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Abstract

Epigenetic systems are an indispensable mechanism in development, they respond to envi-
ronmental stimuli and are dysregulated in cancer and other diseases. DNA methylation is
the best characterized and extensively studied epigenetic mark to date. In the past years,
a number of assays have been designed to measure DNA methylation levels genome-wide.
This thesis introduces computational techniques for handling DNA methylation data from
microarray- and enrichment-based methods. It focuses on disease-oriented studies and ad-
dresses the questions of quality control and normalization, inter- and intra-group variability,
identi�cation of di�erentially methylated loci, prioritization of biomarker candidates and
prediction of cancer type and other phenotypes.

The presented statistical approaches and heuristics facilitated important discoveries with
clinical applications. We showed that neurological and autoimmune disorders can be char-
acterized by their distinct methylation pro�les. We observed a strong tissue-speci�c signal
in the methylation pro�les of healthy and cancer samples. We were able to accurately pre-
dict tumor type of origin of metastatic samples. We showed that neither adenocarcinoma,
nor squamous cell carcinoma can be separated into two distinct subtypes with a charac-
teristic global methylation pro�le. In colon cancer, we identi�ed di�erentially methylated
regions with a potential to be used as biomarkers for predicting microsatellite instability.

Kurzfassung

Epigenetische Systeme sind ein unverzichtbarer Regulationsmechanismus in der Entwick-
lung von Lebewesen. Sie werden im Rahmen von Krebs und anderen Krankheiten fehlregu-
liert. DNA-Methylierung ist eine umfassend untersuchte und die am besten charakterisierte
epigenetische Markierung. In den vergangenen Jahren wurde eine Reihe von Assays ent-
wickelt, um DNA-Methylierungslevel genomweit zu messen. Diese Arbeit stellt Rechenver-
fahren für den Umgang mit DNA-Methylierungsdaten von Microarray- und Anreicherungs-
basierten Methoden vor, mit dem Fokus auf krankheitsorientierte Studien. Sie befasst sich
mit den Fragen der Qualitätskontrolle und Normalisierung, inter- und intra-Gruppen Va-
riabilität, der Identi�zierung von di�erentiell methylierten Regionen, Priorisierung von
Biomarker-Kandidaten, sowie der Prognose von Krebstyp und anderen Phänotypen.

Die vorgestellten statistischen Ansätze und Heuristiken ermöglichten wichtigen Ent-
deckungen mit klinischer Anwendung. Wir könnten zeigen, dass neurologische und Au-
toimmunerkrankungen durch ihre unterschiedlichen Methylierungsmuster charakterisiert
werden. Zudem beobachteten wir ein starkes Gewebe-spezi�sches Signal in den Methy-
lierungspro�len von Krebsproben und gesunden Kontrollen. Dadurch gelang es uns, den
ursprünglichen Tumortyp von Metastasen zu identi�zieren. In Darmkrebs identi�zierten
wir di�erenziell methylierte Regionen, die potenziell als Biomarker zur Vorhersage der
Mikrosatelliten-Instabilität verwendet werden können.
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1 Introduction

This thesis describes important techniques for data quality control, di�erential methyla-
tion and prioritization of genomic loci with respect to their potential relevance to disease.
The following sections introduce the biological and mathematical concepts used in later
chapters. The biological background is the de�nition of DNA methylation and other epi-
genetic mechanisms. Detailed explanations of these concepts are available in the books
Molecular Biology of the Cell [5] and Epigenetics [7]. On the mathematical side, several
machine learning approaches are brie�y described. The book The Elements of Statistical

Learning [57] presents these techniques in a comprehensive and well structured form; it
also includes insightful comparative analyses.

1.1 Epigenetics and transcriptional regulation

Every living cell in a multicellular organism is programmed and adapts the expression
patterns of its DNA through a variety of processes that can be broadly classi�ed as ge-
netic and epigenetic. The �rst group consists of very rare adaptive mechanisms that a�ect
irreversibly the genetic material. Examples for genetic changes include mutations, copy
number alterations, insertions, deletions, and various forms of recombinations.

Epigenetic mechanisms control the access to the DNA molecules, keeping the under-
lying sequence of bases intact [94]. Regulating the accessibility to the DNA is achieved
through di�erent forms of packaging the double-stranded molecule. The term epigenetics
stems from the greek word ὲπί (over, above, outer). It was �rst coined as 'epigenotype' by
Conrad Waddington in 1942 in the context of his studies describing the "whole complex
of developmental processes" [117, 118].

The degree of DNA accessibility is controlled collectively via processes including DNA
methylation, histone modi�cations and variant replacement, RNA interference and nucleo-
some positioning. The synchronous workings of these mechanisms determine an epigenetic

state of a cell. By de�nition, epigenetic states are maintained during mitosis and are there-
fore inherited across cell generations. The following paragraphs describe the biochemical
processes introduced above, with a pronounced focus on DNA methylation.

1.1.1 DNA Methylation

The methylation of the C5-atom of cytosines is established and maintained by a special
family of enzymes � DNA methyltransferases (DNMTs) � using S-adenosyl methionine
(SAM) as the methyl group donor (see Figure 1.1). The resulting base is referred to as
5-methylcytosine (5mC).

11
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Figure 1.1: Skeletal structures for the methylation of cytosine to form 5-methylcytosine,
using S-adenosyl methionine as the source of the methyl group and giving S-
adenosyl-L-homocysteine as the by-product.

Methylated cytosines in human are located almost exclusively in the context of a cytosine-
guanine dinucleotide (CpG). Note that this dinucleotide sequence is the reverse complement
of itself, and therefore the CpG dinucleotides appear in equal number on both DNA strands.
The presence of mirrored cytosines in this context allows the establishment of reciprocal
methylation patterns during DNA replication. The major methyltransferase DNMT1 is
responsible for adding methyl groups to hemimethylated sites, thereby maintaining the
methylation patterns across cell generations.

5mC is biochemically less stable than cytosine and is prone to undergo hydrolytic deami-
nation into thymine. Thymine is a valid DNA base which makes the DNA mismatch repair
mechanisms less e�cient in correcting deaminated 5mCs in comparison to other altered
bases [102]. For this reason, CpG dinucleotides are comparatively rare in the genome.
They are also very unevenly distributed; a small fraction of them concentrate in short ge-
nomic regions termed CpG islands (CGIs) [18, 54]. CGIs are on average 600 bases long and
cover less than 1% of the genome. They often co-localize with gene promoters or enhancer
elements, and the methylation state of all CpGs in one island tends to be consistent. CGIs
associate with approximately half of all annotated human gene promoters1, often a�liated
with constitutively active and highly expressed genes [99, 38].

Role of DNA methylation

Methylation is a global phenomenon which a�ects between 70 and 80 percent of the CpGs
in the human genome and also shows a high degree of tissue- and cell type speci�city [44].
The distribution of methylated and unmethylated CpGs is also non-uniform. A small
percentage of the CpGs are located in CGIs that are often unmethylated, however, the
majority of the CpGs lie in the so-called open sea (areas in the genome outside islands)
and are heavily methylated. Due to the general depletion of unmethylated CpGs in the
genome, CGIs are prime targets for a variety of activating transcription factors. Examples
for such include SP1, E2F and ETS1, all of which contain CGs in their consensus binding
sequence [70].

1Based on the Takai-Jones criteria for CpG islands [106]. Other de�nitions of a CpG island are published,

and the exact values for CGI properties (such as average length, genomic coverage and others) di�er

based on the de�nition used.
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Methylation plays an important role in many cellular processes, including genomic im-
printing [91, 13] and silencing of transposons and other retroviral elements [14]. The latter
is critical for the stability of the DNA molecule. On an organismal level, methylation is
involved in developmental processes, such as X chromosome inactivation [46] and stem cell
di�erentiation [77].

1.1.2 Chromatin and its constituents

The 1.8 meter long DNA molecules in a cell nucleus are packaged together with histone

proteins into a highly organized structure called chromatin. The role of chromatin is to
keep DNA compact yet accessible, to create transcriptionally active and silent regions,
to support DNA replication and to coordinate proper separation of genetic material to
daughter cells during cell division. The histones are organized into nucleosomes, each one
consisting of an octamer (pairs of histones H2A, H2B, H3 and H4) around which is wrapped
147 base pairs of DNA.

Transcriptional activity is associated with speci�c variants of the four histone proteins
that form a nucleosome. In fact, there are close to 80 genes that encode di�erent histone
variants. The expression of major histones is tightly regulated and connected to the life
stages of a cell. In addition, less common histone variants are produced by dedicated
genes. These specialized histones are deposited preferentially in distinct nuclear domains
and contribute to the characteristics of the corresponding genomic regions [97]. H3.3, for
example, is a variant of the H3 histone protein and is present at transcriptionally active
loci [3].

In addition, histone proteins can be altered by a set of modi�cations, preferentially
at their N-terminal protruding ends, such as mono-, di- and trimethylation, acetylation,
phosphorylation and ubiquitination. An encoding convention for these post-translational
modi�cations includes typing the histone protein, followed by letter and position of the
a�ected amino acid, and �nally appending the �rst one or two letters of the modi�cation.
For example, H3K9ac stands for acetylation of the lysine residue at position 9 in H3's amino
acid sequence. Similarly, trimethylation of residue 27 in H3 (again a lysine) is H3K27me3.
Histone modi�cations are associated with di�erent degrees of chromatin compaction and,
consequently, di�erent gene expression levels. Histone marks that coincide with high and
low expression are referred to as activating and repressing marks, respectively. Similarly,
one speaks of active and repressed chromatin. The �rst state coincides with domains in
which chromatin is open and easily accessible, known as euchromatic, whereas the second
state is usually in strongly compacted genomic regions called heterochromatin.

1.1.3 Other epigenetic mechanisms

In RNA interference, a short double-stranded RNA (dsRNA) silences its target genes
by mRNA degradation or by inhibition of the process of translation [79]. Unlike DNA
methylation and the histone modi�cations, this epigenetic mechanism is highly speci�c
because dsRNAs bind to their targets in sequence-dependent manner [124].
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1.1.4 Epigenetic genes

Fine-tuned machinery determines the active or repressed chromatin state of genomic re-
gions through the combination of di�erent epigenetic modi�cations at the DNA and his-
tones. For example, the methylation of enhancer elements tends to reduce the expression
of their targeted genes [51]. Most epigenetic pathways involve enzymes that:

• transfer a modi�cation (writers);

• modify or revert a modi�cation (editors);

• mediate the interactions of protein or protein complexes with the modi�ed DNA and
histones (readers).

The DNA methyltransferase (DNMT) protein family forms the writers of DNA methy-
lation. Its most prominent member � DNMT1 � acts on hemimethylated CpG sites and
is therefore responsible for maintaining symmetric methylation on both DNA strands, as
already mentioned above. The proteins DNMT3a, -3b and -3L can also methylate un-
methylated CpGs, a process referred to as de novo methylation. They are very active in
early embryo development and set up the pattern of methylation.

Another well studied family of epigenetic proteins referred to in this thesis is the histone
deacetylases (HDACs) � a class of enzymes that remove acetyl groups from lysine residues
in histones and other proteins [100]. There are at least 10 known members of this family
and many of them are active only in selected cell types.

1.2 Methylation in disease

Genetic and epigenetic defects have the ability to silence or activate genes. Destabilization
of the chromatin facilitates chromosomal breaks and can lead to deletions, translocations
and other rearrangements of chromosomes.

Epigenetic aberrations are prominent in cancer and occur in several other diseases, in-
cluding diabetes, asthma and a variety of neurological [66], autoimmune [92] and cardiovas-
cular [55] disorders. Abnormal low methylation is referred to as hypomethylation; similarly,
the term hypermethylation denotes an anomalous high degree of methylation. Feinberg and
Vogelstein discovered in 1983 that one major di�erence between cancer cells and healthy
counterparts was aberrant DNA hypomethylation in tumors [48]. Although they analyzed
only three regions in small sample numbers, they speculated about a global hypomethyla-
tion trend in cancer � a hypothesis now known to be largely true. In the following years,
epigenetic alterations in cancer have been thoroughly investigated, both on the gene level
and on the genome-wide level. The overall loss of 5mC often activates pericentromeric
satellite DNA and repetitive elements which a�ects the integrity of the genome, leading to
translocations, deletions and other genetic changes.

Methylation of cytosine strongly increases the rate of C to T transition mutations and
is thought to be responsible for about one third of all disease-causing mutations in the
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germline [33, 102]. In somatic cells, gene body methylation is a major cause of gene muta-
tions in tumor suppressor genes, such as TP53, which encodes the p53 protein [65]. Also,
it was demonstrated for numerous tumor-suppressor genes that hypermethylation of a CGI
promoter is associated with gene silencing [34]. Cancer-speci�c methylation patterns in
selected gene promoter sequences were found to correlate with clinical outcomes, and these
patterns were named CpG island methylator phenotype (CIMP) [112]. This phenomenon
is presented in more details in Chapter 7.

Other epigenetic modi�cations and the expression levels of epigenetic genes can also be
used to stratify disease subtypes, severity, treatment responsiveness or to predict clinical
outcomes. For example, H3 acetylation and H3K9me2 can discriminate between cancerous
and nonmalignant prostate tissue, also, H3K4me3 can predict the recurrence of prostate-
speci�c antigen accumulation after prostatectomy [45]. EZH2 expression is an indepen-
dent prognostic marker that is correlated with the aggressiveness of prostate, breast and
endometrial cancers [12]. Expression of the DNA repair gene O(6)-methylguanine-DNA
methyltransferase (MGMT) antagonizes chemotherapy and radiation treatment [122].

1.2.1 Epigenetic therapies

In addition to the promising role of epigenetics for diagnosis and prognosis, epigenetic
mechanisms are currently under investigation as potential targets in the treatment of can-
cers. In general, one can distinguish between drugs that target regulators of epigenetic
patterns (e.g. DNMTs and HDACs) and those tailored to speci�c mutations in epigenetic
genes (e.g. IDH1 R132H).

DNMT inhibitors, such as the cytosine analogs 5-azacytidine and its close derivative
decitabine, are hypomethylating agents routinely used in clinical settings. 5-azacytidine is
recommended as the �rst-line treatment of high-risk myelodysplastic syndromes (MDS) [49,
126]. Decitabine is also used in the treatment of MDS [37]; it has recently been approved
for treatment of acute myeloid leukemia (AML). HDAC inhibitors form another group of
epigenetic drugs with clinical approval. Examples for such include vorinostat [86] and ro-
midepsin; the latter is successfully administered to patients with refractory or relapsed pe-
ripheral T-cell lymphoma [31]. Although the clinical e�cacy of these compounds is already
established, the exact mechanisms by which anti-tumor responses are triggered remains un-
clear. For example, inhibition of DNA methyltransferases leads to passive demethylation
of the genome in treated cells (upon cell division), however, the link between this event
and reduced �tness of tumor cells remains elusive. For HDAC treatments, the molecular
targets of inhibition are less clearly de�ned than for the DNMT inhibitors, due to the many
subtypes of potentially targeted HDAC enzymes.

An interesting novel approach is the development of an inhibitor for AGI-5198 (a mu-
tant form of the IDH1 gene), which selectively blocks the activity of the protein and leads
to growth suppression of cultured cells in soft agar and of mouse xenografts. AGI-5198
treatment does not change the global DNA methylation patterns, however, dimethylation
and trimethylation marks of H3K9 are a�ected, leading to changes in the expression of
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Figure 1.2: Examples of techniques developed for the pro�ling of DNA modi�cations, his-
tone modi�cations and chromatin remodeling. The timeline indicates the year
in which a technique was used for the �rst time in a cancer study. The ver-
tical axis denotes the throughput of an assay (base pairs per sample), and
the color intensity indicates the total number of cancer samples and cell lines
interrogated by the technique.

genes involved in astroglial di�erentiation [93].

It is important to note that epigenetic drugs hold a strong potential, but they alone
cannot provide a cure for cancer. To date, clinical studies in lung cancer involving only
hypomethylating or HDAC inhibition agents show disappointing results [74].

1.2.2 Interplay of mechanisms

Many other lines of evidence lead to the conclusion that focusing on a single epigenetic
mark provides very limited understanding and power for clinical application. For example,
the "cross-talk" between DNA methylation and histone acetylation, both driven at least
partially by environmental stimuli, is likely involved in the process of gene transcription
and aberrant gene silencing in tumors [115]. Iorio et al. describe intricate connections be-
tween microRNAs, transcription factors, DNA methylation and histone modi�cations [62].
Shen and Laird provide an excellent overview on the cooperative workings of genetics and
epigenetics in cancer, accompanied by many examples of known genetic alterations by
epigenetic regulators in di�erent tumor types [101]. Although the focus of this thesis is
predominantly on methylation data, the studies presented here should be viewed in the
larger context of the symbiotic relationship between genetic and epigenetic mechanisms.

1.3 Technologies for quantifying DNA methylation

Recent advances in microarray and sequencing technologies make the genome-wide pro�l-
ing of DNA methylation and histone modi�cations feasible, even in cohorts that contain
hundreds or thousands of samples [69]. Figure 1.2 shows the time of introduction and the
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rapid development of new methods in the past two decades. Here, the focus is on assays
used in the studies described in this work. A few other promising and well established
technologies for the quanti�cation of DNA methylation are brie�y mentioned. A recent
review by Plass et al. provides a comprehensive overview and comparison of all epigenetic
assays presented in Figure 1.2 [90].

1.3.1 Affinity enrichment

A�nity enrichment of methylated fragments using antibodies speci�c for 5mC or using
methyl-binding proteins with a�nity for methylated native genomic DNA have been used
as powerful tools for comprehensive pro�ling of DNA methylation in the human genome.
A�nity puri�cation of methylated DNA was �rst achieved using the methyl-binding protein
MeCP2 [35]. The general technique is referred to as MeDIP [119], mDIP [67] or mCIP [129]
and consists of two stages. First, methylated regions are enriched by immunoprecipitation
of denatured genomic DNA with an antibody speci�c for methylated cytosine. As a second
step, the captured DNA is hybridized to a microarray. In recent years, the hybridization
step is usually replaced by second generation sequencing. In this case, the name of the
protocol gains the su�x "-seq", e.g. MeDIP-seq, and these techniques are analyzed in this
work.

One improvement over the MeDIP-seq technology is the MethylCap (Methylation Cap-
ture) assay developed by Brinkman et al. [24]. The approach consists of capture of methy-
lated DNA by the methyl-binding protein domain (MBD) of MeCP2, and subsequent
next-generation sequencing of eluted DNA. As a �rst step, the isolated genomic material
is fragmented using sonication to an average length of 300 base pairs. The DNA fragments
are then captured by a GST-MDB fusion protein and paramagnetic beads in a low salt
concentation. After removal of the supernatant (the �ow-through), NaCl gradient is used
to wash and eluate genomic fragments from the immobilized GST-MBD. Retained DNA
fragments are sequenced in up to three consecutive steps with increasing salt concentra-
tions.

1.3.2 Quantitative sequencing assays

Treatment of denatured DNA with sodium bisul�te rapidly induces deamination of un-
methylated cytosine bases, but has a very weak e�ect on the methylated residues. This
discovery enabled the design of protocols that provide unprecedented single-base resolu-
tion of the methylation state in individual DNA strands [53]. Here, we brie�y mention
the modern bisul�te sequencing assays for genome-wide methylation measurement. For
�nancial reasons, most of these techniques are applied on comparatively small sample sets,
however, their high resolution and reproducibility ensures their ever wider application in
the near future.

Whole-genome bisul�te sequencing (WGBS) [73] and tagmentation-based whole-genome
bisul�te sequencing (TWGBS) [2] are used to measure the methylation level of almost every
CpG in the genome. Single-base DNA methylomes are obtained by treating genomic DNA
with sodium bisul�te to convert cytosine, but not methylcytosine, to uracil, and subsequent
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high-throughput sequencing. The tagmentation-based approach uses adapted transposase-
based in vitro shotgun library construction (called tagmentation) for whole-genome bisul�te
sequencing, which allows the protocol to be applied to very limited amounts of starting
material: 30 ng of DNA, compared to 5 µg for WGBS.

The large-scale random approach termed reduced representation bisul�te sequencing (RRBS)
allows for quantifying the methylation of a substantial subset of CpG sites in the genome [78].
The method is based on size selection of fragments digested by a methylation-insensitive
enzyme to generate a 'reduced representation' of the genome of a strain, tissue or cell type.
Restriction fragments, 500 to 600 base pairs in length, are equipped with adapters and
treated with bisul�te, PCR ampli�ed, cloned and sequenced.

1.3.3 Microarray-based assays

Illumina adapted the genotyping assays implemented on a BeadArray platform to measure
methylation state. Similarly to the methods described above, DNA is �rst bisul�te treated.
The converted molecules are used in a whole-genome ampli�cation reaction, before being
enzymatically fragmented, precipitated and re-suspended in hybridization bu�er. The re-
sulting DNA fragments are hybridized on a genotyping microarray speci�cally designed for
C/T polymorphism. After hybridization, the array is "[...] processed through a primer ex-
tension and an immunohistochemistry staining protocol to allow detection of a single-base
extension reaction" [16, 17].

The GoldenGate DNA methylation assay interrogates the methylation status of 1,536
CpGs located in the promoters of 808 selected genes [17]. This panel consists of genes in-
volved in various processes, including, among others, imprinting, signaling cascades, DNA
repair, di�erentiation, cell cyle and apoptosis. It includes many known oncogenes and tu-
mor supressors, making the assay particularly useful in studies involving cancer predisposi-
tion, progression and metastasis. Two pairs of probes are dedicated to each targeted CpG:
an allele-speci�c oligonucleotide (ASO) and locus-speci�c oligonucleotide (LSO) probe pair
for the methylated state of the cytosine base and a corresponding ASO-LSO pair for the
unmethylated state. This probe design is known as In�nium type I. A notable number
of probes in the GoldenGate assay overlap with single-nucleotide polymorphisms (SNPs),
which may interfere with DNA methylation analyses [25].

The In�nium HumanMethylation27 BeadChip (also referred to as In�nium 27k) is a sig-
ni�cant improvement over the GoldenGate assay in terms of genomic coverage [16]. This
array contains over 27,578 pairs of probes targeting CpG dinucleotides in the proximity of
the transcription start sites of 14,475 genes and in 110 miRNA promoters. In contrast to
GoldenGate, In�nium 27k includes a probe pair for only one strand of each targeted CpG
dinucleotide.

In�nium HumanMethylation450 BeadChip Kit (In�nium 450k) is the third generation of
Illumina's genome-wide DNAmethylation BeadChip. It facilitates high-throughput methy-
lation pro�ling of 482,421 CpG sites and 3,091 cytosines in a non-CpG context [15]. This
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Figure 1.3: Distributions of CpG types covered by In�nium microarrays. The interrogated
CpGs are categorized based on the genomic region into which they fall. Genes
and 3' UTRs are de�ned based on RefSeq transcripts. Promoters are the regions
spanning 2 Kb upstream and 1 Kb downstream of the transcription start sites
of a transcript.

array introduces a new probe design � type II � which uses only one probe per locus and
is particularly suited to regions of low CpG density. The methylation state of the targeted
CpG dinucleotide is determined via single base extension with a labeled nucleotide using
red and green color channel for unmethylated and methylated cytosine, respectively. The
array also contains probes dedicated to measuring the e�ciency of the chemical reactions at
di�erent steps of the protocol � bisu�te conversion, ampli�cation, hybridization and others.
One slide contains 12 microarrays, allowing the interrogation of up to 12 samples in parallel.

Figure 1.3 shows the comparative distributions of targeted CpG dinucleotides by the
microarray platforms described above. The promoter-biased coverage of the microarrays
inevitably in�uences the questions addressed in the methylation studies that rely on these
assays.

1.4 Statistical methods for the analysis of epigenetic data

The diversity of assays for measuring DNA methylation is a useful toolbox for research
on epigenetic mechanisms, but this also presents unique bioinformatic challenges in terms
of quality control, data visualization and statistical analyses [21]. This section brie�y
describes the major facets in the analysis of enrichment- and microarray-based methylation
data, and then introduces the machine learning repertoire used in this thesis. More detailed
discussions on quality control and data visualization are presented in Chapters 3 and 4,
respectively.
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1.4.1 Analysis of enrichment-based methods

Sequencing the selected DNA fragments and aligning the reads to a reference genome pro-
duces a global map showing di�ering densities of fragments in di�erent genomic regions.
The exact number of fragments found at a speci�c locus depends on the degree of methy-
lation of this region in the studied cells, but also on the CpG density of the regions of
interest, the amount and quality of the input DNA material, the con�guration of the se-
quencing machine, and a host of other factors. For this reason, the count of overlapping
fragments alone cannot be used as a reliable measure for the degree of methylation at a
given locus. Chapter 3 introduces some commonly applied normalization techniques, as
well as approaches for inferring methylation degree as a percentage.

1.4.2 Analysis of DNA methylation microarrays

Like any other microarray technology, the �rst step in extracting the methylation data
is image processing of the array. This is performed by vendor provided software and
quanti�es the intensities for methylated and unmethylated signals in every interrogated
locus. The absolute methylation value in Illumina's microarrays is referred to as β value
and is calculated by the formula:

β =
max(IM , 0)

max(IM , 0) + max(IU , 0) + 100
∈ [0, 1)

where IM and IU are the signal intensities of the methylated and unmethylated probes
(or color channels in type II probes), respectively. A β value close to 0 indicates lack of
methylation, whereas β values near 1 stand for full methylation. Another representation
is the M values:

M = log2
max(IM , 0) + 1

max(IU , 0) + 1

Note that M is a continuous variable that can in theory take on any real value. It is
not directly interpretable in terms of a methylation percentage, however, it shows more
statistical power when identifying di�erentially methylated loci [42, 131].

In contrast to microarray expression studies, genome-wide DNA methylation measure-
ments are relatively recent, and there is no consensus on statistical methodologies to be
applied when working with this type of data. This is partially because of the non-normal
distributions of methylation values obtained from microarrays. The In�nium 450k presents
an additional challenge for normalization, due to the presence of two probe types, each one
with a distinct bias [39]. This issue is discussed in more details in Chapter 3. The follow-
ing section focuses on working with normalized methylation values. It brie�y introduces
several statistical methods and comments on their applicability for DNA methylation data.

1.4.3 Machine learning methods

Diagnosis and prognosis are examples of prediction problems, in which an unknown out-

come (e.g. therapy resistance) needs to be predicted based on measured properties of an
object, referred to as features. A mathematical model constructed to predict an outcome
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is a prediction model. The general branch of arti�cial intelligence that concerns learning
and prediction is known as machine learning or statistical learning. A more precise de�-
nition is that prediction models target the problem of supervised learning. Given a set of
observations in the feature space with known outcomes, a model's parameters are adjusted
such that the predictions are close to the true outcomes. This process is referred to as
training. Later, the trained model can be used for predicting the outcomes of previously
unseen observations.

In epigenomic studies, the features are usually numeric in their nature; examples for
such include degree of methylation or of a histone modi�cation. When the outcome is also
quantitative, e.g. age, the prediction is a regression. On the other hand, if the outcome is
categorical, e.g. gender, we speak of models for classi�cation, in short � classi�ers.

A large variety of methods for regression and classi�cation have been developed in the
past decades, and the machine learning �eld continues to expand at an impressive rate.
Below, we focus on the machine learning techniques adapted and used in later chapters,
and provide a brief introduction to each of them. Much more detailed explanations, in-
cluding comparisons, discussions on the statistical power, applicability and interpretation
are available in [57], as well as in the references given in each section.

