0.72

))−1

.

Substituting these bounds in (2.32) we obtain

eh(β) <

(2k − 1

exp (k −∆k,`,β)

)`
·

(1 + 1/`)` exp
(
β + β(1−β)

1.4 − 1
)

√
2π` ·

(
1− exp

(
−(k`−`+0.64)2

2k`−0.72

))
1−β

, (2.34)

where

∆k,`,β :=β +
(1− β)β

1.4
+

(`+ 1)(1− β)

k`
+

(`+ 1)2(1− β)2

1.4(k`)2
+

(1− β)(1 + k`+ `)

k`2

+
(1− β)2(1 + k`+ `)2

k2`3
−
(

1 +
1

`

)
(`+ 1)(1− β)

2k`

=β +
(1− β)β

1.4
+

(`+ 1)(1− β)

2k`
+

(`+ 1)2(1− β)2

1.4(k`)2
+

(1− β)(1 + k`+ `)

k`2

+
(1− β)2(1 + k`+ `)2

k2`3
− 1

`

(`+ 1)(1− β)

2k`

=β +
(1− β)β

1.4
+

(1 + 1/`)(1− β)

2k
+

(1 + 1/`)2(1− β)2

1.4 k2
+

(1− β)(1/2k`+ 1 + 1/2k)

`

+
(1− β)2(1/k`+ 1 + 1/k)2

`
.

We note that ∆k,`,β is decreasing in k and `. The partial derivative of ∆k,`,β with respect

to β is given by

∆′k,`,β :=
∂∆k,`,β

∂β
=

12

7
− 10

7
β − 1 + 1/`

2k
− (1 + 1/`)2(1− β)

(0.7)k2
− 1/2k`+ 1 + 1/2k

`

− 2(1− β)(1/k`+ 1 + 1/k)2

`
.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 39

Observe that
∂∆k,`,β

∂β is increasing with k and `. Let

p(k, `, β) :=

(
2k − 1

exp (k −∆k,`,β)

)
and g(k, `) :=

exp(1)
√

2π` ·
(

1− exp
(
−(k`−`+0.64)2

2k`−0.72

)) .
One can check that

eh(β) < ((p(k, `, β))`g(k, `))1−β.

We start with the case k ≥ 4. Firstly note that ∆′4,2,β = −519/448 + (297/448)β which

is negative for all β < 1. Also, as (2k − 1) · exp(−k) is decreasing in k and ∆k,`,β is

decreasing in k and ` we infer that for k ≥ 4, ` ≥ 2, thus the maximum value of p(k, `, β)

is p(4, 2, 0.6). Numerical computations show that p(4, 2, 0.6) < 0.97. Now, clearly g(k, `)

is decreasing in k and `. Moreover, one can check that g(3, 2) < 0.91, which completes

the proof for k ≥ 4, ` ≥ 2.

For the case k = 3, firstly note that ∆′3,5,β = 229/875 − (52/125)β, which implies that

∆3,5,β is maximized at β = βmax = 229/364. Therefore, for ` ≥ 5, p(3, `, β) is maximized

at p(3, 5, βmax). Numerical computations show that p(3, 5, βmax) < 0.98.

For the cases ` ≤ 4 , firstly note that ∆′3,4,β = −1/21− 17β/96
β>0
< 0. Now let

m(k, `, β) := p(k, `, β)`g(k, `).

Recall that ∆′k,`,β is increasing in k and `. Also, ∆3,4,β is decreasing in β. We can

therefore conclude that for all β ≥ 0.6 and ` ≤ 4, m(3, `, β) ≤ m(3, `, 0.6). One can

check that m(3, 3, 0.6) < 0.93 and m(3, 4, 0.6) < 0.62. The case ` = 2 is more tedious.

We substitute k = 3, ` = 2 in (2.34).

e
h(β)
1−β <

(
7

exp (3−∆3,2,β)

)2

·
(1 + 1/2)2 exp

(
β + β(1−β)

1.4 − 1
)

√
4π ·

(
1− exp

(
−(4.64)2

11.28

))
<

 7

exp
(

3−∆3,2,β − β
2 −

β(1−β)
2.8

)
2

· 2.25 · exp (−1)
√

4π ·
(

1− exp
(
−(4.64)2

11.28

))
(2.35)

Now we check that the partial derivative of ∆3,2,β + β
2 + β(1−β)

2.8 with respect to β is less

than −0.91 + 0.47β, which implies that the right-hand side is decreasing with respect

to β for β ≤ 1. We complete the proof by calculating the above expression for β = 0.6

which gives eh(β) < (0.91)1−β.

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 40

Claim 2.29. For any k ≥ 3 and ` ≥ 2 there exist ε0 > 0 and C2 > 0 such that the

following holds. For any ε < ε0, if 0.6 < β ≤ 1− ε we have

f(β, β) < −C2ε.

Proof. By Lemma 2.8, it follows that substituting q = β in k`(1−q)
1−β we have

Iξ∗

(
k`(1− β)

1− β

)
= 0.

So,

f(β, β) = −(k`− `− 1)H(β) + `(1− β) log
(

2k − 1
)
.

Note that for any k ≥ 3 and ` ≥ 2 this function is convex with respect to β, as −H(β) is

convex and the linear term that is added preserves its convexity. Note that −H(1−ε) <
−ε log(1/ε), whereby it follows that there exists a constant C2 = C2(k, `) > 0 such that

for any 0 < ε < 1/e we have

f(1− ε, 1− ε) < −C2ε log(1/ε) < −C2ε.

Since H(0.6) > 0.6, we have

f(0.6, 0.6) < −0.6(k`− `− 1) + 0.4` log
(

2k − 1
)
.

The derivative of this function with respect to k is −0.6` + ` · 0.42k log 2
2k−1

. A simple

calculation shows that the second summand is less than 0.32` for all k ≥ 3. The

derivative with respect to ` is −0.6k + 0.6 + 0.4 log(2k − 1) which is again a decreasing

function in k and less than −0.42 at k = 3. So, we may set k = 3 and ` = 2, thus

obtaining f(0.6, 0.6) < −1.8 + 0.8 log 7 < −0.24. The above analysis along with the

convexity of f(β, β) imply the claimed statement.

Claim 2.30. For all k ≥ 3 and ` ≥ 2 there is a C3 > 0 such that for all ε and for all

β ≤ 1− ε
f(β, 1− (`+ 1)(1− β)/k`) ≤ −C3ε.

Proof. Substituting 1− (`+ 1)(1− β)/k` for q into the formula of f we obtain:

f

(
β, 1− (`+ 1)(1− β)

k`

)
=(`+ 1)H(β) + `(1− β) log(2k − 1)

− k`H
(
k`− (`+ 1)(1− β)

k`

)
− (1− β)I(`+ 1).

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 41

Note that for β = 1 the expression is equal to 0. To deduce the bound we are aiming

for, we will show that in fact f (β, 1− (`+ 1)(1− β)/k`) is an increasing function with

respect to β. That is, we will show that its first derivative with respect to β is positive

for any β ≤ 1. Finally, Taylor’s Theorem around β = 1 implies the claim.

We get

∂f
(
β, 1− (`+1)(1−β)

k`

)
∂β

=(`+ 1) log

(
1− β
β

)
− ` log(2k − 1)

− (`+ 1) log

(
(`+ 1)(1− β)

k`− (`+ 1)(1− β)

)
+ I(`+ 1).

Substituting for I(` + 1) the value given in Lemma 2.8 and since eξQ(ξ, ` + 1) =

ξ`+1/`!(k`− ξ) we obtain for β < 1

∂f
(
β, 1− (`+1)(1−β)

k`

)
∂β

= log

((
k`− (`+ 1)(1− β)

(`+ 1)β

)`+1

(2k − 1)−` · `+ 1

k`− ξ

)
.

We will show that the fraction inside the logarithm is greater than 1. Note first that

k`− (`+ 1)(1− β)

(`+ 1)β
=

1

β

(
k`− (`+ 1)

`+ 1

)
+ 1 =

1

β

(
(k − 1)`− 1

`+ 1

)
+ 1

is decreasing with respect to β – so we obtain a lower bound by setting β = 1. Substi-

tuting β = 1 we obtain

∂f
(
β, 1− (`+1)(1−β)

k`

)
∂β

> log

((
k`

`+ 1

)`+1

(2k − 1)−` · `+ 1

k`− ξ

)
.

By Claim 2.27, for all k ≥ 3 and ` ≥ 2 we have k`− ξ ≤ e−k`(k`)`+1

`!(1−e−(k`−`+0.64)2/2k`−0.72)
which

yields(
k`

`+ 1

)`+1

(2k − 1)−` · (`+ 1)

k`− ξ
≥e

k``!(1− e−(k`−`+0.64)2/2k`−0.72)

(2k − 1)`(`+ 1)`

=
ek``!(1− e−(k`−`+0.64)2/2k`−0.72)

``(2k − 1)`(1 + 1/`)`

1+x≤ex
>

`!

e · ``
· e

k`(1− e−(k`−`+0.64)2/2k`−0.72)

(2k − 1)`

(2.36)

Using the bounds `! ≥
√

2π`(`/e)` and 1 + x ≤ ex we can further bound the right-hand

side of (2.36) as follows:

`!

e · ``
· e

k`(1− e−(k`−`+0.64)2/2k`−0.72)

(2k − 1)`
≥
√

2π`

e`+1
· e

k`(1− e−(k`−`+0.64)2/2k`−0.72)

(2k − 1)`
. (2.37)

Chapter 2. The Multiple-orientability Thresholds for Random Hypergraphs 42

It is easy to verify that
√

2π`(1 − e−(k`−`+0.64)2/2k`−0.72) is increasing in k and `. Also

the first derivative of the function ek/(2k − 1) with respect to k is ek(2k(1 − log(2)) −
1)/(2k−1)2 which is positive for any k ≥ 3. Moreover the first derivative of the function

ek`−`−1/(2k−1)` with respect to ` is ek`−`−1(2k−1)−`(k−log(2k−1)−1) which is positive

for any k ≥ 3 and ` ≥ 2. So we infer that the right-hand side of the above inequality is

increasing in both k and `. Numerical calculations show that the right hand side of the

above inequality is greater than 1.2 for k = 3, ` = 2. The above arguments establish the

fact that the derivative of f (β, 1− (`+ 1)(1− β)/k`) with respect to β is positive, for

all k ≥ 3 and ` ≥ 2.

2.6 Conclusion and Future Directions

For any integers k ≥ 2 and ` ≥ 1, a k-uniform hypergraph is called `-orientable, if for

each edge we can select one of its vertices, so that all vertices are selected at most `

times. In this chapter we computed tight density thresholds for multiple orientability of

random hypergraphs. Let Hn,m,k be a hypergraph, drawn uniformly at random from the

set of all k-uniform hypergraphs with n vertices and m edges. We determine a critical

quantity c∗k,` such that with probability 1− o(1) the graph Hn,cn,k has an `-orientation

if c < c∗k,`, but fails doing so if c > c∗k,`.

An important future direction is to extend our result for random inhomogeneous k-

uniform hypergraphs. Consider the case where the n vertices are partitioned equally

into n/q sets. Each edge chooses 2 of these sets randomly. From one of these sets, say

the primary set, it draws k − 1 vertices randomly and one vertex randomly from the

other set. What can we say about the orientability thresholds for such a hypergraph?

This question is motivated by study of cuckoo hashing with pages [30]. To be more

precise Dietzfelbinger, Mitzenmacher and Rink studied cuckoo hashing in a setting where

memory is organized in large pages. Then each item (edge) can choose several locations

(vertices) on a single page with some additional choices on a back up page. They showed

experimentally that with k− 1 choices on one page and a single backup location choice,

one can achieve nearly the same loads as when each key has k random locations to choose

from. It would be interesting to obtain provable performance bounds in this setting.

Chapter 3

Local Search Allocation

3.1 Introduction

In this chapter we consider the following process. There are n bins, initially empty, and

m = bcnc balls. Each ball chooses independently and uniformly at random k ≥ 3 bins.

We are looking for an allocation such that each ball is placed into one of its chosen bins

and no bin has load greater than 1. How quickly can we find such an allocation?

We present a simple and novel algorithm that finds such an allocation (if it exists) and

runs in linear time with high probability. We provide that each ball, in addition to

having k ≥ 3 choices, can also be moved among its choices on demand. An important

example of an allocation strategy in this direction is cuckoo hashing [2, 3] which is a

collision resolution scheme used in building hash tables. Here bins are the locations

on the hash table and balls represent the items. In this scheme when a ball arrives, it

chooses its k random bins (chosen using k random hash functions) and is allocated to

one of them. In case the bin is full, the previously allocated ball is moved out and placed

in one of its other k − 1 choices. This process may be repeated indefinitely or until a

free bin is found. We give a simple algorithm that builds on the idea of cuckoo hashing

and runs in linear time with high probability. Roughly speaking we propose an efficient

strategy to choose the bin in case all the choices of the incoming ball are full.