Linear models

Given a vector of input features XT = (X1, . . . , Xp), a linear model predicts the outcome
Y via the formula:

Ŷ = β̂0 +

p∑
j=1

Xj β̂j

One measure for the performance of a regressor is the residual sum of squares (RSS),
de�ned as:

RSS(Ŷ , Y ) =
N∑
i=1

(ŷi − yi)2

where y1, . . . , yN are the true outcomes of N observations, and ŷ1, . . . , ŷN are the pre-
dicted values for the outcome. If X = (xij) is an N × p matrix storing the feature values
of N data points, and Y = (y1, . . . , yN ) are their corresponding outcomes, the coe�cients
of a linear model that minimizes the RSS error metric are de�ned as:

β̂ =
(
β̂0, β̂1, . . . , β̂p

)T
= arg min

β


N∑
i=1

yi − β0 − p∑
j=1

xijβj

2
The value of β̂ can be analytically derived which guarantees that the training process is

fast and e�cient.

Lasso method for linear regression
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The lasso is a coe�cient shrinkage method applied on linear models. Using the notation
introduced above, we can de�ne the lasso estimate by

β̂lasso = arg min
β

1

2

N∑
i=1

yi − β0 − p∑
j=1

xijβj

2

+ λ

p∑
j=1

‖βj‖


The formula above is the Lagrangian form of the estimate, and λ is the penalty param-

eter, that is, the weight of the linear constraint on coe�cient values. This constraint is
also referred to as L1-regularization because it e�ectively places a limit on the L1 norm of
the model coe�cients. Computing the lasso solution is a non-linear optimization problem
but e�cient algorithms exist that calculate simultaneously the entire path of solutions for
all applicable values of λ. Su�ciently large values of the parameter cause some of the
model coe�cients to be set to zero, e�ectively removing the corresponding features from
the model. This property of the lasso makes it a valuable method for feature selection
which often leads to noise reduction and therefore more accurate models. Moreover, the
resulting models are better interpretable as there are less features on which the outcome
depends. In the signal processing literature, this method is known as basis pursuit [28].

Lasso linear regression models are applied in Chapter 4 to predict patient's age based
on methylation in blood.

L1-regularized logistic regression for classi�cation

Logistic regression is an approach used for classi�cation tasks. Given K classes, the
probability of every class k ∈ K at a point x is modeled by a sigmoid function:

Pr(G = k|X = x) =
exp(βk0 + xTβk)∑K
`=1 exp(β`0 + xTβ`)

Similar to the lasso method, the L1 shrinkage can be applied to logistic regression. In
this case, provided with outcomes of g1, . . . , gN (where gi ∈ {1, . . . ,K}) at N points in
the feature space, training an L1-regularized logistic regression (RLR) model amounts to
identifying the coe�cients that maximize the following log-likelihood:

max
{β0k,βk}K1

[
N∑
i=1

log Pr(gi|xi) −
λ

2

K∑
k=1

‖βj‖

]
An application of RLR using methylation data is presented in Chapter 7, where a model

is trained for predicting primary origin of a metastatic sample.

Elastic nets for classi�cation

The elastic net method was designed for (and shown to perform well in) genomic appli-
cations, where the number of features greatly exceeds the number of analyzed samples [52].
In these scenarios, L1-regularized classi�ers tend to show good performance by using only
some of the most informative features. However, this penalty leads to very unstable solu-
tions in the presense of multiple correlated and informative features. The "choice" which
feature is to be included in the model becomes strongly dependent on the training set. In
order to overcome this limitation, an elastic net combines the L1 penalty regularization
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and L2 (ridge) penalty, with a mix parameter α that determines their relative weights.
Thus, the regularizer has the form2:

λ

p∑
j=1

(
α |βj |+

1− α
2

β2j

)
Elastic nets were successfully applied in a variety of scenarios, including, among others,

studies in the �elds of genetic epidemiology [56, 11] and mass spectrometry [128, 108].
Zhuang et al. [131] compared the performance of common feature selection and classi-
�cation methods on In�nium 27 datasets, and showed that elastic nets show very good
performance for classi�cation, along with support vector machines, introduced below.

Support vector machines for regression and classi�cation

The support vector machines (SVMs) are linear classi�ers based on the concept of an
optimal separating hyperplane between two classes. When the two categories are separa-
ble, optimality is de�ned as maximizing the margin between the decision boundary and
the closest data point(s). In the non-separable case, at least one data point lies on the
wrong side of the margin for any choice of separating hyperplane and margin width M .
Therefore, the linear boundary is chosen such that it maximizes the margin, subject to a
limitation on the total distance of points lying on the wrong side.

The optimization problem of a linear SVM is given in the inequality below.

yi
(
xTi β + β0

)
≥M (1− ζi)

subject to

∀i : ζi ≥ 0,
∑

ζi ≤ constant

In the formula above, the value ζi quanti�es each misclassi�ed point. The value can be
thought of as the degree of misclassi�cation, measured in margin units. Therefore, limiting
the sum

∑
ζi translates into placing a bound on the total amount by which predictions

fall on the wrong side of the decision boundary.

The beauty of support vector classi�ers lies in their property to e�ciently separate
classes in a transformed feature space without explicitly de�ning the transformation it-
self [23]. This is achieved by using a kernel � a symmetric positive semi-de�nite function
that operates on two data points in feature coordinates and its outcome is equivalent to an
inner product of its transformed operands. The transformed space is often of much higher
dimensionality, compared to the original feature space. In such a case, a separating hyper-
plane in the transformed space translates to a non-liner decision bondary in the feature
space. This property, along with its good performance, makes SVM one of the widely used
machine learning techniques in practice [64, 27].

SVMs are used in Chapters 4 and 7 for predicting age and tumor type, respectively.

2The provided equation is the regularization expression implemented in the R package glmnet.
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1.5 Outline

This work outlines analysis steps in several projects studying the DNA methylation pro�les
of thousands of samples in total. Although every project is unique in its combination of
data source, heterogeneity, quality, time frame and goals, they all follow similar work�ows.
First, Chapter 2 introduces these studies, as well as the datasets which are referred to
in subsequent chapters. The role of this chapter is also to reveal the common context in
the analyses presented later. Starting from Chapter 3, the structure of this thesis mimics
the steps performed in each of these analyses, whereby one chapter is dedicated to an
important stage (or milestone) in the studies. Every chapter is designed to highlight the
similarities between the di�erent studies and also to present distinct techniques that target
methylation data from a speci�c platform.

Not surprisingly, the sequence of chapters partially overlaps with the work�ow presented
in a recent review on the analysis and interpretation of methylation data [20]. Chapter 3
addresses the important question of quality control beyond the assay-speci�c procedures
performed in the laboratory. Chapter 4 discusses the observed variability in methylation
and shows simple techniques applied to reduce the complexity of the data and provide
a global overview of a cohort. Chapters 5 and 6 change the direction to data mining
and present approaches that guide the search for di�erentially methylated and phenotype-
associated genomic sites or loci. Chapter 7 illustrates the predictive power of DNA methy-
lation in the context of tumor diagnosis. Finally, Chapter 8 reiterates the major �ndings
and presents interesting directions for future research.

Linguistic style

For reasons of consistency, this thesis follows the �rst person plural form ("we"). Unless
otherwise noted, algorithm design and all analyses are performed by the author himself.
General approach to a problem, parameter adjustments and interpretation of results are
always the outcome of discussions with collaborators.



2 Projects and datasets

This thesis presents details from several separate studies on DNA methylation, each operat-
ing on a di�erent set of DNA samples. The analyzed datasets are examined in the following
chapters and are referenced in multiple sections. For ease of reading, these datasets are
referred to by using short phrases: the GoldenGate, the colon cancer, the lung cancer, and
the TCGA dataset. Each of them is represented by a matrix that contains CpG sites (or
probes) as rows, and interrogated samples as columns. The methylation studies and these
sets are brie�y introduced below. Their usage in this thesis is summarized in Figure 2.2.

2.1 GoldenGate

In a collaboration with Agustín Fernández, Jose Ignacio Martin-Subero and others, we per-
formed extensive analysis on the methylation pro�les of a large collection of DNA samples
from normal tissues, primary and metastatic tumors, cell lines and samples from patients
with di�erent non-cancerous disorders [50]. The methylation was interrogated using Illu-
mina's GoldenGate assay. The �ltered dataset containing all 1,628 analyzed samples is
available at the NCBI Gene Expression Omnibus (ncbi.nlm.nih.gov/geo), under accession
number GSE28094. We refer to this dataset as the GoldenGate dataset later in this thesis.

This large and heterogeneous collection of samples enabled us to study the methylation
patterns in di�erent contexts � methylation in normal (healthy) tissues, tumor-speci�c
methylation, cancer cell lines and non-cancerous diseases. In the following paragraph, we
brie�y outline some of the �ndings.

The dataset contains 424 samples from normal tissues, and we observed strikingly con-
sistent methylation patterns across individuals in almost all primary tissues. Indeed, if we
group the samples by tissue type, the between-group distances are markedly larger than
the within group distances (see Figure 2.1). Inter-invidual methylation di�erences at CGI-
associated loci were signi�cantly lower than the di�erences at CpGs outside islands. We
also studied the impact of aging on the methylation pro�les of leukocytes and colon tissue.
We identi�ed sets of probes that gain and lose methylation with age and con�rmed previous
�ndings on this topic. Chapter 4 discusses inter-individual and age-speci�c methylation in
details.

The largest fraction of samples in this dataset is cancer-related, including 855 primary
tumors, 50 metastatic samples, 25 premalignant lesions, 82 cancer cell lines and 42 cancers
of unknown primary origin. Interestingly, a tumor-type methylation signature is present
even when the tissue-type speci�c probes are removed. In general, tumors are characterized
by higher methylation variability. Tumor progression is accompanied by gain of methyla-
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http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28094
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Figure 2.1: Heatmap showing mean within- and between-group Manhattan distances the
normal tissue samples from the GoldenGate dataset.

tion within CGI-associated promoters and loss of methylation outside CGIs. Examples for
such observations are presented in Chapter 4.

Overall, disruption of DNA methylation patters appears to be a global phenomenon not
only in cancer, but also in other diseases in human. The techniques we applied to de�ne
di�erential methylation, quantify di�erences, identify and characterize loci with disease-
speci�c methylation are very similar to the approach taken in our study on tumor-speci�c
methylation. Since this thesis focuses on speci�c bioinformatic approaches, we do not cover
the analysis of non-cancerous diseases in details.

2.2 Colon cancer

The colon cancer dataset is a collection of 50 MethylCap-seq samples comprising 25 tumor-
normal pairs from colorectal cancer patients [104]. One sample pair was ignored due to
potential mislabeling, details are provided in Chapter 3. Clinical annotation of the an-
alyzed patients is available in Supplementary Table S1. This study was a collaboration
with Femke Simmer, Arjen Brinkman and others. We aimed at and identi�ed potential
biomarkers for colorectal cancer diagnosis, and made important observations related to the
genome-wide methylome of colon cancer.

We identi�ed 184 frequently di�erentially methylated regions, among them were novel
hypermethylated gene promoters, some of which we validated using pyrosequencing 1.

1Selection of fragments for validation and the validation procedure itself was performed by Femke Simmer
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2.3 Lung cancer

The lung cancer dataset comprises over 450 lung cancer samples and 25 normal lung con-
trols, all interrogated by In�nium 450k [96]. This study is the result of a collaboration
with Fabian Müller and several members of Manel Esteller's lab at the Bellvitge Biomed-
ical Research Institute in Spain. We attempted to stratify non-small cell lung carcinoma
into methylation-speci�c subtypes; we also identi�ed and validated a prognostic panel
on relapse free survival, consisting of �ve gene promoters. The dataset with normalized
methylation β values is available at the NCBI GENE Expression Omnibus under accession
number GSE39279.

This thesis includes analyses that are not presented (and nicely complement the �ndings)
in the publication. For example, Chapter 7 presents an approach to the identi�cation of
methylome-speci�c tumor subtypes and studies the bimodality properties of the interro-
gated CpGs.

2.4 RnBeads

Almost every section in this thesis is backed by analysis performed using RnBeads � an
R package for comprehensive analysis of DNA methylation data [10]. Being the initiator
of this software tool and one of its core developers, the author incorporated in its design
many of the aspects discussed in this thesis.

2.5 External datasets

In addition to the samples analyzed in each study, we used external datasets to validate our
�ndings, enrich the annotation of identi�ed di�erentially methylated regions, or to apply
machine learning techniques and test their potential for clinical relevance. The largest
datasets from public repositories referred to in this thesis are listed below.

2.5.1 TCGA

The Cancer Genome Atlas (cancergenome.nih.gov) is a large consortium that was initiated
with the aim to systematically catalogue all genetic and epigenetic aberrations in dozens
of tumor types [30]. The molecular pro�ling performed at the participating institutions
includes measurements of copy number aberrations using SNP- and CGH-arrays; DNA
methylation using Illumina microarrays; exome, mRNA, protein and miRNA transcription
using microarray and sequencing technologies, and other forms molecular characterization.
As of January 2014, TCGA collects samples and characterizes 29 tumor types, the data for
16 of them can be used freely. The table below lists these tumor types. The study codes
shown below are used later in this thesis.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39279
http://cancergenome.nih.gov
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Code Tumor Type

LAML Acute Myeloid Leukemia
BRCA Breast cancer
KICH Chromophobe renal cell carcinoma
KIRC Clear cell kidney carcinoma
COAD Colon and rectal adenocarcinoma
SKCM Cutaneous melanoma
GBM Glioblastoma multiforme
HNSC Head and neck squamous cell carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
OV Ovarian serous cystadenocarcinoma
THCA Papillary thyroid carcinoma
READ Rectal adenocarcinoma
STAD Stomach adenocarcinoma
BLCA Urothelial bladder cancer
UCEC Uterine corpus endometrial carcinoma

2.5.2 ENCODE

The Encyclopedia of DNA Elements (ENCODE) consortium is an international collabora-
tion of research groups with the goal to build a comprehensive list of functional elements
in the human genome. These include elements that act at the protein and RNA levels, and
"regulatory elements that control cells and circumstances in which a gene is active" (en-
codeproject.org). The ENCODE consortium focuses on cell lines only. It initiates successful
collaborations between investigators with diverse backgrounds and expertise in the gener-
ation and analysis of data, which has resulted in revolutionary discoveries on transcription
regulation [40], DNA accessibility [111], and chromatin states [58], among others. In this
thesis, we use ENCODE in Chapter 6, when we test for association between di�erentially
methylated regions and histone marks.

http://www.encodeproject.org
http://www.encodeproject.org
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Figure 2.2: Usage of datasets in the chapters of this thesis. The chapters are represented
by horizontal arrows.





3 Quality control and normalization of
methylation data

This chapter introduces part of the functionality of RnBeads in its �rst two sections
and accompanies the descriptions with examples from microarray-based DNA methyla-
tion data. Work on quality control of methylation data started in collaborations within
the CANCERDIP consortium [50], and was further extended during the development of
RnBeads [10]. The Chapter begins by listing available algorithms for normalization and
follow with a description of Greedycut � our approach to �ltering low quality CpG sites
and samples. We then brie�y introduce the aspect of confounding factors, an integral
part of every epigenome-wide association study. Section 3.4 is not related to RnBeads.
It addresses enrichment-based methylation data, and compares several approaches to nor-
malization. These are the initial steps in the analysis of the colon cancer study [104] �
another collaboration within CANCERDIP. The last section presents a brief summary.

3.1 Probe types and DNA regions

Like any other microarray technology, the In�nium methylation data is prone to multi-
ple sources of bias and requires careful quality control and normalization. As mentioned
in Chapter 1, In�nium 450k includes control probes that are used as indicators of many
aspects of the reactions. The signal intensities of these probes aid the processes of qual-
ity control by quantifying the e�ciency of bisul�te conversion, staining, hybridization,
polymorphism, base extension and target removal. Cross-hybridization in particular is po-
tentially a major issue in In�nium arrays [29], and is a possible explanation for misleading
results in published studies [19]. In addition to control probes, the In�nium 450k assay
includes 65 SNP-speci�c probes that can be used to estimate genetic similarity and identify
potential sample mislabeling.

The standalone application GenomeStudio, developed by Illumina, provides a simple
algorithm for background correction and normalization, which is also implemented in the
R packages methylumi [114] and min� [75]. More sophisticated normalization methods
that take into account the di�erent chemistry of the two probe types, include the peak
based correction [39], subset-quantile within array normalization [75], beta mixture quan-
tile dilation [109] and others [89]. Published systematic evaluations of these techniques
reach slightly di�erent conclusions, but they agree on the need for advanced normaliza-
tion algorithms to be applied before data exploration or targeted search for di�erentially
methylated sites and regions [76, 89].

The control probe intensity signals can be studied using our R package RnBeads, along
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with the values of the SNP-encoding probes. Furthermore, RnBeads supports all normal-
ization methods described above, mostly through integration with existing R packages1.

3.2 Filtering probes and samples

In addition to normalization and quality control through visual inspection, RnBeads in-
cludes a �exible approach to removing potentially biased or undesired sites and samples
from the studied dataset. Filtering out uncertain measurements is the most common ap-
proach for quality control in microarray-based methylation studies [20]. In its �ltering
modules, RnBeads applies a con�gurable sequence of �ltering steps, each targeting a spe-
ci�c quality metric or bias. Some examples for �ltering rules include: (1) removing sites
that overlap with known SNPs, (2) removing low quality sites and samples (the de�nition
of quality is described below), (3) ignoring sex chromosomes, (4) removing sites with many
missing values or (5) low methylation variance. Step 1 is implemented by a procedure
suggested in a recent study on pediatric acute lymphoblastic leukemia [83]. The remainder
of this section focuses on the notion of unreliable measurements and the RnBeads imple-
mentation of Step 2.

Every measurement in Illumina methylation microarrays is accompanied by a detection
p-value that quanti�es the reliability of the methylation signal. High p-values are indicative
of bad measurements, for example, due to incomplete hybridizations. In the GoldenGate
dataset, we examined two aspects of �ltering out probes and samples based on the detec-
tion p-values � selecting a p-value threshold to de�ne an unreliable β value measurement,
and a cuto� (fraction of unreliable measurements) to de�ne low quality probe or sample.
We applied a threshold value of 0.01 as it leads to a clear distinction between reliable and
unreliable β values, and a cuto� of 5%. Thus, we �rst removed all probes that contain
detection p-values above 0.01 in 5% or more of the samples. As a second step, we removed
all samples that contain detection p-values above 0.01 in 5% or more of their (remaining)
probes. The result of this procedure is visually depicted in Figure 3.1.

The motivation behind the steps described above is to achieve a dataset with a required
purity (maximum fractions of unreliable measurements per probe and per sample). Let us
formally de�ne the problem of �ltering a dataset based on the discussed notion of reliability
of its measurements.

Problem P3.1 Given an indicator matrix A:

A
m×n

= (aij) |i={1,...,m},j={1,...,n} ∈ {0, 1} (3.1)

where aij = 1 denotes an unreliable measurement of probe i in sample j, �nd a maximum
induced submatrix Bm′×n′ = (bij) of A such that every row and every column of B have
an impurity at most a threshold t ∈ [0, 1]:

1Control probe intensity plots, as well as work on integrating most of the normalization methods into

RnBeads has been performed by Pavlo Lutsik.
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Figure 3.1: Color-coded representation of the matrix of all detection p-values in the Gold-
enGate dataset. Bad p-values (above the threshold of 0.01) are depicted as red
points, all other measurements are yellow. Both probes (rows) and samples
(columns) are listed in descending order with respect to the number of bad
p-values they contain. The blue lines show the approximate sections of the
matrix that are ignored after applying the selected cuto� of 5%.

∀i = 1, . . . ,m′ :
n′∑
j=1

bij ≤ t

∀j = 1, . . . , n′ :
m′∑
i=1

bij ≤ t

It is important to note that there is not necessarily a unique submatrix B that is a solu-
tion to the above problem. Finding all solutions is a computationally intensive task. More-
over, additional criteria need to be de�ned in order to present one of the solutions as the �l-
tered matrix to be operated on in downstream analysis. The case of potential multiple solu-
tions is best illustrated through an example, as the one given in Figure 3.2. Before showing
the computational complexity of the problem, we are going to reformulate it as a problem in
graph theory. The indicator matrix Am×n in Equation 3.1 can represent a bipartite graph
G = (U,W,E), where U = {u1, . . . , um}, W = {w1, . . . , wn}, and uiwj ∈ E ⇔ aij = 0.
We are then searching for a maximum induced subgraph B = (U ′ ⊆ U,W ′ ⊆W,E′) of A,
such that: ∀u ∈ U ′ : degree(u) ≥ t |W ′| and ∀w ∈ W ′ : degree(w) ≥ t |U ′| for a given
t ∈ [0, 1]. A special case of this problem for t = 1 is well studied in the �eld of discrete
mathematics. It concerns �nding a maximum induced biclique in a bipartite graph, and
is shown to be NP-complete [87]. Moreover, �nding the number of maximum induced
bicliques is a #P-complete problem [68]. Zhang et al. recently presented a fast algorithm
for �nding all maximum bicliques in a bipartite graph, however, it is applicable to graphs
of sizes corresponding only up to a small fraction of the In�nium 450k probes [130].
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(a) (b) (c) (d) (e)

Figure 3.2: Maximum induced submatrices B, solutions to Problem P3.1 for an example
indicator matrix A of size 9 rows × 7 columns. Values of 1 are represented
by �lled blue circles, whereas empty circles denote values of 0. The threshold
t in the problem is set to 0.25. Induced submatrices are formed by removing
rows and/or columns of A, as depicted by horizontal and vertical red lines,
respectively.

For the reasons listed above, RnBeads does not search for a submatrix of pre-de�ned
purity when �ltering a dataset based on the reliability of its measurements. Instead, we de-
vised an algorithm that is motivated by viewing the process of �ltering probes and samples
as a prediction problem, and minimizes an error metric2. Brie�y, the algorithm iteratively
removes the probe or sample in the given dataset that contains the largest fraction of
unreliable measurements. The input of every step is a binary matrix storing the state of
every measurement, and the result is a matrix with smaller dimensions (one row or one
column less) than the input. The steps are performed until all remaining measurements
are reliable, or the resulting matrix is of size zero. The full run of the algorithm produces
a sequence of nested matrices, each storing the retained measurements after the corre-
sponding step. Of note, the algorithm often executes over a hundred thousand steps before
termination.

The outcome of every step can be put in a prediction framework � the retained mea-
surements are predicted to be reliable, and the removed ones are assumed to be unreliable.
We can therefore quantitatively de�ne the e�ciency of every step, for example, by cal-
culating the type I and type II errors. Greedycut computes sensitivity and speci�city at
every executed step, and then selects the outcome of the �rst step that maximizes a given
criterion on these metrics for prediction quality. By default, sensitivity and speci�city are
given equal weight, which amounts to selecting the point furthest away from the diagonal
on Figure 3.3. In principle, applying any criterion within the framework described here
produces a unique solution.

It is worth noting that Greedycut's usage is not restricted to microarray data only. The
algorithm can be applied to any methylation dataset in which measurement reliability can
be de�ned. In bisul�te sequencing data, for example, the coverage at every interrogated
CpG site is often used as an indicator of reliability.

2Collaboration with Jing Cui, who should also be credited with naming the procedure Greedycut.



3.2 Filtering probes and samples 35

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

S
en

si
tiv

ity

(a)

Unreliable measurements

Reliable measurements

Samples

Probes

0% 25% 50% 75% 100%
Fraction

Group

removed

retained

(b)

Figure 3.3: (a) Sensitivity and false positive rate calculated for every step of Greedycut in
a dataset of 765 breast cancer samples, obtained from TCGA. The red circle
marks the iteration that maximizes distance to the diagonal. (b) Summary of
retained and removed probes and samples after applying Greedycut.
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3.3 Batch effects

RnBeads uses both visual and statistical means to identify associations between the methy-
lation landscape of the dataset and the provided sample annotation. As a �rst step, princi-
pal component analysis and multi-dimensional scaling are performed and the inter-sample
distances are juxtaposed with the available annotation in an interactive manner through
visual properties, such as point color and shape. A more analytical approach performs tests
for association between a major principal component on one side and a sample annotation
column on the other side. Signi�cant results of these tests can be informative in two re-
spects. First, they can spot signals in the space of methylation values that are informative
of a sample phenotype. Second, they can identify sources of strong technical bias, such as,
for example, processing date, slide, or technician responsible for sample preparation. Such
undesired associations are referred to as batch e�ects and have potentially detrimental
e�ect on the power of the study when they remain undetected.

In addition, RnBeads checks for the presence of potential confounding factors by testing
every pair of sample properties (columns in the annotation table) for a signi�cant associa-
tion. The tests used to calculate a p-value given two properties A and B depend on their
data types:

• If both properties contain categorical data (e.g. tissue type and sample processing
date), the test of choice is a two-sided Fisher's exact test.

• If both properties contain numerical data (e.g. amount of starting genomic material
and age of individual), the correlation coe�cient between the traits is computed. A
p-value is estimated using permutation tests.

• If property A is categorical and property B contains numeric data, p-value for as-
sociation is calculated by comparing the values of B for the di�erent categories in
A. The test of choice is a two-sided Wilcoxon rank sum test (when A de�nes two
categories) or a Kruskal-Wallis one-way analysis of variance (when A separates the
samples into three or more categories).

Figure 3.4 shows the results of the pairwise annotation tests, performed on the glioblas-
toma samples from the TCGA dataset. All results are visualized in a coherent report,
providing systematic assessment of the associations present in the dataset.

It is important to note that the p-values calculated with RnBeads by the tests described
above are not corrected for multiple testing. We made this decision due to the speci�c
goal of this particular analysis, which is supposed to warn the users of confounders and
batch e�ects that could potentially a�ect downstream analysis. Hence it is the more the
conservative approach for RnBeads to omit multiple testing correction and to report all
potential confounders that reach statistical signi�cance in an uncorrected test. Also, this
systematic analysis is designed to produce warnings for possible overlooked associations
and it does not correct for batch e�ects3.
3Confounders can be incorporated in the di�erential methylation module, implemented by Fabian Müller.
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Figure 3.4: (a) Table of performed tests on pairs of traits in In�nium450k GBM samples
from TCGA. Test names (correlation + permutation test, Fisher's exact test,
Wilcoxon rank sum test and Kruskal-Wallis one-way analysis of variance) are
color-coded according to the legend given on the right-hand side. (b) Table
of resulting p-values from the performed tests on pairs of traits. Signi�cant
p-values (less than 0.01) are printed in pink boxes. Non-signi�cant values are
represented by blue boxes. White cells denote missing values.
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3.4 Quality control and normalization of enrichment-based
methylation data

This section focuses on methylation data obtained using a protocol for the enrichment
of methylated DNA fragments followed by sequencing. There are two main strategies to
undertake in the analysis of these data.

The �rst approach is to estimate methylation degrees using DNA methylation inference
software. The MEDME [88] and BATMAN [41] tools, among others, provide this function-
ality. In general, methylation inference requires careful calibration of model parameters
and/or signi�cant computational resources. In addition, a resolution of β values compa-
rable to the microarray-based approaches can be achieved only by deep coverage and high
quality alignment. Once absolute methylation is estimated, the analysis could follow the
steps for �ltering and batch e�ect identi�cation outlined in the previous section.

An alternative approach is to perform peak calling, that is, identify the genomic regions
with signi�cantly high number of fragments. The result of applying this procedure on
a dataset is a matrix containing the number of overlapping fragments with every peak
in every sample. For example, peak calling on the colon cancer dataset yielded 329,613
regions with a median length of approximately 2 Kb4. The following sections introduce
approaches to normalizing this matrix and apply them on the colon cancer dataset.