We model the k-choice balls-into-bins game by a directed graph G = (V,E) such that

the set of vertices V corresponds to bins. We say a vertex is occupied if there is a ball

assigned to the corresponding bin, otherwise it is free. Let I be the set of m balls. We

represent each ball x ∈ I as a tuple of its k chosen bins, so we say a vertex v ∈ x if v

corresponds to one of the chosen bins of ball x. For vertices u, v ∈ V , a directed edge

e = (u, v) ∈ E if and only if there exists a ball y ∈ I so that the following two conditions

43

Chapter 3. Local Search Allocation 44

hold, (i) u, v ∈ y, and (ii) u is occupied by y. Note that a vertex with outdegree 0 is a

free vertex. We denote the set of free vertices by F and the minimum of the distance of

vertices in F from v by d(v, F). Since G represents an allocation we call G an allocation

graph.

Assume that at some instance a ball z arrives such that all of its k choices are occupied.

Let v ∈ z be the vertex chosen to place z. The following are the main observations.

1. The necessary condition for ball z to be successfully assigned to v is the existence

of a path from v to F . This condition remains satisfied as long as some allocation

is possible.

2. A free location will be found in the minimum number of steps if for all u ∈ z the

distance d(v, F) ≤ d(u, F).

With respect to our first observation, a natural question would be the following. Is it

possible to place each of the m = bcnc balls into one of their chosen bins such that each

bin holds at most one ball? This has already been answered by [8, 9] in the following

theorem.

Theorem 3.1. For integers k ≥ 3 let ξ∗ be the unique solution of the equation

k =
ξ(1− e−ξ)

1− e−ξ − ξe−ξ
. (3.1)

Let c∗k = ξ∗

k(1−e−ξ∗)k−1 . Then

P (allocation of m = bcnc balls to n bins is possible)
(n→∞)

=

0, if c > c∗k

1, if c < c∗k

. (3.2)

The proof of the above theorem is non-constructive, i.e., it does not give us an algo-

rithm to find such an allocation. We propose a novel allocation algorithm called local

search allocation (LSA) which runs in linear time with high probability. Moreover it is

guaranteed to find an allocation if it exists. We state the main result of this chapter in

the following theorem.

Theorem 3.2. Let k ≥ 3. For any fixed ε > 0, set m = (1− ε)c∗kn. Assume that each

of the m balls chooses k random bins from a total of n bins. Then with high probability

local search allocation finds an optimal allocation of these balls in time O(n).

Through simulations we demonstrate that the our allocation method requires drastically

less number of selections (to place or replace an item) when compared to the random

Chapter 3. Local Search Allocation 45

walk method(which to our knowledge is also the state of art method for the process

under consideration and is described latter). For instance the number of selections in

the worst case is reduced by a factor of 10 when using our method.

Our second observation suggests that the allocation time depends on the selection of

the bin, which we make for each assignment, from among the k possible bins. One

can in principle use breadth first search (BFS) to always make assignments over the

shortest path (in the allocation graph). BFS is analyzed in [3] and is shown to run in

linear time only in expectation. One can also select uniformly at random a bin from the

available bins. This resembles a random walk on the vertices of the allocation graph

and is called the random walk insertion. In [9, 15] the authors analyzed the random

walk insertion method and gave a polylogarithmic bound (with high probability) on the

maximum allocation time, i.e., the maximum time it can take to allocate a single ball.

The random walk method does not provide any guarantees for the total allocation time.

In fact it might run for ever in some worst case.

Notation

Throughout this chapter we use n to denote the number of bins, m for the number of

balls and k denotes the number of random choices of any ball. For an allocation graph

G = (V,E) and any two vertices u, v ∈ V , the shortest distance from u to v is denoted

by d(u, v). We denote the set of free vertices by F . We denote the shortest distance from

a vertex v ∈ V to any set of vertices say S by d(v, S) which is defined as

d(v, S) := min
u∈S

d(v, u).

We use R to denote the set of vertices furthest to F , i.e.,

R := {v ∈ V |d(v, F) ≥ max
u∈V

d(u, F)}.

For an integer t ∈ {0, 1, . . . , n} and a subset of vertex set V ′ ⊆ V we use Nt(u) and

Nt(V
′) to denote the set of vertices at distance at most t from the vertex u ∈ V and the

set V ′ respectively. Mathematically,

Nt(u) := {v ∈ V | d(u, v) ≤ t} and Nt(V
′) := {v ∈ V | d(v, V ′) ≤ t}.

In the next section we first prove the correctness of the algorithm, i.e., it finds an

allocation in a finite number of steps whenever an allocation exists. We show that the

algorithm takes a maximum of O(n2) time before it obtains a bin for each ball. We then

proceed to give a stronger bound on the running time.

Chapter 3. Local Search Allocation 46

3.2 Algorithm Outline and Proof Strategy

In a nutshell LSA provides a deterministic strategy of how to select a vertex (bin) for

placing a ball when all of its choices are occupied. We assign to each vertex v ∈ V an

integer label, L(v). Initially all vertices have 0 as their labels. Note that at this stage,

for all v ∈ V , L(v) = d(v, F), i.e., the labels on the vertices represent their shortest

distances from F . When a ball x appears, it chooses the vertex with the least label from

among its k choices. If the vertex is free, the ball is placed on it. Otherwise, the previous

ball is kicked out. The label of the vertex is then updated and set to one more than the

minimum label of the remaining k− 1 choices of the ball x. The kicked out ball chooses

the bin with minimum label from its k choices and the above procedure is repeated till

an empty bin is found. Note that to maintain the labels of the vertices as their shortest

distances to F we would require to update labels of the neighbors of the selected vertex

and the labels of their neighbors and so on. This corresponds to performing a breadth

first search starting from the selected vertex. We avoid the BFS and perform only local

updates and therefore the name local search allocation.

We prove the optimality and efficiency of LSA in two steps. First we show that the

algorithm is correct and finds an allocation in polynomial time. To this end we prove

that, at any instance, the label of a vertex is at most its shortest distance to the set of

free vertices. Therefore, no vertex can have a label greater than n−1. This would imply

that the algorithm could not run indefinitely and would stop after making at most n

changes at each location. We then show that the local search allocation method will

find an allocation in a time proportional to the sum of distances of the n vertices to F

(in the resulting allocation graph). We complete the proof by showing that (i) if for

ε > 0, m = (1 − ε)c∗k balls are placed in n bins using k random choices for each ball

then the corresponding allocation graph has two special structural properties with high

probability, and (ii) if the allocation graph has these two properties, then the sum of

distances of its vertices to F is linear in n.

Recall from Chapter 1 that the k-choice balls-into-bins process with m balls and n

bins can be represented by a k-uniform hypergraph on n vertices and m edges. In the

following section we give some structural results about random hypergraphs. We will use

these results in Section 3.3 to argue about the above mentioned two special structural

properties of the allocation graph.

Chapter 3. Local Search Allocation 47

Balls-into-Bins and Random Hypergraphs

As already mentioned we can model the balls into bins game as a hypergraph. Each

bin can be viewed as a vertex and each ball as an edge. The k vertices of each edge

represent the k-random choices of each ball. In fact, this is a random hypergraph with n

vertices and m edges where each edge is drawn uniformly at random (with replacement)

from the set of all k-multisubsets of the vertex set. Therefore, a proper allocation of

balls is possible if and only if the corresponding hypergraph is 1-orientable, i.e., if there

is an assignment of each edge e ∈ E to one of its vertices v ∈ e such that each vertex is

assigned at most one edge. We denote a random (multi)hypergraph with n vertices and

m edges by H∗n,m,k. We define the density of a hypergraph as the ratio of the number

of edges to the number to its vertices.

We will need the following results from [15] about the expansion properties of a random

hypergraph. In the analysis of LSA we would see that these properties help us to infer

that the allocation graph expands considerably and the maximum label of any vertex

there is O(log n).

Theorem 3.3. Let for any fixed ε > 0, m = (1 − ε)c∗kn. Then there exists a δ =

δ(ε, k) such that any subhypergraph of H∗n,m,k has density at most (1−δ) with probability

1−O(1/n).

The proof of the following lemma is similar to that in [15]. The parameters here are

adjusted to our requirements; so we present the proof for completeness.

Lemma 3.4. Let m < c∗kn and α < 1/(k − 1). Then for every integer s such that

1 ≤ s ≤ αn, there exists a constant ζ > 0 such that the following holds with probability

1−n−ζ . The number of vertices spanned by any set of edges of size s in H∗n,m,k is greater

than

(
k − 1− log(k−1)ek

log 1
α(k−1)

)
s.

Proof. Recall that each edge in Hn,m,k is a multiset of size k. Therefore, the probability

that an edge of Hn,m,k is contained completely in a subset of size t of the vertex set is

given by tk

nk
. Thus the expected number of sets of edges of size s that span at most t

vertices is at most
(
m
s

)(
n
t

) (
tk

nk

)s
. Note that by the following approximation for factorials

for positive integer a (a
e

)a√
2πa ≤ a! ≤

(a
e

)a
e
√
a,

Chapter 3. Local Search Allocation 48

we obtain for 0 < b < a(
a

b

)
=

a!

b!(a− b)!
≤

(
a
e

)a
e
√
a(

b
e

)b (a−b
e

)a−b√
2πb
√

2π(a− b)
=

e

2π
·
(

1− b

a

)−(a−b+1/2) (a
b

)b

<
exp

(
1 + b+ b

2a + b2

2a2 − b3

a2

)
2π

(a
b

)b
<

exp
(

1 + b
2a −

b3

2a2

)
2π

(ae
b

)b
<

exp(1.5)

2π

(ae
b

)b
<
(ae
b

)b
.

Using the above bounds for m < c∗kn and setting t = (k − 1− δs)s we obtain

(
m

s

)(
n

t

)(
t

n

)ks
<

(
nc∗ke

s

)s (ne
t

)t
·
(
t

n

)ks
<

(
nc∗ke

s

)s (ne
t

)t
·
(
t

n

)ks
=

(
nc∗k
s

)s (n
t

)t−ks
et+s =

(
nc∗ke

k−δs

s

)s(
n

(k − 1− δs)s

)−(1+δs)s

<

(
nc∗k
s

)s(n

(k − 1)s

)−(1+δs)s

eks

=

((
n

(k − 1)s

)−δs
· (k − 1)ekc∗k

)s
.

Moreover from [8] we know that c∗k < 1. Let β be such that (1 + β)c∗k = 1. Setting

δs = log(k − 1)ek/ log n
s(k−1) we obtain

((
n

(k − 1)s

)−δs
· (k − 1)ekc∗k

)s
= (1 + β)s.

Therefore, for δs = 1 + lnk−1 e
k/ lnk−1

n
s − 1 and α < 1/(k − 1), the probability that

there exists a set of edges of size s, where log n ≤ s ≤ αn, spanning at most (k−1− δs)s
vertices is O((1 + β)− logn) = O(1/nlog(1+β)).

Note that for log n ≤ s ≤ αn, δs < 1 + logk−1 e
k/(logk−1

1
α − 1). For the case 1 ≤ s <

log n, we substitute δs = log(k − 1)ek/(log 1
α(k−1) − 1). Then the expected number of

sets of edges of size s spanning at most (k − 1− δs)s vertices is at most((k − 1) log n

n

) log(k−1)ek

log 1
α(k−1)

−1

· ((k − 1)ek)

s

.

Therefore for large n the probability that there exists a set of edges of size 1 ≤ s < log n

spanning at most

(
k − 1− log(k−1)ek

log 1
α(k−1)

)
s vertices is at most o(n−1/2), which completes

the proof .

Chapter 3. Local Search Allocation 49

3.3 Local Search Allocation and its Analysis

3.3.1 The Algorithm

Assume that we are given balls in an online fashion, i.e., each balls chooses its k random

bins whenever it appears. Moreover, balls appear in an arbitrary order. The allocation

using local search method goes as follows. For each vertex v ∈ V we maintain a label.

Initially each vertex is assigned a label 0. To assign a ball x at time t we select one of

its chosen vertices v such that its label is minimum (among the k choices) and assign

x to v. We assign a new label to v which is one more than the minimum label of

the remaining k − 1 choices of x. However, v might have already been occupied by a

previously assigned ball y. In that case we kick out y and repeat the above procedure.

Let L = {L(v) | v ∈ V } and T = {T (v) | v ∈ V } where L(v) denotes the label of vertex

v and T (v) denotes the ball assigned to vertex v. We initialize L with all 0s and T with

∅, i.e., all vertices are free. We then use Algorithm 1 to assign an arbitrary ball when it

appears.