3.4.1 Normalization of tag enrichment

Here, we introduce four approaches to de�ning a measure of peak enrichments (heights).
All of them de�ne scores that are based on the read count (also referred to as tag count)
per peak. The tag count itself is considered to be the non-normalized quanti�cation for
peak height. There are two factors for normalization � peak width and inter-experiment
variability. Figure 3.5 shows a schematic representation of reads, aligned to the human
genome, which was used to calculate tag count. This �gure also introduces the notations
for tag count and total tag count used later.

We applied di�erent approaches to normalizing with respect to peak width and inter-
experiment variability separately and in concert. The resulting normalized scores � tag
occupancy, scaled tag count, scaled tag occupancy and tag density � are introduced in the
following sections.

Corrections for peak width

We applied two simple techniques to normalizing tag counts with respect to peak widths.
The resulting scores are introduced below.

Tag occupancy

4Alignment, peak calling and merging of overlapping peaks was performed by Arjen Brinkman.
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Figure 3.5: Schematic representation of a genomic region and all sequencing reads aligned
to it. Two peaks were called in this region. The horizontal arrow depicts the
DNA segment, and reads are represented by �lled rectangles. Every read is
extended to a fragment of length approximately four times the read length.
The directionality of the reads is shown within the rectangles. CR denotes the
number of reads aligned to a peak, that is, the tag count. TS quanti�es the
total number of aligned reads in an experiment. The curve above the DNA
arrow interpolates the histogram of aligned reads and thus gives an indication
of the tag counts per peak.

The measure tag occupancy is de�ned as the tag count normalized by the width of the
peak, measured in units of fragment lengths. Thus, the tag occupancy of region R in
sample S is de�ned as:

OR(S) = CR(S)× LM/LR

where CR(S) is the absolute read count in R, LM is the median read length, and LR is
the length of R. In the colon cancer study, for example, the median fragment length is 269
bp, which translates to occupancy of 0.269× CR(S)/LR.

Tag density

The relative read count, or tag density, of a region R in sample S is de�ned as:

DR(S) = CR(S)/(TS × LR)

where CR(S) is the absolute read count in R, TS is the total number of reads in sample S,
and LR is the length of region R in kilobases.

As can be seen from the de�nition above, tag density is identical5 to reads per kilobase per
million mapped reads (RPKM). RPKM is a widely used measure, introduced by Mortazavi
et al. for RNA-seq, which "facilitates transparent comparison of transcript levels both
within and between samples" [81].

5up to a constant factor
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Figure 3.6: Number of common peaks across all samples among the top K methylated
peaks per sample, as a function of K.

Corrections for experimental conditions

Including the total number of reads in the formula for tag density ensures that this score is
normalized also for inter-experimental variability. Essentially, correction for experimental
conditions involves the multiplication of a score by a sample-speci�c scaling factor. Tag
density sets this factor to T−1S .

We applied another method for inter-sample normalization which calculates scaling fac-
tors based on fully methylated regions. Brie�y, we �rst identify a set of peaks that are very
densely methylated in all experiments. Next, we calculate sample-speci�c scaling factors
based on the tag counts in these peaks. The scaling factors modify the scores in a way that
minimizes the observed inter-sample di�erences. In the �nal step, we apply each scaling
factor to the scores for all peaks in the respective experiment.

Common peaks

We �rst identi�ed a set regions whose dense methylation is of vital importance to every
somatic human cell. The procedure used to identify this set is described below.

We used tag occupancy as a measure of methylation degree and identi�ed the top K

most densely methylated peaks in every sample. We focused only on peaks of length up to
ten fragments located on autosomes. The rationale behind the exclusion of long regions is
that they are often the result of merging multiple overlapping peaks, and thus tend to have
a very heterogenous read coverage. Sex chromosomes were ignored because our dataset
consists of samples from both female and male patients. 203,818 regions were left for ex-
amination after applying these �ltering criteria. We next counted the number of common
peaks in all samples among the top K densely methylated peaks, for all values of K from
1 to 10,000. The results are shown in the Figure 3.6.

Our aim was to identify regions that are consistently fully methylated and exclude the
ones that exhibit cell type-speci�c methylation. The set of common peaks among the top
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Figure 3.7: Statistics on common peaks. Blue line shows mean values. The set of common
regions pointed to by the correlation-based suggestion is denoted by a red circle.

K methylated peaks is the estimation for these consistently methylated regions. It is im-
portant to achieve high sensitivity (speci�city is of lesser concern), therefore, we selected a
value for K after which the number of common peaks remains unchanged for the longest
range. We use the term k-based suggestion for this estimation. The suggested value for K
is 4,558 and the corresponding size of common peaks is 60.

The choice of K introduced above may seem somewhat arbitrary, especially since the
shape of the curve in Figure 3.6 does not re�ect the assumption of the applied heuristics.
For this reason, we examined the properties of the common peaks in general, and the se-
lected ones in particular. We next de�ned an alternative strategy for identifying regions
with ubiquitous methylation (described below). First, we studied the distribution of region
lengths of all nested sets of common peaks. As shown in Figure 3.7(a), there is no obvious
bias within the set of common peaks in terms of region length.

In case the set of common peaks identi�es consistently methylated regions, the pairwise
correlations between the samples are expected to be close to 1. Indeed, the distributions of
observed correlations in most tested sets of common peaks are tailed towards 1. In many
cases, all pairwise sample correlations are above 0.5. The correlation ranges are shown in
Figure 3.7(b).

This observation was used to generate another suggestion for the choice of number of
common peaks. We selected the set of size at least 10 with the most consistently high
correlations; in other words, the set with the highest value for minimum pairwise sample
correlation. We use the term correlation-based suggestion for this estimation. The sug-
gested value for K is 1,471 and the correponding size of common peaks is 21.

Scaling factors
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Figure 3.8: Agreement in scaling factors between suggestion strategies for a set of common
regions. Healthy samples are represented by green circles, and colon cancer
samples - by purple circles.

Given a set of common densely methylated regions, we computed sample-speci�c scaling
as follows: First, we calculated the median tag count for each of the common peaks. Next,
we examined the corresponding tag counts for these peaks at every sample individually
and calculated the coe�cients for every peak that rescale its count to the corresponding
peak median. In the �nal step, we selected the median scaling coe�cient for every sample
as its scaling factor. The resulting factors are in the range 0.5 to 3 (see Figure 3.8) and
are in a strong agreement with the range of values observed for total number of reads per
sample. Moreover, the two suggestion strategies produce remarkably concordant sample
speci�c scaling factors (Figure 3.8). We used the k-based suggestion to de�ne the scores
scaled tag count and scaled tag occupancy as follows:

SCR(S) = CR(S)× FS
SOR(S) = OR(S)× FS

where CR(S) is the absolute read count in R, OR(S) is the occupancy of R, and FS is the
scaling factor for sample S.

Score comparison

We compared the di�erent scores by plotting the values at the common densely methy-
lated peaks in all samples. These values are shown in Figure 3.9. Not surprisingly, the
inter-sample agreement is best for the scaled scores at these regions. Note that scaled tag
occupancy and tag density show similar behaviour, despite the fact that they operate in
very di�erent ranges.

We also compared the distributions of pairwise correlation coe�cients at the common
methylated peaks (Figure 3.10). The very high correlations in tag counts visibly decrease
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Figure 3.9: Line plot showing the score values at the common densely methylated peaks.
The peaks are listed on the horizontal axis and are given in no speci�c order.
Grey thin lines denote score values at individual samples. The peak median
value is visualized by a blue line.
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Figure 3.10: Pairwise sample correlations of scores at the common densely methylated
peaks. Distributions are visualized by box plots.

in measures that correct for peak width. Scaling does not change the correlation values
because it essentially multiplies the methylation vector (of a sample) by a constant.

It is important to note that tumor samples have in general a better read coverage than
the corresponding healthy ones. However, when the score is corrected for both peak width
and inter-sample variability, the densely methylated peaks in normal samples tend to have
higher scores than the "leading" peaks in cancer samples. Since the vast majority of
the regions are unmethylated and tag densities are relative scores within a sample, the
discrepancy at the high methylation scores is compensated by assigning slightly lower
values for the unmethylated peaks in normal samples.

3.5 Summary

Di�erent aspects of quality control and �ltering were presented in this chapter. The design
of the In�nium 450k array incorporates a selection of control probes that aid the process
of quality checks for the e�ciency of bisul�te conversion, hybridization and other chemical
reactions performed in the assay. RnBeads visualizes these readings and builds on top by
providing a highly con�gurable �ltering pipeline. A notable step in this pipeline is the
Greedycut algorithm for automatic removal of low quality samples and sites. We also pre-
sented the comprehensive approach of testing for associations implemented in RnBeads.
This approach allows its users to identify or con�rm potential batch e�ects, confounding
factors, and other signals encoded in the methylation pro�les of the analysed samples.
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Finally, four normalized scores for enrichment-based methylation datasets were intro-
duced. These metrics are further compared in the following chapters of this work.





4 DNA methylation profiles

This chapter continues the exploratory analysis style of Chapter 3 and uses the GoldenGate
dataset in its examples. Most of the results presented here are also included in the publi-
cation that resulted from this collaboration [50]. The �rst section presents an approach to
comparing the methylation variability of sample groups. The following one addresses the
question of methylation changes with age and the power of DNA methylation to predict
patient's age. The question of age-dependent methylation might seem unrelated to this
thesis. However, a growing body of evidence suggests that DNA methylation in human
exhibits a drift with age that could contribute to phenotype, including cancer. Moreover,
aging pathologies could accelerate the methylation drift, e.g. by chronic in�ammation,
thereby creating a "vicious cycle" [63]. Identi�cation and characterization of the genomic
loci a�ected by aging is of immense importance to understanding the link between cancer
and age, and could be a resource to use in designing preventive strategies.

4.1 Interindividual variation

In this section, we attempt to quantify and visualize the variability of methylation in a
given tissue across sample population. For this purpose, we constructed the so-called devi-

ation plot that depicts the variability of methylation values for a set of samples. Figure 4.1
shows examples of such plots based on the GoldenGate dataset.

The amount of variation in the methylation pro�les can be quanti�ed as the relative
area of deviation (yellow bars) in a deviation plot, which is a number between 0 and 1. An
area of zero indicates no variation, whereas the value of 1 depicts that all possible degrees
of methylation are observed for every probe. The deviation areas are also referred to as
pro�le areas in this chapter.

One clear observation from the deviation plots is that there is a strong correlation be-
tween median methylation and probe CGI status. This property holds for all sample groups
studied in the dataset, and is also the case for mean methylation. The signi�cance of the
correlations was estimated by permutation tests using 106 repetitions and all p-values were
highly signi�cant (data not shown). In almost all sample groups, we observed that CGI-
associated probes exhibit signi�cantly smaller variability than the probes that do not lie
in a CpG island. Notable exceptions include the pro�les of lymphoblastomas, lymphoid
neoplasias and cell lines.

4.1.1 Comparisons of sample sets

The deviation plots are a very informative tool for visualizing probe and sample variability
in methylation. However, direct comparison of deviation plots could be misleading due

47
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(a) Healthy blood (180 samples)

(b) Healthy colon (97 samples)

(c) Primary tumor colon (110 samples)

(d) Cell lines (107 samples)

Figure 4.1: Deviation plots of selected sample groups. Probes are ordered on the x axis
and are sorted in increasing order with respect to their median methylation,
as visualized by the blue curve. The yellow area enclosed with a grey border
depicts the 5th and 95th percentile among the methylation values for each
probe.
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to di�erences in the sizes of the sample sets depicted. As an example, the pro�le area in
the stem cells set is slightly larger than the one for normal blood samples, however, the
number of samples underlying the stem cells plot is only 15% of the sample set size for
normal blood. While the set of 180 blood samples is likely to be an adequate re�ection of
the population variability in methylation, we cannot claim this for the small and heteroge-
neous set of 27 stem cell types. A more unbiased view would involve equal or comparative
sample set sizes. The following paragraph presents the approach taken to compare the
methylation variability of sample sets based on pro�le areas.

Within a single sample, methylation measurements across the genome are not pairwise
independent, and their inter-dependencies are likely to be very complex. This e�ectively
prohibits deriving an analytical expression for the expected total methylation variabil-
ity within a population (e.g. whole blood of all female individuals of European descent)
based on an observed cohort, even if we assume that patients were selected in an unbiased
manner1. We thus decided to compare the methylation variability of two sample sets by
equalizing them in size, that is, randomly downsampling the larger set, and comparing
the observed pro�le areas. This approach assumes that the compared sample sets are full
populations, or are representatives of populations and were drawn using the same bias.
An example case of the latter scenario is comparing the methylation variabilities of dif-
ferent tissues obtained from the same (or similar group of) patients. We also repeat the
downsampling procedure many times in order to reduce the e�ect of the additional variance.

The need to work with sets of similar sizes, as well as the e�ects of downsampling can
be seen by studying the large collection of normal blood samples. We can assume that
these samples are randomly drawn from a population of interest. We selected 100 random
subsets of every possible size from the available 180 samples. The corresponding pro�le
areas are shown in Figure 4.2. The variability of ≈ 40 samples is a value similar to the
one computed on the whole set of 180, approximating the variability in the population. If
we were to consider a subset of smaller size, the pro�le area would very likely be a strong
underestimation of the full variability.

This technique can be used for comparing the variability of sample groups of di�erent
sizes. The variability is quanti�ed by the pro�le area of the deviation plot for a sample
set of a �xed (small) size. This pro�le area can be estimated for the sample sets of
larger sizes using the sampling procedure described above. Figure 4.3 shows the result
of the comparison between the groups of healthy colon, primary tumor colon and colon
metastases. The healthy tissue shows very coherent methylation pro�les across patients,
whereas cancer cell populations exhibit much higher methylation variability compared to
the cells of origin.

1The statistical term is to have a random sample of i.i.d. variables. It is not used in the text because

this thesis assigns a di�erent meaning to the word sample.
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Figure 4.2: Relationship between pro�le area and sample group size estimated using sub-
sampling of 180 healthy peripheral blood samples. Whiskers depict the full
range of observed pro�le areas in 100 repetitions.

Figure 4.3: Pro�le areas of subsampled healthy colon, primary colorectal tumor and
metastatic tissues. Whiskers show standard deviations based on 100
repetitions.
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Figure 4.4: Venn diagram listing the number of samples from healthy solid tissues and
blood in the GoldenGate dataset.

4.2 Age-dependent methylation

We analyzed the methylation di�erences of normal samples in the GoldenGate dataset
with respect to age. The ages and genders of the originators of 332 of the normal samples
were known. The other 71 normal samples were not included in the following analysis.
The Venn diagram in Figure 4.4 shows the number of samples from healthy tissues and
blood in the dataset. The healthy blood samples are used later for predicting age based
on the methylation pro�le.

The �rst step in the analysis is to see whether the total (that is, the average) degree
of methylation changes with age. In addition to studying globally all probes, we focused
on selected subsets. As an example, Figure 4.5 shows mean methylation of the CGI- and
non-CGI-associated probes in blood, correlated with the age of all included individuals.
The groups of very young (less than 2 years) and very old (over 90 years) individuals show
markedly variable inter-individual methylation. This suggests higher variability in cell type
composition of blood in those target groups. The observed methylation changes in a large
pediatric cohort also indicate a shift in the composition of multiple cell types in peripheral
blood [6]. Among centenarians, the wide range of T cell subpopulation frequencies is a
phenomenon that has been extensively studied in the past two decades [116, 47].

Despite visible trends of mean methylation changing with age, the correlations between
age and average methylation in the studied probe groups and tissue types are rather weak.
A notable exception is bone marrow where r2 = 0.64, however, the limited set of (only
11) samples from this tissue does not allow an extrapolation claim that the observed high
correlation is a global trend.

4.2.1 Age-associated probes

The sample groups of healthy blood and colon present the opportunity to investigate
relationship between age and methylation at the level of speci�c probes. Similar studies
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(a) CGI probes (b) non-CGI probes

Figure 4.5: Scatter plot of mean methylation of (a) CGI-associated and (b) non-CGI-
associated probes in healthy blood samples. Probes on chromosome X are
excluded. Every point represents a sample; pink and blue colors denote female
and male gender, respectively.

have been performed on healthy, as well as on cancer samples [110]. For each of these two
sample groups, we measured the correlation between every probe and the respective age of
the individual. In addition, we used the methylation state of a probe as a single covariate
in a generalized linear model to predict age. Applying analysis of variance (ANOVA) on
the models then enabled us to quantify the predictive power of every probe through a p-
value. The p-values were corrected for multiple testing using the Bonferroni method. After
applying a threshold of 0.01, 342 probes in total exhibit signi�cant association between age
and their methylation state in blood. 78 of these probes have a absolute correlation with
age of over 0.5; this list of probes is presented in [50]. Similarly, the ANOVA procedure
revealed that methylation state in colon of 10 probes is signi�cantly associated with age.
These probes are listed in Supplementary Table S2.

4.2.2 Predicting age

As we have seen from the analyses above, global methylation level is not a good indicator
of age due to high inter-individual and inter-tissue variances. We decided to circumvent
the in�uence of tissue-speci�c methylation by selecting blood samples only, and then we
tested two methods for predicting age based on the methylation of the available CpG loci.
In this setting, we used either all available samples, or individuals of age between 20 and 80
years only. The number of all healthy blood samples annotated with age is 157. 85 of them
have an age between 20 and 80 years. Later in this report, we refer to the aforementioned
sample sets as unrestricted and restricted scenarios, respectively.

Prediction accuracy

In terms of statistical learning, age prediction in our case is a regression problem in a
high dimensional feature space with a small training set. These properties restrict us to
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(a) Lasso regression, unrestricted set (b) SVM, unrestricted set

(c) Lasso regression, restricted set (d) SVM, restricted set

Figure 4.6: CV estimates of the error, used in training lasso regression on age based on
the unrestricted (a) and restricted (c) sample sets, as well as SVM on the same
sample sets (b) and (d). CV estimates in the lasso method are mean squared
error, and for SVM are absolute error in years. The visualized values were used
in parameter estimation. The selected values for the lasso models are depicted
by red vertical lines.

apply strong assumptions � feature independence among others � and use linear models.
The �rst model we tested is lasso method for regression. We estimated the best value for
the shrinkage factor s with 10-fold cross validation (CV). Due to the limited number of
available samples, CV estimates were highly unstable, showing large dependence on the
(random) splitting of the entire set into folds. Therefore, we repeated the 10-fold CV
estimation procedure 100 times and averaged the outcomes. The second model we tested
is linear support vector machine (SVM), in the form using ε-insensitive loss. We experi-
mented with values for ε from 0 to 5, and values for the cost parameter C from 1 to 18. CV
estimates were computed in complete analogy to the lasso method. Taking into account
the common source for all probes, we did not normalize the inputs before �tting a model.

Figure 4.6 shows the calculated CV estimates for absolute error. We applied the or-
thodox strategy for selecting the shrinkage factor in the lasso models. More precisely,
we selected the simplest model with a CV estimate within one standard deviation of the
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(a) Lasso regression (b) SVM

Figure 4.7: True and predicted age of the unrestricted sample set modeled by lasso regres-
sion (a) and SVM (b).

minimal observed. The models with the selected shrinkage factors trained on the full sets,
apply non-zero coe�cients to 22 and 28 probes for the unrestricted and restricted scenario,
respectively. The methylation states of all other probes do not play a role in age predic-
tion. Not surprisingly, the two sets of selected probes have a signi�cantly large overlap (12
probes in common, p-value = 3.1× 10−16).

Contrary to our expectations, restricting the age span to the range between 20 and 80
years does not enable the training of more accurate models. Both methods show compara-
ble results, SVM slightly outperforming the lasso method. The estimated mean error of a
lasso model is approximately 10.5 years; the corresponding error for an SVM is ≈ 9.5 years.

Model variance

In comparison to the lasso method, support vector machines seem more unstable. The un-
restricted and restricted scenarios lead to very di�erent landscapes of estimated absolute
prediction over the parameter space. The CV estimates in the restricted scenario suggest
that applying higher values to the cost parameter might lead to more accurate models.
Another indication of the instability of the SVM models is given in the paragraphs below.

In the following analysis, we compared the models trained on the full sample sets with
parameters estimated by the procedures described above. Therefore, we show the perfor-
mance of age prediction models on their training sets. This could provide hints to what
extend the linearity assumption of the methods hold, and also if the classi�ers tend to
under- or over�t the data. The scatter plots in Figure 4.7 show true versus predicted age
for blood samples. In a perfect predictor, all points lie along the diagonal grey line.

Clearly, SVM prediction errors are extremely low. Focusing on the lasso models, we can
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see that predictions of samples with true age below 55 years tend to have an upward bias.
Contrarily, the predictions for samples of ages more than 55 years are downward biased.
The plots also nicely visualize the insecurity of the compared predictors. The training
errors for the SVM models are unrealistically low, as we have shown by the CV estimates
in the previous section. This tendency to overtrain, as well as the instability on the SVM
models is mostly explained by the fact that they use the methylation values of all probes in
age prediction. We have tested values for the cost parameter only up to 18. Higher values
for the cost parameter might lead to more stable models, however, prediction accuracy
unlikely to improve drastically.

4.3 Results and discussion

This chapter focused on methylation microarrays and discussed problems in studying
methylation pro�les of sample groups. All analyses were performed on the GoldenGate
dataset, however, the conclusion drawn transcend this technology. First, we presented an
approach to visualize and quantify overall methylation variability in a population. We
showed a clear distinction between CGI- and non-CGI-associated probes with respect to
their inter-individual variability. Of note, the deviation plots introduced here are also im-
plemented in RnBeads.

We next studied the relationship between locus-speci�c (and also genome-wide) methy-
lation and age of an individual. We identi�ed a group of CpGs as candidates for loci
with age-dependent methylation, some of them mentioned in previous studies. Overall,
linear SVMs show us that relatively accurate age prediction of linear models based on
DNA methylation in blood is theoretically possible. However, a representative set of much
more than the available 157 samples is required. Lasso models, on the other hand, can be
created based on the currently available data without risk of under�tting or overtraining.
Moreover, a lasso predictor does not require whole methylation pro�le in order to predict
the age of new samples; it focuses on a small number of CpG loci. Unfortunately, the
accuracy of this model family does not seem to be remarkable which is partially due to the
biased genomic coverage of the GoldenGate assay. The di�erence between predicted and
true age is often more than 10 years. Recently, our hypothesis was con�rmed by Horvath,
who trained a linear model with elastic net penalty to predict (a transformed) chronological
age based on In�nium probe methylation [59]. The model selected a set of 353 CpGs that
are informative of age and showed remarkable accuracy across a wide spectrum of tissues.





5 Differentially methylated regions

CpG-speci�c analysis of di�erential DNA methylation provides very high resolution maps
of epigenetic alterations. It is a valuable resource with a wide spectrum of applications, for
example, identifying change of a�nity in (unknown) transcription factor binding motifs.
However, the single-site approach presents considerable challenges due to its high multiple
testing burden and also because single cytosines could be strongly a�ected by biological
and technical noise.

5.1 Differential methylation in microarrays

In the GoldenGate dataset, we trained elastic nets not only for the purpose of classi�ca-
tion, but also to be used as feature selection methods. In addition, we de�ned heuristic
rules to identify di�erentially methylated probes when small sample sets were compared.
In general, probes were considered independently and two criteria were applied � statis-
tical testing (usually Wilcoxon test or Kruskal Wallis test) and a threshold for minimal
di�erence between the mean methylations of the compared groups. RnBeads implements
an elegant rank-based approach to address the question of di�erential methylation but it
is not discussed in this work1. Instead, we present strategies for the identi�cation of dif-
ferentially methylated peaks in enrichment-based methylation data, using the colon cancer
dataset as their application.

5.2 Differential methylation in called peaks

This section re�ects the work on the colon cancer study within the CANCERDIP con-
sortium [104] . It focuses on calling di�erentially methylated peaks (or regions, DMRs)
given enrichment data on paired samples. In the colon cancer dataset, these sample pairs
are tumor vs corresponding healthy tissue of the same individual. As already discussed
in Chapter 3, raw enrichment data is comprised of read counts in preselected genomic
regions (identi�ed peaks). In the following, we use the normalized scores de�ned earlier in
order to facilitate comparisons between samples. We introduce the concept of a di�erential
methylation event, and conclude by commenting on the properties of the regions for which
hypo- or hypermethylation is a frequently observed event.

5.2.1 Criteria for differential methylation

Association and odds ratio

Two measurements are available for every region and patient � one from the normal and
one from the tumor sample. We tested for correlation between the observed read counts
1The di�erential methylation module of RnBeads has been implemented by Fabian Müller.
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Figure 5.1: Histograms of p-values (a) and q-values (b) obtained by testing for association
between absolute tag count and cancer. The left-most bar, colored in purple,
shows the frequency of values below the threshold of 0.01.

in both samples using Fisher's exact test. An example for a region on chromosome 21 is
given in the table below.

8N 8T Total

21:46,574,663-46,667,956 3,451 3,915 7,366
Rest of the genome 26,247,134 12,993,096 39,240,230

Total 26,250,585 12,997,011 39,247,596

The p-value for this test on patient 8 is extremely low: 3.2 × 10−273. Using this proce-
dure, we constructed a table of p-values for all genomic regions and sample pairs. Every
row in this table denotes a peak, and each column � a patient. The dimensions of the
table are 329,613 rows × 24 columns. Next, we adjusted the p-values for multiple testing
using the Benjamini-Hochberg algorithm. The distribution of all obtained p-values before
and after adjustment is given in Figure 5.1. The table of adjusted p-values is used as the
�rst criterion to establish if a region R is di�erentially methylated in a given patient. The
second criterion is referred to as the odds ratio and is de�ned below.

Given a region R and a matched pair of samples SN and ST , we used the score of R as
an indication of hyper- or hypomethylation in tumor. Large di�erence in the two values
implies di�erential methylation. We quantify the term large di�erence by the constant c,
as shown in the inequalities below:

Implication for hypomethylation: DR(SN ) > 0 ∩ c×DR(ST ) ≤ DR(SN )

Implication for hypermethylation: DR(ST ) > 0 ∩ c×DR(SN ) ≤ DR(ST )

Empirical studies suggest that a value of c = 2 achieves a good compromise between
speci�city and sensitivity in di�erential methylation. We refer to this requirement for a
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minimum of two-fold enrichment or depletion as odds ratio. Note that scores of the same
region in di�erent samples are compared and thus normalizations on the region length have
no e�ect on the outcome. Consequently, we compare the DMRs identi�ed using tag count,
scaled tag count and tag density only. Using tag occupancy and scaled tag occupancy
leads to identical results with tag count and scaled tag count, respectively; therefore, the
occupancy measures are omitted in the discussions that follow.

Combining criteria for differential methylation

The strategy we applied for the identi�cation of di�erential methylation involves both
criteria described above. In particular, region R is hypomethylated in a given patient
when the odds ratio of the respective sample pair implies hypomethylation and there is a
signi�cant association between the tag counts and cancer status of this region, quanti�ed by
adjusted p-value < 0.01. Similarly, R is hypermethylated in a given patient only when the
odds ratio implies hypermethylation and the corresponding adjusted p-value is below the
signi�cance threshold shown above. In the following, we present a comprehensive analysis
of our approach to identifying DMRs. One of the aspects covered is the properties of the
criteria both individually and acting in concert. In the latter cases, the strategy described
in this paragraph is referred to as the combined strategy.

Region length bias

An inherent property of Fisher's exact test is that large values in the contingency table
have the potential to (and also tend to) produce lower p-values for signi�cant association.
Applying multiple testing correction � a necessary step when millions of tests are performed
� exacerbates this e�ect. As a consequence, a peak with low number of tag counts across
all samples is unlikely to be identi�ed as a DMR, even if it shows very high odds ratios. To
quantify this potential bias, we inspected the peaks that pass the signi�cance threshold for
association between tag count and cancer in at least one patient. We studied their lengths
and median number of tags. Figure 5.2 shows the distribution of the inspected values,
compared to the corresponding values for the full set of peaks, as well as the regions that
show implication for di�erential methylation.

Clearly, the approach involving Fisher's exact test introduces a strong bias towards
regions that are long and heavily populated with tags. This property is not shared by
the procedure using the odds ratio, suggesting that Fisher test p-values alone might be
characterized by a high type II error (false negative rate) and are therefore a potentially
unreliable approach.

5.2.2 Differential methylation events

We categorized every region R into one of the following four types:

hypomethylated indication for hypomethylation of R is observed in at least one patient,
but not for hypermethylation;

hypermethylated indication for hypermethylation of R is observed in at least one patient,
but not for hypomethylation;
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(b) Tag counts per peak

Figure 5.2: Distributions of widths and median tag counts for: all peaks, peaks that show
signi�cant association between tag count and cancer in at least one patient;
peaks that show implication for di�erential methylation in at least one patient;
peaks that are identi�ed as DMRs in at least one patient.

hypo- and hypermethlyated indications for hypo- and hypermthylation of R are observed;

not differentially methylated indication for di�erential methylation of R is not observed in
any of the patients.

Figure 5.3 shows the distribution of region types across the whole genome when tag density
is used for calculating odds ratio. The other scores exhibit very similar behaviour.
If we examine the number of non-di�erentially methylated regions, it is clear that the

speci�city of odds ratio as a single criterion is very low. Combining the two criteria in-
troduced earlier in this chapter substantially reduces the number of observed hypo- and
hypermethylation events. The combined strategy is therefore the preferred approach to-
wards identifying a small set of functionally relevant di�erentially methylated regions.

Number of DMRs per patient

The patients show very inconsistent behaviour in terms of hypo- and hypermethylation
events observed. Multiple factors related to sample preparation and DNA processing, in
addition to tumor heterogeneity, seem to contribute to this e�ect. The barplot in Fig-
ure 5.4 below show the number of hypo- and hypermethylated peaks in every sample pair
based on tag density. While the absolute number of hyper- and hypomethylation events
is strongly in�uenced by the choice of peak score, the inter-patient di�erences remain re-
markably stable.
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HypermethylationHyper− and hypomethylation

Hypomethylation

No differential methylation

(a) Odds ratio only

Hypermethylation

Hyper− and hypomethylation

Hypomethylation

No differential methylation

(b) Combined strategy

Figure 5.3: Relative frequencies of region categories genome-wide. The score considered is
tag density.
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Figure 5.4: Number of hypo- and hypermethylation events per patient. Hypomethylation
is denoted by green color, and hypermethylation - by red.
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Figure 5.5: Relationship between a batch processing factor (date of MethylCap) and the
number of hypermethylated regions found for the respective patient. Color
denotes gender; pink points are samples from female patients, and blue points
� from males.

In order to �nd potential sources for the observed interindividual discrepancies, we
checked for associations between number of di�erentially methylated regions and batch
processing or clinical features. We selected the properties introduced in Chapter 2. The
results are presented in Supplementary Table S3. A detailed discussion on the observed
p-values is beyond the scope of this thesis; as an example, Figure 5.5 shows a non-trivial,
albeit a strong dependency between MethylCap processing date and number of hyperme-
thylated regions.

5.2.3 Support for hypo- and hypermethylation

We focused on the combined strategy and inspected the evidence for hypo- and hyperme-
thylation observed for each peak. We de�ne the support for hypomethylation of region R as
the number of patients in whom R is found to be hypomethylated. The term support for

hypermetylation is de�ned analogously. Since we have data on 24 patients, the supports of
hypo- and hypermethylation for a given region R are integer numbers between 0 and 24.
Note that support is de�ned only in the context of a given peak score. Indeed, the values
for support vary (albeit not dramatically) among the measurements inspected in this study.
Figure 5.6 shows the distribution of values for hypo- and hypermethylation supports based
on tag density as a score. Using other scores leads to almost identical distributions.

As can be seen in Figure 5.6, the support for hypomethylation exhibits a small variance,
whereas the support for hypermethylation spans the interval from 0 to 23. The observed
inconsistency in hypomethylation could be explained by two aspects. First, advantageous
hypomethylation of speci�c DNA region in cancer is more di�cult to identify due to the
genome-scale loss of methylation during tumor progression. Second, genomic regions un-
dergoing signi�cant hypomethylation in colon cancer could possess sequence characteristics
disfavored by the MethylCap-seq technology. In addition, a large fraction of the regions
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Figure 5.6: Histogram of values for support for hypo- and hypermethylation. Frequencies
are depicted as points.
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Figure 5.7: Relationship between support for (a) hyper- / (b) hypomethylation on one side,
and CpG density on the other side. Mean values of CpG density are depicted
by blue points; whiskers denote one standard deviation.

with a hypermethylation support above 8 are also characterized by a positive support for
hypomethylation and vice versa.

We found that hypermethylation support of a peak is positively correlated with CpG
density. Not surprisingly, it is also associated with [distance to the nearest] CpG island.
However, the dependency between hypomethylation support and these properties of the
DNA sequence is unclear. As an example, Figure 5.7 visualizes the joint distributions of
support and CpG density.

High confidence differentially methylated regions

In this section, we treat hypomethylation and hypermethylation as independent events.
After applying the combined criteria for detection of di�erential methylation, we con-
structed tables of events. The rows in these tables correspond to all peaks, and columns
represent patients. Every cell in a table is labeled as hypomethylation, hypermethylation
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Figure 5.8: Schematic representation of the event tables constructed in the di�erential
methylation analysis of the colon cancer dataset. Rows in these tables corre-
spond to peaks, and columns represent patients. Green cells denote hypomethy-
lation events, whereas red cells indicate hypermethylation events. Grey depicts
lack of evidence for di�erential methylation.

or no di�erential methylation. The odds ratio table contains the indications of hypo- and
hypermethylation based on the odds ratios de�ned above. Similarly, the combined table

stores the events from the combined strategy introduced in this chapter. If we focus only
on those regions that exhibit hypo- or hypermethylation in at least one patient, we obtain
a smaller table, which we refer to as restricted. The restricted table is used later in the
estimation of thresholds for de�ning high-con�dence DMRs. A schematic representation
of the tables introduced in this paragraph is shown in Figure 5.8.

Undoubtedly, a large value for support for an event in region R implies high con�dence
in the statement that the event is correctly identi�ed and is recurrent in colon cancer. In
order to assign a p-value for con�dence to every region based on its observed support, we
model the construction of events by a generator that uses a �nite sequence of Bernoulli
trials. In other words, according to our hypermethylation model, a biased coin is �ipped
for each cell in the event table. The outcome determines if the cell is labeled as evidence
for hypermethylation. The probability for success of a Bernoulli trial is estimated as the
fraction of hypermethylation events in the resulting table. A similar generator is used to
label some of the cells as evidence for hypomethylation. We refer to the models describing
the combined table as liberal, whereas the models describing the restricted table are con-
servative. The estimated probabilities are shown in Figure 5.9.

Given the models described above, we can compute the probability that a region R is
provided support S for a certain event. Since the event labels of R are the results of 24
Bernoulli trials, the support values follow a binomial distribution. Figure 5.10 shows the
complementary cumulative distribution functions for the hypomethylation and hyperme-
thylation events.

We used the conservative models and applied a signi�cance threshold of 10−3. In most
cases, this translated the requirement for a minimum hypo- or hypermethylation support
of 6. Finally, we labeled a region hypermethylated in colon cancer with high con�dence
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Figure 5.9: Scatter plot of inferred probabilities for hypo- and hypermethylation. Empty
and �lled circles represent liberal and conservative probabilities, respectively.
Hypomethylation is indicated by green color, whereas hypermethylation prob-
abilities appear in red.
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Figure 5.10: Complementary cumulative distribution function (tail distribution) of a bi-
nomial random variable. Success probability is calculated as the fraction of
hyper- (a) or hypomethylated (b) events. Number of trials is total number of
events. The applied threshold of 0.001 is depicted by a horizontal grey dashed
line.
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Figure 5.11: Venn diagram showing the overlaps between the sets of high con�dence DMRs
obtained using di�erent peak scores.

when both of the following conditions are met: (1) the support for hypermethylation of this
region is at least the minimum support required, and (2) the support for hypomethylation
of this region is at most 1. The property hypomethylated in colon cancer with high con�-
dence is de�ned analogously. In total, we identi�ed between 57 and 522 hypomethylated,
and over 2,600 hypermethylated regions using the de�nition above.

Figure 5.11 below shows the overlaps between the discussed sets of peaks. The lists of
high con�dence hypermethylated regions obtained using di�erent peak scores show a very
strong agreement. The sets of hypomethylated regions are less consistent.

Next, we examined the CpG-related properties of the high con�dence DMR sets. For
every peak region, we counted the fraction of its sequence that lies in a CpG island (CGI).
The vast majority of peak regions are located outside CGIs; less than 0.04% of all regions
are fully occupied by an island. Figure 5.12 divides the regions into four groups based
on the fraction of region identi�ed as CpG island. It also shows the distribution of CGI
fractions for those regions that have a positive overlap.

Note that the sets of hypomethylated regions are enriched in peaks that overlap with
CpG islands. Since there is no association between support for hypomethylation and dis-
tance to closest CGI (Figure 5.7), there could be two or more distinct categories of genomic
elements that are hypomethylated in colon cancer.

We also inspected the properties described in Figure 5.7 for the high con�dence regions.
The results are visualized in Figure 5.13. As expected, hypomethylated regions display
a high variability in the distance to the closest CpG island, whereas the overwhelming
majority of the hypermethylated peaks are overlapping at least partially with a CGI. In
addition, we observe a signi�cantly higher CpG density in the hypomethylated regions,
and even a higher one in the hypermethylated ones.
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Figure 5.12: Separation of peaks based on their overlap with CpG islands.
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Figure 5.13: Distribution of the values for distance to closest CGI / CpG density for three
groups of peaks � all regions, high con�dence hypomethylated regions, and
high con�dence hypermethylated ones.
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5.3 Summary

We inspected two criteria for di�erential methylation and argued that their combination
is a sensible approach to identifying a reliable set of DMRs. In consideration of the re-
sults presented in the last section, we can conclude that the procedure outlined in this
chapter produces relatively consistent results regardless of the peak score used. Generally,
applying normalization to the score leads to the identi�cation of a larger number DMRs in
comparison to using raw values for score, i.e. tag counts. Approximately 7% of all peaks
are consistently identi�ed as high con�dence hypermethylated regions. However, the set of
high con�dence hypomethylated regions is an order of magnitude smaller; it is also more
sensitive to the peak score in use.



6 Prioritization of epigenetics biomarker
candidates

6.1 The need for data integration

Several large-scale epigenome mapping initiatives are currently ongoing and show promising
results. Chapter 2 already mentioned the large consortia TCGA and ENCODE. Another
example is the International Human Epigenome Consortium (IHEC), having a goal to
produce comprehensive epigenome maps for 1,000 biomedically relevant human cell popu-
lations [98]. The European BLUEPRINT project focuses on hematopoietic cells and their
associated diseases [1]. The DEEP project investigates cell types relevant for metabolic and
in�ammatory diseases. The International Cancer Genome Consortium (ICGC, icgc.org) is
the international collaboration with goals and approach almost identical to TCGA. ICGC
produces genomic, epigenomic and transcriptomic pro�les of samples from 50 di�erent can-
cer types.

All initiatives described above stress the need for statistical and software tools for in-
tegrative data analysis that guides biologically relevant �ndings. A considerable progress
is made in this direction [43], however, we still lack a clear explanation for the causes
and direct consequences of aberrant DNA methylation in diseases. This chapter addresses
the issue of integrating additional data sources in DNA methylation studies in order to
validate, �lter and prioritize identi�ed di�erentially methylated regions, potentially in-
dicative of cancer progression. Similarly to Chapter 5, the analysis steps presented here
are the result of a collaboration on the colon cancer dataset within the CANCERDIP
consortium [104].

6.2 Integration of MethylCap-seq data with TCGA

This section brie�y studies the colon cancer methylation and expression datasets available
for download from the TCGA project. It investigates the agreement between the con-
clusions that can be drawn from these datasets and the regions we have identi�ed in the
chapter on di�erential methylation (Chapter 5).

The technology for quantifying DNA methylation used in the data downloaded from
TCGA is the In�nium 27k assay developed by Illumina [16]. This platform was introduced
in Chapter 1. Brie�y, bisul�te-converted DNA is hybridized on an array that covers 27,578
CpGs in the human genome. The large majority of the studied dinucleotides are located in
the promoter regions of protein- and RNA-coding genes. The assay de�nes the promoter
area of a gene as the region starting 1.5 Kb upstream and ending 1 Kb downstream of

69
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Figure 6.1: (a) Pie chart classifying the In�nium 27k promoters based on the number peaks
in the colon cancer dataset that overlap them. (b) CpG density of all In�nium
27k promoters compared to the density of only those promoters that overlap
with peaks.

its transcription start site (TSS). Only 622 probes in the assay are not assigned to a
gene. Following a close inspection of the probe's coordinates, and respecting the promoter
de�nition given above, we unambiguously assigned 164 of these probes to a gene. After
this update, there are in total 27,093 CpGs that can be assigned to the promoter area of a
gene with known symbol. The In�nium assay includes probes for 14,470 gene promoters in
total, which we refer to as In�nium promoters (and In�nium genes, respectively) later in
this chapter. Every promoter is covered by 1 to 12 probes. We inspected the overlaps of the
In�nium promoter regions with the peaks from the colon cancer dataset. Approximately
80% of the promoters overlap at least partially with one or more peaks. We refer to these
as peak-assigned promoters. Figure 6.1(a) shows the relative sizes of di�erent promoter
groups, classi�ed based on how many peaks they overlap with. The overlap statistics
depicted there are a good indication that the set of In�nium promoters can be used as a
validation for the MethylCap-seq pro�les. Moreover, the In�nium promoters that can be
assigned to peaks do not introduce a strong CpG density bias1, as can be seen in the Q-Q
plot on Figure 6.1(b).

6.2.1 Methylation dataset

We downloaded In�nium 27k methylation pro�les for 15 normal (healthy) and 165 tumor
colon samples from the colon adenocarcinoma dataset of TCGA. Every normal sample had
a matched tumor sample from the same patient. For the remaining analyses, we focused
on these 15 sample pairs and ignored the remaining unmatched tumors. Detection p-values
were used only in cases when duplicated samples were merged. In this scenario, probes
were considered independently and the combined β value for a probe P was calculated as

1Although applying Wilcoxon or Kolmogorov-Smirnov test to compare the distributions of CpG densities

for promoters overlapping and not overlapping with peaks yields a signi�cantly low p-value.
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the median β value in all duplicates that have a detection p-value < 0.01 for P .

The strategy we applied for identifying di�erentially methylated CpG loci and In�nium
promoters is motivated largely by the approach described in the chapter dedicated on this
topic, Chapter 5. We considered every probe or promoter independently, and used two
criteria for di�erential methylation: (1) absolute increase in median methylation of least
0.25, and (2) a p-value < 0.01 obtained after applying Wilcoxon rank sum test and multiple
testing correction using the Benjamini-Hochberg method.

As an example, let us assume that two probes are associated with the promoter of gene
G. Therefore, there are 30 β values for G in normal colon samples and 30 � in colon cancer
samples. If we denote these sets of numbers as N (β)

G and T (β)
G , respectively, we classify G

as hypomethylated if and only if

M
(
N

(β)
G

)
−M

(
T
(β)
G

)
≥ 0.25 & PWilcoxon

(
N

(β)
G , T

(β)
G

)
< 0.01

where M denotes median and PWilcoxon is the FDR-corrected p-value after applying
Wilcoxon rank sum test. The criteria for hypermethylation are constructed in an analo-
gous fashion.

Using the procedure outlined above, we identi�ed 161 hypomethylated and 583 hyper-
methylated In�nium promoters. The �rst criterion turned out to be stricter; a summary
of the number selected probes and promoters is avaialable in Supplementary Table S4.
The heatmap in Figure 6.2 shows the methylation degrees of these promoters in all sample
pairs.

6.2.2 Expression dataset

At the time of these analyses, the gene expression platform of choice in TCGA was Agilent
G4502A � a custom gene expression microarray in high density format [72]. It includes 244
thousand features that correspond to approximately 111,000 unique probes. The majority
of these probes target mRNA transcripts, each of which can be mapped to a unique loca-
tion in the genome. We focused only on the transcripts that are unambiguously mapped
to a genomic location and refer to them as Agilent transcripts. We �rst constructed a
mapping between In�nium genes and Agilent transcripts. More precisely, we associated
transcript T to gene G when T is located downstream of G's transcription start site, lies
at a distance of maximum 10 Kb from it, and there is no other TSS closer to T . Note
that the In�nium genes are only a subset of all genes in the human genome, therefore, a
fraction of the Agilent transcripts are expected to not be assigned to an In�nium gene.
Indeed, the overwhelming majority of the transcripts are not located in the vicinity of any
In�nium promoter. The closest TSS to a transcript sometimes lies at more than 40 Mb.
Figure 6.3(a) shows part of the distribution of distances to the closest TSS of In�nium gene.

Using the procedure outlined above, we mapped 16,609 transcripts to In�nium genes.
Note that not all probes contained measurements in the TCGA study on colon adenocar-
cinoma, therefore, expression values were not available for all the Agilent transcripts that
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Figure 6.2: Heatmap of methylation degrees for selected In�nium 27k promoters. Every
row denotes a gene promoter, and columns are samples. In the color palette
used to represent methylation values, bright green denotes 0 (unmethylated),
black denotes 0.5 and bright red � 1 (fully methylated). The heatmap includes
measurements for 161 hypomethylated and 583 hypermethylated gene promot-
ers in colon cancer. Column labels and patient identi�ers appended with one
letter that encodes the sample type, N for normal and T for tumor. The sample
type is also encoded by a color bar on the columns. Hierarchical clustering is
performed using Manhattan distance and complete linkage.
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Figure 6.3: (a) Histogram of distances from Agilent transcripts to their closest transcription
start sites of an In�nium gene. Only distances up to 50 Kb are shown. The red
vertical line marks a threshold of 10 Kb, beyond which Agilent transcripts are
not considered for associating with a gene. (b) Venn diagram showing number
of Agilent transcripts included in the study and associated to In�nium genes.

were associated to In�nium genes. The Venn diagram in Figure 6.5(b) provides a summary
on how many transcripts were associated and were used in the analyses that follow. Tran-
scripts associated to In�nium genes tend to have a slightly higher CpG density (Figure 6.4);
it is, however, signi�cantly lower compared to corresponding distributions for hypo- and
hypermethylated peaks (see Figure 5.13 in the chapter on di�erential methylation).

As suggested in Figure 6.5(b), 13,934 transcripts provide relative expression values for
5,547 of the In�nium genes. A substantial part of these transcripts (10,387) also over-
lap with the peaks identi�ed in our MethylCap-seq study on colon cancer. Due to the
discrepancy in lengths (data not shown), a transcript might overlap with more than one
peak. Although the majority of 10 thousand Agilent transcripts map to a single gene,
there are individual cases of transcripts overlapping with up to 29 genes. Similarly, a given
In�nium gene is associated with between 0 and 12 transcripts. Later in this section, we
use the mean expression values of all transcripts (more precisely, probes that map to the
transcripts) associated with a gene to estimate gene's expression2. Level 2 (probe-level)
mRNA expression values of 155 colon cancer samples were downloaded from TCGA.

6.2.3 Comparison to MethylCap-seq results

We focused on the gene level, and checked how many of the In�nium promoters were iden-
ti�ed as di�erentially methylated based on the β values obtained from TCGA. The exact
procedure is described earlier in this section. Note that many of the In�nium genes also

2Alternatively, we experimented using the maximum expression instead of the mean value. This strategy

does not signi�cantly change the results and conclusions in this chapter.
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Figure 6.4: Distributions of CpG densities of Agilent transcripts.

overlap with one or more peaks. We consider a promoter to be hypomethylated in the
colon cancer dataset if it overlaps with at least one hypomethylated peak. Similarly, a
promoter that overlaps with hypermethylated peak is considered [MethylCap-seq] hyper-
methylated. It is important to note that none of the examined promoters was found to
overlap with both a hypo- and a hypermethylated peak. Figure 6.5 shows the classi�ca-
tion of In�nium promoters based on the criteria for di�erential methylation described here.

Figure 6.5 shows that, even if we ignore the TCGA-based de�nition of di�erential methy-
lation, the overlap between the In�nium genes for which mRNA expression is available,
and which can be classi�ed as hypo- or hypermethylated in the colon cancer dataset, is
relatively low. We can, however, use the methylation increase and expression values as a
validation tool for the hypo- and hypermethylation support de�ned in Chapter 5.

We de�ne the support for hypomethylation of an In�nium promoter to be the aver-
age hypomethylation support of the peaks that overlap with this promoter. The support
for hypermethylation of a promoter is de�ned in an analogous fashion. The support for

In�nium promoter G is the di�erence between the support for hyper- and support for hy-
pomethylation of G. Note that, unlike peaks, promoters do not necessarily have integer
values for support. Figure 6.6 shows the correlation between support and TCGA-based
measurements of In�nium genes. The correlation coe�cients are provided in Supplemen-
tary Table S5.

Not surprisingly, increase in methylation shows a very strong positive correlation with
support. Note that support re�ects the frequency of an event of di�erential methylation,
and mean increase in methylation is the average change in the methylation degree in ob-
served tumor. The agreement between two colon cancer datasets using di�erent technolo-
gies suggests that the concept of DMR's support introduced in the chapter on di�erential
methylation can be transferred to unseen data. There is also a negative correlation between
support and average expression but the relationship is less clear due to outliers, i.e. the
cases in which there is a single gene with a given support, the observed expression deviates
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Figure 6.5: Venn diagram of di�erentially methylated In�nium promoters in the colon can-
cer dataset and in TCGA.

●

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●
●

●

●
●

●

●

● ●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●● ●● ●●●
●

●

●

●
●●

●

●
●

●

●
●

●

● ●● ●●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●
● ●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●●

●

●

●
●

●● ●● ●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●
●

●
●

● ●

●

● ●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●
●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●● ●●

●

●
●

●

●

●

●●
● ●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

● ●
●●

●●
●

●

●●

●

●

●

● ●●
●● ●●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●●●

●●
●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●●
●●

●

●
● ●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●
●

●

●

●

●●

● ●

●

●

●

●

●
● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●
●

●
●●

●

●

●
●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●●
●
●●

●

●●

●

●

●

●

●●

●

●

●

●
●

● ●● ●●

●
●

●
●

●●

●

●

●

●●● ●
●

●●
●

●

●

●

●

●● ●●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
● ●

●

●
●● ●

● ●

●

●
●

●

●●●●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●●

●

●
●

●
●

●●

●

●

● ●

●

●

●
●

●

●

●●
●● ●

●

●

●

●
●

●
●●

●

●●●
●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

● ● ●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●

●●●
●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●
●●

●

●

●
●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

● ●●●●

●

●

●

● ●

●

●

●
●

●
● ●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●
●●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●
●●
●● ●

● ●●●
●
●● ●●

●

●
●

●
●

●●●●●
●

●

●

●

●
●

●

● ●

●

●

●

●
●●
●

●

●●●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●● ●●

●

●● ●
●●●●●

●

●

●

●
●

●

●

● ●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●
● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●● ●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

● ●●

●

●
●

●

●● ●

●

●

●

● ●

●

● ●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●
●

●

●

●

●●
●

●

●● ●●

●

●
●

●

●
● ●●

●

●

●

●

●

● ●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●●● ●

●
●●

●

●

●

●●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●●

●
●

●
● ●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●● ●
●

●
●

●

●

● ●

●

●

●
●
●

●

● ●

●

●

●

●●

●

●

●

● ● ● ●

●

●● ●
●●

●

●●
●

●

●

●●

●

● ●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●●
● ●

● ●●●●

●

●

●

●●
●●

●

●

●

● ●●
●● ●

●

●
●

●
●

●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●
●

●

●

●
● ●●●● ●

●

●

●● ●

●

●

●
●

●

●
●●
●

● ●

●

●●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●● ● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●●●
●●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●● ●
●
●

●

●●● ●●

●

●
●

●
●

●

●●
● ●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●●
●

●

●
●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

● ●●

●

●

●
●

●

●

●

●

● ●

●

● ●● ●

●
●

●

●●
● ●●

●

●

●
●

●
●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●● ●●

●

●●
●● ●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
● ●

●● ●
●

●

●
●

●

●

●

●●
●

●

●●
●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●●
●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

● ●
●

●

●●

●

● ●●

●

●
●

●

●●●

●●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●
● ●●●

●

●

●

●

● ●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●●
● ●

● ●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●
●

●

●

●
●

●

●●

●

●

●

●

●●●
●●

●

●

● ●

●
●

●●

●
●

●
●●

●

● ●

●

●
●

●
● ●

●

●
●

●
● ● ●

●●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●
● ●● ●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●

● ●

●

●●●
●

●
●●

●

●

●

● ●

●●●
●●
●

●

●

●●

●

●
●

●●

●

●●

●

●
●●

●

●

●

●●●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●
●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●
●●

●

●●

●
●

●

●

●
● ● ●

●

●

●●

●

● ● ●

●

●

●

●

● ●
●

● ●
●

●

●

●

●

●

●

●

●

●

●●
● ● ●●●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●●

●

●

●

●

●

●●
●●

●

●

●
●

● ●
●

●●
●

●

●●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●
●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●
●

●●
●

● ●

● ●●
●

●

●
●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●
●

●

●● ●

●

●
●●

●

●
●

●●

● ●

●

●

●

● ●●
● ●●●

●

●
●●
●
●

●

●●
●●●

●

●
●

●
●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●
●
● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●●
●● ●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●● ●●

●

●
●●● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
● ●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●●
●

●●●

●

●

●

●

●

●

●●

●

●●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●●

●

●●

●

● ●
●

●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

● ●

●
● ●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●●●

●

●

●

● ●

●

●

●

●

●
●●●

●

●
●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●●

●

●
●

●

●
●●

●

●
●

●● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●●● ●● ●●●

●

●●
●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

● ● ●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

● ●

●

●
●

●
●

● ●●● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

● ●

●

●

●

● ●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●
●

●
●

●

●●
●●

●

●

●

●

●

●
● ●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●
●
●●

●
●

●

●●● ●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●●●
●

●

●

●

●

●

●

●●

●

●●
●

● ●

●

●

●

●●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●●
●● ●
● ●

●

● ●●

●

●●
●

●

●
●

● ●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

● ●●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●
●● ●

● ●

● ●
●●

●
●●

● ●●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●●●●

●

●

●

●
●

●

●

●
●

●
●● ●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●
●● ●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