Algorithm 1 AssignBall (x,L,T)

1: Choose a bin v among the k choices of x with minimum label L(v).
2: if (L(v) >= n− 1) then
3: EXIT BAllocation does not exist
4: else
5: L(v)← 1 + min (L(u)|u 6= v and u ∈ x)
6: if (T (v) 6= ∅) then
7: y ← T (v) BMove that replaces a ball
8: T (v)← x
9: CALL AssignBall(y,L,T)

10: else
11: T (v)← x BMove that places a ball

3.3.2 Labels and the Shortest Distances

We need some additional notation. In what follows a move denotes either placing a ball

in a free bin or replacing a previously allocated ball. Let M be the total number of

moves performed by the algorithm. For p ∈ [M] we use Lp(v) to denote the label of

vertex v at the end of the pth move. Similarly we use Fp to denote the set of free vertices

at the end of pth move. The corresponding allocation graph is denoted as Gp = (V,Ep).

We need the following proposition.

Proposition 3.5. For all p ∈ [M] and all v ∈ V , the shortest distance of v to Fp is at

least the label of v, i.e., d(v, Fp) ≥ Lp(v).

Chapter 3. Local Search Allocation 50

Proof. We first note that the label of a free vertex always remain 0, i.e.,

∀p ∈ [M],∀w ∈ Fp, Lp(w) = 0. (3.3)

We will now show that throughout the algorithm the label of a vertex is at most one

more than the label of any of its immediate neighbors (neighbors at distance 1). More

precisely,

∀p ∈ [M],∀(u, v) ∈ Ep, Lp(u) ≤ Lp(v) + 1. (3.4)

We prove (3.4) by induction on the number of moves performed by the algorithm. Ini-

tially when no ball has appeared all vertices have 0 as their labels. When the first ball

is assigned, i.e., there is a single vertex say u such that L1(u) = 1. Clearly, (3.4) holds

after the first move. Assume that (3.4) holds after p moves.

For the (p + 1)th move let w ∈ V be some vertex which is assigned a ball x. Consider

an edge (u, v) ∈ Ep such that u 6= w and v 6= w. Note that the labels of all vertices

v ∈ V \w remain unchanged in the (p+ 1)th move. Therefore by induction hypothesis,

(3.4) is true for all edges which does not contain w. By Step 2 of Algorithm 1 the new

label of w is one more than the minimum of the labels of its k − 1 neighbors, i.e,

Lp+1(w) = min
w′∈x\w

Lp+1(w′) + 1.

Therefore (3.4) holds for all edges originating from w. Now consider a vertex u ∈ V such

that (u,w) ∈ Ep. Now by induction hypothesis we have Lp+1(u) = Lp(u) ≤ Lp(w) + 1.

Note that the vertex w was chosen because it had the minimum label among the k

possible choices for the ball x, i.e.,

Lp(w) ≤ min
w′∈x

Lp(w
′) = min

w′∈x\w
Lp+1(w′) < Lp+1(w).

We therefore obtain Lp+1(u) ≤ Lp(w) + 1 < Lp+1(w) + 1, thereby completing the

induction step. We can now combine (3.3) and (3.4) to obtain the desired result. To

see this, consider a vertex v at distance s < n to a free vertex f ∈ Fp such that s

is also the shortest distance from v to Fp. By iteratively applying (3.4) we obtain

Lp(v) ≤ s+ Lp(f) = d(v, Fp), which completes the proof.

We know that whenever the algorithm visits a vertex, it increases its label by at least 1.

Trivially the maximum distance of a vertex from a free vertex is n− 1 (if an allocation

exists), and so is the maximum label. Therefore the algorithm will stop in at most

n(n − 1) steps, i.e., after visiting each vertex at most n − 1 times, which implies that

Chapter 3. Local Search Allocation 51

the algorithm is correct and finds an allocation in O(n2) time. In the following we show

that the total running time is proportional to the sum of labels of the n vertices.

Lemma 3.6. Let L∗ be the array of labels of the vertices after all balls have been allocated

using Algorithm 1. Then the total time required to find an allocation is O(
∑

v∈V L
∗(v)).

Proof. Now each invocation of Algorithm 1 increases the label of the chosen vertex by

at least 1. Therefore, if a vertex has a label ` at the end of the algorithm then it has

been selected (for any move during the allocation process) at most ` times. Now the

given number of balls can be allocated in a time proportional to the number of steps

required to obtain the array L∗ (when the initial set consisted of all zeros) and hence is

O(
∑

v∈V L
∗(v)).

For notational convenience let F := FM and G := GM denote the set of free vertices

and the allocation graph (respectively) at the end of the algorithm. By Proposition 3.5

we know that for each v ∈ V , L∗(v) ≤ d(v, F). Moreover, by Step 2 of Algorithm 1 the

maximum value of a label is n. Thus the total sum of labels of all vertices is bounded

as follows. ∑
vi∈V

L∗(vi)) ≤ min

∑
vi∈V

d(v, F), n2

 .

So our aim now is to bound the shortest distances such that the sum of these is linear

in the size of G. We accomplish this in the following section.

3.3.3 Bounding the Distances

To compute the desired sum, i.e.,
∑

vi∈V d(v, F), we study the structure of the allocation

graph. The following lemma states that, with probability 1 − o(1), a fraction of the

vertices in the allocation graph are at a constant distance to the set of free vertices,

F . This would imply that the contribution for the above sum made by these vertices is

O(n).

Lemma 3.7. For any fixed ε > 0, let m = (1− ε)c∗kn balls are assigned to n bins using

k random choices for each ball. Then the corresponding allocation graph G = (V,E)

satisfies the following with probability 1 − O(1/n): for every α > 0 there exist C =

C(α, ε) > 0 and a set S ⊆ V of size at least (1 − α)n such that every vertex v ∈ S

satisfies d(v, F) ≤ C.

Proof. We perform the following stripping process on G. We start with G and in each

step remove all its free vertices and the edges they are contained in. Note that by

Chapter 3. Local Search Allocation 52

removing the edges, we have removed the balls placed on the corresponding vertices,

thereby creating a new set of free vertices. For step i of the stripping process, we denote

the set of vertices by Vi and the set of free vertices by Fi and let Gi be the corresponding

allocation graph. The number of occupied vertices in Gi is then equal to |Vi| − |Fi|. As

each vertex holds at most one ball, the number of remaining balls is |Vi| − |Fi|.

Let H = (V,E′) be a k-uniform hypergraph with n vertices representing the bins and

m edges representing the balls. Each edge consists of k vertices or k choices of the ball.

Note that the number of occupied vertices in G is equal to the number of edges in H.