● ●●
●
●●

●

●

●

● ● ●
●

●

●

●

●

●● ●●● ●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●●

●

●●
●

●

●

●

●
●

●

●● ●

●

● ●

●

●

●

●

●

●
●

●
●

●●

●● ●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●●●

●

●

●

●

●

●● ●
●

●

●●●
●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●●

●

● ●

●

●
●

●
●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●●

●●
●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●
●● ●●

●

●
●

●

● ●●

●

●

●
● ● ●

●

●

●

●

●

●
●●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

●●
●

●●●●

●

●

●

●
● ●●

●

●

●●● ● ●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●
●
● ●●
●

●

●●
● ●

●

●

●

●

●●●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●
●● ●

●

●●●

●

●●
●●

●

●
●● ●

●

●
●

●●

●

●

●

●●●
●

● ●

●

●
●

●

●

●

●

●
●●

●

● ●●
●

●

●

●

●

●●●

●

●
●

●

●

● ●●

●

●

●

●●

●
●

●●●● ●
●
●●

●

●

●

●

●

●

●
●●

●
●
●
●●●

●

●

●

●
●

●

● ●

●

●

●

●● ●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●●

●

●●● ●●
●
●●

●

●●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●●

●
● ●

●● ●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●●
●

●●
●
●
●

●

●●
●

●

●

●
●

●
●

●

●

●

●● ●
●

●

●

● ● ●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●●

●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

●
●

●

●

● ●●

●

● ●●
●

●

●
●

● ●
●
●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

● ●●
●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

● ●
●

●

●
●● ●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●●●
●

●
● ● ●●
●

●

●
●
● ●●● ●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●●

●

●
●

●

●

●● ●●● ●

●

●

●

●

●

●● ●●
●

●

●●●

●

●

●

●

●

●

●

● ●●●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ● ●●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

● ●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●●
●● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●●●●

●

●

●

●

●

●

●

●● ●
●●●

●

● ●

●

●

●

●

●

●

●

● ● ●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

● ● ●

●

●

●

●● ●
●● ●●

●

●

●

●

●●

●

●
●

●●●● ● ●
●
●
●
●
●

●

●●●
●

●
●●●
●

● ●

●

●

●● ●● ●
●

●

●

● ●●
●
●
●

●●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

● ●●

●

●●

●

●

●

●
●
●

●●●●●●● ●

●

●
●

●

●

●

●

●
●

●

●
● ●● ●

●

● ●●
●

●

●

●●

●

●

●

●

●
●● ●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●●● ●
●

●

●●●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

● ●
●
● ●

●
●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●●

●
●

●● ●●
●

●

●●

●

●
● ●●
●●
●

●
●

●●

●

● ● ● ●
●

●●

●●
●
●

●

●

●

●
●

●

●●
●
●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●●●

●●
●● ●

●●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●
●

●

●

● ● ●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●● ●
● ●●

●

●●
●

●

●

●

●

●

●
●●

● ●
●●

●

●

● ●

●

●

●

●

●
●
●

●

●●
●

●

●

● ●
●● ●

● ●●● ●●

●

●

●

●

●

●●●
● ●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●● ●●

●
●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●●●

● ●

●

●
● ●
●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●
●●

● ●

●

●
●

●

●

●

●

●

●

●

● ●●

●
●
●

●

●●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●● ●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●

● ●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●●●

●

●●
● ●

●
●●●

●

●

●

●

●

● ● ●

● ●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

● ●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

● ●●

●

●●

●

●●● ●●

●

●
●

●

●

●

●

●
●

●

●
●● ●●●

●

●●●

●

●
●

●
●
●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

● ●●

●

●

●
●●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●●

●

● ●

●
●● ●

●

●

● ● ●●
●●

●

●●

●
●

●

●●●

●

●

●

● ●●

●

● ●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
● ●

●

●

●

● ●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●●
●●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

● ●

●

●

● ●
●●●●

●

●
●
●● ● ●

●

●
●●●●● ●
● ●

●

●

●●●

●

● ●
●

●

●●●

●

●● ●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●●
●

●

●
●
●

●

●

●

●

●

●●●●

●

●●● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●
●
●

● ●

●

●

●

●
●
●●●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●
●

●●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●●

●

● ●

●

● ●●
●

●

●

●●● ●●● ●

●

●
●●●

●
●●
●

●
● ●
●●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●●

●

●●
●

●●
●

●

●

●●
●

●

●

●●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●● ●

●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●● ●●●
●

●

●
●

●

●
●

●

●

●
●●

●

●●●●●
●

●

●

●

●
●●●

●

●

● ●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●●

●

● ●

●

●
● ●
●

●●

●●
●
● ●●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●●
●

●

●
● ● ●

●

●

●

●●

●

●

●

●
●

●

●

●
● ●

●

●
●
●●

●● ●● ●●

●

●
●●●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●●
● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●
●

● ●

●
●

●

●

●

●

●

●
●

●

●●

●

●● ●●●● ●●

●
●

●
●

●

●

●●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●● ●●●
●●

●

●
●

●

●●

●

●

●

●●●
●

● ●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●●

●

●
●

●
●

●

●
●●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●

● ●
●

●

●

●

●
● ●

●

●
●●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●●● ●●

●

●●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●
● ●

●

●● ●
●●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●●●

●
● ●

●

●

●

●

●

●

●
●

● ●

●

●

●●● ●

●

● ●●●
●

● ●●
●●
● ●●

●

●

●

●●● ●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

● ●●
●●

●

●
●●

●

●

●
●●

●

●

●

●

● ●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●●

●

●
●●● ●

●

●

●

●

●

● ●
●

●

●
●

●
●● ●

●

●
● ● ●

●

●

● ●
●
●
●●

●

●
● ●

●

●

●
●

●
●● ●●

●

●

●
●●

●

●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●●●●
●●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●
●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●●

●

●

●

●
●●●●

●

●

●● ● ●●●
●●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●
●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●● ●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●
●

●
●

●

● ●

●

●
●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●●
● ●● ●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●● ● ●●

●

●

●

● ● ●

●●

●

●

●

●

●

● ● ●●
●

●

●

●

●

●●

●

●●
● ●

●

●

●●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●
● ●

●
●

●

●

●

● ●● ●

●

●

●

●
●

●

●

●
●

●

●

●●
●●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●
●●

●

●

● ●●

●

●

●

● ●● ●
●●●

●

●
●
●
●● ●● ●
●●

●

●

●
●
●

●

●
●

●
●●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

● ●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●●● ●

●
●

● ●

●

●

●

●
●●

●●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

● ●●

●

●●

●

●
●

●

●●

●

●
● ●● ●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●●

●

●

●

●●●
●

●
●●

●

●

●●

●

●
●● ●

●

● ●

●

●●
●●

●

●

●

●●

●

●

●
●●●●
●
● ●●● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●
●

●

●

●

●
●●●

●

● ●●●
●●●

● ●● ●

●
●
●

●

●

● ●

●

●●

●

●●
●

●
●

●
●
●●

●

●

●

●

●

●
●●●●

●

●

● ●
●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●●
●

●

●
●

●

●● ●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●
●

●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●● ● ●●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●●●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●●
●●

●●

●

●●
●
●

●

●
●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●● ● ●

●

●
●●●●●

●

●

●
● ●

●
●

●●
●

●

● ●●
●

● ●●
●

●

●

●
●

●
●
●

●
●

●

●

●
●

●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●● ●

●

●

●● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●
● ●

●

●●

●

●

●
● ● ● ●

●
●●

●

●

●

●●

●

●
●
●●

●
●●●

●

●

●

●

●●

●

●● ●● ● ●
●●

●

● ●●
●●

●

●

●

●

●●

●

●
●● ●●

●●●●
●

● ●●
●
● ●●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●
● ●●

●

●●
●●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●
●

●
●

●

● ●

●

●
●
●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●
●

●

●

●

● ●●
●

●
●

●

●
●

●

●

● ●●

●
●●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●
●● ●●

●

●●●
●

●
● ●●●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

● ●●●
●

●
●

●

●●
●

●

●

●

●●● ●
●

●

●●

●

●●
●

●
●

●●

●

●●

●

●●

●

●
●
●

●
●

●

●
●

●

● ●

●

●

●

●
●

●
●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
● ●●●

●

●● ●

●

●

●

●
●

●●●●
●
● ●●● ● ●

●

●
●

●

● ●

●

●●●

●

●

●

●●

●

●

● ● ●

●

●

●
●

●●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●
●

●● ●

●

●

●

●

●●●●

●

●●●●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●●●
●

●

●

●
●

●●

●

●

●
●●●

●

●

●● ●●

●

●

●

●

● ●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●●
● ●●●

●

●

● ●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●
●
●●●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

● ●
●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●●

●●

●

●
● ●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●● ●
●● ●

●

●

●

● ●

●

●

●

●

●●

●

● ●●
●

●
●
●

−10 −5 0 5 10 15 20

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Support

In
cr

ea
se

 in
 m

et
hy

la
tio

n

(a) Increase in methylation

−10 −5 0 5 10 15 20

−
5

0
5

Support

E
xp

re
ss

io
n

●
●

● ●

●

●

●●●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

● ●

●

●

●
●

● ●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●
●●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●
●

● ●
●

●● ●

● ●

●

●●

●

●

●●●

●

●

●

●
●

●

●

● ●
●

●
●

●
●● ●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●
●
●

●

●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●
● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●
●

●●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●●

●
●

● ●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●
●
●

●
●

●

●

●

● ●

●
●

●
●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●●
●●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●
●
●

●

●●
●●

●

●
●

●

●
●

●

●

●
●

●

● ●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●
●
●

● ●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●●●

●

●

●

●

●●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●
● ●

●●

●
●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

● ●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●
●

● ●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●

● ●

●

●

●
●

●

●

●● ●
●

●

●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●● ●

●

●

●

●
●

●

● ●
●

●

●

●●

●

●
●

●

●● ●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
● ●

●

●

●

●● ●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●

● ●●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●●

●

●
●
● ●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●
●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ● ●

● ●

●

●

●

●

● ●

●

●
●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●
●●

●

●
●

●

● ●

●

●

●

●

●
● ●

●

●
●●

●●

●
●

●

●

●
●

●

●●
●

●
●
●

● ●
●●
●

●
●

●

●●●

●

●

●
●
●●
●● ●

●
●●
●●●

●

●

●

●

●
●

●
●

●

●

●

●

● ● ●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

● ●
●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
● ●

●

●

●

●
●●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

● ●
●

●

●

●
●

●●●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

● ●
● ●

●

●

●●

●

●

●

●

●●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●
●

●
●

●

●●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ● ●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

● ●●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●

● ●

●
●

●

●

●●

●

●
●

●●
● ●
●

●

●

●

●
●

●

●●
●

●

●

● ●
●

●●● ●● ●●●●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●
●●
●

●

●

●
●

●

●

●●
●

●

●● ●

●

●

●

●

● ●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●
●

●
●●

●

● ●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
● ●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●
●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
● ●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

● ●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

● ●
●

●

●

●
●

●
●

●
●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

● ●
●●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●● ●

●

●

●

●

●
●●●
●

● ●●

●● ●

●

●
●
●

●

●

●

●

(b) Mean expression

Figure 6.6: Scatter/point-and-whisker plot showing the relationship between support (x
axis) and a TCGA score (y axis) of In�nium genes. Blue points indicate mean
score; standard deviation is visualized by gray whiskers.
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Figure 6.7: Approximate densities for expression of genes with hypomethylated, hyper-
methylated and not di�erentially methylated In�nium promoters. The curves
shown are absolute values of smoothing splines �tted on histograms with equi-
spaced bins of width 0.1.

from the trend. Moreover, the mean expression values fall almost exclusively in a short
range around 0, which is consistent with other epigenetic studies in the sense that changes
in promoter methylation do not always have a strong impact on mRNA expression levels.

We used the lists of identi�ed di�erentially methylated regions in our study and com-
pared their increase in methylation and expression values (at the regions, for which these
measurements are available). Estimated probability density functions are shown in Fig-
ure 6.7. These analyses clearly show the low correlation between promoter methylation
and gene's expression indicating that many other factors in�uence the level of transcrip-
tion. Although we observe a shift between expression distributions of genes with hypo- or
hypermethylated promoters, the vast majority of these genes have expression levels that
are low and indistinguishable from the remaining transcripts in the genome.

6.3 Integration of MethylCap-seq data with ENCODE

The ENCyclopedia Of DNA Elements (ENCODE) was introduced in Chapter 2 as an on-
going program funded by the National Human Genome Research Institute that aims at
identifying all functional elements in the human genome [32]. Being well into its production
phase, this consortium provides the data from a variety of high quality epigenome-wide
annotation studies. The table below lists all ChIP-seq datasets that were downloaded for
the purpose of the analyses presented in this section.
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Dataset name Description

H1-H3K4me3 H3K4me3 levels in the H1 embryonic stem cell line
H1-H3K27me3 H3K27me3 levels in the H1 embryonic stem cell line
H1-H3K36me3 H3K36me3 levels in the H1 embryonic stem cell line
H1-DNase Deoxyribonuclease I (DNase I)-binding regions in the H1

embryonic stem cell line
H1-Pol2 Polymerase II-binding regions in the H1 embryonic stem

cell line
H1-CTCF CTCF-binding regions in the H1 embryonic stem cell line
HCT116-H3K4me3 H3K4me3 levels in the HCT116 colon cancer cell line
HCT116-H3K27me3 H3K27me3 levels in the HCT116 colon cancer cell line
HCT116-DNase Deoxyribonuclease I (DNase I)-binding regions in the

HCT116 colon cancer cell line
HCT116-Pol2 Polymerase II-binding regions in the HCT116 colon cancer

cell line
HCT116-CTCF CTCF-binding regions in the HCT116 colon cancer cell line

We downloaded the reads for the datasets listed above and performed batch coordinate
conversion (liftOver) to HG18 whenever necessary3. We then counted the number of frag-
ments that overlap with each of the peaks called in our MethylCap-seq study. In addition
to tag count, we calculated the normalized scores tag occupancy and tag density for each
of the ENCODE element datasets.

Properties of the DNA elements

We calculated the correlations between each pair of elements, using the raw and normalized
scores. As expected, we observed high correlations for the scores of identical elements in
di�erent cell types; an exception being H3K27me3. Furthermore, H3K4me3, DNase and
Pol2 show strong pairwise correlations in ES cells. This is also observed in colon cancer,
albeit to a lesser extent. DNase and CTCF tag counts are exceptionally highly correlated
in H1, however, this relationship diminishes after applying score normalization. For each
ENCODE dataset, we computed the correlations between the score of a peak and its CpG
density. The observed correlations are presented in Figure 6.8. If we focus on the tag
occupancy measure, we can see that only H3K4me3, H3K27me3 and DNase in embryonic
stem cells are strongly (positively) correlated with CpG density.

DNA elements and methylation

We also computed the correlations between the scores for methylation and the DNA ele-
ments for each sample. We found epigenetic modi�cations and other functional genomic
elements that are not related to methylation in healthy cells but are strongly correlated
to methylation in cancer. The datasets that exhibit this property are H1-H3K4me3, H1-
H3K27me3, H1-DNase and H1-Pol2. A similar trend, but somewhat more obscure, can be
seen for H1-CTCF, HCT116-DNase and HCT116-CTCF. In the last step of this analysis,
we checked for correlation between support for hypo- or hypermethylation and the respec-

3This work has been performed by Arjen Brinkman.
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Figure 6.8: Scatter plot showing the correlations between scores for ENCODE elements
and CpG density of the peaks. The embryonic stem cell line H1 is shown in
red, and the colon cancer cell ine HCT116 - in blue. Correlations of tag counts
are depicted by empty circles; �lled circles denote correlations of tag occupancy
scores.

tive scores for DNA elements obtained from ENCODE. H1-H3K4me3, H1-H3K27me3 and
H1-DNase showed strong positive correlation with support for hypermethylation. This
relationship is visualized in Figure 6.9. Hypomethylation events did not show association
with any of the ENCODE scores.

6.4 Prioritization of epigenetic biomarkers

Having identi�ed lists of di�erentially methylated regions (DMRs), we devised a strat-
egy to order them based on their potential to be elements that are informative of tumor
progression. We used several characteristics of the elements to estimate their potential,
i.e. their functional relevance for colon cancer. In addition to support (as described in
Chapter 5), we considered CpG density, the scores for H3K4me3, H3K27me3 and DNase I
hypersensitivity (obtained from ENCODE and described in the previous section), as well as
relative expression of overlapping mRNA transcripts (obtained from The Cancer Genome
Atlas project and described earlier in this chapter).

Since the results for hypomethylation in cancer are less consistent across di�erent scor-
ing strategies, we focused on hypermethylated regions only. Note that expression values
are available for a fraction of the DMRs. Table 6.1 summarizes the number of regions
prioritized in this study.

The procedure applied for biomarker prioritization uses the scores described in Chapter 3
and it involves two simple techniques � rank transformation and aggregation. The �rst
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Figure 6.9: Correlation between support for hypermethylation and selected genome-wide
ChIP-seq datasets downloaded from ENCODE. Mean values of CpG density
are depicted by blue points; whiskers denote one standard deviation.

Score \ List Full list Expression available

Tag occupancy 2,634 565
Tag density 2,684 552

Table 6.1: Number of DMRs used as input in the prioritization scheme.
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manipulation transforms any sequence of N scores into ranks, e.g. numbers from 1 to N if
the original scores are all unique. Duplicated scores are assigned identical ranks � the aver-
age value of the rank range they span. The second manipulation involves combining two or
more lines of evidence into an aggregated score. In case all indications are to be considered,
we combine the scores using the average. If every single indication has the potential to
characterize functional relevance, we consider the best score/rank as the aggregated score.
As a side note, the same techniques for rank transformation and aggregation were later
successfully applied in RnBeads for the prioritization of di�erentially methylated regions.

It is important to note that rank transformation and aggregation are general techniques,
applied for combining di�erent lines of evidence for functional relevance of a DMR. The
steps described below, however, are not universally applicable to all projects involving
biomarker prioritization. Rather, these are the heuristic rules applied in the colon cancer
project, taking into consideration the properties of the MethylCap-seq technology, prior
knowledge about cancer-speci�c events, as well as (lack of) availability of independent co-
horts. Figure 6.10 illustrates the two pipelines for prioritization using a toy example of
four �ctional regions, named A, B, C and D. The input is a table listing all identi�ed
high-con�dence DMRs as rows, and their collected properties as columns. The �rst algo-
rithm (the left branch in Figure 6.10) ignores the expression scores assigned to the regions,
and considers the �ve remaining characteristics. The second algorithm (the right branch
in Figure 6.10) focuses on regions with known expression values, e�ectively shrinking the
list of candidates to a fraction of its original size. The steps described in the �gure are as
follows:

Step Pipeline 1 Pipeline 2

Step I Ignoring the column Expression,
followed by rank transformation.
Higher numbers are given better
(smaller) ranks.

Focusing only on regions with avail-
able expression values, followed by
rank transformation. Higher num-
bers are given better (smaller)
ranks.

Step II Rank combination of all columns except Support. The best (smallest)
rank is selected for every region.

Step III Rank combination of the columns Support and Other evidence. The
average rank is computed for every region.

Step IV Rank transformation of the aggregated score. Lower numbers are given
better (smaller) ranks.

6.4.1 Results

Partial results from this prioritization strategy, more precisely, the top 20 hypermethylated
peaks, are listed in Supplementary Table S7. Regions are sorted based on their aggregated
score.

We examined the relative importance of the di�erent indicators in the �nal ranking
of hypermethylated regions. By studying the mean rank of the top K candidates (see
Figure 6.11), it is easy to notice that support is the dominant factor in the candidate
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Figure 6.10: Two strategies for DMR candidate biomarker prioritization applied on a toy
example set consisting of four regions: A, B, C and D. Each strategy consists
of applying four consecutive steps (transformations on the table of candidates)
denoted by Roman numerals; its intermediate and �nal results are displayed
in a dedicated branch.
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Figure 6.11: Mean rank of selected indications among the top K biomarker candidates.
The horizontal axis lists the tested values for K. Indications are denoted by
colors.

prioritization. CpG density and expression level seem to be more in�uential than histone
marks and DNase I hypersensitivity (data not shown).

We also tested for bias in the ranking with respect to several factors, including, among
others, region length and CpG density. We computed the mean value of the studied
property for the top K biomarker candidates, and inspected the change in the mean value
as K varies from 1 to 50. Selected results are shown in Figure 6.12. Surprisingly, only
support shows a strong correlation with the aggregated rank, indicating that the other
factors have a subtle e�ect on the prioritization results. Keep in mind that these factors
include CpG density and expression, that are used in calculating the �nal ranks.

6.5 Results and discussion

In this Chapter, we proposed methods for integrating datasets of the same type from hetero-
geneous sources, and of di�erent data types. We take an approach focusing on prede�ned
regions � gene promoters and gene bodies in this case � that enables us to normalize data
to a common baseline when the outcomes of di�erent technologies need to be combined.
Despite the low overlap in targeted regions between MethylCap-seq and microarray data,
we successfully used methylation and expression microarray studies to con�rm our �ndings
and thereby gain con�dence in the power of the support for di�erential methylation intro-
duced in Chapter 5. When closer technologies are integrated, as is the case with histone
marks from ENCODE, we applied the same steps for data preprocessing and normalization
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Figure 6.12: Distributions of selected scores in the top K biomarker candidates. K varies
from 1 to 50, as depicted in the horizontal axes. Score distributions are
visualized by line-and-whisker plot, where the line shows variation in the mean
value and whiskers measure standard deviations.
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which permitted more rigorous comparison and identi�cation of strongly correlated signals
� a necessary (but not su�cient) condition for association.

Finally, we propose a simple and �exible prioritization strategy that allows for ranking
candidate di�erentially methylated regions based on their association with another metric
(e.g. expression) and/or evidence observed in an independent dataset.



7 Methylation-based cancer type
classification

7.1 Epigenetic signatures and fingerprints

The analyses in this chapter are partially inspired by the ongoing scienti�c debate on the
phenomenon of CpG Island Methylator Phenotype (CIMP). This term was �rst coined
by Toyota at el., based on the interrogation of 30 newly cloned di�erentially methylated
DNA sequences in 43 colorectal cancer samples [112]. The authors conjecture that the
CGI hypermethylation events observed in the majority of tumor samples occur at loci
that become progressively methylated with age in healthy tissue. In contrast, the CIMP
positive tumors are a subset of carcinomas and adenomas in which tumor suppressor gene
hypermethylation has resulted in damaged DNA repair mechanisms. For this reason, the
cases of CIMP positive tumors are often associated with microsatellite instability (MSI)
but form a clinically de�ned subtype. Four years later, Yamashita and colleagues chal-
lenged the existence of a CIMP phenotype when examining the methylation state of 6
CGIs at tumor suppressor genes and 30 other locations in a cohort of over 200 colorectal
cancer patients [125]. Their results indicate that tumor-speci�c somatic hypermethylation
is a widespread age-dependent process that follows a Gaussian distribution. Moreover,
MSI is a better indicator of the observed phenotype (e.g. relapse-free survival) in colon
cancer. In the past years, several publications appeared with comprehensive studies that
support the hypothesis for a prognostic value of CIMP [95, 85, 121], of MSI over epigenetic
changes [9, 61], and also showing lack of support for both claims [8].

It is important to note that essentially every publication characterizing CIMP uses a
distinct panel of islands or genes, along with a speci�c set of rules that de�ne the methy-
lator phenotype. Moreover, it becomes progressively clearer that CIMP is not a unifying
phenotype but is rather speci�c for di�erent tumor types. Hypermethylation events that
are associated with gene mutations and patient survival have been described in at least
8 cancers [60], including, among others, glioblastoma (termed G-CIMP) [84] and lung
adenocarcinoma [103]. Hughes et al. provide a systematic review of the publications on
CIMP-related studies in colorectal cancer, and conclude that the debate surrounding this
issue "will likely continue until a biological cause for CIMP has been determined" [60].
Identifying associations between epigenetic genes and methylation patterns seems to be a
promising direction for future research [36].

85
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7.2 Tumor types and subtypes

Much like the discussion on CIMP above, this Chapter presents three approaches taken
to identify epigenetic patterns indicative of a tumor type, subtype or a similar clinically
relevant phenotype based on methylation data. The �rst section focuses on using methy-
lation data to predict tumor of origin. This analysis was performed on the GoldenGate
dataset, in the context of the CANCERDIP consortium, and the resulting model is one of
the major contributions of the associated publication [50].

The second section discusses bimodality in the context of identifying two subgroups in
the lung cancer dataset. As mentioned in Chapter 2, the focus of the study on the lung
cancer dataset was �nding a prognostic panel for relapse free survival. The discussions
presented here were not included in the publication, as they address the more general
question of whether lung adenocarcinoma or squamous cell carcinoma can be strati�ed
into methylation-speci�c subtypes.

The last section presents an analysis of the colon cancer dataset, another collaboration
conducted within the CANCERDIP consortium. It studies the stability of established
model families trained on high-dimensional data. We did not �nd strong associations
between di�erential methylation events and MSI or clinical properties of the tumor sam-
ples [104]. Results on the existence of methylation-speci�c subtype (such as CIMP) are
inconclusive due to the very limited number of patients.

7.2.1 Predicting primary origin

The GoldenGate methylation dataset contains 421 carcinomas of unknown primary origin
(CUPs). These are metastatic samples for which the primary tumor type is not known.
The large set of available primary tumors can be used to train a classi�er. We considered
only the cancer types represented by at least 10 primary samples. There are 827 samples
from 24 tumor types that meet this criterion. We trained linear support vector machines
(SVMs) and L1-regularized logistic regression (RLR) models on the primary tumor sam-
ples. Given an unseen sample, both methods are able to produce probabilities for the
sample to belong to each of the 24 cancer types. We then inspected the performance of the
methods on classifying metastatic samples (for which the primary origin is known), before
using them to predict the origin of the CUP samples.

Linear support vector machines were trained using the "one versus all" approach. More
precisely, 24 classi�ers were trained, each of them labeling a unique cancer type as case and
all other types as control. In classifying a new data point, the predicted case probabilities
of each model were extracted and rescaled to sum up to 1. Note that the dimensionality of
the feature space exceeds the number of training points. Also, the sample groups of tumor
type tend to be clearly separated. For this reason, the SVM classi�er produced identical
solutions for the whole range of tested values for the cost parameter C (1 to 10). However,
the selection for the value of the parameter λ in L1-regularized logistic regression models is

1The answer to the ultimate question of life, the universe and everything.

http://en.wikipedia.org/wiki/42_(number)
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(a) (b)

Figure 7.1: 10-fold cross-validation (CV) estimates of the misclassi�cation error rate, used
in estimating the λ parameter of L1-regularized logistic regression model (a).
Comparison of the CV estimates for the accuracy of SVM and RLR (b).

non-trivial. For this purpose, 10-fold cross validation (CV) was performed on the training
set of 827 samples, and test error was estimated for a sequence of one hundred positive
values for λ. In order to test the stability of the CV estimates, this randomized process
was repeated 50 times. For the sake of error comparison, SVM classi�ers were trained on
the same folds used in training logistic regression models.

Each of the methods described above was applied to the samples using the 1,322 probes
that pass all �ltering criteria. In addition, we applied the methods using an extended set
of 1,366 probes, including 44 probes that are hypermethylated in females. We refer to the
smaller and larger probe sets � and consequently, to the models using them � as standard
and extended, respectively.

Parameter selection and training error

Figure 7.1(a) shows the estimated misclassi�cation error for the logistic regression models.
The selected λ in both cases is the lowest value in the sequence: approximately 0.0037.
The number of probes with nonzero coe�cients are 196 and 198 for the standard and
extended models, respectively. In fact, the addition of 44 gender-speci�c probes does not
a�ect the prediction accuracies of the models (see Figure 7.1(b)). SVM models clearly
outperform RLR in this scenario. This observation was later con�rmed for In�nium 27k
data as well [131].

Note that the training set of samples is highly imbalanced. The best represented tumor
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Figure 7.2: Cross-validation estimates of the accuracy of an SVM model with linear kernel,
reported separately for each of its possible outcomes.

types are colon cancer and glioma, with 110 and 97 samples, respectively. For some cancer
types, such as follicular lymphoma and multiple myeloma, only 14 samples are available.
We decided to test if and to what extend the trained models could show bias toward the
numerously represented tumors. As a �rst step, we segregated the errors per tissue type.
Figure 7.2 shows the estimated errors of the full models trained on the complete set of
827 primary tumor samples. The correlations between mean accuracy and sample size per
tumor type are positive (r2 = 0.2 for SVM and 0.31 for RLR), which is to be expected,
but the values are not large enough to suggest a strong bias towards better represented
cancer types.

Classification of metastatic samples

Note that all calculations in the previous sections are based on the primary tumor samples
only. We used the trained models to predict the origin of metastatic samples. The Golden-
Gate dataset contains 50 metastatic samples, including 32 colon cancer metastases in liver,
13 colon cancer metastases in brain and 5 renal tumor metastases in brain. Our training
set of primary tumors includes colon cancer but not kidney cancer. Therefore, a perfect
model would predict very high probability for colon as a primary origin of the colon cancer
metastatic samples, and would estimate low probabilities for all known tumor types as an
origin of the kidney cancer metastases. The results of all methods are available in Sup-
plementary Table S8, and the prediction procedure is described in the following paragraph.

We used a probability threshold P for predicted origin. More precisely, tissue of origin
T was predicted for a metastatic sample if and only if the following conditions are met: (1)
the tumor type that corresponds to T received the highest probability Pr(T ) among all
tumor types for the sample, and (2) Pr(T ) ≥ P . In case all the tumor types are predicted
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Figure 7.3: Heatmap visualizing predicted probabilities of origin (columns) for the CUP
samples (rows) in the GoldenGate dataset. Only tumor types that have a
highest probability for being the origin of at least one metastatic sample are
included.

as origin with probabilities lower than the threshold, we de�ne the origin of the metastatic
sample as uncertain. The probability decision threshold for the families of prediction mod-
els was set in a somewhat arbitrary fashion to 10/24 � 10 times more than random. In
fact, any choice for a threshold between 0.3 and 0.55 has a negligible impact on the results
and no e�ect on the summary presented below (see Supplementary Figure S1).

Next, we computed the accuracies of the models based the 50 metastatic samples. A
classi�cation was correct only if the predicted origin for colon cancer metastasis is colon,
and for renal metastasis is uncertain. The accuracies computed using the above procedure
were approximately 90% for all models. Finally, Figure 7.3 summarizes the predictions of
SVM standard model on the available CUP samples. Later validation yielded accuracy of
≈ 80%. The results for the other tested models were almost identical (data not shown).

Of note, we recently repeated the training procedure described above on a collection
over 4,600 In�nium 450k samples from 16 solid tumor types from TCGA, and obtained
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comparable results. We also experimented with di�erent machine learning techniques,
such as logistic regression model with elastic net penalty. CV estimates of this model are
presented in Supplementary Figure S2.

Summary

Here we compared the applicability and performance of two linear classi�ers when predict-
ing tumor type of GoldenGate samples. A large collection of primary tumors samples was
used as a training set. The classi�ers were then evaluated on metastatic samples. Both
models show remarkable accuracy and were successfully applied for the prediction of origin
of CUPs.

7.2.2 Identification of lung cancer subtypes

This section focuses on the two lung cancer types in the lung cancer datasets that are
represented by large sample groups � adenocarcinoma and squamous cell carcinoma. All
steps outlined below were performed for both tumor types independently. Unless stated
otherwise, the �gures that accompany the description depict results on the squamous cell
carcinoma samples. Two approaches are presented: cluster analysis and locus analysis.

Clustering and variability analysis

We attempted to subcategorize each group into subtypes based exclusively on the methy-
lation pro�les of the samples. We achieved this task using the following strategy:

We �rst applied several clustering approaches that identi�ed distinct sample subgroups.
We also tested for strong correlations between the clusters and the directions of largest
variance, as de�ned by principal component analysis on the high-dimensional methylation
data. Once the subgroups are de�ned, we inspected each CpG dinucleotide individually
and found the ones whose methylation state is informative of a particular subgroup.

Locus analysis

We also identi�ed CpGs and promoters that show bimodal behaviour in each of the
studied tumor subtypes. More precisely, we searched for loci that (1) are unmethylated or
methylated in normal lung tissue, and (2) show bimodal distribution of their β values in
the tumor of interest.

This analysis is based on min� processing with control normalization and background
substraction. Probe and sample �ltering was done as described in Chapter 3. The following
sections describe in details the cluster analysis steps introduced here. Justi�cation for the
selected methods is provided, as well as their underlying assumptions and the results. The
later sections describe the simulations and the results of the locus analysis introduced
above.

Clustering

We applied �ve clustering techniques on the transformed data of a sample group � agglom-
erative hierarchical clustering using three di�erent linkage methods, spectral clustering
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Figure 7.4: Line plot of the silhouette values of the clustering algorithm outcomes for each
applicable value of K (number of clusters) in squamous cell carcinoma samples.

with radial basis (RBF) kernel, as well as k-means clustering. In all approaches, the num-
ber of clusters K that produced the best sample separation was determined by calculating
a silhouette value for each possible outcome. The resulting silhouette values were markedly
low in all cases. Figure 7.4 visualizes them for the squamous cell carcinoma samples; the
adenocarcinoma set produced a very similar outcome. All algorithms showed very con-
sistent results with respect to number of clusters K, but not when it comes to cluster
assignments for individual samples.

Hierarchical clustering using average, centroid-based or single linkage method cannot
separate the tumor samples into subtypes in a convincing manner because one of the
subtypes is usually represented by a single sample. Hierarchical clustering with complete
linkage, k-means and spectral clustering with radial basis kernel, on the other hand, do
not produce compact and dense clusters, as indicated by the comparatively low silhouette
values. Moreover, the methods are inconsistent with respect to the subgroups identi�ed,
as already noted above.

Clusters and variability

We performed principal component analysis on the same β value matrix that was used for
clustering. This is the matrix constructed from the methylation degrees of the samples in
the group of interest at the 418, 612 probes. In addition to dimensionality reduction, this
analysis also showed us the main directions and the span of the variability of the studied
tumor samples in the high-dimensional In�nium 450k probe space. We conjecture that
every identi�able subtype based on methylation patterns is represented by a point cloud
within our dataset. Moreover, this point cloud occupies distinct value ranges in one or
more of the principal components of the analyzed type.
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Figure 7.5: Scatter plot of all samples in the adenocarcinoma group in the third and fourth
principal components. The color of a point depicts its cluster membership as
determined by hierarchical clustering using complete linkage as an agglomera-
tion method.

We inspected the �rst eight principal components. Cumulatively, they explain over 50%
of the total variance in each of the tumor types. Judging by the spread of the samples,
no distinct division into point clouds appear. The only hint of separation into groups
can be seen by visualizing the fourth principal component coordinates (see Figure 7.5),
however, this representation does not seem to re�ect true intersample distances. Overall,
no strong correlations could be identi�ed between sample values at any pair of a principal
component (among the �rst eight) and a clustering outcome. The apparent lack of dense
coherent clusters suggests that, when considering the genome-wide methylation patterns,
no distinct subtypes can be identi�ed.

Locus analysis

Using the clustering algorithms described above, we de�ned distinct subgroups in each
of the studied sample groups. In order to identify CpGs that are informative of a sub-
group, we used an approach similar to the one described in Chapter 5. More precisely,
we compared the samples in subgroup i (i ∈ 1, . . . ,K) to all other samples in the group,
and checked for each probe separately if it is di�erentially methylated between the two
sample sets. Di�erential methylation was quanti�ed by four measures � o�set, di�erence
in means, relative di�erence, and a p-value. Formally, let A and B be two non-empty sets
of sample indices corresponding to two di�erent clusters identi�ed in a tumor type, and
the corresponding sample methylation values for a given probe P is MP,A = {βi}, i ∈ A
and MP,B = {βi}, i ∈ B. The measures we calculated are then de�ned as follows:

1. methylation o�set for increase: min(MP,A)−max(MP,B)

2. methylation o�set for decrease: min(MP,B)−max(MP,A)

3. di�erence in means: µ(MP,A)− µ(MP,B)

4. relative di�erential methylation: log2(µ(MP,A)/µ(MP,B))
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(a) O�set for increase (b) O�set for decrease (c) P-value

Figure 7.6: Histogram of observed values of o�set for increase (a), o�set for decrease (b)
and p-values after correction (c).

5. p-value for di�erential methylation (Student's t-test on the samples from the two
sets), adjusted for multiple testing using the Benjamini-Hochberg approach.

Figure 7.6 shows example distributions of three of the measures de�ned above for one of
two clusters identi�ed using hierarchical clustering with complete linkage on the squamous
cell carcinoma samples. Note that every probe with a positive o�set is very informative of a
subtype � its methylation status can be used to accurately separate the samples belonging
to a speci�c subtype from the rest of the samples in the examined group. Unfortunately, we
almost never observe probes that have positive o�sets, despite the fact that the majority
of the di�erential methylation p-values are very low. Remarkably, in all cases in which
k-means or hierarchical clustering with complete linkage was applied, the distribution of
methylation o�sets can be well approximated by a mixture of two normal distributions.
We exploited this property further and �tted a Gaussian mixture model in each of these
scenarios. We de�ned probe P in cluster c to be informative by high methylation when all
of the following conditions are met:

• P is more likely to belong to the Gaussian with the higher mean (that the one with
the lower mean) in the mixture model of its o�set for increase in methylation;
• P has a di�erence in means of at least 0.2;
• P has a relative di�erential methylation of at least 0.6;
• The adjusted p-value for P is less than 0.01.

The de�nition of a probe being informative by low methylation is analogous.

Note that some of these thresholds seem ad-hoc, nonetheless, justi�cation can be pro-
vided. For example, the value of 0.6 (-0.6 for informative by low methylation) applied to
the quotient corresponds to approximately 1.5-fold increase (decrease) in mean methylation
between two sample sets. In general, we label a probe informative in a sample group if it
is informative by high or low methylation for at least one of the identi�ed subgroups. The
table below provides summary of the number of informative probes found in the studied
carcinomas.
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Algorithm \Sample Group Adenocarcinoma Squamous cell carcinoma
Hierarchical using complete linkage 0 2

K-means 0 0
Spectral using radial kernel 0 8

Four of the eight informative probes (based on spectral clustering) in squamous cell
carcinoma are associated with genes. We give a short description of three of these genes
below. The fourth one is C20orf186.

• HECW2's product is E3 ubiquitin-protein ligase that mediates ubiquitination of
TP73. It acts to stabilize TP73 and enhance activation of transcription by TP73 [80].
The probe cg20197814 is located in the gene's 5' UTR.

• The protein encoded by SCGB1D1 is a member of the lipophilin subfamily, part of
the uteroglobin superfamily, and is an ortholog of prostatein, the major secretory
glycoprotein of the rat ventral prostate gland. The protein may bind androgens and
other steroids; it may also bind estramustine � a chemotherapeutic agent used for
prostate cancer [71]. The probe cg01772980 is located near the gene's transcription
start site.

• Aquaporin 8 (AQP8) is a water channel protein. Aquaporins are a family of small
integral membrane proteins related to the major intrinsic protein (MIP or AQP0).
Aquaporin 8 was found to be ubiquitously expressed in cervical squamous cell carci-
noma [127]. The probe cg02916147 is associated with the promoter of AQP8.

Figure 7.7 displays all methylation values of the identi�ed informative probes in a
heatmap.

Notes on bimodality

A critical aspect of this analysis is the identi�cation of bimodality. More precisely, we need
to identify loci (e.g. probes) whose β values are best described by a bimodal distribution
� one mode of low methylation and one of high methylation. In contrast, a reasonable as-
sumption for a locus with consistent methylation is a single normal distribution; its mean
shows the average methylation degree within the studied population, and the deviation
quanti�es the observed variability. Note that Gaussian mixture is a more complex model
than a single Gaussian. Therefore, a better �t for the mixture model on a limited set of
values should not be blindly extrapolated. We attempted to quantify the better �t of a
mixture model in our framework using simulations described in the paragraph below.

We performed simulation tests in which a speci�ed number of values x1, . . . , xn ∈ [0, 1]

were randomly drawn from a normal distribution with mean µ = 0.5 and standard deviation
σ = 0.1, 0.15, . . . , 0.5. The goodness of �t of a normal distribution and Gaussian mixture
model to the drawn values was quanti�ed using the log-likelihood measure:

LEM =
∑
log(L(xi)) in the �tted Gaussian mixture model

LN =
∑
log(L(xi)) in the �tted single Gaussian model
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Figure 7.7: Heatmap of methylation values at informative CpGs. Every row in this
heatmap corresponds to an In�nium probe, and every column � to a sample.
Methylation is color-coded using a palette from bright green (no methylation),
through black (50% methylation) to bright red (close to 100% methylation).
Sample colors denote cluster assignment, and probe blue color legend shows
that all probes lie outside CpG islands.
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Figure 7.8: Histogram showing example simulation of methylation β values. The values
were drawn from a distribution with mean 0.5. The density function of the
�tted Gaussian is depicted by a red line, and the density of the Gaussian
mixture � by a blue line.

Note that log-likelihoods are negative values. Also, LEM > LN indicates a better �t of
the mixture model. The Gaussian mixture models were �tted using the expectation max-
imization algorithm. For the number of values drawn, we decided to mimic the number
of samples in a cancer subtype. We therefore performed simulations using n = 345 (cor-
responding to the adeno group) and n = 133 (squamous group) values. Figure 7.8 shows
an example in which the Gaussian mixture has a better �t than the normal distribution
approximation, although the values were generated from a single Gaussian.

We performed 10,000 simulations for each pair (µ, σ) of normal distribution parameters.
We de�ned the improvement as LEM − LN . Positive improvement indicates that a Gaus-
sian mixture model �ts the generated values better than a single Gaussian. Figure 7.9
shows the distributions of the resulting improvement values.

We selected as a threshold the largest among the 95th percentiles, rounded up to the
closest integer value. This gives us T = 28 for improvement in the adeno group, and T = 14

for the squamous carcinoma samples. Using these thresholds, we can safely estimate that
the false discovery rate is less than 5%.

Bimodal probes in lung cancer

In this concluding step, we identify probes that are unmethylated or methylated in normal
tissue and show bimodal distributions in a cancer subtype. We de�ne a probe to be
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(a) Mean and standard deviation (b) 95th percentile

Figure 7.9: Distributions of log-likelihood improvements for the simulations based on the
adenocarcinoma sample group. The underlying value sets were drawn from
Gaussian distributions with mean µ = 0.5 and di�erent values for standard
deviation σ, shown on the x axis. (a) Blue points denote mean values of the
calculated improvements, and whiskers show standard deviations. (b) The blue
line depicts the 95th percentile of each distribution of improvements.

consistently unmethylated in normal lung when its β values is at most 0.4 in all samples
and the mean β is at most 0.2. Similarly, a probe is consistently methylated in the group of
normal samples when its methylation is at least 0.6 in all normal samples and the average
methylation is at least 0.82. The table below summarizes the number of consistent probes
we found in the examined normal samples.

Regions Probes Promoters

Unmethylated 149,446 3,240
Methylated 106,624 1,600

Total 256,070 4,840

Each of the consistent loci was tested for bimodality in a group of cancer samples using
the approach described earlier in this section. As already discussed, an improvement of at
least T suggests that the methylation of a locus is bimodal. However, bimodality on its own
does not necessarily imply heterogeneous methylation. We therefore imposed additional
criterion, targeting probes and promoters that can divide samples in categories of low and
high methylation. This criterion is described in the paragraph below.

Fitting a Gaussian mixture model gives two modes (peaks) � one of low and one of high
methylation. For the loci that are consistently unmethylated in normal lung, we de�ne the
distant peak to be the mode of high methylation in the disease sample group. We consider

2When stricter �ltering criteria for consistent low and high methylation are applied, the subsequent steps

fail to identify bimodal probes in the studied tumor types.
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(a) Unmethylated in normal (b) Methylated in normal

Figure 7.10: Density plot of improvement and distant peak β value. A distant peak is the
peak further away from the methylation state in normal tissue, e.g. the high
methylation peak for loci that are unmethylated in normal. Red lines show
the thresholds applied.

the locus of interest to categorize samples into ones of low and of high methylation when
the distant peak is at a value of at least 0.6. Similarly, the distant peak in case of loci that
are consistently methylated in normal lung is the lower mode of the mixture model �tted
on disease samples. The locus is then used in subsequent analysis only if its distant peak is
at a value lower than 0.4. Figure 7.10 visualizes the bivariate distributions of improvement
values and distance peak methylation. One can clearly see that the selected thresholds are
conservative, leading to the identi�cation of a small number of high-con�dence bimodal
probes in tumor.

We refer to loci that pass both criteria (improvement and distant peak value) as strongly
bimodal. The table below summarizes the number of strong bimodal loci we identi�ed in
each of the studied scenarios.

Regions probes probes promoters promoters
Sample group adeno squamous adeno squamous
Threshold for improvement 28 14 28 14

Bimodal loci (unmethylated in normal) 21 38 0 0
Bimodal loci (methylated in normal) 21 25 1 0
Bimodal loci (total) 42 63 1 0

Listings of the identi�ers are available in Supplementary Table S9. Clustering based
on the methylation values of all disease samples at the selected loci does not reveal dense
clusters in the adenocarcinoma dataset (data not shown). In the case for squamous cell
carcinoma, however, two separate groups might be identi�able (Supplementary Figure S3).
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Summary

In this section, we investigated the possibility for methylation-speci�c tumor subtypes in
lung adenocarcinoma and squamous cell carcinoma. When observing the genome-wide
methylation patterns, the clustering results suggest that there are no discrete set of cate-
gories. A plausible explanation would be that we observe a continuous spectrum of hypo-
and hypermethylation events that contribute to tumor proliferation.

In addition, we identi�ed CpGs and promoters that show bimodal behaviour in each
of the studied tumor subtypes. Empirical studies suggest that the methylation values at
the selected bimodal probes in adenocarcinoma cannot distinguish between subgroups of
samples, but in the case of squamous cell carcinoma, subgroup-speci�c pro�les might exist.

7.2.3 Identification of colon cancer subtypes

In this section we focus on the colon cancer dataset and study the relationship between the
sets of high con�dence di�erentially methylated regions and several clinical properties of
the patients. The di�erentially methylated peaks, along with the procedure for obtaining
them, are described in Chapter 5. We used the information encoded in the patient-speci�c
events to predict the following clinical attributes:

Tumor grade 17 patients presented with Grade 2 (G2) colon cancer and the other 7 : with
G3.

Duke’s stage 16 of the tumors are classi�ed as Duke's stage A or B (considered a single
category AB in this analysis), another 5 tumors are stage C and the remaining 3
tumors are advanced at stage D.

KRAS state 13 of the tumor samples contain a wild type (WT) allele of the KRAS gene,
whereas mutations (MUT) in this gene are found in the remaining 11 cases.

Microsatellite stability 7 of the tumors are considered microsatellite instable (MSI), the
other 17 are microsatellite stable (MSS).

In the following, we refer to a combination of peak score and clinical attribute as a sce-
nario. The input data for the prediction methods consists of the events of the di�erentially
methylated regions. A hypomethylation event was denoted by the value -1, a hyperme-
thylation event by 1, and 0 signi�es no di�erential methylation. The response variables
considered are the four aforementioned clinical properties.

In some cases two or more regions provide identical data, that is, their events match for
each patient. In mathematical terms such regions are represented by the same event vector.
The presence of indistinguishable features may exert a negative e�ect on the stability of
a classi�er. We therefore ignored duplicated data by randomly selecting only one region
within a set of peaks with identical event vectors. The remaining peaks are summarized
in the table below:
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Score Regions

Tag counts 2,034
Scaled tag counts 2,566

Tag density 2,566

Region Selection Methods

The simplest approach to identifying regions whose di�erential methylation events are cor-
related with a clinical property, is through a statistical test. Since there are up to three
events per peak, and the clinical properties are also categorical variables, Fisher's exact
test would be most appropriate. The initial set of results presented in this section con-
cerns this test for signi�cant correlation. When it comes to prediction, we �rst applied
elastic nets to select a subset of the di�erentially methylated peaks that are related to
the attribute of interest. The elastic net method is applied in cases where the number of
features greatly exceeds the number of analyzed samples. As a comparison, we also applied
a simpler procedure for feature selection, namely forward selection on logistic regression.
These machine learning techniques are introduced in Chapter 1.

Fisher's exact test

We applied Fisher's exact test to each peak in each scenario. Note that we are comparing
two properties in a set of 24 patients. The small size of the tested population invariably
leads to p-values on a coarse scale. Figure 7.11 shows the distributions of p-values obtained
using tag density for score and tumor grade as an outcome. The other scenarios show very
similar distributions. Clearly, none of the p-values appears signi�cant after false discov-
ery rate (FDR) correction. This phenomenon is mainly due to the fact that we rely on
24 observations. This places a restrictive limit on the minimal possible p-value that may
result from the statistical test. Unfortunately, the problem of multiple testing cannot be
alleviated at this stage, and therefore, no lists of informative peaks can be obtained using
this simple method.

Elastic nets

Elastic net classi�ers contain two parameters � regularization parameter λ and L1 penalty
weight α. Training an elastic net involves parameter estimation, which was implemented
using 4-fold cross validation. More precisely, we �rst split the set of 24 samples in 4 folds
(subsets) of 6 samples each. We then trained elastic nets four times on a grid of 100× 100

parameter values supplying three of the folds as training data and using the remaining fold
to estimate the test error of the classi�er. This error is referred to as CV estimate later in
this section. In order to assess the stability of the method, the procedure described above
was repeated 100 times using di�erent splits of the samples.

Not surprisingly, the small number of observations leads to highly uncertain estimates of
the cross-entropy (see Figure 7.12) and the misclassi�cation error (data not shown). The
shape of the error landscape, however, seems to be similar across repetitions. This is an
indication that the elastic net might be a stable method for region selection. The selected
parameter values in each of the 100 cross validation repetitions are plotted in Figure 7.13.



7.2 Tumor types and subtypes 101

P−value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0

(a) Before multiple testing correction

P−value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0
10

00
12

00

(b) After multiple testing correction

Figure 7.11: Histograms of p-values obtained by association for correlation between di�er-
ential methylation events and a clinical outcome using Fisher's exact test.
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Figure 7.12: Cross validation estimates of elastic net's cross-entropy error at di�erent pa-
rameter values. The horizontal axes show the values for the α parameter and
the λ parameter ranks (the exact sequence of λ values di�er depending on the
selected α). The vertical axis show the cross-entropy error. The color of a
point is a topographical encoding of its cross-entropy value: the lowest values
observed are denoted by dark green, and the highest ones - by bright red.
Grey vertical lines show the standard deviation of the CV estimate observed
at a particular parameter combination.
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The parameter estimates in the case of tumor grade are fairly stable, whereas the minima
in the error landscape when predicting Dukes stage, KRAS mutations and microsatellite
instability are very inconsistent across repetitions. In the latter case, an elastic net clas-
si�er is unable to identify a predictive pattern for the corresponding clinical properties.
In fact, the misclassi�cation errors of the classi�ers in most scenarios is not better than
random3.

The features with non-zero coe�cients in a classi�er trained on all available patients
using the optimal parameter combination can be considered as selected regions by the
respective model. The number of selected regions also tends to �uctuate across repetitions.
Figure 7.14 visualizes this phenomenon when predicting Dukes stage based on tag density
values; the trained elastic net models in other scenarios show a very similar behavior. For
each scenario, we computed the median number of non-zero features and focused on the
classi�er that is closest to this value. In case of ties, one repetition was selected at random.
The selected classi�ers are denoted by bright red dots in Figure 7.13. Later in this section,
we refer to these peaks as regions selected by elastic nets.
Forward selection

We compared the performance of elastic net classi�ers with forward [feature] selection,
applied on logistic regression models. The usage of this simple method is motivated by
the inadequately small set of patients in comparison to the number of the peaks in con-
sideration, coupled with the indication of instability of a classi�er that operates on a large
parameter space. When predicting tumor grade, KRAS mutations and microsatellite in-
stability, the underlying models were binary logistic regression. In the case of Dukes stage,
proportional odds logistic regression models were trained.

After training a sequence of models by successively adding features in a manner that im-
proves the prediction most, we selected the model with the lowest deviance. The numbers
of selected regions by this approach are very similar to the corresponding numbers obtained
using elastic net. Figure 7.15 shows the values of variance for the di�erent models using
tag density as a score. The plots include models with feature space dimensionality only
up to the number of training points (patients), because the deviance remains unchanged
when the complexity increases above this value.

Similarly to elastic nets, the predictive power of the selected logistic regression models
is weak in all studied scenarios. In addition, the two model families compared in this sec-
tion tend to adopt di�erent sets of regions in their predictions. Supplementary Table S10
provides the numbers of regions selected by these models in every scenario.

Despite its instability and low CV estimate, the elastic net model targeting microsatellite
instability seems to select a set of regions that has the potential of forming a diagnostic
panel. The di�erential methylation events in these regions are displayed in Figure 7.16.
The heatmap suggests that a set of three or four simple rules could predict the state of
an unknown sample based on its di�erential methylation events in the targeted regions.
If colorectal tumors displaying microsatellite instability prove to be of high clinical value,
3Here, the studied model is compared to a dummy classi�er that always predicts the most common class.
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(d) Microsatellite stability

Figure 7.13: Parameter space in training elastic net on a clinical property. The two axes
show the values of the parameters α and λ. The set of covered values by cross
validation is depicted by a grey parallelogram. The parameter combination
that minimizes cross-entropy error is encircled in red. Since the parameter
selection procedure was repeated 100 times, there are 100 parallelograms and
100 red circles in every plot. The model used for the extraction of signi�cant
regions is marked in bright red.
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Figure 7.14: Histogram of number of selected regions by elastic net classi�ers predicting
Dukes stage based on tag density values.

this candidate for a panel could be investigated further and needs to be validated in a
larger cohort of patients.

7.3 Summary

This chapter addressed a broad spectrum of bioinformatic challenges related to cancer
diagnosis. We �rst compared two linear models for predicting tumor type based on Gold-
enGate data. Both models showed impressive accuracies, indicating that the sample sizes
of several dozen or a hundred samples per tumor type are large enough for a linear to cap-
ture a signal of (tumor) type-speci�c methylation. The clinical applicability of the trained
models was validated by testing them on carcinomas of unknown primary origin.

In the lung cancer dataset, we presented a strategy for identifying subtypes in lung ade-
nocarcinoma and squamous cell carcinoma. The results obtained lead us to the conjecture
that, in lung cancer, we observe a continuous spectrum of hypo- and hypermethylation
events that contribute to tumor proliferation. In addition, we identi�ed CpGs and pro-
moters that show bimodal behaviour in each of the studied tumor subtypes. Empirical
studies suggest that the methylation values at the selected bimodal probes in adenocarci-
noma cannot distinguish between subgroups of samples, but in the case of squamous cell
carcinoma, at least two subgroup pro�les can be identi�ed.

In the color cancer dataset, we studied the di�erential methylation events and searched
for predictive markers of patient's clinical attributes. The tested methods include simple
statistical tests, as well as linear models with elastic net penalty and forward feature
selection. The limited cohort, coupled with very high data dimensionality did not allow
us to train stable models or pinpoint strong candidates. Elastic net selected promising
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(d) Microsatellite stability

Figure 7.15: Deviances of logistic regression models obtained using forward selection. The
model with the lowest deviance in the sequence is marked in red.
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Figure 7.16: Heatmap of hyper- and hypomethylation status of regions selected by elastic
net. The regions are represented by rows in the heatmap; the columns show
all available patients. Patient identi�ers are given at the bottom row. Hyper-
methylation is denoted by red color, hypomethylation - by green color, and no
di�erential methylation - by black color in the heatmap. Regions are color-
coded based on their CGI status - regions marked in red overlap with a CpG
island, whereas those marked by a blue rectange lie outside CGIs. Columns
in the heatmap are color-coded based on microsatellite stability status of the
cancer in the corresponding patient.
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candidates for indication of microsatellite instability, however, clinical application requires
their further validation in a large cohort.