Similarly Gi corresponds to a subgraph in H induced on the vertex set Vi. Let us denote

it by H[Vi]. The number of occupied vertices in Gi, i.e. |Vi|− |Fi|, then is the number of

edges in H[Vi]. By Theorem 3.3, with probability 1− o(1) we have |Fi| ≥ δ|Vi|. Also by

the stripping process we obtain |Vi+1| = |Vi|−|Fi|. We can therefore conclude that, with

probability 1 − o(1), |Vi+1| ≤ (1 − δ)|Vi|. Therefore, after t ≥ 1 iterations of removing

free vertices we obtain |Vt| ≤ (1− δ)t|V |. We can now choose t = dln(1−δ) αe to deduce

that |Vt| < α|V |. We complete the proof by substituting S = V \ Vt ≥ (1 − α)n and

C = dlog(1−δ) αe.

We remark that the above lemma has already been proved in [15] (in the hypergraph

setting). A similar result has also been proved in [9] (in the bipartite matching setting)

for k ≥ 8. With respect to an allocation graph recall that we denote the set of vertices

furthest from F by R. Also for an integer s, Ns(R) denotes the set of vertices at distance

at most s from R. The next lemma states that the neighborhood of R expands suitably

with high probability. We remark that the estimate, for expansion factor, presented here

is not the best possible but nevertheless suffices for our analysis.

Lemma 3.8. For any fixed ε > 0, let m = (1− ε)c∗kn balls are assigned to n bins using

k random choices for each ball and G = (V,E) be the corresponding allocation graph.

Then for any 0 < α < 1
k−1 and every integer s such that 1 ≤ |Ns(R)| ≤ αn, there exists

a constant ζ > 0 such that G satisfies the following with probability 1− n−ζ .

|Ns(R)| >

(
k − 1− log ek(k − 1)

log 1
α(k−1)

)
|Ns−1(R)|.

Proof. Recall that in the allocation graph G, R is the set of vertices furthest from the

set of free vertices. The set of vertices at distance at most s from R is denoted by Ns(R).

Note that each occupied vertex in G holds one ball. By construction of the allocation

graph Ns(R) is the set of vertices representing the choices of balls placed on vertices in

Ns−1(R). In the hypergraph setting where each ball corresponds to an edge, |Ns(R)| is

Chapter 3. Local Search Allocation 53

the number of vertices spanned by the set of edges of size |Ns−1(R)|. We can now use

Lemma 3.4 to obtain the desired result.

We define µ := log ek(k − 1)/ log (−α(k − 1)). For some fixed γ > 0 we set

α := exp

(
−k

k − 2− γ

)
(k − 1)

−1− −1
k−2−γ , (3.5)

which implies that µ = k − 2− γ.

The following corollary follows from the above two lemmas.

Corollary 3.9. With high probability, the maximum label of any vertex in the allocation

graph is O(log n).

Proof. Set α as in (3.5). Let d be the shortest distance of vertices in R to S. Then by

Lemma 3.8 with high probability,

|Nd(R)| >

(
k − 1− log ek(k − 1)

log 1
α(k−1)

)
|Nd−1(R)| = (1 + γ)d|R|,

which implies that d < log1+γ αn. Note that the shortest distance of vertices in S to F

is a constant C(α, δ) for δ defined in Lemma 3.7. Moreover, by Proposition 3.5 the label

of any vertex is upper bounded by its distance to the set of free vertices. Therefore, the

label of any vertex v is such that L(v) = O(log1+γ αn).

We now prove our main theorem.

Proof of Theorem 3.2. Set α as in (3.5). Then by Lemma 3.7, with probability 1 −
O(1/n), there exists a C = C(α, ε) and a set S such that |S| ≥ (1 − α)n and every

vertex v ∈ S satisfies d(v, F) ≤ C. Let T + 1 be the maximum of the distances of

vertices in R to S, i.e.,

T = max
v∈R

d(v, S)− 1.

Clearly the number of vertices at distance at most T fromR is at most αn, i.e., |NT (R)| ≤
αn. Moreover for all t < T , |Nt(R)| < |NT (R)|. Then by Lemma 3.8, for all t ≤ T the

following holds with high probability,

|Nt+1(R)| > (k − 1− δ) |Nt(R)|.

Chapter 3. Local Search Allocation 54

One can check that for γ > 0 and α as chosen above, δ < k − 2− γ. The total distance

of all vertices from F is then given by

D =
∑

v∈NT (R)

d(v, F) +
∑
v∈S

d(v, F).

As every vertex in S is at a constant distance from F , we obtain
∑

v∈S d(v, F) = O(n).

Note that for every i > 0, |Ni(R)| − |Ni−1(R)| is the number of vertices at distance i

from R. Therefore,

∑
v∈NT (R)

d(v, F) = (T + C)|N0(R)|+
T∑
i=1

(T + C − i)(|Ni(R)| − |Ni−1(R)|)

= (T + C)|N0(R)|+
T∑
i=1

(T − i)(|Ni(R)| − |Ni−1(R)|) + C

T∑
i=1

(|Ni(R)| − |Ni−1(R)|)

= (T + C)|N0(R)|+
T∑
i=1

(T − i)(|Ni(R)| − |Ni−1(R)|) + C(|NT (R)| − |N0(R)|)

=
T∑
i=1

(
(T − i)(|Ni(R)| − |Ni−1(R)|) + |N0(R)|

)
+ C · |NT (R)| =

T−1∑
i=0

|Ni(R)|+O(n).

Now with high probability, we have |NT−j(R)| < |NT (R)|
(k−1−δ)j . Therefore,

T−1∑
i=0

|Ni(R))| < |NT (R)|
T∑
j=1

1

(k − 1− δ)j
< |NT (R)|

T∑
j=1

1

(1 + γ)j
= O(n),

which completes the proof of Theorem 3.2.

We obtain the following corollary about maximum matchings in left regular random

bipartite graphs. Recall that a bipartite graph G = (L ∪ R;E) is k-left regular if each

vertex v ∈ L has exactly k neighbors in R.

Corollary 3.10. For k ≥ 3 and c∗k as defined in Theorem 3.1, let G = (L ∪R;E) be a

random k-left regular bipartite graph such that |L|/|R| < c∗k. The local search allocation

method obtains a maximum cardinality matching in G in time O(|R|) with probability

1− o(1).

Proof. We assign label 0 to each of the vertices in R initially. Each vertex in L can be

considered as a ball and let R be the set of bins. The k random choices for v ∈ L (ball)

are the k random neighbors of v. We can now find a matching for each v ∈ L by using

Algorithm 1.

Chapter 3. Local Search Allocation 55

3.3.4 Experimental Results and Discussion

We present some simulations to compare the performance of local search allocation with

the random walk method which (to the best of our knowledge) is currently the state-of-

art method and so far considered to be the fastest algorithm for the case k ≥ 3. We recall

that in the random walk method we choose a bin at random from among the k possible

bins to place the ball. If the bin is not free, the previous ball is moved out. The moved

out ball again chooses a random bin from among its choices and the procedure goes on

till an empty bin is found. In our experiments we consider n ∈ [105, 5 × 106] balls and

bcnc bins. The k random bins are chosen when the ball appears. All random numbers

in our simulations are generated by MT19937 generator of GNU Scientific Library [31].

Recall that a move is either placing an item at a free location or replacing it with other

item. In Figure 3.1 we give a comparison of the total number of moves (averaged over

100 random instances) performed by local search and random walk methods for k = 3

and k = 4. Figure 3.2 compares the maximum number of moves (averaged over 100

random instances) for a single insertion performed by local search and random walk

methods. Figure 3.3 shows a comparison when the number of balls are fixed and density

(ratio of number of balls to that of bins) approaches the threshold density. Note that

the time required to obtain an allocation by random walk or local search methods is

directly proportional to the number of moves performed.

We remark that local search allocation has some additional cost, i.e., the extra space

required to store the labels. Though this space is O(n), local search allocation is still

useful for the applications where the size of objects (representing the balls) to be allo-

cated is much larger than the labels which are integers. Moreover, with high probability,

the maximum label of any vertex is O(log n). Many integer compression methods [32]

have been proposed for compressing small integers and can be potentially useful in our

setting for further optimizations. Also in most of the load balancing problems, the speed

of finding an assignment is a much desired and the most important requirement.

We also consider the case when each bin can hold more than one ball. To adapt LSA

for this setting we make a small change, i.e., the label of a vertex (bin) stays 0 until it

is fully filled. Algorithm 2 gives the modified procedure for the general bin capacities.

Here Balls(v) gives the number of balls already placed in v. Let the bin capacity or

maximum load allowed be s. Figure 3.4 suggests that the total number of moves are

linear in the number of bins for the cases k = 3, 4 where the maximum bin capacity is

greater than 1.

Chapter 3. Local Search Allocation 56

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 1e+06 2e+06 3e+06 4e+06 5e+06

T
o

ta
l
n

u
m

b
e
r
 o

f
m

o
v
e
s

Number of bins

LSA

RW

(a) k = 3, c = 0.90 (c∗3 ≈ 0.917)

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 1e+06 2e+06 3e+06 4e+06 5e+06

T
o

ta
l
n

u
m

b
e
r
 o

f
m

o
v
e
s

Number of bins

LSA

RW

(b) k = 4, c = 0.97 (c∗4 ≈ 0.976)

Figure 3.1: Comparison of total number of moves performed by local
search and random walk methods.

Chapter 3. Local Search Allocation 57

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1e+06 2e+06 3e+06 4e+06 5e+06

M
a
x
im

u
m

 n
u

m
b

e
r
 o

f
m

o
v
e
s

Number of bins

LSA

RW

(a) k = 3, c = 0.90 (c∗3 ≈ 0.917).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1e+06 2e+06 3e+06 4e+06 5e+06

M
a
x
im

u
m

 n
u

m
b

e
r
 o

f
m

o
v
e
s

Number of bins

LSA

RW

(b) k = 4, c = 0.97 (c∗4 ≈ 0.976).

Figure 3.2: Comparison of maximum number of moves performed by
local search and random walk methods.

3.4 Conclusion and Future Directions

We have developed a very simple and efficient method which we call local search alloca-

tion (LSA) to find an optimal allocation in a special kind of balls-into-bins process which

Chapter 3. Local Search Allocation 58

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o

ta
l
A

ll
o

c
a
ti

o
n

 T
im

e

Density

LSA

RW

(a) k = 3, c ≤ 0.915 (c∗3 ≈ 0.917)

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
a
x
im

u
m

 n
u

m
b

e
r

o
f

m
o

v
e
s

Density

LSA

RW

(b) k = 3, c ≤ 0.915 (c∗3 ≈ 0.917)

Figure 3.3: Comparison of total number of moves and maximum number
of moves (for fixed number of locations, n = 105) performed by local search

and random walk methods when density c approaches c∗k.

Chapter 3. Local Search Allocation 59

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 1e+06 2e+06 3e+06 4e+06 5e+06

T
o

ta
l
n

u
m

b
e
r

o
f

m
o

v
e
s

Number of bins

k=3, s=3

k=3, s=2

k=4, s=2

Figure 3.4: Total number of moves for the cases where bin capacities
(maximum load, s) is greater than 1. The number of balls for all the shown

cases is greater than (c∗k,` − 0.01)n.

Algorithm 2 AssignBall (x,L,T)

1: Choose a bin v among the k choices of x with minimum label L(v).
2: if (L(v) >= n− 1) then
3: EXIT BAllocation does not exist
4: else
5: if (Balls(v) > s− 1) then
6: L(v)← 1 + min (L(u)|u 6= v and u ∈ x)
7: if (Balls(v) == s) then
8: Choose a ball (call it b) randomly from the s balls in v
9: y ← b BMove that replaces a ball

10: Place x in v
11: CALL AssignBall(y,L,T)
12: else
13: Place x in v BMove that places a ball

has applications in various other problems like load balancing, hashing and maximum

matchings in bipartite graphs. Our algorithm runs in linear time with high probability.

We performed simulations to compare our method with the state of the art method and

found an order of magnitude improvement using LSA.

The most interesting aspect for continuing work is to bound the maximum allocation

time, i.e., the maximum time it requires to place any ball. Our simulations show that

LSA performs about 10 times better than the random walk method. A second open

Chapter 3. Local Search Allocation 60

question is with respect to the bin capacities. The thresholds for the existence of a

proper allocation in case of arbitrary bin capacities is known (see Chapter 2). We

believe that our algorithm requires linear time for finding optimal allocations even for

this case. We have presented some simulations to support the same. It would therefore

be interesting to provide theoretical guarantees for this case. The main obstacle (in my

view) is the technical difficulty associated with proving a lemma equivalent to Lemma 3.7

in that case.

Our algorithm finds maximum matchings in large sparse k-regular random bipartite

graphs in linear time with high probability. It would be an interesting direction to

extend LSA for finding maximum cardinality matchings in non bipartite graphs. The

main idea would be to find a representation of the matching (for example the allocation

graph in the present case) with an appropriate way of labeling.

Bibliography

[1] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM

Journal of Computing, 29(1):180–200, 1999.

[2] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144,

2004.