8 Conclusions and outlook

This work presents a collection of techniques for quality control, di�erential methylation
and candidate biomarker prioritization in methylation-based datasets. These techniques
were successfully applied is several collaboration projects and facilitated the comparison
and analysis of methylation-based datasets some of which consist of heterogeneous samples.
Some of the major �ndings of these studies are recapitulated below, accompanied by short
notes on the methods applied.

8.1 Methylation profiling and differential methylation

We were �rst to analyze a collection of over 1,800 samples interrogated using the �rst
generation of microarray-based methylation measurement technology, namely, the Gold-
enGate assay by Illumina. We experimented with a set of heuristic methods for probe
and sample �ltering and the identi�cation of di�erentially methylated sites. In addition,
we quanti�ed the inter-sample methylation variability of a given population using selected
quantiles. Last but not least, we compared several machine learning methods for pheno-
type prediction based on a vector of methylation values.

Our study con�rmed and extended many previously known or suspected properties of
gene promoter methylation. For example, we identi�ed 68 genes that show age-dependent
methylation, some of which have been mentioned in previous reports. We also con�rmed
that hypermethylation with age tends to occur in Polycomb-occupied promoters. By com-
paring the methylation patterns of embryonic and adult stem cells to di�erentiated ones,
we show that induction of di�erentiation of these stem cell types leads to a methylation
pro�le strongly resembling the one of the corresponding primary tissue, however, some
loci gain less methylation. Furthermore, we observed that inter-individual methylation
di�erences occur predominantly in CpG poor promoters. The DNA methylation map that
emerges when clustering tumor samples shows a type-speci�c pro�le. Our analysis of a
large collection of cancer cell lines revealed that their methylation pro�les are distinct
from all primary and metastatic tissues examined. In general, cell lines keep many of the
methylation traits of their primary tumor ancestors, however, they also contain a large
fraction of hypermethylated sites, predominantly located in CGIs.

By identifying tissue type- and tumor type-speci�c probes, we showed that elastic nets
can be used as a feature selection method for methylation data when the ratio between
number of features and number of samples is fairly small (up to≈ 3). However, the classi�er
becomes very unstable as this number increases. Our set of heuristic de�nitions for di�er-
ential methylation, dependent on the number of samples in the compared group, showed
promising results that were validated by pyrosequencing. We identi�ed novel deregulated
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genes in non-cancerous conditions, including dementia, lupus and myopathy.

In colon cancer, our de�nition of di�erential methylation events based on MethylCap-seq
methylation pro�les proved very useful for identifying frequently hypermethylated regions,
and less so in the case of hypomethylation. We showed that the hypermethylated regions
with a strong support coincide with bivalent loci in human embryonic stem cells. Impor-
tantly, we estimated that the majority of the genes with hypermethylated promoters do
not have signi�cantly reduced expression levels in color cancer, because they are lowly
expressed in the corresponding normal tissue. By designing a simple and �exible prioriti-
zation strategy, we identi�ed high-con�dence di�erentially methylated regions. The elastic
net model showed a potential to guide the identi�cation of a diagnostic panel, however, its
instability inevitably poses a question on the reliability of the selected regions.

8.2 Tumor types and subtypes

We compared two models for predicting tumor type based on microarray methylation pro-
�les � SVM with linear kernel and L1-regularized logistic regression. Both models showed
high accuracy (based on cross-validation estimates) during training on samples from pri-
mary solid tumors. Moreover, both models were highly e�cient in predicting origin of
metastatic samples, and were successfully applied on carcinomas of unknown primary ori-
gin.

We show that non-small-cell lung cancer cannot be unambiguously strati�ed into two
distinct groups based on CpG methylation pro�ling by In�nium 450k. Rather, the exam-
ined patient cohort seems to show a continuous spectrum of hypo- and hypermethylation
events that contribute to tumor proliferation.

8.3 Outlook

After the successful initiation of several large-scale international collaborations, the size
of epigenetic repositories is growing at an unprecedented rate. One serious bioinformat-
ics challenge not addressed in this thesis, is the ability to process ever larger datasets.
Tamborero et al. recently made use of the available mutation data for 12 tumor types in
TCGA, represented by over 3 thousand samples in total [107]. They identi�ed novel driver
genes by systematically cataloging all high con�dence candidates for drivers using a voting
of available methods and additional rules for inclusion. Their study shows, above all, the
power that can be gained by simultaneous analysis of multiple datasets. Similar pan-cancer
studies with a focus on the epigenetic mechanisms are currently being conducted [120].

Another major challenge is understanding the biological processes and functional mech-
anisms that underlie the observed and validated associations between epigenetic changes
and phenotype. Tackling this problem by individual researchers or groups seems infeasible;
it involves the careful integration of multidimensional data from genetic and other sources,
as well as collaboration and sharing of expert knowledge. We already mentioned this need
for integration in Chapter 6. Similarly, deciphering the signatures of CIMP tumors can
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be achieved only by advancing our understanding on the biochemical processes speci�c
for these phenotypes, as we argued in Chapter 7. An example for upcoming e�orts for
such integration is the suggestion by Stunnenberg and Hubner for the incorporation of
proteomic data into genome-wide and epigenome-wide studies [105].

Bringing epigenetic diagnostic markers and medication to clinical practice is another at-
tractive direction in current and future research. Large e�orts focus on developing HDAC
inhibitors for cancer treatment [123], as well as demethylating agents for hematological
malignancies [82] and solid tumors [4]. Importantly, response to epigenetic drugs might
take months after treatment initiation [113]. Development of reliable (computationally
assisted) means of predicting response are therefore critical for the selection of adequate
therapies. Drawing a parallel between the cellular heterogeneity in cancers and the acceler-
ated evolution of HIV, Bock and Lengauer suggest an approach to cancer treatment that is
highly personalized and assisted by computational means, similar to the successful applica-
tion of HIV drug combination therapies [22]. Despite the serious economic and regulatory
obstructions to such strategy, epigenetic combination therapies for cancer are recognized
as the best tool in cases of resistance to current treatments or refractory states [26].





Bibliography

[1] Adams, D., Altucci, L., Antonarakis, S. E., Ballesteros, J., Beck, S.,
Bird, A., Bock, C., Boehm, B., Campo, E., Caricasole, A., et al. Blueprint
to decode the epigenetic signature written in blood. Nature biotechnology 30, 3 (2012),
224�226.

[2] Adey, A., and Shendure, J. Ultra-low-input, tagmentation-based whole-genome
bisul�te sequencing. Genome research 22, 6 (2012), 1139�1143.

[3] Ahmad, K., and Henikoff, S. The histone variant h3. 3 marks active chromatin
by replication-independent nucleosome assembly. Molecular cell 9, 6 (2002), 1191�
1200.

[4] Ahuja, N., Easwaren, H., and Baylin, S. B. Harnessing the potential of epi-
genetic therapy to target solid tumors. The Journal of clinical investigation 124, 1
(2014), 56�63.

[5] Alberts, B., Johson, A., Lewis, J., Raff, M., Roberts, K., and Walter,

P. Molecular Biology of the Cell. 2002.

[6] Alisch, R. S., Barwick, B. G., Chopra, P., Myrick, L. K., Satten, G. A.,
Conneely, K. N., and Warren, S. T. Age-associated dna methylation in pedi-
atric populations. Genome research 22, 4 (2012), 623�632.

[7] Allis, C. D., Jenuwein, T., and Reinberg, D. Epigenetics. 2006.

[8] An, C., Choi, I.-S., Yao, J. C., Worah, S., Xie, K., Mansfield, P. F., Ajani,

J. A., Rashid, A., Hamilton, S. R., and Wu, T.-T. Prognostic signi�cance of
cpg island methylator phenotype and microsatellite instability in gastric carcinoma.
Clinical cancer research 11, 2 (2005), 656�663.

[9] Anacleto, C., Leopoldino, A. M., Rossi, B., Soares, F. A., Lopes, A.,
Rocha, J. C. C., Caballero, O., Camargo, A. A., Simpson, A. J., and

Pena, S. D. Colorectal cancer "methylator phenotype": fact or artifact? Neoplasia

(New York, NY) 7, 4 (2005), 331.

[10] Assenov, Y., Müller, F., Lutsik, P., Walter, J., and Lengauer, T. Com-
pehensive analysis of dna methylation data with rnbeads. Nature Methods (2014 in
press).

[11] Ayers, K. L., and Cordell, H. J. Snp selection in genome-wide and candidate
gene studies via penalized logistic regression. Genetic epidemiology 34, 8 (2010),
879�891.

113



114 Bibliography

[12] Bachmann, I. M., Halvorsen, O. J., Collett, K., Stefansson, I. M.,
Straume, O., Haukaas, S. A., Salvesen, H. B., Otte, A. P., and Akslen,

L. A. Ezh2 expression is associated with high proliferation rate and aggressive tumor
subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and
breast. Journal of Clinical Oncology 24, 2 (2006), 268�273.

[13] Barlow, D. P. Genomic imprinting: a mammalian epigenetic discovery model.
Annual review of genetics 45 (2011), 379�403.

[14] Bestor, T. H. The host defence function of genomic methylation patterns. In
Novartis Found. Symp (1998), vol. 214, pp. 187�195.

[15] Bibikova, M., Barnes, B., Tsan, C., Ho, V., Klotzle, B., Le, J. M., De-
lano, D., Zhang, L., Schroth, G. P., Gunderson, K. L., et al. High density
dna methylation array with single cpg site resolution. Genomics 98, 4 (2011), 288�
295.

[16] Bibikova, M., Le, J., Barnes, B., Saedinia-Melnyk, S., Zhou, L., Shen, R.,
and Gunderson, K. L. Genome-wide dna methylation pro�ling using in�nium R©
assay.

[17] Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B.,

Doucet, D., Thomas, N. J., Wang, Y., Vollmer, E., et al. High-throughput
dna methylation pro�ling using universal bead arrays. Genome research 16, 3 (2006),
383�393.

[18] Bird, A., Taggart, M., Frommer, M., Miller, O. J., and Macleod, D. A
fraction of the mouse genome that is derived from islands of nonmethylated, cpg-rich
dna. Cell 40, 1 (1985), 91�99.

[19] Blair, J. D., and Price, E. M. Illuminating potential technical artifacts of dna-
methylation array probes. American journal of human genetics 91, 4 (2012), 760.

[20] Bock, C. Analysing and interpreting dna methylation data. Nature Reviews Ge-

netics 13, 10 (2012), 705�719.

[21] Bock, C., and Lengauer, T. Computational epigenetics. Bioinformatics 24, 1
(2008), 1�10.

[22] Bock, C., and Lengauer, T. Managing drug resistance in cancer: lessons from
hiv therapy. Nature Reviews Cancer 12, 7 (2012), 494�501.

[23] Boser, B. E., Guyon, I. M., and Vapnik, V. N. A training algorithm for optimal
margin classi�ers. In Proceedings of the �fth annual workshop on Computational

learning theory (1992), ACM, pp. 144�152.

[24] Brinkman, A. B., Simmer, F., Ma, K., Kaan, A., Zhu, J., and Stunnenberg,
H. G. Whole-genome dna methylation pro�ling using methylcap-seq. Methods 52, 3
(2010), 232�236.



Bibliography 115

[25] Byun, H.-M., Siegmund, K. D., Pan, F., Weisenberger, D. J., Kanel, G.,

Laird, P. W., and Yang, A. S. Epigenetic pro�ling of somatic tissues from human
autopsy specimens identi�es tissue-and individual-speci�c dna methylation patterns.
Human molecular genetics 18, 24 (2009), 4808�4817.

[26] Campbell, R. M., and Tummino, P. J. Cancer epigenetics drug discovery and
development: the challenge of hitting the mark. The Journal of clinical investigation
124, 1 (2014), 64�69.

[27] Chang, C.-C., and Lin, C.-J. Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST) 2, 3 (2011), 27.

[28] Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic decomposition by
basis pursuit. SIAM journal on scienti�c computing 20, 1 (1998), 33�61.

[29] Chen, Y.-a., Choufani, S., Ferreira, J. C., Grafodatskaya, D., Butcher,
D. T., and Weksberg, R. Sequence overlap between autosomal and sex-linked
probes on the illumina humanmethylation27 microarray. Genomics 97, 4 (2011),
214�222.

[30] Chin, L., Andersen, J. N., and Futreal, P. A. Cancer genomics: from discov-
ery science to personalized medicine. Nature medicine 17, 3 (2011), 297�303.

[31] Coiffier, B., Pro, B., Prince, H. M., Foss, F., Sokol, L., Greenwood, M.,
Caballero, D., Borchmann, P., Morschhauser, F., Wilhelm, M., et al.

Results from a pivotal, open-label, phase ii study of romidepsin in relapsed or re-
fractory peripheral t-cell lymphoma after prior systemic therapy. Journal of Clinical
Oncology 30, 6 (2012), 631�636.

[32] Consortium, E. P., et al. A user�s guide to the encyclopedia of dna elements
(encode). PLoS Biol 9, 4 (2011), e1001046.

[33] Cooper, D. N., and Youssoufian, H. The cpg dinucleotide and human genetic
disease. Human genetics 78, 2 (1988), 151�155.

[34] Costello, J. F., and Plass, C. Methylation matters. Journal of Medical Genetics

38, 5 (2001), 285�303.

[35] Cross, S. H., Charlton, J. A., Nan, X., and Bird, A. P. Puri�cation of cpg
islands using a methylated dna binding column. Nature genetics 6, 3 (1994), 236�244.

[36] Curtin, K., Slattery, M. L., and Samowitz, W. S. Cpg island methylation
in colorectal cancer: past, present and future. Pathology research international 2011

(2011).

[37] Daskalakis, M., Nguyen, T. T., Nguyen, C., Guldberg, P., Köhler, G.,
Wijermans, P., Jones, P. A., and Lübbert, M. Demethylation of a hyper-
methylated p15/ink4b gene in patients with myelodysplastic syndrome by 5-aza-2'-
deoxycytidine (decitabine) treatment. Blood 100, 8 (2002), 2957�2964.



116 Bibliography

[38] Deaton, A. M., and Bird, A. Cpg islands and the regulation of transcription.
Genes & development 25, 10 (2011), 1010�1022.

[39] Dedeurwaerder, S., Defrance, M., Calonne, E., Denis, H., Sotiriou, C.,
and Fuks, F. Evaluation of the in�nium methylation 450k technology. Epigenomics
3, 6 (2011), 771�784.

[40] Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi,
A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., et al. Landscape of
transcription in human cells. Nature 489, 7414 (2012), 101�108.

[41] Down, T. A., Rakyan, V. K., Turner, D. J., Flicek, P., Li, H., Kulesha,
E., Graef, S., Johnson, N., Herrero, J., Tomazou, E. M., et al. A bayesian
deconvolution strategy for immunoprecipitation-based dna methylome analysis. Na-
ture biotechnology 26, 7 (2008), 779�785.

[42] Du, P., Zhang, X., Huang, C.-C., Jafari, N., Kibbe, W., Hou, L., and Lin,

S. Comparison of beta-value and m-value methods for quantifying methylation levels
by microarray analysis. BMC bioinformatics 11, 1 (2010), 587.

[43] Dunham, I., Birney, E., Lajoie, B. R., Sanyal, A., Dong, X., Greven,
M., Lin, X., Wang, J., Whitfield, T. W., Zhuang, J., et al. An integrated
encyclopedia of dna elements in the human genome.

[44] Ehrlich, M., Gama-Sosa, M. A., Huang, L.-H., Midgett, R. M., Kuo,
K. C., McCune, R. A., and Gehrke, C. Amount and distribution of 5-
methylcytosine in human dna from di�erent types of tissues or cells. Nucleic acids

research 10, 8 (1982), 2709�2721.

[45] Ellinger, J., Kahl, P., von der Gathen, J., Rogenhofer, S., Heukamp,

L. C., Gütgemann, I., Walter, B., Hofstädter, F., Büttner, R., Müller,

S. C., et al. Global levels of histone modi�cations predict prostate cancer recur-
rence. The Prostate 70, 1 (2010), 61�69.

[46] Epstein, C. J., Smith, S., Travis, B., and Tucker, G. Both x chromosomes
function before visible x-chromosome inactivation in female mouse embryos.

[47] Fagnoni, F. F., Vescovini, R., Passeri, G., Bologna, G., Pedrazzoni, M.,
Lavagetto, G., Casti, A., Franceschi, C., Passeri, M., and Sansoni, P.

Shortage of circulating naive cd8+ t cells provides new insights on immunode�ciency
in aging. Blood 95, 9 (2000), 2860�2868.

[48] Feinberg, A. P., and Vogelstein, B. Hypomethylation distinguishes genes of
some human cancers from their normal counterparts.

[49] Fenaux, P., Mufti, G. J., Hellstrom-Lindberg, E., Santini, V., Finelli,
C., Giagounidis, A., Schoch, R., Gattermann, N., Sanz, G., List, A.,

et al. E�cacy of azacitidine compared with that of conventional care regimens in
the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label,
phase iii study. The lancet oncology 10, 3 (2009), 223�232.



Bibliography 117

[50] Fernandez, A. F., Assenov, Y., Martin-Subero, J. I., Balint, B., Siebert,
R., Taniguchi, H., Yamamoto, H., Hidalgo, M., Tan, A.-C., Galm, O.,

et al. A dna methylation �ngerprint of 1628 human samples. Genome research 22,
2 (2012), 407�419.

[51] Forrester, W. C., Fernández, L. A., and Grosschedl, R. Nuclear ma-
trix attachment regions antagonize methylation-dependent repression of long-range
enhancer�promoter interactions. Genes & development 13, 22 (1999), 3003�3014.

[52] Friedman, J., Hastie, T., and Tibshirani, R. Regularization paths for gen-
eralized linear models via coordinate descent. Journal of statistical software 33, 1
(2010), 1.

[53] Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F.,
Grigg, G. W., Molloy, P. L., and Paul, C. L. A genomic sequencing protocol
that yields a positive display of 5-methylcytosine residues in individual dna strands.
Proceedings of the National Academy of Sciences 89, 5 (1992), 1827�1831.

[54] Gardiner-Garden, M., and Frommer, M. Cpg islands in vertebrate genomes.
Journal of molecular biology 196, 2 (1987), 261�282.

[55] Gluckman, P. D., Hanson, M. A., Buklijas, T., Low, F. M., and Beedle,

A. S. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases.
Nature Reviews Endocrinology 5, 7 (2009), 401�408.

[56] Guzzetta, G., Jurman, G., and Furlanello, C. A machine learning pipeline
for quantitative phenotype prediction from genotype data. BMC bioinformatics 11,
Suppl 8 (2010), S3.

[57] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical

Learning, second edition ed. 2009.

[58] Hoffman, M. M., Buske, O. J., Wang, J., Weng, Z., Bilmes, J. A., and No-

ble, W. S. Unsupervised pattern discovery in human chromatin structure through
genomic segmentation. Nature methods 9, 5 (2012), 473�476.

[59] Horvath, S. Dna methylation age of human tissues and cell types. Genome biology
14, 10 (2013), R115.

[60] Hughes, L. A., Khalid-de Bakker, C. A., Smits, K. M., van den Brandt,

P. A., Jonkers, D., Ahuja, N., Herman, J. G., Weijenberg, M. P., and van

Engeland, M. The cpg island methylator phenotype in colorectal cancer: progress
and problems. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1825, 1
(2012), 77�85.

[61] Imai, K., and Yamamoto, H. Carcinogenesis and microsatellite instability: the
interrelationship between genetics and epigenetics. Carcinogenesis 29, 4 (2008), 673�
680.



118 Bibliography

[62] Iorio, M. V., Piovan, C., and Croce, C. M. Interplay between micrornas
and the epigenetic machinery: an intricate network. Biochimica et Biophysica Acta

(BBA)-Gene Regulatory Mechanisms 1799, 10 (2010), 694�701.

[63] Issa, J.-p. Aging and epigenetic drift: a vicious cycle. The Journal of clinical

investigation 124, 1 (2014), 24�29.

[64] Joachims, T. Making large scale svm learning practical.

[65] Jones, P. A., and Laird, P. W. Cancer-epigenetics comes of age. Nature genetics
21, 2 (1999), 163�167.

[66] Kelly, T. K., De Carvalho, D. D., and Jones, P. A. Epigenetic modi�cations
as therapeutic targets. Nature biotechnology 28, 10 (2010), 1069�1078.

[67] Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E.,
Pikarski, E., Young, R. A., Niveleau, A., Cedar, H., et al. Evidence for
an instructive mechanism of de novo methylation in cancer cells. Nature genetics 38,
2 (2006), 149�153.

[68] Kuznetsov, S. O. On computing the size of a lattice and related decision problems.
Order 18, 4 (2001), 313�321.

[69] Laird, P. W. Principles and challenges of genome-wide dna methylation analysis.
Nature Reviews Genetics 11, 3 (2010), 191�203.

[70] Landolin, J. M., Johnson, D. S., Trinklein, N. D., Aldred, S. F., Medina,
C., Shulha, H., Weng, Z., and Myers, R. M. Sequence features that drive
human promoter function and tissue speci�city. Genome research 20, 7 (2010), 890�
898.

[71] Lehrer, R. I., Xu, G., Abduragimov, A., Dinh, N. N., Qu, X.-D., Martin,
D., and Glasgow, B. J. Lipophilin, a novel heterodimeric protein of human tears.
FEBS letters 432, 3 (1998), 163�167.

[72] LeProust, E. Agilent�s microarray platform: How high-�delity dna synthesis max-
imizes the dynamic range of gene expression measurements.

[73] Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-
Filippini, J., Nery, J. R., Lee, L., Ye, Z., Ngo, Q.-M., et al. Human dna
methylomes at base resolution show widespread epigenomic di�erences. nature 462,
7271 (2009), 315�322.

[74] Liu, S. V., Fabbri, M., Gitlitz, B. J., and Laird-Offringa, I. A. Epigenetic
therapy in lung cancer. Frontiers in oncology 3 (2013).

[75] Maksimovic, J., Gordon, L., Oshlack, A., et al. Swan: Subset-quantile
within array normalization for illumina in�nium humanmethylation450 beadchips.
Genome Biol 13, 6 (2012), R44.



Bibliography 119

[76] Marabita, F., Almgren, M., Lindholm, M. E., Ruhrmann, S., Fagerström-
Billai, F., Jagodic, M., Sundberg, C. J., Ekström, T. J., Teschendorff,

A. E., Tegnér, J., et al. An evaluation of analysis pipelines for dna methylation
pro�ling using the illumina humanmethylation450 beadchip platform. Epigenetics 8,
3 (2013), 333�346.

[77] Meissner, A. Epigenetic modi�cations in pluripotent and di�erentiated cells. Na-
ture biotechnology 28, 10 (2010), 1079�1088.

[78] Meissner, A., Gnirke, A., Bell, G. W., Ramsahoye, B., Lander, E. S.,

and Jaenisch, R. Reduced representation bisul�te sequencing for comparative
high-resolution dna methylation analysis. Nucleic acids research 33, 18 (2005), 5868�
5877.

[79] Mittal, V. Improving the e�ciency of rna interference in mammals. Nature reviews
genetics 5, 5 (2004), 355�365.

[80] Miyazaki, K., Ozaki, T., Kato, C., Hanamoto, T., Fujita, T., Irino, S.,
Watanabe, K.-i., Nakagawa, T., and Nakagawara, A. A novel hect-type
e3 ubiquitin ligase, nedl2, stabilizes p73 and enhances its transcriptional activity.
Biochemical and biophysical research communications 308, 1 (2003), 106�113.

[81] Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B.

Mapping and quantifying mammalian transcriptomes by rna-seq. Nature methods 5,
7 (2008), 621�628.

[82] Navada, S. C., Steinmann, J., Lüebbert, M., and Silverman, L. R. Clin-
ical development of demethylating agents in hematology. The Journal of clinical

investigation 124, 1 (2014), 40�46.

[83] Nordlund, J., Bäcklin, C. L., Wahlberg, P., Busche, S., Berglund, E. C.,
Eloranta, M.-L., Flaegstad, T., Forestier, E., Frost, B.-M., Harila-

Saari, A., et al. Genome-wide signatures of di�erential dna methylation in pedi-
atric acute lymphoblastic leukemia. Genome biology 14, 9 (2013), r105.

[84] Noushmehr, H., Weisenberger, D. J., Diefes, K., Phillips, H. S., Pujara,

K., Berman, B. P., Pan, F., Pelloski, C. E., Sulman, E. P., Bhat, K. P.,

et al. Identi�cation of a cpg island methylator phenotype that de�nes a distinct
subgroup of glioma. Cancer cell 17, 5 (2010), 510�522.

[85] Ogino, S., Cantor, M., Kawasaki, T., Brahmandam, M., Kirkner, G. J.,
Weisenberger, D. J., Campan, M., Laird, P. W., Loda, M., and Fuchs,

C. S. Cpg island methylator phenotype (cimp) of colorectal cancer is best charac-
terised by quantitative dna methylation analysis and prospective cohort studies. Gut
55, 7 (2006), 1000�1006.

[86] Olsen, E. A., Kim, Y. H., Kuzel, T. M., Pacheco, T. R., Foss, F. M.,
Parker, S., Frankel, S. R., Chen, C., Ricker, J. L., Arduino, J. M., et al.

Phase iib multicenter trial of vorinostat in patients with persistent, progressive, or



120 Bibliography

treatment refractory cutaneous t-cell lymphoma. Journal of Clinical Oncology 25, 21
(2007), 3109�3115.

[87] Peeters, R. The maximum edge biclique problem is np-complete. Discrete Applied
Mathematics 131, 3 (2003), 651�654.

[88] Pelizzola, M., Koga, Y., Urban, A. E., Krauthammer, M., Weissman, S.,

Halaban, R., and Molinaro, A. M. Medme: an experimental and analytical
methodology for the estimation of dna methylation levels based on microarray derived
medip-enrichment. Genome research 18, 10 (2008), 1652�1659.

[89] Pidsley, R., Wong, C. C., Volta, M., Lunnon, K., Mill, J., and Schalk-

wyk, L. C. A data-driven approach to preprocessing illumina 450k methylation
array data. BMC genomics 14, 1 (2013), 293.

[90] Plass, C., Pfister, S. M., Lindroth, A. M., Bogatyrova, O., Claus, R.,
and Lichter, P. Mutations in regulators of the epigenome and their connections to
global chromatin patterns in cancer. Nature Reviews Genetics 14, 11 (2013), 765�780.

[91] Reik, W., and Walter, J. Genomic imprinting: parental in�uence on the genome.
Nature Reviews Genetics 2, 1 (2001), 21�32.

[92] Richardson, B. Primer: epigenetics of autoimmunity. Nature Clinical Practice

Rheumatology 3, 9 (2007), 521�527.

[93] Rohle, D., Popovici-Muller, J., Palaskas, N., Turcan, S., Grommes, C.,
Campos, C., Tsoi, J., Clark, O., Oldrini, B., Komisopoulou, E., et al. An
inhibitor of mutant idh1 delays growth and promotes di�erentiation of glioma cells.
Science 340, 6132 (2013), 626�630.

[94] Russo, V. E., Martienssen, R. A., Riggs, A. D., et al. Epigenetic mechanisms
of gene regulation. Cold Spring Harbor Laboratory Press, 1996.