[3] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space efficient hash tables with

worst case constant access time. In Proceedings of the 20th Annual Symposium on

Theoretical Aspects of Computer Science (STACS 2003), volume 2607 of Lecture

Notes in Computer Science, pages 271–282. 2003.

[4] P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In Pro-

ceedings of the 11th annual ACM-SIAM Symposium on Discrete Algorithms (SODA

1999), pages 849–858, 1999.

[5] D. Fernholz and V. Ramachandran. The k-orientability thresholds for Gn,p. In Pro-

ceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms (SODA

2007), pages 459–468, 2007.

[6] J. A. Cain, P. Sanders, and N. Wormald. The random graph threshold for k-

orientiability and a fast algorithm for optimal multiple-choice allocation. In Pro-

ceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms (SODA

2007), pages 469–476, 2007.

[7] N. Fountoulakis and K. Panagiotou. Orientability of random hypergraphs and the

power of multiple choices. In Proceedings of the 37th International Colloquium on

Automata, Languages and Programming (ICALP 2010), volume 6198 of Lecture

Notes in Computer Science, pages 348–359. 2010.

[8] N. Fountoulakis and K. Panagiotou. Sharp load thresholds for cuckoo hashing.

Random Structures & Algorithms, 41(3):306–333, 2012.

[9] A. M. Frieze, P. Melsted, and M. Mitzenmacher. An analysis of random-walk cuckoo

hashing. In APPROX-RANDOM, pages 490–503, 2009.

61

Bibliography 62

[10] P. Gao and N. C. Wormald. Load balancing and orientability thresholds for random

hypergraphs. In Proceedings of the 42nd ACM Symposium on Theory of Computing

(STOC 2010), pages 97–104, 2010.

[11] M. Lelarge. A new approach to the orientation of random hypergraphs. In Pro-

ceedings of the 23th ACM-SIAM Symposium on Discrete Algorithms (SODA 2012),

pages 251–264, 2012.

[12] M. Leconte, M. Lelarge, and L. Massoulié. Convergence of multivariate belief prop-

agation, with applications to cuckoo hashing and load balancing. In Proceedings

of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pages

35–46, 2013.

[13] A. Czumaj and V. Stemann. Randomized allocation processes. Random Structures

& Algorithms, 18(4):297–331, 2001.

[14] L. Devroye and P. Morin. Cuckoo hashing: Further analysis. Information Processing

Letters, 86(4):215 – 219, 2003.

[15] N. Fountoulakis, K. Panagiotou, and A. Steger. On the insertion time of cuckoo

hashing. CoRR, abs/1006.1231, 2010.

[16] H. Bast, K. Mehlhorn, G. Schäfer, and H. Tamaki. Matching algorithms are fast in

sparse random graphs. Theory of Computing Systems, 39(1):3–14, 2006.

[17] R. Motwani. Average-case analysis of algorithms for matchings and related prob-

lems. Journal of the ACM, 41(6):1329–1356, 1994.

[18] A. Goel, M. Kapralov, and S. Khanna. Perfect matchings via uniform sampling in

regular bipartite graphs. ACM Transactions. Algorithms, 6(2):27:1–27:13, 2010.

[19] M. Dietzfelbinger, H. Peilke, and M. Rink. A more reliable greedy heuristic for

maximum matchings in sparse random graphs. In Experimental Algorithms, volume

7276 of Lecture Notes in Computer Science, pages 148–159. 2012.

[20] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh, and

M. Rink. Tight thresholds for cuckoo hashing via XORSAT. In Proceedings of the

37th International Colloquium on Automata, Languages and Programming (ICALP

2010), volume 6198 of Lecture Notes in Computer Science, pages 213–225. 2010.

[21] N. Fountoulakis, M. Khosla, and K. Panagiotou. The multiple-orientability thresh-

olds for random hypergraphs. In Proceedings of the Twenty-Second Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2011), pages 1222–1236, 2011.

Bibliography 63

[22] M. Khosla. Balls into bins made faster. In Algorithms–ESA 2013, volume 8125 of

Lecture Notes in Computer Science, pages 601–612. 2013.

[23] C. Cooper. The cores of random hypergraphs with a given degree sequence. Random

Structures & Algorithms, 25(4):353–375, 2004.

[24] M. Molloy. Cores in random hypergraphs and boolean formulas. Random Structures

& Algorithms, 27(1):124–135, 2005.

[25] J. H. Kim. Poisson cloning model for random graphs. Manuscript, 2004.

[26] S. Janson, T. Luczak, and A. Ruciński. Random Graphs. Wiley-Interscience Series

in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

[27] B. Bollobás. A probabilistic proof of an asymptotic formula for the number of

labelled regular graphs. European Journal of Combinatorics, 1:311–316, 1980.

[28] E.A. Bender and E.R. Canfield. The asymptotic number of labelled graphs with

given degree sequence. Journal of Combinatorial Theory, Series A, 24(3):296 – 307,

1978.

[29] R. Ellis. Entropy, large deviations, and statistical mechanics. Classics in Mathe-

matics. Springer-Verlag, Berlin, 2006.

[30] M. Dietzfelbinger, M. Mitzenmacher, and M. Rink. Cuckoo hashing with pages. In

Algorithms-ESA 2011, volume 6942 of Lecture Notes in Computer Science, pages

615–627. 2011.

[31] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi.

Gnu scientific library reference manual. URL:http://www. gnu. org/software/gsl,

2003.

[32] B. Schlegel, R. Gemulla, and W. Lehner. Fast integer compression using simd

instructions. In Workshop on Data Management on New Hardware (DaMoN 2010),

pages 34–40, 2010.

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Multiple Choice Allocation
	1.2 Orientation of Hypergraphs
	1.3 An Efficient Algorithm
	1.4 Organization

	2 The Multiple-orientability Thresholds for Random Hypergraphs
	2.1 Introduction
	2.2 Proof Strategy
	2.3 Technical Preliminaries
	2.3.1 Models of Random Hypergraphs
	2.3.2 The Poisson Cloning Model for the (+1) -core

	2.4 Proof of the Upper Bound and the Critical Density
	2.5 Proof of the Lower Bound
	2.6 Conclusion and Future Directions

	3 Local Search Allocation
	3.1 Introduction
	3.2 Algorithm Outline and Proof Strategy
	3.3 Local Search Allocation and its Analysis
	3.3.1 The Algorithm
	3.3.2 Labels and the Shortest Distances
	3.3.3 Bounding the Distances
	3.3.4 Experimental Results and Discussion

	3.4 Conclusion and Future Directions

	Bibliography