[95] Samowitz, W. S., Albertsen, H., Herrick, J., Levin, T. R., Sweeney, C.,

Murtaugh, M. A., Wolff, R. K., and Slattery, M. L. Evaluation of a large,
population-based sample supports a cpg island methylator phenotype in colon cancer.
Gastroenterology 129, 3 (2005), 837�845.

[96] Sandoval, J., Mendez-Gonzalez, J., Nadal, E., Chen, G., Carmona, F. J.,
Sayols, S., Moran, S., Heyn, H., Vizoso, M., Gomez, A., et al. A prognostic
dna methylation signature for stage i non�small-cell lung cancer. Journal of Clinical
Oncology 31, 32 (2013), 4140�4147.

[97] Sarma, K., and Reinberg, D. Histone variants meet their match. Nature reviews
Molecular cell biology 6, 2 (2005), 139�149.

[98] Satterlee, J. S., Schübeler, D., and Ng, H.-H. Tackling the epigenome:
challenges and opportunities for collaboration. Nature biotechnology 28, 10 (2010),
1039�1044.



Bibliography 121

[99] Saxonov, S., Berg, P., and Brutlag, D. L. A genome-wide analysis of cpg
dinucleotides in the human genome distinguishes two distinct classes of promoters.
Proceedings of the National Academy of Sciences of the United States of America

103, 5 (2006), 1412�1417.

[100] Shahbazian, M. D., and Grunstein, M. Functions of site-speci�c histone acety-
lation and deacetylation. Annu. Rev. Biochem. 76 (2007), 75�100.

[101] Shen, H., and Laird, P. W. Interplay between the cancer genome and epigenome.
Cell 153, 1 (2013), 38�55.

[102] Shen, J.-C., Rideout, W. M., and Jones, P. A. The rate of hydrolytic deamina-
tion of 5-methylcytosine in double-stranded dna. Nucleic acids research 22, 6 (1994),
972�976.

[103] Shinjo, K., Okamoto, Y., An, B., Yokoyama, T., Takeuchi, I., Fujii, M.,
Osada, H., Usami, N., Hasegawa, Y., Ito, H., et al. Integrated analysis of
genetic and epigenetic alterations reveals cpg island methylator phenotype associated
with distinct clinical characters of lung adenocarcinoma. Carcinogenesis 33, 7 (2012),
1277�1285.

[104] Simmer, F., Brinkman, A. B., Assenov, Y., Matarese, F., Kaan, A.,

Sabatino, L., Villanueva, A., Huertas, D., Esteller, M., Lengauer, T.,

et al. Comparative genome-wide dna methylation analysis of colorectal tumor and
matched normal tissues. Epigenetics 7, 12 (2012), 1355�1367.

[105] Stunnenberg, H. G., and Hubner, N. C. Genomics meets proteomics: identi-
fying the culprits in disease. Human genetics (2013), 1�12.

[106] Takai, D., and Jones, P. A. Comprehensive analysis of cpg islands in human
chromosomes 21 and 22. Proceedings of the national academy of sciences 99, 6 (2002),
3740�3745.

[107] Tamborero, D., Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J.,
Kandoth, C., Reimand, J., Lawrence, M. S., Getz, G., Bader, G. D.,

Ding, L., et al. Comprehensive identi�cation of mutational cancer driver genes
across 12 tumor types. Scienti�c reports 3 (2013).

[108] Tan, G., Lou, Z., Liao, W., Zhu, Z., Dong, X., Zhang, W., Li, W., and

Chai, Y. Potential biomarkers in mouse myocardium of doxorubicin-induced car-
diomyopathy: a metabonomic method and its application. PloS one 6, 11 (2011),
e27683.

[109] Teschendorff, A. E., Marabita, F., Lechner, M., Bartlett, T., Tegner,
J., Gomez-Cabrero, D., and Beck, S. A beta-mixture quantile normalization
method for correcting probe design bias in illumina in�nium 450 k dna methylation
data. Bioinformatics 29, 2 (2013), 189�196.

[110] Teschendorff, A. E., Menon, U., Gentry-Maharaj, A., Ramus, S. J.,
Weisenberger, D. J., Shen, H., Campan, M., Noushmehr, H., Bell, C. G.,



122 Bibliography

Maxwell, A. P., et al. Age-dependent dna methylation of genes that are sup-
pressed in stem cells is a hallmark of cancer. Genome research 20, 4 (2010), 440�446.

[111] Thurman, R. E., Rynes, E., Humbert, R., Vierstra, J., Maurano, M. T.,
Haugen, E., Sheffield, N. C., Stergachis, A. B., Wang, H., Vernot, B.,

et al. The accessible chromatin landscape of the human genome. Nature 489, 7414
(2012), 75�82.

[112] Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B., and
Issa, J.-P. J. Cpg island methylator phenotype in colorectal cancer. Proceedings of
the National Academy of Sciences 96, 15 (1999), 8681�8686.

[113] Treppendahl, M. B., Kristensen, L. S., and Grnønbæ æk, K. Predicting
response to epigenetic therapy. The Journal of clinical investigation 124, 1 (2014),
47�55.

[114] Triche, T. J., Weisenberger, D. J., Van Den Berg, D., Laird, P. W.,

and Siegmund, K. D. Low-level processing of illumina in�nium dna methylation
beadarrays. Nucleic acids research 41, 7 (2013), e90�e90.

[115] Vaissière, T., Sawan, C., and Herceg, Z. Epigenetic interplay between histone
modi�cations and dna methylation in gene silencing. Mutation Research/Reviews in

Mutation Research 659, 1 (2008), 40�48.

[116] Wack, A., Cossarizza, A., Heltai, S., Barbieri, D., D'Addato, S., Fran-
sceschi, C., Dellabona, P., and Casorati, G. Age-related modi�cations of
the human alphabeta t cell repertoire due to di�erent clonal expansions in the cd4+
and cd8+ subsets. International immunology 10, 9 (1998), 1281�1288.

[117] Waddington, C. The pupal contraction as an epigenetic crisis in drosophila. In
Proceedings of the Zoological Society of London (1942), vol. 111, Wiley Online Li-
brary, pp. 181�188.

[118] Waddington, C. H. The epigenotype. International journal of epidemiology 41, 1
(2012), 10�13.

[119] Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Pääbo, S., Rebhan,

M., and Schübeler, D. Distribution, silencing potential and evolutionary impact
of promoter dna methylation in the human genome. Nature genetics 39, 4 (2007),
457�466.

[120] Weisenberger, D. J. Characterizing dna methylation alterations from the cancer
genome atlas. The Journal of clinical investigation 124, 1 (2014), 17�23.

[121] Weisenberger, D. J., Siegmund, K. D., Campan, M., Young, J., Long, T. I.,

Faasse, M. A., Kang, G. H., Widschwendter, M., Weener, D., Buchanan,

D., et al. Cpg island methylator phenotype underlies sporadic microsatellite in-
stability and is tightly associated with braf mutation in colorectal cancer. Nature

genetics 38, 7 (2006), 787�793.



Bibliography 123

[122] Weller, M., Stupp, R., Reifenberger, G., Brandes, A. A., van den Bent,

M. J., Wick, W., and Hegi, M. E. Mgmt promoter methylation in malignant
gliomas: ready for personalized medicine? Nature Reviews Neurology 6, 1 (2009),
39�51.

[123] West, A. C., and Johnstone, R. W. New and emerging hdac inhibitors for
cancer treatment. The Journal of clinical investigation 124, 1 (2014), 30�39.

[124] Wilson, R. C., and Doudna, J. A. Molecular mechanisms of rna interference.
Annual review of biophysics 42 (2013), 217�239.

[125] Yamashita, K., Dai, T., Dai, Y., Yamamoto, F., and Perucho, M. Genetics
supersedes epigenetics in colon cancer phenotype. Cancer cell 4, 2 (2003), 121�131.

[126] Yang, X., Lay, F., Han, H., and Jones, P. A. Targeting dna methylation for
epigenetic therapy. Trends in pharmacological sciences 31, 11 (2010), 536�546.

[127] Yao, J., Zhou, C., Wei, L., Wang, S., and Shi, Y. Expression of aquaporin-8
and bcl-2 protein in human cervical carcinoma and their correlations]. Zhonghua fu

chan ke za zhi 43, 3 (2008), 205.

[128] Zhang, F. Z., and Hong, D. Elastic net-based framework for imaging mass
spectrometry data biomarker selection and classi�cation. Statistics in medicine 30,
7 (2011), 753�768.

[129] Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S. W.-L., Chen,

H., Henderson, I. R., Shinn, P., Pellegrini, M., Jacobsen, S. E., et al.

Genome-wide high-resolution mapping and functional analysis of dna methylation
in< i> arabidopsis</i>. Cell 126, 6 (2006), 1189�1201.

[130] Zhang, Y., Chesler, E. J., and Langston, M. A. On �nding bicliques in
bipartite graphs: a novel algorithm with application to the integration of diverse
biological data types. In 2013 46th Hawaii International Conference on System

Sciences (2008), IEEE Computer Society, pp. 473�473.

[131] Zhuang, J., Widschwendter, M., and Teschendorff, A. E. A comparison
of feature selection and classi�cation methods in dna methylation studies using the
illumina in�nium platform. BMC bioinformatics 13, 1 (2012), 59.





Appendices

125





List of publications

1. Fernandez, A.F., Assenov, Y., Martin-Subero J.I., Balint B., Siebert R., Taniguchi
H., Yamamoto H., Hidalgo M., Tan A.C., Galm O., Ferrer I., Sanchez-Cespedes M.,
Villanueva A., Carmona J., Sanchez-Mut J.V., Berdasco M., Moreno V., Capella
G., Monk D., Ballestar E., Ropero S., Martinez R., Sanchez-Carbayo M., Prosper
F., Agirre X., Fraga M.F., Grana O., Perez-Jurado L., Mora J., Puig S., Prat J.,
Badimon L., Puca A.A., Meltzer S.J., Lengauer T., Bridgewater J., Bock C., Esteller
M. A DNA methylation �ngerprint of 1628 human samples. Genome Research 22, 2
(2012), 407-419.

2. Calvanese, V., Fernández, A.F., Urdinguio, R.G., Suárez-Alvarez, B., Mangas, C.,
Pérez-García, V., Bueno, C., Montes, R., Ramos-Mejía, V., Martínez-Camblor, P.,
Ferrero, C., Assenov, Y., Bock, C., Menendez, P., Carrera, A.C., Lopez-Larrea, C.,
Fraga, M.F. A promoter DNA demethylation landscape of human hematopoietic
di�erentiation. Nucleic Acids Research 40, 1 (2012), 116-131.

3. Feuerbach, L., Halachev, K., Assenov, Y., Müller, F., Bock, C., Lengauer, T. Ana-
lyzing epigenome data in context of genome evolution and human diseases. Methods
in Molecular Biology 856, 4 (2012), 431-467.

4. Simmer, F., Brinkman, A.B., Assenov, Y., Matarese, F., Kaan, A., Sabatino, L.,
Villanueva, A., Huertas, D., Esteller, M., Lengauer, T., Bock, C., Colantuoni, V.,
Altucci, L., Stunnenberg, H.G. Comparative genome-wide DNA methylation analysis
of colorectal tumor and matched normal tissues. Epigenetics 7, 12 (2012), 1355-1367.

5. Sandoval, J., Mendez-Gonzalez, J., Nadal, E., Chen, G., Carmona, F.J., Sayols, S.,
Moran, S., Heyn, H., Vizoso, M., Gomez, A., Sanchez-Cespedes, M., Assenov, Y.,
Müller, F., Bock, C., Taron, M., Mora, J., Muscarella, L.A., Liloglou, T., Davies,
M., Pollan, M., Pajares, M.J., Torre, W., Montuenga, L.M., Brambilla, E., Field,
J.K., Roz, L., Lo Iacono, M., Scagliotti, G.V., Rosell, R., Beer, D.G., Esteller, M. A
prognostic DNA methylation signature for stage I non-small-cell lung cancer. Journal
of Clinical Oncology 31, 32 (2013), 4140-4147.

6. Assenov, Y., Müller, F., Lutsik, P., Walter, J., and Lengauer, T. Compehensive
analysis of DNA methylation data with RnBeads. Nature Methods (2014), in press.

127





Supplementary figures

129



130 Supplementary �gures

0

5

10

15

0.25 0.50 0.75 1.00
Pr(T)

D
en

si
ty

Model

RLR standard

SVM standard

RLR extended

SVM extended

Figure S1: Probabilities for the dominant class of the models predicting tumor of primary
origin. The distributions are shown as densities estimated based on a test set
of 50 metastatic samples.
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Figure S2: CV estimates of misclassi�cation error obtained after training logistic regression
model with elastic net penalty. The training set consists of over 4,600 In�nium
450k samples from 16 di�erent solid tumor types, downloaded from TCGA.
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Figure S3: Heatmap of methylation values at CpGs that were identi�ed as strongly bi-
modal. Every row in this heatmap corresponds to an In�nium probe, and every
column � to a sample. Values are color-coded using a palette from bright green
(no methylation), through black (50% methylation) to bright red (close to 100%
methylation). Row color denotes probe's relation to a CpG island: the probes
within a CpG island are marked by a red stripe, whereas the others are blue.
Column colors denote sample subgroup association.
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Table S1: Clinical annotation of the patients in the colon cancer dataset. Dukes = Dukes
Stage; KRAS = KRAS Mutation Status; MS = Microsatellite Instability Status;
WT = wild type

Patient Age Gender Grade Dukes KRAS MS

9 78 M G2 D WT MSS
4 44 M G2 B G13D MSI
5 66 M G3 D G12D MSS
12 71 F G2 D WT MSI
14 62 M G2 B WT MSS
15 57 M G2 B WT MSS
21 36 M G3 D G13D MSI
22 63 F G1 A G12V MSI
23 76 F G2 D WT MSS
32 81 M G2 C WT MSS
33 53 M G3 D WT MSS
35 78 M G2 B WT MSS
36 81 M G2 B G13D MSS
37 74 M G2 C WT MSI
38 85 M G2 B G12D MSS
1 60 M G2 B WT MSS
2 81 F G3 C WT MSI
3 81 M G3 C G13D MSS
7 51 F G3 B G12D MSS
8 83 M G3 B G12A MSS
13 83 M G2 B G12C MSS
16 70 M G2 A WT MSS
17 77 M G2 D WT MSS
18 50 F G2 B G12C MSS
19 87 F G2 B G12D MSI
24 81 F G2 B G12V MSS
31 75 F G3 C WT MSI
34 79 F G2 B G12D MSI
39 66 M G2 B WT MSS
40 63 M G2 B G12V MSI
41 65 F G2 B WT MSS
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Table S2: Probes in the GoldenGate dataset showing signi�cant associations between
methylation degree in healthy colon and age of individual. Chr = Chromosome;
Cor = Correlation with age.

ID Chr Location CGI Gene Cor P-value

ADCYAP1_P398_F 18 894989 yes ADCYAP1 0.45 6.05E-03
CCNA1_E7_F 13 35904640 yes CCNA1 0.45 6.30E-03
CHGA_E52_F 14 92459297 yes CHGA 0.51 1.17E-04
HCK_P858_F 20 30102860 yes HCK 0.44 9.47E-03
KDR_E79_F 4 55686440 yes KDR 0.44 8.70E-03
KDR_P445_R 4 55686964 yes KDR 0.44 9.51E-03
MOS_E60_R 8 57189035 yes MOS 0.47 2.33E-03
MYOD1_E156_F 11 17697891 yes MYOD1 0.46 3.83E-03
NPY_P295_F 7 24290039 yes NPY 0.44 9.07E-03
PENK_E26_F 8 57521117 yes PENK 0.44 7.62E-03

Table S3: Table of associations between number of di�erentially methylated regions
(columns) and sample processing and patient clinical information (rows).

H
y
p
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m
e
th
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la
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d

H
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rm

e
th
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la
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d

T
o
ta
l
D
M
R
s

Arrival Date 8.15E-01 7.24E-01 1.92E-01
Sonication Date 3.50E-01 1.00E+00 6.45E-01

Sonication Researcher 5.88E-01 8.59E-01 2.05E-01
Auto-MethylCap Date 4.12E-06 5.41E-08 6.17E-08

Library Preparation Date 1.42E-05 1.13E-06 2.43E-06
Solexa Run Date 4.85E-05 3.90E-05 2.12E-06
Solexa Operator 8.66E-02 1.03E-03 9.61E-04

Flowcell 4.85E-05 3.90E-05 2.12E-06
Lane 5.40E-03 1.67E-01 5.43E-02

Age 3.71E-01 7.92E-01 3.34E-01
Gender 2.83E-01 3.47E-01 6.40E-01
Grade 9.68E-01 4.98E-01 7.86E-01
Dukes 7.14E-01 6.03E-01 5.75E-01

Stage-T 8.34E-01 1.74E-01 4.66E-01
Stage-N 9.81E-01 7.72E-01 8.96E-01
KRAS 6.85E-01 5.56E-01 7.28E-01

MS 8.74E-01 9.51E-01 4.55E-01
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Table S4: Table of associations between number of di�erentially methylated regions
(columns) and sample processing and patient clinical information (rows).

Increase in Median Methylation Probes Promoters

Less than -0.25 412 191
Between -0.25 and 0.25 25814 13613

At least 0.25 1352 666

Table S5: Correlations between In�nium promoter support (de�ned in Chapter 6) and
methylation and metrics in TCGA datasets.

Support based on Increase in Methylation Mean Expression

Tag counts 0.62 -0.13
Scaled tag counts 0.63 -0.12

Tag density 0.63 -0.13

Table S9: Strong bimodal In�nium 450k probes in the two cancer types of the lung cancer
dataset. Chr = Chromosome; Enh = Enhancer; SG = Size of Smaller Group.

ID Chr Location Strand Gene Enh SG

Adenocarcinoma, unmethylated probes

cg13064658 1 212003989 - LPGAT1 3
cg15936121 1 153700431 - INTS3 5
cg02628050 2 70418124 + C2orf42 5
cg26347887 2 88927196 + EIF2AK3 4
cg08175029 3 23848512 + UBE2E1 3
cg13677120 4 52709175 - DCUN1D4 2
cg23521603 7 130353913 - TSGA13;COPG2 3
cg26597982 8 143484414 + TSNARE1 2
cg13483474 9 139001555 - yes 2
cg14204415 9 131464988 - PKN3 2
cg24745327 11 65190198 - NEAT1 3
cg05728786 15 40401260 - BMF 3
cg06135755 15 86338090 + KLHL25 3
cg06401851 16 31190843 + FUS 2
cg07562135 19 39340654 + HNRNPL 4
cg22310976 19 49468491 + FTL 4
cg04234465 1 28974730 - RNU11 2
cg13273097 3 152879313 - RAP2B 6
cg16027376 8 144653975 + C8orf73 yes 2
cg16068096 10 89102268 + LOC728190;LOC439994 2
cg25296314 12 122277851 - HPD 2

continues on next page ...



137

... continued from previous page

Adenocarcinoma, methylated probes

cg08975528 6 31867700 + ZBTB12 20
cg00176066 7 6196591 - USP42 6
cg16331358 10 1147675 - WDR37 4
cg07859478 19 808116 - PTBP1 3
cg15344716 20 60889058 - LAMA5 4
cg24448565 X 37404614 + 5
cg24048263 2 242659698 - ING5 3
cg18235278 5 124228992 - 2
cg04752818 7 1536622 - INTS1 3
cg13533616 9 131889368 - PPP2R4 yes 2
cg21244116 9 140729241 - EHMT1 3
cg24517875 10 134538559 + INPP5A 2
cg15896447 14 24683287 - MDP1;CHMP4A 3
cg02447095 16 70748321 + VAC14 yes 7
cg03287527 16 10843654 + NUBP1 yes 3
cg08241115 16 722688 + RHOT2 4
cg27516925 16 90095949 - GAS8;C16orf3 2
cg19357094 17 79260670 + SLC38A10 2
cg05505294 19 1442231 + 3
cg26648488 19 5711704 - LONP1 3
cg27000503 19 1950427 + CSNK1G2 3

Squamous cell carcinoma, umethylated probes

cg16955726 X 134125259 + LOC644538 yes 60
cg01799338 1 36348937 + EIF2C1 2
cg26841013 1 228248013 - WNT3A yes 48
cg13699355 2 468179 - yes 55
cg26347887 2 88927196 + EIF2AK3 2
cg05278650 3 13009132 + IQSEC1 3
cg10748086 3 13009316 - IQSEC1 2
cg15709989 3 185912227 + DGKG yes 59
cg17641046 3 37034473 + MLH1;EPM2AIP1 3
cg12654349 5 56205094 - C5orf35 2
cg02563952 6 31707803 + MSH5 2
cg03302738 6 31707502 + MSH5 2
cg04880558 6 31707613 + MSH5 2
cg08312215 6 33266943 + RGL2 4
cg18488157 6 29521598 + yes 38
cg15617814 11 131780492 - NTM 65
cg19717586 11 131781257 + NTM 54
cg24745327 11 65190198 - NEAT1 2

continues on next page ...



138 Supplementary tables

... continued from previous page
cg07915921 12 54321502 + 42
cg09670128 12 52627047 + KRT7 51
cg13879483 12 95942907 + USP44 51
cg01870456 13 111267991 - CARKD 2
cg05362517 13 37393368 + RFXAP 2
cg02308192 14 75593334 - NEK9 3
cg14087806 17 73030732 - 7
cg03502002 18 74962133 - GALR1 yes 48
cg12019614 19 11353996 - DOCK6 yes 51
cg13021192 20 57582213 + CTSZ 2
cg21120539 20 57582241 + CTSZ 2
cg01660911 22 17082772 + psiTPTE22 63
cg12003064 22 46263834 + 32
cg01352705 2 216979551 + XRCC5 3
cg05037927 2 61372117 - C2orf74 66
cg13821577 2 216979737 + XRCC5 3
cg12706983 6 28092239 + ZSCAN16 4
cg14454942 6 8064764 + MUTED 2
cg12559208 19 54668230 + TMC4 53
cg19310786 20 57582371 + CTSZ 2

Squamous cell carcinoma, methylated probes

cg02365596 2 24413782 - C2orf84 3
cg07486474 4 628649 - PDE6B 41
cg08754725 6 3293098 - SLC22A23 2
cg22198853 6 1594411 + 40
cg07333231 8 1051728 + 62
cg27649037 8 53322510 + ST18 30
cg14339778 10 134359611 - INPP5A 2
cg10508127 11 67462816 + 63
cg19052829 17 80809619 + TBCD 2
cg20558091 17 79122298 + AATK 40
cg27341866 19 2278618 - C19orf35 56
cg24448565 X 37404614 + 2
cg15688683 1 1425815 + ATAD3B 2
cg18367529 1 1161866 - SDF4 5
cg24048263 2 242659698 - ING5 3
cg22575656 7 1539157 + INTS1 2
cg02230133 8 143424799 + TSNARE1 53
cg11792616 8 30018355 + DCTN6 2
cg00257187 10 91401349 - PANK1 2
cg09070101 10 1130179 + WDR37 4
cg27591016 13 47259150 - LRCH1 yes 2

continues on next page ...
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... continued from previous page
cg00929655 15 92459909 - SLCO3A1 2
cg13289118 15 75255681 - 3
cg27516925 16 90095949 - GAS8;C16orf3 2
cg06090161 17 79244943 - SLC38A10 8
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Table S7: Top 20 hypermethylated regions in the analyzed colon cancer dataset.

Region Aggregated Score Support CpG Density

chr10:102880421-102891603 2.5 23 44.5
chr8:97574251-97577410 13.5 23 60.5
chr13:27393400-27402978 16.0 22 42.7
chr13:94160632-94164746 24.5 22 81.9
chr21:36997726-37005801 41.0 22 47.2
chr2:47649523-47653570 47.0 22 72.6

chr4:154927352-154934414 52.5 21 45.5
chr6:150326470-150329134 52.5 21 75.5
chr13:92675712-92679677 53.5 22 43.6
chr7:154933063-154937874 54.5 21 52.6
chr7:157176446-157180286 56.5 22 70.3
chr8:24868480-24871916 59.5 21 62.9
chr8:25952330-25966210 60.0 21 51.0

chr2:119318398-119334083 62.0 22 53.6
chr12:103373785-103377642 62.5 21 57.6
chr14:50628796-50632703 62.5 21 58.9
chr6:108591209-108600567 63.5 22 51.1
chr5:127901440-127903817 69.0 21 54.3
chr8:11594639-11600842 69.0 21 52.1
chr1:50651808-50667073 69.5 21 55.2
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Table S8: Prediction of origin of metastatic samples, GoldenGate dataset. Numer of sam-
ples considered to be correctly predicted are shown in bold.

True origin \ Prediction Correct type Uncertain Wrong type Accuracy

RLR standard

colon cancer 43 1 1 0.96
kidney cancer n.a. 3 2 0.60

total 46 4 0.92

SVM standard

colon cancer 44 0 1 0.98
kidney cancer n.a. 1 4 0.20

total 45 5 0.90

RLR extended

colon cancer 43 1 1 0.96
kidney cancer n.a. 4 1 0.80

total 47 3 0.94

SVM extended

colon cancer 43 0 2 0.96
kidney cancer n.a. 1 4 0.20

total 44 6 0.88

Table S10: Number of regions selected by di�erent models predicting colon cancer subtypes.

Regions \ Score Tag counts Scaled tag counts Tag density

All di�erentially methylated 2034 2566 2566

Elastic net

Predictive of Grade 1 3 1
Predictive of Dukes 25 23 22
Predictive of KRAS 261 37 257
Predictive of MS 26 18 14

Forward selection

Predictive of Grade 13 14 11
Predictive of Dukes 19 13 14
Predictive of KRAS 18 16 12
Predictive of MS 12 13 17


	thesis-final
	thesis-yassen
	Introduction
	Epigenetics and transcriptional regulation
	DNA Methylation
	Chromatin and its constituents
	Other epigenetic mechanisms
	Epigenetic genes

	Methylation in disease
	Epigenetic therapies
	Interplay of mechanisms

	Technologies for quantifying DNA methylation
	Affinity enrichment
	Quantitative sequencing assays
	Microarray-based assays

	Statistical methods for the analysis of epigenetic data
	Analysis of enrichment-based methods
	Analysis of DNA methylation microarrays
	Machine learning methods

	Outline

	Projects and datasets
	GoldenGate
	Colon cancer
	Lung cancer
	RnBeads
	External datasets
	TCGA
	ENCODE


	Quality control and normalization of methylation data
	Probe types and DNA regions
	Filtering probes and samples
	Batch effects
	Quality control and normalization of enrichment-based methylation data
	Normalization of tag enrichment

	Summary

	DNA methylation profiles
	Interindividual variation
	Comparisons of sample sets

	Age-dependent methylation
	Age-associated probes
	Predicting age

	Results and discussion

	Differentially methylated regions
	Differential methylation in microarrays
	Differential methylation in called peaks
	Criteria for differential methylation
	Differential methylation events
	Support for hypo- and hypermethylation

	Summary

	Prioritization of epigenetics biomarker candidates
	The need for data integration
	Integration of MethylCap-seq data with TCGA
	Methylation dataset
	Expression dataset
	Comparison to MethylCap-seq results

	Integration of MethylCap-seq data with ENCODE
	Prioritization of epigenetic biomarkers
	Results

	Results and discussion

	Methylation-based cancer type classification
	Epigenetic signatures and fingerprints
	Tumor types and subtypes
	Predicting primary origin
	Identification of lung cancer subtypes
	Identification of colon cancer subtypes

	Summary

	Conclusions and outlook
	Methylation profiling and differential methylation
	Tumor types and subtypes
	Outlook

	Appendices
	List of publications
	Supplementary figures
	Supplementary tables


